Your reference guide for rapidly understanding Android
and rapidly developing Android apps

Android Recipes

A Problem-Solution Approach

Dave Smith | Jeff Friesen

Apress:

For your convenience Apress has placed some of the front
matter material after the index. Please use the Bookmarks
and Contents at a Glance links to access them.

N

Apress®

Contents at a Glance

Contents........ccvvmmimmmrsmmsm s s —————————————=—— iv
FOreWOrdoovsrvmssssssmsnsssssssssssnssssssssnsnssnsmssnss s s s s sns snsm s ssan s sns snsms s snm s mnnnnmnnnns viii
About the AUtROIS........cccuusmmmmssemmmssnnsssssnssssss s ssn s ssnsssssnsasssnnssssnnssssnnsnssnnnnns iX
About the Technical REVIEWETcccussmsmsssnsssssansssssnsssssnsssssnsssssnsssssnsssssnsssssnnsnss X
Acknowledgments...........cccccummiemmmssnnsmsssnmmsssssmssssssssssnsssns s ssnssnssnnsnsnnnnnns Xi
o xii
Chapter 1: Getting Started with Androidcccccmmmrrrrnsssssssssnnmrmenss——————— 1
Chapter 2: User Interface ReCIPES......ccuseemrrssssmmmmmssssnnnsmsssssnssssssssnnsssssssnnnsssss 75
Chapter 3: Communications and Networking........ccccunssmmmmmnmmmessssssssssssnnsnns 155
Chapter 4: Interacting with Device Hardware and Mediaoossmmeeennnnnas 201
Chapter 5: Persisting Datacccccccmmmrrnmnnnssssssmmnmmnmssssssssnns s 257
Chapter 6: Interacting with the Systemcccccciirrininnn 309
Chapter 7: Working with LIDrariesccccumssssmmmmmmmmmmssssssssssmssssssssssssssssssnns 353
Appendix A: Scripting Layer for Android...........ooovmmmmmmmnnnmnnsssssssssssnsmmsssnnes 385
Appendix B: Android NDK..........ccccccnnnnmmmmmmmmmmmmmmssssssssssssssssssssssssssssssssssssnns 397
Appendix C: App Design GUIideliNesS......cccccmmrrrrrssssssssnssnnmsmsssssssssssssssssesssssnns 411
INA@X ceiuemnnrnsssnnnnnasssnnnnmsssssnnnnsssssnnnnessssnnnnessssnnnsessssnnnnessssnnnnessssnnnnesssnnnnnsssssnnnnss 419

Chapter

Getting Started with
Android

Android is hot, and many people are developing Android applications (apps for short).
Perhaps you would also like to develop apps, but are unsure about how to get started.
Although you could study Google’s online Android Developer’s Guide
(http://developer.android.com/guide/index.html) to acquire the needed knowledge,
you might be overwhelmed by the vast amount of information that this guide presents. In
contrast, this chapter provides just enough theory to help you understand the basics of
Android. This theory is followed by several recipes that teach you how to develop apps
and prepare them for publication to Google’s Android Market.

What Is Android?

The Android Developer’s Guide defines Android as a software stack — a set of software
subsystems needed to deliver a fully functional solution — for mobile devices. This stack
includes an operating system (a modified version of the Linux kernel), middleware
(software that connects the low-level operating system to high-level apps) that’s partly
based on Java, and key apps (written in Java) such as a web browser (known as
Browser) and a contact manager (known as Contacts).

Android offers the following features:

B Application framework enabling reuse and replacement of app
components (discussed later in this chapter)

B Bluetooth, EDGE, 3G, and WiFi support (hardware dependent)

B Camera, GPS, compass, and accelerometer support (hardware
dependent)

Dalvik Virtual Machine (DVM) optimized for mobile devices

B GSM Telephony support (hardware dependent)

http://developer.android.com/guide/index.html

CHAPTER 1: Getting Started with Android

B Integrated browser based on the open source WebKit engine

B Media support for common audio, video, and still image formats
(MPEG4, H.264, MP3, AAC, AMR, JPG, PNG, GIF)

B Optimized graphics powered by a custom 2D graphics library; 3D
graphics based on the OpenGL ES 1.0 specification (hardware
acceleration optional)

B SQLite for structured data storage

Although not part of an Android device’s software stack, Android’s rich development
environment (including a device emulator and a plugin for the Eclipse IDE) could also be
considered an Android feature.

History of Android

Contrary to what you might expect, Android did not originate with Google. Instead,
Android was initially developed by Android, Inc., a small Palo Alto, California-based
startup company. Google bought this company in July 2005 and released a preview
version of the Android SDK in November 2007.

In mid-August, 2008, Google released the Android 0.9 SDK beta, and subsequently
released the Android 1.0 SDK one month later. Table 1-1 outlines subsequent SDK
update releases. (Starting with version 1.5, each major release comes under a code
name that’s based on a dessert item.)

Table 1-1. Android Update Releases

SDK Update

Release Date and Changes

1.1

1.5 (Cupcake)
Based on Linux
Kernel 2.6.27

1.6 (Donut)
Based on Linux
Kernel 2.6.29

2.0/2.1 (Eclair)
Based on Linux
Kernel 2.6.29

Google released SDK 1.1 on February 9, 2009. Changes included paid apps
(via Android Market) and “search by voice” support.

Google released SDK 1.5 on April 30, 2009. Changes included the ability to
record and watch videos through camcorder mode, the ability to upload
videos to YouTube and pictures to Picasa, the ability to populate the home
screen with widgets, and animated screen transitions.

Google released SDK 1.6 on September 15, 2009. Changes included an
improved Android Market experience, an integrated
camera/camcorder/gallery interface, updated “search by voice” with speed
and other improvements, and an updated search experience.

Google released SDK 2.0 on October 26, 2009. Changes included a
revamped user interface, a new contacts list, support for Microsoft
Exchange, digital zoom, improved Google Maps (version 3.1.2), HTML5
support for the Browser app, live wallpapers, and Bluetooth 2.1 support.

Google subsequently released SDK update 2.0.1 on December 3, 2009, and
SDK update 2.1 on January 12, 2010.

CHAPTER 1: Getting Started with Android

SDK Update Release Date and Changes

2.2 (Froyo) Google released SDK 2.2 on May 20, 2009. Changes included the

Based on Linux integration of Chrome’s V8 JavaScript engine into the Browser app, voice
Kernel 2.6.32 dialing and contact sharing over Bluetooth, Adobe Flash 10.1 support,

additional app speed improvements courtesy of a JIT implementation, and
USB tethering and WiFi hotspot functionality.

2.3 (Gingerbread) Google released SDK 2.3 on December 6, 2010. Changes included a new

Based on Linux concurrent garbage collector that improves an app’s responsiveness,

Kernel 2.6.35.7 support for gyroscope sensing, support for WebM video playback and other
video improvements, support for near field communication, and improved
social networking features. This book focuses on Android 2.3.

Google subsequently released SDK 2.3.1 to fix some bugs, and SDK 2.3.3,
a small feature release that adds several improvements and APIs to the
Android 2.3 platform.

3.0 (Honeycomb) Google released SDK 3.0 on February 22, 2011. Unlike previous releases,

Based on Linux version 3.0 focuses exclusively on tablets, such as Motorola Zoom, the first

2.6.36 tablet to be released (on February 24, 2011). In addition to an improved
user interface, version 3.0 improves multitasking, supports multicore
processors, supports hardware acceleration, and provides a 3D desktop
with redesigned widgets.

Android Architecture

The Android software stack consists of apps at the top, middleware (consisting of an
application framework, libraries, and the Android runtime) in the middle, and a Linux
kernel with various drivers at the bottom. Figure 1-1 shows this layered architecture.

CHAPTER 1: Getting Started with Android

Applications

[Home) [Browser) [Contacts) [Phone) [)

Application Framework

[Activity Manager) [Content Providers) [Location Manager) [Notification Manager)

[Package Manager) [Resource Manager) [Telephony Manager) [View System) [Window Manager)

Libraries Android Runtime

[Freepe) (libc) (vibwebcore)

[Core Libraries)

(Media Framework) (OpenGLIES] SGL)

(Dalvik Virtual Machine)

[SQLite) [SSL) [Surface Manager)

Linux Kernel

[Audio Drivers)[Binder(IPC) Driver)[Camera Driver)[Display Driver)

[Flash Memory Driver) [Keypad Driver) [Power Management] [WiFi Driver)

Figure 1-1. Android’s layered architecture consists of several major parts.

Users care about apps, and Android ships with a variety of useful core apps, which
include Browser, Contacts, and Phone. All apps are written in the Java programming
language. Apps form the top layer of Android’s architecture.

Directly beneath the app layer is the application framework, a set of high-level building
blocks for creating apps. The application framework is preinstalled on Android devices
and consists of the following components:

B Activity Manager: This component provides an app’s lifecycle and
maintains a shared activity stack for navigating within and among
apps. Both topics are discussed later in this chapter.

B Content Providers: These components encapsulate data (such as the
Browser app’s bookmarks) that can be shared among apps.

B [ocation Manager: This component makes it possible for an Android
device to be aware of its physical location.

CHAPTER 1: Getting Started with Android

Notification Manager: This component lets an app notify the user of a
significant event (such as a message’s arrival) without interrupting
what the user is currently doing.

Package Manager: This component lets an app learn about other app
packages that are currently installed on the device. (App packages are
discussed later in this chapter.)

Resource Manager: This component lets an app access its resources,
a topic that’s briefly discussed in Recipe 1-5.

Telephony Manager: This component lets an app learn about a
device’s telephony services. It also handles making and receiving
phone calls.

View System: This component manages user interface elements and
user interface-oriented event generation. (These topics are briefly
discussed in Recipe 1-5.)

Window Manager: This component organizes the screen’s real estate
into windows, allocates drawing surfaces, and performs other window-
related jobs.

The components of the application framework rely on a set of C/C++ libraries to perform
their jobs. Developers interact with the following libraries by way of framework APIs:

FreeType: This library supports bitmap and vector font rendering.

libc: This library is a BSD-derived implementation of the standard C
system library, tuned for embedded Linux-based devices.

LibWebCore: This library offers a modern and fast web browser engine
that powers the Android browser and an embeddable web view. It’s
based on WebKit (http://en.wikipedia.org/wiki/WebKit) and is also
used by the Google Chrome and Apple Safari browsers.

Media Framework: These libraries, which are based on PacketVideo’s
OpenCORE, support the playback and recording of many popular
audio and video formats, as well as working with static image files.
Supported formats include MPEG4, H.264, MP3, AAC, AMR, JPEG,
and PNG.

OpenGL | ES: These 3D graphics libraries provide an OpenGL
implementation based on OpenGL | ES 1.0 APIs. They use hardware
3D acceleration (where available) or the included (and highly
optimized) 3D software rasterizer.

SGL: This library provides the underlying 2D graphics engine.

SQLite: This library provides a powerful and lightweight relational
database engine that’s available to all apps, and that’s also used by
Mozilla Firefox and Apple’s iPhone for persistent storage.

http://en.wikipedia.org/wiki/WebKit

CHAPTER 1: Getting Started with Android

B SSL: This library provides secure sockets layer-based (SSL-based)
security for network communication.

B Surface Manager: This library manages access to the display
subsystem, and seamlessly composites 2D and 3D graphic layers from
multiple apps.

Android provides a runtime environment that consists of core libraries (implementing a
subset of the Apache Harmony Java version 5 implementation) and the Dalvik Virtual
Machine (DVM), a non-Java virtual machine that’s based on processor registers instead
of being stack-based.

NOTE: Google’s Dan Bornstein created Dalvik and named this virtual machine after an Icelandic
fishing village where some of his ancestors lived.

Each Android app defaults to running in its own Linux process, which hosts an instance

of Dalvik. This virtual machine has been designed so that devices can run multiple virtual
machines efficiently. This efficiency is largely due to Dalvik executing Dalvik Executable

(DEX)-based files — DEX is a format that’s optimized for a minimal memory footprint.

NOTE: Android starts a process when any of part of the app needs to execute, and shuts down
the process when it’s no longer needed and system resources are required by other apps.

Perhaps you’re wondering how it’s possible to have a hon-Java virtual machine run Java
code. The answer is that Dalvik doesn’t run Java code. Instead, Android transforms
compiled Java classfiles into the DEX format, and it’s this resulting code that gets
executed by Dalvik.

Finally, the libraries and Android runtime rely on the Linux kernel (version 2.6) for
underlying core services such as threading, low-level memory management, a network
stack, process management, and a driver model. Furthermore, the kernel acts as an
abstraction layer between the hardware and the rest of the software stack.

ANDROID SECURITY MODEL

Android’s architecture includes a security model that prevents apps from performing operations considered
harmful to other apps, Linux, or users. This security model, which is mostly based on process level
enforcement via standard Linux features (such as user and group IDs), places processes in a security
sandbox.

By default, the sandbox prevents apps from reading or writing the user’s private data (such as contacts or
emails), reading or writing another app’s files, performing network access, keeping the device awake,
accessing the camera, and so on. Apps that need to access the network or perform other sensitive
operations must first obtain permission to do so.

CHAPTER 1: Getting Started with Android

Android handles permission requests in various ways, typically by automatically allowing or disallowing the
request based upon a certificate, or by prompting the user to grant or revoke the permission. Permissions
required by an app are declared in the app’s manifest file (discussed later in this chapter) so that they are
known to Android when the app is installed. These permissions won’t subsequently change.

App Architecture

The architecture of an Android app differs from desktop application architecture. App
architecture is based upon components that communicate with each other by using
intents that are described by a manifest and that are stored in an app package.

Components

An app is a collection of components (activities, services, content providers, and
broadcast receivers) that run in a Linux process and that are managed by Android.
These components share a set of resources, including databases, preferences, a
filesystem, and the Linux process.

NOTE: Not all of these components need to be present in an app. For example, one app might
consist of activities only, whereas another app might consist of activities and a service.

This component-oriented architecture lets an app reuse the components of other apps,
provided that those other apps permit reuse of their components. Component reuse
reduces overall memory footprint, which is very important for devices with limited
memory.

To make the reuse concept concrete, suppose you’re creating a drawing app that lets
users choose a color from a palette, and suppose that another app has developed a
suitable color chooser and permits this component to be reused. In this scenario, the
drawing app can call upon that other app’s color chooser to have the user select a color
rather than provide its own color chooser. The drawing app doesn’t contain the other
app’s color chooser or even link to this other app. Instead, it starts up the other app’s
color chooser component when needed.

Android starts a process when any part of the app (such as the aforementioned color
chooser) is needed, and instantiates the Java objects for that part. This is why Android’s
apps don’t have a single entry point (no C-style main() function, for example). Instead,
apps use components that are instantiated and run as needed.

Activities

An activity is a component that presents a user interface so that the user can interact
with an app. For example, Android’s Contacts app includes an activity for entering a

CHAPTER 1: Getting Started with Android

new contact, its Phone app includes an activity for dialing a phone number, and its
Calculator app includes an activity for performing basic calculations (see Figure 1-2).
[Y. TRrETY |

3.14159 am

Figure 1-2. The main activity of Android’s Calculator app lets the user perform basic calculations.

Although an app can include a single activity, it’s more typical for apps to include
multiple activities. For example, Calculator also includes an “advanced panel” activity
that lets the user calculate square roots, perform trigonometry, and carry out other
advanced mathematical operations.

Services

A service is a component that runs in the background for an indefinite period of time,
and which doesn’t provide a user interface. As with an activity, a service runs on the
process’s main thread; it must spawn another thread to perform a time-consuming
operation. Services are classified as local or remote.

B AlJocal service runs in the same process as the rest of the app. Such
services make it easy to implement background tasks.

B A remote service runs in a separate process. Such services let you
perform interprocess communications.

NOTE: A service is not a separate process, although it can be specified to run in a separate
process. Also, a service is not a thread. Instead, a service lets the app tell Android about
something it wants to be doing in the background (even when the user is not directly interacting
with the app), and lets the app expose some of its functionality to other apps.

Consider a service that plays music in response to a user’s music choice via an activity.
The user selects the song to play via this activity, and a service is started in response to
the selection. The service plays the music on another thread to prevent the Application
Not Responding dialog box (discussed in Appendix C) from appearing.

NOTE: The rationale for using a service to play the music is that the user expects the music to
keep playing even after the activity that initiated the music leaves the screen.

CHAPTER 1: Getting Started with Android

Broadcast Receivers

A broadcast receiver is a component that receives and reacts to broadcasts. Many
broadcasts originate in system code; for example, an announcement is made to indicate
that the timezone has been changed or the battery power is low.

Apps can also initiate broadcasts. For example, an app may want to let other apps know
that some data has finished downloading from the network to the device and is now
available for them to use.

Content Providers

A content provider is a component that makes a specific set of an app’s data available
to other apps. The data can be stored in the Android filesystem, in an SQLite database,
or in any other manner that makes sense.

Content providers are preferable to directly accessing raw data because they decouple
component code from raw data formats. This decoupling prevents code breakage when
formats change.

Intents

Intents are messages that describe operations to perform (such as “send an email” or
“choose a photo”), or in the case of broadcasts, provide descriptions of external events
that have occurred (a device’s camera being activated, for example) and are being
announced.

Because nearly everything in Android involves intents, there are many opportunities to
replace existing components with your own components. For example, Android
provides the intent for sending an email. Your app can send that intent to activate the
standard mail app, or it can register an activity that responds to the “send an email”
intent, effectively replacing the standard mail app with its own activity.

These messages are implemented as instances of the android. content.Intent class. An
Intent object describes a message in terms of some combination of the following items:

B Action: A string naming the action to be performed or, in the case of
broadcast intents, the action that took place and is being reported.
Actions are described by Intent constants such as ACTION_CALL
(initiate a phone call), ACTION EDIT (display data for the user to edit),
and ACTION_MAIN (start up as the initial activity). You can also define
your own action strings for activating the components in your app.
These strings should include the app package as a prefix
("com.example.project.SELECT_COLOR", for example).

CHAPTER 1: Getting Started with Android

B Category: A string that provides additional information about the kind
of component that should handle the intent. For example,
CATEGORY_LAUNCHER means that the calling activity should appear in the
device’s app launcher as a top-level app. (The app launcher is briefly
discussed in Recipe 1-4.)

B Component name: A string that specifies the fully qualified name
(package plus name) of a component class to use for the intent. The
component name is optional. If set, the Intent object is delivered to an
instance of the designated class. If not set, Android uses other
information in the Intent object to locate a suitable target.

B Data: The uniform resource identifier of the data on which to operate
(such as a person record in a contacts database).

B Extras: A set of key-value pairs providing additional information that
should be delivered to the component handling the intent. For
example, given an action for sending an email, this information could
include the message’s subject, body, and so on.

B Flags: Bit values that instruct Android on how to launch an activity (for
example, which task the activity should belong to — tasks are
discussed later in this chapter) and how to treat the activity after
launch (for example, whether the activity can be considered a recent
activity). Flags are represented by constants in the Intent class; for
example, FLAG_ACTIVITY_NEW_TASK specifies that this activity will
become the start of a new task on this activity stack. The activity stack
is discussed later in this chapter.

B Type: The MIME type of the intent data. Normally, Android infers a
type from the data. By specifying a type, you disable that inference.

Intents can be classified as explicit or implicit. An explicit intent designates the target
component by its name (the previously mentioned component name item is assigned a
value). Because component names are usually unknown to the developers of other
apps, explicit intents are typically used for app-internal messages (such as an activity
that launches another activity located within the same app). Android delivers an explicit
intent to an instance of the designated target class. Only the Intent object’s component
name matters for determining which component should get the intent.

An implicit intent doesn’t name a target (the component name is not assigned a value).
Implicit intents are often used to start components in other apps. Android searches for
the best component (a single activity or service to perform the requested action) or
components (a set of broadcast receivers to respond to the broadcast announcement)
to handle the implicit intent. During the search, Android compares the contents of the
Intent object to intent filters, manifest information associated with components that can
potentially receive intents.

Filters advertise a component’s capabilities and identify only those intents that the
component can handle. They open up the component to the possibility of receiving

CHAPTER 1: Getting Started with Android

implicit intents of the advertised type. If a component has no intent filters, it can receive
only explicit intents. In contrast, a component with filters can receive explicit and implicit
intents. Android consults an Intent object’s action, category, data, and type when
comparing the intent against an intent filter. It doesn’t take extras and flags into
consideration.

Manifest

Android learns about an app’s various components (and more) by examining the app’s
XML-structured manifest file, AndroidManifest.xml. For example, Listing 1-1 shows how
this file might declare an activity component.

Listing 1-1. A Manifest File Declaring an Activity

<?xml version="1.0" encoding="utf-8"?>
<manifest xmlns:android="http://schemas.android.com/apk/res/android"

package="com.example.project" android:versionCode="1
android:versionName="1.0">
<application android:label="@string/app_name" android:icon="@drawable/icon">
<activity android:name=".MyActivity" android:label="@string/app_name">
<intent-filter>
<action android:name="android.intent.action.MAIN" />
<category android:name="android.intent.category.LAUNCHER" />
</intent-filter>
</activity>
</application>
</manifest>

Listing 1-1 begins with the necessary <?xml version="1.0" encoding="utf-8"?> prolog,
which identifies this file as an XML version 1.0 file, whose content is encoded according
to the UTF-8 encoding standard.

Listing 1-1 next presents a <manifest> tag, which is this XML document’s root element;
android identifies the Android namespace, package identifies the app’s Java package,
and versionCode/versionName identify version information.

Nested within <manifest> is <application>, which is the parent of app component tags.
The icon and label attributes refer to icon and label resources that Android devices
display to represent the app. (Resources are briefly discussed in Recipe 1-5.)

NOTE: Resources are identified by the @ prefix, followed by a resource category name (such as
string or drawable), /, and the resource ID (such as app_name or icon).

The <application> tag’s icon and label attributes specify defaults that are inherited by
components whose tags don’t specify these attributes.

Nested within <application> is <activity>, which describes an activity component. This
tag’s name attribute identifies a class (MyActivity) that implements the activity. This
name begins with a period character to imply that it’s relative to com.example.project.

http://schemas.android.com/apk/res/android

CHAPTER 1: Getting Started with Android

NOTE: The period is not present when AndroidManifest.xml is created at the command
line. However, this character is present when this file is created from within Eclipse (discussed in
Recipe 1-10). Regardless, MyActivity is relative to <manifest>’s package value
(com.example.project).

Nested within <activity> is <intent-filter>. This tag declares the capabilities of the
component described by the enclosing tag. For example, it declares the capabilities of
the activity component via its nested <action> and <category> tags.

B <action> identifies the action to perform. This tag’s android:name
attribute is assigned "android.intent.action.MAIN" to identify the
activity as the app’s entry point.

B <category> identifies a component category. This tag’s android:name
attribute is assigned "android. intent.category.LAUNCHER" to identify
the activity as needing to be displayed in the app launcher.

NOTE: Other components are similarly declared. For example, services are declared via
<service> tags, broadcast receivers are declared via <receiver> tags, and content providers
are declared via <provider> tags. Except for broadcast receivers, which can be created at
runtime, components not declared in the manifest are not created by Android.

The manifest may also contain <uses-permission> tags to identify permissions that the
app needs. For example, an app that needs to use the camera would specify the
following tag: <uses-permission android:name="android.permission.CAMERA" />.

NOTE: <uses-permission> tags are nested within <manifest> tags. They appear at the
same level as the <application> tag.

At app-install time, permissions requested by the app (via <uses-permission») are
granted to it by Android’s package installer, based upon checks against the digital
signatures of the apps declaring those permissions and/or interaction with the user.

No checks with the user are done while an app is running. It was granted a specific
permission when installed and can use that feature as desired, or the permission was
not granted and any attempt to use the feature will fail without prompting the user.

NOTE: AndroidManifest.xml provides additional information, such as naming any libraries
that the app needs to be linked against (besides the default Android library), and identifying all
app-enforced permissions (via <permission> tags) to other apps, such as controlling who can
start the app’s activities.

CHAPTER 1: Getting Started with Android

App Package

Android apps are written in Java. The compiled Java code for an app’s components is
further transformed into Dalvik’s DEX format. The resulting code files along with any
other required data and resources are subsequently bundled into an App PacKage
(APK), a file identified by the .apk suffix.

An APK is not an app, but is used to distribute an app and install it on a mobile device.
It’s not an app because its components may reuse another APK’s components, and (in
this situation) not all of the app would reside in a single APK. However, it’s common to
refer to an APK as representing a single app.

An APK must be signed with a certificate (which identifies the app’s author) whose
private key is held by its developer. The certificate doesn’t need to be signed by a
certificate authority. Instead, Android allows APKs to be signed with self-signed
certificates, which is typical. (APK signing is discussed in Recipe 1-8.)

APK FILES, USER IDS, AND SECURITY

Each APK installed on an Android device is given its own unique Linux user ID, and this user ID remains
unchanged for as long as the APK resides on that device.

Security enforcement occurs at the process level, so the code contained in any two APKs cannot normally
run in the same process, because each APK’s code needs to run as a different Linux user.

However, you can have the code in both APKs run in the same process by assigning the same name of a
user ID to the <manifest> tag’s sharedUserId attribute in each APK’s AndroidManifest.xml file.

When you make these assignments, you tell Android that the two packages are to be treated as being the
same app, with the same user ID and file permissions.

In order to retain security, only two APKs signed with the same signature (and requesting the same
sharedUserId value in their manifests) will be given the same user ID.

Activities in Depth

Activities are described by subclasses of the android.app.Activity class, which is an
indirect subclass of the abstract android.content.Context class.

NOTE: Context is an abstract class whose methods let apps access global information about
their environments (such as their resources and filesystems), and allow apps to perform
contextual operations, such as launching activities and services, broadcasting intents, and
opening private files.

Activity subclasses override various Activity lifecycle callback methods that Android
calls during the life of an activity. For example, the SimpleActivity class in Listing 1-2

CHAPTER 1: Getting Started with Android

extends Activity and also overrides the void onCreate(Bundle bundle) and void
onDestroy() lifecycle callback methods.

Listing 1-2. A Skeletal Activity

import android.app.Activity;
import android.os.Bundle;

public class SimpleActivity extends Activity

@0verride
public void onCreate(Bundle savedInstanceState)

{
super.onCreate(savedInstanceState); // Always call superclass method first.
System.out.println("onCreate(Bundle) called");

@0verride
public void onDestroy()
{
super.onDestroy(); // Always call superclass method first.
System.out.println("onDestroy() called");
}
}

The overriding onCreate(Bundle) and onDestroy() methods in Listing 1-2 first invoke
their superclass counterparts, a pattern that must be followed when overriding the void
onStart(), void onRestart(), void onResume(), void onPause(), and void onStop()
lifecycle callback methods.

B onCreate(Bundle) is called when the activity is first created. This
method is used to create the activity’s user interface, create
background threads as needed, and perform other global initialization.
onCreate() is passed an android.os.Bundle object containing the
activity’s previous state, if that state was captured; otherwise, the null
reference is passed. Android always calls the onStart() method after
calling onCreate(Bundle).

B onStart() is called just before the activity becomes visible to the user.
Android calls the onResume() method after calling onStart() when the
activity comes to the foreground, and calls the onStop() method after
onStart() when the activity becomes hidden.

B onRestart() is called after the activity has been stopped, just prior to it
being started again. Android always calls onStart() after calling
onRestart().

B onResume() is called just before the activity starts interacting with the
user. At this point, the activity has the focus and user input is directed
to the activity. Android always calls the onPause() method after calling
onResume (), but only when the activity must be paused.

CHAPTER 1: Getting Started with Android

B onPause() is called when Android is about to resume another activity.
This method is typically used to persist unsaved changes, stop
animations that might be consuming processor cycles, and so on. It
should perform its job quickly, because the next activity won’t be
resumed until it returns. Android calls onResume() after calling
onPause() when the activity starts interacting with the user, and calls
onStop() when the activity becomes invisible to the user.

B onStop() is called when the activity is no longer visible to the user.
This may happen because the activity is being destroyed, or because
another activity (either an existing one or a new one) has been
resumed and is covering the activity. Android calls onRestart() after
calling onStop(), when the activity is coming back to interact with the
user, and calls the onDestroy() method when the activity is going
away.

B onDestroy() is called before the activity is destroyed, unless memory
is tight and Android is forced to kill the activity’s process. In this
scenario, onDestroy() is never called. If onDestroy() is called, it will be
the final call that the activity ever receives.

NOTE: Android can Kill the process hosting the activity at any time after onPause(),
onStop(), or onDestroy () returns. An activity is in a killable state from the time onPause()
returns until the time onResume () is called. The activity won’t again be killable until
onPause() returns.

These seven methods define an activity’s entire lifecycle and describe the following
three nested loops:

B The entire lifetime of an activity is defined as everything from the first
call to onCreate(Bundle) through to a single final call to onDestroy().
An activity performs all of its initial setup of “global” state in
onCreate(Bundle), and releases all remaining resources in
onDestroy(). For example, if the activity has a thread running in the
background to download data from the network, it might create that
thread in onCreate(Bundle) and stop the thread in onDestroy().

B The visible lifetime of an activity is defined as everything from a call to
onStart() through to a corresponding call to onStop(). During this
time, the user can see the activity onscreen, although it might not be in
the foreground interacting with the user. Between these two methods,
the activity can maintain resources that are needed to show itself to
the user. For example, it can register a broadcast receiver in onStart()
to monitor for changes that impact its user interface, and unregister
this object in onStop() when the user can no longer see what the
activity is displaying. The onStart() and onStop() methods can be

CHAPTER 1: Getting Started with Android

called multiple times, as the activity alternates between being visible to
and being hidden from the user.

B The foreground lifetime of an activity is defined as everything from a
call to onResume () through to a corresponding call to onPause().
During this time, the activity is in front of all other activities onscreen
and is interacting with the user. An activity can frequently transition
between the resumed and paused states; for example, onPause() is
called when the device goes to sleep or when a new activity is started,
and onResume() is called when an activity result or a new intent is
delivered. The code in these two methods should be fairly lightweight.

NOTE: Each lifecycle callback method is a hook that an activity can override to perform
appropriate work. All activities must implement onCreate(Bundle) to carry out the initial
setup when the activity object is first instantiated. Many activities also implement onPause() to
commit data changes and otherwise prepare to stop interacting with the user.

Figure 1-3 illustrates an activity’s lifecycle in terms of these seven methods.

e
Activity started by
startActivity()

> onCreate()

User navigates back 2
to the activity onStart() < onRestart()

v A

onResume() <t

Process is killed
Activity is running

| Activity comes
Another activity comes to the foreground
in front of the activity
Other applications onPause) Activity comes
need memory to the foreground

Activity is no longer visible

v

onStop()

v

onDestroy()

v
Activity is shut down

Figure 1-3. The lifecycle of an activity reveals that there’s no guarantee of onDestroy() being called.

CHAPTER 1: Getting Started with Android

Because onDestroy() might not be called, you should not count on using this method as
a place for saving data. For example, if an activity is editing a content provider’s data,
those edits should typically be committed in onPause().

In contrast, onDestroy() is usually implemented to free resources (such as threads) that
are associated with an activity so that a destroyed activity doesn’t leave such things
around while the rest of its app is still running.

Figure 1-3 reveals that an activity is started by calling startActivity(). More
specifically, the activity is started by creating an Intent object describing an explicit or
implicit intent, and by passing this object to Context’s void startActivity(Intent
intent) method (launch a new activity; no result is returned when it finishes).

Alternatively, the activity could be started by calling Activity’s void
startActivityForResult(Intent intent, int requestCode) method. The specified int
result is returned to Activity’s void onActivityResult(int requestCode, int
resultCode, Intent data) callback method as an argument.

NOTE: The responding activity can look at the initial intent that caused it to be launched by
calling Activity’s Intent getIntent() method. Android calls the activity’s void
onNewIntent(Intent intent) method (also located in the Activity class) to pass any
subsequent intents to the activity.

Suppose that you’ve created an app named SimpleActivity, and that this app consists
of SimpleActivity (described in Listing 1-2) and SimpleActivity2 classes. Now
suppose that you want to launch SimpleActivity2 from SimpleActivity’s
onCreate(Bundle) method. The following code fragment shows you how to start
SimpleActivity2:

Intent intent = new Intent(SimpleActivity.this, SimpleActivity2.class);
SimpleActivity.this.startActivity(intent);

The first line creates an Intent object that describes an explicit intent. It initializes this
object by passing the current SimpleActivity instance’s reference and
SimpleActivity2’s Class instance to the Intent(Context packageContext, Class<?>
cls) constructor.

The second line passes this Intent object to startActivity(Intent), which is
responsible for launching the activity described by SimpleActivity2.class. If
startActivity(Intent) was unable to find the specified activity (which shouldn’t
happen), it would throw an android.content.ActivityNotFoundException instance.

Activities must be declared in the app’s AndroidManifest.xml file or they cannot be
started (because they are invisible to Android). For example, the AndroidManifest.xml
file in Listing 1-3 declares SimpleActivity and SimpleActivity2 - the ellipsis refers to
content not relevant to this discussion.

CHAPTER 1: Getting Started with Android

Listing 1-3. SimpleActivity’s Manifest File

<?xml version="1.0" encoding="utf-8"?>
<manifest xmlns:android="http://schemas.android.com/apk/res/android"

package="com.example.project" ...>
<application ...>
<activity android:name=".SimpleActivity" ...>

<intent-filter ...>
<action android:name="android.intent.action.MAIN" />
<category android:name="android.intent.category.LAUNCHER" />
</intent-filter>
</activity>
<activity android:name=".SimpleActivity2" ...>
<intent-filter ...>
<action android:name="android.intent.action.VIEW" />
<data android:mimeType="image/jpeg" />
<category android:name="android.intent.category.DEFAULT" />
</intent-filter>
</activity>

</application>
</manifest>
Listing 1-3 reveals that each of SimpleActivity and SimpleActivity2 is associated with
an intent filter via an <intent-filter> tag that’s nested within <activity>.
SimpleActivity2’s <intent-filter> tag helps Android determine that this activity is to
be launched when the Intent object’s values match the following tag values:

B <action>’s android:name attribute is assigned
"android.intent.action.VIEW"

B <data>’s android:mimeType attribute is assigned "image/jpeg" MIME
type — additional attributes (such as android:path) would typically be
present to locate the data to be viewed

B <category>’s android:name attribute is assigned
"android.intent.category.DEFAULT" to allow the activity to be
launched without explicitly specifying its component.

The following code fragment shows you how to start SimpleActivity2 implicitly:

Intent intent = new Intent();
intent.setAction("android.intent.action.VIEW");
intent.setType("image/jpeg");
intent.addCategory("android. intent.category.DEFAULT");
SimpleActivity.this.startActivity(intent);

The first four lines create an Intent object describing an implicit intent. Values passed to
Intent’s Intent setAction(String action), Intent setType(String type), and Intent
addCategory(String category) methods specify the intent’s action, MIME type, and
category. They help Android identify SimpleActivity2 as the activity to be launched.

http://schemas.android.com/apk/res/android

CHAPTER 1: Getting Started with Android

ACTIVITIES, TASKS, AND THE ACTIVITY STACK

Android refers to a sequence of related activities as a task and provides an activity stack (also known as
history stack or back stack) to remember this sequence. The activity starting the task is the initial activity
pushed onto the stack and is known as the root activity. This activity is typically the activity selected by the
user via the device’s app launcher. The activity that’s currently running is located at the top of the stack.

When the current activity starts another, the new activity is pushed onto the stack and takes focus
(becomes the running activity). The previous activity remains on the stack, but is stopped. When an activity
stops, the system retains the current state of its user interface.

When the user presses the device’s BACK key, the current activity is popped from the stack (the activity is
destroyed), and the previous activity resumes operation as the running activity (the previous state of its
user interface is restored).

Activities in the stack are never rearranged, only pushed and popped from the stack. Activities are pushed
onto the stack when started by the current activity, and popped off the stack when the user leaves them
using the BACK key. As such, the stack operates as a “last in, first out” object structure.

Each time the user presses BACK, an activity in the stack is popped off to reveal the previous activity. This
continues until the user returns to the home screen or to whichever activity was running when the task
began. When all activities are removed from the stack, the task no longer exists.

Check out the “Tasks and Back Stack” section in Google’s online Android documentation to learn more
about activities and tasks:
http://developer.android.com/guide/topics/fundamentals/tasks-and-back-
stack.html.

Services in Depth

Services are described by subclasses of the abstract android.app.Service class, which
is an indirect subclass of Context.

Service subclasses override various Service lifecycle callback methods that Android
calls during the life of a service. For example, the SimpleService class in Listing 1-4
extends Service and also overrides the void onCreate() and void onDestroy() lifecycle
callback methods.

Listing 1-4. A Skeletal Service, Version 1

import android.app.Service;

public class SimpleService extends Service

{

@0verride
public void onCreate()

{
System.out.println("onCreate() called");

}

@0verride
public void onDestroy()
{

http://developer.android.com/guide/topics/fundamentals/tasks-and-back-stack.html
http://developer.android.com/guide/topics/fundamentals/tasks-and-back-stack.html
http://developer.android.com/guide/topics/fundamentals/tasks-and-back-stack.html

CHAPTER 1: Getting Started with Android

System.out.println("onDestroy() called");

@0verride
public IBinder onBind(Intent intent)

{
System.out.println("onBind(Intent) never called");

return null;

}

onCreate() is called when the service is initially created, and onDestroy() is called when
the service is being removed. Because it is abstract, the IBinder onBind(Intent
intent) lifecycle callback method (described later in this section) must always be
overridden, even if only to return null, which indicates that this method is ignored.

NOTE: Service subclasses typically override onCreate() and onDestroy() to perform
initialization and cleanup. Unlike Activity’s onCreate(Bundle) and onDestroy()
methods, Service’s onCreate() method isn’t repeatedly called and its onDestroy() method
is always called.

A service’s lifetime happens between the time onCreate() is called and the time
onDestroy () returns. As with an activity, a service initializes in onCreate() and cleans up in
onDestroy (). For example, a music playback service could create the thread that plays music
in onCreate() and stop the thread in onDestroy().

Local services are typically started via Context’s ComponentName startService(Intent
intent) method, which returns an android. content.ComponentName instance that
identifies the started service component, or the null reference if the service doesn’t exist.
Furthermore, startService(Intent) results in the lifecycle shown in Figure 1-4.

Service started by
startService()
onCreate() Service is shut down
v A
onStartCommand) onDestroy()
Service is running Service is stopped

(no callback)
|

Figure 1-4. The lifecycle of a service that’s started by startService(Intent) features a call to
onStartCommand(Intent, int, int).

The call to startService(Intent) results in a call to onCreate(), followed by a call to
int onStartCommand(Intent intent, int flags, int startId). This latter lifecycle
callback method, which replaces the deprecated void onStart(Intent intent, int
startId) method, is called with the following arguments:

CHAPTER 1: Getting Started with Android

B intent is the Intent object passed to startService(Intent).

B flags can provide additional data about the start request, but are often
set to 0.

B startID is a unique integer that describes this start request. A service
can pass this value to Service’s boolean stopSelfResult(int
startId) method to stop itself.

onStartCommand(Intent, int, int) processes the Intent object, and typically returns
the constant Service.START STICKY to indicate that the service is to continue running
until explicitly stopped. At this point, the service is running and will continue to run until
one of the following events occurs:

B Another component stops the service by calling Context’s boolean
stopService(Intent intent) method. Only one stopService(Intent)
call is needed no matter how often startService(Intent) was called.

B The service stops itself by calling one of Service’s overloaded
stopSelf() methods, or by calling Service’s stopSelfResult(int)
method.

After stopService(Intent), stopSelf(), or stopSelfResult(int) has been called,
Android calls onDestroy() to let the service perform cleanup tasks.

NOTE: When a service is started by calling startService(Intent), onBind(Intent) is not
called.

Listing 1-5 presents a skeletal service class that could be used in the context of the
startService(Intent) method.

Listing 1-5. A Skeletal Service, Version 2

import android.app.Service;

public class SimpleService extends Service

{

@0verride
public void onCreate()

System.out.println("onCreate() called");

@0verride
public int onStartCommand(Intent intent, int flags, int startId)

System.out.println("onStartCommand(Intent, int, int) called");
return START_STICKY;
}

@0verride
public void onDestroy()

System.out.println("onDestroy() called");

CHAPTER 1: Getting Started with Android

@0verride
public IBinder onBind(Intent intent)

System.out.println("onBind(Intent) never called");
return null;

}
}

The following code fragment, which is assumed to be located in the onCreate() method
of Listing 1-2’s SimpleActivity class, employs startService(Intent) to start an
instance of Listing 1-5’s SimpleService class via an explicit intent:

Intent intent = new Intent(SimpleActivity.this, SimpleService.class);
SimpleActivity.this.startService(intent);

Remote services are started via Context’s boolean bindService(Intent service,
ServiceConnection conn, int flags) method, which connects to a running service,
creating the service if necessary, and which returns ‘true’ when successfully connected.
bindService(Intent, ServiceConnection, int) results in the lifecycle illustrated by
Figure 1-5.

[Service created by |
bindService()

2

onCreate()
Y
onBind()
|

Client interacts _
with service € onRebind()

v
onUnbind() T
4

onDestroy()

A 2

Service is shut down

Figure 1-5. The lifecycle of a service started by bindService(Intent, ServiceConnection, int) doesn’t
include a call to onStartCommand(Intent, int, int).

The call to bindService(Intent, ServiceConnection, int) resultsin a call to
onCreate() followed by a call to onBind(Intent), which returns the communications
channel (an instance of a class that implements the android.os.IBinder interface) that
clients use to interact with the service.

CHAPTER 1: Getting Started with Android

The client interacts with the service as follows:

1. The client subclasses android. content.ServiceConnection and
overrides this class’s abstract void onServiceConnected(ComponentName
className, IBinder service) and void
onServiceDisconnected(ComponentName name) methods in order to
receive information about the service as the service is started and
stopped. When bindService(Intent, ServiceConnection, int) returns
true, the former method is called when a connection to the service has
been established; the IBinder argument passed to this method is the
same value returned from onBind(Intent). The latter method is called
when a connection to the service has been lost.

Lost connections typically occur when the process hosting the service has
crashed or has been killed. The ServiceConnection instance itself is not removed
- the binding to the service will remain active, and the client will receive a call to
onServiceConnected(ComponentName, IBinder) when the service is next running.

2. The client passes the ServiceConnection subclass object to
bindService(Intent, ServiceConnection, int).

A client disconnects from a service by calling Context’s void
unbindService(ServiceConnection conn) method. This component no longer receives
calls as the service is restarted. If no other components are bound to the service, the
service is allowed to stop at any time.

Before the service can stop, Android calls the service’s boolean onUnbind(Intent
intent) lifecycle callback method with the Intent object that was passed to
unbindService(ServiceConnection). Assuming that onUnbind(Intent) doesn’t return
‘true,” which tells Android to call the service’s void onRebind(Intent intent) lifecycle
callback method each time a client subsequently binds to the service, Android calls
onDestroy() to destroy the service.

Listing 1-6 presents a skeletal service class that could be used in the context of the
bindService(Intent, ServiceConnection, int) method.

Listing 1-6. A Skeletal Service, Version 3

import android.app.Service;
public class SimpleService extends Service

public class SimpleBinder extends Binder

{

SimpleService getService()

{

return SimpleService.this;

}
private final IBinder binder = new SimpleBinder();
@0verride

CHAPTER 1: Getting Started with Android

public IBinder onBind(Intent intent)
{

return binder;

@0verride
public void onCreate()

{
System.out.println("onCreate() called");

@0verride
public void onDestroy()

{
System.out.println("onDestroy() called");

}

Listing 1-6 first declares a SimpleBinder inner class that extends the android.os.Binder
class. SimpleBinder declares a single SimpleService getService() method that returns
an instance of the SimpleService subclass.

NOTE: Binder works with the IBinder interface to support a remote procedure call
mechanism for communicating between processes. Although this example assumes that the
service is running in the same process as the rest of the app, Binder and IBinder are still
required.

Listing 1-6 next instantiates SimpleBinder and assigns the instance’s reference to the
private binder field. This field’s value is returned from the subsequently overriding
onBind(Intent) method.

Let’s assume that the SimpleActivity class in Listing 1-2 declares a private
SimpleService field named ss (private SimpleService ss;). Continuing, let’s assume
that the following code fragment is contained in SimpleActivity’s onCreate(Bundle)
method:

ServiceConnection sc = new ServiceConnection()
public void onServiceConnected(ComponentName className, IBinder service)

ss = ((SimpleService.SimpleBinder) service).getService();
System.out.println("Service connected");

public void onServiceDisconnected(ComponentName className)

ss = null; System.out.println("Service disconnected");

}
s . o .
bindService(new Intent(SimpleActivity.this, SimpleService.class), sc,
Context.BIND AUTO CREATE);

This code fragment first instantiates a ServiceConnection subclass. The overriding
onServiceConnected(ComponentName, IBinder) method concerns itself with using the
service argument to call SimpleBinder’s getService() method and save the result.

CHAPTER 1: Getting Started with Android

Although it must be present, the overriding onServiceDisconnected(ComponentName)
method should never be called, because SimpleService runs in the same process as
SimpleActivity.

The code fragment next passes the ServiceConnection subclass object, along with an
intent identifying SimpleService as the intent’s target and Context.BIND_AUTO_CREATE
(create a persistent connection), to bindService(Intent, ServiceConnection, int).

NOTE: A service can be started (with startService(Intent))and have connections bound
to it (with bindService(Intent, ServiceConnection, int). In this situation, Android
keeps the service running as long as it’s started, or one or more connections with the
BIND_AUTO_CREATE flag have been made to the service. Once neither of these situations holds,
the service's onDestroy () method is called and the service is terminated. All cleanup work,
such as stopping threads or unregistering broadcast receivers, should be finished upon returning
from onDestroy ().

Regardless of how you start the service, the app’s AndroidManifest.xml file must have
an entry for this component. The following entry declares SimpleService:

<service android:name=".SimpleService">
</service>

NOTE: Although the previous example used bindService(Intent, ServiceConnection,
int) to start a local service, it's more typical to use this method to start a remote service.
Chapter 5 introduces you to remote services.

Broadcast Receivers in Depth

Broadcast receivers are described by classes that subclass the abstract
android.content.BroadcastReceiver class and override BroadcastReceiver’s abstract
void onReceive(Context context, Intent intent) method. For example, the
SimpleBroadcastReceiver class in Listing 1-7 extends BroadcastReceiver and overrides
this method.

Listing 1-7. A Skeletal Broadcast Receiver

public class SimpleBroadcastReceiver extends BroadcastReceiver

{

@0verride
public void onReceive(Context context, Intent intent)

System.out.println("onReceive(Context, Intent) called");

CHAPTER 1: Getting Started with Android

You start a broadcast receiver by creating an Intent object and passing this object to
any of Context’s broadcast methods (such as Context’s overloaded sendBroadcast()
methods), which broadcast the message to all interested broadcast receivers.

The following code fragment, which is assumed to be located in the onCreate() method
of Listing 1-2’s SimpleActivity class, starts an instance of Listing 1-7’s
SimpleBroadcastReceiver class:

Intent intent = new Intent(SimpleActivity.this, SimpleBroadcastReceiver.class);
intent.putExtra("message", "Hello, broadcast receiver!");
SimpleActivity.this.sendBroadcast(intent);

Intent’s Intent putExtra(String name, String value) method is called to store the
message as a key/value pair. As with Intent’s other putExtra() methods, this method
returns a reference to the Intent object so that method calls can be chained together.

Unless you create a broadcast receiver dynamically, AndroidManifest.xml must have an
entry for this component. The following entry declares SimpleBroadcastReceiver:

<receiver android:name=".SimpleBroadcastReceiver">
</receiver>

Content Providers in Depth

Content providers are described by classes that subclass the abstract
android.content.ContentProvider class and override ContentProvider’s abstract
methods (such as String getType(Uri uri)). For example, the SimpleContentProvider
class in Listing 1-8 extends ContentProvider and overrides these methods.

Listing 1-8. A Skeletal Content Provider

public class SimpleContentProvider extends ContentProvider
{
@0verride
public int delete(Uri uri, String selection, String[] selectionArgs)
{
System.out.println("delete(Uri, String, String[]) called");
return 0;
}
@0verride
public String getType(Uri uri)
{

System.out.println("getType(Uri) called");
return null;

@0verride
public Uri insert(Uri uri, ContentValues values)

System.out.println("insert(Uri, ContentValues) called");
return null;

@0verride
public boolean onCreate()

System.out.println("onCreate() called");

CHAPTER 1: Getting Started with Android

return false;

}

@0verride

public Cursor query(Uri uri, String[] projection, String selection,
String[] selectionArgs, String sortOrder)

{

System.out.println("query(Uri, String[], String, String[], String) called");
return null;

@0verride

public int update(Uri uri, ContentValues values, String selection,
String[] selectionArgs)

{

System.out.println("update(Uri, ContentValues, String, String[]) called");
return 0;

}
}

Clients don’t instantiate SimpleContentProvider and call these methods directly. Rather,
they instantiate a subclass of the abstract android.content.ContentResolver class and
call its methods (such as public final Cursor query(Uri uri, String[] projection,
String selection, String[] selectionArgs, String sortOrder)).

NOTE: A ContentResolver instance can talk to any content provider; it cooperates with the
provider to manage any interprocess communication that’s involved.

AndroidManifest.xml must have to an entry for this component. The following entry
declares SimpleContentProvider:

<provider android:name=".SimpleContentProvider">
</provider>

1-1. Installing the Android SDK

Problem

You’ve read the previous introduction to Android and are eager to develop your first
Android app. However, you must install Android SDK 2.3 before you can develop apps.

Solution

Google provides an Android SDK 2.3 distribution file for each of the Windows, Intel-
based Mac OS X, and Linux operating systems. Download and unarchive the
appropriate file for your platform and move its unarchived home directory to a
convenient location. You might also want to update your PATH environment variable so
that you can access the SDK’s command-line tools from anywhere in your filesystem.

Before downloading and installing this file, you must be aware of SDK requirements. You
cannot use the SDK if your development platform doesn’t meet these requirements.

CHAPTER 1: Getting Started with Android

Android SDK 2.3 supports the following operating systems:
B Windows XP (32-bit), Vista (32- or 64-bit), or Windows 7 (32- or 64-bit)
B Mac OS X 10.5.8 or later (x86 only)

B Linux (tested on Ubuntu Linux, Lucid Lynx): GNU C Library (glibc)
2.11 or later is required. 64-bit distributions must be able to run 32-bit
applications. To learn how to add support for 32-bit applications, see
the Ubuntu Linux installation notes at http://developer.android.com/
sdk/installing.html#troubleshooting.

You’ll quickly discover that Android SDK 2.3 is organized into various components: SDK
tools, SDK Platform tools, different versions of the Android platform (also known as the
Android software stack), SDK add-ons, USB driver for Windows, samples, and offline
documentation. Each component requires a minimum amount of disk storage space; the
total required amount of space depends upon which components you choose to install:

B SDK Tools: The SDK's tools require approximately 35MB of disk
storage space and must be installed.

B SDK Platform Tools: The SDK’s platform tools require approximately
6MB of disk storage space and must be installed.

B Android platform: Each Android platform corresponds to a specific
version of Android and requires approximately 150MB of disk storage
space. At least one Android platform must be installed.

B SDK Add-on: Each optional SDK add-on (such as Google APIs or a
third-party vendor’s API libraries) requires approximately 100MB of
disk storage space.

B USB Driver for Windows: The optional USB driver for the Windows
platform requires approximately 10MB of disk storage space. If you're
developing on Mac OS X or Linux, you don’t need to install the USB
driver.

B Samples: Each Android platform’s optional app examples require
approximately 10MB of disk storage space.

B Offline documentation: Instead of having to be online to access the
Android documention, you can choose to download the
documentation so that you can view it even when not connected to
the Internet. The offline documentation requires approximately 250MB
of disk storage space.

Finally, you should ensure that the following additional software is installed:

B JDK 5 or JDK 6: You need to install one of these Java Development
Kits (JDKSs) to compile Java code. It’s not sufficient to have only a Java
Runtime Environment (JRE) installed.

http://developer.android.com/

CHAPTER 1: Getting Started with Android

B Apache Ant: You need to install Ant version 1.6.5 or later for Linux and
Mac, and Ant version 1.7 or later for Windows so that you can build
Android projects.

NOTE: If a JDK is already installed on your development platform, take a moment to ensure that
it meets the previously listed version requirement (5 or 6). Some Linux distributions may include
JDK 1.4, which is not supported for Android development. Also, Gnu Compiler for Java is not
supported.

How It Works

Point your browser to http://developer.android.com/sdk/index.html and download one
of android-sdk_ro8-windows.zip (Windows), android-sdk_r08-mac_86.zip (Mac OS X),
and android-sdk_r08-linux_86.tgz (Linux).

NOTE: Windows developers have the option of downloading and running installer ro8-
windows .exe. This tool automates must of the installation process.

For example, if you run Windows XP, download android-sdk_r08-windows.zip. After
unarchiving this file, move the unarchived android-windows-sdk home directory to a
convenient location in your filesystem; for example, you might move the unarchived
C:\unzipped\android-sdk_r08-windows\android-sdk-windows home directory to the root
directory on your C: drive, resulting in C:\android-sdk-windows.

NOTE: To complete installation, add the tools subdirectory to your PATH environment variable
so that you can access the SDK’s command-line tools from anywhere in your filesystem.

A subsequent examination of android-windows-sdk shows that this home directory
contains the following subdirectories and files:

B add-ons: This initially empty directory stores add-ons from Google and
other vendors; for example, the Google APIs add-on is stored here.

B platforms: This initially empty directory stores Android platforms in
separate subdirectories. For example, Android 2.3 would be stored in
one platforms subdirectory, whereas Android 2.2 would be stored in
another platforms subdirectory.

B tools: This directory contains a set of platform-independent
development and profiling tools. The tools in this directory may be
updated at any time, independent of Android platform releases.

B SDK Manager.exe: A special tool that launches the Android SDK and
AVD Manager tool, which you use to add components to your SDK.

http://developer.android.com/sdk/index.html

CHAPTER 1: Getting Started with Android

B SDK Readme.txt: Tells you how to perform the initial setup of your SDK,
including how to launch the Android SDK and AVD Manager tool on all
platforms.

The tools directory contains a variety of useful tools, including the following:

B android: Creates and updates Android projects; updates the Android
SDK with new platforms, add-ons, and documentation; and creates,
deletes, and views Android Virtual Devices (discussed in Recipe 1-3).

B emulator: Runs a full Android software stack down to the kernel level,
and includes a set of preinstalled apps (such as Browser) that you can
access.

B sqglite3: Manages SQLite databases created by Android apps.

B zipalign: Performs archive alignment optimization on APK files.

1-2. Installing an Android Platform

Problem

Installing the Android SDK is insufficient for developing Android apps; you must also
install at least one Android platform.

Solution

Use the SDK Manager tool to install an Android platform.

How It Works

Run SDK Manager. This tool presents the Android SDK and AVD Manager dialog box,
followed by the Refresh Sources and Choose Packages to Install dialog boxes.

Android SDK and AVD Manager identifies virtual devices, installed packages, and
available packages. It also lets you configure proxy server and other settings.

When this dialog box appears, the Installed packages entry in the list appearing on the
right side of the dialog box is highlighted, and the pane to the right of that list identifies
all packages that have been installed. If you’re installing Android for the first time, this
pane reveals that only the Android SDK tools (revision 8) component has been installed.

NOTE: You can also use the android tool to display the Android SDK and AVD Manager dialog
box. Accomplish this task by specifying android by itself on the command line. When displayed
in this manner, Android SDK and AVD Manager highlights Virtual devices instead of Installed
packages.

CHAPTER 1: Getting Started with Android

After presenting this dialog box, SDK Manager scans Google’s servers for available
component packages to install. The Refresh Sources dialog box reveals its progress.

After SDK Manager finishes its scan, it presents the Choose Packages to Install dialog box
(see Figure 1-6) to let you choose those SDK components you want to install.

3 Android SOK and AVD Manager G %
% SOK Location: Ci\android-sck-windows
Settngs

7 SOK Platform Android 2.3, AP1 9, revision 1
W SOK Platform Android 2.2, AP1 8, revision 2 mw&:
W SOK Platforms Andrond 2.1, AP] 7, revision 2 « Android SO Teols, revison 8

o SOK Platform Androd L6, AP] 4, revison 3
~ SDK Platform Android LS, AP 3, revision 4
" Samples for SOK APT 9, revision 1 Sze: IMB

v Samples for SOK AP 8, revison 1 SHAL: dCS5CISE3S2435300F4e66 10275 Te 1252608
W Samples for SOK AP 7, revsion §

Ste
Androd Repostory (443l googe com)

| ®accept ORegect O Accept A1

Figure 1-6. The Packages list identifies those packages that can be installed.

NOTE: Google recommends that you disable any active antivirus software before installing SDK
components. Otherwise, you’ll probably encounter an SDK Manager: failed to install dialog box
telling you that a folder could not be renamed or moved, and telling you to momentarily disable
your antivirus software before clicking the dialog box’s Yes button to try again.

The Choose Packages to Install dialog box shows a Packages list that identifies those
packages that can be installed. It displays checkmarks beside packages that have been

accepted for installation, and displays Xs beside those packages that have been
rejected for installation.

For the highlighted package, Package Description & License presents a package
description, a list of other packages that are dependent on this package being installed,
information about the archive that houses the package, and additional information. Also,
you can select a radio button to accept or reject the package.

CHAPTER 1: Getting Started with Android

NOTE: In some cases, an SDK component may require a specific minimum revision of another
component or SDK tool. In addition to Package Description & License documenting these
dependencies, the development tools will notify you with debug warnings if there’s a dependency
that you need to address.

Because this book focuses on Android 2.3, the only packages that you need to install
are Android SDK Platform-tools, revision 1 and SDK Platform Android 2.3, API 9,
revision 1. All other checked package entries can be unchecked by clicking the Reject
radio button on their respective panes.

NOTE: If you plan to develop apps that will run on devices with earlier versions of Android, you
might want to leave the checkmarks beside those versions. However, it's not necessary to do so
at this point; you can always come back later and add those versions via SDK Manager.

After making sure that only these entries are checked, click the Install button to begin
installation. Figure 1-7 shows you the resulting Installing Archives dialog box.

£3 Androéd SDK and AVD Manager = :,@

Vetual devices ‘
Settngs
About Dowrloading SOK Platform Android 2.3, AP1 9, revision 1 (23%, 7STKE s, 77 secords le

.iiiiiiiiiiiiiiiiiiiiiiiiii]@

Downloadng Androxd SOK latform-Sools, revison 1
Instaling Android SO Platform-to0ls, reveion 1
Instaled Android SOK Platform-200is, revison &
Downloadng SOK Platform Androd 2.3, AFT 9, revison &

Figure 1-7. The Installing Archives dialog box reveals the progress of downloading and installing each selected
package archive.

You’ll probably encounter the ADB Restart dialog box, which tells you that a package
dependent on Android Debug Bridge (ADB) has been updated, and asking you whether
you want to restart ADB now. Click the Yes button, which closes ADB Restart, then click
Close on the Installing Archives dialog box.

You should now observe the Android SDK and AVD Manager’s Installed packages pane
also displaying Android SDK Platform-tools, revision 1 and SDK Platform Android 2.3,

CHAPTER 1: Getting Started with Android

API 9, revision 1 in addition to Android SDK Tools, revision 8. You should also observe
the following new subdirectories:

B platform-tools (in android-sdk-windows)
B android-9 (in android-sdk-windows/platforms)

platform-tools contains development tools that may be updated with each platform
release. Its tools include aapt (Android Asset Packaging Tool — view, create, and update
Zip-compatible archives (.zip, .jar, .apk); and compile resources into binary assets),
adb (Android Debug Bridge — manage the state of an emulator instance or an Android-
powered device), and dx (Dalvik Executable — generate Android bytecode from Java
.class files). android-9 stores Android 2.3 data and user interface-oriented files.

TIP You might want to add platform-tools to your PATH environment variable so that you
can access these tools from anywhere in your filesystem.

AVAILABLE PACKAGES AND COMPONENT UPDATES DETECTION

The pane corresponding to Available packages presents packages that are available for installation. It
defaults to offering packages from Google’s Android respository and third-party add-ons (from Google and
Samsung), but you can add other websites that host their own Android SDK add-ons, and then download
the SDK add-ons from those websites.

For example, suppose that a mobile carrier or device manufacturer offers additional API libraries that are
supported by their own Android-powered devices. In order to use its libraries to assist in developing apps,
you must install the carrier’s/device manufacturer’s Android SDK add-on.

If the carrier or device manufacturer has hosted an SDK add-on repository file on its website, you must
follow these steps to add the website to SDK Manager:

1. Select Available packages from the listbox.

2. Click the Add Add-on Site button on the resulting pane and enter the URL of the
website’s repository.xml file into the resulting dialog box’s textfield. Click OK.
Any SDK components that are available from the website will appear under Available Packages.

New revisions of existing SDK components are occasionally released and made available through the SDK
repository. In most cases, assuming that you have those components installed in your environment, you’ll
want to download the new revisions as soon as possible.

The easiest way to learn about component updates is to visit the Available Packages pane. When you
discover that a new revision is available, use SDK Manager to download and install it to your environment,
and in the same manner as used to install the Android 2.3 platform. The new component is installed in
place of the old component, but in such a manner as to not impact your apps.

CHAPTER 1: Getting Started with Android

1-3. Creating an Android Virtual Device

Problem

After installing the Android SDK and an Android platform, you’re ready to start creating
Android apps. However, you won’t be able to run those apps via the emulator tool until
you create an Android Virtual Device (AVD), a device configuration that represents an
Android device.

Solution

Use the SDK Manager tool to create an AVD.

How It Works

Run SDK Manager if necessary. Click the Android SDK and AVD Manager dialog box’s
Virtual devices entry in the list on the left. You should see the pane shown in Figure 1-8.

M

List of existng Androwd Virtual Devices located at C:\Documents and Settings Jeff Friesen\ android\avd

Installed packages
;:MDOMB AVD Name Target Name: Platform APL Leved l New... |
Ab:t.’ No AVD avalable Oelete

v Avald Android VrtuslDevice.) A reparable Androd Virtusl Device.
X An Ancroid Vetsal Device that faled 1o ood. Cick Detais' o see the err.

Figure 1-8. No AVDs are initially installed.

Click the New button. Figure 1-9 shows you the resulting Create new Android Virtual
Device (AVD) dialog box.

CHAPTER 1: Getting Started with Android

Create new Android Virtual Device (AVD) &
8 Android SDK and AVD Managed " | . H)([=)%
b = m
| Instaled packages Ustofed o card: ndrod\vd
PN ed % o o | lize] fatmma
| About OMe: N
S
@ batn:
O Resolution: x
Mardware:
ot e
. | (etren]
v Ava
| X AanA

Figure 1-9. An AVD consists of a name, a target platform, an SD Card, a skin, and hardware properties.

Figure 1-9 reveals that an AVD has a name, targets a specific Android platform, can
emulate an SD card, and provides a skin with a certain screen resolution. Enter test_AVD
for the name, select Android 2.3 - API Level 9 for the target platform, and enter 100
into the Size field for the SD card. Selecting Android 2.3 - API Level 9 resultsin
Default (HVGA) being selected for the skin with an Abstracted LCD density property set
to 160 dots per inch (dpi).

NOTE: If you've installed Android 2.3.1, selecting Android 2.3.1 - API Level 9 resultsin
Default (WVGA800) being selected for the skin with an Abstracted LCD density
property set to 240 dpi. Furthermore, a Max VM application heap size property setto 24
megabytes is also present.

After entering the previous values and keeping the screen defaults, finish AVD creation
by clicking Create AVD. The AVD pane in Figure 1-8 will now include an entry for
test_AVD.

CAUTION: When creating an AVD that you plan to use to test compiled apps, make sure that the
target platform has an API level greater than or equal to the API level required by your app. In
other words, if you plan to test your app on the AVD, your app cannot access platform APIs that
are more recent than those APIs supported by the AVD’s API level.

CHAPTER 1: Getting Started with Android

Although it’s easier to use SDK Manager to create an AVD, you can also accomplish this
task via the android tool by specifying android create avd -n name -t targetID [-
option value].... Given this syntax, name identifies the device configuration (such as
target AVD), targetID is an integer ID that identifies the targeted Android platform (you
can obtain this integer ID by executing android list targets), and [-option value]...
identifies a series of options (such as SD card size).

If you don’t specify sufficient options, android prompts to create a custom hardware
profile. Press the Enter key if you don’t want a custom hardware profile and prefer to use
the default hardware emulation options. For example, the android create avd -n
test_AVD -t 1 command line causes an AVD named test_AVD to be created. This
command line assumes that 1 corresponds to the Android 2.3 platform and prompts to
create a custom hardware profile.

NOTE: Each AVD functions as an independent device with its own private storage for user data,
its own SD card, and so on. When you launch the emulatox tool with an AVD, this tool loads
user data and SD card data from the AVD’s directory. By default, emulatoxr stores user data, SD
card data, and a cache in the directory assigned to the AVD.

1-4. Starting the AVD

Problem

You must start the AVD, which can take a few minutes to get started, before you can
install and run apps on it, and want to know how to accomplish this task.

Solution
Use the SDK Manager tool to start the AVD. Or, start the AVD by using the emulator tool.

How It Works

Refer to Figure 1-8 and you’ll notice a disabled Start button. This button is no longer
disabled after an AVD entry is created. Click Start to run the emulator tool with the
highlighted AVD entry as the emulator’s device configuration.

A Launch Options dialog box appears. This dialog box identifies the AVD’s skin and
screen density. It also provides unchecked checkboxes for scaling the resolution of the
emulator’s display to match the physical device’s screen size, and for wiping user data.

CHAPTER 1: Getting Started with Android

NOTE: As you update your apps, you'll periodically package and install them on the emulator,

which preserves the apps and their state data across AVD restarts in a user-data disk partition.
To ensure that an app runs properly as you update it, you might need to delete the emulator’s

user-data partition, which is accomplished by checking Wipe user data.

Click the Launch button to launch the emulator with the AVD. SDK Manager responds by
briefly displaying a Starting Android Emulator dialog box, followed by command
windows (on Windows XP), and by finally displaying the emulator window.

The emulator window is divided into a left pane that displays the Android logo on a
black background followed by the home screen, and a right pane that displays phone
controls and a keyboard. Figure 1-10 shows these panes for the test_AVD device.

)k

| =7'5554:test_AVD

- AN -
Veav

D0

Mm@ F TSR AR T
el emlonl el msloules
ol Ll o
2z [x [c [v]e [n[m]. [e
[—— -

Figure 1-10. The emulator window presents the home screen on the left, and phone controls and a keyboard on
the right.

If you’ve previously used an Android device, you’re probably familiar with the home
screen, the phone controls, and the keyboard. If not, there are a few items to keep in
mind:

B The home screen is a special app that serves as a starting point for
using an Android device.

CHAPTER 1: Getting Started with Android

B A status bar appears above the home screen (and every app screen).
The status bar presents the current time, amount of battery power
remaining, and other information; and also provides access to
notifications.

B The home screen presents a wallpaper background. Click the MENU
button in the phone controls followed by Wallpaper in the popup menu
to change the wallpaper.

B The home screen presents the Google Search widget near the top. A
widget is a miniature app view that can be embedded in the home
screen and other apps, and receives periodic updates.

B The home screen presents the app launcher near the bottom. The
launcher presents icons for launching the commonly used Phone and
Browser apps, and for displaying a rectangular grid of all installed
apps, which are subsequently launched by double-clicking their icons.

B The home screen consists of multiple panes. Click the dots on either
side of the app launcher to replace the current pane with the next
pane to the left or right — the number of dots indicate the number of
panes remaining to be visited to the left or right. Or, press and hold
down the mouse pointer over the middle icon on the app launcher to
bring up a list of miniature pane icons; click one of these icons to
display the corresponding home screen pane.

B The house icon phone control button takes you from wherever you are
to the home screen.

B The MENU phone control button presents a menu of app-specific
choices for the currently running app.

B The curved arrow icon phone control button takes you back to the
previous activity in the activity stack.

While the AVD is running, you can interact with it by using your mouse to “touch” the
touchscreen and your keyboard to “press” the AVD keys. Table 1-2 shows you the
mappings between AVD keys and keyboard keys.

CHAPTER 1: Getting Started with Android

Table 1-2. Mappings Between AVD Keys and Keyboard Keys

AVD Key

Keyboard Key

Home

Menu (left softkey)

Star (right softkey)

Back

Call/dial button
Hangup/end call button
Search

Power button

Audio volume up button
Audio volume down button
Camera button

Switch to previous layout orientation
(portrait or landscape)

Switch to next layout orientation
Toggle cell networking on/off
Toggle code profiling

Toggle fullscreen mode

Toggle trackball mode

Enter trackball mode temporarily (while
key is pressed)

DPad left/up/right/down
DPad center click

Onion alpha increase/decrease

HOME

F2 or Page Up

Shift-F2 or Page Down
ESC

F3

F4

F5

F7

KEYPAD_PLUS, Ctrl-5
KEYPAD_MINUS, Ctrl-F6
Ctrl-KEYPAD_5, Ctrl-F3

KEYPAD_7, Ctrl-F11

KEYPAD_9, Ctrl-F12

F8

F9 (only with -trace startup option)

Alt-Enter
F6

Delete

KEYPAD_4/8/6/2

KEYPAD_5

KEYPAD_MULTIPLY(*) / KEYPAD_DIVIDE(/)

CHAPTER 1: Getting Started with Android

TIP: You must first disable NumLock on your development computer before you can use keypad
keys.

Table 1-2 refers to the -trace startup option in the context of toggle code profiling. This
option lets you store profiling results in a file when starting the AVD via the emulator
tool.

For example, emulator -avd test AVD -trace results.txt starts the emulator for
device configuration test_AVD, and also stores profiling results in results.txt when you
press F9. Press F9 again to stop code profiling.

Figure 1-10 displays 5554:test_AVD in the titlebar. The 5554 value identifies a console
port that you can use to dynamically query and otherwise control the environment of the
AVD.

NOTE: Android supports up to 16 concurrently executing AVDs. Each AVD is assigned an even-
numbered console port number starting with 5554.

You can connect to the AVD’s console by specifying telnet localhost console-port.
For example, specify telnet localhost 5554 to connect to test_ AVD’s console. Figure
1-11 shows you the resulting command window on Windows XP.

Telnet localhost = I:I|ﬁ
&adroid Console: type 'help’ for a list of commands I
elp
Android console command help:
helpihi? print a list of commands
event simulate hardware events
geo Geo—location commands
gsm GSM related commands
cdma CDMA related commands
kill kill the emulator instance
network manage network settings
pouwer pover related commands
quit iexit quit control session
redir manage port redirections
sms SMS related commands
avd manager virtual device state
window manage emulator window
gemu QEMU-specific commands
giy *help <command>’ for command-specific help

Figure 1-11. Type a command name by itself for command-specific help.

CHAPTER 1: Getting Started with Android

1-5. Introducing UC

Problem

Now that you’ve installed the Android SDK, installed an Android platform, and created
and started an AVD, you’re ready to create an app, and install and run this app on the
AVD. Although you could create an app based on Listing 1-2’s SimpleActivity class,
you’ll probably find this recipe’s UC app to be more interesting (and useful).

Solution

UC (an acronym for Units Converter) is an app that lets you convert between types of
units. For example, you can convert a specific number of degrees Celsius to its
equivalent number of degrees Fahrenheit, a specific number of pounds to its equivalent
number of kilograms, and so on.

How It Works

UC consists of a single activity (also named UC) that presents a user interface (revealed in
Recipe 1-7) consisting of an input/output textfield for entering the number of units to
convert and displaying the conversion result, a spinner for choosing a conversion, and
buttons for clearing the textfield, performing the conversion, and closing the app.

Listing 1-9 presents the UC activity’s source code.
Listing 1-9. An Activity for Performing Unit Conversions
// UC.java

package com.apress.uc;
import android.app.Activity;
import android.os.Bundle;

import android.text.Editable;
import android.text.TextWatcher;

import android.view.View;

import android.widget.AdapterView;
import android.widget.ArrayAdapter;
import android.widget.Button;
import android.widget.EditText;
import android.widget.Spinner;

public class UC extends Activity
{

private int position = 0;

private double[] multipliers =

CHAPTER 1: Getting Started with Android

0.0015625, // Acres to square miles

101325.0, // Atmospheres to Pascals

100000.0, // Bars to Pascals

0, // Degrees Celsius to Degrees Fahrenheit (placeholder)
0, // Degrees Fahrenheit to Degrees Celsius (placeholder)
0.00001, // Dynes to Newtons

0.30438, // Feet/Second to Metres/Second

0.0284130625, // Fluid Ounces (UK) to Litres

0.0295735295625, // Fluid Ounces (US) to Litres

746.0, // Horsepower (electric) to Watts

735.499, // Horsepower (metric) to Watts

1/1016.0469088, // Kilograms to Tons (UK or long)

1/907.18474, // Kilograms to Tons (US or short)

1/0.0284130625, // Litres to Fluid Ounces (UK)
1/0.0295735295625, // Litres to Fluid Ounces (US)

331.5, // Mach Number to Metres/Second
1/0.3048, // Metres/Second to Feet/Second
1/331.5, // Metres/Second to Mach Number
0.833, // Miles/Gallon (UK) to Miles/Gallon (US)
1/0.833, // Miles/Gallon (US) to Miles/Gallon (UK)
100000.0, // Newtons to Dynes
1/101325.0, // Pascals to Atmospheres
0.00001, // Pascals to Bars
640.0, // Square Miles to Acres
1016.0469088, // Tons (UK or long) to Kilograms
907.18474, // Tons (US or short) to Kilograms
1/746.0, // Watts to Horsepower (electic)
1/735.499 // Watts to Horsepower (metric)

};

@0verride

public void onCreate(Bundle savedInstanceState)

super.onCreate(savedInstanceState);
setContentView(R.layout.main);

final EditText etUnits = (EditText) findViewById(R.id.units);

final Spinner spnConversions = (Spinner) findViewById(R.id.conversions);
ArrayAdapter<CharSequence> aa;
aa = ArrayAdapter.
createFromResource(this, R.array.conversions,
android.R.layout.simple spinner_item);
aa.setDropDownViewResource(android.R.layout.simple spinner item);
spnConversions.setAdapter(aa);

AdapterView.OnItemSelectedListener oisl;
0isl = new AdapterView.OnItemSelectedListener()

@0verride
public void onItemSelected(AdapterView<?> parent, View view,
int position, long id)

UC.this.position = position;

CHAPTER 1: Getting Started with Android

@0Override
public void onNothingSelected(AdapterView<?> parent)

System.out.println("nothing");
};

spnConversions.setOnItemSelectedListener(oisl);

final Button btnClear = (Button) findViewById(R.id.clear);
AdapterView.OnClickListener ocl;
ocl = new AdapterView.OnClickListener()

@0Override
public void onClick(View v)

etUnits.setText("");

}
}s
btnClear.setOnClickListener(ocl);
btnClear.setEnabled(false);

final Button btnConvert = (Button) findViewById(R.id.convert);
ocl = new AdapterView.OnClickListener()

@0verride
public void onClick(View v)
{
String text = etUnits.getText().toString();
double input = Double.parseDouble(text);
double result = 0;
if (position == 3)
result = input*9.0/5.0+32; // Celsius to Fahrenheit
else
if (position == 4)
result = (input-32)*5.0/9.0; // Fahrenheit to Celsius
else
result = input*multipliers[position];
etUnits.setText(""+result);

}
}s
btnConvert.setOnClickListener(ocl);
btnConvert.setEnabled(false);

Button btnClose = (Button) findViewById(R.id.close);
ocl = new AdapterView.OnClickListener()

@0verride
public void onClick(View v)

finish();

5
btnClose.setOnClickListener(ocl);

TextWatcher tw;
tw = new TextWatcher()

CHAPTER 1: Getting Started with Android

@0Override

public void afterTextChanged(Editable s)

}

@0Override

public void beforeTextChanged(CharSequence s, int start, int count,
int after)

{

}

@0verride

public void onTextChanged(CharSequence s, int start, int before,

int count)

if (etUnits.getText().length() == 0)

btnClear.setEnabled(false);
btnConvert.setEnabled(false);

}

else

btnClear.setEnabled(true);
btnConvert.setEnabled(true);

}
}

s
etUnits.addTextChangedListener(tw);
}

}
Listing 1-9 begins with a comment that conveniently identifies the source file (UC. java)
describing the activity. This listing next presents a package statement that names the
package (com.apress.uc), in which the source file’s UC class is stored, followed by a
series of import statements that import various Android API types.

TIP: You should familiarize yourself with the Android API’s package organization so that you can
quickly find API types in Google’s Android API reference
(http://developer.android.com/reference/packages.html). You'll want to locate
documentation on these types quickly as you dig deeper into Android app development.

Listing 1-9 next describes the UC class, which extends Activity. This class first declares
position and multipliers fields:

B position stores the zero-based index of the conversion selected via
the spinner, and defaults to 0 (the first conversion displayed by the
spinner). Storing the spinner’s position in this field simplifies choosing
an appropriate conversion to perform.

http://developer.android.com/reference/packages.html

CHAPTER 1: Getting Started with Android

B multipliers stores an array of multiplier values, with each entry
corresponding to a spinner value. A conversion is performed by
multiplying the input value by multipliers[position]. However, there
are two exceptions: Celsius-to-Fahrenheit and Fahrenheit-to-Celsius.
These conversions are handled separately, because they also require
an addition or a subtraction operation.

All of the app’s work takes place in the overriding onCreate(Bundle) method: no other
methods are required, which helps to keep this app simple.

onCreate(Bundle) first invokes its same-named superclass method, a rule that must be
followed by all overriding activity methods.

This method then executes setContentView(R.layout.main) to establish the app’s user
interface.

R.layout.main identifies a resource, a piece of data required by an app’s code, and
which you maintain independently of the code by storing it in a separate file.

NOTE: Resources simplify app maintenance, make it easier to adapt a user interface to different
screen sizes, and facilitate adapting an app to different languages.

You interpret this resource ID as follows:

B R is the name of a class that’s generated (by the aapt tool) when the
app is being built. This class is named R because its content identifies
various kinds of resources (such as layouts, images, strings, and
colors).

B layout is the name of a class that’s nested within R. All resources
whose IDs are stored in this class describe specific layout resources.
Each kind of resource is associated with a nested class that’s named
in a similar fashion. For example, string identifies string resources.

B main is the name of an int constant declared within layout. This
resource ID identifies the main layout resource. Specifically, main
refers to a main.xml file that stores the main screen’s layout
information. main is UC’s only layout resource.

R.layout.main is passed to Activity’s void setContentView(int layoutResID) method
to tell Android to create a user interface screen using the layout information stored in
main.xml. Behind the scenes, Android creates the user interface components described
in main.xml and positions them on the screen as specified by main.xml’s layout data.

This user interface is based on views (abstractions of user interface components) and
view groups (views that group related user interface components). Views are instances
of classes that subclass the android.view.View class and are analogous to Java
components. View groups are instances of classes that subclass the abstract
android.view.ViewGroup class and are analogous to Java containers. Android refers to
specific views (such as buttons or spinners) as widgets.

CHAPTER 1: Getting Started with Android

NOTE: Don’t confuse widget in this context with widgets shown on the Android home screen.
Although the same term is used, user interface widgets and home screen widgets are different.

Continuing, onCreate(Bundle) executes final EditText etUnits = (EditText)
findViewById(R.id.units);. This statement first calls View's View findViewById(int
id) method to find the EditText view declared in main.xml and identified as units, and
instantiate android.widget.EditText and initialize it to this view’s declarative
information, and then saves this object’s reference in local variable etUnits. This
variable is final because it’'s subsequently accessed from an anonymous inner class.

In a similar manner, final Spinner spnConversions = (Spinner)
findViewById(R.id.conversions); instantiates the android.widget.Spinner class using
the declarative information that’s stored in main.xml, and saves the resulting object
reference for subsequent access.

NOTE: Although it’s preferable from a maintenance perspective to declare user interface
screens via layout resources and let Android take care of creating widgets and adding them to
layouts on your behalf, Android gives you the option of creating widgets and laying them out
programmatically when you need to do so.

onCreate(Bundle) next addresses the spinner object having no text to display, by first
calling the android.widget.ArrayAdapter class’s ArrayAdapter<CharSequence>
createFromResource(Context context, int textArrayResId, int textViewResId)
method, which returns an array adapter that supplies text messages to the spinner:

B context requires a Context instance that identifies the current app
component, which happens to be the current activity as specified by
keyword this.

B textArrayResId requires the ID of an array resource that stores strings
(such as "Degrees Celsius to Degrees Fahrenheit"), which happen
to identify different kinds of conversions. The R.array.conversions
argument passed to this parameter identifies conversions as the name
of an array resource containing conversion strings and specified in a
file named arrays.xml (described later in this recipe).

B textViewResId requires the ID of the layout resource used to create
the spinner’s look. The android.R.layout.simple_spinner_item
argument passed to this parameter is a predefined ID stored in the
android package’s R class’s nested layout class.
simple_spinner_ item describes a spinner that looks something like a
Java Swing combobox.

After calling createFromResource(Context, int, int), onCreate(Bundle) calls
ArrayAdapter’s void setDropDownViewResource(int resource) method with

CHAPTER 1: Getting Started with Android

android.R.layout.simple_spinner_ item as the argument. This method call creates the
dropdown view portion of the spinner.

Now that the array adapter has been created and initialized with the appropriate unit
conversion strings and layout information, onCreate(Bundle) attaches this information to
the spinner by calling spnConversions.setAdapter(aa);. This method call allows the
spinner widget to access this information and present a list of conversions to the user.

NOTE: Spinner inherits the void setAdapter(T) method from its abstract
android.widget.AdapterView<T extends Adapter> ancestor class.

UC needs to keep track of the currently selected spinner item so that it can perform the
appropriate conversion. onCreate(Bundle) makes this possible by registering a listener
with the spinner that responds to item-selected events by assigning the spinner’s
position to the (previously mentioned) position variable.

onCreate(Bundle) first instantiates an anonymous class that implements ArrayAdapter’s
nested OnItemSelectedListener interface, and then registers this instance with the
spinner by calling AdapterView’s void
setOnItemSelectedListener(AdapterView.OnItemSelectedListener listener) method.

OnItemSelectedlListener’s void onItemSelected(AdapterView<?> parent, View view,
int position, long id) method is invoked whenever the user selects a new item, and
is the perfect place to save the position. Although not needed, the companion void
onNothingSelected(AdapterView<?> parent) method must also be implemented.

With the spinner out of the way, onCreate(Bundle) turns its attention to creating the
Clear, Convert, and Close buttons. For each button, it invokes findByViewId(int) to
obtain the button information from main.xml, and then instantiate the
android.widget.Button class.

AdapterView’s nested onClickListener interface is then employed to create listener
objects, whose void onClick(View v) methods are invoked whenever the user clicks a
button. Each listener is registered with its Button object by calling AdapterView’s void
setOnItemClickListener(AdapterView.OnItemClickListener listener) method.

nn

The Clear button’s click listener simply executes etUnits.setText("") to clear user
input or a conversion result from the etUnits textfield. The Close button’s click listener
is equally simple; it invokes finish() to terminate the current activity and UC app. In
contrast, the Convert button’s click listener has more work to accomplish:

1. Obtain the contents of the etUnits textfield as a String object: String
text = etUnits.getText().toString();.

2. Parse this String object into a double precision floating-point value:
double input = Double.parseDouble(text);.

CHAPTER 1: Getting Started with Android

3. Perform the conversion and save the result based on position’s value:
result = input*9.0/5.0+32;, result = (input-32)*5.0/9.0;, or result
= input*multipliers[position];.

4. Update etUnits with the result: etUnits.setText(""+result);.

There’s one more task for onCreate(Bundle) to perform: make sure that the Clear and
Convert buttons are disabled when etUnits is empty. After all, there’s no point clearing
an empty textfield, and parseDouble() throws an exception when attempting to parse an
empty textfield.

onCreate(Bundle) accomplishes this task by registering a textwatcher (an object whose
class implements the android. text.TextWatcher interface) with the etUnits textfield, via
android.widget.TextView’s void addTextChangedListener(TextWatcher watcher)
method. TextView is EditText’s superclass.

TextWatcher declares void afterTextChanged(Editable s), void
beforeTextChanged(CharSequence s, int start, int count, int after), and void
onTextChanged(CharSequence s, int start, int before, int count) methods. Only
the latter method is overridden to enable or disable the Clear and Convert buttons.

onTextChanged(s, int, int, int) first evaluates etUnits.getText().length(), which
returns the textfield’s length. If the length is 0 (empty textfield), the buttons are disabled
via btnClear.setEnabled(false); and btnConvert.setEnabled(false);. Otherwise,
they’re enabled via btnClear.setEnabled(true); and btnConvert.setEnabled(true);.

Most of UC’s resources are stored in XML files. For example, UC’s widget and layout
information is stored in main.xml, which Listing 1-10 presents.

Listing 1-10. Themain. xm1 File Storing Widget and Layout Information

<?xml version="1.0" encoding="utf-8"?>
<LinearlLayout xmlns:android="http://schemas.android.com/apk/res/android"
android:orientation="vertical"
android:layout_width="fill parent"
android:layout_height="fill parent"
android:gravity="center vertical"
android:background="@drawable/gradientbg"
android:padding="5dip">
<Linearlayout android:layout width="fill parent"
android:layout_height="wrap_content">
<TextView android:layout width="wrap_content"”
android:layout_height="wrap_content"
android:layout marginRight="10dip"
android:text="@string/units"
android:textColor="#000000"
android:textSize="15sp"
android:textStyle="bold"/>
<EditText android:id="@+id/units"
android:layout width="fill parent"
android:layout_height="wrap_content"
android:hint="type a number"
android:inputType="numberDecimal |numberSigned"
android:maxLines="1"/>
</LinearlLayout>

http://schemas.android.com/apk/res/android

CHAPTER 1: Getting Started with Android

<Spinner android:id="@+id/conversions"
android:layout_width="fill parent"
android:layout_height="wrap_content"
android:prompt="@string/prompt"/>
<Linearlayout android:layout width="fill parent
android:layout_height="wrap_content">
<Button android:id="@+id/clear"
android:layout width="fill parent"
android:layout_height="wrap_content"
android:layout weight="1"
android:text="@string/clear"/>
<Button android:id="@+id/convert"
android:layout width="fill parent"
android:layout_height="wrap_content"
android:layout weight="1"
android:text="@string/convert"/>
<Button android:id="@+id/close"
android:layout width="fill parent"
android:layout_height="wrap_content"
android:layout weight="1"
android:text="@string/close"/>
</LinearlLayout>
</Linearlayout>

Listing 1-10 begins by declaring a <LinearlLayout> tag that specifies a layout (a view
group that arranges contained views on an Android device’s screen in some manner) for
arranging contained widgets and nested layouts either horizontally or vertically across
the screen.

The <LinearLayout> tag specifies several attributes for controlling this linear layout.
These attributes include the following:

B orientation identifies the linear layout as horizontal or vertical. The
default orientation is horizontal. "horizontal" and "vertical" are the
only legal values that can be assigned to this attribute.

B layout_width identifies the width of the layout. Legal values include
"fill parent" (occupy the entire width) and "wrap content" (occupy
only the width required by the view). fill parent was renamed to
match_parent in Android 2.2, but is still supported and widely used.

B layout_height identifies the height of the layout. Legal values include
"fill parent" (occupy the entire height) and "wrap content" (occupy
only the height required by the view). fill parent was renamed to
match_parent in Android 2.2, but is still supported and widely used.

B gravity identifies how the layout is positioned relative to the screen.
For example, "center vertical" specifies that the layout should be
centered vertically on the screen.

B background identifies a background image or gradient via a resource
reference (special syntax beginning with the @ character). For example,
"@drawable/gradientbg" references a drawable resource (an image or
a graphic) named gradientbg.

CHAPTER 1: Getting Started with Android

B padding identifies space to add to the layout to provide a boundary
between itself and the screen’s edges. "5dip" refers to five density-
independent pixels, virtual pixel units that apps can use to express
layout dimensions/positions in a screen density-independent way.

NOTE: A density-independent pixel is equivalent to one physical pixel on a 160-dpi screen, the
baseline density assumed by Android. At run time, Android transparently handles any scaling of
the required dip units, based on the actual density of the screen in use. Dip units are converted
to screen pixels via equation pixels = dips * (density / 160). For example, on a 240-dpi screen, 1
dip equals 1.5 physical pixels. Google recommends using dip units to define your app’s user
interface to ensure proper display of the Ul on different screens.

A second linear layout has been nested inside the first linear layout. Because no
orientation attribute is specified, this layout lays out its widgets horizontally. As with
the parent layout, layout_width is assigned "fill parent". However, layout_height is
assigned "wrap_content" to prevent this nested layout from occupying the entire screen.

The nested linear layout encapsulates textview and edittext elements. The textview
element describes a widget that serves as a label for the widget described by the
edittext element. The <textview> tag presents the following attributes in addition to
layout_width and layout_height:

B layout_marginRight specifies the amount of space to reserve on the
right side of the textview widget; 10 density-independent pixels have
been selected as the space amount.

B text identifies the text that this widget displays. The text is identified
via @string/units, a string resource reference to the units entry in the
standard strings.xml resource file (see Listing 1-12). This entry’s
value is the text.

B textColor identifies the color of the text. The color is specified in
#RRGGBB format — #00000 identifies black.

B textSize identifies the text’s size. The size is specified as "15sp",
which is interpreted as 15 scale-independent pixels (the user selects
the scaling via a device setting). Google recommends specifying
scale-independent pixels (to let the user scale text) or device-
independent pixels (to prevent the user from scaling text).

B textStyle identifies the text styling, such as bold or italic. The style is
set to "bold" to emphasize the text so that it stands out on the screen.

CHAPTER 1: Getting Started with Android

The <edittext> tag provides the following attributes:

B id identifies this widget element so that it can be referenced from
code. The resource identifier is specifed by using a special syntax that
begins with the @+id prefix. For example, "@+id/units" identifies this
edittext widget as units; this widget resource is referenced from code
by specifying R.id.units.

B hint identifies a string that appears in the textfield when nothing has
been entered. It serves as a hint to the user about what kind of data to
enter into the textfield. Instead of assigning a string resource reference
to this attribute, the "type a number" literal string was assigned to
make the following point: although you can embed literal string values
in the resources (or even code), you really should store them in the
separate strings.xml resource file to facilitate localization of the app
to a different language, such as French or German.

B inputType identifies the kind of data that you want the user to enter.
By default, any character can be entered. Because this is
unacceptable when a number is required,

"numberDecimal |numberSigned" is assigned to inputType. This string
specifies that only decimal numbers can be entered. Furthermore,
these numbers can be negative.

B maxLines restricts the number of lines of text that can be entered into a
textfield. The "1" assignment indicates that only a single line of text
can be entered.

Below the linear layout element lies a spinner element named conversions. This element
is declared to fill the screen’s width, but not the screen’s height. Futhermore, its prompt
attribute is assigned "@string/prompt" to prompt the user (on the dropdown view, which
is shown in Figure 1-15) to select a conversion.

Below the spinner element lies another nested linear layout, encapsulating the Clear,
Convert, and Close buttons. Each button is assigned a unique ID so it can be referenced
from code. Its layout_weight attribute is assigned the same value as the other buttons’
layout_weight attributes so that each button has the same width (it looks nicer).

Android let you declare shape resources (such as rectangles or ovals) as XML files.
These shapes can be declared with straight or rounded corners, with gradient
backgrounds, and with other attributes. For example, Listing 1-11 introduces a
rectangle shape with a gradient background.

Listing 1-11. The gradientbg. xml File Storing a Gradient Shape to Color the Activity’s Background

<?xml version="1.0" encoding="utf-8"?>
<shape xmlns:android="http://schemas.android.com/apk/res/android">
<gradient android:startColor="#fccb06"
android:endColor="#fd6006"
android:angle="270"/>
<corners android:radius="10dp"/>
</shape>

http://schemas.android.com/apk/res/android

CHAPTER 1: Getting Started with Android

The <shape> tag introduces a shape via its shape attribute. If this attribute is not present,
the shape defaults to a rectangle.

The nested <gradient> tag defines the shape’s color in terms of a gradient, which is
specified via startColor, endColor, and angle attributes. The angle attribute specifies
the direction that the gradient sweeps across the rectangle. If angle is not present, the
angle defaults to 0 degrees.

The nested <corners> tag determines whether or not a rectangle shape has corners. If
this tag is present, its attributes identify the degree of roundness for each or all corners.
For example, the radius attribute in Listing 1-11 specifies that each corner has a radius
of 10 density-independent pixels — dp is a synonym for dip.

Strings should be stored separately to facilitate localization of text. Android mandates
that strings be stored in a file named strings.xml, which Listing 1-12 presents.

Listing 1-12. The strings.xml File Storing the App’s Strings

<?xml version="1.0" encoding="utf-8"?>

<resources>
<string name="app_name">Units Converter</string>
<string name="clear">Clear</string>
<string name="close">Close</string>
<string name="convert">Convert</string>
<string name="prompt">Select a conversion</string>
<string name="units">Units</string>

</resources>

The strings.xml file stores its strings as a sequence of string elements that are nested
in a resources element. Each <string> tag requires a unique name attribute whose
content identifies the string, and which is referenced from code or some other resource.
The string text is placed between the <string> and </string> tags.

Finally, the array of conversion strings is stored in arrays.xml. Listing 1-13 reveals this
standard file’s contents.

Listing 1-13. The arrays. xml File Storing an Array of Conversion Strings

<?xml version="1.0" encoding="utf-8"?>
<resources>
<string-array name="conversions">

<item>Acres to Square Miles</item>
<item>Atmospheres to Pascals</item>
<item>Bars to Pascals</item>
<item>Degrees Celsius to Degrees Fahrenheit</item>
<item>Degrees Fahrenheit to Degrees Celsius</item>
<item>Dynes to Newtons</item>
<item>Feet/Second to Metres/Second</item>
<item>Fluid Ounces (UK) to Litres</item>
<item>Fluid Ounces (US) to Litres</item>
<item>Horsepower (electric) to Watts</item>
<item>Horsepower (metric) to Watts</item>
<item>Kilograms to Tons (UK or long)</item>
<item>Kilograms to Tons (US or short)</item>
<itemyLitres to Fluid ounces (UK)</item>
<itemy>Litres to Fluid ounces (US)</item>

CHAPTER 1: Getting Started with Android

<item>Mach Number to Metres/Second</item>
<item>Metres/Second to Feet/Second</item>
<item>Metres/Second to Mach Number</item>
<item>Miles/Gallon (UK) to Miles/Gallon (US)</item>
<item>Miles/Gallon (US) to Miles/Gallon (UK)</item>
<item>Newtons to Dynes</item>
<item>Pascals to Atmospheres</item>
<item>Pascals to Bars</item>
<item>Square Miles to Acres</item>
<item>Tons (UK or long) to Kilograms</item>
<item>Tons (US or short) to Kilograms</item>
<item>Watts to Horsepower (electric)</item>
<item>Watts to Horsepower (metric)</item>
</string-array>
</resources>

Android lets you store arrays with different types of data in arrays.xml. For example,
<string-array> indicates that the array contains strings. This tag requires a name
attribute whose value uniquely identifies this array. Each array item is specified by
placing its content between <item> and </item> tags.

1-6. Creating UC

Problem

You want to learn how to create UC using the Android SDK’s command-line tools, but
are not sure how to accomplish this task.

Solution

Use the android tool to create UC, and then use ant to build this project.

How It Works

Your first step in creating UC is to use the android tool to create a project. When used in
this way, android requires you to adhere to the following syntax (which is spread across
multiple lines for readability):
android create project --target target ID

--name your project name

--path /path/to/your/project/project_name

--activity your activity name
--package your package namespace

Except for --name (or -n), which specifies the project’s name (if provided, this name will
be used for the resulting .apk filename when you build your app), all of the following
options are required:

CHAPTER 1: Getting Started with Android

B The --target (or -t) option specifies the app’s build target. The
target_ID value is an integer value that identifies an Android platform.
You can obtain this value by invoking android list targets. If you've
only installed the Android 2.3 platform, this command should output a
single Android 2.3 platform target identified as integer ID 1.

B The --path (or -p) option specifies the project directory’s location. The
directory is created if it doesn’t exist.

B The --activity (or -a) option specifies the name for the default activity
class. The resulting classfile is created inside
/path/to/your/project/project_name/src/your_package_namespace/,
and is used as the .apk filename if --name (or -n) isn't specified.

B The --package (or -k) option specifies the project’s package
namespace, which must follow the rules for packages that are
specified in the Java language.

Assuming a Windows XP platform, and assuming a C:\prj\dev hierarchy where the UC
project is to be stored in C:\prj\dev\UC, invoke the following command from anywhere
in the filesystem to create UC:

android create project -t 1 -p C:\prj\dev\UC -a UC -k com.apress.uc

This command creates various directories and adds files to some of these directories. It
specifically creates the following file and directory structure within C:\prj\dev\UC:

B AndroidManifest.xml is the manifest file for the app being built. This
file is synchronized to the Activity subclass previously specified via
the --activity or -a option.

B bin is the output directory for the Apache Ant build script.

B build.properties is a customizable properties file for the build
system. You can edit this file to override default build settings used by
Apache Ant, and provide a pointer to your keystore and key alias so
that the build tools can sign your app when built in release mode
(discussed in Recipe 1-8).

B build.xml is the Apache Ant build script for this project.

B default.properties is the default properties file for the build system.
Don’t modify this file.

B 1libs contains private libraries, when required.

B local.properties contains the location of the Android SDK home
directory.

B proguard.cfg contains configuration data for ProGuard, an SDK tool
that lets developers obfuscate their code (making it very difficult to
reverse engineer the code) as an integrated part of a release build.

B res contains project resources.

CHAPTER 1: Getting Started with Android

B src contains the project’s source code.
res contains the following directories:

B drawable-hdpi contains drawable resources (such as icons) for high-
density screens.

B drawable-ldpi contains drawable resources for low-density screens.

B drawable-mdpi contains drawable resources for medium-density
screens. The gradientbg.xml file in Listing 1-11 is stored in this
directory.

B layout contains layout files. The main.xml file in Listing 1-10 is stored
in this directory.

B values contains value files. Listing 1-12’s strings.xml and Listing 1-
13’s arrays.xml files are stored in this directory.

Also, src contains the com\apress\uc directory structure, and the final uc subdirectory
contains a skeletal UC. java source file. This skeletal file’s contents are replaced with
Listing 1-9.

Assuming that C:\prj\dev\UC is current, build this app with the help of Apache’s ant
tool, which defaults to processing this directory’s build.xml file. At the command line,
specify ant followed by debug or release to indicate the build mode:

B Debug mode: Build the app for testing and debugging. The build tools
sign the resulting APK with a debug key and optimize the APK with
zipalign. Specify ant debug.

B Release mode: Build the app for release to users. You must sign the
resulting APK with your private key, and then optimize the APK with
zipalign. (I discuss these tasks later in this chapter.) Specify ant
release.

Build UC in debug mode by invoking ant debug from the C:\prj\dev\UC directory. This
command creates a gen subdirectory containing the ant-generated R. java file (in a
com\apress\uc directory hierarchy), and stores the created UC-debug.apk file in the bin
subdirectory.

1-7. Installing and Running UC

Problem

You want to install the UC-debug.apk package file that you just created on the previously
started AVD and run this app.

CHAPTER 1: Getting Started with Android

Solution

Use the adb tool to install UC. Navigate to the app launcher screen to run UC.

How It Works

Assuming that the AVD is still running, execute adb install C:\prj\dev\UC\bin\UC-
debug.apk to install UC-debug.apk on the AVD. After a few moments, you should see
several messages similar to the following:

411 KB/s (19770 bytes in 0.046s)
pkg: /data/local/tmp/UC-debug.apk
Success

From the home screen, click the app launcher icon (the rectangular grid icon centered at
the bottom of the home screen) and scroll down on the result screen’s list of app icons.
Figure 1-12 shows you the Units Converter app entry.

ol W 202

L

DevTooh Domnloads

L I®)

Messaging Music

o

Semngs Spare Parts

Speech unies
Recorder Cooverter

#H

Figure 1-12. The highlighted Units Converter app entry displays a custom icon (in an icon.pngq file, which is
included in this book’s code) that’s also stored in drawable-mdp1i.

Click the Units Converter icon and you should see the screen shown in Figure 1-13.

CHAPTER 1: Getting Started with Android

Units Converter

kype a number

Acres to Square Miles

Figure 1-13. The Units textfield prompts the user to type a number.

Enter 37 into the Units textfield and you’ll see the screen shown in Figure 1-14.

[Units Coaverter

Figure 1-14. The Clear and Convert buttons are no longer disabled.

Click the spinner and you’ll see the screen shown in Figure 1-15.

CHAPTER 1: Getting Started with Android

Select a conversion

Acres 1o Square Miles

Atmospheres to Pascals

Bars to Pascals

Degrees Celsius to Degrees Fahrenheit
Degrees Fahrenhelt to Degrees Celsius
Dynes to Newtons

Feet/Second to Metres/Second

Fiuld Qunces (UK) to Litres

Fluid Qunces (US) to Litres
Horsepower (electric) to Watts
Horsepower (metric) to Watts
Kilograms to Tons (UK or long)
Kilograms to Tons (US or short)

Litres to Fluid ounces (UK)

Litres to Fluid ounces (US)

Mach Number ta Metres/Secand

Figure 1-15. The spinner displays the prompt at the top of its drop-down list of conversion names.

Select “Degrees Celsius to Degrees Fahrenheit” and you’ll see a screen similar to Figure
1-16.

Units Converter

(e

e [[=

Figure 1-16. The Units textfield displays the conversion result after clicking Convert.

Click Close to terminate the app and return to the launcher screen shown in Figure 1-12.

NOTE: Although UC appears to run correctly, its (and any other app’s) code should be unit tested
to verify that the code is correct before publishing the app. Google’s online Android Developer’s
Guide delves into this topic in its “Testing” section at
http://developer.android.com/guide/topics/testing/index.html.

http://developer.android.com/guide/topics/testing/index.html

CHAPTER 1: Getting Started with Android

1-8. Preparing UC for Publishing

Problem

You’re satisfied that UC works properly, and now you want to prepare it for publishing to
Google’s Android Market or another publishing service.

Solution

Before you can publish an app such as UC, you should version the app. You then build
the app in release mode, and sign and align its app package.

How It Works

Google’s online Android Developer’s Guide
(http://developer.android.com/guide/index.html) provides extensive information on
publishing an app. Rather than repeat the guide’s information, this recipe presents the
steps that are necessary to prepare UC for publishing.

Version UC

Android lets you add version information to your app by specifying this information in
AndroidManifest.xml’s <manifest> tag via its versionCode and versionName attributes.

versionCode is assigned an integer value that represents the version of the app’s code.
The value is an integer so that other apps can programmatically evaluate it to check an
upgrade or downgrade relationship, for example. Although you can set the value to any
desired integer, you should ensure that each successive release of your app uses a
greater value. Android doesn’t enforce this behavior, but increasing the value in
successive releases is normative.

versionName is assigned a string value that represents the release version of the app’s
code, and should be shown to users (by the app). This value is a string so that you can
describe the app version as a <major>.<minor>.<point> string, or as any other type of
absolute or relative version identifier. As with android:versionCode, Android doesn’t use
this value for any internal purpose. Publishing services may extract the versionName
value for display to users.

The <manifest> tag in UC’s AndroidManifest.xml file includes a versionCode attribute
initialized to "1" and a versionName attribute initialized to "1.0".

Build UC in Release Mode

Assuming Windows XP, the previous C:\prj\dev\UC directory, and that this directory is
current, execute the following command line:

ant release

http://developer.android.com/guide/index.html

CHAPTER 1: Getting Started with Android

This command line generates UC-unsigned.apk and stores this file in the bin directory. It
also outputs a message stating that this APK must be signed and aligned with zipalign.

Sign UC’s App Package

Android requires that all installed apps be digitally signed with a certificate whose
private key is held by the app’s developer. Android uses the certificate as a means of
identifying the app’s author and establishing trust relationships between apps; it doesn’t
use the certificate to control which apps can be installed by the user. Certificates don’t
need to be signed by certificate authorities: it’s perfectly allowable, and typical, for
Android apps to use self-signed certificates.

NOTE: Android tests a signer certificate’s expiration date only at install time. If an app’s signer
certificate expires after the app is installed, the app will continue to function normally.

Before you can sign UC-unsigned.apk, you must obtain a suitable private key. A private
key is suitable if it meets the following criteria:

B The key represents the personal, corporate, or organizational entity to
be identified with the app.

B The key has a validity period that exceeds the expected lifespan of the
app. Google recommends a validity period of more than 25 years. If
you plan to publish the app on Android Market, keep in mind that a
validity period ending after October 22, 2033 is a requirement. You
cannot upload an app if it’s signed with a key whose validity expires
before that date.

B The key is not the debug key generated by the Android SDK tools.

The JDK’s keytool tool is used to create a suitable private key. The following command
line (split over two lines for readability) uses keytool to generate this key:

keytool -genkey -v -keystore uc-release-key.keystore -alias uc_key -keyalg RSA
-keysize 2048 -validity 10000

The following command-line arguments are specified:

B -genkey causes keytool to generate a public and a private key (a key
pair).
B -v enables verbose output.

B -keystore identifies the keystore (a file) that stores the private key; the
keystore is named uc-release-key.keystore in the command line.

B -alias identifies an alias for the key (only the first eight characters are
used when the alias is specified during the actual signing operation);
the alias is named uc_key in the command line.

CHAPTER 1: Getting Started with Android

B -keyalg specifies the encryption algorithm to use when generating the
key; although DSA and RSA are supported, RSA is specified in the
command line.

B -keysize specifies the size of each generated key (in bits); 2048 is
specified in the command line because Google recommends using a
key size of 2048 bits or higher (the default size is 1024 bits).

B -validity specifies the period (in days) in which the key remains valid
(Google recommends a value of 10000 or greater); 10000 is specified in
the command line.

keytool prompts you for a password (to protect access to the keystore), and to reenter
the same password. It then prompts for your first and last name, your organizational unit
name, the name of your organization, the name of your city or locality, the name of your
state or province, and a two-letter country code for your organizational unit.

keytool subsequently prompts you to indicate whether or not this information is correct
(by typing yes and pressing Enter, or by pressing Enter for no). Assuming you entered
yes, keytool lets you choose a different password for the key, or use the same
password as that of the keystore.

CAUTION: Keep your private key secure. Fail to do so, and your app authoring identity and user
trust could be compromised. Here are some tips for keeping your private key secure:

* Select strong passwords for the keystore and key.

* When you generate your key with keytool, don’t supply the -storepass and -keypass
options at the command line. If you do so, your passwords will be available in your shell history,
which any user on your computer could access.

* When signing your apps with jarsigner, don’t supply the -storepass and -keypass
options at the command line (for the same reason as mentioned in the previous tip).

* Don’t give or lend anyone your private key, and don’t let unauthorized persons know your
keystore and key passwords.

keytool creates uc-release-key.keystore in the current directory. You can view this
keystore’s information by executing the following command line:

keytool -list -v -keystore uc-release-key.keystore

After requesting the keystore password, keytool outputs the number of entries in the
keystore (which should be one) and certificate information.

The JDK’s jarsigner tool is used to sign UC-unsigned.apk. Assuming that
C:\prj\dev\UC is the current directory, this directory contains the keytool-created uc-
release-key.keystore file, and this directory contains a bin subdirectory that contains
UC-unsigned.apk, execute the following command line to sign this file:

CHAPTER 1: Getting Started with Android

jarsigner -verbose -keystore uc-release-key.keystore bin/UC-unsigned.apk uc_key
The following command-line arguments are specified:
B -verbose enables verbose output.

B -keystore identifies the keystore that stores the private key; uc-
release-key.keystore is specified in the command line.

B bin/UC-unsigned.apk identifies the location and name of the APK
being signed.

B uc-key identifies the previously created alias for the private key.

jarsigner prompts you to enter the keystore password that you previously specified via
keytool. This tool then outputs messages similar to the following:

adding: META-INF/MANIFEST.MF

adding: META-INF/UC_KEY.SF

adding: META-INF/UC_KEY.RSA

signing: res/layout/main.xml

signing: AndroidManifest.xml

signing: resources.arsc

signing: res/drawable-hdpi/icon.png

signing: res/drawable-ldpi/icon.png

signing: res/drawable-mdpi/gradientbg.xml

signing: res/drawable-mdpi/icon.png

signing: classes.dex
Execute jarsigner -verify bin/UC-unsigned.apk to verify that UC-unsigned.apk has
been signed.

Assuming success, you should notice a single “jar verified.” message. Assuming
failure, you should notice the following messages:

no manifest.
jar is unsigned. (signatures missing or not parsable)

Align UC’s App Package

As a performance optimization, Android requires that a signed APK’s uncompressed
content be aligned relative to the start of the file, and supplies the zipalign SDK tool for
this task. According to Google’s documentation, all uncompressed data within the APK,
such as images or raw files, is aligned on 4-byte boundaries.

zipalign requires the following syntax to align an input APK to an output APK:
zipalign [-f] [-v] <alignment> infile.apk outfile.apk
The following command-line arguments are specified:

B -f forces outfile.apk to be overwritten if it exists.

B -v enables verbose output.

CHAPTER 1: Getting Started with Android

B alignment specifies that the APK content is to be aligned on this
number of bytes boundary; it appears that zipalign ignores any value
other than 4.

B infile.apk identifies the signed APK file to be aligned.
B outfile.apk identifies the resulting signed and aligned APK file.

Assuming that C:\prj\dev\UC\bin is the current directory, execute the following
command line to align UC-unsigned.apk to UC.apk:

zipalign -f -v 4 UC-unsigned.apk UC.apk
zipalign requires the following syntax to verify that an existing APK is aligned:
zipalign -c -v <alignment> existing.apk
The following command-line arguments are specified:
B -c confirms the alignment of existing.apk.
B -v enables verbose output.

B alignment specifies that the APK content is aligned on this number of
bytes boundary; it appears that zipalign ignores any value other than
4.

B infile.apk identifies the signed APK file to be aligned.
Execute the following command line to verify that UC.apk is aligned:
zipalign -c -v 4 UC.apk

zipalign presents a list of APK entries, indicating which are compressed and which are
not, followed by a verification successful or a verification failed message.

1-9. Migrating to Eclipse

Problem
You prefer to develop apps using the Eclipse IDE.

Solution

To develop apps with Eclipse, you need to install an IDE such as Eclipse Classic 3.6.1.
Furthermore, you need to install the ADT Plugin.

How It Works

Before you can develop Android apps with Eclipse, you must complete at least the first
two of the following three tasks:

CHAPTER 1: Getting Started with Android

1. Install the Android SDK and at least one Android platform (see Recipes
1-1 and 1-2). JDK 5 or JDK 6 must also be installed.

2. Install a version of Eclipse that’s compatible with the Android SDK and
the Android Development Tools (ADT) Plugin for the Eclipse IDE.

3. Install the ADT Plugin.

You should complete these tasks in the order presented. You cannot install the ADT
Plugin before installing Eclipse, and you cannot configure or use the ADT Plugin before
installing the Android SDK and at least one Android platform.

THE BENEFICIAL ADT PLUGIN

Although you can develop Android apps in Eclipse without using the ADT Plugin, it's much faster and easier
to create, debug, and otherwise develop these apps with this plugin.

The ADT Plugin offers the following features:

B It gives you access to other Android development tools from inside the Eclipse IDE. For
example, ADT lets you access the many capabilities of the Dalvik Debug Monitor
Server (DDMS) tool, allowing you to take screenshots, manage port-forwarding, set
breakpoints, and view thread and process information directly from Eclipse.

It provides a New Project Wizard, which helps you quickly create and setup all of the
basic files you'll need for a new Android app.

It automates and simplifies the process of building your Android app.

It provides an Android code editor that helps you write valid XML for your Android
manifest and resource files.

B |t lets you export your project into a signed APK, which can be distributed to users.
You'll learn how to install the ADT Plugin after learning how to install Eclipse.

The Eclipse.org website makes available for download several IDE packages that meet
different requirements. Google places several stipulations and recommendations on
which IDE package you should download and install:

B Install an Eclipse 3.4 (Ganymede) or greater IDE package.

B Make sure that the Eclipse package being downloaded includes the
Eclipse JDT (Java Development Tools) Plugin. Most packages include
this plugin.

B You should install one of the Eclipse Classic (versions 3.5.1 and
higher), Eclipse IDE for Java Developers, or Eclipse IDE for Java EE
Developers packages.

CHAPTER 1: Getting Started with Android

Complete the following steps to install Eclipse Classic 3.6.1:

1. Point your browser to the Eclipse Classic 3.6.1 page at
www.eclipse.org/downloads/packages/eclipse-classic-361/heliossri.

2. Select the appropriate distribution file by clicking one of the links in the
Download Links box on the right side of this page. For example, you
might click Windows 32-bit platform.

3. Click a download link and save the distribution file to your harddrive. For
example, you might save eclipse-SDK-3.6.1-win32.zip to your
harddrive.

4. Unarchive the distribution file and move the eclipse home directory to a
convenient location. For example, you might move eclipse to your
C:\Program Files directory.

5. You might also want to create a desktop shortcut to the eclipse
application located in the eclipse home directory.

Complete the following steps to install the latest revision of the ADT Plugin:
1. Start Eclipse.

2. The first time you start Eclipse, you will discover a Workspace Launcher
dialog box following the splash screen. You can use this dialog box to
select a workspace folder in which to store your projects. You can also
tell Eclipse to not display this dialog box on subsequent startups.
Change or keep the default folder setting and click OK.

3. Once Eclipse displays its main window, select Install New Software from
the Help menu.

4. Click the Add button on the resulting Install dialog box’s Available
Software pane.

5. On the resulting Add Repository dialog box, enter a name for the remote
site (for example, Android Plugin) in the Name field, and enter
https://dl-ssl.google.com/android/eclipse/ into the Location field.
Click OK.

6. You should now see Developer Tools in the list that appears in the
middle of the Install dialog box.

7. Check the checkbox next to Developer Tools, which will automatically
check the nested Android DDMS, Android Development Tools, and
Android Hierarchy Viewer checkboxes. Click Next.

http://www.eclipse.org/downloads/packages/eclipse-classic-361/heliossr1
https://dl-ssl.google.com/android/eclipse/

CHAPTER 1: Getting Started with Android

8. The resulting Install Details pane lists Android DDMS, Android
Development Tools, and Android Hierarchy Viewer. Click Next to read
and accept the license agreement and install any dependencies, and
then click Finish.

9. AnInstalling Software dialog box appears and takes care of installation.
If you encounter a Security Warning dialog box, click OK.

10. Finally, Eclipse presents a Software Updates dialog box that prompts
you to restart this IDE. Click the Restart Now button to restart.

TIP: If you have trouble acquiring the plugin in Step 5, try specifying http instead of https
(https is preferred for security reasons) in the Location field.

To complete the installation of the ADT Plugin, you must configure this plugin by
modifying the ADT preferences in Eclipse to point to the Android SDK home directory.
Accomplish this task by completing the following steps:

1. Select Preferences from the Window menu to open the Preferences
panel. For Mac OS X, select Preferences from the Eclipse menu.

2. Select Android from the left panel.

3. Click the Browse button beside the SDK Location textfield and locate
your downloaded SDK’s home directory (such as C:\android-sdk-
windows, for example).

4. Click Apply followed by OK.

NOTE: For more information on installing the ADT Plugin, along with helpful information in case
of difficulty, please review the ADT Plugin for Eclipse page
(http://developer.android.com/sdk/eclipse-adt.html) in Google’s online Android
Developer’s Guide.

1-10. Developing UC with Eclipse

Problem

Now that you’ve installed Eclipse Classic 3.6.1 and the ADT Plugin, you want to learn
how to use this IDE/Plugin to develop UC.

http://developer.android.com/sdk/eclipse-adt.html

CHAPTER 1: Getting Started with Android

Solution

You first need to create an Android Eclipse project named UC. You then introduce
various source files and drag resources to various directories. Finally, you execute UC by
selecting Run from the menubar.

How It Works

The first task in developing UC with Eclipse is to create a new Android project. Complete
the following steps to create this project:

1. Start Eclipse if not running.

2. Select New from the File menu, and select Project from the resulting
popup menu.

3. On the New Project dialog box, expand the Android node in the wizard
tree, select the Android Project branch below this node, and click the
Next button.

4. On the resulting New Android Project dialog box, enter UC into the
Project name textfield. This entered name identifies the folder in which
the UC project is stored.

5. Select the Create new project in workspace radio button if not selected.

6. Under Build Target, select the checkbox of the appropriate Android
target to be used as UC’s build target. This target specifies which
Android platform you’d like your application to be built against.
Assuming that you’ve installed only the Android 2.3 platform, only this
build target should appear and should already be checked.

7. Under Properties, enter Units Converter into the Application name
textfield. This human-readable title will appear on the Android device.
Continuing, enter com.apress.uc into the Package name textfield. This
value is the package namespace (following the same rules as for
packages in the Java programming language) where all your source
code will reside. Check the Create Activity checkbox if not checked and
enter UC as the name of the app’s starting activity in the textfield that
appears beside this checkbox. The textfield is disabled when this
checkbox is not checked. Finally, enter integer 9 into the Min SDK
Version textfield to identify the minimum API Level required to properly
run UC on the Android 2.3 platform.

8. Click Finish.

Eclipse responds by creating a UC directory with the following subdirectories and files
within your Eclipse workspace directory:

CHAPTER 1: Getting Started with Android

B .settings: This directory contains an org.eclipse.jdt.core.prefs file
that records project-specific settings.

B gssets: This directory is used to store an unstructured hierarchy of
files. Anything stored in this directory can later be retrieved by an app
via a raw byte stream.

bin: Your APK file is stored here.

B gen: The generated R. java file is stored within a subdirectory structure
that reflects the package hierarchy (such as com\apress\uc).

B res: App resources are stored in various subdirectories.
B src: App source code is stored according to a package hierarchy.

B .classpath: This file stores the project’s classpath information so that
external libraries on which the project depends can be located.

B .project: This file contains important project information such as the
kind of project it is, what builders it contains, and what linked
resources are attached to the project.

B AndroidManifest.xml: This file contains UC’'s manifest information.
B default.properties: This file contains project settings.
B Proguard.cfg: This file contains ProGuard configuration data.

Close the Welcome tab. Eclipse presents the user interface that’s shown in Figure 1-17.

CHAPTER 1: Getting Started with Android

e ———————— Tk
S ™ =) % |

File Edit Run Source Navigate Search Project Refactor Window Help
N-HEOIA BHLi$ -0-QU (B IdF- I8 §-©& g 5§ e |
=5 = 5[5 outine 2 &
B Y An outline is not available.
® B uc
[& Problems &2 @Javadoc}@mdaaﬁon} s (|
0items
Description 4 Resource | Path | Locat... | Type
Do

Figure 1-17. Eclipse’s user interface is organized around a menubar, a toolbar, several windows (such as
Package Explorer and Outline), a statusbar, and a blank area that’s reserved for editor windows.

This user interface is known as the workbench. The Package Explorer window appears
on the left and presents an expandable list of nodes that identify the various projects in
the current workspace and their components. Figure 1-17 reveals that UC is the only
project in the workspace.

To learn how Eclipse organizes the UC project, click the + icon to the left of this node.
Figure 1-18 reveals an expanded project hierarchy.

CHAPTER 1: Getting Started with Android

= Ew
S @ e
= 8§ cambjevarefuc
= 1) ucsava
=0 uw
@ onCreste(Bunde) < vod
s gqm[&wa:eﬁ Java Ples]
= @ cambjvaeffuc
= [J) R
5 R
G atr
@ & dranable
® & wyeut
@ sng
= W\ Androd 2.3
@l androd.jar - C:\androd sdicwindows \plathonms \androd 9
5 assets
= res
& (& drawable hop
& & drawadie i
& & dawatiemdx
®) konprg
= & ayout
(X e om
5 & vales
) X s¥rings.aml
i Aedrodvanfest.aml
[defmdt.properties
2] proguard.cfy

Figure 1-18. Additional + icons have been clicked to reveal more of UC’s file organization.

Double-click the UC. java node. Eclipse responds by presenting the UC. java window
that’s revealed in Figure 1-19.

=) D‘
E package ca.nmb.javajeff.uc; A

jmport android.app.Activity;[]

public class UC extends Activity {
/*"* Called vhen the activity is first creat
o gCverride
-~ public void onCreacte (Sundle savedInstancesStc
super.onCreate (savedInstanceState);
setContenctView(R.layout.main)

Figure 1-19. UC. java reveals skeletal content.

Replace UC. java’s skeletal content with Listing 1-9 and disregard the errors that Eclipse
reports. You’ll correct these errors later.

Complete the following steps to introduce the necessary resources to this project:

1. Double-click the main.xml node. Eclipse presents a main.xml editor
window in graphical layout mode.

2. Click the main.xml tab below the window to switch to text mode.
Replace window content with Listing 1-10.

CHAPTER 1: Getting Started with Android

3. Double-click the strings.xml node. Eclipse presents a strings.xml
editor window in resources mode.

4. Click the strings.xml tab below the window to switch to text mode.
Replace window content with Listing 1-12.

5. Right-click the values node and select New followed by Other from the
popup menus. A New dialog box appears.

6. Expand the XML node in the wizards list, select XML File, and click
Next. On the next pane, replace NewFile.xml with arrays.xml in the File
Name field; click Finish.

7. Eclipse presents an arrays.xml editor window in design mode. Click the
Source tab below the window to switch to text mode. Replace window
content with Listing 1-13.

8. Right-click the drawable-mdpi node and select New followed by Other
from the popup menus. A New dialog box appears.

9. Expand the XML node in the wizards list, select XML File, and click
Next. On the next pane, replace NewFile.xml with gradientbg.xml in the
File Name field; click Finish.

10. Eclipse presents a gradientbg.xml editor window in desigh mode. Click
the Source tab below the window to switch to text mode. Replace
window content with Listing 1-11.

11. Right-click the icon.png node underneath drawable-mdpi. Select Delete
from the popup menu and delete this node.

12. Copy the icon.png file from this chapter’s section in this book’s code
archive to the clipboard. Right-click drawable-mdpi and select Paste
from the popup menu.

Select Run from the menubar, and select Run from the resulting dropdown menu. On
the resulting Run As dialog box, select Android Application and click OK.

If all goes well, Eclipse launches the emulator tool with the test_AVD device, installs the
UC app, and causes this app to start running (see Figure 1-13).

CHAPTER 1: Getting Started with Android

NOTE: Eclipse provides much more support for Android app development than can be covered in
this recipe. For example, if you need to debug a failing Android app, you can start the Dalvik
Debug Monitor Service by selecting Open Perspective from the Window menu, followed by Other
from the popup menu, followed by DDMS from the Open Perspective dialog box. To learn about
DDMS, check out J Beer’s “How-to use Dalvik Debug Monitor Service (DDMS) Tool With Google
Android” tutorial (www.brighthub.com/mobile/google-
android/articles/25023.aspx) and James Sugrue’s “Debugging Android: Using DDMS To
Look Under The Hood” tutorial (http://java.dzone.com/articles/debugging-
android-using-ddms).

For additional insight into developing Android apps via Eclipse/ADT Plugin, check out Lars Vogel’s
“Android Development Tutorial — Gingerbread” tutorial
(www.vogella.de/articles/Android/article.html).

Summary

Android has excited many people who are developing (and even selling) apps for this
platform. It’s not too late to join in the fun, and this chapter showed you how by taking
you on a rapid tour of key Android concepts and development tools.

You first learned that Android is a software stack for mobile devices, and that this stack
consists of apps, middleware, and the Linux operating system. You then learned about
Android’s history, including the various SDK updates that have been made available.

You next encountered Android’s layered architecture, which includes apps at the top; an
application framework, C/C++ libraries, and the Dalvik virtual machine as middleware;
and a modified version of the Linux kernel at the bottom.

Continuing, you encountered app architecture, which is based upon components
(activities, services, broadcast receivers, and content providers) that communicate with
each other by using intents, that are described by a manifest, and that are stored in an
app package.

You then learned how to implement activities by subclassing the android.app.Activity
class, services by subclassing the abstract android.app.Service class, broadcast
receivers by subclassing the abstract android. content.BroadcastReceiver class, and
content providers by subclassing the abstract android.content.ContentProvider class.

At this point, Chapter 1 moved away from this essential theory and focused on practical
matters via a series of recipes. Initial recipes focused on installing the Android SDK and
an Android platform, creating an AVD, and starting the emulator with this AVD.

The next batch of recipes introduced you to a sample Units Converter app. They also
showed you how to create this app, install it on the emulator, run it from the emulator,
and how to prepare a release version for publication to Google’s Android Market.

http://www.brighthub.com/mobile/google-android/articles/25023.aspx
http://www.brighthub.com/mobile/google-android/articles/25023.aspx
http://www.brighthub.com/mobile/google-android/articles/25023.aspx
http://java.dzone.com/articles/debugging-android-using-ddms
http://java.dzone.com/articles/debugging-android-using-ddms
http://java.dzone.com/articles/debugging-android-using-ddms
http://www.vogella.de/articles/Android/article.html

CHAPTER 1: Getting Started with Android

Working with command-line tools in a command-line environment can be tedious. For
this reason, the final two recipes focused on migrating to the Eclipse IDE, and showed
you how to develop Units Converter in the context of this graphical environment.

While exploring the Units Converter app, you were introduced to some user interface
concepts. Chapter 2 builds upon these concepts by presenting recipes that focus on
various Android user interface technologies.

Chapter

User Interface Recipes

The Android platform is designed to operate on a variety of different device types,
screen sizes, and screen resolutions. To assist developers in meeting this challenge,
Android provides a rich toolkit of user interface components to utilize and customize to
the needs of their specific application. Android also relies very heavily on an extensible
XML framework and set resource qualifiers to create liquid layouts that can adapt to
these environmental changes. In this chapter, we take a look at some practical ways to
shape this framework to fit your specific development needs.

2-1. Customizing the Window

Problem

The default window elements are not satisfactory for your application.

Solution
(API Level 1)

Customize the window attributes and features using themes and the WindowManager.
Without any customization, an Activity in an Android application will load with the default
system theme, looking something like Figure 2-1.

The window color will be black, with a title bar (often grey) at the top of the Activity. The
status bar is visible above everything, with a slight shadow effect underneath it. These
are all customizable aspects of the application that are controlled by the Window, and
can be set for the entire application or for specific Activities.

75

CHAPTER 2: User Interface Recipes

Ml ® 12:00am

Activity

Figure 2-1. A bare-bones Activity

How It Works

Customize Window Attributes with a Theme

A Theme in Android is a type of appearance style that is applicable to an entire
application or Activity. There are two choices when applying a theme: use a system
theme or create a custom one. In either case, a theme is applied in the
AndroidManifest.xml file as shown in Listing 2—1.

Listing 2-1. AndroidManifest.xml

<?xml version="1.0" encoding="utf-8"?>

<manifest xmlns:android="http://schemas.android.com/apk/res/android"
>

<!-Apply to the application tag for a global theme -->

<application android:theme="THEME_NAME"
>

<!-Apply to the activity tag for an individual theme -->

<activity android:name=".Activity" android:theme="THEME_NAME"
>

<intent-filter>

</intent-filter>
</activity>
</application>
</manifest>

http://schemas.android.com/apk/res/android

CHAPTER 2: User Interface Recipes

System Themes

The styles.xml packaged with the Android framework includes a few options for themes
with some useful custom properties set. Referencing R.style in the SDK documentation
will provide the full list, but here are a few useful examples:

B Theme.NoTitleBar: Remove the title bar from components with this
theme applied.

B Theme.NoTitleBar.Fullscreen: Remove the title bar and status bar,
filling the entire screen.

B Theme.Dialog: A useful theme to make an Activity look like a dialog.

B Theme.Wallpaper (API Level 5): Apply the user’s wallpaper choice as
the window background.

Listing 2-2 is an example of a system theme applied to the entire application by setting
the android:theme attribute in the AndroidManifest.xml file:

Listing 2-2. Manifest with Theme Set on Application

<?xml version="1.0" encoding="utf-8"?>
<manifest xmlns:android="http://schemas.android.com/apk/res/android"
>
<!-Apply to the application tag for a global theme -->
<application android:theme="Theme.NoTitleBar"
>

</ap51ication>
</manifest>

Custom Themes

Sometimes the provided system choices aren’t enough. After all, some of the
customizable elements in the window are not even addressed in the system options.
Defining a custom theme to do the job is simple.

If there is not one already, create a styles.xml file in the res/values path of the project.
Remember, themes are just styles applied on a wider scale, so they are defined in the
same place. Theme aspects related to window customization can be found in the R.attr
reference of the SDK, but here are the most common items:

B android:windowNoTitle
B Governs whether to remove the default title bar.
B Set to true to remove the title bar.
B android:windowFullscreen
B Governs whether to remove the system status bar.
B Set to true to remove the status bar and fill the entire screen.

B android:windowBackground

http://schemas.android.com/apk/res/android

CHAPTER 2: User Interface Recipes

B Color or drawable resource to apply as a background
B Set to color or drawable value or resource
B android:windowContentOverlay

B Drawable placed over the window content foreground. By default,
this is a shadow below the status bar.

B Set to any resource to use in place of the default status bar
shadow, or null (@null in XML) to remove it.

B android:windowTitleBackgroundStyle
B Style to apply to the window’s title view
B Set to any style resource.

B android:windowTitleSize
B Height of the window’s title view
B Set to any dimension or dimension resource

B android:windowTitleStyle
B Style to apply to the window’s title text
B Set to any style resource

Listing 2-3 is an example of a styles.xml file that creates two custom themes:

B MyTheme.One: No title bar and the default status bar shadow
removed

B MyTheme.Two: Fullscreen with a custom background image
Listing 2-3. res/values/styles.xml with Two Custom Themes

<?xml version="1.0" encoding="utf-8"?>
<resources>
<style name="MyTheme.One" parent="@android:style/Theme">
<item name="android:windowNoTitle">true</item>
<item name="android:windowContentOverlay">@null</item>
</style>
<style name="MyTheme.Two" parent="@android:style/Theme">
<item name="android:windowBackground">@drawable/window_bg</item>
<item name="android:windowFullscreen">true</item>
</style>
</resources>

Notice that a theme (or style) may also indicate a parent from which to inherit properties,
so the entire theme need not be created from scratch. In the example, we chose to
inherit from Android’s default system theme, customizing only the properties that we
needed to differentiate. All platform themes are defined in res/values/themes.xml of the
Android package. Refer to the SDK documentation on styles and themes for more
details.

CHAPTER 2: User Interface Recipes

Listing 2-4 shows how to apply these themes to individual Activity instances in the
AndroidManifest.xml:

Listing 2-4. Manifest with Themes Set on Each Activity

<?xml version="1.0" encoding="utf-8"?>
<manifest xmlns:android="http://schemas.android.com/apk/res/android"
>
<!-Apply to the application tag for a global theme -->
<application
>
<!-Apply to the activity tag for an individual theme -->
<activity android:name=".ActivityOne" android:theme="MyTheme.One"
>
<intent-filter>

</intent-filter>

</activity>

<activity android:name=".ActivityTwo" android:theme="MyTheme.Two"
>

<intent-filter>

</inteﬁt-filter>
</activity>

</application>
</manifest>

Customizing Window Features in Code

In addition to using style XML, window properties may also be customized from the Java
code in an Activity. This method opens up a slightly different feature set to the developer
for customization, although there is some overlap with the XML styling.

Customizing the window through code involves making requests of the system using the
Activity.requestWindowFeature() method for each feature change prior to setting the
content view for the Activity.

NOTE: All requests for extended window features with
Activity.requestWindowFeature() must be made PRIOR to calling
Activity.setContentView(). Any changes made after this point will not take place.

The features you can request from the window, and their meanings, are defined in the
following:

B FEATURE_CUSTOM TITLE: Set a custom layout resource as the Activity
title view.

B FEATURE_NO TITLE: Remove the title view from Activity.

B FEATURE_PROGRESS: Ultilize a determinate (0-100%) progress bar in the
title.

http://schemas.android.com/apk/res/android

CHAPTER 2: User Interface Recipes

B FEATURE_INDETERMINATE_PROGRESS: Utilize a small indeterminate
(circular) progress indicator in the title view.

B FEATURE_LEFT_ICON: Include a small title icon on the left side of the
title view.

B FEATURE_RIGHT_ICON: Include a small title icon on the right side of the
title view.

FEATURE_CUSTOM_TITLE

Use this window feature to replace the standard title with a completely custom layout
resource (see Listing 2-5).

Listing 2-5. Activity Setting a Custom TitleLlayout

protected void onCreate(Bundle savedInstanceState) {
super.onCreate(savedInstanceState);
//Request window features before setContentView
requestWindowFeature(Window.FEATURE_CUSTOM TITLE);
setContentView(R.layout.main);

//Set the layout resource to use for the custom title
getWindow().setFeatureInt(Window.FEATURE_CUSTOM TITLE, R.layout.custom title);

NOTE: Because this feature completely replaces the default title view, it cannot be combined
with any of the other window feature flags.

FEATURE_NO_TITLE

Use this window feature to remove the standard title view (see Listing 2-6).
Listing 2-6. Activity Removing the Standard Title View

protected void onCreate(Bundle savedInstanceState) {
super.onCreate(savedInstanceState);
//Request window features before setContentView
requestWindowFeature(Window.FEATURE_NO TITLE);
setContentView(R.layout.main);

NOTE: Because this feature completely removes the default title view, it cannot be combined
with any of the other window feature flags.

CHAPTER 2: User Interface Recipes

FEATURE_PROGRESS

Use this window feature to access a determinate progress bar in the window title. The
progress can be set to any value from 0 (0%) to 10000 (100%) (see Listing 2-7.)

Listing 2-7. Activity Using Window’s Progress Bar

protected void onCreate(Bundle savedInstanceState) {
super.onCreate(savedInstanceState);
//Request window features before setContentView
requestWindowFeature(Window.FEATURE_PROGRESS);
setContentView(R.layout.main);

//Set the progress bar visibility
setProgressBarVisibility(true);

//Control progress value with setProgress
setProgress(0);

//Setting progress to 100% will cause it to disappear
setProgress(10000);

}
FEATURE_INDETERMINATE_PROGRESS

Use this window feature to access an indeterminate progress indicator to show
background activity. Since this indicator is indeterminate, it can only be shown or
hidden (see Listing 2-8).

Listing 2-8. Activity Using Window’s Indeterminate Progress Bar

protected void onCreate(Bundle savedInstanceState) {
super.onCreate(savedInstanceState);
//Request window features before setContentView
requestWindowFeature(Window.FEATURE_INDETERMINATE PROGRESS);
setContentView(R.layout.main);

//Show the progress indicator
setProgressBarIndeterminateVisibility(true);

//Hide the progress indicator
setProgressBarIndeterminateVisibility(false);

FEATURE_LEFT_ICON

Use this window feature to place a small drawable icon on the left side of the title view
(see Listing 2-9).
Listing 2-9. Activity Using Feature Icon
protected void onCreate(Bundle savedInstanceState) {
super.onCreate(savedInstanceState);
//Request window features before setContentView

requestWindowFeature(Window.FEATURE_LEFT_ICON);
setContentView(R.layout.main);

//Set the layout resource to use for the custom title

CHAPTER 2: User Interface Recipes

setFeatureDrawableResource(Window.FEATURE LEFT ICON, R.drawable.icon);
}

FEATURE_RIGHT_ICON
Use this window feature to place a right-aligned small drawable icon (see Listing 2-10).

Listing 2-10. Activity Using Feature Icon

protected void onCreate(Bundle savedInstanceState) {
super.onCreate(savedInstanceState);
//Request window features before setContentView
requestWindowFeature(Window.FEATURE_RIGHT ICON);
setContentView(R.layout.main);

//Set the layout resource to use for the custom title
setFeatureDrawableResource(Window.FEATURE RIGHT ICON, R.drawable.icon);

NOTE: FEATURE_RIGHT_ICON does NOT necessarily mean the icon will be placed on the right
side of the title text.

Figure 2-2 shows an Activity with all the icon and progress features enabled
simultaneously. Note the locations of all the elements relative to each other in this view.

Ml € 12:00 AM M @ 12:00am

Figure 2-2. Window features enabled in a pre-Froyo Activity (left) and an Activity from Froyo and later (right)

CHAPTER 2: User Interface Recipes

Notice that in API Levels prior to 8 (Froyo), the layout of the RIGHT feature icon was still
on the left-hand side of the title text. API Levels 8 and higher corrected this issue, and
now display the icon on the right side of the view, although still to the left of the
indeterminate progress indicator, if it is visible.

2-2. Creating and Displaying Views

Problem

The application needs view elements to display information and interact with the user.

Solution
(API Level 1)

Whether using one of the many views and widgets available in the Android SDK or
creating a custom display, all applications need views to interact with the user. The
preferred method for creating user interfaces in Android is to define them in XML and
inflate them at runtime.

The view structure in Android is a tree, with the root typically being the Activity or
Window’s content view. ViewGroups are special views that manage the display of one
or more child views, of which could be another ViewGroup, and the tree continues to
grow. All the standard layout classes descend from ViewGroup, and are the most
common choices for the root node of the XML layout file.

How It Works

Let’s define a layout with two Button instances, and an EditText to accept user input.
We can define a file in res/layout/ called main.xml with the following contents (see
Listing 2-11).

Listing 2-11. res/layout/main.xml

<LinearlLayout xmlns:android="http://schemas.android.com/apk/res/android"
android:layout_width="fill parent"
android:layout_height="fill parent"
android:orientation="vertical">
<EditText
android:id="@+id/editText"
android:layout_width="fill parent"
android:layout_height="wrap_content
/>
<Linearlayout
android:layout_width="fill parent"
android:layout_height="wrap_content
android:orientation="horizontal">
<Button
android:id="@+id/save"
android:layout_width="wrap_content"

http://schemas.android.com/apk/res/android

CHAPTER 2: User Interface Recipes

android:layout_height="wrap_content
android:text="Save"

/>

<Button
android:id="@+id/cancel"
android:layout_width="wrap_content"
android:layout_height="wrap_content
android:text="Cancel"

/>

</Linearlayout>
</Linearlayout>

LinearLayout is a ViewGroup that lays out its elements one after the other in either a
horizontal or vertical fashion. In main.xml, the EditText and inner LinearLayout are laid
out vertically in order. The contents of the inner LinearLayout (the buttons) are laid out
horizontally. The view elements with an android:id value are elements that will need to
be referenced in the Java code for further customization or display.

To make this layout the display contents of an Activity, it must be inflated at runtime.
The Activity.setContentView() method is overloaded with a convenience method to
do this for you, only requiring the layout ID value. In this case, setting the layout in the
Activity is as simple as this:

public void onCreate(Bundle savedInstanceState) {
super.onCreate(savedInstanceState);
setContentView(R.layout.main);
//Continue Activity initialization

}

Nothing beyond supplying the ID value (main.xml automatically has an ID of
R.layout.main) is required. If the layout needs a little more customization before it is
attached to the window, you can inflate it manually and do some work before adding it
as the content view. Listing 2-12 inflates the same layout and adds a third button
before displaying it.

Listing 2-12. Layout Modification Prior to Display

public void onCreate(Bundle savedInstanceState) {

super.onCreate(savedInstanceState);

//Inflate the layout file

LinearLayout layout = (LinearlLayout)getlayoutInflater().inflate(R.layout.main,
null);

//Add a new button

Button reset = new Button(this);

reset.setText("Reset Form");

layout.addView(reset,

new LinearLayout.LayoutParams(LayoutParams.FILL_PARENT,

LayoutParams.WRAP_CONTENT));

//Attach the view to the window
setContentView(layout);

}

In this instance the XML layout is inflated in the Activity code using a LayoutInflater,
whose inflate() method returns a handle to the inflated View. Since

CHAPTER 2: User Interface Recipes

LayoutInflater.inflate() returns a View, we must cast it to the specific subclass in the
XML in order to do more than just attach it to the window.

NOTE: The root element in the XML layout file is the View element returned from
LayoutInflater.inflate().

2-3. Monitoring Click Actions

Problem

The Application needs to do some work when the user taps on a View.

Solution
(API Level 1)

Ensure that the view object is clickable, and attach a View.OnClickListener to handle the
event. By default, many widgets in the SDK are already clickable, such as Button,
ImageButton, and CheckBox. However, any View can be made to receive click events
by setting android:clickable="true" in XML or by calling View.setClickable(true)
from code.

How It Works

To receive and handle the click events, create an OnClickListener and attach it to the
view object. In this example, the view is a button defined in the root layout like so:

<Button
android:id="@+id/myButton"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:text="My Button"

/>

In the Activity code, the button is retrieved by its android:id value and the listener
attached (see Listing 2-13).

Listing 2-13. Setting Listener on a Button

public void onCreate(Bundle savedInstanceState) {
super.onCreate(savedInstanceState);
//Retrieve the button object
Button myButton = (Button)findViewById(R.id.myButton);
//Attach the listener
myButton.setOnClickListener(clickListener);

}

//listener object to handle the click events
View.OnClickListener clickListener = new View.OnClickListener() {

CHAPTER 2: User Interface Recipes

public void onClick(View v) {
//Code to handle the click event

};
(API Level 4)

Starting with API Level 4, there is a more efficient way to attach basic click listeners to
view widgets. View widgets can set the android:onClick attribute in XML, and the
runtime will user Java Reflection to call the required method when events occur. If we
modify the previous example to use this method, the button’s XML will become the
following:
<Button

android:layout width="wrap content"

android:layout_height="wrap_content"

android:text="My Button"

android:onClick="onMyButtonClick"
/>

The android:id attribute is no longer required in this example since the only reason we
referenced it in code was to add the listener. This simplifies the Java code as well to
look like Listing 2-14.

Listing 2-14. Listener Attached in XML

public void onCreate(Bundle savedInstanceState) {
super.onCreate(savedInstanceState);
//No code required here to attach the listener

}

public void onMyButtonClick(View v) {
//Code to handle the click event

2-4. Resolution-Independent Assets

Problem

Your application uses graphic assets that do not scale well using Android’s traditional
mechanism for scaling images up on higher resolution screens.

Solution
(API Level 4)

Use resource qualifiers and supply multiple sizes of each asset. The Android SDK has
defined four types of screen resolutions, or densities, listed here:

B Low (Idpi): 120dpi
B Medium (mdpi): 160dpi

CHAPTER 2: User Interface Recipes

B High (hdpi): 240dpi
B Extra High (xhdpi): 320dpi (Added in API Level 8)

By default, an Android project may only have one res/drawable/ directory where all
graphic assets are stored. In this case, Android will take those images to be 1:1 in size
on medium resolution screens. When the application is run on a higher resolution
screen, Android will scale up the image to 150% (200% for xhdpi), which can result in
loss of quality.

How It Works

To avoid this issue, it is recommended that you provide multiple copies of each image
resource at different resolutions and place them into resource qualified directory paths.

B res/drawable-1ldpi/
B 75% of the size at mdpi
B res/drawable-mdpi/
B Noted as the original image size
B res/drawable-hdpi/
B 150% of the size at mdpi
B res/drawable-xhdpi/
B 200% of the size at mdpi
B Only if application supports API Level 8 as the minimum target

The image must have the same file name in all directories. For example, if you had left
the default icon value in AndroidManifest.xml (i.e. android:icon="@drawable/icon"), then
you would place the following resource files in the project.

res/drawable-1dpi/icon.png (36x36 pixels)
res/drawable-mdpi/icon.png (48x48 pixels)
res/drawable-hdpi/icon.png (72x72 pixels)
res/drawable-xhdpi/icon.png (96x96 pixels, if supported)

Android will select the asset that fits the device resolution and display it as the
application icon on the Launcher screen, resulting in no scaling and no loss of image
quality.

As another example, a logo image is to be displayed several places throughout an
application, and is 200x200 pixels on a medium-resolution device. That image should be
provided in all supported sizes using resource qualifiers.

res/drawable-1dpi/logo.png (150x150 pixels)
res/drawable-mdpi/logo.png (200x200 pixels)

CHAPTER 2: User Interface Recipes

res/drawable-hdpi/logo.png (300x300 pixels)

This application doesn’t support extra-high resolution displays, so we only provide three
images. When the time comes to reference this resource, simply use @drawable/logo
(from XML) or R.drawable.logo (from Java code), and Android will display the
appropriate resource.

2-5. Locking Activity Orientation

Problem

A certain Activity in your application should not be allowed to rotate, or rotation requires
more direct intervention from the application code.

Solution
(API Level 1)

Using static declarations in the AndroidManifest.xml file, each individual Activity can be
modified to lock into either portrait or landscape orientation. This can only be applied to
the <activity> tag, so it cannot be done once for the entire application scope. Simply
add android:screenOrientation="portrait" or
android:screenOrientation="landscape" to the <activity> element and they will
always display in the specified orientation, regardless of how the device is positioned.

There is also an option you can pass in the XML entitled “behind.” If an Activity element
has android:screenOrientation="behind" set, it will take it's settings from the previous
Activity in the stack. This can be a useful way for an Activity to match the locked
orientation of its originator for some slightly more dynamic behavior.

How It Works

The example AndroidManifest.xml depicted in Listing 2-15 has three Activities. Two of
them are locked into portrait orientation (MainActivity and ResultActivity), while the
UserEntryActivity is allowed to rotate, presumably because the user may want to rotate
and use a physical keyboard.

Listing 2-15. Manifest with Some Activities Locked in Portrait

<?xml version="1.0" encoding="utf-8"?>
<manifest xmlns:android="http://schemas.android.com/apk/res/android"
package="com.examples.rotation"
android:versionCode="1"
android:versionName="1.0">
<application android:icon="@drawable/icon" android:label="@string/app_name">
<activity android:name=".MainActivity"
android:label="@string/app_name"
android:screenOrientation="portrait">
<intent-filter>

http://schemas.android.com/apk/res/android

CHAPTER 2: User Interface Recipes

<action android:name="android.intent.action.MAIN" />
<category android:name="android.intent.category.LAUNCHER" />
</intent-filter>
</activity>
<activity android:name=".ResultActivity"
android:screenOrientation="portrait" />
<activity android:name=".UserEntryActivity" />
</application>
</manifest>

2-6. Dynamic Orientation Locking

Problem

Conditions exist during which the screen should not rotate, but the condition is
temporary, or dependant on user wishes.

Solution
(API Level 1)

Using the requested orientation mechanism in Android, an application can adjust the
screen orientation used to display the Activity, fixing it to a specific orientation or
releasing it to the device to decide. This is accomplished through the use of the
Activity.setRequestedOrientation() method, which takes an integer constant from
the ActivityInfo.screenOrientation attribute grouping.

By default, the requested orientation is set to SCREEN_ORIENTATION_UNSPECIFIED, which
allows the device to decide for itself which orientation should be used. This is a decision
typically based on the physical orientation of the device. The current requested
orientation can be retrieved at any time as well using
Activity.getRequestedOrientation().

How It Works

User Rotation Lock Button

As an example of this, let’s create a ToggleButton instance that controls whether or not
to lock the current orientation, allowing the user to control at any point whether or not
the Activity should change orientation.

Somewhere in the main.xml layout, a ToggleButton instance is defined:

<ToggleButton
android:id="@+id/toggleButton"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:textOff="Lock"
android:textOn="LOCKED"

/>

CHAPTER 2: User Interface Recipes

In the Activity code, we will create a listener to the button’s state that locks and releases
the screen orientation based on its current value (see Listing 2-16).

Listing 2-16. Activity to Dynamically Lock/Unlock Screen Orientation
public class LockActivity extends Activity {

protected void onCreate(Bundle savedInstanceState) {
super.onCreate(savedInstanceState);
setContentView(R.layout.main);

//Get handle to the button resource

ToggleButton toggle = (ToggleButton)findViewById(R.id.toggleButton);

//Set the default state before adding the listener

if(getRequestedOrientation() != ActivityInfo.SCREEN_ORIENTATION UNSPECIFIED) {
toggle.setChecked(true);

} else {
toggle.setChecked(false);

//Attach the listener to the button
toggle.setOnCheckedChangeListener(listener);

}

OnCheckedChangeListener listener = new OnCheckedChangelistener() {
public void onCheckedChanged(CompoundButton buttonView, boolean isChecked) {
int current = getResources().getConfiguration().orientation;
if(isChecked) {
switch(current) {
case Configuration.ORIENTATION_LANDSCAPE:
setRequestedOrientation(ActivityInfo.SCREEN_ORIENTATION LANDSCAPE);
break;
case Configuration.ORIENTATION_PORTRAIT:
setRequestedOrientation(ActivityInfo.SCREEN_ORIENTATION PORTRAIT);
break;
default:
setRequestedOrientation(ActivityInfo.SCREEN_ORIENTATION UNSPECIFIED);

} else {
setRequestedOrientation(ActivityInfo.SCREEN_ORIENTATION UNSPECIFIED);

}

The code in the listener is the key ingredient to this recipe. If the user presses the button
and it toggles to the ON state, the current orientation is read by storing the orientation
parameter from Resources.getConfiguration(). The Configuration object and the
requested orientation use different constants to map the states, so we switch on the
current orientation and call setRequestedOrientation() with the appropriate constant.

NOTE: If an orientation is requested that is different from the current state, and your Activity is in
the foreground, the Activity will change immediately to accommodate the request.

CHAPTER 2: User Interface Recipes

If the user presses the button and it toggles to the OFF state, we no longer want to lock
the orientation, so setRequestedOrientation() is called with the
SCREEN_ORIENTATION_UNSPECIFIED constant again to return control back to the device.
This may also cause an immediate change to occur if the device orientation dictates that
the Activity be different than where the application had it locked.

NOTE: Setting a request orientation does not keep the default Activity lifecycle from occurring. If
a device configuration change occurs (keyboard slides out or device orientation changes), the
Activity will still be destroyed and recreated, so all rules about persisting Activity state still apply.

2-7. Manually Handling Rotation

Problem

The default behavior destroying and recreating an Activity during rotation causes an
unacceptable performance penalty in the application.

Without customization, Android will respond to configuration changes by finishing the
current Activity instance and creating a new one in its place, appropriate for the new
configuration. This can cause undue performance penalties since the Ul state must be
saved, and the Ul completely rebuilt.

Solution
(API Level 1)

Utilize the android:configChanges manifest parameter to instruct Android that a certain
Activity will handle rotation events without assistance from the runtime. This not only
reduces the amount of work required from Android, destroying and recreating the
Activity instance, but also from your application. With the Activity instance intact, the
application does not have to necessarily spend time to save and restore the current
state in order to maintain consistency to the user.

An Activity that registers for one or more configuration changes will be notified via the
Activity.onConfigurationChanged() callback method, where it can perform any
necessary manual handling associated with the change.

There are two configuration change parameters the Activity should register for in order
to handle rotation completely: orientation and keyboardHidden. The orientation
parameter registers the Activity for any event when the device orientation changes. The
keyboardHidden parameter registers the Activity for the event when the user slides a
physical keyboard in or out. While the latter may not be directly of interest, if you do not
register for these events Android will recreate your Activity when they occur, which may
subvert your efforts in handling rotation in the first place.

CHAPTER 2: User Interface Recipes

How It Works

These parameters are added to any <activity> element in AndroidManifest.xml like so:

<activity android:name=".MyActivity" android:configChanges="orientation|keyboardHidden"
/>

Multiple changes can be registered in the same assignment statement, using a pipe “|”
character between them. Because these parameters cannot be applied to an
<application> element, each individual Activity must register in the
AndroidManifest.xml.

With the Activity registered, a configuration change results in a call to the Activity’s
onConfigurationChanged() method. Listing 2-17 is a simple Activity definition that can
be used to handle the callback received when the changes occur.

Listing 2-17. Activity to Manage Rotation Manually
public class MyActivity extends Activity {

@0verride

protected void onCreate(Bundle savedInstanceState) {
//Calling super is required
super.onCreate(savedInstanceState);
//Load view resources
loadView();

@verride

public void onConfigurationChanged(Configuration newConfig) {
//Calling super is required
super.onConfigurationChanged(newConfig);
//Store important UI state
saveState();
//Reload the view resources
loadView();

}

private void saveState() {
//Implement any code to persist the UI state

private void loadView() {
setContentView(R.layout.main);

//Handle any other required UI changes upon a new configuration
//Including restoring and stored state

}

NOTE: Google does not recommend handling rotation in this fashion unless it is necessary for
the application’s performance. All configuration-specific resources must be loaded manually in
response to each change event.

CHAPTER 2: User Interface Recipes

It is worth noting that Google recommends allowing the default recreation behavior on
Activity rotation unless the performance of your application requires circumventing it.
Primarily, this is because you lose all assistance Android provides for loading alternative
resources if you have them stored in resource qualified directories (such as res/layout-
land/ for landscape layouts).

In the example Activity, all code dealing with the view layout is abstracted to a private
method, loadView(), called from both onCreate() and onConfigurationChanged(). In this
method, code like setContentView() is placed to ensure that the appropriate layout is
loaded to match the configuration.

Calling setContentView() will completely reload the view, so any Ul state that is
important still needs to be saved, and without the assistance of lifecycle callbacks like
onSaveInstanceState() and onRestoreInstanceState(). The example implements a
method called saveState() for this purpose.

2-8. Creating Pop-Up Menu Actions

Problem

You want to provide the user with multiple actions to take as a result of them selecting
some part of the user interface.

Solution
(API Level 1)

Display a ContextMenu or AlertDialog in response to the user action.

How It Works

ContextMenu

Using a ContextMenu is a useful solution, particularly when you want to provide a list of
actions based on an item click in a ListView or other AdapterView. This is because the
ContextMenu.ContextMenuInfo object provides useful information about the specific item
that was selected, such as id and position, which may be helpful in constructing the
menu.

First, create an XML file in res/menu/ to define the menu itself; we’ll call this one
contextmenu.xml (see Listing 2-18).

Listing 2-18. res/menu/contextmenu.xml

<?xml version="1.0" encoding="utf-8"?>
<menu xmlns:android="http://schemas.android.com/apk/res/android">
<item
android:id="@+id/menu_delete"

http://schemas.android.com/apk/res/android

CHAPTER 2: User Interface Recipes

android:title="Delete Item"

/>

<item
android:id="@+id/menu_copy"
android:title="Copy Item"

/>

<item
android:id="@+id/menu_edit
android:title="Edit Item"

/>

</menu>

Then, utilize onCreateContextMenu() and onContextItemSelected() in the Activity to
inflate the menu and handle user selection (see Listing 2-19).

Listing 2-19. Activity Utilizing Custom Menu

@0verride
public void onCreateContextMenu(ContextMenu menu, View v, ContextMenu.ContextMenuInfo
menuInfo) {
super.onCreateContextMenu(menu, v, menulnfo);
getMenuInflater().inflate(R.menu.contextmenu, menu);
menu.setHeaderTitle("Choose an Option");

}

@0verride
public boolean onContextItemSelected(MenuItem item) {
//Switch on the item’s ID to find the action the user selected
switch(item.getItemId()) {
case R.id.menu_delete:
//Perform delete actions
return true;
case R.id.menu_copy:
//Pexform copy actions
return true;
case R.id.menu_edit:
//Perform edit actions
return true;

}

return super.onContextItemSelected(item);

}

In order for these callback methods to fire, you must register the view that will trigger the
menu. In effect, this sets the View.OnCreateContextMenulListener for the view to the
current Activity:
@0verride
protected void onCreate(Bundle savedInstanceState) {

super.onCreate(savedInstanceState);

//Register a button for context events

Button button = new Button(this);
registerForContextMenu(button);

setContentView(button);
}

The key ingredient to this recipe is calling the Activity.openContextMenu() method to
manually trigger the menu at any time. The default behavior in Android is for many views

CHAPTER 2: User Interface Recipes

to show a ContextMenu when a long-press occurs as an alternate to the main click
action. However, in this case we want the menu to be the main action, so we call
openContextMenu() from the action listener method:

public void onClick(View v) {
openContextMenu(v);

Tying all the pieces together, we have a simple Activity that registers a button to show
our menu when tapped (see Listing 2-20).

Listing 2-20. Activity Utilizing Context Action Menu
public class MyActivity extends Activity {

protected void onCreate(Bundle savedInstanceState) {
super.onCreate(savedInstanceState);
//Register a button for context events
Button button = new Button(this);
button.setText("Click for Options");
button.setOnClickListener(listener);
registerForContextMenu(button);

setContentView(button);
}

View.OnClickListener listener = n
public void onClick(View v) {
openContextMenu(v);

ew View.OnClickListener() {

};

@0verride
public void onCreateContextMenu(ContextMenu menu, View v,
ContextMenu.ContextMenuInfo menuInfo) {
super.onCreateContextMenu(menu, v, menulnfo);
getMenuInflater().inflate(R.menu.contextmenu, menu);
menu.setHeaderTitle("Choose an Option");

@0verride
public boolean onContextItemSelected(MenuItem item) {
//Switch on the item’s ID to find the action the user selected
switch(item.getItemId()) {
case R.id.menu_delete:
//Perform delete actions
return true;
case R.id.menu_copy:
//Pexform copy actions
return true;
case R.id.menu_edit:
//Perform edit actions
return true;

}

return super.onContextItemSelected(item);

CHAPTER 2: User Interface Recipes

The resulting application is shown in Figure 2-3.

DM€ 12:00am DM€ 12:00am

Activity

(® Choose an Option

Delete Item

Click for Options

Copy Item

Edit Item

| S d
Figure 2-3. Context action menu

AlertDialog

Using an AlertDialog.Builder a similar AlertDialog can be constructed, but with some
additional options. AlertDialog is a very versatile class for creating simple pop-ups to get
feedback from the user. With AlertDialog.Builder, a single or multi-choice list, buttons,
and a message string can all be easily added into one compact widget.

To illustrate this, let’s create the same pop-up selection as before using an AlertDialog.
This time, we will add a cancel button to the bottom of the options list (see Listing 2-21).

Listing 2-21. Action Menu Using AlertDialog
public class MyActivity extends Activity {

AlertDialog actions;

@0verride

protected void onCreate(Bundle savedInstanceState) {
super.onCreate(savedInstanceState);
setTitle("Activity");
Button button = new Button(this);
button.setText("Click for Options");
button.setOnClickListener(buttonlListener);

AlertDialog.Builder builder = new AlertDialog.Builder(this);

CHAPTER 2: User Interface Recipes

builder.setTitle("Choose an Option");

String[] options = {"Delete Item","Copy Item","Edit Item"};
builder.setItems(options, actionListener);
builder.setNegativeButton("Cancel”, null);

actions = builder.create();

setContentView(button);
}

//List selection action handled here
DialogInterface.OnClickListener actionlListener =
new DialogInterface.OnClickListener() {
@0verride
public void onClick(DialogInterface dialog, int which) {
switch(which) {
case 0: //Delete
break;
case 1: //Copy
break;
case 2: //Edit
break;
default:
break;
}

}
};

//Button action handled here (pop up the dialog)
View.OnClickListener buttonlListener = new View.OnClickListener() {
@0verride
public void onClick(View v) {
actions.show();
}

};
}
In this example, we create a new AlertDialog.Builder instance and use its convenience
methods to add:

m Atitle, using setTitle()

B The selectable list of options, using setItems() with an array of strings
(also works with array resources)

B A Cancel button, using setNegativeButton()

The listener that we attach to the list items returns which list item was selected as a
zero-based index into the array we supplied, so the switch statement checks for each of
the three cases that apply. We pass in null for the Cancel button’s listener, because in
this instance we just want cancel to dismiss the dialog. If there is some important work
to be done on cancel, another listener could be passed in to the setNegativeButton()
method.

The resulting application now looks like Figure 2-4 when the button is pressed.

CHAPTER 2: User Interface Recipes

DM€ 12:00am

(® Choose an Option

Delete Item

Copy Item

Edit Item

t

Figure 2-4. AlertDialog action menu

2-9. Customizing Options Menu

Problem

Your application needs to do something beyond displaying a standard menu when the
user presses the hardware MENU button.

Solution
(API Level 1)

Intercept the KeyEvent for the menu button and present a custom view instead.

How It Works

Intercepting this event can be done inside of an Activity or View by overriding the
onKeyDown() or onKeyUp() method:

@0verride
public boolean onKeyUp(int keyCode, KeyEvent event) {
if(keyCode == KeyEvent.KEYCODE_MENU) {
//Create and display a custom menu view

CHAPTER 2: User Interface Recipes

//Return true to consume the event
return true;

//Pass other events along their way up the chain
return super.onKeyUp(keyCode, event);

NOTE: Activity.onKeyDown() and Activity.onKeyUp() are only called if none if its child
views handle the event first. It is important that you return a true value when consuming these
events so they don’t get improperly handed up the chain.

The next example illustrates an Activity that displays a custom set of buttons wrapped
in a simple AlertDialog in place of the traditional options menu when the user presses
the MENU key. In Listing 2-22, we will create a layout for our buttons in res/layout/ and
call it custommenu.xml.

Listing 2-22. res/layout/custommenu.xml

<?xml version="1.0" encoding="utf-8"?>
<LinearlLayout xmlns:android="http://schemas.android.com/apk/res/android"
android:layout_width="fill parent"
android:layout_height="wrap_content"
android:orientation="horizontal">
<ImageButton
android:layout_width="fill parent"
android:layout_height="wrap_content"
android:layout_weight="1"
android:src="@android:drawable/ic_menu_send"
/>
<ImageButton
android:layout_width="fill parent"
android:layout_height="wrap_content"
android:layout_weight="1"
android:src="@android:drawable/ic_menu_save"
/>
<ImageButton
android:layout_width="fill parent"
android:layout_height="wrap_content"
android:layout_weight="1"
android:src="@android:drawable/ic_menu_search"
/>
<ImageButton
android:layout_width="fill parent"
android:layout_height="wrap_content"
android:layout_weight="1"
android:src="@android:drawable/ic_menu_preferences"
/>
</Linearlayout>

This is a layout with four buttons of equal weight (so the space evenly across the
screen), displaying some of the default menu images in Android. In Listing 2-23, we can
inflate this layout and apply it as the view to an AlertDialog.

http://schemas.android.com/apk/res/android

CHAPTER 2: User Interface Recipes

Listing 2-23. Activity Overriding Menu Action
public class MyActivity extends Activity {

MenuDialog menuDialog;
private class MenuDialog extends AlertDialog {

public MenuDialog(Context context) {
super (context);
setTitle("Menu");
View menu = getlayoutInflater().inflate(R.layout.custommenu, null);
setView(menu);

}

@0verride
public boolean onKeyUp(int keyCode, KeyEvent event) {
if(keyCode == KeyEvent.KEYCODE_MENU) {
dismiss();
return true;

}
return super.onKeyUp(keyCode, event);
}
}
@0verride

public boolean onKeyUp(int keyCode, KeyEvent event) {
if(keyCode == KeyEvent.KEYCODE_MENU) {
if(menuDialog == null) {
menuDialog = new MenuDialog(this);

menuDialog.show();
return true;
}
return super.onKeyUp(keyCode, event);
}
}

Here we choose to monitor the Activity.onKeyUp() method, and handle the event if it
was a MENU press by creating and displaying a custom subclass of AlertDialog.

This example creates a custom class for the dialog so we can extend the
AlertDialog.onKeyUp() method to dismiss the custom menu when the user presses the
MENU button again. We cannot handle this event in the Activity, because the
AlertDialog consumes all key events while it is in the foreground. We do this so we
match the existing functionality of Android’s standard menu, and thus don’t disrupt the
user’s expectation of how the application should behave.

When the previous Activity is loaded, and the MENU button pressed, we get something
like Figure 2-5.

CHAPTER 2: User Interface Recipes

M €@ 12:00am

Figure 2-5. Custom Options menu

2-10. Customizing Back Button

Problem

Your application needs to handle the user pressing the hardware BACK button in a
custom manner.

Solution
(API Level 1)

Similar to overriding the function of the MENU button, the hardware BACK button sends
a KeyEvent to your Activity that can be intercepted and handled in your application
code.

How It Works

In the same fashion as Recipe 2-9, overriding onKeyDown () will give you the control:

@0verride
public boolean onKeyDown(int keyCode, KeyEvent event) {
if(keyCode == KeyEvent.KEYCODE BACK) {
//Implement a custom back function

CHAPTER 2: User Interface Recipes

//Return true to consume the event
return true;

//Pass other events along their way up the chain
return super.onKeyDown(keyCode, event);

CAUTION: Overriding hardware button events should be done with care. All hardware buttons
have consistent functionality across the Android system, and adjusting the functionality to work
outside these bounds will be confusing and upsetting to users.

Unlike the previous example, you can not reliably use onKeyUp(),because the default
behavior (such as finishing the current Activity) occurs when the key is pressed, as
opposed to when it is released. For this reason, onKeyUp() will often never get called for
the BACK key.

(API Level 5)

Starting with Eclair, the SDK included the Activity.onBackPressed() callback method.
This method can be overridden to perform custom processing if your application is
targeting SDK Level 5 or higher.
@0verride
public void onBackPressed() {

//Custom back button processing

//Must manually finish when complete
finish();

The default implementation of this method simply calls finish() for you, so if you want
the Activity to close after your processing is complete, the implementation will need to
call finish() directly.

2-11. Emulating the Home Button

Problem

Your application needs to take the same action as if the user pressed the hardware
HOME button.

Solution
(API Level 1)

The act of the user hitting the HOME button sends an Intent to the system telling it to
load the Home Activity. This is no different from starting any other Activity in your
application; you just have to construct the proper Intent to get the effect.

CHAPTER 2: User Interface Recipes

How It Works

Add the following lines wherever you want this action to occur in your Activity:

Intent intent = new Intent(Intent.ACTION MAIN);
intent.addCategory(Intent.CATEGORY_HOME);
startActivity(intent);

A common use of this function is to override the back button to go home instead of to
the previous Activity. This is useful in cases where everything underneath the foreground
Activity may be protected (a login screen, for instance), and letting the default back
button behavior occur could allow unsecured access to the system. Here is an example
of using the two in concert to make a certain Activity bring up the home screen when
back is pressed:

@0verride
public boolean onkKeyDown(int keyCode, KeyEvent event) {
if(keyCode == KeyEvent.KEYCODE_BACK) {
Intent intent = new Intent(Intent.ACTION MAIN);
intent.addCategory(Intent.CATEGORY_HOME);
startActivity(intent);
return true;

}

return super.onKeyDown(keyCode, event);

}
2-12. Monitoring TextView Changes

Problem

Your application needs to continuously monitor for text changes in a TextView widget
(like EditText).

Solution
(API Level 1)

Implement the android.text.TextWatcher interface. TextWatcher provides three callback
methods during the process of updating text:
public void beforeTextChanged(CharSequence s, int start, int count, int after);

public void onTextChanged(CharSequence s, int start, int before, int count);
public void afterTextChanged(Editable s);

The beforeTextChanged() and onTextChanged() methods are provided mainly as
notifications, as you cannot actually make changes to the CharSequence in either of
these methods. If you are attempting to intercept the text entered into the view, changes
may be made when afterTextChanged() is called.

CHAPTER 2: User Interface Recipes

How It Works

To register a TextWatcher instance with a TextView, call the
TextView.addTextChangedListener() method. Notice from the syntax that more than
one TextWatcher can be registered with a TextView.

Character Counter Example

A simple use of TextWatcher is to create a live character counter that follows an EditText
as the user types or deletes information. Listing 2-24 is an example Activity that
implements TextWatcher for this purpose, registers with an EditText widget, and prints
the character count in the Activity title.

Listing 2-24. Character Counter Activity
public class MyActivity extends Activity implements TextWatcher {

EditText text;
int textCount;

@0verride

protected void onCreate(Bundle savedInstanceState) {
super.onCreate(savedInstanceState);
//Create an EditText widget and add the watcher
text = new EditText(this);
text.addTextChangedListener(this);

setContentView(text);
}

/* TextWatcher Implemention Methods */
public void beforeTextChanged(CharSequence s, int start, int count, int after) { }

public void onTextChanged(CharSequence s, int start, int before, int end) {
textCount = text.getText().length();
setTitle(String.valueOf(textCount));

}

public void afterTextChanged(Editable s) { }
}

Because our needs do not include modifying the text being inserted, we can read the
count from onTextChanged(), which happens as soon as the text change occurs. The
other methods are unused and left empty.

Currency Formatter Example

The SDK has a handful of predefined TextWatcher instances to format text input;
PhoneNumberFormattingTextWatcher is one of these. Their job is to apply standard
formatting for the user while they type, reducing the number of keystrokes required to
enter legible data.

CHAPTER 2: User Interface Recipes

In Listing 2-25, we create a CurrencyTextWatcher to insert the currency symbol and
separator point into a TextView.
Listing 2-25. Currency Formatter

public class CurrencyTextWatcher implements TextWatcher {
boolean mEditing;

public CurrencyTextWatcher() {
mEditing = false;

public synchronized void afterTextChanged(Editable s) {
if(!mEditing) {
mEditing = true;

//Strip symbols
String digits = s.toString().replaceAll("\\D", "");
NumberFormat nf = NumberFormat.getCurrencyInstance();

try{
String formatted = nf.format(Double.parseDouble(digits)/100);
s.replace(0, s.length(), formatted);

} catch (NumberFormatException nfe) {
s.clear();

mEditing = false;
}

public void beforeTextChanged(CharSequence s, int start, int count, int after) { }

public void onTextChanged(CharSequence s, int start, int before, int count) { }

NOTE: Making changes to the Editable value in afterTextChanged() will cause the
TextWatcher methods to be called again (after all, you just changed the text). For this reason,
custom TextWatcher implementations that edit should use a boolean or some other tracking
mechanism to track where the editing is coming from, or you may create an infinite loop.

We can apply this custom text formatter to an EditText in an Activity (see Listing 2-26).
Listing 2-26. Activity Using Currency Formatter
public class MyActivity extends Activity {

EditText text;

@0verride

protected void onCreate(Bundle savedInstanceState) {
super.onCreate(savedInstanceState);
text = new EditText(this);
text.addTextChangedListener(new CurrencyTextWatcher());

CHAPTER 2: User Interface Recipes

setContentView(text);

}

It is very handy if you are formatting user input with this formatter to define the EditText
in XML so you can apply the android:inputType and android:digits constraints to
easily protect the field against entry errors. In particular, adding
android:digits="0123456789." (notice the period at the end for a decimal point) to the
EditText will protect this formatter as well as the user.

2-13. Scrolling TextView Ticker

Problem

You want to create a “ticker” view that continuously scrolls its contents across the
screen.

Solution
(API Level 1)

Use the built-in marquee feature of TextView. When the content of a TextView is too
large to fit within it bounds, the text is truncated by default. This truncation can be
configured using the android:ellipsize attribute, which can be set to one of the
following options:

B none

B Default.

B Truncate the end of the text with no visual indicator.
B start

B Truncate the start of the text with an ellipsis at the beginning of the
view.

B middle

B Truncate the middle of the text with an ellipsis in the middle of the
view.

B end
B Truncate the end of the text with an ellipsis at the end of the view.
B marquee

B Do not ellipsize; animate and scroll the text while selected.

CHAPTER 2: User Interface Recipes

NOTE: The marquee feature is designed to only animate and scroll the text when the TextView
is selected. Setting the android:ellipsize attribute to marquee alone will not animate the
view.

How It Works

In order to create an automated ticker that repeats indefinitely, we add a TextView to an
XML layout that looks like this:

<TextView
android:id="@+id/ticker"
android:layout_width="fill parent"
android:layout_height="wrap_content"
android:singleline="true"
android:scrollHorizontally="true"
android:ellipsize="marquee"
android:marqueeRepeatLimit="marquee_ forever"

/>

The key attributes to configuring this view are the last four. Without android:singlelLine
and android:scrollHorizontally, the TextView will not properly lay itself out to allow for
the text to be longer than the view (a key requirement for ticker scrolling). Setting the
android:ellipsize and android:marqueeRepeatlLimit allow the scrolling to occur, and
for an indefinite amount of time. The repeat limit can be set to any integer value as well,
which will repeat the scrolling animation that many times and then stop.

With the TextView attributes properly set in XML, the Java code must set the selected
state to true, which enables the scrolling animation:

TextView ticker = (TextView)findViewById(R.id.ticker);
ticker.setSelected(true);

If you need to have the animation start and stop based on certain events in the user
interface, just call setSelected() each time with either true or false, respectively.

2-14. Animating a View

Problem

Your application needs to animate a view object, either as a transition or for effect.

Solution
(API Level 1)

An Animation object can be applied to any view and run using the
View.startAnimation() method; this will run the animation immediately. You may also

CHAPTER 2: User Interface Recipes

use View.setAnimation() to schedule an animation and attach the object to a view but
not run it immediately. In this case, the Animation must have its start time parameter set.

How It Works

System Animations

For convenience, the Android SDK provides a handful of transition animations that you
can apply to views, which can be loaded at runtime using the AnimationUtils class:

B Slide and Fade In

B AnimationUtils.makeInAnimation()

B Use the boolean parameter to determine if the slide is left or right.
B Slide Up and Fade In

B AnimationUtils.makeInChildBottomAnimation()

B View always slides up from the bottom.
B Slide and Fade Out

B AnimationUtils.makeOutAnimation()

B Use the boolean parameter to determine if the slide is left or right.
B Fade Out

B AnimationUtils.loadAnimation()

B Set the int parameter to android.R.anim.fade_out.
B Fadeln

B AnimationUtils.loadAnimation()

B Set the int parameter to android.R.anim.fade_in.

NOTE: These transition animations only temporarily change how the view is drawn. The visibility
parameter of the view must also be set if you mean to permanently add or remove the object.

Listing 2-27 animates the appearance and disappearance of a View with each Button
click event.

Listing 2-27. res/layout/main.xml

<?xml version="1.0" encoding="utf-8"?>
<LinearlLayout xmlns:android="http://schemas.android.com/apk/res/android"
android:orientation="vertical"
android:layout_width="fill parent"
android:layout_height="fill parent">
<Button
android:id="@+id/toggleButton"”

http://schemas.android.com/apk/res/android

CHAPTER 2: User Interface Recipes

android:layout_width="fill parent"
android:layout_height="wrap_content"
android:text="Click to Toggle"

/>

<View
android:id="@+id/theView"
android:layout_width="fill parent"
android:layout_height="wrap_content"
android:background="#AAA"

/>

</Linearlayout>

In Listing 2-28 each user action on the Button toggles the visibility of the grey View
below it with an animation.

Listing 2-28. Activity Animating View Transitions

public class AnimateActivity extends Activity implements View.OnClickListener {
View viewToAnimate;

@0verride

public void onCreate(Bundle savedInstanceState) {
super.onCreate(savedInstanceState);
setContentView(R.layout.main);

Button button = (Button)findViewById(R.id.toggleButton);
button.setOnClickListener(this);

viewToAnimate = findViewById(R.id.theView);
}

@0verride
public void onClick(View v) {
if(viewToAnimate.getVisibility() == View.VISIBLE) {
//If the view is visible already, slide it out to the right
Animation out = AnimationUtils.makeOutAnimation(this, true);
viewToAnimate.startAnimation(out);
viewToAnimate.setVisibility(View.INVISIBLE);
} else {
//1f the view is hidden, do a fade_in in-place
Animation in = AnimationUtils.loadAnimation(this, android.R.anim.fade in);
viewToAnimate.startAnimation(in);
viewToAnimate.setVisibility(View.VISIBLE);

}
}

The view is hidden by sliding off to the right and fading out simultaneously, whereas the
view simple fades into place when it is shown. We chose a simple View as the target
here to demonstrate that any Ul element (since they all subclass from View) can be
animated in this way.

CHAPTER 2: User Interface Recipes

Custom Animations

Creating custom animations to add effect to views by scaling, rotation, and transforming
them can provide invaluable additions to a user interface as well. In Android, we can
create the following Animation elements:

B AlphaAnimation

B Animate changes to a view’s transparency.
B RotateAnimation

B Animate changes to a view’s rotation.

B The point about which rotation occurs is configurable. The top, left
corner is chosen by default.

B ScaleAnimation
B Animate changes to a view’s scale (size).

B The center point of the scale change is configurable. The top, left
corner is chosen by default.

B TranslateAnimation
B Animate changes to a view’s position.

Let’s illustrate how to construct and add a custom animation object by creating a
sample application that creates a “coin flip” effect on an image (see Listing 2-30).

Listing 2-29. res/layout/main.xml

<?xml version="1.0" encoding="utf-8"?>
<Relativelayout xmlns:android="http://schemas.android.com/apk/res/android"
android:layout_width="fill parent"
android:layout_height="fill parent">
<ImageView
android:id="@+id/flip_image"
android:layout_width="wrap_content"”
android:layout_height="wrap_content"
android:layout_centerInParent="true"
/>
</Relativelayout>

Listing 2-30. Activity with Custom Animations
public class Flipper extends Activity {

boolean isHeads;
ScaleAnimation shrink, grow;
ImageView flipImage;

@0verride

public void onCreate(Bundle savedInstanceState) {
super.onCreate(savedInstanceState);
setContentView(R.layout.main);

flipImage = (ImageView)findViewById(R.id.flip image);

http://schemas.android.com/apk/res/android

CHAPTER 2: User Interface Recipes

flipImage.setImageResource(R.drawable.heads);
isHeads = true;

shrink = new ScaleAnimation(1.o0f, o0.0f, 1.0f, 1.0f,
ScaleAnimation.RELATIVE_TO SELF, 0.5f,
ScaleAnimation.RELATIVE_TO SELF, 0.5f);
shrink.setDuration(150);
shrink.setAnimationListener(new Animation.AnimationListener() {
@0verride
public void onAnimationStart(Animation animation) {}

@0verride
public void onAnimationRepeat(Animation animation) {}

@0verride
public void onAnimationEnd(Animation animation) {
if(isHeads) {
isHeads = false;
flipImage.setImageResource(R.drawable.tails);
} else {
isHeads = true;
flipImage.setImageResource(R.drawable.heads);

flipImage.startAnimation(grow);

}
D;
grow = new ScaleAnimation(o.of, 1.0f, 1.0f, 1.0f,
ScaleAnimation.RELATIVE_TO SELF, 0.5f,
ScaleAnimation.RELATIVE TO SELF, 0.5f);
grow.setDuration(150);

@0verride
public boolean onTouchEvent(MotionEvent event) {
if(event.getAction() == MotionEvent.ACTION_DOWN) {
flipImage.startAnimation(shrink);
return true;

}

return super.onTouchEvent(event);
}
This example includes the following pertinent components:

B Two image resources for the coin’s head and tail (we named them
heads.png and tails.png).

B These images may be any two-image resources placed in
res/drawable. The ImageView defaults to displaying the heads
image.

B Two ScaleAnimation objects

B Shrink: Reduce the image width from full to nothing about the
center.

CHAPTER 2: User Interface Recipes

B Grow: Increase the image width from nothing to full about the
center.

B Anonymous AnimationListener to link the two animations in sequence

Custom animation objects can be defined either in XML or in code. In the next section
we will look at making the animations as XML resources. Here we created the two
ScaleAnimation objects using the following constructor:

ScaleAnimation(
float fromX,
float toX,
float fromy,
float toyv,
int pivotXType,
float pivotXvalue,
int pivotYType,
float pibotYValue

)

The first four parameters are the horizontal and vertical scaling factors to apply. Notice
in the example the X went from 100-0% to shrink and 0-100% to grow, while leaving
the Y alone at 100% always.

The remaining parameters define an anchor point for the view while the animation
occurs. In this case, we are telling the application to anchor the midpoint of the view,
and bring both sides in toward the middle as the view shrinks. The reverse is true for
expanding the image: the center stays in place and the image grows outward towards
its original edges.

Android does not inherently have a way to link multiple animation objects together in a
sequence, so we use an Animation.AnimationListener for this purpose. The listener has
methods to notify when an animation begins, repeats, and completes. In this case, we
are only interested in the latter so that when the shrink animation is done, we can
automatically start the grow animation after it.

The final method used in the example is to setDuration() method to set the animation
duration of time. The value supplied here is in milliseconds, so our entire coin flip would
take 300ms to complete, 150ms apiece for each ScaleAnimation.

AnimationSet

Many times the custom animation you are searching to create requires a combination of
the basic types described previously; this is where AnimationSet becomes useful.
AnimationSet defines a group of animations that should be run simultaneously. By
default, all animations will be started together, and complete at their respective
durations.

In this section we will also expose how to define custom animations using Android’s
preferred method of XML resources. XML animations should be defined in the res/anim/
folder of a project. The following tags are supported, and all of them can be either the
root or child node of an animation:

CHAPTER 2: User Interface Recipes

<alpha>: An AlphaAnimation object
<rotate>: A RotateAnimation object
<scale>: A ScaleAnimation object

<translate>: A TranslateAnimation object

<set>: An AnimationSet
Only the <set> tag, however, can be a parent and contain other animation tags.

In this example, let’s take our coin flip animations and add another dimension. We will
pair each ScaleAnimation with a TranslateAnimation as a set. The desired effect will be
for the image to slide up and down the screen as it “flips.” To do this, in Listings 2-31
and 2-32 we will define our animations in two XML files and place them in res/anim/.
The first will be grow.xml.

Listing 2-31. res/anim/grow.xml

<?xml version="1.0" encoding="utf-8"?>
<set xmlns:android="http://schemas.android.com/apk/res/android">
<scale
android:duration="150"
android:fromXScale="0.0"
android:toXScale="1.0"
android:fromYScale="1.0"
android:toYScale="1.0"
android:pivotX="50%"
android:pivotY="50%"
/>
<translate
android:duration="150"
android:fromXDelta="0%"
android:toXDelta="0%"
android:fromYDelta="50%"
android:toYDelta="0%"
/>
</set>

Followed by shrink.xml:
Listing 2-32. res/anim/shrink.xml

<?xml version="1.0" encoding="utf-8"?>
<set xmlns:android="http://schemas.android.com/apk/res/android">
<scale
android:duration="150"
android:fromXScale="1.0"
android:toXScale="0.0"
android:fromYScale="1.0"
android:toYScale="1.0"
android:pivotX="50%"
android:pivotY="50%"
/>
<translate
android:duration="150"
android:fromXDelta="0%"
android:toXDelta="0%"

http://schemas.android.com/apk/res/android
http://schemas.android.com/apk/res/android

CHAPTER 2: User Interface Recipes

android:fromYDelta="0%"
android:toYDelta="50%"

Defining the scale values isn’t any different than previously when using the constructor
in code. One thing to make note of, however, is the definition style of units for the pivot
parameters. All animation dimensions that can be defined as ABSOULUTE,
RELATIVE_TO_SELF, or RELATIVE_TO PARENT use the following XML syntax:

B ABSOLUTE: Use a float value to represent an actual pixel value (e.g.,
II5.0II).

B RELATIVE_TO_SELF: Use a percent value from 0-100 (e.g., "50%").

B RELATIVE TO PARENT: Use a percent value with a ‘p’ suffix (e.g.,
II25%pII).

With these animation files defined, we can modify the previous example to now load
these sets (see Listings 2-33 and 2-34).

Listing 2-33. res/layout/main.xml

<?xml version="1.0" encoding="utf-8"?>
<Relativelayout xmlns:android="http://schemas.android.com/apk/res/android"
android:layout_width="fill parent"
android:layout_height="fill parent">
<ImageView
android:id="@+id/flip_image"
android:layout_width="wrap_content"”
android:layout_height="wrap_content"
android:layout_centerInParent="true"
/>
</Relativelayout>

Listing 2-34. Activity Using Animation Sets
public class Flipper extends Activity {

boolean isHeads;
Animation shrink, grow;
ImageView flipImage;

@0verride

public void onCreate(Bundle savedInstanceState) {
super.onCreate(savedInstanceState);
setContentView(R.layout.main);

flipImage = (ImageView)findViewById(R.id.flip image);
flipImage.setImageResource(R.drawable.heads);
isHeads = true;

shrink = AnimationUtils.loadAnimation(this, R.anim.shrink);
shrink.setAnimationListener(new Animation.AnimationListener() {
@0Override
public void onAnimationStart(Animation animation) {}

@0verride

http://schemas.android.com/apk/res/android

CHAPTER 2: User Interface Recipes

public void onAnimationRepeat(Animation animation) {}

@0verride
public void onAnimationEnd(Animation animation) {
if(isHeads) {
isHeads = false;
flipImage.setImageResource(R.drawable.tails);
} else {
isHeads = true;
flipImage.setImageResource(R.drawable.heads);

flipImage.startAnimation(grow);

1);

grow = AnimationUtils.loadAnimation(this, R.anim.grow);

@0verride
public boolean onTouchEvent(MotionEvent event) {
if(event.getAction() == MotionEvent.ACTION_DOWN) {
flipImage.startAnimation(shrink);
return true;

}

return super.onTouchEvent(event);

}
}

The result is a coin that flips, but also slides down and up the y-axis of the screen
slightly with each flip.

2-15. Creating Drawables as Backgrounds

Problem

Your application needs to create custom backgrounds with gradients and rounded
corners, and you don’t want to waste time scaling lots of image files.

Solution
(API Level 1)

Use Android’s most powerful implementation of the XML resources system: creating
shape drawables. When you are able to do so, creating these views as an XML resource
makes sense because they are inherently scalable, and they will fit themselves to the
bounds of the view when set as a background.

When defining a drawable in XML using the <shape> tag, the actual result is a
GradientDrawable object. You may define objects in the shape of a rectangle, oval, line,
or ring; although the rectangle is the most commonly used for backgrounds. In
particular, when working with the rectangle the following parameters can be defined for
the shape:

CHAPTER 2: User Interface Recipes

® Corner radius

B Define the radius to use for rounding all four corners, or individual
radii to round each corner differently

B Gradient
B Linear, radial, or sweep
B Two or Three color values

B Orientation on any multiple of 45 degrees (0 is left to right, 90
bottom to top, and so on.)

B Solid Color

B Single color to fill the shape

B Doesn’t play nice with gradient also defined
B Stroke

B Border around shape

B Define width and color

B Size and Padding

How It Works

Creating static background images for views can be tricky, given that the image must
often be created in multiple sizes to display properly on all devices. This issue is
compounded if it is expected that the size of the view may dynamically change based
on its contents.

To avoid this problem, we create an XML file in res/drawable to describe a shape that
we can apply as the android:background attribute of any View.

Gradient ListView Row

Our first example for this technique will be to create a gradient rectangle that is suitable
to be applied as the background of individual rows inside of a ListView. The XML for
this shape is defined in Listing 2-35.

Listing 2-35. res/drawable/backgradient.xml

<?xml version="1.0" encoding="utf-8"?>
<shape xmlns:android="http://schemas.android.com/apk/res/android"
android:shape="rectangle">
<gradient
android:startColor="#EFEFEF"
android:endColor="#989898"
android:type="linear"
android:angle="270"
/>
</shape>

http://schemas.android.com/apk/res/android

CHAPTER 2: User Interface Recipes

Here we chose a linear gradient between two shades of grey, moving from top to
bottom. If we wanted to add a third color to the gradient, we would add an
android:middleColor attribute to the <gradient> tag.

Now, this drawable can be referenced by any view or layout used to create the custom
items of your ListView (we will discusss more about creating these views in Recipe 2—
23). The drawable would be added as the background by including the attribute
android:background="@drawable/backgradient” to the view’s XML, or calling
View.setBackgroundResource(R.drawable.backgradient) in Java code.

ADVANGED TIP: The limit on colors in XML is three, but the constructor for
GradientDrawable takes an int[] parameter for colors, and you may pass as many as you
like.

When we apply this drawable as the background to rows in a ListView, the result will be
similar to Figure 2-6.

Ml @ 12:00 AM

Activity

——
Figure 2-6. Gradient drawable as row background

Rounded View Group

Another popular use of XML drawables is to create a background for a layout that
visually groups a handful of widgets together. For style, rounded corners and a thin
border are often applied as well. This shape defined in XML would look like Listing 2-36.

CHAPTER 2: User Interface Recipes

Listing 2-36. res/drawable/roundback.xml

<?xml version="1.0" encoding="utf-8"?>
<shape xmlns:android="http://schemas.android.com/apk/res/android"
android:shape="rectangle">

<solid
android:color="#FFF"

/>

<corners
android:radius="10dip"

/>

<stroke

android:width="5dip"
android:color="#555"
/>
</shape>

In this case, we chose white for the fill color and grey for the border stroke. As
mentioned in the previous example, this drawable can be referenced by any view or
layout as the background by including the attribute
android:background="@drawable/roundback" to the view’s XML, or calling
View.setBackgroundResource(R.drawable.roundback) in Java code.

When applied as the background to a view, the result is shown in Figure 2-7.
Ml @ 12:00 AM

Activity

Figure 2-7. Rounded rectangle with border as view background

http://schemas.android.com/apk/res/android

CHAPTER 2: User Interface Recipes

2-16. Creating Custom State Drawables

Problem

You want to customize an element such as a Button or CheckBox that has multiple states
(default, pressed, selected, and so on).

Solution
(API Level 1)

Create a state-list drawable to apply to the element. Whether you have defined your
drawable graphics yourself in XML, or you are using images, Android provides the
means via another XML element, the <selector>, to create a single reference to multiple
images and the conditions under which they should be visible.

How It Works

Let’s take a look at an example state-list drawable, and the discuss its parts:

<?xml version="1.0" encoding="utf-8"?>

<selector xmlns:android="http://schemas.android.com/apk/res/android">
<item android:state enabled="false" android:drawable="@drawable/disabled" />
<item android:state pressed="true" android:drawable="@drawable/selected" />
<item android:state focused="true" android:drawable="@drawable/selected" />
<item android:drawable="@drawable/default" />

</selector>

NOTE: The <selector> is order specific. Android will return the drawable of the first state it
matches completely as it traverses the list. Bear this in mind when determining which state
attributes to apply to each item.

Each item in the list identifies the state(s) that must be in effect for the referenced
drawable to be the one chosen. Multiple state parameters can be added for one item if
multiple state values need to be matched. Android will traverse the list and pick the first
state that matches all criteria of the current view the drawable is attached to. For this
reason, it is considered good practice to put your normal, or default state at the bottom
of the list with no criteria attached.

Here is a list of the most commonly useful state attributes. All of these are boolean
values:

B state_enabled
B Value the view would return from isEnabled().
B state pressed

B View is pressed by the user on the touch screen.

http://schemas.android.com/apk/res/android

CHAPTER 2: User Interface Recipes

B state focused
B View has focus.
B state selected
B View is selected by the user using keys or a D-pad.
B state_checked
B Value a checkable view would return from isChecked().

Now, let’s look at how to apply these state-list drawables to different views.

Button and Clickable Widgets

Widgets like Button are designed to have their background drawable change when the
view moves through the above states. As such, the android:background attribute in
XML, or the View.setBackgroundDrawable() method are the proper method for attaching
the state-list. Listing 2-37 is an example with a file defined in res/drawable/ called
button_states.xml:

Listing 2-37. res/drawable/button_states.xml

<?xml version="1.0" encoding="utf-8"?>

<selector xmlns:android="http://schemas.android.com/apk/res/android">
<item android:state enabled="false" android:drawable="@drawable/disabled" />
<item android:state pressed="true" android:drawable="@drawable/selected" />
<item android:drawable="@drawable/default" />

</selector>

The three @drawable resources listed here are images in the project that the selector is
meant to switch between. As we mentioned in the previous section, the last item will be
returned as the default if no other items include matching states to the current view,
therefore we do not need to include a state to match on that item. Attaching this to a
view defined in XML looks like the following:

<Button
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:text="My Button"
android:background="@drawable/button_states"
/>

CheckBox and Checkable Widgets

Many of the widgets that implement the Checkable interface, like CheckBox and other
subclasses of CompoundButton, have a slightly different mechanism for changing state.
In these cases, the background is not associated with the state, and customizing the
drawable to represent the “checked” states is done through another attribute called the
button. In XML, this is the android:button attribute, and in code the

CompoundButton. setButtonDrawable() method should do the trick.

http://schemas.android.com/apk/res/android

CHAPTER 2: User Interface Recipes

Listing 2-38 is an example with a file defined in res/drawable/ called check_states.xml.
Again, the @drawable resources listed are meant to reference images in the project to be
switched.

Listing 2-38. res/drawable/check_states.xml

<?xml version="1.0" encoding="utf-8"?>

<selector xmlns:android="http://schemas.android.com/apk/res/android">
<item android:state enabled="false" android:drawable="@drawable/disabled" />
<item android:state checked="true" android:drawable="@drawable/checked" />
<item android:drawable="@drawable/unchecked" />

</selector>

And attached to a CheckBox in XML:

<CheckBox
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:button="@drawable/check states"
/>

2-17. Applying Masks to Images

Problem

You need to apply one image or shape as a clipping mask to define the visible
boundaries of second image in your application.

Solution
(API Level 1)

Using 2D Graphics and a PorterDuffXferMode, you can apply any arbitrary mask (in the
form of another Bitmap) to a Bitmap image. The basic steps to this recipe are as follows:

1. Create a mutable Bitmap (blank), and a Canvas to draw into it.
2. Draw the mask pattern into onto the Canvas first.

3. Apply a PorterDuffXferMode to the Paint.

4. Draw the source image on the Canvas using the transfer mode.

They key ingredient being the PorterDuffXferMode, which considers the current state of
both the source and destination objects during a paint operation. The destination is the
existing Canvas data, and the source is the graphic data being applied in the current
operation.

There are many mode parameters that can be attached to this, which create varying
effects on the result, but for masking we are interested in using the
PorterDuff.Mode.SRC_IN mode. This mode will only draw at locations where the source

http://schemas.android.com/apk/res/android

CHAPTER 2: User Interface Recipes

and destination overlap, and the pixels drawn will be from the source; in other words,
the source is clipped by the bounds of the destination.

How It Works

Rounded Corner Bitmap

One extremely common use of this technique is to apply rounded corners to a Bitmap
image before displaying it in an ImageView. For this example, Figure 2-8 is the original
image we will be masking.

Figure 2-8. Original source image

We will first create a rounded rectangle on our canvas with the required corner radius,
and this will serve as our “mask” for the image. Then, applying the
PorterDuff.Mode.SRC_IN transform as we paint the source image into the same canvas,
the result will be the source image with rounded corners.

This is because the SRC_IN transfer mode tells the paint object to only paint pixels on
the canvas locations where there is overlap between the source and destination (the
rounded rectangle we already drew), and the pixels that get drawn come from the
source. Listing 2-39 is the code inside an Activity.

Listing 2-39. Activity Applying Rounded Rectangle Mask to Bitmap

public class MaskActivity extends Activity {
/** Called when the activity is first created. */
@0verride
public void onCreate(Bundle savedInstanceState) {
super.onCreate(savedInstanceState);
ImageView iv = new ImageView(this);

//Create and load images (immutable, typically)
Bitmap source = BitmapFactory.decodeResource(getResources(), R.drawable.dog);

//Create a *mutable* location, and a canvas to draw into it
Bitmap result = Bitmap.createBitmap(source.getWidth(), source.getHeight(),
Config.ARGB_8888);

CHAPTER 2: User Interface Recipes

Canvas canvas = new Canvas(result);
Paint paint = new Paint(Paint.ANTI_ALIAS FLAG);

//Create and draw the rounded rectangle "mask" first

RectF rect = new RectF(0,0,source.getWidth(),source.getHeight());
float radius = 25.0f;

paint.setColor(Color.BLACK);

canvas.drawRoundRect(rect, radius, radius, paint);

//Switch over and paint the source using the transfer mode
paint.setXfermode(new PorterDuffXfermode(Mode.SRC IN));
canvas.drawBitmap(source, 0, 0, paint);

paint.setXfermode(null);

iv.setImageBitmap(result);
setContentView(iv);

The result for your efforts are shown in Figure 2-9.

DM@ 12:00am

Image Mask

Figure 2-9. Image with rounded rectangle mask applied

Arbitrary Mask Image

Let’s looks at an example that’s a little more interesting. Here we take two images, the
source image and an image representing the mask we want to apply - in this case, and
upside-down triangle (see Figure 2-10).

CHAPTER 2: User Interface Recipes

Figure 2-10. Original source image (left) and arbitrary mask image to apply (right)

The chosen mask image does not have to conform to the style chosen here, with black
pixels for the mask and transparent everywhere else. However, it is the best choice to
guarantee that the system draws the mask exactly as you expect it to be. Listing 2-40 is
the simple Activity code to mask the image and display it in a view.

Listing 2-40. Activity Applying Arbitrary Mask to Bitmap
public class MaskActivity extends Activity {

@0verride
public void onCreate(Bundle savedInstanceState) {
super.onCreate(savedInstanceState);
ImageView iv = new ImageView(this);

//Create and load images (immutable, typically)
Bitmap source = BitmapFactory.decodeResource(getResources(), R.drawable.dog);
Bitmap mask = BitmapFactory.decodeResource(getResources(), R.drawable.triangle);

//Create a *mutable* location, and a canvas to draw into it

Bitmap result = Bitmap.createBitmap(source.getWidth(), source.getHeight(),
Config.ARGB_8888);

Canvas canvas = new Canvas(result);

Paint paint = new Paint(Paint.ANTI_ALIAS FLAG);

//Draw the mask image first, then paint the source using the transfer mode
canvas.drawBitmap(mask, 0, 0, paint);

paint.setXfermode(new PorterDuffXfermode(Mode.SRC IN));
canvas.drawBitmap(source, 0, 0, paint);

paint.setXfermode(null);

iv.setImageBitmap(result);
setContentView(iv);

}

As with before, we draw the mask onto the canvas first and then draw the source image
in using the PorterDuff.Mode.SRC_IN mode to only paint the source pixels where they
overlap the existing mask pixels. The result looks something like Figure 2-11.

CHAPTER 2: User Interface Recipes

DM@ 12:00am

Image Mask

Figure 2-11. Image with mask applied

Please Try This At Home

Applying the PorterDuffXferMode in this fashion to blend two images can create lots of
interesting results. Try taking this same example code, but changing the
PorterDuff.Mode parameter to one of the many other options. Each of the modes will
blend the two Bitmaps in a slightly different way. Have fun with it!

2-18. Creating Dialogs that Persist

Problem

You want to create a user dialog that has multiple input fields or some other set of
information that needs to be persisted if the device is rotated.

Solution
(API Level 1)

Don’t use a dialog at all; create an Activity with the Dialog theme. Dialogs are managed
objects that must be handled properly when the device rotates while they are visible,
otherwise they will cause a leaked reference in the window manager. You can mitigate
this issue by having your Activity manage the dialog for you using methods like

CHAPTER 2: User Interface Recipes

Activity.showDialog() and Activity.dismissDialog() to present it, but that only
solves one problem.

The Dialog does not have any mechanism of its own to persist state through a rotation,
and this job (by design) falls back to the Activity that presented it. This results in extra
required effort to ensure that the Dialog can pass back or persist any values entered into
it before it is dismissed.

If you have an interface to present to the user that will need to persist state and stay
front facing through rotation, a better solution is to make it an Activity. This allows that
object access to the full set of lifecycle callback methods for saving/restoring state.
Plus, as an Activity, it does not have to be managed to dismiss and present again during
rotation, which removes the worry of leaking references. You can still make the Activity
behave like a Dialog from the user’s perspective using the Theme.Dialog system theme.

How It Works

Listing 2—-41 is an example of a simple Activity that has a title and some text in a TextView.
Listing 2-41. Activity fo be Themed As a Dialog

public class DialogActivity extends Activity {

@0verride

public void onCreate(Bundle savedInstanceState) {
super.onCreate(savedInstanceState);
setTitle("Activity");
TextView tv = new TextView(this);
tv.setText("I'm Really An Activity!");
//Add some padding to keep the dialog borders away
tv.setPadding(15, 15, 15, 15);
setContentView(tv);

}

We can apply the Dialog theme to this Activity in the AndroidManifest.xml file for the
application (see Figure 2-42).

Listing 2-42. Manifest Setting the Above Activity with the Dialog Theme

<?xml version="1.0" encoding="utf-8"?>
<manifest xmlns:android="http://schemas.android.com/apk/res/android"
package="com.examples.dialogs"
android:versionCode="1"
android:versionName="1.0">
<application android:icon="@drawable/icon" android:label="@string/app_name">
<activity android:name=".DialogActivity"
android:label="@string/app_name"
android:theme="@android:style/Theme.Dialog">
<intent-filter>
<action android:name="android.intent.action.MAIN" />
<category android:name="android.intent.category.LAUNCHER" />
</intent-filter>
</activity>
</application>
</manifest>

http://schemas.android.com/apk/res/android

CHAPTER 2: User Interface Recipes

Note the android:theme="@android:style/Theme.Dialog" parameter, which creates the
look and feel of a Dialog, with all the benefits of a full-blown Activity. When you run this
application, you will see a screen like that shown in Figure 2-12.

M@ 12:00am

Activity

Figure 2-12. Applying Dialog theme to an Activity

Notice that, even though this is an Activity for all intents and purposes, it can act as a
Dialog inside of your user interface, partially covering the Activity underneath it (in this
case, the Home screen).

2-19. Implementing Situation-Specific Layouts

Problem

Your application must be universal, running on different screen sizes and orientations.
You need to provide different layout resources for each of these instances.

Solution
(API Level 4)

Build multiple layout files, and use resource qualifiers to let Android pick what'’s
appropriate. We will look at using resources to create resources specific for different
screen orientations and sizes.

CHAPTER 2: User Interface Recipes

How It Works

Orientation-Specific

In order to create different resources for an Activity to use in portrait versus landscape,
use the following qualifiers:

B resource-land
B resource-port

This works for all resource types, but the most common in this case is to do this with
layouts. Therefore, instead of a res/layout/ directory in the project, there would be a
res/layout-port/ and a res/layout-land/ directory.

NOTE: It is good practice to include a default resource directory without a qualifier. This gives
Android something to fall back on if it is running on a device that doesn’t match any of the
specific criteria you list.

Size-Specific

There are also screen size qualifiers (physical size, not to be confused with pixel density)
that we can use to target large screen devices like tablets. In most cases, a single layout
will suffice for all physical screen sizes of mobile phone. However, you may want to add
more features to a tablet layout to assist in filling the noticeably more screen real estate
the user has to operate. The following resource qualifiers are acceptable for physical
screen size:

B resource-small
B resource-medium
B resource-large

So, to include a tablet-only layout to a universal application we could add a res/layout-
large/directory as well.

Example

Let’s look at a quick example that puts this into practice. We’ll define a single Activity,
that loads a single layout resource in code. However, this layout will be define three
times in the resources to produce different results in portrait, landscape, and on a tablet.
First, the Activity, which is shown in Listing 2-43.

CHAPTER 2: User Interface Recipes

Listing 2-43. Simple Activity Loading One Layout

public class UniversalActivity extends Activity {

@0verride

public void onCreate(Bundle savedInstanceState) {
super.onCreate(savedInstanceState);
setContentView(R.layout.main);

}
We’ll now define a default/portrait layout in res/layout/main.xml (see Listing 2-44).
Listing 2-44. res/layout/main.xml

<?xml version="1.0" encoding="utf-8"?>
<!-- PORTRAIT/DEFAULT LAYOUT -->
<LinearlLayout xmlns:android="http://schemas.android.com/apk/res/android"
android:orientation="vertical"
android:layout_width="fill parent"
android:layout_height="fill parent">
<TextView
android:layout_width="fill parent"
android:layout_height="wrap_content"
android:text="This is a vertical layout for PORTRAIT"
/>
<Button
android:layout_width="wrap_content"”
android:layout_height="wrap_content"
android:text="Button One"
/>
<Button
android:layout_width="wrap_content"”
android:layout_height="wrap_content"
android:text="Button Two"
/>
</Linearlayout>

And a landscape version in res/layout-land/main.xml (see Figure 2—-45).
Listing 2-45. res/layout-land/main.xml

<?xml version="1.0" encoding="utf-8"?>
<!-- LANDSCAPE LAYOUT --»
<LinearlLayout xmlns:android="http://schemas.android.com/apk/res/android"
android:orientation="horizontal"
android:layout_width="fill parent"
android:layout_height="fill parent">
<TextView
android:layout_width="wrap_content"”
android:layout_height="wrap_content"
android:text="The is a horizontal layout for LANDSCAPE"
/>
<Button
android:layout_width="wrap_content"”
android:layout_height="wrap_content"
android:text="Button One"
/>
<Button
android:layout_width="wrap_content"”

http://schemas.android.com/apk/res/android
http://schemas.android.com/apk/res/android

CHAPTER 2: User Interface Recipes

android:layout_height="wrap_content"
android:text="Button Two"
/>
</Linearlayout>

We have now reordered our layout to be horizontal on a landscape screen.

The tablet version in res/layout-large/main.xml (see Figure 2—-46).
Listing 2-46. res/layout-large/main.xml

<?xml version="1.0" encoding="utf-8"?>
<!-- LARGE LAYOUT -->
<LinearlLayout xmlns:android="http://schemas.android.com/apk/res/android"
android:orientation="vertical"
android:layout_width="fill parent"
android:layout_height="fill parent">
<TextView
android:layout_width="fill parent"
android:layout_height="wrap_content"
android:text="This is the layout for TABLETS"
/>
<Button
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:text="Button One"
/>
<Button
android:layout_width="wrap_content"”
android:layout_height="wrap_content"
android:text="Button Two"
/>
<Button
android:layout_width="wrap_content"”
android:layout_height="wrap_content"
android:text="Button Three"
/>
<Button
android:layout_width="wrap_content"”
android:layout_height="wrap_content"
android:text="Button Four"
/>
</Linearlayout>

Since we have more screen real estate to work with, there are a couple extra buttons for
the user to interact with.

Now, when we run the application, you can see how Android selects the appropriate
layout to match our configuration, whether it is portrait and landscape on the phone (see
Figure 2-13), or running on a larger tablet screen (see Figure 2-14).

http://schemas.android.com/apk/res/android

CHAPTER 2: User Interface Recipes

M €@ 12:00am
nis ertical layout for PORTRAIT
Button One

Button Two

M & 12:00am

LAU k‘;.‘:‘r‘r;:‘z

Universal

Figure 2-13. Portrait and Landscape layouts

CHAPTER 2: User Interface Recipes

Z Ml @ 12:00am

Universal

This is the layout for TABLETS

Button One

Button Two

Button Three

Button Four

Figure 2-14. Large (Tablet) layout

Late Additions

In API Level 9 (Android 2.3), one more resource qualifier was added to support “extra
large” screens:

B resource-xlarge

According to the SDK documentation, a traditionally “large” screen is one in the range of
approximately 5 to 7 inches. The new qualifier for “extra large” covers screens roughly 7
to 10+ inches in size.

If your application is built against API Level 9, you should include your tablet layouts in
the res/layout-xlarge/ directory as well. Keeping in mind that tables running Android 2.2
or earlier will only recognize res/layout-large/ as a valid qualifier.

2-20. Customizing Keyboard Actions

Problem

You want to customize the appearance of the soft keyboard’s enter key, the action that
occurs when a user tap it, or both.

CHAPTER 2: User Interface Recipes

Solution
(API Level 3)

Customize the Input Method (IME) options for the widget in which the keyboard is
entering data.

How It Works

Custom Enter Key

When the keyboard is visible on screen, the text on the return key typically has an action
based on the order of focusable items in the view. While unspecified, the keyboard will
display a “next” action if there are more focusables in the view to move to, or a “done”
action if the last item is currently focused on. This value is customizable, however, for
each input view by setting the android:imeOptions value in the view’s XML. The values
you may set to customize the return key are listed here:

B actionUnspecified: Default. Display action of the device’s choice
B Action event will be IME_NULL

B actionGo: Display “Go” as the return key
B Action event will be IME_ACTION_GO

B actionSearch: Display a search glass as the return key
B Action event will be IME_ACTION_SEARCH

B actionSend: Display “Send” as the return key
B Action event will be IME_ACTION_SEND

B actionNext: Display “Next” as the return key
B Action event will be IME_ACTION_NEXT

B actionDone: Display “Done” as the return key
B Action event will be IME_ACTION_DONE

Let’s look at an example layout with two editable text fields, shown in Listing 2-47. The
first will display the search glass on the return key, and the second will display “Go.”

Listing 2-47. Layout with Custom Input Options on EditText Widgets

<LinearlLayout xmlns:android="http://schemas.android.com/apk/res/android"

android:layout_width="fill parent"

android:layout_height="fill parent"

android:orientation="vertical">

<EditText
android:id="@+id/text1"
android:layout_width="fill parent"
android:layout_height="wrap_content"

http://schemas.android.com/apk/res/android

CHAPTER 2: User Interface Recipes

android:imeOptions="actionSearch"

/>

<EditText
android:id="@+id/text2"
android:layout width="fill parent"”
android:layout_height="wrap_content"
android:imeOptions="actionGo"

/>

</Linearlayout>

The resulting display of the keyboard will vary somewhat as some manufacturer specific
Ul kits include different keyboards, but the results on a pure Google Ul will show up like
in Figure 2-15.

DM @ 12:00 am DM @ 12:00 am

Activity Activity

Figure 2-15. Result of custom input options on enter key

NOTE: Custom editor options only apply to the soft input methods. Changing this value will not
affect the events that get generated when the user presses return on a physical hardware
keyboard.

CHAPTER 2: User Interface Recipes

Custom Action

Customizing what happens when the user presses the enter key can be just as
important as adjusting its display. Overriding the default behavior of any action simply
requires that a TextView.OnEditorActionListener be attached to the view of interest.
Let’s continue with the example layout above, and this time add a custom action to both
views (see Listing 2-48).

Listing 2-48. Activity Implementing a Custom Keyboard Action

public class MyActivity extends Activity implements OnEditorActionListener {

@0verride

public void onCreate(Bundle savedInstanceState) {
super.onCreate(savedInstanceState);
setContentView(R.layout.main);

//Add the listener to the views

EditText texti = (EditText)findViewById(R.id.text1);
text1.setOnEditorActionListener(this);

EditText text2 = (EditText)findViewById(R.id.text2);
text2.setOnEditorActionListener(this);

}

@0verride
public boolean onEditorAction(TextView v, int actionId, KeyEvent event) {
if(actionId == IME_ACTION SEARCH) {
//Handle search key click
return true;

}

if(actionId == IME_ACTION_GO) {
//Handle go key click
return true;

return false;

}

The boolean return value of onEditorAction() tells the system whether your
implementation has consumed the event or whether it should be passed on to the next
possible responder, if any. It is important for you to return true when your
implementation handles the event so no other processing occurs. However, it is just as
important for you to return false when you are not handling the event so your application
does not steal key events from the rest of the system.

2-21. Dismissing Soft Keybhoard

Problem

You need an event on the user interface to hide or dismiss the soft keyboard from the
screen.

CHAPTER 2: User Interface Recipes

Solution
(API Level 3)

Tell the Input Method Manager explicitly to hide any visible Input Methods using the
InputMethodManager.hideSoftInputFromWindow() method.

How It Works

Here is an example of how to call this method inside of a View.OnClickListener:

public void onClick(View view) {
InputMethodManager imm = (InputMethodManager)getSystemService(
Context.INPUT METHOD SERVICE);
imm.hideSoftInputFromWindow(view.getWindowToken(), 0);

Notice the hideSoftInputFromWindow() take an IBinder window token as a parameter.
This can be retrieved from any View object currently attached to the window via
View.getWindowToken(). In most cases, the callback method for the specific event will
either have a reference to the TextView where the editing is taking place, or the View
that was tapped to generate the event (like a Button). These views are the most
convenient objects to call on to get the window token and pass it to the
InputMethodManager.

2-22. Customizing AdapterView Empty Views

Problem

You want to display a custom view when an AdapterView (ListView, GridView, and the
like) has an empty data set.

Solution
(API Level 1)

Lay out the view you would like displayed in the same tree as the AdapterView and call
AdapterView.setEmptyView() to have the AdapterView manage it. The AdapterView will
switch the visibility parameters between itself and its empty view based on the result of
the attached ListAdapter’s isEmpty() method.

IMPORTANT: Be sure to include both the AdapterView and the empty view in your layout. The
AdapterView ONLY changes the visibility parameters on the two objects; it does not insert or
remove them in the layout tree.

CHAPTER 2: User Interface Recipes

How It Works

Here is how this would look with a simple TextView used as the empty. First, a layout
that includes both views, shown in Listing 2—-49.

Listing 2-49. Layout Containing AdapterView and an Empty View

<?xml version="1.0" encoding="utf-8"?>
<FramelLayout xmlns:android="http://schemas.android.com/apk/res/android"
android:layout_width="fill parent"
android:layout_height="fill parent">
<TextView
android:id="@+id/myempty"
android:layout_width="fill parent"
android:layout_height="wrap_content"
android:text="No Items to Display"
/>
<ListView
android:id="@+id/mylist"
android:layout_width="fill parent"
android:layout_height="fill parent"
/>
</FramelLayout>

Then, in the Activity, give the ListView a reference to the empty view so it can be
managed (see Listing 2-50).

Listing 2-50. Activity Connecting the Empty View to the List

public void onCreate(Bundle savedInstanceState) {
super.onCreate(savedInstanceState);
ListView list = (ListView)findViewById(R.id.mylist);
TextView empty = (TextView)findViewById(R.id.myempty);
//Attach the reference
list.setEmptyView(empty);

//Continue adding adapters and data to the list

Make Empty Interesting

Empty views don’t have to be simple and boring like the single TextView. Let’s try to
make things a little more useful for the user and add a refresh button when the list is
empty (see Listing 2-51).

Listing 2-51. Interactive Empty Layout

<?xml version="1.0" encoding="utf-8"?>
<FramelLayout xmlns:android="http://schemas.android.com/apk/res/android"
android:layout_width="fill parent"
android:layout_height="fill parent">
<Linearlayout
android:id="@+id/myempty"
android:layout_width="fill parent"
android:layout_height="wrap_content"
android:orientation="vertical">

http://schemas.android.com/apk/res/android
http://schemas.android.com/apk/res/android

CHAPTER 2: User Interface Recipes

<TextView
android:layout_width="fill parent"
android:layout_height="wrap_content
android:text="No Items to Display"
/>
<Button
android:layout_width="fill parent"
android:layout_height="wrap_content
android:text="Tap Here to Refresh"
/>
</Linearlayout>
<ListView
android:id="@+id/mylist"
android:layout_width="fill parent"
android:layout_height="fill parent"
/>
</FramelLayout>

Now, with the same Activity code from before, we have set an entire layout as the empty
view, and added the ability for the user to do something about their lack of data.

2-23. Customizing ListView Rows

Problem

Your application needs to use a more customized look for each row in a ListView.

Solution
(API Level 1)

Create a custom XML layout and pass it to one of the common adapters, or extend your
own. You can then apply custom state drawables for overriding the background and
selected states of each row.

How It Works

Simply Custom

If your needs are simple, create a layout that can connect to an existing ListAdapter for
population; we’ll use ArrayAdapter as an example. The ArrayAdapter can take
parameters for a custom layout resource to inflate and the ID of one TextView in that
layout to populate with data. Let’s create some custom drawables for the background
and a layout that meets these requirements (see Listings 2-52 through 2-54).

Listing 2-52. res/drawable/row_background_default.xml

<?xml version="1.0" encoding="utf-8"?>
<shape xmlns:android="http://schemas.android.com/apk/res/android"
android:shape="rectangle">

http://schemas.android.com/apk/res/android

CHAPTER 2: User Interface Recipes

<gradient
android:startColor="#EFEFEF"
android:endColor="#989898"
android:type="linear"
android:angle="270"
/>
</shape>

Listing 2-53. res/drawable/row_background_pressed.xml

<?xml version="1.0" encoding="utf-8"?>
<shape xmlns:android="http://schemas.android.com/apk/res/android"
android:shape="rectangle">
<gradient
android:startColor="#0B8CF2"
android:endColor="#0661E5"
android:type="linear"
android:angle="270"
/>
</shape>

Listing 2-54. res/drawable/row_background.xm!

<?xml version="1.0" encoding="utf-8"?>

<selector xmlns:android="http://schemas.android.com/apk/res/android">
<item android:state pressed="true" android:drawable="@drawable/row_background_pressed"/>
<item android:drawable="@drawable/row_background_default"/>

</selector>

Listing 2-55 shows a custom layout with the text fully centered in the row instead of
aligned to the left.

Listing 2-55. res/layout/custom_row.xml

<?xml version="1.0" encoding="utf-8"?>
<LinearlLayout xmlns:android="http://schemas.android.com/apk/res/android"
android:layout_width="fill parent"
android:layout_height="wrap_content"
android:padding="10dip"
android:background="@drawable/row_background">
<TextView
android:id="@+id/line1"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:layout_gravity="center"
/>
</Linearlayout>

This layout has the custom gradient state-list set as its background; setting up the
default and pressed states for each item in the list. Now, since we have defined a layout
that matches up with what an ArrayAdapter expects, we can create one and set it on our
list without any further customization (see Listing 2-56).

Listing 2-56. Activity Using the Custom Row Layout

public void onCreate(Bundle savedInstanceState) {
super.onCreate(savedInstanceState);
ListView 1list = new ListView(this);
ArrayAdapter<String> adapter = new ArrayAdapter<String>(this,

http://schemas.android.com/apk/res/android
http://schemas.android.com/apk/res/android
http://schemas.android.com/apk/res/android

CHAPTER 2: User Interface Recipes

R.layout.custom row,

R.id.line1,

new String[] {"Bill","Tom","Sally","Jenny"});
list.setAdapter(adapter);

setContentView(list);
}

Adapting to a More Complex Choice

Sometimes customizing the list rows means extending a ListAdapter as well. This is
usually the case if you have multiple pieces of data in a single row, or if any of them are
not text. In this example, let’s utilize the custom drawables again for the background,
but make the layout a little more interesting (see Listing 2-57).

Listing 2-57. res/layout/custom_row.xml Modified

<?xml version="1.0" encoding="utf-8"?>
<Relativelayout xmlns:android="http://schemas.android.com/apk/res/android"
android:layout_width="fill parent"
android:layout_height="wrap_content"
android:orientation="horizontal"
android:padding="10dip">
<ImageView
android:id="@+id/leftimage"
android:layout_width="32dip"
android:layout_height="32dip"
/>
<ImageView
android:id="@+id/rightimage"
android:layout_width="32dip"
android:layout_height="32dip"
android:layout_alignParentRight="true"
/>

<TextView
android:id="@+id/line1"
android:layout_width="fill parent"”
android:layout_height="wrap_content"
android:layout_toleftOf="@id/rightimage"
android:layout_toRightOf="@id/leftimage"
android:layout_centerVertical="true"
android:gravity="center_horizontal"

/>

</Relativelayout>

This layout contains the same centered TextView, but bordered with an ImageView on
each side. In order to apply this layout to the ListView, we will need to extend one of the
ListAdapters in the SDK. Which one you extend is dependent on the data source you are
presenting in the list. If the data is still just a simple array of strings, and extension of
ArrayAdapter is sufficient. If the data is more complex, a full extension of the abstract
BaseAdapter may be necessary. The only required method to extend is getView(),
which governs how each row in the list is presented.

http://schemas.android.com/apk/res/android

CHAPTER 2: User Interface Recipes

In our case, the data is a simple array of strings, so we will create a simple extension of
ArrayAdapter (see Listing 2-58).

Listing 2-58. Activity and Custom ListAdapter to Display the New Layout

public class MyActivity extends Activity {

public void onCreate(Bundle savedInstanceState) {
super.onCreate(savedInstanceState);
ListView list = new ListView(this);
setContentView(list);

CustomAdapter adapter = new CustomAdapter(this,
R.layout.custom row,
R.id.line1,
new String[] {"Bill","Tom","Sally","Jenny"});
list.setAdapter(adapter);

}

private class CustomAdapter extends ArrayAdapter<String> {

public CustomAdapter(Context context, int layout, int resId, String[] items) {
//Call through to ArrayAdapter implementation
super(context, layout, resId, items);

@0verride
public View getView(int position, View convertView, ViewGroup parent) {
View row = convertView;
//Inflate a new row if one isn’t recycled
if(row == null) {
row = getlayoutInflater().inflate(R.layout.custom row, parent, false);

String item = getItem(position);

ImageView left = (ImageView)row.findViewById(R.id.leftimage);
ImageView right = (ImageView)row.findViewById(R.id.rightimage);
TextView text = (TextView)row.findViewById(R.id.line1);

left.setImageResource(R.drawable.icon);
right.setImageResource(R.drawable.icon);
text.setText(item);

return row;

}

Notice that we use the same constructor to create an instance of the adapter as before,
since it is inherited from ArrayAdapter. Because we are overriding the view display
mechanism of the adapter, the only reason the R.1layout.custom row and R.id.linel are
now passed into the constructor is that they are required parameters of the constructor;
they don’t serve a useful purpose in this example anymore.

Now, when the ListView wants to display a row it will call getView() on its adapter,
which we have customized so we can control how each row returns. The getView()

CHAPTER 2: User Interface Recipes

method is passed a parameter called the convertView, which is very important for
performance. Layout inflation from XML is an expensive process, and to minimize its
impact on the system, ListView recycles views as the list scrolls. If a recycled view is
available to be reused, it is passed into getView() as the convertView. Whenever
possible, reuse these views instead of inflating new ones to keep the scrolling
performance of the list fast and responsive.

In this example, call getItem() to get the current value at that position in the list (our
array of Strings), and then later on set that value on the TextView for that row. We can
also set the images in each row to something significant for the data, although here they
are set to the app icon for simplicity.

2-24. Making ListView Section Headers

Problem

You want to create a list with multiple sections, each with a header at the top.

Solution
(API Level 1)

Use the SimplerExpandableListAdapter code defined here and an ExpandablelistView.
Android doesn’t officially have an extensible way to create sections in a list, but it does
offer the ExpandablelistView widget and associated adapters designed to handle a two-
dimensional data structure in a sectioned list. The drawback is that the adapters
provided with the SDK to handle this data are cumbersome to work with for simple data
structures.

How It Works

Enter the SimplerExpandableListAdapter (see Listing 2-59), an extension of the
BaseExpandableListAdapter that, as an example, handles an Array of string arrays, with
a separate string array for the section titles.

Listing 2-59. SimplerExpandableListAdapter

public class SimplerExpandableListAdapter extends BaseExpandableListAdapter {
private Context mContext;
private String[][] mContents;
private String[] mTitles;

public SimplerExpandableListAdapter(Context context, String[] titles, String[][]
contents) {
super();
//Check arguments
if(titles.length != contents.length) {
throw new IllegalArgumentException("Titles and Contents must be the same
size.");

CHAPTER 2: User Interface Recipes

}

mContext = context;
mContents = contents;
mTitles = titles;

}

//Return a child item

@0verride

public String getChild(int groupPosition, int childPosition) {
) return mContents[groupPosition][childPosition];

//Return a item's id

@0verride

public long getChildId(int groupPosition, int childPosition) {
return 0;

//Return view for each item row
@0verride
public View getChildView(int groupPosition, int childPosition,
boolean islLastChild, View convertView, ViewGroup parent) {
TextView row = (TextView)convertView;
if(row == null) {
row = new TextView(mContext);

row.setText(mContents[groupPosition][childPosition]);
return row;

}

//Return number of items in each section

@0verride

public int getChildrenCount(int groupPosition) {
return mContents[groupPosition].length;

//Return sections

@0verride

public String[] getGroup(int groupPosition) {
return mContents[groupPosition];

}

//Return the number of sections

@0verride

public int getGroupCount() {
return mContents.length;

}

//Return a section's id

@0verride

public long getGroupId(int groupPosition) {
return 0;

}

//Return a view for each section header
@0verride

CHAPTER 2: User Interface Recipes

public View getGroupView(int groupPosition, boolean isExpanded,
View convertView, ViewGroup parent) {
TextView row = (TextView)convertView;
if(row == null) {
row = new TextView(mContext);

}
row.setTypeface(Typeface.DEFAULT BOLD);
row.setText(mTitles[groupPosition]);
return row;

}

@0verride

public boolean hasStablelds() {
return false;

}

@0verride

public boolean isChildSelectable(int groupPosition, int childPosition) {
return true;

}

}

Now we can create a simple data structure and use it to populate an
ExpandablelListView in an example Activity (see Listing 2-60).

Listing 2-60. Activity Using the SimplerExpandableListAdapter

public void onCreate(Bundle savedInstanceState) {
super.onCreate(savedInstanceState);
//Set up an expandable list
ExpandableListView 1ist = new ExpandableListView(this);
list.setGroupIndicator(null);
list.setChildIndicator(null);
//Set up simple data and the new adapter
String[] titles = {"Fruits","Vegetables","Meats"};
String[] fruits = {"Apples","Oranges"};
String[] veggies = {"Carrots","Peas","Broccoli"};
String[] meats = {"Pork","Chicken"};
String[][] contents = {fruits,veggies,meats};
SimplerExpandableListAdapter adapter = new SimplerExpandableListAdapter(this,

titles, contents);

list.setAdapter(adapter);
setContentView(list);

That Darn Expansion

There is one catch to utilizing ExpandableListView in this fashion: it expands.
ExpandableListView is designed to expand and collapse the child data underneath the
group heading when the heading it tapped. Also, by default all the groups are collapsed,
S0 you can only see the header items.

In some cases this may be desirable behavior, but often it is not if you just want to add
section headers. In that case, there are two addition steps to take:

CHAPTER 2: User Interface Recipes

1. In the Activity code, expand all the groups. Something like

for(int i=0; i < adapter.getGroupCount(); i++) {
list.expandGroup(i);

2. Inthe Adapter, override onGroupCollapsed() to force re-expansion. This
will require adding a reference to the list widget to the adapter.

@0verride
public void onGroupCollapsed(int groupPosition) {
list.expandGroup(groupPosition);

2-25. Creating Compound Controls

Problem

You need to create a custom widget that is a collection of existing elements.

Solution
(API Level 1)

Create a custom widget by extending a common ViewGroup and adding functionality.
One of the simplest, and most powerful ways to create custom or reusable user
interface elements is to create compound controls leveraging the existing widgets
provided by the Android SDK.

How It Works

ViewGroup, and its subclasses LinearLayout, Relativelayout, and so on, give you the
tools to make this simple by assisting you with component placement, so you can be
more concerned with the added functionality.

TextimageButton

Let’s create an example by making a widget that the Android SDK does not have
natively: a button containing either an image or text as its content. To do this, we are
going to create the TextimageButton class, which is an extension of FrameLayout. It will
contain a TextView to handle text content, and an ImageView for image content (see
Listing 2-61).

Listing 2-61. Custom TextimageButton Widget

public class TextImageButton extends Framelayout {

private ImageView imageView;
private TextView textView;

CHAPTER 2: User Interface Recipes

/* Constructors */

public TextImageButton(Context context) {
this(context, null);

}

public TextImageButton(Context context, AttributeSet attrs) {
this(context, attrs, 0);

public TextImageButton(Context context, AttributeSet attrs, int defaultStyle) {

super(context, attrs, defaultStyle);

imageView = new ImageView(context, attrs, defaultStyle);

textView = new TextView(context, attrs, defaultStyle);

//create layout parameters

FramelLayout.LayoutParams params = new Framelayout.LayoutParams(
LayoutParams.FILL PARENT, LayoutParams.FILL PARENT);

//Add the views

this.addView(imageView, params);

this.addView(textView, params);

//Make this view interactive

setClickable(true);

setFocusable(true);

//Set the default system button background
setBackgroundResource(android.R.drawable.btn_default);

//If image is present, switch to image mode

if(imageView.getDrawable() != null) {
textView.setVisibility(View.GONE);
imageView.setVisibility(View.VISIBLE);

} else {
textView.setVisibility(View.VISIBLE);
imageView.setVisibility(View.GONE);

}

/* Accessors */

public void setText(CharSequence text) {
//Switch to text
textView.setVisibility(View.VISIBLE);
imageView.setVisibility(View.GONE);
//Apply text
textView.setText(text);

}

public void setImageResource(int resId) {
//Switch to image
textView.setVisibility(View.GONE);
imageView.setVisibility(View.VISIBLE);
//Apply image
imageView.setImageResource(resId);

}

public void setImageDrawable(Drawable drawable) {
//Switch to image
textView.setVisibility(View.GONE);
imageView.setVisibility(View.VISIBLE);

CHAPTER 2: User Interface Recipes

//Apply image
imageView.setImageDrawable(drawable);

}

All of the widgets in the SDK have three constructors. The first constructor takes only
Context as a parameter and is generally used to create a new view in code. The
remaining two are used when a view is inflated from XML, where the attributes defined in
the XML file are passed in as the AttributeSet parameter. Here we use Java’s this()
notation to drill the first two constructors down to the one that really does all the work.
Building the custom control in this fashion ensures that we can still define this view in
XML layouts. Without implementing the attributed constructors, this would not be
possible.

The constructor creates a TextView and ImageView, and places them inside the layout.
FramelLayout is not an interactive view by default, so the constructor makes the control
clickable and focusable so it can handle user interaction events; we also set the
system’s default button background on the view as a cue to the user that this widget is
interactive. The remaining code sets the default display mode (either text or image)
based on the data that was passed in as attributes.

The accessor functions are added as a convenience to later switch the button contents.
These functions are also tasked with switching between text and image mode if the
content change warrants it.

Because this custom control is not in the android.view or android.widget packages, we
must use the fully qualified name when it is used in an XML layout. Listings 2-62 and 2-63
show an example Activity display the custom widget.

Listing 2-62. res/layout/main.xml

<?xml version="1.0" encoding="utf-8"?>
<LinearlLayout xmlns:android="http://schemas.android.com/apk/res/android"
android:layout_width="fill parent"
android:layout_height="fill parent"
android:orientation="vertical">
<com.examples.customwidgets.TextImageButton
android:layout_width="wrap_content"”
android:layout_height="wrap_content"
android:textColor="#000"
android:text="Click Me!"
/>
<com.examples.customwidgets.TextImageButton
android:layout_width="wrap_content"”
android:layout_height="wrap_content"
android:src="@drawable/icon"
/>
</Linearlayout>

Listing 2-63. Activity Using the New Custom Widget
public class MyActivity extends Activity {
@0verride

public void onCreate(Bundle savedInstanceState) {
super.onCreate(savedInstanceState);

http://schemas.android.com/apk/res/android

CHAPTER 2: User Interface Recipes

setContentView(R.layout.main);

}
}

Notice that we can still use traditional attributes to define properties like the text or
image to display. This is due to the fact that we construct each item (the FramelLayout,
TextView, and ImageView) with the attributed constructors, so each view sets the
parameters it is interested in, and ignores the rest.

If we define an Acitivity to use this layout, the results look like Figure 2-16.

Ml ® 12:00am

Activity
Click Me!

Figure 2-16. TextImageButton displayed in both text and image modes

Useful Tools to Know: DroidDraw

Chapter 1 introduced a units-conversion Android app named UC. In addition to exploring
UC’s source code, this chapter explored this app’s resources, starting with the main.xml
layout file that describes how the app’s main screen is laid out.

Coding layout and other resource files by hand is at best a tedious undertaking, even for
advanced developers. For this reason, Professor Brendan Burns created a tool named
DroidDraw.

DroidDraw is a Java-based tool that facilitates building an Android app’s user interface.
This tool does not generate app logic. Instead, it generates XML layout and other
resource information that can be merged into another development tool’s app project.

CHAPTER 2: User Interface Recipes

Obtaining and Launching DroidDraw

DroidDraw is hosted at the droiddraw.org web site. From this web site’s main page, you
can try out DroidDraw as a Java applet, or you can download the DroidDraw application
for the Mac OS X, Windows, and Linux platforms.

For example, click the main page’s Windows link and download droiddraw-r1b18.zip to
obtain DroidDraw for Windows. (Release 1, Build 18 is the latest DroidDraw version at
time of writing.)

Unarchive droiddraw-r1b18.zip and you’ll discover droiddraw.exe and droiddraw.jar
(an executable JAR file) for launching DroidDraw. From the Windows Explorer, double-
click either filename to launch this tool.

TIP: Specify java -jar droiddraw.jar tolaunch DroidDraw at the command line via the
JAR file.

Figure 2-17 presents DroidDraw’s user interface.

I[gj DroidDraw g
File Edit Project Help
Screen " Widgets] Layouts] Properties } Strings] Colors } Arrays I Support \
o euton | [Jenecgox () rasosuton /4
ol 10:57 AM

GricYiev

|EditText ||| AutoComplete | Textview

ﬂ/ January 2011 12:15PM E
flasay S MT WTF S e Listview

:

al I [i2

Output

Figure 2-17. DroidDraw’s user interface reveals a mockup of an Android device screen.

CHAPTER 2: User Interface Recipes

Exploring DroidDraw’s User Interface

Figure 2-17 reveals a simple user interface consisting of a menubar, a screen area, a
tabbed area, and an output area. You can drag each area’s border by a small amount to
enlarge or shrink that area.

The menubar consists of File, Edit, Properties, and Help menus. File presents the
following menu items:

B Open: Open an Android layout file (such as main.xml)

B Save: Save the current layout information to the last opened layout file.
A dialog box is displayed if no layout file has been opened.

B Save As: Display a dialog box that prompts the user for the name of a
layout file and saves the current layout information to this file.

B Quit: Exit DroidDraw. Unsaved changes will be lost.
The Edit menu presents the following menu items:

B Cut: Remove the selected text plus the character to the right of the
selected text from the output area.

B Copy: Copy the selected text from the output area to the clipboard.

B Paste: Paste the contents of the clipboard over the current selection or
at the current caret position in the output area.

B Select All: Select the entire contents of the output area.

B Clear Screen: Remove all widgets and layout information from the user
interface displayed in the screen area.

B Set Ids from Labels: Instead of assigning text such as "@+id/widget29"
to a widget’s android:id XML attribute, assign a widget’s value (such
as a button’s OK text) to android:id; "@+id/0k", for example. This text
is displayed in the output area the next time the XML layout
information is generated.

Unlike the File and Edit menus, the menu items for the Project menu don’t appear to be
fully implemented.

The Help menu presents the following menu items:

B Tutorial: Point the default browser to
http://www.droiddraw.org/tutorial.html to explore some interesting
DroidDraw tutorials.

B About: Present a simple about dialog box without any version
information.

B Donate: Point the default browser to the PayPal web site to make a
donation that supports continued DroidDraw development.

http://www.droiddraw.org/tutorial.html

CHAPTER 2: User Interface Recipes

The screen area presents visual feedback for the Android screen being built. It also
provides Root Layout and Screen Size dropdown listboxes for choosing which layout
serves as the ultimate parent layout (choices include AbsoluteLayout, LinearLayout,
RelativeLayout, ScrollView, and TableLayout), and for choosing the target screen size so
you’ll know what the user interface looks like when displayed on that screen (choices
include QVGA Landscape, QVGA Portrait, HYGA Landscape, and HVGA Portrait).

The tabbed area provides a Widgets tab whose widgets can be dragged to the screen, a
Layouts tab whose layouts can be dragged to the screen, a Properties tab for entering
values for the selected widget’s/layout’s properties, Strings/Colors/Arrays tabs for
entering these resources, and a Support tab for making a donation.

Finally, the output area presents a textarea that displays the XML equivalent of the
displayed screen when you click its Generate button. The Load button doesn’t appear to
accomplish anything useful (althought it appears to undo a clear screen operation).

Creating a Simple Screen

Suppose you're building an app that displays (via a textview component) a randomly
selected famous quotation in response to a button click. You decide to use DroidDraw
to build the app’s single screen.

Start DroidDraw, leave HVGA Portrait as the screen size, and replace AbsoluteLayout
with LinearLayout as the root layout in order to present the textview and button
components in a vertical column.

NOTE: Unlike Android, which chooses horizontal as the default orientation for LinearLayout,
DroidDraw chooses vertical as the default orientation.

On the Widgets tab, select TextView and drag it to the screen. Select the Properties tab,
and enter fill parent into the Width textfield, 100px into the Height textfield, and
Quotation into the Text textfield. Click Apply; Figure 2—18 shows the resulting screen.

oreraoraw M=
File Edit Project Help
Screen (Widgets | Layouts | Properties | Strings | Colors T Arrays T Support ‘
Root Layout: Width fill_parent ~

Screen Size: HVGA Portrait | v

al & 1:53PM

100px
Height &

Backaround Color 7‘ v [:]

Opx

DroidDraw
Quotation

Padding

e |visile [v]

jotation
Text Qu

<

Output

Figure 2-18. The textview component appears at the top of the screen.

CHAPTER 2: User Interface Recipes

On the Widgets tab, select Button and drag it to the screen. Select the Properties tab,
and enter fill parent into the Width textfield and Get Quote into the Text textfield. Click
Apply; Figure 2-19 shows the resulting screen.

|2/ DroidDraw Q@E

File Edit Project Help

Screen " Widgets | Layouts | Properties | Strings | Colors | Arrays | Support |
ottt s s .
e
al &) 2:02PM Height wrap_content
Padding Opx
Get Quote
Text Get Quote | =

Output

Figure 2-19. The button component appears underneath the textview component.

Select Save As from the File menu to save this screen’s XML to a resource file named
main.xml. As you learned in Chapter 1, this file is ultimately placed in the layout
subdirectory of an Android project’s res directory.

Alternatively, you could click the Generate button (at the bottom of the Output area) to
generate the screen’s XML (see Listing 2-64), select this text (via Edit’s Select All menu
item), and copy it to the clipboard (via Edit’'s Copy menu item) for later use.

Listing 2-64. main.xml|

<?xml version="1.0" encoding="utf-8"?>

<Linearlayout
android:id="@+id/widget27"
android:layout_width="fill parent"
android:layout_height="fill parent"
xmlns:android="http://schemas.android.com/apk/res/android"
android:orientation="vertical"
>

<TextView
android:id="@+id/widget29"
android:layout_width="fill parent"
android:layout_height="100px"
android:text="Quotation"
>

</TextView>

<Button
android:id="@+id/widget30"
android:layout_width="fill parent"
android:layout_height="wrap_content"
android:text="Get Quote"

>
</Button>
</Linearlayout>

http://schemas.android.com/apk/res/android

CHAPTER 2: User Interface Recipes

DroidDraw assigns text to XML properties rather than employing resource references.
For example, Listing 2-64 assigns “Quotation” instead of "@string/quotation” to the
TextView element’s android:text property.

Although embedding strings is inconvenient from a maintenance perspective, you can
use the Strings tab to enter string resource name/value pairs and click the Save button
to save these resources to a strings.xml file, and manually enter the references later.

Summary

As you have seen, Android provides some very flexible and extensible user interface
tools in the provided SDK. Properly leveraging these tools means you can be free of
worrying whether or not your application will look and feel the same across the broad
range of devices running Android today.

In this chapter, we have explored how to use Android’s resource framework to supply
resources for multiple devices. You saw techniques for manipulating static images as
well as creating drawables of your own. We looked at overriding the default behavior of
the window decorations as well as system input methods. We looked at ways to add
user value through animating views. Finally we extended the default toolkit by creating
new custom controls and customizing the AdapterViews used to display sets of data.

In the next chapter, we will look at using the SDK to communicate with the outside
world; accessing network resources and talking to other devices.

Chapter

Communications and
Networking

The key to many successful mobile applications is their ability to connect and interact
with remote data sources. Web services and APIs are abundant in today’s world,
allowing an application to interact with just about any service, from weather forecasts to
personal financial information. Bringing this data into the palm of a user’s hand and
making it accessible from anywhere is one of the greatest powers of the mobile
platform. Android builds on the Web foundations that Google is known for and provides
a rich toolset for communicating with the outside world.

3-1. Displaying Web Information

Problem

HTML or image data from the Web needs to be presented in the application without any
modification or processing.

Solution
(API Level 1)

Display the information in a WebView. WebView is a view widget that can be embedded in
any layout to display Web content, both local and remote, in your application. WebView is
based on the same open source WebKit technology that powers the Android Browser
application; affording applications the same level of power and capability.

How It Works

WebView has some very desirable properties when displaying assets downloaded from
the Web , not the least of which are two-dimensional scrolling (horizontal and vertical at

155

CHAPTER 3: Communications and Networking

the same time), and zoom controls. A WebView can be the perfect place to house a large
image, such as a stadium map, that the user may want to pan and zoom around. Here
we will discuss how to do this with assets both local and remote.

Display a URL

The simplest case is displaying an HTML page or image by supplying the URL of the
resource to the WebView. The following are a handful of practical uses for this technique
in your applications:

B Provide access to your corporate site without leaving the application

B Display a page of live content from a web server, such as an FAQ
section, that can be changed without requiring an upgrade to the
application.

B Display a large image resource that the user would want to interact
with using pan/zoom.

Let’s take a look at a simple example that loads a very popular web page, but inside the
content view of an Activity instead of opening the Browser (see Listings 3-1 and 3-2).

Listing 3-1. Activity Containing a WebView

public class MyActivity extends Activity {
@0verride
public void onCreate(Bundle savedInstanceState) {
super.onCreate(savedInstanceState);

WebView webview = new WebView(this);

//Enable JavaScript support
webview.getSettings().setJavaScriptEnabled(true);
webview.loadUrl("http://www.google.com/");

setContentView(webview);

NOTE: By default, WebView has JavaScript support disabled. Be sure to enable JavaScript in the
WebView.WebSettings object if the content you are displaying requires it.

Listing 3-2. AndroidManifest.xml Setting Required Permissions

<?xml version="1.0" encoding="utf-8"?>
<manifest xmlns:android="http://schemas.android.com/apk/res/android"
package="com.examples.webvien"
android:versionCode="1"
android:versionName="1.0">
<application android:icon="@drawable/icon" android:label="@string/app_name">
<activity android:name=".MyActivity">
<intent-filter>
<action android:name="android.intent.action.MAIN" />
<category android:name="android.intent.category.LAUNCHER" />
</intent-filter>

http://www.google.com/
http://schemas.android.com/apk/res/android

CHAPTER 3: Communications and Networking

</activity>
</application>
<uses-permission android:name="android.permission.INTERNET" />
</manifest>

IMPORTANT: If the content you are loading into WebView is remote, AndroidManifest.xml must
declare that it uses the android.permission.INTERNET permission.

The result displays the HTML page in your Activity (see Figure 3-1).
Ml € 12:00am

Activity

Web Images Places News more v @
Google
i C§'

Sign in
iGoogle Settings Help

View Google in: Mobile | Classic
Figure 3-1. HTML Page in a WebView

Local Assets

WebView is also quite useful in displaying local content to take advantage of either
HTML/CSS formatting or the pan/zoom behavior it provides to its contents. You may
use the assets directory of your Android project to store resources you would like to
display in a WebView, such as large images or HTML files. To better organize the assets,
you may also create directories under assets to store files in.

WebView.loadUrl() can display stored under assets by using the
file:///android_asset/<resource path> URL schema. For example, if the file android. jpg
was placed into the assets directory, it could be loaded into a WebView using

file:///android_asset/android. jpg

CHAPTER 3: Communications and Networking

If that same file were placed in a directory named images under assets, WebView could
load it with the URL

file:///android_asset/images/android.jpg

In addition, WebView.loadData() will load raw HTML stored in a String resource or
variable into the view. Using this technique, preformatted HTML text could be stored in
res/values/strings.xml or downloaded from a remote API and displayed in the
application.

Listings 3-3 and 3-4 show an example Activity with two WebView widgets stacked
vertically on top of one another. The upper view is displaying a large image file stored in
the assets directory, and the lower view is displaying an HTML string stored in the
applications string resources.

Listing 3-3. res/layout/main.xml

<LinearlLayout xmlns:android="http://schemas.android.com/apk/res/android"
android:layout_width="fill parent"
android:layout_height="fill parent"
android:orientation="vertical">
<WebView
android:id="@+id/uppervien"
android:layout_width="fill parent"
android:layout_height="fill parent"
android:layout_weight="1"
/>
<WebView
android:id="@+id/lowerview"
android:layout_width="fill parent"
android:layout_height="fill parent"”
android:layout_weight="1"
/>
</Linearlayout>

Listing 3-4. Activity to Display Local Web Content

public class MyActivity extends Activity {
@0verride
public void onCreate(Bundle savedInstanceState) {
super.onCreate(savedInstanceState);
setContentView(R.layout.main);

WebView upperView = (WebView)findViewById(R.id.upperview);
//Zoom feature must be enabled
upperView.getSettings().setBuiltInZoomControls(true);
upperView.loadUrl("file:///android_asset/android.jpg");

WebView lowerView = (WebView)findViewById(R.id.lowerview);
String htmlString =

"<h1>Header</h1><p>This is HTML text
<i>Formatted in italics</i></p>";
lowerView.loadData(htmlString, "text/html", "utf-8");

http://schemas.android.com/apk/res/android

CHAPTER 3: Communications and Networking

When the Activity is displayed, each WebView occupies half of the screen’s vertical
space. The HTML string is formatted as expected, while the large image can be scrolled
both horizontally and vertically; the user may even zoom in or out (see Figure 3-2).

Z Ml @ 12:00 AM

Header

This is HTML text
Formatted in italics

Figure 3-2. Two WebViews displaying local resources

3-2. Intercepting WebView Events

Problem

Your application is using a WebView to display content, but also needs to listen and
respond to users clicking links on the page.

Solution
(API Level 1)

Implement a WebViewClient and attach it to the WebView. WebViewClient and
WebChromeClient are two WebKit classes that allow an application to get event callbacks
and customize the behavior of the WebView. By default, WebView will pass a URL to the
ActivityManager to be handled if no WebViewClient is present, which usually results in
any clicked link loading in the Browser application instead of the current WebView.

CHAPTER 3: Communications and Networking

How It Works

In Listing 3-5, we create an Activity with a WebView that will handle its own URL loading.
Listing 3-5. Activity with a WebView That Handles URLs

public class MyActivity extends Activity {
@0verride
public void onCreate(Bundle savedInstanceState) {
super.onCreate(savedInstanceState);

WebView webview = new WebView(this);
webview.getSettings().setJavaScriptEnabled(true);
//Add a client to the view
webview.setWebViewClient(new WebViewClient());
webview.loadUrl("http://www.google.com");
setContentView(webview);

}

In this example, simply providing a plain vanilla WebViewClient to WebView allows it to
handle any URL requests itself, instead of passing them up to the ActivityManager, so
clicking on a link will load the requested page inside the same view. This is because the
default implementation simply returns false for shouldOverrideUrlLoading(), which tells
the client to pass the URL to the WebView and not the application.

In this next case, we will take advantage of the
WebViewClient.shouldOverrideUrlLoading() callback to intercept and monitor user
activity (see Listing 3-6).

Listing 3-6. Activity That Intercepts WebView URLs

public class MyActivity extends Activity {
@0verride
public void onCreate(Bundle savedInstanceState) {
super.onCreate(savedInstanceState);

WebView webview = new WebView(this);
webview.getSettings().setJavaScriptEnabled(true);
//Add a client to the view
webview.setWebViewClient(mClient);
webview.loadUrl("http://www.google.com");
setContentView(webview);

}

private WebViewClient mClient = new WebViewClient() {
@0verride
public boolean shouldOverrideUrlLoading(WebView view, String url) {
Uri request = Uri.parse(url);

if(TextUtils.equals(request.getAuthority(), "www.google.com")) {
//Allow the load
return false;

Toast.makeText(MyActivity.this, "Sorry, buddy", Toast.LENGTH_SHORT).show();
return true;

http://www.google.com
http://www.google.com
http://www.google.com

CHAPTER 3: Communications and Networking

}

};
}
In this example, shouldOverrideUrlLoading() determines whether to load the content
back in this WebView based on the url it was passed, keeping the user from leaving
Google’s site. Uri.getAuthority() returns the hostname portion of a URL, and we use
that to check if the link the user clicked is on Google’s domain (wWwww.google.com). If we
can verify the link is to another Google page, returning false allows the WebView to load
the content. If not, we notify the user and returning true tell the WebViewClient that the
application has taken care of this URL, and not to allow the WebView to load it.

This technique can be more sophisticated, where the application actually handles the
URL by doing something interesting. A custom schema could even be developed to
create a full interface between your application and the WebView content.

3-3. Accessing WebView with JavaScript

Problem

Your application needs access to the raw HTML of the current contents displayed in a
WebView, either to read or modify specific values.

Solution
(API Level 1)

Create a JavaScript interface to bridge between the WebView and application code.

How It Works

WebView.addJavascriptInterface() binds a Java object to JavaScript so that its
methods can then be called within the WebView. Using this interface, JavaScript can be
used to marshal data between your application code and the WebView’'s HTML.

CAUTION: Allowing JavaScript to control your application can inherently present a security
threat, allowing remote execution of application code. This interface should be utilized with that
possibility in mind.

Let’s look at an example of this in action. Listing 3-7 presents a simple HTML form to be
loaded into the WebView from local assets. Listing 3-8 is an Activity that uses two
JavaScript functions to exchange data between the Activity preferences and content in a
WebView.

http://www.google.com

CHAPTER 3: Communications and Networking

Listing 3-7. assets/form.html|

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"
"http://www.w3.0rg/TR/html4/strict.dtd">

<html>

<form name="input" action="form.html" method="get">

Enter Email: <input type="text" id="emailAddress" />

<input type="submit" value="Submit" />

</form>

</html>

Listing 3-8. Activity with JavaScript Bridge Interface

public class MyActivity extends Activity {
@0verride
public void onCreate(Bundle savedInstanceState) {
super.onCreate(savedInstanceState);

WebView webview = new WebView(this);
webview.getSettings().setJavaScriptEnabled(true);
webview.setWebViewClient(mClient);

//Attach the custom interface to the view
webview.addJavascriptInterface(new MyJavaScriptInterface(), "BRIDGE");

setContentView(webview);

//Load the form

webview.loadUrl("file:///android_asset/form.html");
}

private static final String JS_SETELEMENT =
"javascript:document.getElementById('%s"').value="%s"";

private static final String JS_GETELEMENT =
"javascript:window.BRIDGE.storeElement('%s",document.getElementById('%s").value)";

private static final String ELEMENTID = "emailAddress";

private WebViewClient mClient = new WebViewClient() {
@0verride
public boolean shouldOverrideUrlLoading(WebView view, String url) {
//Before leaving the page, attempt to retrieve the email using JavaScript
view.loadUrl(String.format(JS_GETELEMENT, ELEMENTID, ELEMENTID));
return false;

}

@0verride

public void onPageFinished(WebView view, String url) {
//When page loads, inject address into page using JavaScript
SharedPreferences prefs = getPreferences(Activity.MODE_PRIVATE);
view.loadUrl(String.format(JS_SETELEMENT, ELEMENTID,

prefs.getString(ELEMENTID, "")));
}
};

private class MyJavaScriptInterface {
//Store an element in preferences
@SuppressWarnings ("unused")
public void storeElement(String id, String element) {
SharedPreferences.Editor edit =
getPreferences(Activity.MODE_PRIVATE).edit();
edit.putString(id, element);

http://www.w3.org/TR/html4/strict.dtd

CHAPTER 3: Communications and Networking

edit.commit();
//I1f element is valid, raise a Toast
if(!TextUtils.isEmpty(element)) {
Toast.makeText(MyActivity.this, element, Toast.LENGTH_ SHORT).show();
}

}
}
}

In this somewhat contrived example, a single element form is created in HTML and
displayed in a WebView. In the Activity code, we look for a form value in the WebView
with the id of "emailAddress," and save its value to SharedPreferences every time a link
is clicked on the page (in this case, the submit button of the form) through the
shouldOverrideUrlLoading() callback. Whenever the page finished loading (i.e.,
onPageFinished() is called), we attempt to inject the current value from
SharedPreferences back into the web form.

A Java class is created called MyJavaScriptInterface, which defines the method
storeklement(). When the view is created, we call the
WebView.addJavascriptInterface() method to attach this object to the view, and give it
the name BRIDGE. When calling this method, the String parameter is a name used to
reference the interface inside of JavaScript code.

We have defined two JavaScript methods as constant Strings here, JS_GETELEMENT and
JS_SETELEMENT. These methods are executed on the WebView by being passed to.
loadurl() Notice that JS GETELEMENT is a reference to calling our custom interface
function (referenced as BRIDGE.storeElement), which will call that method on
MyJavaScripInterface and store the form element’s value in preferences. If the value
retrieved from the form is not blank, a Toast will also be raised.

Any JavaScript may be executed on the WebView in this manner, and it does not need
to be a method included as part of the custom interface. JS_SETELEMENT, for example,
uses pure JavaScript to set the value of the form element on the page.

One popular application of this technique is to remember form data that a user may
need to enter in the application, but the form must be Web-based, such as a reservation
form or payment form for a Web application that doesn’t have a lower-level API to
access.

3-4. Downloading an Image File

Problem

Your application needs to download and display an image from the Web or other remote
server.

CHAPTER 3: Communications and Networking

Solution
(API Level 3)

Use AsyncTask to download the data in a background thread. AsyncTask is a wrapper
class that makes threading long-running operations into the background painless and
simple; as well as managing concurrency with an internal thread pool. In addition to
handling the background threading, callback methods are also provided before, during,
and after the operation executes, allowing you to make any updates required on the
main Ul thread.

How It Works

In the context of downloading an image, let’s create a subclass of ImageView called
WeblmageView, which will lazily load an image from a remote source and display it as
soon as it is available. The downloading will be performed inside of an AsyncTask
operation (see Listing 3-9).

Listing 3-9. WebimageView

public class WebImageView extends ImageView {
private Drawable mPlaceholder, mImage;

public WebImageView(Context context) {
this(context, null);
}

public WebImageView(Context context, AttributeSet attrs) {
this(context, attrs, 0);

public WebImageView(Context context, AttributeSet attrs, int defaultStyle) {
super(context, attrs, defaultStyle);

public void setPlaceholderImage(Drawable drawable) {
mPlaceholder = drawable;
if(mImage == null) {
setImageDrawable(mPlaceholder);

}

public void setPlaceholderImage(int resid) {
mPlaceholder = getResources().getDrawable(resid);
if(mImage == null) {
setImageDrawable(mPlaceholder);

}

public void setImageUrl(String url) {
DownloadTask task = new DownloadTask();
task.execute(url);

CHAPTER 3: Communications and Networking

}
private class DownloadTask extends AsyncTask<String, Void, Bitmap> {
@0verride
protected Bitmap doInBackground(String... params) {
String url = params[0];
try {
URLConnection connection = (new URL(url)).openConnection();
InputStream is = connection.getInputStream();
BufferedInputStream bis = new BufferedInputStream(is);
ByteArrayBuffer baf = new ByteArrayBuffer(50);
int current = 0;
while ((current = bis.read()) != -1) {
baf.append((byte)current);
byte[] imageData = baf.toByteArray();
return BitmapFactory.decodeByteArray(imageData, 0, imageData.length);
} catch (Exception exc) {
return null;
}
@0verride
protected void onPostExecute(Bitmap result) {
mImage = new BitmapDrawable(result);
if(mImage != null) {
setImageDrawable(mImage);
}
};

}

As you can see, WebImageView is a simple extension of the Android ImageView widget.
The setPlaceholderImage() methods allow a local drawable to be set as the display
image until the remote content is finished downloading. The bulk of the interesting work
begins once the view has been given a remote URL using setImageUrl(), at which point
the custom AsyncTask begins work.

Notice that an AsyncTask is strongly typed with three values for the input parameter,
progress value, and result. In this case, a String is passed in to the task’s execute
method and the background operation should return a Bitmap. The middle value, the
progress, we are not using in this example, so it is set as Void. When extending
AsyncTask, the only required method to implement is doInBackground(), which defines
the chunk of work to be run on a background thread. In the previous example, this is
where a connection is made to the remote URL provided and the image data is
downloaded. Upon completion, we attempt to create a Bitmap from the downloaded
data. If an error occurs at any point, the operation will abort and return null.

The other callback methods defined in AsyncTask, such as onPreExecute(),
onPostExecute(), and onProgressUpdate(), are called on the main thread for the
purposes of updating the user interface. In the previous example, onPostExecute() is
used to update the view’s image with the result data.

CHAPTER 3: Communications and Networking

IMPORTANT: Android Ul classes are not thread-safe. Be sure to use one of the callback
methods that occur on the main thread to make any updates to the Ul. Do not update views from
within doInBackground().

Listings 3-10 and 3-11 show a simple example of using this class in an Activity. Since
this class is not part of the android.widget or android.view packages, we must user the
fully qualified package name when using it in XML.

Listing 3-10. res/layout/main.xml

<?xml version="1.0" encoding="utf-8"?>
<LinearlLayout xmlns:android="http://schemas.android.com/apk/res/android"
android:layout_width="fill parent"
android:layout_height="fill parent"
android:orientation="vertical">
<com.examples.WebImageView
android:id="@+id/webImage"
android:layout_width="wrap_content"”
android:layout_height="wrap_content"
/>
</LinearlLayout>

Listing 3-11. Example Activity

public class WebImageActivity extends Activity {
@0verride
public void onCreate(Bundle savedInstanceState) {
super.onCreate(savedInstanceState);
setContentView(R.layout.main);

WebImageView imageView = (WebImageView)findViewById(R.id.webImage);
imageView.setPlaceholderImage(R.drawable.icon);
imageView.setImageUrl("http://apress.com/resource/weblogo/Apress 120x90.gif");

}

In this example we first set a local image (the application icon) as the WebImageView
placeholder. This image is displayed immediately to the user. We then tell the view to
fetch an image of the Apress logo from the Web. As noted previously, this downloads
the image in the background and, when it is complete, replaces the placeholder image
in the view. It is this simplicity in creating background operations that had lead the
Android team to refer to AsyncTask as “Painless Threading”.

3-5. Downloading Completely in the Background

Problem

The application must download a large resource to the device, such as a movie file, that
must not require the user to keep the application active.

http://schemas.android.com/apk/res/android
http://apress.com/resource/weblogo/Apress_120x90.gif

CHAPTER 3: Communications and Networking

Solution
(API Level 9)

Use the DownloadManager API. The DownloadManager is a service added to the SDK with
API Level 9 that allows a long-running downloads to be handed off and managed
completely by the system. The primary advantage of using this service is that
DownloadManager will continue attempting to download the resource through failures,
connection changes, and even device reboots.

How It Works

Listing 3-12 is a sample Activity that makes use of DownloadManager to handle the
download of a large image file. When complete, the image is displayed in an ImageView.
Whenever you utilize DownloadManager to access content from the Web , be sure to
declare you are using the android.permission.INTERNET in the application’s manifest.

Listing 3-12. DownloadManager Sample Activity
public class DownloadActivity extends Activity {

private static final String DL_ID = "downloadId";
private SharedPreferences prefs;

private DownloadManager dm;
private ImageView imageView;

@0verride

public void onCreate(Bundle savedInstanceState) {
super.onCreate(savedInstanceState);
imageView = new ImageView(this);
setContentView(imageView);

prefs = PreferenceManager.getDefaultSharedPreferences(this);
dm = (DownloadManager)getSystemService (DOWNLOAD SERVICE);

@0Override
public void onResume() {
super.onResume();

if(!prefs.contains(DL_ID)) {
//Start the download
Uri resource = Uri.parse("http://www.bigfoto.com/dog-animal.jpg");
DownloadManager.Request request = new DownloadManager.Request(resource);
request.setAllowedNetworkTypes (Request.NETWORK MOBILE |
Request.NETWORK WIFI);
request.setAllowedOverRoaming(false);
//Display in the notification bar
request.setTitle("Download Sample");
long id = dm.enqueue(request);
//Save the unique id
prefs.edit().putLong(DL_ID, id).commit();
} else {
//Download already started, check status

http://www.bigfoto.com/dog-animal.jpg

CHAPTER 3: Communications and Networking

queryDownloadStatus();

registerReceiver(receiver,
new IntentFilter(DownloadManager.ACTION DOWNLOAD COMPLETE));

}

@0verride

public void onPause() {
super.onPause();
unregisterReceiver(receiver);

private BroadcastReceiver receiver = new BroadcastReceiver() {
@0verride
public void onReceive(Context context, Intent intent) {
queryDownloadStatus();

};

private void queryDownloadStatus() {
DownloadManager.Query query = new DownloadManager.Query();
query.setFilterById(prefs.getlLong(DL_ID, 0));
Cursor c = dm.query(query);
if(c.moveToFirst()) {
int status = c.getInt(c.getColumnIndex(DownloadManager.COLUMN_STATUS));
switch(status) {
case DownloadManager.STATUS_PAUSED:
case DownloadManager.STATUS_PENDING:
case DownloadManager.STATUS_RUNNING:
//Do nothing, still in progress
break;
case DownloadManager.STATUS_ SUCCESSFUL:
//Done, display the image
try {
ParcelFileDescriptor file =
dm.openDownloadedFile(prefs.getLong(DL_ID, 0));
FileInputStream fis =
new ParcelFileDescriptor.AutoCloseInputStream(file);
imageView.setImageBitmap(BitmapFactory.decodeStream(fis));
} catch (Exception e) {
e.printStackTrace();

break;

case DownloadManager.STATUS_FAILED:
//Clear the download and try again later
dm.remove(prefs.getLong(DL_ID, 0));
prefs.edit().clear().commit();
break;

CHAPTER 3: Communications and Networking

IMPORTANT: As of this book’s publishing date, there is a bug in the SDK that throws an
Exception claiming android.permission.ACCESS ALL_ DOWNLOADS is required to use
DownloadManager. This Exception is actually thrown when
android.permission.INTERNET is not in your manifest.

This example does all of its useful work in the Activity.onResume() method so the
application can determine the status of the download each time the user returns to the
Activity. Downloads within the manager can be references using a long ID value that is
returned when DownloadManager.enqueue() is called. In the example, we persist that
value in the application’s preferences in order to monitor and retrieve the downloaded
content at any time.

On first launch of the example application, a DownloadManager.Request object is created
to represent the content to download. At a minimum, this request needs the Uri of the
remote resource. However, there are many useful properties to set on the request as
well to control its behavior. Some of the useful properties include:

B Request.setAllowedNetworkTypes()

B Set specific network types over which the download may be retrieved.

B Request.setAllowedOverRoaming()

B Set if the download is allowed to occur while the device is on a
roaming connection.

B Request.setTitle()

B Set a title to be displayed in the system notification for the download.

B Request.setDescription()

B Set a description to be displayed in the system notification for the

download.

Once an ID has been obtained, the application uses that value to check the status of the
download. By registering a BroadcastReceiver to listen for the

ACTION_DOWNLOAD COMPLETE broadcast, the application will react to the download
finishing by setting the image file on the Activity’s ImageView. If the Activity is paused
while the download completes, upon the next resume the status will be checked and the
ImageView content will be set.

It is important to note that the ACTION_DOWNLOAD COMPLETE is a broadcast sent by the
DownloadManager for every download it may be managing. Because of this, we still much
check that the download ID we are interested in is really ready.

Destinations

In the Listing 3-12 example, we never told the DownloadManager where to place the file.
Instead, when we wanted to access the file we used the

CHAPTER 3: Communications and Networking

DownloadManager.openDownloadedFile() method with the ID value stored in preferences
to get a ParcelFileDescriptor, which can be turned into a stream the application can
read from. This is a simple and straightforward way to gain access to the downloaded
content, but it has some caveats to be aware of.

Without a specific destination, files are downloaded to the shared download cache,
where the system retains the right to delete them at any time to reclaim space. Because
of this, downloading in this fashion is a convenient way to get data quickly, but if your
needs for the download are more long term, a permanent destination should be specific
on external storage using one of the DownloadManager.Request methods:

B Request.setDestinationUri()

B Set the destination to a file Uri located on external storage.
B Request.setDestinationInExternalFilesDir()

B Set the destination to a hidden directory on external storage.
B Request.setDestinationInExternalPublicDir()

B Set the destination to a public directory on external storage.

NOTE: All destination methods writing to external storage will require your application to declare
use of android.permission.WRITE_EXTERNAL STORAGE in the manifest.

Files without an explicit destination also often get removed when
DownloadManager.remove() gets called to clear the entry from the manager list or the
user clears the downloads list; files downloaded to external storage will not be removed
by the system under these conditions.

3-6. Accessing a REST API

Problem

Your application needs to access a RESTful API over HTTP to interact with the web
services of a remote host.

Solution
(API Level 3)

Use the Apache HTTP classes inside of an AsyncTask. Android includes the Apache
HTTP components library, which provides a robust method of creating connections to
remote APIs. The Apache library includes classes to create GET, POST, PUT, and
DELETE requests with ease, as well as providing support for SSL, cookie storage,
authentication, and other HTTP requirements that your specific APl may have in its
HttpClient.

CHAPTER 3: Communications and Networking

REST stands for Representational State Transfer, and is a common architectural style
for web services today. RESTful APIs are typically built using standard HTTP verbs to
create requests of the remote resource and the responses are typically returned in a

structured document format, such as XML, JSON, or comma separated values (CSV).

How It Works

Listing 3-13 is an AsyncTask that can process any HttpUriRequest and return the string
response.

Listing 3-13. AsyncTask Processing HitpRequest
public class RestTask extends AsyncTask<HttpUriRequest, Void, String> {

public static final String HTTP_RESPONSE = "httpResponse";

private Context mContext;
private HttpClient mClient;
private String mAction;

public RestTask(Context context, String action) {
mContext = context;
mAction = action;
mClient = new DefaultHttpClient();

public RestTask(Context context, String action, HttpClient client) {
mContext = context;
mAction = action;
mClient = client;

}

@0verride
protected String doInBackground(HttpUriRequest... params) {
try{
HttpUriRequest request = params[0];
HttpResponse serverResponse = mClient.execute(request);

BasicResponseHandler handler = new BasicResponseHandler();
String response = handler.handleResponse(serverResponse);
return response;

} catch (Exception e) {
e.printStackTrace();
return null;

}

@0verride

protected void onPostExecute(String result) {
Intent intent = new Intent(mAction);
intent.putExtra(HTTP_RESPONSE, result);
//Broadcast the completion
mContext.sendBroadcast(intent);

CHAPTER 3: Communications and Networking

The RestTask can be constructed with or without an HttpClient parameter. The reason
for allowing this is so multiple requests can use the same client object. This is extremely
useful if your API requires cookies to maintain a session or if there is a specific set of
required parameters that are easier to set up once (like SSL stores). The task takes an
HttpUriRequest parameter to process (of which HttpGet, HttpPost, HttpPut, and
HttpDelete are all subclasses) and executes it.

A BasicResponseHandler processes the response, which is a convenience class that
abstracts our task from needing to check the response for errors. BasicResponseHandler
will return the HTTP response as a string if the response code is 1XX or 2XX, but throw
an HttpResponseException if the response code was 300 or greater.

The final important piece of this class exists in onPostExecute(), after the interaction
with the API is complete. When constructed, the RestTask takes a String parameter to
be the action of an Intent that is broadcast back to all listeners with the API response
encapsulated as an extra. This broadcast is the notification mechanism back to the
caller of the API that the data is ready for processing.

Now let’s use this powerful new tool to create some basic API requests. In the following
examples we utilize the Yahoo! Search REST API. This API only has two required
parameters for each request:

B appid

B Unique value to identify that application making the request
B query

B String representing the search query you want to execute

Visit http://developer.yahoo.com/search to find more information about this API.

GET Example

A GET request is the simplest and most common request in many public APIs.
Parameters that must be sent with the request are encoded into the URL string itself, so
no additional data must be provided. Let’s create a GET request to search for “Android”
(see Listing 3-14).

Listing 3-14. Activity Executing APl GET Request
public class SearchActivity extends Activity {

private static final String SEARCH ACTION = "com.examples.rest.SEARCH";
private static final String SEARCH_URI =
"http://search.yahooapis.com/WebSearchService/Vi/webSearch?appid=%s&query=%s";

private TextView result;
private ProgressDialog progress;

@0verride
public void onCreate(Bundle savedInstanceState) {
super.onCreate(savedInstanceState);

http://developer.yahoo.com/search
http://search.yahooapis.com/WebSearchService/V1/webSearch?appid=%s&query=%s

CHAPTER 3: Communications and Networking

result = new TextView(this);
setContentView(result);

//Create the search request

try{
String url = String.format(SEARCH_URI, "YahooDemo","Android");
HttpGet searchRequest = new HttpGet(new URI(url));

RestTask task = new RestTask(this,SEARCH _ACTION);
task.execute(searchRequest);
//Display progress to the user
progress = ProgressDialog.show(this, "Searching", "Waiting For Results...",
true);
} catch (Exception e) {
e.printStackTrace();

}

@0verride
public void onResume() {
super.onResume();
registerReceiver(receiver, new IntentFilter(SEARCH_ACTION));

@0verride

public void onPause() {
super.onPause();
unregisterReceiver(receiver);

private BroadcastReceiver receiver = new BroadcastReceiver() {
@0verride
public void onReceive(Context context, Intent intent) {
//Clear progress indicator
if(progress != null) {
progress.dismiss();

String response = intent.getStringExtra(RestTask.HTTP_RESPONSE);
//Process the response data (here we just display it)
result.setText(response);

}
};
}
In the example, we create the type of HTTP request that we need with the URL that we
want to connect to (in this case, a GET request to search.yahooapis.com). The URL is
stored as a constant format string, and the required parameters for the Yahoo! API
(appid and query) are added at runtime just before the request is created.

A RestTask is created with a unique action string to be broadcast upon completion, and
the task is executed. The example also defines a BroadcastReceiver and registers it for
the same action that was sent to the RestTask. When the task is complete, this receiver
will catch the broadcast and the API response can be unpacked and processed. We will
discuss parsing structured XML and JSON responses like this one in Recipes 3-7 and
3-8, so for now the example simply displays the raw response to the user interface.

CHAPTER 3: Communications and Networking

POST Example

Many times, APIs require that you provide some data as part of the request, perhaps an
authentication token or the contents of a search query. The API will require you to send
the request over HTTP POST so these values may be encoded into the request body
instead of the URL. Let’s run our search for “Android” again, but using a POST this time
(see Listing 3—15).

Listing 3-15. Activity Executing APl POST Request
public class SearchActivity extends Activity {

private static final String SEARCH ACTION = "com.examples.rest.SEARCH";
private static final String SEARCH_URI =

"http://search.yahooapis.com/WebSearchService/Vi/webSearch";
private static final String SEARCH QUERY = "Android";

private TextView result;
private ProgressDialog progress;

@0verride

public void onCreate(Bundle savedInstanceState) {
super.onCreate(savedInstanceState);
setTitle("Activity");
result = new TextView(this);
setContentView(result);

//Create the search request

try{
HttpPost searchRequest = new HttpPost(new URI(SEARCH URI));
List<NameValuePair> parameters = new ArraylList<NameValuePair>();
parameters.add(new BasicNameValuePair("appid","YahooDemo"));
parameters.add(new BasicNameValuePair("query",SEARCH QUERY));
searchRequest.setEntity(new UrlEncodedFormEntity(parameters));

RestTask task = new RestTask(this,SEARCH _ACTION);
task.execute(searchRequest);

//Display progress to the user

progress = ProgressDialog.show(this, "Searching", "Waiting For Results...",

true);
} catch (Exception e) {
e.printStackTrace();
}
@0verride

public void onResume() {
super.onResume();
registerReceiver(receiver, new IntentFilter(SEARCH_ACTION));

@0verride

public void onPause() {
super.onPause();
unregisterReceiver(receiver);

http://search.yahooapis.com/WebSearchService/V1/webSearch

CHAPTER 3: Communications and Networking

private BroadcastReceiver receiver = new BroadcastReceiver() {
@0verride
public void onReceive(Context context, Intent intent) {
//Clear progress indicator
if(progress != null) {
progress.dismiss();

String response = intent.getStringExtra(RestTask.HTTP_RESPONSE);
//Process the response data (here we just display it)
result.setText(response);

}

};
}
Notice in this example that the required parameters passed to the API to execute the
search are encoded into an HttpEntity instead of passed directly in the request URL.
The request created in this case was an HttpPost instance, which is still a subclass of
HttpUriRequest (like HttpGet), so we can use the same RestTask to run the operation. As
with the GET example, we will discuss parsing structured XML and JSON responses like
this one in Recipes 3-7 and 3-8, so for now the example simply displays the raw
response to the user interface.

NOTE: The Apache library bundled with the Android SDK does not include support for Multipart
HTTP POSTs. However, MultipartEntity, from the publicly available
org.apache.http.mime library, is compatible and can be brought in to your project as an
external source.

Basic Authentication

Another common requirement for working with an APl is some form of authentication.
Standards are emerging for REST API authentication such as OAuth 2.0, but the most
common authentication method is still basic username and password authentication
over HTTP. In Listing 3-16, we modify the RestTask to enable authentication in the HTTP
header per request.

Listing 3-16. RestTask with Basic Authentication

public class RestAuthTask extends AsyncTask<HttpUriRequest, Void, String> {
public static final String HTTP_RESPONSE = "httpResponse";

private static final String AUTH_USER
private static final String AUTH_PASS

"user@mydomain.com";
"password";

private Context mContext;
private AbstractHttpClient mClient;
private String mAction;

public RestAuthTask(Context context, String action, boolean authenticate) {
mContext = context;
mAction = action;

mailto:user@mydomain.com

CHAPTER 3: Communications and Networking

mClient = new DefaultHttpClient();
if(authenticate) {
UsernamePasswordCredentials creds =
new UsernamePasswordCredentials(AUTH_USER, AUTH_PASS);
mClient.getCredentialsProvider().setCredentials(AuthScope.ANY, creds);
}
}

public RestAuthTask(Context context, String action, AbstractHttpClient client) {
mContext = context;

mAction = action;
mClient = client;

@0verride

protected String doInBackground(HttpUriRequest... params) {
try{

HttpUriRequest request = params[0];
HttpResponse serverResponse = mClient.execute(request);

BasicResponseHandler handler = new BasicResponseHandler();
String response = handler.handleResponse(serverResponse);
return response;

} catch (Exception e) {
e.printStackTrace();
return null;

}

@0verride

protected void onPostExecute(String result) {
Intent intent = new Intent(mAction);
intent.putExtra(HTTP_RESPONSE, result);
//Broadcast the completion
mContext.sendBroadcast(intent);

}

Basic authentication is added to the HttpClient in the Apache paradigm. Since our
example task allows for a specific client object to be passed in for use, which may
already have the necessary authentication credentials, we have only modified the case
where a default client is created. In this case, a UsernamePasswordCredentials instance
is created with the username and password strings, and then set on the client’s
CredentialsProvider.

3-7. Parsing JSON

Problem

Your application needs to parse responses from an API or other source that are
formatted in JavaScript Object Notation (JSON).

CHAPTER 3: Communications and Networking

Solution
(API Level 1)

Use the org.json parser classes that are baked into Android. The SDK comes with a very
efficient set of classes for parsing JSON formatted strings in the org.json package.
Simply create a new JSONObject or JSONArray from the formatted string data and you'’ll
be armed with a set of accessor methods to get primitive data or nested JSONObjects
and JSONArrays from within.

How It Works

This JSON parser is strict by default, meaning that it will halt with an Exception when
encountering invalid JSON data or an invalid key. Accessor methods that prefix with
"get” will throw a JSONException if the requested value is not found. In some cases this
behavior is not ideal, and for the there is a companion set of methods that are prefixed
with “opt”. These methods will return null instead of throwing an exception when a value
for the requested key is not found. In addition, many of them have an overloaded version
that also takes a fallback parameter to return instead of null.

Let’s look at an example of how to parse a JSON string into useful pieces. Consider the
JSON in Listing 3-17.

Listing 3-17. Example JSON

{
"person”: {
"name": "John",
"age": 30,
"children": [
"name": "Billy"
"age": §
1
{
"name": "Sarah"
"age": 7
1
{
"name": "Tommy"
"age": 9
}
]
}
}

This defines a single object with three values: name (String), age (Integer), and children.
The parameter entitled "children” is an array of three more objects, each with their own
name and age. If we were to use org.json to parse this data and display some elements
in TextViews, it would look like the examples in Listings 3—18 and 3-19.

CHAPTER 3: Communications and Networking

Listing 3-18. res/layout/main.xml

<?xml version="1.0" encoding="utf-8"?>
<LinearlLayout xmlns:android="http://schemas.android.com/apk/res/android"
android:layout_width="fill parent"
android:layout_height="fill parent"
android:orientation="vertical">
<TextView
android:id="@+id/line1"
android:layout_width="fill parent"
android:layout_height="wrap_content"
/>
<TextView
android:id="@+id/1line2"
android:layout_width="fill parent"
android:layout_height="wrap_content"
/>
<TextView
android:id="@+id/1line3"
android:layout_width="fill parent"
android:layout_height="wrap_content"T
/>
</Linearlayout>

Listing 3-19. Sample JSON Parsing Activity

public class MyActivity extends Activity {
private static final String JSON_STRING =
"{\"person\":{\"name\":\"John\",\"age\":30,\"children\":
[{\"name\":\"Billy\",\"age\":5}," + "\"name\":\"Sarah\",\"age\":7},
{\"name\" :\"Tommy\",\"age\":9}1}}";

@0verride

public void onCreate(Bundle savedInstanceState) {
super.onCreate(savedInstanceState);
setContentView(R.layout.main);

(TextView)findViewById(R.id.line1);
(TextView)findViewById(R.id.line2);
(TextView)findViewById(R.id.line3);

TextView linel
TextView line2
TextView line3
try {
JSONObject person = (new JSONObject(JSON_STRING)).getJISONObject("person");
String name = person.getString("name");
linel.setText("This person's name is " + name);
line2.setText(name + " is " + person.getInt("age") + " years old.");
line3.setText(name + " has " + person.getJSONArray("children").length()
+ " children.");
} catch (JSONException e) {
e.printStackTrace();

}
}

For this example, the JSON string has been hard-coded as a constant. When the
Activity is created, the string is turned into a JSONObject, at which point all its data can
be accessed as key-value pairs, just as if it were stored in a Map or Dictionary. All the
business logic is wrapped in a try/catch statement since we are using the strict methods
for accessing data.

http://schemas.android.com/apk/res/android

CHAPTER 3: Communications and Networking

Functions like JSONObject.getString() and JSONObject.getInt() are used to reads
primitive data out and place it in the TextView; the getJSONArray() method pulls out the
nested “children” array. JSONArray has the same set of accessor methods as JSONObject
to read data, but they take an index into the array as a parameter instead of the name of
the key. In addition, a JSONArray can return its length, which we used in the example to
display how many children the person had.

The result of the sample application is shown in Figure 3-3.
12:00 AM
his person's name Is John

ohn is 30 years old.
ohn has 3 children.

Figure 3-3. Display of parsed JSON data in Activity

Debugging Trick

JSON is a very efficient notation; however, it can be difficult for humans to read a raw
JSON string, which can make it hard to debug parsing issues. Quite often the JSON you
are parsing is coming from a remote source or is not completely familiar to you, and you
need to display it for debugging purposes. Both JSONObject and JSONArray have an
overloaded toString() method that takes an integer parameter for pretty-printing the
data in a returned and indented fashion, making it easier to decipher. Often adding
something like myJsonObject.toString(2) to a troublesome section can save time and
headache.

CHAPTER 3: Communications and Networking

3-8. Parsing XML

Problem

Your application needs to parse responses from an API or other source that are
formatted as XML.

Solution
(API Level 1)

Implement a subclass of org.xml.sax.helpers.DefaultHandler to parse the data using
event-based SAX. Android has three primary methods you can use to parse XML data:

DOM, SAX, and Pull. The simplest to implement, and most memory-efficient, of these is
the SAX parser. SAX parsing works by traversing the XML data and generating callback
events at the beginning and end of each element.

How It Works

To describe this further, let’s look at the format of the XML that is returned when
requesting an RSS/ATOM news feed (see Listing 3-20).

Listing 3-20. RSS Basic Structure

<rss version="2.0">
<channel>
<item>
<titlex</title>
<link></link>
<description></description>
</item>
<item>
<titlex</title>
<link></link>
<description></description>
</item>
<item>
<titlex</title>
<link></link>
<description></description>
</item>

</channel>
</1ss>

Between each of the <title>, <link>, and <description> tags is the value associated
with each item. Using SAX, we can parse this data out into an array of items that the
application could then display to the user in a list (see Listing 3-21).

CHAPTER 3: Communications and Networking

Listing 3-21. Custom Handler to Parse RSS
public class RSSHandler extends DefaultHandler {

public class NewsItem {
public String title;
public String link;
public String description;

@0verride
public String toString() {
return title;

}

private StringBuffer buf;
private ArraylList<NewsItem> feedItems;
private NewsItem item;

private boolean inItem = false;

public ArraylList<NewsItem> getParsedItems() {
return feedItems;
}

//Called at the head of each new element
@0verride
public void startElement(String uri, String name, String gName, Attributes atts) {
if("channel".equals(name)) {
feedItems = new ArraylList<NewsItems();
} else if("item".equals(name)) {
item = new NewsItem();
inItem = true;
} else if("title".equals(name) && inItem) {
buf = new StringBuffer();
} else if("link".equals(name) &% inItem) {
buf = new StringBuffer();
} else if("description".equals(name) && inItem) {
buf = new StringBuffer();
}

}

//Called at the tail of each element end
@0verride
public void endElement(String uri, String name, String gName) {
if("item".equals(name)) {
feedItems.add(item);
inItem = false;
} else if("title".equals(name) && inItem) {
item.title = buf.toString();
} else if("link".equals(name) && inItem) {
item.link = buf.toString();
} else if("description".equals(name) && inItem) {
item.description = buf.toString();
}

buf = null;

CHAPTER 3: Communications and Networking

//Called with character data inside elements
@0verride
public void characters(char ch[], int start, int length) {
//Don't bother if buffer isn't initialized
if(buf != null) {
for (int i=start; i<start+length; i++) {
buf.append(ch[i]);

}

The RSSHandler is notified at the beginning and end of each element via startElement()
and endElement (). In between, the characters that make up the element’s value are
passed into the characters() callback.

1. When the parser encounters the first element, the list of items is
initialized.

2. When each item element is encountered a new Newsltem model is
initialized.

3. Inside of each item element, data elements are captured in a
StringBuffer and inserted into the members of the Newsltem.

4. When the end of each item is reached, the Newsltem is added to the
list.

5. When parsing is complete, feedltems is a complete list of all the items in
the feed.

Let’s look at this in action by using some of the tricks from the API example in Recipe 3-
6 to download the latest Google News in RSS form (see Listing 3-22).

Listing 3-22. Activity That Parses the XML and Displays the Items

public class FeedActivity extends Activity {
private static final String FEED_ACTION = "com.examples.rest.FEED";
private static final String FEED_URI = "http://news.google.com/?output=rss"”;

private ListView list;
private ArrayAdapter<NewsItem> adapter;

@0verride
public void onCreate(Bundle savedInstanceState) {
super.onCreate(savedInstanceState);

list = new ListView(this);
adapter = new ArrayAdapter<NewsItem>(this, android.R.layout.simple list item 1,
android.R.id.text1);
list.setAdapter(adapter);
list.setOnItemClickListener(new AdapterView.OnItemClickListener() {
@0verride
public void onItemClick(AdapterView<?> parent, View v, int position,
long id) {

http://news.google.com/?output=rss

CHAPTER 3: Communications and Networking

NewsItem item = adapter.getItem(position);
//Launch the link in the browser

Intent intent = new Intent(Intent.ACTION VIEW);
intent.setData(Uri.parse(item.link));
startActivity(intent);

}
b;
setContentView(list);
}
@0verride

public void onResume() {

super.onResume();

registerReceiver(receiver, new IntentFilter(FEED _ACTION));

//Retrieve the RSS feed

try{
HttpGet feedRequest = new HttpGet(new URI(FEED URI));
RestTask task = new RestTask(this,FEED ACTION);
task.execute(feedRequest);

} catch (Exception e) {
e.printStackTrace();

}

@0verride

public void onPause() {
super.onPause();
unregisterReceiver(receiver);

private BroadcastReceiver receiver = new BroadcastReceiver() {
@0verride
public void onReceive(Context context, Intent intent) {
String response = intent.getStringExtra(RestTask.HTTP_RESPONSE);

try {
//Parse the response data using SAX
SAXParserFactory factory = SAXParserFactory.newInstance();
SAXParser p = factory.newSAXParser();
RSSHandler parser = new RSSHandler();
//Run the parsing operation
p.parse(new InputSource(new StringReader(response)), parser);
//Clear all current items from the list
adapter.clear();
//Add all items from the parsed XML
for(NewsItem item : parser.getParsedItems()) {
adapter.add(item);

//Tell adapter to update the view
adapter.notifyDataSetChanged();

} catch (Exception e) {
e.printStackTrace();

};

CHAPTER 3: Communications and Networking

The example has been modified to display a ListView, which will be populated by the
parsed items from the RSS feed. In the example, we add an OnItemClickListener to the
list that will launch the news item’s link in the browser.

Once the data is returned from the API in the BroadcastReceiver, Android’s built-in
SAXParser handles the job of traversing the XML string. SAXParser.parse() uses an
instance of our RSSHandler to process the XML, which results in the handler’s feedltems
list being populated. The receiver then iterates through all the parsed items and adds
them to an ArrayAdapter for display in the ListView.

3-8. Receiving SMS

Problem

Your application must react to incoming SMS messages, commonly called text
messages.

Solution
(API Level 1)

Register a BroadcastReceiver to listen for incoming messages, and process them in
onReceive(). The operating system will fire a broadcast Intent with the
android.provider.Telephony.SMS_RECEIVED action whenever there is an incoming SMS
message. Your application can register a BroadcastReceiver to filter for this Intent and
process the incoming data.

NOTE: Receiving this broadcast does not prevent the rest of the system’s applications from
receiving it as well. The default messaging application will still receive and display any incoming
SMS.

How It Works

In previous recipes, we have defined BroadcastReceivers as private internal members to
an Activity. In this case, it is probably best to define the receiver separately and register
it in AndroidManifest.xml using the <receiver> tag. This will allow your receiver to
process the incoming events even when your application is not active. Listings 3-23 and
3-24 show an example receiver that monitors all incoming SMS, and raises a Toast
when one arrives from the interesting party.

Listing 3-23. Incoming SMS BroadcastReceiver

public class SmsReceiver extends BroadcastReceiver {
private static final String SHORTCODE = "55443";

@0verride

CHAPTER 3: Communications and Networking

public void onReceive(Context context, Intent intent) {
Bundle bundle = intent.getExtras();

Object[] messages = (Object[])bundle.get("pdus");
SmsMessage[] sms = new SmsMessage[messages.length];
//Create messages for each incoming PDU
for(int n=0; n < messages.length; n++) {
sms[n] = SmsMessage.createFromPdu((byte[]) messages[n]);

for(SmsMessage msg : sms) {
//Verify if the message came from our known sender
if(TextUtils.equals(msg.getOriginatingAddress(), SHORTCODE)) {
Toast.makeText(context,
"Received message from the mothership: "+msg.getMessageBody(),
Toast.LENGTH_SHORT).show();

}
Listing 3-24. Partial AndroidManifest.xml

<?xml version="1.0" encoding="utf-8"?>
<manifest .>
<application ..>
<receiver android:name=".SmsReceiver">
<intent-filter>
<action android:name="android.provider.Telephony.SMS_RECEIVED" />
</intent-filter>
</receiver>
</application>
<uses-permission android:name="android.permission.RECEIVE_SMS" />
</manifest>

IMPORTANT: Receiving SMS requires the android.permission.RECEIVE_SMS permission
be declared in the manifest!

Incoming SMS messages are passed via the extras of the broadcast Intent as an Object
array of byte arrays, each byte array representing an SMS packet data unit (PDU).
SmsMessage.createFromPdu() is a convenience method allowing us to create SmsMessage
objects from the raw PDU data. With the setup work complete, we can inspect each
message to determine if there is something interesting to handle or process. In the
example, we compare the originating address of each message against a known short
code, and notify the user when one arrives.

At the point in the example where the Toast is raised, you may wish to provide
something more useful to the user. Perhaps the SMS message includes an offer code
for your application, and you could launch the appropriate Activity to display this
information to the user within the application.

CHAPTER 3: Communications and Networking

3-9. Sending an SMS Message

Problem

Your application must issue outgoing SMS messages.

Solution
(API Level 4)

Use the SMSManager to send text and data SMS messages. SMSManager is a system
service that handles sending SMS and providing feedback to the application about the
status of the operation. SMSManager provides methods to send text messages using
SmsManager.sendTextMessage() and SmsManager.sendMultipartTextMessage(), or data
messages using SmsManager.sendDataMessage(). Each of these methods takes
Pendinglntent parameters to deliver status for the send operation and the message
delivery back to a requested destination.

How It Works

Let’s take a look at a simple example Activity that sends an SMS message and monitors
its status (see Listing 3-25).

Listing 3-25. Activity to Send SMS Messages

public class SmsActivity extends Activity {
private static final String SHORTCODE = "55443";
private static final String ACTION_SENT = "com.examples.sms.SENT";
private static final String ACTION_DELIVERED = "com.examples.sms.DELIVERED";

@0verride
public void onCreate(Bundle savedInstanceState) {
super.onCreate(savedInstanceState);

Button sendButton = new Button(this);
sendButton.setText("Hail the Mothership");
sendButton.setOnClickListener(new View.OnClickListener() {
@0verride
public void onClick(View v) {
sendSMS("Beam us up!");

}
1);

setContentView(sendButton);

}

private void sendSMS(String message) {
PendingIntent sIntent = PendingIntent.getBroadcast(this, o,
new Intent(ACTION SENT), 0);
PendingIntent dIntent = PendingIntent.getBroadcast(this, o,
new Intent(ACTION DELIVERED), 0);
//Monitor status of the operation

CHAPTER 3: Communications and Networking

registerReceiver(sent, new IntentFilter (ACTION SENT));
registerReceiver(delivered, new IntentFilter(ACTION DELIVERED));
//Send the message

SmsManager manager = SmsManager.getDefault();

manager .sendTextMessage (SHORTCODE, null, message, sIntent, dIntent);

}

private BroadcastReceiver sent = new BroadcastReceiver(){
@0verride
public void onReceive(Context context, Intent intent) {
switch (getResultCode()) {
case Activity.RESULT OK:
//Handle sent success
break;
case SmsManager.RESULT_ERROR_GENERIC_FAILURE:
case SmsManager.RESULT_ERROR_NO_SERVICE:
case SmsManager.RESULT_ERROR_NULL_PDU:
case SmsManager.RESULT_ERROR_RADIO_OFF:
//Handle sent error
break;

unregisterReceiver(this);

}
};

private BroadcastReceiver delivered = new BroadcastReceiver(){
@0verride
public void onReceive(Context context, Intent intent) {
switch (getResultCode()) {
case Activity.RESULT OK:
//Handle delivery success
break;
case Activity.RESULT_CANCELED:
//Handle delivery failure
break;

}

unregisterReceiver(this);

}
};

IMPORTANT: Sending SMS messages requires the android.permission.SEND_SMS
permission be declared in the manifest!

In the example, an SMS message is sent out via the SMSManager whenever the user taps
the button. Because SMSManager is a system service, the static SMSManager .getDefault()
method must be called to get a reference to it. sendTextMessage() takes the destination
address (number), service center address, and message as parameters. The service
center address should be null to allow SMSManager to use the system default.

Two BroadcastReceivers are registered to receive the callback Intents that will be sent:
one for status of the send operation and the other for status of the delivery. The

CHAPTER 3: Communications and Networking

receivers are registered only while the operations are pending, and they unregister
themselves as soon as the Intent is processed.

3-10. Communicating over Bluetooth

Problem

You want to leverage Bluetooth communication to transmit data between devices in
your application.

Solution
(API Level 5)

Use the Bluetooth APIs introduced in API Level 5 to create a peer-to-peer connection.
Bluetooth is a very popular wireless radio technology that is in almost all mobile devices
today. Many users think of Bluetooth as a way for their mobile device to connect with a
wireless headset or integrate with their vehicles stereo system. However, Bluetooth can
also be a simple and effective way for developers to create peer-to-peer connections in
their applications.

How It Works

IMPORTANT: Bluetooth is not currently supported in the Android emulator. In order to execute
the code in this example, it must be run on an Android device. Furthermore, to appropriately test
the functionality, two devices running the application simultaneously is required.

Bluetooth Peer-To-Peer

Listings 3-26 through 3-28 illustrate an example that uses Bluetooth to find other users
nearby and quickly exchange contact information (in this case, just an email address).
Connections are made over Bluetooth by discovering available "services” and
connecting to them by referencing their unique 128-bit UUID value. This means that the
UUID of the service you want to use must either be discovered or known ahead of time.

In this example, the same application is running on both devices on each end of the
connection, so we have the freedom to define the UUID in code as a constant because
both devices will have a reference to it.

NOTE: To ensure that the UUID you choose is unique, use one of the many free UUID generators
available on the Web .

CHAPTER 3: Communications and Networking

Listing 3-26. AndroidManifest.xml

<?xml version="1.0" encoding="utf-8"?>
<manifest xmlns:android="http://schemas.android.com/apk/res/android"
android:versionCode="1"
android:versionName="1.0" package="com.examples.bluetooth">
<application android:icon="@drawable/icon" android:label="@string/app_name"
<activity android:name=".ExchangeActivity"
android:label="@string/app_name">
<intent-filter>
<action android:name="android.intent.action.MAIN" />
<category android:name="android.intent.category.LAUNCHER" />
</intent-filter>
</activity>
</application>
<uses-sdk android:minSdkVersion="5" />

<uses-permission android:name="android.permission.BLUETOOTH"/>
<uses-permission android:name="android.permission.BLUETOOTH_ADMIN"/>
</manifest>

IMPORTANT: Remember that android.permission.BLUETOOTH must be declared in the
manifest to use these APIs. In addition, android.permission.BLUETOOTH_ADMIN must be
declared to make changes to preferences like discoverability, and enable/disable the adapter.

Listing 3-27. res/layout/main.xml

<?xml version="1.0" encoding="utf-8"?>
<Relativelayout xmlns:android="http://schemas.android.com/apk/res/android"

android:layout_width="fill parent"

android:layout_height="fill parent">

<TextView
android:id="@+id/label"
android:layout_width="wrap_content"”
android:layout_height="wrap_content"
android:textAppearance="?android:attr/textAppearancelarge"”
android:text="Enter Your Email:"

/>

<EditText
android:id="@+id/emailField"
android:layout_width="fill parent"
android:layout_height="wrap_content"
android:layout_below="@id/label"
android:singlelLine="true"
android:inputType="textEmailAddress"

/>

<Button
android:id="@+id/scanButton"
android:layout_width="fill parent"
android:layout_height="wrap_content"
android:layout_alignParentBottom="true'
android:text="Connect and Share"

/>

<Button

http://schemas.android.com/apk/res/android
http://schemas.android.com/apk/res/android

CHAPTER 3: Communications and Networking

android:id="@+id/listenButton"
android:layout_width="fill parent"
android:layout_height="wrap_content"
android:layout_above="@id/scanButton"
android:text="Listen for Sharers"
/>
</Relativelayout>

The user interface for this example consists of an EditText for the user to enter their
email address, and two buttons to initiate communication. The button titled “Listen for
Sharers” puts the device into Listen Mode. In this mode, the device will accept and
communicate with any device that attempts to connect with it. The button titled
"Connect and Share” puts the device into Search Mode. In this mode, the device
searches for any device that is currently listening and makes a connection (see Listing
3-28).

Listing 3-28. Bluetooth Exchange Activity
public class ExchangeActivity extends Activity {

// Unique UUID for this application (generated from the web)
private static final UUID MY_UUID =

UUID. fromString("321cb8fa-9066-4f58-935e-ef55d1ae06ec”);
//Friendly name to match while discovering
private static final String SEARCH_NAME = "bluetooth.recipe";

BluetoothAdapter mBtAdapter;
BluetoothSocket mBtSocket;
Button listenButton, scanButton;
EditText emailField;

@0verride

public void onCreate(Bundle savedInstanceState) {
super.onCreate(savedInstanceState);
requestWindowFeature(Window.FEATURE_INDETERMINATE_PROGRESS);
setContentView(R.layout.main);

//Check the system status
mBtAdapter = BluetoothAdapter.getDefaultAdapter();
if(mBtAdapter == null) {
Toast.makeText(this, "Bluetooth is not supported.”,
Toast.LENGTH_SHORT).show();
finish();
return;

}

if (!mBtAdapter.isEnabled()) {
Intent enableIntent = new Intent(BluetoothAdapter.ACTION REQUEST ENABLE);
startActivityForResult(enableIntent, REQUEST ENABLE);

}

emailField = (EditText)findViewById(R.id.emailField);
listenButton = (Button)findViewById(R.id.listenButton);
listenButton.setOnClickListener(new View.OnClickListener() {
@0verride
public void onClick(View v) {
//Make sure the device is discoverable first
if (mBtAdapter.getScanMode() !=

CHAPTER 3: Communications and Networking

BluetoothAdapter.SCAN_MODE_CONNECTABLE DISCOVERABLE) {
Intent discoverableIntent = new

Intent(BluetoothAdapter.ACTION REQUEST DISCOVERABLE);
discoverableIntent.putExtra(BluetoothAdapter.

EXTRA_DISCOVERABLE DURATION, 300);
startActivityForResult(discoverableIntent, REQUEST DISCOVERABLE);
return;

startListening();

}s
scanButton = (Button)findViewById(R.id.scanButton);
scanButton.setOnClickListener(new View.OnClickListener() {
@0verride
public void onClick(View v) {
mBtAdapter.startDiscovery();
setProgressBarIndeterminateVisibility(true);

1);
}

@0verride

public void onResume() {
super.onResume();
//Register the activity for broadcast intents
IntentFilter filter = new IntentFilter(BluetoothDevice.ACTION_ FOUND);
registerReceiver(mReceiver, filter);
filter = new IntentFilter(BluetoothAdapter.ACTION DISCOVERY FINISHED);
registerReceiver(mReceiver, filter);

}

@0verride

public void onPause() {
super.onPause();
unregisterReceiver(mReceiver);

@0verride
public void onDestroy() {
super.onDestroy();
try {
if(mBtSocket != null) {
mBtSocket.close();

}
} catch (IOException e) {
e.printStackTrace();

}

private static final int REQUEST_ENABLE = 1;
private static final int REQUEST DISCOVERABLE = 2;

@0verride
protected void onActivityResult(int requestCode, int resultCode, Intent data) {
switch(requestCode) {
case REQUEST_ENABLE:
if(resultCode != Activity.RESULT OK) {

CHAPTER 3: Communications and Networking

Toast.makeText(this, "Bluetooth Not Enabled.",
Toast.LENGTH_SHORT).show();
finish();

break;
case REQUEST DISCOVERABLE:

if(resultCode == Activity.RESULT CANCELED) {

Toast.makeText(this, "Must be discoverable.",
Toast.LENGTH_SHORT).show();

} else {
startListening();

}

break;
default:
break;

}

//Start a server socket and listen

private void startListening() {
AcceptTask task = new AcceptTask();
task.execute(MY_UUID);
setProgressBarIndeterminateVisibility(true);

//AsyncTask to accept incoming connections
private class AcceptTask extends AsyncTask<UUID,Void,BluetoothSocket> {

@0verride

protected BluetoothSocket doInBackground(UUID... params) {
String name = mBtAdapter.getName();
try {

//While listening, set the discovery name to a specific value

mBtAdapter.setName (SEARCH_NAME);

BluetoothServerSocket socket =
mBtAdapter.listenUsingRfcommWithServiceRecord("BluetoothRecipe”,
params[0]);

BluetoothSocket connected = socket.accept();

//Reset the BT adapter name

mBtAdapter.setName(name);

return connected;

} catch (IOException e) {

e.printStackTrace();

mBtAdapter.setName(name);

return null;

}

@0verride
protected void onPostExecute(BluetoothSocket socket) {
if(socket == null) {
return;

mBtSocket = socket;
ConnectedTask task = new ConnectedTask();
task.execute(mBtSocket);

CHAPTER 3: Communications and Networking

//AsyncTask to receive a single line of data and post
private class ConnectedTask extends AsyncTask<BluetoothSocket,Void,String> {

@0verride
protected String doInBackground(BluetoothSocket... params) {
InputStream in = null;
OutputStream out = null;
try {
//Send your data
out = params[0].getOutputStream();
out.write(emailField.getText().toString().getBytes());
//Receive the other's data
in = params[0].getInputStream();
byte[] buffer = new byte[1024];
in.read(buffer);
//Create a clean string from results
String result = new String(buffer);
//Close the connection
mBtSocket.close();
return result.trim();
} catch (Exception exc) {
return null;

}

@0verride

protected void onPostExecute(String result) {
Toast.makeText(ExchangeActivity.this, result, Toast.LENGTH_SHORT).show();
setProgressBarIndeterminateVisibility(false);

}

// The BroadcastReceiver that listens for discovered devices
private BroadcastReceiver mReceiver = new BroadcastReceiver() {
@0verride
public void onReceive(Context context, Intent intent) {
String action = intent.getAction();

// When discovery finds a device
if (BluetoothDevice.ACTION FOUND.equals(action)) {
// Get the BluetoothDevice object from the Intent
BluetoothDevice device =
intent.getParcelableExtra(BluetoothDevice.EXTRA_DEVICE);
if(TextUtils.equals(device.getName(), SEARCH _NAME)) {
//Matching device found, connect
mBtAdapter.cancelDiscovery();
try {
mBtSocket = device.createRfcommSocketToServiceRecord(MY UUID);
mBtSocket.connect();
ConnectedTask task = new ConnectedTask();
task.execute(mBtSocket);
} catch (IOException e) {
e.printStackTrace();

CHAPTER 3: Communications and Networking

//When discovery is complete
} else if (BluetoothAdapter.ACTION DISCOVERY_ FINISHED.equals(action)) {
setProgressBarIndeterminateVisibility(false);

}

};
}
When the application first starts up, it runs some basic checks on the Bluetooth status
of the device. If BluetoothAdapter.getDefaultAdapter() returns null, it is an indication
that the device does not have Bluetooth support and the application will go no further.
Even with Bluetooth on the device, it must be enabled for the application to use it. If
Bluetooth is disabled, the preferred method for enabling the adapter is to send an Intent
to the system with BluetoothAdapter.ACTION _REQUEST_ENABLE as the action. This notifies
the user of the issue, and allows them to enable Bluetooth. A BluetoothAdapter can be
manually enabled with the enable() method, but we strongly discourage you from doing
this unless you have requested the user’s permission another way.

With Bluetooth validated, the application waits for user input. As mentioned previously,
the example can be put into one of two modes on each device, Listen Mode or Search
Mode. Let’s look at the path each mode takes.

Listen Mode

Tapping the "Listen for Sharers” button starts the application listening for incoming
connections. In order for a device to accept incoming connections from devices it may
not know, it must be set as discoverable. The application verifies this by checking if the
adapter’s scan mode is equal to SCAN_MODE_CONNECTABLE_DISCOVERABLE. If the adapter
does not meet this requirement, another Intent is sent to the system to notify the user
that they should allow the device to be discoverable, similar to the method used to
request Bluetooth be enabled. If the user accepts this request, the Activity will return a
result equal to the length of time they allowed the device to be discoverable; if they
cancel the request, the Activity will return Activity.RESULT_CANCELED. Our example
monitors for a user canceling in onActivityResult(), and finishes under those
conditions.

If the user allows discovery, or if the device was already discoverable, an AcceptTask is
created and executed. This task creates a listener socket for the specified UUID of the
service we defined, and blocks while waiting for an incoming connection request. Once
a valid request is received, it is accepted and the application moves into Connected
Mode.

During the period of time while the device is listening, its Bluetooth name is set to a
known unique value (SEARCH_NAME) to speed up the discovery process (we’ll see more
about why in the "Search Mode” section). Once the connection is established, the
default name given to the adapter is restored.

CHAPTER 3: Communications and Networking

Search Mode

Tapping the "Connect and Share” button tells the application to begin searching for
another device to connect with. It does this by starting a Bluetooth discovery process
and handling the results in a BroadcastReceiver. When a discovery is started via
BluetoothAdapter.startDiscovery(), Android will asynchronously call back with
broadcasts under two conditions: when another device is found, and when the process
is complete.

The private receiver mReceiver is registered at all times when the Activity is visible to the
user, and will receive a broadcast with each new discovered device. Recall from the
discussion on Listen Mode that the device name of a listening device was set to a
unique value. Upon each discovery made, the receiver checks if the device name
matches our known value, and attempts to connect when one is found. This is important
to the speed of the discovery process because otherwise the only way to validate each
device is to attempt a connection to the specific service UUID and see if the operation is
successful. The Bluetooth connection process is heavyweight and slow, and should only
be done when necessary to keep things performing well.

This method of matching devices also relieves the user of the need to select manually
which device they want to connect to. The application is smart enough to find another
device that is running the same application and in a listening mode to complete the
transfer. Removing the user also means that this value should be unique and obscure so
as to avoid finding other devices that may accidentally have the same name.

With a matching device found, we cancel the discovery process (as it is also
heavyweight and will slow down the connection) and make a connection to the service’s
UUID. With a successful connection made, the application moves into Connected Mode.

Gonnected Mode

Once connected, the application on both devices will create a ConnectedTask to send
and receive the user contact information. The connected BluetoothSocket has an
InputStream and an OutputStream available to do data transfer. First, the current value of
the email text field is packaged up and written to the OutputStream. Then, the
InputStreanm is read to receive the remote device’s information. Finally, each device
takes the raw data it received and packages it into a clean String to display for the user.

The ConnectedTask.onPostExecute() method is tasked with displaying the results of the
exchange to the user; currently, this is done by raising a Toast with the received
contents. After the transaction, the connection is closed and both devices are in the
same mode and ready to execute another exchange.

For more information on this topic, take a look at the BluetoothChat sample application
provided with the Android SDK. This application provides a great demonstration of
making a long-lived connection for users to send chat messages between devices.

CHAPTER 3: Communications and Networking

Bluetooth Beyond Android

As we mentioned in the beginning of this section, Bluetooth is found in many wireless
devices besides mobile phones and tablets. RFCOMM interfaces also exist in devices
like Bluetooth modems and serial adapters. The same APIs that were used to create the
peer-to-peer connection between Android devices can also be used to connect to other
embedded Bluetooth devices for the purposes of monitoring and control.

The key to establishing a connection with these embedded devices is obtaining the
UUID of the RFCOMM services they support. As with the previous example, with the
proper UUID we can create a BluetoothSocket and transmit data. However, since the
UUID is not known as it was in the last example, we must have a way to discover and
obtain it.

The capability to do this exists in the SDK, although it is not documented and is subject
to change in future versions.

Discover a UUID

A quick glance at the source code for BluetoothDevice (thanks to Android’s open source
roots) points out that there are a couple hidden methods that return UUID information for
a remote device. The simplest to use is a synchronous (blocking) method called
getUuids(), which returns an array of ParcelUuid objects referring to each service.
However, since the method is currently hidden, it must be called using Java reflection.
Here is an example method for reading the UUIDs of service records from a remote
device using reflection:

public ParcelUuid servicesFromDevice(BluetoothDevice device) {

try {
Class cl = Class.forName("android.bluetooth.BluetoothDevice");
Class[] par = {};
Method method = cl.getMethod("getUuids", par);
Object[] args = {};
ParcelUuid[] retval = (ParcelUuid[])method.invoke(device, args);
return retval,;

} catch (Exception e) {
e.printStackTrace();
return null;

}
}

There is also an asynchronous version of this process named fetchUuidsWithSdp(),
which can be called in the same fashion. Because it is asynchronous, the results are
returned through a broadcast Intent. Register a BroadcastReceiver for
android.bleutooth.device.action.UUID (note the misspelling of Bluetooth) to get a
callback with the UUIDs discovered for that device. The ParcelUuid array obtained is an
extra passed with the Intent referenced by android.bluetooth.device.extra.UUID, and
it is the same as the result of the synchronous example.

CHAPTER 3: Communications and Networking

3-11. Querying Network Reachability

Problem

Your application needs to be aware of changes in network connectivity.

Solution
(API Level 1)

Keep tabs on the device’s connectivity with ConnectivityManager. One of the paramount
issues to consider in mobile application design is that the network is not always available
for use. As people move about, the speed and capabilities of the network are subject to
change. Because of this, an application that uses network resources should always be
able to detect if those resources are reachable, and notify the user when they are not.

In addition to reachability, ConnectivityManager can provide the application with
information about the connection type. This allows you to make decisions like whether
to download a large file because the user is currently roaming and it may cost them a
fortune.

How It Works

Listing 3—-29 creates a wrapper method you can place in your code to check for network
connectivity.

Listing 3-29. ConnectivityManager Wrapper

public boolean isNetworkReachable() {
ConnectivityManager mManager =
(ConnectivityManager)context.getSystemService(Context.CONNECTIVITY SERVICE);
NetworkInfo current = mManager.getActiveNetworkInfo();
if(current == null) {
return false;

return (current.getState() == NetworkInfo.State.CONNECTED);

}

ConnectivityManager does pretty much all of the work in checking the network status,
and this wrapper method is more to simplify having to check all possible network paths
each time. Note that ConnectivityManager.getActiveNetworkInfo() will return null if
there is no active data connection available, so we must check for that case first. If there
is an active network, we can inspect its state, which will return one of the following:

DISCONNECTED
CONNECTING
CONNECTED
DISCONNECTING

CHAPTER 3: Communications and Networking

When the state returns as CONNECTED, the network is considered stable and we can
utilize it to access remote resources.

It is considered good practice to call a reachability check whenever a network
request fails, and notify the user that their request failed due to a lack of
connectivity. Listing 3-30 is an example of doing this when a network access fails.

Listing 3-30. Notify User of Connectivity Failure

try {
//Attempt to access network resource
//May throw HttpResponseException or some other IOException on failure
} catch (Exception e) {
if(!isNetworkReachable()) {
AlertDialog.Builder builder = new AlertDialog.Builder(context);
builder.setTitle("No Network Connection");
builder.setMessage("The Network is unavailable. Please try your request again later.");
builder.setPositiveButton("0K",null);
builder.create().show();

Determining Connection Type

In cases where it is also essential to know whether the user is connected to a network
that charges for bandwidth, we can call NetworkInfo.getType() on the active network
connection (see Listing 3-31).

Listing 3-31. ConnectivityManager Bandwidth Checking

public boolean isWifiReachable() {
ConnectivityManager mManager =
(ConnectivityManager)context.getSystemService(Context.CONNECTIVITY SERVICE);
NetworkInfo current = mManager.getActiveNetworkInfo();
if(current == null) {
return false;

return (current.getType() == ConnectivityManager.TYPE_WIFI);
}

This modified version of the reachability check determines if the users is attached to a
WiFi connection, typically indicating that they have a faster connection where bandwidth
isn’t tariffed.

Summary

Connecting an Android application to the Web and web services is a great way to add
user value in today’s connected world. Android’s framework for connecting to the Web
and other remote hosts makes adding this functionality straightforward. We've
explored how to bring the standards of the Web into your application, using HTML and
JavaScript to interact with the user, but within a native context. You also saw how to
use Android to download content from remote servers and consume it in your
application. We also exposed that a web server is not the only host worth connecting

CHAPTER 3: Communications and Networking

to, using Bluetooth and SMS to communicate directly from one device to another. In
the next chapter, we will look at using the tools Android provides to interact with a
device’s hardware resources.

Chapter

Interacting with Device
Hardware and Media

Integrating application software with device hardware presents opportunities to create
unique user experiences that only the mobile platform can provide. Capturing media
using the microphone and camera allows applications to incorporate a personal touch
through a photo or recorded greeting. Integration of sensor and location data can help
you develop applications to answer relevant questions such as, “Where am 1?” and,
“What am | looking at?”

In this chapter, we are going to investigate how the location, media, and sensor APIs
provided by Android can be used to add that unique value the mobile brings into your
applications.

4-1. Integrating Device Location

Problem

You want to leverage the device’s ability to report its current physical position in an
application.

Solution
(API Level 1)

Utilize the background services provided by the Android LocationManager. One of the
most powerful benefits that a mobile application can often provide to the user is the
ability to add context by including information based on where they are currently
located. Applications may ask the LocationManager to provide updates of a device’s
location either regularly, or just when it is detected that the device has moved a
significant distance.

201

CHAPTER 4: Interacting with Device Hardware and Media

When working with the Android location services, some care should be taken to respect
both the device battery and the user’s wishes. Obtaining a fine-grained location fix using
a device’s GPS is a power-intensive process, and can quickly drain the battery in the
user’s device if left on continuously. For this reason, among others, Android allows the
user to disable certain sources of location data, such as the device’s GPS. These
settings must be observed when your application decides how it will obtain location.

Each location source also comes with a tradeoff degree of accuracy. The GPS will return
a more exact location (within a few meters), but take longer to fix and use more power;
whereas the Network location will usually be accurate to a few kilometers, but is
returned much faster and uses less power. Consider the requirements of the application
when deciding which sources to access; if your application only wishes to display
information about the local city, perhaps GPS fixes are not necessary.

IMPORTANT: When using location services in an application, keep in mind that
android.permission.ACCESS COARSE LOCATION or
android.permission.ACCESS FINE LOCATION must be declared in the application
manifest. If you declare android.permission.ACCESS FINE_LOCATION, you do not need
both as it includes coarse permissions as well.

How It Works

When creating a simple monitor for user location in an Activity or Service, there are a
few actions that we need to consider:

1. Determine if the source we want to use is enabled. If it's not, decide
whether to ask the user to enable it or try another source.

2. Register for updates using reasonable values for minimum distance and
update interval.

3. Unregister for updates when they are no longer needed to conserve
device power.

In Listing 4—1, we register an Activity to listen for location updates while it is visible to
the user, and display that location onscreen.

Listing 4-1. Activity Monitoring Location Updates
public class MyActivity extends Activity {

LocationManager manager;
Location currentlocation;

TextView locationView;
@0verride

public void onCreate(Bundle savedInstanceState) {
super.onCreate(savedInstanceState);

CHAPTER 4: Interacting with Device Hardware and Media

locationView = new TextView(this);
setContentView(locationView);

manager = (LocationManager)getSystemService(Context.LOCATION SERVICE);

@0verride
public void onResume() {
super.onResume();
if(!manager.isProviderEnabled(LocationManager.GPS_PROVIDER)) {
//Ask the user to enable GPS
AlertDialog.Builder builder = new AlertDialog.Builder(this);
builder.setTitle("Location Manager");
builder.setMessage("We want to use your location, but GPS is currently disabled.\n"
+"Would you like to change these settings now?");
builder.setPositiveButton("Yes", new DialogInterface.OnClickListener() {
@0verride
public void onClick(DialogInterface dialog, int which) {
//Launch settings, allowing user to make a change
Intent 1 = new Intent(Settings.ACTION_LOCATION SOURCE_SETTINGS);
startActivity(i);

)
builder.setNegativeButton("No", new DialogInterface.OnClickListener() {
@0verride
public void onClick(DialogInterface dialog, int which) {
//No location service, no Activity
finish();

builder.create().show();

}

//Get a cached location, if it exists
currentLocation = manager.getlastKnownLocation(LocationManager.GPS_PROVIDER);
updateDisplay();
//Register for updates
int minTime = 5000;
float minDistance = 0;
manager.requestLocationUpdates(LocationManager.GPS_PROVIDER,
minTime, minDistance, listener);

}

@0verride

public void onPause() {
super.onPause();
manager .removeUpdates(listener);

//Update text view
private void updateDisplay() {
if(currentlocation == null) {
locationView.setText("Determining Your Location...");
} else {
locationView.setText(String.format("Your Location:\n%.2f, %.2f",
currentlocation.getlatitude(),

CHAPTER 4: Interacting with Device Hardware and Media

currentLocation.getlongitude()));

}

//Handle location callback events
private LocationListener listener = new LocationListener() {

@0verride

public void onLocationChanged(Location location) {
currentlocation = location;
updateDisplay();

@0verride
public void onProviderDisabled(String provider) { }

@0verride
public void onProviderEnabled(String provider) { }

@0verride
public void onStatusChanged(String provider, int status, Bundle extras) { }

b
}
This example chooses to work strictly with the device’s GPS to get location updates.
Because it is a key element to the functionality of this Activity, the first major task
undertaken after each resume is to check if the LocationManager.GPS_PROVIDER is still
enabled. If, for any reason, the user has disabled this feature, we give them the
opportunity to rectify this by asking if they would like to enable GPS. An application
does not have the ability to do this for the user, so if they agree we launch an Activity
using the Intent action Settings.ACTION_LOCATION_SOURCE_SETTINGS, which brings up the
device settings so the user may enable GPS.

Once GPS is active and available, the Activity registers a LocationListener to be
notified of location updates. The LocationManager.requestLocationUpdates() method
takes two major parameters of interest in addition to the provider type and destination
listener:

B minTime
B The minimum time interval between updates, in milliseconds.

B Setting this to non-zero allows the location provider to rest for
approximately the specified period before updating again.

B This is a parameter to conserver power, and should not be set to
a value any lower than the minimum acceptable update rate.

B minDistance

B The distance the device must move before another update will
be sent, in meters.

CHAPTER 4: Interacting with Device Hardware and Media

B Setting this to non-zero will block updates until it is determined
that the device has moved at least this much.

In the example, we request that updates be sent no more often than every five seconds,
with no regard for whether the location has changed significantly or not. When these
updates arrive, the onLocationChanged() method of the registered listener is called.
Notice that a LocationListener will also be notified when the status of different providers
changes, although we are not utilizing those callbacks here.

NOTE: If you are receiving updates in a Service or other background operation, Google
recommends that the minimum time interval should be no less than 60,000 (60 seconds).

The example keeps a running reference to the latest location it received. Initially, this
value is set to the last known location that the provider has cached by calling
getLastKnownLocation(), which may return null if the provider does not have a cached
location value. With each incoming update, the location value is reset and the user
interface display is updated to reflect the new change.

4-2. Mapping Locations

Problem

You would like to display one or more locations on a map for the user.

Solution
(API Level 1)

The simplest way to show the user a map is to create an Intent with the location data
and pass it to the Android system to launch in a mapping application. We’ll look more
in-depth at this method for doing a number of different tasks in a later chapter. In
addition, maps can be embedded within your application using the MapView and
MapActivity provided by the Google Maps APl SDK add-on.

The Maps APl is an add-on module to the core SDK, although they are still bundled
together. If you do not already have the Google APIs SDK, open the SDK manager and
you will find a package for each API level listed under “Third-party Add-ons.”

In order to use the Maps API in your application, an APl key must first be obtained from
Google. This key is built using the private key that your application is signed with.
Without an API key, the mapping classes may be utilized, but no map tiles will be
returned to the application.

CHAPTER 4: Interacting with Device Hardware and Media

NOTE: For more information on the SDK, and to obtain an API key, visit
http://code.google.com/android/add-ons/google-apis/mapkey.html.

Notice also that Android uses the same signing key for all applications run in debug mode (such
as when they are run from the IDE), so one key can serve for all applications you develop while in
the testing phase.

If you are running code in an emulator to test, that emulator must be built with an SDK
target that includes the Google APIs for mapping to operate properly. If you create
emulators from the command line, these targets are named “Google Inc.:Google
APIs:X,” where “X” is the API version indicator. If you create emulators from inside an
IDE (such as Eclipse), the target has a similar naming convention of “Google APIs
(Google Inc.) — X,” where “X” is the API version indicator.

With the API key in hand and a suitable test platform in place, you are ready to begin.

How It Works

To display a map, simply create an instance of MapView inside a MapActivity. One of the
required attributes that must be passed to the MapView in your XML layout is the API key
that you obtained from Google. See Listing 4-2.

Listing 4-2. Typical MapView in a Layout

<com.google.android.maps.MapView
android:layout_width="fill parent"
android:layout_height="fill parent"
android:enabled="true"
android:clickable="true"
android:apiKey="API_KEY_ STRING HERE"
/>

NOTE: When adding MapView to an XML layout, the fully qualified package name must be
included, because the class does not exist in android.view or android.widget.

Although, MapView may be instantiated from code as well, the API key is still required
as a constructor parameter:

MapView map = new MapView(this, "API_KEY_STRING HERE");
In addition, the application manifest must declare its use of the Maps library, which

dually acts as an Android Market filter to remove the application from devices that don’t
have this capability.

Now, let’s look at an example that puts the last known user location on a map and
displays it. See Listing 4-3.

http://code.google.com/android/add-ons/google-apis/mapkey.html

CHAPTER 4: Interacting with Device Hardware and Media

Listing 4-3. AndroidManifest.xml

<?xml version="1.0" encoding="utf-8"?>

<manifest xmlns:android="http://schemas.android.com/apk/res/android"
package="com.examples.mapper"
android:versionCode="1"
android:versionName="1.0">
<uses-sdk android:minSdkVersion="3" />
<uses-permission android:name="android.permission.ACCESS_FINE_LOCATION" />
<uses-permission android:name="android.permission.INTERNET" />

<application android:icon="@drawable/icon" android:label="@string/app_name">
<activity android:name=".MyActivity"
android:label="@string/app_name">
<intent-filter>
<action android:name="android.intent.action.MAIN" />
<category android:name="android.intent.category.LAUNCHER" />
</intent-filter>
</activity>

<uses-library android:name="com.google.android.maps"></uses-library>

</application>
</manifest>

Notice the permissions declared for INTERNET and ACCESS_FINE_LOCATION. The
latter is only required because this example is hooking back up to the LocationManager
to get the cached location value. The other key ingredient that must be present in the
manifest is the <uses-library> tag referencing the Google Maps API. Android requires
this item to properly link the external library into your application build, but it also serves
another purpose. The library declaration is used by Android Market to filter out the
application so it cannot be installed on devices that are not equipped with the proper
mapping library. See Listing 4-4.

Listing 4-4. res/layout/main.xml

<?xml version="1.0" encoding="utf-8"?>
<LinearlLayout xmlns:android="http://schemas.android.com/apk/res/android"
android:orientation="vertical"
android:layout_width="fill parent"
android:layout_height="fill parent">
<TextView
android:layout_width="fill parent"
android:layout_height="wrap_content"
android:gravity="center_horizontal"
android:text="Map Of Your Location"
/>
<com.google.android.maps.MapView
android:id="@+id/map"
android:layout_width="fill parent"
android:layout_height="fill parent
android:enabled="true"
android:clickable="true"
android:apiKey="YOUR_API_KEY_ HERE"
/>
</Linearlayout>

http://schemas.android.com/apk/res/android
http://schemas.android.com/apk/res/android

CHAPTER 4: Interacting with Device Hardware and Media

Note the location of the required API key that you must enter. Also, notice that the
MapView does not have to be the only thing in the Activity layout, despite the fact that it
must be inflated inside of a MapActivity. See Listing 4-5.

Listing 4-5. MapActivity Displaying Cached Location
public class MyActivity extends MapActivity {

MapView map;
MapController controller;

@0verride

public void onCreate(Bundle savedInstanceState) {
super.onCreate(savedInstanceState);
setContentView(R.layout.main);

map = (MapView)findViewById(R.id.map);
controller = map.getController();

LocationManager manager =
(LocationManager)getSystemService(Context.LOCATION SERVICE);
Location location = manager.getlLastKnownLocation(LocationManager.GPS_PROVIDER);
int lat, 1ng;
if(location != null) {
//Convert to microdegrees
lat = (int)(location.getlatitude() * 1000000);
lng = (int)(location.getlongitude() * 1000000);
} else {
//Default to Google HQ
lat = 37427222;
Ing = -122099167;

}

GeoPoint mapCenter = new GeoPoint(lat,lng);
controller.setCenter(mapCenter);
controller.setZoom(15);

}

//Required abstract method, return false

@0verride

protected boolean isRouteDisplayed() {
return false;

}

}

This Activity takes the latest user location, and centers the map on that point. All control
of the map is done through a MapController instance, which we obtain by calling
MapView.getController(); the controller can be used to pan, zoom, and otherwise
adjust the map on screen. In this example, we use the controller’s setCenter() and
setZoom() methods to adjust the map display.

MapController.setCenter() takes a GeoPoint as its parameter, which is slightly different
than the Location we receive from the Android services. The primary difference is that
GeoPoint expresses latitude and longitude in terms of microdegrees (or degrees * 1E6)
instead of a decimal value representing whole degrees. Therefore, we must convert the
Location values before applying them to the map.

CHAPTER 4: Interacting with Device Hardware and Media

MapController.setZoom() allows the map to be programmatically zoomed to a specified
level, between 1 and 21. By default, the map will zoom to level 1, which the SDK
documentation defines as being a global view, with each increasing level magnifying the
map by two. See Figure 4-1.

M @ 12:00 AM

Mapper

Slough

TON
o \
5
&
A\
Cha%qmn
Plaza % =
N
rk Cmstd \\‘ !
Charleston o Uloston |
Gardens &))s
'eenmeadow
oog e A,:% Old Middlefield Way -

Figure 4-1. Map of user location

The first thing you will probably notice is that the map doesn’t display any indicator on
the location point (such as a pin). In Recipe 4-3 we will create these annotations, and
describe how to customize them.

4-3. Annotating Maps

Problem

In addition to displaying a map centered on a specific location, your application needs to
put an annotation down to more visibly mark the location.

Solution
(API Level 1)

Create a custom ItemizedOverlay for the map, which includes all of the points to mark.
ItemizedOverlay is an abstract base class that handles all the drawing of the individual

CHAPTER 4: Interacting with Device Hardware and Media

items on a MapView. The items themselves are instances of OverlayItem, which is a
model class that defines the name, subtitle, and drawable marker to describe the point
on the map.

How It Works

Let’s create an implementation of ItemizedOverlay that will take an array of GeoPoints
and draw them on the map using the same drawable marker for each. See Listing 4-6.

Listing 4-6. Basic ltemizedOverlay Implementation

public class LocationOverlay extends ItemizedOverlay<OverlayItem> {
private List<GeoPoint> mItems;

public LocationOverlay(Drawable marker) {
super(boundCenterBottom(marker));

public void setItems(ArraylList<GeoPoint> items) {
mItems = items;
populate();

@0verride
protected OverlayItem createItem(int i) {

return new OverlayItem(mItems.get(i), null, null);
}

@0verride

public int size() {
return mItems.size();

}

@0verride

protected boolean onTap(int i) {
//Handle a tap event here
return true;

}

In this implementation, the constructor takes a Drawable to represent the marker placed
on the map at each location. Drawables that are used in overlays must have proper
bounds applied to them, and boundCenterBottom() is a convenience method that
handles this for us. Specifically, it applies bounds, such that the point on the Drawable
that touches the map location will be in the center of the bottom row of pixels.

ItemizedOverlay has two abstract methods that must be overridden: createItem(),
which must return an object of the declared type, and size(), which returns the number
of items managed. This example takes a list of GeoPoints and wraps them all into
OverlayItems. The populate() method should be called on the overlay as soon as all the
data is present and ready for display, which in this case is at the end of setItems().

Let’s apply this overlay to a map to draw three custom locations around Google HQ,
using the default app icon as the marker. See Listing 4-7.

CHAPTER 4: Interacting with Device Hardware and Media

Listing 4-7. Activity Using Custom Map Overlay
public class MyActivity extends MapActivity {

MapView map;
MapController controller;

@0verride

public void onCreate(Bundle savedInstanceState) {
super.onCreate(savedInstanceState);
setContentView(R.layout.main);

map = (MapView)findViewById(R.id.map);
controller = map.getController();

ArraylList<GeoPoint> locations = new ArraylList<GeoPoint>();
//Google HQ @ 37.427,-122.099

locations.add(new GeoPoint(37427222,-122099167));
//Subtract 0.01 degrees

locations.add(new GeoPoint(37426222,-122089167));

//Add 0.01 degrees

locations.add(new GeoPoint(37428222,-122109167));

LocationOverlay myOverlay =

new LocationOverlay(getResources().getDrawable(R.drawable.icon));
myOverlay.setItems(locations);
map.getOverlays().add(myOverlay);
controller.setCenter(locations.get(0));
controller.setZoom(15);

//Required abstract method, return false

@0verride

protected boolean isRouteDisplayed() {
return false;

}
When run, this Activity produces the display shown in Figure 4-2.

CHAPTER 4: Interacting with Device Hardware and Media

M @ 12:00 AM

Mapper

g

A
¥

Charleston

X Plaza \\\\A o/
[: = |
Charleston Rd-— grers %
Charleston o

3 N
@8 Gardens § P 400A)

reenmeadow.

oogle 4 Ol Middefieid Way
%
Figure 4-2. Map with ItemizedOverlay

Notice how the drawing of the drop shadow on the marker was handled for us by
MapView and the ItemizedOverlay.

But, what if we want to customize each item so it displays a different marker image?
How would we do that? By explicitly setting the item’s marker, a custom Drawable can
be returned for each item. In this case, the Drawable provided to the ItemizedOverlay
constructor is just a default value to be used if no custom override exists. Consider a
modification to the implementation, shown in Listing 4-8.

Listing 4-8. ItemizedOverlay with Custom Markers

public class LocationOverlay extends ItemizedOverlay<OverlayItem> {
private List<GeoPoint> mItems;
private List<Drawable> mMarkers;

public LocationOverlay(Drawable marker) {
super(boundCenterBottom(marker));

public void setItems(ArrayList<GeoPoint> items, ArraylList<Drawable> drawables) {
mItems = items;
mMarkers = drawables;
populate();

@0verride
protected OverlayItem createItem(int i) {
OverlayItem item = new OverlayItem(mItems.get(i), null, null);

CHAPTER 4: Interacting with Device Hardware and Media

item.setMarker(boundCenterBottom(mMarkers.get(i)));
return item;

@0verride
public int size() {
return mItems.size();

@0verride

protected boolean onTap(int i) {
//Handle a tap event here
return true;

}

With this modification, the Overlayltems created now receive a custom marker image in
the form of a bounded Drawable matching the item’s index in a list of images. If the
Drawable that you set has states, the pressed and focused states will display when the
item is selected or touched. Our example modified to use the new implementation looks
like Listing 4-9.

Listing 4-9. Example Activity Providing Custom Markers
public class MyActivity extends MapActivity {

MapView map;
MapController controller;

@0verride

public void onCreate(Bundle savedInstanceState) {
super.onCreate(savedInstanceState);
setContentView(R.layout.main);

map = (MapView)findViewById(R.id.map);
controller = map.getController();

ArraylList<GeoPoint> locations = new ArraylList<GeoPoint>();
ArraylList<Drawable> images = new ArraylList<Drawable>();

//Google HQ 37.427,-122.099

locations.add(new GeoPoint(37427222,-122099167));
images.add(getResources().getDrawable(R.drawable.logo));
//Subtract 0.01 degrees

locations.add(new GeoPoint(37426222,-122089167));
images.add(getResources().getDrawable(R.drawable.icon));
//Add 0.01 degrees

locations.add(new GeoPoint(37428222,-122109167));
images.add(getResources().getDrawable(R.drawable.icon));

LocationOverlay myOverlay =

new LocationOverlay(getResources().getDrawable(R.drawable.icon));
myOverlay.setItems(locations, images);
map.getOverlays().add(myOverlay);
controller.setCenter(locations.get(0));
controller.setZoom(15);

CHAPTER 4: Interacting with Device Hardware and Media

}

//Required abstract method, return false

@0verride

protected boolean isRouteDisplayed() {
return false;

}

}

Now our example provides a discrete image for each item it wants to display on the
map. Specifically, we have decided to represent the actual Google HQ location by a
version of the Google logo, while keeping the other two points with the same marker.
See Figure 4-3.

M @ 12:00 AM

Mapper

reenmeadow.

oogle ‘,_% Old Middlefeld Way

Figure 4-3. Map overlay with custom markers

Make Them Interactive

Perhaps you noticed the onTap() method that was defined in the LocationOverlay, but
never mentioned. Another nice feature of the ItemizedOverlay base implementation is
that it handles hit testing and has a convenience method when a specific item it tapped,
referencing that item’s index. From this method, you can raise a toast, show a dialog,
start a new Activity, or any other action that fits the context of the user tapping on the
annotation for more information.

CHAPTER 4: Interacting with Device Hardware and Media

What About Me?

The Maps API for Android also includes a special overlay to draw the user location, the
MyLocationOverlay. This overlay is very straightforward to use, but it should only be
enabled while the Activity it is present on is visible. Otherwise, unnecessary resource
usage will cause poor performance and battery life on the device. See Listing 4-10.

Listing 4-10. Adding a MyLocationOverlay
public class MyActivity extends MapActivity {

MapView map;
MyLocationOverlay myOverlay;

@0verride

public void onCreate(Bundle savedInstanceState) {
super.onCreate(savedInstanceState);
setContentView(R.layout.main);

map = (MapView)findViewById(R.id.map);
myOverlay = new MylLocationOverlay(this, map);
map.getOverlays().add(myOverlay);

@0verride

public void onResume() {
super.onResume();
myOverlay.enableMyLocation();

@0verride

public void onPause() {
super.onResume();
myOverlay.disableMyLocation();

//Required abstract method, return false

@0verride

protected boolean isRouteDisplayed() {
return false;

}

}

This will display a standard dot or arrow marker (depending on whether the compass is
in use) on the user’s latest location, and will track as the user moves as long as the
overlay is enabled.

They key to using the MyLocationOverlay is to disable its features when they are not in
use (when the Activity is not visible), and re-enable them when they are needed. Just as
with using the LocationManager, this ensures these services are not draining
unnecessary power.

CHAPTER 4: Interacting with Device Hardware and Media

4-4. Capturing Images and Video

Problem

Your application needs to make use of the device’s camera in order to capture media,
whether it be still images or short video clips.

Solution
(API Level 3)

Send an Intent to Android to transfer control to the Camera application, and return the
image the user captured. Android does contain APlIs for directly accessing the camera
hardware, previewing, and taking snapshots or videos. However, if your only goal is to
simply get the media content using the camera with an interface the user is familiar with,
there is not better solution than a handoff.

How It Works

Let's take a look at how to use the Camera application to take both still images and
video clips.

Image Capture

Let’s take a look at an example Activity that will activate the camera application when
the “Take a Picture” button is pressed, and receive the result of this operation as a
Bitmap. See Listings 4-11 and 4-12.

Listing 4-11. res/layout/main.xml

<?xml version="1.0" encoding="utf-8"?>
<LinearlLayout xmlns:android="http://schemas.android.com/apk/res/android"
android:orientation="vertical"
android:layout_width="fill parent"
android:layout_height="fill parent">
<Button
android:id="@+id/capture"”
android:layout_width="fill parent"
android:layout_height="wrap_content"
android:text="Take a Picture"
/>
<ImageView
android:id="@+id/image"
android:layout_width="fill parent"
android:layout_height="fill parent"
android:scaleType="centerInside"
/>
</Linearlayout>

http://schemas.android.com/apk/res/android

CHAPTER 4: Interacting with Device Hardware and Media

Listing 4-12. Activity to Capture an Image
public class MyActivity extends Activity {

private static final int REQUEST_IMAGE = 100;

Button captureButton;
ImageView imageView;

@0verride

public void onCreate(Bundle savedInstanceState) {
super.onCreate(savedInstanceState);
setContentView(R.layout.main);

captureButton = (Button)findViewById(R.id.capture);
captureButton.setOnClickListener(listener);

imageView = (ImageView)findViewById(R.id.image);
}

@0verride
protected void onActivityResult(int requestCode, int resultCode, Intent data) {
if(requestCode == REQUEST IMAGE 8& resultCode == Activity.RESULT OK) {
//Process and display the image
Bitmap userImage = (Bitmap)data.getExtras().get("data");
imageView.setImageBitmap(userImage);

}

private View.OnClickListener listener = new View.OnClickListener() {
@0Override
public void onClick(View v) {
Intent intent = new Intent(MediaStore.ACTION IMAGE_CAPTURE);
startActivityForResult(intent, REQUEST IMAGE);
}
b
}

This method captures the image and returns a scaled-down Bitmap as an extra in the
“data” field. If you need to capture an image and need the full-sized image to be saved

somewhere, insert a Uri for the image destination into the MediaStore.EXTRA OUTPUT
field of the Intent before starting the capture. See Listing 4-13.

Listing 4-13. Full-Size Image Capture to File
public class MyActivity extends Activity {

private static final int REQUEST_IMAGE = 100;

Button captureButton;
ImageView imageView;
File destination;

@0verride

public void onCreate(Bundle savedInstanceState) {
super.onCreate(savedInstanceState);
setContentView(R.layout.main);

CHAPTER 4: Interacting with Device Hardware and Media

captureButton = (Button)findViewById(R.id.capture);
captureButton.setOnClickListener(listener);

imageView = (ImageView)findViewById(R.id.image);

destination = new File(Environment.getExternalStorageDirectory(),"image.jpg");

}

@0verride
protected void onActivityResult(int requestCode, int resultCode, Intent data) {
if(requestCode == REQUEST_IMAGE 8& resultCode == Activity.RESULT OK) {
try {
FileInputStream in = new FileInputStream(destination);
BitmapFactory.Options options = new BitmapFactory.Options();
options.inSampleSize = 10; //Downsample by 10x

Bitmap userImage = BitmapFactory.decodeStream(in, null, options);
imageView.setImageBitmap(userImage);

} catch (Exception e) {
e.printStackTrace();

}
}
private View.OnClickListener listener = new View.OnClickListener() {
@0verride
public void onClick(View v) {
Intent intent = new Intent(MediaStore.ACTION IMAGE_CAPTURE);
//Add extra to save full-image somewhere
intent.putExtra(MediaStore.EXTRA OUTPUT, Uri.fromFile(destination));
startActivityForResult(intent, REQUEST IMAGE);
}
};

}

This method will instruct the camera application to store the image elsewhere (in this
case, on the device’s SD card as “image.jpg”) and the result will not be scaled down.
When going to retrieve the image after the operation returns, we now go directly to the
file location where we told the camera to store.

Using BitmapFactory.Options, however, we do still scale the image down prior to
displaying to the screen to avoid from loading the full-size Bitmap into memory at once.
Also note that this example chose a file location that was on the device’s external
storage, which requires the android.permission.WRITE_EXTERNAL_STORAGE permission to
be declared in API Levels 4 and above. If your final solution writes the file elsewhere, this
may not be necessary.

Video Capture

Capturing video clips using this method is just as straightforward, although the results
produced are slightly different. There is no case under which the actual video clip data is
returned directly in the Intent extras, and it is always saved to a destination file location.
The following two parameters may be passed along as extras:

CHAPTER 4: Interacting with Device Hardware and Media

1. MediaStore.EXTRA VIDEO QUALITY

a. Integer value to describe the quality level used to capture the
video.

b. Allowed values are 0 for low quality and 1 for high quality.
2. MediaStore.EXTRA _OUTPUT
a. Uri destination of where to save the video content.

b. If this is not present, the video will be saved in a standard location
for the device.

When the video recording is complete, the actual location where the data was saved is
returned as a Uri in the data field of the result Intent. Let’s take a look at a similar
example that allows the user to record and save their video, and then displays the saved
location back to the screen. See Listings 4-14 and 4-15.

Listing 4-14. res/layout/main.xml

<?xml version="1.0" encoding="utf-8"?>
<LinearlLayout xmlns:android="http://schemas.android.com/apk/res/android"
android:orientation="vertical"
android:layout_width="fill parent"
android:layout_height="fill parent">
<Button
android:id="@+id/capture"”
android:layout_width="fill parent"
android:layout_height="wrap_content"
android:text="Take a Video"
/>
<TextView
android:id="@+id/file"
android:layout_width="fill parent"
android:layout_height="fill parent"
/>
</Linearlayout>

Listing 4-15. Activity to Capture a Video Clip
public class MyActivity extends Activity {

private static final int REQUEST_VIDEO = 100;

Button captureButton;
TextView text;
File destination;

@0verride

public void onCreate(Bundle savedInstanceState) {
super.onCreate(savedInstanceState);
setContentView(R.layout.main);

captureButton = (Button)findViewById(R.id.capture);
captureButton.setOnClickListener(listener);

text = (TextView)findViewById(R.id.file);

http://schemas.android.com/apk/res/android

CHAPTER 4: Interacting with Device Hardware and Media

destination = new File(Environment.getExternalStorageDirectory(), "myVideo");

@0verride
protected void onActivityResult(int requestCode, int resultCode, Intent data) {
if(requestCode == REQUEST VIDEO 8& resultCode == Activity.RESULT OK) {
String location = data.getData().toString();
text.setText(location);

}
}
private View.OnClickListener listener = new View.OnClickListener() {
@0verride
public void onClick(View v) {
Intent intent = new Intent(MediaStore.ACTION VIDEO CAPTURE);
//Add (optional) extra to save video to our file
intent.putExtra(MediaStore.EXTRA OUTPUT, Uri.fromFile(destination));
//Optional extra to set video quality
intent.putExtra(MediaStore.EXTRA_VIDEO QUALITY, 0);
startActivityForResult(intent, REQUEST VIDEO);
}
};

}

This example, like the previous example saving an image, puts the recorded video on
the device’s SD card (which requires the android.permission.WRITE_EXTERNAL STORAGE
permission for APl Levels 4+). To initiate the process, we send an Intent with the
MediaStore.ACTION_VIDEO_CAPTURE action string to the system. Android will launch
the default camera application to handle recording the video and return with an OK
result when recording is complete. We retrieve the location where the data was stored
as a Uri by calling Intent.getData() in the onActivityResult() callback method, and
then display that location to the user.

This example requests explicitly that the video be shot using the low quality setting, but
this parameter is optional. If MediaStore.EXTRA VIDEO QUALITY is not present in the
request Intent, the device will usually choose to shoot using high quality.

In cases where MediaStore.EXTRA OUTPUT is provided, the Uri returned should match the
location you requested, unless an error occurs that keeps the application from writing to
that location. If this parameter is not provided, the returned value will be a content://
Uri to retrieve the media from the system’s MediaStore Content Provider.

Later on, in Recipe 4-8, we will look at practical ways to play this media back in your
application.

CHAPTER 4: Interacting with Device Hardware and Media

4-5. Making a Custom Camera Overlay

Problem

Many applications need more direct access to the camera, either for the purposes of
overlaying a custom Ul for controls or to display metadata about what is visible through
information based on location and direction sensors (augmented reality).

Solution
(API Level 5)

Attach directly to the camera hardware in a custom Activity. Android provides APIs to
directly access the device’s camera for the purposes of obtaining the preview feed and
taking photos. We can access these when the needs of the application grow beyond
simply snapping and returning a photo for display.

NOTE: Because we are taking a more direct approach to the camera here, it is required that the
android.permission.CAMERA permission be declared in the manifest.

How It Works

We start by creating a SurfaceView, a dedicated view for live drawing where we will
attach the camera’s preview stream. This provides us with a live preview inside a view
that we can lay out any way we choose inside an Activity. From there, it’s simply a
matter of adding other views and controls that suit the context of the application. Let’s
take a look at the code (see Listings 4-16 and 4-17).

NOTE: The Camera class used here is android.hardware.Camera, not to be confused with
android.graphics.Camera. Ensure you have imported the correct reference in your
application.

Listing 4-16. res/layout/main.xml

<?xml version="1.0" encoding="utf-8"?>
<Relativelayout xmlns:android="http://schemas.android.com/apk/res/android"
android:layout_width="fill parent"
android:layout_height="fill parent">
<SurfaceView
android:id="@+id/preview"
android:layout_width="fill parent"
android:layout_height="fill parent"”
/>
</Relativelayout>

http://schemas.android.com/apk/res/android

CHAPTER 4: Interacting with Device Hardware and Media

Listing 4-17. Activity Displaying Live Camera Preview

import android.hardware.Camera;
public class PreviewActivity extends Activity implements SurfaceHolder.Callback {

Camera mCamera;
SurfaceView mPreview;

@0verride

public void onCreate(Bundle savedInstanceState) {
super.onCreate(savedInstanceState);
setContentView(R.layout.main);

mPreview = (SurfaceView)findViewById(R.id.preview);
mPreview.getHolder().addCallback(this);
mPreview.getHolder().setType(SurfaceHolder.SURFACE_TYPE PUSH_BUFFERS);

mCamera = Camera.open();

}

@0verride

public void onPause() {
super.onPause();
mCamera.stopPreview();

}

@0verride

public void onDestroy() {
super.onDestroy();
mCamera.release();

}

//Surface Callback Methods
@0verride
public void surfaceChanged(SurfaceHolder holder, int format, int width, int height)

Camera.Parameters params = mCamera.getParameters();

//Get all the devices’s supported sizes and pick the first (largest)
List<Camera.Size> sizes = params.getSupportedPreviewSizes();
Camera.Size selected = sizes.get(0);
params.setPreviewSize(selected.width,selected.height);
mCamera.setParameters(params);

mCamera.startPreview();

}
@0verride
public void surfaceCreated(SurfaceHolder holder) {
try {
mCamera.setPreviewDisplay(mPreview.getHolder());
} catch (Exception e) {
e.printStackTrace();
}
@0verride

public void surfaceDestroyed(SurfaceHolder holder) { }

CHAPTER 4: Interacting with Device Hardware and Media

NOTE: If you are testing on an emulator, there is no camera to preview. What the emulator
displays to fake a preview depends on the version you are running. To verify that this code is
working properly, open the Camera application on your specific emulator and take note of what
the preview looks like. The same display should appear in this sample.

In the example, we create a SurfaceView that fills the window, and tell it that our Activity
is to be notified of all the SurfaceHolder callbacks. The camera cannot begin displaying
preview information on the surface until it is fully initialized, so we wait until
surfaceCreated() gets called to attach the SurfaceHolder of our view to the Camera
instance. Similarly, we wait to size the preview and start drawing until the surface has
been given its size, which occurs when surfaceChanged() is called.

Calling Parameters.getSupportedPreviewSizes() returns a list of all the sizes the device
will accept, and they are typically ordered largest to smallest. In the example, we pick
the first (and, thus, largest) preview resolution and use it to set the size.

NOTE: In versions earlier than 2.0 (API Level 5), it was acceptable to directly pass the height and
width parameters from this method as to Parameters.setPreviewSize(); butin 2.0, and
later, the Camera will only set its preview to one of the supported resolutions of the device.
Attempts otherwise will result in an Exception.

Camera.startPreview() begins the live drawing of camera data on the surface. Notice
that the preview always displays in a landscape orientation. Prior to Android 2.2 (API
Level 8), there was no official way to adjust the rotation of the preview display. For that
reason, it is recommended that an Activity using the camera preview have its orientation
fixed with android:screenOrientation="1andscape" in the manifest to match.

The Camera service can only be accessed by one application at a time. For this reason,
it is important that you call Camera.release() as soon as the camera is no longer
needed. In the example, we no longer need the camera when the Activity is finished, so
this call takes place in onDestroy().

Later Additions

There were two additions to later versions of the API that can also be made useful if your
application targets them:

B (Camera.setDisplayOrientation(int degrees)
B Available with API Level 8 (Android 2.2).

B Enables the live preview to be set to 0, 90, 180, or 270 degrees.
0 maps to the default landscape orientation.

CHAPTER 4: Interacting with Device Hardware and Media

B Camera.open(int which)
B Available with API Level 9 (Android 2.3).

B Enabled support of multiple cameras (mainly front and back-
facing).

B Takes a parameter from 0 to getNumberOfCameras()-1.

Photo Overlay

We can now add on to the previous example any controls or views that are appropriate
to display on top of the camera preview. Let’s modify the preview to include a Cancel
and Snap Photo button. See Listings 4-18 and 4-19.

Listing 4-18. res/layout/main.xml

<?xml version="1.0" encoding="utf-8"?>
<Relativelayout xmlns:android="http://schemas.android.com/apk/res/android"
android:layout_width="fill parent"
android:layout_height="fill parent">
<SurfaceView
android:id="@+id/preview"
android:layout_width="fill parent"
android:layout_height="fill parent"
/>
<Relativelayout
android:layout_width="fill parent"
android:layout_height="100dip"
android:layout_alignParentBottom="true"
android:gravity="center vertical"
android:background="#A000">
<Button
android:layout_width="100dip"
android:layout_height="wrap_content"
android:text="Cancel"
android:onClick="onCancelClick"
/>
<Button
android:layout_width="100dip"
android:layout_height="wrap_content"
android:layout_alignParentRight="true"
android:text="Snap Photo"
android:onClick="onSnapClick"
/>
</Relativelayout>
</Relativelayout>

Listing 4-19. Activity with Photo Controls Added

public class PreviewActivity extends Activity implements
SurfaceHolder.Callback, Camera.ShutterCallback, Camera.PictureCallback {

Camera mCamera;
SurfaceView mPreview;

@0verride

http://schemas.android.com/apk/res/android

CHAPTER 4: Interacting with Device Hardware and Media

public void onCreate(Bundle savedInstanceState) {
super.onCreate(savedInstanceState);
setContentView(R.layout.main);

mPreview = (SurfaceView)findViewById(R.id.preview);
mPreview.getHolder().addCallback(this);
mPreview.getHolder().setType(SurfaceHolder.SURFACE_TYPE PUSH_BUFFERS);

mCamera = Camera.open();

}

@0verride

public void onPause() {
super.onPause();
mCamera.stopPreview();

@0verride

public void onDestroy() {
super.onDestroy();
mCamera.release();
Log.d("CAMERA", "Destroy");

public void onCancelClick(View v) {
finish();

public void onSnapClick(View v) {
//Snap a photo
mCamera.takePicture(this, null, null, this);

}

//Camera Callback Methods
@0verride
public void onShutter() {
Toast.makeText(this, "Click!", Toast.LENGTH_SHORT).show();

@0verride
public void onPictureTaken(byte[] data, Camera camera) {

//Store the picture off somewhere
//Here, we chose to save to internal storage
try {
FileOutputStream out = openFileOutput("picture.jpg", Activity.MODE_PRIVATE);
out.write(data);
out.flush();
out.close();
} catch (FileNotFoundException e) {
e.printStackTrace();
} catch (IOException e) {
e.printStackTrace();

//Must restart preview
camera.startPreview();

CHAPTER 4: Interacting with Device Hardware and Media

}

//Surface Callback Methods

@0verride

public void surfaceChanged(SurfaceHolder holder, int format, int width, int height) {
Camera.Parameters params = mCamera.getParameters();
List<Camera.Size> sizes = params.getSupportedPreviewSizes();
Camera.Size selected = sizes.get(0);
params.setPreviewSize(selected.width,selected.height);
mCamera.setParameters(params);

mCamera.setDisplayOrientation(90);
mCamera.startPreview();

}
@0verride
public void surfaceCreated(SurfaceHolder holder) {
try {
mCamera.setPreviewDisplay(mPreview.getHolder());
} catch (Exception e) {
e.printStackTrace();
}
@0verride

public void surfaceDestroyed(SurfaceHolder holder) { }
}

Here we have added a simple, partially transparent overlay to include a pair of controls
for camera operation. The action taken by cancel is nothing to speak of; we simply finish
the Activity. However, Snap Photo introduces more of the Camera APl in manually
taking a returning a photo to the application. A user action will initiate the
Camera.takePicture() method, which takes a series of callback pointers.

Notice that the Activity in this example implements two more interfaces:
Camera.ShutterCallback and Camera.PictureCallback. The former is called as near as
possible to the moment when the image is captured (when the “shutter” closes), while
the latter can be called at multiple instances when different forms of the image are
available.

The parameters of takePicture() are a single ShutterCallback, and up to three
PictureCallback instances. The PictureCallbacks will be called at the following times
(in the order they appear as parameters):

1. After the image is captured with RAW image data
a. This may return null on devices with limited memory.

2. After the image is processed with scaled image data (known as the
POSTVIEW image)

a. This may return null on devices with limited memory.

3. After the image is compressed with JPEG image data

CHAPTER 4: Interacting with Device Hardware and Media

This example only cares to be notified when the JPEG is ready. Consequently, that is
also the last callback made and the point in time when the preview must be started back
up again. If startPreview() is not called again after a picture is taken, then preview on
the surface will remain frozen at the captured image.

4-6. Recording Audio

Problem

You have an application that needs to make use of the device microphone to record
audio input.

Solution
(API Level 1)

Use the MediaRecorder to capture the audio and store it out to a file.

How It Works

MediaRecorder is quite simple to use. All you need to provide is some basic information
about the file format to use for encoding and where to store the data. Listings 4-20 and
4-21 provide an example that records an audio file to the device’s SD card monitoring
user actions for when to start and stop.

IMPORTANT: In order to use MediaRecorder to record audio input, you must also declare the
android.permission.RECORD_AUDIO permission in the application manifest.

Listing 4-20. res/layout/main.xml

<?xml version="1.0" encoding="utf-8"?>
<LinearlLayout xmlns:android="http://schemas.android.com/apk/res/android"
android:orientation="vertical"
android:layout_width="fill parent"
android:layout_height="fill parent">
<Button
android:id="@+id/startButton"
android:layout_width="fill parent"
android:layout_height="wrap_content"
android:text="Start Recording"
/>
<Button
android:id="@+id/stopButton"
android:layout_width="fill parent"
android:layout_height="wrap_content"
android:text="Stop Recording"
android:enabled="false"
/>
</Linearlayout>

http://schemas.android.com/apk/res/android

CHAPTER 4: Interacting with Device Hardware and Media

Listing 4-21. Activity for Recording Audio

public class RecordActivity extends Activity {

private MediaRecorder recorder;
private Button start, stop;
File path;

@0verride

public void onCreate(Bundle savedInstanceState) {
super.onCreate(savedInstanceState);
setContentView(R.layout.main);

start = (Button)findViewById(R.id.startButton);
start.setOnClickListener(startListener);

stop = (Button)findViewById(R.id.stopButton);
stop.setOnClickListener(stopListener);

recorder = new MediaRecorder();
path = new File(Environment.getExternalStorageDirectory(), "myRecording.3gp");

resetRecorder();

}

@0verride

public void onDestroy() {
super.onDestroy();
recorder.release();

}

private void resetRecorder() {

recorder.setAudioSource(MediaRecorder.AudioSource.MIC);
recorder.setOutputFormat(MediaRecorder.OutputFormat.THREE_GPP);
recorder.setAudioEncoder (MediaRecorder.AudioEncoder.DEFAULT);
recorder.setOutputFile(path.getAbsolutePath());
try {

recorder.prepare();
} catch (Exception e) {

e.printStackTrace();

}

private View.OnClickListener startListener = new View.OnClickListener() {
@0verride
public void onClick(View v) {

try {
recorder.start();

start.setEnabled(false);
stop.setEnabled(true);

} catch (Exception e) {
e.printStackTrace();

}
};

private View.OnClickListener stopListener = new View.OnClickListener() {
@0verride

CHAPTER 4: Interacting with Device Hardware and Media

public void onClick(View v) {
recorder.stop();
resetRecorder();

start.setEnabled(true);
stop.setEnabled(false);

}
};
}
The user interface for this example is very basic. There are two buttons, which alternate
which the user can access based on the recording state. When the user presses start,
we enable the stop button and begin recording. When the user presses stop, we re-
enable the start button and reset the recorder to run again.

MediaRecorder setup is just about as straightforward. We create a file on the SD card
entitled “myRecording.3gp” and pass the path in setOutputFile(). The remaining setup
methods tell the recorder to use the device microphone as input (AudioSource.MIC), and
create a 3GP file format for the output using the default encoder.

For now, you could play this audio file using any of the device’s file browser or media
player application. Later on, in Recipe 4-8, we will point out how to play audio back
through the application as well.

4-7. Adding Speech Recognition

Problem

Your application needs speech recognition technology to interpret voice input.

Solution
(API Level 3)

Use the classes of the android. speech package to leverage the built-in speech
recognition technology of every Android device. Every Android device that is equipped
with voice search (available since Android 1.5) provides applications the ability to use
the built-in SpeechRecognizer to process voice input.

To activate this process, the application need only to send a RecognizerIntent to the
system, where the recognition service will handle recording the voice input and
processing it; returning to you a list of strings indicating what the recognizer thought it
heard.

How It Works

Let’s examine this technology in action. See Listing 4-22.

CHAPTER 4: Interacting with Device Hardware and Media

Listing 4-22. Activity Launching and Processing Speech Recognition

public class RecognizeActivity extends Activity {
private static final int REQUEST_RECOGNIZE = 100;
TextView tv;

@0verride

public void onCreate(Bundle savedInstanceState) {
super.onCreate(savedInstanceState);
tv = new TextView(this);
setContentView(tv);

Intent intent = new Intent(RecognizerIntent.ACTION RECOGNIZE_SPEECH);
intent.putExtra(RecognizerIntent.EXTRA_LANGUAGE MODEL,
RecognizerIntent.LANGUAGE _MODEL_FREE_FORM);
intent.putExtra(RecognizerIntent.EXTRA_PROMPT, "Tell Me Your Name");
try {
startActivityForResult(intent, REQUEST RECOGNIZE);
} catch (ActivityNotFoundException e) {
//If no recognizer exists, download one from Android Market
AlertDialog.Builder builder = new AlertDialog.Builder(this);
builder.setTitle("Not Available");
builder.setMessage("There is currently no recognition application installed. "
+" Would you like to download one?");
builder.setPositiveButton("Yes", new DialogInterface.OnClickListener() {
@0verride
public void onClick(DialogInterface dialog, int which) {
//Download, for example, Google Voice Search
Intent marketIntent = new Intent(Intent.ACTION VIEW);
marketIntent.setData
(Uri.parse("market://details?id=com.google.android.voicesearch"));

1
builder.setNegativeButton("No", null);
builder.create().show();

}

@0verride
protected void onActivityResult(int requestCode, int resultCode, Intent data) {
if(requestCode == REQUEST RECOGNIZE &3 resultCode == Activity.RESULT_OK) {
Arraylist<String> matches =
data.getStringArraylListExtra(RecognizerIntent.EXTRA RESULTS);
StringBuilder sb = new StringBuilder();
for(String piece : matches) {
sb.append(piece);
sb.append('\n");

tv.setText(sb.toString());
} else {
Toast.makeText(this, "Operation Canceled", Toast.LENGTH_SHORT).show();

CHAPTER 4: Interacting with Device Hardware and Media

NOTE: If you are testing your application in the emulator, beware that neither Android Market
nor any voice recognizers are likely installed. It is best to test the operation of this example on a
device.

This example automatically starts the speech recognition Activity on launch of the
application and asks the user to “Tell Me Your Name”. Upon receiving speech from the
user and processing the result, the Activity returns with a list of possible items the user
could have said. This list is in order of probability, and so in many cases it would be
prudent to simply call matches.get(0) as the best possible choice and move on.
However, this activity takes all the returned values and displays them on the screen for
entertainment purposes.

When starting up the SpeechRecognizer, there are a number of extras that can be
passed in the Intent to customize the behavior. This example uses the two that are most
common:

®m EXTRA_LANGUAGE_MODEL
B A value to help fine tune the results from the speech processor.

B Typical speech-to-text queries should use the
LANGUAGE_MODEL_FREE_FORM option.

B If shorter request-type queries are being made,
LANGUAGE_MODEL_WEB_SEARCH may produce better
results.

B EXTRA_PROMPT
B A string value that displays as the prompt for user speech.
In addition to these, a handful of other parameters may be useful to pass along:
B EXTRA_MAX_RESULTS
B Integer to set the maximum number of returned results.
B EXTRA_LANGUAGE

B Request that results be returned in a language other than the
current system default.

B String value of a valid IETF tag, such as “en-US” or “es”

4-8. Playing Back Audio/Video

Problem

An application needs to play audio or video content, either local or remote, on the
device.

CHAPTER 4: Interacting with Device Hardware and Media

Solution
(API Level 1)

Use the MediaPlayer to play local or streamed media. Whether the content is audio or
video, local or remote, MediaPlayer will connect, prepare, and play the associated media
efficiently. In this recipe, we will also explore using MediaController and VideoView as
simple ways to include interaction and video play into an Acitivity layout.

How It Works

NOTE: Before expecting a specific media clip or stream to play, please read the “Android
Supported Media Formats” section of the developer documentation to verify support.

Audio Playback

Let’s look at a simple example of just using MediaPlayer to play a sound. See
Listing 4-23.

Listing 4-23. Activity Playing Local Sound

public class PlayActivity extends Activity implements MediaPlayer.OnCompletionListener {

Button mPlay;
MediaPlayer mPlayer;

@0verride
public void onCreate(Bundle savedInstanceState) {
super.onCreate(savedInstanceState);

mPlay = new Button(this);
mPlay.setText("Play Sound");
mPlay.setOnClickListener(playListener);

setContentView(mPlay);
}

@0verride
public void onDestroy() {
super.onDestroy();
if(mPlayer != null) {
mPlayer.release();

}

private View.OnClickListener playlListener = new View.OnClickListener() {

@0verride
public void onClick(View v) {
if(mPlayer == null) {
try {
mPlayer = MediaPlayer.create(PlayActivity.this, R.raw.sound);

CHAPTER 4: Interacting with Device Hardware and Media

mPlayer.start();
} catch (Exception e) {
e.printStackTrace();

} else {
mPlayer.stop();
mPlayer.release();
mPlayer = null;

}

}
};

//0nCompletionListener Methods

@0verride

public void onCompletion(MediaPlayer mp) {
mPlayer.release();
mPlayer = null;

}

This example uses a Button to start and stop playback of a local sound file that is stored
in the res/raw directory of a project. MediaPlayer.create() is a convenience method
with several forms, intended to construct and prepare a player object in one step. The
form used in this example takes a reference to a local resource ID, but create() can also
be used to access and play a remote resource using

MediaPlayer.create(Context context, Uri uri);

Once created, the example starts playing the sound immediately. While the sound is
playing, the user may press the button again to stop play. The Activity also implements
the MediaPlayer.OnCompletionListener interface, so it receives a callback when the
playing operation completes normally.

In either case, once play is stopped, the MediaPlayer instance is released. This method
allows the resources to be retained only as long as they are in use, and the sound may
be played multiple times. To be sure resources are not unnecessarily retained, the player
is also released when the Activity is destroyed if it still exists.

If your application has a need to playing many different sounds, you may consider
calling reset() instead of release() when playback is over. Remember, though, to still
call release() when the player is no longer needed (or the Activity goes away).

Audio Player

Beyond just simple playback, what if the application needs to create an interactive
experience for the user to be able to play, pause, and seek through the media? There
are methods available on MediaPlayer to implement all these functions with custom Ul
elements, but Android also provides the MediaController view so you don’t have to. See
Listings 4-24 and 4-25.

CHAPTER 4: Interacting with Device Hardware and Media

Listing 4-24. res/layout/main.xml

<?xml version="1.0" encoding="utf-8"?>
<LinearlLayout xmlns:android="http://schemas.android.com/apk/res/android"
android:id="@+id/root"
android:orientation="vertical"
android:layout_width="fill parent"
android:layout_height="fill parent">
<TextView
android:layout_width="wrap_content"”
android:layout_height="wrap_content"
android:layout_gravity="center_horizontal"
android:text="Now Playing..."
/>
<ImageView
android:id="@+id/coverImage"
android:layout_width="fill parent"
android:layout_height="fill parent"
android:scaleType="centerInside"
/>
</Linearlayout>

Listing 4-25. Activity Playing Audio with a MediaController

public class PlayerActivity extends Activity implements
MediaController.MediaPlayerControl, MediaPlayer.OnBufferingUpdatelListener {

MediaController mController;
MediaPlayer mPlayer;
ImageView coverImage;

int bufferPercent = 0;

@0verride

public void onCreate(Bundle savedInstanceState) {
super.onCreate(savedInstanceState);
setContentView(R.layout.main);

coverImage = (ImageView)findViewById(R.id.coverImage);

mController = new MediaController(this);
mController.setAnchorView(findViewById(R.id.root));
}

@0verride
public void onResume() {
super.onResume();
mPlayer = new MediaPlayer();
//Set the audio data source
try {
mPlayer.setDataSource(this, Uri.parse("URI_TO REMOTE_AUDIO"));
mPlayer.prepare();
} catch (Exception e) {
e.printStackTrace();

//Set an image for the album cover
coverImage.setImageResource(R.drawable.icon);

http://schemas.android.com/apk/res/android

CHAPTER 4: Interacting with Device Hardware and Media

mController.setMediaPlayer(this);
mController.setEnabled(true);

@0verride

public void onPause() {
super.onPause();
mPlayer.release();
mPlayer = null;

@0verride

public boolean onTouchEvent(MotionEvent event) {
mController.show();
return super.onTouchEvent(event);

//MediaPlayerControl Methods

@0verride

public int getBufferPercentage() {
return bufferPercent;

}

@0verride
public int getCurrentPosition() {

return mPlayer.getCurrentPosition();
}

@0verride
public int getDuration() {

return mPlayer.getDuration();
}

@0verride

public boolean isPlaying() {
return mPlayer.isPlaying();

}

@0verride
public void pause() {
mPlayer.pause();

@0verride
public void seekTo(int pos) {
mPlayer.seekTo(pos);

@0verride
public void start() {
mPlayer.start();

//BufferUpdatelListener Methods

@0verride

public void onBufferingUpdate(MediaPlayer mp, int percent) {
bufferPercent = percent;

CHAPTER 4: Interacting with Device Hardware and Media

}

//Android 2.0+ Target Callbacks

public boolean canPause() {
return true;

}

public boolean canSeekBackward() {
return true;
}

public boolean canSeekForward() {
return true;
}

}

This example creates a simple audio player that displays an image for artist or cover art
associated with the audio being played (we just set it to the application icon here). The
example still uses a MediaPlayer instance, but this time we are not creating it using the
create() convenience method. Instead we use setDataSource() after the instance is
created to set the content. When attaching the content in this manner, the player is not
automatically prepared so we must also call prepare() to ready the player for use.

At this point, the audio is ready to start. We would like the MediaController to handle all
playback controls, but MediaController can only attach to objects that implement the
MediaController.MediaPlayerControl interface. Strangely, MediaPlayer alone does not
implement this interface so we appoint the Activity to do that job instead. Six of the
seven method included in the interface are actually implemented by MediaPlayer, so we
just call down to those directly.

LATE ADDITIONS: If your application is targeting API Level 5 or later, there are three additional
methods to implement in the MediaController.MediaPlayerControl interface:
canPause()

canSeekBackward()

canSeekForward()

These methods simply tell the system whether we want to allow these operations to occur inside
of this control, so our example returns true for all three. These methods are not required if you
target a lower API Level (which is why we didn’t provide @Override annotations above them),
but you may implement them for best results when running on later versions.

The final method required to use MediaController is getBufferPercentage(). To obtain
this data, the Activity is also tasked with implementing
MediaPlayer.OnBufferingUpdatelistener, which updates the buffer percentage as it
changes.

MediaController has one trick to its implementation. It is designed as a widget that floats
above an active view in its own Window and is only visible for a few seconds at a time.
As a result, we do not instantiate the widget in the XML layout of the content view, but

CHAPTER 4: Interacting with Device Hardware and Media

rather in code. The link is made between the MediaController and the content view by
calling setAnchorView(), which also determines where the controller will show up
onscreen. In this example, we anchor it to the root layout object, so it will display at the
bottom of the screen when visible. If the MediaController is anchored to a child view in
the hierarchy, it will display next to that child instead.

Also, due to the controller’s separate window, MediaController.show() must not be
called from within onCreate(), and doing so will cause a fatal exception.
MediaController is designed to be hidden by default and activated by the user. In this
example, we override the onTouchEvent () method of the Activity to show the controller
whenever the user taps the screen. Unless show() is called with a parameter of 0, it will
fade out after the amount of time noted by the parameter. Calling show() without any
parameter tells it to fade out after the default timeout, which is around three seconds.
See Figure 4-4.

M €@ 12:00am

Playback

Figure 4-4. Activity using MediaController

Now all features of the audio playback are handled by the standard controller widget.
The version of setDataSource() used in this example takes a Uri, making is suitable for
loading audio from a ContentProvider or a remote location. Keep in mind that all of this
works just as well with local audio files and resources using the alternate forms of
setDataSource().

CHAPTER 4: Interacting with Device Hardware and Media

Video Player

When playing video, typically a full set of playback controls is required to play, pause, and
seek the content. In addition, MediaPlayer must have a reference to a SurfaceHolder onto
which it can draw the frames of the video. As we mentioned in the example previous,
Android provides APIs to do all of this and create a custom video playing experience.
However, in many cases the most efficient path forward is to let the classes provided with
the SDK, namely MediaController and VideoView, do all the heavy lifting.

Let’s take a look at an example of creating a video player in an Activity. See Listing 4-26.
Listing 4-26. Activity to Play Video Content
public class VideoActivity extends Activity {

VideoView videoView;
MediaController controller;

@0verride

public void onCreate(Bundle savedInstanceState) {
super.onCreate(savedInstanceState);
videoView = new VideoView(this);

videoView.setVideoURI(Uri.parse("URI_TO REMOTE_VIDEQ"));
controller = new MediaController(this);
videoView.setMediaController(controller);
videoView.start();

setContentView(videoView);

}

@0verride

public void onDestroy() {
super.onDestroy();
videoView.stopPlayback();

}
}

This example passes the URI of a remote video location to VideoView and tells it to
handle the rest. VideoView can be embedded in larger XML layout hierarchies as well,
although often it is the only thing and is displayed full-screen, so setting is in code as the
only view in the layout tree is not uncommon.

With VideoView, interaction with MediaController is much simpler. VideoView
implements the MediaController.MediaPlayerControl interface, so no additional glue
logic is required to make the controls functional. VideoView also internally handles the
anchoring of the controller to itself, so it displays on screen in the proper location.

Handling Redirects

We have one final note about using the MediaPlayer classes to handle remote content.
Many media content servers on the Web today do not publicly expose a direct URL to
the video container. Either for the purposes of tracking or security, public media URLs
can often redirect one or more times before ending up at the true media content.

CHAPTER 4: Interacting with Device Hardware and Media

MediaPlayer does not handle this redirect process, and will return an error when
presented with a redirected URL.

If you are unable to directly retrieve locations of the content you want to display in an
application, that application must trace the redirect path before handing the URL to
MediaPlayer. Listing 4-27 is an example of a simple AsyncTask tracer that will do the job.

Listing 4-27. RedirectTracerTask

public class RedirectTracerTask extends AsyncTask<Uri, Void, Uri> {

private VideoView mVideo;
private Uri initialUri;

public RedirectTracerTask(VideoView video) {
super();
mVideo = video;

}

@0verride
protected Uri doInBackground(Uri... params) {
initialUri = params[0];
String redirected = null;
try {
URL url = new URL(initialUri.toString());
HttpURLConnection connection = (HttpURLConnection)url.openConnection();
//0nce connected, see where you ended up
redirected = connection.getHeaderField("Location");

return Uri.parse(redirected);
} catch (Exception e) {

e.printStackTrace();

return null;

}

@0verride
protected void onPostExecute(Uri result) {
if(result != null) {
mVideo.setVideoURI (result);
} else {
mVideo.setVideoURI(initialUri);
}

}

This helper class tracks down the final location by retrieving it out of the HTTP headers.
If there were no redirects in the supplied Uri, the background operation will end up
returning null, in which case the original Uri is passed to the VideoView. With this helper
class, you can now pass the locations to the view as follows:

VideoView videoView = new VideoView(this);

RedirectTracerTask task = new RedirectTracerTask(videoView);
Uri location = Uri.parse("URI_TO_REMOTE_VIDEO");

task.execute(location);

CHAPTER 4: Interacting with Device Hardware and Media

4-9, Creating a Tilt Monitor

Problem

Your application requires feedback from the device’s accelerometer that goes beyond
just understanding whether the device is oriented in portrait or landscape.

Solution
(API Level 3)

Use SensorManager to receive constant feedback from the accelerometer sensor.
SensorManager provides a generic abstracted interface for working with sensor hardware
on Android devices. The accelerometer is just one of many sensors that an application
can register to receive regular updates from.

How It Works

IMPORTANT: Device sensors, such as the accelerometer, do not exist in the emulator. If you
cannot test SensorManager code on an Android device, you will need to use a tool such as
SensorSimulator to inject sensor events into the system. SensorSimulator requires modifying this
example to use a different SensorManager interface for testing; see “Useful Tools To Know:
SensorSimulator” at the end of this chapter for more information.

This example Activity registers with SensorManager for accelerometer updates and
displays the data on screen. The raw X/Y/Z data is displayed in a TextView at the bottom
of the screen, but in addition the device’s “tilt” is visualized through a simple graph of
four views in a TableLayout. See Listings 4-28 and 4-29.

NOTE: It is also recommended that you add android:screenOrientation="portrait" or
android:screenOrientation="1andscape" to the application’s manifest to keep the
Activity from trying to rotate as you move and tilt the device.

Listing 4-28. res/layout/main.xml

<?xml version="1.0" encoding="utf-8"?>
<Relativelayout xmlns:android="http://schemas.android.com/apk/res/android"
android:layout_width="fill parent"
android:layout_height="fill parent">
<Tablelayout
android:layout_width="fill parent"
android:layout_height="fill parent"
android:stretchColumns="0,1,2">
<TableRow
android:layout_weight="1">

http://schemas.android.com/apk/res/android

CHAPTER 4: Interacting with Device Hardware and Media

<View
android:id="@+id/top"
android:layout_column="1"
/>
</TableRow>
<TableRow
android:layout_weight="1">
<View
android:id="@+id/left"
android:layout_column="0"
/>
<View
android:id="@+id/right"
android:layout_column="2"
/>
</TableRow>
<TableRow
android:layout_weight="1">
<View
android:id="@+id/bottom"
android:layout_column="1"
/>
</TableRow>
</Tablelayout>
<TextView
android:id="@+id/values"
android:layout_width="fill parent"
android:layout_height="wrap_content"
android:layout_alignParentBottom="true"
/>
</Relativelayout>

Listing 4-29. Tilt Monitoring Activity

public class TiltActivity extends Activity implements SensorEventListener {

private SensorManager mSensorManager;
private Sensor mAccelerometer;

private TextView valueView;

private View mTop, mBottom, mLeft, mRight;

public void onCreate(Bundle savedInstanceState) {
super.onCreate(savedInstanceState);
setContentView(R.layout.main);

mSensorManager
mAccelerometer

= (SensorManager)getSystemService(SENSOR_SERVICE);
= mSensorManager.getDefaultSensor(Sensor.TYPE_ACCELEROMETER);
valueView = (TextView)findViewById(R.id.values);
mTop = findViewById(R.id.top);
mBottom = findViewById(R.id.bottom);
mLeft = findViewById(R.id.left);
mRight = findViewById(R.id.right);
}

protected void onResume() {
super.onResume();

CHAPTER 4: Interacting with Device Hardware and Media

mSensorManager.registerListener(this, mAccelerometer,
SensorManager.SENSOR_DELAY _UI);

}

protected void onPause() {
super.onPause();
mSensorManager.unregisterListener(this);

public void onAccuracyChanged(Sensor sensor, int accuracy) { }

public void onSensorChanged(SensorEvent event) {
float[] values = event.values;
float x = values[0] / 10;
float y = values[1] / 10;
int scaleFactor;

if(x > 0) {
scaleFactor = (int)Math.min(x * 255, 255);
mRight.setBackgroundColor(Color.TRANSPARENT);
mLeft.setBackgroundColor(Color.argb(scaleFactor, 255, 0, 0));
} else {
scaleFactor = (int)Math.min(Math.abs(x) * 255, 255);
mRight.setBackgroundColor(Color.argb(scaleFactor, 255, 0, 0));
mLeft.setBackgroundColor(Color.TRANSPARENT);

if(y » 0) {
scaleFactor = (int)Math.min(y * 255, 255);
mTop.setBackgroundColor(Color.TRANSPARENT);
mBottom.setBackgroundColor(Color.argb(scaleFactor, 255, 0, 0));
} else {
scaleFactor = (int)Math.min(Math.abs(y) * 255, 255);
mTop.setBackgroundColor(Color.argb(scaleFactor, 255, 0, 0));
mBottom.setBackgroundColor(Color.TRANSPARENT);

//Display the raw values
valueView.setText(String.format("X: %1$1.2f, Y: %2$1.2f, Z: %3$1.2f",
values[0], values[1], values[2]));

}

The orientation of the three axes on the device accelerometer are as follows, from the
perspective of looking at the device screen, upright in portrait:

B X: Horizontal axis with positive pointing to the right
B Y: Vertical axis with positive pointing up
B Z: Perpendicular axis with positive pointing back at you

When the Activity is visible to the user (between onResume() and onPause()), it registers
with SensorManager to receive updates about the acclerometer. When registering, the
last parameter to registerListener() defines the update rate. The chosen value,
SENSOR_DELAY_UI, is the fastest recommended rate to receive updates and still directly
modify the user interface with each update.

CHAPTER 4: Interacting with Device Hardware and Media

With each new sensor value, the onSensorChanged() method of our registered listener is
called with a SensorEvent value; this event contains the X/Y/Z acceleration values.

QUICK SCIENCE NOTE: An accelerometer measures the acceleration due to forces applied.
When a device is at rest, the only force operating on it is the force of gravity (~9.8 m/s?). The
output value on each axis is the product of this force (pointing down to the ground), and each
orientation vector. When the two are parallel, the value will be at its maximum (~9.8-10). When
the two are perpendicular, the value will be at its minimum (~0.0). Therefore, a device laying flat
on a table will read ~0.0 for both X and Y, and ~9.8 for Z.

The example application displays the raw acceleration values for each axis in the
TextView at the bottom of the screen. In addition, there is a grid of four Views arranged
in a top/bottom/left/right pattern, and we proportionally adjust the background color of
this grid based on the orientation. When the device is perfectly flat, both X and Y should
be close to zero and the entire screen will be black. As the device tilts, the squares on
the low side of the tilt will start to glow red until they are completely red once the device
orientation reaches upright in either position.

TIP: Try modifying this example with some of the other rate values, like
SENSOR_DELAY_NORMAL. Notice how the change affects the update rate in the example.

In addition, you can shake the device and see alternating grid boxes highlight as the
device accelerates in each direction.

4-10. Monitoring Compass Orientation

Problem

Your application wants to know which major direction the user is facing by monitoring
the device’s compass sensor.

Solution
(API Level 3)

SensorManager comes to the rescue once again. Android doesn’t provide a “compass”
sensor exactly, but rather includes the necessary methods to gather where the device is
pointing based on other sensor data. In this case, the device’s magnetic field sensor will
be used in conjunction with the accelerometer to ascertain where the user is facing.

We can then ask SensorManager for the user’s orientation with respect to the Earth
using getOrientation().

CHAPTER 4: Interacting with Device Hardware and Media

How It Works

IMPORTANT: Device sensors such as the accelerometer do not exist in the emulator. If you
cannot test SensorManager code on an Android device, you will need to use a tool such as
SensorSimulator to inject sensor events into the system. SensorSimulator requires modifying this
example to use a different SensorManager interface for testing; see “Useful Tools to Know:
SensorSimulator” at the end of this chapter for more information.

As with the previous accelerometer example, we use SensorManager to register for
updates on all sensors of interest (in this case, there are two), and process the results in
onSensorChanged(). This example calculates and displays the user orientation from the
device camera’s point-of-view, as it would be required for an application such as
augmented reality. See Listings 4-30 and 4-31.

Listing 4-30. res/layout/main.xml

<?xml version="1.0" encoding="utf-8"?>

<Relativelayout xmlns:android="http://schemas.android.com/apk/res/android"
android:layout_width="fill parent"
android:layout_height="fill parent">

<TextView

android:
android:
android:

android

/>
<TextView
android

android
/>

id="@+id/direction"
layout_width="wrap_content"”
layout_height="wrap_content"

:layout_centerInParent="true"
android:
android:

textSize="64dip"
textStyle="bold"

:id="@+id/values"
android:
android:

layout_width="wrap_content"
layout_height="wrap_content"

:layout_alignParentBottom="true"

</Relativelayout>

Listing 4-31. Activity Monitoring User Orientation

public class CompassActivity extends Activity implements SensorEventListener {

private
private
private

private
private

SensorManager mSensorManager;
Sensor mAccelerometer, mField,;
TextView valueView, directionView;

float[] mGravity;
float[] mMagnetic;

public void onCreate(Bundle savedInstanceState) {
super.onCreate(savedInstanceState);
setContentView(R.layout.main);

mSensorManager
mAccelerometer

(SensorManager)getSystemService (SENSOR_SERVICE);
mSensorManager.getDefaultSensor(Sensor.TYPE_ACCELEROMETER);

http://schemas.android.com/apk/res/android

CHAPTER 4: Interacting with Device Hardware and Media

mField = mSensorManager.getDefaultSensor(Sensor.TYPE_MAGNETIC_FIELD);

valueView = (TextView)findViewById(R.id.values);
directionView = (TextView)findViewById(R.id.direction);

}

protected void onResume() {
super.onResume();
mSensorManager.registerListener(this, mAccelerometer,
SensorManager.SENSOR_DELAY _UI);
mSensorManager.registerListener(this, mField, SensorManager.SENSOR_DELAY UI);
}

protected void onPause() {
super.onPause();
mSensorManager.unregisterListener(this);

}

private void updateDirection() {
float[] temp = new float[9];
float[] R = new float[9];
//Load rotation matrix into R
SensorManager.getRotationMatrix(temp, null, mGravity, mMagnetic);
//Map to camera's point-of-view
SensorManager.remapCoordinateSystem(temp, SensorManager.AXIS X,
SensorManager.AXIS Z, R);
//Return the orientation values
float[] values = new float[3];
SensorManager.getOrientation(R, values);
//Convert to degrees
for (int i=0; i < values.length; i++) {
Double degrees = (values[i] * 180) / Math.PI;
values[i] = degrees.floatValue();

//Display the compass direction

directionView.setText(getDirectionFromDegrees(values[0]));

//Display the raw values

valueView.setText(String.format("Azimuth: %1$1.2f, Pitch: %2$1.2f, Roll: %3$1.2f",
values[0], values[1], values[2]));

}

private String getDirectionFromDegrees(float degrees) {
if(degrees >= -22.5 8% degrees < 22.5) { return "N"; }
if(degrees >= 22.5 && degrees < 67.5) { return "NE"; }
if(degrees >= 67.5 && degrees < 112.5) { return "E"; }
if(degrees >= 112.5 &8 degrees < 157.5) { return "SE"; }
if(degrees >= 157.5 || degrees < -157.5) { return "S"; }
if(degrees »= -157.5 &3 degrees < -112.5) { return "SW";
if(degrees »>= -112.5 &8 degrees < -67.5) { return "W"; }
if(degrees >= -67.5 && degrees < -22.5) { return "NW"; }

}

return null;

}

public void onAccuracyChanged(Sensor sensor, int accuracy) { }

CHAPTER 4: Interacting with Device Hardware and Media

public void onSensorChanged(SensorEvent event) {
switch(event.sensor.getType()) {
case Sensor.TYPE_ACCELEROMETER:
mGravity = event.values.clone();
break;
case Sensor.TYPE_MAGNETIC_FIELD:
mMagnetic = event.values.clone();

break;

default:
return;

}

if(mGravity != null && mMagnetic != null) {
updateDirection();

}

This example Activity displays the three raw values returned by the sensor calculation at
the bottom of the screen in real time. In addition, the compass direction associated with
where the user is currently facing is converted and displayed center-stage. As updates
are received from the sensors, local copies of the latest values from each is maintained.
As soon as we have received at least one reading from both sensors of interest, we
allow the Ul to begin updating.

updateDirection() is where all the heavy lifting takes place.
SensorManager.getOrientation() provides the output information we require to display
direction. The method returns no data, and instead an empty float array is passed in for
the method to fill in three angle values, and they represent (in order):

B Azimuth
B Angle of rotation about an axis pointing directly into the Earth.
B This is the value of interest to the example.

B Pitch
B Angle of rotation about an axis pointing West.

® Roll

B Angle of rotation about and axis pointing at magnetic North.

One of the parameters passed to getOrientation() is a float array representing a
rotation matrix. The rotation matrix is a representation of how the current coordinate
system of the devices is oriented, so the method may provide appropriate rotation
angles based on its references coordinates. The rotation matrix for the device orientation
is obtained using getRotationMatrix(), which takes the latest values from the
accelerometer and magnetic field sensor as input. Like getOrientation(), it also returns
void; and empty float array of length 9 or 16 (to represent a 3x3 or 4x4 matrix) must be
passed in as the first parameter for the method to fill in.

CHAPTER 4: Interacting with Device Hardware and Media

Finally, we want the output of the orientation calculation to be specific to the camera’s
point-of-view. To further transform the obtained rotation, we use the
remapCoordinateSystem() method. This method takes four parameters (in order):

1. Input array representing the matrix to transform
2. How to transform the device’s X-axis with respect to world coordinates
3. How to transform the device’s Y-axis with respect to world coordinates

4. Empty array to fill in the result

In our example, we want to leave the X-axis untouched, so we map X to X. However, we
would like to align the device’s Y-axis (vertical axis) to the world’s Z-axis (the one
pointing into the Earth). This orients the rotation matrix we receive to match up with the
device being held vertically upright as if the user is using the camera and looking at the
preview on the screen.

With the angular data calculated, we do some data conversion and display the result on
the screen. The unit output of getOrientation() is radians, so we first have to convert
each result to degrees before displaying it. In addition, we need to convert the azimuth
value to a compass direction; getDirectionFromDegrees() is a helper method to return
the proper direction based on the range the current reading falls within. Going full-circle
clockwise, the azimuth will read from 0 to 180 degrees from North to South. Continuing
around the circle, the azimuth will read -180 to 0 degrees rotating from South to North.

Useful Tools to Know: SensorSimulator

Google’s Android emulator doesn’t support sensors because most computers don’t
have compasses, accelerometers, or even light sensors that the emulator can leverage.
Although this limitation is problematic for apps that need to interact with sensors, and
where the emulator is the only viable testing option, it can be overcome by working with
Sensor Simulator.

Sensor Simulator (http://code.google.com/p/openintents/wiki/SensorSimulator) is an
open source tool that lets you simulate sensor data and make this data available to your
apps for testing purposes. It currently supports accelerometer, magnetic field
(compass), orientation, temperature, and barcode reader sensors; the behavior of these
sensors can be customized through various configuration settings.

NOTE: Sensor Simulator is one of several projects made available to Android developers by
Openintents (http://code.google.com/p/openintents/wiki/OpenIntents), a Google-
hosted project for creating reusable components and tools for the Android platform.

http://code.google.com/p/openintents/wiki/SensorSimulator
http://code.google.com/p/openintents/wiki/OpenIntents

CHAPTER 4: Interacting with Device Hardware and Media

Obtaining Sensor Simulator

Sensor Simulator is distributed in a single ZIP archive. Point your browser to
http://code.google.com/p/openintents/downloads/1list?q=sensorsimulator and click
the sensorsimulator-1.1.0-rc1.zip link followed by the sensorsimulator-1.1.0-
rci1.zip link on the subsequent page to download this 284Kb file.

After unzipping this archive, you’ll discover a sensorsimulator-1.1.0-rc1 home
directory with the following subdirectories:

B bin: Contains the sensorsimulator-1.1.0-rc1.jar (Sensor Simulator
standalone Java application that lets you generate test data) and
SensorSimulatorSettings-1.1.0-rc1.apk (Android app to set default
IP address/port settings and to test the connection to the Sensor
Simulator Java application) executables along with readme files for
these executables.

B 1lib: Contains the sensorsimulator-1ib-1.1.0-rc1.jar library, which
your Android apps use to access sensor settings from the Sensor
Simulator Java application.

B release: Contains the Apache Ant build script to assemble the
sensorsimulator-1.1.0-rc1.zip release.

B samples: Contains a SensorDemo Android app example on how to
access Sensor Simulator from an Android app.

B SensorSimulator: Contains the source code for the Sensor Simulator
Java application.

B SensorSimulatorSettings: Contains the source code for the Sensor
Simulator Settings Android app and project settings for building its
APK and the library file.

Launching Sensor Simulator Settings and Sensor Simulator

Now that you’ve downloaded and unarchived the Sensor Simulator distribution, you'll
want to launch this software. Complete the following steps to accomplish this task:

1. Start the Android emulator if not already running; for example, execute
emulator -avd test AVD at the command line. This example assumes
that you’ve previously created test AVD in Chapter 1.

2. Install SensorSimulatorSettings-1.1.0-rc1.apk on the emulator; for
example, execute adb install SensorSimulatorSettings-1.1.0-
rcil.apk. This example assumes that the adb tool is accessible via your
PATH environment variable, and that the bin directory is current. It
outputs a success message when the APK is successfully installed on
the emulator.

http://code.google.com/p/openintents/downloads/list?q=sensorsimulator

CHAPTER 4: Interacting with Device Hardware and Media

3. Click the app launcher screen’s Sensor Simulator icon to start the
Sensor Simulator app.

4. Start the bin directory’s Sensor Simulator Java application, which is
located in sensorsimulator-1.1.0-rci.jar. For example, under
Windows, double-click this filename.

Figure 4-5 reveals the emulator’s app launcher screen with the Sensor Simulator icon
highlighted.

Figure 4-5. The Sensor Simulator icon is highlighted on the app launcher screen.

Click the Sensor Simulator icon. Figure 4-6 reveals the Sensor Simulator Settings
screen divided into two activities: Settings and Testing.

CHAPTER 4: Interacting with Device Hardware and Media

Sensor Simulator settings

l & l

Settings

Figure 4-6. The default Settings activity prompts for the IP address and socket port.

The Settings activity prompts you to enter the IP address and socket port number of the
Sensor Simulator Java application, whose user interface appears in Figure 4-7.

.) =
£/ SensorSimulator g@
File
(" Sensor Simulator
. Telnet simulations
Openlintents Sensor Simulator
C {)
Yaw ¢ .
! = Battery o 10 20 30 40 50 60 70 80 90 100
Pitch ¢ A
— Telnet (4]
Roll —
-180 -90 0 90 180
Is Present
| v|A ed
Supported sensors i C pluga
® yaw & pitch) roll & pitch) move CTET IS Battery Status
Socket [s010 set magnetic field] | |2
Telnet socket porf5554 Set orientation Battery Health
click on set to create connection. = [] temperature
Possible IP addresses: H [barcode reader [overheat =]
192.168.100.100 = Battery File
Listening on port 8010... [T TR &
s Open a File
accelerometer: 0.00, -8.49, -4.90 =] accelerometer | ‘ |
magnetic field: 13.40, -27.66, -38.45 e Emulate Battery Next time event
orientation: 340.00, -60.00, 0.00 Pepiences
| orientation | GPS
(] 4 GPS Longitude: |degress =

Figure 4-7. Use the Sensor Simulator application’s user interface to send sensor data to Sensor Simulator
Settings and your own apps.

CHAPTER 4: Interacting with Device Hardware and Media

Sensor Simulator presents a tabbed user interface, where each tab lets you send test
data to a different emulator instance. At present, there is only a single default Sensor
Simulator tab, but you can add more tabs and remove them by selecting the New Tab
and Close Tab menu items from the File menu.

Each tab is divided into three panes:

B The left-hand pane displays a graphic of a device that shows its
orientation and position. It also lets you select a socket port and Telnet
socket port, displays connection information, and (by default) displays
only accelerometer, magnetic field, and orientation sensor data.

B The middle pane lets you adjust the device’s yaw, pitch, and roll,
choose which sensors are supported, enable appropriate sensors for
testing, and choose additional sensor data (such as choosing the
current temperature value) as well as how often sensor data is sent to
the emulator.

B The right-hand pane lets you communicate with the emulator instance
via Telnet. You can communicate battery state (such as whether a
battery is present and the battery’s health — is it overheating?) along
with GPS data to the emulator instance.

The left-hand pane displays the IP address (192.168.100.100 in this example) that’s to
be entered in the Settings activity’s IP address textfield. Because Sensor Simulator uses
the same port number (8010) as the number appearing in the Settings activity’s Socket
textfield, you don’t need to change this field’s value.

NOTE: You might need to change the port number in both the Settings activity’s Socket textfield
and Sensor Simulator’s Socket textfield if 8010 is being used by some other application running
on your computer.

After entering this IP address in the Settings activity’s IP address field (see Figure 4-6),
select the Testing activity by clicking the Testing tab. Figure 4-8 shows the results.

CHAPTER 4: Interacting with Device Hardware and Media

2wl B 446
Sensor Simulator settings
I ||
3 0
Testing

Figure 4-8. Click Connect to connect to the Sensor Simulator app and to start receiving test data.

According to this screen, you must click the Connect button to establish a connection
with the Sensor Simulator Java application, which must be running at this point. (You
later click Disconnect to break the connection.)

After clicking Connect, the Testing tab reveals accelerometer, magnetic field, and
orientation checkboxes with labels underneath to show test values. It doesn’t show
checkboxes for temperature and barcode reader because these sensors are not
supported nor enabled (see the Sensor Simulator application’s middle panel).

Check the acclerometer checkbox and, as Figure 4-9 shows, the label underneath the
checkbox reveals to you the current yaw, pitch, and roll values obtained from Sensor
Simulator.

CHAPTER 4: Interacting with Device Hardware and Media

1 5554:tes |2 SensorSimulator

File

= wl B 457 Sensor Simulator

Sensor Simulator settings

Openintents S

Yaw

Pitch =———1_J}—

Roll

-180 -90
Disconnect

accelerometer
magnetic field

Sensor simulator data update rate

® yaw & pitch) roll & pitch) move])

+ accelerometer Fastest v Socket 8010 set ——
0.00, -8.49 -4.90 Telnet socket port5554 Set [l temperature
0.00, -8.49, -4.90 [_] barcode reader

i F Listening on port 8010... sl
magnet'c field astest b4 Firstincoming connection: Enabled sensors
. ALL SENSORS DISABLED!

Incoming connection opened. accelerometer

orientation Fastest ¥ accelerometer: 0.00, -8.49, -4.90

D K|

[] magnetic field
magnetic field: DISABLED [[] orientation
QLENLELON orientation: DISABLED ol baeapetating
= [[] barcode reader

Figure 4-9. The Sensor Simulator Settings app is now receiving accelerometer data from the Sensor Simulator
application.

Accessing Sensor Simulator from Your Apps

Although Sensor Simulator Settings helps you learn how to use Sensor Simulator to
send test data to an app, it’s no substitute for your own apps. At some point, you’ll want
to incorporate code into your activities that accesses this tool. Google provides the
following guidelines for modifying your app to access Sensor Simulator:

1. Add the lib directory’s JAR file (sensorsimulator-1lib-1.1.0-rc1.jar,
for example) to your project.

2. Import the following Sensor Simulator types from this library into your
source code:

import org.openintents.sensorsimulator.hardware.Sensor;

import org.openintents.sensorsimulator.hardware.SensorEvent;

import org.openintents.sensorsimulator.hardware.SensorEventlListener;
import org.openintents.sensorsimulator.hardware.SensorManagerSimulator;

CHAPTER 4: Interacting with Device Hardware and Media

3. Replace your activity’s onCreate() method’s existing
SensorManager.getSystemService() method calls with equivalent
SensorManagerSimulator.getSystemService() method calls. For
example, you might replace mSensorManager = (SensorManager)
getSystemService (SENSOR_SERVICE); with mSensorManager =
SensorManagerSimulator.getSystemService(this, SENSOR_SERVICE);.

4. Connect to the Sensor Simulator Java application using the settings that
have been set previously with SensorSimulatorSettings:
mSensorManager.connectSimulator();, for example.

5. All other code remains untouched. However, remember to register the
sensors in onResume () and unregister them in onStop():

@0verride
protected void onResume()

super.onResume();
mSensorManager.registerListener(this,
mSensorManager .getDefaultSensor (Sensor.TYPE_ACCELEROMETER),
SensorManager.SENSOR_DELAY_FASTEST);
mSensorManager.registerListener(this,
mSensorManager .getDefaultSensor (Sensor.TYPE_MAGNETIC_FIELD),
SensorManager.SENSOR_DELAY_FASTEST);
mSensorManager.registerListener(this,
mSensorManager.getDefaultSensor(Sensor.TYPE_ORIENTATION),
SensorManager.SENSOR_DELAY_FASTEST);
mSensorManager.registerListener(this,
mSensorManager . getDefaultSensor(Sensor.TYPE_TEMPERATURE),
SensorManager.SENSOR_DELAY_FASTEST);
}
@verride
protected void onStop()
{
mSensorManager.unregisterListener(this);
super.onStop();

6. Finally, you must implement the SensorEventlListener interface:

class MySensorActivity extends Activity implements SensorEventlListener

public void onAccuracyChanged(Sensor sensor, int accuracy)

{
}

public void onSensorChanged(SensorEvent event)
{

int sensor = event.type;

float[] values = event.values;

// do something with the sensor data

}
}

CHAPTER 4: Interacting with Device Hardware and Media

NOTE: Openintents’ SensorManagerSimulator class is derived from the Android
SensorManager class, and implements exactly the same functions as SensorManager. For
the callback, the new SensorEventListener interface has been implemented to resemble the
standard Android SensorEventListener interface.

Whenever you are not connected to the Sensor Simulator Java application, you’ll get real device
sensor data: the org.openintents.hardware.SensorManagerSimulator class
transparently calls the SensorManager instance that’s returned by the system service to make
this happen.

Summary

This collection of recipes exposed how to use Android to use maps, user location, and
device sensor data to integrate information about the user’s surroundings into your
applications. We also discussed how to utilize the device’s camera and microphone,
allowing the user to capture, and sometimes interpret, what’s around them. Finally,
using the media APIs you learned how to take media content, either captured locally by
the user or downloaded remotely from the Web, and play it back from within your
applications. In the next chapter, we will discuss how to use Android’s many persistence
techniques to store nonvolatile data on the device.

Chapter

Persisting Data

Even in the midst of grand architectures put in place to shift as much user data into the
cloud as possible, the transient nature of mobile applications will always require that at
least some user data be persisted locally on the device. This data may range from
cached responses from a web service guaranteeing offline access to preferences the
user has set for specific application behaviors. Android provides a series of helpful
frameworks to take the pain out of using files and databases to persist information.

5-1. Making a Preference Screen

Problem

You need to create a simple way to store, change, and display user preferences and
settings within your application.

Solution
(API Level 1)

Use the PreferenceActivity and an XML Preference hierarchy to provide the user
interface, key/value combinations, and persistence all at once. Using this method will
create a user interface that is consistent with the Settings application on Android
devices, keep the user’s experience consistent with what they expect.

Within the XML, an entire set of one or more screens can be defined with the associated
settings displayed and grouped into categories using the PreferenceScreen,
PreferenceCategory, and associated Preference elements. The Activity can then load
this hierarchy for the user using very little code.

How It Works

Listings 5-1 and 5-2 provide a sample of basic settings for an Android application. The
XML defines two screens with a variety of all the common preference types that this

257

CHAPTER 5: Persisting Data

framework supports. Notice that one screen is nested inside of the other; the internal
screen will be displayed when the user clicks on its associated list item from the root
screen.

Listing 5-1.res/xml/settings.xml

<?xml version="1.0" encoding="utf-8"?>
<PreferenceScreen xmlns:android="http://schemas.android.com/apk/res/android">
<EditTextPreference
android:key="namePref"
android:title="Name"
android:summary="Tell Us Your Name"
android:defaultValue="Apress"
/>
<CheckBoxPreference
android:key="morePref"
android:title="Enable More Settings"
android:defaultValue="false"
/>
<PreferenceScreen
android:key="moreScreen"
android:title="More Settings"
android:dependency="morePref">
<ListPreference
android:key="colorPref"
android:title="Favorite Color"
android:summary="Choose your favorite color"
android:entries="@array/color_names"
android:entryValues="@array/color_values"
android:defaultValue="GRN"
/>
<PreferenceCategory
android:title="Location Settings">
<CheckBoxPreference
android:key="gpsPref"
android:title="Use GPS Location"
android:summary="Use GPS to Find You"
android:defaultValue="true"
/>
<CheckBoxPreference
android:key="networkPref"
android:title="Use Network Location"
android:summary="Use Network to Find You"
android:defaultValue="true"
/>
</PreferenceCategory>
</PreferenceScreen>
</PreferenceScreen>

Listing 5-2. res/values/arrays.xml

<?xml version="1.0" encoding="utf-8"?>
<resources>
<string-array name="color_names">
<item>Black</item>
<item>Red</item>
<item>Green</item>
</string-array>

http://schemas.android.com/apk/res/android

CHAPTER 5: Persisting Data

<string-array name="color_values">
<item>BLK</item>
<item>RED</item>
<item>GRN</item>
</string-array>
</resources>

Notice first the convention used to create the XML file. Although this resource could be
inflated from any directory (such as res/layout), convention is to put them into a generic
directory of the project titled simply “xml.”

Also, notice that we provide an android:key attribute for each Preference object
instead of android:id. When each stored value is referenced elsewhere in the
application through a SharedPreferences object, it will be accessed using the key. In
addition, PreferenceActivity includes the findPreference() method for obtaining a
reference to an inflated Preference in Java code, which is more efficient than using
findViewById(); and findPreference() also takes the key as a parameter.

When inflated, the root PreferenceScreen presents a list with the following three options
(in order):

1. Anitem titled “Name”
a. Instance of EditTextPreference, which stores a string value.

b. Tapping this item will present a text box for the user to type a new
preference value.

2. Anitem titled “Enable More Settings” with a checkbox beside it
a. Instance of CheckBoxPreference, which stores a boolean value.
b. Tapping this item will toggle the checked status of the checkbox.
3. Anitem titled “More Settings”

a. Tapping this item will load another PreferenceScreen with more
items.

When the user taps the “More Settings” item, a second screen is displayed with three
more items: a ListPreference item and two more CheckBoxPreferences grouped
together by a PreferenceCategory. PreferenceCategory is simply a way to create section
breaks and headers in the list for grouping actual preference items.

The ListPreference is the final preference type used in the example. This item requires
two array parameters (although they can both be set to the same array) that represent a
set of choices the user may pick from. The android:entries array is the list of human-
readable items to display, while the android:entryValues array represents the actual
value to be stored.

All the preference items may optionally have a default value set for them as well. This
value is not automatically loaded, however. It will load the first time this XML file is
inflated when the PreferenceActivity is displayed OR when a call to
PreferenceManager.setDefaultValues() is made.

CHAPTER 5: Persisting Data

Now let’s take a look at how a PreferenceActivity would load and manage this. See
Listing 5-3.

Listing 5-3. PreferenceActivity in Action

public class SettingsActivity extends PreferenceActivity {

@0verride

public void onCreate(Bundle savedInstanceState) {
super.onCreate(savedInstanceState);
//Load preference data from XML
addPreferencesFromResource(R.xml.settings);

}
}

All that is required to display the preferences to the user and allow them to make
changes is a call to addPreferencesFromResource(). There is no need to call
setContentView() with PreferenceActivity, as addPreferencesFromResource() inflates
the XML and displays it as well. However a custom layout may be provided as long as it
contains a ListView with the android:id="@android:id/1ist" attribute set, which is
where PreferenceActivity will load the preference items.

Preference items can also be placed in the list for the sole purpose of controlling
access. In the example, we put the “Enable More Settings” item in the list just to allow
the user to enable or disable access to the second PreferenceScreen. In order to
accomplish this, our nested PreferenceScreen includes the android:dependency
attribute, which links its enabled state to the state of another preference. Whenever the
referenced preference is either not set or false, this preference will be disabled.

When this Activity loads, you see something like Figure 5-1.

M & 12:00am M ® 12:00am

More Settings

Enable More Settings

Favorite Color
Tell Us Your Name Cho avorite color

Location Settings

Use GPS Location

PS to Find You

M Setti
ore >ettings Use Network Location

Use Network to Find You

Figure 5-1. PreferenceScreen in action

CHAPTER 5: Persisting Data

The root PreferenceScreen (left) displays first. If the user taps on “More Settings,” the
secondary screen (right) displays.

Loading Defaults and Accessing Preferences

Typically, a PreferenceActivity such as this one is not the root of an application. Often,
if default values are set they may need to be accessed by the rest of the application
before the user ever visits Settings (the first case under which the defaults will load).
Therefore, it can be helpful to put a call to the following method elsewhere in your
application to ensure that the defaults are loaded prior to being used.

PreferenceManager.setDefaultValues(Context context, int resId, boolean readAgain);

This method may be called multiple times, and the defaults will not get loaded over
again. It may be placed in the main Activity so it is called on first launch, or perhaps in a
common place where it is called before any access to shared preferences.

Preferences stored using this mechanism are put into the default shared preferences
object, which can be accessed with any Context pointer using

PreferenceManager.getDefaultSharedPreferences(Context context);

An example Activity that would load the defaults set in our previous example and access
some of the current values stored would look like Listing 5-4.

Listing 5-4. Activity Loading Preference Defaults

public class HomeActivity extends Activity {

@0verride

public void onCreate(Bundle savedInstanceState) {
super.onCreate(savedInstanceState);
setContentView(R.layout.main);

//Load the preference defaults
PreferenceManager.setDefaultValues(this, R.xml.settings, false);

}

@verride
public void onResume() {
super.onResume();
//Access the current settings
SharedPreferences settings =
PreferenceManager.getDefaultSharedPreferences(this);

String name = settings.getString(“namePref", "");
boolean isMoreEnabled = settings.getBoolean("morePref", false);

}

Calling setDefaultValues() will create a value in the preference store for any item in the
XML file that includes an android:defaultValue attribute. This will make them
accessible to the application, even if the user has not yet visited the settings screen.

CHAPTER 5: Persisting Data

These values can then be accessed using a set of typed accessor functions on the
SharedPreferences object. Each of these accessor methods requires both the name of
the preference key and a default value to be returned if a value for preference key does
not yet exist.

5-2. Persisting Simple Data

Problem

Your application needs a simple, low-overhead method of storing basic data, such as
numbers and strings, in persistent storage.

Solution
(API Level 1)

Using SharedPreferences objects, applications can quickly create one or more
persistent stores where data can be saved and retrieved at a later time. Underneath the
hood, these objects are actually stored as XML files in the application’s user data area.
However, unlike directly reading and writing data from files, SharedPreferences provide
an efficient framework for persisting basic data types.

Creating multiple SharedPreferences as opposed to dumping all your data in the default
object can be a good habit to get into, especially if the data you are storing has a shelf
life. Keeping in mind that all preferences stored using the XML and PreferenceActivity
framework are also stored in the default location — what if you wanted to store a group
of items related to, say, a logged in user? When that user logs out, you will need to
remove all the persisted data that goes along with that. If you store all that data in
default preferences, you will most likely need to remove each item individually. However,
if you create a preference object just for those settings, logging out can be as simple as
calling SharedPreferences.clear().

How It Works

Let’s look at a practical example of using SharedPreferences to persist simple data.
Listings 5-5 and 5-6 create a data entry form for the user to send a simple message to a
remote server. To aid the user, we will remember all the data they enter for each field
until a successful request is made. This will allow the user to leave the screen (or be
interrupted by a text message or phone call) without having to enter all their information
again.

Listing 5-5. res/layout/form.xml

<?xml version="1.0" encoding="utf-8"?>

<LinearlLayout xmlns:android="http://schemas.android.com/apk/res/android"
android:orientation="vertical"
android:layout_width="fill parent"
android:layout_height="fill parent">

http://schemas.android.com/apk/res/android

CHAPTER 5: Persisting Data

<TextView
android:layout_width="fill parent"
android:layout_height="wrap_content"
android:text="Email:"
android:padding="5dip"

/>

<EditText
android:id="@+id/email"
android:layout_width="fill parent"”
android:layout_height="wrap_content"
android:singlelLine="true"

/>

<CheckBox
android:id="@+id/age"
android:layout_width="fill parent"
android:layout_height="wrap_content"
android:text="Are You Over 182"

/>

<TextView
android:layout_width="fill parent"”
android:layout_height="wrap_content"
android:text="Message:"
android:padding="5dip"

/>

<EditText
android:id="@+id/message"
android:layout_width="fill parent"”
android:layout_height="wrap_content"
android:minlLines="3"
android:maxLines="3"

/>

<Button
android:id="@+id/submit"
android:layout_width="fill parent"
android:layout_height="wrap_content"
android:text="Submit"

/>

</Linearlayout>

Listing 5-6. Entry Form with Persistence
public class FormActivity extends Activity implements View.OnClickListener {
EditText email, message;

CheckBox age;
Button submit;

SharedPreferences formStore;

boolean submitSuccess = false;

@0verride

public void onCreate(Bundle savedInstanceState) {
super.onCreate(savedInstanceState);
setContentView(R.layout.form);

email = (EditText)findViewById(R.id.email);
message = (EditText)findViewById(R.id.message);

CHAPTER 5: Persisting Data

age = (CheckBox)findViewById(R.id.age);

submit = (Button)findViewById(R.id.submit);
submit.setOnClickListener(this);

//Retrieve or create the preferences object
formStore = getPreferences(Activity.MODE_PRIVATE);

}

@0verride

public void onResume() {
super.onResume();
//Restore the form data
email.setText(formStore.getString("email”, ""));
message.setText(formStore.getString("message", ""));
age.setChecked(formStore.getBoolean("age", false));

}

@0verride
public void onPause() {
super.onPause();
if(submitSuccess) {
//Editor calls can be chained together
formStore.edit().clear().commit();
} else {
//Store the form data
SharedPreferences.Editor editor = formStore.edit();
editor.putString("email", email.getText().toString());
editor.putString("message", message.getText().toString());
editor.putBoolean("age", age.isChecked());
editor.commit();

}

@0verride
public void onClick(View v) {

//DO SOME WORK SUBMITTING A MESSAGE

//Mark the operation successful
submitSuccess = true;

//Close

finish();

}

We start with a typical user form, two simple EditText entry fields and a CheckBox. When
the Activity is created, we gather a SharedPreferences object using
Activity.getPreferences(), and this is where all the persisted data will be stored. If at
any time the Activity is paused for a reason other than a successful submission
(controlled by the boolean member), the current state of the form will be quickly loaded
into the preferences and persisted.

CHAPTER 5: Persisting Data

NOTE: When saving data into SharedPreferences using an Editozr, always remember to call
commit() or apply() after the changes are made. Otherwise your changes will not be saved.

Conversely, whenever the Activity becomes visible, onResume() loads the user interface
with the latest information stored in the preferences object. If no preferences exist, either
because they were cleared or never created (first launch), then the form is set to blank.

When a user presses Submit and the fake form submits successfully, the subsequent
call to onPause() will clear any stored form data in preferences. Because all these
operations were done on a private preferences object, clearing the data does not affect
any user settings that may have been stored using other means.

NOTE: Methods called from an Editor always return the same Editor object, allowing them
to be chained together in places where doing so makes your code more readable.

Sharing SharedPreferences

The previous example illustrated using a single SharedPreferences object within the
context of a single Activity with an object obtained from Activity.getPreferences().
Truth be told, this method is really just a convenience wrapper for
Context.getSharedPreferences(), in which it passes the Activity name as the preference
store name. If the data you are storing is best shared between two or more Activity
instances, it might make sense to call getSharedPreferences() instead and pass a more
common name so it can be accessed easily from different places in code. See Listing 5-7.

Listing 5-7. Two Activities Using the Same Preferences

public class ActivityOne extends Activity {
public static final String PREF_NAME = "myPreferences";
private SharedPreferences mPreferences;

@0verride
public void onCreate(Bundle savedInstanceState) {
super.onCreate(savedInstanceState);
mPreferences = getSharedPreferences(PREF_NAME, Activity.MODE_PRIVATE);
}
}

public class ActivityTwo extends Activity {
private SharedPreferences mPreferences;

@0verride
public void onCreate(Bundle savedInstanceState) {
super.onCreate(savedInstanceState);
mPreferences = getSharedPreferences(ActivityOne.PREF_NAME,
Activity.MODE_PRIVATE);

CHAPTER 5: Persisting Data

In this example, both Activity classes retrieve the SharedPreferences object using the
same name (defined as a constant string), thus they will be accessing the same set of
preference data. Furthermore, both references are even pointing at the same instance of
preferences, as the framework creates a singleton object for each set of
SharedPreferences (a set being defined by its name). This means that changes made on
one side will immediately be reflected on the other.

A Note About Mode

Context.getSharedPreferences() also takes a mode parameter. Passing 0 or
MODE_PRIVATE provides the default behavior of allowing only the application that created
the preferences (or another application with the same user ID) to gain read and write
access. This method supports two more mode parameters; MODE_WORLD _READABLE and
MODE_WORLD_WRITEABLE. These modes allow other applications to gain access to these
preferences by setting the user permissions on the file it creates appropriately. However,
the external application still requires a valid Context pointing back to the package where
the preference file was created.

For example, let’s say you created SharedPreferences with world readable
permission in an application with the package com.examples.myfirstapplication. In
order to access those preferences from a second application, the second application
would obtain them using the following code:

Context otherContext = createPackageContext("com.examples.myfirstapplication”, 0);
SharedPreferences externalPreferences = otherContext.getSharedPreferences(PREF_NAME, 0);

CAUTION: If you choose to use the mode parameter to allow external access, be sure that you
are consistent in the mode you provide everywhere getSharedPreferences() is called. This
mode is only used the first time the preference file gets created, so calling up
SharedPreferences with different mode parameters at different times will only lead to
confusion on your part.

5-3. Reading and Writing Files

Problem

Your application needs to read data in from an external file or write more complex data
out for persistence.

Solution
(API Level 1)

Sometimes, there is no substitute for working with a file system. Android supports all the
standard Java File I/O for create, read, update, and delete (CRUD) operations, along

CHAPTER 5: Persisting Data

with some additional helpers to make accessing those files in specific locations a little
more convenient. There are three main locations in which an application can work with
files:

B Internal storage
B Protected directory space to read and write file data.
B External storage
B Externally mountable space to read and write file data.
B Requires the WRITE_EXTERNAL_STORAGE permission in API Level 4+.
B Often, this is a physical SD Card in the device.
B Assets
B Protected read-only space inside the APK bundle.
B Good for local resources that can’t/shouldn’t be compiled.

While the underlying mechanism to work with file data remains the same, we will look at
the details that make working with each destination slightly different.

How It Works

As we stated earlier, the traditional Java FileInputStream and FileOutputStream classes
constitute the primary method of accessing file data. In fact, you can create a File
instance at any time with an absolute path location and start streaming data. However,
with root paths varying on different devices and certain directories being protected from
your application, we recommend some slightly more efficient ways to work with files.

Internal Storage

In order to create or modify a file’s location on internal storage, utilize the
Context.openFileInput() and Context.openFileOutput() methods. These methods
require only the name of the file as parameters, instead of the entire path, and will
reference the file in relation to the application’s protected directory space, regardless of
the exact path on the specific device. See Listing 5-8.

Listing 5-8. CRUD a File on Internal Storage
public class InternalActivity extends Activity {

private static final String FILENAME = "data.txt";

@0verride

public void onCreate(Bundle savedInstanceState) {
super.onCreate(savedInstanceState);
TextView tv = new TextView(this);
setContentView(tv);

//Create a new file and write some data

CHAPTER 5: Persisting Data

try {
FileOutputStream mOutput = openFileOutput(FILENAME, Activity.MODE_PRIVATE);
String data = "THIS DATA WRITTEN TO A FILE";
mOutput.write(data.getBytes());
mOutput.close();

} catch (FileNotFoundException e) {
e.printStackTrace();

} catch (IOException e) {
e.printStackTrace();

//Read the created file and display to the screen

try {
FileInputStream mInput = openFileInput(FILENAME);
byte[] data = new byte[128];
mInput.read(data);
mInput.close();

String display = new String(data);
tv.setText(display.trim());

} catch (FileNotFoundException e) {
e.printStackTrace();

} catch (IOException e) {
e.printStackTrace();

//Delete the created file
deleteFile(FILENAME);

}

This example uses Context.openFileOutput() to write some simple string data out to a
file. When using this method, the file will be created if it does not already exist. It takes
two parameters, a file name and an operating mode. In this case, we use the default
operation by defining the mode as MODE_PRIVATE. This mode will overwrite the file with
each new write operation; use MODE_APPEND if you prefer that each write tack on to the
end of the existing file.

After the write is complete, the example uses Context.openFileInput(), which only
requires the file name again as a parameter, to open an InputStream and read the file
data. The data is read into a byte array and displayed to the user interface through a
TextView. Upon completing the operation, Context.deleteFile() is used to remove the
file from storage.

NOTE: Data is written to the file streams as bytes, so higher level data (even strings) must be
converted into and out of this format.

This example leaves no traces of the file behind, but we encourage you to try the same
example without running deleteFile() at the end to keep the file in storage. Using
DDMS with an emulator or unlocked device, you may view the file system and can find
the file this application creates in its respective application data folder.

CHAPTER 5: Persisting Data

Because these methods are a part of Context, and not bound to Activity, this type of file
access can occur anywhere in an application that you require, such as a
BroadcastReceiver or even a custom class. Many system constructs either are a
subclass of Context, or pass a reference to one in their callbacks. This allows the same
open/close/delete operations to take place anywhere.

External Storage

The key differentiator between internal and external storage lies in the fact that external
storage is mountable. This means that the user can connect their device to a computer
and have the option of mounting that external storage as a removable disk on the PC.
Often, the storage itself is physically removable (such as an SD card), but this is not a
requirement of the platform.

IMPORTANT: Writing to the external storage of the device will require that you add a declaration
for android.permission.WRITE EXTERNAL STORAGE to the application manifest.

During periods where the device’s external storage is either mounted externally or
physically removed, it is not accessible to an application. Because of this, it is always
prudent to check whether or not external storage is ready by checking
Environment.getExternalStorageState().

Let’s modify the file example to do the same operation with the device’s external
storage. See Listing 5-9.

Listing 5-9. CRUD a File on External Storage
public class ExternalActivity extends Activity {

private static final String FILENAME = "data.txt";

@0verride

public void onCreate(Bundle savedInstanceState) {
super.onCreate(savedInstanceState);
TextView tv = new TextView(this);
setContentView(tv);

//Create the file reference
File dataFile = new File(Environment.getExternalStorageDirectory(), FILENAME);

//Check if external storage is usable
if(!Environment.getExternalStorageState().equals(Environment.MEDIA MOUNTED)) {
Toast.makeText(this, "Cannot use storage.", Toast.LENGTH_SHORT).show();
finish();

return;

//Create a new file and write some data

try {
FileOutputStream mOutput = new FileOutputStream(dataFile, false);
String data = "THIS DATA WRITTEN TO A FILE";
mOutput.write(data.getBytes());

CHAPTER 5: Persisting Data

mOutput.close();

} catch (FileNotFoundException e) {
e.printStackTrace();

} catch (IOException e) {
e.printStackTrace();

//Read the created file and display to the screen

try {
FileInputStream mInput = new FileInputStream(dataFile);

byte[] data = new byte[128];
mInput.read(data);
mInput.close();

String display = new String(data);
tv.setText(display.trim());

} catch (FileNotFoundException e) {
e.printStackTrace();

} catch (IOException e) {
e.printStackTrace();

//Delete the created file
dataFile.delete();

}
}

With external storage, we utilize a little more of the traditional Java File I/O. The key to
working with external storage is calling Environment.getExternalStorageDirectory() to
retrieve the root path to the device’s external storage location.

Before any operations can take place, the status of the device’s external storage is first
checked with Environment.getExternalStorageState(). If the value returned is anything
other than Environment.MEDIA_MOUNTED, we wil not proceed because the storage cannot
be written to, so the Activity is closed. Otherwise, a new file can be created and the
operations may commence.

The input and output streams must now use default Java constructors, as opposed to
the Context convenience methods. The default behavior of the output stream will be to
overwrite the current file, or create it if it does not exist. If your application must append
to the end of the exiting file with each write, change the boolean parameter in the
FileOutputStream constructor to true.

Often, it makes sense to create a special directory on the external storage for your
application’s files. We can accomplish this simply using more of Java’s File API. See
Listing 5-10.

Listing 5-10. CRUD a File Inside New Directory
public class ExternalActivity extends Activity {

private static final String FILENAME = "data.txt";
private static final String DNAME = "myfiles";

@0verride
public void onCreate(Bundle savedInstanceState) {

}

CHAPTER 5: Persisting Data

super.onCreate(savedInstanceState);
TextView tv = new TextView(this);
setContentView(tv);

//Create a new directory on external storage
File rootPath = new File(Environment.getExternalStorageDirectory(), DNAME);
if(!rootPath.exists()) {

rootPath.mkdirs();

//Create the file reference
File dataFile = new File(rootPath, FILENAME);

//Create a new file and write some data

try {
FileOutputStream mOutput = new FileOutputStream(dataFile, false);
String data = "THIS DATA WRITTEN TO A FILE";
mOutput.write(data.getBytes());
mOutput.close();

} catch (FileNotFoundException e) {
e.printStackTrace();

} catch (IOException e) {
e.printStackTrace();

//Read the created file and display to the screen
try {
FileInputStream mInput = new FileInputStream(dataFile);
byte[] data = new byte[128];
mInput.read(data);
mInput.close();

String display = new String(data);
tv.setText(display.trim());

} catch (FileNotFoundException e) {
e.printStackTrace();

} catch (IOException e) {
e.printStackTrace();

//Delete the created file
dataFile.delete();

In this example we create a new directory path within the external storage directory and
use that new location as the root location for the data file. Once the file reference is
created using the new directory location, the remainder of the example is the same.

5-4. Using Files as Resources

Problem

Your application must utilize resource files that are in a format Android cannot compile
into a resource ID.

CHAPTER 5: Persisting Data

Solution
(API Level 1)

Use the Assets directory to house files your application needs to read from, such as
local HTML, CSV, or proprietary data. The assets directory is a protected resource
location for files in an Android application. The files placed in this directory will be
bundled with the final APK, but will not be processed or compiled. Like all other
application resources, the files in Assets are read-only.

How It Works

There are a few specific instances that we’ve seen already in this book where Assets
can be used to load content directly into widgets, like WebView and MediaPlayer.
However, in most cases, Assets is best accessed using a traditional InputStream.
Listings 5-11 and 5-12 provide an example in which a private Comma Separated Values
(CSV) file is read from Assets and displayed onscreen.

Listing 5-11. assets/data.csv

John,38,Red
Sally,42,Blue
Rudy,31,Yellow

Listing 5-12. Reading from an Asset File
public class AssetActivity extends Activity {

@0verride

public void onCreate(Bundle savedInstanceState) {
super.onCreate(savedInstanceState);
TextView tv = new TextView(this);
setContentView(tv);

try {
//Access application assets
AssetManager manager = getAssets();
//0pen our data file
InputStream mInput = manager.open("data.csv");
//Read data in
byte[] data = new byte[128];
mInput.read(data);
mInput.close();

//Parse the CSV data and display
String raw = new String(data);
Arraylist<Person> cooked = parse(raw.trim());
StringBuilder builder = new StringBuilder();
for(Person piece : cooked) {
builder.append(String.format("%s is %s years old, and likes the color %s",
piece.name, piece.age, piece.color));
builder.append('\n');

tv.setText(builder.toString());

}

} catch (FileNotFoundException e) {
e.printStackTrace();

} catch (IOException e) {
e.printStackTrace();

}

/* Simple CSV Parser */

private static final int COL_NAME = 0;

private static final int COL_AGE = 1;

private static final int COL_COLOR = 2;

private ArraylList<Person> parse(String raw) {
ArraylList<Person> results = new Arraylist<Person>();
Person current = null;

StringTokenizer st = new StringTokenizer(raw,",\n");
int state = COL_NAME;
while(st.hasMoreTokens()) {
switch(state) {
case COL_NAME:
current = new Person();
current.name = st.nextToken();
state = COL_AGE;
break;
case COL_AGE:
current.age = st.nextToken();
state = COL_COLOR;
break;
case COL_COLOR:
current.color = st.nextToken();
results.add(current);
state = COL_NAME;
break;

}

return results;

}

private class Person {
public String name;
public String age;
public String color;

public Person() { }

CHAPTER 5: Persisting Data

The key to accessing files in Assets lies in using AssetManager, which will allow the
application to open any resource currently residing in the Assets directory. Passing the
name of the file we are interested in to AssetManager.open() returns an InputStream for
us to read the file data. Once the stream is read into memory, the example passes the
raw data off to a parsing routine and displays the results to the user interface.

CHAPTER 5: Persisting Data

Parsing the CSV

This example also illustrates a simple method of taking data from a CSV file and parsing
it into a model object (called Person in this case). The method used here takes the entire
file and reads it into a byte array for processing as a single string. This method is not the
most memory efficient when the amount of data to be read is quite large, but for small
files like this one it works just fine.

The raw string is passed into a StringTokenizer instance, along with the required
characters to use as breakpoints for the tokens: comma and new line. At this point, each
individual chunk of the file can be processed in order. Using a basic state machine
approach, the data from each line is inserted into new Person instances and loaded into
the resulting list.

5-5. Managing a Database

Problem

Your application needs to persist data that can later be queried or modified later as
subsets or individual records.

Solution
(API Level 1)

Create an SQLiteDatabase with the assistance of an SQLiteOpenHelper to manage your
data store. SQLite is a fast and lightweight database technology that utilizes SQL syntax
to build queries and manage data. Support for SQLite is baked in to the Android SDK,
making it very easy to set up and use in your applications.

How It Works

Customizing SQLiteOpenHelper allows you to manage the creation and modification of
the database schema itself. It is also an excellent place to insert any initial or default
values you may want into the database while it is created. Listing 5-13 is an example
customizing the helper to create a database with a single table to store basic
information about people.

Listing 5-13. Custom SQLiteOpenHelper
public class MyDbHelper extends SQLiteOpenHelper {

private static final String DB_NAME

"mydb";
private static final int DB_VERSION ;

1

public static final String TABLE_NAME = "people";
public static final String COL_NAME = "pName";
public static final String COL_DATE = "pDate";
private static final String STRING CREATE =

CHAPTER 5: Persisting Data

"CREATE TABLE "+TABLE NAME+" (_id INTEGER PRIMARY KEY AUTOINCREMENT, "
+COL_NAME+" TEXT, "+COL _DATE+" DATE);";

public MyDbHelper(Context context) {
super(context, DB _NAME, null, DB_VERSION);

@0verride

public void onCreate(SQLiteDatabase db) {
//Create the database table
db.execSQL(STRING CREATE);

//You may also load initial values into the database here

ContentValues cv = new ContentValues(2);

cv.put(COL_NAME, "John Doe");

//Create a formatter for SQL date format

SimpleDateFormat dateFormat = new SimpleDateFormat("yyyy-MM-dd HH:mm:ss");
cv.put(COL_DATE, dateFormat.format(new Date())); //Insert 'now' as the date
db.insert(TABLE_NAME, null, cv);

}

@0verride

public void onUpgrade(SQLiteDatabase db, int oldVersion, int newVersion) {
//For now, clear the database and re-create
db.execSQL("DROP TABLE IF EXISTS "+TABLE NAME);
onCreate(db);

}

They key pieces of information you will need for your database are a name and version
number. Creating and upgrading an SQLiteDatabase does require a light knowledge of
SQL, so we recommend glancing at an SQL reference briefly if you are unfamiliar with
some of the syntax. The helper will call onCreate() any time this particular database is
accessed, using either SQLiteOpenHelper.getReadableDatabase() or
SQLiteOpenHelper.getWritableDatabase(), if it does not already exist.

The example abstracts the table and column names as constants for external use (a
good practice to get into). Here is the actual SQL create string that is used in onCreate()
to make our table:

CREATE TABLE people (_id INTEGER PRIMARY KEY AUTOINCREMENT, pName TEXT, pAge INTEGER,
pDate DATE);

When using SQLite in Android, there is a small amount of formatting that the database
must have in order for it to work properly with the framework. Most of it is created for
you, but one piece that the tables you create must have is a column for _id. The
remainder of this string creates two more columns for each record in the table:

B Atext field for the person’s name
B A date field for the date this record was entered

Data is inserted into the database using ContentValues objects. The example illustrates
how to use ContentValues to insert some default data into the database when it is
created. SQLiteDatabase.insert() takes a table name, null column hack, and
ContentValues representing the record to insert as parameters.

CHAPTER 5: Persisting Data

The null column hack is not used here, but serves a purpose that may be vital to your
application. SQL cannot insert an entirely empty value into the database, and attempting
to do so will cause an error. If there is a chance that your implementation may pass an
empty ContentValues to insert(), the null column hack is used to instead insert a
record where the value of the referenced column is NULL.

A Note About Upgrading

SQLiteOpenHelper also does a great job of assisting you with migrating your database
schema in future versions of the application. Whenever the database is accessed, but
the version on disk does not match the current version (meaning the version passed in
the constructor), onUpgrade() will be called.

In our example, we took the lazy man’s way out and simply dropped the existing
database and recreated it. In practice, this may not be a suitable method if the database
contains user entered data; they probably won’t be too happy to see it disappear. So
let’s digress for a moment and look at an example of onUpgrade() that may be more
useful. Take, for example, the following three databases used throughout the lifetime of
an application:

B Version 1: First release of the application
B Version 2: Application upgrade to include phone number field
B Version 3: Application upgrade to include date entry inserted

We can leverage onUpgrade() to alter the existing database instead of erasing all the
current information in place. See Listing 5-14.

Listing 5-14. Sample of onUpgrade()

@0verride
public void onUpgrade(SQLiteDatabase db, int oldVersion, int newVersion) {
//Upgrade from vi. Adding phone number
if(oldversion <= 1) {
db.execSQL("ALTER TABLE "+TABLE_NAME+" ADD COLUMN phone number INTEGER;");

//Upgrade from v2. Add entry date
if(oldversion <= 2) {

db.execSQL("ALTER TABLE "+TABLE _NAME+" ADD COLUMN entry date DATE;");
}

}

In this example, if the user’s existing database version is 1, both statements will be
called to add columns to the database. If they already have version 2, just the latter
statement is called to add the entry date column. In both cases, any existing data in the
application database is preserved.

Using the Database

Looking back to our original sample, let’s take a look at how an Activity would utilize the
database we’ve created. See Listings 5-15 and 5-16.

CHAPTER 5: Persisting Data

Listing 5-15. res/layout/main.xml

<?xml version="1.0" encoding="utf-8"?>
<LinearlLayout xmlns:android="http://schemas.android.com/apk/res/android"
android:orientation="vertical"
android:layout_width="fill parent"
android:layout_height="fill parent">
<EditText
android:id="@+id/name"
android:layout_width="fill parent"
android:layout_height="wrap_content"
/>
<Button
android:id="@+id/add"
android:layout_width="fill parent"”
android:layout_height="wrap_content"
android:text="Add New Person"
/>
<ListView
android:id="@+id/list"
android:layout_width="fill parent"
android:layout_height="fill parent"”
/>
</Linearlayout>

Listing 5-16. Activity to View and Manage Database

public class DbActivity extends Activity implements View.OnClickListener,
AdapterView.OnItemClickListener {

EditText mText;
Button mAdd;
ListView mList;

MyDbHelper mHelper;
SQLiteDatabase mDb;

Cursor mCursor;
SimpleCursorAdapter mAdapter;

@0verride

public void onCreate(Bundle savedInstanceState) {
super.onCreate(savedInstanceState);
setContentView(R.layout.main);

mText = (EditText)findViewById(R.id.name);
mAdd = (Button)findViewById(R.id.add);
mAdd.setOnClickListener(this);

mList = (ListView)findViewById(R.id.list);
mList.setOnItemClickListener(this);

mHelper = new MyDbHelper(this);

}

@0Override

public void onResume() {
super.onResume();
//0pen connections to the database
mDb = mHelper.getWritableDatabase();

http://schemas.android.com/apk/res/android

CHAPTER 5: Persisting Data

String[] columns = new String[] {"_id", MyDbHelper.COL_NAME, MyDbHelper.COL DATE};

mCursor = mDb.query(MyDbHelper.TABLE NAME, columns, null, null, null, null, null);

//Refresh the list

String[] headers = new String[] {MyDbHelper.COL_NAME, MyDbHelper.COL DATE};

mAdapter = new SimpleCursorAdapter(this, android.R.layout.two line list item,
mCursor, headers, new int[]{android.R.id.text1, android.R.id.text2});

mList.setAdapter(mAdapter);

}

@0verride

public void onPause() {
super.onPause();
//Close all connections
mDb.close();
mCursor.close();

}

@0verride
public void onClick(View v) {
//Add a new value to the database
ContentValues cv = new ContentValues(2);
cv.put(MyDbHelper.COL_NAME, mText.getText().toString());
//Create a formatter for SQL date format
SimpleDateFormat dateFormat = new SimpleDateFormat("yyyy-MM-dd HH:mm:ss");
cv.put(MyDbHelper.COL DATE, dateFormat.format(new Date())); //Insert 'now' as the date
mDb.insert(MyDbHelper .TABLE_NAME, null, cv);
//Refresh the list
mCursor.requery();
mAdapter.notifyDataSetChanged();
//Clear the edit field
mText.setText(null);

}

@0verride
public void onItemClick(AdapterView<?> parent, View v, int position, long id) {
//Delete the item from the database
mCursor.moveToPosition(position);
//Get the id value of this row
String rowId = mCursor.getString(0); //Column 0 of the cursor is the id
mDb.delete(MyDbHelper .TABLE_NAME, " id = ?", new String[]{rowId});
//Refresh the list
mCursor.requery();
mAdapter.notifyDataSetChanged();

}

In this example, we utilize our custom SQLiteOpenHelper to give us access to a database
instance, and display each record in that database as a list to the user interface.
Information from the database if returned in the form of a Cursor, an interface designed
to read, write, and traverse the results of a query.

When the Activity becomes visible, a database query is made to return all records in the
“people” table. An array of column names must be passed to the query to tell the
database which values to return. The remaining parameters of query() are designed to
narrow the selection data set, and we will investigate this further in the next recipe. It is

CHAPTER 5: Persisting Data

important to close all database and cursor connections when they are no longer needed.
In the example, we do this in onPause(), when the Activity is no longer in the foreground.

SimpleCursorAdapter is used to map the data from the database to the standard
Android two-line list item view. The string and int array parameters constitute the
mapping; the data from each item in the string array will be inserted into the view with
the corresponding id value in the int array. Notice that the list of column names passed
here is slightly different than the array passed to the query. This is because we will need
to know the record id for other operations, but it is not necessary in mapping the data to
the user interface.

The user may enter a name in the text field and then press the “Add New Person” button
to create new ContentValues and insert it into the database. At that point, in order for
the Ul to display the change we call Cursor.requery() and
ListAdapter.notifyDataSetChanged().

Conversely, tapping on an item in the list will remove that specified item from the
database. In order to accomplish this, we must construct a simple SQL statement telling
the database to remove only records where the _id value matches this selection. At that
point, the cursor and list adapter are refreshed again.

The _id value of the selection is obtained by moving the cursor to the selected position
and calling getString(0) to get the value of column index zero. This request returns the
_id because the first parameter (index 0) passed in the columns list to the query was
“_id.” The delete statement is comprised of two parameters: the statement string and
the arguments. An argument from the passed array will be inserted in the statement for
each question mark that appears in the string.

5-6. Querying a Database

Problem

Your application uses an SQLiteDatabase, and you need to return specific subsets of
the data contained therein.

Solution
(API Level 1)

Using fully structured SQL queries, it is very simple to create filters for specific data and
return those subsets from the database. There are several overloaded forms of
SQLiteDatabase.query() to gather information from the database. We’ll examine the
most verbose of them here.

public Cursor query(String table, String[] columns, String selection, String[]
selectionArgs, String groupBy, String having, String orderBy, String limit)

CHAPTER 5: Persisting Data

The first two parameters simply define the table in which to query data, and the columns
for each record that we would like to have access to. The remaining parameters define
how we will narrow the scope of the results.

B selection
B SQL WHERE clause for the given query.
B selectionArgs

B If question marks are in selection, these items fill in those fields.

H groupBy
B SQL GROUP BY clause for the given query.
B having

B SQL ORDER BY clause for the given query.

B orderBy
B SQL ORDER BY clause for the given query.
B |imit

B Maximum number of results returned from the query.

As you can seg, all of these parameters are designed to provide the full power of SQL to
the database queries.

How It Works

Let’s look at some example queries that can be constructed to accomplish some
common practical queries.

B Return all rows where the value matches a given parameter.

String[] COLUMNS = new String[] {COL_NAME, COL_DATE};

String selection = COL_NAME+" = ?";

String[] args = new String[] {"NAME_TO MATCH"};

Cursor result = db.query(TABLE_NAME, COLUMNS, selection, args, null, null, null, null);

This query is fairly straightforward. The selection statement just tells the database to
match any data in the name column with the argument supplied (which is inserted in
place of “?” in the selection string).

B Return the last 10 rows inserted into the database.
String orderBy = "_id DESC";
String limit = "10";
Cursor result = db.query(TABLE_NAME, COLUMNS, null, null, null, null, orderBy, limit);
This query has no special selection criteria, but instead tells the database to order the
results by the auto-incrementing _id value, with the newest (highest _id) records first.
The limit clause sets the maximum number of returned results to ten.

CHAPTER 5: Persisting Data

B Return rows where a date field is within a specified range (within the
year 2000, in this example).

String[] COLUMNS = new String[] {COL_NAME, COL DATE};
String selection = "datetime("+COL_DATE+") > datetime(?)"+
" AND datetime("+COL_DATE+") < datetime(?)";
String[] args = new String[] {"2000-1-1 00:00:00","2000-12-31 23:59:59"};
Cursor result = db.query(TABLE_NAME, COLUMNS, selection, args, null, null, null, null);

SQLite does not reserve a specific data type for dates, although they allow DATE as a
declaration type when creating a table. However, the standard SQL date and time
functions can be used to create representations of the data as TEXT, INTEGER, or
REAL. Here, we compare the return values of datetime() for both the value in the
database and a formatted string for the start and end dates of the range.

B Return rows where an integer field is within a specified range (between
7 and 10 in the example).

String[] COLUMNS = new String[] {COL_NAME, COL_AGE};

String selection = COL_AGE+" > ? AND "+COL_AGE+" < ?";

String[] args = new String[] {"7","10"};

Cursor result = db.query(TABLE_NAME, COLUMNS, selection, args, null, null, null, null);

This is similar to the previous example, but much less verbose. Here, we simply have to
create the selection statement to return values greater than the low limit, but less than
the high limit. Both limits are provided as arguments to be inserted so they can be
dynamically set in the application.

5-7. Backing Up Data

Problem

Your application persists data on the device, and you need to provide the user with a
way to back up and restore this data in cases where they change devices or are forced
to reinstall the application.

Solution
(API Level 1)

Use the device’s external storage as a safe location to copy databases and other files.
External storage is often physically removable, allowing the user to place it in another

device and do a restore. Even in cases where this is not possible, external storage can
always be mounted when the user connects their device to a computer, allowing data
transfer to take place.

CHAPTER 5: Persisting Data

How It Works

Listing 5-17 shows an implementation of AsyncTask that copies a database file back and
forth between the device’s external storage and its location in the application’s data
directory. It also defines an interface for an Activity to implement to get notified when the
operation is complete.

Listing 5-17. AsyncTask for Backup and Restore
public class BackupTask extends AsyncTask<String,Void,Integer> {

public interface CompletionListener {
void onBackupComplete();
void onRestoreComplete();
void onError(int errorCode);

}

public static final int BACKUP_SUCCESS = 1;
public static final int RESTORE_SUCCESS = 2;
public static final int BACKUP_ERROR = 3;

public static final int RESTORE_NOFILEERROR = 4;

public static final String COMMAND_BACKUP = "backupDatabase";
public static final String COMMAND RESTORE = "restoreDatabase";

private Context mContext;
private CompletionListener listener;

public BackupTask(Context context) {
super();
mContext = context;

}

public void setCompletionListener(CompletionListener alistener) {
listener = alistener;
}

@verride
protected Integer doInBackground(String... params) {

//Get a reference to the database
File dbFile = mContext.getDatabasePath("mydb");
//Get a reference to the directory location for the backup
File exportDir = new File(Environment.getExternalStorageDirectory(), "myAppBackups");
if (lexportDir.exists()) {
exportDir.mkdirs();

File backup = new File(exportDir, dbFile.getName());

//Check the required operation
String command = params[0];
if(command.equals(COMMAND BACKUP)) {
//Attempt file copy
try {
backup.createNewFile();
fileCopy(dbFile, backup);

CHAPTER 5: Persisting Data

return BACKUP_SUCCESS;
} catch (IOException e) {
return BACKUP_ERROR;

}
} else if(command.equals(COMMAND RESTORE)) {
//Attempt file copy
try {
if(!backup.exists()) {
return RESTORE_NOFILEERROR;

dbFile.createNewFile();
fileCopy(backup, dbFile);
return RESTORE_SUCCESS;

} catch (IOException e) {
return BACKUP_ERROR;

}
} else {

return BACKUP_ERROR;
}

}

@0verride
protected void onPostExecute(Integer result) {

switch(result) {
case BACKUP_SUCCESS:
if(listener != null) {
listener.onBackupComplete();
}

break;
case RESTORE_SUCCESS:
if(listener != null) {
listener.onRestoreComplete();

break;
case RESTORE_NOFILEERROR:
if(listener != null) {
listener.onError (RESTORE_NOFILEERROR);

break;
default:
if(listener != null) {
listener.onError (BACKUP_ERROR);

}

private void fileCopy(File source, File dest) throws IOException {
FileChannel inChannel = new FileInputStream(source).getChannel();
FileChannel outChannel = new FileOutputStream(dest).getChannel();

try {

inChannel.transferTo(0, inChannel.size(), outChannel);
} finally {

if (inChannel != null)

inChannel.close();
if (outChannel != null)
outChannel.close();

CHAPTER 5: Persisting Data

As you can see, BackupTask operates by copying the current version of a named
database to a specific directory in external storage when COMMAND BACKUP is passed to
execute(), and copies the file back when COMMAND RESTORE is passed.

Once executed, the task uses Context.getDatabasePath() to retrieve a reference to the
database file we need to backup. This line could easily be replaced with a call to
Context.getFilesDir(), accessing a file on the system’s internal storage to back up
instead. A reference to a backup directory we’ve created on external storage is also
obtained.

The files are copied using traditional Java File I/O, and if all is successful the registered
listener is notified. During the process, any exceptions thrown are caught and an error is
returned to the listener instead. Now let’s take a look at an Activity that utilizes this task
to back up a database - see Listing 5-18.

Listing 5-18. Activity Using BackupTask

public class BackupActivity extends Activity implements BackupTask.CompletionListener {

@0verride

public void onCreate(Bundle savedInstanceState) {
super.onCreate(savedInstanceState);
setContentView(R.layout.main);
//Dummy example database
SOLiteDatabase db = openOrCreateDatabase("mydb", Activity.MODE_PRIVATE, null);
db.close();

}

@0verride
public void onResume() {
super.onResume();
if(Environment.getExternalStorageState().equals(Environment.MEDIA_MOUNTED)) {
BackupTask task = new BackupTask(this);
task.setCompletionListener(this);
task.execute(BackupTask.COMMAND RESTORE);
}
}

@0verride
public void onPause() {
super.onPause();
if(Environment.getExternalStorageState().equals(Environment.MEDIA_MOUNTED)) {
BackupTask task = new BackupTask(this);
task.execute(BackupTask.COMMAND BACKUP);

}

@0verride
public void onBackupComplete() {

Toast.makeText(this, "Backup Successful", Toast.LENGTH_SHORT).show();
}

CHAPTER 5: Persisting Data

@0verride
public void onError(int errorCode) {
if(errorCode == BackupTask.RESTORE_NOFILEERROR) {
Toast.makeText(this, "No Backup Found to Restore",
Toast.LENGTH_SHORT).show();
} else {
Toast.makeText(this, "Error During Operation: "+errorCode,
Toast.LENGTH_SHORT).show();

}

@0verride
public void onRestoreComplete() {

Toast.makeText(this, "Restore Successful", Toast.LENGTH_SHORT).show();
}

}

The Activity implements the CompletionListener defined by BackupTask, so it may be
notified when operations are finished or an error occurs. For the purposes of the
example, a dummy database is created in the application’s database directory. We call
openOrCreateDatabase() only to allow a file to be created, so the connection is
immediately closed afterward. Under normal circumstances, this database would
already exist and these lines would not be necessary.

The example does a restore operation each time the Activity is resumed, registering
itself with the task so it can be notified and raise a toast to the user of the status result.
Notice that the task of checking whether external storage is usable falls to the Activity as
well, and no tasks are executed if external storage is not accessible. When the Activity is
paused a backup operation is executed, this time without registering for callbacks. This
is because the Activity is no longer interesting to the user, so we won’t need to raise a
toast to point out the operation results.

Exira Credit

This background task could be extended to save the data to a cloud-based service for
maximum safety and data portability. There are many options available to accomplish
this, including Google’s own set of web APIls, and we recommend you give this a try.

Android, as of API Level 8, also includes an API for backing up data to a cloud-based
service. This APl may suit your purposes, however we will not discuss it here. The
Android framework cannot guarantee that this service will be available on all Android
devices, and there is no API as of this writing to determine whether the device the user
has will support the Android backup, so it is not recommended for critical data.

CHAPTER 5: Persisting Data

5-8. Sharing Your Database

Problem

Your application would like to provide the database content it maintains to other
applications on the device.

Solution
(API Level 1)

Create a ContentProvider to act as an external interface for your application’s data.
ContentProvider exposes an arbitrary set of data to external requests through a
database-like interface of query(), insert(), update(), and delete(); though the
implementer is free to design how the interface maps to the actual data model. Creating
a ContentProvider to expose the data from an SQLiteDatabase is straightforward and
simple. With some minor exceptions, the developer needs only to pass calls from the
provider down to the database.

Arguments about which data set to operate on are typically encoded in the Uri passed
to the ContentProvider. For example, sending a query Uri such as

content://com.examples.myprovider/friends

would tell the provider to return information from the “friends” table within its data set,
while

content://com.examples.myprovider/friends/15

would instruct just the record id 15 to return from the query. It should be noted that
these are only the conventions used by the rest of the system, and that you are
responsible for making the ContentProvider you create behave in this manner. There is
nothing inherent about ContentProvider that provide this functionality for you.

How It Works

First of all, to create a ContentProvider that interacts with a database, we must have a
database in place to interact with. Listing 5-19 is a sample SQLiteOpenHelper
implementation that we will use to create and access the database itself.

Listing 5-19. Sample SQLiteOpenHelper
public class ShareDbHelper extends SQLiteOpenHelper {

private static final String DB_NAME

"frienddb";
private static final int DB_VERSION ;

1

public static final String TABLE_NAME = "friends";
public static final String COL_FIRST = "firstName";
public static final String COL_LAST = "lastName";
public static final String COL_PHONE = "phoneNumber";

CHAPTER 5: Persisting Data

private static final String STRING CREATE =
"CREATE TABLE "+TABLE NAME+" (_id INTEGER PRIMARY KEY AUTOINCREMENT, "
+COL_FIRST+" TEXT, "+COL_LAST+" TEXT, "+COL _PHONE+" TEXT);";

public ShareDbHelper(Context context) {
super(context, DB _NAME, null, DB_VERSION);

@0verride

public void onCreate(SQLiteDatabase db) {
//Create the database table
db.execSQL(STRING CREATE);

//Inserting example values into database
ContentValues cv = new ContentValues(3);
cv.put(COL_FIRST, "John");
cv.put(COL_LAST, "Doe");
cv.put(COL_PHONE, "8885551234");
db.insert(TABLE_NAME, null, cv);
cv = new ContentValues(3);
cv.put(COL_FIRST, "Jane");
cv.put(COL_LAST, "Doe");
cv.put(COL_PHONE, "8885552345");
db.insert(TABLE_NAME, null, cv);
cv = new ContentValues(3);
cv.put(COL_FIRST, "Jill");
cv.put(COL_LAST, "Doe");
cv.put(COL_PHONE, "8885553456");
db.insert(TABLE_NAME, null, cv);

}

@0verride

public void onUpgrade(SQLiteDatabase db, int oldVersion, int newVersion) {
//For now, clear the database and re-create
db.execSQL("DROP TABLE IF EXISTS "+TABLE NAME);
onCreate(db);

}

Overall this helper is fairly simple, creating a single table to keep a list of our friends with
just three columns for housing text data. For the purposes of this example, three row
values are inserted. Now let’s take a look at a ContentProvider that will expose this
database to other applications — see Listings 5-20 and 5-21.

Listing 5-20. Manifest Declaration for ContentProvider

<manifest xmlns:android="http://schemas.android.com/apk/res/android" ..>
<application ..>
<provider android:name=".FriendProvider"
android:authorities="com.examples.sharedb.friendprovider">
</provider>
</application>
</manifest>

http://schemas.android.com/apk/res/android

CHAPTER 5: Persisting Data

Listing 5-20. ContentProvider for a Database

public class FriendProvider extends ContentProvider {

public static final Uri CONTENT_URI =
Uri.parse("content://com.examples.sharedb.friendprovider/friends");

public static final class Columns {
public static final String ID = "_id";
public static final String FIRST = "firstName";
public static final String LAST = "lastName";
public static final String PHONE = "phoneNumber";

/* Uri Matching */
private static final int FRIEND = 1;
private static final int FRIEND_ID = 2;
private static final UriMatcher matcher = new UriMatcher(UriMatcher.NO MATCH);
static {
matcher.addURI (CONTENT_URI.getAuthority(), "friends", FRIEND);
matcher.addURI(CONTENT_URI.getAuthority(), "friends/#", FRIEND ID);

SQLiteDatabase db;

@0verride
public int delete(Uri uri, String selection, String[] selectionArgs) {
int result = matcher.match(uri);
switch(result) {
case FRIEND:
return db.delete(ShareDbHelper.TABLE_NAME, selection, selectionArgs);
case FRIEND ID:
return db.delete(ShareDbHelper.TABLE _NAME, " ID = ?",
new String[]{uri.getlLastPathSegment()});

default:
return 0;
}
}
@0verride

public String getType(Uri uri) {
return null;

@0verride
public Uri insert(Uri uri, ContentValues values) {
long id = db.insert(ShareDbHelper.TABLE NAME, null, values);

if(id »= 0) {
return Uri.withAppendedPath(uri, String.valueOf(id));
} else {
return null;
}
}
@0verride

public boolean onCreate() {
ShareDbHelper helper = new ShareDbHelper(getContext());

CHAPTER 5: Persisting Data

db = helper.getWritableDatabase();
return true;

@0verride
public Cursor query(Uri uri, String[] projection, String selection,
String[] selectionArgs, String sortOrder) {
int result = matcher.match(uri);
switch(result) {
case FRIEND:
return db.query(ShareDbHelper.TABLE _NAME, projection, selection,
selectionArgs, null, null, sortOrder);
case FRIEND_ID:
return db.query(ShareDbHelper.TABLE_NAME, projection, " ID = ?",
new String[]{uri.getLastPathSegment()}, null, null, sortOrder);

default:
return null;
}
}
@0verride

public int update(Uri uri, ContentValues values, String selection,
String[] selectionArgs) {
int result = matcher.match(uri);
switch(result) {
case FRIEND:
return db.update(ShareDbHelper.TABLE_NAME, values, selection,
selectionArgs);
case FRIEND_ID:
return db.update(ShareDbHelper.TABLE_NAME, values, " ID = ?",
new String[]{uri.getLastPathSegment()});
default:
return 0;

}

A ContentProvider must be declared in the application’s manifest with the authority
string that it represents. This allows the provider to be accessed from external
applications, but is still required even if you only use the provider internally within your
application. The authority is what Android uses to match Uri requests to the provider, so
it should match the authority portion of the public CONTENT URI.

The six required methods to override when extending ContentProvider are query(),
insert(), update(), delete(), getType(), and onCreate(). The first four of these
methods have direct counterparts in SQLiteDatabase, so the database method is simply
called with the appropriate parameters. The primary difference between the two is that
the ContentProvider method passes in a Uri, which the provider should inspect to
determine which portion of the database to operate on.

These four primary CRUD methods are called on the provider when an Activity or other
system component calls the corresponding method on its internal ContentResolver (you
see this in action in Listing 5-21) or, in the case of Activity, when managedQuery () is called.

CHAPTER 5: Persisting Data

To adhere to the Uri convention mentioned in the first part of this recipe, insert()
returns a Uri object created by appending the newly created record id onto the end of
the path. This Uri should be considered by its requester to be a direct reference back to
the record that was just created.

The remaining methods (query(), update(), and delete()) adhere to the convention by
inspecting the incoming Uri to see if it refers to a specific record, or the whole table.
This task is accomplished with the help of the UriMatcher convenience class. The
UriMatcher.match() method compares a Uri to a set of supplied patterns and returns
the matching pattern as an int, or UriMatcher.NO_MATCH if one is not found. If a Uri is
supplied with a record id appended, the call to the database is modified to affect only
that specific row.

A UriMatcher should be initialized by supplying a set of patterns with
UriMatcher.addURI(); Google recommends that this all be done in a static context
within the ContentProvider. Each pattern added is also given a constant identifier that
will be the return value when matches are made. There are two wildcard characters that
may be placed in the supplied patterns: the pound (#) character will match any number,
and the asterisk (*) will match any text.

Our example has created two patterns to match. The initial pattern matches the supplied
CONTENT_URI directly, and is taken to reference the entire database table. The second
pattern looks for an appended number to the path, which will be taken to reference just
the record at that id.

Access to the database is obtained through a reference given by the ShareDbHelper in
onCreate(). The size of the database used should be considered when deciding if this
method is applicable to your application. Our database is quite small when it is created,
but larger databases may take a long time to create, in which case the main thread
should not be tied up while this operation is taking place; getWritableDatabase() may
need to be wrapped in an AsyncTask and done in the background in these cases. Now
let’s take a look at a sample Activity accessing the data — see Listings 5-23 and 5-24.

Listing 5-23. AndroidManifest.xml

<?xml version="1.0" encoding="utf-8"?>
<manifest xmlns:android="http://schemas.android.com/apk/res/android"
package="com.examples.sharedb" android:versionCode="1" android:versionName="1.0">
<uses-sdk android:minSdkVersion="1" />
<application android:icon="@drawable/icon" android:label="@string/app_name">
<activity android:name=".ShareActivity" android:label="@string/app_name">
<intent-filter>
<action android:name="android.intent.action.MAIN" />
<category android:name="android.intent.category.LAUNCHER" />
</intent-filter>
</activity>
<provider android:name=".FriendProvider"
android:authorities="com.examples.sharedb.friendprovider">
</provider>
</application>
</manifest>

http://schemas.android.com/apk/res/android

CHAPTER 5: Persisting Data

Listing 5-24. Activity Accessing the ContentProvider

public class ShareActivity extends ListActivity implements
AdapterView.OnItemClickListener {

Cursor mCursor;

@0verride
public void onCreate(Bundle savedInstanceState) {
super.onCreate(savedInstanceState);

//List of column names to return from the query for each record

String[] projection = new String[]{FriendProvider.Columns._ID,
FriendProvider.Columns.FIRST};

mCursor = managedQuery(FriendProvider.CONTENT URI, projection, null, null,
null);

SimpleCursorAdapter adapter = new SimpleCursorAdapter(this,
android.R.layout.simple list item 1,
mCursor,
new String[]{FriendProvider.Columns.FIRST},
new int[]{android.R.id.text1});

ListView list = getListView();
list.setOnItemClickListener(this);
list.setAdapter(adapter);

}

@0verride
public void onItemClick(AdapterView<?> parent, View v, int position, long id) {
mCursor.moveToPosition(position);

Uri uri = Uri.withAppendedPath(FriendProvider.CONTENT URI,
mCursor.getString(0));
String[] projection = new String[]{FriendProvider.Columns.FIRST,
FriendProvider.Columns.LAST,
FriendProvider.Columns.PHONE};
//Get the full record
Cursor cursor = getContentResolver().query(uri, projection, null, null, null);
cursor.moveToFirst();

String message = String.format("%s %s, %s", cursor.getString(o0),
cursor.getString(1), cursor.getString(2));
Toast.makeText(this, message, Toast.LENGTH_SHORT).show();

}

This example queries the FriendsProvider for all its records and places them into a list,
displaying only the first name column. In order for the Cursor to adapt properly into a
list, our projection must include the ID column, even though it is not displayed.

If the user taps any of the items in the list, another query is made of the provider using a
Uri constructed with the record ID appended to the end, forcing the provider to only
return that one record. In addition, an expanded projection is provided to get all the
column data about this friend.

CHAPTER 5: Persisting Data

The returned data is placed into a Toast and raised for the user to see. Individual fields
from the cursor are accessed by their column index, corresponding to the index in the
projection passed to the query. The Cursor.getColumnIndex() method may also be used
to query the cursor for the index associated with a given column name.

A Cursor should always be closed when it is no longer needed, as we do with the Cursor
created on user click. The member mCursor is never closed explicitly because it is
managed by the Activity. Whenever a Cursor is created using managedQuery(), the
Activity will open, close, and refresh the data along with its own normal lifecycle.

Figure 5-2 shows the result of running this sample to display the provider content.
DM @ 12:01 Am

ShareDatabase

John

Jane

Jill Doe, 8885553456

Figure 5-2. Information from a ContentProvider

5-9. Sharing Your Other Data

Problem

You would like your application to provide the files or other data it maintains to other
applications on the device.

CHAPTER 5: Persisting Data

Solution
(API Level 3)

Create a ContentProvider to act as an external interface for your application’s data.
ContentProvider exposes an arbitrary set of data to external requests through a
database-like interface of query(), insert(), update(), and delete(), though the
implementation is free to design how the data passes to the actual model from these
methods.

ContentProvider can be used to expose any type of application data, including the
application’s resources and assets, to external requests.

How It Works

Let’s take a look at a ContentProvider implementation that exposes two data sources:
an array of strings located in memory, and a series of image files stored in the
application’s assets directory. As before, we must declare our provider to the Android
system using a <provider> tag in the manifest. See Listings 5-25 and 5-26.

Listing 5-25. Manifest Declaration for ContentProvider

<?xml version="1.0" encoding="utf-8"?>
<manifest xmlns:android="http://schemas.android.com/apk/res/android" ..>
<application ..>
<provider android:name=".ImageProvider"
android:authorities="com.examples.share.imageprovider">
</provider>
</application>
</manifest>

Listing 5-26. Custom ContentProvider Exposing Assets

public class ImageProvider extends ContentProvider {

public static final Uri CONTENT_URI =
Uri.parse("content://com.examples.share.imageprovider");

public static final String COLUMN_NAME = "nameString";
public static final String COLUMN_IMAGE = "imageUri";

private String[] mNames;
@verride

public int delete(Uri uri, String selection, String[] selectionArgs) {
throw new UnsupportedOperationException("This ContentProvider is read-only");
}

@0verride

public String getType(Uri uri) {
return null;

}

@0verride

http://schemas.android.com/apk/res/android

CHAPTER 5: Persisting Data

public Uri insert(Uri uri, ContentValues values) {
throw new UnsupportedOperationException("This ContentProvider is read-only");

@0verride

public boolean onCreate() {
mNames = new String[] {"John Doe", "Jane Doe", "Jill Doe"};
return true;

}

@0verride
public Cursor query(Uri uri, String[] projection, String selection,
String[] selectionArgs, String sortOrder) {
MatrixCursor cursor = new MatrixCursor(projection);
for(int i = 0; i < mNames.length; i++) {
//Insert only the columns they requested
MatrixCursor.RowBuilder builder = cursor.newRow();
for(String column : projection) {
if(column.equals(" id")) {
//Use the array index as a unique id
builder.add(i);

}
if(column.equals(COLUMN NAME)) {
builder.add(mNames[i]);

}
if(column.equals(COLUMN IMAGE)) {
builder.add(Uri.withAppendedPath(CONTENT URI, String.valueOf(i)));

}
}
return cursor;
}
@0verride

public int update(Uri uri, ContentValues values, String selection,
String[] selectionArgs) {
throw new UnsupportedOperationException("This ContentProvider is read-only");

}

@0verride
public AssetFileDescriptor openAssetFile(Uri uri, String mode) throws
FileNotFoundException {
int requested = Integer.parseInt(uri.getLastPathSegment());
AssetFileDescriptor afd;
AssetManager manager = getContext().getAssets();
//ReEurn the appropriate asset for the requested item
try
switch(requested) {
case 0:
afd = manager.openFd("logol.png");
break;
case 1:
afd = manager.openFd("logo2.png");
break;
case 2:
afd = manager.openFd("logo3.png");
break;

CHAPTER 5: Persisting Data

default:
afd = manager.openFd("logol.png");

return afd;
} catch (IOException e) {

e.printStackTrace();
return null;

}

As you may have guessed, the example exposes three logo image assets. The images
we have chosen for this example are shown in Figure 5-3.

s o¥
S { Apress
- an>3012

Figure 5-3. Example logo1.png (left), logo2.png (center), and logo3.png (right) stored in assets

Notice first that, because we are exposing read-only content in the assets directory,
there is no need to support the inherited methods insert(), update(), or delete(), so
we have these methods simply throw an UnsupportedOperationException.

When the provider is created, the string array that holds people’s names is created and
onCreate() returns true; this signals to the system that the provider was created
successfully. The provider exposes constants for its Uri and all readable column names.
These values will be used by external applications to make requests for data.

This provider only supports a query for all the data within it. To support conditional
queries for specific records or a subset of all the content, an application can process the
values passed in to query() for selection and selectionArgs. In this example, any call
to query() will build a cursor with all three elements contained within.

The cursor implementation used in this provider is a MatrixCursor, which is a cursor
designed to be built around data not held inside a database. The example iterates
through the list of columns requested (the projection) and builds each row according to
these columns it contains. Each row is created by calling MatrixCursor.newRow(), which
also returns a Builder instance that will be used to add the column data. Care should
always be taken to match the order of the column data is added to the order of the
requested projection. They should always match.

The value in the name column is the respective string in the local array, and the _id
value, which Android requires to utilize the returned cursor with most ListAdapters, is
simply returned as the array index. The data presented in the image column for each row
is actually a content Uri representing the image file for each row, created with the
provider’s content Uri as the base, with the array index appended to it.

When an external application actually goes to retrieve this content, through
ContentResolver.openInputStream(), a call will be made to openAssetFile(), which has
been overridden to return an AssetFileDescriptor pointing to one of the image files in

CHAPTER 5: Persisting Data

the assets directory. This implementation determines which image file to return by
deconstructing the content Uri once again and retrieving the appended index value from
the end.

Usage Example

Let’s take a look at how this provider should be implemented and accessed in the
context of the Android application. See Listing 5-27.

Listing 5-27. AndroidManifest.xml

<?xml version="1.0" encoding="utf-8"?>

<manifest xmlns:android="http://schemas.android.com/apk/res/android"
package="com.examples.share"
android:versionCode="1"
android:versionName="1.0">

<uses-sdk android:minSdkVersion="3" />

<application android:icon="@drawable/icon" android:label="@string/app_name">
<activity android:name=".ShareActivity"
android:label="@string/app_name">
<intent-filter>
<action android:name="android.intent.action.MAIN" />
<category android:name="android.intent.category.LAUNCHER" />
</intent-filter>
</activity>
<provider android:name=".ImageProvider"
android:authorities="com.examples.share.imageprovider">
</provider>
</application>
</manifest>

To implement this provider, the manifest of the application that owns the content must
declare a <provider> tag pointing out the ContentProvider name and the authority to
match when requests are made. The authority value should match the base portion of
the exposed content Uri. The provider must be declared in the manifest so the system
can instantiate and run it, even when the owning application is not running. See Listings
5-28 and 5-29.

Listing 5-28. res/layout/main.xml

<?xml version="1.0" encoding="utf-8"?>
<LinearlLayout xmlns:android="http://schemas.android.com/apk/res/android"
android:orientation="vertical"
android:layout_width="fill parent"
android:layout_height="fill parent">
<TextView
android:id="@+id/name"
android:layout_width="wrap_content"”
android:layout_height="20dip"
android:layout_gravity="center_horizontal"
/>
<ImageView
android:id="@+id/image"
android:layout_width="wrap_content"”
android:layout_height="50dip"

http://schemas.android.com/apk/res/android
http://schemas.android.com/apk/res/android

CHAPTER 5: Persisting Data

android:layout_gravity="center_horizontal"

/>

<ListView
android:id="@+id/list"
android:layout_width="fill parent"
android:layout_height="fill parent"

/>

</Linearlayout>

Listing 5-29. Activity Reading from ImageProvider

public class ShareActivity extends Activity implements AdapterView.OnItemClickListener {
Cursor mCursor;

@0verride

public void onCreate(Bundle savedInstanceState) {
super.onCreate(savedInstanceState);
setContentView(R.layout.main);

String[] projection = new String[]{"_id", ImageProvider.COLUMN_NAME,
ImageProvider.COLUMN_IMAGE};
mCursor = managedQuery(ImageProvider.CONTENT URI, projection, null, null, null);

SimpleCursorAdapter adapter = new SimpleCursorAdapter(this,
android.R.layout.simple list item 1, mCursor, new String[]{ImageProvider.COLUMN NAME},
new int[]{android.R.id.text1});

ListView list = (ListView)findViewById(R.id.list);
list.setOnItemClickListener(this);
list.setAdapter(adapter);

}

@0verride

public void onItemClick(AdapterView<?> parent, View v, int position, long id) {
//Seek the cursor to the selection
mCursor.moveToPosition(position);

//Load the name column into the TextView
TextView tv = (TextView)findViewById(R.id.name);
tv.setText(mCursor.getString(1));

ImageView iv = (ImageView)findViewById(R.id.image);
try {
//Load the content from the image column into the ImageView
InputStream in =
getContentResolver().openInputStream(Uri.parse(mCursor.getString(2)));
Bitmap image = BitmapFactory.decodeStream(in);
iv.setImageBitmap(image);
} catch (FileNotFoundException e) {
e.printStackTrace();

CHAPTER 5: Persisting Data

In this example a managed cursor is obtained from the custom ContentProvider,
referencing the exposed Uri and column names for the data. The data is then connected
to a ListView using a SimpleCursorAdapter to display only the name value.

When the user taps any of the items in the list, the cursor is moved to that position and
the respective name and image are displayed above. This is where the Activity calls
ContentResolver.openInputStream() to access the asset images through the Uri that
was stored in the column field.

Figure 5—4 displays the result of running this application and selecting the last item in
the list (Jill Doe).

Ml € 12:00 AM

ShareData

John Doe

Jane Doe

Jill Doe

Figure 5-4. Activity drawing resources from ContentProvider

Note that the connection to the Cursor is not closed explicitly because it was created
using managedQuery(), which means the Activity will manage the cursor as part of its
normal lifecycle, including closing it when the Activity leaves the foreground.

Useful Tools to Know: SQLite3

Android provides the sqlite3 tool (in the tools subdirectory of the Android SDK’s home
directory) for creating new databases and managing existing databases on your hosting
platform or (when used in conjunction with adb, the Android Debug Bridge tool) on an
Android device. If you're not familiar with sqlite3, point your browser to
http://sqlite.org/sqlite.html and read the short tutorial on this command-line tool.

http://sqlite.org/sqlite.html

CHAPTER 5: Persisting Data

You can specify sqlite3 with a database filename argument (sqlite3 employees, for
example) to create the database file if it doesn’t exist or open the existing file, and enter
this tool’s shell from where you can execute sqlite3-specific dot-prefixed commands
and SQL statements. As Figure 5-5 shows, you can also specify sqlite3 without an
argument and enter the shell.

C:\WINDOWS\system32\cmd.exe

:\>sqlite3

QLite version 3.6.22

nter “.help" for instructions

nter SQL statements terminated with a
glite> .help

.backup ?DB? FILE Backup DB {(default "main"') to FILE

.hail ONIiOFF Stop after hitting an error. Default OFF
.databases List names and files of attached databases
.dump ?TABLE? ... Dump the database in an SQL text format

If TABLE specified,. only dump tabhles matching
LIKE pattern TABLE.

.echo ONiOFF Turn command echo on or off

.exit Exit this program

.explain ?ONiOFF? Turn output mode suitabhle for EXPLAIN on or off.
With no args, it turns EXPLAIN on.

.genfkey ?0PTIONS? Options are:

——no—drop: Do not drop old fkey triggers.
——ignore—errors: Ignore tables with fkey errors
——exec: Execute generated SQL immediately
See file tool/genfkey.README in the source
distribution for further information.

.header{(s> ONIOFF Turn display of headers on or off
.help Show this message
.import FILE TABLE Import data from FILE into TABLE

Figure 5-5. Invoking sqlite3 without a database filename argument

Figure 5-5 reveals the prologue that greets you after entering the sqlite3 shell, which is
indicated by the sqlite> prompt from where you enter commands. It also reveals part of
the help text that’s presented when you type the sqlite3-specific “.help” command.

TIP: You can create a database after specifying sqlite3 without an argument by entering the
appropriate SQL statements to create and populate desired tables (and possibly create indexes)
and then invoking .backup filename (where filename identifies the file that stores the
database) before exiting sqlites3.

After you’ve created the database on your hosting platform, you’ll want to upload it to
your Android device. You can accomplish this task by invoking the adb tool with its push
command according to the following command-line syntax:

adb [-s <serialNumber>] push local.db /data/data/<application
package>/databases/remote.db

This command pushes the locally hosted database identified as local.db to a file named
remote.db that’s located in the /data/data/<application package>/databases directory
on the connected Android device.

CHAPTER 5: Persisting Data

NOTE: Local and remote are placeholders for the actual database filenames. By convention,
the filename is associated with a . db file extension (although an extension isn't mandatory).
Also, /data/data/<application package> refers to the application’s own private storage
area, and application package refers to an application’s unique package name.

If only one device is connected to the hosting platform, -s <serialNumber> isn’t
required, and the local database is pushed onto that device. If multiple devices are
connected, -s <serialNumber> is required to identify a specific device (-s emulator-
5556, for example).

Alternatively, you might want to download a device’s database to your hosting platform,
perhaps to use with a desktop version of the device’s application. You can accomplish
this task by invoking adb with its pull command according to the following syntax:

adb [-s <serialNumber>] pull /data/data/<application package>/databases/remote.db
local.db

If you want to use sqlite3 to manage SQLite databases that are stored on a device,
you’ll need to invoke this tool from within an adb remote shell for that device. You can
accomplish this task by invoking adb and sqlite3 according to the following syntax:

adb [-s <serialNumber>] shell
sqlite3 /data/data/<application package>/databases/remote.db

The adb shell is indicated by the # prompt. Enter sqlite3 followed by the path and name
of the existing device-hosted database file to manipulate the database, or of the new
database to create. Alternatively, you can enter sqlite3 without an argument.

The sqlite3 command presents the same prologue that you saw in Figure 5-1. Enter
sqlite3 commands and issue SQL statements to manage remote.db (or create a new
database), and then exit sqlite3 (.exit or .quit) followed by the adb shell (exit).

SQLite3 and UC

Chapter 1 introduced you to an application named UC. This units-conversion application
lets you perform conversions between various units (degrees Fahrenheit to degrees
Celsius, for example).

Although useful, UC is flawed in that it must be rebuilt each time a new conversion is
added to its list of conversions. We can eliminate this flaw by storing UC’s conversions in
a database, and that is what we’ll do in this section.

We’'ll first create a database for storing the list of conversions. The database will consist
of a single conversions table with conversion and multiplier columns. Furthermore, the
database will be stored in a conversions.db file.

Table 5-1 lists the values that will be stored in the conversion and multiplier columns.

Table 5-1. Values for the Conversion andMultiplier Columns

CHAPTER 5: Persisting Data

Conversion Multiplier
Acres to Square Miles 0.0015625
Atmospheres to Pascals 101325.0
Bars to Pascals 100000.0

Degrees Celsius to Degrees Fahrenheit
Degrees Fahrenheit to Degrees Celsius
Dynes to Newtons

Feet/Second to Meters/Second

Fluid Ounces (UK) to Liters

Fluid Ounces (US) to Liters
Horsepower (electric) to Watts
Horsepower (metric) to Watts
Kilograms to Tons (UK or long)
Kilograms to Tons (US or short)

Liters to Fluid Ounces (UK)

Liters to Fluid Ounces (US)

Mach Number to Meters/Second
Meters/Second to Feet/Second
Meters/Second to Mach Number
Miles/Gallon (UK) to Miles/Gallon (US)
Miles/Gallon (US) to Miles/Gallon (UK)
Newtons to Dynes

Pascals to Atmospheres

Pascals to Bars

Square Miles to Acres

Tons (UK or long) to Kilograms

Tons (US or short) to Kilograms
Watts to Horsepower (electic)

Watts to Horsepower (metric)

0 (placeholder)
0 (placeholder)
0.00001

0.3048
0.0284130625
0.0295735295625
746.0

735.499
1/1016.0469088
1/907.18474
1/0.0284130625
1/0.0295735295625
331.5

1/0.3048
1/331.5

0.833

1/0.833
100000.0
1/101325.0
0.00001

640.0
1016.0469088
907.18474
1/746.0
1/735.499

CHAPTER 5: Persisting Data

At the command line, execute sqlite3 conversions.db to create conversions.db and
enter the shell, and then execute SQL statement create table conversions(conversion
varchar(50), mutliplier float); to create this database’s conversions table.

Continuing, enter a sequence of insert statements to insert Table 5-1’s rows of values
into conversions. For example, SQL statement insert into conversions values('Acres
to square miles', 0.0015625); inserts the first row’s values into the table.

CAUTION: You must insert the rows in the same order as they appear in Table 5-1, because
Degrees Celsius to Degrees Fahrenheit and Degrees Fahrenheit to Degrees
Celsius must appear at zero-based positions 3 and 4 due to hardcoding these positions in
UcC2.java.

We’ll next create a UC2 application that’s similar to UC but obtains its conversions from
conversions.db. Accomplish this task by following the instructions that are presented in
Chapter 1’s Recipe 1-10 (Developing UC with Eclipse), but with the following changes
(see Listing 5-30):

B Change the package name from com.apress.uc to com.apress.uc2.
B Ignore the arrays.xml file. UC2 doesn’t need this file.

B Replace the skeletal UC2. java source code with Listing 5-26.
Listing 5-30. Activity for Performing Unit conversions Obtained from Conversions.db

public class UC2 extends Activity {
private int position = 0;
private String[] conversions;
private double[] multipliers;

private class DBHelper extends SQLiteOpenHelper

{
private final static String DB_PATH = "data/data/com.apress.uc2/databases/";
private final static String DB_NAME = "conversions.db";
private final static int CONVERSIONS_COLUMN_ID = O;

private final static int MULTIPLIERS_COLUMN_ID = 1;

private SQLiteDatabase db;
public DBHelper(Context context)
{ super(context, DB NAME, null, 1);
@0verride
public void onCreate(SQLiteDatabase db)
// Do nothing ... we don't create a new database.

@0verride
public void onUpgrade(SQLiteDatabase db, int oldver, int newver)

CHAPTER 5: Persisting Data

// Do nothing ... we don't upgrade a database.

public boolean populateArrays()

{
try
{
String path = DB_PATH+DB_NAME;
db = SQLiteDatabase.openDatabase(path, null, SQLiteDatabase.OPEN_READONLY |
SQLiteDatabase.NO LOCALIZED COLLATORS);

Cursor cur = db.query("conversions", null, null, null, null, null, null);
if (cur.getCount() ==

Toast.makeText(UC2.this, "conversions table is empty",
Toast.LENGTH_LONG).show();
return false;

new String[cur.getCount()];
new double[cur.getCount()];

conversions
multipliers
int i = 0;

while (cur.moveToNext())

conversions[i] = cur.getString(CONVERSIONS COLUMN_ID);
multipliers[i++] = cur.getFloat(MULTIPLIERS COLUMN_ID);

return true;
iatch (SQLException sqle)
Toast.makeText(UC2.this, sqle.getMessage(), Toast.LENGTH_LONG).show();
%inally

if (db 1= null)
db.close();

return false;
}
}

@0verride
public void onCreate(Bundle savedInstanceState)

super.onCreate(savedInstanceState);
setContentView(R.layout.main);

DBHelper dbh = new DBHelper(this);
if (!dbh.populateArrays())
finish();

final EditText etUnits = (EditText) findViewById(R.id.units);

final Spinner spnConversions = (Spinner) findViewById(R.id.conversions);

ArrayAdapter<CharSequence> aa;

aa = new ArrayAdapter<CharSequence>(this, android.R.layout.simple_spinner item,
conversions);

CHAPTER 5: Persisting Data

aa.setDropDownViewResource(android.R.layout.simple spinner item);
spnConversions.setAdapter(aa);

AdapterView.OnItemSelectedListener oisl;
oisl = new AdapterView.OnItemSelectedListener()
{
@0verride
public void