Open vSwitch <http://openvswitch.org>

Frequently Asked Questions
==========================

General

Q: What is Open vSwitch?

A: Open vSwitch is a production quality open source software switch
 designed to be used as a vswitch in virtualized server
 environments. A vswitch forwards traffic between different VMs on
 the same physical host and also forwards traffic between VMs and
 the physical network. Open vSwitch supports standard management
 interfaces (e.g. sFlow, NetFlow, IPFIX, RSPAN, CLI), and is open to
 programmatic extension and control using OpenFlow and the OVSDB
 management protocol.

 Open vSwitch as designed to be compatible with modern switching
 chipsets. This means that it can be ported to existing high-fanout
 switches allowing the same flexible control of the physical
 infrastructure as the virtual infrastructure. It also means that
 Open vSwitch will be able to take advantage of on-NIC switching
 chipsets as their functionality matures.

Q: What virtualization platforms can use Open vSwitch?

A: Open vSwitch can currently run on any Linux-based virtualization
 platform (kernel 2.6.32 and newer), including: KVM, VirtualBox, Xen,
 Xen Cloud Platform, XenServer. As of Linux 3.3 it is part of the
 mainline kernel. The bulk of the code is written in platform-
 independent C and is easily ported to other environments. We welcome
 inquires about integrating Open vSwitch with other virtualization
 platforms.

Q: How can I try Open vSwitch?

A: The Open vSwitch source code can be built on a Linux system. You can
 build and experiment with Open vSwitch on any Linux machine.
 Packages for various Linux distributions are available on many
 platforms, including: Debian, Ubuntu, Fedora.

 You may also download and run a virtualization platform that already
 has Open vSwitch integrated. For example, download a recent ISO for
 XenServer or Xen Cloud Platform. Be aware that the version
 integrated with a particular platform may not be the most recent Open
 vSwitch release.

Q: Does Open vSwitch only work on Linux?

A: No, Open vSwitch has been ported to a number of different operating
 systems and hardware platforms. Most of the development work occurs
 on Linux, but the code should be portable to any POSIX system. We've
 seen Open vSwitch ported to a number of different platforms,
 including FreeBSD, Windows, and even non-POSIX embedded systems.

 By definition, the Open vSwitch Linux kernel module only works on
 Linux and will provide the highest performance. However, a userspace
 datapath is available that should be very portable.

Q: What's involved with porting Open vSwitch to a new platform or
 switching ASIC?

A: The PORTING document describes how one would go about porting Open
 vSwitch to a new operating system or hardware platform.

Q: Why would I use Open vSwitch instead of the Linux bridge?

A: Open vSwitch is specially designed to make it easier to manage VM
 network configuration and monitor state spread across many physical
 hosts in dynamic virtualized environments. Please see WHY-OVS for a
 more detailed description of how Open vSwitch relates to the Linux
 Bridge.

Q: How is Open vSwitch related to distributed virtual switches like the
 VMware vNetwork distributed switch or the Cisco Nexus 1000V?

A: Distributed vswitch applications (e.g., VMware vNetwork distributed
 switch, Cisco Nexus 1000V) provide a centralized way to configure and
 monitor the network state of VMs that are spread across many physical
 hosts. Open vSwitch is not a distributed vswitch itself, rather it
 runs on each physical host and supports remote management in a way
 that makes it easier for developers of virtualization/cloud
 management platforms to offer distributed vswitch capabilities.

 To aid in distribution, Open vSwitch provides two open protocols that
 are specially designed for remote management in virtualized network
 environments: OpenFlow, which exposes flow-based forwarding state,
 and the OVSDB management protocol, which exposes switch port state.
 In addition to the switch implementation itself, Open vSwitch
 includes tools (ovs-ofctl, ovs-vsctl) that developers can script and
 extend to provide distributed vswitch capabilities that are closely
 integrated with their virtualization management platform.

Q: Why doesn't Open vSwitch support distribution?

A: Open vSwitch is intended to be a useful component for building
 flexible network infrastructure. There are many different approaches
 to distribution which balance trade-offs between simplicity,
 scalability, hardware compatibility, convergence times, logical
 forwarding model, etc. The goal of Open vSwitch is to be able to
 support all as a primitive building block rather than choose a
 particular point in the distributed design space.

Q: How can I contribute to the Open vSwitch Community?

A: You can start by joining the mailing lists and helping to answer
 questions. You can also suggest improvements to documentation. If
 you have a feature or bug you would like to work on, send a mail to
 one of the mailing lists:

 http://openvswitch.org/mlists/

Releases

Q: What does it mean for an Open vSwitch release to be LTS (long-term
 support)?

A: All official releases have been through a comprehensive testing
 process and are suitable for production use. Planned releases will
 occur several times a year. If a significant bug is identified in an
 LTS release, we will provide an updated release that includes the
 fix. Releases that are not LTS may not be fixed and may just be
 supplanted by the next major release. The current LTS release is
 1.9.x.

Q: What Linux kernel versions does each Open vSwitch release work with?

A: The following table lists the Linux kernel versions against which the
 given versions of the Open vSwitch kernel module will successfully
 build. The Linux kernel versions are upstream kernel versions, so
 Linux kernels modified from the upstream sources may not build in
 some cases even if they are based on a supported version. This is
 most notably true of Red Hat Enterprise Linux (RHEL) kernels, which
 are extensively modified from upstream.

 Open vSwitch Linux kernel
 ------------ -------------
 1.4.x 2.6.18 to 3.2
 1.5.x 2.6.18 to 3.2
 1.6.x 2.6.18 to 3.2
 1.7.x 2.6.18 to 3.3
 1.8.x 2.6.18 to 3.4
 1.9.x 2.6.18 to 3.8
 1.10.x 2.6.18 to 3.8
 1.11.x 2.6.18 to 3.8
 2.0.x 2.6.32 to 3.10
 2.1.x 2.6.32 to 3.11

 Open vSwitch userspace should also work with the Linux kernel module
 built into Linux 3.3 and later.

 Open vSwitch userspace is not sensitive to the Linux kernel version.
 It should build against almost any kernel, certainly against 2.6.32
 and later.

Q: What Linux kernel versions does IPFIX flow monitoring work with?

A: IPFIX flow monitoring requires the Linux kernel module from Open
 vSwitch version 1.10.90 or later.

Q: Should userspace or kernel be upgraded first to minimize downtime?

 In general, the Open vSwitch userspace should be used with the
 kernel version included in the same release or with the version
 from upstream Linux. However, when upgrading between two releases
 of Open vSwitch it is best to migrate userspace first to reduce
 the possibility of incompatibilities.

Q: What features are not available in the Open vSwitch kernel datapath
 that ships as part of the upstream Linux kernel?

A: The kernel module in upstream Linux 3.3 and later does not include
 tunnel virtual ports, that is, interfaces with type "gre",
 "ipsec_gre", "gre64", "ipsec_gre64", "vxlan", or "lisp". It is
 possible to create tunnels in Linux and attach them to Open vSwitch
 as system devices. However, they cannot be dynamically created
 through the OVSDB protocol or set the tunnel ids as a flow action.

 Work is in progress in adding tunnel virtual ports to the upstream
 Linux version of the Open vSwitch kernel module. For now, if you
 need these features, use the kernel module from the Open vSwitch
 distribution instead of the upstream Linux kernel module.

 The upstream kernel module does not include patch ports, but this
 only matters for Open vSwitch 1.9 and earlier, because Open vSwitch
 1.10 and later implement patch ports without using this kernel
 feature.

Q: What features are not available when using the userspace datapath?

A: Tunnel virtual ports are not supported, as described in the
 previous answer. It is also not possible to use queue-related
 actions. On Linux kernels before 2.6.39, maximum-sized VLAN packets
 may not be transmitted.

Q: What happened to the bridge compatibility feature?

A: Bridge compatibility was a feature of Open vSwitch 1.9 and earlier.
 When it was enabled, Open vSwitch imitated the interface of the
 Linux kernel "bridge" module. This allowed users to drop Open
 vSwitch into environments designed to use the Linux kernel bridge
 module without adapting the environment to use Open vSwitch.

 Open vSwitch 1.10 and later do not support bridge compatibility.
 The feature was dropped because version 1.10 adopted a new internal
 architecture that made bridge compatibility difficult to maintain.
 Now that many environments use OVS directly, it would be rarely
 useful in any case.

 To use bridge compatibility, install OVS 1.9 or earlier, including
 the accompanying kernel modules (both the main and bridge
 compatibility modules), following the instructions that come with
 the release. Be sure to start the ovs-brcompatd daemon.

Terminology

Q: I thought Open vSwitch was a virtual Ethernet switch, but the
 documentation keeps talking about bridges. What's a bridge?

A: In networking, the terms "bridge" and "switch" are synonyms. Open
 vSwitch implements an Ethernet switch, which means that it is also
 an Ethernet bridge.

Q: What's a VLAN?

A: See the "VLAN" section below.

Basic Configuration

Q: How do I configure a port as an access port?

A: Add "tag=VLAN" to your "ovs-vsctl add-port" command. For example,
 the following commands configure br0 with eth0 as a trunk port (the
 default) and tap0 as an access port for VLAN 9:

 ovs-vsctl add-br br0
 ovs-vsctl add-port br0 eth0
 ovs-vsctl add-port br0 tap0 tag=9

 If you want to configure an already added port as an access port,
 use "ovs-vsctl set", e.g.:

 ovs-vsctl set port tap0 tag=9

Q: How do I configure a port as a SPAN port, that is, enable mirroring
 of all traffic to that port?

A: The following commands configure br0 with eth0 and tap0 as trunk
 ports. All traffic coming in or going out on eth0 or tap0 is also
 mirrored to tap1; any traffic arriving on tap1 is dropped:

 ovs-vsctl add-br br0
 ovs-vsctl add-port br0 eth0
 ovs-vsctl add-port br0 tap0
 ovs-vsctl add-port br0 tap1 \
 -- --id=@p get port tap1 \
	 -- --id=@m create mirror name=m0 select-all=true output-port=@p \
	 -- set bridge br0 mirrors=@m

 To later disable mirroring, run:

 ovs-vsctl clear bridge br0 mirrors

Q: Does Open vSwitch support configuring a port in promiscuous mode?

A: Yes. How you configure it depends on what you mean by "promiscuous
 mode":

 - Conventionally, "promiscuous mode" is a feature of a network
 interface card. Ordinarily, a NIC passes to the CPU only the
 packets actually destined to its host machine. It discards
 the rest to avoid wasting memory and CPU cycles. When
 promiscuous mode is enabled, however, it passes every packet
 to the CPU. On an old-style shared-media or hub-based
 network, this allows the host to spy on all packets on the
 network. But in the switched networks that are almost
 everywhere these days, promiscuous mode doesn't have much
 effect, because few packets not destined to a host are
 delivered to the host's NIC.

 This form of promiscuous mode is configured in the guest OS of
 the VMs on your bridge, e.g. with "ifconfig".

 - The VMware vSwitch uses a different definition of "promiscuous
 mode". When you configure promiscuous mode on a VMware vNIC,
 the vSwitch sends a copy of every packet received by the
 vSwitch to that vNIC. That has a much bigger effect than just
 enabling promiscuous mode in a guest OS. Rather than getting
 a few stray packets for which the switch does not yet know the
 correct destination, the vNIC gets every packet. The effect
 is similar to replacing the vSwitch by a virtual hub.

 This "promiscuous mode" is what switches normally call "port
 mirroring" or "SPAN". For information on how to configure
 SPAN, see "How do I configure a port as a SPAN port, that is,
 enable mirroring of all traffic to that port?"

Q: How do I configure a VLAN as an RSPAN VLAN, that is, enable
 mirroring of all traffic to that VLAN?

A: The following commands configure br0 with eth0 as a trunk port and
 tap0 as an access port for VLAN 10. All traffic coming in or going
 out on tap0, as well as traffic coming in or going out on eth0 in
 VLAN 10, is also mirrored to VLAN 15 on eth0. The original tag for
 VLAN 10, in cases where one is present, is dropped as part of
 mirroring:

 ovs-vsctl add-br br0
 ovs-vsctl add-port br0 eth0
 ovs-vsctl add-port br0 tap0 tag=10
 ovs-vsctl \
	 -- --id=@m create mirror name=m0 select-all=true select-vlan=10 \
 output-vlan=15 \
	 -- set bridge br0 mirrors=@m

 To later disable mirroring, run:

 ovs-vsctl clear bridge br0 mirrors

 Mirroring to a VLAN can disrupt a network that contains unmanaged
 switches. See ovs-vswitchd.conf.db(5) for details. Mirroring to a
 GRE tunnel has fewer caveats than mirroring to a VLAN and should
 generally be preferred.

Q: Can I mirror more than one input VLAN to an RSPAN VLAN?

A: Yes, but mirroring to a VLAN strips the original VLAN tag in favor
 of the specified output-vlan. This loss of information may make
 the mirrored traffic too hard to interpret.

 To mirror multiple VLANs, use the commands above, but specify a
 comma-separated list of VLANs as the value for select-vlan. To
 mirror every VLAN, use the commands above, but omit select-vlan and
 its value entirely.

 When a packet arrives on a VLAN that is used as a mirror output
 VLAN, the mirror is disregarded. Instead, in standalone mode, OVS
 floods the packet across all the ports for which the mirror output
 VLAN is configured. (If an OpenFlow controller is in use, then it
 can override this behavior through the flow table.) If OVS is used
 as an intermediate switch, rather than an edge switch, this ensures
 that the RSPAN traffic is distributed through the network.

 Mirroring to a VLAN can disrupt a network that contains unmanaged
 switches. See ovs-vswitchd.conf.db(5) for details. Mirroring to a
 GRE tunnel has fewer caveats than mirroring to a VLAN and should
 generally be preferred.

Q: How do I configure mirroring of all traffic to a GRE tunnel?

A: The following commands configure br0 with eth0 and tap0 as trunk
 ports. All traffic coming in or going out on eth0 or tap0 is also
 mirrored to gre0, a GRE tunnel to the remote host 192.168.1.10; any
 traffic arriving on gre0 is dropped:

 ovs-vsctl add-br br0
 ovs-vsctl add-port br0 eth0
 ovs-vsctl add-port br0 tap0
 ovs-vsctl add-port br0 gre0 \
 -- set interface gre0 type=gre options:remote_ip=192.168.1.10 \
 -- --id=@p get port gre0 \
	 -- --id=@m create mirror name=m0 select-all=true output-port=@p \
	 -- set bridge br0 mirrors=@m

 To later disable mirroring and destroy the GRE tunnel:

 ovs-vsctl clear bridge br0 mirrors
 ovs-vcstl del-port br0 gre0

Q: Does Open vSwitch support ERSPAN?

A: No. ERSPAN is an undocumented proprietary protocol. As an
 alternative, Open vSwitch supports mirroring to a GRE tunnel (see
 above).

Q: How do I connect two bridges?

A: First, why do you want to do this? Two connected bridges are not
 much different from a single bridge, so you might as well just have
 a single bridge with all your ports on it.

 If you still want to connect two bridges, you can use a pair of
 patch ports. The following example creates bridges br0 and br1,
 adds eth0 and tap0 to br0, adds tap1 to br1, and then connects br0
 and br1 with a pair of patch ports.

 ovs-vsctl add-br br0
 ovs-vsctl add-port br0 eth0
 ovs-vsctl add-port br0 tap0
 ovs-vsctl add-br br1
 ovs-vsctl add-port br1 tap1
 ovs-vsctl \
 -- add-port br0 patch0 \
 -- set interface patch0 type=patch options:peer=patch1 \
 -- add-port br1 patch1 \
 -- set interface patch1 type=patch options:peer=patch0

 Bridges connected with patch ports are much like a single bridge.
 For instance, if the example above also added eth1 to br1, and both
 eth0 and eth1 happened to be connected to the same next-hop switch,
 then you could loop your network just as you would if you added
 eth0 and eth1 to the same bridge (see the "Configuration Problems"
 section below for more information).

 If you are using Open vSwitch 1.9 or an earlier version, then you
 need to be using the kernel module bundled with Open vSwitch rather
 than the one that is integrated into Linux 3.3 and later, because
 Open vSwitch 1.9 and earlier versions need kernel support for patch
 ports. This also means that in Open vSwitch 1.9 and earlier, patch
 ports will not work with the userspace datapath, only with the
 kernel module.

Implementation Details

Q: I hear OVS has a couple of kinds of flows. Can you tell me about them?

A: Open vSwitch uses different kinds of flows for different purposes:

 - OpenFlow flows are the most important kind of flow. OpenFlow
 controllers use these flows to define a switch's policy.
 OpenFlow flows support wildcards, priorities, and multiple
 tables.

 When in-band control is in use, Open vSwitch sets up a few
 "hidden" flows, with priority higher than a controller or the
 user can configure, that are not visible via OpenFlow. (See
 the "Controller" section of the FAQ for more information
 about hidden flows.)

 - The Open vSwitch software switch implementation uses a second
 kind of flow internally. These flows, called "datapath" or
 "kernel" flows, do not support priorities and comprise only a
 single table, which makes them suitable for caching. (Like
 OpenFlow flows, datapath flows do support wildcarding, in Open
 vSwitch 1.11 and later.) OpenFlow flows and datapath flows
 also support different actions and number ports differently.

 Datapath flows are an implementation detail that is subject to
 change in future versions of Open vSwitch. Even with the
 current version of Open vSwitch, hardware switch
 implementations do not necessarily use this architecture.

 Users and controllers directly control only the OpenFlow flow
 table. Open vSwitch manages the datapath flow table itself, so
 users should not normally be concerned with it.

Q: Why are there so many different ways to dump flows?

A: Open vSwitch has two kinds of flows (see the previous question), so
 it has commands with different purposes for dumping each kind of
 flow:

 - "ovs-ofctl dump-flows
" dumps OpenFlow flows, excluding
 hidden flows. This is the most commonly useful form of flow
 dump. (Unlike the other commands, this should work with any
 OpenFlow switch, not just Open vSwitch.)

 - "ovs-appctl bridge/dump-flows
" dumps OpenFlow flows,
 including hidden flows. This is occasionally useful for
 troubleshooting suspected issues with in-band control.

 - "ovs-dpctl dump-flows [dp]" dumps the datapath flow table
 entries for a Linux kernel-based datapath. In Open vSwitch
 1.10 and later, ovs-vswitchd merges multiple switches into a
 single datapath, so it will show all the flows on all your
 kernel-based switches. This command can occasionally be
 useful for debugging.

 - "ovs-appctl dpif/dump-flows
", new in Open vSwitch 1.10,
 dumps datapath flows for only the specified bridge, regardless
 of the type.

Performance

Q: I just upgraded and I see a performance drop. Why?

A: The OVS kernel datapath may have been updated to a newer version than
 the OVS userspace components. Sometimes new versions of OVS kernel
 module add functionality that is backwards compatible with older
 userspace components but may cause a drop in performance with them.
 Especially, if a kernel module from OVS 2.1 or newer is paired with
 OVS userspace 1.10 or older, there will be a performance drop for
 TCP traffic.

 Updating the OVS userspace components to the latest released
 version should fix the performance degradation.

 To get the best possible performance and functionality, it is
 recommended to pair the same versions of the kernel module and OVS
 userspace.

Configuration Problems

Q: I created a bridge and added my Ethernet port to it, using commands
 like these:

 ovs-vsctl add-br br0
 ovs-vsctl add-port br0 eth0

 and as soon as I ran the "add-port" command I lost all connectivity
 through eth0. Help!

A: A physical Ethernet device that is part of an Open vSwitch bridge
 should not have an IP address. If one does, then that IP address
 will not be fully functional.

 You can restore functionality by moving the IP address to an Open
 vSwitch "internal" device, such as the network device named after
 the bridge itself. For example, assuming that eth0's IP address is
 192.168.128.5, you could run the commands below to fix up the
 situation:

 ifconfig eth0 0.0.0.0
 ifconfig br0 192.168.128.5

 (If your only connection to the machine running OVS is through the
 IP address in question, then you would want to run all of these
 commands on a single command line, or put them into a script.) If
 there were any additional routes assigned to eth0, then you would
 also want to use commands to adjust these routes to go through br0.

 If you use DHCP to obtain an IP address, then you should kill the
 DHCP client that was listening on the physical Ethernet interface
 (e.g. eth0) and start one listening on the internal interface
 (e.g. br0). You might still need to manually clear the IP address
 from the physical interface (e.g. with "ifconfig eth0 0.0.0.0").

 There is no compelling reason why Open vSwitch must work this way.
 However, this is the way that the Linux kernel bridge module has
 always worked, so it's a model that those accustomed to Linux
 bridging are already used to. Also, the model that most people
 expect is not implementable without kernel changes on all the
 versions of Linux that Open vSwitch supports.

 By the way, this issue is not specific to physical Ethernet
 devices. It applies to all network devices except Open vswitch
 "internal" devices.

Q: I created a bridge and added a couple of Ethernet ports to it,
 using commands like these:

 ovs-vsctl add-br br0
 ovs-vsctl add-port br0 eth0
 ovs-vsctl add-port br0 eth1

 and now my network seems to have melted: connectivity is unreliable
 (even connectivity that doesn't go through Open vSwitch), all the
 LEDs on my physical switches are blinking, wireshark shows
 duplicated packets, and CPU usage is very high.

A: More than likely, you've looped your network. Probably, eth0 and
 eth1 are connected to the same physical Ethernet switch. This
 yields a scenario where OVS receives a broadcast packet on eth0 and
 sends it out on eth1, then the physical switch connected to eth1
 sends the packet back on eth0, and so on forever. More complicated
 scenarios, involving a loop through multiple switches, are possible
 too.

 The solution depends on what you are trying to do:

 - If you added eth0 and eth1 to get higher bandwidth or higher
 reliability between OVS and your physical Ethernet switch,
 use a bond. The following commands create br0 and then add
 eth0 and eth1 as a bond:

 ovs-vsctl add-br br0
 ovs-vsctl add-bond br0 bond0 eth0 eth1

 Bonds have tons of configuration options. Please read the
 documentation on the Port table in ovs-vswitchd.conf.db(5)
 for all the details.

 - Perhaps you don't actually need eth0 and eth1 to be on the
 same bridge. For example, if you simply want to be able to
 connect each of them to virtual machines, then you can put
 each of them on a bridge of its own:

 ovs-vsctl add-br br0
 ovs-vsctl add-port br0 eth0

 ovs-vsctl add-br br1
 ovs-vsctl add-port br1 eth1

 and then connect VMs to br0 and br1. (A potential
 disadvantage is that traffic cannot directly pass between br0
 and br1. Instead, it will go out eth0 and come back in eth1,
 or vice versa.)

 - If you have a redundant or complex network topology and you
 want to prevent loops, turn on spanning tree protocol (STP).
 The following commands create br0, enable STP, and add eth0
 and eth1 to the bridge. The order is important because you
 don't want have to have a loop in your network even
 transiently:

 ovs-vsctl add-br br0
 ovs-vsctl set bridge br0 stp_enable=true
 ovs-vsctl add-port br0 eth0
 ovs-vsctl add-port br0 eth1

 The Open vSwitch implementation of STP is not well tested.
 Please report any bugs you observe, but if you'd rather avoid
 acting as a beta tester then another option might be your
 best shot.

Q: I can't seem to use Open vSwitch in a wireless network.

A: Wireless base stations generally only allow packets with the source
 MAC address of NIC that completed the initial handshake.
 Therefore, without MAC rewriting, only a single device can
 communicate over a single wireless link.

 This isn't specific to Open vSwitch, it's enforced by the access
 point, so the same problems will show up with the Linux bridge or
 any other way to do bridging.

Q: I can't seem to add my PPP interface to an Open vSwitch bridge.

A: PPP most commonly carries IP packets, but Open vSwitch works only
 with Ethernet frames. The correct way to interface PPP to an
 Ethernet network is usually to use routing instead of switching.

Q: Is there any documentation on the database tables and fields?

A: Yes. ovs-vswitchd.conf.db(5) is a comprehensive reference.

Q: When I run ovs-dpctl I no longer see the bridges I created. Instead,
 I only see a datapath called "ovs-system". How can I see datapath
 information about a particular bridge?

A: In version 1.9.0, OVS switched to using a single datapath that is
 shared by all bridges of that type. The "ovs-appctl dpif/*"
 commands provide similar functionality that is scoped by the bridge.

Quality of Service (QoS)

Q: How do I configure Quality of Service (QoS)?

A: Suppose that you want to set up bridge br0 connected to physical
 Ethernet port eth0 (a 1 Gbps device) and virtual machine interfaces
 vif1.0 and vif2.0, and that you want to limit traffic from vif1.0
 to eth0 to 10 Mbps and from vif2.0 to eth0 to 20 Mbps. Then, you
 could configure the bridge this way:

 ovs-vsctl -- \
 add-br br0 -- \
	 add-port br0 eth0 -- \
	 add-port br0 vif1.0 -- set interface vif1.0 ofport_request=5 -- \
	 add-port br0 vif2.0 -- set interface vif2.0 ofport_request=6 -- \
	 set port eth0 qos=@newqos -- \
	 --id=@newqos create qos type=linux-htb \
 other-config:max-rate=1000000000 \
	 queues:123=@vif10queue \
	 queues:234=@vif20queue -- \
 --id=@vif10queue create queue other-config:max-rate=10000000 -- \
 --id=@vif20queue create queue other-config:max-rate=20000000

 At this point, bridge br0 is configured with the ports and eth0 is
 configured with the queues that you need for QoS, but nothing is
 actually directing packets from vif1.0 or vif2.0 to the queues that
 we have set up for them. That means that all of the packets to
 eth0 are going to the "default queue", which is not what we want.

 We use OpenFlow to direct packets from vif1.0 and vif2.0 to the
 queues reserved for them:

 ovs-ofctl add-flow br0 in_port=5,actions=set_queue:123,normal
 ovs-ofctl add-flow br0 in_port=6,actions=set_queue:234,normal

 Each of the above flows matches on the input port, sets up the
 appropriate queue (123 for vif1.0, 234 for vif2.0), and then
 executes the "normal" action, which performs the same switching
 that Open vSwitch would have done without any OpenFlow flows being
 present. (We know that vif1.0 and vif2.0 have OpenFlow port
 numbers 5 and 6, respectively, because we set their ofport_request
 columns above. If we had not done that, then we would have needed
 to find out their port numbers before setting up these flows.)

 Now traffic going from vif1.0 or vif2.0 to eth0 should be
 rate-limited.

 By the way, if you delete the bridge created by the above commands,
 with:

 ovs-vsctl del-br br0

 then that will leave one unreferenced QoS record and two
 unreferenced Queue records in the Open vSwich database. One way to
 clear them out, assuming you don't have other QoS or Queue records
 that you want to keep, is:

 ovs-vsctl -- --all destroy QoS -- --all destroy Queue

 If you do want to keep some QoS or Queue records, or the Open
 vSwitch you are using is older than version 1.8 (which added the
 --all option), then you will have to destroy QoS and Queue records
 individually.

Q: I configured Quality of Service (QoS) in my OpenFlow network by
 adding records to the QoS and Queue table, but the results aren't
 what I expect.

A: Did you install OpenFlow flows that use your queues? This is the
 primary way to tell Open vSwitch which queues you want to use. If
 you don't do this, then the default queue will be used, which will
 probably not have the effect you want.

 Refer to the previous question for an example.

Q: I configured QoS, correctly, but my measurements show that it isn't
 working as well as I expect.

A: With the Linux kernel, the Open vSwitch implementation of QoS has
 two aspects:

 - Open vSwitch configures a subset of Linux kernel QoS
 features, according to what is in OVSDB. It is possible that
 this code has bugs. If you believe that this is so, then you
 can configure the Linux traffic control (QoS) stack directly
 with the "tc" program. If you get better results that way,
 you can send a detailed bug report to bugs@openvswitch.org.

 It is certain that Open vSwitch cannot configure every Linux
 kernel QoS feature. If you need some feature that OVS cannot
 configure, then you can also use "tc" directly (or add that
 feature to OVS).

 - The Open vSwitch implementation of OpenFlow allows flows to
 be directed to particular queues. This is pretty simple and
 unlikely to have serious bugs at this point.

 However, most problems with QoS on Linux are not bugs in Open
 vSwitch at all. They tend to be either configuration errors
 (please see the earlier questions in this section) or issues with
 the traffic control (QoS) stack in Linux. The Open vSwitch
 developers are not experts on Linux traffic control. We suggest
 that, if you believe you are encountering a problem with Linux
 traffic control, that you consult the tc manpages (e.g. tc(8),
 tc-htb(8), tc-hfsc(8)), web resources (e.g. http://lartc.org/), or
 mailing lists (e.g. http://vger.kernel.org/vger-lists.html#netdev).

VLANs

Q: What's a VLAN?

A: At the simplest level, a VLAN (short for "virtual LAN") is a way to
 partition a single switch into multiple switches. Suppose, for
 example, that you have two groups of machines, group A and group B.
 You want the machines in group A to be able to talk to each other,
 and you want the machine in group B to be able to talk to each
 other, but you don't want the machines in group A to be able to
 talk to the machines in group B. You can do this with two
 switches, by plugging the machines in group A into one switch and
 the machines in group B into the other switch.

 If you only have one switch, then you can use VLANs to do the same
 thing, by configuring the ports for machines in group A as VLAN
 "access ports" for one VLAN and the ports for group B as "access
 ports" for a different VLAN. The switch will only forward packets
 between ports that are assigned to the same VLAN, so this
 effectively subdivides your single switch into two independent
 switches, one for each group of machines.

 So far we haven't said anything about VLAN headers. With access
 ports, like we've described so far, no VLAN header is present in
 the Ethernet frame. This means that the machines (or switches)
 connected to access ports need not be aware that VLANs are
 involved, just like in the case where we use two different physical
 switches.

 Now suppose that you have a whole bunch of switches in your
 network, instead of just one, and that some machines in group A are
 connected directly to both switches 1 and 2. To allow these
 machines to talk to each other, you could add an access port for
 group A's VLAN to switch 1 and another to switch 2, and then
 connect an Ethernet cable between those ports. That works fine,
 but it doesn't scale well as the number of switches and the number
 of VLANs increases, because you use up a lot of valuable switch
 ports just connecting together your VLANs.

 This is where VLAN headers come in. Instead of using one cable and
 two ports per VLAN to connect a pair of switches, we configure a
 port on each switch as a VLAN "trunk port". Packets sent and
 received on a trunk port carry a VLAN header that says what VLAN
 the packet belongs to, so that only two ports total are required to
 connect the switches, regardless of the number of VLANs in use.
 Normally, only switches (either physical or virtual) are connected
 to a trunk port, not individual hosts, because individual hosts
 don't expect to see a VLAN header in the traffic that they receive.

 None of the above discussion says anything about particular VLAN
 numbers. This is because VLAN numbers are completely arbitrary.
 One must only ensure that a given VLAN is numbered consistently
 throughout a network and that different VLANs are given different
 numbers. (That said, VLAN 0 is usually synonymous with a packet
 that has no VLAN header, and VLAN 4095 is reserved.)

Q: VLANs don't work.

A: Many drivers in Linux kernels before version 3.3 had VLAN-related
 bugs. If you are having problems with VLANs that you suspect to be
 driver related, then you have several options:

 - Upgrade to Linux 3.3 or later.

 - Build and install a fixed version of the particular driver
 that is causing trouble, if one is available.

 - Use a NIC whose driver does not have VLAN problems.

 - Use "VLAN splinters", a feature in Open vSwitch 1.4 and later
 that works around bugs in kernel drivers. To enable VLAN
 splinters on interface eth0, use the command:

 ovs-vsctl set interface eth0 other-config:enable-vlan-splinters=true

 For VLAN splinters to be effective, Open vSwitch must know
 which VLANs are in use. See the "VLAN splinters" section in
 the Interface table in ovs-vswitchd.conf.db(5) for details on
 how Open vSwitch infers in-use VLANs.

 VLAN splinters increase memory use and reduce performance, so
 use them only if needed.

 - Apply the "vlan workaround" patch from the XenServer kernel
 patch queue, build Open vSwitch against this patched kernel,
 and then use ovs-vlan-bug-workaround(8) to enable the VLAN
 workaround for each interface whose driver is buggy.

 (This is a nontrivial exercise, so this option is included
 only for completeness.)

 It is not always easy to tell whether a Linux kernel driver has
 buggy VLAN support. The ovs-vlan-test(8) and ovs-test(8) utilities
 can help you test. See their manpages for details. Of the two
 utilities, ovs-test(8) is newer and more thorough, but
 ovs-vlan-test(8) may be easier to use.

Q: VLANs still don't work. I've tested the driver so I know that it's OK.

A: Do you have VLANs enabled on the physical switch that OVS is
 attached to? Make sure that the port is configured to trunk the
 VLAN or VLANs that you are using with OVS.

Q: Outgoing VLAN-tagged traffic goes through OVS to my physical switch
 and to its destination host, but OVS seems to drop incoming return
 traffic.

A: It's possible that you have the VLAN configured on your physical
 switch as the "native" VLAN. In this mode, the switch treats
 incoming packets either tagged with the native VLAN or untagged as
 part of the native VLAN. It may also send outgoing packets in the
 native VLAN without a VLAN tag.

 If this is the case, you have two choices:

 - Change the physical switch port configuration to tag packets
 it forwards to OVS with the native VLAN instead of forwarding
 them untagged.

 - Change the OVS configuration for the physical port to a
 native VLAN mode. For example, the following sets up a
 bridge with port eth0 in "native-tagged" mode in VLAN 9:

 ovs-vsctl add-br br0
 ovs-vsctl add-port br0 eth0 tag=9 vlan_mode=native-tagged

 In this situation, "native-untagged" mode will probably work
 equally well. Refer to the documentation for the Port table
 in ovs-vswitchd.conf.db(5) for more information.

Q: I added a pair of VMs on different VLANs, like this:

 ovs-vsctl add-br br0
 ovs-vsctl add-port br0 eth0
 ovs-vsctl add-port br0 tap0 tag=9
 ovs-vsctl add-port br0 tap1 tag=10

 but the VMs can't access each other, the external network, or the
 Internet.

A: It is to be expected that the VMs can't access each other. VLANs
 are a means to partition a network. When you configured tap0 and
 tap1 as access ports for different VLANs, you indicated that they
 should be isolated from each other.

 As for the external network and the Internet, it seems likely that
 the machines you are trying to access are not on VLAN 9 (or 10) and
 that the Internet is not available on VLAN 9 (or 10).

Q: I added a pair of VMs on the same VLAN, like this:

 ovs-vsctl add-br br0
 ovs-vsctl add-port br0 eth0
 ovs-vsctl add-port br0 tap0 tag=9
 ovs-vsctl add-port br0 tap1 tag=9

 The VMs can access each other, but not the external network or the
 Internet.

A: It seems likely that the machines you are trying to access in the
 external network are not on VLAN 9 and that the Internet is not
 available on VLAN 9. Also, ensure VLAN 9 is set up as an allowed
 trunk VLAN on the upstream switch port to which eth0 is connected.

Q: Can I configure an IP address on a VLAN?

A: Yes. Use an "internal port" configured as an access port. For
 example, the following configures IP address 192.168.0.7 on VLAN 9.
 That is, OVS will forward packets from eth0 to 192.168.0.7 only if
 they have an 802.1Q header with VLAN 9. Conversely, traffic
 forwarded from 192.168.0.7 to eth0 will be tagged with an 802.1Q
 header with VLAN 9:

 ovs-vsctl add-br br0
 ovs-vsctl add-port br0 eth0
 ovs-vsctl add-port br0 vlan9 tag=9 -- set interface vlan9 type=internal
 ifconfig vlan9 192.168.0.7

Q: My OpenFlow controller doesn't see the VLANs that I expect.

A: The configuration for VLANs in the Open vSwitch database (e.g. via
 ovs-vsctl) only affects traffic that goes through Open vSwitch's
 implementation of the OpenFlow "normal switching" action. By
 default, when Open vSwitch isn't connected to a controller and
 nothing has been manually configured in the flow table, all traffic
 goes through the "normal switching" action. But, if you set up
 OpenFlow flows on your own, through a controller or using ovs-ofctl
 or through other means, then you have to implement VLAN handling
 yourself.

 You can use "normal switching" as a component of your OpenFlow
 actions, e.g. by putting "normal" into the lists of actions on
 ovs-ofctl or by outputting to OFPP_NORMAL from an OpenFlow
 controller. In situations where this is not suitable, you can
 implement VLAN handling yourself, e.g.:

 - If a packet comes in on an access port, and the flow table
 needs to send it out on a trunk port, then the flow can add
 the appropriate VLAN tag with the "mod_vlan_vid" action.

 - If a packet comes in on a trunk port, and the flow table
 needs to send it out on an access port, then the flow can
 strip the VLAN tag with the "strip_vlan" action.

Q: I configured ports on a bridge as access ports with different VLAN
 tags, like this:

 ovs-vsctl add-br br0
 ovs-vsctl set-controller br0 tcp:192.168.0.10:6633
 ovs-vsctl add-port br0 eth0
 ovs-vsctl add-port br0 tap0 tag=9
 ovs-vsctl add-port br0 tap1 tag=10

 but the VMs running behind tap0 and tap1 can still communicate,
 that is, they are not isolated from each other even though they are
 on different VLANs.

A: Do you have a controller configured on br0 (as the commands above
 do)? If so, then this is a variant on the previous question, "My
 OpenFlow controller doesn't see the VLANs that I expect," and you
 can refer to the answer there for more information.

VXLANs

Q: What's a VXLAN?

A: VXLAN stands for Virtual eXtensible Local Area Network, and is a means
 to solve the scaling challenges of VLAN networks in a multi-tenant
 environment. VXLAN is an overlay network which transports an L2 network
 over an existing L3 network. For more information on VXLAN, please see
 the IETF draft available here:

 http://tools.ietf.org/html/draft-mahalingam-dutt-dcops-vxlan-03

Q: How much of the VXLAN protocol does Open vSwitch currently support?

A: Open vSwitch currently supports the framing format for packets on the
 wire. There is currently no support for the multicast aspects of VXLAN.
 To get around the lack of multicast support, it is possible to
 pre-provision MAC to IP address mappings either manually or from a
 controller.

Q: What destination UDP port does the VXLAN implementation in Open vSwitch
 use?

A: By default, Open vSwitch will use the assigned IANA port for VXLAN, which
 is 4789. However, it is possible to configure the destination UDP port
 manually on a per-VXLAN tunnel basis. An example of this configuration is
 provided below.

 ovs-vsctl add-br br0
 ovs-vsctl add-port br0 vxlan1 -- set interface vxlan1
 type=vxlan options:remote_ip=192.168.1.2 options:key=flow
 options:dst_port=8472

Using OpenFlow (Manually or Via Controller)

Q: What versions of OpenFlow does Open vSwitch support?

A: Open vSwitch 1.9 and earlier support only OpenFlow 1.0 (plus
 extensions that bring in many of the features from later versions
 of OpenFlow).

 Open vSwitch 1.10 and later have experimental support for OpenFlow
 1.2 and 1.3. On these versions of Open vSwitch, the following
 command enables OpenFlow 1.0, 1.2, and 1.3 on bridge br0:

 ovs-vsctl set bridge br0 protocols=OpenFlow10,OpenFlow12,OpenFlow13

 Open vSwitch version 1.12 and later will have experimental support
 for OpenFlow 1.1, 1.2, and 1.3. On these versions of Open vSwitch,
 the following command enables OpenFlow 1.0, 1.1, 1.2, and 1.3 on
 bridge br0:

 ovs-vsctl set bridge br0 protocols=OpenFlow10,OpenFlow11,OpenFlow12,OpenFlow13

 Use the -O option to enable support for later versions of OpenFlow
 in ovs-ofctl. For example:

 ovs-ofctl -O OpenFlow13 dump-flows br0

 Support for OpenFlow 1.1, 1.2, and 1.3 is still incomplete. Work
 to be done is tracked in OPENFLOW-1.1+ in the Open vSwitch sources
 (also via http://openvswitch.org/development/openflow-1-x-plan/).
 When support for a given OpenFlow version is solidly implemented,
 Open vSwitch will enable that version by default.

Q: I'm getting "error type 45250 code 0". What's that?

A: This is a Open vSwitch extension to OpenFlow error codes. Open
 vSwitch uses this extension when it must report an error to an
 OpenFlow controller but no standard OpenFlow error code is
 suitable.

 Open vSwitch logs the errors that it sends to controllers, so the
 easiest thing to do is probably to look at the ovs-vswitchd log to
 find out what the error was.

 If you want to dissect the extended error message yourself, the
 format is documented in include/openflow/nicira-ext.h in the Open
 vSwitch source distribution. The extended error codes are
 documented in lib/ofp-errors.h.

Q1: Some of the traffic that I'd expect my OpenFlow controller to see
 doesn't actually appear through the OpenFlow connection, even
 though I know that it's going through.
Q2: Some of the OpenFlow flows that my controller sets up don't seem
 to apply to certain traffic, especially traffic between OVS and
 the controller itself.

A: By default, Open vSwitch assumes that OpenFlow controllers are
 connected "in-band", that is, that the controllers are actually
 part of the network that is being controlled. In in-band mode,
 Open vSwitch sets up special "hidden" flows to make sure that
 traffic can make it back and forth between OVS and the controllers.
 These hidden flows are higher priority than any flows that can be
 set up through OpenFlow, and they are not visible through normal
 OpenFlow flow table dumps.

 Usually, the hidden flows are desirable and helpful, but
 occasionally they can cause unexpected behavior. You can view the
 full OpenFlow flow table, including hidden flows, on bridge br0
 with the command:

 ovs-appctl bridge/dump-flows br0

 to help you debug. The hidden flows are those with priorities
 greater than 65535 (the maximum priority that can be set with
 OpenFlow).

 The DESIGN file at the top level of the Open vSwitch source
 distribution describes the in-band model in detail.

 If your controllers are not actually in-band (e.g. they are on
 localhost via 127.0.0.1, or on a separate network), then you should
 configure your controllers in "out-of-band" mode. If you have one
 controller on bridge br0, then you can configure out-of-band mode
 on it with:

 ovs-vsctl set controller br0 connection-mode=out-of-band

Q: I configured all my controllers for out-of-band control mode but
 "ovs-appctl bridge/dump-flows" still shows some hidden flows.

A: You probably have a remote manager configured (e.g. with "ovs-vsctl
 set-manager"). By default, Open vSwitch assumes that managers need
 in-band rules set up on every bridge. You can disable these rules
 on bridge br0 with:

 ovs-vsctl set bridge br0 other-config:disable-in-band=true

 This actually disables in-band control entirely for the bridge, as
 if all the bridge's controllers were configured for out-of-band
 control.

Q: My OpenFlow controller doesn't see the VLANs that I expect.

A: See answer under "VLANs", above.

Q: I ran "ovs-ofctl add-flow br0 nw_dst=192.168.0.1,actions=drop"
 but I got a funny message like this:

 ofp_util|INFO|normalization changed ofp_match, details:
 ofp_util|INFO| pre: nw_dst=192.168.0.1
 ofp_util|INFO|post:

 and when I ran "ovs-ofctl dump-flows br0" I saw that my nw_dst
 match had disappeared, so that the flow ends up matching every
 packet.

A: The term "normalization" in the log message means that a flow
 cannot match on an L3 field without saying what L3 protocol is in
 use. The "ovs-ofctl" command above didn't specify an L3 protocol,
 so the L3 field match was dropped.

 In this case, the L3 protocol could be IP or ARP. A correct
 command for each possibility is, respectively:

 ovs-ofctl add-flow br0 ip,nw_dst=192.168.0.1,actions=drop

 and

 ovs-ofctl add-flow br0 arp,nw_dst=192.168.0.1,actions=drop

 Similarly, a flow cannot match on an L4 field without saying what
 L4 protocol is in use. For example, the flow match "tp_src=1234"
 is, by itself, meaningless and will be ignored. Instead, to match
 TCP source port 1234, write "tcp,tp_src=1234", or to match UDP
 source port 1234, write "udp,tp_src=1234".

Q: How can I figure out the OpenFlow port number for a given port?

A: The OFPT_FEATURES_REQUEST message requests an OpenFlow switch to
 respond with an OFPT_FEATURES_REPLY that, among other information,
 includes a mapping between OpenFlow port names and numbers. From a
 command prompt, "ovs-ofctl show br0" makes such a request and
 prints the response for switch br0.

 The Interface table in the Open vSwitch database also maps OpenFlow
 port names to numbers. To print the OpenFlow port number
 associated with interface eth0, run:

 ovs-vsctl get Interface eth0 ofport

 You can print the entire mapping with:

 ovs-vsctl -- --columns=name,ofport list Interface

 but the output mixes together interfaces from all bridges in the
 database, so it may be confusing if more than one bridge exists.

 In the Open vSwitch database, ofport value -1 means that the
 interface could not be created due to an error. (The Open vSwitch
 log should indicate the reason.) ofport value [] (the empty set)
 means that the interface hasn't been created yet. The latter is
 normally an intermittent condition (unless ovs-vswitchd is not
 running).

Q: I added some flows with my controller or with ovs-ofctl, but when I
 run "ovs-dpctl dump-flows" I don't see them.

A: ovs-dpctl queries a kernel datapath, not an OpenFlow switch. It
 won't display the information that you want. You want to use
 "ovs-ofctl dump-flows" instead.

Q: It looks like each of the interfaces in my bonded port shows up
 as an individual OpenFlow port. Is that right?

A: Yes, Open vSwitch makes individual bond interfaces visible as
 OpenFlow ports, rather than the bond as a whole. The interfaces
 are treated together as a bond for only a few purposes:

 - Sending a packet to the OFPP_NORMAL port. (When an OpenFlow
 controller is not configured, this happens implicitly to
 every packet.)

 - Mirrors configured for output to a bonded port.

 It would make a lot of sense for Open vSwitch to present a bond as
 a single OpenFlow port. If you want to contribute an
 implementation of such a feature, please bring it up on the Open
 vSwitch development mailing list at dev@openvswitch.org.

Q: I have a sophisticated network setup involving Open vSwitch, VMs or
 multiple hosts, and other components. The behavior isn't what I
 expect. Help!

A: To debug network behavior problems, trace the path of a packet,
 hop-by-hop, from its origin in one host to a remote host. If
 that's correct, then trace the path of the response packet back to
 the origin.

 Usually a simple ICMP echo request and reply ("ping") packet is
 good enough. Start by initiating an ongoing "ping" from the origin
 host to a remote host. If you are tracking down a connectivity
 problem, the "ping" will not display any successful output, but
 packets are still being sent. (In this case the packets being sent
 are likely ARP rather than ICMP.)

 Tools available for tracing include the following:

 - "tcpdump" and "wireshark" for observing hops across network
 devices, such as Open vSwitch internal devices and physical
 wires.

 - "ovs-appctl dpif/dump-flows
" in Open vSwitch 1.10 and
 later or "ovs-dpctl dump-flows
" in earlier versions.
 These tools allow one to observe the actions being taken on
 packets in ongoing flows.

 See ovs-vswitchd(8) for "ovs-appctl dpif/dump-flows"
 documentation, ovs-dpctl(8) for "ovs-dpctl dump-flows"
 documentation, and "Why are there so many different ways to
 dump flows?" above for some background.

 - "ovs-appctl ofproto/trace" to observe the logic behind how
 ovs-vswitchd treats packets. See ovs-vswitchd(8) for
 documentation. You can out more details about a given flow
 that "ovs-dpctl dump-flows" displays, by cutting and pasting
 a flow from the output into an "ovs-appctl ofproto/trace"
 command.

 - SPAN, RSPAN, and ERSPAN features of physical switches, to
 observe what goes on at these physical hops.

 Starting at the origin of a given packet, observe the packet at
 each hop in turn. For example, in one plausible scenario, you
 might:

 1. "tcpdump" the "eth" interface through which an ARP egresses
 a VM, from inside the VM.

 2. "tcpdump" the "vif" or "tap" interface through which the ARP
 ingresses the host machine.

 3. Use "ovs-dpctl dump-flows" to spot the ARP flow and observe
 the host interface through which the ARP egresses the
 physical machine. You may need to use "ovs-dpctl show" to
 interpret the port numbers. If the output seems surprising,
 you can use "ovs-appctl ofproto/trace" to observe details of
 how ovs-vswitchd determined the actions in the "ovs-dpctl
 dump-flows" output.

 4. "tcpdump" the "eth" interface through which the ARP egresses
 the physical machine.

 5. "tcpdump" the "eth" interface through which the ARP
 ingresses the physical machine, at the remote host that
 receives the ARP.

 6. Use "ovs-dpctl dump-flows" to spot the ARP flow on the
 remote host that receives the ARP and observe the VM "vif"
 or "tap" interface to which the flow is directed. Again,
 "ovs-dpctl show" and "ovs-appctl ofproto/trace" might help.

 7. "tcpdump" the "vif" or "tap" interface to which the ARP is
 directed.

 8. "tcpdump" the "eth" interface through which the ARP
 ingresses a VM, from inside the VM.

 It is likely that during one of these steps you will figure out the
 problem. If not, then follow the ARP reply back to the origin, in
 reverse.

Q: How do I make a flow drop packets?

A: To drop a packet is to receive it without forwarding it. OpenFlow
 explicitly specifies forwarding actions. Thus, a flow with an
 empty set of actions does not forward packets anywhere, causing
 them to be dropped. You can specify an empty set of actions with
 "actions=" on the ovs-ofctl command line. For example:

 ovs-ofctl add-flow br0 priority=65535,actions=

 would cause every packet entering switch br0 to be dropped.

 You can write "drop" explicitly if you like. The effect is the
 same. Thus, the following command also causes every packet
 entering switch br0 to be dropped:

 ovs-ofctl add-flow br0 priority=65535,actions=drop

 "drop" is not an action, either in OpenFlow or Open vSwitch.
 Rather, it is only a way to say that there are no actions.

Q: I added a flow to send packets out the ingress port, like this:

 ovs-ofctl add-flow br0 in_port=2,actions=2

 but OVS drops the packets instead.

A: Yes, OpenFlow requires a switch to ignore attempts to send a packet
 out its ingress port. The rationale is that dropping these packets
 makes it harder to loop the network. Sometimes this behavior can
 even be convenient, e.g. it is often the desired behavior in a flow
 that forwards a packet to several ports ("floods" the packet).

 Sometimes one really needs to send a packet out its ingress port.
 In this case, output to OFPP_IN_PORT, which in ovs-ofctl syntax is
 expressed as just "in_port", e.g.:

 ovs-ofctl add-flow br0 in_port=2,actions=in_port

 This also works in some circumstances where the flow doesn't match
 on the input port. For example, if you know that your switch has
 five ports numbered 2 through 6, then the following will send every
 received packet out every port, even its ingress port:

 ovs-ofctl add-flow br0 actions=2,3,4,5,6,in_port

 or, equivalently:

 ovs-ofctl add-flow br0 actions=all,in_port

 Sometimes, in complicated flow tables with multiple levels of
 "resubmit" actions, a flow needs to output to a particular port
 that may or may not be the ingress port. It's difficult to take
 advantage of OFPP_IN_PORT in this situation. To help, Open vSwitch
 provides, as an OpenFlow extension, the ability to modify the
 in_port field. Whatever value is currently in the in_port field is
 the port to which outputs will be dropped, as well as the
 destination for OFPP_IN_PORT. This means that the following will
 reliably output to port 2 or to ports 2 through 6, respectively:

 ovs-ofctl add-flow br0 in_port=2,actions=load:0->NXM_OF_IN_PORT[],2
 ovs-ofctl add-flow br0 actions=load:0->NXM_OF_IN_PORT[],2,3,4,5,6

 If the input port is important, then one may save and restore it on
 the stack:

 ovs-ofctl add-flow br0 actions=push:NXM_OF_IN_PORT[],\
 load:0->NXM_OF_IN_PORT[],\
 2,3,4,5,6,\
 pop:NXM_OF_IN_PORT[]

Q: My bridge br0 has host 192.168.0.1 on port 1 and host 192.168.0.2
 on port 2. I set up flows to forward only traffic destined to the
 other host and drop other traffic, like this:

 priority=5,in_port=1,ip,nw_dst=192.168.0.2,actions=2
 priority=5,in_port=2,ip,nw_dst=192.168.0.1,actions=1
 priority=0,actions=drop

 But it doesn't work--I don't get any connectivity when I do this.
 Why?

A: These flows drop the ARP packets that IP hosts use to establish IP
 connectivity over Ethernet. To solve the problem, add flows to
 allow ARP to pass between the hosts:

 priority=5,in_port=1,arp,actions=2
 priority=5,in_port=2,arp,actions=1

 This issue can manifest other ways, too. The following flows that
 match on Ethernet addresses instead of IP addresses will also drop
 ARP packets, because ARP requests are broadcast instead of being
 directed to a specific host:

 priority=5,in_port=1,dl_dst=54:00:00:00:00:02,actions=2
 priority=5,in_port=2,dl_dst=54:00:00:00:00:01,actions=1
 priority=0,actions=drop

 The solution already described above will also work in this case.
 It may be better to add flows to allow all multicast and broadcast
 traffic:

 priority=5,in_port=1,dl_dst=01:00:00:00:00:00/01:00:00:00:00:00,actions=2
 priority=5,in_port=2,dl_dst=01:00:00:00:00:00/01:00:00:00:00:00,actions=1

Contact

bugs@openvswitch.org
http://openvswitch.org/

