
Getting the hang of IOPS 
If you are an Altiris Administrator, take it from me that IOPS are important to you. What I hope to do in 
today's article is to help you understand what IOPS are and why they are important when sizing your 
disk subsystems. In brief I cover the following, 

• Harddisk basics -how harddisks work! 

• Drive response times 

• Interpreting drive throughputs -what these figures actually mean  

• What IOPS are and why they are so important 

• IOPS calculations and disk arrays 

I should state now that I do not consider myself an expert on this topic. However, every so often I find 
myself benchmarking disks, and I know the curve I had to climb to interpret all the various vendor stats 
-the information overload can be overwhelming. What I'm going to attempt in this article is to herd 
together all the salient pieces of information I've gathered over time. With luck, this will help you 
engage in a meaninful dialog with your storage people to get the performance you need from your 
storage.  
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Introduction  

If you are looking at IT Management Suite (ITMS) one of the underpinning technologies which needs 
to be considered in earnest is Microsoft SQL Server. Specifically, you want to be sure that your SQL 
server is up to the job. There are many ways to help SQL Server perform well. Among them are, 

• Move both the server OS and the SQL Server application to 64-bit 

• Ensure you've got enough RAM chips to load your entire SQL database into memory 

• Ensure you've got enough processing power on-box 

• Ensure the disk subsystem is up to the task 

• Implement database maintenance plans 

• Performance monitoring 

One of the most difficult of the line items to get right in the above list is ensuring the disk susbsystem 
is up to the task. This is important -you want to be sure that the hardware you are considering is 
suitable from the outset for the loads you anticipated placing on your SQL Server. 

Once your hardware is purchased, you can of course tweak how SQL server utilises the disks it's been 
given. For example, to reduce contention we can employ different spindles for the OS, databases and 
log files. You might even re-align your disk partitions and tune your volume blocksizes when 
formatting. 

But specifying the disk subsystem initially leads to a lot of tricky questions, 

1. How fast really are these disks? 



2. Okay I now know how fast they are. Err... Is that good?
3. Is the disk configuration suitable for SQL requirements of ITSM 7.1?

Before we can begin to answer these questions, we really need to start at the beginning...

Disk Performance Basics

Disk performance is an interesting topic. Most of us tend to think of this in terms of how many 
MegaBytes per second (MB/s) we can get out of our storage. Our day
imaging and copying files between disks teaches us that this MB/s
benchmark. 

It is however vital to understand that these processes belong to a specific class of I/O which we call 
sequential. For example, when we are reading a file from beginning to end in one continuous stream 
we are actually executing a sequential read
the new drive is called a sequential write

When we talk about rating a disk subsystem's performance, the sequential read and write operations 
are only half the story. To see why, let's take a look into the innards of a classic mechanical harddisk.

Hard Disk Speeds - It's more than just RPM...
A harddisk essentially consists of some drive electronics, a spinning platter and a number of read/write 
heads which can be swung across the disk on an arm. Below I illustrate in gorgeous powerpoint art the 
essential components of a disk drive. Note I am focusing on the mechanical aspects of the drive as it 
is these which limit the rate at which we can read data from (and write dat

The main items in the above figure are,

1. The Disk Platter 
The platter is the disk within the drive housing upon which our information is recorded. The 
platter is a hard material (i.e. not floppy!) which is usually either aluminium, glass or a ceramic. 
This is coated with a magnetic surface to enable the storage of magnetic bits whi
our data. The platter is spun at incredible speeds by the central spindle (up to 250kmph on the 
fastest disks) which has the effect of presenting a stream of data under the disk head at terrific 
speeds. 

In order to provide a means to locate da
thousands of concentric circles called 
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As there is a limit to the density with which vendors can record magnetic information on a 
platter, manufacturers will often be forced to make disk drives with several platters in order to 
meet the storage capacities their customers demand. 

2. The Drive Head 
This is the business end of the drive. The heads read and write information bits to and from 
the magnetic domains that pass beneath it on the platter surface. There are usually two heads 
per platter which are sited on either side of the disk. 

3. The Actuator Arm 
This is the assembly which holds the heads and ensures (through the actuator) that the heads 
are positioned over the correct disk track. 

When considering disk performance one of the obvious players is the platter spin speed. The drive 
head will pick up far more data per second from a platter which spins at 1000 Rotations Per Minute 
(RPM) when compared with one that spins just once per minute! Simply put, the faster the drive spins 
the more sectors the head can read in any given time period.  

Next, the speed with which the arm can be moved between the disk tracks will also come into play. 
For example, consider the case where the head is hovering over say track 33 of a platter. An I/O 
request then comes in for some data on track 500. The arm then has to swing the head across 467 
tracks in order to reach the track with the requested data. The time it takes for the arm to move that 
distance will fundamentally limit the number of random I/O requests which can be serviced in any 
given time. For the purposes of benchmarking, these two mechanical speeds which limit disk I/O are 
provided in the manufacturer's specification sheets as times, 

1. Average Latency 
This is the time taken for the platter to undergo half a disk rotation. Why half? Well at any one 
time the data can be either a full disk rotation away from the head, or by luck it might already 
be right underneath it. The time taken for a half rotation therefore gives us the average time it 
takes for the platter to spin round enough for the data to be retrieved. 

2. Average Seek Time 
Generally speaking, when the I/O request comes in for a particular piece of data, the head will 
not be above the correct track on the disk. The arm will need to move so that the head is 
directed over the correct track where it must then wait for the platter spin to present the target 
data beneath it. As the data could potentially be anywhere on the platter, the average seek 
time is time taken for the head to travel half way across the disk. 

So, whilst disk RPM is important (as this yeilds the average latency above) it is only half the story. The 
seek time also has an important part to play.  

The Response Time 
Generally speaking, the time taken to service an individual (and random) I/O request will be limited by 
the combination of the above defined latency and seek times. Let's take for example a fairly 
mainstream retail laptop harddisk -a Seagate Momentus. From the Seagate website its specifications 
are, 

Spin Speed (RPM) .................. 7200 RPM 
Average latency .......................4.17ms 
Seek time (Read) .....................11ms 
Seek time (Write) .....................13ms 
I/O data transfer rate ................300MB/s 

Returning to our special case of a sequential read, we can see that the time taken to locate the start of 
our data will be the sum of the average latency and the average seek times. This is because once the 
head has moved over the disk to the correct track (the seek time) it will still have to wait (on average) 
for half a platter rotation to locate the data. The total time taken to locate and read the data is called 
the drive's response time, 

Response Time = (Average Latency) + (Average Seek Time) 



I've heard people question this formula on the grounds that these two mechanical motions occur 
concurrently -the platter is in motion whilst the arm is tracking across the disk. The thinking then is that 
the response time is which ever is the larger of seek and laten
has a flaw -once the drive head reaches the correct track it has no idea what sector is beneath it. The 
head only starts reading once it reaches the target track and thereafter must use the sector address 
marks to orient itself (see figure below). Once it has the address mark, it knows where it is on the 
platter and therefore how many sector gaps must pass before the target sector arrives. 

The result is that when the head arrives at the correct track, we will still have wait on average for half a 
disk rotation for the correct sector to be presented. The formula which sums the seek and latency to 
provide the drive's response time is therefore correct.

Digression aside, the response time for our Seagate Momentus is therefore,

(Response Time) = 11ms + 4

 

                = 15.17ms.

So the drive's response time is a little over 15 
how does this compare with other drives and in what scenarios will the drive's response time matter to 
us? 

To get an idea of how a drive's response time impacts on disk performance, let's first see how this 
comes into play in a sequential read operation. 

Disk Transfer Rates aka the 'Sequential Read'
Most disk drive manufacturers report both the response time, 
specification. The peak transfer rate typically refers to the best case sequential read scenario.

Let's assume the OS has directed the disk to perform a large sequential read operation. After the initial 
average overhead of 15.17ms to locate the start of the data, the actuator arm need now move only 
fractionally with each disk rotation to continue the read (assuming the data is contigious). The rate at 
which we can read data off the disk is now limited by the platter 
manufacturer can pack into each track.
Well, we know the RPM speed of the platter, but what about the data density on the platter? For that 
we have to dig into the manufacturers spec sheet,
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head only starts reading once it reaches the target track and thereafter must use the sector address 
itself (see figure below). Once it has the address mark, it knows where it is on the 

platter and therefore how many sector gaps must pass before the target sector arrives. 
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This tells us that the number of bits per inch of track is 1,490,000. Let's now use this data to work out 
how much data the drive could potentially deliver on a sequential read. 

Noting this is a 2.5inch drive, the maximum track length is going to be the outer circumference of the 
drive (pi * d) = 2.5*3.14 = 7.87 inches. As we have 1490kb per inch data density, this means the 
maximum amount of data which can be crammed onto a track is about, 

(Data Per Track)  = 7.87 * 1490 k bits 

 

                = 11,734 k bits 

 

                = 1.43MB 

Now a disk spinning at 7200RPM is actually spinning 120 times per second. Which means that the 
total amount of data which can pass under the head in 1 second is a massive 173MB (120 * 1.43MB). 

Taking into account that perhaps about 87% of a track is data, this gives a maximum disk throughput 
of about 150MB/s which is surprisingly in agreement with Seagates own figures.  

Note that this calculation is best case -it assumes the data is being sequentially read from the 
outermost tracks of the disk and that there are no other delays between the head reading the data and 
the operating system which requested it. As we start populating the drive with data, the tracks get 
smaller and smaller as we work inwards (don't worry -we'll cover this in Zone Bit Recording below). 
This means less data per track as you work towards the centre of the platter, and therefore the less 
data passing under the head in any given time frame. 

To see how bad the sequential read rate can get, let's perform the same calculation for the smallest 
track which has a 1 inch diameter. This gives a worst case sequential read rate of 60MB/s! So when 
your users report that their computers get progressively slower with time, they might not actually be 
imagining it. As the disk fills up, retrieving the data from the end of a 2.5inch drive will be 2.5 times 
slower than retrieving it from the start. For a 3.5 inch desktop harddisk the difference is 3.5 times. 

The degradation which comes into play as a disk fills up aside, the conclusion to take away from this 
section is that a drive's response time does not impact on the sequential read performance. In this 
scenario, the drives data density and RPM are the important figures to consider. 

Before we move onto a scenario where the response time is important, let's look at how drives 
manage to store more data on their outer tracks than they do on their inner ones. 

Zone Bit Recording 

As I stated in the above section, the longer outer tracks contain more data than the shorter inner 
tracks. This might seem obvious, but this has not always been the case. When harddisks were first 
brought to market their disk controllers were rather limited. This resulted in a very simple and 
geometric logic in the way tracks were divided into sectors as shown below. Specifically, each track 



was divided into a fixed number of sectors over which the data could be recorded. On these disks the 
number of sectors-per-track was a constant quantity across the platter.

As controllers became more advanced, manufacturers realised that they were finally able to increase 
the complexity of the platter surface. In particular, they were able to increase the numbers of sectors 
per track as the track radius increased.

The optimum situation would have been to record on each track 
length, but as disks have thousands
keep a table of all the tracks with their sector counts so it woul
head to when when reading a particular sector. There is also a law of diminishing returns at play if you 
continue to attempt to fit the maximum number of sectors into each and every track.

A compromise was found. The platter would be divided into a small number of 
a logical grouping of tracks which had a specific sector
increasing disk capacities by using the outer tracks more effectively. Importantly, th
without introducing a complex lookup mechanism on the controller when it had to figure out where a 
particular sector was located. 

The diagram above shows an example where the platter surface is divided into
zones contains a large number of tracks (typically thousands), although this is not illustrated in the 
above pictures for simplicity. This technique is called 
On some harddisks, you can see this zoning manifest very clearly if you use a disk benchmarking tool 
like HD Tune. This tool tests the disk's sequential read speed working from the outermost track 
inwards. In the particular case of one of my Maxtor drives, you can see quite clearly that the highest 
disk transfer rates are obtained on the outer tracks. As the tool moves inwards, we see a sequence of 
steps as the read head crosses zones possessing a reduced number of sec
we can see that the platter has been divided into 16 zones.

. 
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This elegant manifestation of ZBR is sadly hard to find on modern drives -the stairs are generally 
replaced by a spiky mess. My guess is that other trickery is at play with caches and controller logic 
which results in so many data bursts as to obscure the ZBR layout. 

Understanding Enterprise Disk Performance 

Now that we've covered the basics of how harddisks work, we're now ready to take a deeper look into 
disk performance in the enterprise. As we'll see, this means thinking about disk performance in terms 
of response times instead of the sustained disk throughputs we've considered up to now. 

Disk Operations per Second - IOPS 
What we have seen in the above sections is that the disk's response time has very little to do with a 
harddisk's transfer rate. The transfer rate is in fact dominated by the drive's RPM and linear recording 
density (the maximum number of sectors-per-track)  

This begs the question of exactly when does the response time become important? 

To answer this, let's return to where this article started -SQL Servers. The problem with databases is 
that database I/O is unlikely to be sequential in nature. One query could ask for some data at the top 
of a table, and the next query could request data from 100,000 rows down. In fact, consecutive 
queries might even be for different databases. 
If we were to look at the disk level whilst such queries are in action, what we'd see is the head zipping 
back and forth like mad -apparently moving at random as it tries ro read and write data in response to 
the incoming I/O requests. 
In the database scenario, the time it takes for each small I/O request to be serviced is dominated by 
the time it takes the disk heads to travel to the target location and pick up the data. That is to say, the 
disk's reponse time will now dominate our performance. The response time now reflects the time our 
storage takes to service an I/O request when the request is random and small. If we turn this new 
benchmark on its head, we can invert this to give the number of Input/Output oPerations per Second 
(IOPS) our storage provides.  

So, for the specific case of our Seagate Drive with a 15.17ms response time, it will take at least on 
average 15.17ms to service each I/O. Turning this on it's head to give us our IOPS yeilds (1/ 0.01517) 
which is 66 IOPS. 



Before we take a look and see whether this value is good or bad, I must emphasise that this 
calculation has not taken into account the process 
in these terms is actually referring to zero
give a good starting point for estimating how many read and write IOPS your storage will deliver
response time will dominate for small I/O requests.

In order to gauge whether my Seagate Momentus IOPS figure of 66 is any good or not, it would be 
useful to have a feeling for the IOPS values that different classes of storage provide. Below is an 
enhancement to a table inspired by 
their RPM and then inverted their response times to give their zero

As you can see, my Seagate Momentus actually sits in the 5400RPM bracket even though it's a 
7200RPM drive. Not so surprising as this is actually a laptop drive, and compromises are oft
in order to make such mobile devices quieter. In short 

IOPS and Data 
Our current definition of a drive's IOPS is based on the time it takes a drive to retrieve a zero
Of immediate concern is what happens to our I
retrieving/writing data. In this case, we'll see that both the response time and sequential transfer rates 
comes into play. 

To estimate the I/O request time, we need to sum the response time with the time required to 
read/write our data (noting that a write seek is normally a couple of ms longer than a read seek to give 
the head more time to settle). The chart below therefore shows how I'd expect the IOPS to vary as we 
increase the size of the data block we're requesti

So our 66 IOPS Seagate drive will in a SQL Server scenario (with 64KB block sizes) actually give us 
64 IOPS when reading and 56 IOPS when writing.

The emphasis here is that when talking about IOPS (and of course comparing them), it is important to 
confirm the block sizes being tested and whether we are talking about reading or writing data. This is 
especially important for drives where the transfer times start playing a more significant role in the total 
time taken for the IO operation to be serviced.

As real-world IOPS values are detrimentally affected when I/O block sizes are considered (and also of 
course if we are writing instead of reading), manufacturers will generally quote a best case IOPS. This 
is taken from the time taken to read
yields an IOPS value derived from the drive's response time. 

Before we take a look and see whether this value is good or bad, I must emphasise that this 
has not taken into account the process of reading or writing data. An IOPS value calculated 
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As you can see, my Seagate Momentus actually sits in the 5400RPM bracket even though it's a 
7200RPM drive. Not so surprising as this is actually a laptop drive, and compromises are oft
in order to make such mobile devices quieter. In short -your milage will vary. 

Our current definition of a drive's IOPS is based on the time it takes a drive to retrieve a zero
Of immediate concern is what happens to our IOPS values as soon as we want to start 
retrieving/writing data. In this case, we'll see that both the response time and sequential transfer rates 
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As you can see, my Seagate Momentus actually sits in the 5400RPM bracket even though it's a 
7200RPM drive. Not so surprising as this is actually a laptop drive, and compromises are often made 

Our current definition of a drive's IOPS is based on the time it takes a drive to retrieve a zero-sized file. 
OPS values as soon as we want to start 

retrieving/writing data. In this case, we'll see that both the response time and sequential transfer rates 

To estimate the I/O request time, we need to sum the response time with the time required to 
read/write our data (noting that a write seek is normally a couple of ms longer than a read seek to give 
the head more time to settle). The chart below therefore shows how I'd expect the IOPS to vary as we 

ng from our Seagate Momentus drive. 

 

So our 66 IOPS Seagate drive will in a SQL Server scenario (with 64KB block sizes) actually give us 

The emphasis here is that when talking about IOPS (and of course comparing them), it is important to 
confirm the block sizes being tested and whether we are talking about reading or writing data. This is 

ant for drives where the transfer times start playing a more significant role in the total 

world IOPS values are detrimentally affected when I/O block sizes are considered (and also of 
e writing instead of reading), manufacturers will generally quote a best case IOPS. This 

the minimum amount from a drive ( 512 bytes). This essentially 



Cynicism aside, this simplified way of looking at IOPS is actually fine for ball-park values. Always 
worth bearing in mind that these quoted values are always going to be rather optimistic. 

IOPS and Partial Stroking 
If you recall, our 500GB Seagate Momentus has the following specs, 

Spin Speed (RPM) .................. 7200 RPM 
Average latency .......................4.17ms 
Seek time (Read) .....................11ms 
Internal I/O data transfer rate .....150MB/s 
IOPS........................................66 

On the IOPS scale, we've already determined that this isn't exactly a performer. If we wanted to use 
this drive for a SQL database we'd likely be pretty dissapointed. Is there anything we can do once 
we've bought the drive to increase it's performance? Technically of course the answer is no, but 
strangely enough we can cheat the stats by being a little clever in our partioning. 

To see how this works, let's partition the Momentus drive so that only the first 100GB is formatted. The 
rest of the drive, 400GB worth is now a dead-zone to the heads -they will never go there. This has a 
very interesting consequence to the drives seek time. The heads are now limited to a small portion of 
the drives surface, which means the time to traverse from one end of the formatted drive to the other is 
much smaller than the time taken it would have taken for the head to cross the entire disk. This 
reflects rather nicely on the drive's seek time over that 100GB surface, which has an interesting effect 
on the drive's IOPS.  

To get some figures, let's assume that about 4ms of a drive's seek time is taken up with accelerating 
and decelerating the heads (2ms to accelerate, and 2ms to decelerate). The rest of the drive's seek 
time can then be said to be attributed to it's transit across the platter surface.  

So, by reducing the physical distance the head has to travel now to a fifth of the drive's surface, we 
can estimate that the transit time is going to be reduced likewise. This results in a new seek time of 
(11-4)/5 + 4 = 6.4ms. 

In fact, as more data is packed into the outside tracks due to ZBR this would be conservative estimate. 
If the latter four fifths of the drive were never going to be used, the drive stats would now look as 
follows,  

Spin Speed (RPM) .................. 7200 RPM 
Average latency .......................4.17ms 
Seek time (Read) .....................6.4ms (for 0-100GB head movement restriction) 
Internal I/O data transfer rate .....150MB/s 
IOPS........................................94 

The potential IOPS for this drive has increased by 50%. In fact, it's pretty much compariable now to a 
high-end 7200RPM drive! This trick is called partial stroking, and can be a quite effective way to 
ensure slower RPM drives perform like their big RPM brothers. Yes, you do lose capacity but in terms 
of cost you can save overall. 

To see if this really works, I've used IOMETER to gather a number of response times for my Seagate 
Momentus using various partition sizes and a 512 byte data transfer. 



 

Here we can see that the back of envelope calculation wasn't so bad -the average I/O response time 
here for a 100GB drive worked out to be 11ms and the quick calculation gave about 10.5ms. Not bad 
considering a lot of guess work was involved -my figures for head acceleration and deceleration were 
plucked out the air. Further I didn't add a settling time for the head before it started reading the data to 
allow the vibrations in the actuator arm to setting down. In truth, I likely over-estimated the arm 
accelleration and decelleration times which had the effect of absorbing the head settle time. 

But, as a rough calculation I imagine this wouldn't be too far off for most drives. 

Your milage will of course vary across drive models, but if for example you are looking at getting a lot 
of IOPS for a 100GB database, I'd expect that a 1TB 7200RPM Seagate Barracuda with 80 IOPS 
could be turned into a 120 IOPS drive by partitioning it for such a purpose. This would take the drive 
into the 10K RPM ballpark on the IOPS scale for less than half the price of a 100GB 10K RPM disk. 

As you can see, this technique of ensuring most of the drives surface is a 'dead-zone' for the heads 
can turn a modest desktop harddisk into an IOPS king for its class. And the reason for doing this is not 
to be petty, or prove a point -it's cost. Drives with large RPMs and quoted IOPS tend to be rather 
expensive. 

Having said that, I don't imagine though that many vendors would understand you wanting to 
effectively throw the bulk of your drives capacity out of the window. Your boss either... 

How Many IOPS Do We Need? 

Whilst enhancing our IOPS with drive stroking is interesting, what we're missing at the moment is 
where in the IOPS spectrum we should be aiming to target our disk subsystem infrastructure. 
The ITSM 7.1 Planning and Implementation Guide has some interesting figures for a 20,000 node 
setup where SQL I/O was profiled for an hour at peak time, 



 
The conclusion was that the main SQL Server CMDB database required on average 240 write IOPS 
over this hour window. As we don't want to target our disk subsystem to be working at peak, we'd 
probably want to aim for a storage system capable of 500 write IOPS. 

This IOPS target is simply not achievable through a single mechanical drive, so we must move our 
thinking to drive arrays in the hope that by aggregating disks we can start multiplying up our IOPS. As 
we'll see, it is at this point things get murky..... 

IOPS, Disk Arrays & Write Penalties 
A quick peak under the bonnet of most enterprise servers will reveal a multitude of disks connected to 
a special disk controller called a RAID controller. If you are not familiar with RAID, there is plenty of 
good online info available on this topic, and RAID's wikipedia entry isn't such a bad place to start. 

To summarise, RAID stands for Redundant Array of Independent Disks. This technology answers the 
need to maintain enterprise data integrity in a world where harddisks have a life expectancy and will 
someday die. The RAID controller abstracts the underlying physical drives into a number of logical 
drives. By building fault-tolerance into the way data is physically distributed, RAID arrays can be built 
to withstand a number of drive failures before data integrity is compromised. 

Over the years many different RAID schemes have been developed to allow data to be written to a 
disk array in a fault tolerant fashion. Each scheme is classified and allocated a RAID level. To help in 
the arguments that follow concerning RAID performance, let's review now some of the more 
commonly used RAID levels, 

• RAID 0 
This level carves up the data to be written into blocks (typically 64K) which are then distributed 
across all the drives in the array. So when writing a 640KB file through a RAID 0 controller 
with 5 disks it would first divide the file into 10 x 64KB blocks. It would then write the first 5 
blocks to each of the 5 disks simulateneously, and then once that was successful proceed to 
write the remaining five blocks in the same way. As data is written in layers across the disk 
array this technique is called striping, and the block size above is referred to as the array's 
stripe size. Should a drive fail in RAID 0, the data is lost -there is no redundancy. As the 
striping concept used here is the basis of other RAID levels which do offer redundancy, it is 
hard to omit RAID 0 from the official RAID classification. 



RAID 0's great benefit is that it offers a much improved I/O performance as all the disks are 
potentially utilised when reading and writing data. 

• RAID 1 
This is the simplest to understand RAID configuration. When a block of data is written to a 
physical disk in this configuration, that write process is exactly duplicated on another disk. For 
that reason, these drives are often referred to as mirrored pairs. In the event of a drive failure, 
the array and can continue to operate with no data loss or performance degradation. 

• RAID 5 
This is a fault tolerant version of RAID 0. In this configuration each stripe layer contains a 
parity block. The storing of a parity block provides the RAID redundancy as should a drive fail, 
the information the now defunct drive contained can be rebuilt on-the-fly using the rest of the 
blocks in the stripe layer. Once a drive fails, the array is said to operate in a degraded state. A 
single read can potentially require the whole stripe to be read so that the missing drive's 
information can be rebuilt. Should a further drive fail before the defunct drive is replaced (and 
rebuilt) the integrity of the array will be lost. 

• RAID 6 
As RAID 5 above, but now two drives store parity information which means that two drives can 
be lost before array integrity is compromised. This extra redundancy comes at the cost of 
losing the equivlaent of two drives worth of capacity in the RAID 6 array (whereas in RAID 5 
you lose the equivalent of one drive in capacity). 

• RAID 10 
This is what we refer to as a nested RAID configuration -it is a stripe of mirrors and is as such 
called RAID 1 + 0 (or RAID 10 for short). In this configuration you have a stripe setup as in 
RAID 0 above, but now each disk has a mirrored partner to provide redundancy. Protection 
against drive failure is very good as the likelihood of both drives failing in any mirror 
simultenously is low.You can potentially lose up to half of the total drives in the array with this 
setup (assuming a one disk per mirror failure). 

With RAID 10 your array capacity is half the total capacity of your storage.  

Below I show graphically examples of RAID 5 and RAID 10 disk configurations. Here each block is 
designated by a letter and a number. The letter designates the stripe layer, and the number 
designates the block index within that stripe layer. Blocks with the letter p index are parity blocks.  

 

As stated above, one of the great benefits that striping gives is performance. 

Let's take again the example of a RAID 0 array consisting of 5 disks. When writing a file, all the data 
isn't simply written to the first disk. Instead, only the first block will be written to the first disk. The 
controller directs the second block to the second disk, and so on until all the disks have been written 
to. If there is still more of the file to write, the controller begins again from disk 1 on a new stripe layer. 
Using this strategy, you can simultaneously read and write data to a lot of disks, aggregating your read 
and write performance. 



This can powerfully enhance our IOPS. In order to see how IOPS are affected by each RAID 
configuration, let's now discuss each of the RAID levels in turn and think through what happens for 
both incoming read and write requests. 

• RAID 0 
For the cases of both read and write IOPS to the RAID controller, one IOPS will result on the 
physical disk where the data is located. 

• RAID 1 
For the case of a read IOPS, the controller will execute one read IOPS on one of the disks in 
the mirror. For the case of a write IOPS to the controller, there will be two write IOPS executed 
-one to each disk in the mirror. 

• RAID 5 
For the case of a read IOPS, the controller does not need to read the parity data -it just directs 
the read directly to the disk which holds the data in question resulting again in 1 IOPS at the 
backend. For the case of a disk write we have a problem - we also have to update the parity 
information in the target stripe layer. The RAID controller must therefore execute two read 
IOPS (one to read the block we are about to write to, and the other for obtain the parity 
information for the stripe). We must then calculate the new parity information, and then 
execute two write IOPS (one to update the parity block and the other to update the data 
block). One write IOPS therefore results in 4 IOPS at the backend! 

• RAID 6 
As above, one read IOPS to the controller will result in one read IOPS at the backend. One 
write IOPS will now however result in 6 IOPS at the backend to maintain the two parity blocks 
in each stripe (3 read and 3 write). 

• RAID 10 
One read IOPS sent to the controller will be directed to the correct stripe and one of the 
mirrored pair -so again only one write IOPS at the backend. One write IOPS to the controller 
however will result in two IOPS being executed in the backend to reflect that both drives in the 
mirrored pair require updating. 

What we therefore see when utilising disk arrays is the following, 

1. For disk reads, the IOPS capacity of the array is the number of disks in the array multiplied by 
a single drive IOPS. This is because one incoming read I/O results in a single I/O at the 
backend. 

2. For disk writes with RAID, the number of IOPS executed at the backend is generally not the 
same as the number of write IOPS coming into the controller. This results the total number of 
effective write IOPS that an array is capable of being generally much less than what you might 
assume by naively aggregating disk performance. 

The number of writes imposed on the backend by one incoming write request is often referred to as 
the RAID write penalty. Each RAID level suffer from a different write penalty as described above, 
though for easier reference the table below is useful,  

 

Knowing the write penalty each RAID level suffers from, we can calculate the effective IOPS of an 
array using the following equation, 

 



where n is the number of disks in the array, IOPS is the single drive IOPS, R is the fraction of reads 
taken from disk profiling, W is the fraction of writes taken from disk profiling, and F is the write penalty 
(or RAID Factor). 

If we know the number of IOPS we need from our storage array, but don't know the number of drives 
we need to supply that figure, then we can rearrange the above equation as follows, 

 

So in our case of a SQL Server requiring 500 write IOPS (i.e. 0% READ pretty much) let's assume we 
are offered a storage solution of 10K SAS drives capable of 120 IOPS a piece. How many disks would 
we need to meet this write IOPS requirement? The table below summarises the results. 

 

What we see here is a HUGE variation in the number of drives required depending on the RAID level. 
So, your choice of RAID configuration is very, very important if storage IOPS is important to you. 

I should say that most RAID 5 and RAID 6 controllers do understand this penalty, and will 
consequently cache as many write IOPS as possible, committing them during an idle window where 
possible. As a result, in real-world scenarios these controllers can perform slightly better than you'd 
anticipate from the table above. However once these arrays become highly utilised the idle moments 
become fewer which edges the performace back toward the limits defined above. 

Summary 

This finally then concludes today's article. I hope it's been useful and that you now have a better 
understand IOPS. The main points to take away from this article are, 

1. Get involved with your server/storage guys when it comes to spec'ing your storage 
2. The important measure for sequential I/O is disk throughput 
3. The important measure for random I/O is IOPS 
4. Database I/O is generally random in nature and in the case of the Altiris CMDB the SQL 

profile is also predominently write biased. 
5. Choosing your storage RAID level is critical when considering your IOPS performance. By 

selecting RAID6 over RAID1 or 10 level you can potentially drop your total write IOPS by a 
factor of 3. 

I should finish with an empahsis that this article is a starter on the disk performance journey. As such, 
this document should not be considered in isolation when benchmarking and spec'ing your systems. 
Note also that at the top of the reading list below is a *great* Altiris KB for SQL Server which will help 
you configure your SQL Server appropriately. 

Next in the article pipeline (with luck) will be "Getting the Hang of Benchmarking" which will aim to 
cover more thoroughly what you can do to benchmark your systems once they are in place. 

Good Luck! 

Ian./ 

Further Reading 



SQL Server 2005 and 2008 Implementation Best Practices and Optimization - A great symantec KB 
article on improving SQL Server performance 

http://www.pcguide.com/ref/hdd - This is a great reference for how harddisks work. It includes 
everything you'd ever want to know about how harddisks work. 

http://www.zdnet.com/blog/ou/how-higher-rpm-hard-drives-rip-you-off/322 - the blog entry which got 
me interested in drive stroking 

http://www.seagate.com/staticfiles/support/disc/manuals/notebook/momentus/XT/100610268b.pdf -the 
Seagate Momentus specification sheet 

http://vmtoday.com/2009/12/storage-basics-part-i-intro/ - A nice series of articles by Joshua Townsend 
on storage 

http://www.seagate.com/docs/pdf/whitepaper/tp613_transition_to_4k_sectors.pdf -an interesting 
Seagate whitepaper on the transition from 512 Byte sectors to 4K sectors. 

http://www.techrepublic.com/blog/datacenter/calculate-iops-in-a-storage-array/2182 -Scot Lowe's 
great TechRepublic article on IOPS and storage arrays 

http://oss.oracle.com/~mkp/docs/ls-2009-petersen.pdf -Martin Peterson's paper on I/O topology 

 


