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Abstract—Virtual machine (VM) consolidation has become a (e.g., domUs in Xen) — whenever it safeto do so. By
common practice in clouds, Grids, and datacenters. While tis  offloading acknowledgement the driver domain, vSnoop
practice leads to higher CPU utilization, we observe its negfive masks the portion of a TCP packet's RTT that corresponds

impact on the TCP throughput of the consolidated VMs: As more . L
VMs share the same core/CPU, the CPU scheduling latency for to VM scheduling. The reduction in RTT prompts the sender

each VM increases significantly. Such increase leads to siew tO transmit to the VM at a higher rate, effectively saturatin
progress of TCP transmissions to the VMs. To address this the link between the sender and the receiving VM. vSnoop

problem, we propose an approach called vSnoop, where the requires no modification to the guest operating system or ap-
driver domain of a host acknowledges TCP packets on behalf plications running in the VM. While we implement vSnoop on

of the guest VMs — whenever it is safe to do so. Our evaluation X th thodol VS . icall licable t
of a Xen-based prototype indicates that vSnoop consistegtl €M (€ Mehodoiogy of vonoop IS generically applicable 1o

achieves TCP throughput improvement for VMs (of orders Other virtualization platforms (e.g., VMware, KVM, QEMU,
of magnitude in some scenarios). We further show that the VirtualBox) where the actual network drivers reside in averi

higher TCP throughput leads to improvement in application- domain or inside the Virtual Machine Monitor (VMM).
level performance, via experiments with a two-tier online action In our Xen-based prototype, vSnoop is implemented as
application and two suites of MPI benchmarks. part of the Linux bridge module [5] inside domO. vSnoop
does not lengthen the receive 1/0 path and only maintains
a minimum state about each TCP connection. As a result,
Virtual machine (VM) consolidation has been increasinglySnoop is lightweight and incurs very low CPU overhead.
adopted in cloud (e.g., Amazon EC2[1], Eucalyptus [2], angle have performed extensive evaluation of vSnoop at both
Nimbus [3]), Grid, and datacenter environments. VM consohetwork transport and application levels. Our transpevel
idation involves the hosting of multiple VMs on the samevaluation indicates that vSnoop constantly achievesehnigh
physical host. It allows dynamic multiplexing of computati TCP throughput than the original Xen — in some scenarios
and communication resources and leads to higher resouige improvement is of orders of magnitude. Our application-
utilization and scalability of the physical infrastructur level evaluation shows that vSnoop consequently improves
Scalable VM consolidation necessitates the sharing of thpplication performance, such as that of the RUBIS online
same CPU by multiple VMs. Even for a multi-core processagiuiction benchmark and the High-Performance Linpack and
the mapping from cores to VMs igot always one-to-one Intel MPI benchmarks.
in order to achieve flexibility, scalability, and economy of The main contributions of this paper are summarized as
VM hosting. However, we observe that VM consolidatiofiollows: (1) We identify and analyze the impact of CPU
negatively impacts TCP transport to VMs. More specificallgharing on the TCP throughput of VMs (Section 11). (2) We
as more VMs are scheduled to access the same core/CBtdpose vSnoop as a light-weight, VM-transparent approach
the CPU access latency for each VM (i.e. the interval durirtg mitigating such impact that can be instantiated on a rafige
which a VM waits for the CPU) increases. Such increase raisggualization platforms (Section I11). (3) We develop a ixe
the round-trip time (RTT) of a TCP connection to the VM, orbased prototype of vSnoop (Section IV) and demonstrate con-
top of the latency added by network device virtualizatios.aA siderable improvements in TCP throughput and application-
result, the sub-millisecond propagation delay betweenshios |evel performance for the VMs (Section V).
a local area network (LAN) is overwhelmed by tens/hundreds
of milliseconds of latency due to VM scheduling, which slows Il. THE PROBLEM AND MOTIVATION
down the progress of the TCP transport considerably. In this section we present a detailed description and in-
To mitigate the impact of VM consolidation identifiedvestigation of the problem, namely the negative impact of
above, we propose an approach called vSnoop that aimsVid consolidation/CPU sharing on TCP transport to VMs. On
improve the throughput of TCP connections to consolidatedost existing virtualization platforms, the driver domain
VMs. The key idea behind vSnoop is to allow the drivethe VMM hosts the actual device driver for a physical device.
domain of a host (e.g., domO in Xen [4]) to acknowledgAs such, the production VMs cannot directly interact with
TCP packets on behalf of the less privileged production VMshysical devices, including the network interface cardGNI

I. INTRODUCTION
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Fig. 1. Effects of CPU sharing and network device virtudiaa on transport to consolidated VMs.

Regardless of whether the VM platform uses paravirtualiz&M to get scheduled and consume the packet on the RX
(e.g., as in paravirtualized Xen) or emulated (e.g., QEMUpath. The figure shows that, for 93% of the packets, driver
devices, the extra hop in the network 1/O path affects netwodomain processing adds at most 0.45ms to the’RHbwever,
performance due to the additional processing performem théhe majority of the RTT increase takes plaaier the driver
such as interrupt handling, copying, and queuing. In thigepa domain processing. During this period, the packets stay in
we identify a more significant (yet less addressed) hurdfe: A& shared buffer between the driver domain and the receiver
multiple VMs share the same core/processor, each VM m&{/, until the VM gets scheduled to consume the packets.
not get the CPUin time to process incoming TCP packetsThe “jumps” in Figure 1(b) at 30ms intervals correlate to the
and advance the connection. To better understand how (&tins VM scheduling slice used by Xen’s credit scheduler [7].
by how much) VMs' CPU sharing affects TCP throughput, Figure 1(c) shows the dynamics on the TX path. The major

we seek to answer the following questions: difference between Figures 1(b) and 1(c) is #irter time

(1) How does the CPU sharing by VMs affect the RTT ofhe packets spend on the TX path from the VM to dom0. Par-
network packets? ticularly, the “jumps” at 10ms intervals suggest that thigelr

(2) Is the RTT increase mostly due to VM scheduling odomain gets scheduled quite frequently. However, both digur
network device virtualization? indicate that the sub-millisecond driver domain overhesd i
(3) Given the nature of RTT increase, how is TCP throughpadmpletely dominated by the tens/hundreds of millisecafds
affected? latency from VM/driver domain scheduling. This observatio

also suggests that such considerable RTT increasaotbe

Investigations.To answer the first question, we conduct a vergliminated by new device®(g, NetChannel2 [8]) that support
simple experiment where a physical host sepidg packets to direct VM access to hardware (which only alleviate the layen
a non-idle (60% CPU load) Xen VM in the same LANN this caused by network device virtualization).
experiment, we vary the number of guest VM£.( domUs) Now that we have identified CPU sharing and VM schedul-
that share the same core with the driver domaig, (dom0) ing as the major source of RTT increase, we need to un-
and observe the effect of VM CPU sharing on the RTT. Froaterstand how it affects TCP throughput. As seen in Figures
Figure 1(a), we observe that, as the number of non-idle VMsgb) and 1(c), Xen’s credit scheduler can add varying amount
per core increases, the RTT of thiag packets increase almostof latency to a packet's RTT. Such latency ranges from a
in proportion to the 30ms VM scheduling slice in Xen. Similanegligible amount to a few tens/hundreds of milliseconds —
findings [6] were recently reported for the “small” instaacedepending on when the VM is scheduled to run as well as
on Amazon's EC2 platform where two VMs share the santhe precise timing of various events. In general, the credit
core. scheduler schedules the driver domain more frequently than

The answer to the second question is quite insightfuhe guest VMs. To illustrate this point further and study its
We find that the main culprit of the RTT increase is VMmpact on TCP throughput, we compare packet traces of a
schedulingnotnetwork device virtualization. To “zoom in” on 1MB file transferred to the driver domain with traces of the
the dynamics of VM scheduling, we trace packets (1) withisame file transferred to a guest VM. This experiment involves
the driver domain and (2) between the driver domain and ttiee same 3-VM setup as in the previous experiment. While the
VM — on both receive (RX) and transmit (TX) paths, in araces vary between experiment runs, we pick two tracesavher
scenario where three non-idle VMs are hosted on the sao@mO and the VM get scheduled in almost uniform intervals.
core as domO. Figure 1(b) illustrates the cumulative dgnsiEigure 2 shows these traces. The main observation from this
functions (CDFs) for (1) the amount of time for domO tdigure is that scheduling preference towards the driver doma
process a packet and (2) the amount of time for the receivesults in a much faster transfer to the driver domain than to

1Details of the experiment setup are described in section V. 2This latency is comparable to the 0.1ms RTT in the LAN.
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_domU
1000000 - l i In this section we present the design of vSnoop. To show

. the applicability of vSnoop to a wide class of virtualizatio
platforms (where either the driver domain or the VMM pro-
vides access to physical devices), we keep the description a
400000 |- I : platform-agnostic as possible and leave the platformifipec
I i details to Section IV. Guided by our analysis in Section II,
i we place a new component called vSnoop inside the driver
0 Licasd \ \ \ \ .
0000 0200 0400 0600 0800 1000 1200 domain that performs early TCP acknowledgement on behalf
Time(s] of guest VMs. vSnoop is transparent to the VMs and does
Fig. 2. Sequence/Time graph for a 1MB transfer to the drivemain and not _requwe a_ny .mOdIflcatlon to the guest qperan_ng system.
to a guest VM As its name indicates, vSnogmoopson all incoming and
outgoing packets to/from the VMs and maintains the necgssar
state critical tosafeearly acknowledgement. More specifically,
the guest VM. vSnoop maintains a minimal, per-flow state throughout the
A more detailed explanation of the result above is déetime of a TCP connection to a VM and uses it to decide
follows: As the driver domain gets scheduled more freqyentwhether early acknowledgement for packets destined to a
TCP slow start progresses a lot faster as packets are ¥d! may lead to violation of end-to-end TCP semantics. In
knowledged at a higher rate than in the guest VM’s cagearticular, vSnoop must avoid the scenario where the TCP
Since the receive window at the receiver grows with evefgnder receives an ACK for a packet without the packet ever
acknowledgement, the advertised window of the connectié@aching the receiver VM.
advances a lot more quickly too. Larger advertised receive
window in turn prompts the sender to increase its congestifn Overview

window and send more data in a shorter span of time. As arjgyre 3 illustrates vSnoop’s placement within the driver
result, th(_e connection to the Qriver domain progresses m}’(%lmain and its position relative to the guest VMs. vSnoop
more rapidly than the connection to the guest VM. We poiffas two main criteria for safe early acknowledgement: (I) Fo
out that VM scheduling heavily affects small flowsse(, the 5 given TCP connection, vSnoop only acknowledges in-order
“mice” flows that typically spend their entire lifetime in FC packets. To keep vSnoop scalable, vSnoop does not buffer out
slovy start). Since a vast majority of flows in a cloud/datéeen y¢_grger packets which may arise as a result of packet losses
environment tend to be short transfers [9], [10], [11], SUCh packets taking a different route. Instead, vSnoop simply
impact can be quite significant in those environments.  pagses all out-of-order packets to the receiver VM and let
Implications. Findings from our investigations suggest thé¢he VM handle them as it normally would in the absence of
following idea: Since much of the RTT increase is due teSnoop. (2) vSnoop acknowledges in-order packets only when
VM scheduling on the RX path, if we somehow eliminate othe shared buffer between the driver domain and the guest VM
mask this latency, we can greatly improve TCP throughpist not full. vSnoop takes this precaution so that all packets
to the VMs. A natural way to hide the portion of RTTacknowledged by vSnoop are guaranteed to be delivered to
that corresponds to VM scheduling is tiffload the TCP the target VM and hence, TCP semantics are preserved at
acknowledgment to the driver domain. This solution levesgall times. In addition to acknowledging all in-order packet
the fact that the driver domain gets scheduled more frequentSnoop suppresses all (empty) ACKs coming from the VM
than the guest VMs and, as a result, the congestion winddwhe ACKs correspond to packets already acknowledged by
of the sender can be advanced a lot faster. The outcomevBhoop. With one exception (to be discussed in Section)JI-C
such an acknowledgement offload is a much faster progressy68hoop takes this measure to prevent unnecessary duplicate
TCP connections — most notably for small flows; and a high&CKs from reaching the sender.
utilization of the high-speed network infrastructure (g0 vSnoop identifies TCP flows based on their source and
Gigabit Ethernet, Infiniband) common in Grids, clouds, andestination IP addresses and port numbers and maintains
datacenters. a small hash table to store information about each flow.
However, offloading TCP acknowledgement to the drivérhis mechanism is similar to how TCP/IP stack at end-host
domain must be performed judiciously, as one needs to preaintains per-flow TCP control information. For each flow,
serve TCP’s end-to-end semantics. Moreover, such offlgadmSnoop maintains (1) the sequence number of the in-order
is applicable to scenarios where CPUnst the bottleneck packet expected to be received by vSnoop (NESEQ), (2)
for the consolidated VMs. If the CPU is the bottleneck, thethe sequence number expected to be received by the VM
obviously no improvement at the network I/O path can lead (¢YM_SEQ), (3) TCP receive window size (RCWIN), and
more efficient execution of the guest VM. In the next sectioif4) the current mode of operation for this flow (EMODE).
we present the design of our solution, called vSnoop, thidext we will show how this per-flow state is maintained and
embodies the idea of acknowledgement offloading. used to realize early acknowledgement.
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| VM| | VM| | VM| | VM| | VM| C. Technical Challenges and Solutions

[buf | [buf | [buf | [buf [ |buf| There are two main challenges in the development of
vSnoop: (1) To keep vSnoop online most of the time; (2) To

make vSnoop behave just like a standard TCP implementation.
vSnoop To address the first challenge, vSnoop bounds the advertised
receive window of ACKs generated by itself or by the receiver
VM to the shared buffer sizéo(f_size). Bounding the number

of outstanding packets in this fashion greatly reducesikieé-

recv_hdr.seq !=
next_seq

buf_size > 0 &&
recv_hdr.seq == next_seq

recv_k;:;fr_.ssl;:qe - Onei&t_seq hood of retransmission when vSnoop is offline, thus increasi
— o the likelihood of vSnoop being online most of the time. Our
UNEX::SETED recv_hdr.seq == next_seq measurements in Section V-C show that setting an upper bound
for the advertised window doesot make vSnoop any less
Driver but_size > 0 && efficient than the original Xeni.€., no vSnoop in the driver
Domain S e domain). With this simple design, vSnoop can perform early

acknowledgement for the vast majority of packets, effetyiv
NIC keeping the shared buffer between the driver domain and the
VM full most of the time. We note that, for “large” flows where
Fig. 3. Overview of vSnoop and its per-connection state rimech the receive window of a connection has grown large enough to
fill up the shared buffer, the benefit of vSnoop narrows redati
to its benefit for “small” flows, as buffer exhaustion leads
B. vSnoop State Machine to vSnoop going offline more frequently. Nonetheless, our
Figure 3 also depicts vSnoop’s state machine that detg¥aluation shows that vSnoop always outperforms the aigin
mines early acknowledgement “safety” on a per-flow basis. fen for all flow sizes.
FL_MODE is ACTIVE for a given flow, vSnoop will perform  To address the second challenge, we identify an important
early acknowledgement for all in-order packets in the flovissue in keeping vSnoop’s behavior consistent with TCP
In this state, vSnoop discards empty ACKs (i.e. ACKs witeémantics. It concerns the receive window value advertised
no data payload) coming from the VM to prevent deliverpy vSnoop during early acknowledgement. As described in
of duplicate ACKs to the sender. However, if FMODE is Section II, the main objective of vSnoop is to make TCP slow-
in either UNEXPECTED_SEQ or NO_BUF state (i.e. the start for connections to a VM behave more like TCP-slow
packet is out-of-order or there is no space in the share@uff start for connections to the driver domain. Therefore, lsimi
vSnoop will go offline for that flow and let the VM handleto the TCP layer in the driver domain, vSnoop increments the
acknowledgement. receive window (RCVWIN) by twice the maximum segment
While vSnoop is offline, it uses the ACKs coming from thé&ize (MSS) upon acknowledging each packet until the receive
VM to update the per-flow VMSEQ and NEXTSEQ values. Window reachesbuf_size. The outcome is the exponential
Meanwhile, the sender keeps sending packets until unadknogrowth in the congestion window of the sender as defined
edged data reaches the minimum of the sender’s congestiynTCP standards. Also, upon receiving an ACK from a VM,
window or receiver’s advertised window. At some point thgSnoop updates RCWIN with the value advertised in the
sender would not send any new packets unless it receives’éK. Therefore, it just takes one VM scheduling slice for
ACK from the VM. Hence, with high likelihood, the VM will vSnoop to synchronize RCWIN with the value advertised
receive all in-flight packets the next time it gets schedulefly the VM. We noted in Section IlI-A there is one exception
Subsequently, it is very likely that the VM generates ACKWith respect to dropping the empty ACKs generated by a
for all these packets and vSnoop receives them in one baidd. vSnoop does not drop the ACK coming from a VM that
once the driver domain gets scheduled. After this point, #cknowledges the last packet acknowledged by vSnoop. This
the sender sends a new packet, since the sequence numb&ebgvior is consistent with RFC 793 [12] in order to notify
this packet is going to be equal to NEXSEQ, FLLMODE the sender of the most recent receive window size.
becomesACTIVE again and early acknowledgement resumes. There are two more subtle issues worth mentioning: (1)
This is predominantly the way vSnoop becomes online &Snoop cannot drop ACK packets coming from a VM that
vSnoop usually receives all the ACKs in one batch prior teave data payload. vSnoop must pass these packets to their
the sender receiving them. The other less frequent sceimarialestination so that a connection can progress in both di-
which vSnoop gets back online is through TCP retransmissioBctions. Given that these packets may acknowledge packets
More specifically, if VM scheduling intervals become toodon that have already been acknowledged by vSnoop, some TCP
such that they trigger timeout for unacknowledged packkeés, implementations may discard these packets or cause canplic
sender starts retransmissions from the packet whose segjueions. Therefore, for this type of packets, vSnoop rewrites
number is NEXTSEQ. This packet brings vSnoop onlineacknowledgement number to (NEXSEQ - 1) to ensure their
again and early acknowledgement resumes. delivery. (2) vSnoop’s rewriting of the receive window ahe t



Guest Domainl

The data, which can be a network packet or a disk block, is

Guest Domain2

Guest Domain3

[ netfront | [netiront | [ netfront | located on the shared memory pages between domO and a
‘ ‘ ‘ guest VM so that it is accessible by both back-end and front-
‘ netback‘ ‘ netback‘ netback . . . . |
\ \ end drivers. Finally, the event channel acts like an interaio
J interrupt mechanism between domO and a guest VM.
[ty Figure 4 presents an overview of network device virtual-
CjN'C Driver ization in Xen and itsmetbackand netfrontcomponents. This
Driver Domain figure also shows that vSnoop is implemented as part of the
Xen VMM bridge module inside dom0. To better understand vSnoop’s

functionality, we first examine the way Xen handles packet
arrival had vSnoop not been deployed. Upon the arrival of a
Fig. 4. Xen I/O architecture and vSnoop on Xen packet at the host's physical NIC, the driver domain receive
the packet and determines the receiver VM using the bridge
module. Once the receiver is determined, the bridge module
acknowledgement number for packets from a VM invalidatégnds the packet to the correspondiagbackinstance which
their TCP checksum. Hence, after modifying a TCP headdt, turn picks arequestfrom the ring buffer and places a
vSnoop sets the TCP checksum field with the correct valuesponsein its place. Once alresponsescorresponding to
Alternatively, checksum calculation can be delegated tGsNI incoming packets to a VM are placetgtbacknotifiesnetfront
with checksum offloading support [13]. by sending an event.
Finally, to preserve end-to-end TCP semantics, vSnoopwhen the receiver VM gets scheduled, the corresponding
requires that no packet be lost between the driver domain amstfront starts consuming theesponsesplaced by netback
the TCP layer in the VM. Fortunately, the following factorsand starts placing new, emptgquestsin the ring for future
collectively guarantee such a condition: (1) Packet temsfincoming packets. What is particularly important is thafiope
between the driver domain and the target VM is merely glacing newrequestsin the ring buffer, netfront allocates
memory copy operation which is deemed reliable. (2) Sinegemory for all packets that would be associated with these
vSnoop bounds the advertised receive window and acknowkw requests This guarantees that, once a packet reaches
edges packets only if there is adequate space in the shatiethack no shortage of memory in a guest VM would lead to
buffer, vSnoop greatly reduces the possibility of exhaugsti the packet's dismissal. As we briefly alluded to in Section
kernel resources in the guest VM. (3) Most importantly, onigl, this behavior particularly suits vSnoop, as all packet
particular aspect of Xen 1/O networking (to be discussed #cknowledged by vSnoop are guaranteed enough resources in
Section |V) guarantees that intermediary buffers and nessu advance. Each network interface in a Xen VM has a separate
in the guest VM are never exhausted. Considering all the®&X and TX ring buffer and they all interact withetbackin
factors, the presence of vSnoop does not require speciabtuna similar fashion.
of the guest operating system or the network drivers. Over the course of our experiments, we realize that Xen
uses a dynamic algorithm that places variable amount of new

) ) ) requests in the ring. However, we find out that this algorithm
We have implemented vSnoop for the paravirtualized Xefhes not always perform as well as it was intended and places

platform as the paravirtualized devices are more efficient are|atively few requests in the ring. Therefore, in order for
portable than the emulated devices and they do not require §&noop to perform early acknowledgment for a larger number

hardware suppott Before describing the implementation degg packets, we make one change to tresfrontdriver so that

NIC

IV. VSNOOPIMPLEMENTATION

A. Background and Overview specifically, we tunenetfront so that it can use at least up

lit dri del f irtualized devi to 75% of the 256 slots in the ring buffer for placing new
Xen uses ap It driver model for paravirtua 12€ evlCeSrequestsWe will refer to our optimization as ‘Xen+tuning’ in
where each driver has a back-end component in the d”‘@éction v

domain (i.e. dom0) and a front-end component in each 9UeSkyith the background above, vSnoop is implemented as two

domaln_ (V.M)' These two components interact with eacll}lnain hook functions attached to the bridge. Based on the
other via ring buffers, shared memory, and event channe(!ﬂ@,

) . rection of packets relative to a VM (incoming or outgoing)
A ring buff(_ar holds all I/Qfeques_tand responseoperatlons vSnoop engages eitheBnoopegressor vSnoopingresshook
corresponding to a specific device. Typically, eaelguest

ds 1 /O activity f the front-end to the b function. Both vSnoopegressand vSnoopingress process
corresponds to an activity from the front-end to th€ Bacig, .. atg by operating on socket buffek (buff) kernel struc-
end while aresponsecorresponds to an I/O activity in the

direction. Botre and e i tures. With the placement of vSnoop in the bridge module,
reverse direction. Botrequestandresponseperations reside . q fnctions receivek buff structures with L2 headers.

on the ring buffer and both point to the actual data to eXCban@’rherefore, to identify TCP flows, both functions need to ex-

3We believe vSnoop’s early acknowledgement methodology alsa be  tract IP and TCP header_ fields frosk_buff. v$nopp identifies
applied to emulated devices. TCP flows based on their source and destination IP addresses



and port numbers and maintains a small hash table to stesly-acknowledged TCP packet reaches the receiver VM.
information about each flow. For the remainder of this sectid’Guch a scenario would result in an inconsistent state where
we show howvSnoopegressand vSnoopingress maintain the sender receives an ACK from vSnoop for a packet that
the per-flow state (e.g., NEXBEQ, VM _SEQ, RCV.WIN, is not going to be delivered to the VM. To handle live VM
and FL_MODE) and implement the state machine defined imigration, we adopt a straightforward yet effective salnti
Section Il where vSnoop gets disabled for all the flows involving the
. . migrating VM prior to the first iteration of memory page
B. Implementation Details copying. Since the duration of VM migration is magnitudes
Handling outgoing packets. The primary function ofvS- longer (typically a few seconds or more), the VM will receive
noop egressis to intercept all packets from a VM and setll the early-acknowledged packets during this period. €Onc
up/maintain the per-flow information. The per-flow informathe VM moves to the destination, vSnoop at the destination
tion is usually set up during TCP handshake when the VNbst, if deployed, will initialize the hash table entries fhe
sends SYN or SYN-ACK packet. The state can also be ifdM’s active flows and early acknowledgement resumes.
tialized after the TCP handshake if no per-flow informatisn i
present. The latter enables vSnoop’s operation in the peese V. EVALUATION
of live VM migration (discussed later in this section). Once In this section we present evaluation results on vSnoop:
the state is initializedySnoopegressupdates the per-flow Section V-B evaluates the overhead of vSnoop itself; Sectio
VM_SEQ, RCV.WIN, and FL_MODE values based on theV-C focuses on the TCP performance achieved by vSnoop; and
ACK packets it receives from the VM. The other functionalitysection V-D demonstrates the effect of vSnoop on applinatio
of vSnoopegressis to drop unnecessary duplicate ACKs frontevel performance.
the VM. This process involves examining whether a packet
received from the VM is an empty ACK, if the packet haé: Testbed Setup
already been acknowledged ySnoopingress and if the The experiments are performed in our virtualized cloud
packet has no control flags set (such as SYN or FIN bigomputing testbed connected by Gigabit Ethernet. Each VM-
If a packet satisfies all the above conditions, then it will brosting server runs Xen 3.3 with Linux 2.6.18 as the opegatin
dropped. system for both the driver domain and the paravirtualizezbtu
As described in Section Ill, when the advertised receiwMs. (1) The experiments in Sections Il, V-B, and V-C involve
window by the VM exceedsuf_size, vSnoopegresssets a client machine and a server. The client machine has a 2.4GHz
the window tobuf_size to limit the number of outstanding Intel Core 2 Quad CPU with 2GB of RAM and an Intel
packets so that vSnoop can remain online or become onliPe Gigabit network card and runs Linux 2.6.19. The server
soon. Rewriting the acknowledgment number for ACKs withosts the VMs and has a dual-core 3GHz Intel Xeon CPU
data and re-calculating a packet’s TCP checksum are two othdth 3GB of RAM and a Broadcom NetXtreme 5752 Gigabit
functions ofvSnoopegress Finally, vSnoopegressremoves Ethernet card. The VMs each have 256MB of RAM. (2) The
the information associated with a flow in the hash table onegperiments in Section V-D involve multiple server hostste
a connection is terminated by FIN or RST packets. being a PowerEdge Dell server with a 3.06GHz Intel Xeon
Handling incoming packets. The main function ofvS- CPU, 4GB of RAM, and a Broadcom NetXtreme 5704 Gigabit
noop.ingressis to perform early acknowledgement as deEthernet card. TCP Reno is used in all experiments.

scribed in Section Ill. Upon receiving a TCP packe§- »
noop ingressfirst determines the corresponding flow. If théd- Profiling vSnoop Overhead
sequence number of the packet matches NESHQ for In the design and the implementation of vSnoop, we strive to

that flow, then this packet becomes a candidate for eakgep vSnoop as light-weight as possible by only includiregy th
acknowledgementSnoopingressacknowledges a candidateminimal functionality of the TCP layer at vSnoop that is es-
packet when the following conditions are met: no control flagential to TCP acknowledgement offload. To better undedstan
in the TCP header is set; receive window (RAIN) is non- the overhead associated with vSnoop, we use the Xenoprof
zero; and the ring buffer is not full. Every tinuSnoopingress [15] toolkit for system profiling. Xenoprof supports profij
acknowledges a packet, it increases RGN by (2 x MSS) at the fine granularity of individual processes and routines
after confirming that there is enough buffer space in the rirexecuted in the Xen VMM, driver domain, and guest VMs.
buffer. While packets do not necessarily get dropped when tWe use Xenoprof to measure the overhead associated with dif-
ring buffer is full, this check guarantees early acknowkedig ferent vSnoop routines in terms of the CPU cycles/percentag
packets are never dropped en route to the receiver VM. they consume. We additionally instrument vSnoop routines t
Handling live VM migration. vSnoop can also handle liverecord the number of packets they process. This information
VM migration. In Xen live migration [14], memory pageshelps us to obtain the per-packet cost or the cost incurred by
belonging to a VM are copied from the source host teSnoop routines at a given point in time.

the destination host in multiple iterations while the VM is Table | presents the average vSnoop overhead for 10-second
running. The problem that may arise with vSnoop duriniperf[16] transfers for two scenarios: (1) In the “singleestm”
migration is that a VM may complete migration before ascenario, there is one connection from the client to a VM.



vSnoop Routines C?é?egsle %LGSI& (l\:/l;gflepsle %tlr:)ejr(r)}os tuning, and Xen Withnetfropt tuning and \_/Snoop. In this
VSnoopingress() 509 303 516 305 gxperlment, the server VM is co-located with two pther non-
vSnoop lookup hash()| 74 0.44 91 0.51 idle* guest VMs. This figure shows that vSnoop (with tuning)
vSnoop build_ack() 52 0.32 52 0.32 yields significant and in some cases orders of magnitude
vSnoop egress() 104 0.61 104 0.61 of improvement in TCP throughput. In particular, the me-
TABLE | dian throughput values for ‘vanilla Xen’, ‘Xen+tuning’, dn
PERPACKET CPUUTILIZATION FOR VSNOOP ROUTINES ‘Xen+tuning+vSnoop’ are 0.192 MB/s, 0.778 MB/s, and 6.003

MB/s, respectively.
It is interesting to point out that for about a third of

! M”‘“’f— ' measurements in ‘Xen+tuning+vSnoop’, the TCP throughput
Z: | | exceeds the link rate between the client and server hosts.
0'7 .Y | The reason is: vSnoop’s presence leads to a large number of
0:6 / A packets getting buffered in the driver domain. Since memory
. — copying between the driver domain and the receiver VM is
© os much faster than the link rate, the TCP throughput observed
0s i by the VM appears as if it had exceeded the network link
0s I rate. Similar phenomenon was reported for UDP transport
o1 | [ yamaxen | between Amazon EC2 instances [6]. Another observation we
o > Xen + tuning +vSnoop make is that simply comparing the average throughput values
001 01 1 10 loo 1000 10000 for the three configurations is not the best way to evaluate

Th hput (MB/ .
roudnput (MBS vSnoop. However, due to space constraint we cannot present

Fig. 5. CDFs for TCP throughput of 1000 successive 100KBsfies for CDFs for all the experiments. For the rest of this section
vanilla Xen, Xen with our tuning, and Xen with our tuning anBinoop we only compare the median throughput values for the three
configurations. While this type of comparison in many cases

under-represents the benefits of vSnoop, we overall find it a
Our measurements show vSnoop adds about 4.5% to the CRl{aple way of assessing vSnoop’s performance.
utilization of the driver domain. Much of this cost is assdet Figure 6 presents the results for different transfer sizes

with the vSnoopingressroutine. The routine that looks up nqer a variety of scenarios. All median throughput valwss (

a flow's state in the hash table and the routine ﬂjat build$0o runs) for a specific transfer size are normalized based
the ACK each incur negligible overhead. (2) In the “multiple), ihe value for the ‘Xen-+tuning+vSnoop’ configuration.
stream” scenario, we have 100 concurrent connections to the

5 VMs running in the server. The per_-packet cgst or t ' Varying the number of VMs. Figures 6(a), 6(b), 6(e), and
vSnoop overhead at a given point of time remains large, c) show the effectiveness of vSnoop when 1, 2, 3 and 5 non-
unchanged from the single stream scenario. The only routi e VMs (including the receiver VM itself) are ;ur;ning oreth
that incurs slightly higher cost for the multiple streamrsai€0 o, 10 ¢ore respectively. These figures show that vSnoop con-
is vSnooplookup hash() This is intuitive as vSnoop has t0g,n4y outperforms vanilla Xen. More importantly, the béh
searph a larger hash table to retrieve information abOUt01"1vSn00p increases with higher degree of VM consolidation
particular flow. and with smaller transfers. Higher VM consolidation worsen
C. TCP Throughput Evaluation the impact of VM scheduling, thus widening the gap be-
tween vanilla Xen and vSnoop; Short transfers are partilgula
In this section, we test vSnoop for transport-level pegysceptible to VM scheduling (Section 1) and hence benefit
formance. To gain full control over the experiment setupnore from vSnoop. It is also worth noting that capping the
we develop our own TCP applicatiomCP-app that works advertised receive window by vSnoop (Section I11) does not
similarly to Iperf. TCP-app involves sending data of vasouhyrt TCP throughput. vSnoop outperforms other configunatio
sizes from the client to the VM. We set up a variety Ogyen for the large transfers in the 1-VM scenario, where the
scenarios to assess the TCP throughput achieved by vSno@psertised receive window can get very large in the absence
For each scenario, we compare TCP throughput under (1) $y&,Snoop.
vanilla Xen, (2) Xen with ounetfronttuning (Section IV-A), o Varying CPU load. To understand the effect of VM CPU
and (3) Xen with our tuning and vSnoop. With the exceptiopaad' we fix the number of VMs on a core to three and vary
of one scenario, we enable only one core in the server hgst \yM cPU load. Figures 6(d), 6(e), and 6(f) show vSnoop
so that the impact of VMs’ CPU sharing/scheduling can h&tperforms other configurations under different CPU laad i
studied without interference. the VMs. Higher VM workload makes CPU scheduling more

To better understand the nature of the experiments Wgtrimental to TCP throughput, thereby making vSnoop more
present Figure 5. This figure shows the cumulative distidout

functions (CDFS) for 1000 successive 100KB transfers from“'AII references to non-idle VMs entail 60% CPU load on the VM]ass
the client to the VM for vanilla Xen, Xen withnhetfront otherwise specified.
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Fig. 6. TCP throughput measurements under a variety of sosna

useful. 3 non-idle guest VMs. The results indicate that, for short
3. Concurrent connections.Thus far, all the results are basedransfers (up to 1MB), vSnoop outperforms vanilla Xen by a
on a single connection from the client to the VM. Figursignificantly large margin. This is because the driver domai
6(g) shows that vSnoop is also effective when there are &0d the receiver VM now process incoming packets on two
concurrent connections to the VM. The results presented aeparate cores. As a result, whenever the VM is scheduled, it
for a setup where 3 non-idle VMs run on the same core. is likely to procesall the packets that the driver domain has
4. Sender subject to VM scheduling.In this scenario, we passed to the VM or will pass while the VM is running, thus
investigate the effectiveness of vSnoop when the senderirisreasing the TCP throughput. However, the benefit margin
also virtualized and subject to VM scheduling like the reeei narrows for large transfers for the same reason mentioned in
This is a quite common scenario inside a cloud or datacenfgenario 1.

where hosted VMs communicate with each other. In fact, o ]

our application-level experiments (Section V-D) reflecttsu D+ Application-Level Evaluation

a scenario. Figure 6(h) presents the results for a setupewhExperiment with RUBIS. To demonstrate the effectiveness
the client VM and the server VM are each co-located witbf vSnoop for real-world applications running in a cloud
two other non-idle VMs in their respective hosts. or datacenter, we run the Rice University Bidding System
5. Driver domain on a separate coreWhile the previous re- (RUBIS) [17] in our testbed. RUBIS is a benchmark that eval-
sults show solid improvement by vSnoop, we wonder whetheates application server performance for an auction saé th
vSnoop would be even more effective when the driver domaiesembles eBay [18]. RUBIS implements the core functityali
does not have to compete with the guest VMs for CPU. Figuod on-line auction such as browsing and searching for items,
6(i) presents the results from a scenario where the driMeidding, and selling. We use the PHP version of RUBIS which
domain runs on a separate core from the one that suppdrés two tiers: an Apache webserver and a MySQL database
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doml dom2

Experiments with MPI benchmarks. In these experiments,
we assess the benefit of vSnoop for executing MPI programs in
VMs. Our experiments use (1) the High-Performance Linpack
(HPL) benchmark [19] and (2) the Intel MPI benchmark
(IMB) [20]. HPL is computatiorintensive and is primarily

sss<) | e N I SR g used to find the maximum floating-point operations (flops)
Client Threads . .
vSnoop) vSnOOBd ) per second achieved by a cluster; whereas the IMB is more
oml om . . . . ' .
hostL | — hos3 communicatiofintensive and evaluates the efficiency of vari-
ous communication patterns in a cluster.
_ , _ In the HPL experiment, we set up a 4-VM MPICH2 [21]
Fig. 7. RUBIS experiment setup execution environment, with each VM hosted by a distinct
5 physical server. Each VM has 256MB of RAM and is co-
RUBIS Operation Count Count /o. I d with h idl ith % load. Ei
w/o vSnoop | w/ vSnoop | Gain ocated with another non-idle VM wit 30% load. F_|gure
Home 359 396 10.3% | 8(a) presents the results under various problem sidés (
Browse . 421 505 19.9% | € {4000,6000,8000}) and block sizesNB € {2,4,8,16}).
growsgltCateglgoge? 3?2;38 275477 33%’ The results show that vSnoop improves the HPL performance
earchitems n’-ategory 71 (Gflops) in all runs compared with that achieved by the
BrowseRegions 128 141 10.1% . . .
BrowseCategorylnRegior 124 136 9.6% yanllla Xen. We do notice _that the percentage of improvement
SearchltemsInRegion 690 749 8.5% is less than those seen in the TCP benchmark and RUBIS
Viewltem 2892 3776 30.5% | experiments. In fact, the lower performance gain is expkcte
&mg%ﬂ:ggry ;gg ggg 1?%’ as HPL is more CPU-bound than 1/O-bound. As such, the
. 0 - . . .
BrowserBackOperation 2750 3511 57705 | COmmMunication time saved by vSnoop usually gets dominated
EndOfSession 16 23 43.7% | by the much I_onger computation time that p_recgdes or fqllows
Total 12237 15585 | 27.4% | the communications. Moreover, synchronization and inter-
Average Throughput 29 reqg/s 37 req/s | 27.5% | dependencies among nodes for an MPI execution to proceed
TABLE I is another factor that offsets some of the transport effagien

brought by vSnoop. However, even in such an unfavorable
scenario, vSnoop constantly yields benefit of varying degre
Finally, we note that our results from the ‘Xen+tuning’ con-
figuration are almost identical to those from the vanilla Xen
server. Figure 7 shows our setup: The VMs hosting Apacke we do not present them in the figure. The reason is that the
and MySQL (dom1s in the figure) amachco-located with number of messages in our HPL runs are too small to benefit
a VM (dom2s) with 30% CPU load. Each of the VMs hasrom our netfronttuning enhancement.
768MB of RAM. Since vSnoop is deployed in all server hosts Our experiment with the IMB shows the effectiveness of
in the testbed, it will benefit the TCP connections between thSnoop in reducing the execution duration of many MPI
client and Apache and between Apache and MySQL. communication primitives. We use almost the same setup as
We run the RUBIS benchmark for a 7-minute period (1the one for the HPL experiment. The only change we make
without vSnoopi(e., ‘Xen+tuning’) and (2) with vSnoopi.e., is that, using a synthetic load generator, we increase the
‘Xen+tuning+vSnoop’). We turn on our ‘tuning’ enhancementCPU load on the VMs to 60% as the IMB does not incur
in both scenarios. In this experiment, 180 client threads paufficient computation to study the CPU scheduling impact.
form operations such as browsing web pages, viewing iteni8gures 8(b) and 8(c) show the results (normalized executio
searching for items in a geographical region, etc. We use ttime) under “one-to-many”Rroadcas} and “many-to-many”
“browsing mix” workload where clients trigger read request(Alltoall) communication patterns, with varying message size.
to the Web and database servers. The goal of this experim€he results show that vSnoop leads to notably shorter ex-
is to assess how the TCP-level improvement translates imtoution time for IMB’s Broadcastand Alltoall benchmarks.
application-specific performance improvement — in RUBiISResults from IMB’s other communication patterns also show
case, the number of user requests handled per second. 3® stiee benefit of vSnoop and are omitted for lack of space.
test both ‘with vSnoop’ and ‘without vSnoop’ setups, we make
one slight change to the RUBIS client implementation such VI
that, right after an operation is done, the client threadssthe In recent years, researchers have proposed various swutio
next operationi(e., no sleep time between operations). Tabl#® alleviate the overhead of network device virtualizatfon
Il shows the counts of various operations performed as veell @rtualized environments. These efforts can roughly besita
the overall system throughput. With vSnoop, RUBIS perforniied into three main categories: (1) optimizing the virteat
higher number of each type of operations, which translaté® path, (2) improving communication among VMs on the
into a higher number of user requests (15585 vs. 12237) asame host, and (3) making VM scheduling algorithms aware
throughput (37 reqg/s vs. 29 reqg/s), a 27% improvement. of VM communication.

RUBIS BENCHMARK RESULTS WITH“BROWSING MIX”

RELATED WORK
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Fig. 8. MPI benchmark results

Menon et al. have proposed several improvements to tbeheduler. Further, we believe a communication-aware VM
network device virtualization in [22], [23], and [24]. [22] scheduler, like the one in [30], creates favorable conaitio
shows that much of the virtualization overhead is due to pdor vSnoop as it can lead to faster consumption of packets on
packet operations between the guest VM and the driver domé#ie shared buffer which keeps vSnoop online most of the time.
and proposes packet aggregation (i.e. coalescing multipleThe idea of snooping on packets to improve TCP through-
TCP packets of the same connection into one big packgi)t in lossy and high bit-error rate wireless networks was
to reduce per-packet overhead. In [23], the authors propgseposed in [31]. In that work, the wireless access point
using scatter/gather 1/0, TCP/IP checksum offload, and T@Bches packets and performs local retransmissions toesiel
segmentation offload for improving network performance afodes whenever needed. Despite the conceptual similarity
Xen VMs. TwinDrivers [24] is a framework that moves som@etween their approach and vSnoop, the network and end-host
of the device driver functionality from a guest VM to thecharacteristics faced by the two are very different. Hehedr t
VMM for better performance. By addressing a new problemesign and implementation largely differs from that of v8po
(i.e., TCP throughput degradation due to VM consolidatiorfor example, in vSnoop we offload TC&cknowledgement
notidentified by the above efforts, vSnoop complements thegg the driver domain while in [31] TCRetransmissionis
techniques and can be integrated with them. offloaded to the base station.

Many research efforts have tried to improve communica-
tion throughput between VMs on theame physical host. VIl. CONCLUSION
XenSocket [25], XenLoop [26], Fido [27], and XWAY [28]
use shared memory primitives provided by Xen to bypass theWe have presented vSnoop as a technique that mitigates the
driver domain and create efficient communication channetapact of CPU sharing on the throughput of TCP connections
between VMs on the same host. While XenSocket introducesoa consolidated VMs. vSnoop is based on the observation
new type of socket to the application-layer, XWay, XenLoothat CPU scheduling among VMs adds a significant, last-
and Fido are transparent to applications as the inter-domaop latency to the RTT of TCP packets, resulting in TCP
communication channel is placed underneath the netwatkoughout degradation. Hence, the idea behind vSnoop is to
stack. IVC [29] is another effort in this direction that tatg offload TCP acknowledgment to the driver domain — whenever
the high performance computing (HPC) domain. More specit-is safe — to hide most of the VM scheduling-related latency
ically, the authors design a VM-aware MPI library which enfrom the sender. Evaluations of our Xen-based prototype, at
ables HPC applications to transparently benefit from efiicieboth network transport and application levels, demorestitze
inter-VM communication channels between co-located VMefficiency and effectiveness of vSnoop for virtualized dpu
vSnoop complements these approaches as it is transparer@iid, and datacenter environments. As part of our future
the applications and communication libraries runningdasi work, we will explore the development of vSnoop in the
the VMs. Moreover, it is applicable to communications beNIC hardware and study the interplay between vSnoop and
tween VMs ondifferenthosts. communication-aware VM schedulers.

Extensions to Xen's SEDF scheduler are proposed in [30],
which makes the VM scheduling in Xen communication- ACKNOWLEDGMENTS
aware. More specifically, the authors propose preferential
scheduling of the recipient VM and anticipatory scheduling We thank the anonymous reviewers for their insightful
of the sender VM to improve the performance of networlcomments. This work was supported in part by the US NSF
intensive workloads. vSnoop is designed as a driver domaimder grants 0546173, 0720665, 0721680 and 0831647. Any
level technique that isgnosticto a specific VM scheduling opinions, findings, and conclusions or recommendationsign t
algorithm in the VMM. As a result, vSnoop can be deployepgaper are those of the authors and do not necessarily reflect
on a virtualization platform with such an enhanced VMhe views of the NSF.
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