
vSnoop: Improving TCP Throughput in Virtualized
Environments via Acknowledgement Offload

Ardalan Kangarlou, Sahan Gamage, Ramana Rao Kompella and Dongyan Xu
Department of Computer Science

Purdue University
{ardalan,sgamage,kompella,dxu}@cs.purdue.edu

Abstract—Virtual machine (VM) consolidation has become a
common practice in clouds, Grids, and datacenters. While this
practice leads to higher CPU utilization, we observe its negative
impact on the TCP throughput of the consolidated VMs: As more
VMs share the same core/CPU, the CPU scheduling latency for
each VM increases significantly. Such increase leads to slower
progress of TCP transmissions to the VMs. To address this
problem, we propose an approach called vSnoop, where the
driver domain of a host acknowledges TCP packets on behalf
of the guest VMs – whenever it is safe to do so. Our evaluation
of a Xen-based prototype indicates that vSnoop consistently
achieves TCP throughput improvement for VMs (of orders
of magnitude in some scenarios). We further show that the
higher TCP throughput leads to improvement in application-
level performance, via experiments with a two-tier online auction
application and two suites of MPI benchmarks.

I. I NTRODUCTION

Virtual machine (VM) consolidation has been increasingly
adopted in cloud (e.g., Amazon EC2[1], Eucalyptus [2], and
Nimbus [3]), Grid, and datacenter environments. VM consol-
idation involves the hosting of multiple VMs on the same
physical host. It allows dynamic multiplexing of computation
and communication resources and leads to higher resource
utilization and scalability of the physical infrastructure.

Scalable VM consolidation necessitates the sharing of the
same CPU by multiple VMs. Even for a multi-core processor,
the mapping from cores to VMs isnot always one-to-one
in order to achieve flexibility, scalability, and economy of
VM hosting. However, we observe that VM consolidation
negatively impacts TCP transport to VMs. More specifically,
as more VMs are scheduled to access the same core/CPU,
the CPU access latency for each VM (i.e. the interval during
which a VM waits for the CPU) increases. Such increase raises
the round-trip time (RTT) of a TCP connection to the VM, on
top of the latency added by network device virtualization. As a
result, the sub-millisecond propagation delay between hosts in
a local area network (LAN) is overwhelmed by tens/hundreds
of milliseconds of latency due to VM scheduling, which slows
down the progress of the TCP transport considerably.

To mitigate the impact of VM consolidation identified
above, we propose an approach called vSnoop that aims to
improve the throughput of TCP connections to consolidated
VMs. The key idea behind vSnoop is to allow the driver
domain of a host (e.g., dom0 in Xen [4]) to acknowledge
TCP packets on behalf of the less privileged production VMs

(e.g., domUs in Xen) – whenever it issafe to do so. By
offloading acknowledgementto the driver domain, vSnoop
masks the portion of a TCP packet’s RTT that corresponds
to VM scheduling. The reduction in RTT prompts the sender
to transmit to the VM at a higher rate, effectively saturating
the link between the sender and the receiving VM. vSnoop
requires no modification to the guest operating system or ap-
plications running in the VM. While we implement vSnoop on
Xen, the methodology of vSnoop is generically applicable to
other virtualization platforms (e.g., VMware, KVM, QEMU,
VirtualBox) where the actual network drivers reside in a driver
domain or inside the Virtual Machine Monitor (VMM).

In our Xen-based prototype, vSnoop is implemented as
part of the Linux bridge module [5] inside dom0. vSnoop
does not lengthen the receive I/O path and only maintains
a minimum state about each TCP connection. As a result,
vSnoop is lightweight and incurs very low CPU overhead.
We have performed extensive evaluation of vSnoop at both
network transport and application levels. Our transport-level
evaluation indicates that vSnoop constantly achieves higher
TCP throughput than the original Xen – in some scenarios
the improvement is of orders of magnitude. Our application-
level evaluation shows that vSnoop consequently improves
application performance, such as that of the RUBiS online
auction benchmark and the High-Performance Linpack and
Intel MPI benchmarks.

The main contributions of this paper are summarized as
follows: (1) We identify and analyze the impact of CPU
sharing on the TCP throughput of VMs (Section II). (2) We
propose vSnoop as a light-weight, VM-transparent approach
to mitigating such impact that can be instantiated on a rangeof
virtualization platforms (Section III). (3) We develop a Xen-
based prototype of vSnoop (Section IV) and demonstrate con-
siderable improvements in TCP throughput and application-
level performance for the VMs (Section V).

II. T HE PROBLEM AND MOTIVATION

In this section we present a detailed description and in-
vestigation of the problem, namely the negative impact of
VM consolidation/CPU sharing on TCP transport to VMs. On
most existing virtualization platforms, the driver domainor
the VMM hosts the actual device driver for a physical device.
As such, the production VMs cannot directly interact with
physical devices, including the network interface card (NIC).

c©2010 IEEE Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for
creating new collective works for resale or redistributionto servers or lists, or to reuse any copyrighted component ofthis work in other works must be
obtained from the IEEE.
SC10 November 2010, New Orleans, Louisiana, USA 978-1- 4244-7558-2/10/$26.00

 40

 60

 80

 100

 120

 140

 160

 180

5432

R
T

T
 (

m
s)

Number of VMs

(a) Sender-observed RTT

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 20 40 60 80 100 120 140 160

P
ro

ba
bi

lit
y

Packet Delay (ms)

Driver domain overhead
Scheduling delay

(b) Latency breakdown for incoming packets (RX
path) in the host

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 20 40 60 80 100 120 140

P
ro

ba
bi

lit
y

Packet Delay (ms)

Driver domain overhead
Scheduling delay

(c) Latency breakdown for outgoing packets (TX
path) in the host

Fig. 1. Effects of CPU sharing and network device virtualization on transport to consolidated VMs.

Regardless of whether the VM platform uses paravirtualized
(e.g., as in paravirtualized Xen) or emulated (e.g., QEMU)
devices, the extra hop in the network I/O path affects network
performance due to the additional processing performed there
such as interrupt handling, copying, and queuing. In this paper,
we identify a more significant (yet less addressed) hurdle: As
multiple VMs share the same core/processor, each VM may
not get the CPUin time to process incoming TCP packets
and advance the connection. To better understand how (and
by how much) VMs’ CPU sharing affects TCP throughput,
we seek to answer the following questions:
(1) How does the CPU sharing by VMs affect the RTT of
network packets?
(2) Is the RTT increase mostly due to VM scheduling or
network device virtualization?
(3) Given the nature of RTT increase, how is TCP throughput
affected?

Investigations.To answer the first question, we conduct a very
simple experiment where a physical host sendspingpackets to
a non-idle (60% CPU load) Xen VM in the same LAN1. In this
experiment, we vary the number of guest VMs (i.e., domUs)
that share the same core with the driver domain (i.e., dom0)
and observe the effect of VM CPU sharing on the RTT. From
Figure 1(a), we observe that, as the number of non-idle VMs
per core increases, the RTT of thepingpackets increase almost
in proportion to the 30ms VM scheduling slice in Xen. Similar
findings [6] were recently reported for the “small” instances
on Amazon’s EC2 platform where two VMs share the same
core.

The answer to the second question is quite insightful.
We find that the main culprit of the RTT increase is VM
scheduling,notnetwork device virtualization. To “zoom in” on
the dynamics of VM scheduling, we trace packets (1) within
the driver domain and (2) between the driver domain and the
VM – on both receive (RX) and transmit (TX) paths, in a
scenario where three non-idle VMs are hosted on the same
core as dom0. Figure 1(b) illustrates the cumulative density
functions (CDFs) for (1) the amount of time for dom0 to
process a packet and (2) the amount of time for the receiver

1Details of the experiment setup are described in section V.

VM to get scheduled and consume the packet on the RX
path. The figure shows that, for 93% of the packets, driver
domain processing adds at most 0.45ms to the RTT2. However,
the majority of the RTT increase takes placeafter the driver
domain processing. During this period, the packets stay in
a shared buffer between the driver domain and the receiver
VM, until the VM gets scheduled to consume the packets.
The “jumps” in Figure 1(b) at 30ms intervals correlate to the
30ms VM scheduling slice used by Xen’s credit scheduler [7].

Figure 1(c) shows the dynamics on the TX path. The major
difference between Figures 1(b) and 1(c) is theshorter time
the packets spend on the TX path from the VM to dom0. Par-
ticularly, the “jumps” at 10ms intervals suggest that the driver
domain gets scheduled quite frequently. However, both figures
indicate that the sub-millisecond driver domain overhead is
completely dominated by the tens/hundreds of millisecondsof
latency from VM/driver domain scheduling. This observation
also suggests that such considerable RTT increasecannotbe
eliminated by new devices (e.g., NetChannel2 [8]) that support
direct VM access to hardware (which only alleviate the latency
caused by network device virtualization).

Now that we have identified CPU sharing and VM schedul-
ing as the major source of RTT increase, we need to un-
derstand how it affects TCP throughput. As seen in Figures
1(b) and 1(c), Xen’s credit scheduler can add varying amount
of latency to a packet’s RTT. Such latency ranges from a
negligible amount to a few tens/hundreds of milliseconds –
depending on when the VM is scheduled to run as well as
the precise timing of various events. In general, the credit
scheduler schedules the driver domain more frequently than
the guest VMs. To illustrate this point further and study its
impact on TCP throughput, we compare packet traces of a
1MB file transferred to the driver domain with traces of the
same file transferred to a guest VM. This experiment involves
the same 3-VM setup as in the previous experiment. While the
traces vary between experiment runs, we pick two traces where
dom0 and the VM get scheduled in almost uniform intervals.
Figure 2 shows these traces. The main observation from this
figure is that scheduling preference towards the driver domain
results in a much faster transfer to the driver domain than to

2This latency is comparable to the 0.1ms RTT in the LAN.

0

200000

400000

600000

800000

1000000

1200000

0.000 0.200 0.400 0.600 0.800 1.000 1.200

S
eq

ue
nc

e
N

um
be

r[
B

]

Time[s]

dom0
domU

Fig. 2. Sequence/Time graph for a 1MB transfer to the driver domain and
to a guest VM

the guest VM.
A more detailed explanation of the result above is as

follows: As the driver domain gets scheduled more frequently,
TCP slow start progresses a lot faster as packets are ac-
knowledged at a higher rate than in the guest VM’s case.
Since the receive window at the receiver grows with every
acknowledgement, the advertised window of the connection
advances a lot more quickly too. Larger advertised receive
window in turn prompts the sender to increase its congestion
window and send more data in a shorter span of time. As a
result, the connection to the driver domain progresses much
more rapidly than the connection to the guest VM. We point
out that VM scheduling heavily affects small flows (i.e., the
“mice” flows that typically spend their entire lifetime in TCP
slow start). Since a vast majority of flows in a cloud/datacenter
environment tend to be short transfers [9], [10], [11], such
impact can be quite significant in those environments.

Implications. Findings from our investigations suggest the
following idea: Since much of the RTT increase is due to
VM scheduling on the RX path, if we somehow eliminate or
mask this latency, we can greatly improve TCP throughput
to the VMs. A natural way to hide the portion of RTT
that corresponds to VM scheduling is tooffload the TCP
acknowledgment to the driver domain. This solution leverages
the fact that the driver domain gets scheduled more frequently
than the guest VMs and, as a result, the congestion window
of the sender can be advanced a lot faster. The outcome of
such an acknowledgement offload is a much faster progress of
TCP connections – most notably for small flows; and a higher
utilization of the high-speed network infrastructure (e.g., 10
Gigabit Ethernet, Infiniband) common in Grids, clouds, and
datacenters.

However, offloading TCP acknowledgement to the driver
domain must be performed judiciously, as one needs to pre-
serve TCP’s end-to-end semantics. Moreover, such offloading
is applicable to scenarios where CPU isnot the bottleneck
for the consolidated VMs. If the CPU is the bottleneck, then
obviously no improvement at the network I/O path can lead to
more efficient execution of the guest VM. In the next section,
we present the design of our solution, called vSnoop, that
embodies the idea of acknowledgement offloading.

III. VSNOOPDESIGN

In this section we present the design of vSnoop. To show
the applicability of vSnoop to a wide class of virtualization
platforms (where either the driver domain or the VMM pro-
vides access to physical devices), we keep the description as
platform-agnostic as possible and leave the platform-specific
details to Section IV. Guided by our analysis in Section II,
we place a new component called vSnoop inside the driver
domain that performs early TCP acknowledgement on behalf
of guest VMs. vSnoop is transparent to the VMs and does
not require any modification to the guest operating system.
As its name indicates, vSnoopsnoopson all incoming and
outgoing packets to/from the VMs and maintains the necessary
state critical tosafeearly acknowledgement. More specifically,
vSnoop maintains a minimal, per-flow state throughout the
lifetime of a TCP connection to a VM and uses it to decide
whether early acknowledgement for packets destined to a
VM may lead to violation of end-to-end TCP semantics. In
particular, vSnoop must avoid the scenario where the TCP
sender receives an ACK for a packet without the packet ever
reaching the receiver VM.

A. Overview

Figure 3 illustrates vSnoop’s placement within the driver
domain and its position relative to the guest VMs. vSnoop
has two main criteria for safe early acknowledgement: (1) For
a given TCP connection, vSnoop only acknowledges in-order
packets. To keep vSnoop scalable, vSnoop does not buffer out-
of-order packets which may arise as a result of packet losses
or packets taking a different route. Instead, vSnoop simply
passes all out-of-order packets to the receiver VM and let
the VM handle them as it normally would in the absence of
vSnoop. (2) vSnoop acknowledges in-order packets only when
the shared buffer between the driver domain and the guest VM
is not full. vSnoop takes this precaution so that all packets
acknowledged by vSnoop are guaranteed to be delivered to
the target VM and hence, TCP semantics are preserved at
all times. In addition to acknowledging all in-order packets,
vSnoop suppresses all (empty) ACKs coming from the VM
if the ACKs correspond to packets already acknowledged by
vSnoop. With one exception (to be discussed in Section III-C),
vSnoop takes this measure to prevent unnecessary duplicate
ACKs from reaching the sender.

vSnoop identifies TCP flows based on their source and
destination IP addresses and port numbers and maintains
a small hash table to store information about each flow.
This mechanism is similar to how TCP/IP stack at end-host
maintains per-flow TCP control information. For each flow,
vSnoop maintains (1) the sequence number of the in-order
packet expected to be received by vSnoop (NEXTSEQ), (2)
the sequence number expected to be received by the VM
(VM SEQ), (3) TCP receive window size (RCVWIN), and
(4) the current mode of operation for this flow (FLMODE).
Next we will show how this per-flow state is maintained and
used to realize early acknowledgement.

Fig. 3. Overview of vSnoop and its per-connection state machine.

B. vSnoop State Machine

Figure 3 also depicts vSnoop’s state machine that deter-
mines early acknowledgement “safety” on a per-flow basis. If
FL MODE is ACTIVE for a given flow, vSnoop will perform
early acknowledgement for all in-order packets in the flow.
In this state, vSnoop discards empty ACKs (i.e. ACKs with
no data payload) coming from the VM to prevent delivery
of duplicate ACKs to the sender. However, if FLMODE is
in either UNEXPECTED SEQ or NO BUF state (i.e. the
packet is out-of-order or there is no space in the shared buffer),
vSnoop will go offline for that flow and let the VM handle
acknowledgement.

While vSnoop is offline, it uses the ACKs coming from the
VM to update the per-flow VMSEQ and NEXTSEQ values.
Meanwhile, the sender keeps sending packets until unacknowl-
edged data reaches the minimum of the sender’s congestion
window or receiver’s advertised window. At some point the
sender would not send any new packets unless it receives an
ACK from the VM. Hence, with high likelihood, the VM will
receive all in-flight packets the next time it gets scheduled.
Subsequently, it is very likely that the VM generates ACKs
for all these packets and vSnoop receives them in one batch
once the driver domain gets scheduled. After this point, if
the sender sends a new packet, since the sequence number of
this packet is going to be equal to NEXTSEQ, FL MODE
becomesACTIVE again and early acknowledgement resumes.
This is predominantly the way vSnoop becomes online as
vSnoop usually receives all the ACKs in one batch prior to
the sender receiving them. The other less frequent scenarioin
which vSnoop gets back online is through TCP retransmission.
More specifically, if VM scheduling intervals become too long
such that they trigger timeout for unacknowledged packets,the
sender starts retransmissions from the packet whose sequence
number is NEXTSEQ. This packet brings vSnoop online
again and early acknowledgement resumes.

C. Technical Challenges and Solutions

There are two main challenges in the development of
vSnoop: (1) To keep vSnoop online most of the time; (2) To
make vSnoop behave just like a standard TCP implementation.
To address the first challenge, vSnoop bounds the advertised
receive window of ACKs generated by itself or by the receiver
VM to the shared buffer size (buf size). Bounding the number
of outstanding packets in this fashion greatly reduces the likeli-
hood of retransmission when vSnoop is offline, thus increasing
the likelihood of vSnoop being online most of the time. Our
measurements in Section V-C show that setting an upper bound
for the advertised window doesnot make vSnoop any less
efficient than the original Xen (i.e., no vSnoop in the driver
domain). With this simple design, vSnoop can perform early
acknowledgement for the vast majority of packets, effectively
keeping the shared buffer between the driver domain and the
VM full most of the time. We note that, for “large” flows where
the receive window of a connection has grown large enough to
fill up the shared buffer, the benefit of vSnoop narrows relative
to its benefit for “small” flows, as buffer exhaustion leads
to vSnoop going offline more frequently. Nonetheless, our
evaluation shows that vSnoop always outperforms the original
Xen for all flow sizes.

To address the second challenge, we identify an important
issue in keeping vSnoop’s behavior consistent with TCP
semantics. It concerns the receive window value advertised
by vSnoop during early acknowledgement. As described in
Section II, the main objective of vSnoop is to make TCP slow-
start for connections to a VM behave more like TCP-slow
start for connections to the driver domain. Therefore, similar
to the TCP layer in the driver domain, vSnoop increments the
receive window (RCVWIN) by twice the maximum segment
size (MSS) upon acknowledging each packet until the receive
window reachesbuf size. The outcome is the exponential
growth in the congestion window of the sender as defined
by TCP standards. Also, upon receiving an ACK from a VM,
vSnoop updates RCVWIN with the value advertised in the
ACK. Therefore, it just takes one VM scheduling slice for
vSnoop to synchronize RCVWIN with the value advertised
by the VM. We noted in Section III-A there is one exception
with respect to dropping the empty ACKs generated by a
VM. vSnoop does not drop the ACK coming from a VM that
acknowledges the last packet acknowledged by vSnoop. This
behavior is consistent with RFC 793 [12] in order to notify
the sender of the most recent receive window size.

There are two more subtle issues worth mentioning: (1)
vSnoop cannot drop ACK packets coming from a VM that
have data payload. vSnoop must pass these packets to their
destination so that a connection can progress in both di-
rections. Given that these packets may acknowledge packets
that have already been acknowledged by vSnoop, some TCP
implementations may discard these packets or cause complica-
tions. Therefore, for this type of packets, vSnoop rewritesthe
acknowledgement number to (NEXTSEQ - 1) to ensure their
delivery. (2) vSnoop’s rewriting of the receive window and the

NIC

NIC Driver

bridge

netback

netfront

netback

netfront

netback

netfront

Guest Domain1 Guest Domain2 Guest Domain3

Xen VMM

Driver Domain

vSnoop

Fig. 4. Xen I/O architecture and vSnoop on Xen

acknowledgement number for packets from a VM invalidates
their TCP checksum. Hence, after modifying a TCP header,
vSnoop sets the TCP checksum field with the correct value.
Alternatively, checksum calculation can be delegated to NICs
with checksum offloading support [13].

Finally, to preserve end-to-end TCP semantics, vSnoop
requires that no packet be lost between the driver domain and
the TCP layer in the VM. Fortunately, the following factors
collectively guarantee such a condition: (1) Packet transfer
between the driver domain and the target VM is merely a
memory copy operation which is deemed reliable. (2) Since
vSnoop bounds the advertised receive window and acknowl-
edges packets only if there is adequate space in the shared
buffer, vSnoop greatly reduces the possibility of exhausting
kernel resources in the guest VM. (3) Most importantly, one
particular aspect of Xen I/O networking (to be discussed in
Section IV) guarantees that intermediary buffers and resources
in the guest VM are never exhausted. Considering all these
factors, the presence of vSnoop does not require special tuning
of the guest operating system or the network drivers.

IV. VSNOOP IMPLEMENTATION

We have implemented vSnoop for the paravirtualized Xen
platform as the paravirtualized devices are more efficient and
portable than the emulated devices and they do not require any
hardware support3. Before describing the implementation de-
tails, we briefly describe Xen’s network device virtualization.

A. Background and Overview

Xen uses asplit driver model for paravirtualized devices
where each driver has a back-end component in the driver
domain (i.e. dom0) and a front-end component in each guest
domain (VM). These two components interact with each
other via ring buffers, shared memory, and event channels.
A ring buffer holds all I/Orequestand responseoperations
corresponding to a specific device. Typically, eachrequest
corresponds to an I/O activity from the front-end to the back-
end while aresponsecorresponds to an I/O activity in the
reverse direction. Bothrequestandresponseoperations reside
on the ring buffer and both point to the actual data to exchange.

3We believe vSnoop’s early acknowledgement methodology canalso be
applied to emulated devices.

The data, which can be a network packet or a disk block, is
located on the shared memory pages between dom0 and a
guest VM so that it is accessible by both back-end and front-
end drivers. Finally, the event channel acts like an interdomain
interrupt mechanism between dom0 and a guest VM.

Figure 4 presents an overview of network device virtual-
ization in Xen and itsnetbackandnetfrontcomponents. This
figure also shows that vSnoop is implemented as part of the
bridge module inside dom0. To better understand vSnoop’s
functionality, we first examine the way Xen handles packet
arrival had vSnoop not been deployed. Upon the arrival of a
packet at the host’s physical NIC, the driver domain receives
the packet and determines the receiver VM using the bridge
module. Once the receiver is determined, the bridge module
hands the packet to the correspondingnetbackinstance which
in turn picks a request from the ring buffer and places a
responsein its place. Once allresponsescorresponding to
incoming packets to a VM are placed,netbacknotifiesnetfront
by sending an event.

When the receiver VM gets scheduled, the corresponding
netfront starts consuming theresponsesplaced bynetback
and starts placing new, emptyrequestsin the ring for future
incoming packets. What is particularly important is that before
placing new requestsin the ring buffer, netfront allocates
memory for all packets that would be associated with these
new requests. This guarantees that, once a packet reaches
netback, no shortage of memory in a guest VM would lead to
the packet’s dismissal. As we briefly alluded to in Section
III, this behavior particularly suits vSnoop, as all packets
acknowledged by vSnoop are guaranteed enough resources in
advance. Each network interface in a Xen VM has a separate
RX and TX ring buffer and they all interact withnetbackin
a similar fashion.

Over the course of our experiments, we realize that Xen
uses a dynamic algorithm that places variable amount of new
requests in the ring. However, we find out that this algorithm
does not always perform as well as it was intended and places
relatively few requests in the ring. Therefore, in order for
vSnoop to perform early acknowledgment for a larger number
of packets, we make one change to thenetfrontdriver so that
it can use a larger portion of the ring forrequests. More
specifically, we tunenetfront so that it can use at least up
to 75% of the 256 slots in the ring buffer for placing new
requests. We will refer to our optimization as ‘Xen+tuning’ in
Section V.

With the background above, vSnoop is implemented as two
main hook functions attached to the bridge. Based on the
direction of packets relative to a VM (incoming or outgoing),
vSnoop engages eithervSnoopegressor vSnoopingresshook
function. Both vSnoopegress and vSnoopingress process
packets by operating on socket buffer (sk buff) kernel struc-
tures. With the placement of vSnoop in the bridge module,
these functions receivesk buff structures with L2 headers.
Therefore, to identify TCP flows, both functions need to ex-
tract IP and TCP header fields fromsk buff. vSnoop identifies
TCP flows based on their source and destination IP addresses

and port numbers and maintains a small hash table to store
information about each flow. For the remainder of this section
we show howvSnoopegressand vSnoopingress maintain
the per-flow state (e.g., NEXTSEQ, VM SEQ, RCV WIN,
and FL MODE) and implement the state machine defined in
Section III.

B. Implementation Details

Handling outgoing packets. The primary function ofvS-
noop egressis to intercept all packets from a VM and set
up/maintain the per-flow information. The per-flow informa-
tion is usually set up during TCP handshake when the VM
sends SYN or SYN-ACK packet. The state can also be ini-
tialized after the TCP handshake if no per-flow information is
present. The latter enables vSnoop’s operation in the presence
of live VM migration (discussed later in this section). Once
the state is initialized,vSnoopegressupdates the per-flow
VM SEQ, RCV WIN, and FL MODE values based on the
ACK packets it receives from the VM. The other functionality
of vSnoopegressis to drop unnecessary duplicate ACKs from
the VM. This process involves examining whether a packet
received from the VM is an empty ACK, if the packet has
already been acknowledged byvSnoopingress and if the
packet has no control flags set (such as SYN or FIN bit).
If a packet satisfies all the above conditions, then it will be
dropped.

As described in Section III, when the advertised receive
window by the VM exceedsbuf size, vSnoopegresssets
the window tobuf size to limit the number of outstanding
packets so that vSnoop can remain online or become online
soon. Rewriting the acknowledgment number for ACKs with
data and re-calculating a packet’s TCP checksum are two other
functions of vSnoopegress. Finally, vSnoopegressremoves
the information associated with a flow in the hash table once
a connection is terminated by FIN or RST packets.
Handling incoming packets. The main function of vS-
noop ingress is to perform early acknowledgement as de-
scribed in Section III. Upon receiving a TCP packet,vS-
noop ingressfirst determines the corresponding flow. If the
sequence number of the packet matches NEXTSEQ for
that flow, then this packet becomes a candidate for early
acknowledgement.vSnoopingressacknowledges a candidate
packet when the following conditions are met: no control flag
in the TCP header is set; receive window (RCVWIN) is non-
zero; and the ring buffer is not full. Every timevSnoopingress
acknowledges a packet, it increases RCVWIN by (2 × MSS)
after confirming that there is enough buffer space in the ring
buffer. While packets do not necessarily get dropped when the
ring buffer is full, this check guarantees early acknowledged
packets are never dropped en route to the receiver VM.
Handling live VM migration. vSnoop can also handle live
VM migration. In Xen live migration [14], memory pages
belonging to a VM are copied from the source host to
the destination host in multiple iterations while the VM is
running. The problem that may arise with vSnoop during
migration is that a VM may complete migration before an

early-acknowledged TCP packet reaches the receiver VM.
Such a scenario would result in an inconsistent state where
the sender receives an ACK from vSnoop for a packet that
is not going to be delivered to the VM. To handle live VM
migration, we adopt a straightforward yet effective solution
where vSnoop gets disabled for all the flows involving the
migrating VM prior to the first iteration of memory page
copying. Since the duration of VM migration is magnitudes
longer (typically a few seconds or more), the VM will receive
all the early-acknowledged packets during this period. Once
the VM moves to the destination, vSnoop at the destination
host, if deployed, will initialize the hash table entries for the
VM’s active flows and early acknowledgement resumes.

V. EVALUATION

In this section we present evaluation results on vSnoop:
Section V-B evaluates the overhead of vSnoop itself; Section
V-C focuses on the TCP performance achieved by vSnoop; and
Section V-D demonstrates the effect of vSnoop on application-
level performance.

A. Testbed Setup

The experiments are performed in our virtualized cloud
computing testbed connected by Gigabit Ethernet. Each VM-
hosting server runs Xen 3.3 with Linux 2.6.18 as the operating
system for both the driver domain and the paravirtualized guest
VMs. (1) The experiments in Sections II, V-B, and V-C involve
a client machine and a server. The client machine has a 2.4GHz
Intel Core 2 Quad CPU with 2GB of RAM and an Intel
Pro Gigabit network card and runs Linux 2.6.19. The server
hosts the VMs and has a dual-core 3GHz Intel Xeon CPU
with 3GB of RAM and a Broadcom NetXtreme 5752 Gigabit
Ethernet card. The VMs each have 256MB of RAM. (2) The
experiments in Section V-D involve multiple server hosts, each
being a PowerEdge Dell server with a 3.06GHz Intel Xeon
CPU, 4GB of RAM, and a Broadcom NetXtreme 5704 Gigabit
Ethernet card. TCP Reno is used in all experiments.

B. Profiling vSnoop Overhead

In the design and the implementation of vSnoop, we strive to
keep vSnoop as light-weight as possible by only including the
minimal functionality of the TCP layer at vSnoop that is es-
sential to TCP acknowledgement offload. To better understand
the overhead associated with vSnoop, we use the Xenoprof
[15] toolkit for system profiling. Xenoprof supports profiling
at the fine granularity of individual processes and routines
executed in the Xen VMM, driver domain, and guest VMs.
We use Xenoprof to measure the overhead associated with dif-
ferent vSnoop routines in terms of the CPU cycles/percentage
they consume. We additionally instrument vSnoop routines to
record the number of packets they process. This information
helps us to obtain the per-packet cost or the cost incurred by
vSnoop routines at a given point in time.

Table I presents the average vSnoop overhead for 10-second
Iperf [16] transfers for two scenarios: (1) In the “single stream”
scenario, there is one connection from the client to a VM.

vSnoop Routines
Single Stream Multiple Streams

Cycles CPU % Cycles CPU %
vSnoop ingress() 509 3.03 516 3.05
vSnoop lookup hash() 74 0.44 91 0.51
vSnoop build ack() 52 0.32 52 0.32
vSnoop egress() 104 0.61 104 0.61

TABLE I
PER-PACKET CPUUTILIZATION FOR V SNOOP ROUTINES

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0.01 0.1 1 10 100 1000 10000

C
D

F

Throughput (MB/s)

Vanilla Xen
Xen + tuning
Xen + tuning + vSnoop

Fig. 5. CDFs for TCP throughput of 1000 successive 100KB transfers for
vanilla Xen, Xen with our tuning, and Xen with our tuning and vSnoop

Our measurements show vSnoop adds about 4.5% to the CPU
utilization of the driver domain. Much of this cost is associated
with the vSnoopingress routine. The routine that looks up
a flow’s state in the hash table and the routine that builds
the ACK each incur negligible overhead. (2) In the “multiple
stream” scenario, we have 100 concurrent connections to the
5 VMs running in the server. The per-packet cost or the
vSnoop overhead at a given point of time remains largely
unchanged from the single stream scenario. The only routine
that incurs slightly higher cost for the multiple stream scenario
is vSnooplookup hash(). This is intuitive as vSnoop has to
search a larger hash table to retrieve information about a
particular flow.

C. TCP Throughput Evaluation

In this section, we test vSnoop for transport-level per-
formance. To gain full control over the experiment setup,
we develop our own TCP application,TCP-app, that works
similarly to Iperf. TCP-app involves sending data of various
sizes from the client to the VM. We set up a variety of
scenarios to assess the TCP throughput achieved by vSnoop.
For each scenario, we compare TCP throughput under (1) the
vanilla Xen, (2) Xen with ournetfront tuning (Section IV-A),
and (3) Xen with our tuning and vSnoop. With the exception
of one scenario, we enable only one core in the server host
so that the impact of VMs’ CPU sharing/scheduling can be
studied without interference.

To better understand the nature of the experiments we
present Figure 5. This figure shows the cumulative distribution
functions (CDFs) for 1000 successive 100KB transfers from
the client to the VM for vanilla Xen, Xen withnetfront

tuning, and Xen withnetfront tuning and vSnoop. In this
experiment, the server VM is co-located with two other non-
idle4 guest VMs. This figure shows that vSnoop (with tuning)
yields significant and in some cases orders of magnitude
of improvement in TCP throughput. In particular, the me-
dian throughput values for ‘vanilla Xen’, ‘Xen+tuning’, and
‘Xen+tuning+vSnoop’ are 0.192 MB/s, 0.778 MB/s, and 6.003
MB/s, respectively.

It is interesting to point out that for about a third of
measurements in ‘Xen+tuning+vSnoop’, the TCP throughput
exceeds the link rate between the client and server hosts.
The reason is: vSnoop’s presence leads to a large number of
packets getting buffered in the driver domain. Since memory
copying between the driver domain and the receiver VM is
much faster than the link rate, the TCP throughput observed
by the VM appears as if it had exceeded the network link
rate. Similar phenomenon was reported for UDP transport
between Amazon EC2 instances [6]. Another observation we
make is that simply comparing the average throughput values
for the three configurations is not the best way to evaluate
vSnoop. However, due to space constraint we cannot present
CDFs for all the experiments. For the rest of this section
we only compare the median throughput values for the three
configurations. While this type of comparison in many cases
under-represents the benefits of vSnoop, we overall find it a
suitable way of assessing vSnoop’s performance.

Figure 6 presents the results for different transfer sizes
under a variety of scenarios. All median throughput values (of
1000 runs) for a specific transfer size are normalized based
on the value for the ‘Xen+tuning+vSnoop’ configuration.

1. Varying the number of VMs. Figures 6(a), 6(b), 6(e), and
6(c) show the effectiveness of vSnoop when 1, 2, 3 and 5 non-
idle VMs (including the receiver VM itself) are running on the
same core respectively. These figures show that vSnoop con-
stantly outperforms vanilla Xen. More importantly, the benefit
of vSnoop increases with higher degree of VM consolidation
and with smaller transfers. Higher VM consolidation worsens
the impact of VM scheduling, thus widening the gap be-
tween vanilla Xen and vSnoop; Short transfers are particularly
susceptible to VM scheduling (Section II) and hence benefit
more from vSnoop. It is also worth noting that capping the
advertised receive window by vSnoop (Section III) does not
hurt TCP throughput. vSnoop outperforms other configurations
even for the large transfers in the 1-VM scenario, where the
advertised receive window can get very large in the absence
of vSnoop.
2. Varying CPU load. To understand the effect of VM CPU
load, we fix the number of VMs on a core to three and vary
the VM CPU load. Figures 6(d), 6(e), and 6(f) show vSnoop
outperforms other configurations under different CPU load in
the VMs. Higher VM workload makes CPU scheduling more
detrimental to TCP throughput, thereby making vSnoop more

4All references to non-idle VMs entail 60% CPU load on the VM, unless
otherwise specified.

 0.00

 0.20

 0.40

 0.60

 0.80

 1.00

10
0M

B

10
M

B

1M
B

50
0K

B

25
0K

B

10
0K

B

50
K

B

N
or

m
al

iz
ed

 T
hr

ou
gh

pu
t

Transfer Size

Xen+tuning+vSnoopXen+tuningXen

(a) 1 non-idle VM on the core

 0.00

 0.20

 0.40

 0.60

 0.80

 1.00

10
0M

B

10
M

B

1M
B

50
0K

B

25
0K

B

10
0K

B

50
K

B

N
or

m
al

iz
ed

 T
hr

ou
gh

pu
t

Transfer Size

Xen+tuning+vSnoopXen+tuningXen

(b) 2 non-idle VMs on the core

 0.00

 0.20

 0.40

 0.60

 0.80

 1.00

10
0M

B

10
M

B

1M
B

50
0K

B

25
0K

B

10
0K

B

50
K

B

N
or

m
al

iz
ed

 T
hr

ou
gh

pu
t

Transfer Size

Xen+tuning+vSnoopXen+tuningXen

(c) 5 non-idle VMs on the core

 0.00

 0.20

 0.40

 0.60

 0.80

 1.00
10

0M
B

10
M

B

1M
B

50
0K

B

25
0K

B

10
0K

B

50
K

B

N
or

m
al

iz
ed

 T
hr

ou
gh

pu
t

Transfer Size

Xen+tuning+vSnoopXen+tuningXen

(d) 3 VMs, each with 40% CPU load

 0.00

 0.20

 0.40

 0.60

 0.80

 1.00

10
0M

B

10
M

B

1M
B

50
0K

B

25
0K

B

10
0K

B

50
K

B

N
or

m
al

iz
ed

 T
hr

ou
gh

pu
t

Transfer Size

Xen+tuning+vSnoopXen+tuningXen

(e) 3 VMs, each with 60% CPU load

 0.00

 0.20

 0.40

 0.60

 0.80

 1.00

10
0M

B

10
M

B

1M
B

50
0K

B

25
0K

B

10
0K

B

50
K

B

N
or

m
al

iz
ed

 T
hr

ou
gh

pu
t

Transfer Size

Xen+tuning+vSnoopXen+tuningXen

(f) 3 VMs, each with 80% CPU load

 0.00

 0.20

 0.40

 0.60

 0.80

 1.00

10
0M

B

10
M

B

1M
B

50
0K

B

25
0K

B

10
0K

B

50
K

B

N
or

m
al

iz
ed

 T
hr

ou
gh

pu
t

Transfer Size

Xen+tuning+vSnoopXen+tuningXen

(g) 10 concurrent connections to a VM

 0.00

 0.20

 0.40

 0.60

 0.80

 1.00

10
0M

B

10
M

B

1M
B

50
0K

B

25
0K

B

10
0K

B

50
K

B

N
or

m
al

iz
ed

 T
hr

ou
gh

pu
t

Transfer Size

Xen+tuning+vSnoopXen+tuningXen

(h) Sender subject to VM scheduling

 0.00

 0.20

 0.40

 0.60

 0.80

 1.00

10
0M

B

10
M

B

1M
B

50
0K

B

25
0K

B

10
0K

B

50
K

B

N
or

m
al

iz
ed

 T
hr

ou
gh

pu
t

Transfer Size

Xen+tuning+vSnoopXen+tuningXen

(i) driver domain run on a separate core

Fig. 6. TCP throughput measurements under a variety of scenarios.

useful.
3. Concurrent connections.Thus far, all the results are based
on a single connection from the client to the VM. Figure
6(g) shows that vSnoop is also effective when there are 10
concurrent connections to the VM. The results presented are
for a setup where 3 non-idle VMs run on the same core.
4. Sender subject to VM scheduling.In this scenario, we
investigate the effectiveness of vSnoop when the sender is
also virtualized and subject to VM scheduling like the receiver.
This is a quite common scenario inside a cloud or datacenter
where hosted VMs communicate with each other. In fact,
our application-level experiments (Section V-D) reflect such
a scenario. Figure 6(h) presents the results for a setup where
the client VM and the server VM are each co-located with
two other non-idle VMs in their respective hosts.
5. Driver domain on a separate core.While the previous re-
sults show solid improvement by vSnoop, we wonder whether
vSnoop would be even more effective when the driver domain
does not have to compete with the guest VMs for CPU. Figure
6(i) presents the results from a scenario where the driver
domain runs on a separate core from the one that supports

3 non-idle guest VMs. The results indicate that, for short
transfers (up to 1MB), vSnoop outperforms vanilla Xen by a
significantly large margin. This is because the driver domain
and the receiver VM now process incoming packets on two
separate cores. As a result, whenever the VM is scheduled, it
is likely to processall the packets that the driver domain has
passed to the VM or will pass while the VM is running, thus
increasing the TCP throughput. However, the benefit margin
narrows for large transfers for the same reason mentioned in
Scenario 1.

D. Application-Level Evaluation

Experiment with RUBiS. To demonstrate the effectiveness
of vSnoop for real-world applications running in a cloud
or datacenter, we run the Rice University Bidding System
(RUBiS) [17] in our testbed. RUBiS is a benchmark that eval-
uates application server performance for an auction site that
resembles eBay [18]. RUBiS implements the core functionality
of on-line auction such as browsing and searching for items,
bidding, and selling. We use the PHP version of RUBiS which
has two tiers: an Apache webserver and a MySQL database

MySQLApache

Client Threads

Client
RUBiS

host2host1 host3

vSnoop vSnoop

dom1 dom2 dom1 dom2

dom0 dom0

Fig. 7. RUBiS experiment setup

RUBiS Operation Count Count %
w/o vSnoop w/ vSnoop Gain

Home 359 396 10.3%
Browse 421 505 19.9%
BrowseCategories 288 357 23.9%
SearchItemsInCategory 3498 4747 35.7%
BrowseRegions 128 141 10.1%
BrowseCategoryInRegion 124 136 9.6%
SearchItemsInRegion 690 749 8.5%
ViewItem 2892 3776 30.5%
ViewUserInfo 732 846 15.6%
ViewBidHistory 339 398 17.4%
BrowserBackOperation 2750 3511 27.7%
EndOfSession 16 23 43.7%
Total 12237 15585 27.4%
Average Throughput 29 req/s 37 req/s 27.5%

TABLE II
RUBIS BENCHMARK RESULTS WITH “ BROWSING MIX”

server. Figure 7 shows our setup: The VMs hosting Apache
and MySQL (dom1s in the figure) areeachco-located with
a VM (dom2s) with 30% CPU load. Each of the VMs has
768MB of RAM. Since vSnoop is deployed in all server hosts
in the testbed, it will benefit the TCP connections between the
client and Apache and between Apache and MySQL.

We run the RUBiS benchmark for a 7-minute period (1)
without vSnoop (i.e., ‘Xen+tuning’) and (2) with vSnoop (i.e.,
‘Xen+tuning+vSnoop’). We turn on our ‘tuning’ enhancement
in both scenarios. In this experiment, 180 client threads per-
form operations such as browsing web pages, viewing items,
searching for items in a geographical region, etc. We use the
“browsing mix” workload where clients trigger read requests
to the Web and database servers. The goal of this experiment
is to assess how the TCP-level improvement translates into
application-specific performance improvement – in RUBiS’s
case, the number of user requests handled per second. To stress
test both ‘with vSnoop’ and ‘without vSnoop’ setups, we make
one slight change to the RUBiS client implementation such
that, right after an operation is done, the client thread starts the
next operation (i.e., no sleep time between operations). Table
II shows the counts of various operations performed as well as
the overall system throughput. With vSnoop, RUBiS performs
higher number of each type of operations, which translates
into a higher number of user requests (15585 vs. 12237) and
throughput (37 req/s vs. 29 req/s), a 27% improvement.

Experiments with MPI benchmarks. In these experiments,
we assess the benefit of vSnoop for executing MPI programs in
VMs. Our experiments use (1) the High-Performance Linpack
(HPL) benchmark [19] and (2) the Intel MPI benchmark
(IMB) [20]. HPL is computation-intensive and is primarily
used to find the maximum floating-point operations (flops)
per second achieved by a cluster; whereas the IMB is more
communication-intensive and evaluates the efficiency of vari-
ous communication patterns in a cluster.

In the HPL experiment, we set up a 4-VM MPICH2 [21]
execution environment, with each VM hosted by a distinct
physical server. Each VM has 256MB of RAM and is co-
located with another non-idle VM with 30% load. Figure
8(a) presents the results under various problem sizes (N
∈ {4000, 6000, 8000}) and block sizes (NB ∈ {2, 4, 8, 16}).
The results show that vSnoop improves the HPL performance
(Gflops) in all runs compared with that achieved by the
vanilla Xen. We do notice that the percentage of improvement
is less than those seen in the TCP benchmark and RUBiS
experiments. In fact, the lower performance gain is expected
as HPL is more CPU-bound than I/O-bound. As such, the
communication time saved by vSnoop usually gets dominated
by the much longer computation time that precedes or follows
the communications. Moreover, synchronization and inter-
dependencies among nodes for an MPI execution to proceed
is another factor that offsets some of the transport efficiency
brought by vSnoop. However, even in such an unfavorable
scenario, vSnoop constantly yields benefit of varying degree.
Finally, we note that our results from the ‘Xen+tuning’ con-
figuration are almost identical to those from the vanilla Xen
so we do not present them in the figure. The reason is that the
number of messages in our HPL runs are too small to benefit
from our netfront tuning enhancement.

Our experiment with the IMB shows the effectiveness of
vSnoop in reducing the execution duration of many MPI
communication primitives. We use almost the same setup as
the one for the HPL experiment. The only change we make
is that, using a synthetic load generator, we increase the
CPU load on the VMs to 60% as the IMB does not incur
sufficient computation to study the CPU scheduling impact.
Figures 8(b) and 8(c) show the results (normalized execution
time) under “one-to-many” (Broadcast) and “many-to-many”
(Alltoall) communication patterns, with varying message size.
The results show that vSnoop leads to notably shorter ex-
ecution time for IMB’s Broadcastand Alltoall benchmarks.
Results from IMB’s other communication patterns also show
the benefit of vSnoop and are omitted for lack of space.

VI. RELATED WORK

In recent years, researchers have proposed various solutions
to alleviate the overhead of network device virtualizationfor
virtualized environments. These efforts can roughly be classi-
fied into three main categories: (1) optimizing the virtualized
I/O path, (2) improving communication among VMs on the
same host, and (3) making VM scheduling algorithms aware
of VM communication.

 0.000
 0.200
 0.400
 0.600
 0.800
 1.000
 1.200
 1.400
 1.600
 1.800

(8
K

,1
6)

(8
K

,8
)

(8
K

,4
)

(8
K

,2
)

(6
K

,1
6)

(6
K

,8
)

(6
K

,4
)

(6
K

,2
)

(4
K

,1
6)

(4
K

,8
)

(4
K

,4
)

(4
K

,2
)

G
flo

ps

Problem Size and Block Size (N,NB)

Xen+tuning+vSnoopXen

(a) HPL benchmark

 0.00

 0.20

 0.40

 0.60

 0.80

 1.00

8M
B

4M
B

2M
B

1M
B

51
2K

B

25
6K

B

12
8K

B

64
K

B

N
or

m
al

iz
ed

 E
xe

cu
tio

n
T

im
e

Message Size

Xen+tuning+vSnoopXen+tuningXen

(b) Intel MPI benchmark - Broadcast

 0.00

 0.20

 0.40

 0.60

 0.80

 1.00

8M
B

4M
B

2M
B

1M
B

51
2K

B

25
6K

B

12
8K

B

64
K

B

N
or

m
al

iz
ed

 E
xe

cu
tio

n
T

im
e

Message Size

Xen+tuning+vSnoopXen+tuningXen

(c) Intel MPI benchmark - Alltoall

Fig. 8. MPI benchmark results

Menon et al. have proposed several improvements to the
network device virtualization in [22], [23], and [24]. [22]
shows that much of the virtualization overhead is due to per-
packet operations between the guest VM and the driver domain
and proposes packet aggregation (i.e. coalescing multiple
TCP packets of the same connection into one big packet)
to reduce per-packet overhead. In [23], the authors propose
using scatter/gather I/O, TCP/IP checksum offload, and TCP
segmentation offload for improving network performance of
Xen VMs. TwinDrivers [24] is a framework that moves some
of the device driver functionality from a guest VM to the
VMM for better performance. By addressing a new problem
(i.e., TCP throughput degradation due to VM consolidation)
not identified by the above efforts, vSnoop complements these
techniques and can be integrated with them.

Many research efforts have tried to improve communica-
tion throughput between VMs on thesame physical host.
XenSocket [25], XenLoop [26], Fido [27], and XWAY [28]
use shared memory primitives provided by Xen to bypass the
driver domain and create efficient communication channels
between VMs on the same host. While XenSocket introduces a
new type of socket to the application-layer, XWay, XenLoop
and Fido are transparent to applications as the inter-domain
communication channel is placed underneath the network
stack. IVC [29] is another effort in this direction that targets
the high performance computing (HPC) domain. More specif-
ically, the authors design a VM-aware MPI library which en-
ables HPC applications to transparently benefit from efficient
inter-VM communication channels between co-located VMs.
vSnoop complements these approaches as it is transparent to
the applications and communication libraries running inside
the VMs. Moreover, it is applicable to communications be-
tween VMs ondifferenthosts.

Extensions to Xen’s SEDF scheduler are proposed in [30],
which makes the VM scheduling in Xen communication-
aware. More specifically, the authors propose preferential
scheduling of the recipient VM and anticipatory scheduling
of the sender VM to improve the performance of network-
intensive workloads. vSnoop is designed as a driver domain-
level technique that isagnosticto a specific VM scheduling
algorithm in the VMM. As a result, vSnoop can be deployed
on a virtualization platform with such an enhanced VM

scheduler. Further, we believe a communication-aware VM
scheduler, like the one in [30], creates favorable conditions
for vSnoop as it can lead to faster consumption of packets on
the shared buffer which keeps vSnoop online most of the time.

The idea of snooping on packets to improve TCP through-
put in lossy and high bit-error rate wireless networks was
proposed in [31]. In that work, the wireless access point
caches packets and performs local retransmissions to wireless
nodes whenever needed. Despite the conceptual similarity
between their approach and vSnoop, the network and end-host
characteristics faced by the two are very different. Hence their
design and implementation largely differs from that of vSnoop.
For example, in vSnoop we offload TCPacknowledgement
to the driver domain while in [31] TCPretransmissionis
offloaded to the base station.

VII. C ONCLUSION

We have presented vSnoop as a technique that mitigates the
impact of CPU sharing on the throughput of TCP connections
to consolidated VMs. vSnoop is based on the observation
that CPU scheduling among VMs adds a significant, last-
hop latency to the RTT of TCP packets, resulting in TCP
throughout degradation. Hence, the idea behind vSnoop is to
offload TCP acknowledgment to the driver domain – whenever
it is safe – to hide most of the VM scheduling-related latency
from the sender. Evaluations of our Xen-based prototype, at
both network transport and application levels, demonstrate the
efficiency and effectiveness of vSnoop for virtualized cloud,
Grid, and datacenter environments. As part of our future
work, we will explore the development of vSnoop in the
NIC hardware and study the interplay between vSnoop and
communication-aware VM schedulers.

ACKNOWLEDGMENTS

We thank the anonymous reviewers for their insightful
comments. This work was supported in part by the US NSF
under grants 0546173, 0720665, 0721680 and 0831647. Any
opinions, findings, and conclusions or recommendations in this
paper are those of the authors and do not necessarily reflect
the views of the NSF.

REFERENCES

[1] “Amazon Elastic Compute Cloud (Amazon EC2),” http://aws.amazon.
com/ec2/.

[2] D. Nurmi, R. Wolski, C. Grzegorczyk, G. Obertelli, S. Soman, L. Yous-
eff, and D. Zagorodnov, “The Eucalyptus open-source cloud-computing
system,” inProceedings of the 9th IEEE/ACM International Symposium
on Cluster Computing and the Grid (CCGRID ’09), Washington, DC,
2009, pp. 124–131.

[3] “Nimbus Toolkit,” http://www.nimbusproject.org/.
[4] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris, A. Ho, R. Neuge-

bauer, I. Pratt, and A. Warfield, “Xen and the art of virtualization,”
in Proceedings of the 19th ACM Symposium on Operating Systems
Principles (SOSP ’03), Bolton Landing, NY, 2003.

[5] “Linux net:bridge,” http://www.linux-foundation.org/en/Net:Bridge.
[6] G. Wang and T. S. E. Ng, “The impact of virtualization on network

performance of Amazon EC2 data center,” inProceedings of IEEE
INFOCOM, San Diego, CA, 2010.

[7] “Xen credit scheduler,” http://wiki.xensource.com/xenwiki/
CreditScheduler.

[8] J. R. Santos, G. Janakiraman, Y. Turner, and I. Pratt, “Netchannel 2:
Optimizing network performance,” inXen Summit, 2007.

[9] S. Kandula, S. Sengupta, A. Greenberg, P. Patel, and R. Chaiken, “The
nature of data center traffic: measurements & analysis,” inProceedings
of the 9th ACM Internet Measurement Conference (IMC ’09), Chicago,
IL, 2009, pp. 202–208.

[10] T. Benson, A. Anand, A. Akella, and M. Zhang, “Understanding data
center traffic characteristics,” inProceedings of the 1st ACM Workshop
on Research on Enterprise Networking (WREN ’09), Barcelona, Spain,
2009, pp. 65–72.

[11] A. Greenberg, J. R. Hamilton, N. Jain, S. Kandula, C. Kim, P. Lahiri,
D. A. Maltz, P. Patel, and S. Sengupta, “VL2: a scalable and flexible
data center network,” inProceedings of the ACM SIGCOMM conference
on Data communication (SIGCOMM ’09), Barcelona, Spain, 2009, pp.
51–62.

[12] J. Postel, “Transmission control protocol,” RFC 793, 1981.
[13] D. Minturn, G. Regnier, J. Krueger, R. Iyer, and S. Makineni, “Address-

ing TCP/IP processing challenges using the IA and IXP processors,”
Intel Technology Journal, vol. 7, 2003.

[14] C. Clark, K. Fraser, S. Hand, and J. G. Hansen, “Live migration of
virtual machines,” inProceedings of the 2nd ACM/USENIX Symposium
on Networked Systems Design and Implementation (NSDI ’05), San
Diego, CA, 2005.

[15] A. Menon, J. R. Santos, Y. Turner, G. J. Janakiraman, and
W. Zwaenepoel, “Diagnosing performance overheads in the Xen vir-
tual machine environment,” inProceedings of the 1st ACM/USENIX
International Conference on Virtual Execution Environments (VEE ’05),
Chicago, IL, 2005.

[16] “The Iperf Benchmark,” http://www.noc.ucf.edu/Tools/Iperf/.
[17] “The RUBiS Benchmark,” http://rubis.ow2.org.
[18] “eBay,” http://www.ebay.com/.
[19] “The High-Performance Linpack Benchmark,” http://www.netlib.org/

benchmark/hpl/.
[20] “Intel MPI benchmark,” http://software.intel.com/en-us/articles/

intel-mpi-benchmarks/.
[21] “MPICH2,” http://www.mcs.anl.gov/research/projects/mpich2/.
[22] A. Menon and W. Zwaenepoel, “Optimizing TCP receive performance,”

in USENIX Annual Technical Conference, Boston, MA, 2008, pp. 85–98.
[23] A. Menon, A. L. Cox, and W. Zwaenepoel, “Optimizing network

virtualization in Xen,” inUSENIX Annual Technical Conference, Boston,
MA, 2006, pp. 15–28.

[24] A. Menon, S. Schubert, and W. Zwaenepoel, “TwinDrivers: semi-
automatic derivation of fast and safe hypervisor network drivers from
guest OS drivers,” in14th International Conference on Architectural
Support for Programming Languages and Operating Systems (ASPLOS
’09), Washington, DC, 2009, pp. 301–312.

[25] X. Zhang, S. McIntosh, P. Rohatgi, and J. L. Griffin, “XenSocket:
A high-throughput interdomain transport for virtual machines,” in
ACM/IFIP/USENIX 8th International Middleware Conference(Middle-
ware ’07), Newport Beach, CA, 2007, pp. 184–203.

[26] J. Wang, K.-L. Wright, and K. Gopalan, “XenLoop: a transparent high
performance inter-vm network loopback,” in17th International ACM
Symposium on High Performance Parallel and Distributed Computing
(HPDC ’08), Boston, MA, 2008, pp. 109–118.

[27] A. Burtsev, K. Srinivasan, P. Radhakrishnan, L. N. Bairavasundaram,
K. Voruganti, and G. R. Goodson, “Fido: Fast inter-virtual-machine
communication for enterprise appliances,” inUSENIX Annual Technical
Conference, San Diego, CA, 2009.

[28] K. Kim, C. Kim, S.-I. Jung, H.-S. Shin, and J.-S. Kim, “Inter-
domain socket communications supporting high performanceand full
binary compatibility on Xen,” inProceedings of the 4th ACM SIG-
PLAN/SIGOPS International Conference on Virtual Execution Environ-
ments (VEE ’08), Seattle, WA, 2008, pp. 11–20.

[29] W. Huang, M. J. Koop, Q. Gao, and D. K. Panda, “Virtual machine
aware communication libraries for high performance computing,” in
Proceedings of the 2007 ACM/IEEE Conference on Supercomputing (SC
’07), Reno, NV, 2007, pp. 1–12.

[30] S. Govindan, A. R. Nath, A. Das, B. Urgaonkar, and A. Sivasub-
ramaniam, “Xen and co.: communication-aware CPU scheduling for
consolidated Xen-based hosting platforms,” inProceedings of the 3rd
International Conference on Virtual Execution Environments (VEE ’07),
San Diego, CA, 2007, pp. 126–136.

[31] H. Balakrishnan, S. Seshan, E. Amir, and R. H. Katz, “Improving
TCP/IP performance over wireless networks,” inProceedings of the 1st
Annual International Conference on Mobile Computing and Networking
(MobiCom ’95), Berkeley, CA, 1995.

