
5
F I F T H

E D I T I O N

Mark E. Russinovich
and David A. Solomon

with Alex Ionescu

Windows®

Internals
Covering Windows Server® 2008
and Windows Vista®

Foreword by Ben Fathi
Corporate Vice President, Windows Core Development, Microsoft Corporation

PUBLISHED BY
Microsoft Press
A Division of Microsoft Corporation
One Microsoft Way
Redmond, Washington 98052-6399

Copyright © 2009 by David Solomon (all); Mark Russinovich (all)

All rights reserved. No part of the contents of this book may be reproduced or transmitted in any form or by any means
without the written permission of the publisher.

Library of Congress Control Number: 2009927697

Printed and bound in the United States of America.

1 2 3 4 5 6 7 8 9 QWT 4 3 2 1 0 9

Distributed in Canada by H.B. Fenn and Company Ltd.

A CIP catalogue record for this book is available from the British Library.

Microsoft Press books are available through booksellers and distributors worldwide. For further infor mation about
international editions, contact your local Microsoft Corporation office or contact Microsoft Press International directly at
fax (425) 936-7329. Visit our Web site at www.microsoft.com/mspress. Send comments to mspinput@microsoft.com.

Microsoft, Microsoft Press, Access, Active Directory, ActiveSync, ActiveX, Aero, Authenticode, BitLocker, DirectX,
Excel, Hyper-V, Internet Explorer, MS, MSDN, MS-DOS, Outlook, PowerPoint, ReadyBoost, ReadyDrive, SideShow, SQL
Server, SuperFetch, Visual Basic, Visual C++, Visual Studio, Win32, Windows, Windows Media, Windows NT, Windows
Server, Windows Vista, and Xbox are either registered trademarks or trademarks of the Microsoft group of companies.
Other product and company names mentioned herein may be the trademarks of their respective owners.

The example companies, organizations, products, domain names, e-mail addresses, logos, people, places, and events
depicted herein are fictitious. No association with any real company, organization, product, domain name, e-mail address,
logo, person, place, or event is intended or should be inferred.

This book expresses the author’s views and opinions. The information contained in this book is provided without any
express, statutory, or implied warranties. Neither the authors, Microsoft Corporation, nor its resellers, or distributors will
be held liable for any damages caused or alleged to be caused either directly or indirectly by this book.

Acquisitions Editor: Ben Ryan
Developmental Editor: Devon Musgrave
Project Editor: John Pierce
Editorial Production: Curtis Philips, Publishing.com
Cover: Tom Draper Design

Body Part No. X14-95072

To Jim Allchin, our OS and rock star

 v

Table of Contents

Foreword .xix

Acknowledgments .xxi

Introduction .xxiii

 1 Concepts and Tools. 1

Windows Operating System Versions . 1

Foundation Concepts and Terms. 2

Windows API. 2

Services, Functions, and Routines . 4

Processes, Threads, and Jobs . 5

Virtual Memory . 14

Kernel Mode vs. User Mode. 16

Terminal Services and Multiple Sessions . 19

Objects and Handles . 21

Security . 22

Registry . 23

Unicode . 23

Digging into Windows Internals . 24

Reliability and Performance Monitor . 25

Kernel Debugging . 26

Windows Software Development Kit . 31

Windows Driver Kit . 31

Sysinternals Tools . 32

Conclusion . 32

www.microsoft.com/learning/booksurvey/

What do you think of this book? We want to hear from you!

vi Table of Contents

 2 System Architecture . 33

Requirements and Design Goals . 33

Operating System Model . 34

Architecture Overview. 35

Portability . 38

Symmetric Multiprocessing . 39

Scalability . 43

Differences Between Client and Server Versions . 43

Checked Build. 47

Key System Components . 49

Environment Subsystems and Subsystem DLLs . 50

Ntdll.dll . 57

Executive . 58

Kernel . 61

Hardware Abstraction Layer. 65

Device Drivers. 68

System Processes . 74

Conclusion . 83

 3 System Mechanisms . 85

Trap Dispatching. 85

Interrupt Dispatching . 87

Exception Dispatching. 114

System Service Dispatching . 125

Object Manager . 133

Executive Objects. 136

Object Structure. 138

Synchronization . 170

High-IRQL Synchronization . 172

Low-IRQL Synchronization . 177

System Worker Threads. 198

Windows Global Flags . 200

Advanced Local Procedure Calls (ALPCs) . 202

Kernel Event Tracing . 207

Wow64 . 211

Wow64 Process Address Space Layout . 211

System Calls . 212

Exception Dispatching. 212

 Table of Contents vii

User Callbacks. 212

File System Redirection. 212

Registry Redirection and Reflection . 213

I/O Control Requests . 214

16-Bit Installer Applications . 215

Printing . 215

Restrictions . 215

User-Mode Debugging . 216

Kernel Support . 216

Native Support . 217

Windows Subsystem Support . 219

Image Loader . 220

Early Process Initialization . 222

Loaded Module Database . 223

Import Parsing . 226

Post Import Process Initialization . 227

Hypervisor (Hyper-V) . 228

Partitions . 230

Root Partition . 230

Child Partitions . 232

Hardware Emulation and Support . 234

Kernel Transaction Manager . 240

Hotpatch Support . 242

Kernel Patch Protection. 244

Code Integrity. 246

Conclusion . 248

 4 Management Mechanisms . 249

The Registry . 249

Viewing and Changing the Registry . 249

Registry Usage . 250

Registry Data Types . 251

Registry Logical Structure. 252

Transactional Registry (TxR) . 260

Monitoring Registry Activity . 262

Registry Internals . 266

Services . 281

Service Applications . 282

The Service Control Manager . 300

viii Table of Contents

Service Startup . 303

Startup Errors . 307

Accepting the Boot and Last Known Good . 308

Service Failures . 310

Service Shutdown . 311

Shared Service Processes . 313

Service Tags. 316

Service Control Programs. 317

Windows Management Instrumentation . 318

Providers . 319

The Common Information Model and the Managed Object
Format Language. 320

Class Association . 325

WMI Implementation . 327

WMI Security . 329

Windows Diagnostic Infrastructure. 329

WDI Instrumentation. 330

Diagnostic Policy Service . 330

Diagnostic Functionality . 332

Conclusion . 333

 5 Processes, Threads, and Jobs. 335

Process Internals. 335

Data Structures. 335

Kernel Variables . 342

Performance Counters . 343

Relevant Functions. .344

Protected Processes . 346

Flow of CreateProcess . 348

Stage 1: Converting and Validating Parameters and Flags. 350

Stage 2: Opening the Image to Be Executed . 351

Stage 3: Creating the Windows Executive Process Object
(PspAllocateProcess). 354

Stage 4: Creating the Initial Thread and Its Stack and Context 359

Stage 5: Performing Windows Subsystem–Specific
Post-Initialization . 360

Stage 6: Starting Execution of the Initial Thread 362

Stage 7: Performing Process Initialization in the Context of the
New Process . 363

 Table of Contents ix

Thread Internals . 370

Data Structures. 370

Kernel Variables . 379

Performance Counters . 379

Relevant Functions. 380

Birth of a Thread . 380

Examining Thread Activity . 381

Limitations on Protected Process Threads. 384

Worker Factories (Thread Pools) . 386

Thread Scheduling . 391

Overview of Windows Scheduling . 391

Priority Levels . 393

Windows Scheduling APIs . 395

Relevant Tools. 396

Real-Time Priorities . 399

Thread States .400

Dispatcher Database .404

Quantum . 406

Scheduling Scenarios. 413

Context Switching . 418

Idle Thread . 418

Priority Boosts . 419

Multiprocessor Systems . 434

Multiprocessor Thread-Scheduling Algorithms . 442

CPU Rate Limits .444

Job Objects . 445

Conclusion . 450

 6 Security. 451

Security Ratings . 451

Trusted Computer System Evaluation Criteria. 451

The Common Criteria . 453

Security System Components . 454

Protecting Objects . 458

Access Checks . 459

Security Descriptors and Access Control . 484

Account Rights and Privileges . 501

Account Rights . 502

x Table of Contents

Privileges . 503

Super Privileges . 509

Security Auditing . 511

Logon . 513

Winlogon Initialization . 515

User Logon Steps . 516

User Account Control . 520

Virtualization . 521

Elevation . 528

Software Restriction Policies . 533

Conclusion . 535

 7 I/O System . 537

I/O System Components . 537

The I/O Manager . 539

Typical I/O Processing . 540

Device Drivers . 541

Types of Device Drivers. 541

Structure of a Driver . 547

Driver Objects and Device Objects . 550

Opening Devices . 555

I/O Processing. 562

Types of I/O. 563

I/O Request to a Single-Layered Driver . 572

I/O Requests to Layered Drivers . 578

I/O Cancellation . 587

I/O Completion Ports . 592

I/O Prioritization. 598

Driver Verifier . 604

Kernel-Mode Driver Framework (KMDF) . 606

Structure and Operation of a KMDF Driver. 607

KMDF Data Model . 608

KMDF I/O Model . 612

User-Mode Driver Framework (UMDF) . 616

The Plug and Play (PnP) Manager . 619

Level of Plug and Play Support . 620

Driver Support for Plug and Play . 621

 Table of Contents xi

Driver Loading, Initialization, and Installation . 623

Driver Installation. 632

The Power Manager. 636

Power Manager Operation. 638

Driver Power Operation . 639

Driver and Application Control of Device Power 643

Conclusion .644

 8 Storage Management. 645

Storage Terminology . 645

Disk Drivers .646

Winload .646

Disk Class, Port, and Miniport Drivers . 647

Disk Device Objects . 650

Partition Manager . 651

Volume Management . 652

Basic Disks . 653

Dynamic Disks . 656

Multipartition Volume Management . 661

The Volume Namespace. 667

Volume I/O Operations. 674

Virtual Disk Service . 675

BitLocker Drive Encryption . 677

BitLocker Architecture. 677

Encryption Keys . 679

Trusted Platform Module (TPM) . 681

BitLocker Boot Process . 683

BitLocker Key Recovery . 684

Full Volume Encryption Driver . 686

BitLocker Management. 687

Volume Shadow Copy Service . 688

Shadow Copies . 688

VSS Architecture. 688

VSS Operation . 689

Uses in Windows . 692

Conclusion . 698

xii Table of Contents

 9 Memory Management . 699

Introduction to the Memory Manager. 699

Memory Manager Components . 700

Internal Synchronization. 701

Examining Memory Usage . 701

Services the Memory Manager Provides . 704

Large and Small Pages . 705

Reserving and Committing Pages. 706

Locking Memory . 707

Allocation Granularity . 708

Shared Memory and Mapped Files. 709

Protecting Memory . 711

No Execute Page Protection . 713

Copy-on-Write . 718

Address Windowing Extensions . 719

Kernel-Mode Heaps (System Memory Pools) . 721

Pool Sizes. 722

Monitoring Pool Usage. 724

Look-Aside Lists . 728

Heap Manager . 729

Types of Heaps . 730

Heap Manager Structure . 731

Heap Synchronization . 732

The Low Fragmentation Heap . 732

Heap Security Features . 733

Heap Debugging Features . 734

Pageheap. 735

Virtual Address Space Layouts . 736

x86 Address Space Layouts . 737

x86 System Address Space Layout . 740

x86 Session Space . 740

System Page Table Entries . 744

64-Bit Address Space Layouts . 745

64-Bit Virtual Addressing Limitations. 749

Dynamic System Virtual Address Space Management 751

System Virtual Address Space Quotas . 756

User Address Space Layout . 757

 Table of Contents xiii

Address Translation . 761

x86 Virtual Address Translation . 762

Translation Look-Aside Buffer . 768

Physical Address Extension (PAE) . 769

IA64 Virtual Address Translation . 772

x64 Virtual Address Translation . 773

Page Fault Handling. 774

Invalid PTEs . 775

Prototype PTEs . 776

In-Paging I/O . 778

Collided Page Faults . 779

Clustered Page Faults . 779

Page Files. 780

Stacks . 784

User Stacks . 785

Kernel Stacks. 786

DPC Stack . 787

Virtual Address Descriptors . 787

Process VADs . 788

Rotate VADs . 790

NUMA . 791

Section Objects. 792

Driver Verifier . 799

Page Frame Number Database . 803

Page List Dynamics . 807

Page Priority . 809

Modified Page Writer . 812

PFN Data Structures . 814

Physical Memory Limits. 818

Windows Client Memory Limits . 819

Working Sets . 822

Demand Paging . 823

Logical Prefetcher . 823

Placement Policy . 827

Working Set Management . 828

Balance Set Manager and Swapper . 831

System Working Set. 832

Memory Notification Events . 833

xiv Table of Contents

Proactive Memory Management (SuperFetch) . 836

Components . 836

Tracing and Logging . 838

Scenarios .840

Page Priority and Rebalancing .840

Robust Performance . 843

ReadyBoost .844

ReadyDrive . 845

Conclusion . 847

 10 Cache Manager . 849

Key Features of the Cache Manager . 849

Single, Centralized System Cache . 850

The Memory Manager . 850

Cache Coherency . 850

Virtual Block Caching . 852

Stream-Based Caching . 852

Recoverable File System Support . 853

Cache Virtual Memory Management . 854

Cache Size . 855

Cache Virtual Size . 855

Cache Working Set Size . 856

Cache Physical Size . 858

Cache Data Structures . 859

Systemwide Cache Data Structures. 860

Per-File Cache Data Structures . 862

File System Interfaces . 868

Copying to and from the Cache . 869

Caching with the Mapping and Pinning Interfaces 870

Caching with the Direct Memory Access Interfaces 872

Fast I/O. 873

Read Ahead and Write Behind. 875

Intelligent Read-Ahead . 875

Write-Back Caching and Lazy Writing . 877

Write Throttling . 885

System Threads. 886

Conclusion . 887

 Table of Contents xv

 11 File Systems . 889

Windows File System Formats . 890

CDFS . 890

UDF. 891

FAT12, FAT16, and FAT32 . 891

exFAT . 894

NTFS . 895

File System Driver Architecture . 895

Local FSDs . 896

Remote FSDs. 897

File System Operation . 901

File System Filter Drivers. 907

Troubleshooting File System Problems. 908

Process Monitor Basic vs. Advanced Modes . 908

Process Monitor Troubleshooting Techniques . 909

Common Log File System . 910

NTFS Design Goals and Features . 918

High-End File System Requirements. 918

Advanced Features of NTFS . 920

NTFS File System Driver. 934

NTFS On-Disk Structure . 937

Volumes . 937

Clusters . 937

Master File Table . 938

File Reference Numbers . 942

File Records . 942

File Names. 945

Resident and Nonresident Attributes . 948

Data Compression and Sparse Files . 951

The Change Journal File . 956

Indexing. 960

Object IDs . 961

Quota Tracking. 962

Consolidated Security . 963

Reparse Points . 965

Transaction Support . 965

xvi Table of Contents

NTFS Recovery Support . 974

Design . 975

Metadata Logging . 976

Recovery . 981

NTFS Bad-Cluster Recovery . 985

Self-Healing. 989

Encrypting File System Security . 990

Encrypting a File for the First Time . 993

The Decryption Process . 998

Backing Up Encrypted Files . 999

Conclusion .1000

 12 Networking . 1001

Windows Networking Architecture. 1001

The OSI Reference Model. 1001

Windows Networking Components .1003

Networking APIs. .1006

Windows Sockets .1006

Winsock Kernel (WSK). 1012

Remote Procedure Call . 1014

Web Access APIs. 1018

Named Pipes and Mailslots . 1021

NetBIOS . 1027

Other Networking APIs. 1030

Multiple Redirector Support. 1033

Multiple Provider Router . 1034

Multiple UNC Provider . 1037

Name Resolution . 1039

Domain Name System. 1039

Windows Internet Name Service. 1039

Peer Name Resolution Protocol . 1039

Location and Topology . 1042

Network Location Awareness (NLA) . 1042

Link-Layer Topology Discovery (LLTD) . 1043

Protocol Drivers .1044

Windows Filtering Platform (WFP) . 1047

NDIS Drivers . 1053

Variations on the NDIS Miniport . 1057

Connection-Oriented NDIS . 1057

 Table of Contents xvii

Remote NDIS .1060

QoS. .1062

Binding. .1064

Layered Network Services .1066

Remote Access .1066

Active Directory .1066

Network Load Balancing .1068

Distributed File System and DFS Replication. 1069

Conclusion . 1071

 13 Startup and Shutdown . 1073

Boot Process . 1073

BIOS Preboot . 1073

The BIOS Boot Sector and Bootmgr . 1077

The EFI Boot Process .1086

Initializing the Kernel and Executive Subsystems1088

Smss, Csrss, and Wininit .1094

ReadyBoot. .1099

Images That Start Automatically .1100

Troubleshooting Boot and Startup Problems . 1101

Last Known Good. 1101

Safe Mode . 1101

Windows Recovery Environment (WinRE) . 1106

Solving Common Boot Problems . 1109

Shutdown. 1115

Conclusion . 1118

 14 Crash Dump Analysis . 1119

Why Does Windows Crash? . 1119

The Blue Screen . 1120

Troubleshooting Crashes. 1124

Crash Dump Files . 1125

Crash Dump Generation . 1130

Windows Error Reporting . 1131

Online Crash Analysis . 1133

Basic Crash Dump Analysis .1134

Notmyfault .1134

Basic Crash Dump Analysis. 1135

Verbose Analysis . 1137

xviii Table of Contents

Using Crash Troubleshooting Tools. 1139

Buffer Overrun, Memory Corruptions, and Special Pool 1140

Code Overwrite and System Code Write Protection 1143

Advanced Crash Dump Analysis .1144

Stack Trashes. 1145

Hung or Unresponsive Systems. 1147

When There Is No Crash Dump. 1150

Conclusion . 1152

Glossary . 1153

Index . 1185

www.microsoft.com/learning/booksurvey/

What do you think of this book? We want to hear from you!

 xix

Foreword

It’s both a pleasure and an honor for me to write the foreword for this latest edition of

Windows Internals. Many significant changes have occurred in Windows since the last edition

of the book, and David, Mark, and Alex have done an excellent job of updating the book to

address them. Whether you are new to Windows internals or an old hand at kernel develop-

ment, you will find lots of detailed analysis and examples to help improve your understand-

ing of the core mechanisms of Windows as well as the general principles of operating system

design.

Today, Windows enjoys unprecedented breadth and depth in the computing world. Variants

of the original Windows NT design run on everything from Xbox game consoles to desktop

and laptop computers to clusters of servers with dozens of processors and petabytes of stor-

age. Advances such as hypervisors, 64-bit computing, multicore and many-core processor

designs, flash-based storage, and wireless and peer-to-peer networking continue to provide

plenty of interesting and innovative areas for operating system design.

One such area of innovation is security. Over the past decade, the entire computing indus-

try—and Microsoft in particular—has been confronted with huge new threats, and security

has become the top issue facing many of our customers. Attacks such as Blaster and Sasser

threatened to bring the entire Internet to its knees, and Windows was at the eye of the hur-

ricane. It was obvious to us that we could no longer afford to do business as usual, as many

of the usability and simplicity features designed into Windows were being used to attack it

for nefarious reasons. At first the hackers were teenagers trying to gain notoriety by breaking

into systems or adding graffiti to a corporate Web site, but pretty soon the attacks intensified

and went underground. The hackers became more sophisticated and evaded inspection. You

rarely see headlines about viruses and worms these days, but make no mistake—botnets and

identity theft are big business today, as are industrial and government espionage through

targeted attacks.

In January 2002, Bill Gates sent his now-famous “Trustworthy Computing” memorandum to

all Microsoft employees. It was a call to action that resonated well and charted the course

for how we would build software and conduct business over the coming years. Nearly the

entire Windows engineering team was diverted to work on Windows XP SP2, a service pack

dedicated almost entirely to improving the security of the operating system. The Security

Development Lifecycle (SDL) was developed and applied to all Microsoft products, with

particular emphasis on Windows Vista as the first version of the operating system designed

from the ground up to be secure. SDL specifies strict guidelines and processes for secure

software development. Sophisticated tools have been developed to scan everything from

source code to system binaries to network protocols for common security vulnerabilities.

Every time a new security vulnerability is discovered, it is analyzed, and mitigations are devel-

oped to address that potential attack vector. Windows Vista has now been in the market for

xx Foreword

two years, and it is by far the most secure version of Windows. Some industry analysts have

pointed out that it is, in fact, the most secure general purpose operating system shipping

today.

The Windows team has continued to innovate over the past few years. Windows XP, Windows

Server 2003, Windows Server 2003 R2, Windows XP SP2, Windows Vista, Windows Server

2008, and Hyper-V are all major accomplishments and great successes—as well as great addi-

tions to the Windows family of products.

Frankly, I can’t think of a more exciting and challenging topic. Nor can I think of a more

authoritative and well-written book. David, Mark, and Alex have done a thorough job of dis-

secting the Windows architecture and providing diagnostic tools for hands-on learning. I

hope you enjoy reading and learning about Windows as much as we all enjoy working on it.

Ben Fathi
Corporate Vice President, Windows Core Development

Microsoft Corporation

 xxi

Acknowledgments

We dedicate this edition to Jim Allchin, our executive sponsor and champion before he

retired from Microsoft. Jim supported our book work on this and earlier editions and was

instrumental in bringing Mark Russinovich to Microsoft. In addition to shepherding Windows

Vista out the door, Jim also oversaw the delivery of Windows 2000, Windows XP, and

Windows Server 2003.

Each edition of this book has to acknowledge Dave Cutler, Senior Technical Fellow and the

original architect of Windows NT. Dave originally approved David Solomon’s source code

access and has been supportive of his work to explain the internals of Windows through his

training business as well as during the writing of the editions of this book.

We also thank three developers at Microsoft for contributing content that was incorporated

into this edition:

Christian Allred, who wrote detailed descriptions on transactional NTFS (TxF) internals,

data structures, and behaviors

Stone Cong, who wrote content and created diagrams about the Common Log File

System (CLFS)

Adrian Marinescu, who updated his heap manager section in the memory manage-

ment chapter

This book wouldn’t contain the depth of technical detail or the level of accuracy it has with-

out the input, and support of key members of the Windows development team. We want to

thank the following people, who provided technical review and input to the book:

Dmitry Anipko Kwan Hyun Ravi Mumulla Jon Schwartz

Eugene Bak Mehmet Iyigun Adi Oltean Valerie See

Karlito Bonnevie Philippe Joubert Vince Orgovan Matt Setzer

Jon Cargille Kwan Hyun Kim Bernard Ourghanlian Andrey Shedel

Dean DeWhitt Kinshuman Kinshumann Alexey Pakhunov Neeraj Singh

Apurva Doshi Alex Kirshenbaum Milos Petrbok Vikram Singh

Joseph East Norbert Kusters Daniel Pravat Paul Sliwowicz

Tahsin Erdogan Jeff Lambert Ravi Pudipeddi John Stephens

Cenk Ergan Paul Leach Melur Raghuraman Deepu Thomas

Osman Ertugay Scott Lee Ramu Ramanathan J. R. Tipton

Tom Fout Mark Lloyd Vlad Sadovsky Davis Walker

Nar Ganapathy Karan Mehra Dragos Sambotin Brad Waters

Robin Giese Derek Moore Jamie Schwartz Bruce Worthington

xxii Acknowledgments

Thanks also to Daniel Pearson (who teaches Windows internals for Dave Solomon) for his

review and input.

Others might have contributed by answering questions in the hallway or cafeteria or by pro-

viding technical material—if we missed you, please forgive us!

The authors would like to thank Ilfak Guilfanov of Hex-Rays (www.hex-rays.com) for the IDA

Pro Advanced and Hex-Rays licenses for Alex Ionescu for his use in speeding his reverse

engineering of the Windows kernel. Alex chose not to have Windows source code access (as

did Mark Russinovich before he joined Microsoft) to research the information for his work on

this book, and these tools greatly facilitated his work. IDA’s features turn reverse engineer-

ing into a powerful tool for understanding Windows internals. Combined with the Hex-Rays

Decompiler, this analysis becomes even faster and more refined, as C code is directly pre-

sented instead of assembler, including all the right types.

Thanks also to Matt Ginzton of VMware, who arranged for Alex and David to receive VMware

Workstation to use in their research for the book. VMware Workstation was used instead of

Microsoft Virtual PC because of its support for 64-bit guests and multiple snapshots with

nonpersisent disks. (These features are now supported by Hyper-V, Microsoft’s new server

virtualization offering, but at the time of writing, this support was not available).

Thanks to Mike Vance of AMD for providing Dave Solomon’s AMD64 laptop for use in his

book research and live classes.

Finally, we want to thank the team at Microsoft Press who helped turn this book from idea

into reality:

Ben Ryan (acquisitions editor at Microsoft Press) for shepherding another edition of this

great book

Kathleen Atkins (project editor) and Devon Musgrave (developmental editor) for

launching and overseeing the project

Andrea Fox (proofreader), Curtis Philips (project and production manager), and John

Pierce (project editor and copyeditor) for laboriously going through all our chapters to

tighten up text, find inconsistencies, and keep the manuscript to the high standards of

Microsoft Press

Alex Ionescu, Mark Russinovich, and David Solomon
May 2009

 xxiii

Introduction

Windows Internals, Fifth Edition is intended for advanced computer professionals (both devel-

opers and system administrators) who want to understand how the core components of

the Windows Vista and Windows Server 2008 operating systems work internally. With this

knowledge, developers can better comprehend the rationale behind design choices when

building applications specific to the Windows platform. Such knowledge can also help devel-

opers debug complex problems. System administrators can benefit from this information as

well, because understanding how the operating system works “under the covers” facilitates

understanding the performance behavior of the system and makes troubleshooting system

problems much easier when things go wrong. After reading this book, you should have a

better understanding of how Windows works and why it behaves as it does.

Structure of the Book

The first two chapters (“Concepts and Tools” and “System Architecture”) lay the foundation

with definitions and explanations of terms and concepts used throughout the rest of the

book. The next two chapters—“System Mechanisms” and “Management Mechanisms”—

describe key underlying mechanisms in the system. The next eight chapters explain the core

components of the operating system: processes, threads, and jobs; security; the I/O system;

storage management; memory management; the cache manager; file systems; and network-

ing. The last two chapters cover startup and shutdown process and crash dump analysis.

History of the Book

This is the fifth edition of a book that was originally called Inside Windows NT (Microsoft

Press, 1992), written by Helen Custer (prior to the initial release of Microsoft Windows NT 3.1).

Inside Windows NT was the first book ever published about Windows NT and provided key

insights into the architecture and design of the system. Inside Windows NT, Second Edition

(Microsoft Press, 1998) was written by David Solomon. It updated the original book to cover

Windows NT 4.0 and had a greatly increased level of technical depth. Inside Windows 2000,
Third Edition (Microsoft Press, 2000) was authored by David Solomon and Mark Russinovich.

It added many new topics, such as startup and shutdown, service internals, registry inter-

nals, file system drivers, and networking. It also covered kernel changes in Windows 2000,

such as the Windows Driver Model (WDM), Plug and Play, power management, Windows

Management Instrumentation (WMI), encryption, the job object, and Terminal Services.

Windows Internals, Fourth Edition was the Windows XP and Windows Server 2003 update

xxiv Introduction

and added more content focused on helping IT professionals make use of their knowledge of

Windows internals, such as using key tools from Windows Sysinternals (www.microsoft.com/
technet/sysinternals) and analyzing crash dumps.

Fifth Edition Changes

This latest edition has been updated to cover the kernel changes made in Windows Vista

and Windows Server 2008. Hands-on experiments have been updated to reflect changes

in tools, and newly added experiments use tools not available when the fourth edition was

written. Additionally, content has been added to cover mechanisms that were not previously

described, such as the image loader and user-mode debugging facility, and information

about previously covered subjects has been expanded as well.

Hands-On Experiments

Even without access to the Windows source code, you can glean much about Windows

internals from tools such as the kernel debugger and tools from Sysinternals and Winsider

Seminars & Solutions (www.winsiderss.com). When a tool can be used to expose or demon-

strate some aspect of the internal behavior of Windows, the steps for trying the tool yourself

are listed in “Experiment” boxes. These appear throughout the book, and we encourage you

to try these as you’re reading—seeing visible proof of how Windows works internally will

make much more of an impression on you than just reading about it will.

Topics Not Covered

Windows is a large and complex operating system. This book doesn’t cover everything rele-

vant to Windows internals but instead focuses on the base system components. For example,

this book doesn’t describe COM+, the Windows distributed object-oriented programming

infrastructure, or the .NET Framework, the foundation of managed code applications.

Because this is an internals book and not a user, programming, or system administration

book, it doesn’t describe how to use, program, or configure Windows.

A Warning and a Caveat

Because this book describes undocumented behavior of the internal architecture and opera-

tion of the Windows operating system (such as internal kernel structures and functions), this

 Introduction xxv

content is subject to change between releases. (External interfaces, such as the Windows API,

are not subject to incompatible changes.)

By “subject to change,” we don’t necessarily mean that details described in this book will
change between releases, but you can’t count on them not changing. Any software that uses

these undocumented interfaces might not work on future releases of Windows. Even worse,

software that runs in kernel mode (such as device drivers) and uses these undocumented

interfaces might experience a system crash when running on a newer release of Windows.

Find Additional Content Online

As new or updated material becomes available that complements this book, it will be posted

online on the Microsoft Press Online Developer Tools Web site. The type of material you

might find includes updates to book content, articles, links to companion content, errata,

sample chapters, and more. This Web content is available at www.microsoft.com/learning/
books/online/developer and is updated periodically.

Support

Every effort has been made to ensure the accuracy of this book. Should you run into any

problems or issues, please refer to the sources listed below.

From the Authors

This book isn’t perfect. No doubt it contains some inaccuracies, or possibly we’ve omitted

some topics we should have covered. If you find anything you think is incorrect, or if you

believe we should have included material that isn’t here, please feel free to send e-mail to

winint@solsem.com. Updates and corrections will be posted on the Web site http://technet.
microsoft.com/en-us/sysinternals/bb963901.aspx.

From Microsoft Press

Microsoft Press provides corrections for books through the World Wide Web at the following

address:

www.microsoft.com/mspress/support

xxvi Introduction

Questions and Comments

In addition to sending feedback directly to the authors, if you have comments, questions, or

ideas regarding the presentation or use of this book, you can send them to Microsoft using

either of the following methods:

Postal mail:

Microsoft Press
Attn: Windows Internals Editor
One Microsoft Way
Redmond, WA 98052-6399

E-mail:

mspinput@microsoft.com

Please note that product support isn’t offered through these mail addresses. For support

information, visit Microsoft’s Web site at http://support.microsoft.com/.

 1

Chapter 1

Concepts and Tools

In this chapter, we’ll introduce the key Microsoft Windows operating system concepts and

terms we’ll be using throughout this book, such as the Windows API, processes, threads, vir-

tual memory, kernel mode and user mode, objects, handles, security, and the registry. We’ll

also introduce the tools that you can use to explore Windows internals, such as the kernel

debugger, the Reliability and Performance Monitor, and key tools from Windows Sysinternals
(www.microsoft.com/technet/sysinternals). In addition, we’ll explain how you can use the

Windows Driver Kit (WDK) and the Windows Software Development Kit (SDK) as resources

for finding further information on Windows internals.

Be sure that you understand everything in this chapter—the remainder of the book is written

assuming that you do.

Windows Operating System Versions

This book covers the two most recent versions of the Microsoft Windows operating sys-

tem based on the Windows NT code base: Windows Vista (32-bit and 64-bit versions) and

Windows Server 2008 (32-bit and 64-bit versions). Unless specifically stated, the text applies

to all versions. As background information, Table 1-1 lists the releases of the Windows NT

code base, their internal version number, and the external product name.

TABLE 1-1 Windows Operating System Releases

Product Name Internal Version Number Release Date

Windows NT 3.1 3.1 July 1993

Windows NT 3.5 3.5 September 1994

Windows NT 3.51 3.51 May 1995

Windows NT 4.0 4.0 July 1996

Windows 2000 5.0 December 1999

Windows XP 5.1 August 2001

Windows Server 2003 5.2 March 2003

Windows Vista 6.0 (Build 6000) January 2007

Windows Server 2008 6.0 (Build 6001) March 2008

2 Windows Internals, Fifth Edition

Foundation Concepts and Terms

In the course of this book, we’ll be referring to some structures and concepts that might be

unfamiliar to some readers. In this section, we’ll define the terms we’ll be using throughout.

You should become familiar with them before proceeding to subsequent chapters.

Windows API

The Windows application programming interface (API) is the system programming inter-

face to the Windows operating system family. Prior to the introduction of 64-bit versions of

Windows XP and Windows Server 2003, the programming interface to the 32-bit versions of

the Windows operating systems was called the Win32 API, to distinguish it from the original

16-bit Windows API, which was the programming interface to the original 16-bit versions of

Windows. In this book, the term Windows API refers to both the 32-bit and 64-bit program-

ming interfaces to Windows Vista and Windows Server 2008.

Note The Windows API is described in the Windows Software Development Kit (SDK) documen-

tation. (See the section “Windows Software Development Kit” later in this chapter.) This docu-

mentation is available for free viewing online at www.msdn.microsoft.com. It is also included with

all subscription levels to the Microsoft Developer Network (MSDN), Microsoft’s support program

for developers. For more information, see www.msdn.microsoft.com. An excellent description of

how to program the Windows base API is the book Windows via C/C++, Fifth Edition by Jeffrey

Richter and Christophe Nasarre (Microsoft Press, 2007).

The Windows API consists of thousands of callable functions, which are divided into the fol-

lowing major categories:

Base Services

Component Services

User Interface Services

Graphics and Multimedia Services

Messaging and Collaboration

Networking

Web Services

This book focuses on the internals of the key base services, such as processes and threads,

memory management, I/O, and security.

 Chapter 1 Concepts and Tools 3

What About .NET?

The .NET Framework consists of a library of classes called the Framework Class Library

(FCL) and a Common Language Runtime (CLR) that provides a managed code execution

environment with features such as just-in-time compilation, type verification, garbage

collection, and code access security. By offering these features, the CLR provides a

development environment that improves programmer productivity and reduces com-

mon programming errors. For an excellent description of the .NET Framework and its

core architecture, see CLR via C#, Second Edition by Jeffrey Richter (Microsoft Press,

2006).

The CLR is implemented as a classic COM server whose code resides in a standard user-

mode Windows DLL. In fact, all components of the .NET Framework are implemented

as standard user-mode Windows DLLs layered over unmanaged Windows API func-

tions. (None of the .NET Framework runs in kernel mode.) Figure 1-1 illustrates the rela-

tionship between these components:

.NET Application
(Standard User-Mode EXEs)

Framework Class Library Assemblies
(Standard User-Mode DLLs)

CLR DLLs
(COM server)

Windows API DLLs

Windows Kernel

User mode
(managed code)

User mode
(unmanaged code)

Kernel mode

FIGURE 1-1 Relationship between .NET Framework components

History of the Win32 API

Interestingly, Win32 wasn’t slated to be the original programming interface to

Microsoft Windows NT. Because the Windows NT project started as a replacement for

OS/2 version 2, the primary programming interface was the 32-bit OS/2 Presentation

Manager API. A year into the project, however, Microsoft Windows 3.0 hit the mar-

ket and took off. As a result, Microsoft changed direction and made Windows NT the

future replacement for the Windows family of products as opposed to the replacement

for OS/2. It was at this juncture that the need to specify the Windows API arose—

before this, the Windows API existed only as a 16-bit interface.

4 Windows Internals, Fifth Edition

Although the Windows API would introduce many new functions that hadn’t been

available on Windows 3.1, Microsoft decided to make the new API compatible with the

16-bit Windows API function names, semantics, and use of data types whenever pos-

sible to ease the burden of porting existing 16-bit Windows applications to Windows

NT. So those of you who are looking at the Windows API for the first time and wonder-

ing why many function names and interfaces seem inconsistent should keep in mind

that one reason for the inconsistency was to ensure that the Windows API is compatible

with the old 16-bit Windows API.

Services, Functions, and Routines

Several terms in the Windows user and programming documentation have different mean-

ings in different contexts. For example, the word service can refer to a callable routine in the

operating system, a device driver, or a server process. The following list describes what cer-

tain terms mean in this book:

Windows API functions Documented, callable subroutines in the Windows API.

Examples include CreateProcess, CreateFile, and GetMessage.

Native system services (or executive system services) The undocumented, underly-

ing services in the operating system that are callable from user mode. For example,

NtCreateProcessEx is the internal system service the Windows CreateProcess func-

tion calls to create a new process. (For a definition of native functions, see the section

“System Service Dispatching” in Chapter 3.)

Kernel support functions (or routines) Subroutines inside the Windows operating

system that can be called only from kernel mode (defined later in this chapter). For

example, ExAllocatePoolWithTag is the routine that device drivers call to allocate mem-

ory from the Windows system heaps (called pools).

Windows services Processes started by the Windows service control manager.

(Although the registry defines Windows device drivers as “services,” we don’t refer to

them as such in this book.) For example, the Task Scheduler service runs in a user-mode

process that supports the at command (which is similar to the UNIX commands at or

cron).

DLLs (dynamic-link libraries) A set of callable subroutines linked together as a binary

file that can be dynamically loaded by applications that use the subroutines. Examples

include Msvcrt.dll (the C run-time library) and Kernel32.dll (one of the Windows API

subsystem libraries). Windows user-mode components and applications use DLLs

extensively. The advantage DLLs provide over static libraries is that applications can

share DLLs, and Windows ensures that there is only one in-memory copy of a DLL’s

code among the applications that are referencing it.

 Chapter 1 Concepts and Tools 5

Processes, Threads, and Jobs

Although programs and processes appear similar on the surface, they are fundamentally dif-

ferent. A program is a static sequence of instructions, whereas a process is a container for a

set of resources used when executing the instance of the program. At the highest level of

abstraction, a Windows process comprises the following:

A private virtual address space, which is a set of virtual memory addresses that the pro-

cess can use

An executable program, which defines initial code and data and is mapped into the

process’s virtual address space

A list of open handles to various system resources, such as semaphores, communication

ports, and files, that are accessible to all threads in the process

A security context called an access token that identifies the user, security groups, privi-

leges, User Access Control (UAC) virtualization state, session, and limited user account

state associated with the process

A unique identifier called a process ID (internally part of an identifier called a client ID)

At least one thread of execution (although an “empty” process is possible, it is not

useful)

Each process also points to its parent or creator process. However, if the parent exits, this

information is not updated. Therefore, it is possible for a process to point to a nonexistent

parent. This is not a problem, as nothing relies on this information being present. The follow-

ing experiment illustrates this case.

EXPERIMENT: Viewing the Process Tree

One unique attribute about a process that most tools don’t display is the parent or cre-

ator process ID. You can retrieve this value with the Performance Monitor (or program-

matically) by querying the Creating Process ID. The Tlist.exe tool (in the Debugging

Tools for Windows) can show the process tree by using the /t switch. Here’s an example

of output from tlist /t:

C:\>tlist /t

System Process (0)

System (4)

 smss.exe (480)

csrss.exe (548)

wininit.exe (612)

 services.exe (656)

 svchost.exe (848)

 svchost.exe (880)

 svchost.exe (924)

 svchost.exe (980)

 audiodg.exe (1040)

6 Windows Internals, Fifth Edition

 svchost.exe (1108)

 dwm.exe (123)

 svchost.exe (96)

 taskeng.exe (604)

 tasking.exe (1532)

 SLsvc.exe (1814)

 svchost.exe (2988)

 lsass.exe (672)

 lsm.exe (680)

csrss.exe (624)

winlogon.exe (824)

explorer.exe (724) Program Manager

 WINWORD.EXE (3512) WinInt5E_Chapter01.doc [Compatibility Mode] - Microsoft Word

 cmd.exe (3936) Command Prompt - tlist /t

 tlist.exe (1344)

The list indents each process to show its parent/child relationship. Processes whose par-

ents aren’t alive are left-justified (as is Explorer.exe in the preceding example) because

even if a grandparent process exists, there’s no way to find that relationship. Windows

maintains only the creator process ID, not a link back to the creator of the creator, and

so forth.

To demonstrate the fact that Windows doesn’t keep track of more than just the parent

process ID, follow these steps:

 1. Open a Command Prompt window.

 2. Type start cmd (which starts a second command prompt).

 3. Bring up Task Manager.

 4. Switch to the second command prompt.

 5. Type mspaint (which runs Microsoft Paint).

 6. Click the intermediate (second) Command Prompt window.

 7. Type exit. (Notice that Paint remains.)

 8. Switch to Task Manager.

 9. Click the Applications tab.

 10. Right-click on the Command Prompt task, and select Go To Process.

 11. Click on the Cmd.exe process highlighted in blue.

 12. Right-click on this process, and select End Process Tree.

 13. Click Yes in the Task Manager Warning message box.

The first Command Prompt window will disappear, but you should still see the Paint

window because it was the grandchild of the command prompt process you termi-

nated; and because the intermediate process (the parent of Paint) was terminated, there

was no link between the parent and the grandchild.

 Chapter 1 Concepts and Tools 7

A number of tools for viewing (and modifying) processes and process information are avail-

able. The following experiments illustrate the various views of process information you can

obtain with some of these tools. These tools are included within Windows itself and within

the Debugging Tools for Windows, the Windows SDK, and from Sysinternals. Many of these

tools show overlapping subsets of the core process and thread information, sometimes iden-

tified by different names.

Probably the most widely used tool to examine process activity is Task Manager. (Interest-

ingly, there is no such thing as a “task” in the Windows kernel, so Task Manager is really a tool

to manage processes.) The following experiment shows the difference between what Task

Manager lists as applications and processes.

EXPERIMENT: Viewing Process Information with Task Manager

The built-in Windows Task Manager provides a quick list of the processes running on

the system. You can start Task Manager in one of three ways: (1) press Ctrl+Shift+Esc, (2)

right-click on the taskbar and select Task Manager, or (3) press Ctrl+Alt+Delete and click

the Task Manager button. Once Task Manager has started, click the Processes tab to see

the list of running processes. Notice that processes are identified by the name of the

image of which they are an instance. Unlike some objects in Windows, processes can’t

be given global names. To display additional details, choose Select Columns from the

View menu and select additional columns to be added, as shown here:

Although what you see in the Task Manager Processes tab is clearly a list of processes,

what the Applications tab displays isn’t as obvious. The Applications tab lists the

top-level visible windows on all the desktops in the interactive window station. (By

default, there are two desktop objects—you can create more by using the Windows

CreateDesktop function.) The Status column indicates whether or not the thread that

8 Windows Internals, Fifth Edition

owns the window is in a Windows message wait state. “Running” means the thread

is waiting for windowing input; “Not Responding” means the thread isn’t waiting for

windowing input (for example, the thread might be running or waiting for I/O or some

Windows synchronization object).

From the Applications tab, you can match a task to the process that owns the thread

that owns the task window by right-clicking on the task name and choosing Go To

Process.

Process Explorer, from Sysinternals, shows more details about processes and threads than any

other available tool, which is why you will see it used in a number of experiments through-

out the book. The following are some of the unique things that Process Explorer shows or

enables:

Full path name for the image being executed

Process security token (list of groups and privileges, virtualization state, and session)

Highlighting to show changes in the process and thread list

List of services inside service-hosting processes, including display name and description

Processes that are part of a job and job details

 Chapter 1 Concepts and Tools 9

Processes running .NET applications and .NET-specific details (such as the list of app-

domains and CLR performance counters)

Start time for processes and threads

Complete list of memory-mapped files (not just DLLs)

Ability to suspend a process

Ability to kill an individual thread

Easy identification of which processes were consuming the most CPU time over a

period of time (The Reliability and Performance Monitor can display process CPU uti-

lization for a given set of processes, but it won’t automatically show processes created

after the performance monitoring session has started–only a manual trace in binary

output format can do that.)

Process Explorer also provides easy access to information in one place, such as:

Process tree (with ability to collapse parts of the tree)

Open handles in a process (including unnamed handles) without prior setup (The

Microsoft tools to show open handles require the setting of a systemwide flag and a

reboot before they can be used.)

List of DLLs (and memory-mapped files) in a process

Thread activity within a process

User-mode thread stacks (including mapping of addresses to names using the debug-

ging tools’ symbol engine)

Kernel-mode thread stacks for system threads (including mapping of addresses to

names using the debugging tools’ symbol engine)

Context switch delta (a better representation of CPU activity, as explained in Chapter 5)

Time stamp counter (an even better representation of precise CPU activity, as explained

in Chapter 5)

64-bit vs. 32-bit image type

Integrity level

Virtualization state

Kernel memory (paged and nonpaged pool) limits (other tools show only current size)

An introductory experiment using Process Explorer follows.

10 Windows Internals, Fifth Edition

EXPERIMENT: Viewing Process Details with Process Explorer

Download the latest version of Process Explorer from Sysinternals and run it. The first

time you run it, you will receive a message that symbols are not currently configured.

If properly configured, Process Explorer can access symbol information to display the

symbolic name of the thread start function and functions on its call stack (available by

double-clicking on a process and clicking on the Threads tab). This is useful for iden-

tifying what threads are doing within a process. To access symbols, you must have

the Debugging Tools for Windows installed (described later in this chapter). Then click

on Options, choose Configure Symbols, and fill in the appropriate symbols path. For

example:

In the preceding example, the on-demand symbol server is being used to access

 symbols and a copy of the symbol files is being stored on the local machine in the

 c:\symbols folder. For more information on configuring use of the symbol server, see

www.microsoft.com/whdc/devtools/debugging/debugstart.mspx.

When Process Explorer starts, it shows by default the process list on the top half and

the open handles for the currently selected process on the bottom half. It also shows

tooltips for four kinds of hosting processes:

The running services inside a service-hosting process (Svchost.exe) if you

hover your mouse over the name

The running COM object tasks part of a Taskeng.exe process

The target of a Rundll32.exe process (used for things such as Control Panel

items)

The COM object being hosted inside a Dllhost.exe process

 Chapter 1 Concepts and Tools 11

Here are a few steps to walk you through some basic capabilities of Process Explorer:

 1. Turn off the lower pane by deselecting View, Show Lower Pane. (The lower pane

can show open handles or mapped DLLs and memory-mapped files—these are

explored in Chapters 3 and 9.)

 2. Notice that processes hosting services are highlighted by default in pink. Your

own processes are highlighted in blue. (These colors can be configured.)

 3. Hover your mouse pointer over the image name for processes, and notice the full

path displayed by the tooltip.

 4. Click on View, Select Columns, and add the image path.

 5. Sort on the process column, and notice the tree view disappears. (You can either

display tree view or sort by any of the columns shown.) Click again to sort from Z

to A. Then click again, and the display returns to tree view.

 6. Deselect View, Show Processes From All Users to show only your processes.

 7. Go to Options, Difference Highlight Duration, and change the value to 5 seconds.

Then launch a new process (anything), and notice the new process highlighted in

green for 5 seconds. Exit this new process, and notice the process is highlighted in

red for 5 seconds before disappearing from the display. This can be useful to see

processes being created and exiting on your system.

 8. Finally, double-click on a process and explore the various tabs available from

the process properties display. (These will be referenced in various experiments

throughout the book where the information being shown is being explained.)

12 Windows Internals, Fifth Edition

A thread is the entity within a process that Windows schedules for execution. Without it, the

process’s program can’t run. A thread includes the following essential components:

The contents of a set of CPU registers representing the state of the processor.

Two stacks, one for the thread to use while executing in kernel mode and one for exe-

cuting in user mode.

A private storage area called thread-local storage (TLS) for use by subsystems, run-time

libraries, and DLLs.

A unique identifier called a thread ID (also internally called a client ID—process IDs and

thread IDs are generated out of the same namespace, so they never overlap).

Threads sometimes have their own security context that is often used by multithreaded

server applications that impersonate the security context of the clients that they serve.

The volatile registers, stacks, and private storage area are called the thread’s context. Because

this information is different for each machine architecture that Windows runs on, this struc-

ture, by necessity, is architecture-specific. The Windows GetThreadContext function provides

access to this architecture-specific information (called the CONTEXT block).

Fibers vs. Threads

Fibers allow an application to schedule its own “threads” of execution rather than rely

on the priority-based scheduling mechanism built into Windows. Fibers are often called

“lightweight” threads, and in terms of scheduling, they’re invisible to the kernel because

they’re implemented in user mode in Kernel32.dll. To use fibers, a call is first made to

the Windows ConvertThreadToFiber function. This function converts the thread to a

running fiber. Afterward, the newly converted fiber can create additional fibers with

the CreateFiber function. (Each fiber can have its own set of fibers.) Unlike a thread,

however, a fiber doesn’t begin execution until it’s manually selected through a call to

the SwitchToFiber function. The new fiber runs until it exits or until it calls SwitchToFiber,
again selecting another fiber to run. For more information, see the Windows SDK docu-

mentation on fiber functions.

Although threads have their own execution context, every thread within a process shares the

process’s virtual address space (in addition to the rest of the resources belonging to the pro-

cess), meaning that all the threads in a process can write to and read from each other’s mem-

ory. Threads cannot accidentally reference the address space of another process, however,

unless the other process makes available part of its private address space as a shared memory
section (called a file mapping object in the Windows API) or unless one process has the right

to open another process to use cross-process memory functions such as ReadProcessMemory

and WriteProcessMemory.

 Chapter 1 Concepts and Tools 13

In addition to a private address space and one or more threads, each process has a security

identification and a list of open handles to objects such as files, shared memory sections, or

one of the synchronization objects such as mutexes, events, or semaphores, as illustrated in

Figure 1-2.

Process
object

VAD VAD VAD

Virtual address descriptors (VADs)

Thread Thread Thread . . .

Access token

Access token

Object

Object

Handle table

FIGURE 1-2 A process and its resources

Every process has a security context that is stored in an object called an access token. The

process access token contains the security identification and credentials for the process. By

default, threads don’t have their own access token, but they can obtain one, thus allowing

individual threads to impersonate the security context of another process—including pro-

cesses running on a remote Windows system—without affecting other threads in the process.

(See Chapter 6 for more details on process and thread security.)

The virtual address descriptors (VADs) are data structures that the memory manager uses to

keep track of the virtual addresses the process is using. These data structures are described in

more depth in Chapter 9.

Windows provides an extension to the process model called a job. A job object’s main func-

tion is to allow groups of processes to be managed and manipulated as a unit. A job object

allows control of certain attributes and provides limits for the process or processes associated

with the job. It also records basic accounting information for all processes associated with the

job and for all processes that were associated with the job but have since terminated. In some

ways, the job object compensates for the lack of a structured process tree in Windows—yet

in many ways it is more powerful than a UNIX-style process tree.

You’ll find out much more about the internal structure of jobs, processes and threads,

the mechanics of process and thread creation, and the thread-scheduling algorithms in

Chapter 5.

14 Windows Internals, Fifth Edition

Virtual Memory

Windows implements a virtual memory system based on a flat (linear) address space that

provides each process with the illusion of having its own large, private address space. Virtual

memory provides a logical view of memory that might not correspond to its physical layout.

At run time, the memory manager, with assistance from hardware, translates, or maps, the

virtual addresses into physical addresses, where the data is actually stored. By controlling the

protection and mapping, the operating system can ensure that individual processes don’t

bump into one another or overwrite operating system data. Figure 1-3 illustrates three virtu-

ally contiguous pages mapped to three discontiguous pages in physical memory.

FIGURE 1-3 Mapping virtual memory to physical memory

Because most systems have much less physical memory than the total virtual memory in use

by the running processes, the memory manager transfers, or pages, some of the memory

contents to disk. Paging data to disk frees physical memory so that it can be used for other

processes or for the operating system itself. When a thread accesses a virtual address that has

been paged to disk, the virtual memory manager loads the information back into memory

from disk. Applications don’t have to be altered in any way to take advantage of paging

because hardware support enables the memory manager to page without the knowledge or

assistance of processes or threads.

The size of the virtual address space varies for each hardware platform. On 32-bit x86 sys-

tems, the total virtual address space has a theoretical maximum of 4 GB. By default, Windows

allocates half this address space (the lower half of the 4-GB virtual address space, from

x00000000 through x7FFFFFFF) to processes for their unique private storage and uses the

other half (the upper half, addresses x80000000 through xFFFFFFFF) for its own protected

operating system memory utilization. The mappings of the lower half change to reflect the

virtual address space of the currently executing process, but the mappings of the upper half

always consist of the operating system’s virtual memory. Windows Vista and Windows Server

2008 support boot-time options (the increaseuserva qualifier in the Boot Configuration Data-

base (BCD), described in Chapter 13) that give processes running specially marked programs

 Chapter 1 Concepts and Tools 15

(the large address space aware flag must be set in the header of the executable image) the

ability to use up to 3 GB of private address space (leaving 1 GB for the operating system).

This option allows applications such as database servers to keep larger portions of a database

in the process address space, thus reducing the need to map subset views of the database.

Figure 1-4 shows the two virtual address space layouts supported by 32-bit Windows.

Default

2 GB User
process space

3 GB User space

2 GB System
space

3 GB User
process space

1 GB System
space

FIGURE 1-4 Address space layouts for 32-bit Windows

Although 3 GB is better than 2 GB, it’s still not enough virtual address space to map very

large (multigigabyte) databases. To address this need on 32-bit systems, Windows provides

a mechanism called Address Windowing Extension (AWE), which allows a 32-bit application

to allocate up to 64 GB of physical memory and then map views, or windows, into its 2-GB

virtual address space. Although using AWE puts the burden of managing mappings of virtual

to physical memory on the programmer, it does address the need of being able to directly

access more physical memory than can be mapped at any one time in a 32-bit process

address space.

64-bit Windows provides a much larger address space for processes: 7152 GB on IA-64 sys-

tems and 8192 GB on x64 systems. Figure 1-5 shows a simplified view of the 64-bit system

address space layouts. (For a detailed description, see Chapter 9.) Note that these sizes do not

represent the architectural limits for these platforms. Sixty-four bits of address space is over

17 billion GB, but current 64-bit hardware limits this to smaller values. And Windows imple-

mentation limits in the current versions of 64-bit Windows reduce this to 8192 GB (8 TB).

x64

8192 GB
(8 TB) User

process space

IA-64

8192 GB
System space

7152 GB
(7 TB) User

process space

7152 GB
System space

FIGURE 1-5 Address space layouts for 64-bit Windows

Details of the implementation of the memory manager, including how address translation

works and how Windows manages physical memory, are described in Chapter 9.

16 Windows Internals, Fifth Edition

Kernel Mode vs. User Mode

To protect user applications from accessing and/or modifying critical operating system data,

Windows uses two processor access modes (even if the processor on which Windows is run-

ning supports more than two): user mode and kernel mode. User application code runs in user

mode, whereas operating system code (such as system services and device drivers) runs in

kernel mode. Kernel mode refers to a mode of execution in a processor that grants access to

all system memory and all CPU instructions. By providing the operating system software with

a higher privilege level than the application software has, the processor provides a necessary

foundation for operating system designers to ensure that a misbehaving application can’t

disrupt the stability of the system as a whole.

Note The architecture of the x86 and x64 processor defines four privilege levels, or rings, to

protect system code and data from being overwritten either inadvertently or maliciously by

code of lesser privilege. Windows uses privilege level 0 (or ring 0) for kernel mode and privilege

level 3 (or ring 3) for user mode. The reason Windows uses only two levels is that some hardware

architectures that were supported in the past (such as Compaq Alpha and Silicon Graphics MIPS)

implemented only two privilege levels.

Although each Windows process has its own private memory space, the kernel-mode operat-

ing system and device driver code share a single virtual address space. Each page in virtual

memory is tagged as to what access mode the processor must be in to read and/or write the

page. Pages in system space can be accessed only from kernel mode, whereas all pages in

the user address space are accessible from user mode. Read-only pages (such as those that

contain static data) are not writable from any mode. Additionally, on processors that support

no-execute memory protection, Windows marks pages containing data as nonexecutable,

thus preventing inadvertent code execution in data areas.

Thirty-two-bit Windows doesn’t provide any protection to private read/write system memory

being used by components running in kernel mode. In other words, once in kernel mode,

operating system and device driver code has complete access to system space memory and

can bypass Windows security to access objects. Because the bulk of the Windows operating

system code runs in kernel mode, it is vital that components that run in kernel mode be care-

fully designed and tested to ensure that they don’t violate system security and cause system

instability.

This lack of protection also emphasizes the need to take care when loading a third-party

device driver, because once in kernel mode the software has complete access to all operating

system data. This vulnerability was one of the reasons behind the driver-signing mechanism

introduced in Windows, which warns the user if an attempt is made to add an unauthorized

(unsigned) driver. (See Chapter 7 for more information on driver signing.) Also, a mecha-

nism called Driver Verifier helps device driver writers to find bugs (such as buffer overruns

or memory leaks) that can cause security or reliability issues. Driver Verifier is explained in

Chapter 9.

 Chapter 1 Concepts and Tools 17

Additionally, also on 64-bit versions of Windows, the kernel mode code signing (KMCS)

policy dictates that 64-bit device drivers must be signed with a cryptographic key assigned

by one of the major code certification authorities. Unlike 32-bit versions of Windows, the user

cannot explicitly force the installation of an unsigned driver, even as an administrator (unless

this restriction is disabled manually at boot time by pressing F8 and choosing the advanced

boot option Disable Driver Signature Enforcement).

As you’ll see in Chapter 2, user applications switch from user mode to kernel mode when

they make a system service call. For example, a Windows ReadFile function eventually needs

to call the internal Windows routine that actually handles reading data from a file. That

routine, because it accesses internal system data structures, must run in kernel mode. The

transition from user mode to kernel mode is accomplished by the use of a special processor

instruction that causes the processor to switch to kernel mode. The operating system traps

this instruction, notices that a system service is being requested, validates the arguments the

thread passed to the system function, and then executes the internal function. Before return-

ing control to the user thread, the processor mode is switched back to user mode. In this

way, the operating system protects itself and its data from perusal and modification by user

processes.

Note A transition from user mode to kernel mode (and back) does not affect thread scheduling

per se—a mode transition is not a context switch. Further details on system service dispatching

are included in Chapter 3.

Thus, it’s normal for a user thread to spend part of its time executing in user mode and part

in kernel mode. In fact, because the bulk of the graphics and windowing system also runs

in kernel mode, graphics-intensive applications spend more of their time in kernel mode

than in user mode. An easy way to test this is to run a graphics-intensive application such as

Microsoft Paint or Microsoft Chess Titans and watch the time split between user mode and

kernel mode using one of the performance counters listed in Table 1-2.

TABLE 1-2 Mode-Related Performance Counters

Object: Counter Function

Processor: % Privileged Time Percentage of time that an individual CPU (or all CPUs) has

run in kernel mode during a specified interval

Processor: % User Time Percentage of time that an individual CPU (or all CPUs) has

run in user mode during a specified interval

Process: % Privileged Time Percentage of time that the threads in a process have run in

kernel mode during a specified interval

Process: % User Time Percentage of time that the threads in a process have run in

user mode during a specified interval

Thread: % Privileged Time Percentage of time that a thread has run in kernel mode

during a specified interval

Thread: % User Time Percentage of time that a thread has run in user mode dur-

ing a specified interval

18 Windows Internals, Fifth Edition

EXPERIMENT: Kernel Mode vs. User Mode

You can use the Reliability and Performance Monitor to see how much time your sys-

tem spends executing in kernel mode vs. in user mode. Follow these steps:

 1. Run the Reliability and Performance Monitor by opening the Start menu and

selecting Programs/Administrative Tools/Reliability and Performance Monitor.

Choose the Performance Monitor view.

 2. Click the Add button (+) on the toolbar.

 3. With the Processor performance object selected, click the % Privileged Time

counter and, while holding down the Ctrl key, click the % User Time counter.

 4. Click Add, and then click Close.

 5. Move the mouse rapidly back and forth. You should notice, similar to the illus-

tration below, the % Privileged Time line going up when you move the mouse

around, reflecting the time spent servicing the mouse interrupts and the time

spent in the graphics part of the windowing system (which, as explained in

Chapter 2, runs primarily as a device driver in kernel mode).

 6. When you’re finished, just close the tool.

You can also quickly see this activity by using Task Manager. Just click the Performance

tab, and then select Show Kernel Times from the View menu. The CPU usage bar will

show total CPU usage in green and kernel-mode time in red.

 Chapter 1 Concepts and Tools 19

To see how the Reliability and Performance Monitor itself uses kernel time and

user time, run it again, but add the individual Process counters % User Time and %

Privileged Time for every process in the system:

 1. If it’s not already running, run the Reliability and Performance Monitor again. (If it

is already running, start with a blank display by clicking the New Counter Set but-

ton on the toolbar.)

 2. Click the Add button (+) on the toolbar.

 3. Change the performance object to Process.

 4. Select the % Privileged Time and % User Time counters.

 5. Select all processes in the Instance box (except the _Total process).

 6. Click Add, and then click Close.

 7. Move the mouse rapidly back and forth.

 8. Press Ctrl+H to turn on highlighting mode. This highlights the currently selected

counter in black.

 9. Scroll through the counters at the bottom of the display to identify the processes

whose threads were running when you moved the mouse, and note whether they

were running in user mode or kernel mode.

You should see the Reliability and Performance Monitor process (by looking in the

Instance column for the mmc process) kernel-mode and user-mode time go up when

you move the mouse because it is executing application code in user mode and calling

Windows functions that run in kernel mode. You’ll also notice kernel-mode thread

ac tivity in a process named csrss when you move the mouse. This activity occurs

because the Windows subsystem’s kernel-mode raw input thread, which handles key-

board and mouse input, is attached to this process. (See Chapter 2 for more informa-

tion about system threads.) Finally, the process named Idle that you see spending

nearly 100 percent of its time in kernel mode isn’t really a process—it’s a fake process

used to account for idle CPU cycles. As you can observe from the mode in which the

threads in the Idle process run, when Windows has nothing to do, it does it in kernel

mode.

Terminal Services and Multiple Sessions

Terminal Services refers to the support in Windows for multiple interactive user sessions

on a single system. With Windows Terminal Services, a remote user can establish a session

on another machine, log in, and run applications on the server. The server transmits the

20 Windows Internals, Fifth Edition

graphical user interface to the client, and the client transmits the user’s input back to the

server. (Similar to the X Window System, Windows Vista and Windows Server 2008 permit

running individual applications on a server system with the display remoted to the client

instead of remoting the entire desktop.)

The first session is considered the services session, or session zero, and contains system

service–hosting processes (explained in further detail in Chapter 4). The first login session at

the physical console of the machine is session one, and additional sessions can be created

through the use of the remote desktop connection program (Mstsc.exe) or through the use

of fast user switching (described later).

Windows Vista permits a single remote user to connect to the machine, but if someone is

logged in at the console, the workstation is locked (that is, someone can be using the sys-

tem either locally or remotely, but not at the same time). Windows Vista Home Premium

and Ultimate editions allow one interactive session and up to four Media Center Extender

sessions.

Windows Server 2008 supports two simultaneous remote connections. (This is to facilitate

remote management—for example, use of management tools that require being logged in

to the machine being managed.) Windows Server 2008 Standard and Datacenter editions can

support more than two sessions if appropriately licensed and configured as a terminal server.

Although Windows Vista editions other than Media Center do not support multiple remote

desktop connections, they do support multiple sessions created locally through a feature

called fast user switching. When a user chooses to disconnect their session instead of log

off (for example, by clicking Start, clicking Log Off, and choosing Switch User or by holding

down the Windows key and pressing L), the current session (that is, the processes running in

that session and all the session-wide data structures that describe the session) remains in the

system and the system returns to the main logon screen. If a new user logs in, a new session

is created.

For applications that want to be aware of running in a terminal server session, there are a

set of Windows APIs for programmatically detecting that as well as for controlling various

aspects of Terminal Services. (See the Windows SDK for details.)

Chapter 2 describes briefly how sessions are created and has some experiments showing how

to view session information with various tools, including the kernel debugger. The “Object

Manager” section in Chapter 3 describes how the system namespace for objects is instanti-

ated on a per-session basis and how applications that need to be aware of other instances

of themselves on the same system can accomplish that. Finally, Chapter 9 covers how the

memory manager sets up and manages session-wide data.

 Chapter 1 Concepts and Tools 21

Objects and Handles

In the Windows operating system, an object is a single, run-time instance of a statically

defined object type. An object type comprises a system-defined data type, functions that

operate on instances of the data type, and a set of object attributes. If you write Windows

applications, you might encounter process, thread, file, and event objects, to name just a few

examples. These objects are based on lower-level objects that Windows creates and man-

ages. In Windows, a process is an instance of the process object type, a file is an instance of

the file object type, and so on.

An object attribute is a field of data in an object that partially defines the object’s state. An

object of type process, for example, would have attributes that include the process ID, a base

scheduling priority, and a pointer to an access token object. Object methods, the means for

manipulating objects, usually read or change the object attributes. For example, the open

method for a process would accept a process identifier as input and return a pointer to the

object as output.

Note Although there is a parameter named ObjectAttributes that a caller supplies when creat-

ing an object using either the Windows API or native object services, that parameter shouldn’t be

confused with the more general meaning of the term as used in this book.

The most fundamental difference between an object and an ordinary data structure is that

the internal structure of an object is opaque. You must call an object service to get data out

of an object or to put data into it. You can’t directly read or change data inside an object.

This difference separates the underlying implementation of the object from code that merely

uses it, a technique that allows object implementations to be changed easily over time.

Objects, through the help of a kernel component called the object manager, provide a conve-

nient means for accomplishing the following four important operating system tasks:

Providing human-readable names for system resources

Sharing resources and data among processes

Protecting resources from unauthorized access

Reference tracking, which allows the system to know when an object is no longer in use

so that it can be automatically deallocated

Not all data structures in the Windows operating system are objects. Only data that needs to

be shared, protected, named, or made visible to user-mode programs (via system services) is

placed in objects. Structures used by only one component of the operating system to imple-

ment internal functions are not objects. Objects and handles (references to an instance of an

object) are discussed in more detail in Chapter 3.

22 Windows Internals, Fifth Edition

Security

Windows was designed from the start to be secure and to meet the requirements of vari-

ous formal government and industry security ratings, such as the Common Criteria for

Information Technology Security Evaluation (CCITSE) specification. Achieving a government-

approved security rating allows an operating system to compete in that arena. Of course,

many of these required capabilities are advantageous features for any multiuser system.

The core security capabilities of Windows include discretionary (need-to-know) and man-

datory integrity protection for all shareable system objects (such as files, directories, pro-

cesses, threads, and so forth), security auditing (for accountability of subjects, or users and

the actions they initiate), user authentication at logon, and the prevention of one user from

accessing uninitialized resources (such as free memory or disk space) that another user has

deallocated.

Windows has three forms of access control over objects. The first form—discretionary access

control—is the protection mechanism that most people think of when they think of oper-

ating system security. It’s the method by which owners of objects (such as files or printers)

grant or deny access to others. When users log in, they are given a set of security credentials,

or a security context. When they attempt to access objects, their security context is com-

pared to the access control list on the object they are trying to access to determine whether

they have permission to perform the requested operation.

Privileged access control is necessary for those times when discretionary access control isn’t

enough. It’s a method of ensuring that someone can get to protected objects if the owner

isn’t available. For example, if an employee leaves a company, the administrator needs a way

to gain access to files that might have been accessible only to that employee. In that case,

under Windows, the administrator can take ownership of the file so that you can manage its

rights as necessary.

Finally, mandatory integrity control is required when an additional level of security control

is required to protect objects that are being accessed from within the same user account.

It’s used both to isolate Protected Mode Internet Explorer from a user’s configuration and to

protect objects created by an elevated administrator account from access by a nonelevated

administrator account. (See Chapter 6 for more information on User Account Control—UAC.)

Security pervades the interface of the Windows API. The Windows subsystem implements

object-based security in the same way the operating system does; the Windows subsystem

protects shared Windows objects from unauthorized access by placing Windows secu-

rity descriptors on them. The first time an application tries to access a shared object, the

Windows subsystem verifies the application’s right to do so. If the security check succeeds,

the Windows subsystem allows the application to proceed.

 Chapter 1 Concepts and Tools 23

The Windows subsystem implements object security on a number of shared objects, some

of which were built on top of native Windows objects. The Windows objects include desktop

objects, window objects, menu objects, files, processes, threads, and several synchronization

objects.

For a comprehensive description of Windows security, see Chapter 6.

Registry

If you’ve worked at all with Windows operating systems, you’ve probably heard about or

looked at the registry. You can’t talk much about Windows internals without referring to the

registry because it’s the system database that contains the information required to boot and

configure the system, systemwide software settings that control the operation of Windows,

the security database, and per-user configuration settings (such as which screen saver to use).

In addition, the registry is a window into in-memory volatile data, such as the current hard-

ware state of the system (what device drivers are loaded, the resources they are using, and so

on) as well as the Windows performance counters. The performance counters, which aren’t

actually “in” the registry, are accessed through the registry functions. See Chapter 4 for more

on how performance counter information is accessed from the registry.

Although many Windows users and administrators will never need to look directly into the

registry (because you can view or change most configuration settings with standard admin-

istrative utilities), it is still a useful source of Windows internals information because it con-

tains many settings that affect system performance and behavior. (If you decide to directly

change registry settings, you must exercise extreme caution; any changes might adversely

affect system performance or, worse, cause the system to fail to boot successfully.) You’ll find

references to individual registry keys throughout this book as they pertain to the compo-

nent being described. Most registry keys referred to in this book are under HKEY_LOCAL_

MACHINE, which we’ll abbreviate throughout as HKLM.

For further information on the registry and its internal structure, see Chapter 4.

Unicode

Windows differs from most other operating systems in that most internal text strings are

stored and processed as 16-bit-wide Unicode characters. Unicode is an international char-

acter set standard that defines unique 16-bit values for most of the world’s known character

sets. (For more information about Unicode, see www.unicode.org as well as the programming

documentation in the MSDN Library.)

Because many applications deal with 8-bit (single-byte) ANSI character strings, Windows

functions that accept string parameters have two entry points: a Unicode (wide, 16-bit) and

24 Windows Internals, Fifth Edition

an ANSI (narrow, 8-bit) version. The Windows 95, Windows 98, and Windows Millennium

Edition implementations of Windows don’t implement all the Unicode interfaces to all the

Windows functions, so applications designed to run on one of these operating systems as

well as Windows Vista and Windows Server 2008 typically use the narrow versions. If you call

the narrow version of a Windows function, input string parameters are converted to Unicode

before being processed by the system and output parameters are converted from Unicode

to ANSI before being returned to the application. Thus, if you have an older service or piece

of code that you need to run on Windows but this code is written using ANSI character text

strings, Windows will convert the ANSI characters into Unicode for its own use. However,

Windows never converts the data inside files—it’s up to the application to decide whether to

store data as Unicode or as ANSI.

Regardless of language, all versions of Windows contain the same functions. Instead of hav-

ing separate language versions, Windows has a single worldwide binary so that a single

installation can support multiple languages (by adding various language packs). Applications

can also take advantage of Windows functions that allow single worldwide application bina-

ries that can support multiple languages.

Digging into Windows Internals

Although much of the information in this book is based on reading the Windows source code

and talking to the developers, you don’t have to take everything on faith. Many details about

the internals of Windows can be exposed and demonstrated by using a variety of available

tools, such as those that come with Windows and the Windows debugging tools. These tool

packages are briefly described later in this section.

To encourage your exploration of Windows internals, we’ve included “Experiment” sidebars

throughout the book that describe steps you can take to examine a particular aspect of

Windows internal behavior. (You already saw a few of these sections earlier in this chapter.)

We encourage you to try these experiments so that you can see in action many of the inter-

nals topics described in this book.

Table 1-3 shows a list of the principal tools used in this book and where they come from.

TABLE 1-3 Tools for Viewing Windows Internals

Tool Image Name Origin

Startup Programs Viewer AUTORUNS Sysinternals

Access Check ACCESSCHK Sysinternals

Dependency Walker DEPENDS Windows SDK or

www.dependencywalker.com

DLL List LISTDLLS Sysinternals

Global Flags GFLAGS Debugging tools

 Chapter 1 Concepts and Tools 25

Tool Image Name Origin

Handle Viewer HANDLE Sysinternals

Kernel debuggers WINDBG, KD Debugging tools, Windows SDK

Logon Sessions LOGONSESSIONS Sysinternals

Object Viewer WINOBJ Sysinternals

Reliability and Performance Monitor PERFMON.MSC Windows built-in tool

Pool Monitor POOLMON Windows Driver Kit

Process Explorer PROCEXP Sysinternals

Get SID tool PSGETSID Sysinternals

Process Monitor REGMON Sysinternals

Service Control SC Windows built-in tool

Task (Process) List TLIST Debugging tools

Task Manager TASKMGR Windows built-in tool

Reliability and Performance Monitor

We’ll refer to the Reliability and Performance Monitor found in the Administrative Tools

folder on the Start menu (or via Control Panel) throughout this book; specifically, we’ll focus

on the Performance Monitor and Resource Monitor. The Performance Monitor has three

functions: system monitoring, viewing performance counter logs, and setting alerts (by using

data collector sets, which also contain performance counter logs and trace and configura-

tion data). For simplicity, when we refer to the Performance Monitor, we are referring to the

System Monitor function within the tool.

The Performance Monitor can provide more information about how your system is operat-

ing than any other single utility. It includes hundreds of counters for various objects. For each

major topic described in this book, a table of the relevant Windows performance counters is

included.

The Performance Monitor contains a brief description for each counter. To see the descrip-

tions, select a counter in the Add Counters window and select the Show Description

check box.

Although all the low-level system monitoring we’ll do in this book can be done with the

Performance Monitor, Windows Vista also includes a Resource Monitor utility that shows

four primary system resources: CPU, Disk, Network, and Memory. In their basic states, these

resources are displayed with the same level of information that you would find in Task

Manager. However, they also provide columns that can be expanded for more information.

When expanded, the CPU column displays information about per-process CPU usage, just like

Task Manager. However, it adds a column for average CPU usage, which can give you a better

idea of which processes are most active. The Disk column, on the other hand, displays per-file

26 Windows Internals, Fifth Edition

information for I/Os in a way that makes it easy to identify the most accessed, written to, or

read from files on the system.

The Networking column displays the active network connections and which processes own

them, as well as how much data is going through them. This information makes it possible to

see background network activity that might be hard to detect otherwise. Finally, the Memory

column displays much of the same information that one can obtain with Task Manager, but it

is organized for the entire system.

Note that all the Windows performance counters are accessible programmatically. The sec-

tion “HKEY_PERFORMANCE_DATA” in Chapter 4 has a brief description of the components

involved in retrieving performance counters through the Windows API.

Kernel Debugging

Kernel debugging means examining internal kernel data structures and/or stepping through

functions in the kernel. It is a useful way to investigate Windows internals because you can

display internal system information not available through any other tools and get a clearer

idea of code flows within the kernel.

Kernel debugging can be performed with a variety of tools: the Debugging Tools for

Windows from Microsoft, LiveKD from Sysinternals, or Syser Debugger from www.syser-
 soft.com. However, we’ll focus on the Windows debugging tools because they are the only

supported way to perform kernel debugging on Windows. Before describing these tools, let’s

examine a set of files that you’ll need in order to perform any type of kernel debugging.

Symbols for Kernel Debugging

Symbol files contain the names of functions and variables. They are generated by the linker

and used by debuggers to reference and display these names during a debug session. This

information is not usually stored in the binary image because it is not needed to execute the

code. This means that binaries are smaller and faster. However, this means that when debug-

ging, you must make sure that the debugger can access the symbol files that are associated

with the images you are referencing during a debugging session.

To use any of the kernel debugging tools to examine internal Windows kernel data structures

(such as the process list, thread blocks, loaded driver list, memory usage information, and so

on), you must have the correct symbol files for at least the kernel image, Ntoskrnl.exe. (The

section “Architecture Overview” in Chapter 2 explains more about this file.) Symbol table

files must match the version of the image they were taken from. For example, if you install

a Windows Service Pack or hot fix that updates the kernel, you must obtain the matching,

updated symbol files for at least the kernel image; otherwise, you’ll get a symbol error when

you try to start the kernel debugger.

 Chapter 1 Concepts and Tools 27

While it is possible to download and install symbols for various versions of Windows, updated

symbols for hot fixes are not always available. The easiest solution to obtain the correct ver-

sion of symbols for debugging is to use the Microsoft on-demand symbol server by using

a special syntax for the symbol path that you specify in the debugger. For example, the fol-

lowing symbol path causes the debugging tools to load required symbols from the Internet

symbol server and keep a local copy in the c:\symbols folder:

srv*c:\symbols*http://msdl.microsoft.com/download/symbols

For detailed instructions on how to use the symbol server, see the debugging tools help file

or the Web page www.microsoft.com/whdc/devtools/debugging/debugstart.mspx.

Debugging Tools for Windows

The Debugging Tools for Windows package contains advanced debugging tools used

in this book to explore Windows internals. You can find the latest 32-bit version at

www.microsoft.com/whdc/devtools/debugging/installx86.mspx and the latest 64-bit version at

www.microsoft.com/whdc/devtools/debugging/install64bit.mspx. These tools can be used to

debug user-mode processes as well as the kernel. (See the following sidebar.)

Note The Debugging Tools for Windows are updated frequently and released independently of

Windows operating system versions, so check often for new versions.

User-Mode Debugging

The debugging tools can also be used to attach to a user-mode process and examine

and/or change process memory. There are two options when attaching to a process:

Invasive Unless specified otherwise, when you attach to a running process,

the DebugActiveProcess Windows function is used to establish a connection

between the debugger and the debugee. This permits examining and/or

changing process memory, setting breakpoints, and performing other debug-

ging functions. Windows allows you to stop debugging without killing the

target process, as long as the debugger is detached, not killed.

Noninvasive With this option, the debugger simply opens the process with

the OpenProcess function. It does not attach to the process as a debugger.

This allows you to examine and/or change memory in the target process, but

you cannot set breakpoints.

You can also open user-mode process dump files with the debugging tools. User-mode

dump files are explained in Chapter 3 in the section on exception dispatching.

28 Windows Internals, Fifth Edition

There are two primary variants of the Microsoft debuggers that can be used for kernel

debugging: a command-line version (Kd.exe) and a graphical user interface (GUI) version

(Windbg.exe). Both provide the same set of commands, so which you choose is a matter of

personal preference. You can perform three types of kernel debugging with these tools:

Open a crash dump file created as a result of a Windows system crash. (See Chapter 14

for more information on crash dumps.)

Connect to a live, running system and examine the system state (or set breakpoints if

you’re debugging device driver code). This operation requires two computers—a target

and a host. The target is the system being debugged, and the host is the system run-

ning the debugger. The target system can be either local (connected to the host via

a null modem cable, an IEEE 1394 cable, or a USB 2.0 cable) or remote (connected to

the host via a modem). The target system must be booted in debugging mode (either

by pressing F8 during the boot process and selecting Debugging Mode or by adding

the option with the BCDEdit tool). You can also connect through a named pipe, which

is useful when debugging through a virtual machine product such as Virtual PC or

VMWare, by exposing the guest operating system’s serial port as a named pipe device.

Windows systems also allow you to connect to the local system and examine the sys-

tem state. This is called local kernel debugging. To initiate local kernel debugging with

WinDbg, open the File menu, choose Kernel Debug, click on the Local tab, and then

click OK. The target system must be booted in debugging mode, a side effect of which

is that the Windows decoders for protected content, such as MPEG2 DVD movies, will

intentionally fault to prevent access to content decryption keys. An example output

screen is shown in Figure 1-6. Some kernel debugger commands do not work when

used in local kernel debugging mode (such as creating a memory dump with the .dump

command—however, this can be done with LiveKD, described later in this section).

FIGURE 1-6 Local kernel debugging

 Chapter 1 Concepts and Tools 29

Once connected in kernel debugging mode, you can use one of the many debugger exten-
sion commands (commands that begin with “!”) to display the contents of internal data

structures such as threads, processes, I/O request packets, and memory management infor-

mation. Throughout this book, the relevant kernel debugger commands and output are

included as they apply to each topic being discussed. An excellent companion reference is

the Debugger.chm help file, contained in the WinDbg installation folder, which documents all

the kernel debugger functionality and extensions. In addition, the dt (display type) command

can format over 1,000 kernel structures because the kernel symbol files for Windows contain

type information that the debugger can use to format structures.

EXPERIMENT: Displaying Type Information for Kernel Structures

To display the list of kernel structures whose type information is included in the kernel

symbols, type dt nt!_* in the kernel debugger. A sample partial output is shown below:

lkd> dt nt!_*

 nt!_LIST_ENTRY

 nt!_LIST_ENTRY

 nt!_IMAGE_NT_HEADERS

 nt!_IMAGE_FILE_HEADER

 nt!_IMAGE_OPTIONAL_HEADER

 nt!_IMAGE_NT_HEADERS

 nt!_LARGE_INTEGER

You can also use the dt command to search for specific structures by using its wildcard

lookup capability. For example, if you were looking for the structure name for an inter-

rupt object, type dt nt!_*interrupt*:

lkd> dt nt!_*interrupt*

 nt!_KINTERRUPT

 nt!_KINTERRUPT_MODE

 nt!_KINTERRUPT_POLARITY

 nt!_PCI_HOTPLUG_SLOT_INTERRUPT

Then, you can use dt to format a specific structure as shown below:

lkd> dt nt!_kinterrupt

nt!_KINTERRUPT

 +0x002 Size : Int2B

 +0x004 InterruptListEntry : _LIST_ENTRY

 +0x00c ServiceRoutine : Ptr32 unsigned char

 +0x010 MessageServiceRoutine : Ptr32 unsigned char

 +0x014 MessageIndex : Uint4B

 +0x018 ServiceContext : Ptr32 Void

 +0x01c SpinLock : Uint4B

 +0x020 TickCount : Uint4B

 +0x024 ActualLock : Ptr32 Uint4B

 +0x028 DispatchAddress : Ptr32 void

 +0x02c Vector : Uint4B

 +0x030 Irql : UChar

 +0x031 SynchronizeIrql : UChar

 +0x032 FloatingSave : UChar

30 Windows Internals, Fifth Edition

 +0x033 Connected : UChar

 +0x034 Number : Char

 +0x035 ShareVector : UChar

 +0x038 Mode : _KINTERRUPT_MODE

 +0x03c Polarity : _KINTERRUPT_POLARITY

 +0x040 ServiceCount : Uint4B

 +0x044 DispatchCount : Uint4B

 +0x048 Rsvd1 : Uint8B

 +0x050 DispatchCode : [135] Uint4B

Note that dt does not show substructures (structures within structures) by default. To

recurse through substructures, use the –r switch. For example, using this switch to dis-

play the kernel interrupt object shows the format of the _LIST_ENTRY structure stored

at the InterruptListEntry field:

lkd> dt nt!_kinterrupt -r

nt!_KINTERRUPT

 +0x000 Type : Int2B

 +0x002 Size : Int2B

 +0x004 InterruptListEntry : _LIST_ENTRY

 +0x000 Flink : Ptr32 _LIST_ENTRY

 +0x000 Flink : Ptr32 _LIST_ENTRY

 +0x004 Blink : Ptr32 _LIST_ENTRY

 +0x004 Blink : Ptr32 _LIST_ENTRY

 +0x000 Flink : Ptr32 _LIST_ENTRY

 +0x004 Blink : Ptr32 _LIST_ENTRY

The Debugging Tools for Windows help file also explains how to set up and use the kernel

debuggers. Additional details on using the kernel debuggers that are aimed primarily at

device driver writers can be found in the Windows Driver Kit documentation. There are also

several useful Knowledge Base articles on the kernel debugger. Search for “debugref” in the

Windows Knowledge Base (an online database of technical articles) on support.microsoft.com.

LiveKd Tool

LiveKd is a free tool from Sysinternals that allows you to use the standard Microsoft ker-

nel debuggers just described to examine the running system without booting the system

in debugging mode. This approach might be useful when kernel-level troubleshooting is

required on a machine that wasn’t booted in debugging mode—certain issues may be hard

to reproduce reliably, so a reboot with the debug option enabled may not reexhibit the error.

You run LiveKd just as you would WinDbg or Kd. LiveKd passes any command-line options

you specify to the debugger you select. By default, LiveKd runs the new command-line ker-

nel debugger (Kd). To run WinDbg, specify the –w switch. To see the help files for LiveKd

switches, specify the –? switch.

 Chapter 1 Concepts and Tools 31

LiveKd presents a simulated crash dump file to the debugger, so you can perform any opera-

tions in LiveKd that are supported on a crash dump. Because LiveKd is relying on physical

memory to back the simulated dump, the kernel debugger might run into situations in which

data structures are in the middle of being changed by the system and are inconsistent. Each

time the debugger is launched, it starts with a fresh view of the system state. If you want

to refresh the snapshot, quit the debugger (with the q command), and LiveKd will ask you

whether you want to start it again. If the debugger enters a loop in printing output, press

Ctrl+C to interrupt the output, quit, and rerun it. If it hangs, press Ctrl+Break, which will ter-

minate the debugger process and ask you whether you want to run the debugger again.

Windows Software Development Kit

The Windows Software Development Kit (SDK) is available as part of the MSDN subscrip-

tion program or can be downloaded for free from www.msdn.microsoft.com. It contains the

documentation, C header files, and libraries necessary to compile and link Windows applica-

tions. (Although Microsoft Visual C++ comes with a copy of these header files, the versions

contained in the Windows SDK always match the latest version of the Windows operating

systems, whereas the version that comes with Visual C++ might be an older version that was

current when Visual C++ was released.) From an internals perspective, items of interest in the

Windows SDK include the Windows API header files (\Program Files\Microsoft SDK\Include)

as well as some utilities (such as Pstat.exe and Vadump.exe). A few of these tools are also

shipped as sample source code in both the Windows SDK and the MSDN Library.

Windows Driver Kit

The Windows Driver Kit (WDK) is also available through the MSDN subscription program, and

just like the Windows SDK, it is available for free download. The Windows Driver Kit docu-

mentation is included in the MSDN Library.

Although the WDK is aimed at device driver developers, it is an abundant source of Windows

internals information. For example, while Chapter 7 describes the I/O system architecture,

driver model, and basic device driver data structures, it does not describe the individual ker-

nel support functions in detail. The WDK documentation contains a comprehensive descrip-

tion of all the Windows kernel support functions and mechanisms used by device drivers in

both a tutorial and reference form.

Besides including the documentation, the WDK contains header files (in particular, ntddk.h,

ntifs.h, and wdm.h) that define key internal data structures and constants as well as inter-

faces to many internal system routines. These files are useful when exploring Windows

internal data structures with the kernel debugger because although the general layout and

content of these structures are shown in this book, detailed field-level descriptions (such as

size and data types) are not. A number of these data structures (such as object dispatcher

32 Windows Internals, Fifth Edition

headers, wait blocks, events, mutants, semaphores, and so on) are, however, fully described in

the WDK.

So if you want to dig into the I/O system and driver model beyond what is presented in this

book, read the WDK documentation (especially the Kernel-Mode Driver Architecture Design

Guide and Reference manuals). Another excellent source is Programming the Microsoft
Windows Driver Model, Second Edition by Walter Oney (Microsoft Press, 2002).

Sysinternals Tools

Many experiments in this book use freeware tools that you can download from Sysinternals.

Mark Russinovich, coauthor of this book, wrote most of these tools. The most popular tools

include Process Explorer and Process Monitor. Note that many of these utilities involve the

installation and execution of kernel-mode device drivers and thus require administrator

privileges.

Conclusion

In this chapter, you’ve been introduced to the key Windows technical concepts and terms

that will be used throughout the book. You’ve also had a glimpse of the many useful tools

available for digging into Windows internals. Now we’re ready to begin our exploration of the

internal design of the system, beginning with an overall view of the system architecture and

its key components.

 33

Chapter 2

System Architecture

Now that we’ve covered the terms, concepts, and tools you need to be familiar with, we’re

ready to start our exploration of the internal design goals and structure of the Microsoft

Windows operating system. This chapter explains the overall architecture of the system—

the key components, how they interact with each other, and the context in which they run.

To provide a framework for understanding the internals of Windows, let’s first review the

requirements and goals that shaped the original design and specification of the system.

Requirements and Design Goals

The following requirements drove the specification of Windows NT back in 1989:

Provide a true 32-bit, preemptive, reentrant, virtual memory operating system

Run on multiple hardware architectures and platforms

Run and scale well on symmetric multiprocessing systems

Be a great distributed computing platform, both as a network client and as a server

Run most existing 16-bit MS-DOS and Microsoft Windows 3.1 applications

Meet government requirements for POSIX 1003.1 compliance

Meet government and industry requirements for operating system security

Be easily adaptable to the global market by supporting Unicode

To guide the thousands of decisions that had to be made to create a system that met these

requirements, the Windows NT design team adopted the following design goals at the

beginning of the project:

Extensibility The code must be written to comfortably grow and change as market

requirements change.

Portability The system must be able to run on multiple hardware architectures and

must be able to move with relative ease to new ones as market demands dictate.

Reliability and robustness The system should protect itself from both internal mal-

function and external tampering. Applications should not be able to harm the operat-

ing system or other applications.

Compatibility Although Windows NT should extend existing technology, its user

interface and APIs should be compatible with older versions of Windows and with

34 Windows Internals, Fifth Edition

MS-DOS. It should also interoperate well with other systems, such as UNIX, OS/2, and

NetWare.

Performance Within the constraints of the other design goals, the system should be

as fast and responsive as possible on each hardware platform.

As we explore the details of the internal structure and operation of Windows, you’ll see how

these original design goals and market requirements were woven successfully into the con-

struction of the system. But before we start that exploration, let’s examine the overall design

model for Windows and compare it with other modern operating systems.

Operating System Model

In most multiuser operating systems, applications are separated from the operating system

itself—the operating system kernel code runs in a privileged processor mode (referred to as

kernel mode in this book), with access to system data and to the hardware; application code

runs in a nonprivileged processor mode (called user mode), with a limited set of interfaces

available, limited access to system data, and no direct access to hardware. When a user-mode

program calls a system service, the processor traps the call and then switches the calling

thread to kernel mode. When the system service completes, the operating system switches

the thread context back to user mode and allows the caller to continue.

Windows is similar to most UNIX systems in that it’s a monolithic operating system in the

sense that the bulk of the operating system and device driver code shares the same kernel-

mode protected memory space. This means that any operating system component or device

driver can potentially corrupt data being used by other operating system components.

Is Windows a Microkernel-Based System?

Although some claim it as such, Windows isn’t a microkernel-based operating system in

the classic definition of microkernels, where the principal operating system components

(such as the memory manager, process manager, and I/O manager) run as separate

processes in their own private address spaces, layered on a primitive set of services the

microkernel provides. For example, the Carnegie Mellon University Mach operating

system, a contemporary example of a microkernel architecture, implements a minimal

kernel that comprises thread scheduling, message passing, virtual memory, and device

drivers. Everything else, including various APIs, file systems, and networking, runs in

user mode. However, commercial implementations of the Mach microkernel operat-

ing system typically run at least all file system, networking, and memory management

code in kernel mode. The reason is simple: the pure microkernel design is commercially

impractical because it’s too inefficient.

 Chapter 2 System Architecture 35

Does the fact that so much of Windows runs in kernel mode mean that it’s more sus-

ceptible to crashes than a true microkernel operating system? Not at all. Consider the

following scenario. Suppose the file system code of an operating system has a bug that

causes it to crash from time to time. In a traditional operating system, a bug in kernel-

mode code such as the memory manager or the file system would likely crash the

entire operating system. In a pure microkernel operating system, such components run

in user mode, so theoretically a bug would simply mean that the component’s process

exits. But in practical terms, the system would crash because recovering from the failure

of such a critical process would likely be impossible.

All these operating system components are, of course, fully protected from errant applica-

tions because applications don’t have direct access to the code and data of the privileged

part of the operating system (although they can quickly call other kernel services). This pro-

tection is one of the reasons that Windows has the reputation for being both robust and

stable as an application server and as a workstation platform yet fast and nimble from the

perspective of core operating system services, such as virtual memory management, file I/O,

networking, and file and print sharing.

The kernel-mode components of Windows also embody basic object-oriented design prin-

ciples. For example, they don’t in general reach into one another’s data structures to access

information maintained by individual components. Instead, they use formal interfaces to pass

parameters and access and/or modify data structures.

Despite its pervasive use of objects to represent shared system resources, Windows is not

an object-oriented system in the strict sense. Most of the operating system code is written

in C for portability and because C development tools are widely available. C doesn’t directly

support object-oriented constructs such as dynamic binding of data types, polymorphic

functions, or class inheritance. Therefore, the C-based implementation of objects in Windows

borrows from, but doesn’t depend on, features of particular object-oriented languages.

Architecture Overview

With this brief overview of the design goals and packaging of Windows, let’s take a look

at the key system components that make up its architecture. A simplified version of this

architecture is shown in Figure 2-1. Keep in mind that this diagram is basic—it doesn’t show

everything. (For example, the networking components and the various types of device driver

layering are not shown.)

36 Windows Internals, Fifth Edition

Windowing
and graphics

Hardware abstraction layer (HAL)

Device driversKernel

Executive

System
support

processes

Service
processes

User
applications

Environment
subsystems

Subsystem DLLs

FIGURE 2-1 Simplified Windows architecture

In Figure 2-1, first notice the line dividing the user-mode and kernel-mode parts of the

Windows operating system. The boxes above the line represent user-mode processes, and

the components below the line are kernel-mode operating system services. As mentioned in

Chapter 1, user-mode threads execute in a protected process address space (although while

they are executing in kernel mode, they have access to system space). Thus, system support

processes, service processes, user applications, and environment subsystems each have their

own private process address space.

The four basic types of user-mode processes are described as follows:

Fixed (or hardwired) system support processes, such as the logon process and the

Session Manager, that are not Windows services. (That is, they are not started by the

service control manager. Chapter 4 describes services in detail.)

Service processes that host Windows services, such as the Task Scheduler and Print

Spooler services. Services generally have the requirement that they run independently

of user logons. Many Windows server applications, such as Microsoft SQL Server and

Microsoft Exchange Server, also include components that run as services.

User applications, which can be one of five types: Windows 32-bit, Windows 64-bit,

Windows 3.1 16-bit, MS-DOS 16-bit, or POSIX 32-bit.

Environment subsystem server processes, which implement part of the support for the

operating system environment, or personality presented to the user and programmer.

Windows NT originally shipped with three environment subsystems: Windows, POSIX,

and OS/2. However, OS/2 last shipped with Windows 2000. Windows Vista Ultimate

and Enterprise include support for an enhanced POSIX subsystem called Subsystem for

Unix-based Applications (SUA).

In Figure 2-1, notice the “Subsystem DLLs” box below the “Service processes” and “User

 applications” boxes. Under Windows, user applications don’t call the native Windows

 Chapter 2 System Architecture 37

operating system services directly; rather, they go through one or more subsystem dynamic-
link libraries (DLLs). The role of the subsystem DLLs is to translate a documented function into

the appropriate internal (and generally undocumented) native system service calls. This trans-

lation might or might not involve sending a message to the environment subsystem process

that is serving the user application.

The kernel-mode components of Windows include the following:

The Windows executive contains the base operating system services, such as memory

management, process and thread management, security, I/O, networking, and inter-

process communication.

The Windows kernel consists of low-level operating system functions, such as thread

scheduling, interrupt and exception dispatching, and multiprocessor synchronization.

It also provides a set of routines and basic objects that the rest of the executive uses to

implement higher-level constructs.

Device drivers include both hardware device drivers, which translate user I/O func-

tion calls into specific hardware device I/O requests, as well as file system and network

drivers.

The hardware abstraction layer (HAL) is a layer of code that isolates the kernel, device

drivers, and the rest of the Windows executive from platform-specific hardware differ-

ences (such as differences between motherboards).

The windowing and graphics system implements the graphical user interface (GUI) func-

tions (better known as the Windows USER and GDI functions), such as dealing with win-

dows, user interface controls, and drawing.

Table 2-1 lists the file names of the core Windows operating system components. (You’ll need

to know these file names because we’ll be referring to some system files by name.) Each of

these components is covered in greater detail both later in this chapter and in the chapters

that follow.

TABLE 2-1 Core Windows System Files

File Name Components

Ntoskrnl.exe Executive and kernel

Ntkrnlpa.exe (32-bit systems only) Executive and kernel with support for Physical Address

Extension (PAE), which allows addressing of up to 64 GB of

physical memory

Hal.dll Hardware abstraction layer

Win32k.sys Kernel-mode part of the Windows subsystem

Ntdll.dll Internal support functions and system service dispatch

stubs to executive functions

Kernel32.dll, Advapi32.dll, User32.dll,

Gdi32.dll

Core Windows subsystem DLLs

38 Windows Internals, Fifth Edition

Before we dig into the details of these system components, though, let’s examine how

Windows achieves portability across multiple hardware architectures.

Portability

Windows was designed to run on a variety of hardware architectures, including Intel-based

CISC systems as well as RISC systems. The initial release of Windows NT supported the x86

and MIPS architectures. Support for the Digital Equipment Corporation (which was bought by

Compaq, which later merged with Hewlett-Packard) Alpha AXP was added shortly thereafter.

(Although Alpha AXP was a 64-bit processor, Windows NT ran in 32-bit mode. During the

development of Windows 2000, a native 64-bit version was running on Alpha AXP, but this

never was released.) Support for a fourth processor architecture, the Motorola PowerPC, was

added in Windows NT 3.51. Because of changing market demands, however, support for the

MIPS and PowerPC architectures was dropped before development began on Windows 2000.

Later, Compaq withdrew support for the Alpha AXP architecture, resulting in Windows 2000

being supported only on the x86 architecture. Windows XP and Windows Server 2003 added

support for three 64-bit processor families: the Intel Itanium IA-64 family, the AMD64 fam-

ily, and the Intel 64-bit Extension Technology (EM64T) for x86 (which is compatible with the

AMD64 architecture, although there are slight differences in instructions supported). The lat-

ter two processor families are called 64-bit extended systems and in this book are referred to

as x64. (How Windows runs 32-bit applications on 64-bit Windows is explained in Chapter 3.)

Windows achieves portability across hardware architectures and platforms in two primary

ways:

Windows has a layered design, with low-level portions of the system that are processor-

architecture-specific or platform-specific isolated into separate modules so that upper

layers of the system can be shielded from the differences between architectures and

among hardware platforms. The two key components that provide operating system

portability are the kernel (contained in Ntoskrnl.exe) and the hardware abstraction layer

(or HAL, contained in Hal.dll). Both these components are described in more detail

later in this chapter. Functions that are architecture-specific (such as thread context

switching and trap dispatching) are implemented in the kernel. Functions that can dif-

fer among systems within the same architecture (for example, different motherboards)

are implemented in the HAL. The only other component with a significant amount of

 architecture-specific code is the memory manager, but even that is a small amount

compared to the system as a whole.

The vast majority of Windows is written in C, with some portions in C++. Assembly lan-

guage is used only for those parts of the operating system that need to communicate

directly with system hardware (such as the interrupt trap handler) or that are extremely

performance-sensitive (such as context switching). Assembly language code exists not

only in the kernel and the HAL but also in a few other places within the core operat-

ing system (such as the routines that implement interlocked instructions as well as one

 Chapter 2 System Architecture 39

module in the local procedure call facility), in the kernel-mode part of the Windows

subsystem, and even in some user-mode libraries, such as the process startup code in

Ntdll.dll (a system library explained later in this chapter).

Symmetric Multiprocessing

Multitasking is the operating system technique for sharing a single processor among mul-

tiple threads of execution. When a computer has more than one processor, however, it can

execute multiple threads simultaneously. Thus, whereas a multitasking operating system only

appears to execute multiple threads at the same time, a multiprocessing operating system

actually does it, executing one thread on each of its processors.

As mentioned at the beginning of this chapter, one of the key design goals for Windows was

that it had to run well on multiprocessor computer systems. Windows is a symmetric multi-
processing (SMP) operating system. There is no master processor—the operating system as

well as user threads can be scheduled to run on any processor. Also, all the processors share

just one memory space. This model contrasts with asymmetric multiprocessing (ASMP), in

which the operating system typically selects one processor to execute operating system ker-

nel code while other processors run only user code. The differences in the two multiprocess-

ing models are illustrated in Figure 2-2.

User
thread

User
thread

Operating
system

User
thread

User
thread

Operating
system

Operating
system

User
thread

User
thread

User
thread

I/O devices I/O devices

FIGURE 2-2 Symmetric vs. asymmetric multiprocessing

40 Windows Internals, Fifth Edition

Windows Vista and Windows Server 2008 also support two modern types of multiprocessor

systems: hyperthreading and NUMA (non-uniform memory architecture). These are briefly

mentioned in the following paragraphs. (For a complete, detailed description of the schedul-

ing support for these systems, see the thread scheduling section in Chapter 5.)

Naturally, Windows also natively supports multicore systems—because these systems have

real physical cores (simply on the same package), the original SMP code in Windows treats

them as discrete processors, except for certain accounting and identification tasks (such as

licensing, described shortly) that distinguish between cores on the same processor and cores

on different sockets.

Hyperthreading is a technology introduced by Intel that provides many logical processors

on one physical processor. Each logical processor has its CPU state, but the execution engine

and onboard cache are shared. This permits one logical CPU to make progress while the

other logical CPUs are busy (such as performing interrupt processing work, which prevents

threads from running on that logical processor). The scheduling algorithms are enhanced to

make optimal use of multiprocessor hyperthreaded machines, such as by scheduling threads

on an idle physical processor versus choosing an idle logical processor on a physical proces-

sor whose other logical processors are busy.

In NUMA systems, processors are grouped in smaller units called nodes. Each node has

its own processors and memory and is connected to the larger system through a cache-

coherent interconnect bus. Windows on a NUMA system still runs as an SMP system, in that

all processors have access to all memory—it’s just that node-local memory is faster to refer-

ence than memory attached to other nodes. The system attempts to improve performance

by scheduling threads on processors that are in the same node as the memory being used. It

attempts to satisfy memory-allocation requests from within the node, but will allocate mem-

ory from other nodes if necessary.

Although Windows was originally designed to support up to 32 processors, nothing inherent

in the multiprocessor design limits the number of processors to 32—that number is simply an

obvious and convenient limit because 32 processors can easily be represented as a bit mask

using a native 32-bit data type. In fact, the 64-bit versions of Windows support up to 64 pro-

cessors, because the native size of a word on a 64-bit machine is 64 bits.

The actual number of supported processors depends on the edition of Windows being

used. (See Table 2-3.) This number is stored in the system license policy file (\Windows\

ServiceProfiles\NetworkService\AppData\Roaming\Microsoft\SoftwareLicensing\tokens.dat)

as a policy value called “Kernel-MaximumProcessors.” (Keep in mind that tampering with that

data is a violation of the software license and modifying licensing policies to allow the use of

more processors involves more than just changing this value.)

 Chapter 2 System Architecture 41

As of Windows Vista and Windows Server 2008, there is a unified kernel regardless of

whether the system is a uniprocessor or multiprocessor machine. This change, compared to

earlier versions of Windows, which had separate kernels for each machine type, was made

both because the majority of systems currently sold include at least two cores and because

the few uniprocessor-only optimizations result in negligible performance improvement.

However, 32-bit versions of Windows still come in two flavors of the kernel, depending on

whether PAE is enabled and supported. Because no-execute memory support (known as NX

on AMD processors and XD on Intel processors) in today’s processors makes use of PAE struc-

tures, most 32-bit systems use the PAE kernel. On 64-bit Windows systems there is no PAE

kernel (there isn’t a need for it), so there is only a single kernel image.

At installation time, the appropriate files are selected and copied to the local %SystemRoot%

directory. Table 2-2 shows the correspondence of installed file names to their original names

on the installation media.

TABLE 2-2 Internal System File Names

Type of File

Name of PAE Version on

Distribution Media

Name of Non-PAE Version on

Distribution Media

Kernel Ntkrpamp.exe Ntkrnlmp.exe

HAL Depends on system type (See the

list of HALs in Table 2-5.)

Depends on system type (See the

list of HALs in Table 2-5.)

The rest of the system files that make up Windows (including all utilities, libraries, and device

drivers) have the same version on all types of systems (that is, they handle multiprocessor

synchronization and PAE issues correctly). You should use this approach on any software you

build, whether it is a Windows application or a device driver—keep multiprocessor synchroni-

zation issues in mind when you design your software, and test the software on both unipro-

cessor and multiprocessor systems. For legacy applications, Windows implements a number

of flags to provide backward compatibility. For example, applications need to be specifically

made “large address aware” for PAE support, and they can also set a “uniprocessor only” field

in their image if they break on SMP systems.

EXPERIMENT: Checking Which Ntoskrnl Version You’re Running

Windows has no utility to show which version of Ntoskrnl you are running. However, an

Event Log entry is written each time the system boots that does record the type of ker-

nel image that loaded (multiprocessor and free vs. checked), as shown in the following

screen shot. (From the Start menu, select Programs/Administrative Tools/Event Viewer,

select Windows Logs/System, and then double-click an Event Log entry with an Event

ID of 6009, indicating the entry was written at the system start.)

42 Windows Internals, Fifth Edition

This Event Log entry doesn’t indicate whether you booted the PAE version of the

kernel image that supports more than 4 GB of physical memory (Ntkrnlpa.exe).

However, you can tell if you booted the PAE kernel by looking at the registry value

HKLM\SYSTEM\CurrentControlSet\Control\Session Manager\Memory Management\

PhysicalAddressExtension. You can also determine which version of the kernel you’re

running by using WinDbg and opening a local kernel debugging session. Be sure you

have the symbols loaded (enter the .reload command), and then type the “list module”

command to list details for the kernel image (nt): lm mv nt. The output below shows a

PAE multiprocessor kernel, as you can tell by the name.

lkd> lm vm nt

start end module name

82000000 823a1000 nt (pdb symbols)

 c:\programming\symbols\ntkrpamp.pdb\7018E534B06E4A5BB6C63F6F2AA802072\ntkrpamp.pdb

 Loaded symbol image file: ntkrpamp.exe

 Image path: ntkrpamp.exe

 Image name: ntkrpamp.exe

 Timestamp: Tue Oct 09 21:46:20 2007 (470C2EEC)

 CheckSum: 00366023

 ImageSize: 003A1000

 File version: 6.0.6000.20697

 Product version: 6.0.6000.20697

 File flags: 0 (Mask 3F)

 File OS: 40004 NT Win32

 File type: 1.0 App

 File date: 00000000.00000000

 Translations: 0409.04b0

 CompanyName: Microsoft Corporation

 Chapter 2 System Architecture 43

 ProductName: Microsoft® Windows® Operating System

 InternalName: ntkrpamp.exe

 OriginalFilename: ntkrpamp.exe

 ProductVersion: 6.0.6000.20697

 FileVersion: 6.0.6000.20697 (vista_ldr.071009-1543)

 FileDescription: NT Kernel & System

 LegalCopyright: © Microsoft Corporation. All rights reserved.

Scalability

One of the key issues with multiprocessor systems is scalability. To run correctly on an SMP

system, operating system code must adhere to strict guidelines and rules. Resource conten-

tion and other performance issues are more complicated in multiprocessing systems than in

uniprocessor systems and must be accounted for in the system’s design. Windows incorpo-

rates several features that are crucial to its success as a multiprocessor operating system:

The ability to run operating system code on any available processor and on multiple

processors at the same time

Multiple threads of execution within a single process, each of which can execute simul-

taneously on different processors

Fine-grained synchronization within the kernel (such as spinlocks, queued spinlocks,

and pushlocks, described in Chapter 3) as well as within device drivers and server pro-

cesses, which allows more components to run concurrently on multiple processors

Programming mechanisms such as I/O completion ports (described in Chapter 7) that

facilitate the efficient implementation of multithreaded server processes that can scale

well on multiprocessor systems

The scalability of the Windows kernel has evolved over time. For example, Windows Server

2003 has per-CPU scheduling queues, which permit thread scheduling decisions to occur

in parallel on multiple processors. Multiprocessor thread scheduling details are covered in

Chapter 5. Further details on multiprocessor synchronization can be found in Chapter 3.

Differences Between Client and Server Versions

Windows ships in both client and server retail packages. There are six client versions of

Windows Vista: Windows Vista Home Basic, Windows Vista Home Premium, Windows Vista

Business, Windows Vista Ultimate, Windows Vista Enterprise, and Windows Vista Starter.

There are five main variants of Windows Server 2008: Windows Web Server 2008, Windows

Server 2008 Standard, Windows Server 2008 Enterprise, Windows Server 2008 Datacenter,

and Windows Server 2008 for Itanium-Based Systems.

44 Windows Internals, Fifth Edition

Additionally, there are “N” versions of the client that do not include Windows Media Player.

Finally, the Standard, Enterprise, and Datacenter editions of Windows Server 2008 also

include “without Hyper-V” editions, which do not include Hyper-V. (Hyper-V virtualization is

discussed in Chapter 3).

These versions differ by:

The number of processors supported (in terms of physical packages, not cores)

The amount of physical memory supported

The number of concurrent network connections supported (For example, a maximum

of 10 concurrent connections are allowed to the file and print services in the client

version.)

Support for Tablet PC and/or Media Center Edition

Support for features such as BitLocker, DVD burning, Windows Fax and Scan, Backup,

and more than 100 other configurable licensing policy values

Layered services that come with Windows Server editions that don’t come with the cli-

ent editions (for example, directory services and clustering)

Table 2-3 lists the differences in memory and processor support for Windows Vista and

Windows Server 2008. For a detailed comparison chart of the different editions of Windows

Server 2008, see www.microsoft.com/windowsserver2008/en/us/compare-specs.aspx.

TABLE 2-3 Differences Between Windows Vista and Windows Server 2008

Number of

Processors

Supported

(32-Bit

Edition)

Physical

Memory

Supported

(32-Bit

Edition)

Number of

Processors

Supported

(64-Bit

Edition)

Physical

Memory

Supported

(Itanium

Editions)

Physical

Memory

Supported

(x64

Editions)

Windows Vista

Starter Edition

1 4 GB Not available Not available Not available

Windows Vista

Home Basic

Edition

1 4 GB 1 Not available 8 GB

Windows Vista

Home Premium

1 4 GB 1 Not available 16 GB

Windows Vista

Business

2 4 GB 2 Not available 128 GB

Windows Vista

Enterprise

2 4 GB 2 Not available 128 GB

Windows Vista

Ultimate

2 4 GB 2 Not available 128 GB

Windows Web

Server 2008

2 4 GB 2 Not available 32 GB

 Chapter 2 System Architecture 45

Number of

Processors

Supported

(32-Bit

Edition)

Physical

Memory

Supported

(32-Bit

Edition)

Number of

Processors

Supported

(64-Bit

Edition)

Physical

Memory

Supported

(Itanium

Editions)

Physical

Memory

Supported

(x64

Editions)

Windows Server

2008 Standard

Edition

4 4 GB 4 Not available 32 GB

Windows Server

2008 Enterprise

Edition

8 32 GB 8 Not available 2048 GB

Windows Server

2008 Datacenter

Edition

32 64 GB 64 2048 GB 2048 GB

Windows

Server 2008 for

Itanium-Based

Systems

Not available Not available 64 2048 GB Not available

Although there are several client and server retail packages of the Windows operating sys-

tem, they share a common set of core system files, including the kernel image, Ntoskrnl.exe

(and the PAE version, Ntkrnlpa.exe); the HAL libraries; the device drivers; and the base system

utilities and DLLs. Starting with Windows Vista SP1, these files are identical for all editions of

Windows.

Note Because Windows Vista shipped about a year before Windows Server 2008, there was

a short period during which the two operating systems had different kernels (development on

Windows Server 2008 was continuing on an updated version of the Vista kernel). As Windows

Vista SP1 was being developed, the kernels for the two editions were synced up, and both

Windows Vista SP1 and Windows Server 2008 launched together, unifying the kernels for the

first time since Windows 2000.

With so many different versions of Windows, but with each having the same kernel

image, how does the system know which edition is booted? By querying the registry val-

ues ProductType and ProductSuite under the HKLM\SYSTEM\CurrentControlSet\Control\

ProductOptions key. ProductType is used to distinguish whether the system is a client sys-

tem or a server system (of any flavor). The valid values are listed in Table 2-4. The result is

stored in the system global variable MmProductType, which can be queried from a device

driver using the kernel-mode support function MmIsThisAnNtAsSystem, documented in the

Windows Driver Kit (WDK). These values are loaded into the registry based on the licensing

policy file described earlier.

46 Windows Internals, Fifth Edition

TABLE 2-4 ProductType Registry Values

Edition of Windows Value of ProductType

Windows Vista WinNT

Windows Server 2008 (domain controller) LanmanNT

Windows Server 2008 (server only) ServerNT

A different registry value, ProductPolicy, contains a cached copy of the data inside the

tokens.dat file, which differentiates between the editions of Windows and the features that

they enable.

If user programs need to determine which edition of Windows is running, they can call the

Windows VerifyVersionInfo function, documented in the Windows Software Development

Kit (SDK). Device drivers can call the kernel-mode function RtlGetVersion, documented in

the WDK.

So if the core files are essentially the same for the client and server versions, how do the

systems differ in operation? In short, server systems are by default optimized for system

throughput as high-performance application servers, whereas the client version, although it

has server capabilities, is optimized for response time for interactive desktop use. For exam-

ple, based on the product type, several resource allocation decisions are made differently

at system boot time, such as the size and number of operating system heaps (or pools), the

number of internal system worker threads, and the size of the system data cache. Also, run-

time policy decisions, such as the way the memory manager trades off system and process

memory demands, differ between the server and client editions. Even some thread schedul-

ing details have different default behavior in the two families (the default length of the time

slice, or thread quantum—see Chapter 5 for details). Where there are significant operational

differences in the two products, these are highlighted in the pertinent chapters throughout

the rest of this book. Unless otherwise noted, everything in this book applies to both the cli-

ent and server versions.

EXPERIMENT: Determining Features Enabled by Licensing Policy

As mentioned earlier, Windows supports more than 100 different features that can

be enabled through the software licensing mechanism. These policy settings deter-

mine the various differences not only between a client Windows installation (such

as Windows Vista) and a server installation (such as Windows Server 2008) but also

between each edition (or SKU) of the operating system, such as enabling BitLocker sup-

port on Ultimate and Enterprise editions of Vista. You can use the SlPolicy tool available

from Winsider Seminars & Solutions (www.winsiderss.com/tools/slpolicy.htm) to display

these policy values on your machine.

 Chapter 2 System Architecture 47

Policy settings are organized by a facility, which represents the owner module for

which the policy applies. You can display a list of all facilities on your system by running

Slpolicy.exe with the –f switch:

SlPolicy v1.01 - Show Software Licensing Policies

Copyright (C) 2008 Alex Ionescu

www.alex-ionescu.com

Software Licensing Facilities:

Kernel

Licensing and Activation

Core

You can then add the name of any facility after the switch to display the policy value

for that facility. For example, to look at the limitations on CPUs and available memory,

use the Kernel facility. Here’s the expected output on a machine running Windows Vista

Ultimate:

C:\>SlPolicy.exe -f Kernel

Slpolicy v1.01 - Show Software Licensing Policies

Copyright (C) 2008 Alex Ionescu

www.alex-ionescu.com

Kernel

Processor Limit: 2

Maximum Memory Allowed (x86): 4096 MB

Maximum Memory Allowed (x64): 131072 MB

Maximum Memory Allowed (IA64): 131072 MB

Maximum Physical Page: 4096

Checked Build

There is a special debug version of Windows called the checked build (available only with an

MSDN Professional or higher subscription). It is a recompilation of the Windows source code

with a compile-time flag defined called “DBG” (to cause compile time conditional debugging

and tracing code to be included). Also, to make it easier to understand the machine code,

the post-processing of the Windows binaries to optimize code layout for faster execution is

not performed. (See the section “Performance-Optimized Code” in the Debugging Tools for

Windows help file.)

The checked build is provided primarily to aid device driver developers because it performs

more stringent error checking on kernel-mode functions called by device drivers or other

system code. For example, if a driver (or some other piece of kernel-mode code) makes an

invalid call to a system function that is checking parameters (such as acquiring a spinlock

48 Windows Internals, Fifth Edition

at the wrong interrupt level), the system will stop execution when the problem is detected

rather than allow some data structure to be corrupted and the system to possibly crash at a

later time.

EXPERIMENT: Determining If You Are Running the Checked Build

There is no built-in tool to display whether you are running the checked build or

the retail build (called the free build). However, this information is available through

the “Debug” property of the Windows Management Instrumentation (WMI) Win32_

OperatingSystem class. The following sample Visual Basic script displays this property:

strComputer = "."

Set objWMIService = GetObject("winmgmts:" _

 & "{impersonationLevel=impersonate}!\\" & strComputer & "\root\cimv2")

Set colOperatingSystems = objWMIService.ExecQuery _

 ("SELECT * FROM Win32_OperatingSystem")

For Each objOperatingSystem in colOperatingSystems

 Wscript.Echo "Caption: " & objOperatingSystem.Caption

 Wscript.Echo "Debug: " & objOperatingSystem.Debug

 Wscript.Echo "Version: " & objOperatingSystem.Version

Next

To try this, type in the preceding script and save it as file. The following is the output

from running the script:

C:\>cscript osversion.vbs

Microsoft (R) Windows Script Host Version 5.7

Copyright (C) Microsoft Corporation. All rights reserved.

Caption: Microsoft Windows Vista

Debug: False

Version: 6.0.6000

This system is not running the checked build, as the Debug flag shown here says False.

Much of the additional code in the checked-build binaries is a result of using the ASSERT

macro, which is defined in the WDK header file Ntddk.h and documented in the WDK docu-

mentation. This macro tests a condition (such as the validity of a data structure or parameter),

and if the expression evaluates to FALSE, the macro calls the kernel-mode function RtlAssert,
which calls DbgPrintEx to send the text of the debug message to a debug message buffer. If

a kernel debugger is attached, this message is displayed automatically followed by a prompt

asking the user what to do about the assertion failure (breakpoint, ignore, terminate pro-

cess, or terminate thread). If the system wasn’t booted with the kernel debugger (using the

debug option in the Boot Configuration Database—BCD) and no kernel debugger is currently

attached, failure of an ASSERT test will bugcheck the system. For a list of ASSERT checks

made by some of the kernel support routines, see the section “Checked Build ASSERTs” in the

WDK documentation.

 Chapter 2 System Architecture 49

The checked build is also useful for system administrators because of the additional detailed

informational tracing that can be enabled for certain components. (For detailed instruc-

tions, see the Microsoft Knowledge Base Article number 314743, titled HOWTO: Enable
Verbose Debug Tracing in Various Drivers and Subsystems.) This information output is sent to

an internal debug message buffer using the DbgPrintEx function referred to earlier. To view

the debug messages, you can either attach a kernel debugger to the target system (which

requires booting the target system in debugging mode), use the !dbgprint command while

performing local kernel debugging, or use the Dbgview.exe tool from Windows Sysinternals

(www.microsoft.com/technet/sysinternals).

You don’t have to install the entire checked build to take advantage of the debug ver-

sion of the operating system. You can just copy the checked version of the kernel image

(Ntoskrnl.exe) and the appropriate HAL (Hal.dll) to a normal retail installation. The advantage

of this approach is that device drivers and other kernel code get the rigorous checking of the

checked build without having to run the slower debug versions of all components in the sys-

tem. For detailed instructions on how to do this, see the section “Installing Just the Checked

Operating System and HAL” in the WDK documentation.

Finally, the checked build can also be useful for testing user-mode code only because the

timing of the system is different. (This is because of the additional checking taking place

within the kernel and the fact that the components are compiled without optimizations.)

Often, multithreaded synchronization bugs are related to specific timing conditions. By run-

ning your tests on a system running the checked build (or at least the checked kernel and

HAL), the fact that the timing of the whole system is different might cause latent timing bugs

to surface that do not occur on a normal retail system.

Key System Components

Now that we’ve looked at the high-level architecture of Windows, let’s delve deeper into the

internal structure and the role each key operating system component plays. Figure 2-3 is a

more detailed and complete diagram of the core Windows system architecture and compo-

nents than was shown earlier in the chapter (in Figure 2-1). Note that it still does not show all

components (networking in particular, which is explained in Chapter 12).

The following sections elaborate on each major element of this diagram. Chapter 3 explains

the primary control mechanisms the system uses (such as the object manager, interrupts,

and so forth). Chapter 13 describes the process of starting and shutting down Windows,

and Chapter 4 details management mechanisms such as the registry, service processes, and

Windows Management Instrumentation. Then the remaining chapters explore in even more

detail the internal structure and operation of key areas such as processes and threads, mem-

ory management, security, the I/O manager, storage management, the cache manager, the

Windows file system (NTFS), and networking.

50 Windows Internals, Fifth Edition

System Processes

Services Applications Environment

Subsystems

Windows

POSIX

Windows DLLs

NTDLL.DLL

System Service Dispatcher

(Kernel mode callable interfaces)

I/O
manager

Plug
 and

 Play
m

anag
er

O
b

ject
m

anag
er

C
ache

m
anag

er

Security
reference
m

onitor

M
em

ory
m

anag
er

Process
m

anag
er

C
onfig

uration
m

anag
er

A
d

vanced
 local

p
roced

ure
call

Windows
USER,
GDI

Graphics
drivers

Hardware abstraction layer (HAL)

Hardware interfaces (buses, I/O devices, interrupts,
interval timers, DMA, memory cache control, etc.)

System
threads

Task Manager

Explorer

User
application

Subsystem DLLs

Device
and file
system
drivers

Kernel

User mode

Kernel mode

Windows DLLs
Windows DLLsWindows DLLsWindows DLLs

Service host

Windows DLLs

Print spooler

Session
manager

Windows DLLs

Local session
manager

Windows DLLs

Service control
manager

Local Security
Authority

Windows DLLs

Windows DLLs

Winlogon

Windows DLLs

Wininit

FIGURE 2-3 Windows architecture

Environment Subsystems and Subsystem DLLs

Although the basic POSIX subsystem that originally shipped with Windows no longer ships

with the system, a greatly enhanced version is available on Windows Vista Ultimate and

 Chapter 2 System Architecture 51

Enterprise editions, called Subsystem for Unix-based Applications (SUA [POSIX]), shown in

Figure 2-3.

As we’ll explain shortly, the Windows subsystem is special in that Windows can’t run without

it. (It owns the keyboard, mouse, and display, and it is required to be present even on server

systems with no interactive users logged in.) In fact, the other two subsystems are configured

to start on demand, whereas the Windows subsystem must always be running.

The subsystem startup information is stored under the registry key HKLM\SYSTEM\

CurrentControlSet\Control\Session Manager\SubSystems. Figure 2-4 shows the values under

this key.

FIGURE 2-4 Registry Editor showing Windows startup information

The Required value lists the subsystems that load when the system boots. The value has

two strings: Windows and Debug. The Windows value contains the file specification of the

Windows subsystem, Csrss.exe, which stands for Client/Server Run-Time Subsystem. (See the

Note later in this section.) Debug is blank (because it’s used for internal testing) and there-

fore does nothing. The Optional value indicates that the POSIX subsystem will be started on

demand. The registry value Kmode contains the file name of the kernel-mode portion of the

Windows subsystem, Win32k.sys (explained later in this chapter).

The role of an environment subsystem is to expose some subset of the base Windows execu-

tive system services to application programs. Each subsystem can provide access to different

subsets of the native services in Windows. That means that some things can be done from an

application built on one subsystem that can’t be done by an application built on another sub-

system. For example, a Windows application can’t use the POSIX fork function.

Each executable image (.exe) is bound to one and only one subsystem. When an image is run,

the process creation code examines the subsystem type code in the image header so that

it can notify the proper subsystem of the new process. This type code is specified with the

/SUBSYSTEM qualifier of the link command in Microsoft Visual C++.

52 Windows Internals, Fifth Edition

Note As a historical note, the reason the Windows subsystem process is called Csrss.exe is that

in the original design of Windows NT, all the subsystems were going to execute as threads inside

a single systemwide environment subsystem process. When the POSIX and OS/2 subsystems

were removed and put in their own processes, the file name for the Windows subsystem process

wasn’t changed.

As mentioned earlier, user applications don’t call Windows system services directly. Instead,

they go through one or more subsystem DLLs. These libraries export the documented

interface that the programs linked to that subsystem can call. For example, the Windows

subsystem DLLs (such as Kernel32.dll, Advapi32.dll, User32.dll, and Gdi32.dll) implement the

Windows API functions. The POSIX subsystem DLL (Psxdll.dll) implements the POSIX API

functions.

EXPERIMENT: Viewing the Image Subsystem Type

You can see the image subsystem type by using the Dependency Walker tool

(Depends.exe) in the Windows SDK. For example, notice the image types for two differ-

ent Windows images, Notepad.exe (the simple text editor) and Cmd.exe (the Windows

command prompt):

This shows that Notepad is a GUI program, while Cmd is a console, or character-based,

program. And although this implies there are two different subsystems for GUI and

character-based programs, there is just one Windows subsystem, and GUI programs

can have consoles, just like console programs can display GUIs.

 Chapter 2 System Architecture 53

When an application calls a function in a subsystem DLL, one of three things can occur:

The function is entirely implemented in user mode inside the subsystem DLL. In other

words, no message is sent to the environment subsystem process, and no Windows

executive system services are called. The function is performed in user mode, and the

results are returned to the caller. Examples of such functions include GetCurrentProcess
(which always returns –1, a value that is defined to refer to the current process in all

process-related functions) and GetCurrentProcessId. (The process ID doesn’t change for

a running process, so this ID is retrieved from a cached location, thus avoiding the need

to call into the kernel.)

The function requires one or more calls to the Windows executive. For example, the

Windows ReadFile and WriteFile functions involve calling the underlying internal (and

undocumented) Windows I/O system services NtReadFile and NtWriteFile, respectively.

The function requires some work to be done in the environment subsystem process.

(The environment subsystem processes, running in user mode, are responsible for

maintaining the state of the client applications running under their control.) In this case,

a client/server request is made to the environment subsystem via a message sent to the

subsystem to perform some operation. The subsystem DLL then waits for a reply before

returning to the caller.

Some functions can be a combination of the second and third items just listed, such as the

Windows CreateProcess and CreateThread functions.

Although Windows was designed to support multiple, independent environment subsys-

tems, from a practical perspective, having each subsystem implement all the code to handle

windowing and display I/O would result in a large amount of duplication of system functions

that, ultimately, would have negatively affected both system size and performance. Because

Windows was the primary subsystem, the Windows designers decided to locate these basic

functions there and have the other subsystems call on the Windows subsystem to perform

display I/O. Thus, the POSIX subsystem calls services in the Windows subsystem to perform

display I/O. (In fact, if you examine the subsystem type for these images, you’ll see that they

are Windows executables.)

Let’s take a closer look at each of the environment subsystems.

54 Windows Internals, Fifth Edition

Windows Subsystem

The Windows subsystem consists of the following major components:

The environment subsystem process (Csrss.exe) loads three DLLs (Basesrv.dll, Winsrv.dll,

and Csrsrv.dll) that contain support for:

Console (text) windows

Creating and deleting processes and threads

Portions of the support for 16-bit virtual DOS machine (VDM) processes

Side-by-Side (SxS)/Fusion and manifest support

Other miscellaneous functions, such as GetTempFile, DefineDosDevice,

ExitWindowsEx, and several natural language support functions

The kernel-mode device driver (Win32k.sys) contains:

The window manager, which controls window displays; manages screen output;

collects input from keyboard, mouse, and other devices; and passes user mes-

sages to applications.

The Graphics Device Interface (GDI), which is a library of functions for graph-

ics output devices. It includes functions for line, text, and figure drawing and for

graphics manipulation.

Wrappers for DirectX support that is implemented in another kernel driver

(Dxgkrnl.sys).

Subsystem DLLs (such as Kernel32.dll, Advapi32.dll, User32.dll, and Gdi32.dll) translate

documented Windows API functions into the appropriate and mostly undocumented

kernel-mode system service calls to Ntoskrnl.exe and Win32k.sys.

Graphics device drivers are hardware-dependent graphics display drivers, printer driv-

ers, and video miniport drivers.

Applications call the standard USER functions to create user interface controls, such as win-

dows and buttons, on the display. The window manager communicates these requests to the

GDI, which passes them to the graphics device drivers, where they are formatted for the dis-

play device. A display driver is paired with a video miniport driver to complete video display

support.

The GDI provides a set of standard two-dimensional functions that let applications communi-

cate with graphics devices without knowing anything about the devices. GDI functions medi-

ate between applications and graphics devices such as display drivers and printer drivers. The

GDI interprets application requests for graphic output and sends the requests to graphics

display drivers. It also provides a standard interface for applications to use varying graphics

output devices. This interface enables application code to be independent of the hardware

 Chapter 2 System Architecture 55

devices and their drivers. The GDI tailors its messages to the capabilities of the device, often

dividing the request into manageable parts. For example, some devices can understand

directions to draw an ellipse; others require the GDI to interpret the command as a series

of pixels placed at certain coordinates. For more information about the graphics and video

driver architecture, see the “Design Guide” section of the “Display (Adapters and Monitors)”

chapter in the Windows Driver Kit.

Prior to Windows NT 4, the window manager and graphics services were part of the user-

mode Windows subsystem process. In Windows NT 4, the bulk of the windowing and graph-

ics code was moved from running in the context of the Windows subsystem process to a set

of callable services running in kernel mode (in the file Win32k.sys). The primary reason for

this shift was to improve overall system performance. Having a separate server process that

contains the Windows graphics subsystem required multiple thread and process context

switches, which consumed considerable CPU cycles and memory resources even though the

original design was highly optimized.

For example, for each thread on the client side there was a dedicated, paired server thread

in the Windows subsystem process waiting on the client thread for requests. A special inter-

process communication facility called fast LPC was used to send messages between these

threads. Unlike normal thread context switches, transitions between paired threads via fast

LPC don’t cause a rescheduling event in the kernel, thereby enabling the server thread to run

for the remaining time slice of the client thread before having to take its turn in the kernel’s

preemptive thread scheduler. Moreover, shared memory buffers were used to allow fast

passing of large data structures, such as bitmaps, and clients had direct but read-only access

to key server data structures to minimize the need for thread/process transitions between

clients and the Windows server. Also, GDI operations were (and still are) batched. Batching

means that a series of graphics calls by a Windows application aren’t “pushed” over to the

server and drawn on the output device until a GDI batching queue is filled. You can set the

size of the queue by using the Windows GdiSetBatchLimit function, and you can flush the

queue at any time with GdiFlush. Conversely, read-only properties and data structures of GDI,

once they were obtained from the Windows subsystem process, were cached on the client

side for fast subsequent access.

Despite these optimizations, however, the overall system performance was still not adequate

for graphics-intensive applications. The obvious solution was to eliminate the need for the

additional threads and resulting context switches by moving the windowing and graphics

system into kernel mode. Also, once applications have called into the window manager and

the GDI, those subsystems can access other Windows executive components directly without

the cost of user-mode or kernel-mode transitions. This direct access is especially important

in the case of the GDI calling through video drivers, a process that involves interaction with

video hardware at high frequencies and high bandwidths.

56 Windows Internals, Fifth Edition

So, what remains in the user-mode process part of the Windows subsystem? All the drawing

and updating for console or text windows are handled by it because console applications

have no notion of repainting a window. It’s easy to see this activity—simply open a command

prompt and drag another window over it, and you’ll see the Windows subsystem consuming

CPU time as it repaints the console window. But other than console window support, only a

few Windows functions result in sending a message to the Windows subsystem process any-

more: process and thread creation and termination, network drive letter mapping, and cre-

ation of temporary files. In general, a running Windows application won’t be causing many, if

any, context switches to the Windows subsystem process.

POSIX Subsystem

POSIX, an acronym loosely defined as “a portable operating system interface based on UNIX,”

refers to a collection of international standards for UNIX-style operating system interfaces.

The POSIX standards encourage vendors implementing UNIX-style interfaces to make them

compatible so that programmers can move their applications easily from one system to

another.

Windows initially implemented only one of the many POSIX standards, POSIX.1, formally

known as ISO/IEC 9945-1:1990 or IEEE POSIX standard 1003.1-1990. This standard was

included primarily to meet U.S. government procurement requirements set in the mid-to-

late 1980s that mandated POSIX.1 compliance as specified in Federal Information Processing

Standard (FIPS) 151-2, developed by the National Institute of Standards and Technology.

Windows NT 3.5, 3.51, and 4 were formally tested and certified according to FIPS 151-2.

Because POSIX.1 compliance was a mandatory goal for Windows, the operating system was

designed to ensure that the required base system support was present to allow for the imple-

mentation of a POSIX.1 subsystem (such as the fork function, which is implemented in the

Windows executive, and the support for hard file links in the Windows file system).

Windows Vista and Windows Server 2008 provide the Windows Subsystem for Unix-based

Applications (SUA), which includes an enhanced POSIX subsystem environment that provides

nearly 2,000 UNIX functions and 300 UNIX-like tools and utilities. (See http://technet.micro-
soft.com/en-us/library/cc779522.aspx for more information on SUA.) SUA can be enabled

on any Windows Server 2008 machine, as well as Windows Vista Ultimate and Enterprise

editions.

This enhanced POSIX subsystem assists in porting UNIX applications to Windows because

it also supports the POSIX.2 standard, which adds many APIs (such as the pthread API) and

libraries to the bare set that POSIX.1 defined. Additionally, it also adds support for 64-bit

binaries and, most importantly, mixed-mode support, meaning that for the first time UNIX-

based applications can call Windows APIs alongside POSIX APIs, greatly alleviating the task of

porting the application.

 Chapter 2 System Architecture 57

EXPERIMENT: Watching the POSIX Subsystem Start

The POSIX subsystem is configured by default to start the first time a POSIX executable

is run, so you can watch it start by running a POSIX program, such as one of the POSIX

utilities that comes with SUA. Follow these steps to watch the POSIX subsystem start:

 1. Start a command prompt.

 2. Run Process Explorer and check that the POSIX subsystem isn’t already run-

ning (that is, that there’s no Psxss.exe process on the system). Make sure Process

Explorer is displaying the process list in tree view (by pressing Ctrl+T).

 3. Run a POSIX program, such as the C Shell or Korn Shell included with the SUA.

 4. Go back to Process Explorer and notice the new Psxss.exe process that is a child

of Smss.exe (which, depending on your different highlight duration, might still be

highlighted as a new process on the display).

To compile and link a POSIX application in Windows requires the POSIX headers and librar-

ies from the Windows SDK. POSIX executables are linked against the POSIX subsystem

library, Psxdll.dll. Because by default Windows is configured to start the POSIX subsystem on

demand, the first time you run a POSIX application, the POSIX subsystem process (Psxss.exe)

must be started. It remains running until the system reboots. (If you kill the POSIX subsys-

tem process, you won’t be able to run more POSIX applications until you reboot.) The POSIX

image itself isn’t run directly—instead, a special support image called Posix.exe is launched,

which in turn creates a child process to run the POSIX application.

For more information on how Windows handles running POSIX applications, see the section

“Flow of CreateProcess” in Chapter 5.

Ntdll.dll

Ntdll.dll is a special system support library primarily for the use of subsystem DLLs. It contains

two types of functions:

System service dispatch stubs to Windows executive system services

Internal support functions used by subsystems, subsystem DLLs, and other native

images

The first group of functions provides the interface to the Windows executive system ser-

vices that can be called from user mode. There are more than 400 such functions, such as

NtCreateFile, NtSetEvent, and so on. As noted earlier, most of the capabilities of these func-

tions are accessible through the Windows API. (A number are not, however, and are for use

within the operating system.)

58 Windows Internals, Fifth Edition

For each of these functions, Ntdll contains an entry point with the same name. The code

inside the function contains the architecture-specific instruction that causes a transition into

kernel mode to invoke the system service dispatcher (explained in more detail in Chapter 3),

which, after verifying some parameters, calls the actual kernel-mode system service that con-

tains the real code inside Ntoskrnl.exe.

Ntdll also contains many support functions, such as the image loader (functions that start

with Ldr), the heap manager, and Windows subsystem process communication functions

(functions that start with Csr). Ntdll also contains general run-time library routines (functions

that start with Rtl), support for user-mode debugging (functions that start with DbgUi) and

Event Tracing for Windows (functions starting in Etw), and the user-mode asynchronous pro-

cedure call (APC) dispatcher and exception dispatcher. (APCs and exceptions are explained in

Chapter 3.) Finally, you’ll find a small subset of the C Run-Time (CRT) routines, limited to those

routines that are part of the string and standard libraries (such as memcpy, strcpy, itoa, and

so on).

Executive

The Windows executive is the upper layer of Ntoskrnl.exe. (The kernel is the lower layer.) The

executive includes the following types of functions:

Functions that are exported and callable from user mode. These functions are called

system services and are exported via Ntdll. Most of the services are accessible through

the Windows API or the APIs of another environment subsystem. A few services, how-

ever, aren’t available through any documented subsystem function. (Examples include

LPCs and various query functions such as NtQueryInformationProcess, specialized func-

tions such as NtCreatePagingFile, and so on.)

Device driver functions that are called through the use of the DeviceIoControl function.

This provides a general interface from user mode to kernel mode to call functions in

device drivers that are not associated with a read or write.

Functions that can be called only from kernel mode that are exported and are docu-

mented in the WDK.

Functions that are exported and callable from kernel mode but are not documented in

the WDK (such as the functions called by the boot video driver, which start with Inbv).

Functions that are defined as global symbols but are not exported. These include

internal support functions called within Ntoskrnl, such as those that start with Iop

(internal I/O manager support functions) or Mi (internal memory management support

functions).

Functions that are internal to a module that are not defined as global symbols.

 Chapter 2 System Architecture 59

The executive contains the following major components, each of which is covered in detail in

a subsequent chapter of this book:

The configuration manager (explained in Chapter 4) is responsible for implementing and

managing the system registry.

The process and thread manager (explained in Chapter 5) creates and terminates pro-

cesses and threads. The underlying support for processes and threads is implemented

in the Windows kernel; the executive adds additional semantics and functions to these

lower-level objects.

The security reference monitor (or SRM, described in Chapter 6) enforces security poli-

cies on the local computer. It guards operating system resources, performing run-time

object protection and auditing.

The I/O manager (explained in Chapter 7) implements device-independent I/O and is

responsible for dispatching to the appropriate device drivers for further processing.

The Plug and Play (PnP) manager (explained in Chapter 7) determines which drivers

are required to support a particular device and loads those drivers. It retrieves the

hardware resource requirements for each device during enumeration. Based on the

resource requirements of each device, the PnP manager assigns the appropriate hard-

ware resources such as I/O ports, IRQs, DMA channels, and memory locations. It is

also responsible for sending proper event notification for device changes (addition or

removal of a device) on the system.

The power manager (explained in Chapter 7) coordinates power events and generates

power management I/O notifications to device drivers. When the system is idle, the

power manager can be configured to reduce power consumption by putting the CPU

to sleep. Changes in power consumption by individual devices are handled by device

drivers but are coordinated by the power manager.

The Windows Driver Model Windows Management Instrumentation routines (explained

in Chapter 4) enable device drivers to publish performance and configuration infor-

mation and receive commands from the user-mode WMI service. Consumers of WMI

information can be on the local machine or remote across the network.

The cache manager (explained in Chapter 10) improves the performance of file-based

I/O by causing recently referenced disk data to reside in main memory for quick access

(and by deferring disk writes by holding the updates in memory for a short time before

sending them to the disk). As you’ll see, it does this by using the memory manager’s

support for mapped files.

The memory manager (explained in Chapter 9) implements virtual memory, a memory

management scheme that provides a large, private address space for each process that

can exceed available physical memory. The memory manager also provides the under-

lying support for the cache manager.

60 Windows Internals, Fifth Edition

The logical prefetcher and Superfetch (explained in Chapter 9) accelerate system and

process startup by optimizing the loading of data referenced during the startup of the

system or a process.

In addition, the executive contains four main groups of support functions that are used by

the executive components just listed. About a third of these support functions are docu-

mented in the WDK because device drivers also use them. These are the four categories of

support functions:

The object manager, which creates, manages, and deletes Windows executive objects

and abstract data types that are used to represent operating system resources such

as processes, threads, and the various synchronization objects. The object manager is

explained in Chapter 3.

The Advanced LPC facility (ALPC, explained in Chapter 3) passes messages between a

client process and a server process on the same computer. Among other things, ALPC is

used as a local transport for remote procedure call (RPC), an industry-standard commu-

nication facility for client and server processes across a network.

A broad set of common run-time library functions, such as string processing, arithmetic

operations, data type conversion, and security structure processing.

Executive support routines, such as system memory allocation (paged and nonpaged

pool), interlocked memory access, as well as three special types of synchronization

objects: resources, fast mutexes, and pushlocks.

The executive also contains a variety of other infrastructure routines, some of which we will

only mention briefly throughout the book:

The kernel debugger library, which allows debugging of the kernel from a debugger

supporting KD, a portable protocol supported over a variety of transports (such as USB

and IEEE 1394) and implemented by WinDbg and the Kd.exe utilities.

The user-mode debugging framework, which is responsible for sending events to the

user-mode debugging API and allowing breakpoints and stepping through code to

work, as well as for changing contexts of running threads.

The kernel transaction manager, which provides a common, two-phase commit mecha-

nism to resource managers, such as the transactional registry (TxR) and transactional

NTFS (TxF).

The hypervisor library, part of the Hyper-V stack in Windows Server 2008, provides

kernel support for the virtual machine environment and optimizes certain parts of the

code when the system knows it’s running in a client partition (virtual environment).

The errata manager provides workarounds for nonstandard or noncompliant hardware

devices.

 Chapter 2 System Architecture 61

The Driver Verifier implements optional integrity checks of kernel-mode drivers and

code.

Event Tracing for Windows provides helper routines for systemwide event tracing for

kernel-mode and user-mode components.

The Windows diagnostic infrastructure enables intelligent tracing of system activity

based on diagnostic scenarios.

The Windows hardware error architecture support routines provide a common frame-

work for reporting hardware errors.

The file-system runtime library provides common support routines for file system

drivers.

Kernel

The kernel consists of a set of functions in Ntoskrnl.exe that provide fundamental mecha-

nisms (such as thread scheduling and synchronization services) used by the executive compo-

nents, as well as low-level hardware architecture–dependent support (such as interrupt and

exception dispatching), that is different on each processor architecture. The kernel code is

written primarily in C, with assembly code reserved for those tasks that require access to spe-

cialized processor instructions and registers not easily accessible from C.

Like the various executive support functions mentioned in the preceding section, a number

of functions in the kernel are documented in the WDK (and can be found by searching for

functions beginning with Ke) because they are needed to implement device drivers.

Kernel Objects

The kernel provides a low-level base of well-defined, predictable operating system primitives

and mechanisms that allow higher-level components of the executive to do what they need

to do. The kernel separates itself from the rest of the executive by implementing operat-

ing system mechanisms and avoiding policy making. It leaves nearly all policy decisions to

the executive, with the exception of thread scheduling and dispatching, which the kernel

implements.

Outside the kernel, the executive represents threads and other shareable resources as

objects. These objects require some policy overhead, such as object handles to manipulate

them, security checks to protect them, and resource quotas to be deducted when they are

created. This overhead is eliminated in the kernel, which implements a set of simpler objects,

called kernel objects, that help the kernel control central processing and support the creation

of executive objects. Most executive-level objects encapsulate one or more kernel objects,

incorporating their kernel-defined attributes.

62 Windows Internals, Fifth Edition

One set of kernel objects, called control objects, establishes semantics for controlling vari-

ous operating system functions. This set includes the APC object, the deferred procedure call
(DPC) object, and several objects the I/O manager uses, such as the interrupt object.

Another set of kernel objects, known as dispatcher objects, incorporates synchronization

capabilities that alter or affect thread scheduling. The dispatcher objects include the ker-

nel thread, mutex (called mutant internally), event, kernel event pair, semaphore, timer, and

waitable timer. The executive uses kernel functions to create instances of kernel objects,

to manipulate them, and to construct the more complex objects it provides to user mode.

Objects are explained in more detail in Chapter 3, and processes and threads are described in

Chapter 5.

Kernel Processor Control Region and Control Block (KPCR and KPRCB)

The kernel uses a data structure called the processor control region, or KPCR, to store

 processor-specific data. The KPCR contains basic information such as the processor’s interrupt

table (IDT), task-state segment (TSS), and global descriptor table (GDT). It also includes the

interrupt controller state, which it shares with other modules, such as the ACPI driver and the

HAL. To provide easy access to the KPCR, the kernel stores a pointer to it in the fs register on

32-bit Windows and in the gs register on an x64 Windows system. On IA64 systems, the KPCR

is always located at 0xe0000000ffff0000.

The KPCR also contains an embedded data structure called the kernel processor control block
(KPRCB). Unlike the KPCR, which is documented for third-party drivers and other internal

Windows kernel components, the KPRCB is a private structure used only by the kernel code

in Ntoskrnl.exe. It contains scheduling information such as the current, next, and idle threads

scheduled for execution on the processor, the dispatcher database for the processor (which

includes the ready queues for each priority level), the DPC queue, CPU vendor and identifier

information (model, stepping, speed, feature bits), CPU and NUMA topology (node informa-

tion, cores per package, logical processors per core, and so on), cache sizes, time accounting

information (such as the DPC and interrupt time), and more. The KPRCB also contains all the

statistics for the processor, such as I/O statistics, cache manager statistics (see Chapter 10 for

a description of these), DPC statistics, and memory manager statistics (see Chapter 9 for more

information). Finally, the KPRCB is sometimes used to store cache-aligned, per-processor

structures to optimize memory access, especially on NUMA systems. For example, the non-

paged and paged-pool system lookaside lists are stored in the KPRCB.

 Chapter 2 System Architecture 63

EXPERIMENT: Viewing the KPCR and KPRCB

You can view the contents of the KPCR and KPRCB by using the !pcr and !prcb kernel

debugger commands. If you don’t include flags, the debugger will display information

for CPU 0 by default; otherwise, you can specify a CPU by adding its number after the

command (for example, !pcr 2). The following example shows what the output of the

!pcr and !prcb commands looks like. If the system had pending DPCs, those would also

be shown.

lkd> !pcr

KPCR for Processor 0 at 81d09800:

 Major 1 Minor 1

 NtTib.ExceptionList: 9b31ca3c

 NtTib.StackBase: 00000000

 NtTib.StackLimit: 00000000

 NtTib.SubSystemTib: 80150000

 NtTib.Version: 1c47209e

 NtTib.UserPointer: 00000001

 NtTib.SelfTib: 7ffde000

 SelfPcr: 81d09800

 Prcb: 81d09920

 Irql: 00000002

 IRR: 00000000

 IDR: ffffffff

 InterruptMode: 00000000

 IDT: 82fb8400

 GDT: 82fb8000

 TSS: 80150000

 CurrentThread: 86d317e8

 NextThread: 00000000

 IdleThread: 81d0d640

 DpcQueue:

lkd> !prcb

PRCB for Processor 0 at 81d09920:

Current IRQL -- 0

Threads-- Current 86d317e8 Next 00000000 Idle 81d0d640

Number 0 SetMember 1

Interrupt Count -- 294ccce0

Times -- Dpc 0002a87f Interrupt 00010b87

 Kernel 026270a1 User 00140e5e

You can use the dt command to directly dump the _KPCR and _KPRCB data structures

because both debugger commands give you the address of the structure (shown in

bold for clarity in the previous output). For example, if you wanted to determine the

speed of the processor, you could look at the MHz field with the following command.

64 Windows Internals, Fifth Edition

lkd> dt _KPRCB 81d09920 MHz

nt!_KPRCB

 +0x3c4 MHz : 0xbb4

lkd> ? bb4

Evaluate expression: 2996 = 00000bb4

On this machine, the processor was running at about 3GHz.

Hardware Support

The other major job of the kernel is to abstract or isolate the executive and device drivers

from variations between the hardware architectures supported by Windows. This job includes

handling variations in functions such as interrupt handling, exception dispatching, and multi-

processor synchronization.

Even for these hardware-related functions, the design of the kernel attempts to maximize

the amount of common code. The kernel supports a set of interfaces that are portable and

semantically identical across architectures. Most of the code that implements these portable

interfaces is also identical across architectures.

Some of these interfaces are implemented differently on different architectures, however, or

some of the interfaces are partially implemented with architecture-specific code. These archi-

tecturally independent interfaces can be called on any machine, and the semantics of the

interface will be the same whether or not the code varies by architecture. Some kernel inter-

faces (such as spinlock routines, which are described in Chapter 3) are actually implemented

in the HAL (described in the next section) because their implementation can vary for systems

within the same architecture family.

The kernel also contains a small amount of code with x86-specific interfaces needed to

support old MS-DOS programs. These x86 interfaces aren’t portable in the sense that they

can’t be called on a machine based on any other architecture; they won’t be present. This

x86-specific code, for example, supports calls to manipulate global descriptor tables (GDTs)

and local descriptor tables (LDTs), hardware features of the x86.

Other examples of architecture-specific code in the kernel include the interfaces to provide

translation buffer and CPU cache support. This support requires different code for the differ-

ent architectures because of the way caches are implemented.

Another example is context switching. Although at a high level the same algorithm is used

for thread selection and context switching (the context of the previous thread is saved,

 Chapter 2 System Architecture 65

the context of the new thread is loaded, and the new thread is started), there are architec-

tural differences among the implementations on different processors. Because the context

is described by the processor state (registers and so on), what is saved and loaded varies

depending on the architecture.

Hardware Abstraction Layer

As mentioned at the beginning of this chapter, one of the crucial elements of the Windows

design is its portability across a variety of hardware platforms. The hardware abstraction layer

(HAL) is a key part of making this portability possible. The HAL is a loadable kernel-mode

module (Hal.dll) that provides the low-level interface to the hardware platform on which

Windows is running. It hides hardware-dependent details such as I/O interfaces, interrupt

controllers, and multiprocessor communication mechanisms—any functions that are both

architecture-specific and machine-dependent.

So rather than access hardware directly, Windows internal components as well as user-written

device drivers maintain portability by calling the HAL routines when they need platform-

dependent information. For this reason, the HAL routines are documented in the WDK. To

find out more about the HAL and its use by device drivers, refer to the WDK.

Although several HALs are included with Windows (as shown in Table 2-5), Windows Vista

and Windows Server 2008 have the ability to detect at boot-up time which HAL should be

used, eliminating the problem that existed on earlier versions of Windows when attempting

to boot a Windows installation on a different kind of system.

TABLE 2-5 List of x86 HALs

HAL File Name Systems Supported

Halacpi.dll Advanced Configuration and Power Interface (ACPI) PCs. Implies uniprocessor-

only machine, without APIC support (the presence of either one would make

the system use the HAL below instead).

Halmacpi.dll Advanced Programmable Interrupt Controller (APIC) PCs with an ACPI. The

existence of an APIC implies SMP support.

Note On x64 machines, there is only one HAL image, called Hal.dll. This results from all x64

 machines having the same motherboard configuration, since the processors require ACPI

and APIC support. Therefore, there is no need to support machines without ACPI or with a

standard PIC.

66 Windows Internals, Fifth Edition

EXPERIMENT: Determining Which HAL You’re Running

You can determine which version of the HAL you’re running by using WinDbg and

opening a local kernel debugging session. Be sure you have the symbols loaded

(write .reload) and then type lm mv hal. For example, the following output is from a

system running the ACPI HAL:

lkd> lm vm hal

start end module name

823a1000 823d5000 hal (pdb symbols)

 c:\programming\symbols\halmacpi.pdb\0D335CFD77384CE695E1748F3249184B1\halmacpi.pdb

 Loaded symbol image file: halmacpi.dll

 Image path: halmacpi.dll

 Image name: halmacpi.dll

 Timestamp: Sat Dec 23 23:05:34 2006 (458DFC8E)

 CheckSum: 00035DC3

 ImageSize: 00034000

 File version: 6.0.6000.16407

 Product version: 6.0.6000.16407

 File flags: 0 (Mask 3F)

 File OS: 40004 NT Win32

 File type: 2.0 Dll

 File date: 00000000.00000000

 Translations: 0409.04b0

 CompanyName: Microsoft Corporation

 ProductName: Microsoft® Windows® Operating System

 InternalName: halmacpi.dll

 OriginalFilename: halmacpi.dll

 ProductVersion: 6.0.6000.16407

 FileVersion: 6.0.6000.16407 (vista_gdr.061223-1640)

 FileDescription: Hardware Abstraction Layer DLL

 LegalCopyright: © Microsoft Corporation. All rights reserved.

EXPERIMENT: Viewing NTOSKRNL and HAL Image Dependencies

You can view the relationship of the kernel and HAL images by examining their export

and import tables using the Dependency Walker tool (Depends.exe), which is contained

in the Windows SDK. To examine an image in the Dependency Walker, select Open

from the File menu to open the desired image file.

 Chapter 2 System Architecture 67

Here is a sample of output you can see by viewing the dependencies of Ntoskrnl using

this tool:

Notice that Ntoskrnl is linked against the HAL, which is in turn linked against Ntoskrnl.

(They both use functions in each other.) Ntoskrnl is also linked to the following binaries:

Pshed.dll, the Platform-Specific Hardware Error Driver. The PSHED provides an

abstraction of the hardware error reporting facilities of the underlying plat-

form by hiding the details of a platform’s error handling mechanisms from the

operating system and exposing a consistent interface to the Windows operat-

ing system.

Bootvid.dll, the Boot Video Driver. Bootvid provides support for the VGA

commands required to display boot text and the boot logo during startup. On

x64 kernels, this library is built into the kernel to avoid conflicts with Kernel

Patch Protection (KPP). (See Chapter 3 for more information on KPP and

PatchGuard.)

Kdcom.dll, the Kernel Debugger Protocol (KD) Communications Library,

described earlier.

Ci.dll, the code integrity library, described earlier.

Clfs.sys, the common logging file system driver, used, among other things, by

the Kernel Transaction Manager (KTM). (See Chapter 3 for more information

on the KTM.)

For a detailed description of the information displayed by this tool, see the

Dependency Walker help file (Depends.hlp).

68 Windows Internals, Fifth Edition

Device Drivers

Although device drivers are explained in detail in Chapter 7, this section provides a brief

overview of the types of drivers and explains how to list the drivers installed and loaded on

your system.

Device drivers are loadable kernel-mode modules (typically ending in .sys) that interface

between the I/O manager and the relevant hardware. They run in kernel mode in one of

three contexts:

In the context of the user thread that initiated an I/O function

In the context of a kernel-mode system thread

As a result of an interrupt (and therefore not in the context of any particular process or

thread—whichever process or thread was current when the interrupt occurred)

As stated in the preceding section, device drivers in Windows don’t manipulate hardware

directly, but rather they call functions in the HAL to interface with the hardware. Drivers are

typically written in C (sometimes C++) and therefore, with proper use of HAL routines, can be

source code portable across the CPU architectures supported by Windows and binary por-

table within an architecture family.

There are several types of device drivers:

Hardware device drivers manipulate hardware (using the HAL) to write output to or

retrieve input from a physical device or network. There are many types of hardware

 device drivers, such as bus drivers, human interface drivers, mass storage drivers, and

so on.

File system drivers are Windows drivers that accept file-oriented I/O requests and trans-

late them into I/O requests bound for a particular device.

File system filter drivers, such as those that perform disk mirroring and encryption,

 intercept I/Os and perform some added-value processing before passing the I/O to the

next layer.

Network redirectors and servers are file system drivers that transmit file system I/O

 requests to a machine on the network and receive such requests, respectively.

Protocol drivers implement a networking protocol such as TCP/IP, NetBEUI, and IPX/SPX.

Kernel streaming filter drivers are chained together to perform signal processing on

data streams, such as recording or displaying audio and video.

 Chapter 2 System Architecture 69

Because installing a device driver is the only way to add user-written kernel-mode code to

the system, some programmers have written device drivers simply as a way to access internal

operating system functions or data structures that are not accessible from user mode (but

that are documented and supported in the DDK). For example, many of the utilities from

Sysinternals combine a Windows GUI application and a device driver that is used to gather

internal system state and call kernel-mode-only accessible functions not accessible from the

user-mode Windows API.

Windows Driver Model (WDM)

Windows 2000 added support for Plug and Play, Power Options, and an extension to the

Windows NT driver model called the Windows Driver Model (WDM). Windows 2000 and

later can run legacy Windows NT 4 drivers, but because these don’t support Plug and Play

and Power Options, systems running these drivers will have reduced capabilities in these two

areas.

From the WDM perspective, there are three kinds of drivers:

A bus driver services a bus controller, adapter, bridge, or any device that has child

devices. Bus drivers are required drivers, and Microsoft generally provides them; each

type of bus (such as PCI, PCMCIA, and USB) on a system has one bus driver. Third par-

ties can write bus drivers to provide support for new buses, such as VMEbus, Multibus,

and Futurebus.

A function driver is the main device driver and provides the operational interface for its

device. It is a required driver unless the device is used raw (an implementation in which

I/O is done by the bus driver and any bus filter drivers, such as SCSI PassThru). A func-

tion driver is by definition the driver that knows the most about a particular device, and

it is usually the only driver that accesses device-specific registers.

A filter driver is used to add functionality to a device (or existing driver) or to modify

I/O requests or responses from other drivers (and is often used to fix hardware that

provides incorrect information about its hardware resource requirements). Filter drivers

are optional and can exist in any number, placed above or below a function driver and

above a bus driver. Usually, system original equipment manufacturers (OEMs) or inde-

pendent hardware vendors (IHVs) supply filter drivers.

In the WDM driver environment, no single driver controls all aspects of a device: a bus driver

is concerned with reporting the devices on its bus to the PnP manager, while a function

driver manipulates the device.

70 Windows Internals, Fifth Edition

In most cases, lower-level filter drivers modify the behavior of device hardware. For example,

if a device reports to its bus driver that it requires 4 I/O ports when it actually requires 16 I/O

ports, a lower-level, device-specific function filter driver could intercept the list of hardware

resources reported by the bus driver to the PnP manager and update the count of I/O ports.

Upper-level filter drivers usually provide added-value features for a device. For example, an

upper-level device filter driver for a keyboard can enforce additional security checks.

Interrupt processing is explained in Chapter 3. Further details about the I/O manager, WDM,

Plug and Play, and Power Options are included in Chapter 7.

Windows Driver Foundation

The Windows Driver Foundation (WDF) simplifies Windows driver development by provid-

ing two frameworks: the Kernel-Mode Driver Framework (KMDF) and the User-Mode Driver

Framework (UMDF). Developers can use KMDF to write drivers for Windows 2000 SP4 and

later, while UMDF supports Windows XP and later.

KMDF provides a simple interface to WDM and hides its complexity from the driver writer

without modifying the underlying bus/function/filter model. KMDF drivers respond to events

that they can register and call into the KMDF library to perform work that isn’t specific to

the hardware they are managing, such as generic power management or synchronization.

(Previously, each driver had to implement this on its own.) In some cases, more than 200 lines

of WDM code can be replaced by a single KMDF function call.

UMDF enables certain classes of drivers (mostly USB-based or other high-latency protocol

buses), such as those for video cameras, MP3 players, cell phones, PDAs, and printers, to be

implemented as user-mode drivers. UMDF runs each user-mode driver in what is essentially

a user-mode service, and it uses ALPC to communicate to a kernel-mode wrapper driver that

provides actual access to hardware. If a UMDF driver crashes, the process dies and usually

restarts, so the system doesn’t become unstable—the device simply becomes unavailable

while the service hosting the driver restarts. Finally, UMDF drivers are written in C++ using

COM-like classes and semantics, further lowering the bar for programmers to write device

drivers.

 Chapter 2 System Architecture 71

EXPERIMENT: Viewing the Installed Device Drivers

You can list the installed drivers by running Msinfo32. (Click Start, Run, and then type

Msinfo32.) Under System Summary, expand Software Environment and open System

Drivers. Here’s an example output of the list of installed drivers:

This window displays the list of device drivers defined in the registry, their type, and

their state (Running or Stopped). Device drivers and Windows service processes are

both defined in the same place: HKLM\SYSTEM\CurrentControlSet\Services. However,

they are distinguished by a type code—for example, type 1 is a kernel-mode device

driver. (For a complete list of the information stored in the registry for device drivers,

see Table 4-7.)

Alternatively, you can list the currently loaded device drivers by selecting the System

process in Process Explorer and opening the DLL view.

72 Windows Internals, Fifth Edition

Peering into Undocumented Interfaces

Examining the names of the exported or global symbols in key system images (such as

Ntoskrnl.exe, Hal.dll, or Ntdll.dll) can be enlightening—you can get an idea of the kinds

of things Windows can do versus what happens to be documented and supported

today. Of course, just because you know the names of these functions doesn’t mean

that you can or should call them—the interfaces are undocumented and are subject to

change. We suggest that you look at these functions purely to gain more insight into

the kinds of internal functions Windows performs, not to bypass supported interfaces.

For example, looking at the list of functions in Ntdll.dll gives you the list of all the sys-

tem services that Windows provides to user-mode subsystem DLLs versus the subset

that each subsystem exposes. Although many of these functions map clearly to docu-

mented and supported Windows functions, several are not exposed via the Windows

API. (See the article “Inside the Native API” from Sysinternals.)

Conversely, it’s also interesting to examine the imports of Windows subsystem DLLs

(such as Kernel32.dll or Advapi32.dll) and which functions they call in Ntdll.

Another interesting image to dump is Ntoskrnl.exe—although many of the exported

routines that kernel-mode device drivers use are documented in the Windows Driver

Kit, quite a few are not. You might also find it interesting to take a look at the import

table for Ntoskrnl and the HAL; this table shows the list of functions in the HAL that

Ntoskrnl uses and vice versa.

Table 2-6 lists most of the commonly used function name prefixes for the executive

components. Each of these major executive components also uses a variation of the

prefix to denote internal functions—either the first letter of the prefix followed by an

i (for internal) or the full prefix followed by a p (for private). For example, Ki represents

internal kernel functions, and Psp refers to internal process support functions.

TABLE 2-6 Commonly Used Prefixes

Prefix Component

Alpc Advanced Local Inter-Process Communication

Cc Common Cache

Cm Configuration manager

Dbgk Debugging Framework for User-Mode

Em Errata Manager

Etw Event Tracing for Windows

Ex Executive support routines

 Chapter 2 System Architecture 73

Prefix Component

FsRtl File system driver run-time library

Hal Hardware abstraction layer

Hvl Hypervisor Library

Io I/O manager

Kd Kernel Debugger

Ke Kernel

Lsa Local Security Authority

Mm Memory manager

Nt NT system services (most of which are exported as Windows functions)

Ob Object manager

Pf Prefetcher

Po Power manager

Pp PnP manager

Ps Process support

Rtl Run-time library

Se Security

Tm Transaction Manager

Vf Verifier

Whea Windows Hardware Error Architecture

Wmi Windows Management Instrumentation

Wdi Windows Diagnostic Infrastructure

Zw Mirror entry point for system services (beginning with Nt) that sets previous

access mode to kernel, which eliminates parameter validation, because Nt sys-

tem services validate parameters only if previous access mode is user

You can decipher the names of these exported functions more easily if you understand

the naming convention for Windows system routines. The general format is:

<Prefix><Operation><Object>

In this format, Prefix is the internal component that exports the routine, Operation tells

what is being done to the object or resource, and Object identifies what is being oper-

ated on.

For example, ExAllocatePoolWithTag is the executive support routine to allocate from a

paged or nonpaged pool. KeInitializeThread is the routine that allocates and sets up a

kernel thread object.

74 Windows Internals, Fifth Edition

System Processes

The following system processes appear on every Windows system. (Two of these—Idle and

System—are not full processes, as they are not running a user-mode executable.)

Idle process (contains one thread per CPU to account for idle CPU time)

System process (contains the majority of the kernel-mode system threads)

Session manager (Smss.exe)

Local session manager (Lsm.exe)

Windows subsystem (Csrss.exe)

Session 0 initialization (Wininit.exe)

Logon process (Winlogon.exe)

Service control manager (Services.exe) and the child service processes it creates (such as

the system-supplied generic service-host process, Svchost.exe)

Local security authentication server (Lsass.exe)

To understand the relationship of these processes, it is helpful to view the process “tree”—

that is, the parent/child relationship between processes. Seeing which process created each

process helps to understand where each process comes from. Figure 2-5 is a screen snapshot

of the process tree viewed after taking a Process Monitor boot trace. Using Process Monitor

is the only way to see the real process tree because, as we’ll see later, the session manager

will spawn copies of itself for each session being created and then terminate them.

FIGURE 2-5 Initial system process tree

 Chapter 2 System Architecture 75

The next sections explain the key system processes shown in Figure 2-5. Although these sec-

tions briefly indicate the order of process startup, Chapter 13 contains a detailed description

of the steps involved in booting and starting Windows.

Idle Process

The first process listed in Figure 2-5 is the system idle process. As we’ll explain in Chapter 5,

processes are identified by their image name. However, this process (as well as the pro-

cess named System) isn’t running a real user-mode image (in that there is no “System Idle

Process.exe” in the \Windows directory). In addition, the name shown for this process differs

from utility to utility (because of implementation details). Table 2-7 lists several of the names

given to the Idle process (process ID 0). The Idle process is explained in detail in Chapter 5.

TABLE 2-7 Names for Process ID 0 in Various Utilities

Utility Name for Process ID 0

Task Manager System Idle Process

Process Status (Pstat.exe) Idle Process

Process Explorer (Procexp.exe) System Idle Process

Task List (Tasklist.exe) System Idle Process

Now let’s look at system threads and the purpose of each of the system processes that are

running real images.

Interrupts and DPCs

The two lines labeled Interrupts and DPCs represent time spent servicing interrupts and

deferred procedure calls. These mechanisms are explained in Chapter 3. Note that while

Process Explorer displays these as entries in the process list, they are not processes. They

are shown because they account for CPU time not charged to any process. (For example, a

system with heavy interrupt activity will not appear as a process consuming CPU time.) Note

that Task Manager includes interrupt and DPC time in the system idle time. Thus a system

with heavy interrupt activity will appear to be idle when using Task Manager.

System Process and System Threads

The System process (process ID 4) is the home for a special kind of thread that runs only

in kernel mode: a kernel-mode system thread. System threads have all the attributes and

contexts of regular user-mode threads (such as a hardware context, priority, and so on) but

are different in that they run only in kernel-mode executing code loaded in system space,

whether that is in Ntoskrnl.exe or in any other loaded device driver. In addition, system

threads don’t have a user process address space and hence must allocate any dynamic stor-

age from operating system memory heaps, such as a paged or nonpaged pool.

76 Windows Internals, Fifth Edition

System threads are created by the PsCreateSystemThread function (documented in the WDK),

which can be called only from kernel mode. Windows as well as various device drivers create

system threads during system initialization to perform operations that require thread context,

such as issuing and waiting for I/Os or other objects or polling a device. For example, the

memory manager uses system threads to implement such functions as writing dirty pages to

the page file or mapped files, swapping processes in and out of memory, and so forth. The

kernel creates a system thread called the balance set manager that wakes up once per second

to possibly initiate various scheduling and memory management–related events. The cache

manager also uses system threads to implement both read-ahead and write-behind I/Os. The

file server device driver (Srv2.sys) uses system threads to respond to network I/O requests for

file data on disk partitions shared to the network. Even the floppy driver has a system thread

to poll the floppy device. (Polling is more efficient in this case because an interrupt-driven

floppy driver consumes a large amount of system resources.) Further information on specific

system threads is included in the chapters in which the component is described.

By default, system threads are owned by the System process, but a device driver can cre-

ate a system thread in any process. For example, the Windows subsystem device driver

(Win32k.sys) creates a system thread inside the Canonical Display Driver (Cdd.dll) part of the

Windows subsystem process (Csrss.exe) so that it can easily access data in the user-mode

address space of that process.

When you’re troubleshooting or going through a system analysis, it’s useful to be able to

map the execution of individual system threads back to the driver or even to the subroutine

that contains the code. For example, on a heavily loaded file server, the System process will

likely be consuming considerable CPU time. But the knowledge that when the System pro-

cess is running that “some system thread” is running isn’t enough to determine which device

driver or operating system component is running.

So if threads in the System process are running, first determine which ones are running (for

example, with the Performance tool). Once you find the thread (or threads) that is running,

look up in which driver the system thread began execution (which at least tells you which

driver likely created the thread) or examine the call stack (or at least the current address) of

the thread in question, which would indicate where the thread is currently executing.

Both of these techniques are illustrated in the following experiments.

 Chapter 2 System Architecture 77

EXPERIMENT: Mapping a System Thread to a Device Driver

In this experiment, we’ll see how to map CPU activity in the System process to the

responsible system thread (and the driver it falls in) generating the activity. This is

important because when the System process is running, you must go to the thread

granularity to really understand what’s going on. For this experiment, we will gener-

ate system thread activity by generating file server activity on your machine. (The file

server driver, Srv2.sys, creates system threads to handle inbound requests for file I/O.

See Chapter 12 for more information on this component.)

 1. Open a command prompt.

 2. Do a directory listing of your entire C drive using a network path to access your

C drive. For example, if your computer name is COMPUTER1, type dir \\com-

puter1\c$ /s. (The /s switch lists all subdirectories.)

 3. Run Process Explorer, and double-click on the System process.

 4. Click on the Threads tab.

 5. Sort by the CSwitch Delta (context switch delta) column. You should see one or

more threads in Srv2.sys running, such as the following:

If you see a system thread running and you are not sure what the driver is, click

the Module button, which will bring up the file properties. Clicking the Module

button while highlighting the thread in Srv2.sys previously shown results in the

following display.

78 Windows Internals, Fifth Edition

Session Manager (Smss)

The session manager (%SystemRoot%\Smss.exe) is the first user-mode process created in the

system. The kernel-mode system thread that performs the final phase of the initialization of

the executive and kernel creates the actual Smss process.

The session manager is responsible for a number of important steps in starting Windows,

such as opening additional page files, performing delayed file rename and delete opera-

tions, and creating system environment variables. It also launches the subsystem processes

(normally just Csrss.exe) and either the Wininit or Winlogon processes, the former of which in

turn creates the rest of the system processes.

Much of the configuration information in the registry that drives the initialization steps of

Smss can be found under HKLM\SYSTEM\CurrentControlSet\Control\Session Manager. Some

of these are explained in Chapter 13 in the section on Smss.

Smss also creates user sessions. When Smss creates the first interactive user session (the

console session) or when a request to create a session is received, it creates a copy of itself

inside that session. The copy calls NtSetSystemInformation with a request to set up kernel-

mode session data structures. This in turn calls the internal memory manager function

MmSessionCreate, which sets up the session virtual address space that will contain the session

 Chapter 2 System Architecture 79

paged pool and the per-session data structures allocated by the kernel-mode part of the

Windows subsystem (Win32k.sys) and other session-space device drivers. (See Chapter 9 for

more details.) Smss then creates an instance of Winlogon and Csrss for the session. For ses-

sion 0, Smss creates Wininit instead.

By having parallel copies of itself during boot-up and Terminal Services session creation, Smss

can create multiple sessions at the same time (at minimum four concurrent sessions, plus one

more for each extra CPU beyond one). This ability enhances logon performance on Terminal

Server systems where multiple users connect at the same time. Once a session finishes ini-

tializing, the copy of Smss terminates. As a result, only the initial Smss.exe process remains

active.

The main thread in Smss waits forever on the process handles to Csrss and Winlogon. If

either of these processes terminates unexpectedly, Smss crashes the system (using the crash

code STATUS_SYSTEM_PROCESS_TERMINATED, or 0xC000021A), because Windows relies on

their existence. Meanwhile, Smss waits for requests to load subsystems, debug events, and

requests to create new Terminal Server sessions. (For a description of Terminal Services, see

the section “Terminal Services and Multiple Sessions” in Chapter 1.)

Winlogon, LogonUI, LSASS, and Userinit

The Windows logon process (%SystemRoot%\Winlogon.exe) handles interactive user logons

and logoffs. Winlogon is notified of a user logon request when the secure attention sequence

(SAS) keystroke combination is entered. The default SAS on Windows is the combination

Ctrl+Alt+Delete. The reason for the SAS is to protect users from password-capture programs

that simulate the logon process, because this keyboard sequence cannot be intercepted by a

user-mode application.

The identification and authentication aspects of the logon process are implemented through

DLLs called credential providers. The standard Windows credential providers implement the

default Windows authentication interfaces: password and smartcard. However, developers

can provide their own credential providers to implement other identification and authentica-

tion mechanisms in place of the standard Windows username/password method (such as one

based on a voice print or a biometric device such as a fingerprint reader). Because Winlogon

is a critical system process on which the system depends, credential providers and the UI to

display the logon dialog box run inside a child process of Winlogon called LogonUI. When

Winlogon detects the SAS, it launches this process, which initializes the credential providers.

Once the user enters her credentials or dismisses the logon interface, the LogonUI process

terminates.

In addition, Winlogon can load additional network provider DLLs that need to perform sec-

ondary authentication. This capability allows multiple network providers to gather identifica-

tion and authentication information all at one time during normal logon.

80 Windows Internals, Fifth Edition

Once the username and password have been captured, they are sent to the local security

authentication server process (%SystemRoot%\Lsass.exe, described in Chapter 6) to be

authenticated. LSASS calls the appropriate authentication package (implemented as a DLL) to

perform the actual verification, such as checking whether a password matches what is stored

in the Active Directory or the SAM (the part of the registry that contains the definition of the

users and groups).

Upon a successful authentication, LSASS calls a function in the security reference monitor

(for example, NtCreateToken) to generate an access token object that contains the user’s

security profile. If User Account Control (UAC) is used and the user logging on is a mem-

ber of the administrators group or has administrator privileges, LSASS will create a second,

restricted version of the token. This access token is then used by Winlogon to create the initial

process(es) in the user’s session. The initial process(es) are stored in the registry value Userinit
under the registry key HKLM\SOFTWARE\Microsoft\Windows NT\CurrentVersion\Winlogon.

(The default is Userinit.exe, but there can be more than one image in the list.)

Userinit performs some initialization of the user environment (such as running the login script

and applying group policies) and then looks in the registry at the Shell value (under the same

Winlogon key referred to previously) and creates a process to run the system-defined shell

(by default, Explorer.exe). Then Userinit exits. This is the reason Explorer.exe is shown with

no parent—its parent has exited, and as explained in Chapter 1, tlist left-justifies processes

whose parent isn’t running. (Another way of looking at it is that Explorer is the grandchild of

Winlogon.)

Winlogon is active not only during user logon and logoff but also whenever it intercepts

the SAS from the keyboard. For example, when you press Ctrl+Alt+Delete while logged on,

the Windows Security dialog box comes up, providing the options to log off, start the Task

Manager, lock the workstation, shut down the system, and so forth. Winlogon is the process

that handles this interaction.

For a complete description of the steps involved in the logon process, see the section “Smss,

Csrss, and Wininit” in Chapter 13. For more details on security authentication, see Chapter 6.

For details on the callable functions that interface with LSASS (the functions that start with

Lsa), see the documentation in the Windows SDK.

Service Control Manager (SCM)

Recall from earlier in the chapter that “services” on Windows can refer either to a server

process or to a device driver. This section deals with services that are user-mode processes.

Services are like UNIX “daemon processes” or VMS “detached processes” in that they can be

configured to start automatically at system boot time without requiring an interactive logon.

They can also be started manually (such as by running the Services administrative tool or by

calling the Windows StartService function). Typically, services do not interact with the logged-

on user, although there are special conditions when this is possible. (See Chapter 4.)

 Chapter 2 System Architecture 81

The service control manager is a special system process running the image %SystemRoot%\

Services.exe that is responsible for starting, stopping, and interacting with service processes.

Service programs are really just Windows images that call special Windows functions to

interact with the service control manager to perform such actions as registering the service’s

successful startup, responding to status requests, or pausing or shutting down the service.

Services are defined in the registry under HKLM\SYSTEM\CurrentControlSet\Services.

Keep in mind that services have three names: the process name you see running on the sys-

tem, the internal name in the registry, and the display name shown in the Services adminis-

trative tool. (Not all services have a display name—if a service doesn’t have a display name,

the internal name is shown.) With Windows, services can also have a description field that

further details what the service does.

To map a service process to the services contained in that process, use the tlist /s or tasklist
/svc command. Note that there isn’t always one-to-one mapping between service process

and running services, however, because some services share a process with other services. In

the registry, the type code indicates whether the service runs in its own process or shares a

process with other services in the image.

A number of Windows components are implemented as services, such as the Print Spooler,

Event Log, Task Scheduler, and various networking components.

EXPERIMENT: Listing Installed Services

To list the installed services, select Administrative Tools from Control Panel, and then

select Services. You should see output like this:

82 Windows Internals, Fifth Edition

To see the detailed properties about a service, right-click on a service and select

Properties. For example, here are the properties for the Print Spooler service (high-

lighted in the previous screen shot):

Notice that the Path To Executable field identifies the program that contains this ser-

vice. Remember that some services share a process with other services—mapping isn’t

always one to one.

EXPERIMENT: Viewing Service Details Inside Service Processes

Process Explorer highlights processes hosting one service or more. (You can configure

this by selecting the Configure Highlighting entry in the Options menu.) If you double-

click on a service-hosting process, you will see a Services tab that lists the services

inside the process, the name of the registry key that defines the service, the display

name seen by the administrator, the description text for that service (if present), and

for Svchost services, the path to the DLL that implements the service. For example, list-

ing the services in a Svchost.exe process on Windows Vista running under the System

account looks like the following.

 Chapter 2 System Architecture 83

For more details on services, see Chapter 4.

Conclusion

In this chapter, we’ve taken a broad look at the overall system architecture of Windows.

We’ve examined the key components of Windows and seen how they interrelate. In the next

chapter, we’ll look in more detail at the core system mechanisms that these components are

built on, such as the object manager and synchronization.

 85

Chapter 3

System Mechanisms

The Windows operating system provides several base mechanisms that kernel-mode compo-

nents such as the executive, the kernel, and device drivers use. This chapter explains the fol-

lowing system mechanisms and describes how they are used:

Trap dispatching, including interrupts, deferred procedure calls (DPCs), asynchronous

procedure calls (APCs), exception dispatching, and system service dispatching

The executive object manager

Synchronization, including spinlocks, kernel dispatcher objects, how waits are imple-

mented, as well as user-mode-specific synchronization primitives that avoid trips to

kernel mode (unlike typical dispatcher objects)

System worker threads

Miscellaneous mechanisms such as Windows global flags

Advanced local procedure calls (ALPCs)

Kernel Event Tracing

Wow64

User-mode debugging

The image loader

Hypervisor (Hyper-V)

Kernel Transaction Manager (KTM)

Kernel Patch Protection (KPP)

Code integrity

Trap Dispatching

Interrupts and exceptions are operating system conditions that divert the processor to code

outside the normal flow of control. Either hardware or software can detect them. The term

trap refers to a processor’s mechanism for capturing an executing thread when an exception

or an interrupt occurs and transferring control to a fixed location in the operating system.

In Windows, the processor transfers control to a trap handler, a function specific to a par-

ticular interrupt or exception. Figure 3-1 illustrates some of the conditions that activate trap

handlers.

86 Windows Internals, Fifth Edition

The kernel distinguishes between interrupts and exceptions in the following way. An inter-
rupt is an asynchronous event (one that can occur at any time) that is unrelated to what the

processor is executing. Interrupts are generated primarily by I/O devices, processor clocks,

or timers, and they can be enabled (turned on) or disabled (turned off). An exception, in con-

trast, is a synchronous condition that results from the execution of a particular instruction.

Running a program a second time with the same data under the same conditions can repro-

duce exceptions. Examples of exceptions include memory access violations, certain debugger

instructions, and divide-by-zero errors. The kernel also regards system service calls as excep-

tions (although technically they’re system traps).

FIGURE 3-1 Trap dispatching

Either hardware or software can generate exceptions and interrupts. For example, a bus error

exception is caused by a hardware problem, whereas a divide-by-zero exception is the result

of a software bug. Likewise, an I/O device can generate an interrupt, or the kernel itself can

issue a software interrupt (such as an APC or DPC, described later in this chapter).

When a hardware exception or interrupt is generated, the processor records enough machine

state on the kernel stack of the thread that’s interrupted so that it can return to that point

in the control flow and continue execution as if nothing had happened. If the thread was

executing in user mode, Windows switches to the thread’s kernel-mode stack. Windows then

creates a trap frame on the kernel stack of the interrupted thread into which it stores the exe-

cution state of the thread. The trap frame is a subset of a thread’s complete context, and you

can view its definition by typing dt nt!_ktrap_frame in the kernel debugger. (Thread context

is described in Chapter 5.) The kernel handles software interrupts either as part of hardware

 Chapter 3 System Mechanisms 87

interrupt handling or synchronously when a thread invokes kernel functions related to the

software interrupt.

In most cases, the kernel installs front-end trap handling functions that perform general

trap handling tasks before and after transferring control to other functions that field the

trap. For example, if the condition was a device interrupt, a kernel hardware interrupt trap

handler transfers control to the interrupt service routine (ISR) that the device driver provided

for the interrupting device. If the condition was caused by a call to a system service, the

general system service trap handler transfers control to the specified system service function

in the executive. The kernel also installs trap handlers for traps that it doesn’t expect to see

or doesn’t handle. These trap handlers typically execute the system function KeBugCheckEx,

which halts the computer when the kernel detects problematic or incorrect behavior that,

if left unchecked, could result in data corruption. (For more information on bug checks, see

Chapter 14.) The following sections describe interrupt, exception, and system service dis-

patching in greater detail.

Interrupt Dispatching

Hardware-generated interrupts typically originate from I/O devices that must notify the

processor when they need service. Interrupt-driven devices allow the operating system to

get the maximum use out of the processor by overlapping central processing with I/O opera-

tions. A thread starts an I/O transfer to or from a device and then can execute other useful

work while the device completes the transfer. When the device is finished, it interrupts the

processor for service. Pointing devices, printers, keyboards, disk drives, and network cards are

generally interrupt driven.

System software can also generate interrupts. For example, the kernel can issue a software

interrupt to initiate thread dispatching and to asynchronously break into the execution of a

thread. The kernel can also disable interrupts so that the processor isn’t interrupted, but it

does so only infrequently—at critical moments while it’s processing an interrupt or dispatch-

ing an exception, for example.

The kernel installs interrupt trap handlers to respond to device interrupts. Interrupt trap

handlers transfer control either to an external routine (the ISR) that handles the interrupt or

to an internal kernel routine that responds to the interrupt. Device drivers supply ISRs to ser-

vice device interrupts, and the kernel provides interrupt handling routines for other types of

interrupts.

In the following subsections, you’ll find out how the hardware notifies the processor of device

interrupts, the types of interrupts the kernel supports, the way device drivers interact with

the kernel (as a part of interrupt processing), and the software interrupts the kernel recog-

nizes (plus the kernel objects that are used to implement them).

88 Windows Internals, Fifth Edition

Hardware Interrupt Processing

On the hardware platforms supported by Windows, external I/O interrupts come into one of

the lines on an interrupt controller. The controller in turn interrupts the processor on a single

line. Once the processor is interrupted, it queries the controller to get the interrupt request
(IRQ). The interrupt controller translates the IRQ to an interrupt number, uses this number

as an index into a structure called the interrupt dispatch table (IDT), and transfers control to

the appropriate interrupt dispatch routine. At system boot time, Windows fills in the IDT with

pointers to the kernel routines that handle each interrupt and exception.

EXPERIMENT: Viewing the IDT

You can view the contents of the IDT, including information on what trap handlers

Windows has assigned to interrupts (including exceptions and IRQs), using the !idt ker-

nel debugger command. The !idt command with no flags shows vectors that map to

addresses in modules other than Ntoskrnl.exe.

The following example shows what the output of the !idt command looks like:

lkd> !idt

Dumping IDT:

37: 823b50e8 hal!PicSpuriousService37

51: 89714cd0 dxgkrnl!DpiFdoLineInterruptRoutine (KINTERRUPT 89714c80)

52: 887f52d0 USBPORT!USBPORT_InterruptService (KINTERRUPT 887f5280)

62: 887f5a50 USBPORT!USBPORT_InterruptService (KINTERRUPT 887f5a00)

 USBPORT!USBPORT_InterruptService (KINTERRUPT 887f5000)

72: 861137d0 ataport!IdePortInterrupt (KINTERRUPT 86113780)

81: 89237050 i8042prt!I8042KeyboardInterruptService (KINTERRUPT 89237000)

82: 86113a50 ataport!IdePortInterrupt (KINTERRUPT 86113a00)

91: 892372d0 i8042prt!I8042MouseInterruptService (KINTERRUPT 89237280)

a2: 89237cd0 sdbus!SdbusInterrupt (KINTERRUPT 89237c80)

 rimmptsk+0x682E (KINTERRUPT 89237a00)

 rimsptsk+0x6780 (KINTERRUPT 89237780)

 rixdptsk+0x6820 (KINTERRUPT 89237500)

a3: 887f57d0 USBPORT!USBPORT_InterruptService (KINTERRUPT 887f5780)

 HDAudBus!HdaController::Isr (KINTERRUPT 86113280)

a8: 86113050 ndis!ndisMiniportMessageIsr (KINTERRUPT 86113000)

a9: 87d35cd0 ndis!ndisMiniportMessageIsr (KINTERRUPT 87d35c80)

aa: 87d35a50 ndis!ndisMiniportMessageIsr (KINTERRUPT 87d35a00)

ab: 87d357d0 ndis!ndisMiniportMessageIsr (KINTERRUPT 87d35780)

ac: 87d35550 ndis!ndisMiniportMessageIsr (KINTERRUPT 87d35500)

ad: 87d352d0 ndis!ndisMiniportMessageIsr (KINTERRUPT 87d35280)

ae: 87d35050 ndis!ndisMiniportMessageIsr (KINTERRUPT 87d35000)

af: 887f5cd0 ndis!ndisMiniportMessageIsr (KINTERRUPT 887f5c80)

b0: 86113550 ndis!ndisMiniportMessageIsr (KINTERRUPT 86113500)

b1: 86113cd0 acpi!ACPIInterruptServiceRoutine (KINTERRUPT 86113c80)

b3: 887f5550 USBPORT!USBPORT_InterruptService (KINTERRUPT 887f5500)

c1: 823b53d8 hal!HalpBroadcastCallService

d1: 823a3c64 hal!HalpHpetClockInterrupt

 Chapter 3 System Mechanisms 89

d2: 823a3f08 hal!HalpHpetRolloverInterrupt

df: 823b51c0 hal!HalpApicRebootService

e1: 823b5934 hal!HalpIpiHandler

e3: 823b56d4 hal!HalpLocalApicErrorService

fd: 823b5edc hal!HalpProfileInterrupt

On the system used to provide the output for this experiment, the keyboard device

driver’s (I8042prt.sys) keyboard ISR is at interrupt number 0x91.

Windows maps hardware IRQs to interrupt numbers in the IDT, and the system also uses the

IDT to configure trap handlers for exceptions. For example, the x86 and x64 exception num-

ber for a page fault (an exception that occurs when a thread attempts to access a page of

virtual memory that isn’t defined or present) is 0xe. Thus, entry 0xe in the IDT points to the

system’s page fault handler. Although the architectures supported by Windows allow up to

256 IDT entries, the number of IRQs a particular machine can support is determined by the

design of the interrupt controller the machine uses.

Each processor has a separate IDT so that different processors can run different ISRs, if

appropriate. For example, in a multiprocessor system, each processor receives the clock inter-

rupt, but only one processor updates the system clock in response to this interrupt. All the

processors, however, use the interrupt to measure thread quantum and to initiate reschedul-

ing when a thread’s quantum ends. Similarly, some system configurations might require that

a particular processor handle certain device interrupts.

x86 Interrupt Controllers

Most x86 systems rely on either the i8259A Programmable Interrupt Controller (PIC) or a vari-

ant of the i82489 Advanced Programmable Interrupt Controller (APIC); the majority of new

computers include an APIC. The PIC standard originates with the original IBM PC. The i8259A

PIC works only with uniprocessor systems and only has 8 interrupt lines. However, the IBM

PC architecture defined the addition of a second PIC, called the slave, whose interrupts are

multiplexed into one of the master PIC’s interrupt lines. This provides 15 total interrupts (7 on

the master and 8 on the slave, multiplexed through the master’s eighth interrupt line). APICs

and Streamlined Advanced Programmable Interrupt Controllers (SAPICs, discussed shortly)

work with multiprocessor systems and have 256 interrupt lines. Intel and other companies

have defined the Multiprocessor Specification (MP Specification), a design standard for x86

multiprocessor systems that centers on the use of APIC. To provide compatibility with unipro-

cessor operating systems and boot code that starts a multiprocessor system in uniprocessor

mode, APICs support a PIC compatibility mode with 15 interrupts and delivery of interrupts

to only the primary processor. Figure 3-2 depicts the APIC architecture. The APIC actually

consists of several components: an I/O APIC that receives interrupts from devices, local APICs

that receive interrupts from the I/O APIC on the bus and that interrupt the CPU they are

associated with, and an i8259A-compatible interrupt controller that translates APIC input into

90 Windows Internals, Fifth Edition

PIC-equivalent signals. Because there can be multiple I/O APICs on the system, motherboards

typically have a piece of core logic that sits between them and the processors. This logic

is responsible for implementing interrupt routing algorithms that both balance the device

interrupt load across processors and attempt to take advantage of locality, delivering device

interrupts to the same processor that has just fielded a previous interrupt of the same type.

Software programs can reprogram the I/O APICs with a fixed routing algorithm that bypasses

this piece of chipset logic. Windows does this by programming the APICs in “interrupt one

processor in the following set” routing mode.

CPU 1

Local
APIC

CPU 0

Local
APIC

i8259A-
equivalent

PIC

I/O
APIC

FIGURE 3-2 x86 APIC architecture

x64 Interrupt Controllers

Because the x64 architecture is compatible with x86 operating systems, x64 systems must

provide the same interrupt controllers as does the x86. A significant difference, however, is

that the x64 versions of Windows will not run on systems that do not have an APIC as they

use the APIC for interrupt control.

IA64 Interrupt Controllers

The IA64 architecture relies on the Streamlined Advanced Programmable Interrupt Controller

(SAPIC), which is an evolution of the APIC. Even if load balancing and routing are present in

the firmware, Windows does not take advantage of it; instead, it statically assigns interrupts

to processors in a round-robin manner.

 Chapter 3 System Mechanisms 91

EXPERIMENT: Viewing the PIC and APIC

You can view the configuration of the PIC on a uniprocessor and the APIC on a multi-

processor by using the !pic and !apic kernel debugger commands, respectively. Here’s

the output of the !pic command on a uniprocessor. (Note that the !pic command

doesn’t work if your system is using an APIC HAL.)

lkd> !pic

----- IRQ Number ----- 00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F

Physically in service:

Physically masked: . . . Y . . Y Y . . Y . . Y . .

Physically requested:

Level Triggered: Y . . . Y . Y

Here’s the output of the !apic command on a system running with the MPS HAL:

lkd> !apic

Apic @ fffe0000 ID:0 (40010) LogDesc:01000000 DestFmt:ffffffff TPR 20

TimeCnt: 0bebc200clk SpurVec:3f FaultVec:e3 error:0

Ipi Cmd: 0004001f Vec:1F FixedDel Dest=Self edg high

Timer..: 000300fd Vec:FD FixedDel Dest=Self edg high masked

Linti0.: 0001003f Vec:3F FixedDel Dest=Self edg high masked

Linti1.: 000184ff Vec:FF NMI Dest=Self lvl high masked

TMR: 61, 82, 91-92, B1

IRR:

ISR:

The following output is for the !ioapic command, which displays the configuration of

the I/O APICs, the interrupt controller components connected to devices:

0: kd> !ioapic

IoApic @ ffd02000 ID:8 (11) Arb:0

Inti00.: 000100ff Vec:FF FixedDel PhysDest:00 edg masked

Inti01.: 00000962 Vec:62 LowestDl Lg:03000000 edg

Inti02.: 000100ff Vec:FF FixedDel PhysDest:00 edg masked

Inti03.: 00000971 Vec:71 LowestDl Lg:03000000 edg

Inti04.: 000100ff Vec:FF FixedDel PhysDest:00 edg masked

Inti05.: 00000961 Vec:61 LowestDl Lg:03000000 edg

Inti06.: 00010982 Vec:82 LowestDl Lg:02000000 edg masked

Inti07.: 000100ff Vec:FF FixedDel PhysDest:00 edg masked

Inti08.: 000008d1 Vec:D1 FixedDel Lg:01000000 edg

Inti09.: 000100ff Vec:FF FixedDel PhysDest:00 edg masked

Inti0A.: 000100ff Vec:FF FixedDel PhysDest:00 edg masked

Inti0B.: 000100ff Vec:FF FixedDel PhysDest:00 edg masked

Inti0C.: 00000972 Vec:72 LowestDl Lg:03000000 edg

Inti0D.: 000100ff Vec:FF FixedDel PhysDest:00 edg masked

Inti0E.: 00000992 Vec:92 LowestDl Lg:03000000 edg

Inti0F.: 000100ff Vec:FF FixedDel PhysDest:00 edg masked

Inti10.: 000100ff Vec:FF FixedDel PhysDest:00 edg masked

Inti11.: 000100ff Vec:FF FixedDel PhysDest:00 edg masked

92 Windows Internals, Fifth Edition

Inti12.: 000100ff Vec:FF FixedDel PhysDest:00 edg masked

Inti13.: 000100ff Vec:FF FixedDel PhysDest:00 edg masked

Inti14.: 0000a9a3 Vec:A3 LowestDl Lg:03000000 lvl

Inti15.: 0000a993 Vec:93 LowestDl Lg:03000000 lvl

Inti16.: 000100ff Vec:FF FixedDel PhysDest:00 edg masked

Inti17.: 000100ff Vec:FF FixedDel PhysDest:00 edg masked

Software Interrupt Request Levels (IRQLs)

Although interrupt controllers perform a level of interrupt prioritization, Windows imposes its

own interrupt priority scheme known as interrupt request levels (IRQLs). The kernel represents

IRQLs internally as a number from 0 through 31 on x86 and from 0 to 15 on x64 and IA64,

with higher numbers representing higher-priority interrupts. Although the kernel defines

the standard set of IRQLs for software interrupts, the HAL maps hardware-interrupt numbers

to the IRQLs. Figure 3-3 shows IRQLs defined for the x86 architecture, and Figure 3-4 shows

IRQLs for the x64 and IA64 architectures.

High

Power fail

Inter-processor interrupt

Device n

Device 1

Clock

Profile/Synch

APC

Passive

DPC/dispatch
Software interrupts

Normal thread execution

Hardware interrupts

31

30

29

28

27

26

3

2

1

0

CMCI

4

5

FIGURE 3-3 x86 interrupt request levels (IRQLs)

Interrupts are serviced in priority order, and a higher-priority interrupt preempts the servic-

ing of a lower-priority interrupt. When a high-priority interrupt occurs, the processor saves

the interrupted thread’s state and invokes the trap dispatchers associated with the inter-

rupt. The trap dispatcher raises the IRQL and calls the interrupt’s service routine. After the

service routine executes, the interrupt dispatcher lowers the processor’s IRQL to where it

was before the interrupt occurred and then loads the saved machine state. The interrupted

thread resumes executing where it left off. When the kernel lowers the IRQL, lower-priority

 Chapter 3 System Mechanisms 93

interrupts that were masked might materialize. If this happens, the kernel repeats the process

to handle the new interrupts.

High/Profile

x64

Inter-processor interrupt/Power

Device n

Device 1

Clock

Synch

APC

Passive/Low

Dispatch/DPC

…

…

High/Profile/Power

IA64

Inter-processor interrupt

Device n

Correctable Machine Check

Device 1

Clock

Synch

APC

Passive/Low

Dispatch/DPC & Synch

15

14

13

12

11

3

4

2

1

0

FIGURE 3-4 x64 and IA64 interrupt request levels (IRQLs)

IRQL priority levels have a completely different meaning than thread-scheduling priorities

(which are described in Chapter 5). A scheduling priority is an attribute of a thread, whereas

an IRQL is an attribute of an interrupt source, such as a keyboard or a mouse. In addition,

each processor has an IRQL setting that changes as operating system code executes.

Each processor’s IRQL setting determines which interrupts that processor can receive. IRQLs

are also used to synchronize access to kernel-mode data structures. (You’ll find out more

about synchronization later in this chapter.) As a kernel-mode thread runs, it raises or low-

ers the processor’s IRQL either directly by calling KeRaiseIrql and KeLowerIrql or, more com-

monly, indirectly via calls to functions that acquire kernel synchronization objects. As Figure

3-5 illustrates, interrupts from a source with an IRQL above the current level interrupt the

processor, whereas interrupts from sources with IRQLs equal to or below the current level are

masked until an executing thread lowers the IRQL.

Because accessing a PIC is a relatively slow operation, HALs that require accessing the I/O

bus to change IRQLs, such as for PIC and 32-bit Advanced Configuration and Power Interface

(ACPI) systems, implement a performance optimization, called lazy IRQL, that avoids PIC

accesses. When the IRQL is raised, the HAL notes the new IRQL internally instead of changing

the interrupt mask. If a lower-priority interrupt subsequently occurs, the HAL sets the inter-

rupt mask to the settings appropriate for the first interrupt and postpones the lower-priority

interrupt until the IRQL is lowered. Thus, if no lower-priority interrupts occur while the IRQL is

raised, the HAL doesn’t need to modify the PIC.

94 Windows Internals, Fifth Edition

High

Power fail

Inter-processor interrupt

Device n

Device 1

Clock

Profile/Synch

APC

Passive

DPC/dispatch
Interrupts masked on
Processor B

IRQL setting

Processor B

IRQL = DPC/dispatch

IRQL = Clock

Interrupts masked on
Processor A

Processor A

CMCI

FIGURE 3-5 Masking interrupts

A kernel-mode thread raises and lowers the IRQL of the processor on which it’s running,

depending on what it’s trying to do. For example, when an interrupt occurs, the trap handler

(or perhaps the processor) raises the processor’s IRQL to the assigned IRQL of the interrupt

source. This elevation masks all interrupts at and below that IRQL (on that processor only),

which ensures that the processor servicing the interrupt isn’t waylaid by an interrupt at the

same or a lower level. The masked interrupts are either handled by another processor or held

back until the IRQL drops. Therefore, all components of the system, including the kernel and

device drivers, attempt to keep the IRQL at passive level (sometimes called low level). They

do this because device drivers can respond to hardware interrupts in a timelier manner if the

IRQL isn’t kept unnecessarily elevated for long periods.

Note An exception to the rule that raising the IRQL blocks interrupts of that level and lower

relates to APC-level interrupts. If a thread raises the IRQL to APC level and then is rescheduled

because of a dispatch/DPC-level interrupt, the system might deliver an APC level interrupt to the

newly scheduled thread. Thus, APC level can be considered a thread-local rather than processor-

wide IRQL.

 Chapter 3 System Mechanisms 95

EXPERIMENT: Viewing the IRQL

You can view a processor’s saved IRQL with the !irql debugger command. The saved

IRQL represents the IRQL at the time just before the break-in to the debugger, which

raises the IRQL to a static, meaningless value:

kd> !irql

Debugger saved IRQL for processor 0x0 -- 0 (LOW_LEVEL)

Note that the IRQL value is saved in two locations. The first, which represents the cur-

rent IRQL, is the processor control region (PCR), while its extension, the processor

control block (PRCB), contains the saved IRQL in the DebuggerSaveIrql field. The PCR

and PRCB contain information about the state of each processor in the system, such

as the current IRQL, a pointer to the hardware IDT, the currently running thread, and

the next thread selected to run. The kernel and the HAL use this information to per-

form architecture-specific and machine-specific actions. Portions of the PCR and PRCB

structures are defined publicly in the Windows Driver Kit (WDK) header file Ntddk.h, so

examine that file if you want a complete definition of these structures.

You can view the contents of the PCR with the kernel debugger by using the !pcr
command:

lkd> !pcr

KPCR for Processor 0 at 820f4700:

 Major 1 Minor 1

 NtTib.ExceptionList: 9cee5cc8

 NtTib.StackBase: 00000000

 NtTib.StackLimit: 00000000

 NtTib.SubSystemTib: 801ca000

 NtTib.Version: 294308d9

 NtTib.UserPointer: 00000001

 NtTib.SelfTib: 7ffdf000

 SelfPcr: 820f4700

 Prcb: 820f4820

 Irql: 00000004

 IRR: 00000000

 IDR: ffffffff

 InterruptMode: 00000000

 IDT: 81d7f400

 GDT: 81d7f000

 TSS: 801ca000

 CurrentThread: 8952d030

 NextThread: 00000000

 IdleThread: 820f8300

 DpcQueue:

96 Windows Internals, Fifth Edition

Because changing a processor’s IRQL has such a significant effect on system operation, the

change can be made only in kernel mode—user-mode threads can’t change the processor’s

IRQL. This means that a processor’s IRQL is always at passive level when it’s executing user-

mode code. Only when the processor is executing kernel-mode code can the IRQL be higher.

Each interrupt level has a specific purpose. For example, the kernel issues an interproces-
sor interrupt (IPI) to request that another processor perform an action, such as dispatching a

particular thread for execution or updating its translation look-aside buffer (TLB) cache. The

system clock generates an interrupt at regular intervals, and the kernel responds by updating

the clock and measuring thread execution time. If a hardware platform supports two clocks,

the kernel adds another clock interrupt level to measure performance. The HAL provides a

number of interrupt levels for use by interrupt-driven devices; the exact number varies with

the processor and system configuration. The kernel uses software interrupts (described later

in this chapter) to initiate thread scheduling and to asynchronously break into a thread’s

execution.

Mapping Interrupts to IRQLs IRQL levels aren’t the same as the interrupt requests (IRQs)

defined by interrupt controllers—the architectures on which Windows runs don’t implement

the concept of IRQLs in hardware. So how does Windows determine what IRQL to assign to

an interrupt? The answer lies in the HAL. In Windows, a type of device driver called a bus
driver determines the presence of devices on its bus (PCI, USB, and so on) and what interrupts

can be assigned to a device. The bus driver reports this information to the Plug and Play

manager, which decides, after taking into account the acceptable interrupt assignments for

all other devices, which interrupt will be assigned to each device. Then it calls a Plug and Play

interrupt arbiter, which maps interrupts to IRQLs.

The algorithm for assignment differs for the various HALs that Windows includes. On ACPI

systems (including x86, x64, and IA64), the HAL computes the IRQL for a given interrupt by

dividing the interrupt vector assigned to the IRQ by 16. As for selecting an interrupt vec-

tor for the IRQ, this depends on the type of interrupt controller present on the system. On

today’s APIC systems, this number is generated in a round-robin fashion, so there is no com-

putable way to figure out the IRQ based on the interrupt vector or the IRQL.

Predefined IRQLs Let’s take a closer look at the use of the predefined IRQLs, starting from

the highest level shown in Figure 3-4:

The kernel uses high level only when it’s halting the system in KeBugCheckEx and mask-

ing out all interrupts.

Power fail level originated in the original Windows NT design documents, which speci-

fied the behavior of system power failure code, but this IRQL has never been used.

Inter-processor interrupt level is used to request another processor to perform an

action, such as updating the processor’s TLB cache, system shutdown, or system crash.

 Chapter 3 System Mechanisms 97

Clock level is used for the system’s clock, which the kernel uses to track the time of day

as well as to measure and allot CPU time to threads.

The system’s real-time clock (or another source, such as the local APIC timer) uses pro-
file level when kernel profiling, a performance measurement mechanism, is enabled.

When kernel profiling is active, the kernel’s profiling trap handler records the address

of the code that was executing when the interrupt occurred. A table of address samples

is constructed over time that tools can extract and analyze. You can obtain Kernrate, a

kernel profiling tool that you can use to configure and view profiling-generated statis-

tics, from the Windows Driver Kit (WDK). See the Kernrate experiment for more infor-

mation on using this tool.

The device IRQLs are used to prioritize device interrupts. (See the previous section for

how hardware interrupt levels are mapped to IRQLs.)

The correctible machine check interrupt level is used after a serious but correctible

(by the operating system) hardware condition or error was reported by the CPU or

firmware.

DPC/dispatch-level and APC-level interrupts are software interrupts that the kernel

and device drivers generate. (DPCs and APCs are explained in more detail later in this

chapter.)

The lowest IRQL, passive level, isn’t really an interrupt level at all; it’s the setting at which

normal thread execution takes place and all interrupts are allowed to occur.

EXPERIMENT: Using Kernel Profiler (Kernrate) to

Profile Execution

You can use the Kernel Profiler tool (Kernrate) to enable the system profiling timer, col-

lect samples of the code that is executing when the timer fires, and display a summary

showing the frequency distribution across image files and functions. It can be used to

track CPU usage consumed by individual processes and/or time spent in kernel mode

independent of processes (for example, interrupt service routines). Kernel profiling is

useful when you want to obtain a breakdown of where the system is spending time.

In its simplest form, Kernrate samples where time has been spent in each kernel module

(for example, Ntoskrnl, drivers, and so on). For example, after installing the Windows

Driver Kit, try performing the following steps:

 1. Open a command prompt.

 2. Type cd c:\winddk\6001\tools\other\.

 3. Type dir. (You will see directories for each platform.)

 4. Run the image that matches your platform (with no arguments or switches). For

example, i386\kernrate.exe is the image for an x86 system.

98 Windows Internals, Fifth Edition

 5. While Kernrate is running, go perform some other activity on the system. For

example, run Windows Media Player and play some music, run a graphics-

 intensive game, or perform network activity such as doing a directory of a remote

network share.

 6. Press Ctrl+C to stop Kernrate. This causes Kernrate to display the statistics from

the sampling period.

In the sample output from Kernrate, Windows Media Player was running, playing a

recorded movie from disk.

C:\Windows\system32>c:\Programming\ddk\tools\other\i386\kernrate.exe

 /==============================\

< KERNRATE LOG >

 \==============================/

Date: 2008/03/09 Time: 16:44:24

Machine Name: ALEX-LAPTOP

Number of Processors: 2

PROCESSOR_ARCHITECTURE: x86

PROCESSOR_LEVEL: 6

PROCESSOR_REVISION: 0f06

Physical Memory: 3310 MB

Pagefile Total: 7285 MB

Virtual Total: 2047 MB

PageFile1: \??\C:\pagefile.sys, 4100MB

OS Version: 6.0 Build 6000 Service-Pack: 0.0

WinDir: C:\Windows

Kernrate Executable Location: C:\PROGRAMMING\DDK\TOOLS\OTHER\I386

Kernrate User-Specified Command Line:

c:\Programming\ddk\tools\other\i386\kernrate.exe

Kernel Profile (PID = 0): Source= Time,

Using Kernrate Default Rate of 25000 events/hit

Starting to collect profile data

***> Press ctrl-c to finish collecting profile data

===> Finished Collecting Data, Starting to Process Results

------------Overall Summary:--------------

P0 K 0:00:00.000 (0.0%) U 0:00:00.234 (4.7%) I 0:00:04.789 (95.3%)

DPC 0:00:00.000 (0.0%) Interrupt 0:00:00.000 (0.0%)

 Interrupts= 9254, Interrupt Rate= 1842/sec.

P1 K 0:00:00.031 (0.6%) U 0:00:00.140 (2.8%) I 0:00:04.851 (96.6%)

DPC 0:00:00.000 (0.0%) Interrupt 0:00:00.000 (0.0%)

 Interrupts= 7051, Interrupt Rate= 1404/sec.

TOTAL K 0:00:00.031 (0.3%) U 0:00:00.374 (3.7%) I 0:00:09.640 (96.0%)

DPC 0:00:00.000 (0.0%) Interrupt 0:00:00.000 (0.0%)

 Total Interrupts= 16305, Total Interrupt Rate= 3246/sec.

 Chapter 3 System Mechanisms 99

Total Profile Time = 5023 msec

 BytesStart BytesStop BytesDiff.

 Available Physical Memory , 1716359168, 1716195328, -163840

 Available Pagefile(s) , 5973733376, 5972783104, -950272

 Available Virtual , 2122145792, 2122145792, 0

 Available Extended Virtual , 0, 0, 0

 Committed Memory Bytes , 1665404928, 1666355200, 950272

 Non Paged Pool Usage Bytes , 66211840, 66211840, 0

 Paged Pool Usage Bytes , 189083648, 189087744, 4096

 Paged Pool Available Bytes , 150593536, 150593536, 0

 Free System PTEs , 37322, 37322, 0

 Total Avg. Rate

 Context Switches , 30152, 6003/sec.

 System Calls , 110807, 22059/sec.

 Page Faults , 226, 45/sec.

 I/O Read Operations , 730, 145/sec.

 I/O Write Operations , 1038, 207/sec.

 I/O Other Operations , 858, 171/sec.

 I/O Read Bytes , 2013850, 2759/ I/O

 I/O Write Bytes , 28212, 27/ I/O

 I/O Other Bytes , 19902, 23/ I/O

Results for Kernel Mode:

OutputResults: KernelModuleCount = 167

Percentage in the following table is based on the Total Hits for the Kernel

Time 3814 hits, 25000 events per hit --------

Module Hits msec %Total Events/Sec

NTKRNLPA 3768 5036 98 % 18705321

NVLDDMKM 12 5036 0 % 59571

HAL 12 5036 0 % 59571

WIN32K 10 5037 0 % 49632

DXGKRNL 9 5036 0 % 44678

NETW4V32 2 5036 0 % 9928

FLTMGR 1 5036 0 % 4964

================================= END OF RUN ==================================

============================== NORMAL END OF RUN ==============================

The overall summary shows that the system spent 0.3 percent of the time in kernel

mode, 3.7 percent in user mode, 96.0 percent idle, 0.0 percent at DPC level, and 0.0

percent at interrupt level. The module with the highest hit rate was Ntkrnlpa.exe, the

kernel for machines with Physical Address Extension (PAE) or NX support. The module

with the second highest hit rate was nvlddmkm.sys, the driver for the video card on the

machine used for the test. This makes sense because the major activity going on in the

system was Windows Media Player sending video I/O to the video driver.

100 Windows Internals, Fifth Edition

If you have symbols available, you can zoom in on individual modules and see the time

spent by function name. For example, profiling the system while rapidly dragging a

window around the screen resulted in the following (partial) output:

C:\Windows\system32>c:\Programming\ddk\tools\other\i386\kernrate.exe -z ntkrnlpa -z

win32k

 /==============================\

< KERNRATE LOG >

 \==============================/

Date: 2008/03/09 Time: 16:49:56

Time 4191 hits, 25000 events per hit --------

Module Hits msec %Total Events/Sec

NTKRNLPA 3623 5695 86 % 15904302

WIN32K 303 5696 7 % 1329880

INTELPPM 141 5696 3 % 618855

HAL 61 5695 1 % 267778

CDD 30 5696 0 % 131671

NVLDDMKM 13 5696 0 % 57057

----- Zoomed module WIN32K.SYS (Bucket size = 16 bytes, Rounding Down) --------

Module Hits msec %Total Events/Sec

BltLnkReadPat 34 5696 10 % 149227

memmove 21 5696 6 % 92169

vSrcTranCopyS8D32 17 5696 5 % 74613

memcpy 12 5696 3 % 52668

RGNOBJ::bMerge 10 5696 3 % 43890

HANDLELOCK::vLockHandle 8 5696 2 % 35112

----- Zoomed module NTKRNLPA.EXE (Bucket size = 16 bytes, Rounding Down) --------

Module Hits msec %Total Events/Sec

KiIdleLoop 3288 5695 87 % 14433713

READ_REGISTER_USHORT 95 5695 2 % 417032

READ_REGISTER_ULONG 93 5695 2 % 408252

RtlFillMemoryUlong 31 5695 0 % 136084

KiFastCallEntry 18 5695 0 % 79016

The module with the second hit rate was Win32k.sys, the windowing system driver.

Also high on the list were the video driver and Cdd.dll, a global video driver used for

the 3D-accelerated Aero desktop theme. These results make sense because the main

activity in the system was drawing on the screen. Note that in the zoomed display for

Win32k.sys, the functions with the highest hits are related to merging, copying, and

moving bits, the main GDI operations for painting a window dragged on the screen.

One important restriction on code running at DPC/dispatch level or above is that it can’t wait

for an object if doing so would necessitate the scheduler to select another thread to execute,

which is an illegal operation because the scheduler synchronizes its data structures at DPC/

dispatch level and cannot therefore be invoked to perform a reschedule. Another restriction

is that only nonpaged memory can be accessed at IRQL DPC/dispatch level or higher.

 Chapter 3 System Mechanisms 101

This rule is actually a side-effect of the first restriction because attempting to access memory

that isn’t resident results in a page fault. When a page fault occurs, the memory manager

initiates a disk I/O and then needs to wait for the file system driver to read the page in from

disk. This wait would in turn require the scheduler to perform a context switch (perhaps to

the idle thread if no user thread is waiting to run), thus violating the rule that the scheduler

can’t be invoked (because the IRQL is still DPC/dispatch level or higher at the time of the disk

read).

If either of these two restrictions is violated, the system crashes with an IRQL_NOT_LESS_OR_

EQUAL or a DRIVER_IRQL_NOT_LESS_OR_EQUAL crash code. (See Chapter 14 for a thorough

discussion of system crashes.) Violating these restrictions is a common bug in device drivers.

The Windows Driver Verifier, explained in the section “Driver Verifier” in Chapter 9, has an

option you can set to assist in finding this particular type of bug.

Interrupt Objects The kernel provides a portable mechanism—a kernel control object

called an interrupt object—that allows device drivers to register ISRs for their devices. An

interrupt object contains all the information the kernel needs to associate a device ISR with

a particular level of interrupt, including the address of the ISR, the IRQL at which the device

interrupts, and the entry in the kernel’s IDT with which the ISR should be associated. When

an interrupt object is initialized, a few instructions of assembly language code, called the dis-
patch code, are copied from an interrupt handling template, KiInterruptTemplate, and stored

in the object. When an interrupt occurs, this code is executed.

This interrupt-object resident code calls the real interrupt dispatcher, which is typically either

the kernel’s KiInterruptDispatch or KiChainedDispatch routine, passing it a pointer to the

interrupt object. KiInterruptDispatch is the routine used for interrupt vectors for which only

one interrupt object is registered, and KiChainedDispatch is for vectors shared among mul-

tiple interrupt objects. The interrupt object contains information this second dispatcher rou-

tine needs to locate and properly call the ISR the device driver provides.

The interrupt object also stores the IRQL associated with the interrupt so that KiInterrupt-
Dispatch or KiChainedDispatch can raise the IRQL to the correct level before calling the ISR

and then lower the IRQL after the ISR has returned. This two-step process is required because

there’s no way to pass a pointer to the interrupt object (or any other argument for that mat-

ter) on the initial dispatch because the initial dispatch is done by hardware. On a multiproces-

sor system, the kernel allocates and initializes an interrupt object for each CPU, enabling the

local APIC on that CPU to accept the particular interrupt.

Another kernel interrupt handler is KiFloatingDispatch, which is used for interrupts that

require saving the floating-point state. Unlike kernel-mode code, which typically is not

allowed to use floating-point (MMX, SSE, 3DNow!) operations because these registers won’t

be saved across context switches, ISRs might need to use these registers (such as the video

card ISR performing a quick drawing operation). When connecting an interrupt, drivers can

set the FloatingSave argument to TRUE, requesting that the kernel use the floating-point

102 Windows Internals, Fifth Edition

dispatch routine, which will save the floating registers. (However, this will greatly increase

interrupt latency.) Note that this is supported only on 32-bit systems.

Figure 3-6 shows typical interrupt control flow for interrupts associated with interrupt

objects.

38NF

00938

Peripheral Device
Controller

CPU Interrupt
Controller

CPU Interrupt
Dispatch Table

3
2
0

Raise IRQL

Grab Spinlock

Drop Spinlock

Lower IRQL

ISR Address

Spinlock

Dispatch
Code

Interrupt
Object

KiInterruptDispatch Driver ISR

Read from device

Acknowledge-
Interrupt

Request DPC

FIGURE 3-6 Typical interrupt control flow

EXPERIMENT: Examining Interrupt Internals

Using the kernel debugger, you can view details of an interrupt object, including its

IRQL, ISR address, and custom interrupt dispatching code. First, execute the !idt com-

mand and locate the entry that includes a reference to I8042KeyboardInterruptService,

the ISR routine for the PS2 keyboard device:

81: 89237050 i8042prt!I8042KeyboardInterruptService (KINTERRUPT 89237000)

To view the contents of the interrupt object associated with the interrupt, execute dt
nt!_kinterrupt with the address following KINTERRUPT:

lkd> dt nt!_KINTERRUPT 89237000

 +0x000 Type : 22

 +0x002 Size : 624

 +0x004 InterruptListEntry : _LIST_ENTRY [0x89237004 - 0x89237004]

 Chapter 3 System Mechanisms 103

 +0x00c ServiceRoutine : 0x8f60e15c unsigned char

 i8042prt!I8042KeyboardInterruptService+0

 +0x010 MessageServiceRoutine : (null)

 +0x014 MessageIndex : 0

 +0x018 ServiceContext : 0x87c707a0

 +0x01c SpinLock : 0

 +0x020 TickCount : 0xffffffff

 +0x024 ActualLock : 0x87c70860 -> 0

 +0x028 DispatchAddress : 0x82090b40 void nt!KiInterruptDispatch+0

 +0x02c Vector : 0x81

 +0x030 Irql : 0x7 ''

 +0x031 SynchronizeIrql : 0x8 ''

 +0x032 FloatingSave : 0 ''

 +0x033 Connected : 0x1 ''

 +0x034 Number : 0 ''

 +0x035 ShareVector : 0 ''

 +0x038 Mode : 1 (Latched)

 +0x03c Polarity : 0 (InterruptPolarityUnknown)

 +0x040 ServiceCount : 0

 +0x044 DispatchCount : 0xffffffff

 +0x048 Rsvd1 : 0

 +0x050 DispatchCode : [135] 0x56535554

In this example, the IRQL that Windows assigned to the interrupt is 7. Because this

output is from an APIC system, the only way to verify the IRQ is to open the Device

Manager (on the Hardware tab in the System item in Control Panel), locate the PS/2

keyboard device, and view its resource assignments, as shown in the following screen

shot:

104 Windows Internals, Fifth Edition

On an x64 or IA64 system you will see that the IRQ is the interrupt vector number

(0x81—129 decimal—in this example) divided by 16 minus 1.

The ISR’s address for the interrupt object is stored in the ServiceRoutine field (which is

what !idt displays in its output), and the interrupt code that actually executes when an

interrupt occurs is stored in the DispatchCode array at the end of the interrupt object.

The interrupt code stored there is programmed to build the trap frame on the stack

and then call the function stored in the DispatchAddress field (KiInterruptDispatch in

the example), passing it a pointer to the interrupt object.

Windows and Real-Time Processing

Deadline requirements, either hard or soft, characterize real-time environments. Hard

real-time systems (for example, a nuclear power plant control system) have deadlines

that the system must meet to avoid catastrophic failures such as loss of equipment or

life. Soft real-time systems (for example, a car’s fuel-economy optimization system)

have deadlines that the system can miss, but timeliness is still a desirable trait. In real-

time systems, computers have sensor input devices and control output devices. The

designer of a real-time computer system must know worst-case delays between the

time an input device generates an interrupt and the time the device’s driver can con-

trol the output device to respond. This worst-case analysis must take into account the

delays the operating system introduces as well as the delays the application and device

drivers impose.

Because Windows doesn’t prioritize device IRQs in any controllable way and user-

level applications execute only when a processor’s IRQL is at passive level, Windows

isn’t always suitable as a real-time operating system. The system’s devices and device

drivers—not Windows—ultimately determine the worst-case delay. This factor becomes

a problem when the real-time system’s designer uses off-the-shelf hardware. The

designer can have difficulty determining how long every off-the-shelf device’s ISR or

DPC might take in the worst case. Even after testing, the designer can’t guarantee that

a special case in a live system won’t cause the system to miss an important deadline.

Furthermore, the sum of all the delays a system’s DPCs and ISRs can introduce usually

far exceeds the tolerance of a time-sensitive system.

Although many types of embedded systems (for example, printers and automotive

computers) have real-time requirements, Windows Embedded Standard doesn’t have

real-time characteristics. It is simply a version of Windows XP that makes it possible,

using system-designer technology that Microsoft licensed from VenturCom (formerly

Ardence and now part of IntervalZero), to produce small-footprint versions of Windows

XP suitable for running on devices with limited resources. For example, a device that

has no networking capability would omit all the Windows XP components related to

 Chapter 3 System Mechanisms 105

networking, including network management tools and adapter and protocol stack

device drivers.

Still, there are third-party vendors that supply real-time kernels for Windows. The

approach these vendors take is to embed their real-time kernel in a custom HAL and

to have Windows run as a task in the real-time operating system. The task running

Windows serves as the user interface to the system and has a lower priority than the

tasks responsible for managing the device. See IntervalZero’s Web site, www.inter-
valzero.com, for an example of a third-party real-time kernel extension for Windows.

Associating an ISR with a particular level of interrupt is called connecting an interrupt
object, and dissociating an ISR from an IDT entry is called disconnecting an interrupt object.
These operations, accomplished by calling the kernel functions IoConnectInterrupt and

IoDisconnectInterrupt, allow a device driver to “turn on” an ISR when the driver is loaded into

the system and to “turn off” the ISR if the driver is unloaded.

Using the interrupt object to register an ISR prevents device drivers from fiddling directly

with interrupt hardware (which differs among processor architectures) and from needing to

know any details about the IDT. This kernel feature aids in creating portable device drivers

because it eliminates the need to code in assembly language or to reflect processor differ-

ences in device drivers.

Interrupt objects provide other benefits as well. By using the interrupt object, the kernel

can synchronize the execution of the ISR with other parts of a device driver that might share

data with the ISR. (See Chapter 7 for more information about how device drivers respond to

interrupts.)

Furthermore, interrupt objects allow the kernel to easily call more than one ISR for any inter-

rupt level. If multiple device drivers create interrupt objects and connect them to the same

IDT entry, the interrupt dispatcher calls each routine when an interrupt occurs at the specified

interrupt line. This capability allows the kernel to easily support “daisy-chain” configurations,

in which several devices share the same interrupt line. The chain breaks when one of the ISRs

claims ownership for the interrupt by returning a status to the interrupt dispatcher.

If multiple devices sharing the same interrupt require service at the same time, devices not

acknowledged by their ISRs will interrupt the system again once the interrupt dispatcher

has lowered the IRQL. Chaining is permitted only if all the device drivers wanting to use

the same interrupt indicate to the kernel that they can share the interrupt; if they can’t, the

Plug and Play manager reorganizes their interrupt assignments to ensure that it honors the

sharing requirements of each. If the interrupt vector is shared, the interrupt object invokes

KiChainedDispatch, which will invoke the ISRs of each registered interrupt object in turn until

one of them claims the interrupt or all have been executed. In the earlier sample !idt output,

vector 0xa2 is connected to several chained interrupt objects.

106 Windows Internals, Fifth Edition

Even though connecting and disconnecting interrupts in previous versions of Windows was

a portable operation that abstracted much of the internal system functionality from the

developer, it still required a great deal of information from the device driver developer, which

could result in anything from subtle bugs to hardware damage should these parameters be

input improperly. As part of the many enhancements to the interrupt mechanisms in the

kernel and HAL, Windows Vista introduced a new API, IoConnectInterruptEx, that added sup-

port for more advanced types of interrupts (called message-based interrupts) and enhanced

the current support for standard interrupts (also called line-based interrupts). The new

IoConnectInterruptEx API also takes fewer parameters than its predecessor. Notably missing

are the vector (interrupt number), IRQL, affinity, and edge versus level-trigged parameters.

Software Interrupts

Although hardware generates most interrupts, the Windows kernel also generates software

interrupts for a variety of tasks, including these:

Initiating thread dispatching

Non-time-critical interrupt processing

Handling timer expiration

Asynchronously executing a procedure in the context of a particular thread

Supporting asynchronous I/O operations

These tasks are described in the following subsections.

Dispatch or Deferred Procedure Call (DPC) Interrupts When a thread can no longer

continue executing, perhaps because it has terminated or because it voluntarily enters a

wait state, the kernel calls the dispatcher directly to effect an immediate context switch.

Sometimes, however, the kernel detects that rescheduling should occur when it is deep

within many layers of code. In this situation, the kernel requests dispatching but defers its

occurrence until it completes its current activity. Using a DPC software interrupt is a conve-

nient way to achieve this delay.

The kernel always raises the processor’s IRQL to DPC/dispatch level or above when it needs

to synchronize access to shared kernel structures. This disables additional software interrupts

and thread dispatching. When the kernel detects that dispatching should occur, it requests

a DPC/dispatch-level interrupt; but because the IRQL is at or above that level, the processor

holds the interrupt in check. When the kernel completes its current activity, it sees that it’s

going to lower the IRQL below DPC/dispatch level and checks to see whether any dispatch

interrupts are pending. If there are, the IRQL drops to DPC/dispatch level and the dispatch

interrupts are processed. Activating the thread dispatcher by using a software interrupt is a

way to defer dispatching until conditions are right. However, Windows uses software inter-

rupts to defer other types of processing as well.

 Chapter 3 System Mechanisms 107

In addition to thread dispatching, the kernel also processes deferred procedure calls (DPCs)

at this IRQL. A DPC is a function that performs a system task—a task that is less time-critical

than the current one. The functions are called deferred because they might not execute

immediately.

DPCs provide the operating system with the capability to generate an interrupt and execute

a system function in kernel mode. The kernel uses DPCs to process timer expiration (and

release threads waiting for the timers) and to reschedule the processor after a thread’s quan-

tum expires. Device drivers use DPCs to complete I/O requests. To provide timely service for

hardware interrupts, Windows—with the cooperation of device drivers—attempts to keep

the IRQL below device IRQL levels. One way that this goal is achieved is for device driver

ISRs to perform the minimal work necessary to acknowledge their device, save volatile inter-

rupt state, and defer data transfer or other less time-critical interrupt processing activity for

execution in a DPC at DPC/dispatch IRQL. (See Chapter 7 for more information on DPCs and

the I/O system.)

A DPC is represented by a DPC object, a kernel control object that is not visible to user-mode

programs but is visible to device drivers and other system code. The most important piece of

information the DPC object contains is the address of the system function that the kernel will

call when it processes the DPC interrupt. DPC routines that are waiting to execute are stored

in kernel-managed queues, one per processor, called DPC queues. To request a DPC, system

code calls the kernel to initialize a DPC object and then places it in a DPC queue.

By default, the kernel places DPC objects at the end of the DPC queue of the processor on

which the DPC was requested (typically the processor on which the ISR executed). A device

driver can override this behavior, however, by specifying a DPC priority (low, medium, or

high, where medium is the default) and by targeting the DPC at a particular processor. A DPC

aimed at a specific CPU is known as a targeted DPC. If the DPC has a low or medium priority,

the kernel places the DPC object at the end of the queue; if the DPC has a high priority, the

kernel inserts the DPC object at the front of the queue.

When the processor’s IRQL is about to drop from an IRQL of DPC/dispatch level or higher

to a lower IRQL (APC or passive level), the kernel processes DPCs. Windows ensures that the

IRQL remains at DPC/dispatch level and pulls DPC objects off the current processor’s queue

until the queue is empty (that is, the kernel “drains” the queue), calling each DPC function in

turn. Only when the queue is empty will the kernel let the IRQL drop below DPC/dispatch

level and let regular thread execution continue. DPC processing is depicted in Figure 3-7.

DPC priorities can affect system behavior another way. The kernel usually initiates DPC

queue draining with a DPC/dispatch-level interrupt. The kernel generates such an interrupt

only if the DPC is directed at the processor the ISR is requested on and the DPC has a high

or medium priority. If the DPC has a low priority, the kernel requests the interrupt only if

the number of outstanding DPC requests for the processor rises above a threshold or if the

 number of DPCs requested on the processor within a time window is low.

108 Windows Internals, Fifth Edition

The dispatcher executes each DPC routine
in the DPC queue, emptying the queue as
it proceeds. If required, the dispatcher also
reschedules the processor.

4

3

1

2

After the DPC interrupt,
control transfers to the
(thread) dispatcher.

When the IRQL drops below
DPC/dispatch level, a DPC
interrupt occurs.

A timer expires, and the kernel
queues a DPC that will release
any threads waiting on the
timer. The kernel then
requests a software interrupt.

Dispatcher

DPCDPC

DPC

DPC queue

DPC/dispatch

APC

Passive

Power failure

High

IRQL setting
 table

FIGURE 3-7 Delivering a DPC

If a DPC is targeted at a CPU different from the one on which the ISR is running and the

DPC’s priority is high, the kernel immediately signals the target CPU (by sending it a dispatch

IPI) to drain its DPC queue. If the priority is medium or low, the number of DPCs queued on

the target processor must exceed a threshold for the kernel to trigger a DPC/dispatch inter-

rupt. The system idle thread also drains the DPC queue for the processor it runs on. Although

DPC targeting and priority levels are flexible, device drivers rarely need to change the default

behavior of their DPC objects. Table 3-1 summarizes the situations that initiate DPC queue

draining.

TABLE 3-1 DPC Interrupt Generation Rules

DPC Priority DPC Targeted at ISR’s Processor DPC Targeted at Another Processor

Low DPC queue length exceeds maximum

DPC queue length or DPC request rate

is less than minimum DPC request rate

DPC queue length exceeds maximum

DPC queue length or system is idle

Medium Always DPC queue length exceeds maximum

DPC queue length or system is idle

High Always Always

Because user-mode threads execute at low IRQL, the chances are good that a DPC will inter-

rupt the execution of an ordinary user’s thread. DPC routines execute without regard to

what thread is running, meaning that when a DPC routine runs, it can’t assume what process

address space is currently mapped. DPC routines can call kernel functions, but they can’t call

system services, generate page faults, or create or wait for dispatcher objects (explained later

in this chapter). They can, however, access nonpaged system memory addresses, because sys-

tem address space is always mapped regardless of what the current process is.

 Chapter 3 System Mechanisms 109

DPCs are provided primarily for device drivers, but the kernel uses them too. The kernel most

frequently uses a DPC to handle quantum expiration. At every tick of the system clock, an

interrupt occurs at clock IRQL. The clock interrupt handler (running at clock IRQL) updates the

system time and then decrements a counter that tracks how long the current thread has run.

When the counter reaches 0, the thread’s time quantum has expired and the kernel might

need to reschedule the processor, a lower-priority task that should be done at DPC/dispatch

IRQL. The clock interrupt handler queues a DPC to initiate thread dispatching and then fin-

ishes its work and lowers the processor’s IRQL. Because the DPC interrupt has a lower priority

than do device interrupts, any pending device interrupts that surface before the clock inter-

rupt completes are handled before the DPC interrupt occurs.

EXPERIMENT: Listing System Timers

You can use the kernel debugger to dump all the current registered timers on the sys-

tem, as well as information on the DPC associated with each timer (if any). See the out-

put below for a sample:

lkd> !timer

Dump system timers

Interrupt time: 437df8b4 00000330 [5/19/2008 15:56:27.044]

List Timer Interrupt Low/High Fire Time DPC/thread

 1 886dd6f0 45b1ecca 00000330 [5/19/2008 15:56:30.739] srv+1005

 7 884966a8 0ebf5dcb 00001387 [6/08/2008 10:58:03.373] thread 88496620

 11 8553b8f8 4f4db783 00000330 [5/19/2008 15:56:46.860] thread 8553b870

 85404be0 4f4db783 00000330 [5/19/2008 15:56:46.860] thread 85404b58

 16 89a1c0a8 a62084ac 00000331 [5/19/2008 16:06:22.022] thread 89a1c020

 18 8ab02198 ec7a2c4c 00000330 [5/19/2008 16:01:10.554] thread 8ab02110

 19 8564aa20 45dae868 00000330 [5/19/2008 15:56:31.008] thread 8564a998

 20 86314738 4a9ffc6a 00000330 [5/19/2008 15:56:39.010] thread 863146b0

 88c21320 4aa0719b 00000330 [5/19/2008 15:56:39.013] thread 88c21298

 21 88985e00 4f655e8c 00000330 [5/19/2008 15:56:47.015] thread 88985d78

 22 88d00748 542b35e0 00000330 [5/19/2008 15:56:55.022] thread 88d006c0

 899764c0 542b35e0 00000330 [5/19/2008 15:56:55.022] thread 89976438

 861f8b70 542b35e0 00000330 [5/19/2008 15:56:55.022] thread 861f8ae8

 861e71d8 542b5cf0 00000330 [5/19/2008 15:56:55.023] thread 861e7150

 26 8870ee00 45ec1074 00000330 [5/19/2008 15:56:31.120] thread 8870ed78

 29 8846e348 4f7a35a4 00000330 [5/19/2008 15:56:47.152] thread 8846e2c0

 86b8f110 543d1b8c 00000330 [5/19/2008 15:56:55.140] ndis!NdisCancelTimer-

 Object+aa

 38 88a56610 460a2035 00000330 [5/19/2008 15:56:31.317] afd!AfdTimeoutPoll

In this example, there are three driver-associated timers, due to expire shortly, asso-

ciated with the Srv.sys, Ndis.sys, and Afd.sys drivers (all related to networking).

Additionally, there are a dozen or so timers that don’t have any DPC associated with

them—this likely indicates user-mode or kernel-mode timers that are used for wait dis-

patching. You can use !thread on the thread pointers to verify this.

110 Windows Internals, Fifth Edition

Because DPCs execute regardless of whichever thread is currently running on the system

(much like interrupts), they are a primary cause for perceived system unresponsiveness of

client systems or workstation workloads because even the highest-priority thread will be

interrupted by a pending DPC. Some DPCs run long enough that users may perceive video or

sound lagging, and even abnormal mouse or keyboard latencies, so for the benefit of drivers

with long-running DPCs, Windows supports threaded DPCs.

Threaded DPCs, as their name implies, function by executing the DPC routine at passive level

on a real-time priority (priority 31) thread. This allows the DPC to preempt most user-mode

threads (because most application threads don’t run at real-time priority ranges), but allows

other interrupts, non-threaded DPCs, APCs, and higher-priority threads to preempt the

routine.

The threaded DPC mechanism is enabled by default, but you can disable it by editing

the HKEY_LOCAL_MACHINE\System\CurrentControlSet\Control\SessionManager\Kernel\

ThreadDpcEnable value and setting it to 0. Because threaded DPCs can be disabled, driver

developers who make use of threaded DPCs must write their routines following the same

rules as for non-threaded DPC routines and cannot access paged memory, perform dispatcher

waits, or make assumptions about the IRQL level at which they are executing. In addition, they

must not use the KeAcquire/ReleaseSpinLockAtDpcLevel APIs because the functions assume the

CPU is at dispatch level. Instead, threaded DPCs must use KeAcquire/ReleaseSpinLockForDpc,

which performs the appropriate action after checking the current IRQL.

EXPERIMENT: Monitoring Interrupt and DPC Activity

You can use Process Explorer to monitor interrupt and DPC activity by adding the

Context Switch Delta column and watching the Interrupt and DPC processes. (See the

following screen shot.) These are not real processes, but they are shown as processes

for convenience and therefore do not incur context switches. Process Explorer’s context

switch count for these pseudo processes reflects the number of occurrences of each

within the previous refresh interval. You can stimulate interrupt and DPC activity by

moving the mouse quickly around the screen.

You can also trace the execution of specific interrupt service routines and deferred pro-

cedure calls with the built-in event tracing support (described later in this chapter).

 1. Start capturing events by typing the following command:

tracelog –start –f kernel.etl –dpcisr –UsePerfCounter –b 64

 Chapter 3 System Mechanisms 111

 2. Stop capturing events by typing:

tracelog –stop

 3. Generate reports for the event capture by typing:

tracerpt kernel.etl –report report.html –f html

This will generate a Web page called report.html

 4. Open report.html and expand the DPC/ISR subsection. Expand the DPC/ISR

Breakdown area, and you will see summaries of the time spent in ISRs and DPCs

by each driver. For example:

Running an ln command in the kernel debugger on the address of each event record

shows the name of the function that executed the DPC or ISR:

lkd> ln 0x806321C7

(806321c7) ndis!ndisInterruptDpc

lkd> ln 0x820AED3F

(820aed3f) nt!IopTimerDispatch

lkd> ln 0x82051312

(82051312) nt!PpmPerfIdleDpc

The first is a DPC queued by a network card NDIS miniport driver. The second is a DPC

for a generic I/O timer expiration. The third address is the address of a DPC for an idle

performance operation. For more information, see www.microsoft.com/whdc/driver/
perform/mmdrv.mspx.

112 Windows Internals, Fifth Edition

Asynchronous Procedure Call (APC) Interrupts Asynchronous procedure calls (APCs) pro-

vide a way for user programs and system code to execute in the context of a particular user

thread (and hence a particular process address space). Because APCs are queued to execute

in the context of a particular thread and run at an IRQL less than DPC/dispatch level, they

don’t operate under the same restrictions as a DPC. An APC routine can acquire resources

(objects), wait for object handles, incur page faults, and call system services.

APCs are described by a kernel control object, called an APC object. APCs waiting to execute

reside in a kernel-managed APC queue. Unlike the DPC queue, which is systemwide, the APC

queue is thread-specific—each thread has its own APC queue. When asked to queue an APC,

the kernel inserts it into the queue belonging to the thread that will execute the APC routine.

The kernel, in turn, requests a software interrupt at APC level, and when the thread eventu-

ally begins running, it executes the APC.

There are two kinds of APCs: kernel mode and user mode. Kernel-mode APCs don’t require

“permission” from a target thread to run in that thread’s context, while user-mode APCs do.

Kernel-mode APCs interrupt a thread and execute a procedure without the thread’s interven-

tion or consent. There are also two types of kernel-mode APCs: normal and special. Special

APCs execute at APC level and allow the APC routine to modify some of the APC parameters.

Normal APCs execute at passive level and receive the modified parameters from the special

APC routine (or the original parameters if they weren’t modified).

Both normal and special APCs can be disabled by raising the IRQL to APC level or by call-

ing KeEnterGuardedRegion. KeEnterGuardedRegion disables APC delivery by setting the

SpecialApcDisable field in the calling thread’s KTHREAD structure (described further in

Chapter 5). A thread can disable normal APCs only by calling KeEnterCriticalRegion, which

sets the KernelApcDisable field in the thread’s KTHREAD structure. Table 3-2 summarizes APC

insertion and delivery behavior for each type of APC.

The executive uses kernel-mode APCs to perform operating system work that must be

completed within the address space (in the context) of a particular thread. It can use special

kernel-mode APCs to direct a thread to stop executing an interruptible system service, for

example, or to record the results of an asynchronous I/O operation in a thread’s address

space. Environment subsystems use special kernel-mode APCs to make a thread suspend or

terminate itself or to get or set its user-mode execution context. The POSIX subsystem uses

kernel-mode APCs to emulate the delivery of POSIX signals to POSIX processes.

Another important use of kernel-mode APCs is related to thread suspension and termination.

Because these operations can be initiated from arbitrary threads and be directed to other

arbitrary threads, the kernel uses an APC to query the thread context as well as to terminate

the thread. Device drivers will often block APCs or enter a critical or guarded region to pre-

vent these operations from occurring while they are holding a lock; otherwise, the lock may

never be released, and the system would hang.

 Chapter 3 System Mechanisms 113

TABLE 3-2 APC Insertion and Delivery

APC Type Insertion Behavior Delivery Behavior

Special (kernel) Inserted at the tail of the

kernel-mode APC list.

Delivered at APC level as soon as IRQL drops

and the thread is not in a guarded region. Given

pointers to arguments specified when inserting

the APC.

Normal (kernel) Inserted right after the last

special APC (at the head of all

other normal APCs).

Delivered at PASSIVE_LEVEL after the associated

special APC was executed. Given arguments

returned by the associated special APC (may be

the original arguments used during insertion or

new ones).

Normal (user) Inserted at the tail of the

user-mode APC list.

Delivered at PASSIVE_LEVEL as soon as IRQL

drops, the thread is not in a critical (or guarded)

region, and the thread is in an alerted state.

Given arguments returned by the associated

special APC (may be the original arguments used

during insertion or new ones).

Normal (user)

Thread Exit

(PsExitSpecialApc)

Inserted at the head of the

user-mode APC list.

Delivered at PASSIVE_LEVEL on return to user

mode, if the thread is doing an alerted user-

mode wait. Given arguments returned by the

thread termination special APC.

Device drivers also use kernel-mode APCs. For example, if an I/O operation is initiated and

a thread goes into a wait state, another thread in another process can be scheduled to run.

When the device finishes transferring data, the I/O system must somehow get back into the

context of the thread that initiated the I/O so that it can copy the results of the I/O opera-

tion to the buffer in the address space of the process containing that thread. The I/O sys-

tem uses a special kernel-mode APC to perform this action, unless the application used the

SetFileIoOverlappedRange API or I/O completion ports, in which case the buffer will either be

global in memory or only copied after the thread pulls a completion item from the port. (The

use of APCs in the I/O system is discussed in more detail in Chapter 7.)

Several Windows APIs, such as ReadFileEx, WriteFileEx, and QueueUserAPC, use user-mode

APCs. For example, the ReadFileEx and WriteFileEx functions allow the caller to specify a

completion routine to be called when the I/O operation finishes. The I/O completion is

implemented by queuing an APC to the thread that issued the I/O. However, the callback to

the completion routine doesn’t necessarily take place when the APC is queued because user-

mode APCs are delivered to a thread only when it’s in an alertable wait state. A thread can

enter a wait state either by waiting for an object handle and specifying that its wait is alert-

able (with the Windows WaitForMultipleObjectsEx function) or by testing directly whether it

has a pending APC (using SleepEx). In both cases, if a user-mode APC is pending, the kernel

interrupts (alerts) the thread, transfers control to the APC routine, and resumes the thread’s

execution when the APC routine completes. Unlike kernel-mode APCs, which can execute at

APC level, user-mode APCs execute at passive level.

114 Windows Internals, Fifth Edition

APC delivery can reorder the wait queues—the lists of which threads are waiting for what,

and in what order they are waiting. (Wait resolution is described in the section “Low-IRQL

Synchronization” later in this chapter.) If the thread is in a wait state when an APC is deliv-

ered, after the APC routine completes, the wait is reissued or reexecuted. If the wait still

isn’t resolved, the thread returns to the wait state, but now it will be at the end of the list

of objects it’s waiting for. For example, because APCs are used to suspend a thread from

execution, if the thread is waiting for any objects, its wait will be removed until the thread

is resumed, after which that thread will be at the end of the list of threads waiting to access

the objects it was waiting for. A thread performing an alertable kernel-mode wait will also be

woken up during thread termination, allowing such a thread to check whether it woke up as a

result of termination or a different reason.

Exception Dispatching

In contrast to interrupts, which can occur at any time, exceptions are conditions that result

directly from the execution of the program that is running. Windows uses a facility known

as structured exception handling, which allows applications to gain control when excep-

tions occur. The application can then fix the condition and return to the place the exception

occurred, unwind the stack (thus terminating execution of the subroutine that raised the

exception), or declare back to the system that the exception isn’t recognized and the system

should continue searching for an exception handler that might process the exception. This

section assumes you’re familiar with the basic concepts behind Windows structured exception

handling—if you’re not, you should read the overview in the Windows API reference docu-

mentation in the Windows SDK or Chapters 23 through 25 in Jeffrey Richter’s book Windows
via C/C++ (Microsoft Press, 2007) before proceeding. Keep in mind that although exception

handling is made accessible through language extensions (for example, the __try construct

in Microsoft Visual C++), it is a system mechanism and hence isn’t language-specific. Other

examples of consumers of Windows exception handling include C++ and Java exceptions.

On the x86 and x64 processors, all exceptions have predefined interrupt numbers that

directly correspond to the entry in the IDT that points to the trap handler for a particular

exception. Table 3-3 shows x86-defined exceptions and their assigned interrupt numbers.

Because the first entries of the IDT are used for exceptions, hardware interrupts are assigned

entries later in the table, as mentioned earlier.

All exceptions, except those simple enough to be resolved by the trap handler, are ser-

viced by a kernel module called the exception dispatcher. The exception dispatcher’s job is

to find an exception handler that can “dispose of” the exception. Examples of architecture-

independent exceptions that the kernel defines include memory access violations, integer

divide-by-zero, integer overflow, floating-point exceptions, and debugger breakpoints. For

a complete list of architecture-independent exceptions, consult the Windows SDK reference

documentation.

 Chapter 3 System Mechanisms 115

TABLE 3-3 x86 Exceptions and Their Interrupt Numbers

Interrupt Number Exception

0 Divide Error

1 Debug (Single Step)

2 Non-Maskable Interrupt (NMI)

3 Breakpoint

4 Overflow

5 Bounds Check

6 Invalid Opcode

7 NPX Not Available

8 Double Fault

9 NPX Segment Overrun

10 Invalid Task State Segment (TSS)

11 Segment Not Present

12 Stack Fault

13 General Protection

14 Page Fault

15 Intel Reserved

16 Floating Point

17 Alignment Check

18 Machine Check

19 SIMD Floating Point

The kernel traps and handles some of these exceptions transparently to user programs. For

example, encountering a breakpoint while executing a program being debugged generates

an exception, which the kernel handles by calling the debugger. The kernel handles certain

other exceptions by returning an unsuccessful status code to the caller.

A few exceptions are allowed to filter back, untouched, to user mode. For example, certain

types of memory access violations or an arithmetic overflow generate an exception that the

operating system doesn’t handle. 32-bit applications can establish frame-based exception
handlers to deal with these exceptions. The term frame-based refers to an exception han-

dler’s association with a particular procedure activation. When a procedure is invoked, a stack
frame representing that activation of the procedure is pushed onto the stack. A stack frame

can have one or more exception handlers associated with it, each of which protects a par-

ticular block of code in the source program. When an exception occurs, the kernel searches

for an exception handler associated with the current stack frame. If none exists, the kernel

searches for an exception handler associated with the previous stack frame, and so on, until

it finds a frame-based exception handler. If no exception handler is found, the kernel calls its

own default exception handlers.

116 Windows Internals, Fifth Edition

For 64-bit applications, structured exception handling does not use frame-based handlers.

Instead, a table of handlers for each function is built into the image during compilation. The

kernel looks for handlers associated with each function and generally follows the same algo-

rithm we’ve described for 32-bit code.

Structured exception handling is heavily used within the kernel itself so that it can safely ver-

ify whether pointers from user mode can be safely accessed for read or write access. Drivers

can make use of this same technique when dealing with pointers sent during I/O control

codes (IOCTLs). Another mechanism of exception handling is called vectored exception han-
dling. This method can only be used by user-mode applications. You can find more informa-

tion about it in the Windows SDK or the MSDN Library.

When an exception occurs, whether it is explicitly raised by software or implicitly raised by

hardware, a chain of events begins in the kernel. The CPU hardware transfers control to the

kernel trap handler, which creates a trap frame (as it does when an interrupt occurs). The

trap frame allows the system to resume where it left off if the exception is resolved. The trap

handler also creates an exception record that contains the reason for the exception and other

pertinent information.

If the exception occurred in kernel mode, the exception dispatcher simply calls a routine to

locate a frame-based exception handler that will handle the exception. Because unhandled

kernel-mode exceptions are considered fatal operating system errors, you can assume that

the dispatcher always finds an exception handler. Some traps, however, do not lead into

an exception handler because the kernel always assumes such errors to be fatal—these are

errors that could have been caused only by severe bugs in the internal kernel code or by

major inconsistencies in driver code (that could have only occurred through deliberate low-

level system modifications that drivers should not be responsible for). Such fatal errors will

result in a bug check with the UNEXPECTED_KERNEL_MODE_TRAP code.

If the exception occurred in user mode, the exception dispatcher does something more elab-

orate. As you’ll see in Chapter 5, the Windows subsystem has a debugger port (this is actually

a debugger object, which will be discussed later) and an exception port to receive notification

of user-mode exceptions in Windows processes. (In this case, by “port” we mean an LPC port

object, which will be discussed later in this chapter.) The kernel uses these ports in its default

exception handling, as illustrated in Figure 3-8.

Debugger breakpoints are common sources of exceptions. Therefore, the first action the

exception dispatcher takes is to see whether the process that incurred the exception has an

associated debugger process. If it does, the exception dispatcher sends a debugger object

message to the debug object associated with the process (which internally the system refers

to as a port for compatibility with programs that might rely on behavior in Windows 2000,

which used an LPC port instead of a debug object).

 Chapter 3 System Mechanisms 117

Trap
handler

Exception
record

Exception
dispatcher

Debugger
port

Debugger
(first chance)

Frame-based
handlers

Debugger
port

Debugger
(second chance)

Exception
port

Environment
subsystem

Kernel default
handler

Function call

ALPC

FIGURE 3-8 Dispatching an exception

If the process has no debugger process attached, or if the debugger doesn’t handle the

exception, the exception dispatcher switches into user mode, copies the trap frame to the

user stack formatted as a CONTEXT data structure (documented in the Windows SDK), and

calls a routine to find a structured or vectored exception handler. If none is found, or if none

handles the exception, the exception dispatcher switches back into kernel mode and calls the

debugger again to allow the user to do more debugging. (This is called the second-chance

notification.)

If the debugger isn’t running and no user-mode exception handlers are found, the kernel

sends a message to the exception port associated with the thread’s process. This exception

port, if one exists, was registered by the environment subsystem that controls this thread.

The exception port gives the environment subsystem, which presumably is listening at the

port, the opportunity to translate the exception into an environment-specific signal or excep-

tion. Csrss (Client/Server Run-Time Subsystem) uses this signal for Windows Error Reporting

(WER)—which will be discussed shortly—and when POSIX gets a message from the kernel

that one of its threads generated an exception, the POSIX subsystem sends a POSIX-style sig-

nal to the thread that caused the exception. However, if the kernel progresses this far in pro-

cessing the exception and the subsystem doesn’t handle the exception, the kernel executes

a default exception handler that simply terminates the process whose thread caused the

exception.

Unhandled Exceptions

All Windows threads have an exception handler that processes unhandled exceptions. This

exception handler is declared in the internal Windows start-of-thread function. The start-

of-thread function runs when a user creates a process or any additional threads. It calls the

118 Windows Internals, Fifth Edition

environment-supplied thread start routine specified in the initial thread context structure,

which in turn calls the user-supplied thread start routine specified in the CreateThread call.

EXPERIMENT: Viewing the Real User Start Address for

Windows Threads

The fact that each Windows thread begins execution in a system-supplied function

(and not the user-supplied function) explains why the start address for thread 0 is the

same for every Windows process in the system (and why the start addresses for second-

ary threads are also the same). To see the user-supplied function address, use Process

Explorer or the kernel debugger.

Because most threads in Windows processes start at one of the system-supplied wrap-

per functions, Process Explorer, when displaying the start address of threads in a pro-

cess, skips the initial call frame that represents the wrapper function and instead shows

the second frame on the stack. For example, notice the thread start address of a pro-

cess running Notepad.exe:

Process Explorer does display the complete call hierarchy when it displays the call stack.

Notice the following results when the Stack button is clicked:

 Chapter 3 System Mechanisms 119

Line 18 in the preceding screen shot is the first frame on the stack—the start of the

internal thread wrapper. The second frame (line 17) is the environment subsystem’s

thread wrapper, in this case kernel32, because we are dealing with a Windows subsys-

tem application. The third frame (line 16) is the main entry point into Notepad.exe.

The generic code for the internal thread start functions is shown here:

VOID RtlUserThreadStart(VOID){

 LPVOID lpStartAddr = (R/E)AX; // Located in the initial thread context structure

 LPVOID lpvThreadParm = (R/E)BX; // Located in the initial thread context structure

 LPVOID lpWin32StartAddr;

 lpWin32StartAddr = Kernel32ThreadInitThunkFunction ? Kernel32ThreadInitThunkFunction :

lpStartAddr;

 __try {

 DWORD dwThreadExitCode = lpWin32StartAddr(lpvThreadParm);

 RtlExitUserThread(dwThreadExitCode);

 } __except(RtlUnhandledExceptionFilter(

 GetExceptionInformation())) {

 RtlExitUserProcess(GetExceptionCode());

 }

}

void Win32StartOfProcess(

 LPTHREAD_START_ROUTINE lpStartAddr,

 LPVOID lpvThreadParm){

 lpStartAddr(lpvThreadParm);

}

120 Windows Internals, Fifth Edition

Notice that the Windows unhandled exception filter is called if the thread has an excep-

tion that it doesn’t handle. The purpose of this function is to provide the system-defined

behavior for what to do when an exception is not handled, which is based on the contents

of the HKLM\SOFTWARE\Microsoft\Windows NT\CurrentVersion\AeDebug registry key and

on whether the process is on the exclusion list. There are two important values: Auto and

Debugger. Auto tells the unhandled exception filter whether to automatically run the debug-

ger or ask the user what to do. Installing development tools, such as Microsoft Visual Studio,

will change this value to 0. The Debugger value is a string that points to the path of the

debugger executable to run in the case of an unhandled exception.

Windows Error Reporting

Windows Error Reporting (WER) is a sophisticated mechanism that automates the submission

of both user-mode process crashes as well as kernel-mode system crashes. (For a description

of how this applies to system crashes, see Chapter 14.)

Windows Error Reporting can be configured by going to Control Panel, choosing Problem

Reports And Solutions, and then Change Settings. (See Figure 3-9.) Alternatively, you can

launch the Wercon.exe application from a command prompt or by using Start, Run.

FIGURE 3-9 Problem Reports And Solutions configuration dialog box

 Chapter 3 System Mechanisms 121

When an unhandled exception is caught by the unhandled exception filter (described in the

previous section), it builds context information (such as the current value of the registers and

stack) and opens an LPC port connection to the WER service. This service will begin to ana-

lyze the crashed program’s state and perform the appropriate actions to notify the user. In

most cases, this means launching the WerFault.exe program, which executes with the current

user’s credentials and displays a message box informing the user of the crash, as shown in

Figure 3-10. (The figure shows the Accvio.exe program, downloadable from the book home

page on Windows Sysinternals, www.microsoft.com/technet/sysinternals.) On systems where

a debugger is installed, an additional option to debug the process will be shown. When you

click the Debug button, the debugger (registered in the Debugger string described earlier in

the AeDebug key) will be launched so it can attach to the crashing process.

FIGURE 3-10 Windows Error Reporting dialog box

On default configured systems, an error report (a minidump and an XML file with various

details, such as the DLL version numbers loaded in the process) is sent to Microsoft’s online

crash analysis server. Eventually, as the service is notified of a solution for a problem, it will

display a tooltip to the user informing her of steps that should be taken to solve the problem.

An entry will also be displayed in the Problem Reports And Solutions configuration dialog

box. By clicking on the tooltip, or the link under the configuration dialog box, WER displays a

solution pane, as shown in Figure 3-11.

In environments where systems are not connected to the Internet or where the administrator

wants to control which error reports are submitted to Microsoft, the destination for the error

report can be configured to be an internal file server. Microsoft provides to qualified custom-

ers a tool set, called Microsoft Systems Center 2007, that understands the directory structure

created by Windows Error Reporting and provides the administrator with the option to take

selective error reports and submit them to Microsoft.

122 Windows Internals, Fifth Edition

FIGURE 3-11 The Windows Error Reporting solution pane

Until Windows Vista, all the operations we’ve described had to occur within the crashing

thread’s context; that is to say, as part of the unhandled exception filter that was initially set

up. In certain types of crashes, these complex operations became impossible for a badly

damaged thread to perform, so the unhandled exception filter itself crashed. This “silent

process death” was not logged anywhere, which made it hard to debug and also resulted in

invisible crashes in cases where no user was present on the machine. (This also meant that

services or applications could crash on servers without any trace.) Windows Vista and later

versions improved the WER mechanism by performing this work externally from the crashed

thread, if the unhandled exception filter itself crashes.

WER contains many customizable settings that can be configured by the user through the

Group Policy editor or by manually making changes to the registry. Table 3-4 lists the WER

registry configuration options, their use, and possible values. These values are located under

the HKLM\SOFTWARE\Microsoft\Windows\Windows Error Reporting subkey for com-

puter configuration and in the equivalent path under HKEY_CURRENT_USER for per-user

configuration.

 Chapter 3 System Mechanisms 123

TABLE 3-4 WER Registry Settings

Setting Meaning Values

ConfigureArchive Contents of archived data 1 for parameters, 2 for all data

Consent\DefaultConsent What kind of data should require

consent

1 for any data, 2 for parameters

only, 3 for parameters and safe

data, 4 for all data.

Consent\

DefaultOverrideBehavior

Whether the DefaultConsent

overrides WER plug-in consent

values

1 to enable override

Consent\PluginName Consent value for a specific WER

plug-in

Same as DefaultConsent

CorporateWERDirectory Directory for a corporate WER

store

String containing the path

CorporateWERPort-

Number

Port to use for a corporate WER

store

Port number

CorporateWERServer Name to use for a corporate WER

store

String containing the name

CorporateWERUse-

Authentication

Use Windows Integrated

Authentication for corporate WER

store

1 to enable built-in

authentication

CorporateWERUseSSL Use SSL for corporate WER store 1 to enable SSL

DebugApplications\

ExeName
List of applications that require the

user to choose between Debug

and Continue

String containing the application

list

DisableArchive Whether the archive is enabled 1 to disable archive

Disabled Whether WER is disabled 1 to disable WER

DisableQueue Determines whether reports are to

be queued

1 to disable queue

DontShowUI Disables or enables the WER UI 1 to disable UI

DontSendAdditionalData Prevents additional crash data from

being sent

1 not to send

ExcludedApplications\

AppName
List of applications excluded from

WER

String containing the application

list

ForceQueue Whether reports should be sent to

the user queue

1 to send reports to the queue

LocalDumps\Dump-

Folder

Path at which to store the dump

files

String containing the path

LocalDumps\DumpCount Maximum number of dump files in

the path

Count

LocalDumps\DumpType Type of dump to generate during

a crash

0 for a custom dump, 1 for a

minidump, 2 for a full dump

124 Windows Internals, Fifth Edition

Setting Meaning Values

LocalDumps\

CustomDumpFlags

For custom dumps, specifies

custom options

Values defined in MINIDUMP_

TYPE (see Chapter 13 for more

information)

LoggingDisabled Enables or disables logging 1 to disable logging

MaxArchiveCount Maximum size of the archive (in

files)

Value between 1–5000

MaxQueueCount Maximum size of the queue Value between 1–500

QueuePesterInterval Days between requests to have the

user check for solutions

Number of days

Note The values listed under LocalDumps can also be configured per application by adding the

application name in the subkey path between LocalDumps and the relevant value. However, they

cannot be configured per user; they exist only in the HKLM path.

As discussed, the WER service uses an ALPC port for communicating with crashed processes.

This mechanism has been extended to function as well over the standard exception port

mechanism that has always been present in the Windows exception dispatching design. As

a result, all Windows processes now have an error port that is actually an ALPC port object

registered by the WER service. The kernel, which is first notified of an exception, will use this

port to send a message to the WER service, which will then analyze the crashing process. This

means that even in severe cases of thread state damage, WER will still be able to receive noti-

fications and launch WerFault.exe to display a user interface instead of having to do this work

within the crashing thread itself. Additionally, WER will be able to generate a crash dump for

the process, and a message will be written to the Event Log. This solves all the problems of

silent process death: users are notified, debugging can occur, and service administrators can

see the crash event. The next experiment will demonstrate this improved behavior.

EXPERIMENT: Silent Process Exception Termination

One typical crash that the error reporting mechanism prior to Windows Vista could not

handle was stack trashing. This means that the stack of the crashed thread was dam-

aged, perhaps even deallocated, so that even calling a new function (which puts the

return address as well as arguments on the stack) would generate another, subsequent

crash, prompting the kernel to terminate the process. You can see this behavior on a

system running Windows Vista or later by temporarily turning off the WER service and

then enabling it again. Follow these steps:

 1. Open the Services.msc Microsoft Management Console (MMC) snap-in.

 2. Double-click on Windows Error Reporting, and then click the Stop button under

the Service status label.

 Chapter 3 System Mechanisms 125

 3. Launch the Stacktrash.exe application (downloadable from the book home page

on Sysinternals).

 4. Click the Trash Stack button. You should see the process disappear without a

trace.

 5. Now click the Start button in the Windows Error Reporting service configuration

dialog box again, and then launch Stacktrash.exe one more time. You should see

the WER dialog box displayed along with a pop-up balloon near the system tray

notifying you that the application encountered an error.

System Service Dispatching

As Figure 3-1 illustrated, the kernel’s trap handlers dispatch interrupts, exceptions, and sys-

tem service calls. In the preceding sections, you’ve seen how interrupt and exception han-

dling work; in this section, you’ll learn about system services. A system service dispatch is

triggered as a result of executing an instruction assigned to system service dispatching. The

instruction that Windows uses for system service dispatching depends on the processor on

which it’s executing.

32-Bit System Service Dispatching

On x86 processors prior to the Pentium II, Windows uses the int 0x2e instruction (46 decimal),

which results in a trap. Windows fills in entry 46 in the IDT to point to the system service

dispatcher. (Refer to Table 3-1.) The trap causes the executing thread to transition into kernel

mode and enter the system service dispatcher. A numeric argument passed in the EAX pro-

cessor register indicates the system service number being requested. The EDX register points

to the list of parameters the caller passes to the system service. To return to user mode, the

system service dispatcher uses the iretd (interrupt return instruction).

On x86 Pentium II processors and higher, Windows uses the special sysenter instruction,

which Intel defined specifically for fast system service dispatches. To support the instruction,

Windows stores at boot time the address of the kernel’s system service dispatcher routine in

a machine specific register (MSR) associated with the instruction. The execution of the instruc-

tion causes the change to kernel mode and execution of the system service dispatcher. The

system service number is passed in the EAX processor register and the EDX register points

to the list of caller arguments. To return to user mode, the system service dispatcher usually

executes the sysexit instruction. (In some cases, like when the single-step flag is enabled on

the processor, the system service dispatcher uses the iretd instead because stepping over a

sysexit instruction with the kernel debugger would result in an undefined system state lead-

ing to a crash.)

126 Windows Internals, Fifth Edition

Note Because certain older applications may have been hardcoded to use the int 0x2e instruc-

tion to manually perform a system call (an unsupported operation), Windows keeps this mecha-

nism usable even on systems that support the sysenter instruction by still having the handler

registered.

EXPERIMENT: Locating the System Service Dispatcher

As mentioned, system calls occur through an interrupt, which means that the handler

needs to be registered in the IDT or through a special sysenter instruction that uses an

MSR to store the handler address at boot time. Here’s how you can locate the appropri-

ate routine for either method:

 1. To see the handler for the interrupt 2E version of the system call dispatcher, type

!idt 2e in the kernel debugger:

lkd> !idt 2e

Dumping IDT:

2e: 8208c8ee nt!KiSystemService

 2. To see the handler for the sysenter version, use the rdmsr debugger command to

read from the MSR register 0x176, which stores the handler:

lkd> rdmsr 176

msr[176] = 00000000`8208c9c0

lkd> ln 00000000`8208c9c0

(8208c9c0) nt!KiFastCallEntry

 3. You can disassemble the KiSystemService routine with the u command. You’ll

eventually notice the following instructions:

nt!KiSystemService+0x7b:

8208c969 897d04 mov dword ptr [ebp+4],edi

8208c96c fb sti

8208c96d e9dd000000 jmp nt!KiFastCallEntry+0x8f (8208ca4f)

Because the actual system call dispatching operations are common regardless of the

mechanism used to reach the handler, the older interrupt-based handler simply calls

into the middle of the newer sysenter-based handler to perform the same generic

tasks. The only parts of the handlers that are different are related to the generation of

the trap frame and the setup of certain registers.

On K6 and higher 32-bit AMD processors, Windows uses the special syscall instruction,

which functions similarly to the x86 sysenter instruction, with Windows configuring a syscall-
 associated processor register with the address of the kernel’s system service dispatcher. The

system call number is passed in the EAX register, and the stack stores the caller arguments.

After completing the dispatch, the kernel executes the sysret instruction.

 Chapter 3 System Mechanisms 127

At boot time, Windows detects the type of processor on which it’s executing and sets up

the appropriate system call code to use by storing a pointer to the correct code in the

SharedUserData structure. The system service code for NtReadFile in user mode looks like

this:

0:000> u NtReadFile

ntdll!ZwReadFile:

77020074 b802010000 mov eax,102h

77020079 ba0003fe7f mov edx,offset SharedUserData!SystemCallStub (7ffe0300)

7702007e ff12 call dword ptr [edx]

77020080 c22400 ret 24h

77020083 90 nop

The system service number is 0x102 (258 in decimal) and the call instruction executes the

 system service dispatch code set up by the kernel, whose pointer is at address 0x7ffe0300.

(This corresponds to the SystemCallStub member of the KUSER_SHARED_DATA structure,

which starts at 0x7FFE0000.) Because the following output was taken from an Intel Core 2

Duo, it contains a pointer to sysenter:

0:000> dd SharedUserData!SystemCallStub l 1

7ffe0300 77020f30

0:000> u 77020f30

ntdll!KiFastSystemCall:

77020f30 8bd4 mov edx,esp

77020f32 0f34 sysenter

64-Bit System Service Dispatching

On the x64 architecture, Windows uses the syscall instruction, which functions like the AMD

K6’s syscall instruction, for system service dispatching, passing the system call number in the

EAX register, the first four parameters in registers, and any parameters beyond those four on

the stack:

ntdll!NtReadFile:

00000000`77f9fc60 4c8bd1 mov r10,rcx

00000000`77f9fc63 b810200000 mov eax,0x102

00000000`77f9fc68 0f05 syscall

00000000`77f9fc6a c3 ret

On the IA64 architecture, Windows uses the epc (Enter Privileged Mode) instruction. The first

eight system call arguments are passed in registers, and the rest are passed on the stack.

Kernel-Mode System Service Dispatching

As Figure 3-12 illustrates, the kernel uses the system call number to locate the system service

information in the system service dispatch table. This table is similar to the interrupt dispatch

table described earlier in the chapter except that each entry contains a pointer to a system

service rather than to an interrupt handling routine.

128 Windows Internals, Fifth Edition

Note System service numbers can change between service packs—Microsoft occasionally adds

or removes system services, and the system service numbers are generated automatically as part

of a kernel compile.

System service
dispatch table

Kernel mode

User mode

FIGURE 3-12 System service exceptions

The system service dispatcher, KiSystemService, copies the caller’s arguments from the

thread’s user-mode stack to its kernel-mode stack (so that the user can’t change the argu-

ments as the kernel is accessing them), and then executes the system service. If the argu-

ments passed to a system service point to buffers in user space, these buffers must be

probed for accessibility before kernel-mode code can copy data to or from them. This prob-

ing is performed only if the previous mode of the thread is set to user mode. The previous
mode is a value (kernel or user) that the kernel saves in the thread whenever it executes a trap

handler and identifies the privilege level of the incoming exception, trap, or system call. As an

optimization, if a system call comes from a driver or the kernel itself, the probing and captur-

ing of parameters is skipped, and all parameters are assumed to be pointing to valid kernel-

mode buffers (also, access to kernel-mode data is allowed).

Because kernel-mode code can also make system calls, let’s look at the way these are done.

Because the code for each system call is in kernel mode, and the caller is already in kernel

mode, you can see that there shouldn’t be a need for an interrupt or sysenter operation: the

CPU is already at the right privilege level, and drivers, as well as the kernel, should only be

able to directly call the function required. In the executive’s case, this is actually what hap-

pens: the kernel has access to all its own routines and can simply call them just like standard

routines. Externally, however, drivers can only access these system calls if they have been

exported just like other standard kernel-mode APIs. In fact, quite a few of the system calls

 Chapter 3 System Mechanisms 129

are exported. Drivers, however, are not supposed to access system calls this way. Instead,

drivers must use the Zw versions of these call—that is, instead of NtCreateFile, they must use

ZwCreateFile. These Zw versions must also be manually exported by the kernel, and only a

handful are, but they are fully documented and supported.

The Zw versions are officially available only for drivers because of the previous mode concept

discussed earlier. Because this value is only updated each time the kernel builds a trap frame,

its value won’t actually change across a simple API call—no trap frame is being generated. By

calling a function such as NtCreateFile directly, the kernel preserves the previous mode value

that indicates that it is user-mode, detects that the address passed is a kernel-mode address,

and fails the call, correctly asserting that user-mode applications should not pass kernel-

mode pointers. However, this is not actually what happens, so how can the kernel be aware

of the correct previous mode? The answer lies in the Zw calls.

These exported APIs are not actually simple aliases or wrappers around the Nt versions.

Instead, they are “trampolines” to the appropriate Nt system call, which use the same system

call dispatching mechanism. Instead of generating an interrupt or a sysenter, which would

be slow and/or unsupported, they build a fake interrupt stack (the stack that the CPU would

generate after an interrupt) and call the KiSystemService routine directly, essentially emulat-

ing the CPU interrupt. The handler will execute the same operations as if this call came from

user mode, except it will detect the actual privilege level this call came from and set the pre-
vious mode to kernel. Now NtCreateEvent sees that the call came from the kernel and does

not fail anymore. Here’s what the kernel-mode trampolines look like:

lkd> u nt!ZwReadFile

nt!ZwReadFile:

8207f118 b802010000 mov eax,102h

8207f11d 8d542404 lea edx,[esp+4]

8207f121 9c pushfd

8207f122 6a08 push 8

8207f124 e8c5d70000 call nt!KiSystemService (8208c8ee)

8207f129 c22400 ret 24h

As you’ll see in Chapter 5, each thread has a pointer to its system service table (on 32-bit and

IA64 versions of Windows only; otherwise, the table address is hard-coded). Windows has

two built-in system service tables, and third-party drivers cannot extend the tables to add

their own service calls. The system service dispatcher determines which table contains the

requested service by interpreting a 2-bit field in the 32-bit system service number as a table

index. The low 12 bits of the system service number serve as the index into the table speci-

fied by the table index. The fields are shown in Figure 3-13.

130 Windows Internals, Fifth Edition

Table Index

Index into table System service number

31 13 11 0

0

1

0

1

Native API

Unused

Native API

Win32k.sys API

KeServiceDescriptorTable KeServiceDescriptorTableShadow

FIGURE 3-13 System service number to system service translation

Service Descriptor Tables

A primary default array table, KeServiceDescriptorTable, defines the core executive system

services implemented in Ntosrknl.exe. The other table array, KeServiceDescriptorTableShadow,

includes the Windows USER and GDI services implemented in the kernel-mode part of the

Windows subsystem, Win32k.sys. The first time a Windows thread calls a Windows USER or

GDI service, the address of the thread’s system service table is changed to point to a table

that includes the Windows USER and GDI services. The KeAddSystemServiceTable function

allows Win32k.sys to add a system service table.

The system service dispatch instructions for Windows executive services exist in the system

library Ntdll.dll. Subsystem DLLs call functions in Ntdll to implement their documented func-

tions. The exception is Windows USER and GDI functions, in which the system service dis-

patch instructions are implemented directly in User32.dll and Gdi32.dll—there is no Ntdll.dll

involved. These two cases are shown in Figure 3-14.

As shown in Figure 3-14, the Windows WriteFile function in Kernel32.dll calls the NtWriteFile

function in Ntdll.dll, which in turn executes the appropriate instruction to cause a system

service trap, passing the system service number representing NtWriteFile. The system service

dispatcher (function KiSystemService in Ntoskrnl.exe) then calls the real NtWriteFile to process

the I/O request. For Windows USER and GDI functions, the system service dispatch calls func-

tions in the loadable kernel-mode part of the Windows subsystem, Win32k.sys.

 Chapter 3 System Mechanisms 131

Windows kernel APIs
Windows USER and

GDI APIs

Windows
application

WriteFile in
Kernel32.dll

NtWriteFile in
Ntdll.dll

Windows-
specific

Used by all
subsystems

Gdi32.dll
or User32.dll

Application

Windows-
specific

KiSystemService
in Ntoskrnl.exe

NtWriteFile in
Ntoskrnl.exe

Service entry point
in Win32k.sys

KiSystemService in
Ntoskrnl.exe

Software interruptSoftware interrupt

User mode

Kernel mode

Call USER or
GDI service(...)

SYSENTER
Return to caller

Call Windows
routine

Dismiss interrupt

Do the operation
Return to caller

Call WriteFile(...)

Call NtWriteFile
Return to caller

SYSENTER
Return to caller

Call NtWriteFile
Dismiss interrupt

Do the operation
Return to caller

FIGURE 3-14 System service dispatching

EXPERIMENT: Mapping System Call Numbers to Functions

You can duplicate the same lookup performed by the kernel when dealing with a sys-

tem call ID to figure out which function is responsible for handling it.

 1. The KeServiceDescriptorTable and KeServiceDescriptorTableShadow tables both

point to the same array of pointers for kernel system calls, called KiServiceTable.

You can use the kernel debugger command dds to dump the data along with

symbolic information. The debugger will attempt to match each pointer with a

symbol. Here’s a partial output:

lkd> dds KiServiceTable

820807d0 821be2e5 nt!NtAcceptConnectPort

820807d4 820659a6 nt!NtAccessCheck

820807d8 8224a953 nt!NtAccessCheckAndAuditAlarm

132 Windows Internals, Fifth Edition

820807dc 820659dd nt!NtAccessCheckByType

820807e0 8224a992 nt!NtAccessCheckByTypeAndAuditAlarm

820807e4 82065a18 nt!NtAccessCheckByTypeResultList

820807e8 8224a9db nt!NtAccessCheckByTypeResultListAndAuditAlarm

820807ec 8224aa24 nt!NtAccessCheckByTypeResultListAndAuditAlarmByHandle

820807f0 822892af nt!NtAddAtom

 2. Instead of dumping the entire table, you can also look up a specific number.

Because each system call number is an index into the table, and because each

element is 4 bytes, you can use the following calculation: Handler = KiServiceTable
+ Number * 4. Let’s use the number 0x102, obtained during our description of the

NtReadFile stub code in Ntdll.dll.

lkd> ln poi(KiServiceTable + 102 * 4)

(82193023) nt!NtReadFile

 3. Because drivers, including kernel-mode rootkits, are able to patch this table on

32-bit versions of Windows, which is something the operating system does not

support, you can use dds to dump the entire table and look for any values out-

side the range of valid kernel addresses (dds will also make this clear by not being

able to look up a symbol for the function). Sixty-four bit Windows organizes the

system call table differently and uses relative pointers (an offset) to system calls

instead of the absolute addresses used by 32-bit Windows. Because code on

64-bit Windows is guaranteed to be aligned on a 16-byte boundary, only the

top 28 bits are used to describe the offset, since the bottom 4 bits are always 0.

Windows takes advantage of this fact by using the bottom 4 bits to pack informa-

tion on the number of arguments that each system call takes (based on the data

stored in KiArgumentTable). The base of the pointer is the KiServiceTable itself, so

you’ll have to dump the data in its raw format with the dd command. Here’s an

example of output from a 64-bit system:

lkd> dd KiServiceTable

fffff800`0105efc0 003021e0 0021efc0 fffc7b80 00202755

Each offset can be mapped to each function with the ln command, by stripping

off the bottom 4 bits (used as described above) and adding the remaining value

to the base of KiServiceTable itself, as shown here:

lkd> ln KiServiceTable+(003021e0 & -16)

(fffff800`013611a0) nt!NtMapUserPhysicalPagesScatter

 Chapter 3 System Mechanisms 133

EXPERIMENT: Viewing System Service Activity

You can monitor system service activity by watching the System Calls/Sec performance

counter in the System object. Run the Reliability and Performance Monitor, and in chart

view, click the Add button to add a counter to the chart. Select the System object,

select the System Calls/Sec counter, and then click the Add button to add the counter

to the chart.

Object Manager

As mentioned in Chapter 2, Windows implements an object model to provide consistent

and secure access to the various internal services implemented in the executive. This section

describes the Windows object manager, the executive component responsible for creating,

deleting, protecting, and tracking objects. The object manager centralizes resource con-

trol operations that otherwise would be scattered throughout the operating system. It was

designed to meet the goals listed on the next page.

EXPERIMENT: Exploring the Object Manager

Throughout this section, you’ll find experiments that show you how to peer into the

object manager database. These experiments use the following tools, which you should

become familiar with if you aren’t already:

WinObj (available from Sysinternals) displays the internal object manager’s

namespace and information about objects (such as the reference count, the

number of open handles, security descriptors, and so forth).

Process Explorer and Handle from Sysinternals (introduced in Chapter 1) dis-

play the open handles for a process.

The Openfiles /query command displays the open file handles for a process,

but it requires a global flag to be set in order to operate.

The kernel debugger !handle command displays the open handles for a

process.

WinObj from Sysinternals provides a way to traverse the namespace that the object

manager maintains. (As we’ll explain later, not all objects have names.) Run WinObj and

examine the layout, shown next.

134 Windows Internals, Fifth Edition

As noted previously, the Windows Openfiles /query command requires that a Windows

global flag called maintain objects list be enabled. (See the “Windows Global Flags”

 section later in this chapter for more details about global flags.) If you type Openfiles

/Local, it will tell you whether the flag is enabled. You can enable it with the Openfiles
/Local ON command. In either case, you must reboot the system for the setting to take

effect. Neither Process Explorer nor Handle from Sysinternals require object tracking to

be turned on because they use a device driver to obtain the information.

The object manager was designed to meet the following goals:

Provide a common, uniform mechanism for using system resources

Isolate object protection to one location in the operating system so that C2 security

compliance can be achieved

Provide a mechanism to charge processes for their use of objects so that limits can be

placed on the usage of system resources

Establish an object-naming scheme that can readily incorporate existing objects, such

as the devices, files, and directories of a file system, or other independent collections of

objects

Support the requirements of various operating system environments, such as the abil-

ity of a process to inherit resources from a parent process (needed by Windows and

POSIX) and the ability to create case-sensitive file names (needed by POSIX)

 Chapter 3 System Mechanisms 135

Establish uniform rules for object retention (that is, for keeping an object available until

all processes have finished using it)

Provide the ability to isolate objects for a specific session to allow for both local and

global objects in the namespace

Internally, Windows has three kinds of objects: executive objects, kernel objects, and GDI/User
objects. Executive objects are objects implemented by various components of the executive

(such as the process manager, memory manager, I/O subsystem, and so on). Kernel objects

are a more primitive set of objects implemented by the Windows kernel. These objects are

not visible to user-mode code but are created and used only within the executive. Kernel

objects provide fundamental capabilities, such as synchronization, on which executive objects

are built. Thus, many executive objects contain (encapsulate) one or more kernel objects, as

shown in Figure 3-15.

FIGURE 3-15 Executive objects that contain kernel objects

Note: GDI/User objects, on the other hand, belong to the Windows subsystem (Win32k.sys) and

do not interact with the kernel. For this reason, they are outside the scope of this book, but you

can get more information on them from the Windows SDK, the MSDN Library, or from the book

Windows Graphics Programming: Win32 GDI and DirectDraw, by Feng Yuan (Prentice Hall, 2000).

Details about the structure of kernel objects and how they are used to implement synchroni-

zation are given later in this chapter. In the remainder of this section, we’ll focus on how the

object manager works and on the structure of executive objects, handles, and handle tables.

Here we’ll just briefly describe how objects are involved in implementing Windows security

access checking; we’ll cover this topic thoroughly in Chapter 6.

136 Windows Internals, Fifth Edition

Executive Objects

Each Windows environment subsystem projects to its applications a different image of the

operating system. The executive objects and object services are primitives that the environ-

ment subsystems use to construct their own versions of objects and other resources.

Executive objects are typically created either by an environment subsystem on behalf of a

user application or by various components of the operating system as part of their normal

operation. For example, to create a file, a Windows application calls the Windows CreateFile

function, implemented in the Windows subsystem DLL Kernel32.dll. After some validation

and initialization, CreateFile in turn calls the native Windows service NtCreateFile to create an

executive file object.

The set of objects an environment subsystem supplies to its applications might be larger or

smaller than the set the executive provides. The Windows subsystem uses executive objects

to export its own set of objects, many of which correspond directly to executive objects. For

example, the Windows mutexes and semaphores are directly based on executive objects

(which are in turn based on corresponding kernel objects). In addition, the Windows subsys-

tem supplies named pipes and mailslots, resources that are based on executive file objects.

Some subsystems, such as POSIX, don’t support objects as objects at all. The POSIX subsys-

tem uses executive objects and services as the basis for presenting POSIX-style processes,

pipes, and other resources to its applications.

Table 3-5 lists the primary objects the executive provides and briefly describes what they

represent. You can find further details on executive objects in the chapters that describe

the related executive components (or in the case of executive objects directly exported to

Windows, in the Windows API reference documentation).

Note The executive implements a total of 37 object types. Many of these objects are for use

only by the executive component that defines them and are not directly accessible by Windows

APIs. Examples of these objects include Driver, Device, and EventPair.

TABLE 3-5 Executive Objects Exposed to the Windows API

Object Type Represents

Process The virtual address space and control information necessary for the

execution of a set of thread objects.

Thread An executable entity within a process.

Job A collection of processes manageable as a single entity through the job.

Section A region of shared memory (known as a file mapping object in Windows).

File An instance of an opened file or an I/O device.

 Chapter 3 System Mechanisms 137

Object Type Represents

Token The security profile (security ID, user rights, and so on) of a process or a

thread.

Event An object with a persistent state (signaled or not signaled) that can be

used for synchronization or notification.

Semaphore A counter that provides a resource gate by allowing some maximum

number of threads to access the resources protected by the semaphore.

Mutex A synchronization mechanism used to serialize access to a resource.

Timer A mechanism to notify a thread when a fixed period of time elapses.

IoCompletion A method for threads to enqueue and dequeue notifications of the

completion of I/O operations (known as an I/O completion port in the

Windows API).

Key A mechanism to refer to data in the registry. Although keys appear in

the object manager namespace, they are managed by the configuration

manager, in a way similar to that in which file objects are managed by file

system drivers. Zero or more key values are associated with a key object;

key values contain data about the key.

Directory A virtual directory in the object manager’s namespace responsible for

containing other objects or object directories.

TpWorkerFactory A collection of threads assigned to perform a specific set of tasks. The

kernel can manage the number of work items that will be performed on

the queue, how many threads should be responsible for the work, and

dynamic creation and termination of worker threads, respecting certain

limits the caller can set. Windows Vista and later expose the worker

factory object through thread pools.

TmRm (Resource

Manager), TmTx

(Transaction), TmTm

(Transaction Manager),

TmEn (Enlistment)

Objects used by the Kernel Transaction Manager (KTM) for various

transactions and/or enlistments as part of a resource manager or

transaction manager. Objects can be created through the new Create-
TransactionManager, CreateResourceManager, CreateTransaction, and

CreateEnlistment APIs.

WindowStation An object that contains a clipboard, a set of global atoms, and a group of

Desktop objects.

Desktop An object contained within a window station. A desktop has a logical

display surface and contains windows, menus, and hooks.

Note As Windows NT was originally supposed to support the OS/2 operating system, the mutex

had to be compatible with the existing design of OS/2 mutual-exclusion objects, a design that

required that a thread be able to abandon the object, leaving it inaccessible. Because this behav-

ior was considered unusual for such an object, another kernel object—the mutant—was created.
Eventually, OS/2 support was dropped, and the object became used by the Windows 32 subsys-

tem under the name mutex (but it is still called mutant internally).

138 Windows Internals, Fifth Edition

Object Structure

As shown in Figure 3-16, each object has an object header and an object body. The object

manager controls the object headers, and the owning executive components control the

object bodies of the object types they create. Each object header also points to a special

object, called the type object, that contains information common to each instance of the

object. Additionally, up to four optional subheaders exist: the name information header,

the quota information header, the handle information header, and the creator information

header.

Object name
Object directory
Security descriptor
Quota charges
Open handle count
Open handles list
Object type
Reference count

Object
header

Object
body Object-specific data

Process
1

Process
2

Process
3

Type name
Pool type
Default quota charges
Access types
Generic access rights mapping
Synchronizable? (Y/N)
Methods:

Open, close, delete,
parse, security,
query name

Type object

Object name

Security descriptor

Open handles list

Quota charges

Object directory

FIGURE 3-16 Structure of an object

Object Headers and Bodies

The object manager uses the data stored in an object’s header to manage objects with-

out regard to their type. Table 3-6 briefly describes the object header fields, and Table 3-7

describes the fields found in the optional object subheaders.

 Chapter 3 System Mechanisms 139

TABLE 3-6 Object Header Fields

Field Purpose

Handle count Maintains a count of the number of currently opened handles to the

object.

Pointer count Maintains a count of the number of references to the object (including one

reference for each handle). Kernel-mode components can reference an

object by pointer without using a handle.

Security descriptor Determines who can use the object and what they can do with it. Note that

unnamed objects by definition cannot have security.

Object type Points to a type object that contains attributes common to objects of this

type.

Subheader offsets Negative offsets to the optional subheader structures described in Table

3-7, except for the creator information subheader, which, if present, always

precedes the object header.

Flags Characteristics and object attributes for the object. See Table 3-9 for a list

of all the object flags.

In addition to the object header, which contains information that applies to any kind of

object, the subheaders contain optional information regarding specific aspects of the object.

Note that these structures are located at a variable offset from the top of the object header,

the value of which is stored in the object header itself (except, as mentioned above, for cre-

ator information). If any of these offsets is 0, the object manager assumes that no subheader

is associated with that offset. In the case of creator information, a value in the object header

flags determines whether the subheader is present. (See Table 3-9 for information about

these flags.)

TABLE 3-7 Optional Object Subheaders

Name Purpose Location

Name

information

Contains the object name, responsible for making an

object visible to other processes for sharing, and a pointer

to the object directory, which provides the hierarchical

structure in which the object names are stored

Object header—

NameInfoOffset

Quota

information

Lists the resource charges levied against a process when it

opens a handle to the object

Object header—

QuotaInfoOffset

Handle

information

Contains a database of entries (or just a single entry) for a

process that has an open handle to the object (along with

a per-process handle count)

Object header—

HandleInfoOffset

Creator

information

Links the object into a list for all the objects of the same

type, and records the process that created the object,

along with a back trace

Object header—

size of creator

information structure

140 Windows Internals, Fifth Edition

Note The quota information subheader might also contain a pointer to the exclusive process
that allows access to this object if the object was created with the exclusive object flag. Also, this

subheader does not necessarily contain information on quotas being levied against the process.

More information on exclusive objects follows later in the chapter.

Each of these subheaders is optional and is present only under certain conditions, either dur-

ing system boot up or at object creation time. Table 3-8 describes each of these conditions.

TABLE 3-8 Conditions Required for Presence of Object Subheaders

Name Condition

Name information The object must have been created with a name.

Quota information The object must have different memory usage values than the default values

configured during the creation of the object type (more on object types later),

or must have a security descriptor larger than 2 KB and not be the initial

system process, or must have been created with the exclusive object flag. (See

Table 3-9 for object flags.)

Handle information The object type must have enabled the maintain handle count flag. File

objects, WindowStation objects, and Desktop objects have this flag set in their

object type structure.

Creator information The object type must have enabled the maintain type list flag. LPC port

objects and Driver objects (only if Driver Verifier is enabled) have this flag set.

However, enabling the maintain object type list global flag (discussed earlier)

will enable this for all objects. Type objects also have the flag set, for a reason

we’ll describe shortly.

Finally, a number of attributes and/or flags determine the behavior of the object during

creation time or during certain operations. These flags are received by the object manager

whenever any new object is being created, in a structure called the object attributes. This

structure defines the object name, the root object directory where it should be inserted, the

security descriptor for the object, and the object attribute flags. Table 3-9 lists the various

flags that can be associated with an object.

Note When an object is being created through an API in the Windows subsystem (such as

CreateEvent or CreateFile), the caller does not specify any object attributes—the subsystem DLL

will perform the work behind the scenes. For this reason, all named objects created through

Win32 will go in the BaseNamedObjects directory because this is the root object directory

that Kernel32.dll specifies as part of the object attributes structure. More information on

BaseNamedObjects and how it relates to the per-session namespace will follow later in this

chapter.

 Chapter 3 System Mechanisms 141

TABLE 3-9 Object Flags

Attributes Flag Header Flag Purpose

OBJ_INHERIT Saved in the handle table entry Determines whether the handle

to the object will be inherited by

child processes, and whether a

process can use DuplicateHandle

to make a copy

OBJ_PERMANENT OB_FLAG_PERMANENT_OBJECT Defines object retention behavior

related to reference counts,

described later

OBJ_EXCLUSIVE OB_FLAG_EXCLUSIVE_OBJECT Specifies that the object can

only be used by the process that

created it

OBJ_CASE_INSENSITIVE Stored in the handle table entry Specifies that lookups for this

object in the namespace should

be case insensitive. May be

overridden by the case insensitive

flag in the object type

OBJ_OPENIF Not stored, used at run time Specifies that a create operation

for this object name should result

in an open, if the object exists,

instead of a failure

OBJ_OPENLINK Not stored, used at run time Specifies that the object manager

should open a handle to the

symbolic link, not the target

OBJ_KERNEL_HANDLE OB_FLAG_KERNEL_OBJECT Specifies that the handle to this

object should be a kernel handle

(more on this later)

OBJ_FORCE_ACCESS_CHECK Not stored, used at run time Specifies that even if the object is

being opened from kernel mode,

full access checks should be

performed

OBJ_KERNEL_EXCLUSIVE Stored in the object name

subheader as QueryReferences
Disables any user-mode process

from opening a handle to the

object; used to protect the

/Device/PhysicalMemory section

object

N/A OB_FLAG_CREATOR_INFO Specifies that there is an object

creator information subheader on

top of the object header

N/A OF_FLAG_DEFAULT_SECURITY_

QUOTA

Specifies that the object’s security

descriptor is using the default

2-KB quota

142 Windows Internals, Fifth Edition

Attributes Flag Header Flag Purpose

N/A OB_FLAG_SINGLE_HANDLE_

ENTRY

Specifies that the handle

information subheader contains

only a single entry and not a

database

N/A OB_FLAG_NEW_OBJECT Specifies that the object has been

created but not yet inserted into

the object namespace yet

N/A OB_FLAG_DEFER_DELETE Specifies that the object is being

deleted through the deferred
deletion worker thread

In addition to an object header, each object has an object body whose format and contents

are unique to its object type; all objects of the same type share the same object body for-

mat. By creating an object type and supplying services for it, an executive component can

control the manipulation of data in all object bodies of that type. Because the object header

has a static and well-known size, the object manager can easily look up the object header

for an object simply by subtracting the size of the header from the pointer of the object. As

explained earlier, to access the subheaders, the object manager subtracts yet another value

from the pointer of the object header.

Because of the standardized object header and subheader structures, the object manager is

able to provide a small set of generic services that can operate on the attributes stored in any

object header and can be used on objects of any type (although some generic services don’t

make sense for certain objects). These generic services, some of which the Windows subsys-

tem makes available to Windows applications, are listed in Table 3-10.

Although these generic object services are supported for all object types, each object has its

own create, open, and query services. For example, the I/O system implements a create file

service for its file objects, and the process manager implements a create process service for

its process objects.

Although a single create object service could have been implemented, such a routine would

have been quite complicated, because the set of parameters required to initialize a file

object, for example, differs markedly from that required to initialize a process object. Also,

the object manager would have incurred additional processing overhead each time a thread

called an object service to determine the type of object the handle referred to and to call the

appropriate version of the service.

TABLE 3-10 Generic Object Services

Service Purpose

Close Closes a handle to an object

Duplicate Shares an object by duplicating a handle and giving it to another process

Query object Gets information about an object’s standard attributes

 Chapter 3 System Mechanisms 143

Service Purpose

Query security Gets an object’s security descriptor

Set security Changes the protection on an object

Wait for a single object Synchronizes a thread’s execution with one object

Wait for multiple

objects

Synchronizes a thread’s execution with multiple objects

Type Objects

Object headers contain data that is common to all objects but that can take on different val-

ues for each instance of an object. For example, each object has a unique name and can have

a unique security descriptor. However, objects also contain some data that remains constant

for all objects of a particular type. For example, you can select from a set of access rights

specific to a type of object when you open a handle to objects of that type. The executive

supplies terminate and suspend access (among others) for thread objects and read, write,

append, and delete access (among others) for file objects. Another example of an object-

type-specific attribute is synchronization, which is described shortly.

To conserve memory, the object manager stores these static, object-type-specific attri-

butes once when creating a new object type. It uses an object of its own, a type object, to

record this data. As Figure 3-17 illustrates, if the object-tracking debug flag (described in the

“Windows Global Flags” section later in this chapter) is set, a type object also links together

all objects of the same type (in this case the process type), allowing the object manager to

find and enumerate them, if necessary. This functionality takes advantage of the creator

information subheader discussed previously.

FIGURE 3-17 Process objects and the process type object

144 Windows Internals, Fifth Edition

EXPERIMENT: Viewing Object Headers and Type Objects

You can see the list of type objects declared to the object manager with the WinObj

tool from Sysinternals. After running WinObj, open the \ObjectTypes directory, as

shown here:

You can look at the process object type data structure in the kernel debugger by first

identifying a process object with the !process command:

lkd> !process 0 0

**** NT ACTIVE PROCESS DUMP ****

PROCESS 860f1ab0 SessionId: none Cid: 0004 Peb: 00000000 ParentCid: 0000

 DirBase: 00122000 ObjectTable: 83000118 HandleCount: 484.

 Image: System

Then execute the !object command with the process object address as the argument:

lkd> !object 860f1ab0

Object: 860f1ab0 Type: (860f1ed0) Process

 ObjectHeader: 860f1a98 (old version)

 HandleCount: 4 PointerCount: 139

Notice that the object header starts 0x18 (24 decimal) bytes prior to the start of the

object body—the size of the object header itself. You can view the object header with

this command:

 Chapter 3 System Mechanisms 145

lkd> dt nt!_OBJECT_HEADER 860f1a98

 +0x000 PointerCount : 139

 +0x004 HandleCount : 4

 +0x004 NextToFree : 0x00000004

 +0x008 Type : 0x860f1ed0 _OBJECT_TYPE

 +0x00c NameInfoOffset : 0 ''

 +0x00d HandleInfoOffset : 0 ''

 +0x00e QuotaInfoOffset : 0 ''

 +0x00f Flags : 0x22 '"'

 +0x010 ObjectCreateInfo : 0x82109380 _OBJECT_CREATE_INFORMATION

 +0x010 QuotaBlockCharged : 0x82109380

 +0x014 SecurityDescriptor : 0x83003482

 +0x018 Body : _QUAD

Now look at the object type data structure by obtaining its address from the Type field

of the object header data structure:

lkd> dt nt!_OBJECT_TYPE 0x860f1ed0

 +0x000 Mutex : _ERESOURCE

 +0x038 TypeList : _LIST_ENTRY [0x860f1f08 - 0x860f1f08]

 +0x040 Name : _UNICODE_STRING "Process"

 +0x048 DefaultObject : (null)

 +0x04c Index : 6

 +0x050 TotalNumberOfObjects : 0x4f

 +0x054 TotalNumberOfHandles : 0x12d

 +0x058 HighWaterNumberOfObjects : 0x52

 +0x05c HighWaterNumberOfHandles : 0x141

 +0x060 TypeInfo : _OBJECT_TYPE_INITIALIZER

 +0x0ac Key : 0x636f7250

 +0x0b0 ObjectLocks : [32] _EX_PUSH_LOCK

The output shows that the object type structure includes the name of the object type,

tracks the total number of active objects of that type, and tracks the peak number

of handles and objects of that type. The TypeInfo field stores the pointer to the data

structure that stores attributes common to all objects of the object type as well as

pointers to the object type’s methods:

lkd> dt nt!_OBJECT_TYPE_INITIALIZER 0x860f1ed0+60

 +0x000 Length : 0x4c

 +0x002 ObjectTypeFlags : 0xa ''

 +0x002 CaseInsensitive : 0y0

 +0x002 UnnamedObjectsOnly : 0y1

 +0x002 UseDefaultObject : 0y0

 +0x002 SecurityRequired : 0y1

 +0x002 MaintainHandleCount : 0y0

 +0x002 MaintainTypeList : 0y0

 +0x004 ObjectTypeCode : 0

 +0x008 InvalidAttributes : 0

 +0x00c GenericMapping : _GENERIC_MAPPING

 +0x01c ValidAccessMask : 0x1fffff

 +0x020 PoolType : 0 (NonPagedPool)

 +0x024 DefaultPagedPoolCharge : 0x1000

 +0x028 DefaultNonPagedPoolCharge : 0x2a0

146 Windows Internals, Fifth Edition

 +0x02c DumpProcedure : (null)

 +0x030 OpenProcedure : 0x822137d3 long nt!PspProcessOpen+0

 +0x034 CloseProcedure : 0x8221c3d4 void nt!PspProcessClose+0

 +0x038 DeleteProcedure : 0x8221c1e2 void nt!PspProcessDelete+0

 +0x03c ParseProcedure : (null)

 +0x040 SecurityProcedure : 0x822502bb long nt!SeDefaultObjectMethod+0

 +0x044 QueryNameProcedure : (null)

 +0x048 OkayToCloseProcedure : (null)

Type objects can’t be manipulated from user mode because the object manager supplies no

services for them. However, some of the attributes they define are visible through certain

native services and through Windows API routines. The information stored in the type initial-

izers is described in Table 3-11.

TABLE 3-11 Type Initializer Fields

Attribute Purpose

Type name The name for objects of this type (“process,” “event,” “port,” and so on).

Pool type Indicates whether objects of this type should be allocated from paged or

nonpaged memory.

Default quota charges Default paged and nonpaged pool values to charge to process quotas.

Valid access mask The types of access a thread can request when opening a handle to an

object of this type (“read,” “write,” “terminate,” “suspend,” and so on).

Generic access rights

mapping

A mapping between the four generic access rights (read, write, execute,

and all) to the type-specific access rights.

Flags Indicate whether objects must never have names (such as process

objects), whether they require a security descriptor, and whether a handle

database (handle information subheader) and/or a type-list linkage

(creator information subheader) should be maintained. The use default
object flag also defines the behavior for the default object field below.

Invalid attributes Specifies object attribute flags (shown earlier in Table 3-9) that are invalid

for this object type.

Default object Specifies the internal object manager event that should be used during

waits for this object, if the object type creator requested one. Note that

for File objects, the object manager hardcodes the default object to an

internal member inside the FILE_OBJECT structure called Event.

Methods One or more routines that the object manager calls automatically at

certain points in an object’s lifetime.

Synchronization, one of the attributes visible to Windows applications, refers to a thread’s

ability to synchronize its execution by waiting for an object to change from one state to

another. A thread can synchronize with executive job, process, thread, file, event, semaphore,

 Chapter 3 System Mechanisms 147

mutex, and timer objects. Other executive objects don’t support synchronization. An object’s

ability to support synchronization is based on three possibilities:

The executive object contains an embedded dispatcher object, a kernel object that is

covered in the section “Low-IRQL Synchronization” later in this chapter.

The creator of the object type requested a default object, and the object manager pro-

vided one.

The object type is a file and the object manager manually hardcoded a value inside the

object body (described in Table 3-11).

Object Methods

The last attribute in Table 3-11, methods, comprises a set of internal routines that are similar

to C++ constructors and destructors—that is, routines that are automatically called when

an object is created or destroyed. The object manager extends this idea by calling an object

method in other situations as well, such as when someone opens or closes a handle to an

object or when someone attempts to change the protection on an object. Some object types

specify methods, whereas others don’t, depending on how the object type is to be used.

When an executive component creates a new object type, it can register one or more

methods with the object manager. Thereafter, the object manager calls the methods at

well-defined points in the lifetime of objects of that type, usually when an object is created,

deleted, or modified in some way. The methods that the object manager supports are listed

in Table 3-12.

The reason for these object methods is to address the fact that, as we’ve seen, certain

object operations are generic (close, duplicate, security, and so on). Fully generalizing these

generic routines would have required the designers of the object manager to anticipate all

object types. However, the routines to create an object type are exported by the kernel,

enabling third-party components to create their own object types. Although this function-

ality is not documented for driver developers, it is internally used by Win32k.sys to define

WindowStation and Desktop objects. Through object method extensibility, Win32k.sys

defines its routines for handling operations such as create and query.

One exception to this rule is the security routine, which does, unless otherwise instructed,

default to SeDefaultObjectMethod. This routine does not need to know the internal structure

of the object because it only deals with the security descriptor for the object, and we’ve seen

that the pointer to the security descriptor is stored in the generic object header, not inside

the object body. However, if an object does require its own additional security checks, it can

define a custom security routine. The other reason for having a generic security method is

to avoid complexity, because most objects rely on the security reference monitor to manage

their security.

148 Windows Internals, Fifth Edition

TABLE 3-12 Object Methods

Method When Method Is Called

Open When an object handle is opened

Close When an object handle is closed

Delete Before the object manager deletes an object

Query name When a thread requests the name of an object, such as a file, that exists in a

secondary object namespace

Parse When the object manager is searching for an object name that exists in a

secondary object namespace

Dump Not used

Okay to close When the object manager is instructed to close a handle

Security When a process reads or changes the protection of an object, such as a file, that

exists in a secondary object namespace

The object manager calls the open method whenever it creates a handle to an object, which

it does when an object is created or opened. The WindowStation and Desktop objects pro-

vide an open method; for example, the WindowStation object type requires an open method

so that Win32k.sys can share a piece of memory with the process that serves as a desktop-

related memory pool.

An example of the use of a close method occurs in the I/O system. The I/O manager registers

a close method for the file object type, and the object manager calls the close method each

time it closes a file object handle. This close method checks whether the process that is clos-

ing the file handle owns any outstanding locks on the file and, if so, removes them. Checking

for file locks isn’t something the object manager itself could or should do.

The object manager calls a delete method, if one is registered, before it deletes a temporary

object from memory. The memory manager, for example, registers a delete method for the

section object type that frees the physical pages being used by the section. It also verifies

that any internal data structures the memory manager has allocated for a section are deleted

before the section object is deleted. Once again, the object manager can’t do this work

because it knows nothing about the internal workings of the memory manager. Delete meth-

ods for other types of objects perform similar functions.

The parse method (and similarly, the query name method) allows the object manager to

relinquish control of finding an object to a secondary object manager if it finds an object that

exists outside the object manager namespace. When the object manager looks up an object

name, it suspends its search when it encounters an object in the path that has an associated

parse method. The object manager calls the parse method, passing to it the remainder of the

object name it is looking for. There are two namespaces in Windows in addition to the object

manager’s: the registry namespace, which the configuration manager implements, and the

file system namespace, which the I/O manager implements with the aid of file system drivers.

 Chapter 3 System Mechanisms 149

(See Chapter 4 for more information on the configuration manager and Chapter 7 for more

about the I/O manager and file system drivers.)

For example, when a process opens a handle to the object named \Device\Floppy0\docs\

resume.doc, the object manager traverses its name tree until it reaches the device object

named Floppy0. It sees that a parse method is associated with this object, and it calls the

method, passing to it the rest of the object name it was searching for—in this case, the string

\docs\resume.doc. The parse method for device objects is an I/O routine because the I/O

manager defines the device object type and registers a parse method for it. The I/O man-

ager’s parse routine takes the name string and passes it to the appropriate file system, which

finds the file on the disk and opens it.

The security method, which the I/O system also uses, is similar to the parse method. It is

called whenever a thread tries to query or change the security information protecting a file.

This information is different for files than for other objects because security information is

stored in the file itself rather than in memory. The I/O system, therefore, must be called to

find the security information and read or change it.

Finally, the okay-to-close method is used as an additional layer of protection around the

malicious—or incorrect—closing of handles being used for system purposes. For example,

each process has a handle to the Desktop object(s) on which its thread or threads have win-

dows visible. Under the standard security model, it would be possible for those threads to

close their handles to their desktops because the process has full control of its own objects.

In this scenario, the threads would end up without a desktop associated with them—a viola-

tion of the windowing model. Win32k.sys registers an okay-to-close routine for the Desktop

and WindowStation objects to prevent this behavior.

Object Handles and the Process Handle Table

When a process creates or opens an object by name, it receives a handle that repre-

sents its access to the object. Referring to an object by its handle is faster than using its

name because the object manager can skip the name lookup and find the object directly.

Processes can also acquire handles to objects by inheriting handles at process creation time

(if the creator specifies the inherit handle flag on the CreateProcess call and the handle was

marked as inheritable, either at the time it was created or afterward by using the Windows

SetHandleInformation function) or by receiving a duplicated handle from another process.

(See the Windows DuplicateHandle function.)

All user-mode processes must own a handle to an object before their threads can use the

object. Using handles to manipulate system resources isn’t a new idea. C and Pascal (an older

programming language similar to Delphi) run-time libraries, for example, return handles to

opened files. Handles serve as indirect pointers to system resources; this indirection keeps

application programs from fiddling directly with system data structures.

150 Windows Internals, Fifth Edition

Note Executive components and device drivers can access objects directly because they are

running in kernel mode and therefore have access to the object structures in system memory.

However, they must declare their usage of the object by incrementing the reference count

so that the object won’t be deallocated while it’s still being used. (See the section “Object

Retention” later in this chapter for more details.) To successfully make use of this object, how-

ever, device drivers need to know the internal structure definition of the object, and this is not

provided for most objects. Instead, device drivers are encouraged to use the appropriate kernel

APIs to modify or read information from the object. For example, although device drivers can get

a pointer to the Process object (EPROCESS), the structure is opaque, and Ps* APIs must be used.

For other objects, the type itself is opaque (such as most executive objects that wrap a dispatcher

object—for example, events or mutexes). For these objects, drivers must use the same system

calls that user-mode applications end up calling (such as ZwCreateEvent) and use handles instead

of object pointers.

Object handles provide additional benefits. First, except for what they refer to, there is no

difference between a file handle, an event handle, and a process handle. This similarity pro-

vides a consistent interface to reference objects, regardless of their type. Second, the object

manager has the exclusive right to create handles and to locate an object that a handle refers

to. This means that the object manager can scrutinize every user-mode action that affects an

object to see whether the security profile of the caller allows the operation requested on the

object in question.

EXPERIMENT: Viewing Open Handles

Run Process Explorer, and make sure the lower pane is enabled and configured to show

open handles. (Click on View, Lower Pane View, and then Handles). Then open a com-

mand prompt and view the handle table for the new Cmd.exe process. You should see

an open file handle to the current directory. For example, assuming the current direc-

tory is C:\, Process Explorer shows the following:

 Chapter 3 System Mechanisms 151

If you then change the current directory with the cd command, you will see in Process

Explorer that the handle to the previous current directory is closed and a new handle

is opened to the new current directory. The previous handle is highlighted briefly in

red, and the new handle is highlighted in green. The duration of the highlight can be

adjusted by clicking Options and then Difference Highlight Duration.

Process Explorer’s differences highlighting feature makes it easy to see changes in the

handle table. For example, if a process is leaking handles, viewing the handle table with

Process Explorer can quickly show what handle or handles are being opened but not

closed. This information can help the programmer find the handle leak.

You can also display the open handle table by using the command-line Handle tool

from Sysinternals. For example, note the following partial output of Handle examining

the file object handles located in the handle table for a Cmd.exe process before and

after changing the directory. By default, Handle will filter out nonfile handles unless

the –a switch is used, which displays all the handles in the process, similar to Process

Explorer.

C:\>handle -p cmd.exe

Handle v3.3

Copyright (C) 1997-2007 Mark Russinovich

Sysinternals - www.sysinternals.com

--

cmd.exe pid: 5124 Alex-Laptop\Alex Ionescu

 3C: File (R-D) C:\Windows\System32\en-US\cmd.exe.mui

 44: File (RW-) C:\

C:\>cd windows

C:\Windows>handle -p cmd.exe

Handle v3.3

Copyright (C) 1997-2007 Mark Russinovich

Sysinternals - www.sysinternals.com

--

cmd.exe pid: 5124 Alex-Laptop\Alex Ionescu

 3C: File (R-D) C:\Windows\System32\en-US\cmd.exe.mui

 40: File (RW-) C:\Windows

An object handle is an index into a process-specific handle table, pointed to by the executive

process (EPROCESS) block (described in Chapter 5). The first handle index is 4, the second

8, and so on. A process’s handle table contains pointers to all the objects that the process

has opened a handle to. Handle tables are implemented as a three-level scheme, similar

to the way that the x86 memory management unit implements virtual-to-physical address

152 Windows Internals, Fifth Edition

translation, giving a maximum of more than 16,000,000 handles per process. (See Chapter 9

for details about memory management in x86 systems.)

Only the lowest-level handle table is allocated on process creation—the other levels are cre-

ated as needed. The subhandle table consists of as many entries as will fit in a page minus

one entry that is used for handle auditing. For example, for x86 systems a page is 4096 bytes,

divided by the size of a handle table entry (8 bytes), which is 512, minus 1, which is a total of

511 entries in the lowest-level handle table. The mid-level handle table contains a full page of

pointers to subhandle tables, so the number of subhandle tables depends on the size of the

page and the size of a pointer for the platform. Figure 3-18 describes the handle table layout

on Windows.

Process

Handle
table

Top-level

pointers

Middle-level

pointers

Subhandle

table

FIGURE 3-18 Windows process handle table architecture

EXPERIMENT: Creating the Maximum Number of Handles

The test program Testlimit from Sysinternals has an option to open handles to an object

until it cannot open any more handles. You can use this to see how many handles can

be created in a single process on your system. Because handle tables are allocated from

paged pool, you might run out of paged pool before you hit the maximum number of

handles that can be created in a single process. To see how many handles you can cre-

ate on your system, follow these steps:

 1. Download the Testlimit .zip file from www.microsoft.com/technet/ sysinternals, and

unzip it into a directory.

 Chapter 3 System Mechanisms 153

 2. Run Process Explorer, and then click View and then System Information. Notice

the current and maximum size of paged pool. (To display the maximum pool size

values, Process Explorer must be configured properly to access the symbols for

the kernel image, Ntoskrnl.exe.) Leave this system information display running so

that you can see pool utilization when you run the Testlimit program.

 3. Open a command prompt.

 4. Run the Testlimit program with the -h switch (do this by typing testlimit –h).

When Testlimit fails to open a new handle, it will display the total number of

handles it was able to create. If the number is less than approximately 16 million,

you are probably running out of paged pool before hitting the theoretical per-

process handle limit.

 5. Close the Command Prompt window; doing this will kill the Testlimit process, thus

closing all the open handles.

As shown in Figure 3-19, on x86 systems, each handle entry consists of a structure with two

32-bit members: a pointer to the object (with flags), and the granted access mask. On 64-bit

systems, a handle table entry is 12 bytes long: a 64-bit pointer to the object header and a

32-bit access mask. (Access masks are described in Chapter 6.)

Audit on close

Lock

Inheritable

IAPointer to object header

Access mask

32 bits

Protect from close

P

FIGURE 3-19 Structure of a handle table entry

The first flag is a lock bit, indicating whether the entry is currently in use. The second flag is

the inheritance designation—that is, it indicates whether processes created by this process

will get a copy of this handle in their handle tables. As already noted, handle inheritance can

be specified on handle creation or later with the SetHandleInformation function. (This flag

can also be specified with the Windows SetHandleInformation function.) The third flag indi-

cates whether closing the object should generate an audit message. (This flag isn’t exposed

to Windows—the object manager uses it internally.) Finally, the protect from close bit, stored

in an unused portion of the access mask, indicates whether the caller is allowed to close this

handle. (This flag can be set with the NtSetInformationObject system call.)

154 Windows Internals, Fifth Edition

System components and device drivers often need to open handles to objects that user-

mode applications shouldn’t have access to. This is done by creating handles in the kernel
handle table (referenced internally with the name ObpKernelHandleTable). The handles in this

table are accessible only from kernel mode and in any process context. This means that a

kernel-mode function can reference the handle in any process context with no performance

impact. The object manager recognizes references to handles from the kernel handle table

when the high bit of the handle is set—that is, when references to kernel-handle-table han-

dles have values greater than 0x80000000. The kernel handle table also serves as the handle

table for the System process.

EXPERIMENT: Viewing the Handle Table with the

Kernel Debugger

The !handle command in the kernel debugger takes three arguments:

!handle <handle index> <flags> <processid>

The handle index identifies the handle entry in the handle table. (Zero means display

all handles.) The first handle is index 4, the second 8, and so on. For example, typing

!handle 4 will show the first handle for the current process.

The flags you can specify are a bitmask, where bit 0 means display only the information

in the handle entry, bit 1 means display free handles (not just used handles), and bit 2

means display information about the object that the handle refers to. The following

command displays full details about the handle table for process ID 0x408:

lkd> !handle 0 7 acc

processor number 0, process 00000acc

Searching for Process with Cid == acc

PROCESS 89e1ead8 SessionId: 1 Cid: 0acc Peb: 7ffd3000 ParentCid: 0a28

 DirBase: b25c8740 ObjectTable: f1a76c78 HandleCount: 246.

 Image: windbg.exe

Handle table at f0aaa000 with 246 Entries in use

0000: free handle, Entry address f0aaa000, Next Entry fffffffe

0004: Object: 95d02d70 GrantedAccess: 00000003 Entry: f0aaa008

Object: 95d02d70 Type: (860f5d60) Directory

 ObjectHeader: 95d02d58 (old version)

 HandleCount: 74 PointerCount: 103

 Directory Object: 83007470 Name: KnownDlls

0008: Object: 89e1a468 GrantedAccess: 00100020 Entry: f0aaa010

Object: 89e1a468 Type: (8613f040) File

 ObjectHeader: 89e1a450 (old version)

 HandleCount: 1 PointerCount: 1

 Directory Object: 00000000 Name: \Program Files\Debugging Tools for Windows

{HarddiskVolume3}

 Chapter 3 System Mechanisms 155

EXPERIMENT: Searching for Open Files with the Kernel Debugger

Although you can use Process Explorer as well as the OpenFiles.exe utility to search for

open file handles, these tools are not available when looking at a crash dump or ana-

lyzing a system remotely. You can instead use the !devhandles command to search for

handles opened to files on a specific volume. (See Chapter 7 for more information on

devices, files, and volumes.)

 1. First you need to pick the drive letter you are interested in and obtain the pointer

to its Device object. You can use the !object command as shown here:

lkd> !object \GLOBAL??\C:

Object: 8d274e68 Type: (84d10bc0) SymbolicLink

 ObjectHeader: 8d274e50 (old version)

 HandleCount: 0 PointerCount: 1

 Directory Object: 8b6053b8 Name: C:

 Target String is '\Device\HarddiskVolume3'

 Drive Letter Index is 3 (C:)

 2. Next use the !devobj command to get the Device object of the target volume

name:

lkd> !devobj \Device\HarddiskVolume3

Device object (86623e10) is for:

 3. Now you can use the pointer of the Device object with the !devhandles command.

Each object shown points to a file:

lkd> !devhandles 86623e10

Checking handle table for process 0x84d0da90

Handle table at 890d6000 with 545 Entries in use

PROCESS 84d0da90 SessionId: none Cid: 0004 Peb: 00000000 ParentCid: 0000

 DirBase: 00122000 ObjectTable: 8b602008 HandleCount: 545.

 Image: System

0084: Object: 8684c4b8 GrantedAccess: 0012019f

PROCESS 84d0da90 SessionId: none Cid: 0004 Peb: 00000000 ParentCid: 0000

 DirBase: 00122000 ObjectTable: 8b602008 HandleCount: 545.

 Image: System

0088: Object: 8684c348 GrantedAccess: 0012019f

PROCESS 84d0da90 SessionId: none Cid: 0004 Peb: 00000000 ParentCid: 0000

 DirBase: 00122000 ObjectTable: 8b602008 HandleCount: 545.

 Image: System

156 Windows Internals, Fifth Edition

 4. Finally, you can repeat the !object command on these objects to figure out to

which file they refer:

lkd> !object 8684c4b8

Object: 8684c4b8 Type: (84d5a040) File

 ObjectHeader: 8684c4a0 (old version)

 HandleCount: 1 PointerCount: 2

 Directory Object: 00000000 Name:

\$Extend\$RmMetadata\$TxfLog\$TxfLogContainer00000000000000000004

{HarddiskVolume3}

Because handle leaks can be dangerous to the system by leaking kernel pool memory and

eventually causing systemwide memory starvation—and can also break applications in subtle

ways—Windows includes a couple of debugging mechanisms that can be enabled to moni-

tor, analyze, and debug issues with handles. Additionally, the Debugging Tools for Windows

come with two extensions that tap into these mechanisms and provide easy graphical analy-

sis. Table 3-13 illustrates them:

TABLE 3-13 Debugging Mechanisms for Object Handles

Mechanism Enabled By Kernel Debugger Extension

Handle Tracing

Database

Kernel Stack Trace systemwide and/or

per-process with the User Stack Trace

option checked with Gflags.exe.

!htrace <handle value> <process ID>

Object Reference

Tracing

Per-process-name(s), or per-object-

type-pool-tag(s), with Gflags.exe,

under Object Reference Tracing.

!obtrace <object pointer>

Enabling the handle tracing database is useful when attempting to understand the use of

each handle within an application or the system context. The !htrace debugger extension can

display the stack trace captured at the time a specified handle was opened. After you dis-

cover a handle leak, the stack trace can pinpoint the code that is creating the handle, and it

can be analyzed for a missing call to a function such as CloseHandle.

The object reference tracing !obtrace extension monitors even more by showing the stack

trace for each new handle created as well as each time a handle is referenced by the kernel

(and also opened, duplicated, or inherited) and dereferenced. By analyzing these patterns,

misuse of an object at the system level can be more easily debugged. Additionally, these

reference traces provide a way to understand the behavior of the system when dealing with

certain objects. Tracing processes, for example, will display references from all the drivers on

the system that have registered callback notifications (such as Process Monitor) and helps

detect rogue or buggy third-party drivers that may be referencing handles in kernel mode

but never dereferencing them.

 Chapter 3 System Mechanisms 157

Note When enabling object reference tracing for a specific object type, you can obtain the

name of its pool tag by looking at the key member of the OBJECT_TYPE structure when using

the dt command. Each object type on the system has a global variable that references this struc-

ture—for example, PsProcessType. Alternatively, you can use the !object command, which displays

the pointer to this structure.

Object Security

When you open a file, you must specify whether you intend to read or to write. If you try

to write to a file that is opened for read access, you get an error. Likewise, in the execu-

tive, when a process creates an object or opens a handle to an existing object, the process

must specify a set of desired access rights—that is, what it wants to do with the object. It can

request either a set of standard access rights (such as read, write, and execute) that apply to

all object types or specific access rights that vary depending on the object type. For example,

the process can request delete access or append access to a file object. Similarly, it might

require the ability to suspend or terminate a thread object.

When a process opens a handle to an object, the object manager calls the security refer-
ence monitor, the kernel-mode portion of the security system, sending it the process’s set of

desired access rights. The security reference monitor checks whether the object’s security

descriptor permits the type of access the process is requesting. If it does, the reference moni-

tor returns a set of granted access rights that the process is allowed, and the object manager

stores them in the object handle it creates. How the security system determines who gets

access to which objects is explored in Chapter 6.

Thereafter, whenever the process’s threads use the handle, the object manager can quickly

check whether the set of granted access rights stored in the handle corresponds to the usage

implied by the object service the threads have called. For example, if the caller asked for read

access to a section object but then calls a service to write to it, the service fails.

EXPERIMENT: Looking at Object Security

You can look at the various permissions on an object by using either Process Explorer,

WinObj, or AccessCheck, all tools from Sysinternals. Let’s look at different ways you can

display the access control list (ACL) for an object.

 1. You can use WinObj to navigate to any object on the system, including object

directories, right-click on the object, and select Properties. For example, select the

BaseNamedObjects directory, select Properties, and click on the Security tab. You

should see a dialog box similar to the one shown next.

158 Windows Internals, Fifth Edition

By examining the settings in the dialog box, you can see that the Everyone group

doesn’t have delete access to the directory, for example, but the SYSTEM account

does (because this is where session 0 services with SYSTEM privileges will store

their objects). Note that even though Everyone has the Add Object permission,

a special privilege is required to be able to insert objects in this directory when

running in another session.

 2. Instead of using WinObj, you can view the handle table of a process using Process

Explorer, as shown in the experiment “Viewing Open Handles” earlier in the chap-

ter. Look at the handle table for the Explorer.exe process. You should notice a

Directory object handle to the \Sessions\n\BaseNamedObjects directory. (We’ll

describe the per-session namespace shortly.) You can double-click on the object

handle and then click on the Security tab and see a similar dialog box (with more

users and rights granted). Unfortunately, Process Explorer cannot decode the spe-

cific object directory access rights, so all you’ll see are generic rights.

 3. Finally, you can use AccessCheck to query the security information of any

object by using the –o switch as shown in the following output. Note that using

AccessCheck will also show you the integrity level of the object. (See Chapter 6 for

more information on integrity levels and the security reference monitor.)

C:\Windows>accesschk -o \Sessions\1\BaseNamedObjects

AccessChk v4.02 - Check access of files, keys, objects, processes or services

Copyright (C) 2006-2007 Mark Russinovich

Sysinternals - www.sysinternals.com

 Chapter 3 System Mechanisms 159

\Sessions\1\BaseNamedObjects

 Type: Directory

 Low Mandatory Level [No-Write-Up]

 RW NT AUTHORITY\SYSTEM

 RW Alex-Laptop\Alex Ionescu

 RW BUILTIN\Administrators

 R Everyone

 NT AUTHORITY\RESTRICTED

Windows also supports Ex (Extended) versions of the APIs—CreateEventEx, CreateMutexEx,
CreateSemaphoreEx—that add another argument for specifying the access mask. This makes

it possible for applications to properly use discretionary access control lists (DACLs) to secure

their objects without breaking their ability to use the create object APIs to open a handle to

them. You might be wondering why a client application would not simply use OpenEvent,
which does support a desired access argument. Using the open object APIs leads to an

inherent race condition when dealing with a failure in the open call—that is to say, when

the client application has attempted to open the event before it has been created. In most

applications of this kind, the open API would be followed by a create API in the failure case.

Unfortunately, there is no guaranteed way to make this create operation atomic—in other

words, to only occur once. Indeed, it would be possible for multiple threads and/or processes

to have executed the create API concurrently and all attempt to create the event at the same

time. This race condition and the extra complexity required to try and handle it makes using

the open object APIs an inappropriate solution to the problem, which is why the Ex APIs

should be used instead.

Object Retention

There are two types of objects: temporary and permanent. Most objects are temporary—

that is, they remain while they are in use and are freed when they are no longer needed.

Permanent objects remain until they are explicitly freed. Because most objects are temporary,

the rest of this section describes how the object manager implements object retention—

that is, retaining temporary objects only as long as they are in use and then deleting them.

Because all user-mode processes that access an object must first open a handle to it, the

object manager can easily track how many of these processes, and even which ones, are

using an object. Tracking these handles represents one part in implementing retention. The

object manager implements object retention in two phases. The first phase is called name
retention, and it is controlled by the number of open handles to an object that exist. Every

time a process opens a handle to an object, the object manager increments the open handle

counter in the object’s header. As processes finish using the object and close their handles to

it, the object manager decrements the open handle counter. When the counter drops to 0,

the object manager deletes the object’s name from its global namespace. This deletion pre-

vents new processes from opening a handle to the object.

160 Windows Internals, Fifth Edition

The second phase of object retention is to stop retaining the objects themselves (that is, to

delete them) when they are no longer in use. Because operating system code usually accesses

objects by using pointers instead of handles, the object manager must also record how many

object pointers it has dispensed to operating system processes. It increments a reference
count for an object each time it gives out a pointer to the object; when kernel-mode compo-

nents finish using the pointer, they call the object manager to decrement the object’s refer-

ence count. The system also increments the reference count when it increments the handle

count, and likewise decrements the reference count when the handle count decrements,

because a handle is also a reference to the object that must be tracked. (For further details on

object retention, see the WDK documentation on the functions ObReferenceObjectByPointer
and ObDereferenceObject.)

Figure 3-20 illustrates two event objects that are in use. Process A has the first event open.

Process B has both events open. In addition, the first event is being referenced by some

 kernel-mode structure; thus, the reference count is 3. So even if Processes A and B closed

their handles to the first event object, it would continue to exist because its reference count

is 1. However, when Process B closes its handle to the second event object, the object would

be deallocated.

So even after an object’s open handle counter reaches 0, the object’s reference count might

remain positive, indicating that the operating system is still using the object. Ultimately,

when the reference count drops to 0, the object manager deletes the object from memory.

This deletion has to respect certain rules and also requires cooperation from the caller in

certain cases. For example, because objects can be present both in paged or nonpaged pool

memory (depending on the settings located in their object type), if a dereference occurs at

an IRQL level of dispatch or higher, and this dereference causes the pointer count to drop to

0, the system would crash if it attempted to immediately free the memory of a paged-pool

object. (Recall that such access is illegal because the page fault will never be serviced.) In this

scenario, the object manager will perform a deferred delete operation, queuing the opera-

tion on a worker thread running at passive level (IRQL 0). We’ll describe more about system

worker threads later in this chapter.

Another scenario that requires deferred deletion is when dealing with Kernel Transaction

Manager (KTM) objects. In some scenarios, certain drivers may hold a lock related

to this object, and attempting to delete the object will result in the system attempt-

ing to acquire this lock. However, the driver may never get the chance to release its

lock, causing a deadlock. When dealing with KTM objects, driver developers must use

ObDereferenceObjectDeferDelete to force deferred deletion regardless of IRQL level. Finally,

the I/O manager will also use this mechanism as an optimization so that certain I/Os can

complete more quickly, instead of waiting for the object manager to delete the object.

 Chapter 3 System Mechanisms 161

Other structure

HandleCount=1
ReferenceCount=1

Event object

HandleCount=2
ReferenceCount=3

Event object

Handle table

Process A System space

Process B

Handle table

Handles

DuplicateHandle

Index

FIGURE 3-20 Handles and reference counts

Because of the way object retention works, an application can ensure that an object and its

name remain in memory simply by keeping a handle open to the object. Programmers who

write applications that contain two or more cooperating processes need not be concerned

that one process might delete an object before the other process has finished using it. In

addition, closing an application’s object handles won’t cause an object to be deleted if the

operating system is still using it. For example, one process might create a second process to

execute a program in the background; it then immediately closes its handle to the process.

Because the operating system needs the second process to run the program, it maintains a

reference to its process object. Only when the background program finishes executing does

the object manager decrement the second process’s reference count and then delete it.

Resource Accounting

Resource accounting, like object retention, is closely related to the use of object handles. A

positive open handle count indicates that some process is using that resource. It also indi-

cates that some process is being charged for the memory the object occupies. When an

object’s handle count and reference count drop to 0, the process that was using the object

should no longer be charged for it.

162 Windows Internals, Fifth Edition

Many operating systems use a quota system to limit processes’ access to system resources.

However, the types of quotas imposed on processes are sometimes diverse and complicated,

and the code to track the quotas is spread throughout the operating system. For example,

in some operating systems, an I/O component might record and limit the number of files a

process can open, whereas a memory component might impose a limit on the amount of

memory a process’s threads can allocate. A process component might limit users to some

maximum number of new processes they can create or a maximum number of threads within

a process. Each of these limits is tracked and enforced in different parts of the operating

system.

In contrast, the Windows object manager provides a central facility for resource accounting.

Each object header contains an attribute called quota charges that records how much the

object manager subtracts from a process’s allotted paged and/or nonpaged pool quota when

a thread in the process opens a handle to the object.

Each process on Windows points to a quota structure that records the limits and cur-

rent values for nonpaged pool, paged pool, and page file usage. These quotas default to

0 (no limit) but can be specified by modifying registry values. (See NonPagedPoolQuota,

PagedPoolQuota, and PagingFileQuota under HKLM\SYSTEM\CurrentControlSet\Session

Manager\Memory Management.) Note that all the processes in an interactive session share

the same quota block (and there’s no documented way to create processes with their own

quota blocks).

Object Names

An important consideration in creating a multitude of objects is the need to devise a success-

ful system for keeping track of them. The object manager requires the following information

to help you do so:

A way to distinguish one object from another

A method for finding and retrieving a particular object

The first requirement is served by allowing names to be assigned to objects. This is an exten-

sion of what most operating systems provide—the ability to name selected resources, files,

pipes, or a block of shared memory, for example. The executive, in contrast, allows any

resource represented by an object to have a name. The second requirement, finding and

retrieving an object, is also satisfied by object names. If the object manager stores objects by

name, it can find an object by looking up its name.

Object names also satisfy a third requirement, which is to allow processes to share objects.

The executive’s object namespace is a global one, visible to all processes in the system. One

process can create an object and place its name in the global namespace, and a second pro-

cess can open a handle to the object by specifying the object’s name. If an object isn’t meant

to be shared in this way, its creator doesn’t need to give it a name.

 Chapter 3 System Mechanisms 163

To increase efficiency, the object manager doesn’t look up an object’s name each time some-

one uses the object. Instead, it looks up a name under only two circumstances. The first is

when a process creates a named object: the object manager looks up the name to verify that

it doesn’t already exist before storing the new name in the global namespace. The second is

when a process opens a handle to a named object: the object manager looks up the name,

finds the object, and then returns an object handle to the caller; thereafter, the caller uses the

handle to refer to the object. When looking up a name, the object manager allows the caller

to select either a case-sensitive or a case-insensitive search, a feature that supports POSIX

and other environments that use case-sensitive file names.

Where the names of objects are stored depends on the object type. Table 3-14 lists the stan-

dard object directories found on all Windows systems and what types of objects have their

names stored there. Of the directories listed, only \BaseNamedObjects and \Global?? are

visible to user programs (see the “Session Namespace” section later in this chapter for more

information).

TABLE 3-14 Standard Object Directories

Directory Types of Object Names Stored

\GLOBAL?? MS-DOS device names (The \Sessions\0\DosDevices\<LUID>\

Global directories are symbolic links to this directory.)

\ArcNames Symbolic links mapping ARC-style paths to NT-style paths.

\BaseNamedObjects Mutexes, events, semaphores, waitable timers, and section objects

for Session 0 (services).

\Callback Callback objects

\Device Device objects

\Driver Driver objects

\FileSystem File system driver objects and file system recognizer device objects

\KnownDlls Section names and path for known DLLs (DLLs mapped by the

system at startup time)

\Nls Section names for mapped national language support tables

\ObjectTypes ames of types of objects

\RPC Control Port objects used by remote procedure calls (RPCs)

\Security ALPC ports used by names of objects specific to the security

subsystem

\Sessions Per-session namespace directory (see the next subsection)

\UMDFCommunicationPorts ALPC ports used by the User-Mode Driver Framework (UMDF)

\Windows Windows subsystem ports and window stations

Because the base kernel objects such as mutexes, events, semaphores, waitable timers, and

sections have their names stored in a single object directory, no two of these objects can

have the same name, even if they are of a different type. This restriction emphasizes the need

164 Windows Internals, Fifth Edition

to choose names carefully so that they don’t collide with other names. For example, prefix

names with a GUID and/or combine the name with the user’s security identifier (SID).

Object names are global to a single computer (or to all processors on a multiprocessor com-

puter), but they’re not visible across a network. However, the object manager’s parse method

makes it possible to access named objects that exist on other computers. For example, the

I/O manager, which supplies file object services, extends the functions of the object man-

ager to remote files. When asked to open a remote file object, the object manager calls a

parse method, which allows the I/O manager to intercept the request and deliver it to a net-

work redirector, a driver that accesses files across the network. Server code on the remote

Windows system calls the object manager and the I/O manager on that system to find the

file object and return the information back across the network.

Object Directories The object directory object is the object manager’s means for support-

ing this hierarchical naming structure. This object is analogous to a file system directory and

contains the names of other objects, possibly even other object directories. The object direc-

tory object maintains enough information to translate these object names into pointers to

the objects themselves. The object manager uses the pointers to construct the object handles

that it returns to user-mode callers. Both kernel-mode code (including executive components

and device drivers) and user-mode code (such as subsystems) can create object directories

in which to store objects. For example, the I/O manager creates an object directory named

\Device, which contains the names of objects representing I/O devices.

One security consideration to keep in mind when dealing with named objects is the possibil-

ity of object name squatting. Although object names in different sessions are protected from

each other, there’s no standard protection inside the current session namespace that can be

set with the standard Windows API. This makes it possible for an unprivileged application

running in the same session as a privileged application to access its objects, as described ear-

lier in the object security subsection. Unfortunately, even if the object creator used a proper

DACL to secure the object, this doesn’t help against the squatting attack, in which the unpriv-

ileged application creates the object before the privileged application, thus denying access to

the legitimate application.

The concept of a private namespace was introduced in Windows Vista to alleviate this issue.

It allows user-mode applications to create object directories through the CreatePrivate-
Namespace API and associate these directories with boundary descriptors, which are special

data structures protecting the directories. These descriptors contain SIDs describing which

security principals are allowed access to the object directory. In this manner, a privileged

application can be sure that unprivileged applications will not be able to conduct a denial of

service attack against its objects (this doesn’t stop a privileged application from doing the

same, however, but this point is moot).

 Chapter 3 System Mechanisms 165

EXPERIMENT: Looking at the Base Named Objects

You can see the list of base objects that have names with the WinObj tool from

Sysinternals. Run Winobj.exe. and click on \BaseNamedObjects, as shown here:

The named objects are shown on the right. The icons indicate the object type.

Mutexes are indicated with a stop sign.

Sections (Windows file mapping objects) are shown as memory chips.

Events are shown as exclamation points.

Semaphores are indicated with an icon that resembles a traffic signal.

Symbolic links have icons that are curved arrows.

Folders indicate object directories.

Gears indicate other objects, such as ALPC ports.

166 Windows Internals, Fifth Edition

EXPERIMENT: Tampering with Single Instancing

Applications such as Windows Media Player and those in Microsoft Office are common

examples of single instancing enforcement through named objects. Notice that when

launching the Wmplayer.exe executable, Windows Media Player appears only once—

every other launch simply results in the window coming back into focus. We can tam-

per with the handle list by using Process Explorer to turn the computer into a media

mixer! Here’s how:

 1. Launch Windows Media Player and Process Explorer, and then view the handle

table (by clicking View, Lower Pane View, and then Handles). You should see a

handle containing CheckForOtherInstanceMutex.

 2. Right-click on the handle, and select Close Handle. Confirm the action when

asked.

 3. Now run Windows Media Player again. Notice that this time a second process is

created.

 4. Go ahead and play a different song in each instance. You can also use the Sound

Mixer in the system tray (click on the Volume icon) to select which of the two pro-

cesses will have greater volume, effectively creating a mixing environment.

Instead of closing a handle to a named object, an application could have run on its

own before Windows Media Player and created an object with the same name. In this

scenario, Windows Media Player would never run, fooled into believing it was already

running on the system.

Symbolic Links In certain file systems (on NTFS and some UNIX systems, for example), a

symbolic link lets a user create a file name or a directory name that, when used, is translated

by the operating system into a different file or directory name. Using a symbolic link is a sim-

ple method for allowing users to indirectly share a file or the contents of a directory, creating

a cross-link between different directories in the ordinarily hierarchical directory structure.

 Chapter 3 System Mechanisms 167

The object manager implements an object called a symbolic link object, which performs a

similar function for object names in its object namespace. A symbolic link can occur any-

where within an object name string. When a caller refers to a symbolic link object’s name,

the object manager traverses its object namespace until it reaches the symbolic link object. It

looks inside the symbolic link and finds a string that it substitutes for the symbolic link name.

It then restarts its name lookup.

One place in which the executive uses symbolic link objects is in translating MS-DOS-style

device names into Windows internal device names. In Windows, a user refers to hard disk

drives using the names C:, D:, and so on and serial ports as COM1, COM2, and so on. The

Windows subsystem makes these symbolic link objects protected, global data by placing

them in the object manager namespace under the \Global?? directory.

Session Namespace

Services have access to the global namespace, a namespace that serves as the first instance

of the namespace. Additional sessions (including a console user) are given a session-private

view of the namespace known as a local namespace. The parts of the namespace that are

localized for each session include \DosDevices, \Windows, and \BaseNamedObjects. Making

separate copies of the same parts of the namespace is known as instancing the namespace.

Instancing \DosDevices makes it possible for each user to have different network drive let-

ters and Windows objects such as serial ports. On Windows, the global \DosDevices directory

is named \Global?? and is the directory to which \DosDevices points, and local \DosDevices

directories are identified by the logon session ID.

The \Windows directory is where Win32k.sys creates the interactive window station,

\WinSta0. A Terminal Services environment can support multiple interactive users, but each

user needs an individual version of WinSta0 to preserve the illusion that he or she is accessing

the predefined interactive window station in Windows. Finally, applications and the system

create shared objects in \BaseNamedObjects, including events, mutexes, and memory sec-

tions. If two users are running an application that creates a named object, each user session

must have a private version of the object so that the two instances of the application don’t

interfere with one another by accessing the same object.

The object manager implements a local namespace by creating the private versions of the

three directories mentioned under a directory associated with the user’s session under

\Sessions\n (where n is the session identifier). When a Windows application in remote ses-

sion two creates a named event, for example, the object manager transparently redirects the

object’s name from \BaseNamedObjects to \Sessions\2\BaseNamedObjects.

168 Windows Internals, Fifth Edition

All object manager functions related to namespace management are aware of the instanced

directories and participate in providing the illusion that nonconsole sessions use the

same namespace as the console session. Windows subsystem DLLs prefix names passed

by Windows applications that reference objects in \DosDevices with \?? (for example,

C:\Windows becomes \??\C:\Windows). When the object manager sees the special \?? prefix,

the steps it takes depends on the version of Windows, but it always relies on a field named

DeviceMap in the executive process object (EPROCESS, which is described further in Chapter

5) that points to a data structure shared by other processes in the same session.

The DosDevicesDirectory field of the DeviceMap structure points at the object manager

directory that represents the process’s local \DosDevices. When the object manager sees a

reference to \??, it locates the process’s local \DosDevices by using the DosDevicesDirectory

field of the DeviceMap. If the object manager doesn’t find the object in that directory, it

checks the DeviceMap field of the directory object, and if it’s valid it looks for the object in

the directory pointed to by the GlobalDosDevicesDirectory field of the DeviceMap structure,

which is always \Global??.

Under certain circumstances, applications that are Terminal Services–aware need to access

objects in the console session even if the application is running in a remote session. The

application might want to do this to synchronize with instances of itself running in other

remote sessions or with the console session. For these cases, the object manager provides

the special override “\Global” that an application can prefix to any object name to access

the global namespace. For example, an application in session two opening an object named

\Global\ApplicationInitialized is directed to \BaseNamedObjects\ApplicationInitialized

instead of \Sessions\2\BaseNamedObjects\ApplicationInitialized.

An application that wants to access an object in the global \DosDevices directory does not

need to use the \Global prefix as long as the object doesn’t exist in its local \DosDevices

directory. This is because the object manager will automatically look in the global directory

for the object if it doesn’t find it in the local directory. Session directories are isolated from

each other, and administrative privileges are required to create a global object (except for

section objects). A special privilege named create global object is verified before allowing

such operations.

EXPERIMENT: Viewing Namespace Instancing

You can see the separation between the session 0 namespace and other session

namespaces as soon as you log in. The reason you can is that the first console user is

logged in to session 1 (while services run in session 0). Run Winobj.exe, and click on the

\Sessions directory. You’ll see a subdirectory with a numeric name for each active ses-

sion. If you open one of these directories, you’ll see subdirectories named \DosDevices,

\Windows, and \BaseNamedObjects, which are the local namespace subdirectories of

the session. The following screen shot shows a local namespace:

 Chapter 3 System Mechanisms 169

Next run Process Explorer and select a process in your session (such as Explorer.exe),

and then view the handle table (by clicking View, Lower Pane View, and then

Handles). You should see a handle to \Windows\WindowStations\WinSta0 underneath

\Sessions\n, where n is the session ID.

170 Windows Internals, Fifth Edition

Object Filtering

Windows includes a filtering model in the object manager, similar to the file system mini-

filter model described in Chapter 7. One of the primary benefits of this filtering model is the

ability to use the altitude concept that these existing filtering technologies use, which means

that multiple drivers can filter object manager events at appropriate locations in the filter-

ing stack. Additionally, drivers are permitted to intercept calls such as NtOpenThread and

NtOpenProcess and even to modify the access masks being requested from the process man-

ager. This allows protection against certain operations on an open handle—however, an open

operation cannot be entirely blocked because doing so would too closely resemble a mali-

cious operation (processes that could never be managed).

Furthermore, drivers are able to take advantage of both pre and post callbacks, allowing

them to prepare for a certain operation before it occurs, as well as to react or finalize infor-

mation after the operation has occurred. These callbacks can be specified for each operation

(currently, only open, create, and duplicate are supported) and be specific for each object

type (currently, only process and thread objects are supported). For each callback, drivers can

specify their own internal context value, which can be returned across all calls to the driver

or across a pre/post pair. These callbacks can be registered with the ObRegisterCallback API

and unregistered with the ObUnregisterCallback API—it is the responsibility of the driver to

ensure deregistration happens.

Use of the APIs is restricted to images that have certain characteristics:

The image must be signed, even on 32-bit computers, according to the same rules set

forth in the Kernel Mode Code Signing (KMCS) policy. (Code integrity will be discussed

later in this chapter.) The image must be compiled with the /integritycheck linker flag,

which sets the IMAGE_DLLCHARACTERISTICS_FORCE_INTEGRITY value in the PE header.

This instructs the memory manager to check the signature of the image regardless of

any other defaults that may not normally result in a check.

The image must be signed with a catalog containing cryptographic per-page hashes of

the executable code. This allows the system to detect changes to the image after it has

been loaded in memory.

Synchronization

The concept of mutual exclusion is a crucial one in operating systems development. It refers

to the guarantee that one, and only one, thread can access a particular resource at a time.

Mutual exclusion is necessary when a resource doesn’t lend itself to shared access or when

sharing would result in an unpredictable outcome. For example, if two threads copy a file to

a printer port at the same time, their output could be interspersed. Similarly, if one thread

reads a memory location while another one writes to it, the first thread will receive unpre-

dictable data. In general, writable resources can’t be shared without restrictions, whereas

 Chapter 3 System Mechanisms 171

resources that aren’t subject to modification can be shared. Figure 3-21 illustrates what hap-

pens when two threads running on different processors both write data to a circular queue.

Get queue tail
Insert data at current location

Increment tail pointer

Processor A Processor B

Get queue tail

Insert data at current location /*ERROR*/
Increment tail pointer

FIGURE 3-21 Incorrect sharing of memory

Because the second thread obtained the value of the queue tail pointer before the first

thread had finished updating it, the second thread inserted its data into the same location

that the first thread had used, overwriting data and leaving one queue location empty. Even

though Figure 3-21 illustrates what could happen on a multiprocessor system, the same error

could occur on a single-processor system if the operating system were to perform a context

switch to the second thread before the first thread updated the queue tail pointer.

Sections of code that access a nonshareable resource are called critical sections. To ensure

correct code, only one thread at a time can execute in a critical section. While one thread is

writing to a file, updating a database, or modifying a shared variable, no other thread can be

allowed to access the same resource. The pseudocode shown in Figure 3-21 is a critical sec-

tion that incorrectly accesses a shared data structure without mutual exclusion.

The issue of mutual exclusion, although important for all operating systems, is especially

important (and intricate) for a tightly coupled, symmetric multiprocessing (SMP) operating sys-

tem such as Windows, in which the same system code runs simultaneously on more than one

processor, sharing certain data structures stored in global memory. In Windows, it is the ker-

nel’s job to provide mechanisms that system code can use to prevent two threads from mod-

ifying the same structure at the same time. The kernel provides mutual-exclusion primitives

that it and the rest of the executive use to synchronize their access to global data structures.

Because the scheduler synchronizes access to its data structures at DPC/dispatch level IRQL,

the kernel and executive cannot rely on synchronization mechanisms that would result in a

page fault or reschedule operation to synchronize access to data structures when the IRQL

is DPC/dispatch level or higher (levels known as an elevated or high IRQL). In the following

sections, you’ll find out how the kernel and executive use mutual exclusion to protect their

172 Windows Internals, Fifth Edition

global data structures when the IRQL is high and what mutual-exclusion and synchronization

mechanisms the kernel and executive use when the IRQL is low (below DPC/dispatch level).

High-IRQL Synchronization

At various stages during its execution, the kernel must guarantee that one, and only one,

processor at a time is executing within a critical section. Kernel critical sections are the code

segments that modify a global data structure such as the kernel’s dispatcher database or its

DPC queue. The operating system can’t function correctly unless the kernel can guarantee

that threads access these data structures in a mutually exclusive manner.

The biggest area of concern is interrupts. For example, the kernel might be updating a global

data structure when an interrupt occurs whose interrupt-handling routine also modifies the

structure. Simple single-processor operating systems sometimes prevent such a scenario by

disabling all interrupts each time they access global data, but the Windows kernel has a more

sophisticated solution. Before using a global resource, the kernel temporarily masks those

interrupts whose interrupt handlers also use the resource. It does so by raising the proces-

sor’s IRQL to the highest level used by any potential interrupt source that accesses the global

data. For example, an interrupt at DPC/dispatch level causes the dispatcher, which uses the

dispatcher database, to run. Therefore, any other part of the kernel that uses the dispatcher

database raises the IRQL to DPC/dispatch level, masking DPC/dispatch-level interrupts before

using the dispatcher database.

This strategy is fine for a single-processor system, but it’s inadequate for a multiprocessor

configuration. Raising the IRQL on one processor doesn’t prevent an interrupt from occurring

on another processor. The kernel also needs to guarantee mutually exclusive access across

several processors.

Interlocked Operations

The simplest form of synchronization mechanisms rely on hardware support for

 multiprocessor-safe manipulation of integer values and for performing comparisons. They

include functions such as InterlockedIncrement, InterlockedDecrement, InterlockedExchange,

and InterlockedCompareExchange. The InterlockedDecrement function, for example, uses the

x86 lock instruction prefix (for example, lock xadd) to lock the multiprocessor bus during the

subtraction operation so that another processor that’s also modifying the memory location

being decremented won’t be able to modify it between the decrementing processor’s read

of the original value and its write of the decremented value. This form of basic synchroniza-

tion is used by the kernel and drivers. In today’s Microsoft compiler suite, these functions

are called intrinsic because the code for them is generated in inline assembler, directly dur-

ing the compilation phase, instead of going through a function call. (It’s likely that pushing

 Chapter 3 System Mechanisms 173

the parameters onto the stack, calling the function, copying the parameters into registers,

and then popping the parameters off the stack and returning to the caller would be a more

expensive operation than the actual work the function is supposed to do in the first place.)

Spinlocks

The mechanism the kernel uses to achieve multiprocessor mutual exclusion is called a spin-
lock. A spinlock is a locking primitive associated with a global data structure such as the DPC

queue shown in Figure 3-22.

DPC DPC
Begin
 Add DPC from queue
End

Release DPC queue spinlockRelease DPC queue spinlock

Begin
 Remove DPC from queue
End DPC queue

Critical section

Do
 Try to acquire
 DPC queue
 spinlock
Until SUCCESS

Do
 Try to acquire
 DPC queue
 spinlock
Until SUCCESS

Processor A Processor B

Spinlock

FIGURE 3-22 Using a spinlock

Before entering either critical section shown in Figure 3-22, the kernel must acquire the

spinlock associated with the protected DPC queue. If the spinlock isn’t free, the kernel keeps

trying to acquire the lock until it succeeds. The spinlock gets its name from the fact that the

kernel (and thus, the processor) waits, “spinning,” until it gets the lock.

Spinlocks, like the data structures they protect, reside in nonpaged memory mapped into

the system address space. The code to acquire and release a spinlock is written in assembly

language for speed and to exploit whatever locking mechanism the underlying processor

architecture provides. On many architectures, spinlocks are implemented with a hardware-

supported test-and-set operation, which tests the value of a lock variable and acquires the

lock in one atomic instruction. Testing and acquiring the lock in one instruction prevents a

second thread from grabbing the lock between the time the first thread tests the variable

and the time it acquires the lock. Additionally, the lock instruction mentioned earlier can also

be used on the test-and-set operation, resulting in the combined lock bts assembly opera-

tion, which also locks the multiprocessor bus; otherwise, it would be possible for more than

one processor to atomically perform the operation (without the lock, the operation is only

guaranteed to be atomic on the current processor).

174 Windows Internals, Fifth Edition

All kernel-mode spinlocks in Windows have an associated IRQL that is always DPC/dispatch

level or higher. Thus, when a thread is trying to acquire a spinlock, all other activity at the

spinlock’s IRQL or lower ceases on that processor. Because thread dispatching happens at

DPC/dispatch level, a thread that holds a spinlock is never preempted because the IRQL

masks the dispatching mechanisms. This masking allows code executing in a critical section

protected by a spinlock to continue executing so that it will release the lock quickly. The ker-

nel uses spinlocks with great care, minimizing the number of instructions it executes while it

holds a spinlock. Any processor that attempts to acquire the spinlock will essentially be busy,

waiting indefinitely, consuming power (a busy wait results in 100% CPU usage) and perform-

ing no actual work.

On newer (Pentium 4 and later) processors, a special pause assembly instruction can be

inserted in busy wait loops. This instruction offers a hint to the processor that the loop

instructions it is processing are part of a spinlock (or a similar construct) acquisition loop. The

instruction provides three benefits:

It significantly reduces power usage by delaying the core ever so slightly instead of

continuously looping.

On HyperThreaded cores, it allows the CPU to realize that the “work” being done by the

spinning logical core is not terribly important and awards more CPU time to the second

logical core instead.

Because a busy wait loop results in a storm of read requests coming to the bus from

the waiting thread (which may be generated out-of-order), the CPU will attempt to

correct for violations of memory order as soon as it detects a write (that is, when the

owning thread releases the lock). Thus, as soon as the spinlock is released, the CPU will

reorder any pending memory read operations to ensure proper ordering. This reorder-

ing results in a large penalty in system performance and can be avoided with the pause

instruction.

The kernel makes spinlocks available to other parts of the executive through a set of kernel

functions, including KeAcquireSpinLock and KeReleaseSpinLock. Device drivers, for exam-

ple, require spinlocks to guarantee that device registers and other global data structures

are accessed by only one part of a device driver (and from only one processor) at a time.

Spinlocks are not for use by user programs—user programs should use the objects described

in the next section. Device drivers also need to protect access to their own data structures

from interrupts associated with themselves. Because the spinlock APIs typically only raise the

IRQL to DPC/dispatch level, this isn’t enough to protect against interrupts. For this reason, the

kernel also exports the KeAcquireInterruptSpinLock and KeReleaseInterruptSpinLock APIs that

take as a parameter the KINTERRUPT object discussed at the beginning of this chapter. The

 Chapter 3 System Mechanisms 175

system will look inside the interrupt object for the associated DIRQL with the interrupt and

raise the IRQL to the appropriate level to ensure correct access to structures shared with the

ISR. Devices can use the KeSynchronizeExecution API to synchronize an entire function with an

ISR, instead of just a critical section. In all cases, the code protected by an interrupt spinlock

must execute extremely quickly—any delay causes higher than normal interrupt latency and

will have significant negative performance effects.

Kernel spinlocks carry with them restrictions for code that uses them. Because spinlocks

always have an IRQL of DPC/dispatch level or higher, as explained earlier, code holding a

spinlock will crash the system if it attempts to make the scheduler perform a dispatch opera-

tion or if it causes a page fault.

Queued Spinlocks

To increase the scalability of spinlocks, a special type of spinlock, called a queued spinlock, is
used in most circumstances instead of a standard spinlock. A queued spinlock works like this:

When a processor wants to acquire a queued spinlock that is currently held, it places its iden-

tifier in a queue associated with the spinlock. When the processor that’s holding the spinlock

releases it, it hands the lock over to the first processor identified in the queue. In the mean-

time, a processor waiting for a busy spinlock checks the status not of the spinlock itself but of

a per-processor flag that the processor ahead of it in the queue sets to indicate that the wait-

ing processor’s turn has arrived.

The fact that queued spinlocks result in spinning on per-processor flags rather than global

spinlocks has two effects. The first is that the multiprocessor’s bus isn’t as heavily trafficked by

interprocessor synchronization. The second is that instead of a random processor in a waiting

group acquiring a spinlock, the queued spinlock enforces first-in, first-out (FIFO) ordering to

the lock. FIFO ordering means more consistent performance across processors accessing the

same locks.

Windows defines a number of global queued spinlocks by storing pointers to them in an

array contained in each processor’s processor region control block (PRCB). A global spinlock

can be acquired by calling KeAcquireQueuedSpinLock with the index into the PRCB array at

which the pointer to the spinlock is stored. The number of global spinlocks has grown in each

release of the operating system, and the table of index definitions for them is published in

the WDK header file Ntddk.h. Note, however, that acquiring one of these queued spinlocks

from a device driver is an unsupported and heavily frowned upon operation. These locks are

reserved for the kernel’s own internal use.

176 Windows Internals, Fifth Edition

EXPERIMENT: Viewing Global Queued Spinlocks

You can view the state of the global queued spinlocks (the ones pointed to by the

queued spinlock array in each processor’s PCR) by using the !qlocks kernel debugger

command. In the following example, the page frame number (PFN) database queued

spinlock is held by processor 1, and the other queued spinlocks are not acquired. (The

PFN database is described in Chapter 9.)

lkd> !qlocks

Key: O = Owner, 1-n = Wait order, blank = not owned/waiting, C = Corrupt

 Processor Number

 Lock Name 0 1

KE - Dispatcher

MM - Expansion

MM - PFN O

MM - System Space

CC - Vacb

CC - Master

Instack Queued Spinlocks

Driver developers who recognized the significant improvement in the queued spin-

lock mechanism (over standard spinlocks) might have been disappointed to know that

these locks were not available to third-party developers. Device drivers can now use

dynamically allocated queued spinlocks with the KeAcquireInStackQueuedSpinLock and

KeReleaseInStackQueuedSpinLock functions. Several components—including the cache man-

ager, executive pool manager, and NTFS—take advantage of these types of locks (when a

global static queued spinlock would simply be too wasteful), and the functions are docu-

mented in the WDK for use by third-party driver writers.

KeAcquireInStackQueuedSpinLock takes a pointer to a spinlock data structure and a spinlock

queue handle. The spinlock handle is actually a data structure in which the kernel stores

information about the lock’s status, including the lock’s ownership and the queue of pro-

cessors that might be waiting for the lock to become available. For this reason, the handle

shouldn’t be a global variable. It is usually a stack variable, guaranteeing locality to the caller

thread, and is responsible for the InStack part of the spinlock and API name.

Executive Interlocked Operations

The kernel supplies a number of simple synchronization functions constructed on spinlocks

for more advanced operations, such as adding and removing entries from singly and dou-

bly linked lists. Examples include ExInterlockedPopEntryList and ExInterlockedPushEntryList
for singly linked lists, and ExInterlockedInsertHeadList and ExInterlockedRemoveHeadList for

 Chapter 3 System Mechanisms 177

doubly linked lists. All these functions require a standard spinlock as a parameter and are

used throughout the kernel and device drivers.

Instead of relying on the standard APIs to acquire and release the spinlock parameter, these

functions place the code required inline and also use a different ordering scheme. Whereas

the Ke spinlock APIs will first test and set the bit to see whether the lock is released and then

atomically do a locked test-and-set operation to actually make the acquisition, these routines

will disable interrupts on the processor and immediately attempt an atomic test-and-set. If

the initial attempt fails, interrupts are enabled again, and the standard busy waiting algo-

rithm continues until the test-and-set operation returns 0—in which case the whole func-

tion is restarted again. Because of these subtle differences, a spinlock used for the executive

interlocked functions must not be used with the standard kernel APIs discussed previously.

Naturally, noninterlocked list operations must not be mixed with interlocked operations.

Note Certain of the executive interlocked operations actually silently ignore the spinlock when

possible. For example, the ExInterlockedIncrementLong or ExInterlockedCompareExchange APIs

actually use the same lock prefix used by the standard interlocked functions and the intrinsic

functions. These functions were useful on older systems (or non-x86 systems) where the lock
operation was not suitable or available. For this reason, these calls are now deprecated in favor of

the intrinsic functions.

Low-IRQL Synchronization

Executive software outside the kernel also needs to synchronize access to global data struc-

tures in a multiprocessor environment. For example, the memory manager has only one

page frame database, which it accesses as a global data structure, and device drivers need

to ensure that they can gain exclusive access to their devices. By calling kernel functions, the

executive can create a spinlock, acquire it, and release it.

Spinlocks only partially fill the executive’s needs for synchronization mechanisms, however.

Because waiting for a spinlock literally stalls a processor, spinlocks can be used only under the

following strictly limited circumstances:

The protected resource must be accessed quickly and without complicated interactions

with other code.

The critical section code can’t be paged out of memory, can’t make references to page-

able data, can’t call external procedures (including system services), and can’t generate

interrupts or exceptions.

These restrictions are confining and can’t be met under all circumstances. Furthermore, the

executive needs to perform other types of synchronization in addition to mutual exclusion,

and it must also provide synchronization mechanisms to user mode.

178 Windows Internals, Fifth Edition

There are several additional synchronization mechanisms for use when spinlocks are not

suitable:

Kernel dispatcher objects

Fast mutexes and guarded mutexes

Executive resources

Pushlocks

Additionally, user-mode code, which also executes at low IRQL, must be able to have its own

locking primitives. Windows supports various user-mode specific primitives:

Condition variables (CondVars)

Slim reader-writer locks (SRWs)

Run once initialization (InitOnce)

Critical sections

We’ll take a look at the user-mode primitives and their underlying kernel-mode support later;

for now we’ll focus on kernel-mode objects. Table 3-15 serves as a reference that compares

and contrasts the capabilities of these mechanisms and their interaction with kernel-mode

APC delivery.

TABLE 3-15 Kernel Synchronization Mechanisms

Exposed

for Use

by Device

Drivers

Disables

Normal

Kernel-Mode

APCs

Disables

Special

Kernel-

Mode APCs

Supports

Recursive

Acquisition

Supports

Shared and

Exclusive

Acquisition

Kernel dispatcher

mutexes

Yes Yes No Yes No

Kernel dispatcher

semaphores or

events

Yes No No No No

Fast mutexes Yes Yes Yes No No

Guarded mutexes Yes Yes Yes No No

Pushlocks No No No No Yes

Executive resources Yes No No Yes Yes

Kernel Dispatcher Objects

The kernel furnishes additional synchronization mechanisms to the executive in the form

of kernel objects, known collectively as dispatcher objects. The user-visible synchronization

objects acquire their synchronization capabilities from these kernel dispatcher objects. Each

user-visible object that supports synchronization encapsulates at least one kernel dispatcher

 Chapter 3 System Mechanisms 179

object. The executive’s synchronization semantics are visible to Windows programmers

through the WaitForSingleObject and WaitForMultipleObjects functions, which the Windows

subsystem implements by calling analogous system services that the object manager sup-

plies. A thread in a Windows application can synchronize with a Windows process, thread,

event, semaphore, mutex, waitable timer, I/O completion port, or file object.

One other type of executive synchronization object worth noting is called an executive
resource. Executive resources provide exclusive access (like a mutex) as well as shared read

access (multiple readers sharing read-only access to a structure). However, they’re available

only to kernel-mode code and thus are not accessible from the Windows API. Executive

resources are not dispatcher objects but data structures, allocated directly from nonpaged

pool, that have their own specialized services to initialize, lock, release, query, and wait for

them. The remaining subsections describe the implementation details of waiting for dis-

patcher objects.

Waiting for Dispatcher Objects A thread can synchronize with a dispatcher object by wait-

ing for the object’s handle. Doing so causes the kernel to put the thread in a wait state.

At any given moment, a synchronization object is in one of two states: signaled state or non-
signaled state. A thread can’t resume its execution until its wait is satisfied. This change occurs

when the dispatcher object whose handle the thread is waiting for also undergoes a state

change, from the nonsignaled state to the signaled state (when a thread sets an event object,

for example). To synchronize with an object, a thread calls one of the wait system services

that the object manager supplies, passing a handle to the object it wants to synchronize

with. The thread can wait for one or several objects and can also specify that its wait should

be canceled if it hasn’t ended within a certain amount of time. Whenever the kernel sets an

object to the signaled state, the kernel’s KiWaitTest function (or sometimes, specialized inline

code) checks to see whether any threads are waiting for the object and not also waiting for

other objects to become signaled. If there are, the kernel releases one or more of the threads

from their waiting state so that they can continue executing.

The following example of setting an event illustrates how synchronization interacts with

thread dispatching:

A user-mode thread waits for an event object’s handle.

The kernel changes the thread’s scheduling state to waiting and then adds the thread

to a list of threads waiting for the event.

Another thread sets the event.

The kernel marches down the list of threads waiting for the event. If a thread’s condi-

tions for waiting are satisfied (see the following note), the kernel takes the thread out of

the waiting state. If it is a variable-priority thread, the kernel might also boost its execu-

tion priority. (For details on thread scheduling, see Chapter 5.)

180 Windows Internals, Fifth Edition

Note Some threads might be waiting for more than one object, so they continue waiting, unless

they specified a WaitAny wait, which will wake them up as soon as one object (instead of all) is

signaled.

What Signals an Object? The signaled state is defined differently for different objects. A

thread object is in the nonsignaled state during its lifetime and is set to the signaled state

by the kernel when the thread terminates. Similarly, the kernel sets a process object to the

signaled state when the process’s last thread terminates. In contrast, the timer object, like

an alarm, is set to “go off” at a certain time. When its time expires, the kernel sets the timer

object to the signaled state.

When choosing a synchronization mechanism, a program must take into account the rules

governing the behavior of different synchronization objects. Whether a thread’s wait ends

when an object is set to the signaled state varies with the type of object the thread is waiting

for, as Table 3-16 illustrates.

TABLE 3-16 Definitions of the Signaled State

Object Type Set to Signaled State When Effect on Waiting Threads

Process Last thread terminates All released

Thread Thread terminates All released

File I/O operation completes All released

Debug object Debug message is queued to

the object

All released

Event (notification type) Thread sets the event All released

Event (synchronization type) Thread sets the event One thread released; event object

reset

Gate Thread signals the gate First waiting thread released

Keyed event Thread sets event with a key Thread waiting for key and which

is of same process as signaler is

released

Semaphore Semaphore count drops by 1 One thread released

Timer (notification type) Set time arrives or time

interval expires

All released

Timer (synchronization type) Set time arrives or time

interval expires

One thread released

Mutex Thread releases the mutex One thread released

Queue Item is placed on queue One thread released

When an object is set to the signaled state, waiting threads are generally released from their

wait states immediately. Some of the kernel dispatcher objects and the system events that

induce their state changes are shown in Figure 3-23.

 Chapter 3 System Mechanisms 181

Dispatcher object
System events and

resulting state change
Effect of signaled state

on waiting threads

Kernel resumes one
waiting thread.

Resumed thread
acquires the mutex.

Owning thread
releases the mutex.

Kernel resumes one
waiting thread.

Resumed thread
acquires the mutex.

Owning thread or other
thread releases the mutex.

Kernel resumes one
or more waiting threads.

A thread acquires the semaphore.
More resources are not available.

One thread releases the
semaphore, freeing a resource.

Kernel resumes one
or more waiting threads.

Kernel resumes one
or more threads.

A thread sets the event.

Kernel resumes waiting
dedicated thread.

Kernel resumes the
other dedicated thread.

Dedicated thread sets
one event in the event pair.

Kernel resumes all
waiting threads.

A thread reinitializes
the thread object.

Thread terminates.

Kernel resumes all
waiting threads.

Mutex (kernel-
mode use only)

Mutex (exported to
user mode)

Semaphore

Event

Event pair

Thread

Timer

A thread (re)initializes
the timer.

Timer expires.

FIGURE 3-23 Selected kernel dispatcher objects

182 Windows Internals, Fifth Edition

For example, a notification event object (called a manual reset event in the Windows API) is

used to announce the occurrence of some event. When the event object is set to the signaled

state, all threads waiting for the event are released. The exception is any thread that is wait-

ing for more than one object at a time; such a thread might be required to continue waiting

until additional objects reach the signaled state.

In contrast to an event object, a mutex object has ownership associated with it (unless it was

acquired during a DPC). It is used to gain mutually exclusive access to a resource, and only

one thread at a time can hold the mutex. When the mutex object becomes free, the ker-

nel sets it to the signaled state and then selects one waiting thread to execute. The thread

selected by the kernel acquires the mutex object, and all other threads continue waiting.

This brief discussion wasn’t meant to enumerate all the reasons and applications for using

the various executive objects but rather to list their basic functionality and synchronization

behavior. For information on how to put these objects to use in Windows programs, see

the Windows reference documentation on synchronization objects or Jeffrey Richter’s book

Windows via C/C++.

Data Structures Two data structures are key to tracking who is waiting for what: dispatcher
headers and wait blocks. Both these structures are publicly defined in the WDK include file

Ntddk.h. The definitions are reproduced here for convenience:

typedef struct _DISPATCHER_HEADER {

 union {

 struct {

 UCHAR Type;

 union {

 UCHAR Abandoned;

 UCHAR Absolute;

 UCHAR NpxIrql;

 BOOLEAN Signalling;

 } DUMMYUNIONNAME;

 union {

 UCHAR Size;

 UCHAR Hand;

 } DUMMYUNIONNAME2;

 union {

 UCHAR Inserted;

 BOOLEAN DebugActive;

 BOOLEAN DpcActive;

 } DUMMYUNIONNAME3;

 } DUMMYSTRUCTNAME;

 volatile LONG Lock;

 } DUMMYUNIONNAME;

 LONG SignalState;

 LIST_ENTRY WaitListHead;

} DISPATCHER_HEADER;

 Chapter 3 System Mechanisms 183

typedef struct _KWAIT_BLOCK {

 LIST_ENTRY WaitListEntry;

 struct _KTHREAD *Thread;

 PVOID Object;

 struct _KWAIT_BLOCK *NextWaitBlock;

 USHORT WaitKey;

 UCHAR WaitType;

 UCHAR SpareByte;

#if defined(_AMD64_)

 LONG SpareLong;

#endif

} KWAIT_BLOCK, *PKWAIT_BLOCK, *PRKWAIT_BLOCK;

The dispatcher header is a packed structure because it needs to hold lots of information in

a fixed-size structure. One of the main tricks is to define mutually exclusive flags at the same

memory location (offset) in the structure. By using the Type field, the kernel knows which

of these fields actually applies. For example, a mutex can be abandoned, but a timer can be

absolute or relative. Similarly, a timer can be inserted into the timer list, but the debug active

field only makes sense for processes. On the other hand, the dispatcher header does contain

information generic for any dispatcher object: the object type, signaled state, and a list of the

threads waiting for that object.

Note The debug active flag used to determine whether a process is currently being debugged is

actually a bit mask that specifies which debug registers on the CPU are in use. Because the valid

debug registers are DR0–3, DR6, and DR7, the bit positions for DR4 and 5 are overloaded with

other meanings. For example, the kernel uses the fifth bit (0x20—DR4) to disable CPU cycle time

accounting for the process. (CPU cycle time accounting is described in Chapter 5.)

The wait block represents a thread waiting for an object. Each thread that is in a wait state

has a list of the wait blocks that represent the objects the thread is waiting for. Each dis-

patcher object has a list of the wait blocks that represent which threads are waiting for the

object. This list is kept so that when a dispatcher object is signaled, the kernel can quickly

determine who is waiting for that object. The wait block has a pointer to the object being

waited for, a pointer to the thread waiting for the object, and a pointer to the next wait block

(if the thread is waiting for more than one object). It also records the type of wait (any or

all) as well as the position of that entry in the array of handles passed by the thread on the

WaitForMultipleObjects call (position 0 if the thread was waiting for only one object).

Figure 3-24 shows the relationship of dispatcher objects to wait blocks to threads. In this

example, thread 1 is waiting for object B, and thread 2 is waiting for objects A and B. If object

A is signaled, the kernel will see that because thread 2 is also waiting for another object,

thread 2 can’t be readied for execution. On the other hand, if object B is signaled, the kernel

can ready thread 1 for execution right away because it isn’t waiting for any other objects.

184 Windows Internals, Fifth Edition

Object-type-
specific data

Wait list head

State

Object-type-
specific data

Wait list head

State

Size Type

Size Type

Key Type

Key Type Key Type

Object B

Object A

Wait blocks

List entry

Thread 1 wait block

Next link

Thread

Object

List entry

Next link

Thread

Object

List entry

Next link

Thread

Object

Dispatcher objects

Wait block list

Thread 2

Wait block list

Thread 1

Thread 2 wait block

Thread objects

Thread 2 wait block

FIGURE 3-24 Wait data structures

EXPERIMENT: Looking at Wait Queues

You can see the list of objects a thread is waiting for with the kernel debugger’s !thread

command. For example, the following excerpt from the output of a !process command

shows that the thread is waiting for an event object:

kd> !process

§

 THREAD 8952d030 Cid 0acc.050c Teb: 7ffdf000 Win32Thread: fe82c4c0 WAIT:

(WrUserRequest) UserMode Non-Alertable

 89dd01c8 SynchronizationEvent

You can use the dt command to interpret the dispatcher header of the object like this:

lkd> dt nt!_DISPATCHER_HEADER 89dd01c8

 +0x000 Type : 0x1 ''

 +0x001 Abandoned : 0 ''

 Chapter 3 System Mechanisms 185

 +0x001 Absolute : 0 ''

 +0x001 NpxIrql : 0 ''

 +0x001 Signalling : 0 ''

 +0x002 Size : 0x4 ''

 +0x002 Hand : 0x4 ''

 +0x003 Inserted : 0x89 ''

 +0x003 DebugActive : 0x89 ''

 +0x003 DpcActive : 0x89 ''

 +0x000 Lock : -1996226559

 +0x004 SignalState : 0

 +0x008 WaitListHead : _LIST_ENTRY [0x89dd01d0 - 0x89dd01d0]

Note that you should ignore the 0x89 value: none of the Inserted, DebugActive, or

DpcActive fields apply to event objects, so the kernel has simply not bothered to ini-

tialize those fields to 0 as an optimization. As a result, they contain whatever value was

previously stored. (We can assume a pointer was there previously because 0x89 seems

to be the beginning of the address of the dispatcher header.) Table 3-17 lists the dis-

patcher header flags and the objects to which they apply.

TABLE 3-17 Usage and Meaning of the Dispatcher Header Flags

Flag Applies To Meaning

Abandoned Mutexes The thread holding the mutex was terminated

Absolute Timers The expiration time is absolute, not relative

NpxIrql Threads The IRQL at which the FPU registers were saved

Signaling Gates A priority boost should be applied to the woken thread

when the gate is signaled

Size All objects Size of the object divided by 4

Hand Timers Index into the timer handle table

Inserted Timers Set if the timer was inserted into the timer handle table

DebugActive Processes Specifies if the process is being debugged

DpcActive Mutexes The mutex was acquired during a DPC

Lock Gates and

Queues

Used for locking an object without acquiring the

dispatcher lock; actually corresponds to bit 7 (0x80) of the

Type field

Apart from these flags, the Type field contains the identifier for the object. This identi-

fier corresponds to a number in the KOBJECTS enumeration, which you can dump with

the debugger:

lkd> dt nt!_KOBJECTS

 EventNotificationObject = 0

 EventSynchronizationObject = 1

 MutantObject = 2

 ProcessObject = 3

 QueueObject = 4

 SemaphoreObject = 5

186 Windows Internals, Fifth Edition

 ThreadObject = 6

 GateObject = 7

 TimerNotificationObject = 8

 TimerSynchronizationObject = 9

 Spare2Object = 10

 Spare3Object = 11

 Spare4Object = 12

 Spare5Object = 13

 Spare6Object = 14

 Spare7Object = 15

 Spare8Object = 16

 Spare9Object = 17

 ApcObject = 18

 DpcObject = 19

 DeviceQueueObject = 20

 EventPairObject = 21

 InterruptObject = 22

 ProfileObject = 23

 ThreadedDpcObject = 24

 MaximumKernelObject = 25

The wait list head pointers are identical, so there are no waiting threads waiting on this

object. Dumping a wait block for an object that is part of a multiple wait from a thread,

or that multiple threads are waiting on, could yield the following:

lkd> dt nt!_KWAIT_BLOCK 0x879796c8

 +0x000 WaitListEntry : _LIST_ENTRY [0x89d65d80 - 0x89d65d80]

 +0x008 Thread : 0x87979610 _KTHREAD

 +0x00c Object : 0x89d65d78

 +0x010 NextWaitBlock : 0x879796e0 _KWAIT_BLOCK

 +0x014 WaitKey : 0

 +0x016 WaitType : 0x1 ''

 +0x017 SpareByte : 0x1 ''

If the wait list had more than one entry, you could execute the same command on the

second pointer value in the WaitListEntry field of each wait block (by executing !thread

on the thread pointer in the wait block) to traverse the list and see what other threads

are waiting for the object. This would indicate more than one thread waiting on this

object. On the other hand, when dealing with an object that’s part of a collection of

objects being waited on by a single thread, you will have to parse the NextWaitBlock

field instead.

Keyed Events

A synchronization object called a keyed event bears special mention because of the role it

plays in user-mode-exclusive synchronization primitives. Keyed events were originally imple-

mented to help processes deal with low-memory situations when using critical sections, a

user-mode synchronization object we’ll see more about shortly. A keyed event, which is not

 Chapter 3 System Mechanisms 187

documented, allows a thread to specify a “key” for which it waits, where the thread wakes

when another thread of the same process signals the event with the same key.

If there is contention, EnterCriticalSection dynamically allocates an event object, and the

thread wanting to acquire the critical section waits for the thread that owns the critical sec-

tion to signal it in LeaveCriticalSection. Unfortunately, this introduces a new problem. Before

keyed events were implemented, it was possible for the system to be critically out of memory

and for critical section acquisition to fail because the system was unable to allocate the event

object required. The low-memory condition itself may have been caused by the applica-

tion trying to acquire the critical section, so the system would deadlock in this situation. Low

memory isn’t the only scenario that could have caused this to fail: a less likely scenario is

handle exhaustion. If the process had reached its 16 million handle limit, the new handle for

the event object could fail.

The failure caused by low-memory conditions would typically be an exception from the

code responsible for acquiring the critical section. Unfortunately, the result would also

be a damaged critical section, which made the situation hard to debug, and the object

useless for a reacquisition attempt. Attempting a LeaveCriticalSection would attempt

another event object allocation, further generating exceptions and corrupting the struc-

ture. An initial “solution” to the problem was introduced through a magic value to the

InitializeCriticalSectionAndSpinCount API. By making the spin count have its high bit set

(ORing with the 0x80000000 value), this preallocated the event, which avoided the issue but

reverted back to the scalability problems of Windows NT 4.

Having allocated a global standard event object would not have fixed the issue, because

standard event primitives can only be used for a single object. Each critical section in the

process would still require its own event object, so the same problem would resurface. The

implementation of keyed events allows multiple critical sections (waiters) to use the same

global (per-process) keyed event handle. This allows the critical section functions to operate

properly even when memory is temporarily low.

When a thread signals a keyed event or performs a wait on it, it uses a unique identifier called

a key, which identifies the instance of the keyed event (an association of the keyed event to a

single critical section). When the owner thread releases the keyed event by signaling it, only

a single thread waiting on the key is woken up (the same behavior as synchronization events
in contrast to notification events). Additionally, only the waiters in the current process are

awakened, so the key is even isolated across processes, meaning that there is actually only a

single keyed event object for the entire system. When a critical section uses the keyed event,

EnterCriticalSection sets the key as the address of the critical section and performs a wait.

Returning to critical sections, the use of keyed events was improved even further with the

release of Windows Vista. When EnterCriticalSection calls NtWaitForKeyedEvent to perform a

wait on the keyed event, it can now specify a handle of NULL for the keyed event, telling the

kernel that it was unable to create a keyed event. The kernel recognizes this behavior and

188 Windows Internals, Fifth Edition

uses a global keyed event named ExpCritSecOutOfMemoryEvent. The primary benefit is that

processes don’t need to waste a handle for a named keyed event anymore because the ker-

nel keeps track of the object and its references.

However, keyed events are more than just fallback objects for low-memory conditions. When

multiple waiters are waiting on the same key and need to be woken up, the key is actually

signaled multiple times, which requires the object to keep a list of all the waiters so that it can

perform a “wake” operation on each of them (recall that waking a keyed event is the same as

waking a synchronization event). However, it’s possible for a thread to signal a keyed event

without any threads on the waiter list. In this scenario, the setting thread will actually perform

a wait of its own! Without this fallback, it would be possible for a setter thread to signal the

keyed event during the time that the user-mode code saw the keyed event as unsignaled

and attempt a wait. The wait might have come after the setting thread signaled the keyed

event, resulting in a missed pulse, so the waiting thread would deadlock. By forcing the set-

ting thread to wait in this scenario, it will only actually signal the keyed event when someone

is looking (waiting).

Note When the keyed event wait code itself needs to perform a wait, it uses a built-in sema-

phore located in the kernel-mode thread object (ETHREAD) called KeyedWaitSemaphore. (This

semaphore actually shares its location with the ALPC wait semaphore.) See Chapter 5 for more

information on thread objects.

Keyed events, however, do not replace standard event objects in the critical section imple-

mentation. The initial reason, during the Windows XP timeframe, was that keyed events

do not offer scalable performance in heavy-usage scenarios. Recall that all the algorithms

described were only meant to be used in critical, low-memory scenarios, when performance

and scalability aren’t all that important. To replace the standard event object would place

strain on keyed events that they weren’t implemented to handle. The primary performance

bottleneck was that keyed events maintained the list of waiters described in a doubly linked

list. This kind of list has poor traversal speed, meaning the time required to loop through the

list. In this case, this time depended on the number of waiter threads. Because the object is

global, it would be possible for dozens of threads to be on the list, requiring long traversal

times every single time a key was set or waited on.

Note The head of the list is kept in the keyed event object, while the threads are actually linked

through the KeyedWaitChain field (which is actually shared with the thread’s exit time, stored

as a LARGE_INTEGER, the same size as a doubly linked list) in the kernel-mode thread object

(ETHREAD). See Chapter 5 for more information on this object.

 Chapter 3 System Mechanisms 189

Windows improves keyed event performance by using a hash table instead of a linked list to

hold the waiter threads. This optimization allows Windows to include three new lightweight

user-mode synchronization primitives (to be discussed shortly) that all depend on the keyed

event. Critical sections, however, still continue to use event objects, primarily for application

compatibility and debugging, because the event object and internals are well-known and

documented, while keyed events are opaque and not exposed to the Win32 API.

Fast Mutexes and Guarded Mutexes

Fast mutexes, which are also known as executive mutexes, usually offer better performance

than mutex objects because, although they are built on dispatcher event objects, they per-

form a wait through the dispatcher only if the fast mutex is contended, unlike a standard

mutex, which will always attempt the acquisition through the dispatcher. This gives the fast

mutex especially good performance in a multiprocessor environment. Fast mutexes are used

widely in device drivers.

However, fast mutexes are suitable only when normal kernel-mode APC (described earlier

in this chapter) delivery can be disabled. The executive defines two functions for acquiring

them: ExAcquireFastMutex and ExAcquireFastMutexUnsafe. The former function blocks all

APC delivery by raising the IRQL of the processor to APC level. The latter expects to be called

with normal kernel-mode APC delivery disabled, which can be done by raising the IRQL to

APC level. Another limitation of fast mutexes is that they can’t be acquired recursively, like

mutex objects can.

Guarded mutexes are essentially the same as fast mutexes (although they use a different

synchronization object, the KGATE, internally). They are acquired with the KeAcquireGuarded-
Mutex and KeAcquireGuardedMutexUnsafe functions, but instead of disabling APCs

by raising the IRQL to APC level, they disable all kernel-mode APC delivery by calling

KeEnterGuardedRegion. Recall that a guarded region, unlike a critical region, disables both

special and normal kernel-mode APCs, hence allowing the guarded mutex to avoid raising

the IRQL.

Three implementation changes made the guarded mutex faster than a fast mutex:

By avoiding raising the IRQL, the kernel can avoid talking to the local APIC of every

processor on the bus, which is a significant operation on heavy SMP systems. On uni-

processor systems this isn’t a problem because of lazy IRQL evaluation, but lowering

the IRQL may still require accessing the PIC.

The gate primitive is an optimized version of the event. By not having both synchro-

nization and notification versions, and by being the exclusive object that a thread can

wait on, the code for acquiring and releasing a gate is heavily optimized. Gates even

have their own dispatcher lock instead of acquiring the entire dispatcher database.

190 Windows Internals, Fifth Edition

In the noncontended case, acquisition and release of a guarded mutex works on a sin-

gle bit, with an atomic bit test-and-reset operation instead of the more complex integer

operations fast mutexes perform.

Note The code for a fast mutex is also optimized to account for almost all these optimizations—

it uses the same atomic lock operation, and the event object is actually a gate object (although

by dumping the type in the kernel debugger, you would still see an event object structure; this

is actually a compatibility lie). However, fast mutexes still raise the IRQL instead of using guarded

regions.

Because the flag responsible for special kernel APC delivery disabling (and the guarded

region functionality) was not added until Windows Server 2003, most drivers do not yet

take advantage of guarded mutexes. Doing so would raise compatibility issues with earlier

versions of Windows, which require a recompiled driver making use only of fast mutexes.

Internally, however, the Windows kernel has replaced almost all uses of fast mutexes with

guarded mutexes, as the two have identical semantics and can be easily interchanged.

Another problem related to the guarded mutex was the kernel function KeAreApcsDisabled.

Prior to Windows Server 2003, this function indicated whether normal APCs were disabled by

checking if the code was running inside a critical section. In Windows Server 2003, this func-

tion was changed to indicate whether the code was in a critical, or guarded, region, changing

the functionality to also return TRUE if special kernel APCs are also disabled.

Because there are certain operations that drivers should not perform when special ker-

nel APCs are disabled, it makes sense to call KeGetCurrentIrql to check whether the IRQL

is APC level or not, which is the only way special kernel APCs could have been disabled.

However, because the memory manager makes use of guarded mutexes instead, this

check fails because guarded mutexes do not raise IRQL. Drivers should therefore call

KeAreAllApcsDisabled for this purpose. This function checks whether special kernel APCs are

disabled and/or whether the IRQL is APC level—the sure-fire way to detect both guarded

mutexes and fast mutexes.

Executive Resources

Executive resources are a synchronization mechanism that supports shared and exclusive

access, and, like fast mutexes, they require that normal kernel-mode APC delivery be disabled

before they are acquired. They are also built on dispatcher objects that are only used when

there is contention. Executive resources are used throughout the system, especially in file-

system drivers.

 Chapter 3 System Mechanisms 191

Threads waiting to acquire a resource for shared access wait for a semaphore associated with

the resource, and threads waiting to acquire a resource for exclusive access wait for an event.

A semaphore with unlimited count is used for shared waiters because they can all be woken

and granted access to the resource when an exclusive holder releases the resource simply by

signaling the semaphore. When a thread waits for exclusive access of a resource that is cur-

rently owned, it waits on a synchronization event object because only one of the waiters will

wake when the event is signaled.

Because of the flexibility that shared and exclusive access offers, there are a number

of functions for acquiring resources: ExAcquireResourceSharedLite, ExAcquireResource-
ExclusiveLite, ExAcquireSharedStarveExclusive, ExAcquireWaitForExclusive, and

ExTryToAcquireResourceExclusiveLite. These functions are documented in the WDK.

EXPERIMENT: Listing Acquired Executive Resources

The kernel debugger !locks command searches paged pool for executive resource

objects and dumps their state. By default, the command lists only executive resources

that are currently owned, but the –d option will list all executive resources. Here is par-

tial output of the command:

lkd> !locks

**** DUMP OF ALL RESOURCE OBJECTS ****

KD: Scanning for held locks.

Resource @ 0x89929320 Exclusively owned

 Contention Count = 3911396

 Threads: 8952d030-01<*>

KD: Scanning for held locks.......................................

Resource @ 0x89da1a68 Shared 1 owning threads

 Threads: 8a4cb533-01<*> *** Actual Thread 8a4cb530

Note that the contention count, which is extracted from the resource structure, records

the number of times threads have tried to acquire the resource and had to wait

because it was already owned.

You can examine the details of a specific resource object, including the thread that

owns the resource and any threads that are waiting for the resource, by specifying the

–v switch and the address of the resource:

lkd> !locks -v 0x89929320

Resource @ 0x89929320 Exclusively owned

 Contention Count = 3913573

 Threads: 8952d030-01<*>

192 Windows Internals, Fifth Edition

 THREAD 8952d030 Cid 0acc.050c Teb: 7ffdf000 Win32Thread: fe82c4c0 RUNNING on

processor 0

 Not impersonating

 DeviceMap 9aa0bdb8

 Owning Process 89e1ead8 Image: windbg.exe

 Wait Start TickCount 24620588 Ticks: 12 (0:00:00:00.187)

 Context Switch Count 772193

 UserTime 00:00:02.293

 KernelTime 00:00:09.828

 Win32 Start Address windbg (0x006e63b8)

 Stack Init a7eba000 Current a7eb9c10 Base a7eba000 Limit a7eb7000 Call 0

 Priority 10 BasePriority 8 PriorityDecrement 0 IoPriority 2 PagePriority 5

Unable to get context for thread running on processor 1, HRESULT 0x80004001

1 total locks, 1 locks currently held

Pushlocks

Pushlocks are another optimized synchronization mechanism built on gate objects, and, like

guarded mutexes, they wait for a gate object only when there’s contention on the lock. They

offer advantages over the guarded mutex in that they can be acquired in shared or exclusive

mode. However, their main advantage is their size: a resource object is 56 bytes, but a push-

lock is pointer-size. Unfortunately, they are not documented in the WDK and are therefore

reserved for use by the operating system (although the APIs are exported, so internal drivers

do use them).

There are two types of pushlocks: normal and cache-aware. Normal pushlocks require only

the size of a pointer in storage (4 bytes on 32-bit systems, and 8 bytes on 64-bit systems).

When a thread acquires a normal pushlock, the pushlock code marks the pushlock as owned

if it is not currently owned. If the pushlock is owned exclusively or the thread wants to

acquire the thread exclusively and the pushlock is owned on a shared basis, the thread allo-

cates a wait block on the thread’s stack, initializes a gate object in the wait block, and adds

the wait block to the wait list associated with the pushlock. When a thread releases a push-

lock, the thread wakes a waiter, if any are present, by signaling the event in the waiter’s wait

block.

Because a pushlock is only pointer-sized, it actually contains a variety of bits to describe its

state. The meaning of those bits changes as the pushlock changes from being contended to

noncontended. In its initial state, the pushlock contains the following structure:

1 lock bit, set to 1 if the lock is acquired

1 waiting bit, set to 1 if the lock is contended and someone is waiting on it

1 waking bit, set to 1 if the lock is being granted to a thread and the waiter’s list needs

to be optimized

 Chapter 3 System Mechanisms 193

1 multiple shared bit, set to 1 if the pushlock is shared and currently acquired by more

than one thread

28 share count bits, containing the number of threads that have acquired the pushlock

As discussed previously, when a thread acquires a pushlock exclusively while the pushlock

is already acquired by either multiple readers or a writer, the kernel will allocate a pushlock

wait block. The structure of the pushlock value itself changes. The 28 share count bits now

become the pointer to the wait block. Because this wait block is allocated on the stack and

the header files contain a special alignment directive to force it to be 16-byte aligned, the

bottom 4 bits of any pushlock wait-block structure will be all zeros. Therefore, those bits are

ignored for the purposes of pointer dereferencing, and instead, the 4 bits shown earlier are

combined with the pointer value. Because this alignment removes the share count bits, the

share count is now stored in the wait block instead.

A cache-aware pushlock adds layers to the normal (basic) pushlock by allocating a pushlock

for each processor in the system and associating it with the cache-aware pushlock. When

a thread wants to acquire a cache-aware pushlock for shared access, it simply acquires the

pushlock allocated for its current processor in shared mode; to acquire a cache-aware push-

lock exclusively, the thread acquires the pushlock for each processor in exclusive mode.

Other than a much smaller memory footprint, one of the large advantages that pushlocks

have over executive resources is that in the noncontended case they do not require lengthy

accounting and integer operations to perform acquisition or release. By being as small as a

pointer, the kernel can use atomic CPU instructions to perform these tasks (lock cmpxchg is

used, which atomically compares and exchanges the old lock with a new lock). If the atomic

compare and exchange fails, the lock contains values the caller did not expect (callers usu-

ally expect the lock to be unused or acquired as shared), and a call is then made to the more

complex contended version. To push performance even further, the kernel exposes the push-

lock functionality as inline functions, meaning that no function calls are ever generated dur-

ing noncontended acquisition—the assembly code is directly in each function. This increases

code size slightly, but it avoids the slowness of a function call. Finally, pushlocks use several

algorithmic tricks to avoid lock convoys (a situation that can occur when multiple threads of

the same priority are all waiting on a lock and no actual work gets done), and they are also

self-optimizing: the list of threads waiting on a pushlock will be periodically rearranged to

provide fairer behavior when the pushlock is released.

Areas in which pushlocks are used include the object manager, where they protect global

object manager data structures and object security descriptors, and the memory manager,

where they protect Address Windowing Extension (AWE) data structures.

194 Windows Internals, Fifth Edition

Deadlock Detection with Driver Verifier

A deadlock is a synchronization issue resulting from two threads or processors holding

resources that the other wants and neither yielding what it has. This situation might

result in system or process hangs. Driver Verifier, described in Chapter 7 and Chapter

9, has an option to check for deadlocks involving spinlocks, fast mutexes, and mutexes.

For information on when to enable Driver Verifier to help resolve system hangs, see

Chapter 14.

Critical Sections

Critical sections are one of the main synchronization primitives that Windows provides to

user-mode applications on top of the kernel-based synchronization primitives. Critical sec-

tions and the other user-mode primitives we’ll see later have one major advantage over their

kernel counterparts, which is saving a round-trip to kernel mode in cases in which the lock is

noncontended (which is typically 99% of the time or more). Contended cases will still require

calling the kernel, however, because it is the only piece of the system that is able to perform

the complex waking and dispatching logic required to make these objects work.

Critical sections are able to remain in user mode by using a local bit to provide the main

exclusive locking logic, much like a spinlock. If the bit is 0, the critical section can be acquired,

and the owner sets the bit to 1. This operation doesn’t require calling the kernel but uses the

interlocked CPU operations discussed earlier. Releasing the critical section behaves similarly,

with bit state changing from 1 to 0 with an interlocked operation. On the other hand, as you

can probably guess, when the bit is already 1 and another caller attempts to acquire the criti-

cal section, the kernel must be called to put the thread in a wait state.

Critical sections also provide more fine-grained locking mechanisms than kernel primitives.

A critical section can be acquired for shared or for exclusive mode, allowing it to function as

a multiple-reader (shared), single-writer (exclusive) lock for data structures such as databases.

When a critical section is acquired in shared mode and other threads attempt to acquire the

same critical section, no trip to the kernel is required because none of the threads will be

waiting. Only when a thread attempts to acquire the critical section for exclusive access, or

the critical section is already locked by an exclusive owner, will this be required.

To make use of the same dispatching and synchronization mechanism we’ve seen in the

kernel, critical sections actually make use of existing kernel primitives. A critical section data

structure actually contains a kernel mutex as well as a kernel semaphore object. When the

critical section is acquired exclusively by more than one thread, the mutex is used because it

permits only one owner. When the critical section is acquired in shared mode by more than

one thread, a semaphore is used because it allows multiple owner counts. This level of detail

 Chapter 3 System Mechanisms 195

is typically hidden from the programmer, and these internal objects should never be used

directly.

Finally, because critical sections are actually not full-blown kernel objects, they do have cer-

tain limitations. The primary one is that you cannot obtain a kernel handle to a critical sec-

tion, and as such, no security, naming, or other object manager functionality can be applied

to a critical section. Two processes cannot use the same critical section to coordinate their

operations, nor can duplication or inheritance be used.

Condition Variables

Condition variables provide a Windows native implementation for synchronizing a set of

threads that are waiting on a specific result to a conditional test. While this operation was

possible with other user-mode synchronization methods, there was no atomic mechanism to

check the result of the conditional test and to begin waiting on a change in the result. This

required that additional synchronization be used around such pieces of code.

A user-mode thread initializes a condition variable by calling InitializeConditionVariable

to set up the initial state. When it wants to initiate a wait on the variable, it can call

SleepConditionVariableCS, which uses a critical section (that the thread must have initialized)

to wait for changes to the variable. The setting thread must use WakeConditionVariable (or

WakeAllConditionVariable) after it has modified the variable (there is no automatic detec-

tion mechanism). This call will release the critical section of either one or all waiting threads,

depending on which function was used.

Before condition variables, it was common to use either a notification event or a synchroniza-
tion event (recall that these are referred to as auto-reset or manual-reset in the Windows API)

to signal the change to a variable such as the state of a worker queue. Waiting for a change

required a critical section to be acquired and then released, followed by a wait on an event.

After the wait, the critical section would have to be re-acquired. During this series of acquisi-

tions and releases, the thread may have switched contexts, causing problems if one of the

threads called PulseEvent (a similar problem to the one that keyed events solve by forcing a

wait for the setting thread if there is no waiter). With condition variables, acquisition of the

critical section can be maintained by the application while SleepConditionVariableCS is called

and be released only after the actual work is done. This makes writing work-queue code (and

similar implementations) much simpler and predictable.

Internally, conditional variables can be thought of as a port of the existing pushlock algo-

rithms present in kernel mode, with the additional complexity of acquiring and releasing crit-

ical sections in the SleepConditionVariableCS API. Conditional variables are pointer-size (just

like pushlocks), avoid using the dispatcher (which requires a ring transition to kernel mode in

this scenario, making the advantage even more noticeable), automatically optimize the wait

list during wait operations, and protect against lock convoys. Additionally, condition variables

196 Windows Internals, Fifth Edition

make full use of keyed events instead of the regular event object that developers would have

used on their own, which makes even contended cases more optimized.

Slim Reader Writer Locks

Although condition variables are a synchronization mechanism, they are not fully primitive

locking objects. As we’ve seen, they still depend on the critical section lock, whose acquisi-

tion and release uses standard dispatcher event objects, so trips through kernel mode can

still happen and callers still require the initialization of the large critical section object. If

condition variables share a lot of similarities with pushlocks, slim reader writer (SRW) locks are

nearly identical. They are also pointer-size, use atomic operations for acquisition and release,

rearrange their waiter lists, protect against lock convoys, and can be acquired both in shared

and exclusive mode. Some differences from pushlocks, however, include the fact that SRW

locks cannot be “upgraded” or converted from shared to exclusive or vice versa. Additionally,

they cannot be recursively acquired. Finally, SRW locks are exclusive to user-mode code, while

pushlocks are exclusive to kernel-mode code, and the two cannot be shared or exposed from

one layer to the other.

Not only can SRW locks entirely replace critical sections in application code, but they also

offer multiple-reader, single-writer functionality. SRW locks must first be initialized with

InitializeSRWLock, after which they can be acquired or released in either exclusive or shared

mode with the appropriate APIs: AcquireSRWLockExclusive, ReleaseSRWLockExclusive,
AcquireSRWLockShared, and ReleaseSRWLockShared.

Note Unlike most other Windows APIs, the SRW locking functions do not return with a value—

instead they generate exceptions if the lock could not be acquired. This makes it obvious that

an acquisition has failed so that code that assumes success will terminate instead of potentially

proceeding to corrupt user data.

The Windows SRW locks do not prefer readers or writers, meaning that the performance for

either case should be the same. This makes them great replacements for critical sections,

which are writer-only or exclusive synchronization mechanisms. If SRW locks were optimized

for readers, they would be poor exclusive-only locks, but this isn’t the case. As a result, the

design of the condition variable mechanism introduced earlier also allows for the use of SRW

locks instead of critical sections, through the SleepConditionVariableSRW API. Finally, SRW

locks also use keyed events instead of standard event objects, so the combination of condi-

tion variables and SRW locks results in scalable, pointer-size synchronization mechanisms

with very few trips to kernel mode—except in contended cases, which are optimized to take

less time and memory to wake and set because of the use of keyed events.

 Chapter 3 System Mechanisms 197

Run Once Initialization

The ability to guarantee the atomic execution of a piece of code responsible for performing

some sort of initialization task—such as allocating memory, initializing certain variables, or

even creating objects on demand—is a typical problem in multithreaded programming. In a

piece of code that can be called simultaneously by multiple threads (a good example is the

DllMain routine, which initializes DLLs) there are several ways of attempting to ensure the

correct, atomic, and unique execution of initialization tasks.

In this scenario, Windows implements init once, or one-time initialization (also called run
once initialization internally). This mechanism allows for both synchronous (meaning that the

other threads must wait for initialization to complete) execution of a certain piece of code, as

well as asynchronous (meaning that the other threads can attempt to do their own initializa-

tion and race) execution. We’ll look at the logic behind asynchronous execution later after

explaining the synchronous mechanism.

In the synchronous case, the developer writes the piece of code that would normally have

executed after double-checking the global variable in a dedicated function. Any information

that this routine needs can be passed through the parameter variable that the init-once rou-

tine accepts. Any output information is returned through the context variable (the status of

the initialization itself is returned as a Boolean). All the developer has to do to ensure proper

execution is call InitOnceExecuteOnce with the parameter, context, and run-once function

pointer after initializing an InitOnce object with InitOnceInitialize API. The system will take

care of the rest.

For applications that want to use the asynchronous model instead, the threads call

InitOnceBeginInitialize and receive a pending status and the context described earlier. If the

pending status is FALSE, initialization has already taken place, and the thread uses the context

value for the result. (It’s also possible for the function itself to return FALSE, meaning that

initialization failed.) However, if the pending status comes back as TRUE, the thread should

now race to be the first to create the object. The code that will follow will perform whatever

initialization tasks are required, such as creating some sort of object or allocating memory.

When this work is done, the thread calls InitOnceComplete with the result of the work as the

context and receives a status. If the status is TRUE, the thread won the race, and the object

it created or allocated should be the global object. The thread can now save this object or

return it to a caller, depending on the usage.

In a more complex scenario when the status is FALSE, this means that the thread lost the

race. The thread must now undo all the work it did, such as deleting the object or freeing the

memory, and then call InitOnceBeginInitialize again. However, instead of requesting to start a

race as it did initially, it uses the INIT_ONCE_CHECK_ONLY flag, knowing that it has lost, and

requests the winner’s context instead (for example, the object or memory that had to be cre-

ated or allocated). This returns another status, which can be TRUE, meaning that the context

is valid and should be used or returned to the caller, or FALSE, meaning that initialization

198 Windows Internals, Fifth Edition

failed and nobody has actually been able to perform the work (such as in the case of a low-

memory condition, perhaps).

In both cases, the mechanism for run once initialization is similar to the mechanism for condi-

tion variables and slim reader writer locks. The init once structure is pointer-size, and inline

assembly versions of the SRW acquisition/release code are used for the noncontended case,

while keyed events are used when contention has occurred (which happens when the mecha-

nism is used in synchronous mode) and the other threads must wait for initialization. In the

asynchronous case, the locks are used in shared mode, so multiple threads can perform ini-

tialization at the same time.

System Worker Threads

During system initialization, Windows creates several threads in the System process, called

system worker threads, which exist solely to perform work on behalf of other threads. In

many cases, threads executing at DPC/dispatch level need to execute functions that can be

performed only at a lower IRQL. For example, a DPC routine, which executes in an arbitrary

thread context (because DPC execution can usurp any thread in the system) at DPC/dispatch

level IRQL, might need to access paged pool or wait for a dispatcher object used to synchro-

nize execution with an application thread. Because a DPC routine can’t lower the IRQL, it

must pass such processing to a thread that executes at an IRQL below DPC/dispatch level.

Some device drivers and executive components create their own threads dedicated to pro-

cessing work at passive level; however, most use system worker threads instead, which avoids

the unnecessary scheduling and memory overhead associated with having additional threads

in the system. An executive component requests a system worker thread’s services by call-

ing the executive functions ExQueueWorkItem or IoQueueWorkItem. Device drivers should

only use the latter (because this associates the work item with a Device object, allowing for

greater accountability and the handling of scenarios in which a driver unloads while its work

item is active). These functions place a work item on a queue dispatcher object where the

threads look for work. (Queue dispatcher objects are described in more detail in the section

“I/O Completion Ports” in Chapter 7.)

The IoQueueWorkItemEx, IoSizeofWorkItem, IoInitializeWorkItem, and IoUninitializeWorkItem

APIs act similarly, but they create an association with a driver’s Driver object or one of its

Device objects.

Work items include a pointer to a routine and a parameter that the thread passes to the rou-

tine when it processes the work item. The device driver or executive component that requires

passive-level execution implements the routine. For example, a DPC routine that must wait

for a dispatcher object can initialize a work item that points to the routine in the driver that

 Chapter 3 System Mechanisms 199

waits for the dispatcher object, and perhaps points to a pointer to the object. At some stage,

a system worker thread will remove the work item from its queue and execute the driver’s

routine. When the driver’s routine finishes, the system worker thread checks to see whether

there are more work items to process. If there aren’t any more, the system worker thread

blocks until a work item is placed on the queue. The DPC routine might or might not have

finished executing when the system worker thread processes its work item.

There are three types of system worker threads:

Delayed worker threads execute at priority 12, process work items that aren’t consid-

ered time-critical, and can have their stack paged out to a paging file while they wait

for work items. The object manager uses a delayed work item to perform deferred

object deletion, which deletes kernel objects after they have been scheduled for

freeing.

Critical worker threads execute at priority 13, process time-critical work items, and on

Windows Server systems have their stacks present in physical memory at all times.

A single hypercritical worker thread executes at priority 15 and also keeps its stack in

memory. The process manager uses the hypercritical work item to execute the thread

“reaper” function that frees terminated threads.

The number of delayed and critical worker threads created by the executive’s ExpWorker-
Initialization function, which is called early in the boot process, depends on the amount

of memory present on the system and whether the system is a server. Table 3-18 shows

the initial number of threads created on default configurations. You can specify that

ExpInitializeWorker create up to 16 additional delayed and 16 additional critical worker

threads with the AdditionalDelayedWorkerThreads and AdditionalCriticalWorkerThreads

values under the registry key HKLM\SYSTEM\CurrentControlSet\Control\Session Manager\

Executive.

TABLE 3-18 Initial Number of System Worker Threads

Work Queue Type Default Number of Threads

Delayed 7

Critical 5

Hypercritical 1

The executive tries to match the number of critical worker threads with changing workloads

as the system executes. Once every second, the executive function ExpWorkerThreadBalance-
Manager determines whether it should create a new critical worker thread. The critical worker

threads that are created by ExpWorkerThreadBalanceManager are called dynamic worker
threads, and all the following conditions must be satisfied before such a thread is created:

Work items exist in the critical work queue.

200 Windows Internals, Fifth Edition

The number of inactive critical worker threads (ones that are either blocked waiting for

work items or that have blocked on dispatcher objects while executing a work routine)

must be less than the number of processors on the system.

There are fewer than 16 dynamic worker threads.

Dynamic worker threads exit after 10 minutes of inactivity. Thus, when the workload dictates,

the executive can create up to 16 dynamic worker threads.

EXPERIMENT: Listing System Worker Threads

You can use the !exqueue kernel debugger command to see a listing of system worker

threads classified by their type:

lkd> !exqueue

Dumping ExWorkerQueue: 820FDE40

**** Critical WorkQueue(current = 0 maximum = 2)

THREAD 861160b8 Cid 0004.001c Teb: 00000000 Win32Thread: 00000000 WAIT

THREAD 8613b020 Cid 0004.0020 Teb: 00000000 Win32Thread: 00000000 WAIT

THREAD 8613bd78 Cid 0004.0024 Teb: 00000000 Win32Thread: 00000000 WAIT

THREAD 8613bad0 Cid 0004.0028 Teb: 00000000 Win32Thread: 00000000 WAIT

THREAD 8613b828 Cid 0004.002c Teb: 00000000 Win32Thread: 00000000 WAIT

**** Delayed WorkQueue(current = 0 maximum = 2)

THREAD 8613b580 Cid 0004.0030 Teb: 00000000 Win32Thread: 00000000 WAIT

THREAD 8613b2d8 Cid 0004.0034 Teb: 00000000 Win32Thread: 00000000 WAIT

THREAD 8613c020 Cid 0004.0038 Teb: 00000000 Win32Thread: 00000000 WAIT

THREAD 8613cd78 Cid 0004.003c Teb: 00000000 Win32Thread: 00000000 WAIT

THREAD 8613cad0 Cid 0004.0040 Teb: 00000000 Win32Thread: 00000000 WAIT

THREAD 8613c828 Cid 0004.0044 Teb: 00000000 Win32Thread: 00000000 WAIT

THREAD 8613c580 Cid 0004.0048 Teb: 00000000 Win32Thread: 00000000 WAIT

**** HyperCritical WorkQueue(current = 0 maximum = 2)

THREAD 8613c2d8 Cid 0004.004c Teb: 00000000 Win32Thread: 00000000 WAIT

Windows Global Flags

Windows has a set of flags stored in a systemwide global variable named NtGlobalFlag that

enable various internal debugging, tracing, and validation support in the operating sys-

tem. The system variable NtGlobalFlag is initialized from the registry key HKLM\SYSTEM\

CurrentControlSet\Control\Session Manager in the value GlobalFlag at system boot time. By

default, this registry value is 0, so it’s likely that on your systems, you’re not using any global

flags. In addition, each image has a set of global flags that also turn on internal tracing and

validation code (although the bit layout of these flags is entirely different from the system-

wide global flags).

 Chapter 3 System Mechanisms 201

Fortunately, the Windows SDK and the debugging tools contain a utility named Gflags.exe

that allows you to view and change the system global flags (either in the registry or in the

running system) as well as image global flags. Gflags has both a command-line and a GUI

interface. To see the command-line flags, type gflags /?. If you run the utility without any

switches, the dialog box shown in Figure 3-25 is displayed.

FIGURE 3-25 Setting system debugging options with Gflags

You can configure a variable’s settings in the registry on the System Registry page or the cur-

rent value of a variable in system memory on the Kernel Flags page. You must click the Apply

button to make the changes. (You’ll exit if you click the OK button.)

The Image File page requires you to fill in the file name of an executable image. Use this

option to change a set of global flags that apply to an individual image (rather than to the

whole system). In Figure 3-26, notice that the flags are different from the operating system

ones shown in Figure 3-25.

202 Windows Internals, Fifth Edition

FIGURE 3-26 Setting image global flags with Gflags

EXPERIMENT: Viewing and Setting NtGlobalFlag

You can use the !gflag kernel debugger command to view and set the state of the

NtGlobalFlag kernel variable. The !gflag command lists all the flags that are enabled.

You can use !gflag -? to get the entire list of supported global flags.

lkd> !gflag

Current NtGlobalFlag contents: 0x00004400

 ptg - Enable pool tagging

 otl - Maintain a list of objects for each type

Advanced Local Procedure Calls (ALPCs)

An advanced local procedure call (ALPC) is an interprocess communication facility for high-

speed message passing. It is not directly available through the Windows API; it is an internal

mechanism available only to Windows operating system components. Here are some exam-

ples of where ALPCs are used:

Windows applications that use remote procedure calls (RPCs), a documented API, indi-

rectly use ALPCs when they specify local-RPC, a form of RPC used to communicate

between processes on the same system.

 Chapter 3 System Mechanisms 203

A few Windows APIs result in sending messages to the Windows subsystem process.

Winlogon uses ALPCs to communicate with the local security authentication server pro-

cess, LSASS.

The security reference monitor (an executive component explained in Chapter 6) uses

ALPCs to communicate with the LSASS process.

Note Before ALPCs were introduced in Windows Vista, the kernel supported an IPC mechanism

called simply LPC (local procedure call). LPC’s scalability limitations and inherent deadlock

 scenarios made them a poor choice for the implementation of the User-Mode Driver Framework

(UMDF), which requires high-speed, scalable communication with UMDF components in the

executive to perform hardware operations. Supporting UMDF was one of the many reasons the

ALPC mechanism was written to supplant LPC. (For more information on UMDF, see Chapter 7.)

EXPERIMENT: Viewing ALPC Port Objects

You can see named ALPC port objects with the WinObj tool from Sysinternals. Run

Winobj.exe and select the root directory. A gear icon identifies the port objects, as

shown here:

204 Windows Internals, Fifth Edition

To see the ALPC port objects used by RPC, select the \RPC Control directory, as

shown here:

Typically, ALPCs are used between a server process and one or more client processes of

that server. An ALPC connection can be established between two user-mode processes or

between a kernel-mode component and a user-mode process. For example, as noted in

Chapter 2, Windows processes send occasional messages to the Windows subsystem by using

ALPCs. Also, some system processes use ALPCs to communicate, such as Winlogon and Lsass.

An example of a kernel-mode component using an ALPC to talk to a user process is the com-

munication between the security reference monitor and the Lsass process.

ALPCs support the following three methods of exchanging messages:

A message that is shorter than 256 bytes can be sent by calling the ALPC with a buf-

fer containing the message. This message is then copied from the address space of the

sending process into system address space, and from there to the address space of the

receiving process.

If a client and a server want to exchange more than 256 bytes of data, they can choose

to use a shared section to which both are mapped. The sender places message data

 Chapter 3 System Mechanisms 205

in the shared section and then sends a small message to the receiver with pointers to

where the data is to be found in the shared section.

When a server wants to read or write larger amounts of data than will fit in a shared

section, data can be directly read from or written to a client’s address space.

An ALPC exports a single executive object called the port object to maintain the state needed

for communication. Although an ALPC uses a single ALPC port object, it has several kinds of

ports:

Server connection port A named port that is a server connection request point.

Clients can connect to the server by connecting to this port.

Server communication port An unnamed port a server uses to communicate with a

particular client. The server has one such port per active client.

Client communication port An unnamed port a particular client thread uses to com-

municate with a particular server.

ALPCs are typically used as follows: A server creates a named server connection port object.

A client makes a connect request to this port. If the request is granted, two new unnamed

ports, a client communication port and a server communication port, are created. The

 client gets a handle to the client communication port, and the server gets a handle to the

server communication port. The client and the server will then use these new ports for their

communication.

ALPC supports several features and behaviors that offer communication abilities for pro-

cesses. For example, applications can create their own sections to associate with an ALPC port

and manage (create and delete) views of the section. As mentioned earlier, when a server

wants to read or write larger amounts of data than will fit in a shared section, data can be

directly read from or written to a client’s address space. The ALPC component supplies two

functions that a server can use to accomplish this. A message sent by the first function is used

to synchronize the message passing. Another option is to create a message zone, a locked-

down buffer in system memory that will never be paged out and allows messages to be

copied back and forth without attaching to the correct process, which is useful when using

the I/O completion port feature described later. Yet a third capability in terms of memory

requirements is to request the kernel to reserve ALPC resources so that messages can still be

delivered during low-memory situations (such messages may be critical to solving or notify-

ing the kernel about the situation in the first place).

From a throughput and performance point of view, ALPC ports can be configured to per-

form work over an I/O completion port instead of the typical request/reply synchronous

wait mechanism that LPCs use. This allows for large-scale communication to occur, and the

ALPC port object will automatically balance the number of messages and threads for high-

speed communication. Additionally, ALPC messages can be batched together so that multiple

replies and requests can be sent, minimizing trips from user to kernel mode and vice versa.

206 Windows Internals, Fifth Edition

Finally, apart from limits on message data and header size, applications can also set band-

width limits and maximum section, view, and pool usage.

The ALPC mechanism is also secured. ALPC objects are managed by the same object man-

ager interfaces that manage object security, and secure ports can be created, allowing only

a specific SID to use them. Applications can also easily get a handle to the sender thread

(and process) of an ALPC message to perform actions such as impersonation. Furthermore,

applications have fine control over the security context associated with an ALPC port—for

example, they can set and query per-message SID information, as well as test for changes in

the security context of a token associated with the ALPC message.

ALPC messages can be fully logged and traced to any thread participating in ALPC commu-

nications. Additionally, new Event Tracing for Windows (ETW) messages and logging can be

enabled for IT administrators and troubleshooters to monitor ALPC messages.

A completed connection between a client and a server is shown in Figure 3-27.

Handle

Handle

Server view
of section

Server
communication

port

Client
communication

port
Client view
of section

Handle

Shared
section

Message
queue

FIGURE 3-27 Use of ALPC ports

 Chapter 3 System Mechanisms 207

Kernel Event Tracing

Various components of the Windows kernel and several core device drivers are instrumented

to record trace data of their operations for use in system troubleshooting. They rely on a

common infrastructure in the kernel that provides trace data to the user-mode Event Tracing

for Windows (ETW) facility. An application that uses ETW falls into one or more of three

categories:

Controller A controller starts and stops logging sessions and manages buffer pools.

Provider A provider defines GUIDs (globally unique identifiers) for the event classes it

can produce traces for and registers them with ETW. The provider accepts commands

from a controller for starting and stopping traces of the event classes for which it’s

responsible.

Consumer A consumer selects one or more trace sessions for which it wants to read

trace data. They can receive the events in buffers in real-time or in log files.

Windows Server systems include several built-in providers in user mode, including ones for

Active Directory, Kerberos, and Netlogon. ETW defines a logging session with the name NT

Kernel Logger (also known as the kernel logger) for use by the kernel and core drivers. The

provider for the NT Kernel Logger is implemented by the ETW code in Ntoskrnl.exe and by

the core drivers sending traces.

When a controller in user mode enables the kernel logger, the ETW library, which is imple-

mented in \Windows\System32\Ntdll.dll, calls the NtTraceControl system call, telling the ETW

code in the kernel which event classes the controller wants to start tracing. If file logging is

configured (as opposed to in-memory logging to a buffer), the kernel creates a system thread

in the system process that creates a log file. When the kernel receives trace events from the

enabled trace sources, it records them to a buffer. If it was started, the file logging thread

wakes up once per second to dump the contents of the buffers to the log file.

Trace records generated for the kernel logger have a standard ETW trace event header, which

records time stamp, process, and thread IDs, as well as information on what class of event the

record corresponds to. Event classes can provide additional data specific to their events. For

example, disk event class trace records indicate the operation type (read or write), disk num-

ber at which the operation is directed, and sector offset and length of the operation.

The trace classes that can be enabled for the kernel logger and the component that gener-

ates each class include:

Disk I/O Disk class driver

File I/O File system drivers

File I/O Completion File system drivers

208 Windows Internals, Fifth Edition

Hardware Configuration Plug and Play manager (See Chapter 7 for information on

the Plug and Play manager.)

Image Load/Unload The system image loader in the kernel

Page Faults Memory manager (See Chapter 9 for more information on page faults.)

Hard Page Faults Memory manager

Process Create/Delete Process manager (See Chapter 5 for more information on the

process manager.)

Thread Create/Delete Process manager

Registry Activity Configuration manager (See “The Registry” section in Chapter 4 for

more information on the configuration manager.)

Network TCP/IP TCP/IP driver

Process Counters Process manager

Context Switches Kernel dispatcher

Deferred Procedure Calls Kernel dispatcher

Interrupts Kernel dispatcher

System Calls Kernel dispatcher

Sample Based Profiling Kernel dispatcher and HAL

Driver Delays I/O manager

ALPC Advanced local procedure call

You can find more information on ETW and the kernel logger, including sample code for

controllers and consumers, in the Windows SDK.

EXPERIMENT: Tracing TCP/IP Activity with the Kernel Logger

To enable the kernel logger and have it generate a log file of TCP/IP activity, follow

these steps:

 1. Run the Reliability and Performance Monitor, and click on Data Collector Sets,

User Defined.

 2. Right-click on User Defined, choose New, and select Data Collector Set.

 3. When prompted, enter a name for the data collector set (for example, experi-

ment), and choose Create Manually (Advanced).

 Chapter 3 System Mechanisms 209

 4. In the dialog box that opens, select Create Data Logs, check Event Trace Data, and

then click Next. In the Providers area, click Add, and locate Windows Kernel Trace.

In the Properties list, select Keywords(Any), and then click Edit.

 5. From this list, check only Net for Network TCP/IP, and then click OK.

210 Windows Internals, Fifth Edition

 6. Select a location to save the files. By default, this location is C:\Perflogs\experi-

ment\, if this is how you named the data collector set. Click Next, and in the Run

As edit box, enter the Administrator account name and set the password to match

it. Click Finish. You should now see a window similar to the one shown here:

 7. Right-click on “experiment” (or whatever name you gave your data collector set),

and then click Start. Now generate some network activity by opening a browser

and visiting a Web site.

 8. Right-click on the data collector set node again, and then click Stop.

 9. Open a command prompt, and change to the C:\Perflogs\experiment\00001

directory (or the directory into which you specified that the trace log file be

stored).

 10. Run tracerpt and pass it the name of the trace log file:

tracerpt DataCollector01.etl –o dumpfile.csv –of CSV

 11. Open dumpfile.csv in Microsoft Excel or in a text editor. You should see TCP and/

or UDP trace records like the following:

TcpIp SendIPV4 0xFFFFFFFF 1.28663E+17 0 0 1992 1388 157.54.86.28 172.31.234.35 80 49414 646659 646661

UdpIp RecvIPV4 0xFFFFFFFF 1.28663E+17 0 0 4 50 172.31.239.255 172.31.233.110 137 137 0 0x0

UdpIp RecvIPV4 0xFFFFFFFF 1.28663E+17 0 0 4 50 172.31.239.255 172.31.234.162 137 137 0 0x0

TcpIp RecvIPV4 0xFFFFFFFF 1.28663E+17 0 0 1992 1425 157.54.86.28 172.31.234.35 80 49414 0 0x0

TcpIp RecvIPV4 0xFFFFFFFF 1.28663E+17 0 0 1992 1380 157.54.86.28 172.31.234.35 80 49414 0 0x0

TcpIp RecvIPV4 0xFFFFFFFF 1.28663E+17 0 0 1992 45 157.54.86.28 172.31.234.35 80 49414 0 0x0

TcpIp RecvIPV4 0xFFFFFFFF 1.28663E+17 0 0 1992 1415 157.54.86.28 172.31.234.35 80 49414 0 0x0

TcpIp RecvIPV4 0xFFFFFFFF 1.28663E+17 0 0 1992 740 157.54.86.28 172.31.234.35 80 49414 0 0x0

 Chapter 3 System Mechanisms 211

Wow64

Wow64 (Win32 emulation on 64-bit Windows) refers to the software that permits the execu-

tion of 32-bit x86 applications on 64-bit Windows. It is implemented as a set of user-mode

DLLs:

Wow64.dll: Manages process and thread creation, and hooks exception dispatching and

base system calls exported by Ntoskrnl.exe. It also implements file system redirection

and registry redirection and reflection.

Wow64Cpu.dll: Manages the 32-bit CPU context of each running thread inside Wow64

and provides processor architecture-specific support for switching CPU mode from

32-bit to 64-bit and vice versa.

Wow64Win.dll: Intercepts the GUI system calls exported by Win32k.sys.

IA32Exec.bin and Wowia32x.dll on IA64 systems: Contain the IA-32 software emulator

and its interface library. Because Itanium processors cannot natively execute x86 32-bit

instructions, software emulation is required through the use of these two additional

components.

The relationship of these DLLs is shown in Figure 3-28.

32-bit EXE, DLLs

32-bit Ntdll.dll

Wow64cpu.dll

Wow64.dll Wow64win.dll

64-bit Ntdll.dll

Ntoskrnl.exe Win32k.sys

User32.dllGdi32.dll

FIGURE 3-28 Wow64 architecture

Wow64 Process Address Space Layout

Wow64 processes may run with 2 GB or 4 GB of virtual space. If the image header has the

large address aware flag set, then the memory manager will reserve the user-mode address

space above the 4 GB boundary through the end of the user-mode boundary. If the image

is not marked large address space aware, the memory manager will reserve the user-mode

address space above 2 GB. (For more information on large address space support, see the

section “x86 User Address Space Layouts” in Chapter 9.)

212 Windows Internals, Fifth Edition

System Calls

Wow64 hooks all the code paths where 32-bit code would transition to the native 64-bit

system or when the native system needs to call into 32-bit user-mode code. During process

creation, the process manager maps into the process address space the native 64-bit Ntdll.dll,

as well as the 32-bit Ntdll.dll for Wow64 processes. When the loader initialization is called, it

calls the Wow64 initialization code inside Wow64.dll. Wow64 then sets up the startup context

inside Ntdll, switches the CPU mode to 32-bits, and starts executing the 32-bit loader. From

this point onward, execution continues as if the process is running on a native 32-bit system.

Special 32-bit versions of Ntdll.dll, User32.dll, and Gdi32.dll are located in the \Windows\

Syswow64 folder. These call into Wow64 rather than issuing the native 32-bit system call

instruction. Wow64 transitions to native 64-bit mode, captures the parameters associated

with the system call (converting 32-bit pointers to 64-bit pointers), and issues the corre-

sponding native 64-bit system call. When the native system call returns, Wow64 converts any

output parameters if necessary from 64-bit to 32-bit formats before returning to 32-bit mode.

Exception Dispatching

Wow64 hooks exception dispatching through Ntdll’s KiUserExceptionDispatcher. Whenever

the 64-bit kernel is about to dispatch an exception to a Wow64 process, Wow64 captures the

native exception and context record in user mode and then prepares a 32-bit exception and

context record and dispatches it the same way the native 32-bit kernel would do.

User Callbacks

Wow64 intercepts all callbacks from the kernel into user mode. Wow64 treats such calls as

system calls; however, the data conversion is done in the reverse order: input parameters are

converted from 64 bits to 32 bits and output parameters are converted when the callback

returns from 32 bits to 64 bits.

File System Redirection

To maintain application compatibility and to reduce the effort of porting applications from

Win32 to 64-bit Windows, system directory names were kept the same. Therefore, the

\Windows\System32 folder contains native 64-bit images. Wow64, as it hooks all the sys-

tem calls, translates all the path-related APIs and replaces the path name of the \Windows\

System32 folder with \Windows\Syswow64. Wow64 also redirects \Windows\LastGood

to \Windows\LastGood\syswow64 and \Windows\Regedit.exe to \Windows\syswow64\

Regedit.exe. Through the use of system environment variables, the %PROGRAMFILES%

 variable is also set to \Program Files (x86) for 32-bit applications, while it is set to the normal

\Program Files folder for 64-bit applications.

 Chapter 3 System Mechanisms 213

Note Because certain 32-bit applications may indeed be aware and able to deal with 64-bit

images, a virtual directory, \Windows\Sysnative, allows any I/Os originating from a 32-bit applica-

tion to this directory to be exempted from file redirection. This directory doesn’t actually exist—

it is a virtual path that allows access to the real System32 directory, even from an application

running under Wow64.

There are a few subdirectories of \Windows\System32 that, for compatibility reasons, are

exempted from being redirected such that accesses to them made by 32-bit applications

actually access the real one. These directories include:

%windir%\system32\drivers\etc

%windir%\system32\spool

%windir%\system32\catroot and %windir%\system32\catroot2

%windir%\system32\logfiles

Finally, Wow64 provides a mechanism to control the file system redirection built into

Wow64 on a per-thread basis through the Wow64DisableWow64FsRedirection and

Wow64RevertWow64FsRedirection functions.

Registry Redirection and Reflection

Applications and components store their configuration data in the registry. Components usu-

ally write their configuration data in the registry when they are registered during installation.

If the same component is installed and registered both as a 32-bit binary and a 64-bit binary,

then the last component being registered will override the registration of the previous com-

ponent as they both write to the same location in the registry.

To help solve this problem transparently without introducing any code changes to 32-bit

components, the registry is split into two portions: Native and Wow64. By default, 32-bit

components access the 32-bit view, and 64-bit components access the 64-bit view. This

provides a safe execution environment for 32-bit and 64-bit components and separates the

32-bit application state from the 64-bit one if it exists.

To implement this, Wow64 intercepts all the system calls that open registry keys and

 retranslates the key path to point it to the Wow64 view of the registry. Wow64 splits the reg-

istry at these points:

HKLM\SOFTWARE

HKEY_CLASSES_ROOT

214 Windows Internals, Fifth Edition

Under each of these keys, Wow64 creates a key called Wow6432Node. Under this key is

stored 32-bit configuration information. All other portions of the registry are shared between

32-bit and 64-bit applications (for example, HKLM\SYSTEM).

For applications that need to explicitly specify a registry key for a certain view, the following

flags on the RegOpenKeyEx, RegCreateKeyEx, and RegDeleteKeyEx functions permit this:

KEY_WOW64_64KEY – explicitly opens a 64-bit key from either a 32-bit or 64-bit

application

KEY_WOW64_32KEY – explicitly opens a 32-bit key from either a 32-bit or 64-bit

application

To enable interoperability through 32-bit and 64-bit COM components, Wow64 mirrors cer-

tain portions of the registry when updated in one view to the other. It does this by intercept-

ing updates to any of the reflected keys and mirroring the changes intelligently to the other

view of the registry. The list of reflected keys is:

HKEY_LOCAL_MACHINE\SOFTWARE\Classes (except the Installer subkey)

HKEY_LOCAL_MACHINE\SOFTWARE\Ole

HKEY_LOCAL_MACHINE\SOFTWARE\Rpc

HKEY_LOCAL_MACHINE\SOFTWARE\COM3

HKEY_LOCAL_MACHINE\SOFTWARE\EventSystem

Reflection of HKLM\SOFTWARE\Classes\CLSID is intelligent; only LocalServer32 CLSIDs are

reflected because they run out of process, thus they can be COM-activated by 32-bit or

64-bit applications. However, InProcServer32 CLSIDs are not reflected because 32-bit COM

DLLs can’t be loaded in a 64-bit process, and likewise 64-bit COM DLLs can’t be loaded in a

32-bit process.

When reflecting a key/value, the registry reflector marks the key so that it understands that

it has been created by the reflector. This is to help the deletion case when deleting a key that

has been reflected; thus the reflector will be able to tell if it needs to delete the reflected key

if it has been written by the reflector.

I/O Control Requests

Besides normal read and write operations, applications can communicate with some device

drivers through device I/O control functions using the Windows DeviceIoControlFile API.

The application may specify an input and/or output buffer along with the call. If the buffer

contains pointer-dependent data, and the process sending the control request is a Wow64

process, then the view of the input and/or output structure is different between the 32-bit

application and the 64-bit driver, since pointers are 4 bytes for 32-bit applications and 8

 Chapter 3 System Mechanisms 215

bytes for 64-bit applications. In this case, the kernel driver is expected to convert the associ-

ated pointer-dependent structures. Drivers can call the IoIs32bitProcess function to detect if

an I/O request originated from a Wow64 process or not.

16-Bit Installer Applications

Wow64 doesn’t support running 16-bit applications. However, since many application install-

ers are 16-bit programs, Wow64 has special case code to make references to certain well-

known 16-bit installers work. These installers include:

Microsoft ACME Setup version: 2.6, 3.0, 3.01, and 3.1.

InstallShield version 5.x (where x is any minor version number).

Whenever a 16-bit process is about to be created using the CreateProcess() API, Ntvdm64.dll

is loaded and control is transferred to it to inspect whether the 16-bit executable is one of

the supported installers. If it is, another CreateProcess is issued to launch a 32-bit version of

the installer with the same command-line arguments.

Printing

32-bit printer drivers cannot be used on 64-bit Windows. Print drivers must be ported to

native 64-bit versions. However, since printer drivers run in the user-mode address space of

the requesting process, and since only native 64-bit printer drivers are supported on 64-bit

Windows, a special mechanism is needed to support printing from 32-bit processes. This

is done by redirecting all printing functions to Splwow64.exe, the Wow64 RPC print server.

Since Splwow64 is a 64-bit process, it can load 64-bit printer drivers.

Restrictions

Wow64 does not support the execution of 16-bit applications (this is supported on 32-bit

versions of Windows) or the loading of 32-bit kernel-mode device drivers (they must be

ported to native 64-bits). Wow64 processes can only load 32-bit DLLs and can’t load native

64-bit DLLs. Likewise, native 64-bit processes can’t load 32-bit DLLs. The one exception is the

ability to load resource-only DLLs cross-architecture, which is allowed because those DLLs

only contain resource data, not code.

In addition to the above, due to page size differences, Wow64 on IA64 systems does not sup-

port the ReadFileScatter, WriteFileGather, GetWriteWatch, or AWE functions. Also, hardware

acceleration through DirectX is not available (software emulation is provided for Wow64

processes).

216 Windows Internals, Fifth Edition

User-Mode Debugging

Support for user-mode debugging is split into three different modules. The first one is

located in the executive itself and has the prefix dbgk, which stands for debugging framework.

It provides the necessary internal functions for registering and listening for debug events,

managing the debug object, and packaging the information for consumption by its user-

mode counterpart. The user-mode component that talks directly to dbgk is located in the

native system library, Ntdll.dll, under a set of APIs that begin with the prefix DbgUi. These

APIs are responsible for wrapping the underlying debug object implementation (which is

opaque) and allow all subsystem applications to use debugging by wrapping their own APIs

around the DbgUi implementation. Finally, the third component in user-mode debugging

belongs to the subsystem DLLs. It is the exposed, documented API (located in Kernel32.dll for

the Windows subsystem) that each subsystem supports for performing debugging of other

applications.

Kernel Support

The kernel supports user-mode debugging through an object mentioned earlier, the debug
object. It provides a series of system calls, most of which map directly to the Windows debug-

ging API, typically accessed through the DbgUi layer first. The debug object itself is a simple

construct, composed of a series of flags that determine state, an event to notify any waiters

that debugger events are present, a doubly linked list of debug events waiting to be pro-

cessed, and a fast mutex used for locking the object. This is all the information that the kernel

requires for successfully receiving and sending debugger events, and each debugged process

has a debug port member in its structure pointing to this debug object.

Once a process has an associated debug port, a couple of different events can cause a debug

event to be inserted into the list of events. Table 3-19 describes these events.

TABLE 3-19 Kernel Mode Debugging Events

Event Identifier Meaning Triggered By

DbgKmExceptionApi An exception has occurred KiDispatchException during an exception

that occurred in user mode

DbgKmCreateThreadApi A new thread has been

created

Startup of a user-mode thread

DbgKmCreateProcessApi A new process has been

created

Startup of a user-mode thread that is

the first thread in the process

DbgKmExitThreadApi A thread has exited Death of a user-mode thread

DbgKmExitProcessApi A process has exited Death of a user-mode thread that was

the last thread in the process

DbgKmLoadDllApi A DLL was loaded NtMapViewOfSection when the section

is an image file (could be an EXE as well)

 Chapter 3 System Mechanisms 217

Event Identifier Meaning Triggered By

DbgKmUnloadDllApi A DLL was unloaded NtUnmapViewOfSection when the

section is an image file (could be an EXE

as well)

DbgKmErrorReportApi An exception needs to be

forwarded to Windows Error

Reporting (WER)

KiDispatchException during an exception

that occurred in user mode, after the

debugger was unable to handle it

Apart from the causes mentioned in the table, there are a couple of special triggering cases

outside the regular scenarios that occur at the time a debugger object first becomes associ-

ated with a process. The first create process and create thread messages will be manually sent

when the debugger is attached, first for the process itself and its main thread, followed by

create thread messages for all the other threads in the process. Finally, load dll events for the

executable being debugged (Ntdll.dll) and then all the current DLLs loaded in the debugged

process will be sent.

Once a debugger object has been associated with a process, all the threads in the process

are suspended. At this point, it is the debugger’s responsibility to start requesting that

debug events be sent through. Debuggers request that debug events be sent back to user

mode by performing a wait on the debug object. This call will loop the list of debug events.

As each request is removed from the list, its contents are converted from the internal dbgk

structure to the native structure that the next layer up understands. As we’ll see, this struc-

ture is different from the Win32 structure as well, and another layer of conversion has to

occur. Even after all pending debug messages have been processed by the debugger, the

kernel will not automatically resume the process. It is the debugger’s responsibility to call the

ContinueDebugEvent function to resume execution.

Apart from some more complex handling of certain multithreading issues, the basic model

for the framework is a simple matter of producers—code in the kernel that generates the

debug events in the previous table—and consumers—the debugger waiting on these events

and acknowledging their receipt.

Native Support

Although the basic protocol for user-mode debugging is quite simple, it’s not directly usable

by Windows applications—instead, it’s wrapped by the DbgUi functions in Ntdll.dll. This

abstraction is required to allow native applications, as well as different subsystems, to use

these routines (because code inside Ntdll.dll has no dependencies). The functions that this

component provides are mostly analogous to the Windows API functions and related system

calls. Internally the code also provides the functionality required to create a debug object

associated with the thread. The handle to a debug object that is created is never exposed.

It is saved instead in the thread environment block (TEB) of the debugger’s thread that is

218 Windows Internals, Fifth Edition

 performing the attachment. (For more information on the TEB, see Chapter 5.) This value is

saved in DbgSsReserved[1].

When a debugger attaches to a process, it expects the process to be broken into—that is to

say, an int 3 (breakpoint) operation should have happened, generated by a thread injected

into the process; otherwise, the debugger would never actually be able to take control of the

process and would merely see debug events flying by. Ntdll.dll is responsible for creating and

injecting that thread into the target process.

Finally, Ntdll.dll also provides APIs to convert the native structure for debug events into the

structure that the Windows API understands.

EXPERIMENT: Viewing Debugger Objects

Although we’ve been using WinDbg to do kernel-mode debugging, you can also use

it to debug user-mode programs. Go ahead and try starting Notepad.exe with the

debugger attached using these steps:

 1. Run WinDbg, and then click File, Open Executable.

 2. Navigate to the \Windows\System32\ directory, and choose Notepad.exe.

 3. We’re not going to do any debugging, so simply ignore whatever might come up.

You can type g in the command window to instruct WinDbg to continue execut-

ing Notepad.

Now run Process Explorer, and be sure the lower pane is enabled and configured to

show open handles. (Click on View, Lower Pane View, and then Handles.) We also want

to look at unnamed handles, so click on View, Show Unnamed Handles And Mappings.

Now click on the Windbg.exe process, and look at its handle table. You should see an

open, unnamed handle to a debug object. (You can organize the table by Type to find

this entry more readily.) You should see information something like the following:

 Chapter 3 System Mechanisms 219

You can try right-clicking on the handle and closing it. Notepad should disappear, and

the following message should appear in WinDbg:

ERROR: WaitForEvent failed, NTSTATUS 0xC0000354

This usually indicates that the debuggee has been

killed out from underneath the debugger.

You can use .tlist to see if the debuggee still exists.

WaitForEvent failed

In fact, if you look at the description for the NTSTATUS code given, you will find the

text: “An attempt to do an operation on a debug port failed because the port is in the

process of being deleted,” which is exactly what we’ve done by closing the handle.

As you can see, the native DbgUi interface doesn’t do much work to support the frame-

work except for this abstraction. In fact, the most complicated task it does is the conversion

between native and Win32 debugger structures. This involves several additional changes to

the structures.

Windows Subsystem Support

The final component responsible for allowing debuggers such as Microsoft Visual Studio

or WinDbg to debug user-mode applications is in Kernel32.dll. It provides the documented

Windows APIs enumerated at the beginning of our discussion. Apart from this trivial conver-

sion of one function name to another, there is one important management job that this side

of the debugging infrastructure is responsible for: managing the duplicated file and thread

handles.

Recall that each time a load DLL event is sent, a handle to the image file is duplicated by the

kernel and handed off in the event structure, as is the case with the handle to the process

executable during the create process event. During each wait call, Kernel32.dll checks whether

this is an event that results in new duplicated process and/or thread handles from the kernel

(the two create events). If so, it allocates a structure in which it stores the process ID, thread

ID, and the thread and/or process handle associated with the event. This structure is linked

into the first DbgSsReserved array index in the TEB, where we mentioned the debug object

handle is stored. Likewise, Kernel32.dll will also check for exit events. When it detects such an

event, it will “mark” the handles in the data structure.

Once the debugger is finished using the handles and performs the continue call, Kernel32.dll

will parse these structures, look for any handles whose threads have exited, and close the

handles for the debugger. Otherwise, those threads and processes would actually never exit,

because there would always be open handles to them as long as the debugger was running.

220 Windows Internals, Fifth Edition

Image Loader

When a process is started on the system, the kernel creates a process object to represent it

(see Chapter 5 for more information on processes) and performs various kernel-related ini-

tialization tasks. However, these tasks do not result in the execution of the application but

merely in the preparation of its context and environment. In fact, unlike drivers, which are

kernel-mode code, applications execute in user mode, so most of the actual initialization

work is done outside the kernel. This work is performed by the image loader, also internally

referred as Ldr.

The image loader lives in the user-mode system DLL Ntdll.dll and not in the kernel library.

Therefore, it behaves just like standard code that is part of a DLL, and it is subject to the same

restrictions in terms of memory access and security rights. What makes this code special is

the guaranty that it will always be present in the running process (Ntdll.dll is always loaded)

and that it is the first piece of code to run in user mode as part of a new application. (When

the system builds the initial context, the program counter, or instruction pointer, is set to an

initialization function inside Ntdll.dll. See Chapter 5 for more information.)

Because the loader runs before the actual application code, it is usually invisible to users and

developers. Additionally, although the loader’s initialization tasks are hidden, a program typi-

cally does interact with its interfaces during the run time of a program—for example, when-

ever loading or unloading a DLL or querying the base address of one. Some of the main tasks

the loader is responsible for include:

Initializing the user-mode state for the application, such as creating the initial heap and

setting up the thread local storage (TLS) and fiber local storage (FLS) slots

Parsing the import table (IAT) of the application to look for all DLLs that it requires (and

then recursively parsing the IAT of each DLL), followed by parsing the export table of

the DLLs to make sure the function is actually present (Special forwarder entries can also

redirect an export to yet another DLL.)

Loading and unloading DLLs at run time, as well as on demand, and maintaining a list

of all loaded modules (the module database)

Allowing for run-time patching (called hotpatching) support, explained later in the

chapter

Handling manifest files

Reading the application compatibility database for any shims, and loading the shim

engine DLL if required

As you can see, most of these tasks are critical to enabling an application to actually run its

code; otherwise, everything from calling external functions to using the heap would imme-

diately fail. After the process has been created, the loader will call a special native API to

continue execution based on a context frame located on the stack. This context frame, built

 Chapter 3 System Mechanisms 221

by the kernel, will contain the actual entry point of the application. Therefore, because the

loader doesn’t use a standard call or jump into the running application, you will never see the

loader initialization functions as part of the call tree in a stack trace for a thread.

EXPERIMENT: Watching the Image Loader

In this experiment, we’re going to use global flags to enable a debugging feature

called loader snaps. This will allow us to see debug output from the image loader while

debugging application startup.

 1. From the directory where you’ve installed WinDbg, launch the Gflags.exe applica-

tion, and then click on the Image File tab.

 2. In the Image field, type Notepad.exe, and then press the Tab key. This should

enable the check boxes. Check the Show Loader Snaps option, and then click OK

to dismiss the dialog box.

 3. Now follow the steps in the experiment “Viewing Debugger Options” to start

debugging the Notepad.exe application.

 4. You should now see a couple of screens of debug information similar to that

shown here:

0924:0248 @ 116983652 - LdrpInitializeProcess - INFO: Initializing process 0x924

0924:0248 @ 116983652 - LdrpInitializeProcess - INFO: Beginning execution of

 notepad.exe (C:\Windows\notepad.exe)

0924:0248 @ 116983652 - LdrpLoadDll - INFO: Loading DLL "kernel32.dll" from path

 "C:\Windows;C:\Windows\system32;C:\Windows\system;C:\Windows;

0924:0248 @ 116983652 - LdrpMapDll - INFO: Mapped DLL "kernel32.dll" at address

 76BD000

0924:0248 @ 116983652 - LdrGetProcedureAddressEx - INFO: Locating procedure

 "BaseThreadInitThunk" by name

0924:0248 @ 116983652 - LdrpRunInitializeRoutines - INFO: Calling init routine

 76C14592 for DLL "C:\Windows\system32\kernel32.dll"

0924:0248 @ 116983652 - LdrGetProcedureAddressEx - INFO: Locating procedure

 "BaseQueryModuleData" by name

 5. Eventually, the debugger will break somewhere inside the loader code, at a spe-

cial place where the image loader checks whether a debugger is attached and

fires a breakpoint. If you press the G key to continue execution, you will see even

more messages from the loader, and Notepad will appear.

 6. Try interacting with Notepad and see how certain operations will invoke the

loader. A good experiment is to try opening the Save/Open dialog. This will dem-

onstrate that the loader not only runs at startup, but continuously responds to

user requests that can cause delayed loads of other modules (which can then be

unloaded after use).

222 Windows Internals, Fifth Edition

Early Process Initialization

Because the loader is present in Ntdll.dll, which is a native DLL that’s not attached to any sub-

system, all applications on a Windows machine will be subject to the same loader behavior

(with some minor differences). In Chapter 5, we’ll look in detail at the steps that lead to the

creation of a process in kernel mode, as well as some of the work performed by the Windows

function CreateProcess. Here, however, we will cover the work that takes place in user mode,

independent of any subsystem, as soon as the first user-mode instruction starts execution.

Here are some of the main steps performed by the loader when a process starts up. The

loader will:

 1. Build the image path name for the application and query the Image File Execution

Options key for the application.

 2. Look inside the executable’s header to see whether it is a .NET application (specified by

the presence of a .NET-specific image directory).

 3. Initialize the National Language Support (NLS for internationalization) tables for the

process.

 4. Load any configuration options specified in the configuration directory of the image

executable’s header. This image directory contains settings for the behavior of the

executable, which a developer can define when compiling the application.

 5. Set the affinity mask if one was specified in the image header.

 6. Set up support for fiber local storage (FLS) and thread local storage (TLS).

 7. Initialize the heap manager for the current process and create the first process heap.

 8. Allocate an SxS (Side-by-Side Assembly)/Fusion activation context for the process. This

allows the system to use the appropriate DLL version file, instead of defaulting to the

DLL that shipped with the operating system. (See Chapter 5 for more information.)

 9. Open the \KnownDlls object directory and build the known DLL path.

 10. Figure out the current directory and the default path (used when loading images).

 11. Build the first loader data table entries for the application executable and Ntdll.dll, and

insert them into the module database.

At this point, the image loader is ready to start parsing the import table of the executable

belonging to the application and start loading any DLLs that were dynamically linked dur-

ing the compilation of the application. Because each imported DLL can also have its own

import table, this operation will continue recursively until all DLLs have been satisfied and all

functions to be imported have been found. As each DLL is loaded, the loader will keep state

information for it and build the module database.

 Chapter 3 System Mechanisms 223

Loaded Module Database

Just as the kernel maintains a list of all kernel-mode drivers that have been loaded, the loader

also maintains a list of all modules (DLLs as well as the primary executable) that have been

loaded by a process. This information is stored in a per-process structure called the Process

Environment Block, or PEB (see Chapter 5 for a full description of the PEB), namely in a sub-

structure identified by Ldr and called PEB_LDR_DATA. In the structure, the loader maintains

three doubly linked lists, all containing the same information but ordered differently (either

by load order, memory location, or initialization order). These lists contain structures called

loader data table entries (LDR_DATA_TABLE_ENTRY) that store information about each mod-

ule. Table 3-20 lists the various pieces of information the loader maintains in an entry.

TABLE 3-20 Fields in a Loader Data Table Entry

Field Meaning

BaseDllName Name of the module itself, without the full path

DllBase Holds the base address at which the module was loaded

EntryPoint Contains the initial routine of the module (such as DllMain)

EntryPointActivationContext Contains the SxS/Fusion activation context when calling initializers

Flags Loader state flags for this module (see Table 3-21 for a description of

the flags)

ForwarderLinks Linked list of modules that were loaded as a result of export table

forwarders from the module

FullDllName Fully qualified path name of the module

HashLinks Linked list used during process startup and shutdown for quicker

lookups

List Entry Links Links this entry into each of the three ordered lists part of the loader

database

LoadCount Reference count for the module (that is, how many times it has been

loaded)

PatchInformation Information relevant during a hotpatch operation on this module

ServiceTagLinks Linked list of services (see Chapter 4 for more information)

referencing this module

SizeOfImage Size of the module in memory

StaticLinks Linked list of modules loaded as a result of static references from this

one

TimeDateStamp Time stamp written by the linker when the module was linked, which

the loader obtains from the module’s image PE header

TlsIndex Thread local storage slot associated with this module

One way to look at a process’s loader database is to use WinDbg and its formatted output of

the PEB. The next experiment shows you how to do this and how to look at the LDR_DATA_

TABLE_ENTRY structures on your own.

224 Windows Internals, Fifth Edition

EXPERIMENT: Dumping the Loaded Modules Database

Before starting the experiment, perform the same steps as in the previous two experi-

ments to launch Notepad.exe with WinDbg as the debugger. When you get to the first

prompt (where you’ve been instructed to type g until now), follow these instructions:

 1. You can look at the PEB of the current process with the !peb command. For now,

we’re only interested in the Ldr data that will be displayed. (See Chapter 5 for

details about other information stored in the PEB.)

0:001> !peb

PEB at 7ffde000

 InheritedAddressSpace: No

 ReadImageFileExecOptions: No

 BeingDebugged: Yes

 ImageBaseAddress: 00d80000

 Ldr 76fd4cc0

 Ldr.Initialized: Yes

 Ldr.InInitializationOrderModuleList: 001c1d78 . 001d9830

 Ldr.InLoadOrderModuleList: 001c1cf8 . 001d9820

 Ldr.InMemoryOrderModuleList: 001c1d00 . 001d9828

 Base TimeStamp Module

 d80000 47918ea2 Jan 19 00:46:10 2008 C:\Windows\notepad.exe

 76f10000 4791a7a6 Jan 19 02:32:54 2008 C:\Windows\system32\ntdll.dll

 76bd0000 4791a76d Jan 19 02:31:57 2008 C:\Windows\system32\kernel32.dll

 76b00000 4791a64b Jan 19 02:27:07 2008 C:\Windows\system32\ADVAPI32.dll

 75950000 4791a751 Jan 19 02:31:29 2008 C:\Windows\system32\RPCRT4.dll

 2. The address shown on the Ldr line is a pointer to the PEB_LDR_DATA structure

described earlier. Notice that WinDbg shows you the address of the three lists and

dumps the initialization order list for you, displaying the full path, time stamp,

and base address of each module.

 3. You can also analyze each module entry on its own by going through the mod-

ule list and then dumping the data at each address, formatted as a LDR_DATA_

TABLE_ENTRY structure. Instead of doing this for each entry, however, WinDbg

can do most of the work by using the !list extension and the following syntax:

!list –t ntdll!_LIST_ENTRY.Flink –x "dt ntdll!_LDR_DATA_TABLE_ENTRY

@$extret\" 001c1cf8

Note that the last number is variable: it depends on whatever is shown on your

machine under Ldr.InLoadOrderModuleList.

 Chapter 3 System Mechanisms 225

 4. You should then see the actual entries for each module:

0:001> !list -t ntdll!_LIST_ENTRY.Flink -x "dt ntdll!_LDR_DATA_TABLE_ENTRY

@$extret\" 001c1cf8

 +0x000 InLoadOrderLinks : _LIST_ENTRY [0x1c1d68 - 0x76fd4ccc]

 +0x008 InMemoryOrderLinks : _LIST_ENTRY [0x1c1d70 - 0x76fd4cd4]

 +0x010 InInitializationOrderLinks : _LIST_ENTRY [0x0 - 0x0]

 +0x018 DllBase : 0x00d80000

 +0x01c EntryPoint : 0x00d831ed

 +0x020 SizeOfImage : 0x28000

 +0x024 FullDllName : _UNICODE_STRING "C:\Windows\notepad.exe"

 +0x02c BaseDllName : _UNICODE_STRING "notepad.exe"

 +0x034 Flags : 0x4010

Looking at the list in this raw format gives you some extra insight into the loader’s

internals, such as the flags field, which contains state information that !peb on its own

would not show you. See Table 3-21 for their meaning.

TABLE 3-21 Loader Data Table Entry Flags

Flag Meaning

LDRP_STATIC_LINK (0x2) This module is referenced by an import table and

is required

LDRP_IMAGE_DLL (0x4) The module is an image DLL (and not a data DLL

or executable)

LDRP_LOAD_IN_PROGRESS (0x1000) This module is currently being loaded

LDRP_UNLOAD_IN_PROGRESS (0x2000) This module is currently being unloaded

LDRP_ENTRY_PROCESSED (0x4000) The loader has finished processing this module

LDRP_DONT_CALL_FOR_THREADS (0x40000) Do not send DLL_THREAD_ATTACH/DETACH

notifications to this DLL

LDRP_PROCESS_ATTACH_CALLED (0x80000) This DLL has been sent the DLL_PROCESS_

ATTACH notification

LDRP_IMAGE_NOT_AT_BASE (0x200000) This image was relocated from its original base

address

LDRP_COR_IMAGE (0x400000) This module is a .NET application

LDRP_COR_OWNS_UNMAP (0x800000) This module should be unmapped by the .NET

runtime

LDRP_REDIRECTED (0x10000000) The manifest file specified a redirected file for

this DLL

LDRP_COMPAT_DATABASE_PROCESSED

(0x80000000)

The shim engine has processed this DLL

226 Windows Internals, Fifth Edition

Import Parsing

Now that we’ve explained the way the loader keeps track of all the modules loaded for a

process, we can continue analyzing the startup initialization tasks performed by the loader.

During this step, the loader will:

 1. Load each DLL referenced in the import table of the process’s executable image.

 2. Check whether the DLL has already been loaded by checking the module database. If it

doesn’t find it in the list, the loader will open the DLL and map it into memory.

 3. During the mapping operation, the loader will first look at the various paths where it

should attempt to find this DLL, as well as whether this DLL is a “known DLL,” mean-

ing that the system has already loaded it at startup and provided a global memory

mapped file for accessing it. Certain deviations from the standard lookup algorithm can

also occur, either through the use of a .local file (which forces the loader to use DLLs in

the local path) or through a manifest file, which can specify a redirected DLL to use to

guarantee a specific version.

 4. After the DLL has been found on disk and mapped, the loader checks whether the

kernel has loaded it somewhere else—this is called relocation. If the loader detects relo-

cation, it will parse the relocation information in the DLL and perform the operations

required. If no relocation information is present, DLL loading will fail.

 5. The loader will then create a loader data table entry for this DLL and insert it into the

database.

 6. After a DLL has been mapped, the process is repeated for this DLL to parse its import

table and all its dependencies.

 7. After each DLL is loaded, the loader parses the IAT to look for specific functions that

are being imported. Usually this is done by name, but it can also be done by ordinal (an

index number). For each name, the loader parses the export table of the imported DLL

and tries to locate a match. If no match is found, the operation is aborted.

 8. The import table of an image can also be bound. This means that at link time, the

developers already assigned static addresses pointing to imported functions in exter-

nal DLLs. This removes the need to do the lookup for each name, but it assumes that

the DLLs the application will use will always be located at the same address. Because

Windows uses address space randomization (see Chapter 9 for more information on

Address Space Load Randomization, or ASLR), this is usually not the case for system

applications and libraries.

 9. The export table of an imported DLL can use a forwarder entry, meaning that the actual

function is implemented in another DLL. Essentially this must be treated like an import

or dependency, so after parsing the export table, each DLL referenced by a forwarder is

also loaded and goes back to step 1.

 Chapter 3 System Mechanisms 227

After all imported DLLs (and their own dependencies, or imports) have been loaded, all the

required imported functions have been looked up and found, and all forwarders also loaded

and processed, the step is complete: all dependencies that were defined at compile time

by the application and its various DLLs have now been fulfilled. During execution, delayed

dependencies (called delay load), as well as run-time operations (such as calling LoadLibrary)

can call into the loader and essentially repeat the same tasks. Note, however, that a failure in

these steps will result in an error launching the application if they are done during process

startup. For example, attempting to run an application that requires a function that isn’t pres-

ent in the current version of the operating system can result in a message similar to the one

in Figure 3-29.

FIGURE 3-29 Dialog box shown when a required (imported) function is not present in a DLL

Post Import Process Initialization

After the required dependencies have been loaded, there are several initialization tasks that

must be performed to fully finalize launching the application. In this step, the loader will:

 1. Check if the application itself requires relocation and process the relocation entries

for the application. If the application cannot be relocated, or does not have relocation

information, the loading will fail.

 2. Check if the application makes use of TLS and look in the application executable for the

TLS entries it needs to allocate and configure.

 3. At this point, the initial debugger breakpoint will be hit when using a debugger such

as WinDbg. This is where you had to type “go” to continue execution in the earlier

experiments.

 4. Make sure that the application will be able to run properly if the system is a multipro-

cessor system.

 5. Set up the default data execution prevention (DEP) options. (See Chapter 9 for more

information on DEP.)

 6. Check whether this application requires any application compatibility work, and load

the shim engine if required.

228 Windows Internals, Fifth Edition

 7. Detect if this application is protected by SecuROM, SafeDisc, and other kinds of wrap-

per or protection utilities that could have issues with DEP (and reconfigure DEP settings

in those cases).

 8. Run the initializers for all the loaded modules.

Running the initializers is the last main step in the loader’s work. This is the step that will call

the DllMain routine for each DLL (allowing each DLL to perform its own initialization work,

which may even include loading new DLLs at run time) as well as process the TLS initializers

of each DLL. This is one of the last steps in which loading an application can fail. If all the

loaded DLLs do not return a successful return code after finishing their DllMain routines, the

loader will abort starting the application. As a very last step, the loader will call the TLS initial-

izer of the actual application.

As you can see, before a single line of code from the application’s main entry point executes,

there are possibly thousands of lines of code being executed by the loader, followed by every

single DLL that has been imported. The Windows kernel has been improved to decrease

startup time, most recently with the introduction of SuperFetch, which directly affects the

time it takes to load all the DLLs during startup. (For more information on SuperFetch, see

Chapter 9.)

Hypervisor (Hyper-V)

One of the key technologies in the software industry, used by system administrators, devel-

opers, and testers alike, is called virtualization, and it refers to the ability to run multiple

operating systems simultaneously. One operating system, in which the virtualization software

is executing, is called the host, while the other operating systems are running as guests inside

the virtualization software. The usage scenarios for this model cover everything from being

able to test an application on different platforms to having fully virtual servers all actually

running as part of the same machine and managed through one central point.

Until recently, all the virtualization was done by the software itself, sometimes assisted

by hardware-level virtualization technology (called host-based virtualization). Thanks to

hardware virtualization, the CPU can do most of the notifications required for trapping

instructions and virtualizing access to memory. These notifications, as well as the various con-

figuration steps required for allowing guest operating systems to run concurrently, must be

handled by a piece of infrastructure compatible with the CPU’s virtualization support. Instead

of relying on a piece of separate software running inside a host operating system to perform

these tasks, a thin piece of low-level system software, which uses strictly hardware-assisted

virtualization support, can be used—a hypervisor. Figure 3-30 shows a simple architectural

overview of these two kinds of systems.

 Chapter 3 System Mechanisms 229

Guest 2Guest 1

Host OS VMM*

Hardware

Hosted virtualization

* Represents software product such as Virtual PC

Guest 2Guest 1

VMM**

Hardware

Hypervisor virtualization

** This VMM is the hypervisor.

FIGURE 3-30 Two architectures for virtualization

With Hyper-V, Windows Server 2008 computers can install support for hypervisor-based vir-

tualization as a special role (as long as an edition with Hyper-V support is licensed). Because

the hypervisor is part of the operating system, managing the guests inside it, as well as inter-

acting with them, is fully integrated in the operating system through standard management

mechanisms such as WMI and services (see Chapter 4 for more information on these topics),

and there are no complex third-party tools involved that require training or servicing.

Finally, apart from having a hypervisor that allows running other guests managed by a

Windows Server host, both client and server editions of Windows also ship with enlighten-
ments, which are special optimizations in the kernel and possibly device drivers that detect

that the code is being run as a guest under a hypervisor and perform certain tasks dif-

ferently, or more efficiently, considering this environment. We will look at some of these

improvements later; for now, we’ll take a look at the basic architecture of the Windows virtu-

alization stack, shown in Figure 3-31.

VSPWindows
kernel

Windows hypervisor

“Designed for Windows” server hardware

Windows

Server 2008

VMBus
IHV

drivers

Non–

hypervisor-aware

OS

Windows

Server 2003, 2008

Windows
kernel

VMBus

VSC
Emulation

Xen-enabled

Linux kernel

VMBus

Linux VSC

Hypercall adapter

Applications

WMI provider

VM service

Applications Applications Applications

VM worker
processes

FIGURE 3-31 Windows Hyper-V architectural stack

230 Windows Internals, Fifth Edition

Partitions

One of the key architectural components behind the Windows hypervisor is the concept of

a partition. A partition essentially references an instance of an operating system installation,

which could refer either to what’s traditionally called the host or to the guest. Under the

Windows hypervisor model, these two terms are not used; instead, we talk of either a root
partition or a child partition, respectively. Consequently, at a minimum, a Hyper-V system will

have a root partition, which is recommended to contain a Windows Server Core installation,

as well as the virtualization stack and its associated components. Although this installation

type is recommended because it allows minimizing patches and reducing security surface

area, resulting in increased availability of the server, a full installation is also supported. Each

operating system running within the virtualized environment will represent a child partition,

which may contain certain additional tools that optimize access to the hardware or allow

management of the operating system.

Root Partition

One of the main goals behind the design of the Windows hypervisor was to have it as small

and modular as possible, much like a microkernel, instead of providing a full, monolithic

module. This means that most of the virtualization work is actually done by a separate vir-

tualization stack and that there are also no hypervisor drivers. In lieu of these, the hypervisor

uses the existing Windows driver architecture and talks to actual Windows device drivers.

This architecture results in several components that provide and manage this behavior, which

are collectively called the hypervisor stack.

Logically, it is the root partition that is responsible for providing the hypervisor, as well as the

entire hypervisor stack. Because these are Microsoft components, only a Windows machine

can be a root partition, naturally. A root partition should have almost no resource usage for

itself because its role is to run other operating systems. The main components that the root

partition provides are shown in Figure 3-32.

 Chapter 3 System Mechanisms 231

User mode

Virtualization stack

VM service

WMI provider
VM worker
processes

Windows
kernel

Server core Virtualization

service

providers

(VSPs)

Device
drivers

Kernel mode

FIGURE 3-32 Components of a root partition

Root Partition Operating System

The Windows installation (typically the minimal footprint server installation, called Windows

Server Core, to minimize resource usage) is responsible for providing the hypervisor and

the device drivers for the hardware on the system (which the hypervisor will need to access),

as well as for running the hypervisor stack. It is also the management point for all the child

partitions.

VM Service and Worker Processes

The virtual machine service is responsible for providing the WMI interface to the hypervisor,

which allows managing the child partitions through a Microsoft Management Console (MMC)

plug-in. It is also responsible for communicating requests to applications that need to com-

municate to the hypervisor or to child partitions. It controls settings such as which devices

are visible to child partitions, how the memory and processor allocation for each partition is

defined, and more.

The worker processes, on the other hand, perform various virtualization work that a typical

monolithic hypervisor would perform (similar as well to the work of a software-based virtual-

ization solution). This means managing the state machine for a given child partition (to allow

support for features such as snapshots and state transitions), responding to various notifica-

tions coming in from the hypervisor, performing the emulation of certain devices exposed to

child partitions, and collaborating with the VM service and configuration component.

232 Windows Internals, Fifth Edition

On a system with child partitions performing lots of I/O or privileged operations, you would

expect most of the CPU usage to be visible in the root partition: you can identify them by the

name Vmwp.exe (one for each child partition). The worker process also includes components

responsible for remote management of the virtualization stack, as well as an RDP component

that allows using the remote desktop client to connect to any child partition and remotely

view its user interface and interact with it.

Virtualization Service Providers

Virtualization service providers (VSPs) are responsible for the high-speed emulation of certain

devices visible to child partitions (the exact difference between VSP-emulated devices and

user-mode–process-emulated devices will be explained later), and unlike the VM service and

processes, VSPs can also run in kernel mode as drivers. More detail on VSPs will follow in the

section that describes device architecture in the virtualization stack.

VM Infrastructure Driver and Hypervisor API Library

Because the hypervisor cannot be directly accessed by user-mode applications, such as the

VM service that is responsible for management, the virtualization stack must actually talk to

a driver in kernel mode that is responsible for relaying the requests to the hypervisor. This is

the job of the VM infrastructure driver (VID). The VID also provides support for certain low-

memory memory devices, such as MMIO and ROM emulation.

A library located in kernel mode provides the actual interface to the hypervisor (called hyper-
calls). Messages can also come from child partitions (which will perform their own hypercalls),

because there is only one hypervisor for the whole system and it can listen to messages com-

ing from any partition. You can find this functionality in the Winhv.sys device driver.

Hypervisor

At the bottom of the architecture is the hypervisor itself, which registers itself with the pro-

cessor at system boot-up time and provides its services for the stack to use (through the

use of the hypercall interface). This early initialization is performed by the hvboot.sys driver,

which is configured to start early on during a system boot. Because Intel and AMD proces-

sors have slightly differing implementations of hardware-assisted virtualization, there are

actually two different hypervisors—the correct one is selected at boot-up time by querying

the processor through CPUID instructions. On Intel systems, the Hvix64.exe binary is loaded,

while on AMD systems, the Hvax64.exe image is used.

Child Partitions

The child partition, as discussed earlier, is an instance of any operating system running paral-

lel to the root partition. (Because you can save or pause the state of any child, it might not

 Chapter 3 System Mechanisms 233

necessarily be running, but there will be a worker process for it.) Unlike the root partition,

which has full access to the APIC, I/O ports, and physical memory, child partitions are limited

for security and management reasons to their own view of address space (the Guest Virtual

Address Space, or GVA, which is managed by the hypervisor), and have no direct access to

hardware. In terms of hypervisor access, it is also limited mainly to notifications and state

changes. For example, a child partition doesn’t have control over other partitions (and can’t

create new ones).

Child partitions have many fewer virtualization components than a root partition, because

they are not responsible for running the virtualization stack—only for communicating with it.

Also, these components can also be considered optional because they enhance performance

of the environment but are not critical to its use. Figure 3-33 shows the components present

in a typical Windows child partition.

User mode

Guest applications

Kernel mode

Windows
kernel

Virtualization

service

clients

(VSCs)
Enlightenments

FIGURE 3-33 Components in a child partition

Virtualization Service Clients

Virtualization service clients (VSCs) are the child partition analogues of VSPs. Like VSPs, VSCs

are used for device emulation, which is a topic of later discussion.

Enlightenments

Enlightenments are one of the key performance optimizations that Windows virtualization

takes advantage of. They are direct modifications to the standard Windows kernel code that

can detect that this operating system is running in a child partition and perform work dif-

ferently. Usually, these optimizations are highly hardware-specific and result in a hypercall to

notify the hypervisor. An example is notifying the hypervisor of a long busy-wait spin loop.

The hypervisor can keep some state stale in this scenario instead of keeping track of the state

234 Windows Internals, Fifth Edition

at every single loop instruction. Entering and exiting an interrupt state can also be coordi-

nated with the hypervisor, as well as access to the APIC, which can be enlightened to avoid

trapping the real access and then virtualizing it.

Another example has to do with memory management, specifically TLB flushing and chang-

ing address space. (See Chapter 9 for more information on these concepts.) Usually, the oper-

ating system will execute a CPU instruction to flush this information, which affects the entire

processor. However, because a child partition could be sharing a CPU with many other child

partitions, such an operation would also flush this information for those operating systems,

resulting in noticeable performance degradation. If Windows is running under a hypervi-

sor, it will instead issue a hypercall to have the hypervisor flush only the specific information

belonging to the child partition.

Hardware Emulation and Support

A virtualization solution must also provide optimized access to devices. Unfortunately, most

devices aren’t made to accept multiple requests coming in from different operating systems.

The hypervisor steps in by providing the same level of synchronization where possible and

by emulating certain devices when real access to hardware cannot be permitted. In addition

to devices, memory and processors must also be virtualized. Table 3-22 describes the three

types of hardware that the hypervisor must manage.

TABLE 3-22 Virtualized Hardware

Component Managed By Usage

Processor Hypervisor built-in scheduler

and related microkernel

components.

Manage usage of hardware’s processing power,

share multiple processors across multiple child

partitions, manage and switch processor states

(such as registers).

Memory Hypervisor built-in memory

manager and related

microkernel components.

Manage usage of hardware’s RAM usage and

availability. Protect memory from child partitions

and root partition. Provide a contiguous view of

physical memory starting at address 0.

Devices VM worker processes—

hypervisor only responsible

for interception and

notification.

Provide hardware multiplexing so that multiple

child partitions can access the same device on

the physical machine. Optimize access to physical

devices to be as fast as possible.

Instead of exposing actual hardware to child partitions, the hypervisor exposes virtual devices

(called VDevs). VDevs are packaged as COM components that run inside a VM worker pro-

cess, and they are the central manageable object behind the device. (Usually, VDevs expose

a WMI interface.) The Windows virtualization stack provides support for two kinds of virtual

devices: emulated devices and synthetic devices (also called enlightened I/O). The former

provide support for various devices that the operating systems on the child partition would

expect to find, while the latter requires specific support from the guest operating system. On

 Chapter 3 System Mechanisms 235

the other hand, synthetic devices provide a significant performance benefit by reducing CPU

overhead.

Emulated Devices

Emulated devices work by presenting the child partition with a set of I/O ports, memory

ranges, and interrupts that are being controlled and monitored by the hypervisor. When

access to these resources is detected, the VM worker process eventually gets notified through

the virtualization stack (shown earlier in Figure 3-31). The process will then emulate whatever

action is expected from the device and complete the request, going back through the hyper-

visor and then to the child partition. From this topological view alone, one can see that there

is a definite loss in performance, without even considering that the software emulation of a

hardware device is usually slow.

The need for emulated devices comes from the fact that the hypervisor needs to sup-

port nonhypervisor-aware operating systems, as well as the early installation steps of even

Windows itself. During the boot process, the installer can’t simply load all the child partition’s

required components (such as VSCs) to use synthetic devices, so a Windows installation will

always use emulated devices (which is why installation will seem very slow, but once installed

the operating system will run quite close to native speed). Emulated devices are also used for

hardware that doesn’t require high-speed emulation and for which software emulation may

even be faster. This includes items such as COM (serial) ports, parallel ports, or the mother-

board itself.

Note Hyper-V emulates an Intel i440BX motherboard, an S3 Trio video card, and an Intel

21140 NIC.

Synthetic Devices

Although emulated devices work adequately for 10-Mbit network connections, low-

 resolution VGA displays, and 16-bit sound cards, the operating systems and hardware that

child partitions will usually require in today’s usage scenarios require a lot more processing

power, such as support for 1000-Mbit GbE connections; full-color, high-resolution 3D sup-

port; and high-speed access to storage devices. To support this kind of virtualized hardware

access at an acceptable CPU usage level and virtualized throughput, the virtualization stack

uses a variety of components to optimize device I/Os to their fullest (similar to kernel enlight-

enments). Three components are part of this support, and they all belong to what’s pre-

sented to the user as integration components or ICs. They include:

Virtualization service providers

Virtualization service clients/consumers

VMBus

236 Windows Internals, Fifth Edition

Figure 3-34 shows a diagram of how an enlightened, or synthetic storage I/O, is handled by

the virtualization stack.

User mode

Kernel mode

Child partitions

VMBus

Windows file system

VM worker process

Virtual storage

provider (VSP)

Parent partition

Applications

Volume

Partition

Disk

Fast path filter (VSC)

 iSCSIprtVirtual storage

miniport (VSC)

Windows hypervisor

Disk

 StorPort
StorPort

miniport

Hardware

FIGURE 3-34 I/O handling paths in Hyper-V

As shown in Figure 3-32, VSPs run in the root partition, where they are associated with a

specific device that they are responsible for enlightening. (We’ll use that as a term instead of

emulating when referring to synthetic devices.) VSCs reside in the child partition and are also

associated with a specific device. Note, however, that the term provider can refer to multiple

components spread across the device stack. For example, a VSP can either be:

A user-mode service

A user-mode COM component

A kernel-mode driver

In all three cases, the VSP will be associated with the actual virtual device inside the VM

worker process. VSCs, on the other hand, are almost always designed to be drivers sitting

at the lowest level of the device stack (see Chapter 7 for more information on device stacks)

 Chapter 3 System Mechanisms 237

and intercept I/Os to a device and redirect them through a more optimized path. The main

optimization that is performed by this model is to avoid actual hardware access and use

VMBus instead. Under this model, the hypervisor is unaware of the I/O, and the VSP redirects

it directly to the root partition’s kernel storage stack, avoiding a trip to user mode as well.

Other VSPs can perform work directly on the device, by talking to the actual hardware and

bypassing any driver that may have been loaded on the root partition. Another option is to

have a user-mode VSP, which can make sense when dealing with lower-bandwidth devices.

As described earlier, VMBus is the name of the bus transport used to optimize device access

by implementing a communications protocol using hypervisor services. VMBus is a bus driver

present on both the root partition and the child partitions responsible for the Plug and Play

enumeration of synthetic devices in a child. It also contains the optimized cross-partition

messaging protocol that uses a transport method that is appropriate for the data size. One

of these methods is to provide a shared ring buffer between each partition—essentially an

area of memory on which a certain amount of data is loaded on one side and unloaded on

the other side. No memory needs to be allocated or freed because the buffer is continuously

reused and simply “rotated.” Eventually, it may become full with requests, which would mean

that newer I/Os would overwrite older I/Os. In this uncommon scenario, VMBus will simply

delay newer requests until older ones complete. The other messaging transport is direct child

memory mapping to the parent address space for large enough transfers.

Virtual Processors

Just as the hypervisor doesn’t allow direct access to hardware (or to memory, as we’ll see

later, child partitions don’t really see the actual processors on the machine but have a virtual-

ized view of CPUs as well. On the root machine, the administrator and the operating system

deal with logical processors, which are the actual processors on which threads can run (for

example, a dual quad-core machine has eight logical processors), and assign these proces-

sors to various child partitions. For example, one child partition could be assigned logical

processors 1, 2, 3, and 4, while the second child partition might be assigned processors 4, 6,

7, and 8. Note that the second child partition will never have access to processor 5 and that

processor 4 will be shared across multiple partitions. These operations are all made possible

through the use of virtual processors, or VPs.

Because processors can be shared across multiple child partitions, the hypervisor includes

its own scheduler that distributes the workload of the various partitions across each proces-

sor. Additionally, the hypervisor maintains the register state for each virtual processor and

to an appropriate “processor switch” when the same logical processor is now being used

by another child partition. The root partition has the ability to access all these contexts and

modify them as required, an essential part of the virtualization stack that must respond to

certain instructions and perform actions.

238 Windows Internals, Fifth Edition

The hypervisor is also directly responsible for virtualizing processor APICs and providing a

simpler, less featured virtual APIC, including support for the timer that’s found on most APICs

(however, at a slower rate). Because not all operating systems support APICs, the hypervisor

also allows for the injection of interrupts through a hypercall, which permits the virtualization

stack to emulate a standard i8059 PIC.

Finally, because Windows supports dynamic processor addition, it’s possible for an adminis-

trator to add new processors to a child partition at run time to increase the responsiveness of

the guest operating systems if it’s under heavy load.

Memory Virtualization

The final piece of hardware that must be abstracted away from child partitions is memory,

not only for the normal behavior of the guest operating systems, but also for security and

stability. Improperly managing the child partitions’ access to memory could result in privacy

disclosures and data corruption, as well as possible malicious attacks by “escaping” the child

partition and attacking the root (which would then allow attacks on the other children). Apart

from this aspect, there is also the matter of the guest operating system’s view of physical

address space. Almost all operating systems expect memory to begin at address 0 and be

somewhat contiguous, so simply assigning chunks of physical memory to each child partition

wouldn’t work even if enough memory was available on the system.

To solve this problem, the hypervisor implements an address space called the guest physical
address space (GPA space). The GPA starts at address 0, which satisfies the needs of operat-

ing systems inside child partitions. However, the GPA is not a simple mapping to a chunk of

physical memory because of the second problem (the lack of contiguous memory). As such,

GPAs can point to any location in the machine’s physical memory (which is called the system
physical address space, or SPA space), and there must be a translation system to go from

one address type to another. This translation system is maintained by the hypervisor and is

nearly identical to the way virtual memory is mapped to physical memory on x86 and x86-

64 processors. (See Chapter 9 for more information on the memory manager and address

translation.)

As for actual virtual addresses in the child partition (which are called guest virtual address
space—GVA space), these continue to be managed by the operating system without any

change in behavior. What the operating system believes are real physical addresses in its own

page tables will actually be SPAs. Figure 3-35 shows an overview of the mapping between

each level.

 Chapter 3 System Mechanisms 239

0x80841404

0x41404

0x910B4

 NtWriteFile

GVAs SPAsGPAs

FIGURE 3-35 Guest virtual and physical address translation

This means that when a guest operating system boots up and creates the page tables to

map virtual to physical memory, the hypervisor intercepts SPAs and keeps its own copy of

the page tables. Conceptually, whenever a piece of code accesses a virtual address inside a

guest operating system, the hypervisor does the initial page table translation to go from the

guest virtual address to the GPA and then maps that GPA to the respective SPA. In reality, this

operation is optimized through the use of shadow page tables (SPTs), which the hypervisor

maintains to have direct GVA to SPA translations and simply loads when appropriate so that

the guest accesses the SPA directly.

Intercepts

We’ve talked about the various ways in which access to hardware, processors, and memory

is virtualized by the hypervisor and sometimes handed off to a VM worker process, but we

haven’t yet talked about the mechanism that allows this to happen—intercepts. Intercepts are

configurable “hooks” that a root partition can install and configure in order to respond to.

These can include:

I/O intercepts, useful for device emulation

MSR intercepts, useful for APIC emulation and profiling

Access to GPAs, useful for device emulation, monitoring, and profiling (Additionally, the

intercept can be fine-tuned to a specific access, such as read, write, or execute.)

Exception intercepts such as page faults, useful for maintaining machine state and

memory emulation (for example, maintaining copy-on-write)

Once the hypervisor detects an event for which an intercept has been registered, it sends an

intercept message through the virtualization stack and puts the VP in a suspended state. The

virtualization stack (usually the worker process) must then handle the event and resume the

VP (typically with a modified register state that reflects the work performed to handle the

intercept).

240 Windows Internals, Fifth Edition

Kernel Transaction Manager

One of the more tedious aspects of software development is handling error conditions. This

is especially true if, in the course of performing a high-level operation, an application has

completed one or more subtasks that result in changes to the file system or registry. For

example, an application’s software updating service might make several registry updates,

replace one of the application’s executables, and then be denied access when it attempts

to update a second executable. If the service doesn’t want to leave the application in the

resulting inconsistent state, it must track all the changes it makes and be prepared to undo

them. Testing the error-recovery code is difficult, and consequently often skipped, so errors

in the recovery code can negate the effort.

Applications can, with very little effort, gain automatic error-recovery capabilities by using a

kernel mechanism called the Kernel Transaction Manager (KMT), which provides the facilities

required to perform such transactions and enables services such as the distributed transac-
tion coordinator (DTC) in user mode to take advantage of them. Any developer who uses the

appropriate APIs can take advantage of these services as well.

KTM does more than solve large-scale issues such as the one presented. Even on single-user

home computers, installing a service patch or performing a system restore are large opera-

tions that involve both files and registry keys. Unplug an older Windows computer during

such an operation, and the chances for a successful boot are very slim. Even though the NT

File System (NTFS) has always had a log file permitting the file system to guarantee atomic

operations (see Chapter 11 for more information on NTFS), this only means that whichever

file was being written to during the process will get fully written or fully deleted—it does not

guarantee the entire update or restore operation. Likewise, the registry has had numerous

improvements over the years to deal with corruption (see Chapter 4 for more information on

the registry), but the fixes apply only at the key/value level.

As the heart of transaction support, KTM allows transactional resource managers such as

NTFS and the registry to coordinate their updates for a specific set of changes made by an

application. NTFS uses an extension to support transactions, called TxF. The registry uses

a similar extension, called TxR. These kernel-mode resource managers work with KTM to

coordinate the transaction state, just as user-mode resource managers use DTC to coordinate

transaction state across multiple user-mode resource managers. Third parties can also use

KTM to implement their own resource managers.

TxF and TxR both define a new set of file system and registry APIs that are similar to existing

ones, except that they include a transaction parameter. If an application wants to create a

file within a transaction, it first uses KTM to create the transaction, and then it passes the

resulting transaction handle to the new file creation API. Although we’ll look at the registry

and NTFS implementations of KTM later, these are not its only possible uses. In fact, it pro-

vides three system objects that allow a variety of different operations to be supported. These

are listed in Table 3-23.

 Chapter 3 System Mechanisms 241

TABLE 3-23 KTM Objects

Object Meaning Usage

Transaction Collection of data operations to

be performed. Provides atomic,

consistent, isolated, and durable

operations.

Can be associated to registry and file I/O in

order to make those operations part of the

same larger operation.

Enlistment Association between a resource

manager and a transaction.

Register with a transaction in order to

receive notifications on it. The enlistment

can specify which notifications should be

generated.

Resource Manager

(RM)

Container for the transactions

and the data on which they

operate.

Provides an interface for clients to read

and write the data, typically on a database.

Transaction Manager

(TM)

Container of all transactions

that are part of the associated

resource managers. An instance

of a log, it knows about all

transaction states but not their

data.

Provides an infrastructure through

which clients and resource managers

can communicate, and provides and

coordinates recovery operations after a

crash. Clients use the TM for transactions,

RMs use the TM for enlistments.

EXPERIMENT: Listing Transaction Managers

Windows ships with a built-in tool called Ktmutil.exe that allows you to see ongoing

transactions as well as registered transaction managers on the system (and force the

outcome of ongoing transactions). In this experiment, we will use it to display the trans-

action managers typically seen on a Windows machine.

Start an elevated command prompt and type:

Ktmutil.exe list tms

Here’s an example of output on a typical Windows Vista system:

C:\Windows\system32>ktmutil list tms

TmGuid TmLogPath

-------------------------------------- --

{0f69445a-6a70-11db-8eb3-806e6f6e6963} \SystemRoot\System32\Config\TxR\{250834B7-750C-

 494d-BDC3-DA86B6E2101B}.TM

{0f694463-6a70-11db-8eb3-985e31beb686} \Device\HarddiskVolume3\Windows\

 ServiceProfiles\NetworkService\ntuser.dat

 {0f694461-6a70-11db-8eb3-985e31beb686}.TM

{0f694467-6a70-11db-8eb3-985e31beb686} \Device\HarddiskVolume3\Windows\ServiceProfiles\

 LocalService\ntuser.dat{0f694465-6a70-11db-8eb3-

 985e31beb686}.TM

{7697f183-6b73-11dc-9bbd-00197edc55d8} \Device\HarddiskVolume3\Users\Bob\ntuser.dat

 {0f69446d-6a70-11db-8eb3-985e31beb686}.TM

{7697f187-6b73-11dc-9bbd-00197edc55d8} \Device\HarddiskVolume3\Users\Bob\AppData\Local\

 Microsoft\Windows\UsrClass.dat{7697f185-6b73-

 11dc-9bbd-00197edc55d8}.TM

242 Windows Internals, Fifth Edition

{cf7234df-39e3-11dc-bdce-00188bdd5f49} \Device\HarddiskVolume2\$Extend\$RmMetadata\

 $TxfLog\$TxfLog::KtmLog

{cf7234e6-39e3-11dc-bdce-00188bdd5f49} \Device\HarddiskVolume3\$Extend\$RmMetadata\

 $TxfLog\$TxfLog::KtmLog

Hotpatch Support

Rebooting a machine to apply the latest patches can mean significant downtime for a server,

which is why Windows supports a run-time method of patching, called a hot patch (or simply

hotpatch), in contrast to a cold patch, which requires a reboot. Hotpatching doesn’t simply

allow files to be overwritten during execution; instead it includes a complex series of opera-

tions that can be requested (and combined). These operations are listed in Table 3-24.

TABLE 3-24 Hotpatch Operations

Operation Meaning Usage

Rename Image Replacing a DLL that is on the

disk, and currently used by

other applications, or replacing

a driver that is on the disk and

is currently loaded by the kernel

When an entire library in user mode

needs to be replaced, the kernel can

detect which processes and services are

referencing it, unload them, and then

update the DLL and restart the programs

and services (this is done through the

restart manager). When an entire driver

needs to be replaced, the kernel can

unload the driver (the driver requires

an unload routine), update it, and then

reload it.

Object Swap Atomically renaming an

object in the object directory

namespace

When a file (typically a known DLL) needs

to be renamed atomically and behind

the back of any applications that may

be using it (so that they can start using

the new file immediately, using the old

handle).

Patch Function Code Replacing the code of one or

more functions inside an image

file with another version

If a DLL or driver can’t be replaced or

renamed during run time, functions in

the image can be directly patched. A

hotpatch DLL that contains the newer

code is jumped to whenever an older

function is called.

Refresh System DLL Reload the memory mapped

section object for Ntdll.dll

The system native library, Ntdll.dll, is

only loaded once during boot-up and

then simply duplicated into the address

space of every new process. If it has been

hotpatched, the system must refresh this

section to load the newer version.

 Chapter 3 System Mechanisms 243

Although hotpatches utilize internal kernel mechanisms, their actual implementation is no

different from coldpatches. The patch is delivered through Windows Update, typically as an

executable file containing a program called Update.exe that will perform the extraction of

the patch and the update process. For hotpatches, however, an additional hotpatch file, con-

taining the .hp extension, will be present. This file contains a special PE header called .HOT1.

This header will contain a data structure describing the various patch descriptors present

inside the file. Each of these descriptors identifies the offset in the original file that needs to

be patched, a validation mechanism (which can include a simple comparison of the old data,

a checksum, or a hash), and the new data to be patched. The kernel will parse these descrip-

tors and apply the appropriate modifications. In the case of a protected process (see Chapter

5 for more information on processes) and other digitally signed images, the hotpatch must

also be digitally signed, in order to prevent “fake” patches from being performed to sensitive

files or processes.

Note Because the hotpatch file also includes the original data, the hotpatching mechanism can

also be used to uninstall a patch at run time.

Compile-time hotpatching support works by adding 7 dummy bytes to the beginning of

each function—4 are considered part of the end of the previous function, and 2 are part of

the function prolog; that is, the function’s beginning. Here’s an example of a function that was

built with hotpatching information:

lkd> u NtCreateFile - 5

nt!FsRtlTeardownPerFileContexts+0x169:

82227ea5 90 nop

82227ea6 90 nop

82227ea7 90 nop

82227ea8 90 nop

82227ea9 90 nop

nt!NtCreateFile:

82227eaa 8bff mov edi,edi

Notice that the five nop instructions don’t actually do anything, while the mov edi, edi at the

beginning of the NtCreateFile function are also essentially meaningless—no actual state-

changing operation takes place. Because 7 bytes are available, the NtCreateFile prologue can

be transformed into a short jump to the buffer of five instructions available, which are then

converted to a near jump instruction to the patched routine. Here’s NtCreateFile after having

been hotpatched:

lkd> u NtCreateFile - 5

nt!FsRtlTeardownPerFileContexts+0x169:

82227ea5 e93d020010 jmp nt_patch!NtCreateFile (922280e7)

nt!NtCreateFile:

82227ea5 ebfc jmp nt!FsRtlTeardownPerFileContexts+0x169 (82227ea5)

244 Windows Internals, Fifth Edition

This method allows only the addition of 2 bytes to each function by jumping into the previ-

ous function’s alignment padding that it would most likely have at its end anyway.

There are some limitations to the hotpatching functionality:

Patches that third-party applications such as security software might block or that

might be incompatible with the operation of third-party applications

Patches that modify a file’s export table or import table

Patches that change data structures, fix infinite loops, or contain inline assembly code

Kernel Patch Protection

Some 32-bit device drivers modify the behavior of Windows in unsupported ways. For exam-

ple, they patch the system call table to intercept system calls or patch the kernel image in

memory to add functionality to specific internal functions.

To prevent these kinds of changes, Windows implements Kernel Patch Protection (KPP), also

referred to as PatchGuard. KPP’s job on the system is similar to what its name implies—it

attempts to deter common techniques for patching the system, or hooking it. Table 3-25 lists

which components or structures are protected and for what purpose.

TABLE 3-25 Components Protected by KPP

Component Legitimate Usage Potential Malicious Usage

Ntoskrnl.exe, Hal.dll, Ci.dll,

Kdcom.dll, Pshed.dll,

Clfs.sys, Ndis.sys, Tcpip.sys

Kernel, HAL, and their

dependencies. Lower layer of

network stack.

Patching code in the kernel and/or

HAL to subvert normal operation and

behavior. Patching Ndis.sys to silently

add backdoors on open ports.

Global Descriptor Table

(GDT)

CPU hardware protection for

the implementation of ring

privilege levels (Ring 0 vs.

Ring 3).

Ability to set up a “callgate,” a CPU

mechanism through which user (Ring

3) code could perform operations

with kernel privileges (Ring 0).

Interrupt Descriptor Table

(IDT)

Table read by the CPU to deliver

interrupt vectors to the correct

handling routine.

Malicious drivers could intercept file

I/Os directly at the interrupt level,

or hook page faults to hide contents

of memory. Rootkits could hook the

INT2E handler to hook all system

calls from a single point.

System Service Descriptor

Table (SSDT)

Table containing the array of

pointers for each system call

handler.

Rootkits could modify the output or

input of calls from user mode and

hide processes, files, or registry keys.

Processor Machine State

Registers (MSRs)

LSTAR MSR is used to set the

handler of the SYSENTER and/or

SYSCALL instructions used for

system calls.

LSTAR could be overwritten by a

malicious driver to provide a single

hook for all system calls performed

on the system.

 Chapter 3 System Mechanisms 245

Component Legitimate Usage Potential Malicious Usage

KdpStub, KiDebugRoutine,
KdpTrap function pointers

Used for run-time configuration

of where exceptions should be

delivered, based on whether

a kernel debugger is remotely

connected to the machine.

Value of the pointers could be

overwritten by a malicious rootkit

to take control of the system at

predetermined times and perform

invisible background tasks.

PsInvertedFunctionTable Cache of exception directories

used on x64, allowing quick

mapping between code where

an exception happened and its

handler.

Could be used to take control of

the system during the exception

handling of unrelated system code,

including KPP’s own exception

code responsible for detecting

modifications in the first place.

Kernel stacks Store function arguments, the

call stack (where a function

should return), and variables.

A driver could allocate memory

on the side, set it as a kernel stack

for a thread, and then manipulate

its contents to redirect calls and

parameters.

Object types Definitions for the various

objects (such as processes and

files) that the system supports

through the object manager.

Could be used as part of a technique

called DKOM (Direct Kernel Object

Modification) to modify system

behavior, for example by hooking

the object callbacks that each object

type has registered.

Other Code related to bug-checking

the system during a KPP

violation, executing the DPCs

and timers associated with KPP,

and more.

By modifying certain parts of the

system used by KPP, malicious drivers

could attempt to silence, ignore, or

otherwise cripple KPP.

Note Because certain 64-bit Intel processors implement a slightly different feature set of the

x64 architecture, the kernel needs to perform run-time code patching to work around the lack

of a prefetch instruction. KPP can deter kernel patching even on these processors, by exempting

those specific patches from detection. Additionally, because of hypervisor (Hyper-V) enlighten-

ments (more information on the hypervisor is provided earlier in this chapter), certain functions

in the kernel are patched at boot time, such as the swap context routine. These patches are

also allowed by very explicit checks to make sure they are known patches to the hypervisor-

 enlightened versions.

When KPP detects a change in any of the structures mentioned (as well as

some other internal consistency checks), it crashes the system with code

0x109—CRITICAL_STRUCTURE_CORRUPTION.

246 Windows Internals, Fifth Edition

For third-party developers who used techniques that KPP deters, the following supported

techniques can be used:

File system minifilters (see Chapter 7 for more information on these) to hook all file

operations, including loading image files and DLLs, that can be intercepted to purge

malicious code on-the-fly or block reading of known bad executables.

Registry filter notifications (see Chapter 4 for more information on these notifications)

to hook all registry operations. Security software can block modification of critical parts

of the registry, as well as heuristically determine malicious software by registry access

patterns or known bad registry keys.

Process notifications (see Chapter 5 for more information on these notifications).

Security software can monitor the execution and termination of all processes and

threads on the system, as well as DLLs being loaded or unloaded. With the enhanced

notifications added in Windows Vista SP1 and Windows Server 2008, they also have the

ability to block process launch.

Object manager filtering (explained in the object manager section earlier). Security

software can remove certain access rights being granted to processes and/or threads to

defend their own utilities against certain operations.

Code Integrity

Code integrity is a Windows mechanism that authenticates the integrity and source of

executable images (such as applications, DLLs, or drivers) by validating a digital certificate

contained within the image’s resources. This mechanism works in conjunction with system

policies, defining how signing should be enforced. One of these policies is the Kernel Mode
Code Signing (KMCS) policy, which requires that kernel-mode code be signed with a valid

Authenticode certificate rooted by one of several recognized code signing authorities, such

as Verisign or Thawte.

To address backward compatibility concerns, the KMCS policy is only fully enforced on 64-bit

machines, as those drivers have to be recompiled recently in order to run on that Windows

architecture. This in turn implies that a company or individual is still responsible for maintain-

ing the driver and is able to sign it. On 32-bit machines, however, many older devices ship

with outdated drivers, possibly from out-of-business companies, so signing those drivers

would sometimes be unfeasible. Figure 3-36 shows the warning displayed on 64-bit Windows

machines that attempt to load an unsigned driver.

 Chapter 3 System Mechanisms 247

Note Windows also has a second driver signing policy, part of the Plug and Play manager. This

policy is applied solely to Plug and Play drivers, and unlike the kernel-mode code signing policy,

it can be configured to allow unsigned Plug and Play drivers (but not on 64-bit systems, where

the KMCS policy takes precedence). See Chapter 7 for more information on the Plug and Play

manager.

FIGURE 3-36 Warning when attempting to install an unsigned 64-bit driver

Note that even on 32-bit machines, code integrity will generate a warning when such a driver

is loaded, which can be viewed in the Event Log.

Note Protected Media Path applications can also query the kernel for its integrity state, which

includes information on whether or not unsigned 32-bit drivers are loaded on the system. In such

scenarios, they are allowed to disable protected, high-definition media playback as a method to

ensure the security and reliability of the encrypted stream.

The code integrity mechanism doesn’t stop at driver load time, however. Stronger measures

also exist to authenticate per-page image contents for executable pages. This requires using

a special flag while signing the driver binary and will generate a catalog with the crypto-

graphic hash of every executable page on which the driver will reside. (Pages are a unit of

protection on the CPU; for more information, see Chapter 9.) This method allows for detec-

tion of modification of an existing driver, which may either happen at run time by another

driver or through a page file or hibernation file attack (in which the contents of memory are

edited on the disk and then reloaded into memory). Generating such per-page hashes is also

a requirement for the new filtering model, as well as Protected Media Path components.

248 Windows Internals, Fifth Edition

Conclusion

In this chapter, we’ve examined the key base system mechanisms on which the Windows

executive is built. In the next chapter, we’ll look at three important mechanisms involved

with the management infrastructure of Windows: the registry, services, and Windows

Management Instrumentation (WMI).

 249

Chapter 4

Management Mechanisms

This chapter describes four fundamental mechanisms in the Windows operating system that

are critical to its management and configuration:

The registry

Services

Windows Management Instrumentation

Windows Diagnostics Infrastructure

The Registry

The registry plays a key role in the configuration and control of Windows systems. It is the

repository for both systemwide and per-user settings. Although most people think of the

registry as static data stored on the hard disk, as you’ll see in this section, the registry is also a

window into various in-memory structures maintained by the Windows executive and kernel.

We’ll start by providing you with an overview of the registry structure, a discussion of the

data types it supports, and a brief tour of the key information Windows maintains in the

registry. Then we’ll look inside the internals of the configuration manager, the executive com-

ponent responsible for implementing the registry database. Among the topics we’ll cover are

the internal on-disk structure of the registry, how Windows retrieves configuration informa-

tion when an application requests it, and what measures are employed to protect this critical

system database.

Viewing and Changing the Registry

In general, you should never have to edit the registry directly: application and system set-

tings stored in the registry that might require manual changes should have a correspond-

ing user interface to control their modification. However, as you’ve already seen a number

of times in this book, some advanced and debug settings have no editing user interface.

Therefore, both graphical user interface (GUI) and command-line tools are included with

Windows to enable you to view and modify the registry.

Windows comes with one main GUI tool for editing the registry—Regedit.exe—and a num-

ber of command-line registry tools. Reg.exe, for instance, has the ability to import, export,

back up, and restore keys, as well as to compare, modify, and delete keys and values.

250 Windows Internals, Fifth Edition

 Regini.exe, on the other hand, allows you to import registry data based on text files that con-

tain ASCII or Unicode configuration data.

Registry Usage

There are four principal times that configuration data is read:

During the initial boot process, the boot loader reads the list of boot device drivers to

load into memory before initializing the kernel.

During the kernel boot process, the kernel reads settings that specify which device driv-

ers to load and how various subsystems—such as the memory manager and process

manager—configure themselves and tune system behavior.

During logon, Explorer and other Windows components read per-user preferences

from the registry, including network drive-letter mappings, desktop wallpaper, screen

saver, menu behavior, and icon placement.

During their startup, applications read systemwide settings, such as a list of optionally

installed components and licensing data, as well as per-user settings that might include

menu and toolbar placement and a list of most-recently accessed documents.

However, the registry can be read at other times as well, such as in response to a modifica-

tion of a registry value or key. Some applications monitor their configuration settings in the

registry and read updated settings when they see a change. In general, however, on an idle

system there should be no registry activity.

The registry is commonly modified in the following cases:

Although not a modification, the registry’s initial structure and many default settings

are defined by a prototype version of the registry that ships on the Windows setup

media that is copied onto a new installation.

Application setup utilities create default application settings and settings that reflect

installation configuration choices.

During the installation of a device driver, the Plug and Play system creates settings in

the registry that tell the I/O manager how to start the driver and creates other set-

tings that configure the driver’s operation. (See Chapter 7 for more information on how

device drivers are installed.)

When you change application or system settings through user interfaces, the changes

are often stored in the registry.

Note Sadly, some applications poll the registry looking for changes when they should be using

the registry’s RegNotifyChangeKey function, which puts a thread to sleep until a change occurs to

the area of the registry in which they’re interested.

 Chapter 4 Management Mechanisms 251

Registry Data Types

The registry is a database whose structure is similar to that of a disk volume. The registry

contains keys, which are similar to a disk’s directories, and values, which are comparable to

files on a disk. A key is a container that can consist of other keys (subkeys) or values. Values,

on the other hand, store data. Top-level keys are root keys. Throughout this section, we’ll use

the words subkey and key interchangeably.

Both keys and values borrow their naming convention from the file system. Thus, you can

uniquely identify a value with the name mark, which is stored in a key called trade, with

the name trade\mark. One exception to this naming scheme is each key’s unnamed value.

Regedit displays the unnamed value as (Default).

Values store different kinds of data and can be one of the 14 types listed in Table 4-1. The

majority of registry values are REG_DWORD, REG_BINARY, or REG_SZ. Values of type REG_

DWORD can store numbers or Booleans (on/off values); REG_BINARY values can store num-

bers larger than 32 bits or raw data such as encrypted passwords; REG_SZ values store strings

(Unicode, of course) that can represent elements such as names, file names, paths, and types.

TABLE 4-1 Registry Value Types

Value Type Description

REG_NONE No value type.

REG_SZ Fixed-length Unicode string.

REG_EXPAND_SZ Variable-length Unicode string that can have

embedded environment variables.

REG_BINARY Arbitrary-length binary data.

REG_DWORD 32-bit number.

REG_DWORD_LITTLE_ENDIAN 32-bit number, with low byte first. This is equivalent

to REG_DWORD.

REG_DWORD_BIG_ENDIAN 32-bit number, with high byte first.

REG_LINK Unicode symbolic link.

REG_MULTI_SZ Array of Unicode NULL-terminated strings.

REG_RESOURCE_LIST Hardware resource description.

REG_FULL_RESOURCE_DESCRIPTOR Hardware resource description.

REG_RESOURCE_REQUIREMENTS_LIST Resource requirements.

REG_QWORD 64-bit number.

REG_QWORD_LITTLE_ENDIAN 64-bit number, with low byte first. This is equivalent

to REG_QWORD.

The REG_LINK type is particularly interesting because it lets a key transparently point to another

key or value. When you traverse the registry through a link, the path searching continues at the

target of the link. For example, if \Root1\Link has a REG_LINK value of \Root2\RegKey, and

RegKey contains the value RegValue, two paths identify RegValue: \Root1\Link\RegValue

252 Windows Internals, Fifth Edition

and \Root2\RegKey\RegValue. As explained in the next section, Windows prominently uses

 registry links: three of the six registry root keys are links to subkeys within the three nonlink

root keys.

Registry Logical Structure

You can chart the organization of the registry via the data stored within it. There are six root

keys (and you can’t add new root keys or delete existing ones) that store information, as

shown in Table 4-2.

TABLE 4-2 The Six Root Keys

Root Key Description

HKEY_CURRENT_USER Stores data associated with the currently logged-on user

HKEY_USERS Stores information about all the accounts on the machine

HKEY_CLASSES_ROOT Stores file association and Component Object Model (COM)

object registration information

HKEY_LOCAL_MACHINE Stores system-related information

HKEY_PERFORMANCE_DATA Stores performance information

HKEY_CURRENT_CONFIG Stores some information about the current hardware profile

Why do root-key names begin with an H? Because the root-key names represent Windows

handles (H) to keys (KEY). As mentioned in Chapter 1, HKLM is an abbreviation used for

HKEY_LOCAL_MACHINE. Table 4-3 lists all the root keys and their abbreviations. The follow-

ing sections explain in detail the contents and purpose of each of these six root keys.

TABLE 4-3 Registry Root Keys

Root Key Abbreviation Description Link

HKEY_CURRENT_USER HKCU Points to the user

profile of the currently

logged-on user

Subkey under HKEY_USERS

corresponding to currently

logged-on user

HKEY_USERS HKU Contains subkeys for all

loaded user profiles

Not a link

HKEY_CLASSES_ROOT HKCR Contains file association

and COM registration

information

Not a direct link; rather,

a merged view of HKLM\

SOFTWARE\Classes and

HKEY_USERS\<SID>\Classes

HKEY_LOCAL_MACHINE HKLM Placeholder—contains

other keys

Not a link

HKEY_CURRENT_CONFIG HKCC Current hardware

profile

HKLM\SYSTEM\

CurrentControlSet\

Hardware Profiles\Current

HKEY_PERFORMANCE_

DATA

HKPD Performance counters Not a link

 Chapter 4 Management Mechanisms 253

HKEY_CURRENT_USER

The HKCU root key contains data regarding the preferences and software configuration of

the locally logged-on user. It points to the currently logged-on user’s user profile, located on

the hard disk at \Users\<username>\Ntuser.dat. (See the section “Registry Internals” later in

this chapter to find out how root keys are mapped to files on the hard disk.) Whenever a user

profile is loaded (such as at logon time or when a service process runs under the context of

a specific user name), HKCU is created to map to the user’s key under HKEY_USERS. Table 4-4

lists some of the subkeys under HKCU.

TABLE 4-4 HKEY_CURRENT_USER Subkeys

Subkey Description

AppEvents Sound/event associations

Console Command window settings (for example, width, height, and

colors)

Control Panel Screen saver, desktop scheme, keyboard, and mouse settings, as

well as accessibility and regional settings

Environment Environment variable definitions

EUDC Information on end-user defined characters

Identities Windows Mail account information

Keyboard Layout Keyboard layout setting (for example, U.S. or U.K.)

Network Network drive mappings and settings

Printers Printer connection settings

Session Information Number of taskbar-visible programs running in the current session

Software User-specific software preferences

UNICODE Program Groups User-specific Start menu group definitions

Volatile Environment Volatile environment variable definitions

HKEY_USERS

HKU contains a subkey for each loaded user profile and user class registration database

on the system. It also contains a subkey named HKU\.DEFAULT that is linked to the profile

for the system (which is used by processes running under the local system account and is

described in more detail in the section “Services” later in this chapter). This is the profile used

by Winlogon, for example, so that changes to the desktop background settings in that profile

will be implemented on the logon screen. When a user logs on to a system for the first time

and her account does not depend on a roaming domain profile (that is, the user’s profile is

obtained from a central network location at the direction of a domain controller), the system

creates a profile for her account that’s based on the profile stored in %SystemDrive%\Users\

Default.

254 Windows Internals, Fifth Edition

The location under which the system stores profiles is defined by the registry value HKLM\

Software\Microsoft\Windows NT\CurrentVersion\ProfileList\ProfilesDirectory, which is by

default set to %SystemDrive%\Users. The ProfileList key also stores the list of profiles present

on a system. Information for each profile resides under a subkey that has a name reflecting

the security identifier (SID) of the account to which the profile corresponds. (See Chapter 6

for more information on SIDs.) Data stored in a profile’s key includes the time of the last load

of the profile in the ProfileLoadTimeLow and ProfileLoadTimeHigh values, the binary repre-

sentation of the account SID in the Sid value, and the path to the profile’s on-disk hive (which

is described later in this chapter in the “Hives” section) in the ProfileImagePath directory.

Windows shows the list of profiles stored on a system in the User Profiles management dialog

box, shown in Figure 4-1, which you access by clicking Settings in the User Profiles section of

the Advanced Tab in the System Control Panel applet.

FIGURE 4-1 The User Profiles management dialog box

EXPERIMENT: Watching Profile Loading and Unloading

You can see a profile load into the registry and then unload by using the Runas com-

mand to launch a process in an account that’s not currently logged on to the machine.

While the new process is running, run Regedit and note the loaded profile key under

HKEY_USERS. After terminating the process, perform a refresh in Regedit by pressing

the F5 key and the profile should no longer be present.

 Chapter 4 Management Mechanisms 255

HKEY_CLASSES_ROOT

HKCR consists of three types of information: file extension associations, COM class registra-

tions, and the virtualized registry root for User Account Control (UAC). (See Chapter 6 for

more information on UAC.) A key exists for every registered file name extension. Most keys

contain a REG_SZ value that points to another key in HKCR containing the association infor-

mation for the class of files that extension represents.

For example, HKCR\.xls would point to information on Microsoft Office Excel files in a key

such as HKCU\Excel.Sheet.8. Other keys contain configuration details for COM objects regis-

tered on the system. The UAC virtualized registry is located in the VirtualStore key, which is

not related to the other kinds of data stored in HKCR.

The data under HKEY_CLASSES_ROOT comes from two sources:

The per-user class registration data in HKCU\SOFTWARE\Classes (mapped to the file on

hard disk \Users\<username>\AppData\Local\Microsoft\Windows\Usrclass.dat)

Systemwide class registration data in HKLM\SOFTWARE\Classes

The reason that there is a separation of per-user registration data from systemwide reg-

istration data is so that roaming profiles can contain these customizations. It also closes a

security hole: a nonprivileged user cannot change or delete keys in the systemwide version

HKEY_CLASSES_ROOT, and thus cannot affect the operation of applications on the system.

Nonprivileged users and applications can read systemwide data and can add new keys and

values to systemwide data (which are mirrored in their per-user data), but they can modify

existing keys and values in their private data only.

HKEY_LOCAL_MACHINE

HKLM is the root key that contains all the systemwide configuration subkeys: BCD,

COMPONENTS, HARDWARE, SAM, SECURITY, SOFTWARE, and SYSTEM.

The HKLM\BCD subkey contains the Boot Configuration Database (BCD) information loaded

as a registry hive. This database replaces the Boot.ini file that was used before Windows Vista

and adds greater flexibility and isolation of per-installation boot configuration data. (For

more information on the BCD, see Chapter 13.)

Each entry in the BCD, such as a Windows installation or the command-line settings for the

installation, is stored in the Objects subkey, either as an object referenced by a GUID (in the

case of a boot entry) or as a numeric subkey called an element. Most of these raw elements

are documented in the BCD reference in the MSDN Library and define various command-line

settings or boot parameters. The value associated with each element subkey corresponds to

the value for its respective command-line flag or boot parameter.

256 Windows Internals, Fifth Edition

The BCDEdit command-line utility allows you to modify the BCD using symbolic names for

the elements and objects. It also provides extensive help for all the boot options available;

unfortunately, it only works locally. Because the registry can be opened remotely as well as

imported from a hive file, you can modify or read the BCD of a remote computer by using

the Registry Editor. The following experiment shows you how to enable kernel debugging by

using the Registry Editor.

EXPERIMENT: Offline or Remote BCD Editing

In this experiment, you will enable debugging through editing the BCD inside the

 registry. For the purposes of this example, you’ll be editing the local copy of the BCD,

but the point of this technique is that it can be used on any BCD hive. Follow these

steps to add the /DEBUG command-line flag:

 1. Open the Registry Editor, and then navigate to the HKLM\BCD00000000 key.

Expand every subkey so that the numerical identifiers of each “Elements” key are

fully visible.

 Chapter 4 Management Mechanisms 257

 2. Identify the boot entry for your Windows installation by locating Description ele-

ments, which have an ID of 0x12000004. In the Element value of those subkeys,

you should find one called Windows Vista or Windows Server 2008. If you have

more than one Windows installation on your machine, you need to check the

0x22000002 subkey, which contains the path, such as \Windows.

 3. Now that you’ve found the correct GUID for your Windows installation, create a

new subkey under the Elements subkey for that GUID and call it 0x260000a0. If

this subkey already exists, simply navigate to it.

 4. If you had to create the subkey, now create a binary value called Element inside it.

 5. Edit the value and set it to 01. This will enable kernel-mode debugging. Here’s

what these changes should look like:

Note The 0x12000004 ID corresponds to BcdLibraryString_ApplicationPath, while the

0x22000002 ID corresponds to BcdOSLoaderString_SystemRoot. Finally, the ID we added,

0x260000a0, corresponds to BcdOSLoaderBoolean_KernelDebuggerEnabled. These values are

documented in the BCD reference in MSDN Library.

The HKLM\COMPONENTS subkey contains information pertinent to the Component

Based Servicing (CBS) stack. This stack contains various files and resources that are part

of a Windows installation image (used by the Automated Installation Kit or the OEM

Preinstallation Kit) or an active installation. The CBS APIs that exist for servicing purposes

258 Windows Internals, Fifth Edition

use the information located in this key to identify installed components and their configura-

tion information. This information is used whenever components are installed, updated, or

removed either individually (called units) or in groups (called packages).

The HKLM\HARDWARE subkey maintains descriptions of the system’s hardware and all hard-

ware device-to-driver mappings. The Device Manager tool (which is available by running

System from Control Panel and then clicking Device Manager) lets you view registry hard-

ware information that it obtains by simply reading values out of the HARDWARE key.

EXPERIMENT: Fun with the Hardware Key

You can fool your coworkers or friends into thinking that you have the latest and great-

est processor by modifying the value of the ProcessorNameString value under HKLM\

HARDWARE\DESCRIPTION\System\CentralProcessor\0. The System item in Control

Panel displays the ProcessorNameString value on the main page. Changes you make to

other values in that key, such as the ~MHz value, do not have any effect on what the

System item displays, however, because the system caches many of the values for use

by functions that applications use to query the system’s processor capabilities.

HKLM\SAM holds local account and group information, such as user passwords, group defi-

nitions, and domain associations. Windows Server systems that are operating as domain

controllers store domain accounts and groups in Active Directory, a database that stores

domainwide settings and information. (Active Directory isn’t described in this book.) By

default, the security descriptor on the SAM key is configured so that even the administrator

account doesn’t have access.

HKLM\SECURITY stores systemwide security policies and user-rights assignments. HKLM\SAM

is linked into the SECURITY subkey under HKLM\SECURITY\SAM. By default, you can’t view

the contents of HKLM\SECURITY or HKLM\SAM\SAM because the security settings of those

keys allow access only by the System account. (System accounts are discussed in greater

detail later in this chapter.) You can change the security descriptor to allow read access to

administrators, or you can use PsExec to run Regedit in the local system account if you want

to peer inside. However, that glimpse won’t be very revealing because the data is undocu-

mented and the passwords are encrypted with one-way mapping—that is, you can’t deter-

mine a password from its encrypted form.

HKLM\SOFTWARE is where Windows stores systemwide configuration information not

needed to boot the system. Also, third-party applications store their systemwide settings

here, such as paths to application files and directories and licensing and expiration date

information.

 Chapter 4 Management Mechanisms 259

HKLM\SYSTEM contains the systemwide configuration information needed to boot the

system, such as which device drivers to load and which services to start. Because this infor-

mation is critical to starting the system, Windows also maintains a copy of part of this infor-

mation, called the last known good control set, under this key. The maintenance of a copy

allows an administrator to select a previously working control set in the case that configura-

tion changes made to the current control set prevent the system from booting. For details on

when Windows declares the current control set “good,” see the section “Accepting the Boot

and Last Known Good” later in this chapter.

HKEY_CURRENT_CONFIG

HKEY_CURRENT_CONFIG is just a link to the current hardware profile, stored under HKLM\

SYSTEM\CurrentControlSet\Hardware Profiles\Current. Hardware profiles allow an administra-

tor to configure variations to the base system driver settings. Although the underlying pro-

file might change from boot to boot, applications can always reference the currently active

profile through this key. Hardware profile management is managed through the Hardware

Profiles dialog box that you access by clicking Settings in the Hardware Profiles section on

the Hardware page of the Control Panel’s System item. During the boot process, Winload will

prompt you to specify which profile it should use if there is more than one.

HKEY_PERFORMANCE_DATA

The registry is the mechanism to access performance counter values on Windows, whether

those are from operating system components or server applications. One of the side benefits

of providing access to the performance counters via the registry is that remote performance

monitoring works “for free” because the registry is easily accessible remotely through the

normal registry APIs.

You can access the registry performance counter information directly by opening a special

key named HKEY_PERFORMANCE_DATA and querying values beneath it. You won’t find this

key by looking in the Registry Editor; this key is available only programmatically through the

Windows registry functions, such as RegQueryValueEx. Performance information isn’t actually

stored in the registry; the registry functions use this key to locate the information from per-

formance data providers.

You can also access performance counter information by using the Performance Data Helper

(PDH) functions available through the Performance Data Helper API (Pdh.dll). Figure 4-2

shows the components involved in accessing performance counter information.

260 Windows Internals, Fifth Edition

High-
performance
data provider

object

High-
performance
data provider

object

High-
performance
data provider

object

System
performance

DLL

Performance
extension

DLL

Windows Management Instrumentation

High-performance provider interface

Registry DLL providerAdvapi32.dll PerfLib

Pdh.dll

Custom
application A

Custom
application B

Performance
tool

FIGURE 4-2 Registry performance counter architecture

Transactional Registry (TxR)

Before Windows Vista, there was no easy, guaranteed way to perform transactional opera-

tions on the registry, and it was even harder to link those operations with other, nonregistry

operations, such as file operations. Thanks to the Kernel Transaction Manager (KTM; for more

information see the section about the KTM in Chapter 3), developers now have access to a

straightforward API that allows them to implement robust error-recovery capabilities when

performing registry operations.

Three APIs support transactional modification of the registry: RegCreateKeyTransacted,
RegOpenKeyTransacted, and RegDeleteKeyTransacted. These new routines take the same

parameters as their nontransacted analogues, except that a new transaction handle

parameter is added. A developer supplies this handle after calling the KTM function

CreateTransaction.

After a transacted create or open operation, all subsequent registry operations, such as creat-

ing, deleting, or modifying values inside the key, will also be transacted. However, operations

on the subkeys of a transacted key will not be automatically transacted, which is why the

third API, RegDeleteKeyTransacted exists. It allows the transacted deletion of subkeys, which

RegDeleteKeyEx would not normally do.

Data for these transacted operations is written to log files using the common logging file

system (CLFS) services, similar to other KTM operations. Until the transaction itself is commit-

ted or rolled back (both of which might happen programmatically or as a result of a power

failure or system crash, depending on the state of the transaction), the keys, values, and other

 Chapter 4 Management Mechanisms 261

registry modifications performed with the transaction handle will not be visible to external

applications through the nontransacted APIs. Also, transactions are isolated from each other;

modifications made inside one transaction will not be visible from inside other transactions

or outside the transaction until the transaction is committed.

Note A nontransactional writer will abort a transaction in case of conflict—for example, if a

value was created inside a transaction and later, while the transaction is still active, a nontransac-

tional writer tries to create a value under the same key. The nontransactional operation will suc-

ceed and all operations in the conflicting transaction will be aborted.

The isolation level (the “I” in ACID) implemented by TxR resource managers is read-commit,

which means that changes become available to other readers (transacted or not) immediately

after being committed. This mechanism is important for people who are familiar with trans-

actions in databases, where the isolation level is predictable-reads (or cursor-stability, as it is

called in database literature). With a predictable-reads isolation level, after you read a value

inside a transaction, subsequent reads will give you back the same data. Read-commit does

not make this guarantee. One of the consequences is that registry transactions can’t be used

for “atomic” increment/decrement operations on a registry value.

To make permanent changes to the registry, the application that has been using the trans-

action handle must call the KTM function CommitTransaction. (If the application decides to

undo the changes, such as during a failure path, it can call the RollbackTransaction API.) The

changes will then be visible through the regular registry APIs as well.

Note If a transaction handle created with CreateTransaction is closed before the transaction is

committed (and there are no other handles open to that transaction), the system will roll back

that transaction.

Apart from using the CLFS support provided by the KTM, TxR also stores its own internal log

files in the %SystemRoot%\System32\Config\Txr folder on the system volume; these files have

a .regtrans-ms extension and are hidden by default. Even if there are no third-party applica-

tions installed, it is likely that your system will contain files in this directory because Windows

Update and Component Based Servicing take advantage of TxR to atomically write data to

the registry to avoid system failure or inconsistent component data in the case of an incom-

plete update. In fact, if you take a look at some of the transaction files, you should be able to

see the key names on which the transaction was being performed.

There is a global registry resource manager (RM) that services all the hives that are mounted

at boot time. For every hive that is mounted explicitly, an RM is created. For applications that

use registry transactions, the creation of an RM is transparent because KTM ensures that all

RMs taking part in the same transaction are coordinated in the two-phase commit/abort

protocol. For the global registry RM, the CLFS log files are stored, as mentioned earlier, inside

262 Windows Internals, Fifth Edition

System32\Config\Txr. For other hives, they are stored alongside the hive (in same directory).

They are hidden and follow the same naming convention, ending in .regtrans-ms. The log file

names are prefixed with the name of the hive to which they correspond.

Monitoring Registry Activity

Because the system and applications depend so heavily on configuration settings to guide

their behavior, system and application failures can result from changing registry data or

security. When the system or an application fails to read settings that it assumes it will always

be able to access, it may not function properly, display error messages that hide the root

cause, or even crash. It’s virtually impossible to know what registry keys or values are mis-

configured without understanding how the system or the application that’s failing is access-

ing the registry. In such situations, the Process Monitor utility from Windows Sysinternals

(www.microsoft.com/technet/sysinternals) might provide the answer.

Process Monitor lets you monitor registry activity as it occurs. For each registry access,

Process Monitor shows you the process that performed the access; the time, type, and result

of the access; and the stack of the thread at the moment of the access. This information is

useful for seeing how applications and the system rely on the registry, discovering where

applications and the system store configuration settings, and troubleshooting problems

related to applications having missing registry keys or values. Process Monitor includes

advanced filtering and highlighting so that you can zoom in on activity related to specific

keys or values or to the activity of particular processes.

Process Monitor Internals

Process Monitor relies on a device driver that it extracts from its executable image at run

time and then starts. Its first execution requires that the account running it have the Load

Driver privilege as well as the Debug privilege; subsequent executions in the same boot ses-

sion require only the Debug privilege because once loaded, the driver remains resident.

EXPERIMENT: Viewing Registry Activity on an Idle System

Because the registry implements the RegNotifyChangeKey function that applications

can use to request notification of registry changes without polling for them, when you

launch Process Monitor on a system that’s idle you should not see repetitive accesses to

the same registry keys or values. Any such activity identifies a poorly written application

that unnecessarily negatively affects a system’s overall performance.

Run Process Monitor, and after several seconds examine the output log to see whether

you can spot polling behavior. Right-click on an output line associated with polling, and

then choose Process Properties from the context menu to view details about the pro-

cess performing the activity.

 Chapter 4 Management Mechanisms 263

EXPERIMENT: Using Process Monitor to Locate Application

Registry Settings

In some troubleshooting scenarios, you might need to determine where in the reg-

istry the system or an application stores particular settings. This experiment has you

use Process Monitor to discover the location of Notepad’s settings. Notepad, like most

Windows applications, saves user preferences—such as word-wrap mode, font and font

size, and window position—across executions. By having Process Monitor watching

when Notepad reads or writes its settings, you can identify the registry key in which the

settings are stored. Here are the steps for doing this:

 1. Have Notepad save a setting that you can easily search for in a Process Monitor

trace. You can do this by running Notepad, setting the font to Times New Roman,

and then exiting Notepad.

 2. Run Process Monitor. Open the filter dialog box, and the Process Name filter,

and enter notepad.exe as the string to match. This step specifies that Process

Monitor will log only activity by the notepad.exe process.

 3. Run Notepad again, and after it has launched stop Process Monitor’s event cap-

ture by toggling Capture Events on the Process Monitor File menu.

 4. Scroll to the top line of the resultant log and select it.

 5. Press Ctrl+F to open a Find dialog box, and search for times new. Process

Monitor should highlight a line like the one shown in the following screen that

represents Notepad reading the font value from the registry. Other operations in

the immediate vicinity should relate to other Notepad settings.

 6. Finally, double-click the highlighted line. Process Monitor will execute Regedit

(if it’s not already running) and cause it to navigate to and select the Notepad-

referenced registry value.

264 Windows Internals, Fifth Edition

Process Monitor Troubleshooting Techniques

Two basic Process Monitor troubleshooting techniques are effective for discovering the cause

of registry-related application or system problems:

Look at the last thing in the Process Monitor trace that the application did before it

failed. This action might point to the problem.

Compare a Process Monitor trace of the failing application with a trace from a working

system.

To follow the first approach, run Process Monitor and then run the application. At the point

the failure occurs, go back to Process Monitor and stop the logging (by pressing Ctrl+E). Then

go to the end of the log and find the last operations performed by the application before it

failed (or crashed, hung, or whatever). Starting with the last line, work your way backward,

examining the files, registry keys, or both that were referenced—often this will help pinpoint

the problem.

Use the second approach when the application fails on one system but works on another.

Capture a Process Monitor trace of the application on the working and failing systems, and

save the output to a log file. Then open the good and bad log files with Microsoft Excel

(accepting the defaults in the Import wizard), and delete the first three columns. (If you don’t

delete the first three columns, the comparison will show every line as different because the

first three columns contain information that is different from run to run, such as the time and

the process ID.) Finally, compare the resulting log files. (You can do this by using WinDiff,

which is included in the Windows SDK).

Entries in a Process Monitor trace that have values of NAME NOT FOUND or ACCESS DENIED

in the Result column are ones that you should investigate. NAME NOT FOUND is reported

when an application attempts to read from a registry key or value that doesn’t exist. In many

cases, a missing key or value is innocuous because a process that fails to read a setting from

the registry simply falls back on default values. In some cases, however, applications expect

to find values for which there is no default and will fail if they are missing.

Access-denied errors are a common source of registry-related application failures and

occur when an application doesn’t have permission to access a key the way that it wants.

Applications that do not validate registry operation results or perform proper error recovery

will fail.

A common result string that might appear suspicious is BUFFER OVERFLOW. It does not

indicate a buffer-overflow exploit in the application that receives it. Instead, it’s used by the

configuration manager to inform an application that the buffer it specified to store a regis-

try value is too small to hold the value. Application developers often take advantage of this

behavior to determine how large a buffer to allocate to store a value. They first perform a

registry query with a 0-length buffer that returns a buffer-overflow error and the length of

 Chapter 4 Management Mechanisms 265

the data it attempted to read. The application then allocates a buffer of the indicated size

and rereads the value. You should therefore see operations that return BUFFER OVERFLOW

repeat with a successful result.

In one example of Process Monitor being used to troubleshoot a real problem, it saved a

user from doing a complete reinstall of his Windows system. The symptom was that Internet

Explorer would hang on startup if the user did not first manually dial the Internet connection.

This Internet connection was set as the default connection for the system, so starting Internet

Explorer should have caused an automatic dial-up to the Internet (because Internet Explorer

was set to display a default home page upon startup).

An examination of a Process Monitor log of Internet Explorer startup activity, going back-

ward from the point in the log where Internet Explorer hung, showed a query to a key under

HKCU\Software\Microsoft\RAS Phonebook. The user reported that he had previously unin-

stalled the dialer program associated with the key and manually created the dial-up con-

nection. Because the dial-up connection name did not match that of the uninstalled dialer

program, it appeared that the key had not been deleted by the dialer’s uninstall program

and that it was causing Internet Explorer to hang. After the key was deleted, Internet Explorer

functioned as expected.

Logging Activity in Unprivileged Accounts or During Logon/Logoff

A common application-failure scenario is that an application works when run in an account

that has Administrative group membership but not when run in the account of an unprivi-

leged user. As described earlier, executing Process Monitor requires security privileges that

are not normally assigned to standard user accounts, but you can capture a trace of applica-

tions executing in the logon session of an unprivileged user by using the Runas command to

execute Process Monitor in an administrative account.

If a registry problem relates to account logon or logoff, you’ll also have to take special steps

to be able to use Process Monitor to capture a trace of those phases of a logon session.

Applications that are run in the local system account are not terminated when a user logs

off, and you can take advantage of that fact to have Process Monitor run through a logoff

and subsequent logon. You can launch Process Monitor in the local system account either by

using the At command that’s built into Windows and specifying the /interactive flag, or by

using the Sysinternals PsExec utility, like this:

psexec –i 0 –s –d c:\procmon.exe

The –i switch directs PsExec to have Process Monitor’s window appear on the interactive

console, the –s switch has PsExec run Process Monitor in the local system account, and the

–d switch has PsExec launch Process Monitor and exit without waiting for Process Monitor to

terminate. When you execute this command, the instance of Process Monitor that executes

266 Windows Internals, Fifth Edition

will survive logoff and reappear on the desktop when you log back on, having captured the

registry activity of both actions.

Another way to monitor registry activity during the logon, logoff, boot, or shutdown pro-

cess is to use the Process Monitor log boot feature, which you can enable by selecting Log

Boot on the Options menu. The next time you boot the system, the Process Monitor device

driver logs registry activity from early in the boot to %SystemRoot%\Procmon.pml. It will

continue logging to that file until disk space runs out, the system shuts down, or you run

Process Monitor. A log file storing a registry trace of startup, logon, logoff, and shutdown on

a Windows system will typically be between 50 and 150 MB in size.

Registry Internals

In this section, you’ll find out how the configuration manager—the executive subsystem that

implements the registry—organizes the registry’s on-disk files. We’ll examine how the con-

figuration manager manages the registry as applications and other operating system compo-

nents read and change registry keys and values. We’ll also discuss the mechanisms by which

the configuration manager tries to ensure that the registry is always in a recoverable state,

even if the system crashes while the registry is being modified.

Hives

On disk, the registry isn’t simply one large file but rather a set of discrete files called hives.
Each hive contains a registry tree, which has a key that serves as the root or starting point of

the tree. Subkeys and their values reside beneath the root. You might think that the root keys

displayed by the Registry Editor correlate to the root keys in the hives, but such is not the

case. Table 4-5 lists registry hives and their on-disk file names. The path names of all hives

except for user profiles are coded into the configuration manager. As the configuration man-

ager loads hives, including system profiles, it notes each hive’s path in the values under the

HKLM\SYSTEM\CurrentControlSet\Control\Hivelist subkey, removing the path if the hive is

unloaded. It creates the root keys, linking these hives together to build the registry structure

you’re familiar with and that the Registry Editor displays.

You’ll notice that some of the hives listed in Table 4-5 are volatile and don’t have associated

files. The system creates and manages these hives entirely in memory; the hives are therefore

temporary. The system creates volatile hives every time it boots. An example of a volatile

hive is the HKLM\HARDWARE hive, which stores information about physical devices and the

devices’ assigned resources. Resource assignment and hardware detection occur every time

the system boots, so not storing this data on disk is logical.

 Chapter 4 Management Mechanisms 267

TABLE 4-5 On-Disk Files Corresponding to Paths in the Registry

Hive Registry Path Hive File Path

HKEY_LOCAL_MACHINE\BCD00000000 \Boot\BCD

HKEY_LOCAL_MACHINE\COMPONENTS %SystemRoot%\System32\Config\Components

HKEY_LOCAL_MACHINE\SYSTEM %SystemRoot%\System32\Config\System

HKEY_LOCAL_MACHINE\SAM %SystemRoot%\System32\Config\Sam

HKEY_LOCAL_MACHINE\SECURITY %SystemRoot%\System32\Config\Security

HKEY_LOCAL_MACHINE\SOFTWARE %SystemRoot%\System32\Config\Software

HKEY_LOCAL_MACHINE\HARDWARE Volatile hive

HKEY_USERS\<SID of local service account> %SystemRoot%\ServiceProfiles\LocalService\

Ntuser.dat

HKEY_USERS\<SID of network service

account>

%SystemRoot%\ServiceProfiles\NetworkService\

NtUser.dat

HKEY_USERS\<SID of username> \Users\<username>\Ntuser.dat

HKEY_USERS\<SID of username>_Classes \Users\<username>\AppData\Local\Microsoft\

Windows\Usrclass.dat

HKEY_USERS\.DEFAULT %SystemRoot%\System32\Config\Default

EXPERIMENT: Manually Loading and Unloading Hives

Regedit has the ability to load hives that you can access through its File menu. This

capability can be useful in troubleshooting scenarios where you want to view or edit

a hive from an unbootable system or a backup medium. In this experiment, you’ll use

Regedit to load a version of the HKLM\SYSTEM hive that Windows Setup creates during

the install process.

 1. Hives can be loaded only underneath HKLM or HKU, so open Regedit, select

HKLM, and choose Load Hive from the Regedit File menu.

 2. Navigate to the %SystemRoot%\System32\Config directory in the Load Hive dia-

log box, select System.sav, and open it. When prompted, enter Test as the name

of the key under which it will load.

 3. Open the newly created HKLM\Test key, and explore the contents of the hive.

 4. Open HKLM\SYSTEM\CurrentControlSet\Control\Hivelist, and locate the entry

\Registry\Machine\Test, which demonstrates how the configuration manager lists

loaded hives in the Hivelist key.

 5. Select HKLM\Test, and then choose Unload Hive from the Regedit File menu to

unload the hive.

268 Windows Internals, Fifth Edition

Hive Size Limits

In some cases, hive sizes are limited. For example, Windows places a limit on the size of the

HKLM\SYSTEM hive. It does so because Winload reads the entire HKLM\SYSTEM hive into

physical memory near the start of the boot process when virtual memory paging is not

enabled. Winload also loads Ntoskrnl and boot device drivers into physical memory, so it

must constrain the amount of physical memory assigned to HKLM\SYSTEM. (See Chapter 13

for more information on the role Winload plays during the startup process.) On 32-bit sys-

tems, Winload allows the hive to be as large as 400 MB or one-half the amount of physical

memory on the system, whichever is lower. On x64 systems, the lower bound is 1.5 GB. On

Itanium systems, it is 32 MB.

To avoid using too much virtual memory for registry hives at one time, especially in the case

of a Terminal Server, which must have the per-user registry settings of dozens of users avail-

able for reading and writing, the configuration manager on 32-bit versions of Windows does

not use paged pool and instead relies on the memory manager’s memory-mapping func-

tions to map into system memory only the portions of registry hives that it’s accessing at any

given point in time. This allows the total size of loaded hives not to constrain the scalability

of Terminal Services. Because 64-bit systems have ample virtual address space, and because

of the additional bookkeeping that memory-mapping requires, 64-bit Windows uses paged

pool instead.

A special type of key known as a symbolic link makes it possible for the configuration man-

ager to link keys to organize the registry. A symbolic link is a key that redirects the configu-

ration manager to another key. Thus, the key HKLM\SAM is a symbolic link to the key at

the root of the SAM hive. Symbolic links are created by specifying the REG_CREATE_LINK

parameter to RegCreateKey or RegCreateKeyEx. Internally, the configuration manager will cre-

ate a REG_LINK value called SymbolicLinkValue, which will contain the path to the target key.

Because this value is a REG_LINK instead of a REG_SZ, it will not be visible with Regedit—it is,

however, part of the on-disk registry hive.

EXPERIMENT: Looking at Hive Handles

The configuration manager opens hives by using the kernel handle table (described in

Chapter 3) so that it can access hives from any process context. Using the kernel handle

table is an efficient alternative to approaches that involve using drivers or executive

components to access from the System process only handles that must be protected

from user processes. You can use Process Explorer to see the hive handles, which will

be displayed as being opened in the System process. Select the System process, and

then select Handles from the Lower Pane View menu entry on the View menu. Sort by

handle type, and scroll until you see the hive files, as shown in the following screen.

 Chapter 4 Management Mechanisms 269

Hive Structure

The configuration manager logically divides a hive into allocation units called blocks in much

the same way that a file system divides a disk into clusters. By definition, the registry block

size is 4096 bytes (4 KB). When new data expands a hive, the hive always expands in block-

granular increments. The first block of a hive is the base block.

The base block includes global information about the hive, including a signature—regf—that

identifies the file as a hive, updated sequence numbers, a time stamp that shows the last time

a write operation was initiated on the hive, information on registry repair or recovery per-

formed by Winload, the hive format version number, a checksum, and the hive file’s internal

file name (for example, \Device\HarddiskVolume1\WINDOWS\SYSTEM32\CONFIG\SAM). We’ll

clarify the significance of the updated sequence numbers and time stamp when we describe

how data is written to a hive file.

The hive format version number specifies the data format within the hive. The configura-

tion manager uses hive format version 1.3 (this version improved searching by caching the

first four characters of the name inside the cell index structure for quick lookups) for all hives

except for System and Software for roaming profile compatibility with Windows 2000. For

System and Software hives, it uses version 1.5 because of the later format’s optimizations for

large values (values larger than 1 MB are supported) and searching (instead of caching the

first four characters of a name, a hash of the entire name is used to reduce collisions).

Windows organizes the registry data that a hive stores in containers called cells. A cell can

hold a key, a value, a security descriptor, a list of subkeys, or a list of key values. A field at the

270 Windows Internals, Fifth Edition

beginning of a cell’s data describes the data’s type. Table 4-6 describes each cell data type

in detail. A cell’s header is a field that specifies the cell’s size. When a cell joins a hive and the

hive must expand to contain the cell, the system creates an allocation unit called a bin.

A bin is the size of the new cell rounded up to the next block or page boundary, whichever is

higher. The system considers any space between the end of the cell and the end of the bin to

be free space that it can allocate to other cells. Bins also have headers that contain a signa-

ture, hbin, and a field that records the offset into the hive file of the bin and the bin’s size.

TABLE 4-6 Cell Data Types

Data Type Description

Key cell A cell that contains a registry key, also called a key node. A key cell

contains a signature (kn for a key, kl for a link node), the time stamp

of the most recent update to the key, the cell index of the key’s parent

key cell, the cell index of the subkey-list cell that identifies the key’s

subkeys, a cell index for the key’s security descriptor cell, a cell index

for a string key that specifies the class name of the key, and the name

of the key (for example, CurrentControlSet). It also saves cached

information such as the number of subkeys under the key, as well as

the size of the largest key name, value name, value data, and class

name of the subkeys under this key.

Value cell A cell that contains information about a key’s value. This cell includes

a signature (kv), the value’s type (for example, REG_ DWORD or REG_

BINARY), and the value’s name (for example, Boot-Execute). A value

cell also contains the cell index of the cell that contains the value’s

data.

Subkey-list cell A cell composed of a list of cell indexes for key cells that are all

subkeys of a common parent key.

Value-list cell A cell composed of a list of cell indexes for value cells that are all

values of a common parent key.

Security-descriptor cell A cell that contains a security descriptor. Security-descriptor cells

include a signature (ks) at the head of the cell and a reference

count that records the number of key nodes that share the security

descriptor. Multiple key cells can share security-descriptor cells.

By using bins, instead of cells, to track active parts of the registry, Windows minimizes some

management chores. For example, the system usually allocates and deallocates bins less

frequently than it does cells, which lets the configuration manager manage memory more

efficiently. When the configuration manager reads a registry hive into memory, it reads the

whole hive, including empty bins, but it can choose to discard them later. When the system

adds and deletes cells in a hive, the hive can contain empty bins interspersed with active

bins. This situation is similar to disk fragmentation, which occurs when the system creates and

deletes files on the disk. When a bin becomes empty, the configuration manager joins to the

empty bin any adjacent empty bins to form as large a contiguous empty bin as possible. The

configuration manager also joins adjacent deleted cells to form larger free cells. (The con-

figuration manager shrinks a hive only when bins at the end of the hive become free. You can

 Chapter 4 Management Mechanisms 271

compact the registry by backing it up and restoring it using the Windows RegSaveKey and

RegReplaceKey functions, which are used by the Windows Backup utility.)

The links that create the structure of a hive are called cell indexes. A cell index is the offset

of a cell into the hive file minus the size of the base block. Thus, a cell index is like a pointer

from one cell to another cell that the configuration manager interprets relative to the start of

a hive. For example, as you saw in Table 4-6, a cell that describes a key contains a field speci-

fying the cell index of its parent key; a cell index for a subkey specifies the cell that describes

the subkeys that are subordinate to the specified subkey. A subkey-list cell contains a list of

cell indexes that refer to the subkey’s key cells. Therefore, if you want to locate, for example,

the key cell of subkey A, whose parent is key B, you must first locate the cell containing key

B’s subkey list using the subkey-list cell index in key B’s cell. Then you locate each of key B’s

subkey cells by using the list of cell indexes in the subkey-list cell. For each subkey cell, you

check to see whether the subkey’s name, which a key cell stores, matches the one you want

to locate, in this case, subkey A.

The distinction between cells, bins, and blocks can be confusing, so let’s look at an example

of a simple registry hive layout to help clarify the differences. The sample registry hive file

in Figure 4-3 contains a base block and two bins. The first bin is empty, and the second bin

contains several cells. Logically, the hive has only two keys: the root key Root, and a subkey

of Root, Sub Key. Root has two values, Val 1 and Val 2. A subkey-list cell locates the root key’s

subkey, and a value-list cell locates the root key’s values. The free spaces in the second bin

are empty cells. Figure 4-3 doesn’t show the security cells for the two keys, which would be

present in a hive.

FIGURE 4-3 Internal structure of a registry hive

Figure 4-4 shows an example of the Disk Probe utility (Dskprobe.exe) examining the first bin

in a SYSTEM hive. Notice the bin’s signature, hbin, at the top right side of the image. Look

beneath the bin signature and you’ll see the signature nk. This signature is the signature of a

key cell (kn). The signature displays backward because of the way x86 computers store data.

The cell is the SYSTEM hive’s root cell, which the configuration manager has named internally

CMI-CreateHive{C619BFE8-791A-4B77-922B-F114AB570920}, as specified by the name that

follows the nk signature.

272 Windows Internals, Fifth Edition

Bin signature

Key cell signature

Name

FIGURE 4-4 Binary contents of first bin in the SYSTEM hive

To optimize searches for both values and subkeys, the configuration manager sorts subkey-

list cells alphabetically. The configuration manager can then perform a binary search when it

looks for a subkey within a list of subkeys. The configuration manager examines the subkey

in the middle of the list, and if the name of the subkey the configuration manager is looking

for is alphabetically before the name of the middle subkey, the configuration manager knows

that the subkey is in the first half of the subkey list; otherwise, the subkey is in the second half

of the subkey list. This splitting process continues until the configuration manager locates

the subkey or finds no match. Value-list cells aren’t sorted, however, so new values are always

added to the end of the list.

Cell Maps

The configuration manager doesn’t access a hive’s image on disk every time a registry access

occurs. Instead, the configuration manager maps portions of a hive into memory as it needs

to access them. It uses the cache manager’s file mapping functions to map 16-KB views into

the hive files. (See Chapter 10 for more information on the cache manager.) To prevent hive

mapping from consuming all the cache manager’s address range, the configuration manager

tries to keep no more than 256 views of a hive mapped at any given point in time by unmap-

ping least-recently-used (LRU) views when it reaches that limit. The configuration manager

still uses the paged pool to store various data structures (including the LRU list of views).

Note The configuration manager will store a block in the paged pool instead of mapping it if

the block exceeds 256 KB in size.

 Chapter 4 Management Mechanisms 273

If hives never grew, the configuration manager could perform all its registry management on

the in-memory version of a hive as if the hive were a file. Given a cell index, the configuration

manager could calculate the location in memory of a cell simply by adding the cell index,

which is a hive file offset, to the base of the in-memory hive image. Early in the system boot,

this process is exactly what Winload does with the SYSTEM hive: Winload reads the entire

SYSTEM hive into memory as a read-only hive and adds the cell indexes to the base of the in-

memory hive image to locate cells. Unfortunately, hives grow as they take on new keys and

values, which means the system must allocate paged pool memory to store the new bins that

contain added keys and values. Thus, the paged pool that keeps the registry data in memory

isn’t necessarily contiguous.

EXPERIMENT: Viewing Hive Paged Pool Usage

There are no administrative-level tools that show you the amount of paged pool that

registry hives, including user profiles, are consuming on Windows. However, the !reg
dumppool kernel debugger command shows you not only how many pages of the

paged pool each loaded hive consumes but also how many of the pages store volatile

and nonvolatile data. The command prints the total hive memory usage at the end of

the output. (The command shows only the last 32 characters of a hive’s name.)

kd> !reg dumppool

dumping hive at e20d66a8 (a\Microsoft\Windows\UsrClass.dat)

 Stable Length = 1000

 1/1 pages present

 Volatile Length = 0

dumping hive at e215ee88 (ettings\Administrator\ntuser.dat)

 Stable Length = f2000

 242/242 pages present

 Volatile Length = 2000

 2/2 pages present

dumping hive at e13fa188 (\SystemRoot\System32\Config\SAM)

 Stable Length = 5000

 5/5 pages present

 Volatile Length = 0

...

274 Windows Internals, Fifth Edition

EXPERIMENT: Viewing Hive Memory Usage

You can view statistics on hive memory usage, including its stable (on-disk) size and

nonvolatile size, the number of active views, and the number of views that are locked

into memory, using the !reg hivelist command (note that the line output wraps):

--

| HiveAddr |Stable Length|Stable Map|Volatile Length|Volatile Map|MappedViews|PinnedVi

ews|U(Cnt)| BaseBlock | FileName

--

| 9b106a30 | 24000 | 9b106aa8 | 0 | 00000000 | 10 |

0 | 0| 9b19d000 | files\NetworkService\ntuser.dat

| 9b1d3008 | 23000 | 9b1d3080 | 0 | 00000000 | 9 |

0 | 0| 9b1d2000 | rofiles\LocalService\ntuser.dat

| 9c1a8008 | 374000 | 9c0b3000 | 2000 | 9c1a81bc | 174 |

0 | 0| 9c080000 | :\Users\Abby\ntuser.dat

| 9cfdba30 | 219000 | 9ce77000 | 1000 | 9cfdbbe4 | 103 |

0 | 0| 9c0f8000 | \Microsoft\Windows\UsrClass.dat

...

In the preceding output, the Abby account’s profile hive (the full path of which,

\Users\Abby\ntuser.dat, is truncated in the output) has 174 mapped views and is

approximately 3.45 MB in size (0x374000 in decimal). The !reg viewlist command will

dump the mapped views of the hive you specify. Here’s the output of that command

when executed for the UsrClass.dat hive that was printed as the last hive of the !reg
hivelist command’s output:

lkd> !reg viewlist 9cfdba30

 0 Pinned Views ; PinViewListHead = 9cfdbd5c 9cfdbd5c

 103 Mapped Views ; LRUViewListHead = 91d3e058 91d3bd60

--

| ViewAddr |FileOffset| Size |ViewAddress| Bcb | LRUViewList |

PinViewList | UseCount |

--

| 91d3e058 | 1000 | 3000 | 9de81000 | 8611dd11 | 975c6870 9cfdbd54 |

91d3e060 91d3e060 | 0 |

| 975c6870 | 138000 | 4000 | 9dfb8000 | 8611dd91 | 96756278 91d3e058 |

975c6878 975c6878 | 0 |

The output shows the addresses of the two views that the hivelist command reported

for the hive in the ViewAddress column. Using the debugger’s db command to dump

the contents of memory at the address of the first view reveals that it maps a base

block of the hive, recognizable with its hbin signature.

 Chapter 4 Management Mechanisms 275

lkd> db 9de81000

9de81000 68 62 69 6e 00 00 00 00-00 10 00 00 00 00 00 00 hbin............

9de81010 00 00 00 00 56 b1 b8 fe-2b 61 c8 01 00 00 00 00 V...+a......

9de81020 78 ff ff ff 6e 6b 2c 00-10 63 0b c6 89 58 c8 01 x...nk,..c...X..

9de81030 00 00 00 00 e0 06 00 00-56 00 00 00 00 00 00 00 V.......

9de81040 a0 af 01 00 ff ff ff ff-00 00 00 00 ff ff ff ff

9de81050 28 01 00 00 ff ff ff ff-4c 00 00 00 00 00 00 00 (.......L.......

9de81060 00 00 00 00 00 00 00 00-00 00 00 00 36 00 00 00 6...

9de81070 53 2d 31 2d 35 2d 32 31-2d 34 30 34 37 36 30 39 S-1-5-21-4047609

To deal with noncontiguous memory addresses referencing hive data in memory, the con-

figuration manager adopts a strategy similar to what the Windows memory manager uses to

map virtual memory addresses to physical memory addresses. The configuration manager

employs a two-level scheme, which Figure 4-5 illustrates, that takes as input a cell index (that

is, a hive file offset) and returns as output both the address in memory of the block the cell

index resides in and the address in memory of the block the cell resides in. Remember that

a bin can contain one or more blocks and that hives grow in bins, so Windows always rep-

resents a bin with a contiguous region of memory. Therefore, all blocks within a bin occur

within the same cache manager view.

Cell index

Directory index Table index Byte offset

Hive’s cell map
directory

Target block
Cell map table

32 0

1023

0

0

Hive cell map directory pointer

511

Cell

FIGURE 4-5 Structure of a cell index

To implement the mapping, the configuration manager divides a cell index logically into

fields, in the same way that the memory manager divides a virtual address into fields.

Windows interprets a cell index’s first field as an index into a hive’s cell map directory. The

cell map directory contains 1024 entries, each of which refers to a cell map table that con-

tains 512 map entries. An entry in this cell map table is specified by the second field in the

276 Windows Internals, Fifth Edition

cell index. That entry locates the bin and block memory addresses of the cell. Not all bins are

necessarily mapped into memory, and if a cell lookup yields an address of 0, the configura-

tion manager maps the bin into memory, unmapping another on the mapping LRU list it

maintains, if necessary.

In the final step of the translation process, the configuration manager interprets the last field

of the cell index as an offset into the identified block to precisely locate a cell in memory.

When a hive initializes, the configuration manager dynamically creates the mapping tables,

designating a map entry for each block in the hive, and it adds and deletes tables from the

cell directory as the changing size of the hive requires.

The Registry Namespace and Operation

The configuration manager defines a key object object type to integrate the registry’s

namespace with the kernel’s general namespace. The configuration manager inserts a

key object named Registry into the root of the Windows namespace, which serves as the

entry point to the registry. Regedit shows key names in the form HKEY_LOCAL_MACHINE\

SYSTEM\CurrentControlSet, but the Windows subsystem translates such names into their

object namespace form (for example, \Registry\Machine\System\CurrentControlSet). When

the Windows object manager parses this name, it encounters the key object by the name of

Registry first and hands the rest of the name to the configuration manager. The configura-

tion manager takes over the name parsing, looking through its internal hive tree to find the

desired key or value. Before we describe the flow of control for a typical registry operation,

we need to discuss key objects and key control blocks. Whenever an application opens or cre-

ates a registry key, the object manager gives a handle with which to reference the key to the

application. The handle corresponds to a key object that the configuration manager allocates

with the help of the object manager. By using the object manager’s object support, the con-

figuration manager takes advantage of the security and reference-counting functionality that

the object manager provides.

For each open registry key, the configuration manager also allocates a key control block. A

key control block stores the name of the key, includes the cell index of the key node that the

control block refers to, and contains a flag that notes whether the configuration manager

needs to delete the key cell that the key control block refers to when the last handle for the

key closes. Windows places all key control blocks into a hash table to enable quick searches

for existing key control blocks by name. A key object points to its corresponding key control

block, so if two applications open the same registry key, each will receive a key object, and

both key objects will point to a common key control block.

 Chapter 4 Management Mechanisms 277

When an application opens an existing registry key, the flow of control starts with the appli-

cation specifying the name of the key in a registry API that invokes the object manager’s

name-parsing routine. The object manager, upon encountering the configuration manager’s

registry key object in the namespace, hands the path name to the configuration manager.

The configuration manager performs a lookup on the key control block hash table. If the

related key control block is found there, there’s no need for any further work; otherwise,

the lookup provides the configuration manager with the closest key control block to the

searched key, and the lookup continues by using the in-memory hive data structures to

search through keys and subkeys to find the specified key. If the configuration manager finds

the key cell, the configuration manager searches the key control block tree to determine

whether the key is open (by the same or another application). The search routine is opti-

mized to always start from the closest ancestor with a key control block already opened. For

example, if an application opens \Registry\Machine\Key1\Subkey2, and \Registry\Machine is

already opened, the parse routine uses the key control block of \Registry\Machine as a start-

ing point. If the key is open, the configuration manager increments the existing key control

block’s reference count. If the key isn’t open, the configuration manager allocates a new key

control block and inserts it into the tree. Then the configuration manager allocates a key

object, points the key object at the key control block, and returns control to the object man-

ager, which returns a handle to the application.

When an application creates a new registry key, the configuration manager first finds the key

cell for the new key’s parent. The configuration manager then searches the list of free cells

for the hive in which the new key will reside to determine whether cells exist that are large

enough to hold the new key cell. If there aren’t any free cells large enough, the configura-

tion manager allocates a new bin and uses it for the cell, placing any space at the end of the

bin on the free cell list. The new key cell fills with pertinent information—including the key’s

name—and the configuration manager adds the key cell to the subkey list of the parent key’s

subkey-list cell. Finally, the system stores the cell index of the parent cell in the new subkey’s

key cell.

The configuration manager uses a key control block’s reference count to determine when to

delete the key control block. When all the handles that refer to a key in a key control block

close, the reference count becomes 0, which denotes that the key control block is no longer

necessary. If an application that calls an API to delete the key sets the delete flag, the con-

figuration manager can delete the associated key from the key’s hive because it knows that

no application is keeping the key open.

278 Windows Internals, Fifth Edition

EXPERIMENT: Viewing Key Control Blocks

You can use the kernel debugger to list all the key control blocks allocated on a system

with the command !reg openkeys. Alternatively, if you want to view the key control

block for a particular open key, use !reg findkcb:

kd> !reg findkcb \registry\machine\software\microsoft

Found KCB = e1034d40 :: \REGISTRY\MACHINE\SOFTWARE\MICROSOFT

You can then examine a reported key control block with the !reg kcb command:

kd> !reg kcb e1034d40

Key : \REGISTRY\MACHINE\SOFTWARE\MICROSOFT

RefCount : 1f

Flags : CompressedName, Stable

ExtFlags :

Parent : 0xe1997368

KeyHive : 0xe1c8a768

KeyCell : 0x64e598 [cell index]

TotalLevels : 4

DelayedCloseIndex: 2048

MaxNameLen : 0x3c

MaxValueNameLen : 0x0

MaxValueDataLen : 0x0

LastWriteTime : 0x 1c42501:0x7eb6d470

KeyBodyListHead : 0xe1034d70 0xe1034d70

SubKeyCount : 137

ValueCache.Count : 0

KCBLock : 0xe1034d40

KeyLock : 0xe1034d40

The Flags field indicates that the name is stored in compressed form, and the

SubKeyCount field shows that the key has 137 subkeys.

Stable Storage

To make sure that a nonvolatile registry hive (one with an on-disk file) is always in a recover-

able state, the configuration manager uses log hives. Each nonvolatile hive has an associated

log hive, which is a hidden file with the same base name as the hive and a logN extension.

To ensure forward progress, the configuration manger uses a dual-logging scheme. There

are potentially two log files: .log1 and .log2. If, for any reason, .log1 was written but a failure

occurred while writing dirty data to the primary log file, the next time a flush happens, a

switch to .log2 will occur with the cumulative dirty data. If that fails as well, the cumulative

dirty data (the data in .log1 and the data that was dirtied in between) is saved in .log2. As a

consequence, .log1 will be used again next time around, until a successful write operation is

done to the primary log file. If no failure occurs, only .log1 is used.

 Chapter 4 Management Mechanisms 279

For example, if you look in your %SystemRoot%\System32\Config directory (and you have

the Show Hidden Files And Folders folder option selected), you’ll see System.log1, Sam.log1,

and other .log1 and .log2 files. When a hive initializes, the configuration manager allocates

a bit array in which each bit represents a 512-byte portion, or sector, of the hive. This array is

called the dirty sector array because an on bit in the array means that the system has modi-

fied the corresponding sector in the hive in memory and must write the sector back to the

hive file. (An off bit means that the corresponding sector is up to date with the in-memory

hive’s contents.)

When the creation of a new key or value or the modification of an existing key or value takes

place, the configuration manager notes the sectors of the hive that change in the hive’s dirty

sector array. Then the configuration manager schedules a lazy write operation, or a hive sync.

The hive lazy writer system thread wakes up 5 seconds after the request to synchronize the

hive and writes dirty hive sectors for all hives from memory to the hive files on disk. Thus,

the system flushes, at the same time, all the registry modifications that take place between

the time a hive sync is requested and the time the hive sync occurs. When a hive sync takes

place, the next hive sync will occur no sooner than 5 seconds later.

Note The RegFlushKey API’s name implies that the function only flushes modified data for a

specified key to disk, but it actually triggers a full registry flush, which has a major performance

impact on the system. For that reason and the fact that the registry automatically makes sure

that modified data is in stable storage within seconds, application programmers should avoid

using it.

If the lazy writer simply wrote all a hive’s dirty sectors to the hive file and the system crashed

in mid-operation, the hive file would be in an inconsistent (corrupted) and unrecoverable

state. To prevent such an occurrence, the lazy writer first dumps the hive’s dirty sector array

and all the dirty sectors to the hive’s log file, increasing the log file’s size if necessary. The lazy

writer then updates a sequence number in the hive’s base block and writes the dirty sectors

to the hive. When the lazy writer is finished, it updates a second sequence number in the

base block. Thus, if the system crashes during the write operations to the hive, at the next

reboot the configuration manager will notice that the two sequence numbers in the hive’s

base block don’t match. The configuration manager can update the hive with the dirty sec-

tors in the hive’s log file to roll the hive forward. The hive is then up to date and consistent.

The Windows Boot Loader also contains some code related to registry reliability. For

example, it can parse the System.log file before the kernel is loaded and do repairs to fix

consistency. Additionally, in certain cases of hive corruption (such as if a base block, bin, or

cell contains data that fails consistency checks) the configuration manager can reinitialize

corrupted data structures, possibly deleting subkeys in the process, and continue normal

operation. If it has to resort to self-healing operation, it pops up a system error dialog box

notifying the user.

280 Windows Internals, Fifth Edition

Note When you look at the hidden files on %SystemRoot%\System32\Config, you’ll also see a

file named System.sav. System.sav is the version of the SYSTEM hive that served as the initial copy

of the System hive and is what Windows Setup copied from the install media.

Registry Filtering

The configuration manager in the Windows kernel implements a powerful model of registry

filtering, which allows for monitoring of registry activity by tools such as Process Monitor.

When a driver uses the callback mechanism, it registers a callback function with the configu-

ration manager. The configuration manager executes the driver’s callback function before

and after the execution of registry system services so that the driver has full visibility and

control over registry accesses. Antivirus products that scan registry data for viruses or pre-

vent unauthorized processes from modifying the registry are other users of the callback

mechanism.

Registry callbacks are also associated with the concept of altitudes. Altitudes are a way for

different vendors to register a “height” on the registry filtering stack so that the order in

which the system calls each callback routine can be deterministic and correct. This avoids a

scenario in which an antivirus product would be scanning encrypted keys before an encryp-

tion product would run its own callback to decrypt them. With the Windows registry callback

model, both types of tools are assigned a base altitude corresponding to the type of filtering

they are doing—in this case, encryption versus scanning. Secondly, companies that create

these types of tools must register with Microsoft so that within their own group, they will not

collide with similar and/or competing products. The most up-to-date version of this list can

be downloaded from http://download.microsoft.com/download/9/c/5/9c5b2167-8017-4bae-
9fde-d599bac8184a/Alloc-Alt.xls.

The filtering model also includes the ability to either completely take over the processing of

the registry operation (bypassing the configuration manager and preventing it from handling

the request) or redirect the operation to a different operation (such as Wow64’s registry redi-

rection). Additionally, it is also possible to modify the output parameters as well as the return

value of a registry operation.

Finally, drivers can assign and tag per-key or per-operation driver-defined information for

their own purposes. A driver can create and assign this context data during a create or open

operation, which the configuration manager will remember and return during each subse-

quent operation on the key.

Registry Optimizations

The configuration manager makes a few noteworthy performance optimizations. First, vir-

tually every registry key has a security descriptor that protects access to the key. Storing a

 Chapter 4 Management Mechanisms 281

unique security-descriptor copy for every key in a hive would be highly inefficient, however,

because the same security settings often apply to entire subtrees of the registry. When the

system applies security to a key, the configuration manager checks a pool of the unique secu-

rity descriptors used within the same hive as the key to which new security is being applied,

and it shares any existing descriptor for the key, ensuring that there is at most one copy of

every unique security descriptor in a hive.

The configuration manager also optimizes the way it stores key and value names in a hive.

Although the registry is fully Unicode-capable and specifies all names using the Unicode con-

vention, if a name contains only ASCII characters, the configuration manager stores the name

in ASCII form in the hive. When the configuration manager reads the name (such as when

performing name lookups), it converts the name into Unicode form in memory. Storing the

name in ASCII form can significantly reduce the size of a hive.

To minimize memory usage, key control blocks don’t store full key registry path names.

Instead, they reference only a key’s name. For example, a key control block that refers to

\Registry\System\Control would refer to the name Control rather than to the full path. A fur-

ther memory optimization is that the configuration manager uses key name control blocks to

store key names, and all key control blocks for keys with the same name share the same key

name control block. To optimize performance, the configuration manager stores the key con-

trol block names in a hash table for quick lookups.

To provide fast access to key control blocks, the configuration manager stores frequently

accessed key control blocks in the cache table, which is configured as a hash table. When the

configuration manager needs to look up a key control block, it first checks the cache table.

Finally, the configuration manager has another cache, the delayed close table, that stores key

control blocks that applications close so that an application can quickly reopen a key it has

recently closed. The configuration manager removes the oldest key control blocks from the

delayed close table as it adds the most recently closed blocks to the table.

Services

Almost every operating system has a mechanism to start processes at system startup time

that provide services not tied to an interactive user. In Windows, such processes are called

services or Windows services, because they rely on the Windows API to interact with the sys-

tem. Services are similar to UNIX daemon processes and often implement the server side of

client/server applications. An example of a Windows service might be a Web server, because

it must be running regardless of whether anyone is logged on to the computer and it must

start running when the system starts so that an administrator doesn’t have to remember, or

even be present, to start it.

282 Windows Internals, Fifth Edition

Windows services consist of three components: a service application, a service control pro-

gram (SCP), and the service control manager (SCM). First, we’ll describe service applications,

service accounts, and the operations of the SCM. Then we’ll explain how auto-start services

are started during the system boot. We’ll also cover the steps the SCM takes when a service

fails during its startup and the way the SCM shuts down services.

Service Applications

Service applications, such as Web servers, consist of at least one executable that runs as a

Windows service. A user wanting to start, stop, or configure a service uses an SCP. Although

Windows supplies built-in SCPs that provide general start, stop, pause, and continue func-

tionality, some service applications include their own SCP that allows administrators to spec-

ify configuration settings particular to the service they manage.

Service applications are simply Windows executables (GUI or console) with additional code

to receive commands from the SCM as well as to communicate the application’s status back

to the SCM. Because most services don’t have a user interface, they are built as console

programs.

When you install an application that includes a service, the application’s setup program

must register the service with the system. To register the service, the setup program calls the

Windows CreateService function, a services-related function implemented in Advapi32.dll

(%SystemRoot%\System32\Advapi32.dll). Advapi32, the “Advanced API” DLL, implements all

the client-side SCM APIs.

When a setup program registers a service by calling CreateService, a message is sent to the

SCM on the machine where the service will reside. The SCM then creates a registry key for

the service under HKLM\SYSTEM\CurrentControlSet\Services. The Services key is the non-

volatile representation of the SCM’s database. The individual keys for each service define the

path of the executable image that contains the service as well as parameters and configura-

tion options.

After creating a service, an installation or management application can start the service via

the StartService function. Because some service-based applications also must initialize during

the boot process to function, it’s not unusual for a setup program to register a service as an

auto-start service, ask the user to reboot the system to complete an installation, and let the

SCM start the service as the system boots.

When a program calls CreateService, it must specify a number of parameters describing the

service’s characteristics. The characteristics include the service’s type (whether it’s a service

that runs in its own process rather than a service that shares a process with other services),

the location of the service’s executable image file, an optional display name, an optional

 Chapter 4 Management Mechanisms 283

account name and password used to start the service in a particular account’s security con-

text, a start type that indicates whether the service starts automatically when the system

boots or manually under the direction of an SCP, an error code that indicates how the system

should react if the service detects an error when starting, and, if the service starts automati-

cally, optional information that specifies when the service starts relative to other services.

The SCM stores each characteristic as a value in the service’s registry key. Figure 4-6 shows an

example of a service registry key.

FIGURE 4-6 Example of a service registry key

Table 4-7 lists all the service characteristics, many of which also apply to device drivers. (Not

every characteristic applies to every type of service or device driver.) If a service needs to

store configuration information that is private to the service, the convention is to create a

subkey named Parameters under its service key and then store the configuration information

in values under that subkey. The service then can retrieve the values by using standard regis-

try functions.

Note The SCM does not access a service’s Parameters subkey until the service is deleted, at

which time the SCM deletes the service’s entire key, including subkeys like Parameters.

284 Windows Internals, Fifth Edition

TABLE 4-7 Service and Driver Registry Parameters

Value Setting Value Name Value Setting Description

Start SERVICE_BOOT_START (0) Winload preloads the driver so that

it is in memory during the boot.

These drivers are initialized just

prior to SERVICE_ SYSTEM_START

drivers.

SERVICE_SYSTEM_START (1) The driver loads and initializes

during kernel initialization after

SERVICE_ BOOT_START drivers have

initialized.

SERVICE_AUTO_START (2) The SCM starts the driver or service

after the SCM process, Services.exe,

starts.

SERVICE_DEMAND_START (3) The SCM starts the driver or service

on demand.

SERVICE_DISABLED (4) The driver or service doesn’t load

or initialize.

ErrorControl SERVICE_ERROR_IGNORE (0) Any error the driver or service

returns is ignored and no warning

is logged or displayed.

SERVICE_ERROR_NORMAL (1) If the driver or service reports an

error, an event log message is

written.

SERVICE_ERROR_SEVERE (2) If the driver or service returns an

error and last known good isn’t

being used, reboot into last known

good; otherwise, continue the boot.

SERVICE_ERROR_CRITICAL (3) If the driver or service returns an

error and last known good isn’t

being used, reboot into last known

good; otherwise, stop the boot with

a blue screen crash.

Type SERVICE_KERNEL_DRIVER (1) Device driver.

SERVICE_FILE_SYSTEM_DRIVER (2) Kernel-mode file system driver.

SERVICE_ADAPTER (4) Obsolete.

SERVICE_RECOGNIZER_DRIVER (8) File system recognizer driver.

SERVICE_WIN32_OWN_PROCESS (16) The service runs in a process that

hosts only one service.

SERVICE_WIN32_SHARE_PROCESS

(32)

The service runs in a process that

hosts multiple services.

 Chapter 4 Management Mechanisms 285

Value Setting Value Name Value Setting Description

SERVICE_INTERACTIVE_PROCESS

(256)

The service is allowed to display

windows on the console and

receive user input, but only on

the console session (0) to prevent

interacting with user/console

applications on other sessions.

Group Group name The driver or service initializes

when its group is initialized.

Tag Tag number The specified location in a group

initialization order. This parameter

doesn’t apply to services.

ImagePath Path to service or driver executable

file

If ImagePath isn’t specified, the

I/O manager looks for drivers in

%SystemRoot%\System32\Drivers.

Required for Windows services.

DependOnGroup Group name The driver or service won’t load

unless a driver or service from the

specified group loads.

DependOnService Service name The service won’t load until after

the specified service loads. This

parameter doesn’t apply to device

drivers other than those with a start

type of SERVICE_AUTO_START or

SERVICE_DEMAND_START.

ObjectName Usually LocalSystem, but can be an

account name, such as .\Administrator

Specifies the account in which the

service will run. If ObjectName

isn’t specified, LocalSystem is the

account used. This parameter

doesn’t apply to device drivers.

DisplayName Name of service The service application shows

services by this name. If no name is

specified, the name of the service’s

registry key becomes its name.

Description Description of service Up to 32767-byte description of the

service.

FailureActions Description of actions the SCM

should take when service process

exits unexpectedly

Failure actions include restarting

the service process, rebooting the

system, and running a specified

program. This value doesn’t apply

to drivers.

FailureCommand Program command line The SCM reads this value only

if FailureActions specifies that a

program should execute upon

service failure. This value doesn’t

apply to drivers.

286 Windows Internals, Fifth Edition

Value Setting Value Name Value Setting Description

DelayedAutoStart 0 or 1 (TRUE or FALSE) Tells the SCM to start this service

after a certain delay has passed

since the SCM was starting. This

reduces the number of services

starting simultaneously during

startup.

PreshutdownTimeout Timeout in milliseconds This value allows services to

override the default preshutdown

notification timeout of 180

seconds. After this timeout, the

SCM will perform shutdown actions

on the service.

ServiceSidType SERVICE_SID_TYPE_NONE (0) Backward compatibility setting.

SERVICE_SID_TYPE_UNRESTRICTED (1) The SCM will add the service SID

as a group owner to the service

process’s token when it is created.

SERVICE_SID_TYPE_RESTRICTED (3) Same as above, but the SCM will

also add the service SID to the

restricted SID list of the service

process, along with the world,

logon, and write-restricted SIDs.

RequiredPrivileges List of privileges This value contains the list of

privileges that the service requires

to function. The SCM will compute

their union when creating the token

for the shared process related to

this service, if any.

Security Security descriptor This value contains the optional

security descriptor that defines

who has what access to the service

object created internally by the

SCM. If this value is omitted, the

SCM applies a default security

descriptor.

Notice that Type values include three that apply to device drivers: device driver, file system

driver, and file system recognizer. These are used by Windows device drivers, which also

store their parameters as registry data in the Services registry key. The SCM is responsible for

starting drivers with a Start value of SERVICE_AUTO_START or SERVICE_DEMAND_START, so

it’s natural for the SCM database to include drivers. Services use the other types, SERVICE_

WIN32_OWN_PROCESS and SERVICE_WIN32_SHARE_PROCESS, which are mutually exclusive.

 Chapter 4 Management Mechanisms 287

An executable that hosts more than one service specifies the SERVICE_WIN32_SHARE_

PROCESS type.

An advantage to having a process run more than one service is that the system resources

that would otherwise be required to run them in distinct processes are saved. A potential

disadvantage is that if one of the services of a collection running in the same process causes

an error that terminates the process, all the services of that process terminate. Also, another

limitation is that all the services must run under the same account (however, if a service takes

advantage of service security hardening mechanisms added in Windows Vista and Windows

Server 2008, it can limit some of its exposure to malicious attacks).

When the SCM starts a service process, the process immediately invokes the StartService-
CtrlDispatcher function. StartServiceCtrlDispatcher accepts a list of entry points into services,

one entry point for each service in the process. Each entry point is identified by the name of

the service the entry point corresponds to. After making a named pipe communications con-

nection to the SCM, StartServiceCtrlDispatcher sits in a loop (or for better performance, regis-

ters a notification) waiting for commands to come through the pipe from the SCM. The SCM

sends a service-start command each time it starts a service the process owns. For each start

command it receives, the StartServiceCtrlDispatcher function creates a thread, called a service

thread, to invoke the starting service’s entry point and implement the command loop for the

service. StartServiceCtrlDispatcher waits indefinitely for commands from the SCM and returns

control to the process’s main function only when all the process’s services have stopped,

allowing the service process to clean up resources before exiting.

A service entry point’s first action is to call the RegisterServiceCtrlHandler function. This func-

tion receives and stores a pointer to a function, called the control handler, which the service

implements to handle various commands it receives from the SCM. RegisterServiceCtrlHandler
doesn’t communicate with the SCM, but it stores the function in local process memory for

the StartServiceCtrlDispatcher function. The service entry point continues initializing the ser-

vice, which can include allocating memory, creating communications end points, and reading

private configuration data from the registry. A convention most services follow is to store

their parameters under a subkey of their service registry key, named Parameters.

While the entry point is initializing the service, it might periodically send status messages,

using the SetServiceStatus function, to the SCM indicating how the service’s startup is pro-

gressing. After the entry point finishes initialization, a service thread usually sits in a loop

waiting for requests from client applications. For example, a Web server would initialize a TCP

listen socket and wait for inbound HTTP connection requests.

A service process’s main thread, which executes in the StartServiceCtrlDispatcher function,

receives SCM commands directed at services in the process and invokes the target service’s

control handler function (stored by RegisterServiceCtrlHandler). SCM commands include stop,

288 Windows Internals, Fifth Edition

pause, resume, interrogate, and shutdown or application-defined commands. Figure 4-7

shows the internal organization of a service process. Pictured are the two threads that make

up a process hosting one service: the main thread and the service thread.

Main thread Service thread

2

3

3

1

4

FIGURE 4-7 Inside a service process

Service Accounts

The security context of a service is an important consideration for service developers as

well as for system administrators because it dictates what resources the process can access.

Unless a service installation program or administrator specifies otherwise, most services run

in the security context of the local system account (displayed sometimes as SYSTEM and other

times as LocalSystem). Two other built-in accounts are the network service and local service

accounts. These accounts have fewer capabilities than the local system account from a secu-

rity standpoint, and any built-in Windows service that does not require the power of the local

system account runs in the appropriate alternate service account. The following subsections

describe the special characteristics of these accounts.

The Local System Account

The local system account is the same account in which core Windows user-mode operat-

ing system components run, including the Session Manager (%SystemRoot%\System32\

Smss.exe), the Windows subsystem process (Csrss.exe), the Local Security Authority process

(%SystemRoot%\System32\Lsass.exe), and the Logon process (%SystemRoot%\System32\

Winlogon.exe). For more information on these latter two processes, see Chapter 6.

 Chapter 4 Management Mechanisms 289

From a security perspective, the local system account is extremely powerful—more power-

ful than any local or domain account when it comes to security ability on a local system. This

account has the following characteristics:

It is a member of the local administrators group. Table 4-8 shows the groups to which

the local system account belongs. (See Chapter 6 for information on how group mem-

bership is used in object access checks.)

It has the right to enable virtually every privilege (even privileges not normally granted

to the local administrator account, such as creating security tokens). See Table 4-9 for

the list of privileges assigned to the local system account. (Chapter 6 describes the use

of each privilege.)

Most files and registry keys grant full access to the local system account. (Even if they

don’t grant full access, a process running under the local system account can exercise

the take-ownership privilege to gain access.)

Processes running under the local system account run with the default user profile

(HKU\.DEFAULT). Therefore, they can’t access configuration information stored in the

user profiles of other accounts.

When a system is a member of a Windows domain, the local system account includes

the machine security identifier (SID) for the computer on which a service process is

running. Therefore, a service running in the local system account will be automatically

authenticated on other machines in the same forest by using its computer account.

(A forest is a grouping of domains.)

Unless the machine account is specifically granted access to resources (such as network

shares, named pipes, and so on), a process can access network resources that allow null

sessions—that is, connections that require no credentials. You can specify the shares

and pipes on a particular computer that permit null sessions in the NullSessionPipes

and NullSessionShares registry values under HKLM\SYSTEM\CurrentControlSet\

Services\lanmanserver\parameters.

TABLE 4-8 Service Account Group Membership

Local System Network Service Local Service

Everyone

Authenticated Users

Administrators

Everyone

Authenticated Users

Users

Local

Network Service

Service

Everyone

Authenticated Users

Users

Local

Local Service

Service

290 Windows Internals, Fifth Edition

TABLE 4-9 Service Account Privileges

Local System Network Service Local Service

SeAssignPrimaryToken

Privilege

SeAuditPrivilege

SeBackupPrivilege

SeChangeNotifyPrivilege

SeCreateGlobalPrivilege

SeCreatePagefilePrivilege

SeCreatePermanentPrivilege

SeCreateTokenPrivilege

SeDebugPrivilege

SeImpersonatePrivilege

SeIncreaseBasePriorityPrivilege

SeIncreaseQuotaPrivilege

SeLoadDriverPrivilege

SeLockMemoryPrivilege

SeManageVolumePrivilege

SeProfileSingleProcessPrivilege

SeRestorePrivilege

SeSecurityPrivilege

SeShutdownPrivilege

SeSystemEnvironmentPrivilege

SeSystemTimePrivilege

SeTakeOwnershipPrivilege

SeTcbPrivilege

SeUndockPrivilege (client only)

SeAssignPrimaryToken

Privilege

SeAuditPrivilege

SeChangeNotifyPrivilege

SeCreateGlobalPrivilege

SeImpersonatePrivilege

SeIncreaseQuotaPrivilege

SeShutdownPrivilege

SeUndockPrivilege (client only)

Privileges assigned to the

Everyone, Authenticated

Users, and Users groups

SeAssignPrimaryTokenPrivilege

SeAuditPrivilege

SeChangeNotifyPrivilege

SeCreateGlobalPrivilege

SeImpersonatePrivilege

SeIncreaseQuotaPrivilege

SeShutdownPrivilege

SeUndockPrivilege (client only)

Privileges assigned to the

Everyone, Authenticated Users,

and Users groups

The Network Service Account

The network service account is intended for use by services that want to authenticate to

other machines on the network using the computer account, as does the local system

account, but do not have the need for membership in the Administrators group or the use

of many of the privileges assigned to the local system account. Because the network ser-

vice account does not belong to the Administrators group, services running in the network

service account by default have access to far fewer registry keys and file system folders and

files than the services running in the local system account. Further, the assignment of few

privileges limits the scope of a compromised network service process. For example, a pro-

cess running in the network service account cannot load a device driver or open arbitrary

processes.

 Chapter 4 Management Mechanisms 291

Another difference between the network service and local system accounts is that processes

running in the network service account use the network service account’s profile. The registry

component of the network service profile loads under HKU\S-1-5-20, and the files and direc-

tories that make up the component reside in %SystemRoot%\ServiceProfiles\NetworkService.

A service that runs in the network service account is the DNS client, which is responsible for

resolving DNS names and for locating domain controllers.

The Local Service Account

The local service account is virtually identical to the network service account with the impor-

tant difference that it can access only network resources that allow anonymous access.

Table 4-9 shows that the network service account has the same privileges as the local ser-

vice account, and Table 4-8 shows that it belongs to the same groups with the exception

that it belongs to the Network Service group instead of the Local Service group. The pro-

file used by processes running in the local service loads into HKU\S-1-5-19 and is stored in

%SystemRoot%\ServiceProfiles\LocalService.

Examples of services that run in the local service account include the Remote Registry

Service, which allows remote access to the local system’s registry, and the LmHosts service,

which performs NetBIOS name resolution.

Running Services in Alternate Accounts

Because of the restrictions just outlined, some services need to run with the security cre-

dentials of a user account. You can configure a service to run in an alternate account when

the service is created or by specifying an account and password that the service should run

under with the Windows Services MMC snap-in. In the Services snap-in, right-click on a ser-

vice and select Properties, click the Log On tab, and select the This Account option, as shown

in Figure 4-8.

Running with Least Privilege

Prior to Windows Vista and Windows Server 2008, services were subject to an all-or-nothing

model, meaning that all privileges available to the account the service process was running

under would be available to a service running in the process that might require only a subset

of those privileges. To better conform to the principle of least privilege, in which Windows

assigns services only the privileges they require, in Windows Vista and Windows Server 2008

developers can specify the privileges their service requires, and the SCM creates a security

token that contains only those privileges.

292 Windows Internals, Fifth Edition

FIGURE 4-8 Service account settings

Note The privileges a service specifies must be a subset of those that are available to the service

account in which it runs

Service developers use the ChangeServiceConfig2 API to indicate the list of privileges they

desire. The API saves that information in the registry under the Parameters key for the ser-

vice. When the service starts, the SCM reads the key and adds those privileges to the token of

the process in which the service is running.

If there is a RequiredPrivileges value and the service is stand-alone (running as a dedicated

process), the SCM will create a token containing only the privileges that the service needs.

For services running as part of a multiservice service process (as are most services that are

part of Windows) and specifying required privileges, the SCM will compute the union of

those privileges and combine them for the service-hosting process’s token. In other words,

only the privileges not specified by any of the services that are part of that service group will

be removed. In the case in which the registry value does not exist, the SCM has no choice but

to assume that the service is either incompatible with least privileges or requires all privileges

in order to function. In this case, the full token is created, containing all privileges, and no

additional security is offered by this model. To strip almost all privileges, services can specify

only the “Change Notify” privilege.

 Chapter 4 Management Mechanisms 293

EXPERIMENT: Viewing Privileges Required by Services

You can look at the privileges a service requires with the Service Control utility, Sc.exe,

and the qprivs option. Additionally, Process Explorer can show you information about

the security token of any service process on the system, so you can compare the infor-

mation returned by Sc.exe with the privileges part of the token. The following steps

show you how to do this for some of the best locked-down services on the system.

 1. Use Sc.exe to take a look at the required privileges specified by Dhcp by typing

into a command prompt:

sc qprivs dhcp

You should see two privileges being requested: the SeCreateGlobalPrivilege and

the SeChangeNotifyPrivilege.

 2. Run Process Explorer and take a look at the process list.

You should see a couple of Svchost.exe processes that are hosting the services on

your machine. Process Explorer highlights these in pink.

 3. Now locate the service hosting process in which the Dhcp service is run-

ning. It should be running alongside other services that are part of the

LocalServiceNetworkRestricted service group, such as the Audiosrv service and

Eventlog service. You can do this by hovering the mouse over each Svchost pro-

cess and reading the tooltip, which contains the names of the services running

inside the service host.

 4. Once you’ve found the process, double-click to open the Properties dialog box

and select the Security tab.

294 Windows Internals, Fifth Edition

Note that although the service is running as part of the local service account, the list

of privileges Windows assigned to it is much shorter than the list available to the local

service account shown in Table 4-9.

Because for a service-hosting process, the privileges part of the token is the union of

the privileges requested by all the services running inside it, this must mean that ser-

vices such as Audiosrv and Eventlog have not requested privileges other than the ones

shown by Process Explorer. You can verify this by running the Sc.exe tool on those

other services as well.

Service Isolation

Although restricting the privileges that a service has access to helps lessen the ability of a

compromised service process to compromise other processes, it does nothing to isolate the

service from resources that the account in which it is running has access to under normal

conditions. As mentioned earlier, the local system account has complete access to critical sys-

tem files, registry keys, and other securable objects on the system because the access control

lists (ACLs) grant permissions to that account.

At times, access to some of these resources is indeed critical to a service’s operation, while

other objects should be secured from the service. Previously, to avoid running in the local

system account to obtain access to required resources, a service would be run under a stan-

dard user account and ACLs would be added on the system objects, which greatly increased

the risk of malicious code attacking the system. Another solution was to create dedicated

 Chapter 4 Management Mechanisms 295

service accounts and set specific ACLs for each account (associated to a service), but this

approach easily became an administrative hassle.

Windows now combines these two approaches into a much more manageable solution: it

allows services to run in a nonprivileged account but still have access to specific privileged

resources without lowering the security of those objects. In a manner similar to the second

pre–Windows Vista solution, the ACLs on an object can now set permissions directly for a

service, but not by requiring a dedicated account. Instead, the SCM generates a service SID

to represent a service, and this SID can be used to set permissions on resources such as reg-

istry keys and files. Service SIDs are implemented in the group SIDs part of the token for any

process hosting a service. They are generated by the SCM during system startup for each ser-

vice that has requested one via the ChangeServiceConfig2 API. In the case of service-hosting

processes (a process that contains more than one service), the process’s token will contain

the service SIDs of all services that are part of the service group associated with the process,

including services that are not started because there is no way to add new SIDs after a token

has been created.

The usefulness of having a SID for each service extends beyond the mere ability to add ACL

entries and permissions for various objects on the system as a way to have fine-grained con-

trol over their access. Our discussion initially covered the case in which certain objects on

the system, accessible by a given account, must be protected from a service running within

that same account. As we’ve described to this point, service SIDs only prevent that problem

by requiring that Deny entries associated with the service SID be placed on every object that

needs to be secured, a clearly unmanageable approach.

To avoid requiring Deny access control entries (ACEs) as a way to prevent services from hav-

ing access to resources that the user account in which they run does have access, there are

two types of service SIDs: the restricted service SID (SERVICE_SID_TYPE_RESTRICTED) and the

unrestricted service SID (SERVICE_SID_TYPE_UNRESTRICTED), the latter being the default and

the case we’ve looked at until now.

Unrestricted service SIDs are created as enabled-by-default, group owner SIDs, and the pro-

cess token is also given a new ACE providing full permission to the service logon SID, which

allows the service to continue communicating with the SCM. (A primary use of this would be

to enable or disable service SIDs inside the process during service startup or shutdown.)

A restricted service SID, on the other hand, turns the service-hosting process’s token into a

write-restricted token (see Chapter 6 for more information on tokens), which means that only

objects granting explicit write access to the service SID will be writable by the service, regard-

less of the account it’s running as. Because of this, all services running inside that process

(part of the same service group) must have the restricted SID type; otherwise, services with

the restricted SID type will fail to start. Once the token becomes write-restricted, three more

SIDs are added for compatibility reasons:

The world SID is added to allow write access to objects that are normally accessible by

anyone anyway, most importantly certain DLLs in the load path.

296 Windows Internals, Fifth Edition

The service logon SID is added to allow the service to communicate with the SCM.

The write-restricted SID is added to allow objects to explicitly allow any write-restricted

service write access to them. For example, Event Tracing for Windows (ETW) uses this

SID on its objects to allow any write-restricted service to generate events.

Figure 4-9 shows an example of a service-hosting process containing services that have been

marked as having restricted service SIDs. For example, the Base Filtering Engine (BFE), which

is responsible for applying Windows Firewall filtering rules, is part of this service because

these rules are stored in registry keys that must be protected from malicious write access

should a service be compromised (this could allow a service exploit to disable the outgoing

traffic firewall rules, enabling bidirectional communication with an attacker, for example).

FIGURE 4-9 Service with restricted service SIDs

By blocking write access to objects that would otherwise be writable by the service (through

inheriting the permissions of the account it is running as), restricted service SIDs solve the

other side of the problem we initially presented because users do not need to do anything to

prevent a service running in a privileged account from having write access to critical system

files, registry keys, or other objects, limiting the attack exposure of any such service that may

have been compromised.

Windows also allows for firewall rules that reference service SIDs linked to one of the three

behaviors described in Table 4-10.

 Chapter 4 Management Mechanisms 297

TABLE 4-10 Network Restriction Rules

Scenario Example Restrictions

Network access blocked The shell hardware detection service

(ShellHWDetection).

All network communications

are blocked (both incoming and

outgoing).

Network access

statically port-restricted

The RPC service (Rpcss) operates on

port 135 (TCP and UDP).

Network communications are

restricted to specific TCP or UDP

ports.

Network access

dynamically port-

restricted

The DNS service (Dns) listens on

variable ports (UDP).

Network communications are

restricted to configurable TCP or

UDP ports.

Interactive Services and Session 0 Isolation

One restriction for services running under the local system, local service, and network service

accounts that has always been present in Windows is that these services could not (without

using a special flag on the MessageBox function, discussed in a moment) display dialog boxes

or windows on the interactive user’s desktop. This limitation wasn’t the direct result of run-

ning under these accounts but rather a consequence of the way the Windows subsystem

assigns service processes to window stations. In Windows Vista, this restriction has been fur-

ther enhanced by the use of sessions, in a model called Session 0 Isolation, a result of which is

that services can no longer directly interact with a user’s desktop.

The Windows subsystem associates every Windows process with a window station. A window

station contains desktops, and desktops contain windows. Only one window station can be

visible on a console and receive user mouse and keyboard input. In a Terminal Services envi-

ronment, one window station per session is visible, but services all run as part of the console

session. Windows names the visible window station WinSta0, and all interactive processes

access WinSta0.

Unless otherwise directed, the Windows subsystem associates services running in the local

system account with a nonvisible window station named Service-0x0-3e7$ that all noninter-

active services share. The number in the name, 3e7, represents the logon session identifier

that the Local Security Authority process (LSASS) assigns to the logon session the SCM uses

for noninteractive services running in the local system account.

Services configured to run under a user account (that is, not the local system account) are run

in a different nonvisible window station named with the LSASS logon identifier assigned for

the service’s logon session. Figure 4-10 shows a sample display from the Sysinternals WinObj

tool, viewing the object manager directory in which Windows places window station objects.

Visible are the interactive window station (WinSta0) and the noninteractive system service

window station (Service-0x0-3e7$).

298 Windows Internals, Fifth Edition

FIGURE 4-10 List of window stations

Regardless of whether services are running in a user account, the local system account, or the

local or network service accounts, services that aren’t running on the visible window station

can’t receive input from a user or display windows on the console. In fact, if a service were to

pop up a normal dialog box on the window station, the service would appear hung because

no user would be able to see the dialog box, which of course would prevent the user from

providing keyboard or mouse input to dismiss it and allow the service to continue executing.

Note In the past, it was possible to use the special MB_SERVICE_NOTIFICATION or MB_

DEFAULT_DESKTOP_ONLY flags with the MessageBox API to display messages on the interac-

tive window station even if the service was marked as noninteractive. As of Windows Vista and

Windows Server 2008, any service using this flag will receive an immediate IDOK return value,

and the message box will never be displayed.

In rare cases, a service can have a valid reason to interact with the user via dialog boxes

or windows. To configure a service with the right to interact with the user, the SERVICE_

INTERACTIVE_PROCESS modifier must be present in the service’s registry key’s Type param-

eter. (Note that services configured to run under a user account can’t be marked as interac-

tive.) When the SCM starts a service marked as interactive, it launches the service’s process in

the local system account’s security context but connects the service with WinSta0 instead of

the noninteractive service window station.

 Chapter 4 Management Mechanisms 299

On versions of Windows prior to Windows Vista, this connection to WinSta0 allowed the

service to display dialog boxes and windows on the console and allowed those windows to

respond to user input because the processes used by the console user run in session 0 and

therefore share the window station with the interactive services. However, in Windows Vista

and Windows Server 2008, only processes owned by the system and Windows services run in

session 0; all other logon sessions, including those of console users, run in different sessions.

Any window displayed by processes in session 0 is therefore not visible to the user.

This change was made to prevent “shatter attacks,” whereby a less privileged application

sends window messages to a window visible on the same window station to exploit a bug

in a more privileged process that owns the window, which permits it to execute code in the

more privileged process.

To remain compatible with services that depend on user input, Windows includes a service

that notifies users when a service has displayed a window. The Interactive Services Detection

(UI0Detect) service looks for visible windows on the main desktop of the WinSta0 window

station of session 0 and displays a notification dialog box on the console user’s desktop,

allowing the user to switch to session 0 and view the service’s UI (this is akin to connecting to

a local Terminal Services session or switching users).

Note The Interactive Services Detection mechanism is purely for application compatibility, and

developers are strongly recommended to move away from interactive services and use a second-

ary, nonprivileged helper application to communicate visually with the user. Local RPC or COM

can be used between this helper application and the service for configuration purposes after UI

input has been received.

The dialog box, an example of which is shown in Figure 4-11, includes the process name, the

time when the UI message was displayed, and the title of the window being displayed. Once

the user connects to session 0, a similar dialog box provides a portal back to the user’s ses-

sion. In the figure, the service displaying a window is Microsoft Paint, which was explicitly

started by the Sysinternals PsExec utility with options that caused PsExec to run Paint in ses-

sion 0. You can try this yourself with the following command:

psexec –s –i 0 –d mspaint.exe

This tells PsExec to run Microsoft Paint as a system process (–s) running on session 0 (–i 0),

and to return immediately instead of waiting for the process to finish (–d).

300 Windows Internals, Fifth Edition

FIGURE 4-11 The Interactive Services Detection service at work

If you click Show Me The Message, you can switch to the console for session 0 (and switch

back again with a similar window on the console).

The Service Control Manager

The SCM’s executable file is %SystemRoot%\System32\Services.exe, and like most service

processes, it runs as a Windows console program. The Wininit process starts the SCM early

during the system boot. (Refer to Chapter 13 for details on the boot process.) The SCM’s

startup function, SvcCtrlMain, orchestrates the launching of services that are configured for

automatic startup.

SvcCtrlMain first creates a synchronization event named SvcctrlStartEvent_A3752DX that

it initializes as nonsignaled. Only after the SCM completes steps necessary to prepare it to

receive commands from SCPs does the SCM set the event to a signaled state. The function

that an SCP uses to establish a dialog with the SCM is OpenSCManager. OpenSCManager
prevents an SCP from trying to contact the SCM before the SCM has initialized by waiting for

SvcctrlStartEvent_A3752DX to become signaled.

Next, SvcCtrlMain gets down to business and calls ScGenerateServiceDB, the function that

builds the SCM’s internal service database. ScGenerateServiceDB reads and stores the con-

tents of HKLM\SYSTEM\CurrentControlSet\Control\ServiceGroupOrder\List, a REG_MULTI_SZ

value that lists the names and order of the defined service groups. A service’s registry key

contains an optional Group value if that service or device driver needs to control its startup

ordering with respect to services from other groups. For example, the Windows network-

ing stack is built from the bottom up, so networking services must specify Group values that

 Chapter 4 Management Mechanisms 301

place them later in the startup sequence than networking device drivers. The SCM internally

creates a group list that preserves the ordering of the groups it reads from the registry.

Groups include (but are not limited to) NDIS, TDI, Primary Disk, Keyboard Port, and Keyboard

Class. Add-on and third-party applications can even define their own groups and add them

to the list. Microsoft Transaction Server, for example, adds a group named MS Transactions.

ScGenerateServiceDB then scans the contents of HKLM\SYSTEM\CurrentControlSet\Services,

creating an entry in the service database for each key it encounters. A database entry

includes all the service-related parameters defined for a service as well as fields that track the

service’s status. The SCM adds entries for device drivers as well as for services because the

SCM starts services and drivers marked as auto-start and detects startup failures for drivers

marked boot-start and system-start. It also provides a means for applications to query the

status of drivers. The I/O manager loads drivers marked boot-start and system-start before

any user-mode processes execute, and therefore any drivers having these start types load

before the SCM starts.

ScGenerateServiceDB reads a service’s Group value to determine its membership in a group

and associates this value with the group’s entry in the group list created earlier. The function

also reads and records in the database the service’s group and service dependencies by que-

rying its DependOnGroup and DependOnService registry values. Figure 4-12 shows how the

SCM organizes the service entry and group order lists. Notice that the service list is alphabet-

ically sorted. The reason this list is sorted alphabetically is that the SCM creates the list from

the Services registry key, and Windows stores registry keys alphabetically.

Service database

…

Group order list

Service entry list

… …

FIGURE 4-12 Organization of a service database

During service startup, the SCM will call on LSASS (for example, to log on a service in a non-

local system account), so the SCM waits for LSASS to signal the LSA_RPC_SERVER_ACTIVE

synchronization event, which it does when it finishes initializing. Wininit also starts the

302 Windows Internals, Fifth Edition

LSASS process, so the initialization of LSASS is concurrent with that of the SCM, and the

order in which LSASS and the SCM complete initialization can vary. Then SvcCtrlMain calls

ScGetBootAndSystemDriverState to scan the service database looking for boot-start and

system-start device driver entries.

ScGetBootAndSystemDriverState determines whether or not a driver successfully started by

looking up its name in the object manager namespace directory named \Driver. When a

device driver successfully loads, the I/O manager inserts the driver’s object in the namespace

under this directory, so if its name isn’t present, it hasn’t loaded. Figure 4-13 shows WinObj

displaying the contents of the Driver directory. SvcCtrlMain notes the names of drivers that

haven’t started and that are part of the current profile in a list named ScFailedDrivers.

Before starting the auto-start services, the SCM performs a few more steps. It creates its

remote procedure call (RPC) named pipe, which is named \Pipe\Ntsvcs, and then RPC

launches a thread to listen on the pipe for incoming messages from SCPs. The SCM then

signals its initialization-complete event, SvcctrlStartEvent_A3752DX. Registering a console

application shutdown event handler and registering with the Windows subsystem process via

RegisterServiceProcess prepares the SCM for system shutdown.

FIGURE 4-13 List of driver objects

 Chapter 4 Management Mechanisms 303

Network Drive Letters

In addition to its role as an interface to services, the SCM has another totally un related

responsibility: it notifies GUI applications in a system whenever the system creates or

deletes a network drive-letter connection. The SCM waits for the Multiple Provider

Router (MPR) to signal a named event, \BaseNamedObjects\ScNetDrvMsg, which

MPR signals whenever an application assigns a drive letter to a remote network

share or deletes a remote-share drive-letter assignment. (See Chapter 12 for more

information on MPR.) When MPR signals the event, the SCM calls the GetDriveType

Windows function to query the list of connected network drive letters. If the list

changes across the event signal, the SCM sends a Windows broadcast message of

type WM_DEVICECHANGE. The SCM uses either DBT_ DEVICEREMOVECOMPLETE or

DBT_DEVICEARRIVAL as the message’s subtype. This message is primarily intended for

Windows Explorer so that it can update any open Computer windows to show the pres-

ence or absence of a network drive letter.

Service Startup

SvcCtrlMain invokes the SCM function ScAutoStartServices to start all services that have a

Start value designating auto-start (except delayed auto-start services). ScAutoStartServices
also starts auto-start device drivers. To avoid confusion, you should assume that the

term services means services and drivers unless indicated otherwise. The algorithm in

ScAutoStartServices for starting services in the correct order proceeds in phases, whereby

a phase corresponds to a group and phases proceed in the sequence defined by the group

ordering stored in the HKLM\SYSTEM\CurrentControlSet\Control\ServiceGroupOrder\List

registry value. The List value, shown in Figure 4-14, includes the names of groups in the order

that the SCM should start them. Thus, assigning a service to a group has no effect other than

to fine-tune its startup with respect to other services belonging to different groups.

FIGURE 4-14 ServiceGroupOrder registry key

304 Windows Internals, Fifth Edition

When a phase starts, ScAutoStartServices marks all the service entries belonging to the

phase’s group for startup. Then ScAutoStartServices loops through the marked services see-

ing whether it can start each one. Part of this check includes seeing whether the service is

marked as delayed auto-start, which causes the SCM to start it at a later stage. (Delayed

auto-start services must also be ungrouped.) Another part of the check it makes consists of

determining whether the service has a dependency on another group, as specified by the

existence of the DependOnGroup value in the service’s registry key. If a dependency exists,

the group on which the service is dependent must have already initialized, and at least one

service of that group must have successfully started. If the service depends on a group that

starts later than the service’s group in the group startup sequence, the SCM notes a “circular

dependency” error for the service. If ScAutoStartServices is considering a Windows service

or an auto-start device driver, it next checks to see whether the service depends on one or

more other services, and if so, if those services have already started. Service dependencies

are indicated with the DependOnService registry value in a service’s registry key. If a service

depends on other services that belong to groups that come later in the ServiceGroupOrder\

List, the SCM also generates a “circular dependency” error and doesn’t start the service. If the

service depends on any services from the same group that haven’t yet started, the service is

skipped.

When the dependencies of a service have been satisfied, ScAutoStartServices makes a final

check to see whether the service is part of the current boot configuration before starting the

service. When the system is booted in safe mode, the SCM ensures that the service is either

identified by name or by group in the appropriate safe boot registry key. There are two safe

boot keys, Minimal and Network, under HKLM\SYSTEM\CurrentControlSet\Control\SafeBoot,

and the one that the SCM checks depends on what safe mode the user booted. If the user

chose Safe Mode or Safe Mode With Command Prompt at the special boot menu (which

you can access by pressing F8 when prompted in the boot process), the SCM references the

Minimal key; if the user chose Safe Mode With Networking, the SCM refers to Network. The

existence of a string value named Option under the SafeBoot key indicates not only that

the system booted in safe mode but also the type of safe mode the user selected. For more

information about safe boots, see the section “Safe Mode” in Chapter 13.

Once the SCM decides to start a service, it calls ScStartService, which takes different steps for

services than for device drivers. When ScStartService starts a Windows service, it first deter-

mines the name of the file that runs the service’s process by reading the ImagePath value

from the service’s registry key. It then examines the service’s Type value, and if that value is

SERVICE_WINDOWS_SHARE_PROCESS (0x20), the SCM ensures that the process the service

runs in, if already started, is logged on using the same account as specified for the service

being started (this is to ensure that the service is not configured with the wrong account,

such as a LocalService account, but with an image path pointing to a running Svchost, such

as netsvcs, which runs as LocalSystem). A service’s ObjectName registry value stores the user

account in which the service should run. A service with no ObjectName or an ObjectName of

LocalSystem runs in the local system account.

 Chapter 4 Management Mechanisms 305

The SCM verifies that the service’s process hasn’t already been started in a different account

by checking to see whether the service’s ImagePath value has an entry in an internal

SCM database called the image database. If the image database doesn’t have an entry for

the ImagePath value, the SCM creates one. When the SCM creates a new entry, it stores

the logon account name used for the service and the data from the service’s ImagePath

value. The SCM requires services to have an ImagePath value. If a service doesn’t have an

ImagePath value, the SCM reports an error stating that it couldn’t find the service’s path

and isn’t able to start the service. If the SCM locates an existing image database entry with

matching ImagePath data, the SCM ensures that the user account information for the service

it’s starting is the same as the information stored in the database entry—a process can be

logged on as only one account, so the SCM reports an error when a service specifies a differ-

ent account name than another service that has already started in the same process.

The SCM calls ScLogonAndStartImage to log on a service if the service’s configuration speci-

fies and to start the service’s process. The SCM logs on services that don’t run in the System

account by calling the LSASS function LogonUserEx. LogonUserEx normally requires a pass-

word, but the SCM indicates to LSASS that the password is stored as a service’s LSASS “secret”

under the key HKLM\SECURITY\Policy\Secrets in the registry. (Keep in mind that the contents

of SECURITY aren’t typically visible because its default security settings permit access only

from the System account.) When the SCM calls LogonUserEx, it specifies a service logon as

the logon type, so LSASS looks up the password in the Secrets subkey that has a name in the

form _SC_<service name>.

The SCM directs LSASS to store a logon password as a secret using the LsaStorePrivateData

function when an SCP configures a service’s logon information. When a logon is successful,

LogonUserEx returns a handle to an access token to the caller. Windows uses access tokens

to represent a user’s security context, and the SCM later associates the access token with the

process that implements the service.

After a successful logon, the SCM loads the account’s profile information, if it’s not already

loaded, by calling the UserEnv DLL’s (%SystemRoot%\System32\Userenv.dll) LoadUserProfile

function. The value HKLM\SOFTWARE\Microsoft\Windows NT\CurrentVersion\Profile-

List\<user profile key>\ProfileImagePath contains the location on disk of a registry hive

that LoadUserProfile loads into the registry, making the information in the hive the HKEY_

CURRENT_USER key for the service.

An interactive service must open the WinSta0 window station, but before ScLogonAndStart-
Image allows an interactive service to access WinSta0 it checks to see whether the value

HKLM\SYSTEM\CurrentControlSet\Control\Windows\NoInteractiveServices is set. Adminis-

trators set this value to prevent services marked as interactive from displaying windows on

the console. This option is desirable in unattended server environments in which no user is

present to respond to the Session 0 UI Discovery notification from interactive services.

306 Windows Internals, Fifth Edition

As its next step, ScLogonAndStartImage proceeds to launch the service’s process, if the pro-

cess hasn’t already been started (for another service, for example). The SCM starts the process

in a suspended state with the CreateProcessAsUser Windows function. The SCM next creates

a named pipe through which it communicates with the service process, and it assigns the

pipe the name \Pipe\Net\NtControlPipeX, where X is a number that increments each time

the SCM creates a pipe. The SCM resumes the service process via the ResumeThread func-

tion and waits for the service to connect to its SCM pipe. If it exists, the registry value HKLM\

SYSTEM\CurrentControlSet\Control\ServicesPipeTimeout determines the length of time that

the SCM waits for a service to call StartServiceCtrlDispatcher and connect before it gives up,

terminates the process, and concludes that the service failed to start. If ServicesPipeTimeout

doesn’t exist, the SCM uses a default timeout of 30 seconds. The SCM uses the same timeout

value for all its service communications.

When a service connects to the SCM through the pipe, the SCM sends the service a start

command. If the service fails to respond positively to the start command within the timeout

period, the SCM gives up and moves on to start the next service. When a service doesn’t

respond to a start request, the SCM doesn’t terminate the process, as it does when a service

doesn’t call StartServiceCtrlDispatcher within the timeout; instead, it notes an error in the sys-

tem Event Log that indicates the service failed to start in a timely manner.

If the service the SCM starts with a call to ScStartService has a Type registry value of SERVICE_

KERNEL_DRIVER or SERVICE_FILE_SYSTEM_DRIVER, the service is really a device driver, and

so ScStartService calls ScLoadDeviceDriver to load the driver. ScLoadDeviceDriver enables

the load driver security privilege for the SCM process and then invokes the kernel service

NtLoadDriver, passing in the data in the ImagePath value of the driver’s registry key. Unlike

services, drivers don’t need to specify an ImagePath value, and if the value is absent, the

SCM builds an image path by appending the driver’s name to the string %SystemRoot%\

System32\Drivers\.

ScAutoStartServices continues looping through the services belonging to a group until all the

services have either started or generated dependency errors. This looping is the SCM’s way of

automatically ordering services within a group according to their DependOnService depen-

dencies. The SCM will start the services that other services depend on in earlier loops, skip-

ping the dependent services until subsequent loops. Note that the SCM ignores Tag values

for Windows services, which you might come across in subkeys under the HKLM\SYSTEM\

CurrentControlSet\Services key; the I/O manager honors Tag values to order device driver

startup within a group for boot-start and system-start drivers. Once the SCM completes

phases for all the groups listed in the ServiceGroupOrder\List value, it performs a phase for

services belonging to groups not listed in the value and then executes a final phase for ser-

vices without a group.

After handling auto-start services, the SCM calls ScInitDelayStart, which queues a delayed

work item associated with a worker thread responsible for processing all the services that

 Chapter 4 Management Mechanisms 307

ScAutoStartServices skipped because they were marked delayed auto-start. This worker

thread will execute after the delay. The default delay is 120 seconds, but it can be overridden

by the AutoStartDelay value in HKLM\SYSTEM\CurrentControlSet\Control. The SCM performs

the same actions as those used during startup of nondelayed auto-start services.

Delayed Auto-Start Services

Delayed auto-start services were added in Windows Vista and Windows Server 2008

to cope with the growing number of services that are being started when a user logs

on, bogging down the boot-up process and increasing the time before a user is able to

get responsiveness from the desktop. The design of auto-start services was primarily

intended for services required early in the boot process because other services depend

on them, a good example being the RPC service, on which all other services depend.

The other use was to allow unattended startup of a service, such as the Windows

Update service. Because many auto-start services fall in this second category, marking

them as delayed auto-start allows critical services to start faster and for the user’s desk-

top to be ready sooner when a user logs on immediately after booting. Configuring a

service for delayed auto-start requires calling the ChangeServiceConfig2 API. You can

check the state of the flag for a service by using the qc bits option instead.

Note If a nondelayed auto-start service has a delayed auto-start service as one of its dependen-

cies, the delayed auto-start flag will be ignored and the service will be started immediately in

order to satisfy the dependency.

When it’s finished starting all auto-start services and drivers, as well as setting up the delayed

auto-start work item, the SCM signals the event \BaseNamedObjects\SC_AutoStartComplete.

This event is used by the Windows Setup program to gauge startup progress during

installation.

Startup Errors

If a driver or a service reports an error in response to the SCM’s startup command, the

ErrorControl value of the service’s registry key determines how the SCM reacts. If the

ErrorControl value is SERVICE_ERROR_IGNORE (0) or the ErrorControl value isn’t specified, the

SCM simply ignores the error and continues processing service startups. If the ErrorControl

value is SERVICE_ERROR_NORMAL (1), the SCM writes an event to the system Event Log

that says, “The <service name> service failed to start due to the following error:”. The SCM

includes the textual representation of the Windows error code that the service returned to

the SCM as the reason for the startup failure in the Event Log record. Figure 4-15 shows the

Event Log entry that reports a service startup error.

308 Windows Internals, Fifth Edition

FIGURE 4-15 Service startup failure Event Log entry

If a service with an ErrorControl value of SERVICE_ERROR_SEVERE (2) or SERVICE_ERROR_

CRITICAL (3) reports a startup error, the SCM logs a record to the Event Log and then calls

the internal function ScRevertToLastKnownGood. This function switches the system’s registry

configuration to a version, named last known good, with which the system last booted suc-

cessfully. Then it restarts the system using the NtShutdownSystem system service, which is

implemented in the executive. If the system is already booting with the last known good con-

figuration, the system just reboots.

Accepting the Boot and Last Known Good

Besides starting services, the system charges the SCM with determining when the sys-

tem’s registry configuration, HKLM\SYSTEM\CurrentControlSet, should be saved as the last

known good control set. The CurrentControlSet key contains the Services key as a subkey, so

CurrentControlSet includes the registry representation of the SCM database. It also contains

the Control key, which stores many kernel-mode and user-mode subsystem configuration

settings. By default, a successful boot consists of a successful startup of auto-start services

and a successful user logon. A boot fails if the system halts because a device driver crashes

the system during the boot or if an auto-start service with an ErrorControl value of SERVICE_

ERROR_SEVERE or SERVICE_ERROR_CRITICAL reports a startup error.

The SCM obviously knows when it has completed a successful startup of the auto-start ser-

vices, but Winlogon (%SystemRoot%\System32\Winlogon.exe) must notify it when there is

 Chapter 4 Management Mechanisms 309

a successful logon. Winlogon invokes the NotifyBootConfigStatus function when a user logs

on, and NotifyBootConfigStatus sends a message to the SCM. Following the successful start of

the auto-start services or the receipt of the message from NotifyBootConfigStatus (whichever

comes last), the SCM calls the system function NtInitializeRegistry to save the current registry

startup configuration.

Third-party software developers can supersede Winlogon’s definition of a successful logon

with their own definition. For example, a system running Microsoft SQL Server might not

consider a boot successful until after SQL Server is able to accept and process transactions.

Developers impose their definition of a successful boot by writing a boot-verification pro-

gram and installing the program by pointing to its location on disk with the value stored

in the registry key HKLM\SYSTEM\CurrentControlSet\Control\BootVerificationProgram.

In addition, a boot-verification program’s installation must disable Winlogon’s call to

NotifyBootConfigStatus by setting HKLM\SOFTWARE\Microsoft\Windows NT\CurrentVersion\

Winlogon\ReportBootOk to 0. When a boot-verification program is installed, the

SCM launches it after finishing auto-start services and waits for the program’s call to

NotifyBootConfigStatus before saving the last known good control set.

Windows maintains several copies of CurrentControlSet, and CurrentControlSet is really a

symbolic registry link that points to one of the copies. The control sets have names in the

form HKLM\SYSTEM\ControlSetnnn, where nnn is a number such as 001 or 002. The HKLM\

SYSTEM\Select key contains values that identify the role of each control set. For example, if

CurrentControlSet points to ControlSet001, the Current value under Select has a value of 1.

The LastKnownGood value under Select contains the number of the last known good control

set, which is the control set last used to boot successfully. Another value that might be on

your system under the Select key is Failed, which points to the last control set for which the

boot was deemed unsuccessful and aborted in favor of an attempt at booting with the last

known good control set. Figure 4-16 displays a system’s control sets and Select values.

NtInitializeRegistry takes the contents of the last known good control set and synchronizes

it with that of the CurrentControlSet key’s tree. If this was the system’s first successful boot,

the last known good won’t exist and the system will create a new control set for it. If the

last known good tree exists, the system simply updates it with differences between it and

CurrentControlSet.

Last known good is helpful in situations in which a change to CurrentControlSet, such as the

modification of a system performance-tuning value under HKLM\SYSTEM\Control or the

addition of a service or device driver, causes the subsequent boot to fail. Users can press F8

early in the boot process to bring up a menu that lets them direct the boot to use the last

known good control set, rolling the system’s registry configuration back to the way it was the

last time the system booted successfully. Chapter 13 describes in more detail the use of last

known good and other recovery mechanisms for troubleshooting system startup problems.

310 Windows Internals, Fifth Edition

FIGURE 4-16 Control set selection key

Service Failures

A service can have optional FailureActions and FailureCommand values in its registry key

that the SCM records during the service’s startup. The SCM registers with the system so that

the system signals the SCM when a service process exits. When a service process terminates

unexpectedly, the SCM determines which services ran in the process and takes the recovery

steps specified by their failure-related registry values.

Additionally, as of Windows Vista and Windows Server 2008, services are no longer limited

to requesting failure actions during crashes or unexpected service termination, since other

problems, such as a memory leak, could also result in service failure.

If a service enters the SERVICE_STOPPED state and the error code returned to the SCM is

not ERROR_SUCCESS, the SCM will check whether the service has the FailureActionsOn-

NonCrashFailures flag set and perform the same recovery as if the service had crashed. To

use this functionality, the service must be configured via the ChangeServiceConfig2 API or

the system administrator can use the Sc.exe utility with the Failureflag parameter to set

FailureActionsOnNonCrashFailures to 1. The default value being 0, the SCM will continue to

honor the same behavior as on earlier versions of Windows for all other services.

Actions that a service can configure for the SCM include restarting the service, running a

program, and rebooting the computer. Furthermore, a service can specify the failure actions

 Chapter 4 Management Mechanisms 311

that take place the first time the service process fails, the second time, and subsequent times,

and it can indicate a delay period that the SCM waits before restarting the service if the ser-

vice asks to be restarted. The service failure action of the IIS Admin Service results in the SCM

running the IISReset application, which performs cleanup work and then restarts the service.

You can easily manage the recovery actions for a service with the Recovery tab of the ser-

vice’s Properties dialog box in the Services MMC snap-in, as shown in Figure 4-17.

FIGURE 4-17 Service recovery options

Service Shutdown

When Winlogon calls the Windows ExitWindowsEx function, ExitWindowsEx sends a mes-

sage to Csrss, the Windows subsystem process, to invoke Csrss’s shutdown routine. Csrss

loops through the active processes and notifies them that the system is shutting down. For

every system process except the SCM, Csrss waits up to the number of seconds specified by

HKU\.DEFAULT\Control Panel\Desktop\WaitToKillAppTimeout (which defaults to 20 seconds)

for the process to exit before moving on to the next process. When Csrss encounters the

SCM process, it also notifies it that the system is shutting down but employs a timeout spe-

cific to the SCM. Csrss recognizes the SCM using the process ID Csrss saved when the SCM

registered with Csrss using the RegisterServicesProcess function during system initialization.

The SCM’s timeout differs from that of other processes because Csrss knows that the SCM

communicates with services that need to perform cleanup when they shut down, and so an

administrator might need to tune only the SCM’s timeout. The SCM’s timeout value resides in

the HKLM\SYSTEM\CurrentControlSet\Control\WaitToKillServiceTimeout registry value, and it

defaults to 20 seconds.

312 Windows Internals, Fifth Edition

The SCM’s shutdown handler is responsible for sending shutdown notifications to all the

services that requested shutdown notification when they initialized with the SCM. The SCM

function ScShutdownAllServices loops through the SCM services database searching for ser-

vices desiring shutdown notification and sends each one a shutdown command. For each

service to which it sends a shutdown command, the SCM records the value of the service’s

wait hint, a value that a service also specifies when it registers with the SCM. The SCM keeps

track of the largest wait hint it receives. After sending the shutdown messages, the SCM waits

either until one of the services it notified of shutdown exits or until the time specified by the

largest wait hint passes.

If the wait hint expires without a service exiting, the SCM determines whether one or more of

the services it was waiting on to exit have sent a message to the SCM telling the SCM that the

service is progressing in its shutdown process. If at least one service made progress, the SCM

waits again for the duration of the wait hint. The SCM continues executing this wait loop until

either all the services have exited or none of the services upon which it’s waiting has notified

it of progress within the wait hint timeout period.

While the SCM is busy telling services to shut down and waiting for them to exit, Csrss waits

for the SCM to exit. On versions of Windows prior to Windows Vista, if Csrss’s wait ended

without the SCM having exited (the WaitToKillServiceTimeout time expired), Csrss would

kill the SCM and continue the shutdown process. Thus, services that failed to shut down in

a timely manner were killed. This logic let the system shut down in the face of services that

would never complete a shutdown as a result of flawed design, but it meant that services that

required more than 20 seconds would not complete their shutdown operations.

Additionally, because the shutdown order is not deterministic, services that might have

depended on other services to shut down first (called shutdown dependencies) had no way to

report this to the SCM and may have never had the chance to clean up either.

To address these needs, Windows now implements preshutdown notifications and shutdown

ordering to combat the problems caused by these two scenarios. Preshutdown notifica-

tions are sent, using the same mechanism as shutdown notifications, to services that have

requested preshutdown notification via the SetServiceStatus API, and the SCM will wait for

them to be acknowledged.

The idea behind these notifications is to flag services that may take a long time to clean

up (such as database server services) and give them more time to complete their work. The

SCM will send a progress query request and wait 3 minutes for a service to respond to this

notification. If the service does not respond within this time, it will be killed during the shut-

down procedure; otherwise, it can keep running as long as it needs as long as it continues to

respond to the SCM.

 Chapter 4 Management Mechanisms 313

Services that participate in the preshutdown can also specify a shutdown order with respect

to other preshutdown services. Services that depend on other services to shut down first

(for example, the Group Policy service needs to wait for Windows Update to finish) can

specify their shutdown dependencies in the HKLM\SYSTEM\CurrentControlSet\Control\

PreshutdownOrder registry value.

Shared Service Processes

Running every service in its own process instead of having services share a process whenever

possible wastes system resources. However, sharing processes means that if any of the ser-

vices in the process has a bug that causes the process to exit, all the services in that process

terminate.

Of the Windows built-in services, some run in their own process and some share a process

with other services. For example, the LSASS process contains security-related services—such

as the Security Accounts Manager (SamSs) service, the Net Logon (Netlogon) service, and the

Crypto Next Generation (CNG) Key Isolation (KeyIso) service.

There is also a “generic” process named Service Host (SvcHost—%SystemRoot%\System32\

Svchost.exe) to contain multiple services. Multiple instances of SvcHost can be running in dif-

ferent processes. Services that run in SvcHost processes include Telephony (TapiSrv), Remote

Procedure Call (RpcSs), and Remote Access Connection Manager (RasMan). Windows imple-

ments services that run in SvcHost as DLLs and includes an ImagePath definition of the form

“%SystemRoot%\System32\svchost.exe –k netsvcs” in the service’s registry key. The service’s

registry key must also have a registry value named ServiceDll under a Parameters subkey that

points to the service’s DLL file.

All services that share a common SvcHost process specify the same parameter (“–k netsvcs”

in the example in the preceding paragraph) so that they have a single entry in the SCM’s

image database. When the SCM encounters the first service that has a SvcHost ImagePath

with a particular parameter during service startup, it creates a new image database entry and

launches a SvcHost process with the parameter. The new SvcHost process takes the param-

eter and looks for a value having the same name as the parameter under HKLM\SOFTWARE\

Microsoft\Windows NT\CurrentVersion\Svchost. SvcHost reads the contents of the value,

interpreting it as a list of service names, and notifies the SCM that it’s hosting those services

when SvcHost registers with the SCM.

When the SCM encounters a SvcHost service (by checking the service type value) during

service startup with an ImagePath matching an entry it already has in the image database, it

doesn’t launch a second process but instead just sends a start command for the service to the

SvcHost it already started for that ImagePath value. The existing SvcHost process reads the

ServiceDll parameter in the service’s registry key and loads the DLL into its process to start

the service.

314 Windows Internals, Fifth Edition

Table 4-11 lists all the default service groupings on Windows Vista and Windows Server 2008

and some of the services that are registered for each of them.

TABLE 4-11 Major Service Groupings

Service Group Services Notes

LocalService Windows Time, COM+

Event System, Remote

Registry, UPnP and SSDP,

Workstation, WebClient

Services that run in the local

service account and make use

of the network on various ports

or have no network usage at all

(and hence no restrictions).

LocalServiceRestricted Remote API Manager,

Windows CE

Communications Service

(ActiveSync)

Services that run in the local

service account and make use

of the network on a fixed set of

ports. Services run with a write-

restricted token.

LocalServiceNetworkRestricted DHCP, Event Logger,

Windows Audio, Peer to

Peer Services

Services that run in the local

service account and make use

of the network on a fixed set of

ports.

LocalServiceNoNetwork Media Center Edition

Service, Base Filtering

Engine, Performance

Logging and Alerts

Services that run in the local

service account but make no use

of the network at all. Services

run with a write-restricted token.

LocalSystemNetworkRestricted HID Access, User-Mode

Driver Framework Service,

Superfetch, Program

Compatibility Service, WDI

System Host Service

Services that run in the local

system account and make use

of the network on a fixed set of

ports.

NetworkService Cryptographic Services,

Terminal Services, KTM

over DTC, DNS Client,

Telephony

Services that run in the network

service account and make use

of the network on various ports

(or have no enforced network

restrictions).

NetworkServiceRestricted None by default Services that run in the network

service account and make use

of the network on a fixed set of

ports. Services run with a write-

restricted token.

NetworkServiceNetworkRestricted IPSec Policy Agent Services that run in the network

service account and make use

of the network on a fixed set of

ports.

 Chapter 4 Management Mechanisms 315

EXPERIMENT: Viewing Services Running Inside Processes

The Process Explorer utility shows detailed information about the services running

within processes. Run Process Explorer and view the Services tab in the Process Proper-

ties dialog box for the following processes: Services.exe, Lsass.exe, and Svchost.exe.

Several instances of SvcHost will be running on your system, and you can see the

account in which each is running by adding the Username column to the Process

Explorer display or by looking at the Username field on the Image tab of a process’s

Process Properties dialog box. The following screen shows the list of services running

within a SvcHost executing in the local service account:

The information displayed includes the service’s name, display name, and description, if

it has one, which Process Explorer shows beneath the service list when you select a ser-

vice. Additionally, the path of the DLL containing the service is shown. This information

is useful for mapping thread start addresses (shown on the Threads tab) to their respec-

tive services, which may help in cases of service-related problems such as troubleshoot-

ing high CPU usage.

You can also use the tlist.exe tool from the Debugging Tools for Windows or Tasklist,

which ships with Windows, to view the list of services running within processes from a

command prompt. The syntax to see services with Tlist is:

tlist /s

316 Windows Internals, Fifth Edition

The syntax for tasklist is:

tasklist /svc

Note that these utilities do not show service display names or descriptions, only service

names.

Service Tags

One of the disadvantages of using service-hosting processes is that accounting for CPU

time and usage, as well as for the usage of resources, by a specific service is much harder

because each service is sharing the memory address space, handle table, and per-process

CPU accounting numbers with the other services that are part of the same service group.

Although there is always a thread inside the service-hosting process that belongs to a certain

service, this association may not always be easy to make. For example, the service may be

using worker threads to perform its operation, or perhaps the start address and stack of the

thread do not reveal the service’s DLL name, making it hard to figure out what kind of work a

thread may exactly be doing and to which service it may belong.

Windows Vista and Windows Server 2008 introduce a service attribute called the service
tag, which the SCM generates by calling ScGenerateServiceTag when a service is created or

when the service database is generated during system boot. The attribute is simply an index

identifying the service. The service tag is stored in the SubProcessTag field of the thread envi-

ronment block (TEB) of each thread (see Chapter 5 for more information on the TEB) and is

propagated across all threads that a main service thread creates (except threads created indi-

rectly by thread pool APIs).

Although the service tag is kept internal to the SCM, several Windows utilities, like

Netstat.exe (a utility that you can use for displaying which programs have opened which

ports on the network), use undocumented APIs to query service tags and map them to ser-

vice names. Because the TCP/IP stack saves the service tag of the threads that create TCP/IP

end points, when you run Netstat with the –b parameter, Netstat can report the service

name for end points created by services. Another tool you can use to look at service tags

is ScTagQuery from Winsider Seminars & Solutions Inc. (www.winsiderss.com/tools/sctag-
 query.html). It can query the SCM for the mappings of every service tag and display them

either systemwide or per-process. It can also show you to which services all the threads inside

a service-hosting process belong (this is conditional on those threads having a proper service

tag associated with them). This way, if you have a runaway service consuming lots of CPU

time, you can identify the culprit service in case the thread start address or stack does not

have an obvious service DLL associated with it.

 Chapter 4 Management Mechanisms 317

Service Control Programs

Service control programs are standard Windows applications that use SCM service man-

agement functions, including CreateService, OpenService, StartService, ControlService,

QueryServiceStatus, and DeleteService. To use the SCM functions, an SCP must first open a

communications channel to the SCM by calling the OpenSCManager function. At the time of

the open call, the SCP must specify what types of actions it wants to perform. For example,

if an SCP simply wants to enumerate and display the services present in the SCM’s database,

it requests enumerate-service access in its call to OpenSCManager. During its initialization,

the SCM creates an internal object that represents the SCM database and uses the Windows

security functions to protect the object with a security descriptor that specifies what accounts

can open the object with what access permissions. For example, the security descriptor indi-

cates that the Authenticated Users group can open the SCM object with enumerate-service

access. However, only administrators can open the object with the access required to create

or delete a service.

As it does for the SCM database, the SCM implements security for services themselves. When

an SCP creates a service by using the CreateService function, it specifies a security descriptor

that the SCM associates internally with the service’s entry in the service database. The SCM

stores the security descriptor in the service’s registry key as the Security value, and it reads

that value when it scans the registry’s Services key during initialization so that the security

settings persist across reboots. In the same way that an SCP must specify what types of

access it wants to the SCM database in its call to OpenSCManager, an SCP must tell the SCM

what access it wants to a service in a call to OpenService. Accesses that an SCP can request

include the ability to query a service’s status and to configure, stop, and start a service.

The SCP you’re probably most familiar with is the Services MMC snap-in that’s included in

Windows, which resides in %SystemRoot%\System32\Filemgmt.dll. Windows also includes

Sc.exe (Service Controller tool), a command-line service control program that we’ve men-

tioned multiple times.

SCPs sometimes layer service policy on top of what the SCM implements. A good example

is the timeout that the Services MMC snap-in implements when a service is started manu-

ally. The snap-in presents a progress bar that represents the progress of a service’s startup.

Services indirectly interact with SCPs by setting their configuration status to reflect their

progress as they respond to SCM commands such as the start command. SCPs query the

status with the QueryServiceStatus function. They can tell when a service actively updates the

status versus when a service appears to be hung, and the SCM can take appropriate actions

in notifying a user about what the service is doing.

318 Windows Internals, Fifth Edition

Windows Management Instrumentation

Windows Management Instrumentation (WMI) is an implementation of Web-Based

Enterprise Management (WBEM), a standard that the Distributed Management Task Force

(DMTF—an industry consortium) defines. The WBEM standard encompasses the design of

an extensible enterprise data-collection and data-management facility that has the flexibil-

ity and extensibility required to manage local and remote systems that comprise arbitrary

components.

WMI Architecture

WMI consists of four main components, as shown in Figure 4-18: management applications,

WMI infrastructure, providers, and managed objects. Management applications are Windows

applications that access and display or process data that the applications obtain about man-

aged objects. A simple example of a management application is a performance tool replace-

ment that relies on WMI rather than the Performance API to obtain performance information.

A more complex example is an enterprise-management tool that lets administrators perform

automated inventories of the software and hardware configuration of every computer in

their enterprise.

FIGURE 4-18 WMI architecture

Developers typically must target management applications to collect data from and man-

age specific objects. An object might represent one component, such as a network adapter

 Chapter 4 Management Mechanisms 319

device, or a collection of components, such as a computer (the computer object might con-

tain the network adapter object). Providers need to define and export the representation of

the objects that management applications are interested in. For example, the vendor of a

network adapter might want to add adapter-specific properties to the network adapter WMI

support that Windows includes, querying and setting the adapter’s state and behavior as the

management applications direct. In some cases (for example, for device drivers), Microsoft

supplies a provider that has its own API to help developers leverage the provider’s imple-

mentation for their own managed objects with minimal coding effort.

The WMI infrastructure, the heart of which is the Common Information Model (CIM) Object

Manager (CIMOM), is the glue that binds management applications and providers. (CIM is

described later in this chapter.) The infrastructure also serves as the object-class store and, in

many cases, as the storage manager for persistent object properties. WMI implements the

store, or repository, as an on-disk database named the CIMOM Object Repository. As part of

its infrastructure, WMI supports several APIs through which management applications access

object data and providers supply data and class definitions.

Windows programs use the WMI COM API, the primary management API, to directly inter-

act with WMI. Other APIs layer on top of the COM API and include an Open Database

Connectivity (ODBC) adapter for the Microsoft Access database application. A database

developer uses the WMI ODBC adapter to embed references to object data in the devel-

oper’s database. Then the developer can easily generate reports with database queries that

contain WMI-based data. WMI ActiveX controls support another layered API. Web devel-

opers use the ActiveX controls to construct Web-based interfaces to WMI data. Another

management API is the WMI scripting API, for use in script-based applications and Microsoft

Visual Basic programs. WMI scripting support exists for all Microsoft programming language

technologies.

As they are for management applications, WMI COM interfaces constitute the primary API for

providers. However, unlike management applications, which are COM clients, providers are

COM or Distributed COM (DCOM) servers (that is, the providers implement COM objects that

WMI interacts with). Possible embodiments of a WMI provider include DLLs that load into

WMI’s manager process or stand-alone Windows applications or Windows services. Microsoft

includes a number of built-in providers that present data from well-known sources, such as

the Performance API, the registry, the Event Manager, Active Directory, SNMP, and Windows

Driver Model (WDM) device drivers. The WMI SDK lets developers develop third-party WMI

providers.

Providers

At the core of WBEM is the DMTF-designed CIM specification. The CIM specifies how man-

agement systems represent, from a systems management perspective, anything from a

computer to an application or device on a computer. Provider developers use the CIM to

320 Windows Internals, Fifth Edition

represent the components that make up the parts of an application for which the developers

want to enable management. Developers use the Managed Object Format (MOF) language

to implement a CIM representation.

In addition to defining classes that represent objects, a provider must interface WMI to the

objects. WMI classifies providers according to the interface features the providers supply.

Table 4-12 lists WMI provider classifications. Note that a provider can implement one or

more features; therefore, a provider can be, for example, both a class and an event provider.

To clarify the feature definitions in Table 4-12, let’s look at a provider that implements sev-

eral of those features. The Event Log provider supports several objects, including an Event

Log Computer, an Event Log Record, and an Event Log File. The Event Log is an Instance

provider because it can define multiple instances for several of its classes. One class for

which the Event Log provider defines multiple instances is the Event Log File class (Win32_

NTEventlogFile); the Event Log provider defines an instance of this class for each of the sys-

tem’s event logs (that is, System Event Log, Application Event Log, and Security Event Log).

TABLE 4-12 Provider Classifications

Classification Description

Class Can supply, modify, delete, and enumerate a provider-specific class. Can also

support query processing. Active Directory is a rare example of a service that

is a class provider.

Instance Can supply, modify, delete, and enumerate instances of system and provider-

specific classes. An instance represents a managed object. Can also support

query processing.

Property Can supply and modify individual object property values.

Method Supplies methods for a provider-specific class.

Event Generates event notifications.

Event consumer Maps a physical consumer to a logical consumer to support event

notification.

The Event Log provider defines the instance data and lets management applications enumer-

ate the records. To let management applications use WMI to back up and restore the Event

Log files, the Event Log provider implements backup and restore methods for Event Log File

objects. Doing so makes the Event Log provider a Method provider. Finally, a management

application can register to receive notification whenever a new record writes to one of the

Event Logs. Thus, the Event Log provider serves as an Event provider when it uses WMI event

notification to tell WMI that Event Log records have arrived.

The Common Information Model and the Managed Object
Format Language

The CIM follows in the steps of object-oriented languages such as C++ and Java, in which

a modeler designs representations as classes. Working with classes lets developers use the

 Chapter 4 Management Mechanisms 321

powerful modeling techniques of inheritance and composition. Subclasses can inherit the

attributes of a parent class, and they can add their own characteristics and override the char-

acteristics they inherit from the parent class. A class that inherits properties from another

class derives from that class. Classes also compose: a developer can build a class that includes

other classes.

The DMTF provides multiple classes as part of the WBEM standard. These classes are CIM’s

basic language and represent objects that apply to all areas of management. The classes

are part of the CIM core model. An example of a core class is CIM_ManagedSystemElement.

This class contains a few basic properties that identify physical components such as hard-

ware devices and logical components such as processes and files. The properties include

a caption, description, installation date, and status. Thus, the CIM_LogicalElement and

CIM_PhysicalElement classes inherit the attributes of the CIM_ManagedSystemElement class.

These two classes are also part of the CIM core model. The WBEM standard calls these classes

abstract classes because they exist solely as classes that other classes inherit (that is, no object

instances of an abstract class exist). You can therefore think of abstract classes as templates

that define properties for use in other classes.

A second category of classes represents objects that are specific to management areas but

independent of a particular implementation. These classes constitute the common model and

are considered an extension of the core model. An example of a common-model class is the

CIM_FileSystem class, which inherits the attributes of CIM_LogicalElement. Because virtually

every operating system—including Windows, Linux, and other varieties of UNIX—rely on file-

system-based structured storage, the CIM_FileSystem class is an appropriate constituent of

the common model.

The final class category, the extended model, comprises technology-specific additions to the

common model. Windows defines a large set of these classes to represent objects specific

to the Windows environment. Because all operating systems store data in files, the CIM

common model includes the CIM_LogicalFile class. The CIM_DataFile class inherits the CIM_

LogicalFile class, and Windows adds the Win32_PageFile and Win32_ShortcutFile file classes

for those Windows file types.

The Event Log provider makes extensive use of inheritance. Figure 4-19 shows a view of the

WMI CIM Studio, a class browser that ships with the WMI Administrative Tools that you can

obtain from the Microsoft download center at the Microsoft Web site. You can see where

the Event Log provider relies on inheritance in the provider’s Win32_NTEventlogFile class,

which derives from CIM_DataFile. Event Log files are data files that have additional Event

Log–specific attributes such as a log file name (LogfileName) and a count of the num-

ber of records that the file contains (NumberOfRecords). The tree that the class browser

shows reveals that Win32_NTEventlogFile is based on several levels of inheritance, in which

CIM_DataFile derives from CIM_LogicalFile, which derives from CIM_LogicalElement, and

CIM_LogicalElement derives from CIM_ManagedSystemElement.

322 Windows Internals, Fifth Edition

FIGURE 4-19 WMI CIM Studio

As stated earlier, WMI provider developers write their classes in the MOF language. The fol-

lowing output shows the definition of the Event Log provider’s Win32_NTEventlogFile, which

is selected in Figure 4-19. Notice the correlation between the properties that the right panel

in Figure 4-19 lists and those properties’ definitions in the MOF file below. CIM Studio uses

yellow arrows to tag those properties that a class inherits. Thus, you don’t see those proper-

ties specified in Win32_NTEventlogFile’s definition.

dynamic: ToInstance, provider("MS_NT_EVENTLOG_PROVIDER"), Locale(1033), UUID("{8502C57B-

5FBB-11D2-AAC1-006008C78BC7}")]

class Win32_NTEventlogFile : CIM_DataFile

{

[read] string LogfileName;

 Chapter 4 Management Mechanisms 323

[read, write] uint32 MaxFileSize;

[read] uint32 NumberOfRecords;

[read, volatile, ValueMap{"0", "1..365", "4294967295"}] string OverWritePolicy;

[read, write, Units("Days"), Range("0-365 | 4294967295")] uint32 OverwriteOutDated;

[read] string Sources[];

[implemented, Privileges{"SeSecurityPrivilege",

"SeBackupPrivilege"}] uint32 ClearEventlog([in] string ArchiveFileName);

[implemented, Privileges{"SeSecurityPrivilege",

"SeBackupPrivilege"}] uint32 BackupEventlog([in] string ArchiveFileName);

};

One term worth reviewing is dynamic, which is a descriptive designator for the Win32_

NTEventlogFile class that the MOF file in the preceding output shows. Dynamic means that

the WMI infrastructure asks the WMI provider for the values of properties associated with

an object of that class whenever a management application queries the object’s properties.

A static class is one in the WMI repository; the WMI infrastructure refers to the repository to

obtain the values instead of asking a provider for the values. Because updating the repository

is a relatively expensive operation, dynamic providers are more efficient for objects that have

properties that change frequently.

EXPERIMENT: Viewing the MOF Definitions of WMI Classes

You can view the MOF definition for any WMI class by using the WbemTest tool that

comes with Windows. In this experiment, we’ll look at the MOF definition for the

Win32_NTEventLogFile class:

 1. Run Wbemtest from the Start menu’s Run dialog box.

 2. Click the Connect button, change the Namespace to root\cimv2, and connect.

 3. Select Enum Classes, select the Recursive option button, and then click OK.

 4. Find Win32_NTEventLogFile in the list of classes, and then double-click it to see

its class properties.

 5. Click the Show MOF button to open a window that displays the MOF text.

After constructing classes in MOF, WMI developers can supply the class definitions to WMI

in several ways. WDM provider developers compile a MOF file into a binary MOF (BMF)

file—a more compact binary representation than a MOF file—and give the BMF files to the

WDM infrastructure. Another way is for the provider to compile the MOF and use WMI COM

APIs to give the definitions to the WMI infrastructure. Finally, a provider can use the MOF

Compiler (Mofcomp.exe) tool to give the WMI infrastructure a classes-compiled representa-

tion directly.

324 Windows Internals, Fifth Edition

The WMI Namespace

Classes define the properties of objects, and objects are class instances on a system. WMI

uses a namespace that contains several subnamespaces that WMI arranges hierarchically to

organize objects. A management application must connect to a namespace before the appli-

cation can access objects within the namespace.

WMI names the namespace root directory root. All WMI installations have four pre-

defined namespaces that reside beneath root: CIMV2, Default, Security, and WMI. Some of

these namespaces have other namespaces within them. For example, CIMV2 includes the

Applications and ms_409 namespaces as subnamespaces. Providers sometimes define their

own namespaces; you can see the WMI namespace (which the Windows device driver WMI

provider defines) beneath root in Windows.

EXPERIMENT: Viewing WMI Namespaces

You can see what namespaces are defined on a system with WMI CIM Studio. WMI CIM

Studio presents a connection dialog box when you run it that includes a namespace

browsing button to the right of the namespace edit box. Opening the browser and

selecting a namespace has WMI CIM Studio connect to that namespace. Windows Vista

defines over a dozen namespaces beneath root, some of which are visible here:

Unlike a file system namespace, which comprises a hierarchy of directories and files, a WMI

namespace is only one level deep. Instead of using names as a file system does, WMI uses

object properties that it defines as keys to identify the objects. Management applications

specify class names with key names to locate specific objects within a namespace. Thus, each

instance of a class must be uniquely identifiable by its key values. For example, the Event

Log provider uses the Win32_NTLogEvent class to represent records in an Event Log. This

class has two keys: Logfile, a string; and RecordNumber, an unsigned integer. A manage-

ment application that queries WMI for instances of Event Log records obtains them from the

 Chapter 4 Management Mechanisms 325

provider key pairs that identify records. The application refers to a record using the syntax

that you see in this sample object path name:

\\DARYL\root\CIMV2:Win32_NTLogEvent.Logfile="Application",

 RecordNumber="1"

The first component in the name (\\DARYL) identifies the computer on which the object is

located, and the second component (\root\CIMV2) is the namespace in which the object

resides. The class name follows the colon, and key names and their associated values follow

the period. A comma separates the key values.

WMI provides interfaces that let applications enumerate all the objects in a particular class or

to make queries that return instances of a class that match a query criterion.

Class Association

Many object types are related to one another in some way. For example, a computer object

has a processor, software, an operating system, active processes, and so on. WMI lets provid-

ers construct an association class to represent a logical connection between two different

classes. Association classes associate one class with another, so the classes have only two

properties: a class name and the Ref modifier. The following output shows an association

in which the Event Log provider’s MOF file associates the Win32_NTLogEvent class with the

Win32_ComputerSystem class. Given an object, a management application can query associ-

ated objects. In this way, a provider defines a hierarchy of objects.

[dynamic: ToInstance, provider("MS_NT_EVENTLOG_PROVIDER"): ToInstance, EnumPrivileges{"Se

SecurityPrivilege"}: ToSubClass, Locale(1033): ToInstance, UUID("{8502C57F-5FBB-11D2-AAC1-

006008C78BC7}"): ToInstance, Association: DisableOverride ToInstance ToSubClass]

class Win32_NTLogEventComputer

{

 [key, read: ToSubClass] Win32_ComputerSystem ref Computer;

 [key, read: ToSubClass] Win32_NTLogEvent ref Record;

};

Figure 4-20 shows the WMI Object Browser (another tool that the WMI Administrative

Tools includes) displaying the contents of the CIMV2 namespace. Windows system com-

ponents typically place their objects within the CIMV2 namespace. The Object Browser

first locates the Win32_ComputerSystem object instance ALEX-LAPTOP, which is the object

that represents the computer. Then the Object Browser obtains the objects associated with

Win32_ComputerSystem and displays them beneath ALEX-LAPTOP. The Object Browser user

interface displays association objects with a double-arrow folder icon. The associated class

type’s objects display beneath the folder.

You can see in the Object Browser that the Event Log provider’s association class Win32_

NTLogEventComputer is beneath ALEX-LAPTOP and that numerous instances of the

326 Windows Internals, Fifth Edition

Win32_NTLogEvent class exist. Refer to the preceding output to verify that the MOF file

defines the Win32_NTLogEventComputer class to associate the Win32_ComputerSystem class

with the Win32_NTLogEvent class. Selecting an instance of Win32_NTLogEvent in the Object

Browser reveals that class’s properties under the Properties tab in the right-hand pane.

Microsoft intended the Object Browser to help WMI developers examine their objects, but a

management application would perform the same operations and display properties or col-

lected information more intelligibly.

FIGURE 4-20 WMI Object Browser

EXPERIMENT: Using WMI Scripts to Manage Systems

A powerful aspect of WMI is its support for scripting languages. Microsoft has gener-

ated hundreds of scripts that perform common administrative tasks for managing user

accounts, files, the registry, processes, and hardware devices. The Microsoft TechNet

Scripting Center Web site serves as the central location for Microsoft scripts. Using a

script from the scripting center is as easy as copying its text from your Internet browser,

storing it in a file with a .vbs extension, and running it with the command cscript

script.vbs, where “script” is the name you gave the script. Cscript is the command-line

interface to Windows Script Host (WSH).

Here’s a sample TechNet script that registers to receive events when Win32_Process

object instances are created, which occurs whenever a process starts, and prints a line

with the name of the process that the object represents:

 Chapter 4 Management Mechanisms 327

strComputer = "."

Set objWMIService = GetObject("winmgmts:" _

 & "{impersonationLevel=impersonate}!\\" & strComputer & "\root\cimv2")

Set colMonitoredProcesses = objWMIService. _

 ExecNotificationQuery("select * from __instancecreationevent " _

 & " within 1 where TargetInstance isa 'Win32_Process'")

i = 0

Do While i = 0

 Set objLatestProcess = colMonitoredProcesses.NextEvent

 Wscript.Echo objLatestProcess.TargetInstance.Name

Loop

The line that invokes ExecNotificationQuery does so with a parameter that includes a

“select” statement, which highlights WMI’s support for a read-only subset of the ANSI

standard Structured Query Language (SQL), known as WQL, to provide a flexible way

for WMI consumers to specify the information that they want to extract from WMI pro-

viders. Running the sample script with Cscript and then starting Notepad results in the

following output:

C:\>cscript monproc.vbs

Microsoft (R) Windows Script Host Version 5.7

Copyright (C) Microsoft Corporation. All rights reserved.

NOTEPAD.EXE

WMI Implementation

The WMI service runs in a shared Svchost process that executes in the local system account.

It loads providers into the Wmiprvse.exe provider-hosting process, which launches as a child

of the RPC service process. WMI executes Wmiprvse in the local system, local service, or

network service accounts, depending on the value of the HostingModel property of the WMI

Win32Provider object instance that represents the provider implementation. A Wmiprvse

process exits after the provider is removed from the cache, one minute following the last

provider request it receives.

EXPERIMENT: Viewing Wmiprvse Creation

You can see Wmiprvse being created by running Process Explorer and executing Wmic.

A Wmiprvse process will appear beneath the Svchost process that hosts the RPC ser-

vice. If Process Explorer job highlighting is enabled, it will appear with the job highlight

color because, to prevent a runaway provider from consuming all virtual memory

resources on a system, Wmiprvse executes in a job object that limits the number of

child processes it can create and the amount of virtual memory each process and all the

processes of the job can allocate. (See Chapter 5 for more information on job objects.)

328 Windows Internals, Fifth Edition

Most WMI components reside by default in %SystemRoot%\System32 and %SystemRoot%\

System32\Wbem, including Windows MOF files, built-in provider DLLs, and management

application WMI DLLs. Look in the %SystemRoot%\System32\Wbem directory, and you’ll find

Ntevt.mof, the Event Log provider MOF file. You’ll also find Ntevt.dll, the Event Log provider’s

DLL, which the WMI service uses.

Directories beneath %SystemRoot%\System32\Wbem store the repository, log files, and

third-party MOF files. WMI implements the repository—named the CIMOM repository—

using a proprietary version of the Microsoft JET database engine. The database file, by

default, resides in %SystemRoot%\System32\Wbem\Repository\.

WMI honors numerous registry settings that the service’s HKLM\SOFTWARE\Microsoft\

WBEM\CIMOM registry key stores, such as thresholds and maximum values for certain

parameters.

Device drivers use special interfaces to provide data to and accept commands—called the

WMI System Control commands—from WMI. These interfaces are part of the WDM, which is

explained in Chapter 7. Because the interfaces are cross-platform, they fall under the \root\

WMI namespace.

WMIC

Windows also includes Wmic.exe, a utility that allows you to interact with WMI from a

WMI-aware command-line shell. All WMI objects and their properties, including their

methods, are accessible through the shell, which makes WMIC an advanced systems

management console.

 Chapter 4 Management Mechanisms 329

WMI Security

WMI implements security at the namespace level. If a management application success-

fully connects to a namespace, the application can view and access the properties of all the

objects in that namespace. An administrator can use the WMI Control application to control

which users can access a namespace. To start the WMI Control application, from the Start

menu, select Control Panel. From there, select System And Maintenance, Administrative

Tools, Computer Management. Next, open the Services And Applications branch. Right-click

WMI Control, and select Properties to launch the WMI Control Properties dialog box, which

Figure 4-21 shows. To configure security for namespaces, click the Security tab, select the

namespace, and click Security. The other tabs in the WMI Control Properties dialog box let

you modify the performance and backup settings that the registry stores.

FIGURE 4-21 WMI security properties

Windows Diagnostic Infrastructure

The Windows Diagnostic Infrastructure (WDI) helps to detect, diagnose, and resolve common

problem scenarios with minimal user intervention. Windows components implement triggers

that cause WDI to launch scenario-specific troubleshooting modules to detect the occurrence

of a problem scenario. A trigger can indicate that the system is approaching or has reached a

problematic state. Once a troubleshooting module has identified a root cause, it can invoke

a problem resolver to address it. A resolution may be as simple as changing a registry setting

or interacting with the user to perform recovery steps or configuration changes. Ultimately,

330 Windows Internals, Fifth Edition

WDI’s main role is to provide a unified framework for Windows components to perform the

tasks involved in automated problem detection, diagnosis, and resolution.

WDI Instrumentation

Windows or application components must add instrumentation to notify WDI when a prob-

lem scenario is occurring. Components can wait for the results of diagnosis synchronously or

can continue operating and let diagnosis proceed asynchronously. WDI implements two dif-

ferent types of instrumentation APIs to support these models.

Event-based diagnosis, which can be used for minimally invasive diagnostics instrumen-

tation, can be added to a component without requiring any changes to its implementa-

tion. WDI supports two kinds of event-based diagnosis: simple scenarios and start-stop

scenarios. In a simple scenario, a single point in code is responsible for the failure and

an event is raised to trigger diagnostics. In a start-stop scenario, an entire code path

is deemed risky and is instrumented for diagnosis. One event is raised at the begin-

ning of the scenario to a real-time Event Tracing for Windows (ETW) session named

the DiagLog. At the same time, a kernel facility called the Scenario Event Mapper (SEM)

enables a collection of additional ETW traces to the WDI context loggers. A second

event is raised to signal the end of the diagnostic scenario, at which time the SEM dis-

ables the verbose tracing. This “just-in-time tracing” mechanism keeps the performance

overhead of detailed tracing low while maintaining enough contextual information for

WDI to find the root cause without a reproduction of the problem, if a failure should

occur.

On-demand diagnosis, which allows applications to request diagnosis on their own,

interact with the diagnostic, receive notifications when the diagnostic has completed,

and modify its behavior based on the results of the diagnosis. On-demand instrumen-

tation is particularly useful when diagnosis needs to be performed in a privileged secu-

rity context. WDI facilitates the transfer of context across trust and process boundaries

and also supports impersonation of the caller when necessary.

Diagnostic Policy Service

The Diagnostic Policy Service (DPS, %SystemRoot%\System32\Dps.dll) implements most of

the WDI scenario back end. DPS is a multithreaded service (running in a Svchost) that accepts

on-demand scenario requests and also monitors and watches for diagnostic events delivered

via DiagLog. (See Figure 4-22, which shows the relationship of DPS to the other key WDI

components.) In response to these requests, DPS launches the appropriate troubleshoot-

ing module, which encodes domain-specific knowledge, such as how to find the root cause

of a network problem. In addition, DPS makes all the contextual information related to the

 Chapter 4 Management Mechanisms 331

scenario available to the modules in the form of captured traces. Troubleshooting modules

perform automated analysis of the data and can request DPS to launch a secondary module

called a resolver, which is responsible for fixing the problem, silently if possible.

User modeInstrumented
component

Kernel mode

Diagnostic Policy Service

Troubleshooting
module

Contact
sessions

Diagnostic
session

(DiagLog)

Scenario
Event

Mapper

On-demand request

ETW instrumentation

FIGURE 4-22 Windows Diagnostic Infrastructure architecture

DPS controls and enforces Group Policy settings for diagnostic scenarios. You can use the

Group Policy Editor (%SystemRoot%\System32\Gpedit.msc) to configure the settings for the

diagnostics and automatic recovery options. You can access these settings from Computer

Configuration, Administrative Templates, System, Troubleshooting And Diagnostics, shown in

Figure 4-23.

FIGURE 4-23 Configuring Diagnostic Policy Service settings

332 Windows Internals, Fifth Edition

Diagnostic Functionality

Windows implements several built-in diagnostic scenarios and utilities. Some examples

include:

Disk diagnostics, which include the presence of Self-Monitoring Analysis and Reporting

Technology (SMART) code inside the storage class driver (%SystemRoot%\System32\

Driver\Classspnp.sys) to monitor disk health. WDI notifies and guides the user through

data backup after an impending disk failure is detected. In addition, Windows monitors

application crashes caused by disk corruptions in critical system files. The diagnostic

utilizes the Windows File Protection mechanism to automatically restore such damaged

system files from a backup cache when possible. For more information on Windows

storage management, see Chapter 8.

Network diagnostics and troubleshooting extends WDI to handle different classes of

networking related problems, such as file sharing, Internet access, wireless networks,

third-party firewalls, and general network connectivity. For more information on net-

working, see Chapter 12.

Resource exhaustion prevention, which includes Windows memory leak diagnosis and

Windows resource exhaustion detection and resolution. These diagnostics can detect

when the commit limit is approaching its maximum and alert the user of the situation,

including the top memory and resource consumers. The user can then choose to termi-

nate these applications to attempt to free some resources. For more information on the

commit limit and virtual memory, see Chapter 9.

Windows memory diagnostic tool, which can be manually executed by the user from

the Boot Manager on startup or automatically recommended by Windows Error

Reporting (WER) after a system crash that was analyzed as potentially the result of

faulty RAM. For more information on the boot process, see Chapter 13.

Windows startup repair tool, which attempts to automatically fix certain classes of

errors commonly responsible for users being unable to boot the system, such as incor-

rect BCD settings, damaged disk structures such as the MBR or boot sector, and faulty

drivers. When system boot is unsuccessful, the Boot Manager automatically launches

the startup repair tool, if it is installed, which also includes manual recovery options

and access to a command prompt. For more information on the startup repair tool, see

Chapter 13.

Windows performance diagnostics, which include Windows boot performance diag-

nostics, Windows shutdown performance diagnostics, Windows standby/resume per-

formance diagnostics, and Windows system responsiveness performance diagnostics.

Based on certain timing thresholds and internal behavioral expectations of these

mechanisms, Windows can detect problems caused by slow performance and log them

to the Event Log, which in turn is used by WDI to provide resolutions and walkthroughs

for the user to attempt to fix the problem.

 Chapter 4 Management Mechanisms 333

Program Compatibility Assistant (PCA), which enables legacy applications to execute

on Windows Vista despite compatibility problems. PCA detects application installation

failures caused by a mismatch during version checks and run-time failures caused by

deprecated binaries and User Account Control (UAC) settings. PCA attempts to recover

from these failures by applying the appropriate compatibility setting for the applica-

tion, which takes effect during the next run. In addition, PCA maintains a database of

programs with known compatibility issues and informs the users about potential prob-

lems at program startup.

Conclusion

So far, we’ve examined the overall structure of Windows, the core system mechanisms on

which the structure is built, and core management mechanisms. With this foundation laid,

we’re ready to explore the individual executive components in more detail, starting with pro-

cesses and threads.

 335

Chapter 5

Processes, Threads, and Jobs

In this chapter, we’ll explain the data structures and algorithms that deal with processes,

threads, and jobs in the Windows operating system. The first section focuses on the internal

structures that make up a process. The second section outlines the steps involved in creat-

ing a process (and its initial thread). The internals of threads and thread scheduling are then

described. The chapter concludes with a description of the job object.

Where relevant performance counters or kernel variables exist, they are mentioned. Although

this book isn’t a Windows programming book, the pertinent process, thread, and job

Windows functions are listed so that you can pursue additional information on their use.

Because processes and threads touch so many components in Windows, a number of terms

and data structures (such as working sets, objects and handles, system memory heaps, and

so on) are referred to in this chapter but are explained in detail elsewhere in the book. To

fully understand this chapter, you need to be familiar with the terms and concepts explained

in Chapters 1 and 2, such as the difference between a process and a thread, the Windows

virtual address space layout, and the difference between user mode and kernel mode.

Process Internals

This section describes the key Windows process data structures. Also listed are key kernel

variables, performance counters, and functions and tools that relate to processes.

Data Structures

Each Windows process is represented by an executive process (EPROCESS) block. Besides

containing many attributes relating to a process, an EPROCESS block contains and points to a

number of other related data structures. For example, each process has one or more threads

represented by executive thread (ETHREAD) blocks. (Thread data structures are explained in

the section “Thread Internals” later in this chapter.) The EPROCESS block and its related data

structures exist in system address space, with the exception of the process environment block

(PEB), which exists in the process address space (because it contains information that needs

to be accessed by user-mode code).

In addition to the EPROCESS block and the PEB, the Windows subsystem process (Csrss)

maintains a parallel structure for each process that is executing a Windows program. Finally,

336 Windows Internals, Fifth Edition

the kernel-mode part of the Windows subsystem (Win32k.sys) will also maintain a per-pro-

cess data structure that is created the first time a thread calls a Windows USER or GDI func-

tion that is implemented in kernel mode.

Figure 5-1 is a simplified diagram of the process and thread data structures. Each data struc-

ture shown in the figure is described in detail in this chapter.

Thread
environment

block

Process
environment

block

Process
block

Windows process block

Handle table

Thread
block

System address space

Process address space

FIGURE 5-1 Data structures associated with processes and threads

First let’s focus on the process block. (We’ll get to the thread block in the section “Thread

Internals” later in the chapter.) Figure 5-2 shows the key fields in an EPROCESS block.

 Chapter 5 Processes, Threads, and Jobs 337

Kernel process block (or PCB)

Process ID

Parent process ID

Exit status

Create and exit times

Active process link

Primary access token

EPROCESS

Handle table

Quota block

Memory management information

Exception port

Debugger port

Device map

Process environment block

Image filename

Image base address

Process priority class

Job object

Windows process block

FIGURE 5-2 Structure of an executive process block

EXPERIMENT: Displaying the Format of an EPROCESS Block

For a list of the fields that make up an EPROCESS block and their offsets in hexadecimal,

type dt _eprocess in the kernel debugger. (See Chapter 1 for more information on the

kernel debugger and how to perform kernel debugging on the local system.) The out-

put (truncated for the sake of space) on a 32-bit system looks like this:

lkd> dt _eprocess

nt!_EPROCESS

 +0x000 Pcb : _KPROCESS

 +0x080 ProcessLock : _EX_PUSH_LOCK

 +0x088 CreateTime : _LARGE_INTEGER

 +0x090 ExitTime : _LARGE_INTEGER

 +0x098 RundownProtect : _EX_RUNDOWN_REF

 +0x09c UniqueProcessId : Ptr32 Void

 +0x0a0 ActiveProcessLinks : _LIST_ENTRY

 +0x0a8 QuotaUsage : [3] Uint4B

 +0x0b4 QuotaPeak : [3] Uint4B

 +0x0c0 CommitCharge : Uint4B

 +0x0c4 PeakVirtualSize : Uint4B

 +0x0c8 VirtualSize : Uint4B

 +0x0cc SessionProcessLinks : _LIST_ENTRY

 +0x0d4 DebugPort : Ptr32 Void

 +0x0d8 ExceptionPortData : Ptr32 Void

338 Windows Internals, Fifth Edition

 +0x0d8 ExceptionPortValue : Uint4B

 +0x0d8 ExceptionPortState : Pos 0, 3 Bits

 +0x0dc ObjectTable : Ptr32 _HANDLE_TABLE

 +0x0e0 Token : _EX_FAST_REF

 +0x0e4 WorkingSetPage : Uint4B

 +0x0e8 AddressCreationLock : _EX_PUSH_LOCK

 +0x0ec RotateInProgress : Ptr32 _ETHREAD

 +0x0f0 ForkInProgress : Ptr32 _ETHREAD

 +0x0f4 HardwareTrigger : Uint4B

 +0x0f8 PhysicalVadRoot : Ptr32 _MM_AVL_TABLE

 +0x0fc CloneRoot : Ptr32 Void

 +0x100 NumberOfPrivatePages : Uint4B

 +0x104 NumberOfLockedPages : Uint4B

 +0x108 Win32Process : Ptr32 Void

 +0x10c Job : Ptr32 _EJOB

 +0x110 SectionObject : Ptr32 Void

 +0x114 SectionBaseAddress : Ptr32 Void

 +0x118 QuotaBlock : Ptr32 _EPROCESS_QUOTA_BLOCK

Note that the first field (Pcb) is actually a substructure, the kernel process block

(KPROCESS), which is where scheduling-related information is stored. To display the for-

mat of the kernel process block, type dt _kprocess:

lkd> dt _kprocess

nt!_KPROCESS

 +0x000 Header : _DISPATCHER_HEADER

 +0x010 ProfileListHead : _LIST_ENTRY

 +0x018 DirectoryTableBase : Uint4B

 +0x01c Unused0 : Uint4B

 +0x020 LdtDescriptor : _KGDTENTRY

 +0x028 Int21Descriptor : _KIDTENTRY

 +0x030 IopmOffset : Uint2B

 +0x032 Iopl : UChar

 +0x033 Unused : UChar

 +0x034 ActiveProcessors : Uint4B

 +0x038 KernelTime : Uint4B

 +0x03c UserTime : Uint4B

 +0x040 ReadyListHead : _LIST_ENTRY

 +0x048 SwapListEntry : _SINGLE_LIST_ENTRY

 +0x04c VdmTrapcHandler : Ptr32 Void

 +0x050 ThreadListHead : _LIST_ENTRY

 +0x058 ProcessLock : Uint4B

 +0x05c Affinity : Uint4B

 +0x060 AutoAlignment : Pos 0, 1 Bit

 +0x060 DisableBoost : Pos 1, 1 Bit

 +0x060 DisableQuantum : Pos 2, 1 Bit

 +0x060 ReservedFlags : Pos 3, 29 Bits

 +0x060 ProcessFlags : Int4B

 +0x064 BasePriority : Char

 +0x065 QuantumReset : Char

 +0x066 State : UChar

 +0x067 ThreadSeed : UChar

 +0x068 PowerState : UChar

 +0x069 IdealNode : UChar

 Chapter 5 Processes, Threads, and Jobs 339

 +0x06a Visited : UChar

 +0x06b Flags : _KEXECUTE_OPTIONS

 +0x06b ExecuteOptions : UChar

 +0x06c StackCount : Uint4B

 +0x070 ProcessListEntry : _LIST_ENTRY

 +0x078 CycleTime : Uint8B

An alternative way to see the KPROCESS (and other substructures in the EPROCESS) is to

use the recursion (–r) switch of the dt command. For example, typing dt _eprocess –r1

will recurse and display all substructures one level deep.

The dt command shows the format of a process block, not its contents. To show an

instance of an actual process, you can specify the address of an EPROCESS structure as

an argument to the dt command. You can get the address of all the EPROCESS blocks

in the system by using the !process 0 0 command. An annotated example of the output

from this command is included later in this chapter.

Table 5-1 explains some of the fields in the preceding experiment in more detail and includes

references to other places in the book where you can find more information about them. As

we’ve said before and will no doubt say again, processes and threads are such integral parts

of Windows that it’s impossible to talk about them without referring to many other parts of

the system. To keep the length of this chapter manageable, however, we’ve covered those

related subjects (such as memory management, security, objects, and handles) elsewhere.

TABLE 5-1 Contents of the EPROCESS Block

Element Purpose Additional Reference

Kernel process (KPROCESS)

block

Common dispatcher object header,

pointer to the process page directory,

list of kernel thread (KTHREAD) blocks

belonging to the process, default base

priority, affinity mask, and total kernel

and user time and CPU clock cycles for

the threads in the process.

Thread scheduling

(Chapter 5)

Process identification Unique process ID, creating process ID,

name of image being run, window sta-

tion process is running on.

Quota block Limits on processor usage, nonpaged

pool, paged pool, and page file usage

plus current and peak process non-

paged and paged pool usage. (Note:

Several processes can share this struc-

ture: all the system processes in session

0 point to a single systemwide quota

block; all other processes in interactive

sessions share a single quota block.)

340 Windows Internals, Fifth Edition

Element Purpose Additional Reference

Virtual address descriptors

(VADs)

Series of data structures that describes

the status of the portions of the address

space that exist in the process.

Virtual address descrip-

tors (Chapter 9)

Working set information Pointer to working set list (MMWSL

structure); current, peak, minimum, and

maximum working set size; last trim

time; page fault count; memory priority;

outswap flags; page fault history.

Working sets

(Chapter 9)

Virtual memory information Current and peak virtual size, page file

usage, hardware page table entry for

process page directory.

Chapter 9

Exception legacy local proce-

dure call (LPC) port

Interprocess communication channel

to which the process manager sends

a message when one of the process’s

threads causes an exception.

Exception dispatching

(Chapter 3)

Debugging object Executive object through which the

user-mode debugging infrastructure

sends notifications when one of the

process’s threads causes a debug event.

User-mode debugging

(Chapter 3)

Access token (TOKEN) Executive object describing the security

profile of this process.

Chapter 6

Handle table Address of per-process handle table. Object handles and the

process handle table

(Chapter 3)

Device map Address of object directory to resolve

device name references in (supports

multiple users).

Object names

(Chapter 3)

Process environment block

(PEB)

Image information (base address, ver-

sion numbers, module list), process

heap information, and thread-local stor-

age utilization. (Note: The pointers to

the process heaps start at the first byte

after the PEB.)

Chapter 5

Windows subsystem process

block (W32PROCESS)

Process details needed by the kernel-

mode component of the Windows

subsystem.

The kernel process (KPROCESS) block, which is part of the EPROCESS block, and the process

environment block (PEB), which is pointed to by the EPROCESS block, contain additional

details about the process object. The KPROCESS block (which is sometimes called the PCB or

process control block) is illustrated in Figure 5-3. It contains the basic information that the

Windows kernel needs to schedule the threads inside a process. (Page directories are covered

in Chapter 9, and kernel thread blocks are described in more detail later in this chapter.)

 Chapter 5 Processes, Threads, and Jobs 341

The PEB, which lives in the user process address space, contains information needed by the

image loader, the heap manager, and other Windows system DLLs that need to access it from

user mode. (The EPROCESS and KPROCESS blocks are accessible only from kernel mode.) The

basic structure of the PEB is illustrated in Figure 5-4 and is explained in more detail later in

this chapter.

Dispatcher header

Kernel time

Process spinlock

Processor affinity

Resident kernel stack count

Process base priority

Default thread quantum

Process state

Thread seed

Disable boost flag

User time

Inswap/Outswap list entry

Process page directory

KTHREAD

FIGURE 5-3 Structure of the executive process block

Image base address

Module list

Thread-local storage data

Code page data

Critical section timeout

Number of heaps

Heap size information

GDI shared handle table

Image version information

Image process affinity mask

Process heap

Operating system version number information

FIGURE 5-4 Fields of the process environment block

342 Windows Internals, Fifth Edition

EXPERIMENT: Examining the PEB

You can dump the PEB structure with the !peb command in the kernel debugger. To get

the address of the PEB, use the !process command as follows:

lkd> !process

PROCESS 8575f030 SessionId: 1 Cid: 08d0 Peb: 7ffd9000 ParentCid: 0360

 DirBase: 1a81b000 ObjectTable: e12bd418 HandleCount: 66.

 Image: windbg.exe

Then specify that address to the !peb command as follows:

lkd> !peb 7ffd9000

PEB at 7ffd9000

 InheritedAddressSpace: No

 ReadImageFileExecOptions: No

 BeingDebugged: No

 ImageBaseAddress: 002a0000

 Ldr 77895d00

 Ldr.Initialized: Yes

 Ldr.InInitializationOrderModuleList: 00151c38 . 00191558

 Ldr.InLoadOrderModuleList: 00151bb8 . 00191548

 Ldr.InMemoryOrderModuleList: 00151bc0 . 00191550

 Base TimeStamp Module

 2a0000 4678a41e Jun 19 23:50:54 2007 C:\Program Files\Debugging Tools for

 Windows\windbg.exe

 777d0000 4549bdc9 Nov 02 05:43:37 2006 C:\Windows\system32\Ntdll.dll

 764c0000 4549bd80 Nov 02 05:42:24 2006 C:\Windows\system32\kernel32.dll

 SubSystemData: 00000000

 ProcessHeap: 00150000

 ProcessParameters: 001512e0

 WindowTitle: 'C:\Users\Alex Ionescu\Desktop\WinDbg.lnk'

 ImageFile: 'C:\Program Files\Debugging Tools for Windows\windbg.exe'

 CommandLine: '"C:\Program Files\Debugging Tools for Windows\windbg.exe" '

 DllPath: 'C:\Program Files\Debugging Tools for Windows;C:\Windows\

 system32;C:\Windows\system;C:\Windows;.;C:\Windows\system32;C:\Windows;

 C:\Windows\System32\Wbem;C:\Program Files\Common Files\Roxio Shared\

 DLLShared\;C:\Program Files\Common Files\Roxio Shared\DLLShared\;C:\Program

 Files\Common Files\Roxio Shared\9.0\DLLShared\;c:\sysint;C:\Program Files\

 QuickTime\QTSystem\'

 Environment: 001850a8

 ALLUSERSPROFILE=C:\ProgramData

 APPDATA=C:\Users\Alex Ionescu\AppData\Roaming

 .

 .

 .

Kernel Variables

A few key kernel global variables that relate to processes are listed in Table 5-2. These vari-

ables are referred to later in the chapter, when the steps in creating a process are described.

 Chapter 5 Processes, Threads, and Jobs 343

TABLE 5-2 Process-Related Kernel Variables

Element Purpose Additional Reference

PsActiveProcessHead Doubly linked list List head of process blocks

PsIdleProcess Pointer to EPROCESS Idle process block

PsInitialSystemProcess Pointer to EPROCESS Pointer to the process block

of the initial system process

that contains the system

threads

PspCreateProcessNotifyRoutine Array of executive call-

back objects

Array of callback objects

describing the routines to be

called on process creation

and deletion (maximum of

eight)

PspCreateProcessNotifyRoutineCount 32-bit integer Count of registered process

notification routines

PspCreateProcessNotifyRoutineCountEx 32-bit integer Count of registered ex-

tended process notification

routines

PspLoadImageNotifyRoutine Array of executive call-

back objects

Array of callback objects

describing the routines to be

called on image load (maxi-

mum of eight)

PspLoadImageNotifyRoutineCount 32-bit integer Count of registered image-

load notification routines

PspNotifyEnableMask 32-bit integer Mask for quickly checking

whether any extended or

standard notification rou-

tines are enabled

PspCidTable Pointer to HANDLE_

TABLE

Handle table for process and

thread client IDs

Performance Counters

Windows maintains a number of counters with which you can track the processes running

on your system; you can retrieve these counters programmatically or view them with the

Performance tool. Table 5-3 lists the performance counters relevant to processes.

TABLE 5-3 Process-Related Performance Counters

Object: Counter Function

Process: % Privileged Time Describes the percentage of time that the threads in the process

have run in kernel mode during a specified interval.

Process: % Processor Time Describes the percentage of CPU time that the threads in the

process have used during a specified interval. This count is the

sum of % Privileged Time and % User Time.

344 Windows Internals, Fifth Edition

Object: Counter Function

Process: % User Time Describes the percentage of time that the threads in the process

have run in user mode during a specified interval.

Process: Elapsed Time Describes the total elapsed time in seconds since this process

was created.

Process: ID Process Returns the process ID. This ID applies only while the process ex-

ists because process IDs are reused.

Process: Creating Process ID Returns the process ID of the creating process. This value isn’t

updated if the creating process exits.

Process: Thread Count Returns the number of threads in the process.

Process: Handle Count Returns the number of handles open in the process.

Relevant Functions

For reference purposes, some of the Windows functions that apply to processes are

described in Table 5-4. For further information, consult the Windows API documentation in

the MSDN Library.

TABLE 5-4 Process-Related Functions

Function Description

CreateProcess Creates a new process and thread using the caller’s security

identification

CreateProcessAsUser Creates a new process and thread with the specified alternate

security token

CreateProcessWithLogonW Creates a new process and thread to run under the credentials

of the specified username and password

CreateProcessWithTokenW Creates a new process and thread with the specified alternate

security token, with additional options such as allowing the user

profile to be loaded

OpenProcess Returns a handle to the specified process object

ExitProcess Ends a process, and notifies all attached DLLs

TerminateProcess Ends a process without notifying the DLLs

FlushInstructionCache Empties the specified process’s instruction cache

FlushProcessWriteBuffers Empties the specified process’s write queue

GetProcessTimes Obtains a process’s timing information, describing how much

time the threads inside the process spent in user and kernel

mode

QueryProcessCycleTimeCounter Obtains a process’s CPU timing information, describing how

many clock cycles the threads inside the process have spent in

total

Query/
SetProcessAffinityUpdateMode

Defines whether the process’s affinity is automatically updated if

new processors are added to the running system

 Chapter 5 Processes, Threads, and Jobs 345

Function Description

Get/SetProcessDEPPolicy Returns or sets the DEP (Data Execution Protection) policy for

the process

GetExitCodeProcess Returns the exit code for a process, indicating how and why the

process shut down

GetCommandLine Returns a pointer to the command-line string passed to the cur-

rent process

QueryFullProcessImageName Returns the full name of the executable image associated with

the process

GetCurrentProcess Returns a pseudo handle for the current process

GetCurrentProcessId Returns the ID of the current process

GetProcessVersion Returns the major and minor versions of the Windows version

on which the specified process expects to run

GetStartupInfo Returns the contents of the STARTUPINFO structure specified

during CreateProcess

GetEnvironmentStrings Returns the address of the environment block

Get/SetEnvironmentVariable Returns or sets a specific environment variable

Get/
SetProcessShutdownParameters

Defines the shutdown priority and number of retries for the cur-

rent process

SetProcessDPIAware Specifies whether the process is aware of dots per inch (DPI)

settings

GetGuiResources Returns a count of User and GDI handles

EXPERIMENT: Using the Kernel Debugger !process Command

The kernel debugger !process command displays a subset of the information in an

EPROCESS block. This output is arranged in two parts for each process. First you see

the information about the process, as shown here (when you don’t specify a process

address or ID, !process lists information for the active process on the current CPU):

lkd> !process

PROCESS 85857160 SessionId: 1 Cid: 0bcc Peb: 7ffd9000 ParentCid: 090c

 DirBase: b45b0820 ObjectTable: b94ffda0 HandleCount: 99.

 Image: windbg.exe

 VadRoot 85a1c8e8 Vads 97 Clone 0 Private 5919. Modified 153. Locked 1.

 DeviceMap 9d32ee50

 Token ebaa1938

 ElapsedTime 00:48:44.125

 UserTime 00:00:00.000

 KernelTime 00:00:00.000

 QuotaPoolUsage[PagedPool] 166784

 QuotaPoolUsage[NonPagedPool] 4776

 Working Set Sizes (now,min,max) (8938, 50, 345) (35752KB, 200KB, 1380KB)

 PeakWorkingSetSize 8938

 VirtualSize 106 Mb

 PeakVirtualSize 108 Mb

346 Windows Internals, Fifth Edition

 PageFaultCount 37066

 MemoryPriority BACKGROUND

 BasePriority 8

 CommitCharge 6242

After the basic process output comes a list of the threads in the process. That output is

explained in the “Experiment: Using the Kernel Debugger !thread Command” section

later in the chapter. Other commands that display process information include !handle,

which dumps the process handle table (which is described in more detail in the section

“Object Handles and the Process Handle Table” in Chapter 3). Process and thread secu-

rity structures are described in Chapter 6.

Protected Processes

In the Windows security model, any process running with a token containing the debug

privilege (such as an administrator’s account) can request any access right that it desires to

any other process running on the machine—for example, it can read and write arbitrary

process memory, inject code, suspend and resume threads, and query information on other

processes. Tools like Process Explorer and Task Manager need and request these access rights

to provide their functionality to users.

This logical behavior (which helps ensure that administrators will always have full control of

the running code on the system) clashes with the system behavior for digital rights man-

agement requirements imposed by the media industry on computer operating systems

that need to support playback of advanced, high-quality digital content such as BluRay and

HD-DVD media. To support reliable and protected playback of such content, Windows uses

protected processes. These processes exist alongside normal Windows processes, but they

add significant constraints to the access rights that other processes on the system (even when

running with administrative privileges) can request.

Protected processes can be created by any application; however, the operating system will

only allow a process to be protected if the image file has been digitally signed with a spe-

cial Windows Media Certificate. The Protected Media Path (PMP) in Windows Vista makes

use of protected processes to provide protection for high-value media, and developers of

applications such as DVD players can make use of protected processes by using the Media

Foundation API.

The Audio Device Graph process (Audiodg.exe) is a protected process, since protected

music content may be decoded through it. Similarly, the Windows Error Reporting (WER;

 Chapter 5 Processes, Threads, and Jobs 347

see Chapter 3 for more information) client process (Werfault.exe) can also run protected

because it needs to have access to protected processes in case one of them crashes. Finally,

the System process itself is protected because some of the decryption information is gener-

ated by the Ksecdd.sys driver and stored in its user-mode memory. The System process is

also protected to protect the integrity of all kernel handles (since the System process’s handle

table contains all the kernel handles on the system).

At the kernel level, support for protected processes is twofold: first, the bulk of process cre-

ation occurs in kernel mode to avoid injection attacks. (The flow for both protected and stan-

dard process creation is described in detail in the next section.) Second, protected processes

have a special bit set in their EPROCESS structure that modifies the behavior of security-

related routines in the process manager to deny certain access rights that would normally be

granted to administrators. Table 5-5 indicates access rights that are limited or denied.

TABLE 5-5 Process Access Rights Denied for Protected Processes

Object: Access Mask Function

Standard: READ_CONTROL Prevents the protected process’s access control list

(ACL) from being read.

Standard: WRITE_DAC, WRITE_OWNER Prevents access to the protected process’s access

control list or modifying its owner (which would grant

the former).

Process: PROCESS_ALL_ACCESS Prevents full access to the protected process.

Process: PROCESS_CREATE_PROCESS Prevents creation of a child process of a protected

 process.

Process: PROCESS_CREATE_THREAD Prevents creation of a thread inside a protected

process.

Process: PROCESS_DUP_HANDLE Prevents duplication of a handle owned by the

protected process.

Process: PROCESS_QUERY_INFORMATION Prevents querying all information on a protected

process. However, a new access right was added,

PROCESS_QUERY_LIMITED_INFORMATION, that grants

limited access to information on the process.

Process: PROCESS_SET_QUOTA Prevents setting memory or processor-usage limits on a

protected process.

Process: PROCESS_SET_INFORMATION Prevents modification of process settings for a

protected process.

Process: PROCESS_VM_OPERATION,

PROCESS_VM_READ, PROCESS_VM_WRITE

Prevents accessing the memory of a protected process.

Certain access rights are also disabled for threads running inside protected processes; we will

look at those access rights later in this chapter in the section “Thread Internals.”

Because Process Explorer uses standard user-mode Windows APIs to query information on

process internals, it is unable to perform certain operations on such processes. On the other

348 Windows Internals, Fifth Edition

hand, a tool like WinDbg in kernel debugging mode, which uses kernel-mode infrastructure

to obtain this information, will be able to display complete information. See the experiment

in the thread internals section on how Process Explorer behaves when confronted with a pro-

tected process such as Audiodg.exe.

Note As mentioned in Chapter 1, to perform local kernel debugging you must boot in

debugging mode (enabled by using “bcdedit /debug on” or by using the Msconfig advanced

boot options). This protects against debugger-based attacks on protected processes and the

Protected Media Path (PMP). When booted in debugging mode, high-definition content play-

back will not work; for example, attempting to play MPEG2 media such as a DVD will result in an

access violation inside the media player (this is by design).

Limiting these access rights reliably allows the kernel to sandbox a protected process from

user-mode access. On the other hand, because a protected process is indicated by a flag in

the EPROCESS block, an administrator can still load a kernel-mode driver that disables this

bit. However, this would be a violation of the PMP model and considered malicious, and

such a driver would likely eventually be blocked from loading on a 64-bit system because

the kernel-mode code-signing policy prohibits the digital signing of malicious code. Even

on 32-bit systems, the driver has to be recognized by PMP policy or else the playback will

be halted. This policy is implemented by Microsoft and not by any kernel detection. This

block would require manual action from Microsoft to identify the signature as malicious and

update the kernel.

Flow of CreateProcess

So far in this chapter, you’ve seen the structures that are part of a process and the API func-

tions with which you (and the operating system) can manipulate processes. You’ve also found

out how you can use tools to view how processes interact with your system. But how did

those processes come into being, and how do they exit once they’ve fulfilled their purpose?

In the following sections, you’ll discover how a Windows process comes to life.

A Windows subsystem process is created when an application calls one of the process cre-

ation functions, such as CreateProcess, CreateProcessAsUser, CreateProcessWithTokenW, or

CreateProcessWithLogonW. Creating a Windows process consists of several stages carried out

in three parts of the operating system: the Windows client-side library Kernel32.dll (in the

case of the CreateProcessAsUser, CreateProcessWithTokenW, and CreateProcessWithLogonW

routines, part of the work is first done in Advapi32.dll), the Windows executive, and the

Windows subsystem process (Csrss).

 Chapter 5 Processes, Threads, and Jobs 349

Because of the multiple environment subsystem architecture of Windows, creating an execu-

tive process object (which other subsystems can use) is separated from the work involved in

creating a Windows subsystem process. So, although the following description of the flow

of the Windows CreateProcess function is complicated, keep in mind that part of the work

is specific to the semantics added by the Windows subsystem as opposed to the core work

needed to create an executive process object.

The following list summarizes the main stages of creating a process with the Windows

CreateProcess function. The operations performed in each stage are described in detail in the

subsequent sections. Some of these operations may be performed by CreateProcess itself (or

other helper routines in user mode), while others will be performed by NtCreateUserProcess
or one of its helper routines in kernel mode. In our detailed analysis to follow, we will differ-

entiate between the two at each step required.

Note Many steps of CreateProcess are related to the setup of the process virtual address space

and therefore refer to many memory management terms and structures that are defined in

Chapter 9.

 1. Validate parameters; convert Windows subsystem flags and options to their native

counterparts; parse, validate, and convert the attribute list to its native counterpart.

 2. Open the image file (.exe) to be executed inside the process.

 3. Create the Windows executive process object.

 4. Create the initial thread (stack, context, and Windows executive thread object).

 5. Perform post-creation, Windows-subsystem-specific process initialization.

 6. Start execution of the initial thread (unless the CREATE_ SUSPENDED flag was specified).

 7. In the context of the new process and thread, complete the initialization of the address

space (such as load required DLLs) and begin execution of the program.

Figure 5-5 shows an overview of the stages Windows follows to create a process.

350 Windows Internals, Fifth Edition

Open EXE and
create section

object

Set up for new
process and

thread

Final
process/image
initialization

Create
Windows

process object

Create
Windows

thread object

Perform Windows-
subsystem−specific
process initialization

Start execution
of the initial

thread

Return
to caller!

Start execution
at entry point

to image

Creating process

Stage 1

Stage 2

Stage 3

Stage 4

Stage 5

Windows subsystem

New process

Stage 7

Convert and validate
parameters and

flags

Stage 6

FIGURE 5-5 The main stages of process creation

Stage 1: Converting and Validating Parameters and Flags

Before opening the executable image to run, CreateProcess performs the following steps:

In CreateProcess, the priority class for the new process is specified as independent bits

in the CreationFlags parameter. Thus, you can specify more than one priority class for

a single CreateProcess call. Windows resolves the question of which priority class to

assign to the process by choosing the lowest-priority class set.

If no priority class is specified for the new process, the priority class defaults to Normal

unless the priority class of the process that created it is Idle or Below Normal, in which

case the priority class of the new process will have the same priority as the creating

class.

 Chapter 5 Processes, Threads, and Jobs 351

If a Real-time priority class is specified for the new process and the process’s caller

doesn’t have the Increase Scheduling Priority privilege, the High priority class is used

instead. In other words, CreateProcess doesn’t fail just because the caller has insufficient

privileges to create the process in the Real-time priority class; the new process just

won’t have as high a priority as Real-time.

All windows are associated with desktops, the graphical representation of a workspace.

If no desktop is specified in CreateProcess, the process is associated with the caller’s

current desktop.

If the process is part of a job object, but the creation flags requested a separate virtual

DOS machine (VDM), the flag is ignored.

If the caller is sending a handle to a monitor as an output handle instead of a console

handle, standard handle flags are ignored.

If the creation flags specify that the process will be debugged, Kernel32 initiates a con-

nection to the native debugging code in Ntdll.dll by calling DbgUiConnectToDbg and

gets a handle to the debug object from the thread environment block (TEB) once the

function returns.

Kernel32.dll sets the default hard error mode if the creation flags specified one.

The user-specified attribute list is converted from Windows subsystem format to native

format, and internal attributes are added to it.

Note The attribute list passed on a CreateProcess call permits passing back to the caller infor-

mation beyond a simple status code, such as the TEB address of the initial thread or information

on the image section. This is necessary for protected processes since the parent cannot query

this information after the child is created.

Once these steps are completed, CreateProcess will perform the initial call to NtCreateUser-
Process to attempt creation of the process. Because Kernel32.dll has no idea at this point

whether the application image name is a real Windows application, or if it might be a POSIX,

16-bit, or DOS application, the call may fail, at which point CreateProcess will look at the

error reason and attempt to correct the situation.

Stage 2: Opening the Image to Be Executed

As illustrated in Figure 5-6, the first stage in NtCreateUserProcess is to find the appropriate

Windows image that will run the executable file specified by the caller and to create a sec-

tion object to later map it into the address space of the new process. If the call failed for

any reason, it will return to CreateProcess with a failure state (see Table 5-6) that will cause

CreateProcess to attempt execution again.

If the executable file specified is a Windows .exe, NtCreateUserProcess will try to open the file

and create a section object for it. The object isn’t mapped into memory yet, but it is opened.

352 Windows Internals, Fifth Edition

Just because a section object has been successfully created doesn’t mean that the file is a

valid Windows image, however; it could be a DLL or a POSIX executable. If the file is a POSIX

executable, the image to be run changes to Posix.exe, and CreateProcess restarts from the

beginning of Stage 1. If the file is a DLL, CreateProcess fails.

Now that NtCreateUserProcess has found a valid Windows executable image, as part of the

process creation code described in Stage 3 it looks in the registry under HKLM\SOFTWARE\

Microsoft\Windows NT\CurrentVersion\Image File Execution Options to see whether a sub-

key with the file name and extension of the executable image (but without the directory

and path information—for example, Image.exe) exists there. If it does, PspAllocateProcess
looks for a value named Debugger for that key. If this value is present, the image to be run

becomes the string in that value and CreateProcess restarts at Stage 1.

Tip You can take advantage of this process creation behavior and debug the startup code of

Windows services processes before they start rather than attach the debugger after starting a

service, which doesn’t allow you to debug the startup code.

On the other hand, if the image is not a Windows .exe (for example, if it’s an MS-DOS, Win16,

or a POSIX application), CreateProcess goes through a series of steps to find a Windows sup-
port image to run it. This process is necessary because non-Windows applications aren’t run

directly—Windows instead uses one of a few special support images that in turn are respon-

sible for actually running the non-Windows program. For example, if you attempt to run a

POSIX application, CreateProcess identifies it as such and changes the image to be run to the

Windows executable file Posix.exe. If you attempt to run an MS-DOS or a Win16 executable,

the image to be run becomes the Windows executable Ntvdm.exe. In short, you can’t directly

create a process that is not a Windows process. If Windows can’t find a way to resolve the

activated image as a Windows process (as shown in Table 5-6), CreateProcess fails.

FIGURE 5-6 Choosing a Windows image to activate

 Chapter 5 Processes, Threads, and Jobs 353

TABLE 5-6 Decision Tree for Stage 1 of CreateProcess

If the Image . . . Create State Code

This Image

Will Run . . .

. . . and This

Will Happen

Is a POSIX executable file PsCreateSuccess Posix.exe CreateProcess
restarts Stage 1.

Is an MS-DOS application

with an .exe, a .com, or a

.pif extension

PsCreateFailOnSectionCreate Ntvdm.exe CreateProcess
restarts Stage 1.

Is a Win16 application PsCreateFailOnSectionCreate Ntvdm.exe CreateProcess
restarts Stage 1.

Is a Win64 application on

a 32-bit system (or a PPC,

MIPS, or Alpha Binary)

PsCreateFailMachineMismatch N/A CreateProcess will

fail.

Has a Debugger key with

another image name

PsCreateFailExeName Name specified

in the Debugger

key

CreateProcess
restarts Stage 1.

Is an invalid or damaged

Windows EXE

PsCreateFailExeFormat N/A CreateProcess will

fail.

Cannot be opened PsCreateFailOnFileOpen N/A CreateProcess will

fail.

Is a command procedure

(application with a .bat or

a .cmd extension)

PsCreateFailOnSectionCreate Cmd.exe CreateProcess
restarts Stage 1.

Specifically, the decision tree that CreateProcess goes through to run an image is as follows:

If the image is an MS-DOS application with an .exe, a .com, or a .pif extension, a mes-

sage is sent to the Windows subsystem to check whether an MS-DOS support process

(Ntvdm.exe, specified in the registry value HKLM\SYSTEM\CurrentControlSet\Control\

WOW\cmdline) has already been created for this session. If a support process has been

created, it is used to run the MS-DOS application. (The Windows subsystem sends

the message to the VDM [Virtual DOS Machine] process to run the new image.) Then

CreateProcess returns. If a support process hasn’t been created, the image to be run

changes to Ntvdm.exe and CreateProcess restarts at Stage 1.

If the file to run has a .bat or a .cmd extension, the image to be run becomes Cmd.exe,

the Windows command prompt, and CreateProcess restarts at Stage 1. (The name of

the batch file is passed as the first parameter to Cmd.exe.)

If the image is a Win16 (Windows 3.1) executable, CreateProcess must decide whether

a new VDM process must be created to run it or whether it should use the default

sessionwide shared VDM process (which might not yet have been created). The

CreateProcess flags CREATE_SEPARATE_WOW_VDM and CREATE_SHARED_WOW_VDM

control this decision. If these flags aren’t specified, the registry value HKLM\SYSTEM\

CurrentControlSet\Control\WOW\DefaultSeparateVDM dictates the default behavior.

354 Windows Internals, Fifth Edition

If the application is to be run in a separate VDM, the image to be run changes to

the value of HKLM\SYSTEM\CurrentControlSet\Control\WOW\wowcmdline and

CreateProcess restarts at Stage 1. Otherwise, the Windows subsystem sends a mes-

sage to see whether the shared VDM process exists and can be used. (If the VDM

process is running on a different desktop or isn’t running under the same security as

the caller, it can’t be used and a new VDM process must be created.) If a shared VDM

process can be used, the Windows subsystem sends a message to it to run the new

image and CreateProcess returns. If the VDM process hasn’t yet been created (or if it

exists but can’t be used), the image to be run changes to the VDM support image and

CreateProcess restarts at Stage 1.

Stage 3: Creating the Windows Executive Process Object
(PspAllocateProcess)
At this point, NtCreateUserProcess has opened a valid Windows executable file and cre-

ated a section object to map it into the new process address space. Next it creates a

Windows executive process object to run the image by calling the internal system function

PspAllocateProcess. Creating the executive process object (which is done by the creating

thread) involves the following substages:

Setting up the EPROCESS block

Creating the initial process address space

Initializing the kernel process block (KPROCESS)

Setting up the PEB

Concluding the setup of the process address space (which includes initializing the work-

ing set list and virtual address space descriptors and mapping the image into address

space)

Note The only time there won’t be a parent process is during system initialization. After that

point, a parent process is always required to provide a security context for the new process.

Stage 3A: Setting Up the EPROCESS Block

This substage involves the following steps:

 1. Allocate and initialize the Windows EPROCESS block.

 2. Inherit the Windows device namespace (including the definition of drive letters, COM

ports, and so on).

 Chapter 5 Processes, Threads, and Jobs 355

 3. Inherit the process affinity mask and page priority from the parent process. If there is

no parent process, the default page priority (5) is used, and an affinity mask of all pro-

cessors (KeActiveProcessors) is used.

 4. Set the new process’s quota block to the address of its parent process’s quota block,

and increment the reference count for the parent’s quota block. If the process was cre-

ated through CreateProcessAsUser, this step won’t occur.

 5. The process minimum and maximum working set size are set to the values of Psp-
MinimumWorkingSet and PspMaximumWorkingSet, respectively. These values can be

overridden if performance options were specified in the PerfOptions key part of Image

File Execution Options, in which case the maximum working set is taken from there.

 6. Store the parent process’s process ID in the InheritedFromUniqueProcessId field in the

new process object.

 7. Attach the process to the session of the parent process.

 8. Initialize the KPROCESS part of the process object. (See Stage 3C.)

 9. Create the process’s primary access token (a duplicate of its parent’s primary token).

New processes inherit the security profile of their parents. If the CreateProcessAsUser
function is being used to specify a different access token for the new process, the token

is then changed appropriately.

 10. The process handle table is initialized. If the inherit handles flag is set for the parent

process, any inheritable handles are copied from the parent’s object handle table into

the new process. (For more information about object handle tables, see Chapter 3.) A

process attribute can also be used to specify only a subset of handles, which is useful

when you are using CreateProcessAsUser to restrict which objects should be inherited

by the child process.

 11. If performance options were specified through the PerfOptions key, these are now

applied. The PerfOptions key includes overrides for the working set limit, I/O priority,

page priority, and CPU priority class of the process.

 12. The process priority class and quantum are computed and set.

 13. Set the new process’s exit status to STATUS_PENDING.

Stage 3B: Creating the Initial Process Address Space

The initial process address space consists of the following pages:

Page directory (and it’s possible there’ll be more than one for systems with page tables

more than two levels, such as x86 systems in PAE mode or 64-bit systems)

Hyperspace page

Working set list

356 Windows Internals, Fifth Edition

To create these three pages, the following steps are taken:

 1. Page table entries are created in the appropriate page tables to map the initial pages.

 2. The number of pages is deducted from the kernel variable MmTotalCommittedPages
and added to MmProcessCommit.

 3. The systemwide default process minimum working set size (PsMinimumWorkingSet) is
deducted from MmResidentAvailablePages.

 4. The page table pages for the nonpaged portion of system space and the system cache

are mapped into the process.

Stage 3C: Creating the Kernel Process Block

The next stage of PspAllocateProcess is the initialization of the KPROCESS block. This work is

performed by KeInitializeProcess, which contains:

A pointer to a list of kernel threads. (The kernel has no knowledge of handles, so it

bypasses the object table.)

A pointer to the process’s page table directory (which is used to keep track of the pro-

cess’s virtual address space).

The total time the process’s threads have executed.

The number of clock cycles the process’s threads have consumed.

The process’s default base-scheduling priority (which starts as Normal, or 8, unless the

parent process was set to Idle or Below Normal, in which case the setting is inherited).

The default processor affinity for the threads in the process.

The process swapping state (resident, out-swapped, or in transition).

The NUMA ideal node (initially set to 0).

The thread seed, based on the ideal processor that the kernel has chosen for this pro-

cess (which is based on the previously created process’s ideal processor, effectively ran-

domizing this in a round-robin manner). Creating a new process will update the seed

in KeNodeBlock (the initial NUMA node block) so that the next new process will get a

different ideal processor seed.

The initial value (or reset value) of the process default quantum (which is described

in more detail in the “Thread Scheduling” section later in the chapter), which is hard-

coded to 6 until it is initialized later (by PspComputeQuantumAndPriority).

Note The default initial quantum differs between Windows client and server systems. For more

information on thread quantums, turn to their discussion in the section “Thread Scheduling.”

 Chapter 5 Processes, Threads, and Jobs 357

Stage 3D: Concluding the Setup of the Process Address Space

Setting up the address space for a new process is somewhat complicated, so let’s look at

what’s involved one step at a time. To get the most out of this section, you should have

some familiarity with the internals of the Windows memory manager, which are described in

Chapter 9.

The virtual memory manager sets the value of the process’s last trim time to the current

time. The working set manager (which runs in the context of the balance set manager

system thread) uses this value to determine when to initiate working set trimming.

The memory manager initializes the process’s working set list—page faults can now be

taken.

The section (created when the image file was opened) is now mapped into the new

process’s address space, and the process section base address is set to the base address

of the image.

Ntdll.dll is mapped into the process.

Note POSIX processes clone the address space of their parents, so they don’t have to go

through these steps to create a new address space. In the case of POSIX applications, the new

process’s section base address is set to that of its parent process and the parent’s PEB is cloned

for the new process.

Stage 3E: Setting Up the PEB

NtCreateUserProcess calls MmCreatePeb, which first maps the systemwide national language

support (NLS) tables into the process’s address space. It next calls MiCreatePebOrTeb to

allocate a page for the PEB and then initializes a number of fields, which are described in

Table 5-7.

TABLE 5-7 Initial Values of the Fields of the PEB

Field Initial Value

ImageBaseAddress Base address of section

NumberOfProcessors KeNumberProcessors kernel variable

NtGlobalFlag NtGlobalFlag kernel variable

CriticalSectionTimeout MmCriticalSectionTimeout kernel variable

HeapSegmentReserve MmHeapSegmentReserve kernel variable

HeapSegmentCommit MmHeapSegmentCommit kernel variable

HeapDeCommitTotalFreeThreshold MmHeapDeCommitTotalFreeThreshold kernel variable

HeapDeCommitFreeBlockThreshold MmHeapDeCommitFreeBlockThreshold kernel variable

NumberOfHeaps 0

358 Windows Internals, Fifth Edition

Field Initial Value

MaximumNumberOfHeaps (Size of a page – size of a PEB) / 4

ProcessHeaps First byte after PEB

MinimumStackCommit MmMinimumStackCommitInBytes kernel variable

ImageProcessAffi nityMask KeActiveProcessors or 1 <<

MmRotatingUniprocessorNumber kernel variable (for

uniprocessor-only images)

SessionId Result of MmGetSessionId

ImageSubSystem OptionalHeader.Subsystem

ImageSubSystemMajorVersion OptionalHeader.MajorSubsystemVersion

ImageSubSystemMinorVersion OptionalHeader.MinorSubsystemVersion

OSMajorVersion NtMajorVersion kernel variable

OSMinorVersion NtMinorVersion kernel variable

OSBuildNumber NtBuildNumber kernel variable & 0x3FFF, combined with

CmNtCSDVersion for service packs

OSPlatformId 2

 However, if the image fi le specifi es explicit Windows version or affi nity values, this informa-

tion replaces the initial values shown in Table 5-7. The mapping from image information

fi elds to PEB fi elds is described in Table 5-8.

 TABLE 5-8 Windows Replacements for Initial PEB Values

Field Name Value Taken from Image Header

 OSMajorVersion OptionalHeader.Win32VersionValue & 0xFF

 OSMinorVersion (OptionalHeader.Win32VersionValue >> 8) & 0xFF

 OSBuildNumber (OptionalHeader.Win32VersionValue >> 16) & 0x3FFF, combined with

ImageLoadConfi gDirectory.CSDVersion

 OSPlatformId (OptionalHeader.Win32VersionValue >> 30) ^ 0x2

 ImageProcessAffi nityMask ImageLoadConfi gDirectory.ProcessAffi nityMask

 If the image header characteristics IMAGE_FILE_UP_SYSTEM_ONLY fl ag is set (indicating that

the image can run only on a uniprocessor system), a single CPU is chosen for all the threads

in this new process to run on. The selection process is performed by simply cycling through

the available processors—each time this type of image is run, the next processor is used. In

this way, these types of images are spread evenly across the processors.

If the image specifi es an explicit processor affi nity mask (for example, a fi eld in the confi gura-

tion header), this value is copied to the PEB and later set as the default process affi nity mask .

Field Name Value Taken from Image Header

 Chapter 5 Processes, Threads, and Jobs 359

Stage 3F: Completing the Setup of the Executive Process Object
(PspInsertProcess)
Before the handle to the new process can be returned, a few final setup steps must be com-

pleted, which are performed by PspInsertProcess and its helper functions:

 1. If systemwide auditing of processes is enabled (either as a result of local policy settings

or group policy settings from a domain controller), the process’s creation is written to

the Security event log.

 2. If the parent process was contained in a job, the job is recovered from the job level set

of the parent and then bound to the session of the newly created process. Finally, the

new process is added to the job.

 3. PspInsertProcess inserts the new process block at the end of the Windows list of active

processes (PsActiveProcessHead).

 4. The process debug port of the parent process is copied to the new child process, unless

the NoDebugInherit flag is set (which can be requested when creating the process). If a

debug port was specified, it is attached to the new process at this time.

 5. Finally, PspInsertProcess notifies any registered callback routines, creates a handle for

the new process by calling ObOpenObjectByPointer, and then returns this handle to the

caller.

Stage 4: Creating the Initial Thread and Its Stack and Context

At this point, the Windows executive process object is completely set up. It still has no

thread, however, so it can’t do anything yet. It’s now time to start that work. Normally, the

PspCreateThread routine is responsible for all aspects of thread creation and is called by

NtCreateThread when a new thread is being created. However, because the initial thread

is created internally by the kernel without user-mode input, the two helper routines that

PspCreateThread relies on are used instead: PspAllocateThread and PspInsertThread.

PspAllocateThread handles the actual creation and initialization of the executive thread object

itself, while PspInsertThread handles the creation of the thread handle and security attributes

and the call to KeStartThread to turn the executive object into a schedulable thread on the

system. However, the thread won’t do anything yet—it is created in a suspended state and

isn’t resumed until the process is completely initialized (as described in Stage 5).

Note The thread parameter (which can’t be specified in CreateProcess but can be specified in

CreateThread) is the address of the PEB. This parameter will be used by the initialization code

that runs in the context of this new thread (as described in Stage 6).

360 Windows Internals, Fifth Edition

PspAllocateThread performs the following steps:

 1. An executive thread block (ETHREAD) is created and initialized.

 2. Before the thread can execute, it needs a stack and a context in which to run, so these

are set up. The stack size for the initial thread is taken from the image—there’s no way

to specify another size.

 3. The thread environment block (TEB) is allocated for the new thread.

 4. The user-mode thread start address is stored in the ETHREAD. This is the system-

supplied thread startup function in Ntdll.dll (RtlUserThreadStart). The user’s specified

Windows start address is stored in the ETHREAD block in a different location so that

debugging tools such as Process Explorer can query the information.

 5. KeInitThread is called to set up the KTHREAD block. The thread’s initial and current

base priorities are set to the process’s base priority, and its affinity and quantum are

set to that of the process. This function also sets the initial thread ideal processor.

(See the section “Ideal and Last Processor” for a description of how this is chosen.)

KeInitThread next allocates a kernel stack for the thread and initializes the machine-

dependent hardware context for the thread, including the context, trap, and exception

frames. The thread’s context is set up so that the thread will start in kernel mode in

KiThreadStartup. Finally, KeInitThread sets the thread’s state to Initialized and returns to

PspAllocateThread.

Once that work is finished, NtCreateUserProcess will call PspInsertThread to perform the fol-

lowing steps:

 1. A thread ID is generated for the new thread.

 2. The thread count in the process object is incremented, and the thread is added into the

process thread list.

 3. The thread is put into a suspended state.

 4. The object is inserted and any registered thread callbacks are called.

 5. The handle is created with ObOpenObjectByName.

 6. The thread is readied for execution by calling KeStartThread.

Stage 5: Performing Windows Subsystem–Specific
Post-Initialization

Once NtCreateUserProcess returns with a success code, all the necessary executive process

and thread objects have been created. Kernel32.dll will now perform various operations

related to Windows subsystem–specific operations to finish initializing the process.

 Chapter 5 Processes, Threads, and Jobs 361

First of all, various checks are made for whether Windows should allow the executable to

run. These checks includes validating the image version in the header and checking whether

Windows application certification has blocked the process (through a group policy). On

 specialized editions of Windows Server 2008, such as Windows Web Server 2008 and

Windows HPC Server 2008, additional checks are made to see if the application imports any

disallowed APIs.

If software restriction policies dictate, a restricted token is created for the new process.

Afterward, the application compatibility database is queried to see if an entry exists in either

the registry or system application database for the process. Compatibility shims will not be

applied at this point—the information will be stored in the PEB once the initial thread starts

executing (Stage 6).

At this point, Kernel32.dll sends a message to the Windows subsystem so that it can set up

SxS information (see the end of this section for more information on side-by-side assemblies)

such as manifest files, DLL redirection paths, and out-of-process execution for the new pro-

cess. It also initializes the Windows subsystem structures for the process and initial thread.

The message includes the following information:

Process and thread handles

Entries in the creation flags

ID of the process’s creator

Flag indicating whether the process belongs to a Windows application (so that Csrss

can determine whether or not to show the startup cursor)

UI language Information

DLL redirection and .local flags

Manifest file information

The Windows subsystem performs the following steps when it receives this message:

 1. CsrCreateProcess duplicates a handle for the process and thread. In this step, the usage

count of the process and the thread is incremented from 1 (which was set at creation

time) to 2.

 2. If a process priority class isn’t specified, CsrCreateProcess sets it according to the algo-

rithm described earlier in this section.

 3. The Csrss process block is allocated.

 4. The new process’s exception port is set to be the general function port for the

Windows subsystem so that the Windows subsystem will receive a message when a

second chance exception occurs in the process. (For further information on exception

handling, see Chapter 3.)

362 Windows Internals, Fifth Edition

 5. The Csrss thread block is allocated and initialized.

 6. CsrCreateThread inserts the thread in the list of threads for the process.

 7. The count of processes in this session is incremented.

 8. The process shutdown level is set to 0x280 (the default process shutdown level—

see SetProcessShutdownParameters in the MSDN Library documentation for more

information).

 9. The new process block is inserted into the list of Windows subsystem-wide processes.

 10. The per-process data structure used by the kernel-mode part of the Windows subsys-

tem (W32PROCESS structure) is allocated and initialized.

 11. The application start cursor is displayed. This cursor is the familiar rolling doughnut

shape—the way that Windows says to the user, “I’m starting something, but you can

use the cursor in the meantime.” If the process doesn’t make a GUI call after 2 seconds,

the cursor reverts to the standard pointer. If the process does make a GUI call in the

allotted time, CsrCreateProcess waits 5 seconds for the application to show a window.

After that time, CsrCreateProcess will reset the cursor again.

After Csrss has performed these steps, CreateProcess checks whether the process was run

elevated (which means it was executed through ShellExecute and elevated by the AppInfo

service after the consent dialog box was shown to the user). This includes checking whether

the process was a setup program. If it was, the process’s token is opened, and the virtualiza-

tion flag is turned on so that the application is virtualized. (See the information on UAC and

virtualization in Chapter 6.) If the application contained elevation shims or had a requested

elevation level in its manifest, the process is destroyed and an elevation request is sent to the

AppInfo service. (See Chapter 6 for more information on elevation.)

Note that most of these checks are not performed for protected processes; because these

processes must have been designed for Windows Vista or later, there’s no reason why they

should require elevation, virtualization, or application compatibility checks and process-

ing. Additionally, allowing mechanisms such as the shim engine to use its usual hooking and

memory patching techniques on a protected process would result in a security hole if some-

one could figure how to insert arbitrary shims that modify the behavior of the protected

process.

Stage 6: Starting Execution of the Initial Thread

At this point, the process environment has been determined, resources for its threads to use

have been allocated, the process has a thread, and the Windows subsystem knows about the

new process. Unless the caller specified the CREATE_ SUSPENDED flag, the initial thread is

now resumed so that it can start running and perform the remainder of the process initializa-

tion work that occurs in the context of the new process (Stage 7).

 Chapter 5 Processes, Threads, and Jobs 363

Stage 7: Performing Process Initialization in the Context of
the New Process

The new thread begins life running the kernel-mode thread startup routine KiThreadStartup.

KiThreadStartup lowers the thread’s IRQL level from DPC/dispatch level to APC level and then

calls the system initial thread routine, PspUserThreadStartup. The user-specified thread start

address is passed as a parameter to this routine.

First, this function sets the Locale ID and the ideal processor in the TEB, based on the infor-

mation present in kernel-mode data structures, and then it checks if thread creation actually

failed. Next it calls DbgkCreateThread, which checks if image notifications were sent for the

new process. If they weren’t, and notifications are enabled, an image notification is sent first

for the process and then for the image load of Ntdll.dll. Note that this is done in this stage

rather than when the images were first mapped, because the process ID (which is required

for the callouts) is not yet allocated at that time.

Once those checks are completed, another check is performed to see whether the process

is a debuggee. If it is, then PspUserThreadStartup checks if the debugger notifications have

already been sent for this process. If not, then a create process message is sent through the

debug object (if one is present) so that the process startup debug event (CREATE_PROCESS_

DEBUG_INFO) can be sent to the appropriate debugger process. This is followed by a similar

thread startup debug event and by another debug event for the image load of Ntdll.dll.

DbgkCreateThread then waits for the Windows subsystem to get the reply from the debug-

ger (via the ContinueDebugEvent function).

Now that the debugger has been notified, PspUserThreadStartup looks at the result of the

initial check on the thread’s life. If it was killed on startup, the thread is terminated. This check

is done after the debugger and image notifications to be sure that the kernel-mode and

user-mode debuggers don’t miss information on the thread, even if the thread never got a

chance to run.

Otherwise, the routine checks whether application prefetching is enabled on the system and,

if so, calls the prefetcher (and Superfetch) to process the prefetch instruction file (if it exists)

and prefetch pages referenced during the first 10 seconds the last time the process ran. (For

details on the prefetcher and Superfetch, see Chapter 9.)

PspUserThreadStartup then checks if the systemwide cookie in the SharedUserData structure

has been set up yet. If it hasn’t, it generates it based on a hash of system information such as

the number of interrupts processed, DPC deliveries, and page faults. This systemwide cookie

is used in the internal decoding and encoding of pointers, such as in the heap manager

(for more information on heap manager security, see Chapter 9), to protect against certain

classes of exploitation.

364 Windows Internals, Fifth Edition

Finally, PspUserThreadStartup sets up the initial thunk context to run the image loader initial-

ization routine (LdrInitializeThunk in Ntdll.dll), as well as the systemwide thread startup stub

(RtlUserThreadStart in Ntdll.dll). These steps are done by editing the context of the thread

in place and then issuing an exit from system service operation, which will load the specially

crafted user context. The LdrInitializeThunk routine initializes the loader, heap manager, NLS

tables, thread-local storage (TLS) and fiber-local storage (FLS) array, and critical section struc-

tures. It then loads any required DLLs and calls the DLL entry points with the DLL_PROCESS_

ATTACH function code. (See the sidebar “Side-by-Side Assemblies” for a description of a

mechanism Windows uses to address DLL versioning problems.)

Once the function returns, NtContinue will restore the new user context and return back to

user mode—thread execution now truly starts.

RtlUserThreadStart will use the address of the actual image entry point and the start param-

eter and call the application. These two parameters have also already been pushed onto the

stack by the kernel. This complicated series of events has two purposes. First of all, it allows

the image loader inside Ntdll.dll to set up the process internally and behind the scenes so

that other user-mode code can run properly (otherwise, it would have no heap, no thread

local storage, and so on).

Second, having all threads begin in a common routine allows them to be wrapped in excep-

tion handling, so that when they crash, Ntdll.dll is aware of that and can call the unhandled

exception filter inside Kernel32.dll. It is also able to coordinate thread exit on return from the

thread’s start routine and to perform various cleanup work. Application developers can also

call SetUnhandledExceptionFilter to add their own unhandled exception handling code.

Side-by-Side Assemblies

In order to isolate DLLs distributed with applications from DLLs that ship with the oper-

ating system, Windows allows applications to use private copies of these core DLLs. To

use a private copy of a DLL instead of the one in the system directory, an application’s

installation must include a file named Application.exe.local (where Application is the

name of the application’s executable), which directs the loader to first look for DLLs in

that directory. Note that any DLLs that are loaded from the list of KnownDLLs (DLLs

that are permanently mapped into memory) or that are loaded by those DLLs cannot

be redirected using this mechanism.

To further address application and DLL compatibility while allowing sharing, Windows

implements the concept of shared assemblies. An assembly consists of a group of

resources, including DLLs, and an XML manifest file that describes the assembly and its

contents. An application references an assembly through the existence of its own XML

manifest. The manifest can be a file in the application’s installation directory that has

 Chapter 5 Processes, Threads, and Jobs 365

the same name as the application with “.manifest” appended (for example, applica-

tion.exe.manifest), or it can be linked into the application as a resource. The manifest

describes the application and its dependence on assemblies.

There are two types of assemblies: private and shared. The difference between the

two is that shared assemblies are digitally signed so that corruption or modification

of their contents can be detected. In addition, shared assemblies are stored under the

\Windows\Winsxs directory, whereas private assemblies are stored in an application’s

installation directory. Thus, shared assemblies also have an associated catalog file (.cat)

that contains its digital signature information. Shared assemblies can be “side-by-side”

assemblies because multiple versions of a DLL can reside on a system simultaneously,

with applications dependent on a particular version of a DLL always using that particu-

lar version.

An assembly’s manifest file typically has a name that includes the name of the assem-

bly, version information, some text that represents a unique signature, and the exten-

sion “.manifest”. The manifests are stored in \Windows\Winsxs\Manifests, and the rest

of the assembly’s resources are stored in subdirectories of \Windows\Winsxs that have

the same name as the corresponding manifest files, with the exception of the trailing

.manifest extension.

An example of a shared assembly is version 6 of the Windows common controls DLL,

comctl32.dll. Its manifest file is named \Windows\Winsxs\Manifests\x86_Microsoft.Win-

dows.Common-Controls_6595b64144ccf1df_6.0.0.0_x-ww_1382d70a.manifest. It has an

associated catalog file (which is the same name with the .cat extension) and a subdirec-

tory of Winsxs that includes comctl32.dll.

Version 6 of Comctl32.dll added integration with Windows themes, and because

applications not written with theme support in mind might not appear correctly with

the new DLL, it’s available only to applications that explicitly reference the shared

assembly containing it—the version of Comctl32.dll installed in \Windows\System32 is

an instance of version 5.x, which is not theme aware. When an application loads, the

loader looks for the application’s manifest, and if one exists, loads the DLLs from the

assemblies specified. DLLs not included in assemblies referenced in the manifest are

loaded in the traditional way. Legacy applications, therefore, link against the version in

\Windows\System32, whereas theme-aware applications can specify the new version in

their manifest.

A final advantage that shared assemblies have is that a publisher can issue a publisher

configuration, which can redirect all applications that use a particular assembly to use

an updated version. Publishers would do this if they were preserving backward com-

patibility while addressing bugs. Ultimately, however, because of the flexibility inherent

in the assembly model, an application could decide to override the new setting and

continue to use an older version.

366 Windows Internals, Fifth Edition

EXPERIMENT: Tracing Process Startup

Now that we’ve looked in detail at how a process starts up and the different operations

required to begin executing an application, we’re going to use Process Monitor to take

a look at some of the file I/O and registry keys that are accessed during this process.

Although this experiment will not provide a complete picture of all the internal steps

we’ve described, you’ll be able to see several parts of the system in action, notably

Prefetch and Superfetch, image file execution options and other compatibility checks,

and the image loader’s DLL mapping.

We’re going to be looking at a very simple executable—Notepad.exe—and we will be

launching it from a Command Prompt window (Cmd.exe). It’s important that we look

both at the operations inside Cmd.exe and those inside Notepad.exe. Recall that a lot of

the user-mode work is performed by CreateProcess, which is called by the parent pro-

cess before the kernel has created a new process object.

To set things up correctly, add two filters to Process Monitor: one for Cmd.exe, and one

for Notepad.exe—these are the only two processes we want to include. It will be helpful

to be sure that you don’t have any currently running instances of these two processes so

that you know you’re looking at the right events. The filter window should look like this:

Next, make sure that event logging is currently disabled (clear File, Capture Events), and

then start up the command prompt. Enable event logging (using the File menu again,

or simply press CTRL+E or click the magnifying glass icon on the toolbar) and then

enter Notepad.exe and press Enter. On a typical Windows Vista system, you should

see anywhere between 500 and 1500 events appear. Go ahead and hide the Sequence

and Time Of Day columns so that we can focus our attention on the columns of inter-

est. Your window should look similar to the one shown next.

 Chapter 5 Processes, Threads, and Jobs 367

Just as described in Stage 1 of the CreateProcess flow, one of the first things to notice

is that just before the process is started and the first thread is created, Cmd.exe does a

registry read at HKLM\SOFTWARE\Microsoft\Windows NT\CurrentVersion\Image File

Execution Options. Because there were no image execution options associated with

Notepad.exe, the process was created as is.

As with this and any other event in Process Monitor’s log, you have the ability to see

whether each part of the process creation flow was performed in user mode or kernel

mode, and by which routines, by looking at the stack of the event. To do this, double-

click on the RegOpenKey event mentioned and switch to the Stack tab. The following

screen shows the standard stack on a 32-bit Windows Vista machine.

368 Windows Internals, Fifth Edition

This stack shows that we have already reached the part of process creation per-

formed in kernel mode (through NtCreateUserProcess) and that the helper routine

PspAllocateProcess is responsible for this check.

Going down the list of events after the thread and process have been created, you will

notice three groups of events. The first is a simple check for application compatibility

flags, which will let the user-mode process creation code know if checks inside the

application compatibility database are required through the shim engine.

This check is followed by multiple reads to Side-By-Side, Manifest, and MUI/Language

keys, which are part of the assembly framework mentioned earlier. Finally, you may see

file I/O to one or more .sdb files, which are the application compatibility databases on

the system. This I/O is where additional checks are done to see if the shim engine needs

to be invoked for this application. Since Notepad is a well behaved Microsoft program,

it doesn’t require any shims.

The following screen shows the next series of events, which happen inside the Notepad

process itself. These are actions initiated by the user-mode thread startup wrapper

in kernel mode, which performs the actions described earlier. The first two are the

Notepad.exe and Ntdll.dll image load debug notification messages, which can only be

generated now that code is running inside Notepad’s process context and not the con-

text for the command prompt.

 Chapter 5 Processes, Threads, and Jobs 369

Next, the prefetcher kicks in, looking for a prefetch database file that has already been

generated for Notepad. (For more information on the prefetcher, see Chapter 9). On a

system where Notepad has already been run at least once, this database will exist, and

the prefetcher will begin executing the commands specified inside it. If this is the case,

scrolling down you will see multiple DLLs being read and queried. Unlike typical DLL

loading, which is done by the user-mode image loader by looking at the import tables

or when an application manually loads a DLL, these events are being generated by the

prefetcher, which is already aware of the libraries that Notepad will require. Typical

image loading of the DLLs required happens next, and you will see events similar to the

ones shown here.

These events are now being generated from code running inside user mode, which

was called once the kernel-mode wrapper function finished its work. Therefore, these

are the first events coming from LdrpInitializeProcess, which we mentioned is the inter-

nal system wrapper function for any new process, before the start address wrapper is

called. You can confirm this on your own by looking at the stack of these events; for

example, the kernel32.dll image load event, which is shown in the next screen.

370 Windows Internals, Fifth Edition

Further events are generated by this routine and its associated helper functions until

you finally reach events generated by the WinMain function inside Notepad, which is

where code under the developer’s control is now being executed. Describing in detail

all the events and user-mode components that come into play during process execu-

tion would fill up this entire chapter, so exploration of any further events is left as an

exercise for the reader.

Thread Internals

Now that we’ve dissected processes, let’s turn our attention to the structure of a thread.

Unless explicitly stated otherwise, you can assume that anything in this section applies to

both user-mode threads and kernel-mode system threads (which are described in Chapter 2).

Data Structures

At the operating-system level, a Windows thread is represented by an executive thread

(ETHREAD) block, which is illustrated in Figure 5-7. The ETHREAD block and the structures

it points to exist in the system address space, with the exception of the thread environment

block (TEB), which exists in the process address space (again, because user-mode compo-

nents need to have access to it).

 Chapter 5 Processes, Threads, and Jobs 371

In addition, the Windows subsystem process (Csrss) also maintains a parallel structure for

each thread created in a Windows subsystem application. Also, for threads that have called

a Windows subsystem USER or GDI function, the kernel-mode portion of the Windows sub-

system (Win32k.sys) maintains a per-thread data structure (called the W32THREAD structure)

that the ETHREAD block points to.

KTHREAD

Create and exit times

Process ID

Thread start address

Impersonation information

Timer information

Access token

EPROCESS

TEB

Pending I/O requests

ALPC message information

FIGURE 5-7 Structure of the executive thread block

Most of the fields illustrated in Figure 5-7 are self-explanatory. The first field is the kernel

thread (KTHREAD) block. Following that are the thread identification information, the process

identification information (including a pointer to the owning process so that its environment

information can be accessed), security information in the form of a pointer to the access

token and impersonation information, and finally, fields relating to ALPC messages and

pending I/O requests. As you can see in Table 5-9, some of these key fields are covered in

more detail elsewhere in this book. For more details on the internal structure of an ETHREAD

block, you can use the kernel debugger dt command to display the format of the structure.

TABLE 5-9 Key Contents of the Executive Thread Block

Field Name Value Taken from Image Header Additional Information

KTHREAD See Table 5-10.

Thread time Thread create and exit time information.

Process identification Process ID and pointer to EPROCESS block

of the process that the thread belongs to.

Start address Address of thread start routine.

Impersonation

information

Access token and impersonation level (if

the thread is impersonating a client).

Chapter 6

ALPC information Message ID that the thread is waiting for

and address of message.

Advanced local procedure

calls (ALPC) (Chapter 3)

I/O information List of pending I/O request packets (IRPs). I/O system (Chapter 7)

372 Windows Internals, Fifth Edition

Let’s take a closer look at two of the key thread data structures referred to in the preceding

text: the KTHREAD block and the TEB. The KTHREAD block (also called the TCB, or thread

control block) contains the information that the Windows kernel needs to access to perform

thread scheduling and synchronization on behalf of running threads. Its layout is illustrated

in Figure 5-8.

Dispatcher header

Total user time

Total kernel time

Thread-scheduling information

Trap frame

Synchronization information

Timer block and wait block

List of objects thread is waiting on

Thread-local storage array

Kernel stack information

System service table

List of pending APCs

TEB

FIGURE 5-8 Structure of the kernel thread block

The key fields of the KTHREAD block are described briefly in Table 5-10.

TABLE 5-10 Key Contents of the KTHREAD Block

Element Description Additional Reference

Dispatcher header Because the thread is an object that can

be waited on, it starts with a standard

kernel dispatcher object header.

Kernel dispatcher objects

(Chapter 3)

Execution time Total user and kernel CPU time.

Cycle time Total CPU cycle time. Thread scheduling

Pointer to kernel stack

information

Base and upper address of the kernel

stack.

Memory management

(Chapter 9)

Pointer to system service

table

Each thread starts out with this field ser-

vice table pointing to the main system

service table (KeServiceDescriptorTable).

When a thread first calls a Windows

GUI service, its system service table is

changed to one that includes the GDI

and USER services in Win32k.sys.

System service

dispatching (Chapter 3)

 Chapter 5 Processes, Threads, and Jobs 373

Element Description Additional Reference

Scheduling information Base and current priority, quantum tar-

get, quantum reset, affinity mask, ideal

processor, deferred processor, next pro-

cessor, scheduling state, freeze count,

suspend count, adjust increment and

adjust reason.

Thread scheduling

Wait blocks The thread block contains four built-in

wait blocks so that wait blocks don’t

have to be allocated and initialized each

time the thread waits for something.

(One wait block is dedicated to timers.)

Synchronization

(Chapter 3)

Wait information List of objects the thread is waiting for,

wait reason, IRQL at the time of wait,

result of the wait, and time at which the

thread entered the wait state.

Synchronization

(Chapter 3)

Mutant list List of mutant objects the thread owns. Synchronization

(Chapter 3)

APC queues List of pending user-mode and kernel-

mode APCs, alerted flag, and flags to

disable APCs.

Asynchronous procedure

call (APC) interrupts

(Chapter 3)

Timer block Built-in timer block (also a correspond-

ing wait block).

Suspend APC and

semaphore

Built-in APC and semaphore used when

suspending and resuming a thread.

Synchronization

(Chapter 3)

Queue Pointer to queue object that the thread

is associated with.

Synchronization

(Chapter 3)

Gate Pointer to gate object that the thread is

waiting on.

Synchronization

(Chapter 3)

Pointer to TEB Thread ID, TLS and FLS information,

PEB pointer, and Winsock, RPC,

GDI, OpenGL, and other user-mode

information.

374 Windows Internals, Fifth Edition

EXPERIMENT: Displaying ETHREAD and KTHREAD Structures

The ETHREAD and KTHREAD structures can be displayed with the dt command in the

kernel debugger. The following output shows the format of an ETHREAD on a 32-bit

system:

lkd> dt nt!_ethread

nt!_ETHREAD

 +0x000 Tcb : _KTHREAD

 +0x1e0 CreateTime : _LARGE_INTEGER

 +0x1e8 ExitTime : _LARGE_INTEGER

 +0x1e8 KeyedWaitChain : _LIST_ENTRY

 +0x1f0 ExitStatus : Int4B

 +0x1f0 OfsChain : Ptr32 Void

 +0x1f4 PostBlockList : _LIST_ENTRY

 +0x1f4 ForwardLinkShadow : Ptr32 Void

 +0x1f8 StartAddress : Ptr32 Void

 +0x1fc TerminationPort : Ptr32 _TERMINATION_PORT

 +0x1fc ReaperLink : Ptr32 _ETHREAD

 +0x1fc KeyedWaitValue : Ptr32 Void

 +0x1fc Win32StartParameter : Ptr32 Void

 +0x200 ActiveTimerListLock : Uint4B

 +0x204 ActiveTimerListHead : _LIST_ENTRY

 +0x20c Cid : _CLIENT_ID

 +0x214 KeyedWaitSemaphore : _KSEMAPHORE

 +0x214 AlpcWaitSemaphore : _KSEMAPHORE

 +0x228 ClientSecurity : _PS_CLIENT_SECURITY_CONTEXT

 +0x22c IrpList : _LIST_ENTRY

 +0x234 TopLevelIrp : Uint4B

 +0x238 DeviceToVerify : Ptr32 _DEVICE_OBJECT

 +0x23c RateControlApc : Ptr32 _PSP_RATE_APC

 +0x240 Win32StartAddress : Ptr32 Void

 +0x244 SparePtr0 : Ptr32 Void

 +0x248 ThreadListEntry : _LIST_ENTRY

 +0x250 RundownProtect : _EX_RUNDOWN_REF

 +0x254 ThreadLock : _EX_PUSH_LOCK

 +0x258 ReadClusterSize : Uint4B

 +0x25c MmLockOrdering : Int4B

 +0x260 CrossThreadFlags : Uint4B

 +0x260 Terminated : Pos 0, 1 Bit

 +0x260 ThreadInserted : Pos 1, 1 Bit

 +0x260 HideFromDebugger : Pos 2, 1 Bit

 +0x260 ActiveImpersonationInfo : Pos 3, 1 Bit

 +0x260 SystemThread : Pos 4, 1 Bit

 +0x260 HardErrorsAreDisabled : Pos 5, 1 Bit

 +0x260 BreakOnTermination : Pos 6, 1 Bit

 +0x260 SkipCreationMsg : Pos 7, 1 Bit

 +0x260 SkipTerminationMsg : Pos 8, 1 Bit

 +0x260 CopyTokenOnOpen : Pos 9, 1 Bit

 +0x260 ThreadIoPriority : Pos 10, 3 Bits

 +0x260 ThreadPagePriority : Pos 13, 3 Bits

 +0x260 RundownFail : Pos 16, 1 Bit

 +0x264 SameThreadPassiveFlags : Uint4B

 +0x264 ActiveExWorker : Pos 0, 1 Bit

 +0x264 ExWorkerCanWaitUser : Pos 1, 1 Bit

 Chapter 5 Processes, Threads, and Jobs 375

 +0x264 MemoryMaker : Pos 2, 1 Bit

 +0x264 ClonedThread : Pos 3, 1 Bit

 +0x264 KeyedEventInUse : Pos 4, 1 Bit

 +0x264 RateApcState : Pos 5, 2 Bits

 +0x264 SelfTerminate : Pos 7, 1 Bit

 +0x268 SameThreadApcFlags : Uint4B

 +0x268 Spare : Pos 0, 1 Bit

 +0x268 StartAddressInvalid : Pos 1, 1 Bit

 +0x268 EtwPageFaultCalloutActive : Pos 2, 1 Bit

 +0x268 OwnsProcessWorkingSetExclusive : Pos 3, 1 Bit

 +0x268 OwnsProcessWorkingSetShared : Pos 4, 1 Bit

 +0x268 OwnsSystemWorkingSetExclusive : Pos 5, 1 Bit

 +0x268 OwnsSystemWorkingSetShared : Pos 6, 1 Bit

 +0x268 OwnsSessionWorkingSetExclusive : Pos 7, 1 Bit

 +0x269 OwnsSessionWorkingSetShared : Pos 0, 1 Bit

 +0x269 OwnsProcessAddressSpaceExclusive : Pos 1, 1 Bit

 +0x269 OwnsProcessAddressSpaceShared : Pos 2, 1 Bit

 +0x269 SuppressSymbolLoad : Pos 3, 1 Bit

 +0x269 Prefetching : Pos 4, 1 Bit

 +0x269 OwnsDynamicMemoryShared : Pos 5, 1 Bit

 +0x269 OwnsChangeControlAreaExclusive : Pos 6, 1 Bit

 +0x269 OwnsChangeControlAreaShared : Pos 7, 1 Bit

 +0x26a PriorityRegionActive : Pos 0, 4 Bits

 +0x26c CacheManagerActive : UChar

 +0x26d DisablePageFaultClustering : UChar

 +0x26e ActiveFaultCount : UChar

 +0x270 AlpcMessageId : Uint4B

 +0x274 AlpcMessage : Ptr32 Void

 +0x274 AlpcReceiveAttributeSet : Uint4B

 +0x278 AlpcWaitListEntry : _LIST_ENTRY

 +0x280 CacheManagerCount : Uint4B

The KTHREAD can be displayed with a similar command:

lkd> dt nt!_kthread

nt!_KTHREAD

 +0x000 Header : _DISPATCHER_HEADER

 +0x010 CycleTime : Uint8B

 +0x018 HighCycleTime : Uint4B

 +0x020 QuantumTarget : Uint8B

 +0x028 InitialStack : Ptr32 Void

 +0x02c StackLimit : Ptr32 Void

 +0x030 KernelStack : Ptr32 Void

 +0x034 ThreadLock : Uint4B

 +0x038 ApcState : _KAPC_STATE

 +0x038 ApcStateFill : [23] UChar

 +0x04f Priority : Char

 +0x050 NextProcessor : Uint2B

 +0x052 DeferredProcessor : Uint2B

 +0x054 ApcQueueLock : Uint4B

 +0x058 ContextSwitches : Uint4B

 +0x05c State : UChar

 +0x05d NpxState : UChar

 +0x05e WaitIrql : UChar

 +0x05f WaitMode : Char

 +0x060 WaitStatus : Int4B

376 Windows Internals, Fifth Edition

EXPERIMENT: Using the Kernel Debugger !thread Command

The kernel debugger !thread command dumps a subset of the information in the

thread data structures. Some key elements of the information the kernel debugger

displays can’t be displayed by any utility: internal structure addresses; priority details;

stack information; the pending I/O request list; and, for threads in a wait state, the list

of objects the thread is waiting for.

To display thread information, use either the !process command (which displays all the

thread blocks after displaying the process block) or the !thread command to dump a

specific thread. The output of the thread information, along with some annotations of

key fields, is shown here:

THREAD 83160f0 Cid: 9f.3d Teb: 7ffdc000

Win32Thread: e153d2c8

WAIT: (WrUserRequest) UserMode Non-Alertable

808e9d60 SynchronizationEvent

Not imersonating

Owning Process 81b44880

Wait Time (seconds)

Context Switch Count

UserTime

KernelTime

Start Address kernal32!BaseProcessStart (0x77e8f268)

Win32 Start Address 0x020d9d98

Stack Init f7818000 Current f7817bb0 Base f7818000 Limit f7812000 Call 0

Priority 14 BasePriority 9 PriorityDecrement 6 DecrementCount 13

953945

2697 LargeStack

0:00:00.0289

0:00:04.0644

ChildEBP RetAddr Args to Child

F7817bb0 8008f430 00000001 00000000 00000000 ntoskrnl!KiSwapThreadExit

F7817c50 de0119ec 00000001 00000000 00000000 ntoskrnl!KeWaitForSingleObject+0x2a0

F7817cc0 de0123f4 00000001 00000000 00000000 win32k!xxxSleepThread+0x23c

F7817d10 de01f2f0 00000001 00000000 00000000 win32k!xxxInternalGetMessage+0x504

F7817d80 800bab58 00000001 00000000 00000000 win32k!NtUserGetMessage+0x58

F7817df0 77d887d0 00000001 00000000 00000000 ntoskrnl!KiSystemServiceEndAddress+0x4

0012fef0 00000000 00000001 00000000 00000000 user32!GetMessageW+0x30

Address of
ETHREAD Thread ID

Address of thread
environment block

Priority
information

Address of user thread function

Actual thread
start address

Thread state

Objects being waited on

Address of EPROCESS for owning process

Stack dump

Kernal stack not resident.

 Chapter 5 Processes, Threads, and Jobs 377

EXPERIMENT: Viewing Thread Information

The following output is the detailed display of a process produced by using the Tlist

utility in the Debugging Tools for Windows. Notice that the thread list shows the

“Win32StartAddr.” This is the address passed to the CreateThread function by the appli-

cation. All the other utilities, except Process Explorer, that show the thread start address

show the actual start address (a function in Ntdll.dll), not the application-specified start

address.

C:\> tlist winword

2400 WINWORD.EXE WinInt5E_Chapter06.doc [Compatibility Mode] - Microsoft Word

 CWD: C:\Users\Alex Ionescu\Documents\

 CmdLine: "C:\Program Files\Microsoft Office\Office12\WINWORD.EXE" /n /dde

 VirtualSize: 310656 KB PeakVirtualSize: 343552 KB

 WorkingSetSize: 91548 KB PeakWorkingSetSize:100788 KB

 NumberOfThreads: 6

 2456 Win32StartAddr:0x2f7f10cc LastErr:0x00000000 State:Waiting

 1452 Win32StartAddr:0x6882f519 LastErr:0x00000000 State:Waiting

 2464 Win32StartAddr:0x6b603850 LastErr:0x00000000 State:Waiting

 3036 Win32StartAddr:0x690dc17f LastErr:0x00000002 State:Waiting

 3932 Win32StartAddr:0x775cac65 LastErr:0x00000102 State:Waiting

 3140 Win32StartAddr:0x687d6ffd LastErr:0x000003f0 State:Waiting

 12.0.4518.1014 shp 0x2F7F0000 C:\Program Files\Microsoft Office\Office12\

 WINWORD.EXE

 6.0.6000.16386 shp 0x777D0000 C:\Windows\system32\Ntdll.dll

 6.0.6000.16386 shp 0x764C0000 C:\Windows\system32\kernel32.dll

 § list of DLLs loaded in process

The TEB, illustrated in Figure 5-9, is the only data structure explained in this section that

exists in the process address space (as opposed to the system space).

The TEB stores context information for the image loader and various Windows DLLs. Because

these components run in user mode, they need a data structure writable from user mode.

That’s why this structure exists in the process address space instead of in the system space,

where it would be writable only from kernel mode. You can find the address of the TEB with

the kernel debugger !thread command.

378 Windows Internals, Fifth Edition

Exception list

Stack base

Stack limit

Thread ID

Active RPC handle

 value

Current locale

User32 client information

Subsystem thread information block (TIB)

Fiber information

Winsock data

Count of owned critical sections

OpenGL information

TLS array

GDI32 information

PEB

FIGURE 5-9 Fields of the thread environment block

EXPERIMENT: Examining the TEB

You can dump the TEB structure with the !teb command in the kernel debugger. The

output looks like this:

kd> !teb

TEB at 7ffde000

 ExceptionList: 019e8e44

 StackBase: 019f0000

 StackLimit: 019db000

 SubSystemTib: 00000000

 FiberData: 00001e00

 ArbitraryUserPointer: 00000000

 Self: 7ffde000

 EnvironmentPointer: 00000000

 ClientId: 00000bcc . 00000864

 RpcHandle: 00000000

 Tls Storage: 7ffde02c

 PEB Address: 7ffd9000

 LastErrorValue: 0

 LastStatusValue: c0000139

 Count Owned Locks: 0

 HardErrorMode: 0

 Chapter 5 Processes, Threads, and Jobs 379

Kernel Variables

As with processes, a number of Windows kernel variables control how threads run. Table 5-11

shows the kernel-mode kernel variables that relate to threads.

TABLE 5-11 Thread-Related Kernel Variables

Variable Type Description

PspCreateThreadNotifyRoutine Array of executive

callback objects

Array of callback objects describing

the routines to be called on thread

creation and deletion (maximum of 64)

PspCreateThreadNotifyRoutineCount 32-bit integer Count of registered thread-

 notification routines

Performance Counters

Most of the key information in the thread data structures is exported as performance coun-

ters, which are listed in Table 5-12. You can extract much information about the internals of a

thread just by using the Reliability and Performance Monitor in Windows.

TABLE 5-12 Thread-Related Performance Counters

Object: Counter Function

Process: Priority Base Returns the current base priority of the process. This is the start-

ing priority for threads created within this process.

Thread: % Privileged Time Describes the percentage of time that the thread has run in kernel

mode during a specified interval.

Thread: % Processor Time Describes the percentage of CPU time that the thread has used

during a specified interval. This count is the sum of % Privileged

Time and % User Time.

Thread: % User Time Describes the percentage of time that the thread has run in user

mode during a specified interval.

Thread: Context Switches/Sec Returns the number of context switches per second that the sys-

tem is executing.

Thread: Elapsed Time Returns the amount of CPU time (in seconds) that the thread has

consumed.

Thread: ID Process Returns the process ID of the thread’s process.

Thread: ID Thread Returns the thread’s thread ID. This ID is valid only during the

thread’s lifetime because thread IDs are reused.

Thread: Priority Base Returns the thread’s current base priority. This number might be

different from the thread’s starting base priority.

Thread: Priority Current Returns the thread’s current dynamic priority.

Thread: Start Address Returns the thread’s starting virtual address (Note: This address

will be the same for most threads.)

380 Windows Internals, Fifth Edition

Object: Counter Function

Thread: Thread State Returns a value from 0 through 7 relating to the current state of

the thread.

Thread: Thread Wait Reason Returns a value from 0 through 19 relating to the reason why the

thread is in a wait state.

Relevant Functions

Table 5-13 shows the Windows functions for creating and manipulating threads. This table

doesn’t include functions that have to do with thread scheduling and priorities—those are

included in the section “Thread Scheduling” later in this chapter.

TABLE 5-13 Windows Thread Functions

Function Description

CreateThread Creates a new thread

CreateRemoteThread Creates a thread in another process

OpenThread Opens an existing thread

ExitThread Ends execution of a thread normally

TerminateThread Terminates a thread

IsThreadAFiber Returns whether the current thread is a fiber

GetExitCodeThread Gets another thread’s exit code

GetThreadTimes Returns timing information for a thread

QueryThreadCycleTime Returns CPU clock cycle information for a thread

GetCurrentThread Returns a pseudo handle for the current thread

GetCurrentProcessId Returns the thread ID of the current thread

GetThreadId Returns the thread ID of the specified thread

Get/SetThreadContext Returns or changes a thread’s CPU registers

GetThreadSelectorEntry Returns another thread’s descriptor table entry

(applies only to x86 systems)

Birth of a Thread

A thread’s life cycle starts when a program creates a new thread. The request filters down to

the Windows executive, where the process manager allocates space for a thread object and

calls the kernel to initialize the kernel thread block. The steps in the following list are taken

inside the Windows CreateThread function in Kernel32.dll to create a Windows thread.

 1. CreateThread converts the Windows API parameters to native flags and builds a native

structure describing object parameters (OBJECT_ATTRIBUTES). See Chapter 3 for more

information.

 Chapter 5 Processes, Threads, and Jobs 381

 2. CreateThread builds an attribute list with two entries: client ID and TEB address. This

allows CreateThread to receive those values once the thread has been created. (For

more information on attribute lists, see the section “Flow of CreateProcess” earlier in

this chapter.)

 3. NtCreateThreadEx is called to create the user-mode context and probe and capture

the attribute list. It then calls PspCreateThread to create a suspended executive thread

object. For a description of the steps performed by this function, see the descriptions of

Stage 3 and Stage 5 in the section “Flow of CreateProcess.”

 4. CreateThread allocates an activation stack for the thread used by side-by-side assembly

support. It then queries the activation stack to see if it requires activation, and does so

if needed. The activation stack pointer is saved in the new thread’s TEB.

 5. CreateThread notifies the Windows subsystem about the new thread, and the subsys-

tem does some setup work for the new thread.

 6. The thread handle and the thread ID (generated during step 3) are returned to the

caller.

 7. Unless the caller created the thread with the CREATE_SUSPENDED flag set, the thread

is now resumed so that it can be scheduled for execution. When the thread starts run-

ning, it executes the steps described in the earlier section “Stage 7: Performing Process

Initialization in the Context of the New Process” before calling the actual user’s speci-

fied start address.

Examining Thread Activity

Examining thread activity is especially important if you are trying to determine why a process

that is hosting multiple services is running (such as Svchost.exe, Dllhost.exe, or Lsass.exe) or

why a process is hung.

There are several tools that expose various elements of the state of Windows threads:

WinDbg (in user-process attach and kernel debugging mode), the Reliability and Perfor-

mance Monitor, and Process Explorer. (The tools that show thread-scheduling information

are listed in the section “Thread Scheduling.”)

To view the threads in a process with Process Explorer, select a process and open the process

properties (double-click on the process or click on the Process, Properties menu item). Then

click on the Threads tab. This tab shows a list of the threads in the process and three columns

of information. For each thread it shows the percentage of CPU consumed (based on the

refresh interval configured), the number of context switches to the thread, and the thread

start address. You can sort by any of these three columns.

382 Windows Internals, Fifth Edition

New threads that are created are highlighted in green, and threads that exit are highlighted

in red. (The highlight duration can be configured with the Options, Configure Highlighting

menu item.) This might be helpful to discover unnecessary thread creation occurring in a

process. (In general, threads should be created at process startup, not every time a request is

processed inside a process.)

As you select each thread in the list, Process Explorer displays the thread ID, start time, state,

CPU time counters, number of context switches, and the base and current priority. There is a

Kill button, which will terminate an individual thread, but this should be used with extreme

care.

The best way to measure actual CPU activity with Process Explorer is to add the clock cycle

delta column, which uses the clock cycle counter designed for thread run-time account-

ing (as described later in this chapter). Because many threads run for such a short amount

of time that they are seldom (if ever) the currently running thread when the clock interval

timer interrupt occurs, they are not charged for much of their CPU time. The total number of

clock cycles represents the actual number of processor cycles that each thread in the process

accrued. It is independent of the clock interval timer’s resolution because the count is main-

tained internally by the processor at each cycle and updated by Windows at each interrupt

entry (a final accumulation is done before a context switch).

The thread start address is displayed in the form “module!function”, where module is the

name of the .exe or .dll. The function name relies on access to symbol files for the module.

(See “Experiment: Viewing Process Details with Process Explorer” in Chapter 1.) If you are

unsure what the module is, click the Module button. This opens an Explorer file properties

window for the module containing the thread’s start address (for example, the .exe or .dll).

Note For threads created by the Windows CreateThread function, Process Explorer displays

the function passed to CreateThread, not the actual thread start function. That is because all

Windows threads start at a common thread startup wrapper function (RtlUserThreadStart in

Ntdll.dll). If Process Explorer showed the actual start address, most threads in processes would

appear to have started at the same address, which would not be helpful in trying to understand

what code the thread was executing. However, if Process Explorer can’t query the user-defined

startup address (such as in the case of a protected process), it will show the wrapper function, so

you will see all threads starting at RtlUserThreadStart.

However, the thread start address displayed might not be enough information to pinpoint

what the thread is doing and which component within the process is responsible for the CPU

consumed by the thread. This is especially true if the thread start address is a generic startup

function (for example, if the function name does not indicate what the thread is actually

doing). In this case, examining the thread stack might answer the question. To view the stack

for a thread, double-click on the thread of interest (or select it and click the Stack button).

 Chapter 5 Processes, Threads, and Jobs 383

Process Explorer displays the thread’s stack (both user and kernel, if the thread was in kernel

mode).

Note While the user-mode debuggers (WinDbg, Ntsd, and Cdb) permit you to attach to a

process and display the user stack for a thread, Process Explorer shows both the user and kernel

stack in one easy click of a button. You can also examine user and kernel thread stacks using

WinDbg in local kernel debugging mode.

Viewing the thread stack can also help you determine why a process is hung. As an example,

on one system, Microsoft Office PowerPoint was hanging for one minute on startup. To

determine why it was hung, after starting PowerPoint, Process Explorer was used to examine

the thread stack of the one thread in the process. The result is shown in Figure 5-10.

FIGURE 5-10 Hung thread stack in PowerPoint

This thread stack shows that PowerPoint (line 10) called a function in Mso.dll (the central

Microsoft Office DLL), which called the OpenPrinterW function in Winspool.drv (a DLL used to

connect to printers). Winspool.drv then dispatched to a function OpenPrinterRPC, which then

called a function in the RPC runtime DLL, indicating it was sending the request to a remote

printer. So, without having to understand the internals of PowerPoint, the module and func-

tion names displayed on the thread stack indicate that the thread was waiting to connect to a

network printer. On this particular system, there was a network printer that was not respond-

ing, which explained the delay starting PowerPoint. (Microsoft Office applications connect to

all configured printers at process startup.) The connection to that printer was deleted from

the user’s system, and the problem went away.

Finally, when looking at 32-bit applications running on 64-bit systems as a Wow64 process

(see Chapter 3 for more information on Wow64), Process Explorer shows both the 32-bit and

64-bit stack for threads. Because at the time of the system call proper, the thread has been

switched to a 64-bit stack and context, simply looking at the thread’s 64-bit stack would

reveal only half the story—the 64-bit part of the thread, with Wow64’s thunking code. So,

when examining Wow64 processes, be sure to take into account both the 32-bit and 64-bit

stacks. An example of a Wow64 thread inside Microsoft Office Word 2007 is shown in Figure

5-11. The stack frames highlighted in the box are the 32-bit stack frames from the 32-bit

stack.

384 Windows Internals, Fifth Edition

FIGURE 5-11 Example Wow64 stack

Limitations on Protected Process Threads

As we discussed in the process internals section, protected processes have several limitations

in terms of which access rights will be granted, even to the users with the highest privileges

on the system. These limitations also apply to threads inside such a process. This ensures

that the actual code running inside the protected process cannot be hijacked or otherwise

affected through standard Windows functions, which require the access rights in Table 5-14.

TABLE 5-14 Thread Access Rights Denied for Threads Inside a Protected Process

Object: Access Mask Function

Thread: THREAD_ALL_ACCESS Disables full access to a thread inside a protected

process.

Thread: THREAD_DIRECT_IMPERSONATION Disables impersonating a thread inside a protected

process.

Thread: THREAD_GET_CONTEXT, THREAD_

SET_CONTEXT

Disables accessing and/or modifying the CPU context

(registers and stack) of a thread inside a protected

process.

Thread: THREAD_QUERY_INFORMATION Disables querying all information on a thread inside

a protected process. However, a new access right was

added, THREAD_QUERY_LIMITED_INFORMATION,

that grants limited access to information on the

thread.

 Chapter 5 Processes, Threads, and Jobs 385

Object: Access Mask Function

Thread: THREAD_SET_INFORMATION Disables setting all information on a thread inside a

protected process. However, a new access right was

added, THREAD_SET_LIMITED_INFORMATION, that

grants limited access to modifying information on

the thread.

Thread: THREAD_SET_THREAD_TOKEN Disables setting an impersonation token for a thread

inside a protected process.

Thread: THREAD_TERMINATE Disables terminating a thread inside a protected

process. Note that terminating all threads atomically

through process termination is allowed.

EXPERIMENT: Viewing Protected Process Thread Information

In the previous section, we took a look at how Process Explorer can be helpful in exam-

ining thread activity to determine the cause of potential system or application issues.

This time, we’ll use Process Explorer to look at a protected process and see how the dif-

ferent access rights being denied affect its ability and usefulness on such a process.

Find the Audiodg.exe service inside the process list. This is a process responsible for

much of the core work behind the user-mode audio stack in Windows Vista, and it

requires protection to ensure that high-definition decrypted audio content does not

leak out to untrusted sources. Bring up the process properties view and take a look

at the Image tab. Notice how the numbers for WS Private, WS Shareable, and WS

Shared are 0, although the total Working Set is still displayed. This is an example of

the THREAD_QUERY_INFORMATION versus THREAD_QUERY_LIMITED_INFORMATION

rights.

More importantly, take a look at the Threads tab. As you can see here, Process Explorer

is unable to show the Win32 thread start address and instead displays the standard

thread start wrapper inside Ntdll.dll. If you try clicking on the Stack button, you’ll get an

error, because Process Explorer needs to read the virtual memory inside the protected

process, which it can’t do.

386 Windows Internals, Fifth Edition

Finally, note that although the Base and Dynamic priorities are shown, the I/O and

Memory priorities are not, another example of the limited versus full query information

access right. As you try to kill a thread inside Audiodg.exe, notice yet another access

denied error: recall the lack of THREAD_TERMINATE access shown earlier in Table 5-14.

Worker Factories (Thread Pools)

Worker factories refer to the internal mechanism used to implement user-mode thread pools.

Prior to Windows Vista, the thread pool routines were completely implemented in user mode

inside the Ntdll.dll library, and the Windows API provided various routines to call into the rel-

evant routines, which provided waitable timers, wait callbacks, and automatic thread creation

and deletion depending on the amount of work being done.

Note Information on the new thread pool API is available on MSDN at http://msdn2.micro-
soft.com/en-us/library/ms686760.aspx. It includes information on the APIs introduced and

the APIs retired, as well as important differences in certain details of the way the two APIs are

implemented.

 Chapter 5 Processes, Threads, and Jobs 387

In Windows Vista, the thread pool implementation in user mode was completely re-archi-

tected, and part of the management functionality has been moved to kernel mode in order

to improve efficiency and performance and minimize complexity. The original thread pool

implementation required the user-mode code inside Ntdll.dll to remain aware of how many

threads were currently active as worker threads, and to enlarge this number in periods of

high demand.

Because querying the information necessary to make this decision, as well as the work to cre-

ate the threads, took place in user mode, several system calls were required that could have

been avoided if these operations were performed in kernel mode. Moving this code into

kernel mode means fewer transitions between user and kernel mode, and it allows Ntdll.dll

to manage the thread pool itself and not the system mechanisms behind it. It also provides

other benefits, such as the ability to remotely create a thread pool in a process other than the

calling process (although possible in user mode, it would be very complex given the necessity

of using APIs to access the remote process’s address space).

The functionality in Windows Vista is introduced by a new object manager type called

TpWorkerFactory, as well as four new native system calls for managing the factory and

its workers—NtCreateWorkerFactory, NtWorkerFactoryWorkerReady, NtReleaseWorker-
Fac tory Worker, NtShutdownWorkerFactory—two new query/set native calls (NtQuery-
Infor ma tion WorkerFactory and NtSetInformationWorkerFactory), and a new wait call,

NtWaitFor WorkViaWorkerFactory.

Just like other native system calls, these calls provide user mode with a handle to the

TpWorker Factory object, which contains information such as the name and object attributes,

the desired access mask, and a security descriptor. Unlike other system calls wrapped by

the Windows API, however, thread pool management is handled by Ntdll.dll’s native code,

which means that developers work with an opaque descriptor (a TP_WORK pointer) owned by

Ntdll.dll, in which the actual handle is stored.

As its name suggests, the worker factory implementation is responsible for allocating worker

threads (and calling the given user-mode worker thread entry point), maintaining a minimum

and maximum thread count (allowing for either permanent worker pools or totally dynamic

pools), as well as other accounting information. This enables operations such as shutting

down the thread pool to be performed with a single call to the kernel, because the kernel

has been the only component responsible for thread creation and termination.

Because the kernel dynamically creates new threads as requested, this also increases the scal-

ability of applications using the new thread pool implementation. Developers have always

been able to take advantage of as many threads as possible (based on the number of proces-

sors on the system) through the old implementation, but through support for dynamic pro-

cessors in Windows Vista (see the section on this topic later in this chapter), it’s now possible

for applications using thread pools to automatically take advantage of new processors added

at run time.

388 Windows Internals, Fifth Edition

It’s important to note that the new worker factory support is merely a wrapper to manage

mundane tasks that would otherwise have to be performed in user mode (at a loss of per-

formance). Many of the improvements in the new thread pool code are the result of changes

in the Ntdll.dll side of this architecture. Also, it is not the worker factory code that provides

the scalability, wait internals, and efficiency of work processing. Instead, it is a much older

component of Windows that we have already discussed—I/O completion ports, or more cor-

rectly, kernel queues (KQUEUE; see Chapter 7 for more information).

In fact, when creating a worker factory, an I/O completion port must have already been cre-

ated by user mode, and the handle needs to be passed on. It is through this I/O completion

port that the user-mode implementation will queue work and also wait for work—but by

calling the worker factory system calls instead of the I/O completion port APIs. Internally,

however, the “release” worker factory call (which queues work) is a wrapper around

IoSetIoCompletion, which increases pending work, while the “wait” call is a wrapper around

IoRemoveIoCompletion. Both these routines call into the kernel queue implementation.

Therefore, the job of the worker factory code is to manage either a persistent, static, or

dynamic thread pool; wrap the I/O completion port model into interfaces that try to prevent

stalled worker queues by automatically creating dynamic threads; and to simplify global

cleanup and termination operations during a factory shutdown request (as well as to easily

block new requests against the factory in such a scenario).

Unfortunately, the data structures used by the worker factory implementation are not in the

public symbols, but it is still possible to look at some worker pools, as we’ll show in the next

experiment.

EXPERIMENT: Looking at Thread Pools

Because of the more efficient and simpler thread pool implementation in Windows

Vista, many core system components and applications were updated to make use of it.

One of the ways to identify which processes are using a worker factory is to look at the

handle list in Process Explorer. Follow these steps to look at some details behind them:

 1. Run Process Explorer and select Show Unnamed Handles And Mappings from

the View menu. Unfortunately, worker factories aren’t named by Ntdll.dll, so you

need to take this step in order to see the handles.

 2. Select Lsm.exe from the list of processes, and look at the handle table. Make sure

that the lower pane is shown (View, Show Lower Pane) and is displaying handle

table mode (View, Lower Pane View, Handles).

 3. Right-click on the lower pane columns, and then click on Select Columns. Make

sure that the Type column is selected to be shown.

 Chapter 5 Processes, Threads, and Jobs 389

 4. Now scroll down the handles, looking at the Type column, until you find a handle

of type TpWorkerFactory. You should see something like this:

Notice how the TpWorkerFactory handle is immediately preceded by an

IoCompletion handle. As was described previously, this occurs because before cre-

ating a worker factory, a handle to an I/O completion port on which work will be

sent must be created.

 5. Now double-click Lsm.exe in the list of processes, and go to the Threads tab. You

should see something similar to the image here:

390 Windows Internals, Fifth Edition

On this system (with two processors), the worker factory has created six worker

threads at the request of Lsm.exe (processes can define a minimum and maxi-

mum number of threads) and based on its usage and the count of processors on

the machine. These threads are identified as TppWorkerThread, which is Ntdll.dll’s

worker entry point when calling the worker factory system calls.

 6. Ntdll.dll is responsible for its own internal accounting inside the worker thread

wrapper (TppWorkerThread) before calling the worker callback that the applica-

tion has registered. By looking at the Wait reason in the State information for

each thread, you can get a rough idea of what each worker thread may be doing.

Double-click on one of the threads inside an LPC wait to look at its stack. Here’s

an example:

This specific worker thread is being used by Lsm.exe for LPC communication.

Because the local session manager needs to communicate with other compo-

nents such as Smss and Csrss through LPC, it makes sense that it would want a

number of its threads to be busy replying and waiting for LPC messages (the

more threads doing this, the less stalling on the LPC pipeline).

If you look at other worker threads, you’ll see some are waiting for objects such as

events. A process can have multiple thread pools, and each thread pool can have a

variety of threads doing completely unrelated tasks. It’s up to the developer to assign

work and to call the thread pool APIs to register this work through Ntdll.dll.

 Chapter 5 Processes, Threads, and Jobs 391

Thread Scheduling

This section describes the Windows scheduling policies and algorithms. The first subsection

provides a condensed description of how scheduling works on Windows and a definition

of key terms. Then Windows priority levels are described from both the Windows API and

the Windows kernel points of view. After a review of the relevant Windows functions and

Windows utilities and tools that relate to scheduling, the detailed data structures and algo-

rithms that make up the Windows scheduling system are presented, with uniprocessor sys-

tems examined first and then multiprocessor systems.

Overview of Windows Scheduling

Windows implements a priority-driven, preemptive scheduling system—the highest-priority

runnable (ready) thread always runs, with the caveat that the thread chosen to run might be

limited by the processors on which the thread is allowed to run, a phenomenon called pro-
cessor affinity. By default, threads can run on any available processor, but you can alter pro-

cessor affinity by using one of the Windows scheduling functions listed in Table 5-15 (shown

later in the chapter) or by setting an affinity mask in the image header.

EXPERIMENT: Viewing Ready Threads

You can view the list of ready threads with the kernel debugger !ready command. This

command displays the thread or list of threads that are ready to run at each priority

level. In the following example, generated on a 32-bit machine with a dual-core proces-

sor, five threads are ready to run at priority 8 on the first processor, and three threads

at priority 10, two threads at priority 9, and six threads at priority 8 are ready to run on

the second processor. Determining which of these threads get to run on their respec-

tive processor is a complex result at the end of several algorithms that the scheduler

uses. We will cover this topic later in this section.

kd> !ready

Processor 0: Ready Threads at priority 8

 THREAD 857d9030 Cid 0ec8.0e30 Teb: 7ffdd000 Win32Thread: 00000000 READY

 THREAD 855c8300 Cid 0ec8.0eb0 Teb: 7ff9c000 Win32Thread: 00000000 READY

 THREAD 8576c030 Cid 0ec8.0c9c Teb: 7ffa8000 Win32Thread: 00000000 READY

 THREAD 85a8a7f0 Cid 0ec8.0d3c Teb: 7ff97000 Win32Thread: 00000000 READY

 THREAD 87d34488 Cid 0c48.04a0 Teb: 7ffde000 Win32Thread: 00000000 READY

Processor 1: Ready Threads at priority 10

 THREAD 857c0030 Cid 04c8.0378 Teb: 7ffdf000 Win32Thread: fef7f8c0 READY

 THREAD 856cc8e8 Cid 0e84.0a70 Teb: 7ffdb000 Win32Thread: f98fb4c0 READY

 THREAD 85c41c68 Cid 0e84.00ac Teb: 7ffde000 Win32Thread: ff460668 READY

Processor 1: Ready Threads at priority 9

 THREAD 87fc86f0 Cid 0ec8.04c0 Teb: 7ffd3000 Win32Thread: 00000000 READY

 THREAD 88696700 Cid 0ec8.0ce8 Teb: 7ffa0000 Win32Thread: 00000000 READY

392 Windows Internals, Fifth Edition

Processor 1: Ready Threads at priority 8

 THREAD 856e5520 Cid 0ec8.0228 Teb: 7ff98000 Win32Thread: 00000000 READY

 THREAD 85609d78 Cid 0ec8.09b0 Teb: 7ffd9000 Win32Thread: 00000000 READY

 THREAD 85fdeb78 Cid 0ec8.0218 Teb: 7ff72000 Win32Thread: 00000000 READY

 THREAD 86086278 Cid 0ec8.0cc8 Teb: 7ff8d000 Win32Thread: 00000000 READY

 THREAD 8816f7f0 Cid 0ec8.0b60 Teb: 7ffd5000 Win32Thread: 00000000 READY

 THREAD 87710d78 Cid 0004.01b4 Teb: 00000000 Win32Thread: 00000000 READY

When a thread is selected to run, it runs for an amount of time called a quantum. A quantum

is the length of time a thread is allowed to run before another thread at the same priority

level (or higher, which can occur on a multiprocessor system) is given a turn to run. Quantum

values can vary from system to system and process to process for any of three reasons: sys-

tem configuration settings (long or short quantums), foreground/background status of the

process, or use of the job object to alter the quantum. (Quantums are described in more

detail in the “Quantum” section later in the chapter.) A thread might not get to complete

its quantum, however. Because Windows implements a preemptive scheduler, if another

thread with a higher priority becomes ready to run, the currently running thread might be

preempted before finishing its time slice. In fact, a thread can be selected to run next and be

preempted before even beginning its quantum!

The Windows scheduling code is implemented in the kernel. There’s no single “scheduler”

module or routine, however—the code is spread throughout the kernel in which scheduling-

related events occur. The routines that perform these duties are collectively called the ker-

nel’s dispatcher. The following events might require thread dispatching:

A thread becomes ready to execute—for example, a thread has been newly created or

has just been released from the wait state.

A thread leaves the running state because its time quantum ends, it terminates, it yields

execution, or it enters a wait state.

A thread’s priority changes, either because of a system service call or because Windows

itself changes the priority value.

A thread’s processor affinity changes so that it will no longer run on the processor on

which it was running.

At each of these junctions, Windows must determine which thread should run next. When

Windows selects a new thread to run, it performs a context switch to it. A context switch is

the procedure of saving the volatile machine state associated with a running thread, loading

another thread’s volatile state, and starting the new thread’s execution.

As already noted, Windows schedules at the thread granularity. This approach makes sense

when you consider that processes don’t run but only provide resources and a context in

 Chapter 5 Processes, Threads, and Jobs 393

which their threads run. Because scheduling decisions are made strictly on a thread basis, no

consideration is given to what process the thread belongs to. For example, if process A has 10

runnable threads, process B has 2 runnable threads, and all 12 threads are at the same prior-

ity, each thread would theoretically receive one-twelfth of the CPU time—Windows wouldn’t

give 50 percent of the CPU to process A and 50 percent to process B.

Priority Levels

To understand the thread-scheduling algorithms, you must first understand the priority lev-

els that Windows uses. As illustrated in Figure 5-12, internally Windows uses 32 priority levels,

ranging from 0 through 31. These values divide up as follows:

Sixteen real-time levels (16 through 31)

Fifteen variable levels (1 through 15)

One system level (0), reserved for the zero page thread

FIGURE 5-12 Thread priority levels

Thread priority levels are assigned from two different perspectives: those of the Windows API

and those of the Windows kernel. The Windows API first organizes processes by the priority

class to which they are assigned at creation (Real-time, High, Above Normal, Normal, Below

Normal, and Idle) and then by the relative priority of the individual threads within those pro-

cesses (Time-critical, Highest, Above-normal, Normal, Below-normal, Lowest, and Idle).

In the Windows API, each thread has a base priority that is a function of its process priority

class and its relative thread priority. The mapping from Windows priority to internal Windows

numeric priority is shown in Figure 5-13.

394 Windows Internals, Fifth Edition

Real-time
time critical

Real-time idle
Dynamic time

critical

Dynamic idle

Used for zero page thread—not available to Win32 applications

Idle

Below
Normal

Normal

Above
Normal

High

Real-time

31

24

16

15

13

10

8

6

4

0

1

FIGURE 5-13 Mapping of Windows kernel priorities to the Windows API

Whereas a process has only a single base priority value, each thread has two priority values:

current and base. Scheduling decisions are made based on the current priority. As explained

in the following section on priority boosting, the system under certain circumstances

increases the priority of threads in the dynamic range (1 through 15) for brief periods.

Windows never adjusts the priority of threads in the real-time range (16 through 31), so they

always have the same base and current priority.

A thread’s initial base priority is inherited from the process base priority. A process, by

default, inherits its base priority from the process that created it. This behavior can be over-

ridden on the CreateProcess function or by using the command-line start command. A pro-

cess priority can also be changed after being created by using the SetPriorityClass function or

 Chapter 5 Processes, Threads, and Jobs 395

various tools that expose that function, such as Task Manager and Process Explorer (by right-

clicking on the process and choosing a new priority class). For example, you can lower the

priority of a CPU-intensive process so that it does not interfere with normal system activities.

Changing the priority of a process changes the thread priorities up or down, but their relative

settings remain the same. It usually doesn’t make sense, however, to change individual thread

priorities within a process, because unless you wrote the program or have the source code,

you don’t really know what the individual threads are doing, and changing their relative

importance might cause the program not to behave in the intended fashion.

Normally, the process base priority (and therefore the starting thread base priority) will

default to the value at the middle of each process priority range (24, 13, 10, 8, 6, or 4).

However, some Windows system processes (such as the Session Manager, service controller,

and local security authentication server) have a base process priority slightly higher than the

default for the Normal class (8). This higher default value ensures that the threads in these

processes will all start at a higher priority than the default value of 8. These system processes

use an internal system call (NtSetInformationProcess) to set their process base priority to a

numeric value other than the normal default starting base priority.

Windows Scheduling APIs

The Windows API functions that relate to thread scheduling are listed in Table 5-15. (For

more information, see the Windows API reference documentation.)

TABLE 5-15 Scheduling-Related APIs and Their Functions

API Function

Suspend/ResumeThread Suspends or resumes a paused thread from execution.

Get/SetPriorityClass Returns or sets a process’s priority class (base priority).

Get/SetThreadPriority Returns or sets a thread’s priority (relative to its process base

priority).

Get/SetProcessAffinityMask Returns or sets a process’s affinity mask.

SetThreadAffinityMask Sets a thread’s affinity mask (must be a subset of the process’s

affinity mask) for a particular set of processors, restricting it to

running on those processors.

SetInformationJobObject Sets attributes for a job; some of the attributes affect schedul-

ing, such as affinity and priority. (See the “Job Objects” section

later in the chapter for a description of the job object.)

GetLogicalProcessorInformation Returns details about processor hardware configuration (for

hyperthreaded and NUMA systems).

Get/SetThreadPriorityBoost Returns or sets the ability for Windows to boost the priority of

a thread temporarily. (This ability applies only to threads in the

dynamic range.)

SetThreadIdealProcessor Establishes a preferred processor for a particular thread, but

doesn’t restrict the thread to that processor.

396 Windows Internals, Fifth Edition

API Function

Get/SetProcessPriorityBoost Returns or sets the default priority boost control state of the

current process. (This function is used to set the thread priority

boost control state when a thread is created.)

WaitForSingle/MultipleObject(s) Puts the current thread into a wait state until the specified

object(s) is/are satisfied, or until the specified time interval (fig-

ured in milliseconds [msec]) expires, if given.

SwitchToThread Yields execution to another thread (at priority 1 or higher) that

is ready to run on the current processor.

Sleep Puts the current thread into a wait state for a specified time in-

terval (figured in milliseconds [msec]). A zero value relinquishes

the rest of the thread’s quantum.

SleepEx Causes the current thread to go into a wait state until either an

I/O completion callback is completed, an APC is queued to the

thread, or the specified time interval ends.

Relevant Tools

You can change (and view) the base process priority with Task Manager and Process Explorer.

You can kill individual threads in a process with Process Explorer (which should be done, of

course, with extreme care).

You can view individual thread priorities with the Reliability and Performance Monitor,

Process Explorer, or WinDbg. While it might be useful to increase or lower the priority of a

process, it typically does not make sense to adjust individual thread priorities within a pro-

cess because only a person who thoroughly understands the program (in other words, typi-

cally only the developer himself) would understand the relative importance of the threads

within the process.

The only way to specify a starting priority class for a process is with the start command in the

Windows command prompt. If you want to have a program start every time with a specific

priority, you can define a shortcut to use the start command by beginning the command

with cmd /c. This runs the command prompt, executes the command on the command line,

and terminates the command prompt. For example, to run Notepad in the low-process prior-

ity, the shortcut would be cmd /c start /low Notepad.exe.

 Chapter 5 Processes, Threads, and Jobs 397

EXPERIMENT: Examining and Specifying Process and

Thread Priorities

Try the following experiment:

 1. From an elevated command prompt, type start /realtime notepad. Notepad

should open.

 2. Run Process Explorer and select Notepad.exe from the list of processes. Double-

click on Notepad.exe to show the process properties window, and then click on

the Threads tab, as shown here. Notice that the dynamic priority of the thread in

Notepad is 24. This matches the real-time value shown in this image:

 3. Task Manager can show you similar information. Press Ctrl+Shift+Esc to start Task

Manager, and go to the Processes tab. Right-click on the Notepad.exe process,

and select the Set Priority option. You can see that Notepad’s process priority

class is Realtime, as shown in the following dialog box.

398 Windows Internals, Fifth Edition

Windows System Resource Manager

Windows Server 2008 Enterprise Edition and Windows Server 2008 Datacenter Edition

include an optionally installable component called Windows System Resource Manager

(WSRM). It permits the administrator to configure policies that specify CPU utilization,

affinity settings, and memory limits (both physical and virtual) for processes. In addi-

tion, WSRM can generate resource utilization reports that can be used for accounting

and verification of service-level agreements with users.

Policies can be applied for specific applications (by matching the name of the image

with or without specific command-line arguments), users, or groups. The policies can

be scheduled to take effect at certain periods or can be enabled all the time.

After you have set a resource-allocation policy to manage specific processes, the WSRM

service monitors CPU consumption of managed processes and adjusts process base

priorities when those processes do not meet their target CPU allocations.

 Chapter 5 Processes, Threads, and Jobs 399

The physical memory limitation uses the function SetProcessWorkingSetSizeEx to set a

hard-working set maximum. The virtual memory limit is implemented by the service

checking the private virtual memory consumed by the processes. (See Chapter 9 for an

explanation of these memory limits.) If this limit is exceeded, WSRM can be configured

to either kill the processes or write an entry to the Event Log. This behavior could be

used to detect a process with a memory leak before it consumes all the available com-

mitted virtual memory on the system. Note that WSRM memory limits do not apply to

Address Windowing Extensions (AWE) memory, large page memory, or kernel memory

(nonpaged or paged pool).

Real-Time Priorities

You can raise or lower thread priorities within the dynamic range in any application; how-

ever, you must have the increase scheduling priority privilege to enter the real-time range. Be

aware that many important Windows kernel-mode system threads run in the real-time prior-

ity range, so if threads spend excessive time running in this range, they might block critical

system functions (such as in the memory manager, cache manager, or other device drivers).

Note As illustrated in the following figure showing the x86 interrupt request levels (IRQLs),

although Windows has a set of priorities called real-time, they are not real-time in the common

definition of the term. This is because Windows doesn’t provide true real-time operating system

facilities, such as guaranteed interrupt latency or a way for threads to obtain a guaranteed execu-

tion time. For more information, see the sidebar “Windows and Real-Time Processing” in Chapter

3 as well as the MSDN Library article “Real-Time Systems and Microsoft Windows NT.”

Interrupt Levels vs. Priority Levels

As illustrated in the following figure of the interrupt request levels (IRQLs) for a 32-bit

system, threads normally run at IRQL 0 or 1. (For a description of how Windows uses

interrupt levels, see Chapter 3.) User-mode code always runs at IRQL 0. Because of this,

no user-mode thread, regardless of its priority, blocks hardware interrupts (although

high-priority real-time threads can block the execution of important system threads).

Only kernel-mode APCs execute at IRQL 1 because they interrupt the execution of a

thread. (For more information on APCs, see Chapter 3.) Threads running in kernel mode

can raise IRQL to higher levels, though—for example, while executing a system call that

involves thread dispatching.

400 Windows Internals, Fifth Edition

31

30

29

28

27

26

3

1

2

0
Thread priorities 0–31

Hardware interrupts

Software interrupts

IRQLs

Device 1

DPC/dispatch

APC

Passive

High

Power fail

Inter-processor interrupt

Clock

Profile

Device

Thread States

Before you can comprehend the thread-scheduling algorithms, you need to understand the

various execution states that a thread can be in. Figure 5-14 illustrates the state transitions

for threads. (The numeric values shown represent the value of the thread state performance

counter.) More details on what happens at each transition are included later in this section.

The thread states are as follows:

Ready A thread in the ready state is waiting to execute. When looking for a thread to

execute, the dispatcher considers only the pool of threads in the ready state.

Deferred ready This state is used for threads that have been selected to run on a spe-

cific processor but have not yet been scheduled. This state exists so that the kernel can

minimize the amount of time the systemwide lock on the scheduling database is held.

Standby A thread in the standby state has been selected to run next on a particular

processor. When the correct conditions exist, the dispatcher performs a context switch

to this thread. Only one thread can be in the standby state for each processor on the

system. Note that a thread can be preempted out of the standby state before it ever

executes (if, for example, a higher priority thread becomes runnable before the standby

thread begins execution).

Running Once the dispatcher performs a context switch to a thread, the thread enters

the running state and executes. The thread’s execution continues until its quantum ends

(and another thread at the same priority is ready to run), it is preempted by a higher

priority thread, it terminates, it yields execution, or it voluntarily enters the wait state.

 Chapter 5 Processes, Threads, and Jobs 401

Waiting A thread can enter the wait state in several ways: a thread can voluntarily

wait for an object to synchronize its execution, the operating system can wait on the

thread’s behalf (such as to resolve a paging I/O), or an environment subsystem can

direct the thread to suspend itself. When the thread’s wait ends, depending on the pri-

ority, the thread either begins running immediately or is moved back to the ready state.

Gate Waiting When a thread does a wait on a gate dispatcher object (see Chapter

3 for more information on gates), it enters the gate waiting state instead of the wait-

ing state. This difference is important when breaking a thread’s wait as the result of

an APC. Because gates don’t use the dispatcher lock, but a per-object lock, the kernel

needs to perform some unique locking operations when breaking the wait of a thread

waiting on a gate and a way to differentiate this from a normal wait.

Transition A thread enters the transition state if it is ready for execution but its kernel

stack is paged out of memory. Once its kernel stack is brought back into memory, the

thread enters the ready state.

Terminated When a thread finishes executing, it enters the terminated state. Once

the thread is terminated, the executive thread block (the data structure in nonpaged

pool that describes the thread) might or might not be deallocated. (The object man-

ager sets policy regarding when to delete the object.)

Initialized This state is used internally while a thread is being created.

Ready (1)

Deferred
ready (7) Running (2)

voluntary
switch

preemption,
quantum end

Init (0)

Terminate (4)Transition (6)

Standby (3)preempt

Waiting (5) or
Gate waiting (8)

FIGURE 5-14 Thread states and transitions

402 Windows Internals, Fifth Edition

EXPERIMENT: Thread-Scheduling State Changes

You can watch thread-scheduling state changes with the Performance tool in Windows.

This utility can be useful when you’re debugging a multithreaded application and

you’re unsure about the state of the threads running in the process. To watch thread-

scheduling state changes by using the Performance tool, follow these steps:

 1. Run Notepad (Notepad.exe).

 2. Start the Performance tool by selecting Programs from the Start menu and then

selecting Reliability and Performance Monitor from the Administrative Tools

menu. Click on the Performance Monitor entry under Monitoring Tools.

 3. Select chart view if you’re in some other view.

 4. Right-click on the graph, and choose Properties.

 5. Click the Graph tab, and change the chart vertical scale maximum to 7. (As you’ll

see from the explanation text for the performance counter, thread states are

numbered from 0 through 7.) Click OK.

 6. Click the Add button on the toolbar to bring up the Add Counters dialog box.

 7. Select the Thread performance object, and then select the Thread State counter.

Select the Show Description check box to see the definition of the values:

 8. In the Instances box, select <All instances> and click Search. Scroll down until you

see the Notepad process (notepad/0); select it, and click the Add button.

 9. Scroll back up in the Instances box to the Mmc process (the Microsoft

Management Console process running the System Monitor), select all the threads

(mmc/0, mmc/1, and so on), and add them to the chart by clicking the Add but-

ton. Before you click Add, you should see something like the following dialog box.

 Chapter 5 Processes, Threads, and Jobs 403

 10. Now close the Add Counters dialog box by clicking OK

 11. You should see the state of the Notepad thread (the very top line in the following

figure) as a 5, which, as shown in the explanation text you saw under step 7, rep-

resents the waiting state (because the thread is waiting for GUI input):

404 Windows Internals, Fifth Edition

 12. Notice that one thread in the Mmc process (running the Performance tool snap-

in) is in the running state (number 2). This is the thread that’s querying the thread

states, so it’s always displayed in the running state.

 13. You’ll never see Notepad in the running state (unless you’re on a multiprocessor

system) because Mmc is always in the running state when it gathers the state of

the threads you’re monitoring.

Dispatcher Database

To make thread-scheduling decisions, the kernel maintains a set of data structures known

collectively as the dispatcher database, illustrated in Figure 5-15. The dispatcher database

keeps track of which threads are waiting to execute and which processors are executing

which threads.

To improve scalability, including thread-dispatching concurrency, Windows multiprocessor

systems have per-processor dispatcher ready queues, as illustrated in Figure 5-15. In this way

each CPU can check its own ready queues for the next thread to run without having to lock

the systemwide ready queues. (Versions of Windows before Windows Server 2003 used a

global database).

The per-processor ready queues, as well as the per-processor ready summary, are part of the

processor control block (PRCB) structure. (To see the fields in the PRCB, type dt nt!_prcb in

the kernel debugger.) The names of each component that we will talk about (in italics) are

field members of the PRCB structure.

The dispatcher ready queues (DispatcherReadyListHead) contain the threads that are in the

ready state, waiting to be scheduled for execution. There is one queue for each of the 32 pri-

ority levels. To speed up the selection of which thread to run or preempt, Windows maintains

a 32-bit bit mask called the ready summary (ReadySummary). Each bit set indicates one or

more threads in the ready queue for that priority level. (Bit 0 represents priority 0, and so on.)

Instead of scanning each ready list to see whether it is empty or not (which would make

scheduling decisions dependent on the number of different priority threads), a single bit scan

is performed as a native processor command to find the highest bit set. Regardless of the

number of threads in the ready queue, this operation takes a constant amount of time, which

is why you may sometimes see the Windows scheduling algorithm referred to as an O(1), or

constant time, algorithm.

 Chapter 5 Processes, Threads, and Jobs 405

Process

Thread 1 Thread 2

Ready summary

Deferred
ready queue

CPU 0
ready queues

31

0

31 0

Process

Thread 3 Thread 4

Ready summary

31 0
Deferred

ready queue

CPU 1
ready queues

31

0

FIGURE 5-15 Windows multiprocessor dispatcher database

Table 5-16 lists the KPRCB fields involved in thread scheduling.

TABLE 5-16 Thread-Scheduling KPRCB Fields

KPRCB Field Type Description

ReadySummary Bitmask (32 bits) Bitmask of priority levels that have

one or more ready threads

DeferredReadyListHead Singly linked list Single list head for the deferred

ready queue

DispatcherReadyListHead Array of 32 list entries List heads for the 32 ready queues

The dispatcher database is synchronized by raising IRQL to SYNCH_LEVEL (which is defined

as level 2). (For an explanation of interrupt priority levels, see the “Trap Dispatching” sec-

tion in Chapter 3.) Raising IRQL in this way prevents other threads from interrupting thread

dispatching on the processor because threads normally run at IRQL 0 or 1. However, on

a multiprocessor system, more is required than just raising IRQL because other proces-

sors can simultaneously raise to the same IRQL and attempt to operate on the dispatcher

database. How Windows synchronizes access to the dispatcher database is explained in the

“Multiprocessor Systems” section later in the chapter.

406 Windows Internals, Fifth Edition

Quantum

As mentioned earlier in the chapter, a quantum is the amount of time a thread gets to run

before Windows checks to see whether another thread at the same priority is waiting to run.

If a thread completes its quantum and there are no other threads at its priority, Windows

permits the thread to run for another quantum.

On Windows Vista, threads run by default for 2 clock intervals; on Windows Server systems,

by default, a thread runs for 12 clock intervals. (We’ll explain how you can change these val-

ues later.) The rationale for the longer default value on server systems is to minimize context

switching. By having a longer quantum, server applications that wake up as the result of a cli-

ent request have a better chance of completing the request and going back into a wait state

before their quantum ends.

The length of the clock interval varies according to the hardware platform. The frequency

of the clock interrupts is up to the HAL, not the kernel. For example, the clock interval

for most x86 uniprocessors is about 10 milliseconds, and for most x86 and x64 multi-

processors it is about 15 milliseconds. This clock interval is stored in the kernel variable

KeMaximumIncrement as hundreds of nanoseconds.

Because of changes in thread run-time accounting in Windows Vista (briefly mentioned ear-

lier in the thread activity experiment), although threads still run in units of clock intervals, the

system does not use the count of clock ticks as the deciding factor for how long a thread has

run and whether its quantum has expired. Instead, when the system starts up, a calculation

is made whose result is the number of clock cycles that each quantum is equivalent to (this

value is stored in the kernel variable KiCyclesPerClockQuantum). This calculation is made by

multiplying the processor speed in Hz (CPU clock cycles per second) with the number of sec-

onds it takes for one clock tick to fire (based on the KeMaximumIncrement value described

above).

The end result of this new accounting method is that, as of Windows Vista, threads do not

actually run for a quantum number based on clock ticks; they instead run for a quantum
target, which represents an estimate of what the number of CPU clock cycles the thread has

consumed should be when its turn would be given up. This target should be equal to an

equivalent number of clock interval timer ticks because, as we’ve just seen, the calculation of

clock cycles per quantum is based on the clock interval timer frequency, which you can check

using the following experiment. On the other hand, because interrupt cycles are not charged

to the thread, the actual clock time may be longer.

 Chapter 5 Processes, Threads, and Jobs 407

EXPERIMENT: Determining the Clock Interval Frequency

The Windows GetSystemTimeAdjustment function returns the clock interval. To deter-

mine the clock interval, download and run the Clockres program from Windows

Sysinternals (www.microsoft.com/technet/sysinternals). Here’s the output from a dual-

core 32-bit Windows Vista system:

C:\>clockres

ClockRes - View the system clock resolution

By Mark Russinovich

SysInternals - www.sysinternals.com

The system clock interval is 15.600100 ms

Quantum Accounting

Each process has a quantum reset value in the kernel process block. This value is used when

creating new threads inside the process and is duplicated in the kernel thread block, which

is then used when giving a thread a new quantum target. The quantum reset value is stored

in terms of actual quantum units (we’ll discuss what these mean soon), which are then multi-

plied by the number of clock cycles per quantum, resulting in the quantum target.

As a thread runs, CPU clock cycles are charged at different events (context switches, inter-

rupts, and certain scheduling decisions). If at a clock interval timer interrupt, the number of

CPU clock cycles charged has reached (or passed) the quantum target, then quantum end

processing is triggered. If there is another thread at the same priority waiting to run, a con-

text switch occurs to the next thread in the ready queue.

Internally, a quantum unit is represented as one third of a clock tick (so one clock tick equals

three quantums). This means that on Windows Vista systems, threads, by default, have a

quantum reset value of 6 (2 * 3), and that Windows Server 2008 systems have a quantum

reset value of 36 (12 * 3). For this reason, the KiCyclesPerClockQuantum value is divided

by three at the end of the calculation previously described, since the original value would

describe only CPU clock cycles per clock interval timer tick.

The reason a quantum was stored internally as a fraction of a clock tick rather than as

an entire tick was to allow for partial quantum decay on wait completion on versions of

Windows prior to Windows Vista. Prior versions used the clock interval timer for quantum

expiration. If this adjustment were not made, it would have been possible for threads never

to have their quantums reduced. For example, if a thread ran, entered a wait state, ran again,

and entered another wait state but was never the currently running thread when the clock

interval timer fired, it would never have its quantum charged for the time it was running.

Because threads now have CPU clock cycles charged instead of quantums, and because this

no longer depends on the clock interval timer, these adjustments are not required.

408 Windows Internals, Fifth Edition

EXPERIMENT: Determining the Clock Cycles per Quantum

Windows doesn’t expose the number of clock cycles per quantum through any func-

tion, but with the calculation and description we’ve given, you should be able to

determine this on your own using the following steps and a kernel debugger such as

WinDbg in local debugging mode.

 1. Obtain your processor frequency as Windows has detected it. You can use the

value stored in the PRCB’s MHz field, which can be displayed with the !cpuinfo

command. Here is a sample output of a dual-core Intel system running at 2829

MHz.

lkd> !cpuinfo

CP F/M/S Manufacturer MHz PRCB Signature MSR 8B Signature Features

 0 6,15,6 GenuineIntel 2829 000000c700000000 >000000c700000000<a00f3fff

 1 6,15,6 GenuineIntel 2829 000000c700000000 a00f3fff

 Cached Update Signature 000000c700000000

 Initial Update Signature 000000c700000000

 2. Convert the number to Hertz (Hz). This is the number of CPU clock cycles that

occur each second on your system. In this case, 2,829,000,000 cycles per second.

 3. Obtain the clock interval on your system by using clockres. This measures how

long it takes before the clock fires. On the sample system used here, this interval

was 15.600100 ms.

 4. Convert this number to the number of times the clock interval timer fires each

second. One second is 1000 ms, so divide the number derived in step 3 by 1000.

In this case, the timer fires every 0.0156001 second.

 5. Multiply this count by the number of cycles each second that you obtained in

step 2. In our case, 44,132,682.9 cycles have elapsed after each clock interval.

 6. Remember that each quantum unit is one-third of a clock interval, so divide the

number of cycles by three. In our example, this gives us 14,710,894, or 0xE0786E

in hexidecimal. This is the number of clock cycles each quantum unit should take

on a system running at 2829 MHz with a clock interval of around 15 ms.

 7. To verify your calculation, dump the value of KiCyclesPerClockQuantum on your

system—it should match.

lkd> dd nt!KiCyclesPerClockQuantum l1

81d31ae8 00e0786e

Controlling the Quantum

You can change the thread quantum for all processes, but you can choose only one of two

settings: short (2 clock ticks, the default for client machines) or long (12 clock ticks, the

default for server systems).

 Chapter 5 Processes, Threads, and Jobs 409

Note By using the job object on a system running with long quantums, you can select other

quantum values for the processes in the job. For more information on the job object, see the “Job

Objects” section later in the chapter.

To change this setting, right-click on your computer name’s icon on the desktop, choose

Properties, click the Advanced System Settings label, select the Advanced tab, click the

Settings button in the Performance section, and finally click the Advanced tab. The dialog

box displayed is shown in Figure 5-16.

FIGURE 5-16 Quantum configuration in the Performance Options dialog box

The Programs setting designates the use of short, variable quantums—the default for

Windows Vista. If you install Terminal Services on Windows Server 2008 systems and con-

figure the server as an application server, this setting is selected so that the users on the

terminal server will have the same quantum settings that would normally be set on a desktop

or client system. You might also select this manually if you were running Windows Server as

your desktop operating system.

The Background Services option designates the use of long, fixed quantums—the default for

Windows Server 2008 systems. The only reason you might select this option on a workstation

system is if you were using the workstation as a server system.

410 Windows Internals, Fifth Edition

One additional difference between the Programs and Background Services settings is the

effect they have on the quantum of the threads in the foreground process. This is explained

in the next section.

Quantum Boosting

When a window is brought into the foreground on a client system, all the threads in the pro-

cess containing the thread that owns the foreground window have their quantums tripled.

Thus, threads in the foreground process run with a quantum of 6 clock ticks, whereas threads

in other processes have the default client quantum of 2 clock ticks. In this way, when you

switch away from a CPU-intensive process, the new foreground process will get proportion-

ally more of the CPU, because when its threads run they will have a longer turn than back-

ground threads (again, assuming the thread priorities are the same in both the foreground

and background processes).

Note that this adjustment of quantums applies only to processes with a priority higher than

Idle on systems configured to Programs in the Performance Options settings described in the

previous section. Thread quantums are not changed for the foreground process on systems

configured to Background Services (the default on Windows Server 2008 systems).

Quantum Settings Registry Value

The user interface to control quantum settings described earlier modifies the registry value

HKLM\SYSTEM\CurrentControlSet\Control\PriorityControl\Win32PrioritySeparation. In addi-

tion to specifying the relative length of thread quantums (short or long), this registry value

also defines whether or not threads in the foreground process should have their quantums

boosted (and if so, the amount of the boost). This value consists of 6 bits divided into the

three 2-bit fields shown in Figure 5-17.

FIGURE 5-17 Fields of the Win32PrioritySeparation registry value

The fields shown in Figure 5-17 can be defined as follows:

Short vs. Long A setting of 1 specifies long, and 2 specifies short. A setting of 0 or

3 indicates that the default will be used (short for Windows Vista, long for Windows

Server 2008 systems).

Variable vs. Fixed A setting of 1 means to vary the quantum for the foreground pro-

cess, and 2 means that quantum values don’t change for foreground processes. A set-

ting of 0 or 3 means that the default (which is variable for Windows Vista and fixed for

Windows Server 2008 systems) will be used.

 Chapter 5 Processes, Threads, and Jobs 411

Foreground Quantum Boost This field (stored in the kernel variable

PsPrioritySeperation) must have a value of 0, 1, or 2. (A setting of 3 is invalid

and treated as 2.) It is used as an index into a three-element byte array named

PspForegroundQuantum to obtain the quantum for the threads in the foreground pro-

cess. The quantum for threads in background processes is taken from the first entry in

this quantum table. Table 5-17 shows the possible settings for PspForegroundQuantum.

TABLE 5-17 Quantum Values

Short Long

Variable 6 12 18 12 24 36

Fixed 18 18 18 36 36 36

Note that when you’re using the Performance Options dialog box described earlier, you can

choose from only two combinations: short quantums with foreground quantums tripled, or

long quantums with no quantum changes for foreground threads. However, you can select

other combinations by modifying the Win32PrioritySeparation registry value directly.

EXPERIMENT: Effects of Changing the Quantum Configuration

Using a local debugger (Kd or WinDbg), you can see how the two quantum configura-

tion settings, Programs and Background Services, affect the PsPrioritySeperation and

PspForegroundQuantum tables, as well as modify the QuantumReset value of threads

on the system. Take the following steps:

 1. Open the System utility in Control Panel (or right-click on your computer name’s

icon on the desktop, and choose Properties). Click the Advanced System Settings

label, select the Advanced tab, click the Settings button in the Performance sec-

tion, and finally click the Advanced tab. Select the Programs option and click

Apply. Keep this window open for the duration of the experiment.

 2. Dump the values of PsPrioritySeperation (this is a deliberate misspelling inside the

Windows kernel, not an error in this book) and PspForegroundQuantum, as shown

here. The values shown are what you should see on a Windows Vista system after

making the change in step 1. Notice how the variable, short quantum table is

being used, and that a priority boost of 2 will apply to foreground applications.

lkd> dd PsPrioritySeperation l1

81d3101c 00000002

lkd> db PspForegroundQuantum l3

81d0946c 06 0c 12 ...

412 Windows Internals, Fifth Edition

 3. Now take a look at the QuantumReset value of any process on the system. As

described earlier, this is the default, full quantum of each thread on the system

when it is replenished. This value is cached into each thread of the process,

but the KPROCESS structure is easier to look at. Notice in this case it is 6, since

WinDbg, like most other applications, gets the quantum set in the first entry of

the PspForegroundQuantum table.

lkd> .process

Implicit process is now 85b32d90

lkd> dt _KPROCESS 85b32d90

nt!_KPROCESS

 +0x000 Header : _DISPATCHER_HEADER

 +0x010 ProfileListHead : _LIST_ENTRY [0x85b32da0 - 0x85b32da0]

 +0x018 DirectoryTableBase : 0xb45b0880

 +0x01c Unused0 : 0

 +0x020 LdtDescriptor : _KGDTENTRY

 +0x028 Int21Descriptor : _KIDTENTRY

 +0x030 IopmOffset : 0x20ac

 +0x032 Iopl : 0 ''

 +0x033 Unused : 0 ''

 +0x034 ActiveProcessors : 1

 +0x038 KernelTime : 0

 +0x03c UserTime : 0

 +0x040 ReadyListHead : _LIST_ENTRY [0x85b32dd0 - 0x85b32dd0]

 +0x048 SwapListEntry : _SINGLE_LIST_ENTRY

 +0x04c VdmTrapcHandler : (null)

 +0x050 ThreadListHead : _LIST_ENTRY [0x861e7e0c - 0x8620637c]

 +0x058 ProcessLock : 0

 +0x05c Affinity : 3

 +0x060 AutoAlignment : 0y0

 +0x060 DisableBoost : 0y0

 +0x060 DisableQuantum : 0y0

 +0x060 ReservedFlags : 0y00000000000000000000000000000 (0)

 +0x060 ProcessFlags : 0

 +0x064 BasePriority : 8 ''

 +0x065 QuantumReset : 6 ''

 4. Now change the Performance option to Background Services in the dialog box

you opened in step 1.

 5. Repeat the commands shown in steps 2 and 3. You should see the values change

in a manner consistent with our discussion in this section:

lkd> dd PsPrioritySeperation L1

81d3101c 00000000

lkd> db PspForegroundQuantum l 3

81d0946c 24 24 24 $$$

lkd> dt _KPROCESS 85b32d90

nt!_KPROCESS

 +0x000 Header : _DISPATCHER_HEADER

 +0x010 ProfileListHead : _LIST_ENTRY [0x85b32da0 - 0x85b32da0]

 +0x018 DirectoryTableBase : 0xb45b0880

 +0x01c Unused0 : 0

 Chapter 5 Processes, Threads, and Jobs 413

 +0x020 LdtDescriptor : _KGDTENTRY

 +0x028 Int21Descriptor : _KIDTENTRY

 +0x030 IopmOffset : 0x20ac

 +0x032 Iopl : 0 ''

 +0x033 Unused : 0 ''

 +0x034 ActiveProcessors : 1

 +0x038 KernelTime : 0

 +0x03c UserTime : 0

 +0x040 ReadyListHead : _LIST_ENTRY [0x85b32dd0 - 0x85b32dd0]

 +0x048 SwapListEntry : _SINGLE_LIST_ENTRY

 +0x04c VdmTrapcHandler : (null)

 +0x050 ThreadListHead : _LIST_ENTRY [0x861e7e0c - 0x860c14f4]

 +0x058 ProcessLock : 0

 +0x05c Affinity : 3

 +0x060 AutoAlignment : 0y0

 +0x060 DisableBoost : 0y0

 +0x060 DisableQuantum : 0y0

 +0x060 ReservedFlags : 0y00000000000000000000000000000 (0)

 +0x060 ProcessFlags : 0

 +0x064 BasePriority : 8 ''

 +0x065 QuantumReset : 36 '$'

Scheduling Scenarios

Windows bases the question of “Who gets the CPU?” on thread priority; but how does this

approach work in practice? The following sections illustrate just how priority-driven preemp-

tive multitasking works on the thread level.

Voluntary Switch

First a thread might voluntarily relinquish use of the processor by entering a wait state on

some object (such as an event, a mutex, a semaphore, an I/O completion port, a process, a

thread, a window message, and so on) by calling one of the Windows wait functions (such

as WaitForSingleObject or WaitForMultipleObjects). Waiting for objects is described in more

detail in Chapter 3.

Figure 5-18 illustrates a thread entering a wait state and Windows selecting a new thread

to run.

In Figure 5-18, the top block (thread) is voluntarily relinquishing the processor so that the

next thread in the ready queue can run (as represented by the halo it has when in the

Running column). Although it might appear from this figure that the relinquishing thread’s

priority is being reduced, it’s not—it’s just being moved to the wait queue of the objects the

thread is waiting for.

414 Windows Internals, Fifth Edition

FIGURE 5-18 Voluntary switching

Preemption

In this scheduling scenario, a lower-priority thread is preempted when a higher-priority

thread becomes ready to run. This situation might occur for a couple of reasons:

A higher-priority thread’s wait completes. (The event that the other thread was waiting

for has occurred.)

A thread priority is increased or decreased.

In either of these cases, Windows must determine whether the currently running thread

should still continue to run or whether it should be preempted to allow a higher-priority

thread to run.

Note Threads running in user mode can preempt threads running in kernel mode—the mode in

which the thread is running doesn’t matter. The thread priority is the determining factor.

When a thread is preempted, it is put at the head of the ready queue for the priority it was

running at. Figure 5-19 illustrates this situation.

In Figure 5-19, a thread with priority 18 emerges from a wait state and repossesses the CPU,

causing the thread that had been running (at priority 16) to be bumped to the head of the

ready queue. Notice that the bumped thread isn’t going to the end of the queue but to the

beginning; when the preempting thread has finished running, the bumped thread can com-

plete its quantum.

 Chapter 5 Processes, Threads, and Jobs 415

FIGURE 5-19 Preemptive thread scheduling

Quantum End

When the running thread exhausts its CPU quantum, Windows must determine whether the

thread’s priority should be decremented and then whether another thread should be sched-

uled on the processor.

If the thread priority is reduced, Windows looks for a more appropriate thread to schedule.

(For example, a more appropriate thread would be a thread in a ready queue with a higher

priority than the new priority for the currently running thread.) If the thread priority isn’t

reduced and there are other threads in the ready queue at the same priority level, Windows

selects the next thread in the ready queue at that same priority level and moves the previ-

ously running thread to the tail of that queue (giving it a new quantum value and changing

its state from running to ready). This case is illustrated in Figure 5-20. If no other thread of

the same priority is ready to run, the thread gets to run for another quantum.

FIGURE 5-20 Quantum end thread scheduling

416 Windows Internals, Fifth Edition

As we’ve seen, instead of simply relying on a clock interval timer–based quantum to schedule

threads, Windows uses an accurate CPU clock cycle count to maintain quantum targets. One

factor we haven’t yet mentioned is that Windows also uses this count to determine whether

quantum end is currently appropriate for the thread—something that may have happened

previously and is important to discuss.

Under the scheduling model prior to Windows Vista, which relied only on the clock interval

timer, the following situation could occur:

Threads A and B become ready to run during the middle of an interval (scheduling

code runs not just at each clock interval, so this is often the case).

Thread A starts running but is interrupted for a while. The time spent handling the

interrupt is charged to the thread.

Interrupt processing finishes, thread A starts running again, but it quickly hits the next

clock interval. The scheduler can only assume that thread A had been running all this

time and now switches to thread B.

Thread B starts running and has a chance to run for a full clock interval (barring pre-

emption or interrupt handling).

In this scenario, thread A was unfairly penalized in two different ways. First of all, the time

that it had to spend handling a device interrupt was accounted to its own CPU time, even

though the thread had probably nothing to do with the interrupt. (Recall that interrupts

are handled in the context of whichever thread had been running at the time.) It was also

unfairly penalized for the time the system was idling inside that clock interval before it was

scheduled.

Figure 5-21 represents this scenario.

Threads A and B
become ready to run

Interval 2Interval 1

Thread A

Idle Thread B

Interrupt

FIGURE 5-21 Unfair time slicing in previous versions of Windows

Because Windows keeps an accurate count of the exact number of CPU clock cycles spent

doing work that the thread was scheduled to do (which means excluding interrupts), and

because it keeps a quantum target of clock cycles that should have been spent by the thread

at the end of its quantum, both of the unfair decisions that would have been made against

thread A will not happen in Windows.

 Chapter 5 Processes, Threads, and Jobs 417

Instead, the following situation will occur:

Threads A and B become ready to run during the middle of an interval.

Thread A starts running but is interrupted for a while. The CPU clock cycles spent han-

dling the interrupt are not charged to the thread.

Interrupt processing finishes, thread A starts running again, but it quickly hits the

next clock interval. The scheduler looks at the number of CPU clock cycles that have

been charged to the thread and compares them to the expected CPU clock cycles that

should have been charged at quantum end.

Because the former number is much smaller than it should be, the scheduler assumes

that thread A started running in the middle of a clock interval and may have addition-

ally been interrupted.

Thread A gets its quantum increased by another clock interval, and the quantum target

is recalculated. Thread A now has its chance to run for a full clock interval.

At the next clock interval, thread A has finished its quantum, and thread B now gets a

chance to run.

Figure 5-22 represents this scenario.

Threads A and B
become ready to run

Interval 2Interval 1 Interval 3

Interrupt

Idle Thread A Thread B

FIGURE 5-22 Fair time slicing in current versions of Windows

Termination

When a thread finishes running (either because it returned from its main routine, called

ExitThread, or was killed with TerminateThread), it moves from the running state to the termi-

nated state. If there are no handles open on the thread object, the thread is removed from

the process thread list and the associated data structures are deallocated and released.

418 Windows Internals, Fifth Edition

Context Switching

A thread’s context and the procedure for context switching vary depending on the proces-

sor’s architecture. A typical context switch requires saving and reloading the following data:

Instruction pointer

Kernel stack pointer

A pointer to the address space in which the thread runs (the process’s page table

directory)

The kernel saves this information from the old thread by pushing it onto the current (old

thread’s) kernel-mode stack, updating the stack pointer, and saving the stack pointer in the

old thread’s KTHREAD block. The kernel stack pointer is then set to the new thread’s kernel

stack, and the new thread’s context is loaded. If the new thread is in a different process,

it loads the address of its page table directory into a special processor register so that its

address space is available. (See the description of address translation in Chapter 9.) If a kernel

APC that needs to be delivered is pending, an interrupt at IRQL 1 is requested. Otherwise,

control passes to the new thread’s restored instruction pointer and the new thread resumes

execution.

Idle Thread

When no runnable thread exists on a CPU, Windows dispatches the per-CPU idle thread. Each

CPU is allotted one idle thread because on a multiprocessor system one CPU can be execut-

ing a thread while other CPUs might have no threads to execute.

Various Windows process viewer utilities report the idle process using different names.

Task Manager and Process Explorer call it “System Idle Process,” while Tlist calls it “System

Process.” If you look at the EPROCESS structure’s ImageFileName member, you’ll see the

internal name for the process is “Idle.” Windows reports the priority of the idle thread as 0

(15 on x64 systems). In reality, however, the idle threads don’t have a priority level because

they run only when there are no real threads to run—they are not scheduled and never part

of any ready queues. (Remember, only one thread per Windows system is actually running at

priority 0—the zero page thread, explained in Chapter 9.)

Apart from priority, there are many other fields in the idle process or its threads that may be

reported as 0. This occurs because the idle process is not an actual full-blown object man-

ager process object, and neither are its idle threads. Instead, the initial idle thread and idle

process objects are statically allocated and used to bootstrap the system before the process

manager initializes. Subsequent idle thread structures are allocated dynamically as additional

processors are brought online. Once process management initializes, it uses the special vari-

able PsIdleProcess to refer to the idle process.

 Chapter 5 Processes, Threads, and Jobs 419

Apart from some critical fields provided so that these threads and their process can have a

PID and name, everything else is ignored, which means that query APIs may simply return

zeroed data.

The idle loop runs at DPC/dispatch level, polling for work to do, such as delivering deferred

procedure calls (DPCs) or looking for threads to dispatch to. Although some details of the

flow vary between architectures, the basic flow of control of the idle thread is as follows:

 1. Enables and disables interrupts (allowing any pending interrupts to be delivered).

 2. Checks whether any DPCs (described in Chapter 3) are pending on the processor.

If DPCs are pending, clears the pending software interrupt and delivers them. (This

will also perform timer expiration, as well as deferred ready processing. The latter is

explained in the upcoming multiprocessor scheduling section.)

 3. Checks whether a thread has been selected to run next on the processor, and if so, dis-

patches that thread.

 4. Calls the registered power management processor idle routine (in case any power

management functions need to be performed), which is either in the processor power

driver (such as intelppm.sys) or in the HAL if such a driver is unavailable.

 5. On debug systems, checks if there is a kernel debugger trying to break into the system

and gives it access.

 6. If requested, checks for threads waiting to run on other processors and schedules them

locally. (This operation is also explained in the upcoming multiprocessor scheduling

section.)

Priority Boosts

In six cases, the Windows scheduler can boost (increase) the current priority value of threads:

On completion of I/O operations

After waiting for executive events or semaphores

When a thread has been waiting on an executive resource for too long

After threads in the foreground process complete a wait operation

When GUI threads wake up because of windowing activity

When a thread that’s ready to run hasn’t been running for some time (CPU starvation)

The intent of these adjustments is to improve overall system throughput and responsiveness

as well as resolve potentially unfair scheduling scenarios. Like any scheduling algorithms,

however, these adjustments aren’t perfect, and they might not benefit all applications.

420 Windows Internals, Fifth Edition

Note Windows never boosts the priority of threads in the real-time range (16 through 31).

Therefore, scheduling is always predictable with respect to other threads in the real-time range.

Windows assumes that if you’re using the real-time thread priorities, you know what you’re

doing.

Windows Vista adds one more scenario in which a priority boost can occur, multimedia play-

back. Unlike the other priority boosts, which are applied directly by kernel code, multimedia

playback boosts are managed by a user-mode service called the MultiMedia Class Scheduler

Service (MMCSS). (Although the boosts are still done in kernel mode, the request to boost

the threads is managed by this user-mode service.) We’ll first cover the typical kernel-

 managed priority boosts and then talk about MMCSS and the kind of boosting it performs.

Priority Boosting after I/O Completion

Windows gives temporary priority boosts upon completion of certain I/O operations so

that threads that were waiting for an I/O will have more of a chance to run right away and

process whatever was being waited for. Recall that 1 quantum unit is deducted from the

thread’s remaining quantum when it wakes up so that I/O bound threads aren’t unfairly

favored. Although you’ll find recommended boost values in the Windows Driver Kit (WDK)

header files (by searching for “#define IO” in Wdm.h or Ntddk.h), the actual value for the

boost is up to the device driver. (These values are listed in Table 5-18.) It is the device driver

that specifies the boost when it completes an I/O request on its call to the kernel function

IoCompleteRequest. In Table 5-18, notice that I/O requests to devices that warrant better

responsiveness have higher boost values.

TABLE 5-18 Recommended Boost Values

Device Boost

Disk, CD-ROM, parallel, video 1

Network, mailslot, named pipe, serial 2

Keyboard, mouse 6

Sound 8

The boost is always applied to a thread’s current priority, not its base priority. As illustrated

in Figure 5-23, after the boost is applied, the thread gets to run for one quantum at the

elevated priority level. After the thread has completed its quantum, it decays one priority

level and then runs another quantum. This cycle continues until the thread’s priority level

has decayed back to its base priority. A thread with a higher priority can still preempt the

boosted thread, but the interrupted thread gets to finish its time slice at the boosted priority

level before it decays to the next lower priority.

 Chapter 5 Processes, Threads, and Jobs 421

Round-robin at
base priority

Boost upon
wait complete

Quantum

Priority decay at
quantum end

Preempt
(before quantum end)

RunRunWaitRun

Priority

Time

FIGURE 5-23 Priority boosting and decay

As noted earlier, these boosts apply only to threads in the dynamic priority range (0 through

15). No matter how large the boost is, the thread will never be boosted beyond level 15 into

the real-time priority range. In other words, a priority 14 thread that receives a boost of 5 will

go up to priority 15. A priority 15 thread that receives a boost will remain at priority 15.

Boosts After Waiting for Events and Semaphores

When a thread that was waiting for an executive event or a semaphore object has its wait

satisfied (because of a call to the function SetEvent, PulseEvent, or ReleaseSemaphore), it

receives a boost of 1. (See the value for EVENT_ INCREMENT and SEMAPHORE_INCREMENT

in the WDK header files.) Threads that wait for events and semaphores warrant a boost for

the same reason that threads that wait for I/O operations do—threads that block on events

are requesting CPU cycles less frequently than CPU-bound threads. This adjustment helps

balance the scales.

This boost operates the same as the boost that occurs after I/O completion, as described in

the previous section:

The boost is always applied to the base priority (not the current priority).

The priority will never be boosted above 15.

The thread gets to run at the elevated priority for its remaining quantum (as described

earlier, quantums are reduced by 1 when threads exit a wait) before decaying one pri-

ority level at a time until it reaches its original base priority.

A special boost is applied to threads that are awoken as a result of setting an event with

the special functions NtSetEventBoostPriority (used in Ntdll.dll for critical sections) and

KeSetEventBoostPriority (used for executive resources) or if a signaling gate is used (such as

with pushlocks). If a thread waiting for an event is woken up as a result of the special event

422 Windows Internals, Fifth Edition

boost function and its priority is 13 or below, it will have its priority boosted to be the setting

thread’s priority plus one. If its quantum is less than 4 quantum units, it is set to 4 quantum

units. This boost is removed at quantum end.

Boosts During Waiting on Executive Resources

When a thread attempts to acquire an executive resource (ERESOURCE; see Chapter 3 for

more information on kernel synchronization objects) that is already owned exclusively by

another thread, it must enter a wait state until the other thread has released the resource. To

avoid deadlocks, the executive performs this wait in intervals of five seconds instead of doing

an infinite wait on the resource.

At the end of these five seconds, if the resource is still owned, the executive will attempt

to prevent CPU starvation by acquiring the dispatcher lock, boosting the owning thread or

threads, and performing another wait. Because the dispatcher lock is held and the thread’s

WaitNext flag is set to TRUE, this ensures a consistent state during the boosting process until

the next wait is done.

This boost operates in the following manner:

The boost is always applied to the base priority (not the current priority) of the owner

thread.

The boost raises priority to 14.

The boost is only applied if the owner thread has a lower priority than the waiting

thread, and only if the owner thread’s priority isn’t already 14.

The quantum of the thread is reset so that the thread gets to run at the elevated prior-

ity for a full quantum, instead of only the quantum it had left. Just like other boosts, at

each quantum end, the priority boost will slowly decrease by one level.

Because executive resources can be either shared or exclusive, the kernel will first boost the

exclusive owner and then check for shared owners and boost all of them. When the waiting

thread enters the wait state again, the hope is that the scheduler will schedule one of the

owner threads, which will have enough time to complete its work and release the resource.

It’s important to note that this boosting mechanism is used only if the resource doesn’t have

the Disable Boost flag set, which developers can choose to set if the priority inversion mech-

anism described here works well with their usage of the resource.

Additionally, this mechanism isn’t perfect. For example, if the resource has multiple shared

owners, the executive will boost all those threads to priority 14, resulting in a sudden surge

of high-priority threads on the system, all with full quantums. Although the exclusive thread

will run first (since it was the first to be boosted and therefore first on the ready list), the

other shared owners will run next, since the waiting thread’s priority was not boosted. Only

until after all the shared owners have gotten a chance to run and their priority decreased

 Chapter 5 Processes, Threads, and Jobs 423

below the waiting thread will the waiting thread finally get its chance to acquire the resource.

Because shared owners can promote or convert their ownership from shared to exclusive

as soon as the exclusive owner releases the resource, it’s possible for this mechanism not to

work as intended.

Priority Boosts for Foreground Threads After Waits

Whenever a thread in the foreground process completes a wait operation on a kernel object,

the kernel function KiUnwaitThread boosts its current (not base) priority by the current

value of PsPrioritySeperation. (The windowing system is responsible for determining which

process is considered to be in the foreground.) As described in the section on quantum con-

trols, PsPrioritySeperation reflects the quantum-table index used to select quantums for the

threads of foreground applications. However, in this case, it is being used as a priority boost

value.

The reason for this boost is to improve the responsiveness of interactive applications—by

giving the foreground application a small boost when it completes a wait, it has a better

chance of running right away, especially when other processes at the same base priority

might be running in the background.

Unlike other types of boosting, this boost applies to all Windows systems, and you

can’t disable this boost, even if you’ve disabled priority boosting using the Windows

SetThreadPriorityBoost function.

EXPERIMENT: Watching Foreground Priority Boosts and Decays

Using the CPU Stress tool, you can watch priority boosts in action. Take the following

steps:

 1. Open the System utility in Control Panel (or right-click on your computer name’s

icon on the desktop, and choose Properties). Click the Advanced System Settings

label, select the Advanced tab, click the Settings button in the Performance sec-

tion, and finally click the Advanced tab. Select the Programs option. This causes

PsPrioritySeperation to get a value of 2.

 2. Run Cpustres.exe, and change the activity of thread 1 from Low to Busy.

 3. Start the Performance tool by selecting Programs from the Start menu and then

selecting Reliability And Performance Monitor from the Administrative Tools

menu. Click on the Performance Monitor entry under Monitoring Tools.

 4. Click the Add Counter toolbar button (or press Ctrl+I) to bring up the Add

Counters dialog box.

 5. Select the Thread object, and then select the % Processor Time counter.

424 Windows Internals, Fifth Edition

 6. In the Instances box, select <All instances> and click Search. Scroll down until you

see the CPUSTRES process. Select the second thread (thread 1). (The first thread is

the GUI thread.) You should see something like this:

 7. Click the Add button, and then click OK.

 8. Select Properties from the Action menu. Change the Vertical Scale Maximum to

16 and set the interval to Sample Every N Seconds in the Graph Elements area.

 Chapter 5 Processes, Threads, and Jobs 425

 9. Now bring the CPUSTRES process to the foreground. You should see the priority

of the CPUSTRES thread being boosted by 2 and then decaying back to the base

priority as follows:

 10. The reason CPUSTRES receives a boost of 2 periodically is because the thread

you’re monitoring is sleeping about 25 percent of the time and then waking

up (this is the Busy Activity level). The boost is applied when the thread wakes

up. If you set the Activity level to Maximum, you won’t see any boosts because

Maximum in CPUSTRES puts the thread into an infinite loop. Therefore, the thread

doesn’t invoke any wait functions and as a result doesn’t receive any boosts.

 11. When you’ve finished, exit Reliability and Performance Monitor and CPU Stress.

Priority Boosts After GUI Threads Wake Up

Threads that own windows receive an additional boost of 2 when they wake up because

of windowing activity such as the arrival of window messages. The windowing system

(Win32k.sys) applies this boost when it calls KeSetEvent to set an event used to wake up a

GUI thread. The reason for this boost is similar to the previous one—to favor interactive

applications.

426 Windows Internals, Fifth Edition

EXPERIMENT: Watching Priority Boosts on GUI Threads

You can also see the windowing system apply its boost of 2 for GUI threads that wake

up to process window messages by monitoring the current priority of a GUI application

and moving the mouse across the window. Just follow these steps:

 1. Open the System utility in Control Panel (or right-click on your computer name’s

icon on the desktop, and choose Properties). Click the Advanced System Settings

label, select the Advanced tab, click the Settings button in the Performance

section, and finally click the Advanced tab. Be sure that the Programs option is

selected. This causes PsPrioritySeperation to get a value of 2.

 2. Run Notepad from the Start menu by selecting Programs/Accessories/Notepad.

 3. Start the Performance tool by selecting Programs from the Start menu and then

selecting Reliability And Performance Monitor from the Administrative Tools

menu. Click on the Performance Monitor entry under Monitoring Tools.

 4. Click the Add Counter toolbar button (or press Ctrl+I) to bring up the Add

Counters dialog box.

 5. Select the Thread object, and then select the % Processor Time counter.

 6. In the Instances box, select <All instances>, and then click Search. Scroll down

until you see Notepad thread 0. Click it, click the Add button, and then click OK.

 7. As in the previous experiment, select Properties from the Action menu. Change

the Vertical Scale Maximum to 16, set the interval to Sample Every N Seconds in

the Graph Elements area, and click OK.

 8. You should see the priority of thread 0 in Notepad at 8, 9, or 10. Because

Notepad entered a wait state shortly after it received the boost of 2 that threads

in the foreground process receive, it might not yet have decayed from 10 to 9

and then to 8.

 9. With Reliability and Performance Monitor in the foreground, move the mouse

across the Notepad window. (Make both windows visible on the desktop.) You’ll

see that the priority sometimes remains at 10 and sometimes at 9, for the reasons

just explained. (The reason you won’t likely catch Notepad at 8 is that it runs so

little after receiving the GUI thread boost of 2 that it never experiences more than

one priority level of decay before waking up again because of additional window-

ing activity and receiving the boost of 2 again.)

 10. Now bring Notepad to the foreground. You should see the priority rise to 12

and remain there (or drop to 11, because it might experience the normal priority

decay that occurs for boosted threads on the quantum end) because the thread is

receiving two boosts: the boost of 2 applied to GUI threads when they wake up

 Chapter 5 Processes, Threads, and Jobs 427

to process windowing input and an additional boost of 2 because Notepad is in

the foreground.

 11. If you then move the mouse over Notepad (while it’s still in the foreground),

you might see the priority drop to 11 (or maybe even 10) as it experiences the

priority decay that normally occurs on boosted threads as they complete their

turn. However, the boost of 2 that is applied because it’s the foreground process

remains as long as Notepad remains in the foreground.

 12. When you’ve finished, exit Reliability and Performance Monitor and Notepad.

Priority Boosts for CPU Starvation

Imagine the following situation: you have a priority 7 thread that’s running, preventing a pri-

ority 4 thread from ever receiving CPU time; however, a priority 11 thread is waiting for some

resource that the priority 4 thread has locked. But because the priority 7 thread in the middle

is eating up all the CPU time, the priority 4 thread will never run long enough to finish what-

ever it’s doing and release the resource blocking the priority 11 thread. What does Windows

do to address this situation?

We have previously seen how the executive code responsible for executive resources man-

ages this scenario by boosting the owner threads so that they can have a chance to run and

release the resource. However, executive resources are only one of the many synchronization

constructs available to developers, and the boosting technique will not apply to any other

primitive. Therefore, Windows also includes a generic CPU starvation relief mechanism as

part of a thread called the balance set manager (a system thread that exists primarily to per-

form memory management functions and is described in more detail in Chapter 9).

Once per second, this thread scans the ready queues for any threads that have been in the

ready state (that is, haven’t run) for approximately 4 seconds. If it finds such a thread, the bal-

ance set manager boosts the thread’s priority to 15 and sets the quantum target to an equiv-

alent CPU clock cycle count of 4 quantum units. Once the quantum is expired, the thread’s

priority decays immediately to its original base priority. If the thread wasn’t finished and a

higher priority thread is ready to run, the decayed thread will return to the ready queue,

where it again becomes eligible for another boost if it remains there for another 4 seconds.

The balance set manager doesn’t actually scan all ready threads every time it runs. To mini-

mize the CPU time it uses, it scans only 16 ready threads; if there are more threads at that

priority level, it remembers where it left off and picks up again on the next pass. Also, it will

boost only 10 threads per pass—if it finds 10 threads meriting this particular boost (which

would indicate an unusually busy system), it stops the scan at that point and picks up again

on the next pass.

428 Windows Internals, Fifth Edition

Note We mentioned earlier that scheduling decisions in Windows are not affected by the num-

ber of threads, and that they are made in constant time, or O(1). Because the balance set man-

ager does need to scan ready queues manually, this operation does depend on the number of

threads on the system, and more threads will require more scanning time. However, the balance

set manager is not considered part of the scheduler or its algorithms and is simply an extended

mechanism to increase reliability. Additionally, because of the cap on threads and queues to

scan, the performance impact is minimized and predictable in a worst-case scenario.

Will this algorithm always solve the priority inversion issue? No—it’s not perfect by any

means. But over time, CPU-starved threads should get enough CPU time to finish whatever

processing they were doing and reenter a wait state.

EXPERIMENT: Watching Priority Boosts for CPU Starvation

Using the CPU Stress tool, you can watch priority boosts in action. In this experiment,

we’ll see CPU usage change when a thread’s priority is boosted. Take the following steps:

 1. Run Cpustres.exe. Change the activity level of the active thread (by default,

Thread 1) from Low to Maximum. Change the thread priority from Normal to

Below Normal. The screen should look like this:

 2. Start the Performance tool by selecting Programs from the Start menu and then

selecting Reliability And Performance Monitor from the Administrative Tools

menu. Click on the Performance Monitor entry under Monitoring Tools.

 3. Click the Add Counter toolbar button (or press Ctrl+I) to bring up the Add

Counters dialog box.

 Chapter 5 Processes, Threads, and Jobs 429

 4. Select the Thread object, and then select the % Processor Time counter.

 5. In the Instances box, select <All instances>, and then click Search. Scroll down

until you see the CPUSTRES process. Select the second thread (thread 1). (The first

thread is the GUI thread.) You should see something like this:

 6. Click the Add button, and then click OK.

 7. Raise the priority of Performance Monitor to real time by running Task Manager,

clicking the Processes tab, and selecting the Mmc.exe process. Right-click the pro-

cess, select Set Priority, and then select Realtime. (If you receive a Task Manager

Warning message box warning you of system instability, click the Yes button.) If you

have a multiprocessor system, you will also need to change the affinity of the pro-

cess: right-click and select Set Affinity. Then clear all other CPUs except for CPU 0.

 8. Run another copy of CPU Stress. In this copy, change the activity level of Thread 1

from Low to Maximum.

 9. Now switch back to Performance Monitor. You should see CPU activity every 6 or

so seconds because the thread is boosted to priority 15. You can force updates to

occur more frequently than every second by pausing the display with Ctrl+F, and

then pressing Ctrl+U, which forces a manual update of the counters. Keep Ctrl+U

pressed for continual refreshes.

When you’ve finished, exit Performance Monitor and the two copies of CPU Stress.

430 Windows Internals, Fifth Edition

EXPERIMENT: “Listening” to Priority Boosting

To “hear” the effect of priority boosting for CPU starvation, perform the following steps

on a system with a sound card:

 1. Because of MMCSS’s priority boosts (which we will describe in the next subsec-

tion), you will need to stop the MultiMedia Class Scheduler Service by open-

ing the Services management interface (Start, Programs, Administrative Tools,

Services).

 2. Run Windows Media Player (or some other audio playback program), and begin

playing some audio content.

 3. Run Cpustres, and set the activity level of Thread 1 to Maximum.

 4. Raise the priority of Thread 1 from Normal to Time Critical.

 5. You should hear the music playback stop as the compute-bound thread begins

consuming all available CPU time.

 6. Every so often, you should hear bits of sound as the starved thread in the audio

playback process gets boosted to 15 and runs enough to send more data to the

sound card.

 7. Stop Cpustres and Windows Media Player, and start the MMCSS service again.

Priority Boosts for MultiMedia Applications and Games (MMCSS)

As we’ve just seen in the last experiment, although Windows’s CPU starvation priority boosts

may be enough to get a thread out of an abnormally long wait state or potential deadlock,

they simply cannot deal with the resource requirements imposed by a CPU-intensive applica-

tion such as Windows Media Player or a 3D computer game.

Skipping and other audio glitches have been a common source of irritation among Windows

users in the past, and the user-mode audio stack in Windows Vista would have only made

the situation worse since it offers even more chances for preemption. To address this,

Windows Vista incorporates a new service (called MMCSS, described earlier in this chapter)

whose purpose is to ensure “glitch-free” multimedia playback for applications that register

with it.

MMCSS works by defining several tasks, including:

Audio

Capture

Distribution

Games

 Chapter 5 Processes, Threads, and Jobs 431

Playback

Pro Audio

Window Manager

Note You can find the settings for MMCSS, including a lists of tasks (which can be modi-

fied by OEMs to include other specific tasks as appropriate) in the registry keys under HKLM\

SOFTWARE\Microsoft\Windows NT\CurrentVersion\Multimedia\SystemProfile. Additionally, the

SystemResponsiveness value allows you to fine-tune how much CPU usage MMCSS guarantees to

low-priority threads.

In turn, each of these tasks includes information about the various properties that differenti-

ate them. The most important one for scheduling is called the Scheduling Category, which

is the primary factor determining the priority of threads registered with MMCSS. Table 5-19

shows the various scheduling categories.

TABLE 5-19 Scheduling Categories

Category Priority Description

High 23-26 Pro Audio threads running at a higher priority than any other thread on

the system except for critical system threads.

Medium 16-22 Threads part of a foreground application such as Windows Media Player.

Low 8-15 All other threads not part of the previous categories.

Exhausted 1-7 Threads that have exhausted their share of the CPU and will only continue

running if no other higher priority threads are ready to run.

The main mechanism behind MMCSS boosts the priority of threads inside a registered pro-

cess to the priority level matching their scheduling category and relative priority within this

category for a guaranteed period of time. It then lowers those threads to the Exhausted cat-

egory so that other, nonmultimedia threads on the system can also get a chance to execute.

By default, multimedia threads will get 80 percent of the CPU time available, while other

threads will receive 20 percent (based on a sample of 10 ms; in other words, 8 ms and 2 ms).

MMCSS itself runs at priority 27, since it needs to preempt any Pro Audio threads in order to

lower their priority to the Exhausted category.

It is important to emphasize that the kernel still does the actual boosting of the values inside

the KTHREAD (MMCSS simply makes the same kind of system call any other application

would do), and the scheduler is still in control of these threads. It is simply their high prior-

ity that makes them run almost uninterrupted on a machine, since they are in the real-time

range and well above threads that most user applications would be running in.

As was discussed earlier, changing the relative thread priorities within a process does not

usually make sense, and no tool allows this because only developers understand the impor-

tance of the various threads in their programs.

432 Windows Internals, Fifth Edition

On the other hand, because applications must manually register with MMCSS and provide

it with information about what kind of thread this is, MMCSS does have the necessary data

to change these relative thread priorities (and developers are well aware that this will be

happening).

EXPERIMENT: “Listening” to MMCSS Priority Boosting

We are now going to perform the same experiment as the prior one but without dis-

abling the MMCSS service. In addition, we’ll take a look at the Performance tool to

check the priority of the Windows Media Player threads.

 1. Run Windows Media Player (other playback programs may not yet take advan-

tage of the API calls required to register with MMCSS) and begin playing some

audio content.

 2. If you have a multiprocessor machine, be sure to set the affinity of the

Wmplayer.exe process so that it only runs on one CPU (since we’ll be using only

one CPUSTRES worker thread).

 3. Start the Performance tool by selecting Programs from the Start menu and then

selecting Reliability And Performance Monitor from the Administrative Tools

menu. Click on the Performance Monitor entry under Monitoring Tools.

 4. Click the Add Counter toolbar button (or press Ctrl+I) to bring up the Add

Counters dialog box.

 5. Select the Thread object, and then select the % Processor Time counter.

 6. In the Instances box, select <All instances>, and then click Search. Scroll down

until you see Wmplayer, and then select all its threads. Click the Add button, and

then click OK.

 7. As in the previous experiment, select Properties from the Action menu. Change

the Vertical Scale Maximum to 31, set the interval to Sample Every N Seconds in

the Graph Elements area, and click OK.

You should see one or more priority 21 threads inside Wmplayer, which will be

constantly running unless there is a higher-priority thread requiring the CPU after

they are dropped to the Exhausted category.

 8. Run Cpustres, and set the activity level of Thread 1 to Maximum.

 9. Raise the priority of Thread 1 from Normal to Time Critical.

 10. You should notice the system slowing down considerably, but the music playback

will continue. Every so often, you’ll be able to get back some responsiveness from

the rest of the system. Use this time to stop Cpustres.

 Chapter 5 Processes, Threads, and Jobs 433

 11. If the Performance tool was unable to capture data during the time Cpustres ran,

run it again, but use Highest instead of Time Critical. This change will slow down

the system less, but it still requires boosting from MMCSS, and, because once the

multimedia thread is put in the Exhausted category, there will always be a higher

priority thread requesting the CPU (CPUSTRES), you should notice Wmplayer’s

priority 21 thread drop every so often, as shown here.

MMCSS’s functionality does not stop at simple priority boosting, however. Because of the

nature of network drivers on Windows and the NDIS stack, DPCs are quite common mecha-

nisms for delaying work after an interrupt has been received from the network card. Because

DPCs run at an IRQL level higher than user-mode code (see Chapter 3 for more information

on DPCs and IRQLs), long-running network card driver code could still interrupt media play-

back during network transfers, or when playing a game for example.

Therefore, MMCSS also sends a special command to the network stack, telling it to throttle

network packets during the duration of the media playback. This throttling is designed to

maximize playback performance, at the cost of some small loss in network throughput (which

would not be noticeable for network operations usually performed during playback, such as

playing an online game). The exact mechanisms behind it do not belong to any area of the

scheduler, so we will leave them out of this description.

434 Windows Internals, Fifth Edition

Note The original implementation of the network throttling code had some design issues caus-

ing significant network throughput loss on machines with 1000 Mbit network adapters, especially

if multiple adapters were present on the system (a common feature of midrange motherboards).

This issue was analyzed by the MMCSS and networking teams at Microsoft and later fixed.

Multiprocessor Systems

On a uniprocessor system, scheduling is relatively simple: the highest-priority thread that

wants to run is always running. On a multiprocessor system, it is more complex, as Windows

attempts to schedule threads on the most optimal processor for the thread, taking into

account the thread’s preferred and previous processors, as well as the configuration of the

multiprocessor system. Therefore, while Windows attempts to schedule the highest-priority

runnable threads on all available CPUs, it only guarantees to be running the (single) highest-

priority thread somewhere.

Before we describe the specific algorithms used to choose which threads run where and

when, let’s examine the additional information Windows maintains to track thread and pro-

cessor state on multiprocessor systems and the two different types of multiprocessor systems

supported by Windows (hyperthreaded, multicore, and NUMA).

Multiprocessor Considerations in the Dispatcher Database

In addition to the ready queues and the ready summary, Windows maintains two bit-

masks that track the state of the processors on the system. (How these bitmasks are used

is explained in the upcoming section “Multiprocessor Thread-Scheduling Algorithms”.)

Following are the two bitmasks that Windows maintains:

The active processor mask (KeActiveProcessors), which has a bit set for each usable pro-

cessor on the system (This might be less than the number of actual processors if the

licensing limits of the version of Windows running supports less than the number of

available physical processors.)

The idle summary (KiIdleSummary), in which each set bit represents an idle processor

Whereas on uniprocessor systems, the dispatcher database is locked by raising IRQL to both

DPC/dispatch level and Synch level, on multiprocessor systems more is required, because

each processor could, at the same time, raise IRQL and attempt to operate on the dispatcher

database. (This is true for any systemwide structure accessed from high IRQL.) (See Chapter 3

for a general description of kernel synchronization and spinlocks.)

Because on a multiprocessor system one processor might need to modify another proces-

sor’s per-CPU scheduling data structures (such as inserting a thread that would like to run

on a certain processor), these structures are synchronized by using a new per-PRCB queued

 Chapter 5 Processes, Threads, and Jobs 435

spinlock, which is held at IRQL SYNCH_LEVEL. (See Table 5-20 for the various values of

SYNCH_LEVEL.) Thus, thread selection can occur while locking only an individual processor’s

PRCB, in contrast to doing this on Windows XP, where the systemwide dispatcher spinlock

had to be held.

TABLE 5-20 IRQL SYNCH_LEVEL on Multiprocessor Systems

CPU Type IRQL

Systems running on x86 27

Systems running on x64 12

Systems running on IA64 12

There is also a per-CPU list of threads in the deferred ready state. These represent threads

that are ready to run but have not yet been readied for execution; the actual ready opera-

tion has been deferred to a more appropriate time. Because each processor manipulates only

its own per-processor deferred ready list, this list is not synchronized by the PRCB spinlock.

The deferred ready thread list is processed before exiting the thread dispatcher, before per-

forming a context switch, and after processing a DPC. Threads on the deferred ready list are

either dispatched immediately or are moved to the per-processor ready queue for their pri-

ority level.

Note that the systemwide dispatcher spinlock still exists and is used, but it is held only for

the time needed to modify systemwide state that might affect which thread runs next. For

example, changes to synchronization objects (mutexes, events, and semaphores) and their

wait queues require holding the dispatcher lock to prevent more than one processor from

changing the state of such objects (and the consequential action of possibly readying threads

for execution). Other examples include changing the priority of a thread, timer expiration,

and swapping of thread kernel stacks.

Thread context switching is also synchronized by using a finer-grained per-thread spinlock,

whereas in Windows XP context switching was synchronized by holding a systemwide con-

text swap spinlock.

Hyperthreaded and Multicore Systems

As described in the “Symmetric Multiprocessing” section in Chapter 2, Windows supports

hyperthreaded and multicore multiprocessor systems in two primary ways:

 1. Logical processors as well as per-package cores do not count against physical processor

licensing limits. For example, Windows Vista Home Basic, which has a licensed proces-

sor limit of 1, will use all four cores on a single processor system.

 2. When choosing a processor for a thread, if there is a physical processor with all logi-

cal processors idle, a logical processor from that physical processor will be selected, as

opposed to choosing an idle logical processor on a physical processor that has another

logical processor running a thread.

436 Windows Internals, Fifth Edition

EXPERIMENT: Viewing Hyperthreading Information

You can examine the information Windows maintains for hyperthreaded processors

using the !smt command in the kernel debugger. The following output is from a dual-

processor hyperthreaded Xeon system (four logical processors):

lkd> !smt

SMT Summary:

 KeActiveProcessors: ****---------------------------- (0000000f)

 KiIdleSummary: -***---------------------------- (0000000e)

No PRCB Set Master SMT Set #LP IAID

 0 ffdff120 Master *-*----------------------------- (00000005) 2 00

 1 f771f120 Master -*-*---------------------------- (0000000a) 2 06

 2 f7727120 ffdff120 *-*----------------------------- (00000005) 2 01

 3 f772f120 f771f120 -*-*---------------------------- (0000000a) 2 07

 Number of licensed physical processors: 2

Logical processors 0 and 1 are on separate physical processors (as indicated by the

term “Master”).

NUMA Systems

Another type of multiprocessor system supported by Windows is one with a nonuniform

memory access (NUMA) architecture. In a NUMA system, processors are grouped together in

smaller units called nodes. Each node has its own processors and memory and is connected

to the larger system through a cache-coherent interconnect bus. These systems are called

“nonuniform” because each node has its own local high-speed memory. While any processor

in any node can access all of memory, node-local memory is much faster to access.

The kernel maintains information about each node in a NUMA system in a data structure

called KNODE. The kernel variable KeNodeBlock is an array of pointers to the KNODE struc-

tures for each node. The format of the KNODE structure can be shown using the dt com-

mand in the kernel debugger, as shown here:

lkd> dt nt!_knode

nt!_KNODE

 +0x000 PagedPoolSListHead : _SLIST_HEADER

 +0x008 NonPagedPoolSListHead : [3] _SLIST_HEADER

 +0x020 PfnDereferenceSListHead : _SLIST_HEADER

 +0x028 ProcessorMask : Uint4B

 +0x02c Color : UChar

 +0x02d Seed : UChar

 +0x02e NodeNumber : UChar

 +0x02f Flags : _flags

 +0x030 MmShiftedColor : Uint4B

 +0x034 FreeCount : [2] Uint4B

 +0x03c PfnDeferredList : Ptr32 _SINGLE_LIST_ENTRY

 +0x040 CachedKernelStacks : _CACHED_KSTACK_LIST

 Chapter 5 Processes, Threads, and Jobs 437

EXPERIMENT: Viewing NUMA Information

You can examine the information Windows maintains for each node in a NUMA system

using the !numa command in the kernel debugger. The following partial output is from

a 32-processor NUMA system by NEC with 4 processors per node:

21: kd> !numa

NUMA Summary:

Number of NUMA nodes : 8

Number of Processors : 32

MmAvailablePages : 0x00F70D2C

KeActiveProcessors : ********************************--------------------------------

 (00000000ffffffff)

NODE 0 (E00000008428AE00):

 ProcessorMask : ****--

 Color : 0x00000000

 MmShiftedColor : 0x00000000

 Seed : 0x00000000

 Zeroed Page Count: 0x00000000001CF330

 Free Page Count : 0x0000000000000000

NODE 1 (E00001597A9A2200):

 ProcessorMask : ----****--

 Color : 0x00000001

 MmShiftedColor : 0x00000040

 Seed : 0x00000006

 Zeroed Page Count: 0x00000000001F77A0

 Free Page Count : 0x0000000000000004

The following partial output is from a 64-processor NUMA system from Hewlett-

Packard with 4 processors per node:

26: kd> !numa

NUMA Summary:

Number of NUMA nodes : 16

Number of Processors : 64

MmAvailablePages : 0x03F55E67

KeActiveProcessors : **

 (ffffffffffffffff)

NODE 0 (E000000084261900):

 ProcessorMask : ****--

 Color : 0x00000000

 MmShiftedColor : 0x00000000

 Seed : 0x00000001

 Zeroed Page Count: 0x00000000003F4430

 Free Page Count : 0x0000000000000000

438 Windows Internals, Fifth Edition

NODE 1 (E0000145FF992200):

 ProcessorMask : ----****--

 Color : 0x00000001

 MmShiftedColor : 0x00000040

 Seed : 0x00000007

 Zeroed Page Count: 0x00000000003ED59A

 Free Page Count : 0x0000000000000000

Applications that want to gain the most performance out of NUMA systems can set the affin-

ity mask to restrict a process to the processors in a specific node. This information can be

obtained using the functions listed in Table 5-21. Functions that can alter thread affinity are

listed in Table 5-13.

TABLE 5-21 NUMA-Related Functions

Function Description

GetNumaHighestNodeNumber Retrieves the node that currently has the highest number.

GetNumaNodeProcessorMask Retrieves the processor mask for the specified node.

GetNumaProximityNode Returns the NUMA node number for the given proximity ID.

GetNumaProcessorNode Retrieves the node number for the specified processor.

How the scheduling algorithms take into account NUMA systems will be covered in the

upcoming section “Multiprocessor Thread-Scheduling Algorithms” (and the optimizations in

the memory manager to take advantage of node-local memory are covered in Chapter 9).

Affinity

Each thread has an affinity mask that specifies the processors on which the thread is allowed

to run. The thread affinity mask is inherited from the process affinity mask. By default, all

processes (and therefore all threads) begin with an affinity mask that is equal to the set of

active processors on the system—in other words, the system is free to schedule all threads

on any available processor.

However, to optimize throughput and/or partition workloads to a specific set of processors,

applications can choose to change the affinity mask for a thread. This can be done at several

levels:

Calling the SetThreadAffinityMask function to set the affinity for an individual thread

Calling the SetProcessAffinityMask function to set the affinity for all the threads in a

process. Task Manager and Process Explorer provide a GUI to this function if you right-

click a process and choose Set Affinity. The Psexec tool (from Sysinternals) provides a

command-line interface to this function. (See the –a switch.)

 Chapter 5 Processes, Threads, and Jobs 439

By making a process a member of a job that has a jobwide affinity mask set using the

SetInformationJobObject function (Jobs are described in the upcoming “Job Objects”

section.)

By specifying an affinity mask in the image header when compiling the application

(For more information on the detailed format of Windows images, search for “Portable

Executable and Common Object File Format Specification” on www.microsoft.com.)

You can also set the “uniprocessor” flag for an image (at compile time). If this flag is set,

the system chooses a single processor at process creation time and assigns that as the pro-

cess affinity mask, starting with the first processor and then going round-robin across all

the processors. For example, on a dual-processor system, the first time you run an image

marked as uniprocessor, it is assigned to CPU 0; the second time, CPU 1; the third time, CPU

0; the fourth time, CPU 1; and so on. This flag can be useful as a temporary workaround for

programs that have multithreaded synchronization bugs that, as a result of race conditions,

surface on multiprocessor systems but that don’t occur on uniprocessor systems. (This has

actually saved the authors of this book on two different occasions.)

EXPERIMENT: Viewing and Changing Process Affinity

In this experiment, you will modify the affinity settings for a process and see that pro-

cess affinity is inherited by new processes:

 1. Run the command prompt (Cmd.exe).

 2. Run Task Manager or Process Explorer, and find the Cmd.exe process in the pro-

cess list.

 3. Right-click the process, and select Affinity. A list of processors should be dis-

played. For example, on a dual-processor system you will see this:

 4. Select a subset of the available processors on the system, and click OK. The pro-

cess’s threads are now restricted to run on the processors you just selected.

 5. Now run Notepad.exe from the command prompt (by typing Notepad.exe).

 6. Go back to Task Manager or Process Explorer and find the new Notepad process.

Right-click it, and choose Affinity. You should see the same list of processors you

chose for the command prompt process. This is because processes inherit their

affinity settings from their parent.

440 Windows Internals, Fifth Edition

Windows won’t move a running thread that could run on a different processor from one CPU

to a second processor to permit a thread with an affinity for the first processor to run on

the first processor. For example, consider this scenario: CPU 0 is running a priority 8 thread

that can run on any processor, and CPU 1 is running a priority 4 thread that can run on any

processor. A priority 6 thread that can run on only CPU 0 becomes ready. What happens?

Windows won’t move the priority 8 thread from CPU 0 to CPU 1 (preempting the priority 4

thread) so that the priority 6 thread can run; the priority 6 thread has to wait.

Therefore, changing the affinity mask for a process or a thread can result in threads getting

less CPU time than they normally would, as Windows is restricted from running the thread

on certain processors. Therefore, setting affinity should be done with extreme care—in most

cases, it is optimal to let Windows decide which threads run where.

Ideal and Last Processor

Each thread has two CPU numbers stored in the kernel thread block:

Ideal processor, or the preferred processor that this thread should run on

Last processor, or the processor on which the thread last ran

The ideal processor for a thread is chosen when a thread is created using a seed in the pro-

cess block. The seed is incremented each time a thread is created so that the ideal processor

for each new thread in the process will rotate through the available processors on the system.

For example, the first thread in the first process on the system is assigned an ideal processor

of 0. The second thread in that process is assigned an ideal processor of 1. However, the next

process in the system has its first thread’s ideal processor set to 1, the second to 2, and so on.

In that way, the threads within each process are spread evenly across the processors.

Note that this assumes the threads within a process are doing an equal amount of work. This

is typically not the case in a multithreaded process, which normally has one or more house-

keeping threads and then a number of worker threads. Therefore, a multithreaded applica-

tion that wants to take full advantage of the platform might find it advantageous to specify

the ideal processor numbers for its threads by using the SetThreadIdealProcessor function.

On hyperthreaded systems, the next ideal processor is the first logical processor on the next

physical processor. For example, on a dual-processor hyperthreaded system with four logi-

cal processors, if the ideal processor for the first thread is assigned to logical processor 0, the

second thread would be assigned to logical processor 2, the third thread to logical proces-

sor 1, the fourth thread to logical process 3, and so forth. In this way, the threads are spread

evenly across the physical processors.

On NUMA systems, when a process is created, an ideal node for the process is selected. The

first process is assigned to node 0, the second process to node 1, and so on. Then, the ideal

processors for the threads in the process are chosen from the process’s ideal node. The ideal

 Chapter 5 Processes, Threads, and Jobs 441

processor for the first thread in a process is assigned to the first processor in the node. As

additional threads are created in processes with the same ideal node, the next processor is

used for the next thread’s ideal processor, and so on.

Dynamic Processor Addition and Replacement

As we’ve seen, developers can fine-tune which threads are allowed to (and in the case of

the ideal processor, should) run on which processor. This works fine on systems that have a

constant number of processors during their run time (for example, desktop machines require

shutting down the computer to make any sort of hardware changes to the processor or their

count).

Today’s server systems, however, cannot afford the downtime that CPU replacement or addi-

tion normally requires. In fact, one of the times when adding a CPU is required for a server

is at times of high load that is above what the machine can support at its current level of

performance. Having to shut down the server during a period of peak usage would defeat

the purpose. To meet this requirement, the latest generation of server motherboards and

systems support the addition of processors (as well as their replacement) while the machine

is still running. The ACPI BIOS and related hardware on the machine have been specifically

built to allow and be aware of this need, but operating system participation is required for

full support.

Dynamic processor support is provided through the HAL, which will notify the kernel of a

new processor on the system through the function KeStartDynamicProcessor. This routine

does similar work to that performed when the system detects more than one processor at

startup and needs to initialize the structures related to them. When a dynamic processor

is added, a variety of system components perform some additional work. For example, the

memory manager allocates new pages and memory structures optimized for the CPU. It

also initializes a new DPC kernel stack while the kernel initializes the Global Descriptor Table

(GDT), the Interrupt Descriptor Table (IDT), the processor control region (PCR), the processor

control block (PRCB), and other related structures for the processor.

Other executive parts of the kernel are also called, mostly to initialize the per-processor

lookaside lists for the processor that was added. For example, the I/O manager, the executive

lookaside list code, the cache manager, and the object manager all use per-processor look-

aside lists for their frequently allocated structures.

Finally, the kernel initializes threaded DPC support for the processor and adjusts exported

kernel variables to report the new processor. Different memory manager masks and pro-

cess seeds based on processor counts are also updated, and processor features need to be

updated for the new processor to match the rest of the system (for example, enabling virtu-

alization support on the newly added processor). The initialization sequence completes with

the notification to the Windows Hardware Error Architecture (WHEA) component that a new

processor is online.

442 Windows Internals, Fifth Edition

The HAL is also involved in this process. It is called once to start the dynamic processor after

the kernel is aware of it, and it is called again after the kernel has finished initialization of

the processor. However, these notifications and callbacks only make the kernel aware and

respond to processor changes. Although an additional processor increases the throughput of

the kernel, it does nothing to help drivers.

To handle drivers, the system has a new default executive callback, the processor add call-

back, that drivers can register with for notifications. Similar to the callbacks that notify drivers

of power state or system time changes, this callback allows driver code to, for example, cre-

ate a new worker thread if desirable so that it can handle more work at the same time.

Once drivers are notified, the final kernel component called is the Plug and Play manager,

which adds the processor to the system’s device node and rebalances interrupts so that

the new processor can handle interrupts that were already registered for other processors.

Unfortunately, until now, CPU-hungry applications have still been left out of this process, but

Windows Server 2008 and Windows Vista Service Pack 1 have improved the process to allow

applications to be able to take advantage of newer processors as well.

However, a sudden change of affinity can have potentially breaking changes for a running

application (especially when going from a single-processor to a multiprocessor environment)

through the appearance of potential race conditions or simply misdistribution of work (since

the process might have calculated the perfect ratios at startup, based on the number of CPUs

it was aware of). As a result, applications do not take advantage of a dynamically added pro-

cessor by default—they must request it.

The Windows APIs SetProcessAffinityUpdateMode and QueryProcessAffinityMode (which use

the undocumented NtSet/QueryInformationProcess system call) tell the process manager that

these applications should have their affinity updated (by setting the AffinityUpdateEnable

flag in EPROCESS), or that they do not want to deal with affinity updates (by setting the

AffinityPermanent flag in EPROCESS). Once an application has told the system that its affinity

is permanent, it cannot later change its mind and request affinity updates, so this is a one-

time change.

As part of KeStartDynamicProcessor, a new step has been added after interrupts are

rebalanced, which is to call the process manager to perform affinity updates through

PsUpdateActiveProcessAffinity. Some Windows core processes and services already have

affinity updates enabled, while third-party software will need to be recompiled to take

advantage of the new API call. The System process, Svchost processes, and Smss are all com-

patible with dynamic processor addition.

Multiprocessor Thread-Scheduling Algorithms

Now that we’ve described the types of multiprocessor systems supported by Windows as

well as the thread affinity and ideal processor settings, we’re ready to examine how this

 Chapter 5 Processes, Threads, and Jobs 443

information is used to determine which threads run where. There are two basic decisions to

describe:

Choosing a processor for a thread that wants to run

Choosing a thread on a processor that needs something to do

Choosing a Processor for a Thread When There Are Idle Processors

When a thread becomes ready to run, Windows first tries to schedule the thread to run on an

idle processor. If there is a choice of idle processors, preference is given first to the thread’s

ideal processor, then to the thread’s previous processor, and then to the currently executing

processor (that is, the CPU on which the scheduling code is running).

To select the best idle processor, Windows starts with the set of idle processors that the

thread’s affinity mask permits it to run on. If the system is NUMA and there are idle CPUs in

the node containing the thread’s ideal processor, the list of idle processors is reduced to that

set. If this eliminates all idle processors, the reduction is not done. Next, if the system is run-

ning hyperthreaded processors and there is a physical processor with all logical processors

idle, the list of idle processors is reduced to that set. If that results in an empty set of proces-

sors, the reduction is not done.

If the current processor (the processor trying to determine what to do with the thread that

wants to run) is in the remaining idle processor set, the thread is scheduled on it. If the cur-

rent processor is not in the remaining set of idle processors, it is a hyperthreaded system,

and there is an idle logical processor on the physical processor containing the ideal processor

for the thread, the idle processors are reduced to that set. If not, the system checks whether

there are any idle logical processors on the physical processor containing the thread’s previ-

ous processor. If that set is nonzero, the idle processors are reduced to that list. Finally, the

lowest numbered CPU in the remaining set is selected as the processor to run the thread on.

Once a processor has been selected for the thread to run on, that thread is put in the

standby state and the idle processor’s PRCB is updated to point to this thread. When the idle

loop on that processor runs, it will see that a thread has been selected to run and will dis-

patch that thread.

Choosing a Processor for a Thread When There Are No Idle Processors

If there are no idle processors when a thread wants to run, Windows compares the priority of

the thread running (or the one in the standby state) on the thread’s ideal processor to deter-

mine whether it should preempt that thread.

If the thread’s ideal processor already has a thread selected to run next (waiting in the

standby state to be scheduled) and that thread’s priority is less than the priority of the thread

being readied for execution, the new thread preempts that first thread out of the standby

444 Windows Internals, Fifth Edition

state and becomes the next thread for that CPU. If there is already a thread running on that

CPU, Windows checks whether the priority of the currently running thread is less than the

thread being readied for execution. If so, the currently running thread is marked to be pre-

empted and Windows queues an interprocessor interrupt to the target processor to preempt

the currently running thread in favor of this new thread.

Note Windows doesn’t look at the priority of the current and next threads on all the CPUs—just

on the one CPU selected as just described. If no thread can be preempted on that one CPU, the

new thread is put in the ready queue for its priority level, where it awaits its turn to get sched-

uled. Therefore, Windows does not guarantee to be running all the highest-priority threads, but

it will always run the highest-priority thread.

If the ready thread cannot be run right away, it is moved into the ready state where it awaits

its turn to run. Note that threads are always put on their ideal processor’s per-processor

ready queues.

Selecting a Thread to Run on a Specific CPU

Because each processor has its own list of threads waiting to run on that processor, when a

thread finishes running, the processor can simply check its per-processor ready queue for the

next thread to run. If the per-processor ready queues are empty, the idle thread for that pro-

cessor is scheduled. The idle thread then begins scanning other processor’s ready queues for

threads it can run. Note that on NUMA systems, the idle thread first looks at processors on

its node before looking at other nodes’ processors.

CPU Rate Limits

As part of the new hard quota management system added in Windows Vista (which builds on

previous quota support present since the first version of Windows NT, but adds hard limits

instead of soft hints), support for limiting CPU usage was added to the system in three differ-

ent ways: per-session, per-user, or per-system. Unfortunately, information on enabling these

new limits has not yet been documented, and no tool that is part of the operating system

allows you to set these limits: you must modify the registry settings manually. Because all the

quotas—save one—are memory quotas, we will cover those in Chapter 9, which deals with

the memory manager, and focus our attention on the CPU rate limit.

The new quota system can be accessed through the registry key HKLM\SYSTEM\Current-

ControlSet\Control\Session Manager\QuotaSystem, as well as through the standard NtSet-
InformationProcess system call. CPU rate limits can therefore be set in one of three ways:

By creating a new value called CpuRateLimit and entering the rate information.

 Chapter 5 Processes, Threads, and Jobs 445

By creating a new key with the security ID (SID) of the account you want to limit, and

creating a CpuRateLimit value inside that key.

By calling NtSetInformationProcess and giving it the process handle of the process to

limit and the CPU rate limiting information.

In all three cases, the CPU rate limit data is not a straightforward value; it is based on a com-

pressed bitfield, documented in the WDK as part of the RATE_QUOTA_LIMIT structure. The

bottom four bits define the rate phase, which can be expressed either as one, two, or three

seconds—this value defines how often the rate limiting should be applied and is called the

PS_RATE_PHASE. The rest of the bits are used for the actual rate, as a value representing a

percentage of maximum CPU usage. Because any number from 0 to 100 can be represented

with only 7 bits, the rest of the bits are unused. Therefore, a rate limit of 40 percent every 2

seconds would be defined by the value 0x282, or 101000 0010 in binary.

The process manager, which is responsible for enforcing the CPU rate limit, uses a variety of

system mechanisms to do its job. First of all, rate limiting is able to reliably work because of

the CPU cycle count improvements discussed earlier, which allow the process manager to

accurately determine how much CPU time a process has taken and know whether the limit

should be enforced. It then uses a combination of DPC and APC routines to throttle down

DPC and APC CPU usage, which are outside the direct control of user-mode developers but

still result in CPU usage in the system (in the case of a systemwide CPU rate limit).

Finally, the main mechanism through which rate limiting works is by creating an artificial wait

on a kernel gate object (making the thread uniquely bound to this object and putting it in a

wait state, which does not consume CPU cycles). This mechanism operates through the nor-

mal routine of an APC object queued to the thread or threads inside the process currently

responsible for the work. The gate is signaled by an internal worker thread inside the process

manager responsible for replenishment of the CPU usage, which is queued by a DPC respon-

sible for replenishing systemwide CPU usage requests.

Job Objects

A job object is a nameable, securable, shareable kernel object that allows control of one or

more processes as a group. A job object’s basic function is to allow groups of processes to be

managed and manipulated as a unit. A process can be a member of only one job object. By

default, its association with the job object can’t be broken and all processes created by the

process and its descendents are associated with the same job object as well. The job object

also records basic accounting information for all processes associated with the job and for

all processes that were associated with the job but have since terminated. Table 5-22 lists the

Windows functions to create and manipulate job objects.

446 Windows Internals, Fifth Edition

TABLE 5-22 Windows API Functions for Jobs

Function Description

CreateJobObject Creates a job object (with an optional name)

OpenJobObject Opens an existing job object by name

AssignProcessToJobObject Adds a process to a job

TerminateJobObject Terminates all processes in a job

SetInformationJobObject Sets limits

QueryInformationJobObject Retrieves information about the job, such as CPU time, page fault

count, number of processes, list of process IDs, quotas or limits, and

security limits

The following are some of the CPU-related and memory-related limits you can specify for

a job:

Maximum number of active processes Limits the number of concurrently existing

processes in the job.

Jobwide user-mode CPU time limit Limits the maximum amount of user-mode CPU

time that the processes in the job can consume (including processes that have run

and exited). Once this limit is reached, by default all the processes in the job will be

terminated with an error code and no new processes can be created in the job (unless

the limit is reset). The job object is signaled, so any threads waiting for the job will be

released. You can change this default behavior with a call to EndOfJobTimeAction.

Per-process user-mode CPU time limit Allows each process in the job to accumulate

only a fixed maximum amount of user-mode CPU time. When the maximum is reached,

the process terminates (with no chance to clean up).

Job scheduling class Sets the length of the time slice (or quantum) for threads in

processes in the job. This setting applies only to systems running with long, fixed quan-

tums (the default for Windows Server systems). The value of the job-scheduling class

determines the quantum as shown here:

Scheduling Class Quantum Units

0 6

1 12

2 18

3 24

4 30

5 36

6 42

7 48

8 54

9 Infinite if real-time; 60 otherwise

 Chapter 5 Processes, Threads, and Jobs 447

Job processor affinity Sets the processor affinity mask for each process in the job.

(Individual threads can alter their affinity to any subset of the job affinity, but processes

can’t alter their process affinity setting.)

Job process priority class Sets the priority class for each process in the job. Threads

can’t increase their priority relative to the class (as they normally can). Attempts to

increase thread priority are ignored. (No error is returned on calls to SetThreadPriority,

but the increase doesn’t occur.)

Default working set minimum and maximum Defines the specified working set

minimum and maximum for each process in the job. (This setting isn’t jobwide—each

process has its own working set with the same minimum and maximum values.)

Process and job committed virtual memory limit Defines the maximum amount of

virtual address space that can be committed by either a single process or the entire job.

Jobs can also be set to queue an entry to an I/O completion port object, which other threads

might be waiting for, with the Windows GetQueuedCompletionStatus function.

You can also place security limits on processes in a job. You can set a job so that each process

runs under the same jobwide access token. You can then create a job to restrict processes

from impersonating or creating processes that have access tokens that contain the local

administrator’s group. In addition, you can apply security filters so that when threads in pro-

cesses contained in a job impersonate client threads, certain privileges and security IDs (SIDs)

can be eliminated from the impersonation token.

Finally, you can also place user-interface limits on processes in a job. Such limits include

being able to restrict processes from opening handles to windows owned by threads outside

the job, reading and/or writing to the clipboard, and changing the many user-interface sys-

tem parameters via the Windows SystemParametersInfo function.

EXPERIMENT: Viewing the Job Object

You can view named job objects with the Performance tool. (See the Job Object and

Job Object Details performance objects.) You can view unnamed jobs with the kernel

debugger !job or dt nt!_ejob commands.

To see whether a process is associated with a job, you can use the kernel debugger

!process command or Process Explorer. Follow these steps to create and view an

unnamed job object:

 1. From the command prompt, use the runas command to create a process running

the command prompt (Cmd.exe). For example, type runas /user:<domain>\

< username> cmd. You’ll be prompted for your password. Enter your password,

and a Command Prompt window will appear. The Windows service that executes

runas commands creates an unnamed job to contain all processes (so that it can

terminate these processes at logoff time).

448 Windows Internals, Fifth Edition

 2. From the command prompt, run Notepad.exe.

 3. Then run Process Explorer and notice that the Cmd.exe and Notepad.exe pro-

cesses are highlighted as part of a job. (You can configure the colors used to

highlight processes that are members of a job by clicking Options, Configure

Highlighting.) Here is a screen shot showing these two processes:

 4. Double-click either the Cmd.exe or Notepad.exe process to bring up the process

properties. You will see a Job tab in the process properties dialog box.

 5. Click the Job tab to view the details about the job. In this case, there are no quo-

tas associated with the job, but there are two member processes:

 Chapter 5 Processes, Threads, and Jobs 449

 6. Now run the kernel debugger on the live system, display the process list with

!process, and find the recently created process running Cmd.exe. Then display the

process block by using !process <process ID>, find the address of the job object,

and finally display the job object with the !job command. Here’s some partial

debugger output of these commands on a live system:

lkd> !process 0 0

**** NT ACTIVE PROCESS DUMP ****

 .

 .

PROCESS 8567b758 SessionId: 0 Cid: 0fc4 Peb: 7ffdf000 ParentCid: 00b0

 DirBase: 1b3fb000 ObjectTable: e18dd7d0 HandleCount: 19.

 Image: Cmd.exe

PROCESS 856561a0 SessionId: 0 Cid: 0d70 Peb: 7ffdf000 ParentCid: 0fc4

 DirBase: 2e341000 ObjectTable: e19437c8 HandleCount: 16.

 Image: Notepad.exe

lkd> !process 0fc4

Searching for Process with Cid == fc4

PROCESS 8567b758 SessionId: 0 Cid: 0fc4 Peb: 7ffdf000 ParentCid: 00b0

 DirBase: 1b3fb000 ObjectTable: e18dd7d0 HandleCount: 19.

 Image: Cmd.exe

 BasePriority 8

 .

 .

 Job 85557988

lkd> !job 85557988

Job at 85557988

 TotalPageFaultCount 0

 TotalProcesses 2

 ActiveProcesses 2

 TotalTerminatedProcesses 0

 LimitFlags 0

 MinimumWorkingSetSize 0

 MaximumWorkingSetSize 0

 ActiveProcessLimit 0

 PriorityClass 0

 UIRestrictionsClass 0

 SecurityLimitFlags 0

 Token 00000000

 7. Finally, use the dt command to display the job object and notice the additional

fields shown about the job:

lkd> dt nt!_ejob 85557988

nt!_EJOB

 +0x000 Event : _KEVENT

 +0x010 JobLinks : _LIST_ENTRY [0x81d09478 - 0x87f55030]

 +0x018 ProcessListHead : _LIST_ENTRY [0x87a08dd4 - 0x8679284c]

 +0x020 JobLock : _ERESOURCE

 +0x058 TotalUserTime : _LARGE_INTEGER 0x0

450 Windows Internals, Fifth Edition

 +0x060 TotalKernelTime : _LARGE_INTEGER 0x0

 +0x068 ThisPeriodTotalUserTime : _LARGE_INTEGER 0x0

 +0x070 ThisPeriodTotalKernelTime : _LARGE_INTEGER 0x0

 +0x078 TotalPageFaultCount : 0

 +0x07c TotalProcesses : 2

 +0x080 ActiveProcesses : 2

 +0x084 TotalTerminatedProcesses : 0

 +0x088 PerProcessUserTimeLimit : _LARGE_INTEGER 0x0

 +0x090 PerJobUserTimeLimit : _LARGE_INTEGER 0x0

 +0x098 LimitFlags : 0

 +0x09c MinimumWorkingSetSize : 0

 +0x0a0 MaximumWorkingSetSize : 0

 +0x0a4 ActiveProcessLimit : 0

 +0x0a8 Affinity : 0

 +0x0ac PriorityClass : 0 ''

 +0x0b0 AccessState : (null)

 +0x0b4 UIRestrictionsClass : 0

 +0x0b8 EndOfJobTimeAction : 0

 +0x0bc CompletionPort : 0x87e3d2e8

 +0x0c0 CompletionKey : 0x07a89508

 +0x0c4 SessionId : 1

 +0x0c8 SchedulingClass : 5

 +0x0d0 ReadOperationCount : 0

 +0x0d8 WriteOperationCount : 0

 +0x0e0 OtherOperationCount : 0

 +0x0e8 ReadTransferCount : 0

 +0x0f0 WriteTransferCount : 0

 +0x0f8 OtherTransferCount : 0

 +0x100 ProcessMemoryLimit : 0

 +0x104 JobMemoryLimit : 0

 +0x108 PeakProcessMemoryUsed : 0x19e

 +0x10c PeakJobMemoryUsed : 0x2ed

 +0x110 CurrentJobMemoryUsed : 0x2ed

 +0x114 MemoryLimitsLock : _EX_PUSH_LOCK

 +0x118 JobSetLinks : _LIST_ENTRY [0x8575cff0 - 0x8575cff0]

 +0x120 MemberLevel : 0

 +0x124 JobFlags : 0

Conclusion

In this chapter, we’ve examined the structure of processes and threads and jobs, seen how

they are created, and looked at how Windows decides which threads should run and for

how long.

In the next chapter we’ll look at a part of the system that’s received more attention in the last

few years than ever before, Windows security.

 451

Chapter 6

Security

Preventing unauthorized access to sensitive data is essential in any environment in which

multiple users have access to the same physical or network resources. An operating system,

as well as individual users, must be able to protect files, memory, and configuration settings

from unwanted viewing and modification. Operating system security includes obvious mech-

anisms such as accounts, passwords, and file protection. It also includes less obvious mecha-

nisms, such as protecting the operating system from corruption, preventing less privileged

users from performing actions (rebooting the computer, for example), and not allowing user

programs to adversely affect the programs of other users or the operating system.

In this chapter, we explain how every aspect of the design and implementation of Windows

was influenced in some way by the stringent requirements of providing robust security.

Security Ratings

Having software, including operating systems, rated against well-defined standards helps the

government, corporations, and home users protect proprietary and personal data stored in

computer systems. The current security rating standard used by the United States and many

other countries is the Common Criteria (CC). To understand the security capabilities designed

into Windows, however, it’s useful to know the history of the security ratings system that

influenced the design of Windows, the Trusted Computer System Evaluation Criteria (TCSEC).

Trusted Computer System Evaluation Criteria

The National Computer Security Center (NCSC, at www.radium.ncsc.mil/tpep/) was estab-

lished in 1981 as part of the U.S. Department of Defense’s (DoD) National Security Agency

(NSA). One goal of the NCSC was to create a range of security ratings, listed in Table 6-1,

to be used to indicate the degree of protection commercial operating systems, network

 components, and trusted applications offer. These security ratings, which can be found at

www.radium.ncsc.mil/tpep/library/rainbow/5200.28-STD.html, were defined in 1983 and are

commonly referred to as “the Orange Book.”

The TCSEC standard consists of “levels of trust” ratings, where higher levels build on lower

levels by adding more rigorous protection and validation requirements. No operating system

meets the A1, or “Verified Design,” rating. Although a few operating systems have earned

one of the B-level ratings, C2 is considered sufficient and the highest rating practical for a

general-purpose operating system.

452 Windows Internals, Fifth Edition

TABLE 6-1 TCSEC Rating Levels

Rating Description

A1 Verified Design

B3 Security Domains

B2 Structured Protection

B1 Labeled Security Protection

C2 Controlled Access Protection

C1 Discretionary Access Protection (obsolete)

D Minimal Protection

In July 1995, Windows NT 3.5 (Workstation and Server) with Service Pack 3 was the first ver-

sion of Windows NT to earn the C2 rating. In March 1999, Windows NT 4 with Service Pack

3 achieved an E3 rating from the U.K. government’s Information Technology Security (ITSEC)

organization, a rating equivalent to a U.S. C2 rating. In November 1999, Windows NT 4 with

Service Pack 6a earned a C2 rating in both stand-alone and networked configurations.

The following were the key requirements for a C2 security rating, and they are still consid-

ered the core requirements for any secure operating system:

A secure logon facility, which requires that users can be uniquely identified and that

they must be granted access to the computer only after they have been authenticated

in some way.

Discretionary access control, which allows the owner of a resource to determine who

can access the resource and what they can do with it. The owner grants rights that per-

mit various kinds of access to a user or to a group of users.

Security auditing, which affords the ability to detect and record security-related events

or any attempts to create, access, or delete system resources. Logon identifiers record

the identities of all users, making it easy to trace anyone who performs an unauthor-

ized action.

Object reuse protection, which prevents users from seeing data that another user

has deleted or from accessing memory that another user previously used and then

released. For example, in some operating systems, it’s possible to create a new file of

a certain length and then examine the contents of the file to see data that happens to

have occupied the location on the disk where the file is allocated. This data might be

sensitive information that was stored in another user’s file but had been deleted. Object

reuse protection prevents this potential security hole by initializing all objects, including

files and memory, before they are allocated to a user.

 Chapter 6 Security 453

Windows also meets two requirements of B-level security:

Trusted path functionality, which prevents Trojan horse programs from being able to

intercept users’ names and passwords as they try to log on. The trusted path function-

ality in Windows comes in the form of its Ctrl+Alt+Delete logon-attention sequence,

which cannot be intercepted by nonprivileged applications. This sequence of key-

strokes, which is also known as the secure attention sequence (SAS), always pops up a

logon dialog box, so would-be Trojan horses can easily be recognized. A Trojan horse

presenting a fake logon dialog box will be bypassed when the SAS is entered.

Trusted facility management, which requires support for separate account roles for

administrative functions. For example, separate accounts are provided for administra-

tion (Administrators), user accounts charged with backing up the computer, and stan-

dard users.

Windows meets all of these requirements through its security subsystem and related

components.

The Common Criteria

In January 1996, the United States, United Kingdom, Germany, France, Canada, and the

Netherlands released the jointly developed Common Criteria for Information Technology

Security Evaluation (CCITSE) security evaluation specification. CCITSE, which is usually referred

to as the Common Criteria (CC), is the recognized multinational standard for product security

evaluation. The CC home page is at www.niap-ccevs.org/cc-scheme/.

The CC is more flexible than the TCSEC trust ratings and has a structure closer to the ITSEC

standard than to the TCSEC standard. The CC includes the concept of a Protection Profile (PP),

used to collect security requirements into easily specified and compared sets, and the con-

cept of a Security Target (ST), which contains a set of security requirements that can be made

by reference to a PP.

Windows Server 2003 SP1 was evaluated as meeting the requirements of the Controlled

Access PP, which is the equivalent of TCSEC C2 rating, and additional CC functional and

 assurance requirements in September of 2006. Details of its conformance can be found at

www.niap-ccevs.org/cc-scheme/vpl; specifically, the additional requirements satisfied by

Windows Server 2003 SP1 can be found in the certified Windows Server 2003/XP Common

Criteria Security Target at www.niap-ccevs.org/cc-scheme/st/st_vid10151-st.pdf.

454 Windows Internals, Fifth Edition

Security System Components

These are the core components and databases that implement Windows security:

Security reference monitor (SRM) A component in the Windows executive

(%SystemRoot%\System32\Ntoskrnl.exe) that is responsible for defining the access

token data structure to represent a security context, performing security access checks

on objects, manipulating privileges (user rights), and generating any resulting security

audit messages.

Local Security Authority subsystem (Lsass) A user-mode process running the image

%SystemRoot%\System32\Lsass.exe that is responsible for the local system security

policy (such as which users are allowed to log on to the machine, password policies,

privileges granted to users and groups, and the system security auditing settings),

user authentication, and sending security audit messages to the Event Log. The Local

Security Authority service (Lsasrv—%SystemRoot%\System32\Lsasrv.dll), a library that

Lsass loads, implements most of this functionality.

Lsass policy database A database that contains the local system security policy set-

tings. This database is stored in the registry under HKLM\SECURITY. It includes such

information as what domains are entrusted to authenticate logon attempts, who has

permission to access the system and how (interactive, network, and service logons),

who is assigned which privileges, and what kind of security auditing is to be performed.

The Lsass policy database also stores “secrets” that include logon information used for

cached domain logons and Windows service user-account logons. (See Chapter 4 for

more information on Windows services.)

Security Accounts Manager (SAM) service A set of subroutines responsible for

managing the database that contains the user names and groups defined on the

local machine. The SAM service, which is implemented as %SystemRoot%\System32\

Samsrv.dll, runs in the Lsass process.

SAM database A database that on systems not functioning as domain controllers

contains the defined local users and groups, along with their passwords and other

attributes. On domain controllers, the SAM stores the system’s administrator recov-

ery account definition and password. This database is stored in the registry under

HKLM\SAM.

Active Directory A directory service that contains a database that stores information

about objects in a domain. A domain is a collection of computers and their associated

security groups that are managed as a single entity. Active Directory stores information

 Chapter 6 Security 455

about the objects in the domain, including users, groups, and computers. Password

information and privileges for domain users and groups are stored in Active Directory,

which is replicated across the computers that are designated as domain controllers of

the domain. The Active Directory server, implemented as %SystemRoot%\System32\

Ntdsa.dll, runs in the Lsass process. For more information on Active Directory, see

Chapter 12.

Authentication packages These include dynamic-link libraries (DLLs) that run both

in the context of the Lsass process and client processes and that implement Windows

authentication policy. An authentication DLL is responsible for checking whether a

given user name and password match, and if so, returning to the Lsass information

detailing the user’s security identity, which Lsass uses to generate a token.

Interactive logon manager (Winlogon) A user-mode process running %System-

Root%\System32\Winlogon.exe that is responsible for responding to the SAS and for

managing interactive logon sessions. Winlogon creates a user’s first process when the

user logs on, for example.

Logon user interface (LogonUI) A user-mode process that presents users with the

user interface they can use to authenticate themselves on the system. Uses credential

providers to query user credentials through various methods.

Credential providers (CPs) In-process COM objects that run in the LogonUI process

(started on demand by Winlogon when the SAS is performed) and used to obtain a

user’s name and password, smartcard PIN, or biometric data (such as a fingerprint). The

standard CPs are %SystemRoot%\System32\authui.dll and %SystemRoot%\System32\

SmartcardCredentialProvider.dll

Network logon service (Netlogon) A Windows service (%SystemRoot%\System32\

Netlogon.dll) that sets up the secure channel to a domain controller, over which

security requests—such as an interactive logon (if the domain controller is running

Windows NT 4) or LAN Manager and NT LAN Manager (v1 and v2) authentication

validation—are sent.

Kernel Security Device Driver (KSecDD) A kernel-mode library of functions that

implement the local procedure call (LPC) interfaces that other kernel-mode security

components, including the Encrypting File System (EFS), use to communicate with Lsass

in user mode. KSecDD is located in %SystemRoot%\System32\Drivers\Ksecdd.sys.

Figure 6-1 shows the relationships among some of these components and the databases they

manage.

456 Windows Internals, Fifth Edition

Hardware abstraction layer (HAL)

Kernel

System service dispatcher

(Kernel-mode callable interfaces)
Win32 USER,

GDI

Graphics
drivers

Device
and file
system
drivers

I/O manager Local procedure
call

C
onfiguration

m
anager (registry)

Processes and
threads

V
irtual m

em
ory

Security reference
m

onitor

Pow
er m

anager

PnP m
anager

O
bject m

anager

File system
 cache

LSA policy SAM

Winlogon

System
threads

Event
Logger

Lsass

Netlogon Active
Directory

LSA
server

SAM
server

Msv1_0.dll

Kerberos.dll

Hardware interfaces
(Buses, I/O devices, interrupts, interval timers, DMA, memory cache control, and so on)

Active
Directory

User mode

Kernel mode

LogonUI

FIGURE 6-1 Windows security components

EXPERIMENT: Looking Inside HKLM\SAM and HKLM\Security

The security descriptors associated with the SAM and Security keys in the registry

prevent access by any account other than the local system account. One way to gain

access to these keys for exploration is to reset their security, but that can weaken the

system’s security. Another way is to execute Regedit.exe while running as the local sys-

tem account, and PsExec from Windows Sysinternals (www.microsoft.com/technet/sys-
internals) supports an option that enables you to launch processes in the local system

account. Run Regedit using the PsExec command, shown below, to gain access to the

SAM and Security databases without disturbing their security settings:

C:\>psexec –s –i –d c:\windows\regedit.exe

 Chapter 6 Security 457

The SRM, which runs in kernel mode, and Lsass, which runs in user mode, communicate using

the ALPC facility described in Chapter 3. During system initialization, the SRM creates a port,

named SeRmCommandPort, to which Lsass connects. When the Lsass process starts, it cre-

ates an ALPC port named SeLsaCommandPort. The SRM connects to this port, resulting in

the creation of private communication ports. The SRM creates a shared memory section for

messages longer than 256 bytes, passing a handle in the connect call. Once the SRM and

Lsass connect to each other during system initialization, they no longer listen on their respec-

tive connect ports. Therefore, a later user process has no way to connect successfully to

either of these ports for malicious purposes—the connect request will never complete.

Figure 6-2 shows the communication paths as they exist after system initialization.

458 Windows Internals, Fifth Edition

Communication
port

User mode

Kernel mode

Communication
port

SeLsaCommandPort

Local Security
Authority (LSA) server

Communication
port

Communication
port

SeRmCommandPort

Security reference
monitor (SRM)

Set audit event
Create logon session
Delete logon session

Write audit message
Delete logon session

Shared
section

FIGURE 6-2 Communication between the SRM and Lsass

Protecting Objects

Object protection and access logging is the essence of discretionary access control and

auditing. The objects that can be protected on Windows include files, devices, mailslots,

pipes (named and anonymous), jobs, processes, threads, events, keyed events, event pairs,

mutexes, semaphores, shared memory sections, I/O completion ports, LPC ports, waitable

timers, access tokens, volumes, window stations, desktops, network shares, services, registry

keys, printers, and Active Directory objects.

Because system resources that are exported to user mode (and hence require security valida-

tion) are implemented as objects in kernel mode, the Windows object manager plays a key

role in enforcing object security. (For more information on the object manager, see Chapter

3.) To control who can manipulate an object, the security system must first be sure of each

user’s identity. This need to guarantee the user’s identity is the reason that Windows requires

authenticated logon before accessing any system resources. When a process requests a han-

dle to an object, the object manager and the security system use the caller’s security identi-

fication to determine whether the caller should be assigned a handle that grants the process

access to the object it desires.

As discussed later in this chapter, a thread can assume a different security context than that

of its process. This mechanism is called impersonation, and when a thread is impersonat-

ing, security validation mechanisms use the thread’s security context instead of that of the

thread’s process. When a thread isn’t impersonating, security validation falls back on using

the security context of the thread’s owning process. It’s important to keep in mind that all the

threads in a process share the same handle table, so when a thread opens an object—even if

it’s impersonating—all the threads of the process have access to the object.

 Chapter 6 Security 459

Sometimes, validating the identity of a user isn’t enough for the system to grant access to a

resource that should be accessible by the account. Logically, one can think of a clear distinc-

tion between a service running the Alice account, and an unknown application that Alice

downloaded while browsing the Internet. Windows achieves this kind of intrauser isolation

with the Windows integrity mechanism, which implements integrity levels. The Windows

integrity mechanism is used by User Account Control (UAC) elevations, Protected Mode

Internet Explorer (PMIE), and User Interface Privilege Isolation (UIPI).

Access Checks

The Windows security model requires that a thread specify up front, at the time that it opens

an object, what types of actions it wants to perform on the object. The object manager calls

the SRM to perform access checks based on a thread’s desired access, and if the access is

granted, a handle is assigned to the thread’s process with which the thread (or other threads

in the process) can perform further operations on the object. As explained in Chapter 3, the

object manager records the access permissions granted for a handle in the process’s handle

table.

One event that causes the object manager to perform security access validation is when

a process opens an existing object using a name. When an object is opened by name, the

object manager performs a lookup of the specified object in the object manager namespace.

If the object isn’t located in a secondary namespace, such as the configuration manager’s

registry namespace or a file system driver’s file system namespace, the object manager

calls the internal function ObpCreateHandle once it locates the object. As its name implies,

ObpCreateHandle creates an entry in the process’s handle table that becomes associ-

ated with the object. ObpCreateHandle first calls ObpIncrementHandleCount to see if the

thread has permission to access the object, and if the thread does, ObpCreateHandle calls

the executive function ExCreateHandle to create the entry in the process handle table.

ObpIncrementHandleCount calls ObCheckObjectAccess to carry out the security access check.

ObpIncrementHandleCount passes ObCheckObjectAccess the security credentials of the

thread opening the object, the types of access to the object that the thread is requesting

(read, write, delete, and so forth), and a pointer to the object. ObCheckObjectAccess first

locks the object’s security descriptor and the security context of the thread. The object secu-

rity lock prevents another thread in the system from changing the object’s security while

the access check is in progress. The lock on the thread’s security context prevents another

thread of that process or a different process from altering the security identity of the thread

while security validation is in progress. ObCheckObjectAccess then calls the object’s secu-

rity method to obtain the security settings of the object. (See Chapter 3 for a description

of object methods.) The call to the security method might invoke a function in a different

executive component. However, many executive objects rely on the system’s default security

management support.

460 Windows Internals, Fifth Edition

When an executive component defining an object doesn’t want to override the SRM’s default

security policy, it marks the object type as having default security. Whenever the SRM calls

an object’s security method, it first checks to see whether the object has default security.

An object with default security stores its security information in its header, and its security

method is SeDefaultObjectMethod. An object that doesn’t rely on default security must man-

age its own security information and supply a specific security method. Objects that rely on

default security include mutexes, events, and semaphores. A file object is an example of an

object that overrides default security. The I/O manager, which defines the file object type, has

the file system driver on which a file resides manage (or choose not to implement) the secu-

rity for its files. Thus, when the system queries the security on a file object that represents

a file on an NTFS volume, the I/O manager file object security method retrieves the file’s

security using the NTFS file system driver. Note, however, that ObCheckObjectAccess isn’t

executed when files are opened, because they reside in secondary namespaces; the system

invokes a file object’s security method only when a thread explicitly queries or sets the secu-

rity on a file (with the Windows SetFileSecurity or GetFileSecurity functions, for example).

After obtaining an object’s security information, ObCheckObjectAccess invokes the SRM

function SeAccessCheck. SeAccessCheck is one of the functions at the heart of the Windows

security model. Among the input parameters SeAccessCheck accepts are the object’s security

information, the security identity of the thread as captured by ObCheckObjectAccess, and

the access that the thread is requesting. SeAccessCheck returns True or False, depending on

whether the thread is granted the access it requested to the object.

Another event that causes the object manager to execute access validation is when a pro-

cess references an object using an existing handle. Such references often occur indirectly, as

when a process calls on a Windows API to manipulate an object and passes an object handle.

For example, a thread opening a file can request read permission to a file. If the thread has

permission to access the object in this way, as dictated by its security context and the secu-

rity settings of the file, the object manager creates a handle—representing the file—in the

handle table of the thread’s process. The accesses the process is granted through the handle

are stored with the handle by the object manager.

Subsequently, the thread could attempt to write to the file using the WriteFile Windows

function, passing the file’s handle as a parameter. The system service NtWriteFile, which

WriteFile calls via Ntdll.dll, uses the object manager function ObReferenceObjectByHandle

to obtain a pointer to the file object from the handle. ObReferenceObjectByHandle accepts

the access that the caller wants from the object as a parameter. After finding the handle

entry in the process’s handle table, ObReferenceObjectByHandle compares the access

being requested with the access granted at the time the file was opened. In this example,

ObReferenceObjectByHandle will indicate that the write operation should fail because the

caller didn’t obtain write access when the file was opened.

 Chapter 6 Security 461

The Windows security functions also enable Windows applications to define their own pri-

vate objects and to call on the services of the SRM to enforce the Windows security model

on those objects. Many kernel-mode functions that the object manager and other executive

components use to protect their own objects are exported as Windows user-mode APIs. The

user-mode equivalent of SeAccessCheck is AccessCheck, for example. Windows applications

can therefore leverage the flexibility of the security model and transparently integrate with

the authentication and administrative interfaces that are present in Windows.

The essence of the SRM’s security model is an equation that takes three inputs: the security

identity of a thread, the access that the thread wants to an object, and the security settings of

the object. The output is either “yes” or “no” and indicates whether or not the security model

grants the thread the access it desires. The following sections describe the inputs in more

detail and then document the model’s access validation algorithm.

Security Identifiers (SIDs)

Instead of using names (which might or might not be unique) to identify entities that per-

form actions in a system, Windows uses security identifiers (SIDs). Users have SIDs, and so

do local and domain groups, local computers, domains, and domain members. A SID is a

variable-length numeric value that consists of a SID structure revision number, a 48-bit iden-

tifier authority value, and a variable number of 32-bit subauthority or relative identifier (RID)

values. The authority value identifies the agent that issued the SID, and this agent is typically

a Windows local system or a domain. Subauthority values identify trustees relative to the

issuing authority, and RIDs are simply a way for Windows to create unique SIDs based on a

common-base SID. Because SIDs are long and Windows takes care to generate truly random

values within each SID, it is virtually impossible for Windows to issue the same SID twice on

machines or domains anywhere in the world.

When displayed textually, each SID carries an S prefix, and its various components are sepa-

rated with hyphens:

S-1-5-21-1463437245-1224812800-863842198-1128

In this SID, the revision number is 1, the identifier authority value is 5 (the Windows security

authority), and four subauthority values plus one RID (1128) make up the remainder of the

SID. This SID is a domain SID, but a local computer on the domain would have a SID with the

same revision number, identifier authority value, and number of subauthority values.

When you install Windows, the Windows Setup program issues the computer a SID. Windows

assigns SIDs to local accounts on the computer. Each local-account SID is based on the source

computer’s SID and has a RID at the end. RIDs for user accounts and groups start at 1000 and

increase in increments of 1 for each new user or group. Similarly, Dcpromo.exe, the utility

used to create a new Windows domain, reuses the computer SID of the computer being pro-

moted to domain controller as the domain SID, and it re-creates a new SID for the computer

462 Windows Internals, Fifth Edition

if it is ever demoted. Windows issues to new domain accounts SIDS that are based on the

domain SID and have an appended RID (again starting at 1000 and increasing in increments

of 1 for each new user or group). A RID of 1028 indicates that the SID is the twenty-ninth SID

the domain issued.

Windows issues SIDS that consist of a computer or domain SID with a predefined RID to

many predefined accounts and groups. For example, the RID for the administrator account is

500, and the RID for the guest account is 501. A computer’s local administrator account, for

example, has the computer SID as its base with the RID of 500 appended to it:

S-1-5-21-13124455-12541255-61235125-500

Windows also defines a number of built-in local and domain SIDs to represent groups.

For example, a SID that identifies any and every account (except anonymous users) is the

Everyone SID: S-1-1-0. Another example of a group that a SID can represent is the network

group, which is the group that represents users who have logged on to a machine from the

network. The network-group SID is S-1-5-2. Table 6-2, reproduced here from the Windows

SDK documentation, shows some basic well-known SIDs, their numeric values, and their use.

Finally, Winlogon creates a unique logon SID for each interactive logon session. A typical use

of a logon SID is in an access control entry (ACE) that allows access for the duration of a cli-

ent’s logon session. For example, a Windows service can use the LogonUser function to start

a new logon session. The LogonUser function returns an access token from which the service

can extract the logon SID. The service can then use the SID in an ACE that allows the client’s

logon session to access the interactive window station and desktop. The SID for a logon ses-

sion is S-1-5-5-0, and the RID is randomly generated.

TABLE 6-2 Well-Known SIDs

SID Group Use

S-1-0-0 Nobody Used when the SID is unknown.

S-1-1-0 Everyone A group that includes all users except anonymous users.

S-1-2-0 Local Users who log on to terminals locally (physically) con-

nected to the system.

S-1-3-0 Creator Owner ID A security identifier to be replaced by the security identi-

fier of the user who created a new object. This SID is used

in inheritable ACEs.

S-1-3-1 Creator Group ID Identifies a security identifier to be replaced by the prima-

ry-group SID of the user who created a new object. Use

this SID in inheritable ACEs.

S-1-9-0 Resource Manager Used by third-party applications performing their own

security on internal data (such as Microsoft Exchange).

 Chapter 6 Security 463

EXPERIMENT: Using PsGetSid and Process Explorer to View SIDs

You can easily see the SID representation for any account you’re using by running the

PsGetSid utility from Sysinternals.

PsGetSid’s options allow you to translate machine and user account names to their cor-

responding SIDs and vice versa.

If you run PsGetSid with no options, it prints the SID assigned to the local computer.

By using the fact that the Administrator’s account always has a RID of 500, you can

determine the name assigned to the account (in cases where a system administra-

tor has renamed the account for security reasons) simply by passing the machine SID

appended with -500 as PsGetSid’s command-line argument.

To obtain the SID of a domain account, enter the user name with the domain as a

prefix:

c:\>psgetsid redmond\daryl

You can determine the SID of a domain by specifying the domain’s name as the argu-

ment to PsGetSid:

c:\>psgetsid Redmond

Finally, by examining the RID of your own account, you know at least a number of secu-

rity accounts, equal to the number resulting from subtracting 999 from your RID, have

been created in your domain or on your local machine (depending on whether you are

using a domain or local machine account). You can determine what accounts have been

assigned RIDs by passing a SID with the RID you want to query to PsGetSid. If PsGetSid

reports that no mapping between the SID and an account name was possible and the

RID is lower than that of your account, you know that the account assigned the RID has

been deleted.

For example, to find out the name of the account assigned the twenty-eighth RID, pass

the domain SID appended with -1027 to PsGetSid:

c:\>psgetsid S-1-5-21-1787744166-3910675280-2727264193-1027

Account for S-1-5-21-1787744166-3910675280-2727264193-1027:

User: redmond\daryl

Process Explorer can also show you information on account and group SIDs on your

system through its Security tab. This tab shows you information such as who owns this

process and which groups the account is a member of. To view this information, simply

double-click on any process (for example, Explorer.exe) in the Process list, and then click

on the Security tab. You should see something similar to the following.

464 Windows Internals, Fifth Edition

The information displayed in the User field contains the friendly name of the account

owning this process, while the SID field contains the actual SID value. The Group list

includes information on all the groups that this account is a member of. (Groups are

described later in this chapter.)

Integrity Levels

As mentioned earlier, integrity levels can override discretionary access to differentiate a pro-

cess and objects running as and owned by the same user, offering the ability to isolate code

and data within a user account. The mechanism of mandatory integrity control allows the

SRM to have more detailed information about the nature of the caller by associating it with

an integrity level. It also provides information on the trust required to access the object by

defining an integrity level for it. These integrity levels are specified by a SID, as described in

Table 6-3.

TABLE 6-3 Integrity Level SIDs

SID Name (Level) Use

S-1-16-0x0 Untrusted (0) Used by processes started by the Anonymous group. Blocks most

write access.

S-1-16-0x1000 Low (1) Used by Protected Mode Internet Explorer; blocks write access to

most objects (such as files and registry keys) on the system.

S-1-16-0x2000 Medium (2) Used by normal applications being launched while UAC is

 enabled.

 Chapter 6 Security 465

SID Name (Level) Use

S-1-16-0x3000 High (3) Used by administrative applications launched through elevation

when UAC is enabled, or normal applications if UAC is disabled

and the user is an administrator

S-1-16-0x4000 System (4) Used by services and other system-level applications (such as

Wininit, Winlogon, Smss, etc.)

EXPERIMENT: Looking at the Integrity Level of Processes

You can use Process Explorer from Sysinternals to quickly display the integrity level for

the processes on your system. The following steps demonstrate this functionality.

 1. Launch Internet Explorer in Protected Mode.

 2. Open an elevated Command Prompt window.

 3. Open Microsoft Paint normally (without elevating it).

 4. Now open Process Explorer, right-click on any of the columns in the Process list,

and then click Select Columns. You should see a dialog box similar to the one

shown here.

 5. Select the Integrity Level check box and close the dialog box.

 6. Process Explorer will now show you the integrity level of the processes on your

system. You should see the Protected Mode Internet Explorer process at Low,

Microsoft Paint at Medium, and the elevated command prompt at High. Also

466 Windows Internals, Fifth Edition

note that the services and system processes are running at an even higher integ-

rity level, System.

Every process has an integrity level that is represented in the process’s token and propagated

according to the following rules:

A process inherits the integrity level of its parent (which means an elevated command

prompt will spawn other elevated processes).

If the file object for the executable image to which the child process belongs has an

integrity level and the parent process’s integrity level is medium or higher, the child

process will inherit the lower of the two.

A parent process can also create a child process with an explicit integrity level (for

example, when launching Protected Mode Internet Explorer from an elevated com-

mand prompt).

EXPERIMENT: Understanding Protected Mode Internet Explorer

As mentioned earlier, one of the users of the Windows integrity mechanism is Internet

Explorer’s Protected Mode, also called Protected Mode Internet Explorer (PMIE). This

feature was added in Internet Explorer 7 to take advantage of the Windows integ-

rity levels. This experiment will show you how PMIE utilizes integrity levels to provide

a safer Internet experience. To do this, we’ll use Process Monitor to trace Internet

Explorer’s behavior.

 Chapter 6 Security 467

 1. Make sure that you haven’t disabled UAC and PMIE on your systems (they are

both on by default), and close any running instances of Internet Explorer.

 2. Run Process Monitor, and select Filter, Filter to display the filtering dialog box.

Add an include filter for the process name Iexplore.exe, as shown next:

 3. Run Process Explorer, and repeat the previous experiment to display the Integrity

Level column.

 4. Now launch Internet Explorer. You should see a flurry of events appear in the

Process Monitor window and a quick succession of events in Process Explorer,

showing some processes starting and some exiting.

 5. Once Internet Explorer is running, Process Explorer will show you two new pro-

cesses: Iexplore.exe, running at low integrity level, and Ieuser.exe, running at

medium integrity level. Part of the added protection offered by PMIE is that

Iexplore.exe runs at low integrity, so this confirms the behavior.

 6. You can get more information about the behavior that just occurred by looking

at the processes that started and exited based on the Iexplore.exe filter you set

up. Reduce the number of Process Monitor events displayed by excluding regis-

try and file events (click the respective icons in the toolbar). You can reduce the

number of events even more by right-clicking on the operations Thread Start and

Load Image and then selecting Exclude from the pop-up menu that appears. You

should be left with the events shown next.

468 Windows Internals, Fifth Edition

 7. Notice what actually occurred: a first instance of Iexplore.exe (PID 748) was

started, which created the Ieuser.exe process and a second Iexplore.exe process

(PID 1492). Then, the first Iexplore.exe instance exited, leaving the child process

behind. You can use the Process Tree functionality in Process Monitor to see these

events in a more obvious manner. Click on Tools, and then click Process Tree and

scroll down to the first Iexplore.exe entry. You should see a tree similar to the

following:

 8. You can get more information on the behavior that just occurred by double-

clicking on the first and second Iexplore.exe Process Start events. Shown next is

the information for the first process:

 Chapter 6 Security 469

 9. Note that the integrity level for this process is actually medium, not low, as we

would expect. However, if you repeat step 8 on the second instance of Internet

Explorer, you’ll notice that the integrity level is indeed low. Finally, if you check

the Ieuser.exe process, you’ll also notice a medium integrity level. This explains

why the initial process is actually running at medium. A low integrity level pro-

cess cannot create a medium integrity level process, so for Ieuser.exe to run at

medium, it must be launched from a medium or higher process.

 10. Now let’s examine Ieuser.exe. Double-click on the Process Create event respon-

sible for creating the process, and take a look at the stack by clicking on the Stack

tab. You should see a trace similar to the one shown next.

470 Windows Internals, Fifth Edition

Note the functions named LaunchLoRIEModeIE and CreateBrokerProcess. The sec-

ond function is actually responsible for creating the Ieuser.exe process, which is

indeed called the IE broker process. This process is used to allow operations such

as user-initiated file downloads to be saved to any directory the user has access

to. As we’ll see, because a process at low integrity level cannot write to files and

directories with a higher integrity level, it would not be possible for users to save

their downloads if there weren’t a broker process at medium integrity level (or

higher) to handle this operation.

 11. Finally, you can take a look at the stack trace behind the creation of the second

Iexplore.exe instance running at low integrity level. You’ll see the same function,

Launch LoRIEModeIE, involved in the operation, which calls CreateIEIn Protected-
Mode and CreateMICIEProcess (where MIC stands for Mandatory Integrity

Control). The function LaunchProtectedModeIEWithToken calls the Windows API

function CreateProcessAsUser to perform the creation at low integrity level. The

following screen shows this sequence of events in the stack trace of the Process

Create event:

 Chapter 6 Security 471

Table 6-3 lists the integrity level associated with processes, but how about objects? Objects

also have an integrity level stored as part of their security descriptor, in a structure that is

called the mandatory label.

To support migrating from previous versions of Windows (whose registry keys and files would

not include integrity level information), as well as to make it simpler for application develop-

ers, all objects have an implicit integrity level in order to avoid having to manually specify

one. This implicit integrity level is the medium level, meaning that the mandatory policy

(described shortly) on the object will be performed on tokens accessing this object with an

integrity level lower than medium.

When a process creates an object without specifying an integrity level, the system checks the

integrity level in the token. For tokens with a level medium or higher, the implicit integrity

level of the object remains medium. However, when a token contains an integrity level lower

than medium, the object is created with an explicit integrity level that matches the level in the

token.

The reason that objects that are created by high or system integrity level processes have

a medium integrity level themselves is so that users can disable and enable UAC: if object

472 Windows Internals, Fifth Edition

integrity levels always inherited their creator’s integrity level, the applications of an admin-

istrator who disables UAC and subsequently reenables it would potentially fail because they

would not be able to modify any registry settings or files that they created when running at

the high integrity level. Objects can also have an explicit integrity level that is set by the sys-

tem or by the creator of the object. For example, the following objects are given an explicit

integrity level by the kernel when it creates them:

Processes

Threads

Tokens

Jobs

The reason for assigning an integrity level to these objects is to prevent a process for the

same user, but one running at a lower integrity level, from accessing these objects and modi-

fying their content or behavior (for example, DLL injection or code modification).

EXPERIMENT: Looking at the Integrity Level of Objects

You can use the Accesschk tool from Sysinternals to display the integrity level of objects

on the system, such as files, processes, and registry keys. Here’s an experiment showing

the purpose of the LocalLow directory in Windows.

 1. Browse to C:\Users\UserName\ in a command prompt.

 2. Try running Accesschk on the AppData folder.

 3. Note the differences between Local and LocalLow in your output, similar to the

one shown here:

C:\Users\Abby\AppData\Local

 Medium Mandatory Level (Default) [No-Write-Up]

 RW Local Abby-PC\Abby

 RW NT AUTHORITY\SYSTEM

 RW BUILTIN\Administrators

C:\Users\Abby\AppData\LocalLow

 Low Mandatory Level [No-Write-Up]

 RW Local Abby-PC\Abby

 RW NT AUTHORITY\SYSTEM

 RW BUILTIN\Administrators

C:\Users\Abby\AppData\Roaming

 Medium Mandatory Level (Default) [No-Write-Up]

 RW Local Abby-PC\Abby

 RW NT AUTHORITY\SYSTEM

 RW BUILTIN\Administrators

 4. Notice that the LocalLow directory has an integrity level that is set to Low, while

the Local and Roaming directories have an integrity level of Medium (Default).

The default means the system is using an implicit integrity level.

 Chapter 6 Security 473

 5. You can pass the –e flag to Accesschk so that it only displays explicit integrity

levels. If you run the tool on the AppData folder again, you’ll notice only the

LocalLow information is displayed.

The –o (Object), –k (Key), and –p (Process) flags allow you to specify something

other than a file or directory.

Apart from an integrity level, objects also have a mandatory policy, which defines the actual

level of protection that’s applied based on the integrity level check. Three types are possible,

shown in Table 6-4. The integrity level and the mandatory policy are stored together in the

same ACE.

TABLE 6-4 Object Mandatory Policies

Policy Present on, by Default Description

No-Write-Up Implicit on all objects Used to restrict write access coming from a lower

integrity level process to the object.

No-Read-Up Only on process objects Used to restrict read access coming from a lower

integrity level process to the object. Specific use on

process objects protects against information leak-

age by blocking address space reads from an exter-

nal process.

No-Execute-Up Only on binaries imple-

menting COM classes

Used to restrict execute access coming from a lower

integrity level process to the object. Specific use on

COM classes is to restrict launch activation permis-

sions on a COM class.

Tokens

The SRM uses an object called a token (or access token) to identify the security context of a

process or thread. A security context consists of information that describes the privileges,

accounts, and groups associated with the process or thread. Tokens also include information

such as the session ID, the integrity level, and UAC virtualization state. (We’ll describe UAC’s

virtualization mechanism later in this chapter.)

During the logon process (described at the end of this chapter), Lsass creates an initial token

to represent the user logging on. It then determines whether the user logging on is a mem-

ber of a powerful group or possesses a powerful privilege. Windows Vista considers a user an

administrator if the user is a member of any of the administrator-type groups listed here:

Built-In Administrators

Certificate Administrators

Domain Administrators

474 Windows Internals, Fifth Edition

Enterprise Administrators

Policy Administrators

Schema Administrators

Domain Controllers

Enterprise Read-Only Domain Controllers

Read-Only Domain Controllers

Account Operators

Backup Operators

Cryptographic Operators

Network Configuration Operators

Print Operators

System Operators

RAS Servers

Power Users

Pre-Windows 2000 Compatible Access

Many of the groups listed are used only on domain-joined systems and don’t give users local

administrative rights directly. Instead they allow users to modify domainwide settings. If

one or more of these groups are present, Lsass creates a restricted token for the user (called

the filtered admin token), and creates a logon session for both. The standard user token is

attached to the initial process(es) that Winlogon starts (by default, Userinit.exe).

Note If UAC has been disabled, administrators run with a token that includes their administrator

group memberships and privileges.

Because child processes by default inherit a copy of the token of their creators, all processes

in the user’s session run under the same token. You can also generate a token by using the

Windows LogonUser function. You can then use this token to create a process that runs

within the security context of the user logged on through the LogonUser function by passing

the token to the Windows CreateProcessAsUser function. The CreateProcessWithLogon func-

tion also creates a token by creating a new logon session with an initial process, which is how

the Runas command launches processes under alternative tokens.

Tokens vary in size because different user accounts have different sets of privileges and

associated group accounts. However, all tokens contain the same information, shown in

Figure 6-3.

 Chapter 6 Security 475

Token source

Impersonation type

Token ID

Authentication ID

Modified ID

Expiration time

Default primary group

Default DACL

User account SID

Group 1 SID

Group n SID

Restricted SID 1

Restricted SID n

Privilege 1

Privilege n

Session ID

Flags

Logon session

Mandatory policy

FIGURE 6-3 Access tokens

The security mechanisms in Windows use two components to determine what objects can

be accessed and what secure operations can be performed. One component comprises the

token’s user account SID and group SID fields. The SRM uses SIDs to determine whether a

process or thread can obtain requested access to a securable object, such as an NTFS file.

The group SIDs in a token indicate which groups a user’s account is a member of. For exam-

ple, a server application can disable specific groups to restrict a token’s credentials when the

server application is performing actions a client requests. Disabling a group produces nearly

the same effect as if the group wasn’t present in the token (it results in a deny-only group,

described later). (Disabled SIDs are used as part of security access checks, described later in

the chapter.) Group SIDs can also include a special SID that contains the integrity level of the

476 Windows Internals, Fifth Edition

process or thread. The SRM uses another field in the token, which describes the mandatory
integrity policy, to perform the mandatory integrity check described later in the chapter.

The second component in a token that determines what the token’s thread or process can

do is the privilege array. A token’s privilege array is a list of rights associated with the token.

An example privilege is the right for the process or thread associated with the token to shut

down the computer. Privileges are described in more detail later in this chapter.

A token’s default primary group field and default discretionary access control list (DACL)

field are security attributes that Windows applies to objects that a process or thread creates

when it uses the token. By including security information in tokens, Windows makes it con-

venient for a process or thread to create objects with standard security attributes, because

the process or thread doesn’t need to request discrete security information for every object it

creates.

Each token’s type distinguishes a primary token (a token that identifies the security context

of a process) from an impersonation token (a type of token that threads use to temporar-

ily adopt a different security context, usually of another user). Impersonation tokens carry

an impersonation level that signifies what type of impersonation is active in the token.

(Impersonation is described later in this chapter.)

A token also includes the mandatory policy for the process or thread, which defines how MIC

will behave when processing this token. There are two policies:

TOKEN_MANDATORY_NO_WRITE_UP, which is enabled by default, sets the No-Write-Up

policy on this token, specifying that the process or thread will not be able to access

objects with a higher integrity level for write access.

TOKEN_MANDATORY_NEW_PROCESS_MIN, which is also enabled by default, specifies

that the SRM should look at the integrity level of the executable image when launching

a child process and compute the minimum integrity level of the parent process and the

file object’s integrity level as the child’s integrity level.

Token flags include parameters that determine the behavior of certain UAC and UIPI mecha-

nisms, such as virtualization and user interface access, that will be described later in this

chapter.

The remainder of the fields in a token serve informational purposes. The token source field

contains a short textual description of the entity that created the token. Programs that want

to know where a token originated use the token source to distinguish among sources such

as the Windows Session Manager, a network file server, or the remote procedure call (RPC)

server. The token identifier is a locally unique identifier (LUID) that the SRM assigns to the

token when it creates the token. The Windows executive maintains the executive LUID, a

counter it uses to assign a unique numeric identifier to each token.

 Chapter 6 Security 477

The token authentication ID is another kind of LUID. A token’s creator assigns the token’s

authentication ID when calling the LsaLogonUser function. If the creator doesn’t specify a

LUID, Lsass obtains the LUID from the executive LUID. Lsass copies the authentication ID for

all tokens descended from an initial logon token. A program can obtain a token’s authentica-

tion ID to see whether the token belongs to the same logon session as other tokens the pro-

gram has examined.

The executive LUID refreshes the modified ID every time a token’s characteristics are modi-

fied. An application can test the modified ID to discover changes in a security context since

the context’s last use.

Tokens contain an expiration time field that can be used by applications performing their

own security to reject a token after a specified amount of time. However, Windows does not

make use of this field internally.

Note To guarantee system security, the fields in a token are immutable (because they are

located in kernel memory). Except for fields that can be modified through a specific system call

designed to modify certain token attributes (assuming the caller has the appropriate access

rights to the token object), data such as the privileges and SIDs in a token can never be modified.

EXPERIMENT: Viewing Access Tokens

The kernel debugger dt _TOKEN command displays the format of an internal token

object. Although this structure differs from the user-mode token structure returned by

Windows API security functions, the fields are similar. For further information on tokens,

see the description in the Windows SDK documentation.

The following output is from the kernel debugger’s dt nt!_TOKEN command:

kd> dt nt!_TOKEN

 +0x000 TokenSource : _TOKEN_SOURCE

 +0x010 TokenId : _LUID

 +0x018 AuthenticationId : _LUID

 +0x020 ParentTokenId : _LUID

 +0x028 ExpirationTime : _LARGE_INTEGER

 +0x030 TokenLock : Ptr32 _ERESOURCE

 +0x034 ModifiedId : _LUID

 +0x040 Privileges : _SEP_TOKEN_PRIVILEGES

 +0x058 AuditPolicy : _SEP_AUDIT_POLICY

 +0x074 SessionId : Uint4B

 +0x078 UserAndGroupCount : Uint4B

 +0x07c RestrictedSidCount : Uint4B

 +0x080 VariableLength : Uint4B

 +0x084 DynamicCharged : Uint4B

 +0x088 DynamicAvailable : Uint4B

 +0x08c DefaultOwnerIndex : Uint4B

 +0x090 UserAndGroups : Ptr32 _SID_AND_ATTRIBUTES

478 Windows Internals, Fifth Edition

 +0x094 RestrictedSids : Ptr32 _SID_AND_ATTRIBUTES

 +0x098 PrimaryGroup : Ptr32 Void

 +0x09c DynamicPart : Ptr32 Uint4B

 +0x0a0 DefaultDacl : Ptr32 _ACL

 +0x0a4 TokenType : _TOKEN_TYPE

 +0x0a8 ImpersonationLevel : _SECURITY_IMPERSONATION_LEVEL

 +0x0ac TokenFlags : Uint4B

 +0x0b0 TokenInUse : UChar

 +0x0b4 IntegrityLevelIndex : Uint4B

 +0x0b8 MandatoryPolicy : Uint4B

 +0x0bc ProxyData : Ptr32 _SECURITY_TOKEN_PROXY_DATA

 +0x0c0 AuditData : Ptr32 _SECURITY_TOKEN_AUDIT_DATA

 +0x0c4 LogonSession : Ptr32 _SEP_LOGON_SESSION_REFERENCES

 +0x0c8 OriginatingLogonSession : _LUID

 +0x0d0 SidHash : _SID_AND_ATTRIBUTES_HASH

 +0x158 RestrictedSidHash : _SID_AND_ATTRIBUTES_HASH

 +0x1e0 VariablePart : Uint4B

You can examine the token for a process with the !token command. You’ll find the

address of the token in the output of the !process command, as shown here:

lkd> !process d6c 1

Searching for Process with Cid == d6c

PROCESS 85450508 SessionId: 1 Cid: 0d6c Peb: 7ffda000 ParentCid: 0ecc

 DirBase: cc9525e0 ObjectTable: afd75518 HandleCount: 18.

 Image: cmd.exe

 VadRoot 85328e78 Vads 24 Clone 0 Private 148. Modified 0. Locked 0.

 DeviceMap a0688138

 Token afd48470

 ElapsedTime 01:10:14.379

 UserTime 00:00:00.000

 KernelTime 00:00:00.000

 QuotaPoolUsage[PagedPool] 42864

 QuotaPoolUsage[NonPagedPool] 1152

 Working Set Sizes (now,min,max) (566, 50, 345) (2264KB, 200KB, 1380KB)

 PeakWorkingSetSize 582

 VirtualSize 22 Mb

 PeakVirtualSize 25 Mb

 PageFaultCount 680

 MemoryPriority BACKGROUND

 BasePriority 8

 CommitCharge 437

lkd> !token afd48470

_TOKEN afd48470

TS Session ID: 0x1

User: S-1-5-21-2778343003-3541292008-524615573-500 (User: ALEX-LAPTOP\Administrator)

Groups:

 00 S-1-5-21-2778343003-3541292008-524615573-513 (Group: ALEX-LAPTOP\None)

 Attributes - Mandatory Default Enabled

 01 S-1-1-0 (Well Known Group: localhost\Everyone)

 Attributes - Mandatory Default Enabled

 02 S-1-5-21-2778343003-3541292008-524615573-1000 (Alias: ALEX-LAPTOP\Debugger Users)

 Attributes - Mandatory Default Enabled

 Chapter 6 Security 479

 03 S-1-5-32-544 (Alias: BUILTIN\Administrators)

 Attributes - Mandatory Default Enabled Owner

 04 S-1-5-32-545 (Alias: BUILTIN\Users)

 Attributes - Mandatory Default Enabled

 05 S-1-5-4 (Well Known Group: NT AUTHORITY\INTERACTIVE)

 Attributes - Mandatory Default Enabled

 06 S-1-5-11 (Well Known Group: NT AUTHORITY\Authenticated Users)

 Attributes - Mandatory Default Enabled

 07 S-1-5-15 (Well Known Group: NT AUTHORITY\This Organization)

 Attributes - Mandatory Default Enabled

 08 S-1-5-5-0-89263 (no name mapped)

 Attributes - Mandatory Default Enabled LogonId

 09 S-1-2-0 (Well Known Group: localhost\LOCAL)

 Attributes - Mandatory Default Enabled

 10 S-1-5-64-10 (Well Known Group: NT AUTHORITY\NTLM Authentication)

 Attributes - Mandatory Default Enabled

 11 S-1-16-12288 Unrecognized SID

 Attributes - GroupIntegrity GroupIntegrityEnabled

Primary Group: S-1-5-21-2778343003-3541292008-524615573-513 (Group: ALEX-LAPTOP\None)

Privs:

 05 0x000000005 SeIncreaseQuotaPrivilege Attributes -

 08 0x000000008 SeSecurityPrivilege Attributes -

 09 0x000000009 SeTakeOwnershipPrivilege Attributes -

 10 0x00000000a SeLoadDriverPrivilege Attributes -

 11 0x00000000b SeSystemProfilePrivilege Attributes -

 12 0x00000000c SeSystemtimePrivilege Attributes -

 13 0x00000000d SeProfileSingleProcessPrivilege Attributes -

 14 0x00000000e SeIncreaseBasePriorityPrivilege Attributes -

 15 0x00000000f SeCreatePagefilePrivilege Attributes -

 17 0x000000011 SeBackupPrivilege Attributes -

 18 0x000000012 SeRestorePrivilege Attributes -

 19 0x000000013 SeShutdownPrivilege Attributes -

 20 0x000000014 SeDebugPrivilege Attributes -

 22 0x000000016 SeSystemEnvironmentPrivilege Attributes -

 23 0x000000017 SeChangeNotifyPrivilege Attributes - Enabled Default

 24 0x000000018 SeRemoteShutdownPrivilege Attributes -

 25 0x000000019 SeUndockPrivilege Attributes -

 28 0x00000001c SeManageVolumePrivilege Attributes -

 29 0x00000001d SeImpersonatePrivilege Attributes - Enabled Default

 30 0x00000001e SeCreateGlobalPrivilege Attributes - Enabled Default

 33 0x000000021 SeIncreaseWorkingSetPrivilege Attributes -

 34 0x000000022 SeTimeZonePrivilege Attributes -

 35 0x000000023 SeCreateSymbolicLinkPrivilege Attributes -

Authentication ID: (0,be1a2)

Impersonation Level: Identification

TokenType: Primary

Source: User32 TokenFlags: 0x0 (Token in use)

Token ID: 711076 ParentToken ID: 0

Modified ID: (0, 711081)

RestrictedSidCount: 0 RestrictedSids: 00000000

OriginatingLogonSession: 3e7

You can indirectly view token contents with Process Explorer’s Security tab in its pro-

cess Properties dialog box. The dialog box shows the groups and privileges included in

the token of the process you examine.

480 Windows Internals, Fifth Edition

EXPERIMENT: Launching a Program at Low Integrity Level

When you elevate a program, either by using the Run As Administrator option or

because the program is requesting it, the program is explicitly launched at high integ-

rity level; however, it is also possible to launch a program (other than PMIE) at low

integrity level by using Psexec from Sysinternals.

 1. Launch Notepad at low integrity level by using the following command:

c:\psexec –l notepad.exe

 2. Try opening a file in the %SystemRoot%\System32 directory. Notice that you can

browse the directory and open any file contained within it.

 3. Now create a new file, write some text, and try saving it in the %SystemRoot%\

System32 directory. Notepad should present a message box indicating a lack of

permissions and recommend saving the file in the Documents folder.

 4. Accept Notepad’s suggestion. You will get the same message box again, and

repeatedly for each attempt.

 5. Now try saving the file in the LocalLow directory of your user profile, shown in

the previous experiment.

In the previous experiment, saving a file in the LocalLow directory worked because

Notepad was running with low integrity level, and only the LocalLow directory also

had low integrity level. All the other locations where you tried to write the file had an

implicit medium integrity level. (You can verify this with Accesschk.) However, read-

ing from the %SystemRoot%\System32 directory, as well as opening files within it, did

work, even though the directory and its file also have an implicit medium integrity

level.

Impersonation

Impersonation is a powerful feature Windows uses frequently in its security model. Windows

also uses impersonation in its client/server programming model. For example, a server appli-

cation can export resources such as files, printers, or databases. Clients wanting to access a

resource send a request to the server. When the server receives the request, it must ensure

 Chapter 6 Security 481

that the client has permission to perform the desired operations on the resource. For exam-

ple, if a user on a remote machine tries to delete a file on an NTFS share, the server exporting

the share must determine whether the user is allowed to delete the file. The obvious way to

determine whether a user has permission is for the server to query the user’s account and

group SIDs and scan the security attributes on the file. This approach is tedious to program,

prone to errors, and wouldn’t permit new security features to be supported transparently.

Thus, Windows provides impersonation services to simplify the server’s job.

Impersonation lets a server notify the SRM that the server is temporarily adopting the secu-

rity profile of a client making a resource request. The server can then access resources on

behalf of the client, and the SRM carries out the access validations. Usually, a server has

access to more resources than a client does and loses some of its security credentials during

impersonation. However, the reverse can be true: the server can gain security credentials dur-

ing impersonation.

A server impersonates a client only within the thread that makes the impersonation request.

Thread-control data structures contain an optional entry for an impersonation token.

However, a thread’s primary token, which represents the thread’s real security credentials, is

always accessible in the process’s control structure.

Windows makes impersonation available through several mechanisms. If a server com-

municates with a client through a named pipe, the server can use the ImpersonateNamed-
PipeClient Windows API function to tell the SRM that it wants to impersonate the user

on the other end of the pipe. If the server is communicating with the client through

Dynamic Data Exchange (DDE) or an RPC, it can make similar impersonation requests

using DdeImpersonateClient and RpcImpersonateClient. A thread can create an imperson-

ation token that’s simply a copy of its process token with the ImpersonateSelf function. The

thread can then alter its impersonation token, to disable SIDs or privileges, for example.

Finally, a Security Support Provider Interface (SSPI) package can impersonate its clients with

ImpersonateSecurityContext. SSPIs implement a network authentication protocol such as LAN

Manager version 2 or Kerberos.

After the server thread finishes its task, it reverts to its primary security context. These forms

of impersonation are convenient for carrying out specific actions at the request of a client

and for ensuring that object accesses are audited correctly. (For example, the audit that is

generated gives the identity of the impersonated client rather than that of the server pro-

cess.) The disadvantage to these forms of impersonation is that they can’t execute an entire

program in the context of a client. In addition, an impersonation token can’t access files or

printers on network shares unless it is a delegation-level impersonation (described shortly)

and has sufficient credentials to authenticate to the remote machine, or the file or printer

share supports null sessions. (A null session is one that results from an anonymous logon.)

If an entire application must execute in a client’s security context or must access network

resources without using impersonation, the client must be logged on to the system. The

482 Windows Internals, Fifth Edition

LogonUser Windows API function enables this action. LogonUser takes an account name, a

password, a domain or computer name, a logon type (such as interactive, batch, or service),

and a logon provider as input, and it returns a primary token. A server thread can adopt the

token as an impersonation token, or the server can start a program that has the client’s cre-

dentials as its primary token. From a security standpoint, a process created using the token

returned from an interactive logon via LogonUser, such as with the CreateProcessAsUser API,

looks like a program a user starts by logging on to the machine interactively. The disadvan-

tage to this approach is that a server must obtain the user’s account name and password. If

the server transmits this information across the network, the server must encrypt it securely

so that a malicious user snooping network traffic can’t capture it.

To prevent the misuse of impersonation, Windows doesn’t let servers perform impersonation

without a client’s consent. A client process can limit the level of impersonation that a server

process can perform by specifying a security quality of service (SQOS) when connecting to

the server. A process can specify SECURITY_ANONYMOUS, SECURITY_IDENTIFICATION,

SECURITY_IMPERSONATION, and SECURITY_DELEGATION as flags for the Windows CreateFile

function. Each level lets a server perform different types of operations with respect to the

client’s security context:

SecurityAnonymous is the most restrictive level of impersonation—the server can’t

impersonate or identify the client.

SecurityIdentification level lets the server obtain the identity (the SIDs) of the client and

the client’s privileges, but the server can’t impersonate the client.

SecurityImpersonation level lets the server identify and impersonate the client on the

local system.

SecurityDelegation is the most permissive level of impersonation. It lets the server

impersonate the client on local and remote systems.

If the client doesn’t set an impersonation level, Windows chooses the SecurityImpersonation

level by default. The CreateFile function also accepts SECURITY_EFFECTIVE_ONLY and

SECURITY_CONTEXT_TRACKING as modifiers for the impersonation setting:

SECURITY_EFFECTIVE_ONLY prevents a server from enabling or disabling a client’s privi-

leges or groups while the server is impersonating.

SECURITY_CONTEXT_TRACKING specifies that any changes a client makes to its security

context are reflected in a server that is impersonating it. If this option isn’t specified,

the server adopts the context of the client at the time of the impersonation and doesn’t

receive any changes. This option is honored only when the client and server processes

are on the same system.

To prevent spoofing scenarios in which a low integrity process could create a user interface

that captured user credentials and then used LogonUser to obtain that user’s token, a special

integrity policy applies to impersonation scenarios: a thread cannot impersonate a token of

 Chapter 6 Security 483

higher integrity than its own. For example, a low integrity application cannot spoof a dialog

box that queries administrative credentials and then attempt to launch a process at a higher

privilege level. The integrity mechanism policy for impersonation access tokens is that the

integrity level of the access token that is returned by LsaLogonUser must be no higher than

the integrity level of the calling process.

Restricted Tokens

A restricted token is created from a primary or impersonation token using the Create-
RestrictedToken function. The restricted token is a copy of the token it’s derived from, with

the following possible modifications:

Privileges can be removed from the token’s privilege array.

SIDs in the token can be marked as deny-only. These SIDs remove access to any

resources for which the SID’s access is denied by using a matching access-denied ACE

that would otherwise be overridden by an ACE granting access to a group containing

the SID earlier in the security descriptor.

SIDs in the token can be marked as restricted. These SIDs are subject to a second pass

of the access check algorithm, which will parse only the restricted SIDs in the token. The

results of both the first pass and the second pass must grant access to the resource or

no access is granted to the object.

Restricted tokens are useful when an application wants to impersonate a client at a reduced

security level, primarily for safety reasons when running untrusted code. For example, the

restricted token can have the shutdown-system privilege removed from it to prevent code

executed in the restricted token’s security context from rebooting the system.

Filtered Admin Token

As we saw earlier, restricted tokens are also used by UAC to create the filtered admin token

that all user applications will inherit. A filtered admin token has the following characteristics:

The integrity level is set to medium.

The administrator and administrator-like SIDs mentioned previously are marked as

deny-only to prevent a security hole if the group was removed altogether. For example,

if a file had an access control list (ACL) that denied the Administrators group all access

but granted some access to another group the user belongs to, the user would be

granted access if the Administrators group was absent from the token, which would

give the standard user version of the user’s identity more access than the user’s admin-

istrator identity.

All privileges are stripped except Change Notify, Shutdown, Undock, Increase Working

Set, and Time Zone.

484 Windows Internals, Fifth Edition

EXPERIMENT: Looking at Filtered Admin Tokens

You can make Explorer launch a process with either the standard user token or the

administrator token by following these steps on a Windows machine with UAC enabled:

 1. Log on to an account that’s a member of the Administrators group.

 2. Click Start, Programs, Accessories, Command Prompt, right-click on the shortcut,

and then select Run As Administrator. You will see a command prompt with the

word Administrator in the title bar.

 3. Now repeat the process, but simply click on the shortcut—this will launch a sec-

ond command prompt without administrative privileges.

 4. Run Process Explorer, and view the Security tab in the Properties dialog boxes for

the two command prompt processes you launched. Note that the standard user

token contains a deny-only SID and a Medium Mandatory Label, and that it has

only a couple of privileges. The properties on the right in the following screen

shot are from a command prompt running with an administrator token, and the

properties on the left are from one running with the filtered administrative token:

Security Descriptors and Access Control

Tokens, which identify a user’s credentials, are only part of the object security equation.

Another part of the equation is the security information associated with an object, which

 Chapter 6 Security 485

specifies who can perform what actions on the object. The data structure for this information

is called a security descriptor. A security descriptor consists of the following attributes:

Revision number The version of the SRM security model used to create the

descriptor.

Flags Optional modifiers that define the behavior or characteristics of the descriptor.

These flags are listed in Table 6-5.

Owner SID The owner’s security ID.

Group SID The security ID of the primary group for the object (used only by POSIX).

Discretionary access control list (DACL) Specifies who has what access to the object.

System access control list (SACL) Specifies which operations by which users should

be logged in the security audit log and the explicit integrity level of an object.

TABLE 6-5 Security Descriptor Flags

Flag Meaning

SE_OWNER_DEFAULTED Indicates a security descriptor with a default owner security iden-

tifier (SID). Use this bit to find all the objects that have default

owner permissions set.

SE_GROUP_DEFAULTED Indicates a security descriptor with a default group SID. Use this

bit to find all the objects that have default group permissions set.

SE_DACL_PRESENT Indicates a security descriptor that has a DACL. If this flag is not

set, or if this flag is set and the DACL is NULL, the security de-

scriptor allows full access to everyone.

SE_DACL_DEFAULTED Indicates a security descriptor with a default DACL. For example,

if an object creator does not specify a DACL, the object receives

the default DACL from the access token of the creator. This flag

can affect how the system treats the DACL, with respect to access

control entry (ACE) inheritance. The system ignores this flag if

the SE_DACL_PRESENT flag is not set.

SE_SACL_PRESENT Indicates a security descriptor that has a system access control

list (SACL).

SE_SACL_DEFAULTED Indicates a security descriptor with a default SACL. For example,

if an object creator does not specify an SACL, the object receives

the default SACL from the access token of the creator. This flag

can affect how the system treats the SACL with respect to ACE

inheritance. The system ignores this flag if the SE_SACL_PRESENT

flag is not set.

SE_DACL_UNTRUSTED Indicates that the ACL pointed to by the DACL of the security

descriptor was provided by an untrusted source. If this flag is set

and a compound ACE is encountered, the system will substitute

known valid SIDs for the server SIDs in the ACEs.

486 Windows Internals, Fifth Edition

Flag Meaning

SE_SERVER_SECURITY Requests that the provider for the object protected by the

security descriptor should be a server ACL based on the input

ACL, regardless of its source (explicit or defaulting). This is done

by replacing all the GRANT ACEs with compound ACEs granting

the current server access. This flag is only meaningful if the

subject is impersonating.

SE_DACL_AUTO_INHERIT_REQ Requests that the provider for the object protected by the

security descriptor automatically propagate the DACL to existing

child objects. If the provider supports automatic inheritance,

the DACL is propagated to any existing child objects, and the

SE_DACL_AUTO_INHERITED bit in the security descriptor of the

parent and child objects is set.

SE_SACL_AUTO_INHERIT_REQ Requests that the provider for the object protected by the

security descriptor automatically propagate the SACL to existing

child objects. If the provider supports automatic inheritance,

the SACL is propagated to any existing child objects, and the

SE_SACL_AUTO_INHERITED bit in the security descriptors of the

parent object and child objects is set.

SE_DACL_AUTO_INHERITED Indicates a security descriptor in which the DACL is set up to sup-

port automatic propagation of inheritable ACEs to existing child

objects. The system sets this bit when it performs the automatic

inheritance algorithm for the object and its existing child objects.

SE_SACL_AUTO_INHERITED Indicates a security descriptor in which the SACL is set up to sup-

port automatic propagation of inheritable ACEs to existing child

objects. The system sets this bit when it performs the automatic

inheritance algorithm for the object and its existing child objects.

SE_DACL_PROTECTED Prevents the DACL of a security descriptor from being modified

by inheritable ACEs.

SE_SACL_PROTECTED Prevents the SACL of a security descriptor from being modified

by inheritable ACEs.

SE_RM_CONTROL_VALID Indicates that the resource control manager bits in the security

descriptor are valid. The resource control manager bits are 8 bits

in the security descriptor structure that contains information

specific to the resource manager accessing the structure.

SE_SELF_RELATIVE Indicates a security descriptor in self-relative format, with all the

security information in a contiguous block of memory. If this flag

is not set, the security descriptor is in absolute format.

An access control list (ACL) is made up of a header and zero or more access control entry

(ACE) structures. There are two types of ACLs: DACLs and SACLs. In a DACL, each ACE con-

tains a SID and an access mask (and a set of flags, explained shortly). Eight types of ACEs can

appear in a DACL: access allowed, access denied, allowed-object, denied-object, allowed-

callback, denied-callback, allowed-object-callback, and denied-object-callback. As you would

expect, the access-allowed ACE grants access to a user, and the access-denied ACE denies the

 Chapter 6 Security 487

access rights specified in the access mask. The callback ACEs are used by applications that

make use of the AuthZ API (described later) to register a callback that AuthZ will call when it

performs an access check involving this ACE.

The difference between allowed-object and access allowed, and between denied-object and

access denied, is that the object types are used only within Active Directory. ACEs of these

types have a GUID (globally unique identifier) field that indicates that the ACE applies only

to particular objects or subobjects (those that have GUID identifiers). In addition, another

optional GUID indicates what type of child object will inherit the ACE when a child is created

within an Active Directory container that has the ACE applied to it. (A GUID is a 128-bit iden-

tifier guaranteed to be universally unique.)

The accumulation of access rights granted by individual ACEs forms the set of access rights

granted by an ACL. If no DACL is present (a null DACL) in a security descriptor, everyone has

full access to the object. If the DACL is empty (that is, it has 0 ACEs), no user has access to the

object.

The ACEs used in DACLs also have a set of flags that control and specify characteristics of the

ACE related to inheritance. Some object namespaces have containers and objects. A container

can hold other container objects and leaf objects, which are its child objects. Examples of

containers are directories in the file system namespace and keys in the registry namespace.

Certain flags in an ACE control how the ACE propagates to child objects of the container

associated with the ACE. Table 6-6, reproduced in part from the Windows SDK, lists the

inheritance rules for ACE flags.

TABLE 6-6 Inheritance Rules for ACE Flags

Flag Inheritance Rule

CONTAINER_INHERIT_ACE Child objects that are containers, such as directories, inherit

the ACE as an effective ACE. The inherited ACE is inheritable

unless the NO_PROPAGATE_INHERIT_ACE bit flag is also set.

INHERIT_ONLY_ACE This flag indicates an inherit-only ACE that doesn’t control

access to the object it’s attached to. If this flag is not set, the

ACE controls access to the object to which it is attached.

INHERITED_ACE This flag indicates that the ACE was inherited. The system

sets this bit when it propagates an inheritable ACE to a child

object.

NO_PROPAGATE_INHERIT_ACE If the ACE is inherited by a child object, the system clears the

OBJECT_INHERIT_ACE and CONTAINER_INHERIT_ACE flags in

the inherited ACE. This action prevents the ACE from being

inherited by subsequent generations of objects.

OBJECT_INHERIT_ACE Noncontainer child objects inherit the ACE as an effective

ACE. For child objects that are containers, the ACE is inherited

as an inherit-only ACE unless the NO_PROPAGATE_INHERIT_

ACE bit flag is also set.

488 Windows Internals, Fifth Edition

A SACL contains two types of ACEs, system audit ACEs and system audit-object ACEs. These

ACEs specify which operations performed on the object by specific users or groups should be

audited. Audit information is stored in the system Audit Log. Both successful and unsuccess-

ful attempts can be audited. Like their DACL object-specific ACE cousins, system audit-object

ACEs specify a GUID indicating the types of objects or subobjects that the ACE applies to and

an optional GUID that controls propagation of the ACE to particular child object types. If a

SACL is null, no auditing takes place on the object. (Security auditing is described later in this

chapter.) The inheritance flags that apply to DACL ACEs also apply to system audit and sys-

tem audit-object ACEs.

Figure 6-4 is a simplified picture of a file object and its DACL.

File
object

Security
descriptor

Allow
USER1

Read data

Allow
TEAM1

Read data
Write data

Allow
Everyone

File execute

ACE ACE ACE

DACL

FIGURE 6-4 Discretionary access control list (DACL)

As shown in Figure 6-4, the first ACE allows USER1 to query the file. The second ACE allows

members of the group TEAM1 to have read and write access to the file, and the third ACE

grants all other users (Everyone) execute access.

EXPERIMENT: Viewing a Security Descriptor

Most executive subsystems rely on the object manager’s default security functionality

to manage security descriptors for their objects. The object manager’s default secu-

rity functions use the security descriptor pointer to store security descriptors for such

objects. For example, the process manager uses default security, so the object manager

stores process and thread security descriptors in the object headers of process and

thread objects, respectively. The security descriptor pointer of events, mutexes, and

semaphores also store their security descriptors. You can use live kernel debugging to

view the security descriptors of these objects once you locate their object header, as

outlined in the following steps. (Note that both Process Explorer and Accesschk can

also show security descriptors for processes.)

 1. Start the kernel debugger.

 2. Type !process 0 0 explorer.exe to obtain process information about Explorer:

lkd> !process 0 0 explorer.exe

PROCESS 84fce020 SessionId: 1 Cid: 0804 Peb: 7ffd3000 ParentCid: 05ec

 DirBase: 1f14f420 ObjectTable: 90369388 HandleCount: 428.

 Image: explorer.exe

 Chapter 6 Security 489

 3. Type !object with the address following the word PROCESS in the output of the

previous command as the argument to show the object data structure:

lkd> !object 84fce020

Object: 84fce020 Type: (83dd3bc0) Process

 ObjectHeader: 84fce008 (old version)

 HandleCount: 5 PointerCount: 185

 4. Type dt _OBJECT_HEADER and the address of the object header field from the

previous command’s output to show the object header data structure, including

the security descriptor pointer value:

lkd> dt _object_header 84fce008

nt!_OBJECT_HEADER

 +0x000 PointerCount : 187

 +0x004 HandleCount : 5

 +0x004 NextToFree : 0x00000005

 +0x008 Type : 0x83dd3bc0 _OBJECT_TYPE

 +0x00c NameInfoOffset : 0 ''

 +0x00d HandleInfoOffset : 0 ''

 +0x00e QuotaInfoOffset : 0 ''

 +0x00f Flags : 0x20 ' '

 +0x010 ObjectCreateInfo : 0x84c91b78 _OBJECT_CREATE_INFORMATION

 +0x010 QuotaBlockCharged : 0x84c91b78

 +0x014 SecurityDescriptor : 0x9036770a

 +0x018 Body : _QUAD

 5. Security descriptor pointers in the object header use the low three bits as flags,

so type the following command to dump the security descriptor by entering

the address displayed in the object header structure, but with the low three bits

removed:

lkd> !sd 0x9036770a & -8

->Revision: 0x1

->Sbz1 : 0x0

->Control : 0x8814

 SE_DACL_PRESENT

 SE_SACL_PRESENT

 SE_SACL_AUTO_INHERITED

 SE_SELF_RELATIVE

->Owner : S-1-5-32-544

->Group : S-1-5-21-529698691-1302229678-416145009-513

->Dacl :

->Dacl : ->AclRevision: 0x2

->Dacl : ->Sbz1 : 0x0

->Dacl : ->AclSize : 0x50

->Dacl : ->AceCount : 0x3

->Dacl : ->Sbz2 : 0x0

->Dacl : ->Ace[0]: ->AceType: ACCESS_ALLOWED_ACE_TYPE

->Dacl : ->Ace[0]: ->AceFlags: 0x0

->Dacl : ->Ace[0]: ->AceSize: 0x18

->Dacl : ->Ace[0]: ->Mask : 0x001fffff

->Dacl : ->Ace[0]: ->SID: S-1-5-32-544

490 Windows Internals, Fifth Edition

->Dacl : ->Ace[1]: ->AceType: ACCESS_ALLOWED_ACE_TYPE

->Dacl : ->Ace[1]: ->AceFlags: 0x0

->Dacl : ->Ace[1]: ->AceSize: 0x14

->Dacl : ->Ace[1]: ->Mask : 0x001fffff

->Dacl : ->Ace[1]: ->SID: S-1-5-18

->Dacl : ->Ace[2]: ->AceType: ACCESS_ALLOWED_ACE_TYPE

->Dacl : ->Ace[2]: ->AceFlags: 0x0

->Dacl : ->Ace[2]: ->AceSize: 0x1c

->Dacl : ->Ace[2]: ->Mask : 0x00121411

->Dacl : ->Ace[2]: ->SID: S-1-5-5-0-97946

->Sacl :

->Sacl : ->AclRevision: 0x2

->Sacl : ->Sbz1 : 0x0

->Sacl : ->AclSize : 0x1c

->Sacl : ->AceCount : 0x1

->Sacl : ->Sbz2 : 0x0

->Sacl : ->Ace[0]: ->AceType: SYSTEM_MANDATORY_LABEL_ACE_TYPE

->Sacl : ->Ace[0]: ->AceFlags: 0x0

->Sacl : ->Ace[0]: ->AceSize: 0x14

->Sacl : ->Ace[0]: ->Mask : 0x00000003

->Sacl : ->Ace[0]: ->SID: S-1-16-12288

The security descriptor contains three access-allowed ACEs: one for the Administrators

group (S-1-5-32-544), one for the System account (S-1-5-18), and the last for the Logon

SID (S-1-5-5-0-97946). The system access control list has one entry (S-1-16-12288)

labeling the process as high integrity level. (This example output was taken from a

Windows Server 2008 system logged on to the Administrator account, which is why

Explorer is running at high instead of medium.)

ACL Assignment

To determine which DACL to assign to a new object, the security system uses the first appli-

cable rule of the following four assignment rules:

 1. If a caller explicitly provides a security descriptor when creating the object, the secu-

rity system applies it to the object. If the object has a name and resides in a container

object (for example, a named event object in the \BaseNamedObjects object manager

namespace directory), the system merges any inheritable ACEs (ACEs that might propa-

gate from the object’s container) into the DACL unless the security descriptor has the

SE_DACL_PROTECTED flag set, which prevents inheritance.

 2. If a caller doesn’t supply a security descriptor and the object has a name, the security

system looks at the security descriptor in the container in which the new object name

is stored. Some of the object directory’s ACEs might be marked as inheritable, mean-

ing that they should be applied to new objects created in the object directory. If any of

 Chapter 6 Security 491

these inheritable ACEs are present, the security system forms them into an ACL, which it

attaches to the new object. (Separate flags indicate ACEs that should be inherited only

by container objects rather than by objects that aren’t containers.)

 3. If no security descriptor is specified and the object doesn’t inherit any ACEs, the secu-

rity system retrieves the default DACL from the caller’s access token and applies it to

the new object. Several subsystems on Windows have hard-coded DACLs that they

assign on object creation (for example, services, LSA, and SAM objects).

 4. If there is no specified descriptor, no inherited ACEs, and no default DACL, the sys-

tem creates the object with no DACL, which allows everyone (all users and groups) full

access to the object. This rule is the same as the third rule in which a token contains a

null default DACL.

The rules the system uses when assigning a SACL to a new object are similar to those used

for DACL assignment, with some exceptions. The first is that inherited system audit ACEs

don’t propagate to objects with security descriptors marked with the SE_SACL_PROTECTED

flag (similar to the SE_DACL_PROTECTED flag, which protects DACLs). Second, if there are no

specified security audit ACEs and there is no inherited SACL, no SACL is applied to the object.

This behavior is different from that used to apply default DACLs because tokens don’t have a

default SACL.

When a new security descriptor containing inheritable ACEs is applied to a container, the

system automatically propagates the inheritable ACEs to the security descriptors of child

objects. (Note that a security descriptor’s DACL doesn’t accept inherited DACL ACEs if its

SE_DACL_PROTECTED flag is enabled, and its SACL doesn’t inherit SACL ACEs if the descriptor

has the SE_SACL_PROTECTED flag set.) The order in which inheritable ACEs are merged with

an existing child object’s security descriptor is such that any ACEs that were explicitly applied

to the ACL are kept ahead of ACEs that the object inherits. The system uses the following

rules for propagating inheritable ACEs:

If a child object with no DACL inherits an ACE, the result is a child object with a DACL

containing only the inherited ACE.

If a child object with an empty DACL inherits an ACE, the result is a child object with a

DACL containing only the inherited ACE.

For objects in Active Directory only, if an inheritable ACE is removed from a parent

object, automatic inheritance removes any copies of the ACE inherited by child objects.

For objects in Active Directory only, if automatic inheritance results in the removal of

all ACEs from a child object’s DACL, the child object has an empty DACL rather than no

DACL.

As you’ll soon discover, the order of ACEs in an ACL is an important aspect of the Windows

security model.

492 Windows Internals, Fifth Edition

Note Inheritance is generally not directly supported by the object stores such as file systems,

the registry, or Active Directory. Windows APIs that support inheritance, including SetSecurityInfo

and SetNamedSecurityInfo, do so by invoking appropriate functions within the security inheri-

tance support DLL (%SystemRoot%\System32\Ntmarta.dll) that know how to traverse those

object stores.

Determining Access

Two methods are used for determining access to an object:

The mandatory integrity check, which determines whether the integrity level of the

caller is high enough to access the resource, based on the resource’s own integrity level

and its mandatory policy.

The discretionary access check, which determines the access that a specific user account

has to an object.

When a process tries to open an object, the integrity check takes place before the standard

Windows DACL check in the kernel’s SeAccessCheck function because it is faster to execute

and can quickly eliminate the need to perform the full discretionary access check. Given the

default integrity policies, a process can only open an object for write access if its integrity

level is equal to or higher than the object’s integrity level and the DACL also grants the pro-

cess the accesses it desires. For example, a low integrity level process cannot open a medium

integrity level process for write access, even if the DACL grants the process write access.

With the default integrity policy, processes can open any object—with the exception of pro-

cess, thread, and token objects—for read access as long as the object’s DACL grants them

read access. That means a process running at low integrity level can open any files accessible

to the user account in which it’s running. Protected Mode Internet Explorer uses integrity lev-

els to help prevent malware that infects it from modifying user account settings, but it does

not stop malware from reading the user’s documents.

Recall that process and thread objects are exceptions because their integrity policy also

includes No-Read-Up. That means a process’s integrity level must be equal to or higher

than the integrity level of the process or thread it wants to open, and the DACL must grant

it the accesses it wants for an open to succeed. Assuming the DACLs allow the desired

access, Figure 6-5 shows the types of access that the processes running at medium or low

have to other processes and objects.

 Chapter 6 Security 493

Read
Write

Medium

High

Low

Medium integrity
level process

Low integrity
level process

Medium

High

Low

Processes Objects

FIGURE 6-5 Access to processes versus objects for medium and low integrity level processes

User Interface Privilege Isolation (UIPI)

The Windows messaging subsystem also honors integrity levels to implement UIPI. The

subsystem does this by preventing a process from sending window messages to the

windows owned by a process having a higher integrity level, with the following infor-

mational messages being exceptions:

WM_NULL

WM_MOVE

WM_SIZE

WM_GETTEXT

WM_GETTEXTLENGTH

WM_GETHOTKEY

WM_GETICON

WM_RENDERFORMAT

WM_DRAWCLIPBOARD

WM_CHANGECBCHAIN

WM_THEMECHANGED

494 Windows Internals, Fifth Edition

This use of integrity levels prevents standard user processes from driving input into the

windows of elevated processes or from performing a shatter attack (such as sending

the process malformed messages that trigger internal buffer overflows, which can lead

to the execution of code at the elevated process’s privileges). UIPI also blocks window

hooks from affecting the windows of higher integrity level processes so that a standard

user process can’t log the keystrokes the user types into an administrative application,

for example. Journal hooks are also blocked in the same way to prevent lower integrity

level processes from monitoring the behavior of higher integrity level processes.

Processes can choose to allow additional messages to pass the guard by calling the

ChangeWindowMessageFilter API. This function is typically used to add messages

required by custom controls to communicate outside native common controls in

Windows. Because this function is per-process, however, and not per-thread, it is pos-

sible for two custom controls inside the same process to be using the same internal

window messages, which could lead to one control’s potentially malicious window mes-

sage to be allowed through, simply because it happens to be a query-only message for

the other custom control.

Because accessibility applications such as the On-Screen Keyboard (Osk.exe) are subject

to UIPI’s restrictions (which would require the accessibility application to be executed

for each kind of visible integrity level process on the desktop), these processes can

enable UI Access. This flag can be present in the manifest file of the image and will

run the process at a slightly higher integrity level than medium (between 0x2000 and

0x3000) if launched from a standard user account, or at high integrity level if launched

from an administrator account. Note that in the second case, an elevation request

won’t actually be displayed. For a process to set this flag, its image must also be signed

and in one of several secure locations, including %SystemRoot% and %ProgramFiles%.

Note Threads created by Csrss (which is responsible for console windows and, by extension, all

command-line applications) always run with a UIPI integrity level of medium, regardless of how

the actual command-line process was started. This means that it is possible to drive input to

these kinds of applications from a low integrity level regardless of UIPI.

After the integrity check is complete, and assuming the mandatory policy allows access to

the object based on the caller’s integrity, one of two algorithms is used for the discretionary

check to an object, which will determine the final outcome of the access check:

One to determine the maximum access allowed to the object, a form of which is

exported to user mode with the Windows GetEffectiveRightsFromAcl function. This is

also used when a program specifies a desired access of MAXIMUM_ALLOWED, which is

what the legacy APIs that don’t have a desired access parameter use.

 Chapter 6 Security 495

One to determine whether a specific desired access is allowed, which can be done with

the Windows AccessCheck function or the AccessCheckByType function.

The first algorithm examines the entries in the DACL as follows:

 1. If the object has no DACL (a null DACL), the object has no protection and the security

system grants all access.

 2. If the caller has the take-ownership privilege, the security system grants write-owner

access before examining the DACL. (Take-ownership privilege and write-owner access

are explained in a moment.)

 3. If the caller is the owner of the object, the system looks for an OWNER_RIGHTS SID

and uses that SID as the SID for the next steps. Otherwise, read-control and write-DACL

access rights are granted.

 4. For each access-denied ACE that contains a SID that matches one in the caller’s access

token, the ACE’s access mask is removed from the granted-access mask.

 5. For each access-allowed ACE that contains a SID that matches one in the caller’s access

token, the ACE’s access mask is added to the granted-access mask being computed,

unless that access has already been denied.

When all the entries in the DACL have been examined, the computed granted-access mask is

returned to the caller as the maximum allowed access to the object. This mask represents the

total set of access types that the caller will be able to successfully request when opening the

object.

The preceding description applies only to the kernel-mode form of the algorithm. The

Windows version implemented by GetEffectiveRightsFromAcl differs in that it doesn’t perform

step 2, and it considers a single user or group SID rather than an access token.

Owner Rights

Because owners of an object can normally override the security of an object by always

being granted read-control and write-DACL rights, a specialized method of controlling

this behavior is exposed by Windows: the Owner Rights SID.

The Owner Rights SID exists for two main reasons: improving service hardening in the

operating system, and allowing more flexibility for specific usage scenarios. For exam-

ple, suppose an administrator wants to allow users to create files and folders but not

to modify the ACLs on those objects. (Users could inadvertently or maliciously grant

access to those files or folders to unwanted accounts.) By using an inheritable Owner

Rights SID, the users can be prevented from editing or even viewing the ACL on the

objects they create. A second usage scenario relates to group changes. Suppose an

496 Windows Internals, Fifth Edition

employee has been part of some confidential or sensitive group, has created several

files while a member of that group, and has now been removed from the group for

business reasons. Since that employee is still a user, he could continue accessing the

sensitive files.

As mentioned, Windows also uses the Owner Rights SID to improve service hardening.

Whenever a service creates an object at run time, the Owner SID associated with that

object is the account the service is running in (such as local system or local service) and

not the actual service SID. This means that any other service in the same account would

have access to the object by being an owner. The Owner Rights SID prevents that

unwanted behavior.

The second algorithm is used to determine whether a specific access request can be granted,

based on the caller’s access token. Each open function in the Windows API that deals with

securable objects has a parameter that specifies the desired access mask, which is the last

component of the security equation. To determine whether the caller has access, the follow-

ing steps are performed:

 1. If the object has no DACL (a null DACL), the object has no protection and the security

system grants the desired access.

 2. If the caller has the take-ownership privilege, the security system grants write-owner

access if requested and then examines the DACL. However, if write-owner access was

the only access requested by a caller with take-ownership privilege, the security system

grants that access and never examines the DACL.

 3. If the caller is the owner of the object, the system looks for an OWNER_RIGHTS SID

and uses that SID as the SID for the next steps. Otherwise, read-control and write-DACL

access rights are granted. If these rights were the only access rights that the caller

requested, access is granted without examining the DACL

 4. Each ACE in the DACL is examined from first to last. An ACE is processed if one of the

following conditions is satisfied:

 a. The ACE is an access-deny ACE, and the SID in the ACE matches an enabled SID

(SIDs can be enabled or disabled) or a deny-only SID in the caller’s access token.

 b. The ACE is an access-allowed ACE, and the SID in the ACE matches an enabled SID

in the caller’s token that isn’t of type deny-only.

 c. It is the second pass through the descriptor for restricted-SID checks, and the SID

in the ACE matches a restricted SID in the caller’s access token.

 d. The ACE isn’t marked as inherit-only.

 Chapter 6 Security 497

 5. If it is an access-allowed ACE, the rights in the access mask in the ACE that were

requested are granted; if all the requested access rights have been granted, the access

check succeeds. If it is an access-denied ACE and any of the requested access rights are

in the denied-access rights, access is denied to the object.

 6. If the end of the DACL is reached and some of the requested access rights still haven’t

been granted, access is denied.

 7. If all accesses are granted but the caller’s access token has at least one restricted SID,

the system rescans the DACL’s ACEs looking for ACEs with access-mask matches for the

accesses the user is requesting and a match of the ACE’s SID with any of the caller’s

restricted SIDs. Only if both scans of the DACL grant the requested access rights is the

user granted access to the object.

The behavior of both access-validation algorithms depends on the relative ordering of allow

and deny ACEs. Consider an object with only two ACEs, where one ACE specifies that a cer-

tain user is allowed full access to an object and the other ACE denies the user access. If the

allow ACE precedes the deny ACE, the user can obtain full access to the object, but if the

order is reversed, the user cannot gain any access to the object.

Several Windows functions, such as SetSecurityInfo and SetNamedSecurityInfo, apply ACEs

in the preferred order of explicit deny ACEs preceding explicit allow ACEs. Note that the

security editor dialog boxes with which you edit permissions on NTFS files and registry keys,

for example, use these functions. SetSecurityInfo and SetNamedSecurityInfo also apply ACE

inheritance rules to the security descriptor on which they are applied.

Figure 6-6 shows an example access validation demonstrating the importance of ACE order-

ing. In the example, access is denied a user wanting to open a file even though an ACE in the

object’s DACL grants the access because the ACE denying the user access (by virtue of the

user’s membership in the Writers group) precedes the ACE granting access.

As we stated earlier, because it wouldn’t be efficient for the security system to process the

DACL every time a process uses a handle, the SRM makes this access check only when a

handle is opened, not each time the handle is used. Thus, once a process successfully opens

a handle, the security system can’t revoke the access rights that have been granted, even if

the object’s DACL changes. Also keep in mind that because kernel-mode code uses pointers

rather than handles to access objects, the access check isn’t performed when the operating

system uses objects. In other words, the Windows executive “trusts” itself in a security sense.

The fact that an object’s owner is always granted write-DACL access to an object means that

users can never be prevented from accessing the objects they own. If, for some reason, an

object had an empty DACL (no access), the owner would still be able to open the object with

write-DACL access and then apply a new DACL with the desired access permissions.

498 Windows Internals, Fifth Edition

Revision

Flags

Owner SID

Primary group

DACL pointer

SACL pointer

Deny

Writers

Read, Write

Allow

DaveC

Read, Write

User: DaveC

Group1: Administrators

Group2: Writers

ACE

ACE

Object

Open access requested: Write

Denied

FIGURE 6-6 Access validation example

A Warning Regarding the GUI Security Editors

When you use the GUI permissions editors to modify security settings on a file, a reg-

istry, or an Active Directory object, or on another securable object, the main security

dialog box shows you a potentially misleading view of the security that’s applied to

the object. If you allow Full Control to the Everyone group and deny the Administrator

group Full Control, the list might lead you to believe that the Everyone group access-

allowed ACE precedes the Administrator deny ACE because that’s the order in which

they appear. However, as we’ve said, the editors place deny ACEs before allow ACEs

when they apply the ACL to the object.

 Chapter 6 Security 499

The Permissions tab of the Advanced Security Settings dialog box shows the order of

ACEs in the DACL. However, even this dialog box can be confusing because a complex

DACL can have deny ACEs for various accesses followed by allow ACEs for other access

types.

500 Windows Internals, Fifth Edition

The only definitive way to know what accesses a particular user or group will have to an

object (other than having that user or a member of the group try to access the object)

is to use the Effective Permissions tab of the dialog box that is displayed when you click

the Advanced button in the Properties dialog box. Enter the name of the user or group

you want to check, and the dialog box shows you what permissions they are allowed

for the object.

The AuthZ API

The AuthZ Windows API implements the same security model as the security refer-

ence monitor, but it implements the model totally in user mode in the %SystemRoot%\

System32\Authz.dll library. This gives applications that want to protect their own

private objects, such as database tables, the ability to leverage the Windows security

model without incurring the cost of user-mode to kernel-mode transitions that they

would make if they relied on the security reference monitor.

The AuthZ API uses standard security descriptor data structures, SIDs, and privileges.

Instead of using tokens to represent clients, AuthZ uses the AUTHZ_CLIENT_CONTEXT.

AuthZ includes user-mode equivalents of all access-check and Windows security

functions—for example, AuthzAccessCheck is the AuthZ version of the AccessCheck

Windows API that uses the SeAccessCheck security reference monitor function.

 Chapter 6 Security 501

Another advantage available to applications that use AuthZ is that they can direct

AuthZ to cache the results of security checks to improve subsequent checks that use

the same client context and security descriptor.

AuthZ is fully documented in the Windows SDK.

Account Rights and Privileges

Many operations performed by processes as they execute cannot be authorized through

object access protection because they do not involve interaction with a particular object.

For example, the ability to bypass security checks when opening files for backup is an attri-

bute of an account, not of a particular object. Windows uses both privileges and account

rights to allow a system administrator to control what accounts can perform security-related

operations.

A privilege is the right of an account to perform a particular system-related operation, such

as shutting down the computer or changing the system time. An account right grants or

denies the account to which it’s assigned the ability to perform a particular type of logon,

such as a local logon or interactive logon, to a computer.

A system administrator assigns privileges to groups and accounts using tools such as the

Active Directory Users and Groups MMC snap-in for domain accounts or the Local Security

Policy Editor. You access the Local Security Policy Editor in the Administrative Tools folder

of the Control Panel or the Start menu (if you’ve configured your Start menu to contain an

Administrative Tools link). Figure 6-7 shows User Rights Assignment configuration in the Local

Security Policy Editor, which displays the complete list of privileges and account rights avail-

able on Windows. Note that the tool makes no distinction between privileges and account

rights. However, you can differentiate between them because any user right that contains the

words log on is an account privilege.

502 Windows Internals, Fifth Edition

FIGURE 6-7 Local Security Policy Editor user rights assignment

Account Rights

Account rights are not enforced by the security reference monitor, nor are they stored in

tokens. The function responsible for logon is LsaLogonUser. Winlogon, for example, calls

the LogonUser API when a user logs on interactively to a computer, and LogonUser calls

LsaLogonUser. The function takes a parameter that indicates the type of logon being per-

formed, which includes interactive, network, batch, service, Terminal Server client, and

unlock.

In response to logon requests, the Local Security Authority (LSA) retrieves account rights

assigned to a user from the LSA policy database at the time that a user attempts to log on

to the system. LSA checks the logon type against the account rights assigned to the user

 Chapter 6 Security 503

account logging on and denies the logon if the account does not have the right that permits

the logon type or it has the right that denies the logon type. Table 6-7 lists the user rights

defined by Windows.

Windows applications can add and remove user rights from an account by using the

LsaAddAccountRights and LsaRemoveAccountRights functions, and they can determine what

rights are assigned to an account with LsaEnumerateAccountRights.

TABLE 6-7 Account Rights

User Right Role

Deny logon locally,

Allow logon locally

Used for interactive logons that originate on the local

machine

Deny logon over the network,

Allow logon over the network

Used for logons that originate from a remote machine

Deny logon through Terminal Services,

Allow logon through Terminal Services

Used for logons through a Terminal Server client

Deny logon as a service,

Allow logon as a service

Used by the service control manager when starting a

service in a particular user account

Deny logon as a batch job,

Allow logon as a batch job

Used when performing a logon of type batch

Privileges

The number of privileges defined by the operating system has grown over time. Unlike user

rights, which are enforced in one place by the LSA, different privileges are defined by dif-

ferent components and enforced by those components. For example, the debug privilege,

which allows a process to bypass security checks when opening a handle to another process

with the OpenProcess Windows API, is checked for by the process manager. Table 6-8 is a full

list of privileges, and it describes how and when system components check for them.

When a component wants to check a token to see whether a privilege is present, it uses

the PrivilegeCheck or LsaEnumerateAccountRights APIs if running in user mode and

SeSinglePrivilegeCheck or SePrivilegeCheck if running in kernel mode. The privilege-related

APIs are not account-right aware, but the account-right APIs are privilege-aware.

Unlike account rights, privileges can be enabled and disabled. For a privilege check to suc-

ceed, the privilege must be in the specified token and it must be enabled. The idea behind

this scheme is that privileges should be enabled only when their use is required so that a pro-

cess cannot inadvertently perform a privileged security operation.

504 Windows Internals, Fifth Edition

EXPERIMENT: Seeing a Privilege Get Enabled

By following these steps, you can see that the Date and Time Control Panel applet

enables the SeTimeZonePrivilege privilege in response to you using its interface to

change the time zone of the computer.

 1. Run Process Explorer, and set the refresh rate to Paused.

 2. Open the Date and Time item by right-clicking on the clock in the system tray

region of the taskbar, and then select Adjust Date/Time. A new Rundll32 process

will appear with a green highlight.

 3. Hover the mouse over the Rundll32 process and verify that the target contains

the text “Time Date Control Panel Applet” as well as a path to Timedate.cpl. The

presence of this argument tells Rundll32, which is a Control Panel DLL hosting

process, to load the DLL that implements the user interface that enables you to

change the time and date.

 4. View the Security tab of the process Properties dialog box for your Rundll32 pro-

cess. You should see that the SeTimeZonePrivilege privilege is disabled, which is

indicated by its flag and the fact that it’s shown in gray.

 5. Now click the Change Time Zone button in the Control Panel item, close the

process Properties dialog box, and then open it again. On the Security tab, you

should now see that the SeTimeZonePrivilege privilege is enabled.

 Chapter 6 Security 505

TABLE 6-8 Privileges

Privilege User Right Privilege Usage

SeAssignPrimaryTokenPrivilege Replace a pro-

cess-level token

Checked for by various components, such

as NtSetInformationJob, that set a process’s

token.

SeAuditPrivilege Generate security

audits

Required to generate events for the

Security event log with the ReportEvent
API.

SeBackupPrivilege Backup files and

directories

Causes NTFS to grant the following access

to any file or directory, regardless of the

security descriptor that’s present:

READ_CONTROL

ACCESS_SYSTEM_SECURITY

FILE_GENERIC_READ

FILE_TRAVERSE

Note that when opening a file for backup,

the caller must specify the FILE_FLAG_

BACKUP_SEMANTICS flag.

Also allows corresponding access to regis-

try keys when using RegSaveKey.

506 Windows Internals, Fifth Edition

Privilege User Right Privilege Usage

SeChangeNotifyPrivilege Bypass traverse

checking

Used by NTFS to avoid checking permis-

sions on intermediate directories of a

multilevel directory lookup. Also used by

file systems when applications register for

notification of changes to the file system

structure.

SeCreateGlobalPrivilege Create global

objects

Required for a process to create section

and symbolic link objects in the directories

of the object manager namespace that are

assigned to a different session than the

caller.

SeCreatePagefilePrivilege Create a pagefile Checked for by NtCreatePagingFile, which

is the function used to create a new pag-

ing file.

SeCreatePermanentPrivilege Create

permanent

shared objects

Checked for by the object manager when

creating a permanent object (one that

doesn’t get deallocated when there are no

more references to it).

SeCreateSymbolicLinkPrivilege Create symbolic

links

Checked for by NTFS when creating sym-

bolic links on the file system with the

CreateSymbolicLink API.

SeCreateTokenPrivilege Create a token

object

NtCreateToken, the function that creates a

token object, checks for this privilege.

SeDebugPrivilege Debug programs If the caller has this privilege enabled,

the process manager allows access to any

process or thread using NtOpenProcess or

NtOpenThread, regardless of the process’

or thread’s security descriptor (except for

protected processes).

SeEnableDelegationPrivilege Enable computer

and user accounts

to be trusted for

delegation

Used by Active Directory services to del-

egate authenticated credentials.

SeImpersonatePrivilege Impersonate a

client after

authentication

The process manager checks for this when

a thread wants to use a token for imper-

sonation and the token represents a differ-

ent user than that of the thread’s process

token.

SeIncreaseBasePriorityPrivilege Increase

scheduling

priority

Checked for by the process manager and is

required to raise the priority of a process.

SeIncreaseQuotaPrivilege Adjust memory

quotas for a

process

Enforced when changing a process’s work-

ing set thresholds, a process’ paged and

nonpaged pool quotas, and a process’s

CPU rate quota.

 Chapter 6 Security 507

Privilege User Right Privilege Usage

SeIncreaseWorkingSetPrivilege Increase a pro-

cess working set

Required to call SetProcessWorkingSetSize

to increase the minimum working set. This

indirectly allows the process to lock up to

the minimum working set of memory using

VirtualLock.

SeLoadDriverPrivilege Load and unload

device drivers

Checked for by the NtLoadDriver and

NtUnloadDriver driver functions.

SeLockMemoryPrivilege Lock pages in

memory

Checked for by NtLockVirtualMemory, the

kernel implementation of VirtualLock.

SeMachineAccountPrivilege Add workstations

to the domain

Checked for by the Security Accounts

Manager on a domain controller when cre-

ating a machine account in a domain.

SeManageVolumePrivilege Perform volume

maintenance

tasks

Enforced by file system drivers during a

volume open operation, which is required

to perform disk checking and defragment-

ing activities.

SeProfileSingleProcessPrivilege Profile single

process

Checked by Superfetch and the

prefetcher when requesting information

for an individual process through the

NtQuerySystemInformation API.

SeRelabelPrivilege Modify an object

label

Checked for by the SRM when raising

the integrity level of an object owned by

another user, or when attempting to raise

the integrity level of an object higher than

that of the caller’s token.

SeRemoteShutdownPrivilege Force shutdown

from a remote

system

Winlogon checks that remote callers of the

InitiateSystemShutdown function have this

privilege.

SeRestorePrivilege Restore files and

directories

This privilege causes NTFS to grant the

following access to any file or directory,

regardless of the security descriptor that’s

present:

WRITE_DAC

WRITE_OWNER

ACCESS_SYSTEM_SECURITY

FILE_GENERIC_WRITE

FILE_ADD_FILE

FILE_ADD_SUBDIRECTORY

DELETE

Note that when opening a file for restore,

the caller must specify the FILE_FLAG_

BACKUP_SEMANTICS flag.

Allows corresponding access to registry

keys when using RegSaveKey.

SeSecurityPrivilege Manage auditing

and security log

Required to access the SACL of a security

descriptor, read and clear the security

event log.

508 Windows Internals, Fifth Edition

Privilege User Right Privilege Usage

SeShutdownPrivilege Shut down the

system

This privilege is checked for by

NtShutdownSystem and NtRaiseHardError,
which presents a system error dialog box

on the interactive console.

SeSyncAgentPrivilege Synchronize

directory service

data

Required to use the LDAP directory syn-

chronization services and allows the holder

to read all objects and properties in the

directory, regardless of the protection on

the objects and properties.

SeSystemEnvironmentPrivilege Modify firmware

environment

variables

Required by NtSetSystemEnvironmentValue

and NtQuerySystemEnvironmentValue to

modify and read firmware environment

variables using the HAL.

SeSystemProfilePrivilege Profile system

performance

Checked for by NtCreateProfile, the func-

tion used to perform profiling of the sys-

tem. This is used by the Kernprof tool, for

example.

SeSystemtimePrivilege Change the

system time

Required to change the time or date.

SeTakeOwnership Take ownership

of files and other

objects

Required to take ownership of an object

without being granted discretionary access.

SeTcbPrivilege Act as part of the

operating system

Checked for by the security reference

monitor when the session ID is set in a

token, by the Plug and Play manager for

Plug and Play event creation and man-

agement, BroadcastSystemMessageEx

when called with BSM_ALLDESKTOPS,

LsaRegisterLogonProcess, and when

specifying an application as a VDM with

NtSetInformationProcess.

SeTimeZonePrivilege Change the time

zone

Required to change the time zone.

SeTrustedCredManAccessPrivilege Access credential

manager as a

trusted caller

Checked by the credential manager to

verify that it should trust the caller with

credential information that can be queried

in plain text. Is only granted to Winlogon

by default.

SeUndockPrivilege Remove comput-

er from a docking

station

Checked for by the user-mode Plug and

Play manager when either a computer

undock is initiated or a device eject request

is made.

SeUnsolicitedInputPrivilege Receive unsolic-

ited data from a

terminal device

This privilege isn’t currently used by

Windows.

 Chapter 6 Security 509

EXPERIMENT: The Bypass Traverse Checking Privilege

If you are a systems administrator, you must be aware of the Bypass Traverse Checking

privilege (internally called SeNotifyPrivilege) and its implications. This experiment dem-

onstrates that not understanding its behavior can lead to improperly applied security.

 1. Create a folder and, within that folder, a new text file with some sample text.

 2. Navigate in Explorer to the new file, and go to the Security tab of its Properties

dialog box. Click the Advanced button, and clear the check box that controls

inheritance. Select Copy when you are prompted as to whether you want to

remove or copy inherited permissions.

 3. Next, modify the security of the new folder so that your account does not have

any access to the folder. Do this by selecting your account and selecting all the

Deny boxes in the permissions list.

 4. Run Notepad, and browse using the File, Open dialog box to the new directory.

You should be denied access to the directory.

 5. In the File Name field of the Open dialog box, type the full path of the new file.

The file should open.

If your account does not have the Bypass Traverse Checking privilege, NTFS performs

an access check on each directory of the path to a file when you try to open a file,

which results in you being denied access to the file in this example.

Super Privileges

Several privileges are so powerful that a user to which they are assigned is effectively a

“super user” who has full control over a computer. These privileges can be used in an infinite

number of ways to gain unauthorized access to otherwise off-limit resources and to perform

unauthorized operations. However, we’ll focus on using the privilege to execute code that

grants the user privileges not assigned to the user, with the knowledge that this capability

can be leveraged to perform any operation on the local machine that the user desires. This

section lists the privileges and discusses the ways that they can be exploited. Other privileges,

such as Lock Pages In Physical Memory, can be exploited for denial of service attacks on a

system, but these are not discussed. Note that on systems with UAC enabled, these privi-

leges will only be granted to applications running at high integrity level or higher, even if the

account possesses them.

Debug programs A user with this privilege can open any process on the system with-

out regard to the security descriptor present on the process. The user could implement

a program that opens the Lsass process, for example, copy executable code into its

510 Windows Internals, Fifth Edition

address space, and then inject a thread with the CreateRemoteThread Windows API to

execute the injected code in a more-privileged security context. The code could grant

the user additional privileges and group memberships.

Take ownership This privilege allows a holder to take ownership of any securable

object by writing his own SID into the owner field of the object’s security descriptor.

Recall that an owner is always granted permission to read and modify the DACL of the

security descriptor, so a process with this privilege could modify the DACL to grant

itself full access to the object and then close and reopen the object with full access.

This would allow the owner to see sensitive data and to even replace system files that

execute as part of normal system operation, such as Lsass, with his own programs that

grant a user elevated privileges.

Restore files and directories A user assigned this privilege can replace any file on

the system with her own. She could exploit this power by replacing system files as

described in the preceding paragraph.

Load and unload device drivers A malicious user could use this privilege to load a

device driver into the system. Device drivers are considered trusted parts of the operat-

ing system that can execute within it with System account credentials, so a driver could

launch privileged programs that assign the user other rights.

Create a token object This privilege can be used in the obvious way to generate

tokens that represent arbitrary user accounts with arbitrary group membership and

privilege assignment.

Act as part of operating system LsaRegisterLogonProcess, the function a process

calls to establish a trusted connection to Lsass, checks for this privilege. A malicious

user with this privilege can establish a trusted-Lsass connection and then execute

LsaLogonUser, a function used to create new logon sessions. LsaLogonUser requires a

valid user name and password and accepts an optional list of SIDs that it adds to the

initial token created for a new logon session. The user could therefore use her own user

name and password to create a new logon session that includes the SIDs of more privi-

leged groups or users in the resulting token.

Note that the use of elevated privilege does not extend past the machine boundary to the

network, because any interaction with another computer requires authentication with a

domain controller and validation of domain passwords. Domain passwords are not stored

on a computer either in plain text or encrypted form, so they are not accessible to malicious

code.

 Chapter 6 Security 511

Security Auditing

The object manager can generate audit events as a result of an access check, and Windows

functions available to user applications can generate them directly. Kernel-mode code

is always allowed to generate an audit event. Two privileges, SeSecurityPrivilege and

SeAuditPrivilege, relate to auditing. A process must have the SeSecurityPrivilege privilege to

manage the security Event Log and to view or set an object’s SACL. Processes that call audit

system services, however, must have the SeAuditPrivilege privilege to successfully generate

an audit record.

The audit policy of the local system controls the decision to audit a particular type of security

event. The audit policy, also called the local security policy, is one part of the security policy

Lsass maintains on the local system, and it is configured with the Local Security Policy Editor

shown in Figure 6-8.

FIGURE 6-8 Local Security Policy Editor audit policy configuration

Lsass sends messages to the SRM to inform it of the auditing policy at system initialization

time and when the policy changes. Lsass is responsible for receiving audit records generated

based on the audit events from the SRM, editing the records, and sending them to the Event

Logger. Lsass (instead of the SRM) sends these records because it adds pertinent details, such

as the information needed to more completely identify the process that is being audited.

The SRM sends audit records via its ALPC connection to Lsass. The Event Logger then writes

the audit record to the security Event Log. In addition to audit records the SRM passes, both

Lsass and the SAM generate audit records that Lsass sends directly to the Event Logger, and

the AuthZ API allows for applications to generate application-defined audits. Figure 6-9

depicts this overall flow.

512 Windows Internals, Fifth Edition

User mode

Kernel mode

Security
reference

monitor (SRM)

To Security Log

Protected
subsystem

Windows
server

Event
Logger

LSA
authentication

LSA
auditing

SAM

Object manager
I/O parse
NTFS
Mailslot
NPFS
Configuration registry
Process manager

RPC

Audit recordsAudit policy

ALPCALPC
Audit system
service calls

Audit calls

Security subsystem

FIGURE 6-9 Flow of security audit records

Audit records are put on a queue to be sent to the LSA as they are received—they are not

submitted in batches. The audit records are moved from the SRM to the security subsystem

in one of two ways. If the audit record is small (less than the maximum ALPC message size), it

is sent as an ALPC message. The audit records are copied from the address space of the SRM

to the address space of the Lsass process. If the audit record is large, the SRM uses shared

memory to make the message available to Lsass and simply passes a pointer in an ALPC

message.

Figure 6-10 brings together the concepts covered so far in this chapter by illustrating the

basic process and thread security structures. In the figure, notice that the process object and

the thread objects have ACLs, as do the access-token objects themselves. Also in this figure,

thread 2 and thread 3 each have an impersonation token, whereas thread 1 defaults to the

process access token.

 Chapter 6 Security 513

ACL

User's SID

Group SIDs

Privileges

Owner SID

Primary group SID

Default ACL

Access token

User's SID

Group SIDs

Privileges

Owner SID

Primary group SID

Default ACL

Access token

User's SID

Group SIDs

Privileges

Owner SID

Primary group SID

Default ACL

Access tokenProcess
ACL

ACL
ACL

ACL Thread 1 ACL Thread 2 ACL Thread 3

2

3
1

4

5

6

FIGURE 6-10 Process and thread security structures

Logon

Interactive logon (as opposed to network logon) occurs through the interaction of the logon

process (Winlogon), the logon user interface process (LogonUI) and its credential providers,

Lsass, one or more authentication packages, and the SAM or Active Directory. Authentication
packages are DLLs that perform authentication checks. Kerberos is the Windows authenti-

cation package for interactive logon to a domain, and MSV1_0 is the Windows authen-

tication package for interactive logon to a local computer, for domain logons to trusted

pre– Windows 2000 domains, and for times when no domain controller is accessible.

Winlogon is a trusted process responsible for managing security-related user interactions.

It coordinates logon, starts the user’s first process at logon, handles logoff, and manages

various other operations relevant to security, including launching LogonUI for entering

passwords at logon, changing passwords, and locking and unlocking the workstation. The

Winlogon process must ensure that operations relevant to security aren’t visible to any other

active processes. For example, Winlogon guarantees that an untrusted process can’t get con-

trol of the desktop during one of these operations and thus gain access to the password.

514 Windows Internals, Fifth Edition

Winlogon relies on the credential providers installed on the system to obtain a user’s

account name or password. Credential providers are COM objects located inside DLLs. The

default providers are %SystemRoot%\System32\authui.dll and %SystemRoot%\System32\

SmartcardCredentialProvider.dll, which support both password and smartcard PIN authen-

tication. Allowing other credential providers to be installed allows Windows to use different

user-identification mechanisms. For example, a third party might supply a credential provider

that uses a thumbprint recognition device to identify users and extract their passwords from

an encrypted database.

To protect Winlogon’s address space from bugs in credential providers that might cause the

Winlogon process to crash (which, in turn, will result in a system crash, as Winlogon is consid-

ered a critical system process), a separate process, LogonUI.exe, is used to actually load the

credential providers and display the Windows logon interface to users. This process is started

on demand whenever Winlogon needs to present a user interface to the user, and it exits

after the action has finished. It also allows Winlogon to simply restart a new LogonUI process

should it crash for any reason.

Winlogon is the only process that intercepts logon requests from the keyboard, which are

sent through an RPC message from Win32k.sys. Winlogon immediately launches the LogonUI

application to display the user interface for logon. After obtaining a user name and password

from credential providers, Winlogon calls Lsass to authenticate the user attempting to log

on. If the user is authenticated, the logon process activates a logon shell on behalf of that

user. The interaction between the components involved in logon is illustrated in Figure 6-11.

Net Logon
service

Winlogon
process

Active Directory
server

Active
Directory

Kerb
eros

M
SV

1_0

O
ther

LSA server

Kerberos
Key Distribution
Center Service

SAM
server

Network

SAM SECURITY

Authentication
packages

ALPC

Lsass

FIGURE 6-11 Components involved in logon

 Chapter 6 Security 515

In addition to supporting alternative credential providers, LogonUI can load additional net-

work provider DLLs that need to perform secondary authentication. This capability allows

multiple network providers to gather identification and authentication information all at one

time during normal logon. A user logging on to a Windows system might simultaneously

be authenticated on a UNIX server. That user would then be able to access resources of the

UNIX server from the Windows machine without requiring additional authentication. Such a

capability is known as one form of single sign-on.

Winlogon Initialization

During system initialization, before any user applications are active, Winlogon performs the

following steps to ensure that it controls the workstation once the system is ready for user

interaction:

 1. Creates and opens an interactive window station (for example, \Sessions\1\Windows\

WindowStations\WinSta0 in the object manager namespace) to represent the key-

board, mouse, and monitor. Winlogon creates a security descriptor for the station that

has one and only one ACE containing only the System SID. This unique security descrip-

tor ensures that no other process can access the workstation unless explicitly allowed

by Winlogon.

 2. Creates and opens two desktops: an application desktop (\Sessions\1\Windows\

WinSta0\Default, also known as the interactive desktop) and a Winlogon desktop

(\Sessions\1\Windows\WinSta0\Winlogon, also known as the secure desktop). The secu-

rity on the Winlogon desktop is created so that only Winlogon can access that desk-

top. The other desktop allows both Winlogon and users to access it. This arrangement

means that any time the Winlogon desktop is active, no other process has access to any

active code or data associated with the desktop. Windows uses this feature to protect

the secure operations that involve passwords and locking and unlocking the desktop.

 3. Before anyone logs on to a computer, the visible desktop is Winlogon’s. After a user

logs on, pressing Ctrl+Alt+Delete switches the desktop from Default to Winlogon and

launches LogonUI. (This explains why all the windows on your interactive desktop seem

to disappear when you press Ctrl+Alt+Delete and then return when you dismiss the

Windows Security dialog box.) Thus, the SAS always brings up a secure desktop con-

trolled by Winlogon.

 4. Establishes an ALPC connection with Lsass’s LsaAuthenticationPort. This connection will

be used for exchanging information during logon, logoff, and password operations and

is made by calling LsaRegisterLogonProcess.

 5. It initializes and registers a window class data structure that associates a Winlogon pro-

cedure with the window it subsequently creates.

 6. It registers the Winlogon RPC message server, which listens for SAS notifications from

Win32k. This measure prevents Trojan horse programs from gaining control of the

screen when the SAS is entered.

516 Windows Internals, Fifth Edition

 7. It registers the window so that the procedure associated with this window gets called if

a user logs off or if the screen saver times out. The Windows subsystem checks to verify

that the process requesting notification is the Winlogon process.

Note The Wininit process performs steps similar to steps 1 and 2 to allow legacy interactive

services running on session 0 to display windows, but it does not perform any other steps since

session 0 is not available for user logon. (See Chapter 3 for more information on Wininit and ses-

sion isolation.)

How SAS Is Implemented

The SAS is secure because no application can intercept the Ctrl+Alt+Delete keystroke

combination or prevent Winlogon from receiving it. Win32k.sys reserves the Ctrl+Alt+

Delete key combination so that whenever the Windows input system (implemented

in the raw input thread in Win32k) sees the combination, it sends an RPC message to

Winlogon’s message server, which listens for such notifications. The keystrokes that

map to a registered hot key are otherwise not sent to any process other than the one

that registered it, and only the thread that registered a hot key can unregister it, so a

Trojan horse application cannot deregister Winlogon’s ownership of the SAS.

A Windows function, SetWindowsHook, enables an application to install a hook pro-

cedure that’s invoked every time a keystroke is pressed, even before hot keys are pro-

cessed, and it allows the hook to squash keystrokes. However, the Windows hot key

processing code contains a special case for Ctrl+Alt+Delete that disables hooks so that

the keystroke sequence can’t be intercepted. In addition, if the interactive desktop is

locked, only hot keys owned by Winlogon are processed.

Once the Winlogon desktop is created during initialization, it becomes the active desktop.

When the Winlogon desktop is active, it is always locked. Winlogon unlocks its desktop only

to switch to the application desktop or the screen-saver desktop. (Only the Winlogon process

can lock or unlock a desktop.)

User Logon Steps

Logon begins when a user presses the SAS (Ctrl+Alt+Delete). After the SAS is pressed,

Winlogon starts LogonUI, which calls the credential providers to obtain a user name and

password. Winlogon also creates a unique local logon SID for this user that it assigns to this

instance of the desktop (keyboard, screen, and mouse). Winlogon passes this SID to Lsass as

part of the LsaLogonUser call. If the user is successfully logged on, this SID will be included in

the logon process token—a step that protects access to the desktop. For example, another

 Chapter 6 Security 517

logon to the same account but on a different system will be unable to write to the first

machine’s desktop because this second logon won’t be in the first logon’s desktop token.

When the user name and password have been entered, Winlogon retrieves a handle to a

package by calling the Lsass function LsaLookupAuthenticationPackage. Authentication pack-

ages are listed in the registry under HKLM\SYSTEM\CurrentControlSet\Control\Lsa. Winlogon

passes logon information to the authentication package via LsaLogonUser. Once a package

authenticates a user, Winlogon continues the logon process for that user. If none of the

authentication packages indicates a successful logon, the logon process is aborted.

Windows uses two standard authentication packages for interactive logons: Kerberos and

MSV1_0. The default authentication package on a stand-alone Windows system is MSV1_0

(%SystemRoot%\System32\Msv1_0.dll), an authentication package that implements LAN

Manager 2 protocol. Lsass also uses MSV1_0 on domain-member computers to authenti-

cate to pre–Windows 2000 domains and computers that can’t locate a domain controller

for authentication. (Laptop computers that are disconnected from the network fall into

this latter category.) The Kerberos authentication package, %SystemRoot%\System32\

Kerberos.dll, is used on computers that are members of Windows domains. The Windows

Kerberos package, with the cooperation of Kerberos services running on a domain control-

ler, supports the Kerberos protocol. This protocol is based on Internet RFC 1510. (Visit the

Internet Engineering Task Force [IETF] Web site, www.ietf.org, for detailed information on the

Kerberos standard.)

The MSV1_0 authentication package takes the user name and a hashed version of the

password and sends a request to the local SAM to retrieve the account information, which

includes the password, the groups to which the user belongs, and any account restrictions.

MSV1_0 first checks the account restrictions, such as hours or type of accesses allowed. If

the user can’t log on because of the restrictions in the SAM database, the logon call fails and

MSV1_0 returns a failure status to the LSA.

MSV1_0 then compares the hashed password and user name to that stored by the SAM. In

the case of a cached domain logon, MSV1_0 accesses the cached information by using Lsass

functions that store and retrieve “secrets” from the LSA database (the SECURITY hive of the

registry). If the information matches, MSV1_0 generates an LUID for the logon session and

creates the logon session by calling Lsass, associating this unique identifier with the session

and passing the information needed to ultimately create an access token for the user. (Recall

that an access token includes the user’s SID, group SIDs, and assigned privileges.)

Note MSV1_0 does not cache a user’s entire password hash in the registry because that would

enable someone with physical access to the system to easily compromise a user’s domain

account and gain access to encrypted files and to network resources the user is authorized to

access. Instead, it caches half of the hash. The cached half-hash is sufficient to verify that a user’s

password is correct, but it isn’t sufficient to gain access to EFS keys and to authenticate as the

user on a domain because these actions require the full hash.

518 Windows Internals, Fifth Edition

If MSV1_0 needs to authenticate using a remote system, as when a user logs on to a trusted

pre–Windows 2000 domain, MSV1_0 uses the Netlogon service to communicate with an

instance of Netlogon on the remote system. Netlogon on the remote system interacts with

the MSV1_0 authentication package on that system, passing back authentication results to

the system on which the logon is being performed.

The basic control flow for Kerberos authentication is the same as the flow for MSV1_0.

However, in most cases, domain logons are performed from member workstations or serv-

ers (rather than on a domain controller), so the authentication package must communicate

across the network as part of the authentication process. The package does so by commu-

nicating via the Kerberos TCP/IP port (port 88) with the Kerberos service on a domain con-

troller. The Kerberos Key Distribution Center service (%SystemRoot%\System32\Kdcsvc.dll),

which implements the Kerberos authentication protocol, runs in the Lsass process on domain

controllers.

After validating hashed user name and password information with Active Directory’s user

account objects (using the Active Directory server %SystemRoot%\System32\Ntdsa.dll),

Kdcsvc returns domain credentials to Lsass, which returns the result of the authentication and

the user’s domain logon credentials (if the logon was successful) across the network to the

system where the logon is taking place.

Note This description of Kerberos authentication is highly simplified, but it highlights the roles

of the various components involved. Although the Kerberos authentication protocol plays a key

role in distributed domain security in Windows, its details are outside the scope of this book.

After a logon has been authenticated, Lsass looks in the local policy database for the user’s

allowed access, including interactive, network, batch, or service process. If the requested

logon doesn’t match the allowed access, the logon attempt will be terminated. Lsass

deletes the newly created logon session by cleaning up any of its data structures and then

returns failure to Winlogon, which in turn displays an appropriate message to the user. If

the requested access is allowed, Lsass adds the appropriate additional security IDs (such as

Everyone, Interactive, and the like). It then checks its policy database for any granted privi-

leges for all the IDs for this user and adds these privileges to the user’s access token.

When Lsass has accumulated all the necessary information, it calls the executive to create

the access token. The executive creates a primary access token for an interactive or service

logon and an impersonation token for a network logon. After the access token is successfully

created, Lsass duplicates the token, creating a handle that can be passed to Winlogon, and

closes its own handle. If necessary, the logon operation is audited. At this point, Lsass returns

success to Winlogon along with a handle to the access token, the LUID for the logon session,

and the profile information, if any, that the authentication package returned.

 Chapter 6 Security 519

EXPERIMENT: Listing Active Logon Sessions

As long as at least one token exists with a given logon session LUID, Windows considers

the logon session to be active. You can use the LogonSessions tool from Sysinternals,

which uses the LsaEnumerateLogonSessions function (documented in the Windows SDK)

to list the active logon sessions:

C:\>logonsessions

Logonsesions v1.1

Copyright (C) 2004 Bryce Cogswell and Mark Russinovich

Sysinternals - wwww.sysinternals.com

[0] Logon session 00000000:000003e7:

 User name: WORKGROUP\ALEX-LAPTOP$

 Auth package: NTLM

 Logon type: (none)

 Session: 0

 Sid: S-1-5-18

 Logon time: 7/19/2008 10:26:56 PM

 Logon server:

 DNS Domain:

 UPN:

[1] Logon session 00000000:0000dcbd:

 User name:

 Auth package: NTLM

 Logon type: (none)

 Session: 0

 Sid: (none)

 Logon time: 7/19/2008 10:26:57 PM

 Logon server:

 DNS Domain:

 UPN:

[2] Logon session 00000000:000003e5:

 User name: NT AUTHORITY\LOCAL SERVICE

 Auth package: Negotiate

 Logon type: Service

 Session: 0

 Sid: S-1-5-19

 Logon time: 7/19/2008 10:27:01 PM

 Logon server:

 DNS Domain:

 UPN:

[3] Logon session 00000000:00015cd5:

 User name: ALEX-LAPTOP\Administrator

 Auth package: NTLM

 Logon type: Interactive

 Session: 1

 Sid: S-1-5-21-2778343003-3541292008-524615573-500

 Logon time: 7/19/2008 10:27:05 PM

 Logon server: ALEX-LAPTOP

520 Windows Internals, Fifth Edition

 DNS Domain:

 UPN:

Information reported for a session includes the SID and name of the user associated

with the session, as well as the session’s authentication package and logon time. Note

that the Negotiate authentication package, seen in logon session 2 in the preceding

output, will attempt to authenticate via Kerberos or NTLM, depending on which is most

appropriate for the authentication request.

The LUID for a session is displayed on the “Logon Session” line of each session block,

and using the Handle utility also from Sysinternals, you can find the tokens that repre-

sent a particular logon session. For example, to find the tokens for logon session 3 in

the example output just shown, you could enter this command:

C:\>handle -a 3bc39

 winlogon.exe pid: 580 1FC: \BaseNamedObjects\0000000000015cd5_

WlballoonKerberosNotificationEventName

winlogon.exe pid: 580 22C: ALEX-LAPTOP\Administrator:15cd5

lsass.exe pid: 628 6A0: ALEX-LAPTOP\Administrator:15cd5

lsm.exe pid: 636 288: ALEX-LAPTOP\Administrator:15cd5

Winlogon then looks in the registry at the value HKLM\SOFTWARE\Microsoft\Windows

NT\Current Version\Winlogon\Userinit and creates a process to run whatever the value of

that string is. (This value can be several .exes separated by commas). The default value is

Userinit.exe, which loads the user profile and then creates a process to run whatever the

value of HKCU\SOFTWARE\Microsoft\Windows NT\Current Version\Winlogon\Shell is, if

that value exists. That value does not exist by default. If it doesn’t exist, Userinit.exe does the

same for HKLM\SOFTWARE\Microsoft\Windows NT\Current Version\Winlogon\Shell, which

defaults to Explorer.exe. Userinit then exits (which is why Explorer.exe shows up as having no

parent when examined in Process Explorer). For more information on the steps followed dur-

ing the user logon process, see Chapter 13.

User Account Control

UAC is meant to enable users to run with standard user rights, as opposed to administra-

tive rights. Without administrative rights, users cannot accidentally (or deliberately) modify

system settings, malware can’t normally alter system security settings or disable antivirus

software, and users can’t compromise the sensitive information of other users on shared

computers. Running with standard user rights can thus mitigate the impact of malware and

protect sensitive data on shared computers.

UAC had to address several problems to make it practical for a user to run with a stan-

dard user account. First, because the Windows usage model has been one of assumed

 Chapter 6 Security 521

administrative rights, software developers assumed their programs could access and modify

any file, registry key, or operating system setting. The second problem UAC had to address

was that users sometimes need administrative rights to perform such operations as installing

software, changing the system time, and opening ports in the firewall.

The UAC solution to these problems is to run most applications with standard user rights,

obviate the need for administrative rights all the time, and encourage software developers

to create applications that run with standard user rights. UAC accomplishes these aims by

requiring administrative rights less frequently, enabling legacy applications to run with stan-

dard user rights, making it convenient for standard users to access administrative rights when

they need them, and enabling even administrative users to run as if they were standard users.

UAC also allows certain tasks that were previously considered reserved for administrators

to be performed by standard users, enhancing the usability of the standard user account.

For example, changing the time zone (used only for displaying the time to users) is con-

sidered a different action than changing the system’s actual time (used for security, such as

on Kerberos authentication). While the privilege to change the system time is assigned only

to the Administrators group, the privilege to change the time zone is also assigned to the

Users group. Standard users can also configure WEP settings when they connect to wire-

less networks, create VPN connections, change power management settings, and install

critical Windows updates. In addition, Group Policy settings exist that can enable standard

users to install printer and other device drivers approved by IT administrators and to install

ActiveX controls from administrator-approved sites.

Virtualization

While some software legitimately requires administrative rights, many programs needlessly

store user data in system-global locations. When an application executes, it can be run-

ning in different user accounts, and it should therefore store user-specific data in the per-

user %AppData% directory and save per-user settings in the user’s registry profile under

HKEY_CURRENT_USER\ Software. Standard user accounts don’t have write access to the

%ProgramFiles% directory or HKEY_LOCAL_MACHINE\Software, but because most Windows

systems are single-user and most users have been administrators until UAC was imple-

mented, applications that incorrectly saved user data and settings to these locations worked

anyway.

Windows enables these legacy applications to run in standard user accounts through the

help of file system and registry namespace virtualization. When an application modifies a

system-global location in the file system or registry and that operation fails because access is

denied, Windows redirects the operation to a per-user area; when the application reads from

a system-global location, Windows first checks for data in the per-user area and, if none is

found, permits the read attempt from the global location.

522 Windows Internals, Fifth Edition

Windows will always enable this type of virtualization unless:

The application is 64-bit. As virtualization is purely an application-compatibility tech-

nology meant to help legacy applications, it is enabled only for 32-bit applications. The

world of 64-bit applications is relatively new and should follow the development guide-

lines for creating standard user compatible applications.

The application is already running with administrative rights. In this case, there is no

need for any virtualization.

The operation came from a kernel-mode caller.

The operation is being performed while the caller is impersonating. For example, any

operations not originating from a process classified as legacy according to this defin-

ition, including network file sharing accesses, are not virtualized.

The executable image for the process has a UAC-compatible manifest (specifying a

requestedExecutionLevel setting).

The administrator does not have write access to the file or registry key. This exception

exists to enforce backward compatibility, as the legacy application would have failed

before UAC was implemented even if the application was run with administrative rights.

You can see the virtualization status (as discussed previously, the process’s virtualization

status is stored as a flag in its token) of a process by adding the Virtualization column to

Task Manager’s Processes page, as shown in Figure 6-12. Most Windows components,

including the Desktop Window Manager (Dwm.exe), the Client Server Run-Time Subsystem

(Csrss.exe), and Explorer, have virtualization disabled because they have a UAC-compatible

manifest or are running with administrative rights and so do not allow virtualization. Internet

Explorer (Iexplore.exe) has virtualization enabled because it can host multiple ActiveX con-

trols and scripts and must assume that they were not written to operate correctly with stan-

dard user rights.

In addition to file system and registry virtualization, some applications require additional help

to run correctly with standard user rights. For example, an application that tests the account

in which it’s running for membership in the Administrators group might otherwise work, but

it won’t run if it’s not in that group. Windows defines a number of application-compatibility

shims to enable such applications to work anyway. The shims most commonly applied to leg-

acy applications for operation with standard user rights are shown in Table 6-9. Note that, if

required, virtualization can be completely disabled for a system using a local security policy

setting.

 Chapter 6 Security 523

FIGURE 6-12 Using Task Manager to view virtualization status

TABLE 6-9 UAC Virtualization Shims

Flag Meaning

ElevateCreateProcess Changes CreateProcess to handle ERROR_ELEVATION_REQUIRED

errors by calling the application information service to prompt for

elevation.

ForceAdminAccess Spoofs queries of Administrator group membership.

VirtualizeDeleteFile Spoofs successful deletion of global files and directories.

LocalMappedObject Forces global section objects into the user’s namespace.

VirtualizeHKCRLite,

VirtualizeRegisterTypeLib

Redirects global registration of COM objects to a per-user location.

File Virtualization

The file system locations that are virtualized for legacy processes are %ProgramFiles%,

%ProgramData%, and %SystemRoot%, excluding some specific subdirectories. However,

any file with an executable extension, including .exe, .bat, .scr, .vbs, and others, is excluded

from virtualization. This means that programs that update themselves from a standard user

account fail instead of creating private versions of their executables that aren’t visible to an

administrator running a global updater.

524 Windows Internals, Fifth Edition

Note To add additional extensions to the exception list, enter them in the HKEY_LOCAL_

MACHINE\System\CurrentControlSet\Services\Luafv\Parameters\ExcludedExtensionsAdd registry

key and reboot. Use a multi-string type to delimit multiple extensions, and do not include a lead-

ing dot in the extension name.

Modifications to virtualized directories by legacy processes are redirected to the user’s virtual

root directory, %LocalAppData%\VirtualStore. The Local component of the path highlights

the fact that virtualized files don’t roam with the rest of the profile when the account has a

roaming profile. If you navigate in Explorer to a directory containing virtualized files, Explorer

displays a button labeled Compatibility Files in its toolbar, as shown in Figure 6-13. Clicking

the button takes you to the corresponding VirtualStore subdirectory to show you the virtual-

ized files.

FIGURE 6-13 Virtualized files are displayed here.

The UAC File Virtualization Filter Driver (%SystemRoot%\System32\Drivers\Luafv.sys) imple-

ments file system virtualization. Because this is a file system filter driver, it sees all file system

operations, but it only implements functionality for operations from legacy processes. As

shown in Figure 6-14, the filter driver changes the target file path for a legacy process that

creates a file in a system-global location but does not for a nonvirtualized process with stan-

dard user rights. Default permissions on the \Windows directory deny access to the applica-

tion written with UAC support, but the legacy process acts as though the operation succeeds,

when it really created the file in a location fully accessible by the user.

 Chapter 6 Security 525

User mode

Kernel mode

Luafv.sys

Legacy
application

Windows Vista
application

Ntfs.sys

Write to
\Users\<user>\AppData\

Local\VirtualStore\
Windows\App.ini

Write to
\Windows\App.ini

Write to
\Windows\App.ini

Access
denied!!

FIGURE 6-14 UAC File Virtualization Filter Driver operation

EXPERIMENT: File Virtualization Behavior

In this experiment, we will enable and disable virtualization on the command prompt

and see several behaviors to demonstrate UAC file virtualization.

 1. Open a nonelevated command prompt (you must have UAC enabled for this to

work), and enable virtualization for it. You can change the virtualization status of

a process by selecting Virtualization from the shortcut menu that appears when

you right-click the process in Task Manager.

 2. Navigate to the C:\Windows directory, and use the following command to write a

file:

echo hello-1 > test.txt

 3. Now list the contents of the directory:

dir test.txt

You’ll see that the file appears.

 4. Now disable virtualization by using Task Manager, and then list the directory as in

step 3. Notice that the file is gone. However, a directory listing of the VirtualStore

directory will reveal the file:

dir %LOCALAPPDATA%\VirtualStore\Windows\test.txt

526 Windows Internals, Fifth Edition

 5. To take a look at a more complex scenario, create a new Command Prompt

window, but elevate it this time, and then repeat steps 2 and 3 using the string

“hello-2”.

 6. Take a look at the text inside these files by using the following command in both

command prompts:

echo test.txt

The following two screenshots show the expected output.

 7. Finally, from your elevated command prompt, delete the test.txt file:

del test.txt

 8. Repeat step 6 of the experiment. Notice that the elevated command prompt can-

not find the file anymore, while the standard user command prompt shows the

old contents of the file again. This demonstrates the failover mechanism described

earlier—read operations will look in the per-user virtual store location first, but if

the file doesn’t exist, read access to the system location will be granted.

Registry Virtualization

Registry virtualization is implemented slightly differently from file system virtualization.

Virtualized registry keys include most of the HKEY_LOCAL_MACHINE\Software branch, but

there are numerous exceptions, such as the following:

HKLM\Software\Microsoft\Windows

 Chapter 6 Security 527

HKLM\Software\Microsoft\Windows NT

HKLM\Software\Classes

Only keys that are commonly modified by legacy applications, but which don’t introduce

compatibility or interoperability problems, are virtualized. Windows redirects modifica-

tions of virtualized keys by a legacy application to a user’s registry virtual root at HKEY_

CURRENT_USER\Software\Classes\VirtualStore. The key is located in the user’s Classes hive,

%LocalAppData%\Microsoft\Windows\UsrClass.dat, which, like any other virtualized file data,

does not roam with a roaming user profile. Instead of maintaining a fixed list of virtualized

locations as Windows does for the file system, the virtualization status of a key is stored as a

combination of flags, shown in Table 6-10.

TABLE 6-10 Registry Virtualization Flags

Flag Meaning

REG_KEY_DONT_VIRTUALIZE Specifies whether virtualization is enabled for this key. If the flag is

set, virtualization is disabled.

REG_KEY_DONT_SILENT_FAIL If the REG_KEY_DONT_VIRTUALIZE flag is set (virtualization is dis-

abled), this key specifies that a legacy application that would be

denied access performing an operation on the key is instead grant-

ed MAXIMUM_ALLOWED rights to the key (any access the account

is granted), instead of the rights the application requested. If this

flag is set, it implicitly disables virtualization as well.

REG_KEY_RECURSE_FLAG Determines whether the virtualization flags will propagate to the

child keys (subkeys) of this key.

You can use the Reg.exe utility included in Windows, with the flags option, to display the

current virtualization state for a key or to set it. In Figure 6-15, note that the HKLM\Software

key is fully virtualized, but the Windows subkey (and all its children) have only silent failure

enabled.

FIGURE 6-15 UAC registry virtualization flags on the Software and Windows keys

528 Windows Internals, Fifth Edition

Unlike file virtualization, which uses a filter driver, registry virtualization is implemented in the

configuration manager. (See Chapter 4 for more information on the registry and the config-

uration manager.) As with file system virtualization, a legacy process creating a subkey of a

virtualized key is redirected to the user’s registry virtual root, but a UAC-compatible process

is denied access by default permissions. This is shown in Figure 6-16.

User mode

Kernel mode

HKLM\Software\App

Virtualized

process

Ntoskrnl.exe

Registry

Non-virtualized

process

Access denied

HKCU\Software\Classes\VirtualStore\
Machine\Software\App

FIGURE 6-16 UAC registry virtualization operation

Elevation

Even if users run only programs that are compatible with standard user rights, some oper-

ations still require administrative rights. The vast majority of software installations require

administrative rights to create directories and registry keys in system-global locations or to

install services or device drivers. Modifying system-global Windows and application settings

also requires administrative rights, as does the Windows Vista parental controls feature. It

would be possible to perform most of these operations by switching to a dedicated adminis-

trator account, but the inconvenience of doing so would likely result in most users remaining

in the administrator account to perform their daily tasks.

It’s important to be aware that UAC elevations are conveniences and not security boundaries.

A security boundary requires that security policy dictate what can pass through the bound-

ary. User accounts are an example of a security boundary in Windows, because one user can’t

access the data belonging to another user without having that user’s permission.

Because elevations aren’t security boundaries, there’s no guarantee that malware running on

a system with standard user rights can’t compromise an elevated process to gain administra-

tive rights. For example, elevation dialog boxes only identify the executable that will be ele-

vated; they say nothing about what it will do when it executes.

 Chapter 6 Security 529

Running with Administrator Rights

Windows includes enhanced “run as” functionality so that standard users can conveniently

launch processes with administrative rights. This functionality required giving applications a

way to identify operations for which the system can obtain administrative rights on behalf of

the application, as necessary. (More on this topic shortly.)

To enable users acting as system administrators to run with standard user rights but not have

to enter user names and passwords every time they want to access administrative rights,

Windows makes use of a mechanism called Admin Approval Mode (AAM). This feature cre-

ates two identities for the user at logon: one with standard user rights and another with

administrative rights. Since every user on a Windows system is either a standard user or act-

ing for the most part as a standard user in AAM, developers must assume that all Windows

users are standard users, which will result in more programs working with standard user

rights without virtualization or shims.

Granting administrative rights to a process is called elevation. When elevation is performed

by a standard user account (or by a user who is part of an administrative group but not the

actual Administrators group), it’s referred to as an over-the-shoulder (OTS) elevation because

it requires the entry of credentials for an account that’s a member of the Administrators

group, something that’s usually completed by a user typing over the shoulder of a standard

user. An elevation performed by an AAM user is called a consent elevation because the user

simply has to approve the assignment of his administrative rights.

Stand-alone systems, which are typically home computers, and domain-joined systems treat

AAM access by remote users differently because domain-connected computers can use

domain administrative groups in their resource permissions. When a user accesses a stand-

alone computer’s file share, Windows requests the remote user’s standard user identity, but

on domain-joined systems, Windows honors all the user’s domain group memberships by

requesting the user’s administrative identity.

Executing an image that requests administrative rights causes the application information

service (AIS, contained in %SystemRoot%\System32\Appinfo.dll), which runs inside a service

host process (%SystemRoot%\System32\Svchost.exe), to launch Consent.exe (%SystemRoot%\

System32\Consent.exe). Consent captures a bitmap of the screen, applies a fade effect to it,

switches to a desktop that’s only accessible to the local system account, paints the bitmap

as the background, and displays an elevation dialog box that contains information about

the executable. Displaying this dialog box on a separate desktop prevents any application

present in the user’s account from modifying the appearance of the dialog box.

If an image is a Windows component digitally signed by Microsoft and the image is in the

Windows system directory, the dialog box displays a blue stripe across the top, as shown

at the top of Figure 6-17. The gray stripe (the dialog box in the middle of the figure) is for

images that are digitally signed by someone other than Microsoft, and the orange stripe

530 Windows Internals, Fifth Edition

(bottom dialog box) is for unsigned images. The elevation dialog box shows the image’s icon,

description, and publisher for digitally signed images, but it shows only a generic icon, the

file name, and Unidentified Publisher for unsigned images. This difference makes it harder for

malware to mimic the appearance of legitimate software. The Details button at the bottom

of the dialog box expands it to show the command line that will be passed to the executable

if it launches.

FIGURE 6-17 UAC elevation dialog boxes based on image signature

The AAM consent dialog box, shown in Figure 6-18, is similar, but instead of prompting for

administrator credentials, this dialog box provides Continue and Cancel buttons.

FIGURE 6-18 AAM consent dialog box

 Chapter 6 Security 531

If a user declines an elevation, Windows returns an access-denied error to the process that

initiated the launch. When a user agrees to an elevation by either entering administrator

credentials or clicking Continue, AIS calls CreateProcessAsUser to launch the process with the

appropriate administrative identity. Although AIS is technically the parent of the elevated

process, AIS uses new support in the CreateProcessAsUser API that sets the process’s parent

process ID to that of the process that originally launched it. (See Chapter 5 for more informa-

tion on processes and this mechanism.) That’s why elevated processes don’t appear as chil-

dren of the AIS service-hosting process in tools such as Process Explorer that show process

trees. Figure 6-19 shows the operations involved in launching an elevated process from a

standard user account.

AppInfo service Consent.exe

Admin.exe

Explorer

Standard user

Local system

Administrator

ShellExecute
(Admin.exe)

Re
pa

re
nt

ed

CreateProcessAsUser
(Admin.exe)

FIGURE 6-19 Launching an administrative application as a standard user

Requesting Administrative Rights

There are a number of ways the system and applications identify a need for administrative

rights. One that shows up in the Explorer user interface is the Run As Administrator con-

text menu command and shortcut option. These items also include a colored shield icon

that should be placed on any button or menu item that will result in an elevation of rights

when it is selected. Choosing the Run As Administrator command causes Explorer to call the

ShellExecute API with the “runas” verb.

532 Windows Internals, Fifth Edition

The vast majority of installation programs require administrative rights, so the image loader,

which initiates the launch of an executable, includes installer detection code to identify likely

legacy installers. Some of the heuristics it uses are as simple as detecting internal version

information or whether the image has the words setup, install, or update in its file name.

More sophisticated means of detection involve scanning for byte sequences in the execut-

able that are common to third-party installation wrapper utilities. The image loader also calls

the application compatibility library to see if the target executable requires administrator

rights. The library looks in the application compatibility database to see whether the execut-

able has the RequireAdministrator or RunAsInvoker compatibility flags associated with it.

The most common way for an executable to request administrative rights is for it to include

a requestedElevationLevel tag in its application manifest file. The element’s level attribute can

have one of the three values shown in Table 6-11.

TABLE 6-11 Requested Elevation Levels

Elevation Level Meaning Usage

As Invoker No need for administrative rights;

never ask for elevation.

Typical user applications that don’t need

administrative privileges, for example

Notepad.

Highest

Available

Request approval for highest rights

available. If the user is logged on as

a standard user, the process will be

launched as invoker; otherwise, an

AAM elevation prompt will appear,

and the process will run with full

 administrative rights.

Applications that can function without full

administrative rights but expect users to

want full access if it’s easily accessible. For

example, the Registry Editor, Microsoft

Management Console, and the Event

Viewer use this level,

Require

Administrator

Always request administrative

rights—an OTS elevation dialog box

prompt will be shown for standard

users; otherwise, AAM.

Applications that require administrative

rights to work, such as the Firewall Settings

editor, which affects systemwide security.

The presence of the trustInfo element in a manifest (which you can see in the excerpted string

dump of FirewallSettings.exe below), denotes an executable that was written with support for

UAC and the requestedElevationLevel element nests within it. The uiAccess attribute is where

accessibility applications can use the UIPI bypass functionality mentioned earlier.

C:\>strings c:\Windows\System32\FirewallSettings.exe

...

<trustInfo

 xmlns="urn:schema-microsoft-com:asm.v3">

 <security>

 <requestedPrivileges>

 <requestedExecutionLevel

 Level="requireAdministrator"

 uiAccess="false"/>

 </requestedPrivileges>

 </security>

</trustInfo>

 Chapter 6 Security 533

An easier way to determine the values specified by an executable is to view its manifest with

the Sysinternals Sigcheck utility, like this:

sigcheck –m <executable>

EXPERIMENT: Using Application Compatibility Flags

In this experiment, we will use an application compatibility flag to run the Registry

Editor as a standard user process. This will bypass the RequireAdministrator manifest

flag and force virtualization on Regedit.exe, allowing you to make changes to the virtu-

alized registry directly.

 1. Navigate to your %SystemRoot%\System32 directory, and copy the Regedt32.exe

file to another path on your system (such as C:\ or your Desktop folder).

 2. Go to the HKLM\Software\Microsoft\Windows NT\CurrentVersion\

AppCompatFlags\Layers registry key, and create a new string value whose name

is the path where you copied Regedt32.exe, such as c:\regedt32.exe

 3. Set the value of this key to RUNASINVOKER.

 4. Now start Regedt32.exe from its location (be sure to close any running cop-

ies of the Registry Editor first). You will not see the typical AAM dialog box, and

Regedit.exe will now run with standard user rights. You will also be subject to the

virtualized view of the registry, meaning you can now see what legacy applica-

tions see when accessing the registry.

Software Restriction Policies

Windows also contains a user-mode mechanism called Software Restriction Policies that

enables administrators to control what images and scripts execute on their systems. The

Software Restriction Policies node of the Local Security Policy Editor, shown in Figure 6-20,

serves as the management interface for a machine’s code execution policies, although per-

user policies are also possible using domain group policies.

Several global policy settings appear beneath the Software Restriction Policies node.

The Enforcement policy configures whether restriction policies apply to libraries, such as

DLLs, and whether policies apply to users only or to administrators as well.

The Designated File Types policy records the extensions for files that are considered

executable code.

Trusted Publishers control who can select which certificate publishers are trusted.

534 Windows Internals, Fifth Edition

FIGURE 6-20 Software Restriction Policy configuration

When configuring a policy for a particular script or image, an administrator can direct the

system to recognize it using its path, its hash, its Internet Zone (as defined by Internet

Explorer), or its cryptographic certificate, and she can specify whether it is associated with the

Disallowed or Unrestricted security policy.

Enforcement of Software Restriction Policies takes place within various components where

files are treated as containing executable code. Some of these components are listed here:

The user-mode Windows CreateProcess function in %SystemRoot%\System32\

Kernel32.dll enforces it for executable images.

The DLL loading code of Ntdll (%SystemRoot%\System32\Ntdll.dll) enforces it for DLLs.

The Windows command prompt (%SystemRoot%\System32\Cmd.exe) enforces it for

batch file execution.

Windows Scripting Host components that start scripts—%SystemRoot%\System32\

Cscript.exe (for command-line scripts), %SystemRoot%\System32\Wscript.exe (for UI

scripts), and %SystemRoot%\System32\Scrobj.dll (for script objects)—enforce it for

script execution.

Each of these components determines whether the restriction policies are enabled by read-

ing the registry value HKEY_LOCAL_MACHINE\Software\Microsoft\Policies\Windows\Safer\

CodeIdentifiers\TransparentEnabled, which if set to 1 indicates that policies are in effect.

Then it determines whether the code it’s about to execute matches one of the rules speci-

fied in a subkey of the CodeIdentifiers key and, if so, whether or not the execution should be

allowed. If there is no match, the default policy, as specified in the DefaultLevel value of the

CodeIdentifiers key, determines whether the execution is allowed.

Software Restriction Policies are a powerful tool for preventing the unauthorized access

of code and scripts, but only if properly applied. Unless the default policy is set to disallow

 Chapter 6 Security 535

execution, a user can make minor changes to an image that’s been marked as disallowed so

that he can bypass the rule and execute it. For example, a user can change an innocuous byte

of a process image so that a hash rule fails to recognize it, or copy a file to a different loca-

tion to avoid a path-based rule.

EXPERIMENT: Watching Software Restriction Policy Enforcement

You can indirectly see Software Restriction Policies being enforced by watching

accesses to the registry when you attempt to execute an image that you’ve disallowed.

 1. Run secpol.msc to open the Local Security Policy Editor, and navigate to the

Software Restriction Policies node.

 2. Choose Create New Policies from the context menu if no policies are defined.

 3. Create a path-based disallow restriction policy for %SystemRoot%\System32\

Notepad.exe.

 4. Run Process Monitor, and set an include filter for Safer. (See Chapter 4 for a

description of Process Monitor.)

 5. Open a command prompt, and run Notepad from the prompt.

Your attempt to run Notepad should result in a message telling you that you can-

not execute the specified program, and Process Monitor should show the command

prompt (cmd.exe) querying the local machine restriction policies.

Conclusion

Windows provides an extensive array of security functions that meet the key requirements

of both government agencies and commercial installations. In this chapter, we’ve taken a

brief tour of the internal components that are the basis of these security features. In the next

chapter, we’ll look at the I/O system.

 537

Chapter 7

I/O System

The Windows I/O system consists of several executive components that together manage

hardware devices and provide interfaces to hardware devices for applications and the sys-

tem. In this chapter, we’ll first list the design goals of the I/O system, which have influenced

its implementation. We’ll then cover the components that make up the I/O system, including

the I/O manager, Plug and Play (PnP) manager, and power manager. Then we’ll examine the

structure and components of the I/O system and the various types of device drivers. We’ll

look at the key data structures that describe devices, device drivers, and I/O requests, after

which we’ll describe the steps necessary to complete I/O requests as they move through the

system. Finally, we’ll present the way device detection, driver installation, and power man-

agement work.

I/O System Components

The design goals for the Windows I/O system are to provide an abstraction of devices,

both hardware (physical) and software (virtual or logical), to applications with the following

features:

Uniform security and naming across devices to protect shareable resources. (See

Chapter 6 for a description of the Windows security model.)

High-performance asynchronous packet-based I/O to allow for the implementation of

scalable applications.

Services that allow drivers to be written in a high-level language and easily ported

between different machine architectures.

Layering and extensibility to allow for the addition of drivers that transparently modify

the behavior of other drivers or devices, without requiring any changes to the driver

whose behavior or device is modified.

Dynamic loading and unloading of device drivers so that drivers can be loaded

 on-demand and not consume system resources when unneeded.

Support for Plug and Play, where the system locates and installs drivers for newly

detected hardware, assigns them hardware resources they require, and also allows

applications to discover and activate device interfaces.

Support for power management so that the system or individual devices can enter low

power states.

538 Windows Internals, Fifth Edition

Support for multiple installable file systems, including FAT, the CD-ROM file sys-

tem (CDFS), the Universal Disk Format (UDF) file system, and the Windows file sys-

tem (NTFS). (See Chapter 11 for more specific information on file system types and

architecture.)

Windows Management Instrumentation (WMI) support and diagnosability so that driv-

ers can be managed and monitored through WMI applications and scripts. (WMI is

described in Chapter 4.)

To implement these features the Windows I/O system consists of several executive compo-

nents as well as device drivers, which are shown in Figure 7-1.

The I/O manager is the heart of the I/O system. It connects applications and system

components to virtual, logical, and physical devices, and it defines the infrastructure

that supports device drivers.

A device driver typically provides an I/O interface for a particular type of device. Device

drivers receive commands routed to them by the I/O manager that are directed at

devices they manage, and they inform the I/O manager when those commands com-

plete. Device drivers often use the I/O manager to forward I/O commands to other

device drivers that share in the implementation of a device’s interface or control.

The PnP manager works closely with the I/O manager and a type of device driver

called a bus driver to guide the allocation of hardware resources as well as to detect

and respond to the arrival and removal of hardware devices. The PnP manager and bus

drivers are responsible for loading a device’s driver when the device is detected. When

a device is added to a system that doesn’t have an appropriate device driver, the execu-

tive Plug and Play component calls on the device installation services of a user-mode

PnP manager.

The power manager also works closely with the I/O manager to guide the system, as

well as individual device drivers, through power-state transitions.

Windows Management Instrumentation support routines, called the Windows Driver

Model (WDM) WMI provider, allow device drivers to indirectly act as providers, using

the WDM WMI provider as an intermediary to communicate with the WMI service in

user mode. (For more information on WMI, see the section “Windows Management

Instrumentation” in Chapter 4.)

The registry serves as a database that stores a description of basic hardware devices

attached to the system as well as driver initialization and configuration settings. (See

the section “The Registry” in Chapter 4 for more information.)

INF files, which are designated by the .inf extension, are driver installation files. INF files

are the link between a particular hardware device and the driver that assumes primary

control of the device. They are made up of scriptlike instructions describing the device

they correspond to, the source and target locations of driver files, required driver-

 Chapter 7 I/O System 539

installation registry modifications, and driver dependency information. Digital signa-

tures that Windows uses to verify that a driver file has passed testing by the Microsoft

Windows Hardware Quality Labs (WHQL) are stored in .cat files.

The hardware abstraction layer (HAL) insulates drivers from the specifics of the proces-

sor and interrupt controller by providing APIs that hide differences between platforms.

In essence, the HAL is the bus driver for all the devices on the computer’s motherboard

that aren’t controlled by other drivers.

Windows
services

Applications

WMI
service

User-mode
PnP manager

.inf files,
.cat files,
registry

I/O
manager

Power
manager

PnP
manager

WDM WMI
routines

HAL

Setup
components

FIGURE 7-1 I/O system components

The I/O Manager

The I/O manager is the core of the I/O system because it defines the orderly framework, or

model, within which I/O requests are delivered to device drivers. The I/O system is packet
driven. Most I/O requests are represented by an I/O request packet (IRP), which travels from

one I/O system component to another. (As you’ll discover in the section “Fast I/O,” fast I/O is

the exception; it doesn’t use IRPs.) The design allows an individual application thread to man-

age multiple I/O requests concurrently. An IRP is a data structure that contains information

completely describing an I/O request. (You’ll find more information about IRPs in the section

“I/O Request Packets.”)

540 Windows Internals, Fifth Edition

The I/O manager creates an IRP that represents an I/O operation, passing a pointer to the

IRP to the correct driver and disposing of the packet when the I/O operation is complete. In

contrast, a driver receives an IRP, performs the operation the IRP specifies, and passes the IRP

back to the I/O manager, either for completion or to be passed on to another driver for fur-

ther processing.

In addition to creating and disposing of IRPs, the I/O manager supplies code that is common

to different drivers and that the drivers call to carry out their I/O processing. By consolidat-

ing common tasks in the I/O manager, individual drivers become simpler and more compact.

For example, the I/O manager provides a function that allows one driver to call other drivers.

It also manages buffers for I/O requests, provides timeout support for drivers, and records

which installable file systems are loaded into the operating system. There are close to a hun-

dred different routines in the I/O manager that can be called by device drivers.

The I/O manager also provides flexible I/O services that allow environment subsystems, such

as Windows and POSIX, to implement their respective I/O functions. These services include

sophisticated services for asynchronous I/O that allow developers to build scalable high-

performance server applications.

The uniform, modular interface that drivers present allows the I/O manager to call any driver

without requiring any special knowledge of its structure or internal details. The operat-

ing system treats all I/O requests as if they were directed at a file; the driver converts the

requests from requests made to a virtual file to hardware-specific requests. Drivers can also

call each other (using the I/O manager) to achieve layered, independent processing of an I/O

request.

Besides providing the normal open, close, read, and write functions, the Windows I/O sys-

tem provides several advanced features, such as asynchronous, direct, buffered, and scatter/

gather I/O, which are described in the “Types of I/O” section later in this chapter.

Typical I/O Processing

Most I/O operations don’t involve all the components of the I/O system. A typical I/O request

starts with an application executing an I/O-related function (for example, reading data from

a device) that is processed by the I/O manager, one or more device drivers, and the HAL.

As just mentioned, in Windows, threads perform I/O on virtual files. The operating system

abstracts all I/O requests as operations on a virtual file, hiding the fact that the target of an

I/O operation might not be a file-structured device. This abstraction generalizes an appli-

cation’s interface to devices. A virtual file refers to any source or destination for I/O that is

treated as if it were a file (such as files, directories, pipes, and mailslots). All data that is read

or written is regarded as a simple stream of bytes directed to these virtual files. User-mode

applications (whether Windows or POSIX) call documented functions, which in turn call inter-

nal I/O system functions to read from a file, write to a file, and perform other operations. The

 Chapter 7 I/O System 541

I/O manager dynamically directs these virtual file requests to the appropriate device driver.

Figure 7-2 illustrates the basic structure of a typical I/O request flow.

User-mode API

I/O system services API
(Ntxxx)

I/O manager (Ioxxx)

Kernel-mode
device drivers

HAL I/O access routines

Driver
support
routines

(Io, Ex, Ke,
Mm, Hal,

FsRtl,
and so on)

I/O ports and registers

FIGURE 7-2 The flow of a typical I/O request

In the following sections, we’ll be looking at these components more closely, covering the

various types of device drivers, how they are structured, how they load and initialize, and

how they process I/O requests. Then we’ll cover the operation and roles of the PnP manager

and the power manager.

Device Drivers

To integrate with the I/O manager and other I/O system components, a device driver must

conform to implementation guidelines specific to the type of device it manages and the

role it plays in managing the device. In this section, we’ll look at the types of device drivers

Windows supports as well as the internal structure of a device driver.

Types of Device Drivers

Windows supports a wide range of device driver types and programming environments.

Even within a type of device driver, programming environments can differ, depending on the

specific type of device for which a driver is intended. The broadest classification of a driver

542 Windows Internals, Fifth Edition

is whether it is a user-mode or kernel-mode driver. Windows supports several types of user-

mode drivers:

Virtual device drivers (VDDs) are used to emulate 16-bit MS-DOS applications. They

trap what an MS-DOS application thinks are references to I/O ports and translate them

into native Windows I/O functions, which are then passed to the actual device driver.

Because Windows is a fully protected operating system, user-mode MS-DOS applica-

tions can’t access hardware directly and thus must go through a real kernel-mode

device driver. Because 64-bit editions of Windows do not support 16-bit applications

anymore, these types of drivers are not present on that architecture.

Windows subsystem printer drivers translate device-independent graphics requests to

printer-specific commands. These commands are then typically forwarded to a kernel-

mode port driver such as the parallel port driver (Parport.sys) or the universal serial bus

(USB) printer port driver (Usbprint.sys).

User-Mode Driver Framework (UMDF) drivers are hardware device drivers that run

in user mode. They communicate to the kernel-mode UMDF support library through

ALPC. See the “User-Mode Driver Framework (UMDF)” section later in this chapter for

more information.

In this chapter, the focus is on kernel-mode device drivers. There are many types of kernel-

mode drivers, which can be divided into the following basic categories:

File system drivers accept I/O requests to files and satisfy the requests by issuing their

own, more explicit, requests to mass storage or network device drivers.

Plug and Play drivers work with hardware and integrate with the Windows power man-

ager and PnP manager. They include drivers for mass storage devices, video adapters,

input devices, and network adapters.

Non–Plug and Play drivers, which also include kernel extensions, are drivers or mod-

ules that extend the functionality of the system. They do not integrate with the PnP or

power managers because they typically do not manage an actual piece of hardware.

Examples include network API and protocol drivers. Process Monitor’s driver, described

in Chapter 4, is also an example.

Within the category of kernel-mode drivers are further classifications based on the driver

model that the driver adheres to and its role in servicing device requests.

WDM Drivers

WDM drivers are device drivers that adhere to the Windows Driver Model (WDM). WDM

includes support for Windows power management, Plug and Play, and WMI, and most Plug

and Play drivers adhere to WDM. There are three types of WDM drivers:

Bus drivers manage a logical or physical bus. Examples of buses include PCMCIA, PCI,

USB, IEEE 1394, and ISA. A bus driver is responsible for detecting and informing the PnP

 Chapter 7 I/O System 543

manager of devices attached to the bus it controls as well as managing the power set-

ting of the bus.

Function drivers manage a particular type of device. Bus drivers present devices to

function drivers via the PnP manager. The function driver is the driver that exports the

operational interface of the device to the operating system. In general, it’s the driver

with the most knowledge about the operation of the device.

Filter drivers logically layer above or below function drivers, augmenting or chang-

ing the behavior of a device or another driver. For example, a keyboard capture utility

could be implemented with a keyboard filter driver that layers above the keyboard

function driver.

In WDM, no one driver is responsible for controlling all aspects of a particular device. The

bus driver is responsible for detecting bus membership changes (device addition or removal),

assisting the PnP manager in enumerating the devices on the bus, accessing bus-specific con-

figuration registers, and, in some cases, controlling power to devices on the bus. The function

driver is generally the only driver that accesses the device’s hardware.

Layered Drivers

Support for an individual piece of hardware is often divided among several drivers, each

providing a part of the functionality required to make the device work properly. In addi-

tion to WDM bus drivers, function drivers, and filter drivers, hardware support might be split

between the following components:

Class drivers implement the I/O processing for a particular class of devices, such as disk,

tape, or CD-ROM, where the hardware interfaces have been standardized, so one driver

can serve devices from a wide variety of manufacturers.

Port drivers implement the processing of an I/O request specific to a type of I/O port,

such as SCSI, and are implemented as kernel-mode libraries of functions rather than

actual device drivers. Port drivers are always written by Microsoft because the inter-

faces to write for are not documented.

Miniport drivers map a generic I/O request to a type of port into an adapter type, such

as a specific SCSI adapter. Miniport drivers are actual device drivers that import the

functions supplied by a port driver. Miniport drivers are written by third parties, and

they provide the interface for the port driver.

An example will help demonstrate how device drivers work. A file system driver accepts a

request to write data to a certain location within a particular file. It translates the request into

a request to write a certain number of bytes to the disk at a particular “logical” location. It

then passes this request (via the I/O manager) to a simple disk driver. The disk driver, in turn,

translates the request into a physical location on the disk and communicates with the disk to

write the data. This layering is illustrated in Figure 7-3.

544 Windows Internals, Fifth Edition

Environment

subsystem

or DLL

NtWriteFile(file_handle, char_buffer)

System services

User mode

Kernel mode

Write data at specified
byte offset within a file

Translate file-relative byte
offset into volume-relative
byte offset and call next
driver (via I/O manager)

Call driver to write data
at volume-relative byte offset

I/O

managerFile system

driver

Disk driver

2

3

1

4

Translate volume-relative byte
offset into disk-relative offset
and transfer data

5

FIGURE 7-3 Layering of a file system driver and a disk driver

This figure illustrates the division of labor between two layered drivers. The I/O manager

receives a write request that is relative to the beginning of a particular file. The I/O man-

ager passes the request to the file system driver, which translates the write operation from

a file-relative operation to a starting location (a sector boundary on the disk) and a number

of bytes to read. The file system driver calls the I/O manager to pass the request to the disk

driver, which translates the request to a physical disk location and transfers the data.

Because all drivers—both device drivers and file system drivers—present the same frame-

work to the operating system, another driver can easily be inserted into the hierarchy with-

out altering the existing drivers or the I/O system. For example, several disks can be made to

seem like a very large single disk by adding a driver. This logical, volume manager driver is

located between the file system and the disk drivers, as shown in Figure 7-4. Volume man-

ager drivers are described in more detail in Chapter 8.

 Chapter 7 I/O System 545

Environment
subsystem

or DLL

System services

User mode

Kernel mode

Write data at specified
byte offset within a file

Translate file-relative byte
offset into volume-relative
byte offset and call next
driver (via I/O manager)

Translate volume-relative
byte offset into disk
number and offset, and
call next driver (via I/O
manager)"

I/O
managerFile system

driver

Disk driver

Volume
manager disk

driver

Call driver to write data at
volume-relative byte offset

Translate disk-relative byte offset into physical
location on disk 3 and transfer data

1 2 3

2

3

1

4

5

Call next driver to write
data to disk 3 at disk-
relative byte offset

6

7

FIGURE 7-4 Adding a layered driver

546 Windows Internals, Fifth Edition

EXPERIMENT: Viewing the Loaded Driver List

You can see a list of registered drivers by executing the Msinfo32.exe utility from the

Run dialog box of the Start menu. Select the System Drivers entry under Software

Environment to see the list of drivers configured on the system. Those that are loaded

have the text “Yes” in the Started column, as shown here:

You can also view the list of loaded kernel-mode drivers with Process Explorer from

Windows Sysinternals (www.microsoft.com/technet/sysinternals.) Run Process Explorer,

select the System process, and select DLLs from the Lower Pane menu entry in the

View menu. Process Explorer lists the loaded drivers, their names, version information

(including company and description), and load address (assuming you have configured

Process Explorer to display the corresponding columns):

 Chapter 7 I/O System 547

Finally, if you’re looking at a crash dump (or live system) with the kernel debugger, you

can get a similar display with the kernel debugger lm kv command:

lkd> lm kv

start end module name

82007000 823c0000 nt (pdb symbols)

c:\programming\symbols\ntkrpamp.pdb\37D328E3BAE5460F8E662756ED80951D2\ntkrpamp.pdb

 Loaded symbol image file: ntkrpamp.exe

 Image path: ntkrpamp.exe

 Image name: ntkrpamp.exe

 Timestamp: Fri Jan 18 21:30:58 2008 (47918B12)

 CheckSum: 00372038

 ImageSize: 003B9000

 File version: 6.0.6001.18000

 Product version: 6.0.6001.18000

 File flags: 0 (Mask 3F)

 File OS: 40004 NT Win32

 File type: 1.0 App

 File date: 00000000.00000000

 Translations: 0409.04b0

 CompanyName: Microsoft Corporation

 ProductName: Microsoft® Windows® Operating System

 InternalName: ntkrpamp.exe

 OriginalFilename: ntkrpamp.exe

 ProductVersion: 6.0.6001.18000

 FileVersion: 6.0.6001.18000 (longhorn_rtm.080118-1840)

 FileDescription: NT Kernel & System

 LegalCopyright: © Microsoft Corporation. All rights reserved.

823c0000 823f3000 hal (deferred)

 Image path: halmacpi.dll

 Image name: halmacpi.dll

 Timestamp: Fri Jan 18 21:27:20 2008 (47918A38)

 CheckSum: 0003859F

 ImageSize: 00033000

 Translations: 0000.04b0 0000.04e0 0409.04b0 0409.04e0

82600000 82671000 ksecdd (deferred)

 Image path: \SystemRoot\System32\Drivers\ksecdd.sys

 Image name: ksecdd.sys

 Timestamp: Fri Jan 18 21:41:20 2008 (47918D80)

 CheckSum: 0006E742

 ImageSize: 00071000

 Translations: 0000.04b0 0000.04e0 0409.04b0 0409.04e0

Structure of a Driver

The I/O system drives the execution of device drivers. Device drivers consist of a set of rou-

tines that are called to process the various stages of an I/O request. Figure 7-5 illustrates the

key driver-function routines.

548 Windows Internals, Fifth Edition

FIGURE 7-5 Primary device driver routines

An initialization routine The I/O manager executes a driver’s initialization routine,

which is typically named DriverEntry, when it loads the driver into the operating system.

The routine fills in system data structures to register the rest of the driver’s routines

with the I/O manager and performs any global driver initialization that’s necessary.

An add-device routine A driver that supports Plug and Play implements an add-

device routine. The PnP manager sends a driver notification via this routine whenever

a device for which the driver is responsible is detected. In this routine, a driver typically

allocates a device object (described later in this chapter) to represent the device.

A set of dispatch routines Dispatch routines are the main functions that a device

driver provides. Some examples are open, close, read, and write and any other capa-

bilities the device, file system, or network supports. When called on to perform an

I/O operation, the I/O manager generates an IRP and calls a driver through one of the

driver’s dispatch routines.

A start I/O routine A driver can use a start I/O routine to initiate a data transfer to

or from a device. This routine is defined only in drivers that rely on the I/O manager

to queue their incoming I/O requests. The I/O manager serializes IRPs for a driver by

ensuring that the driver processes only one IRP at a time. Most drivers process multiple

IRPs concurrently, but serialization makes sense for some drivers, such as a keyboard

driver.

An interrupt service routine (ISR) When a device interrupts, the kernel’s interrupt

dispatcher transfers control to this routine. In the Windows I/O model, ISRs run at

device interrupt request level (DIRQL), so they perform as little work as possible to

 Chapter 7 I/O System 549

avoid blocking lower-level interrupts unnecessarily. (See Chapter 3 for more informa-

tion on IRQLs.) An ISR usually queues a deferred procedure call (DPC), which runs at

a lower IRQL (DPC/dispatch level), to execute the remainder of interrupt processing.

(Only drivers for interrupt-driven devices have ISRs; a file system driver, for example,

doesn’t have one.)

An interrupt-servicing DPC routine A DPC routine performs most of the work

involved in handling a device interrupt after the ISR executes. The DPC routine executes

at a lower IRQL (DPC/dispatch level) than that of the ISR, which runs at device level, to

avoid blocking other interrupts unnecessarily. A DPC routine initiates I/O completion

and starts the next queued I/O operation on a device.

Although the following routines aren’t shown in Figure 7-5, they’re found in many types of

device drivers:

One or more I/O completion routines A layered driver might have I/O comple-

tion routines that will notify it when a lower-level driver finishes processing an IRP. For

example, the I/O manager calls a file system driver’s I/O completion routine after a

device driver finishes transferring data to or from a file. The completion routine notifies

the file system driver about the operation’s success, failure, or cancellation, and it allows

the file system driver to perform cleanup operations.

A cancel I/O routine If an I/O operation can be canceled, a driver can define one or

more cancel I/O routines. When the driver receives an IRP for an I/O request that can

be canceled, it assigns a cancel routine to the IRP. If a thread that issues an I/O request

exits before the request is completed or cancels the operation (with the CancelIo

Windows function, for example), the I/O manager executes the IRP’s cancel routine if

one is assigned to it. A cancel routine is responsible for performing whatever steps are

necessary to release any resources acquired during the processing that has already

taken place for the IRP as well as completing the IRP with a canceled status.

Fast dispatch routines Drivers that make use of the cache manager in Windows (see

Chapter 10 for more information on the cache manager), such as file system drivers,

typically provide these routines to allow the kernel to bypass typical I/O processing

when accessing the driver. For example, operations such as reading or writing can be

quickly performed by accessing the cached data directly, instead of taking the I/O

manager’s usual path that generates discrete I/O operations. Fast dispatch routines are

also used as a mechanism for callbacks from the memory manager and cache manager

to file system drivers. For instance, when creating a section, the memory manager calls

back into the file system driver to acquire the file exclusively.

An unload routine An unload routine releases any system resources a driver is using

so that the I/O manager can remove them from memory. Any resources acquired in the

initialization routine are usually released in the unload routine. A driver can be loaded

550 Windows Internals, Fifth Edition

and unloaded while the system is running if the driver supports it, but the unload rou-

tine will be called only after all file handles to the device are closed.

A system shutdown notification routine This routine allows driver cleanup on system

shutdown.

Error-logging routines When unexpected errors occur (for example, when a disk

block goes bad), a driver’s error-logging routines note the occurrence and notify the

I/O manager. The I/O manager writes this information to an error log file.

Note Most kernel-mode device drivers are written in C. Some drivers are written in C++, but

there’s no specific support for C++ in the Windows Driver Kit (WDK). Use of assembly language is

highly discouraged because of the complexity it introduces and its effect of making a driver dif-

ficult to port between hardware architectures such as the x86, x64, and IA64.

Driver Objects and Device Objects

When a thread opens a handle to a file object (described in the “I/O Processing” section later

in this chapter), the I/O manager must determine from the file object’s name which driver (or

drivers) it should call to process the request. Furthermore, the I/O manager must be able to

locate this information the next time a thread uses the same file handle. The following sys-

tem objects fill this need:

A driver object represents an individual driver in the system. The I/O manager obtains

the address of each of the driver’s dispatch routines (entry points) from the driver

object.

A device object represents a physical or logical device on the system and describes

its characteristics, such as the alignment it requires for buffers and the location of its

device queue to hold incoming IRPs.

The I/O manager creates a driver object when a driver is loaded into the system, and it then

calls the driver’s initialization routine (for example, DriverEntry), which fills in the object attri-

butes with the driver’s entry points.

After loading, a driver can create device objects to represent devices, or even an interface to

the driver, at any time by calling IoCreateDevice or IoCreateDeviceSecure. However, most Plug

and Play drivers create devices with their add-device routine when the PnP manager informs

them of the presence of a device for them to manage. Non–Plug and Play drivers, on the

other hand, usually create device objects when the I/O manager invokes their initialization

routine. The I/O manager unloads a driver when its last device object has been deleted and

no references to the driver remain.

 Chapter 7 I/O System 551

When a driver creates a device object, the driver can optionally assign the device a name.

A name places the device object in the object manager namespace, and a driver can either

explicitly define a name or let the I/O manager autogenerate one. (The object manager

namespace is described in Chapter 3.) By convention, device objects are placed in the \Device

directory in the namespace, which is inaccessible by applications using the Windows API.

Note Some drivers place device objects in directories other than \Device. For example, the IDE

driver creates the device objects that represent IDE ports and channels in the \Device\Ide direc-

tory. See Chapter 8 for a description of storage architecture, including the way storage drivers

use device objects.

If a driver needs to make it possible for applications to open the device object, it must create

a symbolic link in the \Global?? directory to the device object’s name in the \Device direc-

tory. (See Chapter 3 for more information on \??.) Non–Plug and Play and file system drivers

typically create a symbolic link with a well-known name (for example, \Device\Hardware2).

Because well-known names don’t work well in an environment in which hardware appears

and disappears dynamically, PnP drivers expose one or more interfaces by calling the

IoRegisterDeviceInterface function, specifying a GUID (globally unique identifier) that repre-

sents the type of functionality exposed. GUIDs are 128-bit values that you can generate by

using a tool called Guidgen that is included with the WDK and the Windows SDK. Given the

range of values that 128 bits represents, it’s statistically almost certain that each GUID that

Guidgen creates will be forever and globally unique.

IoRegisterDeviceInterface determines the symbolic link that is associated with a device

instance; however, a driver must call IoSetDeviceInterfaceState to enable the interface to the

device before the I/O manager actually creates the link. Drivers usually do this when the PnP

manager starts the device by sending the driver a start-device command.

An application wanting to open a device object represented with a GUID can call Plug and

Play setup functions in user space, such as SetupDiEnumDeviceInterfaces, to enumerate the

interfaces present for a particular GUID and to obtain the names of the symbolic links it can

use to open the device objects. For each device reported by SetupDiEnumDeviceInterfaces,
an application executes SetupDiGetDeviceInterfaceDetail to obtain additional informa-

tion about the device, such as its autogenerated name. After obtaining a device’s name

from SetupDiGetDeviceInterfaceDetail, the application can execute the Windows function

CreateFile to open the device and obtain a handle.

552 Windows Internals, Fifth Edition

EXPERIMENT: Looking at the \Device Directory

You can use the WinObj tool from Sysinternals or the !object kernel debugger com-

mand to view the device names under \Device in the object manager namespace. The

following screen shot shows an I/O manager–assigned symbolic link that points to a

device object in \Device with an autogenerated name:

When you run the !object kernel debugger command and specify the \Device directory,

you should see output similar to the following:

lkd> !object \Device

Object: 8b611b88 Type: (84d10d40) Directory

 ObjectHeader: 8b611b70 (old version)

 HandleCount: 0 PointerCount: 365

 Directory Object: 8b602470 Name: Device

 Hash Address Type Name

 ---- ------- ---- ----

 00 85557a00 Device KsecDD

 855589d8 Device Ndis

 8b6151b0 SymbolicLink {941D252A-0BDA-4772-B3CB-30697579BD4A}

 86859030 Device 0000009b

 88c92da8 Device SrvNet

 886723f0 Device Beep

 8b71fb90 SymbolicLink ScsiPort2

 84d17a98 Device 00000032

 84d15f00 Device 00000025

 84d13030 Device 00000019

 01 86d44030 Device NDMP10

 8d291eb0 SymbolicLink {E85EEE75-32E3-4A94-8905-52709C2C9BCC}

 886da3c8 Device Netbios

 86862030 Device 0000009c

 84d177c8 Device 00000033

 84d15c70 Device 00000026

 02 86de9030 Device NDMP11

 84d19320 Device 00000040

 Chapter 7 I/O System 553

 88633ca0 Device NetBT_Tcpip_{033C65A4-C1D6-4824-B420-DDAEADFF873E}

 8b7dcdd0 SymbolicLink Ip

 84d17500 Device 00000034

 84d159a8 Device 00000027

 03 86df3380 Device NDMP12

 8515ede0 Device WMIAdminDevice

 84d1a030 Device 00000041

 8862e040 Device Video0

 86eaec28 Device KeyboardClass0

 84d03b00 Device KMDF0

 84d17230 Device 00000035

 84d156e0 Device 00000028

 04 86e0d030 Device NDMP13

 86e65030 Device NDMP20

 85541030 Device VolMgrControl

 86e6c358 Device Tun0

 84d1ad68 Device 00000042

 8862ec48 Device Video1

 88e15158 Device 0000009f

 9badd848 SymbolicLink MailslotRedirector

 86e1d488 Device KeyboardClass1

 §

When you execute !object and specify an object manager directory object, the kernel

debugger dumps the contents of the directory according to the way the object man-

ager organizes it internally. For fast lookups, a directory stores objects in a hash table

based on a hash of the object names, so the output shows the objects stored in each

bucket of the directory’s hash table.

As Figure 7-6 illustrates, a device object points back to its driver object, which is how the

I/O manager knows which driver routine to call when it receives an I/O request. It uses the

device object to find the driver object representing the driver that services the device. It then

indexes into the driver object by using the function code supplied in the original request;

each function code corresponds to a driver entry point. (The function codes shown in Figure

7-6 are described in the section “IRP Stack Locations” later in this chapter.)

A driver object often has multiple device objects associated with it. The list of device objects

represents the physical and logical devices that the driver controls. For example, each parti-

tion of a hard disk has a separate device object that contains partition-specific information.

However, the same hard disk driver is used to access all partitions. When a driver is unloaded

from the system, the I/O manager uses the queue of device objects to determine which

devices will be affected by the removal of the driver.

554 Windows Internals, Fifth Edition

Driver object

Function
code 1

Function
code 2

Function
code

Read

Write

Device control

Start I/O

Unload

Cancel

Device
object

Device
object

Device
object

(Disk) (Disk
partition)

(Disk
partition)

Devices
operated by
this driver

.

.

.

.

.

.

.

.

.

FIGURE 7-6 The driver object

EXPERIMENT: Displaying Driver and Device Objects

You can display driver and device objects with the kernel debugger !drvobj and !devobj
commands, respectively. In the following example, the driver object for the keyboard

class driver is examined, and its lone device object viewed:

lkd> !drvobj kbdclass

Driver object (86e379a0) is for:

 \Driver\kbdclass

Driver Extension List: (id , addr)

Device Object list:

86e1d488 86eaec28

lkd> !devobj 86eaec28

Device object (86eaec28) is for:

 KeyboardClass0 \Driver\kbdclass DriverObject 86e379a0

Current Irp 00000000 RefCount 0 Type 0000000b Flags 00002044

DevExt 86eaece0 DevObjExt 86eaedc0

ExtensionFlags (0x00000800)

 Unknown flags 0x00000800

AttachedDevice (Upper) 86e15a40 \Driver\ctrl2cap

AttachedTo (Lower) 86e15020 \Driver\i8042prt

Device queue is not busy

Notice that the !devobj command also shows you the addresses and names of any

device objects that the object you’re viewing is layered over (the AttachedTo line) as well

as the device objects layered on top of the object specified (the AttachedDevice line).

 Chapter 7 I/O System 555

Using objects to record information about drivers means that the I/O manager doesn’t need

to know details about individual drivers. The I/O manager merely follows a pointer to locate

a driver, thereby providing a layer of portability and allowing new drivers to be loaded eas-

ily. Representing devices and drivers with different objects also makes it easy for the I/O

system to assign drivers to control additional or different devices if the system configuration

changes.

Opening Devices

File objects are the kernel-mode constructs for handles to files or devices. File objects clearly

fit the criteria for objects in Windows: they are system resources that two or more user-mode

processes can share, they can have names, they are protected by object-based security, and

they support synchronization. Although most shared resources in Windows are memory-

based resources, most of those that the I/O system manages are located on physical devices

or represent actual physical devices. Despite this difference, shared resources in the I/O sys-

tem, like those in other components of the Windows executive, are manipulated as objects.

(See Chapter 3 for a description of the object manager and Chapter 6 for information on

object security.)

File objects provide a memory-based representation of resources that conform to an I/O-

centric interface, in which they can be read from or written to. Table 7-1 lists some of the file

object’s attributes. For specific field declarations and sizes, see the structure definition for

FILE_OBJECT in Ntddk.h.

TABLE 7-1 File Object Attributes

Attribute Purpose

File name Identifies the physical file that the file object refers to

Current byte offset Identifies the current location in the file (valid only for synchro-

nous I/O)

Share modes Indicate whether other callers can open the file for read, write,

or delete operations while the current caller is using it

Open mode flags Indicate whether I/O will be synchronous or asynchronous,

cached or noncached, sequential or random, and so on

Pointer to device object Indicates the type of device the file resides on

Pointer to the volume parameter

block (VPB)

Indicates the volume, or partition, that the file resides on

Pointer to section object pointers Indicates a root structure that describes a mapped/cached file.

This structure also contains the shared cache map, which iden-

tifies which parts of the file are cached (or rather mapped) by

the cache manager and where they reside in the cache

Pointer to private cache map Used to store per-handle caching information, such as the read

patterns for this handle or the page priority for the process.

556 Windows Internals, Fifth Edition

Attribute Purpose

List of I/O request packets (IRPs) If thread-agnostic I/O is used (to be described later) and the

file object is associated with a completion port (also described

later), this is a list of all the I/O operations that are associated

with this file object

I/O completion context Context information for the current I/O completion port, if one

is active

File object extension Stores the I/O priority for the file and whether share-access

checks should be performed on the file object, and contains

optional file object extensions that store context-specific

 information

In order to maintain some level of opacity toward non-kernel code that uses the file object,

as well as to enable extending the file object functionality without enlarging the structure,

the file object also contains an extension field, which allows for up to six different kinds of

additional parameters. These are described in Table 7-2.

TABLE 7-2 File Object Extensions

Extension Purpose

Transaction parameters Contains the transaction parameter block, which contains informa-

tion about a transacted file operation. Returned by IoGetTransaction-
ParameterBlock.

Device object hint Identifies the device object of the filter driver with which this file

should be associated. Set with IoCreateFileEx or IoCreateFileSpecify-
DeviceObjectHint.

I/O status block range Allows applications to lock a user-mode buffer into kernel-mode

memory to optimize asynchronous I/Os. See the section on I/O

completion port optimizations later in this chapter. Set with SetFile-
IoOverlappedRange.

Generic Contains filter-driver-specific information, as well as extended create

parameters (ECP) that were added by the caller. Set with IoCreateFileEx.

Scheduled file I/O Stores a file’s bandwidth reservation information, which is used by the

storage system to optimize and guarantee throughput for multimedia

applications. See the section on bandwidth reservation later in this

chapter. Set with SetFileBandwidthReservation.

Symbolic link Added to the file object upon creation, when a mount point or direc-

tory junction is traversed (or a filter explicitly reparses the path). It

stores the caller-supplied path, including information about any inter-

mediate junctions, so that if a relative symbolic link is hit, it can walk

back through the junctions. See Chapter 11 for more information on

NTFS symbolic links, mount points, and directory junctions.

 Chapter 7 I/O System 557

EXPERIMENT: Viewing the File Object Data Structure

You can view the contents of the kernel-mode file object data structure with the kernel

debugger’s dt command:

lkd> dt nt!_FILE_OBJECT

 +0x000 Type : Int2B

 +0x002 Size : Int2B

 +0x004 DeviceObject : Ptr32 _DEVICE_OBJECT

 +0x008 Vpb : Ptr32 _VPB

 +0x00c FsContext : Ptr32 Void

 +0x010 FsContext2 : Ptr32 Void

 +0x014 SectionObjectPointer : Ptr32 _SECTION_OBJECT_POINTERS

 +0x018 PrivateCacheMap : Ptr32 Void

 +0x01c FinalStatus : Int4B

 +0x020 RelatedFileObject : Ptr32 _FILE_OBJECT

 +0x024 LockOperation : UChar

 +0x025 DeletePending : UChar

 +0x026 ReadAccess : UChar

 +0x027 WriteAccess : UChar

 +0x028 DeleteAccess : UChar

 +0x029 SharedRead : UChar

 +0x02a SharedWrite : UChar

 +0x02b SharedDelete : UChar

 +0x02c Flags : Uint4B

 +0x030 FileName : _UNICODE_STRING

 +0x038 CurrentByteOffset : _LARGE_INTEGER

 +0x040 Waiters : Uint4B

 +0x044 Busy : Uint4B

 +0x048 LastLock : Ptr32 Void

 +0x04c Lock : _KEVENT

 +0x05c Event : _KEVENT

 +0x06c CompletionContext : Ptr32 _IO_COMPLETION_CONTEXT

 +0x070 IrpListLock : Uint4B

 +0x074 IrpList : _LIST_ENTRY

 +0x07c FileObjectExtension : Ptr32 Void

When a caller opens a file or a simple device, the I/O manager returns a handle to a file

object. Figure 7-7 illustrates what occurs when a file is opened.

In this example, (1) a C program calls the run-time library function fopen, which in turn

(2) calls the Windows CreateFile function. The Windows subsystem DLL (in this case,

Kernel32.dll) then (3) calls the native NtCreateFile function in Ntdll.dll. The routine in Ntdll.dll

contains the appropriate instruction to cause a transition into kernel mode to the system ser-

vice dispatcher, which then (4) calls the real NtCreateFile routine in Ntoskrnl.exe. (See Chapter

3 for more information about system service dispatching.) Finally, this routine wraps the

parameters and flags in such a way that the I/O manager function IoCreateFile can actually

perform the operation.

558 Windows Internals, Fifth Edition

Windows
application

C
run-time

DLL

Windows
DLL

Object
manager

Security
reference
monitor

Local
procedure
call facility

Virtual
memory
manager

File systems
Cache manager

Device drivers

Network
drivers

2

3

1

4
5

6

FIGURE 7-7 Opening a file object

Note File objects represent open instances of files, not files themselves. Unlike UNIX systems,

which use vnodes, Windows does not define the representation of a file; Windows system drivers

define their own representations.

Like other executive objects, files are protected by a security descriptor that contains an

access-control list (ACL). The I/O manager consults the security subsystem to determine

whether a file’s ACL allows the process to access the file in the way its thread is requesting. If

it does, (5, 6) the object manager grants the access and associates the granted access rights

with the file handle that it returns. If this thread or another thread in the process needs to

perform additional operations not specified in the original request, the thread must open the

same file again with a different request to get another handle, which prompts another secu-

rity check. (See Chapter 6 for more information about object protection.)

 Chapter 7 I/O System 559

EXPERIMENT: Viewing Device Handles

Any process that has an open handle to a device will have a file object in its handle

table corresponding to the open instance. You can view these handles with Process

Explorer by selecting a process, checking Show Lower Pane in the View menu and

Handles in the Lower Pane View submenu of the View menu. Sort by the Type column

and scroll to where you see the handles that represent file objects, which are labeled

as File:

In this example the Csrss process has a handle open to a device created by the kernel

security device driver (Ksecdd.sys). You can look at the specific file object in the kernel

debugger by first identifying the address of the object. The following command reports

information on the highlighted handle (handle value 0xF8) in the preceding screen

shot, which is in the Csrss.exe process that has a process ID of 504 (0x1f8):

lkd> !handle f8 f 1f8

processor number 0, process 000001f8

Searching for Process with Cid == 1f8

PROCESS 88a4a4f0 SessionId: 0 Cid: 01f8 Peb: 7ffdf000 ParentCid: 01ec

 DirBase: cc530060 ObjectTable: 915f8418 HandleCount: 403.

 Image: csrss.exe

Handle table at 98177000 with 403 Entries in use

00f8: Object: 88b99930 GrantedAccess: 193b0022 (Protected) Entry: 915fd1f0

560 Windows Internals, Fifth Edition

Object: 88b99930 Type: (8515a040) File

 ObjectHeader: 88b99918 (old version)

 HandleCount: 1 PointerCount: 1

Because the object is a file object, you can get information about it with the !fileobj
command:

lkd> !fileobj 88b99930

Device Object: 0x85557a00 \Driver\KSecDD

Vpb is NULL

Event signalled

Flags: 0x40002

 Synchronous IO

 Handle Created

CurrentByteOffset: 0

Because a file object is a memory-based representation of a shareable resource and not the

resource itself, it’s different from other executive objects. A file object contains only data that

is unique to an object handle, whereas the file itself contains the data or text to be shared.

Each time a thread opens a file, a new file object is created with a new set of handle-specific

attributes. For example, the current byte offset attribute refers to the location in the file at

which the next read or write operation using that handle will occur. Each handle to a file has

a private byte offset even though the underlying file is shared. A file object is also unique to

a process, except when a process duplicates a file handle to another process (by using the

Windows DuplicateHandle function) or when a child process inherits a file handle from a par-

ent process. In these situations, the two processes have separate handles that refer to the

same file object.

Although a file handle might be unique to a process, the underlying physical resource is not.

Therefore, as with any shared resource, threads must synchronize their access to shareable

files, file directories, and devices. If a thread is writing to a file, for example, it should specify

exclusive write access when opening the file to prevent other threads from writing to the file

at the same time. Alternatively, by using the Windows LockFile function, the thread could lock

a portion of the file while writing to it.

 Chapter 7 I/O System 561

When a file is opened, the file name includes the name of the device object on which the

file resides. For example, the name \Device\HarddiskVolume1\Myfile.dat refers to the file

Myfile.dat on the C: volume. The substring \Device\HarddiskVolume1 is the name of the

internal Windows device object representing that volume. When opening Myfile.dat, the I/O

manager creates a file object and stores a pointer to the Floppy0 device object in the file

object and then returns a file handle to the caller. Thereafter, when the caller uses the file

handle, the I/O manager can find the HarddiskVolume1 device object directly. Keep in mind

that internal Windows device names can’t be used in Windows applications—instead, the

device name must appear in a special directory in the object manager’s namespace, which is

\Global??. This directory contains symbolic links to the real, internal Windows device names.

Device drivers are responsible for creating links in this directory so that their devices will be

accessible to Windows applications. You can examine or even change these links program-

matically with the Windows QueryDosDevice and DefineDosDevice functions.

EXPERIMENT: Viewing Windows Device Name to Windows

Device Name Mappings

You can examine the symbolic links that define the Windows device namespace with

the WinObj utility from Sysinternals. Run WinObj, and click on the \Global?? directory,

as shown here:

562 Windows Internals, Fifth Edition

Notice the symbolic links on the right. Try double-clicking on the device C:. You should

see something like this:

C: is a symbolic link to the internal device named \Device\HarddiskVolume3, or the first

volume on the first hard drive in the system. The COM1 entry in WinObj is a symbolic

link to \Device\Serial0, and so forth. Try creating your own links with the subst com-

mand at a command prompt.

I/O Processing

Now that we’ve covered the structure and types of drivers and the data structures that sup-

port them, let’s look at how I/O requests flow through the system. I/O requests pass through

several predictable stages of processing. The stages vary depending on whether the request

is destined for a device operated by a single-layered driver or for a device reached through a

multilayered driver. Processing varies further depending on whether the caller specified syn-

chronous or asynchronous I/O, so we’ll begin our discussion of I/O types with these two and

then move on to others.

 Chapter 7 I/O System 563

Types of I/O

Applications have several options for the I/O requests they issue. For example, they can

specify synchronous or asynchronous I/O, I/O that maps a device’s data into the application’s

address space for access via application virtual memory rather than I/O APIs, and I/O that

transfers data between a device and noncontiguous application buffers in a single request.

Furthermore, the I/O manager gives the drivers the choice of implementing a shortcut I/O

interface that can often mitigate IRP allocation for I/O processing. In this section, we’ll explain

each of these I/O variations.

Synchronous and Asynchronous I/O

Most I/O operations that applications issue are synchronous; that is, the application thread

waits while the device performs the data transfer and returns a status code when the I/O

is complete. The program can then continue and access the transferred data immediately.

When used in their simplest form, the Windows ReadFile and WriteFile functions are executed

synchronously. They complete an I/O operation before returning control to the caller.

Asynchronous I/O allows an application to issue an I/O request and then continue executing

while the device transfers the data. This type of I/O can improve an application’s throughput

because it allows the application thread to continue with other work while an I/O operation

is in progress. To use asynchronous I/O, you must specify the FILE_FLAG_OVERLAPPED flag

when you call the Windows CreateFile function. Of course, after issuing an asynchronous I/O

operation, the thread must be careful not to access any data from the I/O operation until

the device driver has finished the data transfer. The thread must synchronize its execution

with the completion of the I/O request by monitoring a handle of a synchronization object

(whether that’s an event object, an I/O completion port, or the file object itself) that will be

signaled when the I/O is complete.

Regardless of the type of I/O request, internally I/O operations issued to a driver on behalf of

the application are performed asynchronously; that is, once an I/O request has been initiated,

the device driver returns to the I/O system. Whether or not the I/O system returns immedi-

ately to the caller depends on whether the file was opened for synchronous or asynchronous

I/O. Figure 7-8 illustrates the flow of control when a read operation is initiated. Notice that

if a wait is done, which depends on the overlapped flag in the file object, it is done in kernel

mode by the NtReadFile function.

You can test the status of a pending asynchronous I/O with the Windows HasOverlappedIo-
Completed function. If you’re using I/O completion ports (described in the “I/O Completion

Ports” section later in this chapter), you can use the GetQueuedCompletionStatus function.

564 Windows Internals, Fifth Edition

User mode

Kernel mode

Call ReadFile()

Call NtReadFile()
Return to caller

SYSENTER
Return to caller

Call NtReadFile()
Dismiss interrupt

Invoke driver
Wait or return

to caller

Initiate I/O
operation

Return to caller

NtReadFile

KiSystemService

NtReadFile

ReadFile

Application

Kernel32.dll

Ntdll.dll

Ntoskrnl.exe

Ntoskrnl.exe

Driver.sys

Whether to wait depends
on overlapped flag

FIGURE 7-8 Control flow for an I/O operation

Fast I/O

Fast I/O is a special mechanism that allows the I/O system to bypass generating an IRP and

instead go directly to the file system driver stack to complete an I/O request. (Fast I/O is

described in detail in Chapters 10 and 11.) A driver registers its fast I/O entry points by enter-

ing them in a structure pointed to by the PFAST_IO_DISPATCH pointer in its driver object.

 Chapter 7 I/O System 565

EXPERIMENT: Looking at a Driver’s Registered Fast I/O Routines

The !drvobj kernel debugger command can list the fast I/O routines that a driver reg-

isters in its driver object. However, typically only file system drivers have any use for

fast I/O routines. The following output shows the fast I/O table for the NTFS file system

driver object:

lkd> !drvobj \FileSystem\Ntfs 2

Driver object (849f27c0) is for:

 \FileSystem\Ntfs

DriverEntry: 82af3b75 Ntfs!GsDriverEntry

DriverStartIo: 00000000

DriverUnload: 00000000

AddDevice: 00000000

Dispatch routines:

[00] IRP_MJ_CREATE 82a9200a Ntfs!NtfsFsdCreate

Fast I/O routines:

FastIoCheckIfPossible 82a7f87b Ntfs!NtfsFastIoCheckIfPossible

FastIoRead 82a7ec38 Ntfs!NtfsCopyReadA

FastIoWrite 82a7ff53 Ntfs!NtfsCopyWriteA

FastIoQueryBasicInfo 82a86c3a Ntfs!NtfsFastQueryBasicInfo

FastIoQueryStandardInfo 82a86aa6 Ntfs!NtfsFastQueryStdInfo

FastIoLock 82a79f41 Ntfs!NtfsFastLock

FastIoUnlockSingle 82a79d75 Ntfs!NtfsFastUnlockSingle

FastIoUnlockAll 82acb7b3 Ntfs!NtfsFastUnlockAll

FastIoUnlockAllByKey 82acb958 Ntfs!NtfsFastUnlockAllByKey

ReleaseFileForNtCreateSection 82a1c904 Ntfs!NtfsReleaseForCreateSection

FastIoQueryNetworkOpenInfo 82a78d84 Ntfs!NtfsFastQueryNetworkOpenInfo

AcquireForModWrite 82a0a892 Ntfs!NtfsAcquireFileForModWrite

MdlRead 82acb0d8 Ntfs!NtfsMdlReadA

MdlReadComplete 81c5aad6 nt!FsRtlMdlReadCompleteDev

PrepareMdlWrite 82acb31f Ntfs!NtfsPrepareMdlWriteA

MdlWriteComplete 81dffa72 nt!FsRtlMdlWriteCompleteDev

FastIoQueryOpen 82a72d03 Ntfs!NtfsNetworkOpenCreate

AcquireForCcFlush 82a18b35 Ntfs!NtfsAcquireFileForCcFlush

ReleaseForCcFlush 82a18a9c Ntfs!NtfsReleaseFileForCcFlush

The output shows that NTFS has registered its NtfsCopyReadA routine as the fast I/O

table’s FastIoRead entry. As the name of this fast I/O entry implies, the I/O manager

calls this function when issuing a read I/O request if the file is cached. If the call doesn’t

succeed, the standard IRP path is selected.

Mapped File I/O and File Caching

Mapped file I/O is an important feature of the I/O system, one that the I/O system and

the memory manager produce jointly. (See Chapter 9 for details on how mapped files are

implemented.) Mapped file I/O refers to the ability to view a file residing on disk as part of

566 Windows Internals, Fifth Edition

a process’s virtual memory. A program can access the file as a large array without buffering

data or performing disk I/O. The program accesses memory, and the memory manager uses

its paging mechanism to load the correct page from the disk file. If the application writes to

its virtual address space, the memory manager writes the changes back to the file as part of

normal paging.

Mapped file I/O is available in user mode through the Windows CreateFileMapping and

MapViewOfFile functions. Within the operating system, mapped file I/O is used for important

operations such as file caching and image activation (loading and running executable pro-

grams). The other major consumer of mapped file I/O is the cache manager. File systems use

the cache manager to map file data in virtual memory to provide better response time for

I/O-bound programs. As the caller uses the file, the memory manager brings accessed pages

into memory. Whereas most caching systems allocate a fixed number of bytes for caching

files in memory, the Windows cache grows or shrinks depending on how much memory is

available. This size variability is possible because the cache manager relies on the memory

manager to automatically expand (or shrink) the size of the cache, using the normal work-

ing set mechanisms explained in Chapter 9. By taking advantage of the memory manager’s

paging system, the cache manager avoids duplicating the work that the memory manager

already performs. (The workings of the cache manager are explained in detail in Chapter 10.)

Scatter/Gather I/O

Windows also supports a special kind of high-performance I/O that is called scatter/gather,
available via the Windows ReadFileScatter and WriteFileGather functions. These functions

allow an application to issue a single read or write from more than one buffer in virtual

memory to a contiguous area of a file on disk instead of issuing a separate I/O request for

each buffer. To use scatter/gather I/O, the file must be opened for noncached I/O, the user

buffers being used have to be page-aligned, and the I/Os must be asynchronous (over-

lapped). Furthermore, if the I/O is directed at a mass storage device, the I/O must be aligned

on a device sector boundary and have a length that is a multiple of the sector size.

I/O Request Packets

The I/O request packet (IRP) is where the I/O system stores information it needs to process

an I/O request. When a thread calls an I/O service, the I/O manager constructs an IRP to

represent the operation as it progresses through the I/O system. If possible, the I/O manager

allocates IRPs from one of two per-processor IRP nonpaged look-aside lists: the small-IRP

look-aside list stores IRPs with one stack location (IRP stack locations are described shortly),

and the large-IRP look-aside list contains IRPs with multiple stack locations. These lists are

backed by global look-aside lists as well, allowing efficient cross-CPU IRP flow. By default,

the system stores IRPs with 10 stack locations on the large-IRP look-aside list, but once per

minute the system adjusts the number of stack locations allocated between the default and

a maximum of 20, based on how many stack locations have been required. If an IRP requires

 Chapter 7 I/O System 567

more stack locations than are contained in the IRPs on the large-IRP look-aside list, the I/O

manager allocates IRPs from nonpaged pool. After allocating and initializing an IRP, the I/O

manager stores a pointer to the caller’s file object in the IRP.

Note If defined, the DWORD registry value HKLM\System\CurrentControlSet\Session Manager\

I/O System\LargIrpStackLocations specifies how many stack locations are contained in IRPs

stored on the large-IRP look-aside list.

Figure 7-9 shows a sample I/O request that demonstrates the relationship between an IRP

and the file, device, and driver objects described in the preceding sections. Although this

example shows an I/O request to a single-layered device driver, most I/O operations aren’t

this direct; they involve one or more layered drivers. (This case will be shown later in this

section.)

Environment
subsystem or

DLL
1

Kernel mode

User mode

An application writes a
file to the printer, passing
a handle to the file object.

2 The I/O manager creates an
IRP and initializes the first
stack location.

3 The I/O manager uses the
driver object to locate the
WRITE dispatch routine and
calls it, passing the IRP.

I/O system services

I/O manager

IRP stack location WRITE
parameters

IRP header

File
object

Device
object

Driver
object

IRP

Dispatch
routine(s)

Start I/O ISR
DPC

routine

Device driver

FIGURE 7-9 Data structures involved in a single-layered driver I/O request

568 Windows Internals, Fifth Edition

IRP Stack Locations

An IRP consists of two parts: a fixed header (often referred to as the IRP’s body) and one or

more stack locations. The fixed portion contains information such as the type and size of the

request, whether the request is synchronous or asynchronous, a pointer to a buffer for buff-

ered I/O, and state information that changes as the request progresses. An IRP stack location

contains a function code (consisting of a major code and a minor code), function-specific

parameters, and a pointer to the caller’s file object. The major function code identifies which

of a driver’s dispatch routines the I/O manager invokes when passing an IRP to a driver. An

optional minor function code sometimes serves as a modifier of the major function code.

Power and Plug and Play commands always have minor function codes.

Most drivers specify dispatch routines to handle only a subset of possible major function

codes, including create (open), read, write, device I/O control, power, Plug and Play, System

(for WMI commands), and close. (See the following experiment for a complete listing of

major function codes.) File system drivers are an example of a driver type that often fills in

most or all of its dispatch entry points with functions. The I/O manager sets any dispatch

entry points that a driver doesn’t fill to point to its own IopInvalidDeviceRequest, which

returns an error code to the caller indicating that the function specified for the device is

invalid.

EXPERIMENT: Looking at Driver Dispatch Routines

You can obtain a listing of the functions a driver has defined for its dispatch routines by

entering a 7 after the driver object’s name (or address) in the !drvobj kernel debugger

command. The following output shows that drivers support 28 IRP types.

lkd> !drvobj Kbdclass 7

Driver object (84b706b8) is for:

 \Driver\kbdclass

Driver Extension List: (id , addr)

Device Object list:

84abfd68 84baf030 84b84880

DriverEntry: 8ed1c802 kbdclass!GsDriverEntry

DriverStartIo: 00000000

DriverUnload: 00000000

AddDevice: 8ed1b7a0 kbdclass!KeyboardAddDevice

Dispatch routines:

[00] IRP_MJ_CREATE 8ed168f4 kbdclass!KeyboardClassCreate

[01] IRP_MJ_CREATE_NAMED_PIPE 81c63fef nt!IopInvalidDeviceRequest

[02] IRP_MJ_CLOSE 8ed16b00 kbdclass!KeyboardClassClose

[03] IRP_MJ_READ 8ed175bc kbdclass!KeyboardClassRead

[04] IRP_MJ_WRITE 81c63fef nt!IopInvalidDeviceRequest

[05] IRP_MJ_QUERY_INFORMATION 81c63fef nt!IopInvalidDeviceRequest

[06] IRP_MJ_SET_INFORMATION 81c63fef nt!IopInvalidDeviceRequest

[07] IRP_MJ_QUERY_EA 81c63fef nt!IopInvalidDeviceRequest

[08] IRP_MJ_SET_EA 81c63fef nt!IopInvalidDeviceRequest

 Chapter 7 I/O System 569

[09] IRP_MJ_FLUSH_BUFFERS 8ed1689a kbdclass!KeyboardClassFlush

[0a] IRP_MJ_QUERY_VOLUME_INFORMATION 81c63fef nt!IopInvalidDeviceRequest

[0b] IRP_MJ_SET_VOLUME_INFORMATION 81c63fef nt!IopInvalidDeviceRequest

[0c] IRP_MJ_DIRECTORY_CONTROL 81c63fef nt!IopInvalidDeviceRequest

[0d] IRP_MJ_FILE_SYSTEM_CONTROL 81c63fef nt!IopInvalidDeviceRequest

[0e] IRP_MJ_DEVICE_CONTROL 8ed1a7f8 kbdclass!KeyboardClassDeviceControl

[0f] IRP_MJ_INTERNAL_DEVICE_CONTROL 8ed1a006 kbdclass!KeyboardClassPassThrough

[10] IRP_MJ_SHUTDOWN 81c63fef nt!IopInvalidDeviceRequest

[11] IRP_MJ_LOCK_CONTROL 81c63fef nt!IopInvalidDeviceRequest

[12] IRP_MJ_CLEANUP 8ed16162 kbdclass!KeyboardClassCleanup

[13] IRP_MJ_CREATE_MAILSLOT 81c63fef nt!IopInvalidDeviceRequest

[14] IRP_MJ_QUERY_SECURITY 81c63fef nt!IopInvalidDeviceRequest

[15] IRP_MJ_SET_SECURITY 81c63fef nt!IopInvalidDeviceRequest

[16] IRP_MJ_POWER 8ed1aeac kbdclass!KeyboardClassPower

[17] IRP_MJ_SYSTEM_CONTROL 8ed1a688 kbdclass!KeyboardClassSystemControl

[18] IRP_MJ_DEVICE_CHANGE 81c63fef nt!IopInvalidDeviceRequest

[19] IRP_MJ_QUERY_QUOTA 81c63fef nt!IopInvalidDeviceRequest

[1a] IRP_MJ_SET_QUOTA 81c63fef nt!IopInvalidDeviceRequest

[1b] IRP_MJ_PNP 8ed1710e kbdclass!KeyboardPnP

While active, each IRP is usually stored in an IRP list associated with the thread that requested

the I/O. This arrangement allows the I/O system to find and cancel any outstanding IRPs if a

thread terminates or is terminated with outstanding I/O requests.

EXPERIMENT: Looking at a Thread’s Outstanding IRPs

When you use the !thread command, it prints any IRPs associated with the thread. Run

the kernel debugger with live debugging, and locate the service control manager pro-

cess (Services.exe) in the output generated by the !process command:

lkd> !process 0 0

**** NT ACTIVE PROCESS DUMP ****

...

PROCESS 8623b840 SessionId: 0 Cid: 0270 Peb: 7ffd6000 ParentCid: 0210

 DirBase: ce21e080 ObjectTable: 964c06a0 HandleCount: 198.

 Image: services.exe

...

Then dump the threads for the process by executing the !process command on the pro-

cess object. You should see many threads, with most of them having IRPs reported in

the IRP List area of the thread information (note that the debugger will show only the

first 17 IRPs for a thread that has more than 17 outstanding I/O requests):

lkd> !process 8623b840

PROCESS 8623b840 SessionId: 0 Cid: 0270 Peb: 7ffd6000 ParentCid: 0210

 DirBase: ce21e080 ObjectTable: 964c06a0 HandleCount: 198.

 Image: services.exe

 VadRoot 862b1358 Vads 71 Clone 0 Private 466. Modified 14. Locked 2.

 DeviceMap 8b0087d8

570 Windows Internals, Fifth Edition

...

 THREAD 86a1d248 Cid 0270.053c Teb: 7ffdc000 Win32Thread: 00000000 WAIT:

(UserRequest) UserMode Alertable

 86a40ca0 NotificationEvent

 86a40490 NotificationEvent

 IRP List:

 86a81190: (0006,0094) Flags: 00060900 Mdl: 00000000

...

Choose an IRP, and examine it with the !irp command:

lkd> !irp 86a81190

Irp is active with 1 stacks 1 is current (= 0x86a81200)

 No Mdl: No System Buffer: Thread 86a1d248: Irp stack trace.

 cmd flg cl Device File Completion-Context

>[3, 0] 0 1 86156328 86a4e7a0 00000000-00000000 pending

 \FileSystem\Npfs

 Args: 00000800 00000000 00000000 00000000

This IRP has a major function of 3, which corresponds to IRP_MJ_READ. It has one stack

location and is targeted at a device owned by the Npfs driver (the Named Pipe File

System driver). (Npfs is described in Chapter 12.)

IRP Buffer Management

When an application or a device driver indirectly creates an IRP by using the NtReadFile,

NtWriteFile, or NtDeviceIoControlFile system services (or the Windows API functions corre-

sponding to these services, which are ReadFile, WriteFile, and DeviceIoControl), the I/O man-

ager determines whether it needs to participate in the management of the caller’s input or

output buffers. The I/O manager performs three types of buffer management:

Buffered I/O The I/O manager allocates a buffer in nonpaged pool of equal size to

the caller’s buffer. For write operations, the I/O manager copies the caller’s buffer data

into the allocated buffer when creating the IRP. For read operations, the I/O manager

copies data from the allocated buffer to the user’s buffer when the IRP completes and

then frees the allocated buffer.

Direct I/O When the I/O manager creates the IRP, it locks the user’s buffer into mem-

ory (makes it nonpaged). When the I/O manager has finished using the IRP, it unlocks

the buffer. The I/O manager stores a description of the memory in the form of a mem-
ory descriptor list (MDL). An MDL specifies the physical memory occupied by a buffer.

(See the WDK for more information on MDLs.) Devices that perform direct memory

access (DMA) require only physical descriptions of buffers, so an MDL is sufficient

for the operation of such devices. (Devices that support DMA transfer data directly

between the device and the computer’s memory, without using the CPU.) If a driver

 Chapter 7 I/O System 571

must access the contents of a buffer, however, it can map the buffer into the system’s

address space.

Neither I/O The I/O manager doesn’t perform any buffer management. Instead,

buffer management is left to the discretion of the device driver, which can choose to

manually perform the steps the I/O manager performs with the other buffer manage-

ment types.

For each type of buffer management, the I/O manager places applicable references in the

IRP to the locations of the input and output buffers. The type of buffer management the I/O

manager performs depends on the type of buffer management a driver requests for each

type of operation. A driver registers the type of buffer management it desires for read and

write operations in the device object that represents the device. Device I/O control opera-

tions (those performed by NtDeviceIoControlFile) are specified with driver-defined I/O control

codes, and a control code includes a description of the buffer management the I/O manager

should use when issuing IRPs that contain that code.

Drivers commonly use buffered I/O when callers transfer requests smaller than one page

(4 KB on x86 processors) and use direct I/O for larger requests. A page is approximately the

buffer size at which the trade-off between the copy operation of buffered I/O matches the

overhead of the memory lock performed by direct I/O. File system drivers commonly use

neither I/O because no buffer management overhead is incurred when data can be copied

from the file system cache into the caller’s original buffer. The reason that most drivers don’t

use neither I/O is that a pointer to a caller’s buffer is valid only while a thread of the caller’s

process is executing. If a driver must transfer data from or to a device in an ISR or a DPC rou-

tine, it must ensure that the caller’s data is accessible from any process context, which means

that the buffer must have a system virtual address.

Drivers that use neither I/O to access buffers that might be located in user space must take

special care to ensure that buffer addresses are both valid and do not reference kernel-

mode memory. Failure to do so could result in crashes or in security vulnerabilities, where

applications have access to kernel-mode memory or can inject code into the kernel. The

ProbeForRead and ProbeForWrite functions that the kernel makes available to drivers verify

that a buffer resides entirely in the user-mode portion of the address space. To avoid a crash

from referencing an invalid user-mode address, drivers can access user-mode buffers from

within exception-handling code (called try/except blocks) that catch any invalid memory

faults and translate them into error codes to return to the application. Additionally, driv-

ers should also capture all input data into a kernel buffer instead of relying on user-mode

addresses, since the caller could always modify the data behind the driver’s back, even if the

memory address itself is still valid.

572 Windows Internals, Fifth Edition

I/O Request to a Single-Layered Driver

This section traces a synchronous I/O request to a single-layered kernel-mode device driver.

Handling a synchronous I/O to a single-layered driver consists of seven steps:

 1. The I/O request passes through a subsystem DLL.

 2. The subsystem DLL calls the I/O manager’s NtWriteFile service.

 3. The I/O manager allocates an IRP describing the request and sends it to the driver (a

device driver in this case) by calling its own IoCallDriver function.

 4. The driver transfers the data in the IRP to the device and starts the I/O operation.

 5. The device signals I/O completion by interrupting the CPU.

 6. The device driver services the interrupt.

 7. The driver calls the I/O manager’s IoCompleteRequest function to inform it that it has

finished processing the IRP’s request, and the I/O manager completes the I/O request.

These seven steps are illustrated in Figure 7-10.

I/O request passes
through subsystem DLL Environment

subsystem
or DLL

User mode

Kernel mode

Handle interrupt and
return success or
error status

Create IRP and send
it to device driver

IRP

IRP

Transfer data
specified in IRP

Device
driver

Perform I/O and
interrupt

5

6

4

3

NtWriteFile(file_handle, ...,
char_buffer)

2
Complete IRP and return
success or error status

7

1

Services

I/O manager

FIGURE 7-10 Issuing and completing a synchronous I/O request

 Chapter 7 I/O System 573

Now that we’ve seen how an I/O is initiated, let’s take a closer look at interrupt processing

and I/O completion.

Servicing an Interrupt

After an I/O device completes a data transfer, it interrupts for service and the Windows

kernel, I/O manager, and device driver are called into action. Figure 7-11 illustrates the first

phase of the process. (Chapter 3 describes the interrupt dispatching mechanism, including

DPCs. We’ve included a brief recap here because DPCs are key to I/O processing.)

DPC

DPCDPC

Dispatch
routine(s)

Start I/O ISR
DPC

routine(s)

The ISR stops the device
interrupt and queues a DPC.

Device driver

The kernel’s interrupt
dispatcher transfers control
to the device’s service routine.

2

3

1 The device
interrupts for
service.

DPC queue

High

Device IRQL

DPC/dispatch

APC

Passive

IRQL

FIGURE 7-11 Servicing a device interrupt (phase 1)

When a device interrupt occurs, the processor transfers control to the kernel trap han-

dler, which indexes into its interrupt dispatch table to locate the ISR for the device. ISRs in

Windows typically handle device interrupts in two steps. When an ISR is first invoked, it usu-

ally remains at device IRQL only long enough to capture the device status and then stop the

device’s interrupt. It then queues a DPC and exits, dismissing the interrupt. Later, when the

574 Windows Internals, Fifth Edition

DPC routine is called, the device finishes processing the interrupt. When that’s done, the

device calls the I/O manager to complete the I/O and dispose of the IRP. It might also start

the next I/O request that is waiting in the device queue.

The advantage of using a DPC to perform most of the device servicing is that any blocked

interrupt whose priority lies between the device IRQL and the DPC/dispatch IRQL is allowed

to occur before the lower-priority DPC processing occurs. Intermediate-level interrupts are

thus serviced more promptly than they otherwise would be. This second phase of an I/O (the

DPC processing) is illustrated in Figure 7-12.

IRP 5IRP 6

DPC

DPC DPC

Dispatch
routine(s)

Start I/O ISR
DPC

routine(s)

The DPC routine starts the next I/O
request in the device queue and
then completes interrupt servicing.

High

Device IRQL

DPC/dispatch

APC

Passive

IRQL

Device driver

The interrupt dispatcher
transfers control to the
driver’s DPC routine.

2

3

1 The IRQL drops,
and DPC processing
occurs.

Device queue

DPC queue

FIGURE 7-12 Servicing a device interrupt (phase 2)

 Chapter 7 I/O System 575

Completing an I/O Request

After a device driver’s DPC routine has executed, some work still remains before the I/O

request can be considered finished. This third stage of I/O processing is called I/O completion

and is initiated when a driver calls IoCompleteRequest to inform the I/O manager that it has

completed processing the request specified in the IRP (and the stack location that it owns).

The steps I/O completion entails vary with different I/O operations. For example, all the I/O

services record the outcome of the operation in an I/O status block, a data structure the

caller supplies. Similarly, some services that perform buffered I/O require the I/O system to

return data to the calling thread.

In both cases, the I/O system must copy some data that is stored in system memory into the

caller’s virtual address space. If the IRP completed synchronously, the caller’s address space

is current and directly accessible, but if the IRP completed asynchronously, the I/O manager

must delay IRP completion until it can access the caller’s address space. To gain access to

the caller’s virtual address space, the I/O manager must transfer the data “in the context of

the caller’s thread”—that is, while the caller’s thread is executing (which means that caller’s

process is the current process and has its address space active on the processor). It does so

by queuing a kernel-mode asynchronous procedure call (APC) to the thread. This process is

illustrated in Figure 7-13.

Thread’s APC queue

IRP

Dispatch
routine(s)

Start I/O ISR
DPC

routine(s)

The I/O manager queues an
APC to complete the I/O request
in the caller’s context.

Device driver

The DPC routine calls
the I/O manager to complete
the original I/O request.

1

2

APC

IRP

APC

IRP

APC

IRP

I/O manager

FIGURE 7-13 Completing an I/O request (phase 1)

576 Windows Internals, Fifth Edition

As explained in Chapter 3, APCs execute in the context of a particular thread, whereas a DPC

executes in arbitrary thread context, meaning that the DPC routine can’t touch the user-

mode process address space. Remember too that DPCs have a higher software interrupt pri-

ority than APCs.

The next time that thread begins to execute at low IRQL (below DISPATCH_LEVEL), the pend-

ing APC is delivered. The kernel transfers control to the I/O manager’s APC routine, which

copies the data (if any) and the return status into the original caller’s address space, frees

the IRP representing the I/O operation, and either sets the caller’s file handle (and any caller-

 supplied event) to the signaled state for synchronous I/O, or queues an entry to the caller’s

I/O completion port. The I/O is now considered complete. The original caller or any other

threads that are waiting on the file (or other object) handle are released from their waiting

state and readied for execution. Figure 7-14 illustrates the second stage of I/O completion.

High

Device printer

DPC/dispatch

APC

Passive

IRQLThread’s APC queue

APC

IRP

APC

IRP

The kernel-mode APC
routine writes data to
the thread’s address
space, sets the original
file handle to the
signaled state for
synchronous I/O,
queues any user-mode
APCs for execution,
and disposes of the IRP.

The interrupt
dispatcher transfers
control to the I/O
manager’s APC
routine.

Environment
subsystem or

DLL

APC
routine

The next time the
caller’s thread runs,
an APC interrupt
occurs.

I/O manager

2

3

1

Kernel mode

User mode

FIGURE 7-14 Completing an I/O request (phase 2)

 Chapter 7 I/O System 577

A final note about I/O completion: the asynchronous I/O functions ReadFileEx and WriteFileEx

allow a caller to supply a user-mode APC as a parameter. If the caller does so, the I/O man-

ager queues this APC to the caller’s thread APC queue as the last step of I/O completion. This

feature allows a caller to specify a subroutine to be called when an I/O request is completed

or canceled. User-mode APC completion routines execute in the context of the requesting

thread and are delivered only when the thread enters an alertable wait state (such as calling

the Windows SleepEx, WaitForSingleObjectEx, or WaitForMultipleObjectsEx function).

Synchronization

Drivers must synchronize their access to global driver data and hardware registers for two

reasons:

The execution of a driver can be preempted by higher-priority threads and time-slice

(or quantum) expiration or can be interrupted by interrupts.

On multiprocessor systems, Windows can run driver code simultaneously on more than

one processor.

Without synchronization, corruption could occur—for example, because device driver code

running at a passive IRQL when a caller initiates an I/O operation can be interrupted by a

device interrupt, causing the device driver’s ISR to execute while its own device driver is

already running. If the device driver was modifying data that its ISR also modifies, such as

device registers, heap storage, or static data, the data can become corrupted when the ISR

executes. Figure 7-15 illustrates this problem.

2

3

1

FIGURE 7-15 Concurrent access to shared data by a device driver dispatch routine and ISR

578 Windows Internals, Fifth Edition

To avoid this situation, a device driver written for Windows must synchronize its access to any

data that the device driver shares with its ISR. Before attempting to update shared data, the

device driver must lock out all other threads (or CPUs, in the case of a multiprocessor system)

to prevent them from updating the same data structure.

The Windows kernel provides a special synchronization routine called KeSynchronize-
Execution that device drivers call when they access data that their ISRs also access. This

kernel synchronization routine keeps the ISR from executing while the shared data is being

accessed. A driver can also use KeAcquireInterruptSpinLock to access an interrupt object’s

spinlock directly, although it’s generally faster to rely on KeSynchronizeExecution for synchro-

nization with an ISR.

By now, you should realize that although ISRs require special attention, any data that a

device driver uses is subject to being accessed by the same device driver running on another

processor. Therefore, it’s critical for device driver code to synchronize its use of any global or

shared data (or any accesses to the physical device itself). If the ISR uses that data, the device

driver must use KeSynchronizeExecution; otherwise, the device driver can use standard kernel

spinlocks.

I/O Requests to Layered Drivers

The preceding section showed how an I/O request to a simple device controlled by a single

device driver is handled. I/O processing for file-based devices or for requests to other layered

drivers happens in much the same way. The major difference is, obviously, that one or more

additional layers of processing are added to the model.

Figure 7-16 shows how an asynchronous I/O request travels through layered drivers. It uses as

an example a disk controlled by a file system.

Once again, the I/O manager receives the request and creates an I/O request packet to

represent it. This time, however, it delivers the packet to a file system driver. The file system

driver exercises great control over the I/O operation at that point. Depending on the type

of request the caller made, the file system can send the same IRP to the disk driver or it can

generate additional IRPs and send them separately to the disk driver.

 Chapter 7 I/O System 579

EXPERIMENT: Viewing a Device Stack

The kernel debugger command !devstack shows you the device stack of layered device

objects associated with a specified device object. This example shows the device stack

associated with a device object, \device\keyboardclass0, which is owned by the key-

board class driver:

lkd> !devstack keyboardclass0

 !DevObj !DrvObj !DevExt ObjectName

 fffffa800a5e2040 \Driver\Ctrl2cap fffffa800a5e2190

> fffffa800a612ce0 \Driver\kbdclass fffffa800a612e30 KeyboardClass0

 fffffa800a612040 \Driver\i8042prt fffffa800a612190

 fffffa80076e0a00 \Driver\ACPI fffffa80076f3a90 0000005c

!DevNode fffffa800770f750 :

 DeviceInst is "ACPI\PNP0303\4&b0a2531&0"

 ServiceName is "i8042prt"

The output highlights the entry associated with KeyboardClass0 with the “>“ prefix. The

entries above that line are drivers layered above the keyboard class driver, and those

below are layered beneath it. In general, IRPs flow from the top of the stack to the

bottom.

The file system is most likely to reuse an IRP if the request it receives translates into a single

straightforward request to a device. For example, if an application issues a read request for

the first 512 bytes in a file stored on a volume, the NTFS file system would simply call the

volume manager driver, asking it to read one sector from the volume, beginning at the file’s

starting location.

To accommodate its reuse by multiple drivers in a request to layered drivers, an IRP contains

a series of IRP stack locations (not to be confused with the stack used by threads to store

function parameters and return addresses). These data areas, one for every driver that will be

called, contain the information that each driver needs to execute its part of the request—for

example, function code, parameters, and driver context information. As Figure 7-16 illus-

trates, additional stack locations are filled in as the IRP passes from one driver to the next.

You can think of an IRP as being similar to a stack in the way data is added to it and removed

from it during its lifetime. However, an IRP isn’t associated with any particular process, and

its allocated size doesn’t grow or shrink. The I/O manager allocates an IRP from one of its IRP

look-aside lists or nonpaged system memory at the beginning of the I/O operation.

580 Windows Internals, Fifth Edition

I/O manager creates IRP, fills
in first stack location, and
calls a file system driver.

Environment
subsystem

or DLL

User mode

Kernel mode

Send IRP data to disk driver
(or queue IRP) and return

File
system
driver

Volume
manager

Return I/O pending status5

Return I/O pending status6

4

File system driver fills in a
second IRP stack location and
calls the volume manager.

3

2

Return I/O pending status7Call I/O service1

Services

I/O manager

IRP
Current

IRP

Current

FIGURE 7-16 Queuing an asynchronous request to layered drivers

 Chapter 7 I/O System 581

EXPERIMENT: Examining IRPs

In this experiment, you’ll find an uncompleted IRP on the system, and you’ll determine

the IRP type, the device at which it’s directed, the driver that manages the device, the

thread that issued the IRP, and what process the thread belongs to.

At any point in time, there are at least a few uncompleted IRPs on a system. This is

because there are many devices to which applications can issue IRPs that a driver will

only complete when a particular event occurs, such as data becoming available. One

example is a blocking read from a network endpoint. You can see the outstanding IRPs

on a system with the !irpfind kernel debugger command:

lkd> !irpfind

Scanning large pool allocation table for Tag: Irp? (86c16000 : 86d16000)

Searching NonPaged pool (80000000 : ffc00000) for Tag: Irp?

 Irp [Thread] irpStack: (Mj,Mn) DevObj [Driver] MDL Process

862d2380 [8666dc68] irpStack: (c, 2) 84a6f020 [\FileSystem\Ntfs]

862d2bb0 [864e3d78] irpStack: (e,20) 86171348 [\Driver\AFD] 0x864dbd90

862d4518 [865f7600] irpStack: (d, 0) 86156328 [\FileSystem\Npfs]

862d4688 [867133f0] irpStack: (3, 0) 86156328 [\FileSystem\Npfs]

862dd008 [00000000] Irp is complete (CurrentLocation 4 > StackCount 3) 0x00420000

862dee28 [864fc030] irpStack: (3, 0) 84baf030 [\Driver\kbdclass]

The entry in bold in the output describes an IRP that is directed at the Kbdclass driver,

so it is likely that the IRP was issued by the Windows subsystem raw input thread that

reads keyboard input. Examining the IRP with the !irp command reveals the following:

lkd> !irp 862dee28

Irp is active with 3 stacks 3 is current (= 0x862deee0)

 No Mdl: System buffer=864f5108: Thread 864fc030: Irp stack trace.

 cmd flg cl Device File Completion-Context

 [0, 0] 0 0 00000000 00000000 00000000-00000000

 Args: 00000000 00000000 00000000 00000000

 [0, 0] 0 0 00000000 00000000 00000000-00000000

 Args: 00000000 00000000 00000000 00000000

>[3, 0] 0 1 84baf030 864f52f8 00000000-00000000 pending

 \Driver\kbdclass

 Args: 00000078 00000000 00000000 00000000

The active stack location is at the bottom. (The debugger shows the active location

with a “>“ prefix.) It has a major function of 3, which corresponds to IRP_MJ_READ.

582 Windows Internals, Fifth Edition

The next step is to see what device object the IRP is targeting by executing the !devobj
command on the device object address in the active stack location.

lkd> !devobj 84baf030

Device object (84baf030) is for:

 KeyboardClass1 \Driver\kbdclass DriverObject 84b706b8

Current Irp 00000000 RefCount 0 Type 0000000b Flags 00002044

Dacl 8b0538b8 DevExt 84baf0e8 DevObjExt 84baf1c8

ExtensionFlags (0x00000800)

 Unknown flags 0x00000800

AttachedTo (Lower) 84badaa0 \Driver\TermDD

Device queue is not busy.

The device at which the IRP is targeted is KeyboardClass1. The presence of a device

object owned by the Termdd driver attached beneath it reveals that it is the device that

represents keyboard input from a Terminal Server client, not the physical keyboard.

We can see details about the thread and process that issued the IRP by using the

!thread and !process commands:

lkd> !thread 864fc030

THREAD 864fc030 Cid 01d4.0234 Teb: 7ffd9000 Win32Thread: ffac4008 WAIT:

(WrUserRequest) KernelMode Alertable

 8623c620 SynchronizationEvent

 864fc3a8 NotificationTimer

 864fc378 SynchronizationTimer

 864fc360 SynchronizationEvent

IRP List:

 86af0e28: (0006,01d8) Flags: 00060970 Mdl: 00000000

 86503958: (0006,0268) Flags: 00060970 Mdl: 00000000

 862dee28: (0006,01d8) Flags: 00060970 Mdl: 00000000

Not impersonating

DeviceMap 8b0087d8

Owning Process 0 Image: <Unknown>

Attached Process 864d2d90 Image: csrss.exe

Wait Start TickCount 171909 Ticks: 29 (0:00:00:00.452)

Context Switch Count 121222

UserTime 00:00:00.000

KernelTime 00:00:00.717

Win32 Start Address 0x764d9a30

Stack Init 96f46000 Current 96f45c28 Base 96f46000 Limit 96f43000 Call 0

Priority 15 BasePriority 13 PriorityDecrement 0 IoPriority 2 PagePriority 5

lkd> !process 864d2d90

PROCESS 864d2d90 SessionId: 1 Cid: 0208 Peb: 7ffdf000 ParentCid: 0200

 DirBase: ce21e0a0 ObjectTable: 964a6e68 HandleCount: 284.

 Image: csrss.exe

 Chapter 7 I/O System 583

Locating the thread in Process Explorer by opening the Properties dialog box for

Csrss.exe and going to the Threads tab confirms, through the names of the functions

on its stack, the role of the thread as a raw input thread for the Windows subsystem:

After the disk driver finishes a data transfer, the disk interrupts and the I/O completes, as

shown in Figure 7-17.

584 Windows Internals, Fifth Edition

Environment
subsystem

or DLL

User mode

Kernel mode

File
system
driver

Volume
manager

During I/O completion, results are returned
to the caller’s address space.

4

The file system driver performs
any necessary cleanup work.

3

The volume manager performs
any necessary cleanup work.

2

Device-level interrupt occurs. The disk
driver services the interrupt and then
queues a DPC to complete the I/O, which
will “pop” the second stack location off
the IRP stack and call the volume manager.

1

Services

I/O manager

IRP

IRP

Current

Current

Disk
driver

FIGURE 7-17 Completing a layered I/O request

As an alternative to reusing a single IRP, a file system can establish a group of associated IRPs

that work in parallel on a single I/O request. For example, if the data to be read from a file is

dispersed across the disk, the file system driver might create several IRPs, each of which reads

some portion of the request from a different sector. This queuing is illustrated in Figure 7-18.

 Chapter 7 I/O System 585

Call I/O service

I/O manager creates an IRP
and calls a file system driver.

Environment
subsystem

or DLL

Return I/O pending status

User mode

Kernel mode

Return I/O pending status

File system driver creates
associated IRPs and calls
the volume manager
one or more times.

IRP 0

IRP 1 IRP n

IRP 1 IRP n

Send IRPs to the
disk driver and return

File
system
driver

Volume
manager

Return I/O pending status5

6

4

3

2

71

Services

I/O manager

. . .

. . .

FIGURE 7-18 Queuing associated IRPs

The file system driver delivers the associated IRPs to the volume manager, which in turn

sends them to the disk device driver, which queues them to the disk device. They are pro-

cessed one at a time, and the file system driver keeps track of the returned data. When all the

associated IRPs complete, the I/O system completes the original IRP and returns to the caller,

as shown in Figure 7-19.

586 Windows Internals, Fifth Edition

Step 1 repeats, completing IRPs
2 through n, and the volume manager
performs cleanup after each one.

Environment
subsystem

or DLL

User mode

Kernel mode

When all associated IRPs complete, the
original IRP completes, returning status
information or data to the caller.

File
system
driver

Volume
manager

4

Step 2 repeats, completing IRPs
2 through n, and the file system
performs cleanup after each one.

3

2

After transferring data for one IRP,
the device interrupts. The disk driver
services the interrupt and then queues
a DPC, which starts the next IRP on
the device and calls the I/O manager
to complete the first IRP.

1

Services

I/O manager

IRP 0

IRP 1

IRP n

FIGURE 7-19 Completing associated IRPs

Note All Windows file system drivers that manage disk-based file systems are part of a stack of

drivers that is at least three layers deep: the file system driver sits at the top, a volume manager

in the middle, and a disk driver at the bottom. In addition, any number of filter drivers can be

interspersed above and below these drivers. For clarity, the preceding example of layered I/O

requests includes only a file system driver and the volume manager driver. See Chapter 8, on

storage management, for more information.

 Chapter 7 I/O System 587

Thread Agnostic I/O

In the I/O models described thus far, IRPs are queued to the thread that initiated the I/O and

are completed by the I/O manager issuing an APC to that thread so that process or thread-

specific context is accessible by completion processing. Thread-specific I/O processing is usu-

ally sufficient for the performance and scalability needs of most applications, but Windows

also includes support for thread agnostic I/O via two mechanisms:

I/O completion ports, which are described at length later in this chapter

Locking the user buffer into memory and mapping it into the system address space

With I/O completion ports, the application decides when it wants to check for the comple-

tion of I/O, so the thread that happens to have issued an I/O request is not necessarily rel-

evant because any other thread can perform the completion request. As such, instead of

completing the IRP inside the specific thread’s context, it can be completed in the context of

any thread that has access to the completion port.

Likewise, with a locked and kernel-mapped version of the user buffer, there’s no need to

be in the same memory address space as the issuing thread because the kernel can access

the memory from arbitrary contexts. Applications can enable this mechanism by using

SetFileIoOverlappedRange.

With both completion port I/O and I/O on file buffers set by SetFileIoOverlappedRange, the

I/O manager associates the IRPs with the file object to which they have been issued instead

of the issuing thread. The !fileobj extension in WinDbg will show an IRP list for file objects

that are used with these mechanisms.

In the next sections, we’ll see how thread agnostic I/O increases the reliability and perfor-

mance of applications on Windows.

I/O Cancellation

While there are many ways in which IRP processing occurs and various methods to complete

an I/O request, a great many I/O processing operations actually end in cancellation rather

than completion. For example, a device may require removal while IRPs are still active, or the

user might cancel a long-running operation to a device, for example a network operation.

Another situation requiring I/O cancellation support is thread and process termination. When

a thread exits, the I/Os associated with the thread must be cancelled, since the I/O operation

is no longer relevant.

The Windows I/O manager, working with drivers, must deal with these requests efficiently

and reliably in order to provide a smooth user experience. Drivers manage this need by

registering a cancel routine for their cancellable I/O operations, which is invoked by the I/O

manager to cancel an I/O operation. When drivers fail to play their role in these scenarios,

588 Windows Internals, Fifth Edition

users may experience unkillable processes, which have disappeared visually but linger and

still appear in Task Manager or Process Explorer. (See Chapter 5 for more information on pro-

cesses and threads.)

User-Initiated I/O Cancellation

Most software uses one thread to handle user interface (UI) input and one or more threads

to perform work, including I/O. In some cases, when a user wants to abort an operation

he initiated in the UI, an application might need to cancel outstanding I/O operations.

Operations that complete quickly might not require cancellation, but for operations that

take arbitrary amounts of time—like large data transfers or network operations— Windows

provides support for cancelling both synchronous operations and asynchronous opera-

tions. A thread can cancel its own outstanding asynchronous I/Os by calling CancelIo. It can

cancel all asynchronous I/Os issued to a specific file handle, regardless of by which thread,

with CancelIoEx. CancelIoEx also works on operations associated with I/O completion ports

through the thread-agnostic support in Windows that was mentioned earlier because the I/O

system keeps track of a completion port’s outstanding I/Os by linking them with the comple-

tion port.

For cancelling synchronous I/Os, a thread can call CancelSynchronousIo. CancelSynchronousIo

enables even create (open) operations to be cancelled when supported by a device driver,

and several drivers in Windows support this functionality, including the drivers that manage

network file systems (for example, MUP, DFS, and SMB), which can cancel open operations to

network paths. Figures 7-20 and 7-21 show synchronous and asynchronous I/O cancellation.

CreateFile() CancelSynchronousIo)

I/O manager

Driver Cancel
routine

Application

Status -> app T2 passes T1’s handle

Returns
immediately

I/O manager tries to
cancel T1’s synchronous I/O

Cancel routines invoked

IRP completes

Driver returns with
STATUS_CANCELLED

Thread 1 (T1) waits for
I/O to complete

Another process thread
(T2) requests cancellation

Synchronous I/O Cancellation

FIGURE 7-20 Synchronous I/O cancellation

 Chapter 7 I/O System 589

ReadFileEx() CancelIoEx()

I/O manager

Driver Cancel
routine

Application

Status -> app Passes file handle

Returns
immediately

I/O manager tries to cancel
all pending I/O on this handle

Cancel routine(s) invoked

IRP completes

Driver returns with
STATUS_CANCELLED

A thread in the process
requests cancellation for

all pending file I/O on
specified handle

Asynchronous I/O Cancellation

FIGURE 7-21 Asynchronous I/O cancellation

I/O Cancellation for Thread Termination

The other scenario in which I/Os must be cancelled is when a thread exits, either directly or

as the result of its process terminating (which causes the threads of the process to terminate).

Because every thread has a list of IRPs associated with it, the I/O manager can enumerate this

list, look for cancellable IRPs, and cancel them. Unlike CancelIoEx, which does not wait for

an IRP to be cancelled before returning, the process manager will not allow thread termina-

tion to proceed until all I/Os have been cancelled. As a result, if a driver fails to cancel an IRP,

the process and thread object will remain allocated until the system shuts down. Figure 7-22

illustrates the process termination scenario.

590 Windows Internals, Fifth Edition

I/O call(s)

I/O manager

Driver(s)
Cancel

routine(s)

Application

Process cleanup occurs only
after all IRPs complete or cancel

Cancel routine(s) invoked

System cancels all
I/O associated with

the process

Process Termination Example

Process
terminated

FIGURE 7-22 Cancellation during process termination

Note Only IRPs for which a driver sets a cancel routine are cancellable. The process manager

waits until all I/Os associated with a thread are either cancelled or completed before deleting the

thread.

EXPERIMENT: Debugging an Unkillable Process

In this experiment, we’ll use Notmyfault from Sysinternals (we’ll cover Notmyfault heav-

ily in the “Crash Dump Analysis” section in Chapter 14) to force the unkillable process

problem to exhibit itself by causing the Myfault.sys driver (which Notmyfault.exe uses)

to indefinitely hold an IRP without having registered a cancel routine for it.

To start, run Notmyfault.exe, select Hang IRP from the list of options, and then click Do

Bug. The dialog box should look like the following when properly configured:

 Chapter 7 I/O System 591

You shouldn’t see anything happen, and you should be able to click the Exit but-

ton to quit the application. However, you should still see the Notmyfault process in

Task Manager or Process Explorer. Attempts to terminate the process will fail because

Windows will wait forever for the IRP to complete given that Myfault doesn’t register a

cancel routine.

To debug an issue such as this, you can use WinDbg to look at what the thread is

currently doing (or you could use Process Explorer’s Stack view on the Threads tab).

Open a local kernel debugger session, and start by listing the information about the

Notmyfault.exe process with the !process command:

lkd> !process 0 7 notmyfault.exe

PROCESS 86843ab0 SessionId: 1 Cid: 0594 Peb: 7ffd8000 ParentCid: 05c8

 DirBase: ce21f380 ObjectTable: 9cfb5070 HandleCount: 33.

 Image: NotMyfault.exe

 VadRoot 86658138 Vads 44 Clone 0 Private 210. Modified 5. Locked 0.

 DeviceMap 987545a8

...

 THREAD 868139b8 Cid 0594.0230 Teb: 7ffde000 Win32Thread: 00000000 WAIT:

(Executive) KernelMode Non-Alertable

 86797c64 NotificationEvent

 IRP List:

 86a51228: (0006,0094) Flags: 00060000 Mdl: 00000000

 ChildEBP RetAddr Args to Child

 88ae4b78 81cf23bf 868139b8 86813a40 00000000 nt!KiSwapContext+0x26

 88ae4bbc 81c8fcf8 868139b8 86797c08 86797c64 nt!KiSwapThread+0x44f

 88ae4c14 81e8a356 86797c64 00000000 00000000 nt!KeWaitForSingleObject+0x492

 88ae4c40 81e875a3 86a51228 86797c08 86a51228 nt!IopCancelAlertedRequest+0x6d

 88ae4c64 81e87cba 00000103 86797c08 00000000 nt!IopSynchronousServiceTail+0x267

 88ae4d00 81e7198e 86727920 86a51228 00000000 nt!IopXxxControlFile+0x6b7

 88ae4d34 81c92a7a 0000007c 00000000 00000000 nt!NtDeviceIoControlFile+0x2a

 88ae4d34 77139a94 0000007c 00000000 00000000 nt!KiFastCallEntry+0x12a

 01d5fecc 00000000 00000000 00000000 00000000 ntdll!KiFastSystemCallRet

...

592 Windows Internals, Fifth Edition

From the stack trace, you can see that the thread that initiated the I/O realized that

the IRP had been cancelled (IopSynchronousServiceTail called IopCancelAlertedRequest)
and is now waiting for the cancellation or completion. The next step is to use the same

debugger extension used in the previous experiments, !irp, and attempt to analyze the

problem. Copy the IRP pointer, and examine it with the !irp command:

lkd> !irp 86a51228

Irp is active with 1 stacks 1 is current (= 0x86a51298)

 No Mdl: No System Buffer: Thread 868139b8: Irp stack trace.

 cmd flg cl Device File Completion-Context

>[e, 0] 5 0 86727920 86797c08 00000000-00000000

 \Driver\MYFAULT

 Args: 00000000 00000000 83360020 00000000

From this output, it is obvious who the culprit driver is: \Driver\MYFAULT, or

Myfault.sys. The name of the driver emphasizes that the only way this situation can

happen is through a driver problem and not a buggy application. Unfortunately, now

that you know which driver caused this issue, there isn’t much you can do—a system

reboot is necessary because Windows can never safely assume it is okay to ignore the

fact that cancellation hasn’t occurred yet. The IRP could return at any time and cause

corruption of system memory. If you encounter this situation in practice, you should

check for a newer version of the driver, which might include a fix for the bug.

I/O Completion Ports

Writing a high-performance server application requires implementing an efficient thread-

ing model. Having either too few or too many server threads to process client requests can

lead to performance problems. For example, if a server creates a single thread to handle

all requests, clients can become starved because the server will be tied up processing one

request at a time. A single thread could simultaneously process multiple requests, switching

from one to another as I/O operations are started, but this architecture introduces signifi-

cant complexity and can’t take advantage of multiprocessor systems. At the other extreme, a

server could create a big pool of threads so that virtually every client request is processed by

a dedicated thread. This scenario usually leads to thread-thrashing, in which lots of threads

wake up, perform some CPU processing, block while waiting for I/O, and then, after request

processing is completed, block again waiting for a new request. If nothing else, having too

many threads results in excessive context switching, caused by the scheduler having to divide

processor time among multiple active threads.

The goal of a server is to incur as few context switches as possible by having its threads

avoid unnecessary blocking, while at the same time maximizing parallelism by using mul-

tiple threads. The ideal is for there to be a thread actively servicing a client request on every

processor and for those threads not to block when they complete a request if additional

 Chapter 7 I/O System 593

requests are waiting. For this optimal process to work correctly, however, the application

must have a way to activate another thread when a thread processing a client request blocks

on I/O (such as when it reads from a file as part of the processing).

The IoCompletion Object

Applications use the IoCompletion executive object, which is exported to Windows as a

completion port, as the focal point for the completion of I/O associated with multiple file

handles. Once a file is associated with a completion port, any asynchronous I/O operations

that complete on the file result in a completion packet being queued to the completion port.

A thread can wait for any outstanding I/Os to complete on multiple files simply by waiting for

a completion packet to be queued to the completion port. The Windows API provides similar

functionality with the WaitForMultipleObjects API function, but the advantage that comple-

tion ports have is that concurrency, or the number of threads that an application has actively

servicing client requests, is controlled with the aid of the system.

When an application creates a completion port, it specifies a concurrency value. This value

indicates the maximum number of threads associated with the port that should be running at

any given time. As stated earlier, the ideal is to have one thread active at any given time for

every processor in the system. Windows uses the concurrency value associated with a port to

control how many threads an application has active. If the number of active threads associ-

ated with a port equals the concurrency value, a thread that is waiting on the completion

port won’t be allowed to run. Instead, it is expected that one of the active threads will finish

processing its current request and check to see whether another packet is waiting at the port.

If one is, the thread simply grabs the packet and goes off to process it. When this happens,

there is no context switch, and the CPUs are utilized nearly to their full capacity.

Using Completion Ports

Figure 7-23 shows a high-level illustration of completion port operation. A completion port is

created with a call to the Windows API function CreateIoCompletionPort. Threads that block

on a completion port become associated with the port and are awakened in last in, first out

(LIFO) order so that the thread that blocked most recently is the one that is given the next

packet. Threads that block for long periods of time can have their stacks swapped out to

disk, so if there are more threads associated with a port than there is work to process, the

in-memory footprints of threads blocked the longest are minimized.

594 Windows Internals, Fifth Edition

FIGURE 7-23 I/O completion port operation

A server application will usually receive client requests via network endpoints that are rep-

resented as file handles. Examples include Windows Sockets 2 (Winsock2) sockets or named

pipes. As the server creates its communications endpoints, it associates them with a comple-

tion port and its threads wait for incoming requests by calling GetQueuedCompletionStatus
on the port. When a thread is given a packet from the completion port, it will go off and start

processing the request, becoming an active thread. A thread will block many times during its

processing, such as when it needs to read or write data to a file on disk or when it synchro-

nizes with other threads. Windows detects this activity and recognizes that the completion

port has one less active thread. Therefore, when a thread becomes inactive because it blocks,

a thread waiting on the completion port will be awakened if there is a packet in the queue.

An important mechanism that affects performance is called lock contention, which is the

amount of time a thread spends waiting for a lock instead of doing real work. One of the

most critical locks in the Windows kernel is the dispatcher lock (see Chapter 5 for more infor-

mation on the dispatching mechanisms), and any time thread state is modified, especially

in situations related to waiting and waking, the dispatcher lock is usually acquired, blocking

other processors from doing similar actions.

The I/O completion port mechanism minimizes contention on the dispatcher lock by avoid-

ing its acquisition when possible. For example, this mechanism does not acquire the lock

when a completion is queued to a port and no threads are waiting on that port, when a

thread calls GetQueuedCompletionStatus and there are items in the queue, or when a thread

calls GetQueuedCompletionStatus with a zero timeout. In all three of these cases, no thread

wait or wake-up is necessary, and hence none acquire the dispatcher lock.

 Chapter 7 I/O System 595

Microsoft’s guidelines are to set the concurrency value roughly equal to the number of

processors in a system. Keep in mind that it’s possible for the number of active threads for

a completion port to exceed the concurrency limit. Consider a case in which the limit is

specified as 1. A client request comes in, and a thread is dispatched to process the request,

becoming active. A second request arrives, but a second thread waiting on the port isn’t

allowed to proceed because the concurrency limit has been reached. Then the first thread

blocks waiting for a file I/O, so it becomes inactive. The second thread is then released, and

while it’s still active, the first thread’s file I/O is completed, making it active again. At that

point—and until one of the threads blocks—the concurrency value is 2, which is higher than

the limit of 1. Most of the time, the active count will remain at or just above the concurrency

limit.

The completion port API also makes it possible for a server application to queue privately

defined completion packets to a completion port by using the PostQueuedCompletionStatus
function. A server typically uses this function to inform its threads of external events, such as

the need to shut down gracefully.

Applications can use thread agnostic I/O, described earlier, with I/O completion ports to

avoid associating threads with their own I/Os and associating them with a completion port

object instead. In addition to the other scalability benefits of I/O completion ports, their use

can minimize context switches. Standard I/O completions must be executed by the thread

that initiated the I/O, but when an I/O associated with an I/O completion port completes, the

I/O manager uses any waiting thread to perform the completion operation.

I/O Completion Port Operation

Windows applications create completion ports by calling the Windows API CreateIo-
Completion Port and specifying a NULL completion port handle. This results in the execution

of the NtCreateIoCompletion system service. The executive’s IoCompletion object is based on

the kernel synchronization object called a queue. Thus, the system service creates a comple-

tion port object and initializes a queue object in the port’s allocated memory. (A pointer

to the port also points to the queue object because the queue is at the start of the port

memory.) A queue object has a concurrency value that is specified when a thread initializes it,

and in this case the value that is used is the one that was passed to CreateIoCompletionPort.
KeInitializeQueue is the function that NtCreateIoCompletion calls to initialize a port’s queue

object.

When an application calls CreateIoCompletionPort to associate a file handle with a port, the

NtSetInformationFile system service is executed with the file handle as the primary param-

eter. The information class that is set is FileCompletionInformation, and the completion port’s

handle and the CompletionKey parameter from CreateIoCompletionPort are the data values.

NtSetInformationFile dereferences the file handle to obtain the file object and allocates a

completion context data structure.

596 Windows Internals, Fifth Edition

Finally, NtSetInformationFile sets the CompletionContext field in the file object to point at the

context structure. When an asynchronous I/O operation completes on a file object, the I/O

manager checks to see whether the CompletionContext field in the file object is non-NULL. If

it is, the I/O manager allocates a completion packet and queues it to the completion port by

calling KeInsertQueue with the port as the queue on which to insert the packet. (Remember

that the completion port object and queue object have the same address.)

When a server thread invokes GetQueuedCompletionStatus, the system service NtRemoveIo-
Completion is executed. After validating parameters and translating the completion port

handle to a pointer to the port, NtRemoveIoCompletion calls IoRemoveIoCompletion,

which eventually calls KeRemoveQueueEx. For high-performance scenarios, it’s possible

that multiple I/Os may have been completed, and although the thread will not block, it

will still call into the kernel each time to get one item. The GetQueuedCompletionStatus or

GetQueuedCompletionStatusEx API allows applications to retrieve more than one I/O comple-

tion status at the same time, reducing the number of user-to-kernel roundtrips and maintain-

ing peak efficiency. Internally, this is implemented through the NtRemoveIoCompletionEx
function, which calls IoRemoveIoCompletion with a count of queued items, which is passed on

to KeRemoveQueueEx.

As you can see, KeRemoveQueueEx and KeInsertQueue are the engines behind completion

ports. They are the functions that determine whether a thread waiting for an I/O comple-

tion packet should be activated. Internally, a queue object maintains a count of the current

number of active threads and the maximum number of active threads. If the current number

equals or exceeds the maximum when a thread calls KeRemoveQueueEx, the thread will be

put (in LIFO order) onto a list of threads waiting for a turn to process a completion packet.

The list of threads hangs off the queue object. A thread’s control block data structure has

a pointer in it that references the queue object of a queue that it’s associated with; if the

pointer is NULL, the thread isn’t associated with a queue.

An improvement to the mechanism, which also improves the performance of other inter-

nal mechanisms that use I/O completion ports (such as the worker thread pool mechanism,

described in Chapter 3), is the optimization of the KQUEUE dispatcher object, which we’ve

mentioned in Chapter 3. Although we described how all dispatcher objects rely on the dis-

patcher lock during wait and unwait operations (or, in the case of kernel queues, remove and

insert operations), the dispatcher header structure has a Lock member that can be used for

an object-specific lock.

The KQUEUE implementation makes use of this member and implements a local, per-object

spinlock instead of using the global dispatcher lock whenever possible. Therefore, the

KeInsertQueue and KeRemoveQueueEx APIs actually first call the KiAttemptFastQueueInsert
and KiAttemptFastQueueRemove internal functions and fall back to the dispatcher-lock-

based code if the fast operations cannot be used or fail. Because the fast routines don’t use

 Chapter 7 I/O System 597

the global lock, the overall throughput of the system is improved—other dispatcher and

scheduler operations can happen while I/O completion ports are being used by applications.

Windows keeps track of threads that become inactive because they block on some-

thing other than the completion port by relying on the queue pointer in a thread’s

control block. The scheduler routines that possibly result in a thread blocking (such as

KeWaitForSingleObject, KeDelayExecutionThread, and so on) check the thread’s queue pointer.

If the pointer isn’t NULL, the functions call KiActivateWaiterQueue, a queue-related function
that decrements the count of active threads associated with the queue. If the resultant num-

ber is less than the maximum and at least one completion packet is in the queue, the thread

at the front of the queue’s thread list is awakened and given the oldest packet. Conversely,

whenever a thread that is associated with a queue wakes up after blocking, the scheduler

executes the function KiUnwaitThread, which increments the queue’s active count.

Finally, the PostQueuedCompletionStatus Windows API function results in the execution of

the NtSetIoCompletion system service. This function simply inserts the specified packet onto

the completion port’s queue by using KeInsertQueue.

Figure 7-24 shows an example of a completion port object in operation. Even though two

threads are ready to process completion packets, the concurrency value of 1 allows only one

thread associated with the completion port to be active, and so the two threads are blocked

on the completion port.

Waiting threads
Thread object Thread object

Queue

Active thread

Thread object

Completion
packet

Completion
packet

File object

Concurrency: 1

FIGURE 7-24 I/O completion port operation

Finally, the exact notification model of the I/O completion port can be fine-tuned through

the SetFileCompletionNotificationModes API, which allows application developers to take

advantage of additional, specific improvements that usually require code changes but can

offer even more throughput. Three notification mode optimizations are supported, which are

listed in Table 7-3. Note that these modes are per file handle and permanent.

598 Windows Internals, Fifth Edition

TABLE 7-3 I/O Completion Port Notification Modes

Notification Mode Meaning

Skip completion port on success If the following three conditions are true, the I/O manager

does not queue a completion entry to the port when it would

ordinarily do so. First, a completion port must be associated

with the file handle; second, the file must be opened for asyn-

chronous I/O; third, the request must return success immedi-

ately without returning ERROR_PENDING.

Skip set event on handle The I/O manager does not set the event for the file object if

a request returns with a success code or the error returned

is ERROR_PENDING and the function that is called is not a

synchronous function. If an explicit event is provided for the

request, it is still signaled.

Skip set user event on fast I/O The I/O manager does not set the explicit event provided for

the request if a request takes the fast I/O path and returns

with a success code or the error returned is ERROR_PENDING

and the function that is called is not a synchronous function.

I/O Prioritization

Without I/O priority, background activities like search indexing, virus scanning, and disk

defragmenting can severely impact the responsiveness of foreground operations. A user

launching an application or opening a document while another process is performing disk

I/O, for example, experiences delays as the foreground task waits for disk access. The same

interference also affects the streaming playback of multimedia content like music from a

hard disk.

Windows includes two types of I/O prioritization to help foreground I/O operations get pref-

erence: priority on individual I/O operations and I/O bandwidth reservations.

I/O Priorities

The Windows I/O manager internally includes support for five I/O priorities, as shown in

Table 7-4, but only three of the priorities are used. (Future versions of Windows may support

High and Low.)

TABLE 7-4 I/O Priorities

I/O Priority Usage

Critical Memory manager

High Not used

Normal Normal application I/O

Low Not used

Very Low Scheduled tasks, Superfetch, defragmenting, content indexing,

background activities

 Chapter 7 I/O System 599

I/O has a default priority of Normal and the memory manager uses Critical when it wants to

write dirty memory data out to disk under low-memory situations to make room in RAM for

other data and code. The Windows Task Scheduler sets the I/O priority for tasks that have the

default task priority to Very Low. The priority specified by applications written for Windows

Vista that perform background processing is Very Low. All of the Windows Vista background

operations, including Windows Defender scanning and desktop search indexing, use Very

Low I/O priority.

Internally, these five I/O priorities are divided into two I/O prioritization modes, called strat-
egies. These are the hierarchy prioritization and the idle prioritization strategies. Hierarchy

prioritization deals with all the I/O priorities except Very Low. It implements the following

strategy:

All critical-priority I/O must be processed before any high-priority I/O.

All high-priority I/O must be processed before any normal-priority I/O.

All normal-priority I/O must be processed before any low-priority I/O.

All low-priority I/O is processed after all higher priority I/O.

As each application generates I/Os, IRPs are put on different I/O queues based on their prior-

ity, and the hierarchy strategy decides the ordering of the operations.

The idle prioritization strategy, on the other hand, uses a separate queue for Very Low prior-

ity I/O. Because the system processes all hierarchy prioritized I/O before idle I/O, it’s possible

for the I/Os in this queue to be starved, as long as there’s even a single Very Low priority I/O

on the system in the hierarchy priority strategy queue.

To avoid this situation, as well as to control backoff (the sending rate of I/O transfers), the

idle strategy uses a timer to monitor the queue and guarantee that at least one I/O is pro-

cessed per unit of time (typically half a second). Data written using Very Low I/O also causes

the cache manager to write modifications to disk immediately instead of doing it later and

to bypass its read-ahead logic for read operations that would otherwise preemptively read

from the file being accessed. The prioritization strategy also waits for 50 milliseconds after

the completion of the last non-idle I/O in order to issue the next idle I/O. Otherwise, idle I/Os

would occur in the middle of nonidle streams, causing costly seeks.

Combining these strategies into a virtual global I/O queue for demonstration purposes, a

snapshot of this queue might look similar to Figure 7-25. Note that within each queue, the

ordering is first-in, first-out (FIFO). The order in the figure is shown only as an example.

600 Windows Internals, Fifth Edition

I/O Queue

Hierarchy

Critical High Normal Low Very Low

Idle

MM Prefetch Defrag Indexer AntivirusWindows Media Player Word

FIGURE 7-25 Sample entries in a global I/O queue

User-mode applications can set I/O priority on three different objects. SetPriorityClass
and SetThreadPriority set the priority for all the I/Os that either the entire process

or specific threads will generate (the priority is stored in the IRP of each request).

SetFileInformationByHandle can set the priority for a specific file object (the priority is

stored in the file object). Drivers can also set I/O priority directly on an IRP by using the

IoSetIoPriorityHint API.

Note The I/O priority field in the IRP and/or file object is a hint. There is no guarantee that the

I/O priority will be respected or even supported by the different drivers that are part of the stor-

age stack.

The two prioritization strategies are implemented by two different types of drivers. The

hierarchy strategy is implemented by the storage port drivers, which are responsible for all

I/Os on a specific port, such as ATA, SCSI, or USB. As of Windows Vista and Windows Server

2008, only the ATA port driver (%SystemRoot%\System32\Ataport.sys) and USB port driver

(%SystemRoot%\System32\Usbstor.sys) implement this strategy, while the SCSI and stor-

age port drivers (%SystemRoot%\System32\Scsiport.sys and %SystemRoot%\System32\

Storport.sys) do not.

Note All port drivers check specifically for Critical priority I/Os and move them ahead of their

queues, even if they do not support the full hierarchy mechanism. This mechanism is in place to

support critical memory manager paging I/Os to ensure system reliability.

This means that consumer mass storage devices such as IDE or SATA hard drives and USB

flash disks will take advantage of I/O prioritization, while devices based on SCSI, Fibre

Channel, and iSCSI will not.

On the other hand, it is the system storage class device driver (%SystemRoot%\System32\

Classpnp.sys) that enforces the idle strategy, so it automatically applies to I/Os directed at all

storage devices, including SCSI drives. This separation ensures that idle I/Os will be subject to

back-off algorithms to ensure a reliable system during operation under high idle I/O usage

and so that applications that use them can make forward progress. Placing support for this

 Chapter 7 I/O System 601

strategy in the Microsoft-provided class driver avoids performance problems that would have

been caused by lack of support for it in legacy third-party port drivers.

Figure 7-26 displays a simplified view of the storage stack and where each strategy is imple-

mented. See Chapter 8 for more information on the storage stack.

User mode
Application

File system

Volume/partition

Device class

Command port

Storage

Idle I/O priority queue

Hierarchy priority queue
I/O bandwidth reservation

Kernel mode

FIGURE 7-26 Implementation of I/O prioritization across the storage stack

The following experiment will show you an example of Very Low I/O priority and how you

can use Process Monitor to look at I/O priorities on different requests.

EXPERIMENT: Very Low vs. Normal I/O Throughput

You can use the IO Priority sample application (included in the book’s utilities) to look

at the throughput difference between two threads with different I/O priorities. Launch

IoPriority.exe, make sure Thread 1 is checked to use Low priority, and then click the

Start IO button. You should notice a significant difference in speed between the two

threads, as shown in the following screen.

You should also notice that Thread 1’s throughput remains fairly constant, around 2

KB/s. This can easily be explained by the fact that IO Priority performs its I/Os at 2 KB/s,

which means that the idle prioritization strategy is kicking in and guaranteeing at least

one I/O each half-second. Otherwise, Thread 2 would starve any I/O that Thread 1 is

attempting to make.

602 Windows Internals, Fifth Edition

Note that if both threads run at low priority and the system is relatively idle, their

throughput will be roughly equal to the throughput of a single normal I/O priority in

the example. This is because low priority I/Os are not artificially throttled or otherwise

hindered if there isn’t any competition from higher priority I/O.

You can also use Process Monitor to trace IO Priority’s I/Os and look at their I/O priority

hint. Launch Process Monitor, configure a filter for IoPriority.exe, and repeat the experi-

ment. In this application, Thread 1 writes to File_1, and Thread 2 writes to File_2. Scroll

down until you see a write to File_1, and you should see output similar to that shown

here.

You can see that I/Os directed at File_1 have a priority of Very Low. By looking at the

Time Of Day column, you’ll also notice that the I/Os are spaced 0.5 second from each

other—another sign of the idle strategy in action.

Finally, by using Process Explorer, you can identify Thread 1 in the IoPriority process

by looking at the I/O priority for each of its threads on the Threads tab of its process

Properties dialog box. You can also see that the priority for the thread is lower than the

default of 8 (normal), which indicates that the thread is probably running in background
priority mode. The following screen shows what you should expect to see.

 Chapter 7 I/O System 603

Note that if IO Priority sets the priority on File_1 instead of on the issuing thread, both

threads would look the same. Only Process Monitor could show you the difference in

I/O priorities.

Bandwidth Reservation (Scheduled File I/O)

Windows bandwidth reservation support is useful for applications that desire consistent I/O

throughput. Using the SetFileIoBandwidthReservation call, a media player application asks

the I/O system to guarantee it the ability to read data from a device at a specified rate. If the

device can deliver data at the requested rate and existing reservations allow it, the I/O sys-

tem gives the application guidance as to how fast it should issue I/Os and how large the I/Os

should be.

The I/O system won’t service other I/Os unless it can satisfy the requirements of applications

that have made reservations on the target storage device. Figure 7-27 shows a conceptual

timeline of I/Os issued on the same file. The shaded regions are the only ones that will be

available to other applications. If I/O bandwidth is already taken, new I/Os will have to wait

until the next cycle.

604 Windows Internals, Fifth Edition

Reserved
I/O

Windows
Media Player

Walk-in
I/O

Windows
Media Player

Windows
Media Player

Windows
Media Player

Walk-in
I/O

Reserved
I/O

Reserved
I/O

Reserved
I/O

FIGURE 7-27 Effect of I/O requests during bandwidth reservation

Like the hierarchy prioritization strategy, bandwidth reservation is implemented at the

port driver level, which means it is available only for IDE, SATA, or USB-based mass-storage

devices.

Driver Verifier

Driver Verifier is a mechanism that can be used to help find and isolate commonly found

bugs in device drivers or other kernel-mode system code. Microsoft uses Driver Verifier to

check its own device drivers as well as all device drivers that vendors submit for Hardware

Compatibility List (HCL) testing. Doing so ensures that the drivers on the HCL are compatible

with Windows and free from common driver errors. (Although not described in this book,

there is also a corresponding Application Verifier tool that has resulted in quality improve-

ments for user-mode code in Windows.)

Also, although Driver Verifier serves primarily as a tool to help device driver developers dis-

cover bugs in their code, it is also a powerful tool for systems administrators experiencing

crashes. Chapter 14 describes its role in crash analysis troubleshooting.

Driver Verifier consists of support in several system components: the memory manager, I/O

manager, and the HAL all have driver verification options that can be enabled. These options

are configured using the Driver Verifier Manager (%SystemRoot%\Verifier.exe). When you

run Driver Verifier with no command-line arguments, it presents a wizard-style interface, as

shown in Figure 7-28.

You can also enable and disable Driver Verifier, as well as display current settings, by using its

command-line interface. From a command prompt, type verifier /? to see the switches.

Even when you don’t select any options, Driver Verifier monitors drivers selected for verifica-

tion, looking for a number of illegal operations, including calling kernel-memory pool func-

tions at invalid IRQL, double-freeing memory, and requesting a zero-size memory allocation.

What follows is a description of the I/O-related verification options (shown in Figure 7-29).

The options related to memory management are described in Chapter 9, along with how the

memory manager redirects a driver’s operating system calls to special verifier versions.

 Chapter 7 I/O System 605

FIGURE 7-28 Driver Verifier Manager

FIGURE 7-29 Driver Verifier I/O-related options

606 Windows Internals, Fifth Edition

These options have the following effects:

I/O Verification When this option is selected, the I/O manager allocates IRPs for

verified drivers from a special pool and their usage is tracked. In addition, the Verifier

crashes the system when an IRP is completed that contains an invalid status and when

an invalid device object is passed to the I/O manager.

Enhanced I/O Verification This option monitors all IRPs to ensure that drivers mark

them correctly when completing them asynchronously, that they manage device stack

locations correctly, and that they delete device objects only once. In addition, the

Verifier randomly stresses drivers by sending them fake power management and WMI

IRPs, changing the order that devices are enumerated, and adjusting the status of PnP

and power IRPs when they complete to test for drivers that return incorrect status from

their dispatch routines.

DMA Checking This is a hardware-supported mechanism that allows devices to

transfer data to or from physical memory without involving the CPU. The I/O manager

provides a number of functions that drivers use to schedule and control direct memory

access (DMA) operations, and this option enables checks for correct use of the func-

tions and for the buffers that the I/O manager supplies for DMA operations.

Force Pending I/O Requests For many devices, asynchronous I/Os complete immedi-

ately, so drivers may not be coded to properly handle the occasional asynchronous I/O.

When this option is enabled, the I/O manager will randomly return STATUS_PENDING

in response to a driver’s calls to IoCallDriver, which simulates the asynchronous comple-

tion of an I/O.

IRP Logging This option monitors a driver’s use of IRPs and makes a record of IRP

usage, which is stored as WMI information. You can then use the Dc2wmiparser.exe

utility in the WDK to convert these WMI records to a text file. Note that only 20 IRPs

for each device will be recorded—each subsequent IRP will overwrite the least recently

added entry. After a reboot, this information is discarded, so Dc2wmiparser.exe should

be run if the contents of the trace are to be analyzed later.

Disk Integrity Checking When you enable this option, the Verifier monitors disk read

and write operations and checksums the associated data. When disk reads complete, it

checks to see whether it has a previously stored checksum and crashes the system if the

new and old checksum don’t match, because that would indicate corruption of the disk

at the hardware level.

Kernel-Mode Driver Framework (KMDF)

We’ve already discussed some details about the Windows Driver Foundation (WDF) in

Chapter 2. In this section, we’ll take a deeper look at the components and functionality

provided by the kernel-mode part of the framework, KMDF. Note that this section will only

 Chapter 7 I/O System 607

briefly touch on some of the core architecture of KMDF. For a much more complete overview

on the subject, please refer to Developing Drivers with Windows Driver Foundation by Penny

Orwick and Guy Smith (Microsoft Press, 2007).

Structure and Operation of a KMDF Driver

First, let’s take a look at which kinds of drivers or devices are supported by KMDF. In general,

any WDM-conformant driver should be supported by KMDF, as long as it performs stan-

dard I/O processing and IRP manipulation. KMDF is not suitable for drivers that don’t use

the Windows kernel API directly but instead perform library calls into existing port and class

drivers. These types of drivers cannot use KMDF because they only provide callbacks for the

actual WDM drivers that do the I/O processing. Additionally, if a driver provides its own dis-

patch functions instead of relying on a port or class driver, IEEE 1394 and ISA, PCI, PCMCIA,

and SD Client (for Secure Digital storage devices) drivers can also make use of KMDF.

Although KMDF is a different driver model than WDM, the basic driver structure shown ear-

lier also generally applies to KMDF drivers. At their core, KMDF drivers must have the follow-

ing functions:

An initialization routine Just like any other driver, a KMDF driver has a DriverEntry

function that initializes the driver. KMDF drivers will initiate the framework at this point

and perform any configuration and initialization steps that are part of the driver or part

of describing the driver to the framework. For non–Plug and Play drivers, this is where

the first device object should be created.

An add-device routine KMDF driver operation is based on events and callbacks

(described shortly), and the EvtDriverDeviceAdd callback is the single most important

one for PnP devices because it receives notifications that the PnP manager in the kernel

has enumerated one of the driver’s devices.

One or more EvtIo* routines Just like a WDM driver’s dispatch routines, these call-

back routines handle specific types of I/O requests from a particular device queue. A

driver typically creates one or more queues in which KMDF places I/O requests for the

driver’s devices. These queues can be configured by request type and dispatching type.

The simplest KMDF driver might need to have only an initialization and add-device routine

because the framework will provide the default, generic functionality that’s required for

most types of I/O processing, including power and Plug and Play events. In the KMDF model,

events refer to run-time states to which a driver can respond or during which a driver can

participate. These events are not related to the synchronization primitives (synchronization is

discussed in Chapter 3), but are internal to the framework.

For events that are critical to a driver’s operation, or which need specialized processing, the

driver registers a given callback routine to handle this event. In other cases, a driver can

608 Windows Internals, Fifth Edition

allow KMDF to perform a default, generic action instead. For example, during an eject event

(EvtDeviceEject), a driver can choose to support ejection and supply a callback or to fall back

to the default KMDF code that will tell the user that the device is not ejectable. Not all events

have a default behavior, however, and callbacks must be provided by the driver. One notable

example is the EvtDriverDeviceAdd event that is at the core of any Plug and Play driver.

EXPERIMENT: Displaying KMDF Drivers

The Wdfkd.dll extension that ships with the Debugging Tools for Windows package

provides many commands that can be used to debug and analyze KMDF drivers and

devices (instead of using the built-in WDM-style debugging extension that may not

offer the same kind of WDF-specific information). You can display installed KMDF driv-

ers with the !wdfkd.wdfldr debugger command. In the following example, the output

from a Windows Vista SP1 computer is shown, displaying the built-in drivers that are

typically installed.

lkd> !wdfkd.wdfldr

 LoadedModuleList 0x805ce18c

LIBRARY_MODULE 8472f448

 Version v1.7 build(6001)

 Service \Registry\Machine\System\CurrentControlSet\Services\Wdf01000

 ImageName Wdf01000.sys

 ImageAddress 0x80778000

 ImageSize 0x7c000

 Associated Clients: 6

 ImageName Version WdfGlobals FxGlobals ImageAddress ImageSize

 peauth.sys v0.0(0000) 0x867c00c0 0x867c0008 0x9b0d1000 0x000de000

 monitor.sys v0.0(0000) 0x8656d9d8 0x8656d920 0x8f527000 0x0000f000

 umbus.sys v0.0(0000) 0x84bfd4d0 0x84bfd418 0x829d9000 0x0000d000

 HDAudBus.sys v0.0(0000) 0x84b5d918 0x84b5d860 0x82be2000 0x00012000

 intelppm.sys v0.0(0000) 0x84ac9ee8 0x84ac9e30 0x82bc6000 0x0000f000

 msisadrv.sys v0.0(0000) 0x848da858 0x848da7a0 0x82253000 0x00008000

Total: 1 library loaded

KMDF Data Model

The KMDF data model is object-based, much like the model for the kernel, but it does

not make use of the object manager. Instead, KMDF manages its own objects internally,

exposing them as handles to drivers and keeping the actual data structures opaque. For

each object type, the framework provides routines to perform operations on the object,

such as WdfDeviceCreate, which creates a device. Additionally, objects can have spe-

cific data fields or members that can be accessed by Get/Set (used for modifications

 Chapter 7 I/O System 609

that should never fail) or Assign/Retrieve APIs (used for modifications that can fail). For

example, the WdfInterruptGetInfo function returns information on a given interrupt object

(WDFINTERRUPT).

Also unlike the implementation of kernel objects, which all refer to distinct and isolated

object types, KMDF objects are all part of a hierarchy—most object types are bound to a

parent. The root object is the WDFDRIVER structure, which describes the actual driver. The

structure and meaning is analogous to the DRIVER_OBJECT structure provided by the I/O

manager and all other KMDF structures are children of it. The next most important object is

WDFDEVICE, which refers to a given instance of a detected device on the system, which must

have been created with WdfDeviceCreate. Again, this is analogous to the DEVICE_OBJECT

structure that’s used in the WDM model and by the I/O manager. Table 7-5 lists the object

types supported by KMDF

TABLE 7-5 KMDF Object Types

Object Type Description

Child List WDFCHILDLIST List of child WDFDEVICE objects associ-

ated with the device.

Collection WDFCOLLECTION List of objects of a similar type, such as

a group of WDFDEVICE objects being

filtered.

Device WDFDEVICE Instance of a device.

DMA Common Buffer WDFCOMMONBUFFER Piece of memory that a device and driver

can access for direct memory access

(DMA).

DMA Enabler WDFDMAENABLER Enables DMA on a given channel for a

driver.

DMA Transaction WDFDMATRANSACTION Instance of a DMA transaction.

Deferred Procedure Call WDFDPC Instance of a DPC object (see Chapter 3

for more information on DPCs).

Driver WDFDRIVER Root object for the driver; represents the

driver, its parameters, and its callbacks,

among other items.

File WDFFILEOBJECT Instance of a file object that can be used

as a channel for communication between

an application and the driver.

Generic Object WDFOBJECT Allows driver-defined custom data to be

wrapped inside the framework’s object

data model as an object.

I/O Queue WDFQUEUE Represents a given I/O queue.

I/O Request WDFREQUEST Represents a given request on a

WDFQUEUE.

I/O Target WDFIOTARGET Represents the device stack being tar-

geted by a given WDFREQUEST.

610 Windows Internals, Fifth Edition

Object Type Description

Interrupt WDFINTERRUPT Instance of an interrupt that the driver

must handle.

Look-Aside List WDFLOOKASIDE Describes an executive look-aside list.

Memory WDFMEMORY Describes a piece of paged or nonpaged

pool.

Registry Key WDFKEY Describes a registry key.

Resource List WDFCMRESLIST Identifies the resources assigned to a

WDFDEVICE.

Resource Range List WDFIORESLIST Identifies a given possible resource range

for a WDFDEVICE.

Resource Requirements

List

WDFIORESREQLIST Contains an array of WDFIORESLIST

objects describing all possible resource

ranges for a WDFDEVICE.

String WDFSTRING Describes a Unicode string structure.

Spinlock WDFSPINLOCK Describe a spinlock (see Chapter 3 for

more information).

Timer WDFTIMER Describes an executive timer (see Chapter

3 for more information).

USB Device WDFUSBDEVICE Identifies the one instance of a USB

 device.

USB Interface WDFUSBINTERFACE Identifies one interface on the given

WDFUSBDEVICE.

USB Pipe WDFUSBPIPE Identifies a bulk or interrupt pipe for a

given WDFUSBINTERFACE.

Wait Lock WDFWAITLOCK Represents a kernel dispatcher event

object.

WMI Instance WDFWMIINSTANCE Represents a WMI data block for a given

WDFWMIPROVIDER.

WMI Provider WDFWMIPROVIDER Describes the WMI schema for all the

WDFWMIINSTANCE objects supported

by the driver.

Work Item WDFWORKITEM Describes an executive work item.

For each of these objects, other KMDF objects can be attached as children—some objects

have only one or two valid parents, while other objects can be attached to any parent.

For example, a WDFINTERRUPT object must be associated with a given WDFDEVICE, but a

WDFSPINLOCK or WDFSTRING can have any object as a parent, allowing fine-grained control

over their validity and usage and reducing global state variables. Figure 7-30 shows the entire

KMDF object hierarchy.

 Chapter 7 I/O System 611

WDFCOLLECTION
WDFKEY
WDFLOOKASIDE
WDFMEMORY
WDFOBJECT
WDFREQUEST (driver-created)
WDFSPINLOCK
WDFSTRING
WDFWAITLOCK

WDFUSBDEVICE

WDFUSBINTERFACE

WDFUSBPIPE

WDFCHILDLIST
WDFFILEOBJECT
WDFINTERRUPT
WDFIOTARGET
WDFREQUEST (delivered
 from queue)

WDFCMRESLIST

WDFDRIVER

WDFDEVICE

WDFIORESREQLIST

WDFIORESLIST

WDFQUEUE

WDFDMAENABLER

WDFWMIPROVIDER

WDFWMIINSTANCE

WDFCOMMONBUFFER
WDFTRANSACTION

WDFDPC
WDFTIMER
WDFWORKITEM

Predefined
Default, but driver
can change to
any object
Either can be parent

FIGURE 7-30 KMDF object hierarchy

Note that the associations mentioned earlier and shown in the figure are not necessarily

immediate. The parent must simply be on the hierarchy chain, meaning one of the ancestor

nodes must be of this type. This relationship is useful to realize because object hierarchies

not only affect the objects’ locality but also their lifetime. Each time a child object is cre-

ated, a reference count is added to it by its link to its parent. Therefore, when a parent object

is destroyed, all the child objects are also destroyed, which is why associating objects such

as WDFSTRING or WDFMEMORY with a given object, instead of the default WDFDRIVER

object, can automatically free up memory and state information when the parent object is

destroyed.

Closely related to the concept hierarchy is KMDF’s notion of object context. Because KMDF

objects are opaque, as discussed, and are associated with a parent object for locality, it

becomes important to allow drivers to attach their own data to an object in order to track

certain specific information outside the framework’s capabilities or support.

Object contexts allow all KMDF objects to contain such information, and they additionally

allow multiple object context areas, which permit multiple layers of code inside the same

driver to interact with the same object in different ways. In the WDM model, the device

612 Windows Internals, Fifth Edition

extension data structure allows such information to be associated with a given device, but

with KMDF even a spinlock or string can contain context areas. This extensibility allows

each library or layer of code responsible for processing an I/O to interact independently of

other code, based on the context area that it works with, and allows a mechanism similar to

inheritance.

Finally, KMDF objects are also associated with a set of attributes that are shown in Table 7-6.

These attributes are usually configured to their defaults, but the values can be overridden by

the driver when creating the object by specifying a WDF_OBJECT_ATTRIBUTES structure (sim-

ilar to the object manager’s OBJECT_ATTRIBUTES structure when creating a kernel object).

TABLE 7-6 KMDF Object Attributes

Attribute Description

ContextSizeOverride Size of the object context area.

ContextTypeInfo Type of the object context area.

EvtCleanupCallback Callback to notify the driver of the object’s cleanup before deletion (refer-

ences may still exist).

EvtDestroyCallback Callback to notify the driver of the object’s imminent deletion (references

will be 0).

ExecutionLevel Describes the maximum IRQL at which the callbacks may be invoked by

KMDF.

ParentObject Identifies the parent of this object.

Size Size of the object.

SynchronizationScope Specifies whether callbacks should be synchronized with the parent, a

queue or device, or nothing.

KMDF I/O Model

The KMDF I/O model follows the WDM mechanisms discussed earlier in the chapter. In fact,

one can even think of the framework itself as a WDM driver, since it uses kernel APIs and

WDM behavior to abstract KMDF and make it functional. Under KMDF, the framework driver

sets its own WDM-style IRP dispatch routines and takes control over all IRPs sent to the

driver. After being handled by one of three KMDF I/O handlers (which we’ll describe shortly),

it then packages these requests in the appropriate KMDF objects, inserts them in the appro-

priate queues if required, and performs driver callback if the driver is interested in those

events. Figure 7-31 describes the flow of I/O in the framework.

Based on the IRP processing discussed for WDM drivers earlier, KMDF performs one of the

following three actions:

Sends the IRP to the I/O handler, which processes standard device operations

 Chapter 7 I/O System 613

Sends the IRP to the PnP and power handler that processes these kinds of events and

notifies other drivers if the state has changed

Sends the IRP to the WMI handler, which handles tracing and logging.

I/O request
handler

IRPs

WMI request
handler

Plug and Play/
power request

handler

I/O target

Dispatcher

Driver
callbacks

Driver
callbacks

Driver
callbacks

Nonpower-
managed

I/O queues

Power-
managed

I/O queues

FIGURE 7-31 KMDF I/O flow and IRP processing

These components will then notify the driver of any events it registered for, potentially for-

ward the request to another handler for further processing, and then complete the request

based on an internal handler action or as the result of a driver call. If KMDF has finished pro-

cessing the IRP but the request itself has still not been fully processed, KMDF will take one of

the following two actions:

For bus drivers and function drivers, complete the IRP with

STATUS_INVALID_DEVICE_REQUEST

For filter drivers, forward the request to the next lower driver

I/O processing by KMDF is based on the mechanism of queues (WDFQUEUE, not the KQUEUE

object discussed in Chapter 3). KMDF queues are highly scalable containers of I/O requests

(packaged as WDFREQUEST objects) and provide a rich feature set beyond merely sorting

614 Windows Internals, Fifth Edition

the pending I/Os for a given device. For example, queues also track currently active requests

and support I/O cancellation, I/O concurrency (the ability to perform and complete more

than one I/O request at a time), and I/O synchronization (as noted in the list of object attri-

butes in Table 7-6). A typical KMDF driver creates at least one queue (if not more) and associ-

ates one or more events with each queue, as well as some of the following options:

The callbacks registered with the events associated with this queue

The power management state for the queue. KMDF supports both power-managed

and nonpower-managed queues. For the former, the I/O handler will handle waking up

the device when required (and when possible), arm the idle timer when the device has

no I/Os queued up, and call the driver’s I/O cancellation routines when the system is

switching away from a working state.

The dispatch method for the queue. KMDF can deliver I/Os from a queue either in a

sequential, parallel, or manual mode. Sequential I/Os are delivered one at a time (KMDF

waits for the driver to complete the previous request), while parallel I/Os are delivered

to the driver as soon as possible. In manual mode, the driver must manually retrieve

I/Os from the queue.

Whether or not the queue can accept zero-length buffers, such as incoming requests

that don’t actually contain any data.

Note The dispatch method affects solely the number of requests that are allowed to be active

inside a driver’s queue at one time. It does not determine whether the event callbacks themselves

will be called concurrently or serially. That behavior is determined through the synchronization

scope object attribute described earlier. Therefore, it is possible for a parallel queue to have con-

currency disabled but still have multiple incoming requests.

Based on the mechanism of queues, the KMDF I/O handler can perform several possible

tasks upon receiving either a create, close, cleanup, write, read, or device control (IOCTL)

request:

For create requests, the driver can request to be immediately notified through

EvtDeviceFileCreate, or it can create a nonmanual queue to receive create requests. It

must then register an EvtIoDefault callback to receive the notifications. Finally, if none

of these methods are used, KMDF will simply complete the request with a success code,

meaning that by default, applications will be able to open handles to KMDF drivers that

don’t supply their own code.

For cleanup and close requests, the driver will be immediately notified through

EvtFileCleanup and EvtFileClose callbacks, if registered. Otherwise, the framework will

simply complete with a success code.

Finally, Figure 7-32 illustrates the flow of an I/O request to a KMDF driver for the most

common driver operations (read, write, and I/O control codes).

 Chapter 7 I/O System 615

Pass the request
to the next

lower driver.

NO YES

Create a
WDFREQUEST

object to represent
the request.

Notify the Plug
and Play/power

handler to power
up the device.

Fail the request.

Does driver have
a queue for this
request type?

Is this a filter driver?
Is the queue

accepting requests?

Is the queue
power-managed?

Is the device in
the working state?

Queue the
request.

NO YES

NO YES

NO YES NO YES

FIGURE 7-32 Handling read, write, and IOCTL I/O requests by KMDF

616 Windows Internals, Fifth Edition

User-Mode Driver Framework (UMDF)

Although this chapter focuses on kernel-mode drivers, Windows includes a growing number

of drivers that actually run in user mode, as previously described, using the User-Mode Driver

Framework (UMDF) that is part of the WDF. Before finishing our discussion on drivers, we’ll

take a quick look at the architecture of UMDF and what it offers. Once again, for a much

more complete overview on the subject, please refer to Developing Drivers with Windows
Driver Foundation by Penny Orwick and Guy Smith.

UMDF is designed specifically to support what are called protocol device classes, which refers

to devices that all use the same standardized, generic protocol and offer specialized func-

tionality on top of it. These protocols currently include IEEE 1394 (FireWire), USB, Bluetooth,

and TCP/IP. Any device running on top of these buses (or connected to a network) is a

potential candidate for UMDF—examples include portable music players, PDAs, cell phones,

cameras and webcams, and so on. Two other large users of UMDF are SideShow-compatible

devices (auxiliary displays) and the Windows Portable Device (WPD) Framework, which sup-

ports USB removable storage (USB bulk transfer devices). Finally, as with KMDF, it’s possible

to implement software-only drivers, such as for a virtual device, in UMDF.

To make porting code easier from kernel mode to user mode, and to keep a consistent archi-

tecture, UMDF uses the same conceptual driver programming model as KMDF, but it uses

different components, interfaces, and data structures. For example, KMDF includes objects

unique to kernel mode, while UMDF includes some objects unique to user mode. Objects

and functionality that can’t be accessed through UMDF include direct handling of interrupts,

DMA, nonpaged pool, and strict timing requirements. Furthermore, a UMDF driver can’t be

on any kernel driver stack or be a client of another driver or the kernel itself.

Unlike KMDF drivers, which run as driver objects representing a .sys image file, UMDF drivers

run in a driver host process, similar to a service-hosting process. The host process contains the

driver itself (which is implemented as an in-process COM component), the user-mode driver

framework (implemented as a DLL containing COM-like components for each UMDF object),

and a run-time environment (responsible for I/O dispatching, driver loading, device stack

management, communication with the kernel, and a thread pool).

Just like in the kernel, each UMDF driver runs as part of a stack, which can contain multiple

drivers that are responsible for managing a device. Naturally, since user-mode code can’t

access the kernel address space, UMDF also includes some components that allow this access

to occur through a specialized interface to the kernel. This is implemented by a kernel-mode

side of UMDF that uses ALPC (see Chapter 3 for more information on advanced local proce-

dure call) to talk to the run-time environment in the user-mode driver host processes. Figure

7-33 displays the architecture of the UMDF driver model.

 Chapter 7 I/O System 617

User-mode driver

Host process

Framework

Run-time environment

Reflector (filter)

Kernel-mode driver

User-mode driver

Host process

Framework

Run-time environment

Reflector (filter)

Kernel-mode driver

Kernel-mode driver

Applications

Driver manager

Windows kernel

User mode

Kernel mode

Provided by:
IHV

Microsoft
ISV Device stackDevice stack

Win32 API

FIGURE 7-33 UMDF architecture

Figure 7-33 shows two different device stacks that manage two different hardware devices,

each with a UMDF driver running inside its own driver host process. From the diagram, you

can see that the following components take part in the architecture:

Applications Applications are the clients of the drivers. These are standard Windows

applications that use the same APIs to perform I/Os as they would with a KMDF-

managed or a WDM-managed device. Applications don’t know that they’re talking to a

UMDF-based device, and the calls are still sent to the kernel’s I/O manager.

Windows kernel (I/O manager) Based on the application I/O APIs, the I/O manager

builds the IRPs for the operations, just like for any other standard device.

Reflector The reflector is what makes UMDF “tick.” It is a standard WDM filter driver

that sits at the top of the device stack of each device that is being managed by a UMDF

driver. The reflector is responsible for managing the communication between the ker-

nel and the user-mode driver host process. IRPs related to power management, Plug

and Play, and standard I/O are redirected to the host process through ALPC. This lets

the UMDF driver respond to the I/Os and perform work, as well as be involved in the

Plug and Play model, by providing enumeration, installation, and management of its

devices. The reflector is also responsible for keeping an eye on the driver host pro-

cesses by making sure that they remain responsive to requests within an adequate time

to prevent drivers and applications from hanging.

618 Windows Internals, Fifth Edition

Driver manager The driver manager is responsible for starting and quitting the

driver host processes, based on which UMDF-managed devices are present, and also

for managing information on them. It is also responsible for responding to messages

coming from the reflector and applying them to the appropriate host process (such as

reacting to device installation). The driver manager runs as a standard Windows service

and is configured for automatic startup as soon as the first UMDF driver for a device

is installed. Only one instance of the driver manager runs for all driver host processes,

and it must always be running to allow UMDF drivers to work.

Host process The host process provides the address space and run-time environ-

ment for the actual driver. Although it runs in the local service account, it is not actu-

ally a Windows service and is not managed by the SCM—only by the driver manager.

The host process is also responsible for providing the user-mode device stack for the

actual hardware, which is visible to all applications on the system. In the current UMDF

release, each device instance has its own device stack, which runs in a separate host

process. In the future, multiple instances may share the same host process. Host pro-

cesses are child processes of the driver manager.

Kernel-mode drivers If specific kernel support for a device that is managed by a

UMDF driver is needed, it is also possible to write a companion kernel-mode driver that

fills that role. In this way, it is possible for a device to be managed both by a UMDF and

a KMDF (or WDM) driver.

You can easily see UMDF in action on your system by inserting any USB flash drive with some

content on it. Run Process Explorer, and you should see a WUDFHost.exe process that corre-

sponds to a driver host process. Switch to DLL view and scroll down until you see DLLs similar

to the ones shown in Figure 7-34.

FIGURE 7-34 DLL in UMDF host process

 Chapter 7 I/O System 619

You can identify three main components, which match the architectural overview described

earlier:

WUDFx.dll, the framework itself

WUDFPlatform.dll, the run-time environment

WpdFs.dll, the COM component representing the WPD driver, exposing contents of

USB storage devices to Windows shell and media applications

The Plug and Play (PnP) Manager

The PnP manager is the primary component involved in supporting the ability of Windows

to recognize and adapt to changing hardware configurations. A user doesn’t need to under-

stand the intricacies of hardware or manual configuration to install and remove devices. For

example, it’s the PnP manager that enables a running Windows laptop that is placed on a

docking station to automatically detect additional devices located in the docking station and

make them available to the user.

Plug and Play support requires cooperation at the hardware, device driver, and operating

system levels. Industry standards for the enumeration and identification of devices attached

to buses are the foundation of Windows Plug and Play support. For example, the USB stan-

dard defines the way that devices on a USB bus identify themselves. With this foundation in

place, Windows Plug and Play support provides the following capabilities:

The PnP manager automatically recognizes installed devices, a process that includes

enumerating devices attached to the system during a boot and detecting the addition

and removal of devices as the system executes.

Hardware resource allocation is a role the PnP manager fills by gathering the hardware

resource requirements (interrupts, I/O memory, I/O registers, or bus-specific resources)

of the devices attached to a system and, in a process called resource arbitration, opti-

mally assigning resources so that each device meets the requirements necessary for

its operation. Because hardware devices can be added to the system after boot-time

resource assignment, the PnP manager must also be able to reassign resources to

accommodate the needs of dynamically added devices.

Loading appropriate drivers is another responsibility of the PnP manager. The PnP

manager determines, based on the identification of a device, whether a driver capable

of managing the device is installed on the system, and if one is, instructs the I/O man-

ager to load it. If a suitable driver isn’t installed, the kernel-mode PnP manager com-

municates with the user-mode PnP manager to install the device, possibly requesting

the user’s assistance in locating a suitable set of drivers.

620 Windows Internals, Fifth Edition

The PnP manager also implements application and driver mechanisms for the detection

of hardware configuration changes. Applications or drivers sometimes require a specific

hardware device to function, so Windows includes a means for them to request notifi-

cation of the presence, addition, or removal of devices.

It also provides a place for storage device state, and it participates in system setup,

upgrade, migration, and offline image management.

In addition, it supports network connected devices, such as network projects and

printers, by allowing specialized bus drivers to detect the network as a bus and create

device nodes for the devices running on it.

Level of Plug and Play Support

Windows aims to provide full support for Plug and Play, but the level of support possible

depends on the attached devices and installed drivers. If a single device or driver doesn’t

support Plug and Play, the extent of Plug and Play support for the system can be compro-

mised. In addition, a driver that doesn’t support Plug and Play might prevent other devices

from being usable by the system. Table 7-7 shows the outcome of various combinations of

devices and drivers that can and can’t support Plug and Play.

TABLE 7-7 Device and Driver Plug and Play Capability

Type of Driver

Type of Device Plug and Play Non–Plug and Play

Plug and Play Full Plug and Play No Plug and Play

Non–Plug and Play Possible partial Plug and Play No Plug and Play

A device that isn’t Plug and Play–compatible is one that doesn’t support automatic detec-

tion, such as a legacy ISA sound card. Because the operating system doesn’t know where the

hardware physically lies, certain operations—such as laptop undocking, sleep, and hiberna-

tion—are disallowed. However, if a Plug and Play driver is manually installed for the device,

the driver can at least implement PnP manager–directed resource assignment for the device.

Drivers that aren’t Plug and Play–compatible include legacy drivers, such as those that ran

on Windows NT 4. Although these drivers might continue to function on later versions of

Windows, the PnP manager can’t reconfigure the resources assigned to such devices in

the event that resource reallocation is necessary to accommodate the needs of a dynami-

cally added device. For example, a device might be able to use I/O memory ranges A and

B, and during the boot the PnP manager assigns it range A. If a device that can use only

A is attached to the system later, the PnP manager can’t direct the first device’s driver to

reconfigure itself to use range B. This prevents the second device from obtaining required

resources, which results in the device being unavailable for use by the system. Legacy drivers

 Chapter 7 I/O System 621

also impair a machine’s ability to sleep or hibernate. (See the section “The Power Manager”

for more details.)

Driver Support for Plug and Play

To support Plug and Play, a driver must implement a Plug and Play dispatch routine, a power

management dispatch routine (described in the section “The Power Manager” later in this

chapter), and an add-device routine. Bus drivers must support different types of Plug and

Play requests than function or filter drivers do, however. For example, when the PnP man-

ager is guiding device enumeration during the system boot (described in detail later in this

chapter), it asks bus drivers for a description of the devices that they find on their respec-

tive buses. The description includes data that uniquely identifies each device as well as the

resource requirements of the devices. The PnP manager takes this information and loads any

function or filter drivers that have been installed for the detected devices. It then calls the

add-device routine of each driver for every installed device the drivers are responsible for.

Function and filter drivers prepare to begin managing their devices in their add-device

routines, but they don’t actually communicate with the device hardware. Instead, they wait

for the PnP manager to send a start-device command for the device to their Plug and Play

dispatch routine. Prior to sending the start-device command the PnP manager performs

resource arbitration to decide what resources to assign the device. The start-device com-

mand includes the resource assignment that the PnP manager determines during resource

arbitration. When a driver receives a start-device command, it can configure its device to use

the specified resources. If an application tries to open a device that hasn’t finished starting, it

receives an error indicating that the device does not exist.

After a device has started, the PnP manager can send the driver additional Plug and Play

commands, including ones related to a device’s removal from the system or to resource

reassignment. For example, when the user invokes the remove/eject device utility, shown

in Figure 7-35 (accessible by right-clicking on the PC card icon in the taskbar and selecting

Safely Remove Hardware), to tell Windows to eject a USB flash drive, the PnP manager sends

a query-remove notification to any applications that have registered for Plug and Play notifi-

cations for the device. Applications typically register for notification on their handles, which

they close during a query-remove notification. If no applications veto the query-remove

request, the PnP manager sends a query-remove command to the driver that owns the device

being ejected. At that point, the driver has a chance to deny the removal or to ensure that

any pending I/O operations involving the device have completed and to begin rejecting

further I/O requests aimed at the device. If the driver agrees to the remove request and no

open handles to the device remain, the PnP manager next sends a remove command to the

driver to request that the driver discontinue accessing the device and release any resources

the driver has allocated on behalf of the device.

622 Windows Internals, Fifth Edition

FIGURE 7-35 Remove/eject utility

When the PnP manager needs to reassign a device’s resources, it first asks the driver whether

it can temporarily suspend further activity on the device by sending the driver a query-stop

command. The driver either agrees to the request, if doing so wouldn’t cause data loss or

corruption, or denies the request. As with a query-remove command, if the driver agrees

to the request, the driver completes pending I/O operations and won’t initiate further I/O

requests for the device that can’t be aborted and subsequently restarted. The driver typically

queues new I/O requests so that the resource reshuffling is transparent to applications cur-

rently accessing the device. The PnP manager then sends the driver a stop command. At that

point, the PnP manager can direct the driver to assign different resources to the device and

once again send the driver a start-device command for the device.

The various Plug and Play commands essentially guide a device through an assortment of

operational states, forming a well-defined state-transition table, which is shown in simpli-

fied form in Figure 7-36. (Several possible transitions and Plug and Play commands have

been omitted for clarity. Also, the state diagram depicted is that implemented by function

drivers. Bus drivers implement a more complex state diagram.) A state shown in the figure

that we haven’t discussed is the one that results from the PnP manager’s surprise-remove

command. This command results when either a user removes a device without warning, as

when the user ejects a PCMCIA card without using the remove/eject utility, or the device fails.

The surprise-remove command tells the driver to immediately cease all interaction with the

device because the device is no longer attached to the system and to cancel any pending I/O

requests.

 Chapter 7 I/O System 623

FIGURE 7-36 Device Plug and Play state transitions

Driver Loading, Initialization, and Installation

Driver loading and initialization on Windows consists of two types of loading: explicit load-

ing and enumeration-based loading. Explicit loading is guided by the HKLM\SYSTEM\

CurrentControlSet\Services branch of the registry, as described in the section “Service

Applications” in Chapter 4. Enumeration-based loading results when the PnP manager

dynamically loads drivers for the devices that a bus driver reports during bus enumeration.

The Start Value

In Chapter 4, we explained that every driver and Windows service has a registry key under

the Services branch of the current control set. The key includes values that specify the type

of the image (for example, Windows service, driver, and file system), the path to the driver

or service’s image file, and values that control the driver or service’s load ordering. There are

two main differences between explicit device driver loading and Windows service loading:

Only device drivers can specify Start values of boot-start (0) or system-start (1).

Device drivers can use the Group and Tag values to control the order of loading

within a phase of the boot, but unlike services, they can’t specify DependOnGroup or

DependOnService values.

Chapter 13 describes the phases of the boot process and explains that a driver Start value

of 0 means that the operating system loader loads the driver. A Start value of 1 means that

the I/O manager loads the driver after the executive subsystems have finished initializing.

624 Windows Internals, Fifth Edition

The I/O manager calls driver initialization routines in the order that the drivers load within a

boot phase. Like Windows services, drivers use the Group value in their registry key to specify

which group they belong to; the registry value HKLM\SYSTEM\CurrentControlSet\Control\

ServiceGroupOrder\List determines the order that groups are loaded within a boot phase.

A driver can further refine its load order by including a Tag value to control its order within

a group. The I/O manager sorts the drivers within each group according to the Tag values

defined in the drivers’ registry keys. Drivers without a tag go to the end of the list in their

group. You might assume that the I/O manager initializes drivers with lower-number tags

before it initializes drivers with higher-number tags, but such isn’t necessarily the case. The

registry key HKLM\SYSTEM\CurrentControlSet\Control\GroupOrderList defines tag prece-

dence within a group; with this key, Microsoft and device driver developers can take liberties

with redefining the integer number system.

Here are the guidelines by which drivers set their Start value:

Non–Plug and Play drivers set their Start value to reflect the boot phase they want to

load in.

Drivers, including both Plug and Play and non–Plug and Play drivers, that must be

loaded by the boot loader during the system boot specify a Start value of boot-start

(0). Examples include system bus drivers and the boot file system driver.

A driver that isn’t required for booting the system and that detects a device that a sys-

tem bus driver can’t enumerate specifies a Start value of system-start (1). An example

is the serial port driver, which informs the PnP manager of the presence of standard PC

serial ports that were detected by Setup and recorded in the registry.

A non–Plug and Play driver or file system driver that doesn’t have to be present when

the system boots specifies a Start value of auto-start (2). An example is the Multiple

Universal Naming Convention (UNC) Provider (MUP) driver, which provides support for

UNC-based path names to remote resources (for example, \\REMOTE COMPUTERNAME\

SHARE).

Plug and Play drivers that aren’t required to boot the system specify a Start value of

demand-start (3). Examples include network adapter drivers.

The only purpose that the Start values for Plug and Play drivers and drivers for enumerable

devices have is to ensure that the operating system loader loads the driver—if the driver is

required for the system to boot successfully. Beyond that, the PnP manager’s device enumer-

ation process, described next, determines the load order for Plug and Play drivers.

Device Enumeration

The PnP manager begins device enumeration with a virtual bus driver called Root, which rep-

resents the entire computer system and acts as the bus driver for non–Plug and Play drivers

 Chapter 7 I/O System 625

and for the HAL. The HAL acts as a bus driver that enumerates devices directly attached to

the motherboard as well as system components such as batteries. Instead of actually enu-

merating, the HAL relies on the hardware description the Setup process recorded in the

registry to detect the primary bus (a PCI bus in most cases) and devices such as batteries

and fans.

The primary bus driver enumerates the devices on its bus, possibly finding other buses, for

which the PnP manager initializes drivers. Those drivers in turn can detect other devices,

including other subsidiary buses. This recursive process of enumeration, driver loading (if the

driver isn’t already loaded), and further enumeration proceeds until all the devices on the

system have been detected and configured.

As the bus drivers report detected devices to the PnP manager, the PnP manager creates an

internal tree called the device tree that represents the relationships between devices. Nodes

in the tree are called devnodes, and a devnode contains information about the device objects

that represent the device as well as other Plug and Play–related information stored in the

devnode by the PnP manager. Figure 7-37 shows an example of a simplified device tree. This

system is ACPI-compliant, so an ACPI-compliant HAL serves as the primary bus enumerator. A

PCI bus serves as the system’s primary bus, which USB, ISA, and SCSI buses are connected to.

Joystick Camera
External

Plug and Play
modem

USB hub
Plug and Play

ISA sound
card

Serial port Keyboard Mouse Disk

USB
controller

PCI to ISA
bridge

SCSI adapter

ACPI fan PCI bus ACPI battery

ACPI

Root device

FIGURE 7-37 Example device tree

626 Windows Internals, Fifth Edition

The Device Manager utility, which is accessible from the Computer Management snap-in in

the Programs/Administrative Tools folder of the Start menu (and also from the Hardware tab

of the System utility in Control Panel), shows a simple list of devices present on a system in its

default configuration. You can also select the Devices By Connection option from the Device

Manager’s View menu to see the devices as they relate to the device tree. Figure 7-38 shows

an example of the Device Manager’s Devices By Connection view.

FIGURE 7-38 Device Manager showing the device tree

Taking device enumeration into account, the load and initialization order of drivers is as

follows:

 1. The I/O manager invokes the driver entry routine of each boot-start driver. If a boot

driver has child devices, the I/O manager enumerates those devices, reporting their

presence to the PnP manager. The child devices are configured and started if their driv-

ers are boot-start drivers. If a device has a driver that isn’t a boot-start driver, the PnP

manager creates a devnode for the device but doesn’t start it or load its driver.

 2. After the boot-start drivers are initialized, the PnP manager walks the device tree, load-

ing the drivers for devnodes that weren’t loaded in step 1 and starting their devices. As

each device starts, the PnP manager enumerates its child devices, if it has any, starting

those devices’ drivers and performing enumeration of their children as required. The

 Chapter 7 I/O System 627

PnP manager loads the drivers for detected devices in this step regardless of the driver’s
Start value. (The one exception is if the Start value is set to disabled.) At the end of this

step, all Plug and Play devices have their drivers loaded and are started, except devices

that aren’t enumerable and the children of those devices.

 3. The PnP manager loads any drivers with a Start value of system-start that aren’t yet

loaded. Those drivers detect and report their nonenumerable devices. The PnP man-

ager loads drivers for those devices until all enumerated devices are configured and

started.

 4. The service control manager loads drivers marked as auto-start.

The device tree serves to guide both the PnP manager and the power manager as they issue

Plug and Play and power IRPs to devices. In general, IRPs flow from the top of a devnode to

the bottom, and in some cases a driver in one devnode creates new IRPs to send to other

devnodes, always moving toward the root. The flow of Plug and Play and power IRPs is fur-

ther described later in this chapter.

EXPERIMENT: Dumping the Device Tree

A more detailed way to view the device tree than using Device Manager is to use the

!devnode kernel debugger command. Specifying 0 1 as command options dumps the

internal device tree devnode structures, indenting entries to show their hierarchical

relationships, as shown here:

lkd> !devnode 0 1

Dumping IopRootDeviceNode (= 0x85161a98)

DevNode 0x85161a98 for PDO 0x84d10390

 InstancePath is "HTREE\ROOT\0"

 State = DeviceNodeStarted (0x308)

 Previous State = DeviceNodeEnumerateCompletion (0x30d)

 DevNode 0x8515bea8 for PDO 0x8515b030

 DevNode 0x8515c698 for PDO 0x8515c820

 InstancePath is "Root\ACPI_HAL\0000"

 State = DeviceNodeStarted (0x308)

 Previous State = DeviceNodeEnumerateCompletion (0x30d)

 DevNode 0x84d1c5b0 for PDO 0x84d1c738

 InstancePath is "ACPI_HAL\PNP0C08\0"

 ServiceName is "ACPI"

 State = DeviceNodeStarted (0x308)

 Previous State = DeviceNodeEnumerateCompletion (0x30d)

 DevNode 0x85ebf1b0 for PDO 0x85ec0210

 InstancePath is "ACPI\GenuineIntel_-_x86_Family_6_Model_15_0"

 ServiceName is “intelppm”

 State = DeviceNodeStarted (0x308)

 Previous State = DeviceNodeEnumerateCompletion (0x30d)

 DevNode 0x85ed6970 for PDO 0x8515e618

 InstancePath is "ACPI\GenuineIntel_-_x86_Family_6_Model_15_1"

 ServiceName is "intelppm"

 State = DeviceNodeStarted (0x308)

 Previous State = DeviceNodeEnumerateCompletion (0x30d)

628 Windows Internals, Fifth Edition

 DevNode 0x85ed75c8 for PDO 0x85ed79e8

 InstancePath is "ACPI\ThermalZone\THM_"

 State = DeviceNodeStarted (0x308)

 Previous State = DeviceNodeEnumerateCompletion (0x30d)

 DevNode 0x85ed6cd8 for PDO 0x85ed6858

 InstancePath is "ACPI\pnp0c14\0"

 ServiceName is "WmiAcpi"

 State = DeviceNodeStarted (0x308)

 Previous State = DeviceNodeEnumerateCompletion (0x30d)

 DevNode 0x85ed7008 for PDO 0x85ed6730

 InstancePath is "ACPI\ACPI0003\2&daba3ff&2"

 ServiceName is "CmBatt"

 State = DeviceNodeStarted (0x308)

 Previous State = DeviceNodeEnumerateCompletion (0x30d)

 DevNode 0x85ed7e60 for PDO 0x84d2e030

 InstancePath is "ACPI\PNP0C0A\1"

 ServiceName is "CmBatt"

§

Information shown for each devnode includes the InstancePath, which is the name of

the device’s enumeration registry key stored under HKLM\SYSTEM\CurrentControlSet\

Enum, and the ServiceName, which corresponds to the device’s driver registry key

under HKLM\SYSTEM\CurrentControlSet\Services. To see the resources, such as inter-

rupts, ports, and memory, assigned to each devnode, specify 0 3 as the command

options for the !devnode command.

A record of all the devices detected since the system was installed is recorded under

the HKLM\SYSTEM\CurrentControlSet\Enum registry key. Subkeys are in the form

<Enumerator>\<Device ID>\<Instance ID>, where the enumerator is a bus driver, the device

ID is a unique identifier for a type of device, and the instance ID uniquely identifies different

instances of the same hardware.

Devnodes

Figure 7-39 shows that a devnode is made up of at least two, and sometimes more, device

objects:

A physical device object (PDO) that the PnP manager instructs a bus driver to create

when the bus driver reports the presence of a device on its bus during enumeration.

The PDO represents the physical interface to the device.

One or more optional filter device objects (FiDOs) that layer between the PDO and the

FDO (described next), and that are created by bus filter drivers.

 Chapter 7 I/O System 629

One or more optional FiDOs that layer between the PDO and the FDO (and that layer

above any FiDOs created by bus filter drivers) that are created by lower-level filter

drivers.

A functional device object (FDO) that is created by the driver, which is called a function

driver, that the PnP manager loads to manage a detected device. An FDO represents

the logical interface to a device. A function driver can also act as a bus driver if devices

are attached to the device represented by the FDO. The function driver often creates

an interface (described earlier) to the FDO’s corresponding PDO so that applications

and other drivers can open the device and interact with it. Sometimes function drivers

are divided into a separate class/port driver and miniport driver that work together to

manage I/O for the FDO.

One or more optional FiDOs that layer above the FDO and that are created by upper-

level filter drivers.

Filter device object
(FiDO)

Filter device object
(FiDO)

Filter device object
(FiDO)

Upper-level
filter driver

Function
driver

Lower-level
filter driver

Bus
filter driver

Bus
driver

IRP

Devnode

FIGURE 7-39 Devnode internals

Devnodes are built from the bottom up and rely on the I/O manager’s layering functional-

ity, so IRPs flow from the top of a devnode toward the bottom. However, any level in the

devnode can choose to complete an IRP. For example, the function driver can handle a read

request without passing the IRP to the bus driver. Only when the function driver requires the

help of a bus driver to perform bus-specific processing does the IRP flow all the way to the

bottom and then into the devnode containing the bus driver.

630 Windows Internals, Fifth Edition

Devnode Driver Loading

So far, we’ve avoided answering two important questions: “How does the PnP manager

determine what function driver to load for a particular device?” and “How do filter driv-

ers register their presence so that they are loaded at appropriate times in the creation of a

devnode?”

The answer to both these questions lies in the registry. When a bus driver performs device

enumeration, it reports device identifiers for the devices it detects back to the PnP manager.

The identifiers are bus-specific; for a USB bus, an identifier consists of a vendor ID (VID) for

the hardware vendor that made the device and a product ID (PID) that the vendor assigned

to the device. (See the WDK for more information on device ID formats.) Together these IDs

form what Plug and Play calls a device ID. The PnP manager also queries the bus driver for an

instance ID to help it distinguish different instances of the same hardware. The instance ID

can describe either a bus-relative location (for example, the USB port) or a globally unique

descriptor (for example, a serial number).

The device ID and instance ID are combined to form a device instance ID (DIID), which the

PnP manager uses to locate the device’s key in the enumeration branch of the registry

(HKLM\SYSTEM\CurrentControlSet\Enum). Figure 7-40 presents an example of a keyboard’s

enumeration subkey. The device’s key contains descriptive data and includes values named

Service and ClassGUID (which are obtained from a driver’s INF file) that help the PnP man-

ager locate the device’s drivers.

FIGURE 7-40 Keyboard enumeration key

 Chapter 7 I/O System 631

EXPERIMENT: Viewing Detailed Devnode Information in

Device Manager

The Device Manager applet that you can access from the Hardware tab of the System

Control Panel application can show detailed information about a device node by using

a tab called Details. The tab allows you to view an assortment of fields, including the

devnode’s device instance ID, hardware ID, service name, filters, and power capabilities.

The following screen shows the selection combo box of the Details tab expanded to

reveal the types of information you can access:

Using the ClassGUID value, the PnP manager locates the device’s class key under HKLM\

SYSTEM\CurrentControlSet\Control\Class. The keyboard class key is shown in Figure 7-41. The

enumeration key and class key supply the PnP manager the information it needs to load the

drivers necessary for the device’s devnode. Drivers are loaded in the following order:

 1. Any lower-level filter drivers specified in the LowerFilters value of the device’s enumera-

tion key.

 2. Any lower-level filter drivers specified in the LowerFilters value of the device’s class key.

 3. The function driver specified by the Service value in the device’s enumeration key.

This value is interpreted as the driver’s key under HKLM\SYSTEM\CurrentControlSet\

Services.

632 Windows Internals, Fifth Edition

 4. Any upper-level filter drivers specified in the UpperFilters value of the device’s enumer-

ation key.

 5. Any upper-level filter drivers specified in the UpperFilters value of the device’s class key.

In all cases, drivers are referenced by the name of their key under HKLM\SYSTEM\

CurrentControlSet\Services.

FIGURE 7-41 Keyboard class key

Note The WDK refers to a device’s enumeration key as its hardware key and to the class key as

the software key.

The keyboard device shown in Figure 7-40 and Figure 7-41 has no lower-level filter drivers.

The function driver is the i8042prt driver, and there are two upper-level filter drivers specified

in the keyboard’s class key: kbdclass and vmkbd2.

Driver Installation

If the PnP manager encounters a device for which no driver is installed, it relies on the

user-mode PnP manager to guide the installation process. If the device is detected during

the system boot, a devnode is defined for the device but the loading process is postponed

until the user-mode PnP manager starts. (The user-mode PnP manager is implemented in

\%SystemRoot%\System32\Umpnpmgr.dll and runs as a service in the Services.exe process.)

 Chapter 7 I/O System 633

The components involved in a driver’s installation are shown in Figure 7-42. Shaded objects

in the figure correspond to components generally supplied by the system, whereas objects

that aren’t shaded are included in a driver’s installation files. First, a bus driver informs the

PnP manager of a device it enumerates using a DIID (1). The PnP manager checks the registry

for the presence of a corresponding function driver, and when it doesn’t find one, it informs

the user-mode PnP manager (2) of the new device by its DIID. The user-mode PnP man-

ager first tries to perform an automatic install without user intervention. If the installation

process involves the posting of dialog boxes that require user interaction and the currently

logged-on user has administrator privileges, (3) the user-mode PnP manager launches the

Rundll32.exe application (the same application that hosts Control Panel utilities) to execute

the Hardware Installation Wizard (\Windows\System32\Newdev.dll). If the currently logged-

on user doesn’t have administrator privileges (or if no user is logged on) and the installation

of the device requires user interaction, the user-mode PnP manager defers the installation

until a privileged user logs on. The Hardware Installation Wizard uses Setup and CfgMgr

(configuration manager) API functions to locate INF files that correspond to drivers that

are compatible with the detected device. This process might involve having the user insert

installation media containing a vendor’s INF files, or the wizard might locate a suitable INF

file in the driver store (\Windows\System32\DriverStore) that contains drivers that ship with

Windows. Installation is performed in two steps. In the first, the third-party driver developer

imports the driver package into the driver store, and in the second step, the system per-

forms the actual installation, which is always done through the %SystemRoot%\System32\

Drvinst.exe process.

2

3

1

4

5

FIGURE 7-42 Driver installation components

634 Windows Internals, Fifth Edition

To find drivers for the new device, the installation process gets a list of hardware IDs and

compatible IDs from the bus driver. These IDs describe all the various ways the hardware

might be identified in a driver installation file (.inf). The lists are ordered so that the most

specific description of the hardware is listed first. If matches are found in multiple INFs, more

precise matches are preferred over less precise matches, digitally signed INFs are preferred

over unsigned ones, and newer signed INFs are preferred over older signed ones. If a match

is found based on a compatible ID, the Hardware Installation Wizard can choose to prompt

for media in case a more up-to-date driver came with the hardware.

The INF file locates the function driver’s files and contains commands that fill in the driver’s

enumeration and class keys, and the INF file might direct the Hardware Installation Wizard

to (4) launch class or device co-installer DLLs that perform class or device-specific installation

steps, such as displaying configuration dialog boxes that let the user specify settings for a

device.

EXPERIMENT: Looking at a Driver’s INF File

When a driver or other software that has an INF file is installed, the system copies its

INF file to the \Windows\Inf directory. One file that will always be there is Keyboard.inf

because it’s the INF file for the keyboard class driver. View its contents by opening it in

Notepad and you should see something like this:

; Copyright (c) 1993-1996, Microsoft Corporation

[version]

signature="$Windows NT$"

Class=Keyboard

ClassGUID={4D36E96B-E325-11CE-BFC1-08002BE10318}

Provider=%MS%

LayoutFile=layout.inf

DriverVer=07/01/2001,5.1.2600.1106

[ClassInstall32.NT]

AddReg=keyboard_class_addreg

...

If you search the file for “.sys”, you’ll come across the entry that directs the user-mode

PnP manager to install the i8042prt.sys and kbdclass.sys drivers:

...

[STANDARD_CopyFiles]

i8042prt.sys

kbdclass.sys

...

Before actually installing a driver, the user-mode PnP manager checks the system’s driver-

signing policy. If the settings specify that the system should block or warn of the installation

of unsigned drivers, the user-mode PnP manager checks the driver’s INF file for an entry

 Chapter 7 I/O System 635

that locates a catalog (a file that ends with the .cat extension) containing the driver’s digital

signature.

Microsoft’s WHQL tests the drivers included with Windows and those submitted by hardware

vendors. When a driver passes the WHQL tests, it is “signed” by Microsoft. This means that

WHQL obtains a hash, or unique value representing the driver’s files, including its image file,

and then cryptographically signs it with Microsoft’s private driver-signing key. The signed

hash is stored in a catalog file and included on the Windows installation media or returned to

the vendor that submitted the driver for inclusion with its driver.

EXPERIMENT: Viewing Catalog Files

When you install a component such as a driver that includes a catalog file, Windows

copies the catalog file to a directory under \Windows\System32\Catroot. Navigate to

that directory in Explorer and you find the subdirectory that contains .cat files. Nt5.cat

and Nt5inf.cat store the signatures for Windows system files, for example.

If you open one of the catalog files, a dialog box appears with two pages. The page

labeled General shows information about the signature on the catalog file, and the

Security Catalog page has the hashes of the components that are signed with the cata-

log file. This screen shot of a catalog file for NVIDIA video drivers shows the hash for

the video adapter’s kernel miniport driver. Other hashes in the catalog are associated

with the various support DLLs that ship with the driver.

636 Windows Internals, Fifth Edition

As it is installing a driver, the user-mode PnP manager extracts the driver’s signature from its

catalog file, decrypts the signature using the public half of Microsoft’s driver-signing private/

public key pair, and compares the resulting hash with a hash of the driver file it’s about to

install. If the hashes match, the driver is verified as having passed WHQL testing. If a driver

fails the signature verification, the user-mode PnP manager acts according to the settings of

the system driver-signing policy, either failing the installation attempt, warning the user that

the driver is unsigned, or silently installing the driver.

Note Drivers installed using setup programs that manually configure the registry and copy

driver files to a system and driver files that are dynamically loaded by applications aren’t checked

for signatures by the PnP manager’s signing policy. Instead, they are checked by the Kernel Mode

Code Signing policy described in Chapter 3. Only drivers installed using INF files are validated

against the PnP manager’s driver-signing policy.

After a driver is installed, the kernel-mode PnP manager (step 5 in Figure 7-42) starts the

driver and calls its add-device routine to inform the driver of the presence of the device it

was loaded for. The construction of the devnode then continues as described earlier.

Note The user-mode PnP manager also checks to see whether the driver it’s about to install is

on the protected driver list maintained by Windows Update and, if so, blocks the installation with

a warning to the user. Drivers that are known to have incompatibilities or bugs are added to the

list and blocked from installation.

The Power Manager

Just as Windows Plug and Play features require support from a system’s hardware, its power-

management capabilities require hardware that complies with the Advanced Configuration

and Power Interface (ACPI) specification (available at www.teleport.com/~acpi/spec.htm).

The ACPI standard defines various power levels for a system and for devices. The six sys-

tem power states are described in Table 7-8. They are referred to as S0 (fully on or working)

through S5 (fully off). Each state has the following characteristics:

Power consumption The amount of power the computer consumes

Software resumption The software state from which the computer resumes when

moving to a “more on” state

Hardware latency The length of time it takes to return the computer to the fully on

state

 Chapter 7 I/O System 637

TABLE 7-8 System Power-State Definitions

State Power Consumption Software Resumption Hardware Latency

S0 (fully on) Maximum Not applicable None

S1 (sleeping) Less than S0, more than

S2

System resumes where it

left off (returns to S0)

Less than 2

seconds

S2 (sleeping) Less than S1, more than

S3

System resumes where it

left off (returns to S0)

2 or more seconds

S3 (sleeping) Less than S2; processor

is off

System resumes where it

left off (returns to S0)

Same as S2

S4 (hibernating) Trickle current to power

button and wake circuitry

System restarts from saved

hibernate file and resumes

where it left off prior to

hibernation (returns to S0)

Long and

undefined

S5 (fully off) Trickle current to power

button

System boot Long and

undefined

States S1 through S4 are sleeping states, in which the computer appears to be off because

of reduced power consumption. However, the computer retains enough information, either

in memory or on disk, to move to S0. For states S1 through S3, enough power is required to

preserve the contents of the computer’s memory so that when the transition is made to S0

(when the user or a device wakes up the computer), the power manager continues executing

where it left off before the suspend.

When the system moves to S4, the power manager saves the compressed contents of mem-

ory to a hibernation file named Hiberfil.sys, which is large enough to hold the uncompressed

contents of memory, in the root directory of the system volume. (Compression is used to

minimize disk I/O and to improve hibernation and resume-from-hibernation performance.)

After it finishes saving memory, the power manager shuts off the computer. When a user

subsequently turns on the computer, a normal boot process occurs, except that Bootmgr

checks for and detects a valid memory image stored in the hibernation file. If the hibernation

file contains saved system state, Bootmgr launches Winresume, which reads the contents of

the file into memory, and then resumes execution at the point in memory that is recorded in

the hibernation file.

On systems with hybrid sleep enabled (by default, only desktop computers), a user request

to put the computer to sleep will actually be a combination of both the S3 state and the S4

state: while the computer is put to sleep, an emergency hibernation file will also be written to

disk. Unlike typical hibernation files, which contain almost all active memory, the emergency

hibernation file includes only data that could not be paged in at a later time, making the sus-

pend operation faster than a typical hibernation (because less data is written to disk). Drivers

will then be notified that an S4 transition is occurring, allowing them to configure themselves

and save state just as if an actual hibernation request had been initiated. After this point, the

system is put in the normal sleep state just like during a standard sleep transition. However, if

638 Windows Internals, Fifth Edition

the power goes out, the system is now essentially in an S4 state—the user can power on the

machine, and Windows will resume from the emergency hibernation file.

The computer never directly transitions between states S1 and S4; instead, it must move to

state S0 first. As illustrated in Figure 7-43, when the system is moving from any of states S1

through S5 to state S0, it’s said to be waking, and when it’s transitioning from state S0 to any

of states S1 through S5, it’s said to be sleeping.

FIGURE 7-43 System power-state transitions

Although the system can be in one of six power states, ACPI defines devices as being in one

of four power states, D0 through D3. State D0 is fully on, and state D3 is fully off. The ACPI

standard leaves it to individual drivers and devices to define the meanings of states D1 and

D2, except that state D1 must consume an amount of power less than or equal to that con-

sumed in state D0, and when the device is in state D2, it must consume power less than or

equal to that consumed in D1. Microsoft, in conjunction with the major hardware OEMs,

has defined a series of power management reference specifications that specify the device

power states that are required for all devices in a particular class (for the major device classes:

display, network, SCSI, and so on). For some devices, there’s no intermediate power state

between fully on and fully off, which results in these states being undefined.

Power Manager Operation

Power management policy in Windows is split between the power manager and the indi-

vidual device drivers. The power manager is the owner of the system power policy. This own-

ership means that the power manager decides which system power state is appropriate at

any given point, and when a sleep, hibernation, or shutdown is required, the power manager

instructs the power-capable devices in the system to perform appropriate system power-

state transitions. The power manager decides when a system power-state transition is neces-

sary by considering a number of factors:

System activity level

System battery level

 Chapter 7 I/O System 639

Shutdown, hibernate, or sleep requests from applications

User actions, such as pressing the power button

Control Panel power settings

When the PnP manager performs device enumeration, part of the information it receives

about a device is its power-management capabilities. A driver reports whether or not its

devices support device states D1 and D2 and, optionally, the latencies, or times required,

to move from states D1 through D3 to D0. To help the power manager determine when to

make system power-state transitions, bus drivers also return a table that implements a map-

ping between each of the system power states (S0 through S5) and the device power states

that a device supports.

The table lists the lowest possible device power state for each system state and directly

reflects the state of various power planes when the machine sleeps or hibernates. For exam-

ple, a bus that supports all four device power states might return the mapping table shown

in Table 7-9. Most device drivers turn their devices completely off (D3) when leaving S0 to

minimize power consumption when the machine isn’t in use. Some devices, however, such

as network adapter cards, support the ability to wake up the system from a sleeping state.

This ability, along with the lowest device power state in which the capability is present, is also

reported during device enumeration.

TABLE 7-9 Example System-to-Device Power Mappings

System Power State Device Power State

S0 (fully on) D0 (fully on)

S1 (sleeping) D1

S2 (sleeping) D2

S3 (sleeping) D2

S4 (hibernating) D3 (fully off)

S5 (fully off) D3 (fully off)

Driver Power Operation

When the power manager decides to make a transition between system power states, it

sends power commands to a driver’s power dispatch routine. More than one driver can be

responsible for managing a device, but only one of the drivers is designated as the device

power-policy owner. This driver determines, based on the system state, a device’s power

state. For example, if the system transitions between state S0 and S1, a driver might decide to

move a device’s power state from D0 to D1.

Instead of directly informing the other drivers that share the management of the device of its

decision, the device power-policy owner asks the power manager, via the PoRequestPowerIrp

function, to tell the other drivers by issuing a device power command to their power dispatch

640 Windows Internals, Fifth Edition

routines. This behavior allows the power manager to control the number of power com-

mands that are active on a system at any given time. For example, some devices in the sys-

tem might require a significant amount of current to power up. The power manager ensures

that such devices aren’t powered up simultaneously.

EXPERIMENT: Viewing a Driver’s Power Mappings

You can see a driver’s system power state to driver power state mappings with Device

Manager. Open the Properties dialog box for a device, and choose the Power Data

entry in the drop-down list of the Details tab to see the mappings.

The dialog box also displays the current power state of the device, the device-specific

power capabilities that it provides, and the power states from which it is able to wake

the system.

Many power commands have corresponding query commands. For example, when

the system is moving to a sleep state, the power manager will first ask the devices

on the system whether the transition is acceptable. A device that is busy performing

time- critical operations or interacting with device hardware might reject the command,

which results in the system maintaining its current system power-state setting.

 Chapter 7 I/O System 641

EXPERIMENT: Viewing the System Power Capabilities and Policy

You can view a computer’s system power capabilities by using the !pocaps kernel

debugger command. Here’s the output of the command when run on an ACPI-

compliant laptop running Windows Vista:

lkd> !pocaps

PopCapabilities @ 0x82114d80

 Misc Supported Features: PwrButton SlpButton Lid S3 S4 S5 HiberFile FullWake

 VideoDim

 Processor Features: Thermal

 Disk Features: SpinDown

 Battery Features: BatteriesPresent

 Battery 0 - Capacity: 0 Granularity: 0

 Battery 1 - Capacity: 0 Granularity: 0

 Battery 2 - Capacity: 0 Granularity: 0

 Wake Caps

 Ac OnLine Wake: Sx

 Soft Lid Wake: Sx

 RTC Wake: S4

 Min Device Wake: Sx

 Default Wake: Sx

The Misc Supported Features line reports that, in addition to S0 (fully on), the system

supports system power states S1, S3, S4, and S5 (it doesn’t implement S2) and has a

valid hibernation file to which it can save system memory when it hibernates (state S4).

The Power Options page, shown here (available by selecting Power Options in Control

Panel), lets you configure various aspects of the system’s power policy. The exact prop-

erties you can configure depend on the system’s power capabilities, which we just

examined.

642 Windows Internals, Fifth Edition

By changing any of the preconfigured plan settings, you can set the idle detection

 timeouts that control when the system turns off the monitor, spins down hard disks,

goes to standby mode (moves to system power state S1), and hibernates (moves the

system to power state S4). In addition, selecting the Change Advanced Power Settings

option lets you specify the power-related behavior of the system when you press the

power or sleep buttons or close a laptop’s lid.

The settings you configure in Power Options directly affect values in the system’s power

policy, which you can display with the !popolicy debugger command. Here’s the output

of the command on the same system:

lkd> !popolicy

SYSTEM_POWER_POLICY (R.1) @ 0x82107994

 PowerButton: Sleep Flags: 00000000 Event: 00000000

 SleepButton: Sleep Flags: 00000000 Event: 00000000

 LidClose: Sleep Flags: 00000000 Event: 00000000

 Idle: Sleep Flags: 00000000 Event: 00000000

 OverThrottled: None Flags: 00000000 Event: 00000000

 IdleTimeout: 384 IdleSensitivity: 90%

 MinSleep: S3 MaxSleep: S3

 LidOpenWake: S0 FastSleep: S0

 WinLogonFlags: 1 S4Timeout: fd20

 VideoTimeout: 300 VideoDim: 0

 Chapter 7 I/O System 643

 SpinTimeout: 258 OptForPower: 0

 FanTolerance: 0% ForcedThrottle: 0%

 SpinTimeout: 258 OptForPower: 0

 MinThrottle: 0% DyanmicThrottle: None

The first lines of the display correspond to the button behaviors specified on the

Advanced Settings tab of Power Options, and on this system both the power and the

sleep buttons put the computer in a sleep state, just as closing the lid does.

The timeout values shown at the end of the output are expressed in seconds and dis-

played in hexadecimal notation. The values reported here directly correspond to the

settings you can see configured on the Power Options page. (The laptop is on battery.)

For example, the video timeout is 300, meaning the monitor turns off after 300 sec-

onds, or 5 minutes, and the hard disk spin-down timeout is 0x258, which corresponds

to 600 seconds, or 10 minutes.

Driver and Application Control of Device Power

Besides responding to power manager commands related to system power-state transitions,

a driver can unilaterally control the device power state of its devices. In some cases, a driver

might want to reduce the power consumption of a device it controls when the device is left

inactive for a period of time. Examples include monitors that support a dimmed mode and

disks that support spin-down. A driver can either detect an idle device itself or use facilities

provided by the power manager. If the device uses the power manager, it registers the device

with the power manager by calling the PoRegisterDeviceForIdleDetection function.

This function informs the power manager of the timeout values to use to detect a device as

idle and of the device power state that the power manager should apply when it detects the

device as being idle. The driver specifies two timeouts: one to use when the user has config-

ured the computer to conserve energy and the other to use when the user has configured

the computer for optimum performance. After calling PoRegisterDeviceForIdleDetection, the

driver must inform the power manager, by calling the PoSetDeviceBusy function, whenever

the device is active.

Although a device has control over its own power state, it does not have the ability to manip-

ulate the system power state or to prevent system power transitions from occurring. For

example, if a badly designed driver doesn’t support any low-power states, it can choose to

remain on or turn itself completely off without hindering the system’s overall ability to enter

a low-power state—this is because the power manager only notifies the driver of a transition

and doesn’t ask for consent.

644 Windows Internals, Fifth Edition

Although drivers and the kernel are chiefly responsible for power management, applica-

tions are also allowed to provide their input. User-mode processes can register for a variety

of power notifications, such as when the battery is low or critically low, when the laptop has

switched from DC (battery) to AC (adapter/charger) power, or when the system is initiating

a power transition. Just like drivers, however, applications cannot veto these operations, and

they can have up to two seconds to clean up any state necessary before a sleep transition.

Conclusion

The I/O system defines the model of I/O processing on Windows and performs functions

that are common to or required by more than one driver. Its chief responsibility is to create

IRPs representing I/O requests and to shepherd the packets through various drivers, return-

ing results to the caller when an I/O is complete. The I/O manager locates various drivers

and devices by using I/O system objects, including driver and device objects. Internally, the

Windows I/O system operates asynchronously to achieve high performance and provides

both synchronous and asynchronous I/O capabilities to user-mode applications.

Device drivers include not only traditional hardware device drivers but also file system, net-

work, and layered filter drivers. All drivers have a common structure and communicate with

one another and the I/O manager by using common mechanisms. The I/O system interfaces

allow drivers to be written in a high-level language to lessen development time and to

enhance their portability. Because drivers present a common structure to the operating sys-

tem, they can be layered one on top of another to achieve modularity and reduce duplica-

tion between drivers. Also, all Windows device drivers should be designed to work correctly

on multiprocessor systems.

Finally, the role of the PnP manager is to work with device drivers to dynamically detect

hardware devices and to build an internal device tree that guides hardware device enumera-

tion and driver installation. The power manager works with device drivers to move devices

into low-power states when applicable to conserve energy and prolong battery life.

Four more upcoming chapters in the book will cover additional topics related to the I/O sys-

tem: storage management, file systems (including details on the NTFS file system), the cache

manager, and networking.

 645

Chapter 8

Storage Management

Storage management defines the way that an operating system interfaces with nonvolatile
storage devices and media. The term storage encompasses many different devices, including
tape drives, optical media, USB flash drives, floppy disks, hard disks, network storage such
as iSCSI, and storage area networks (SANs). Windows provides specialized support for each
of these classes of storage media. Because our focus in this book is on the kernel compo-
nents of Windows, in this chapter we’ll concentrate on just the fundamentals of the hard-disk
storage subsystem in Windows, which includes support for external disks and flash drives.
Significant portions of the support Windows provides for removable media and remote stor-
age (offline archiving) are implemented in user mode.

In this chapter, we’ll examine how kernel-mode device drivers interface file system drivers to
disk media, discuss how disks are partitioned, describe the way volume managers abstract
and manage volumes, and present the implementation of multipartition disk-management
features in Windows, including replicating and dividing file system data across physical disks
for reliability and for performance enhancement. We’ll also describe how file system drivers
mount volumes they are responsible for managing, and we’ll conclude by discussing drive
encryption technology in Windows and support for automatic backups and recovery.

Storage Terminology

To fully understand the rest of this chapter, you need to be familiar with some basic
terminology:

Disks are physical storage devices such as a hard disk, a 3.5-inch floppy disk, or a
CD-ROM.

A disk is divided into sectors, which are addressable blocks of fixed size. Sector sizes are
determined by hardware. Most hard disk sectors are 512 bytes, and CD-ROM sectors
are typically 2048 bytes.

Partitions are collections of contiguous sectors on a disk. A partition table or other disk-
management database stores a partition’s starting sector, size, and other characteristics
and is located on the same disk as the partition.

Simple volumes are objects that represent sectors from a single partition that file sys-
tem drivers manage as a single unit.

Multipartition volumes are objects that represent sectors from multiple partitions and
that file system drivers manage as a single unit. Multipartition volumes offer perfor-
mance, reliability, and sizing features that simple volumes do not.

646 Windows Internals, Fifth Edition

Disk Drivers

The device drivers involved in managing a particular storage device are collectively known
as a storage stack. Figure 8-1 shows each type of driver that might be present in a stack and
includes a brief description of its purpose. This chapter describes the behavior of device driv-
ers below the file system layer in the stack. (The file system driver operation is described in
Chapter 11.)

Application

Sends I/O request to FSI/O Subsystem

Imposes file structure on raw volumesFile system

Manages software snapshotsVolume snapshot

Presents volumes (C:, D:) to users;
supports basic and dynamic disks (RAID)

Volume manager

Manages disk partitionsPartition manager

Manages a specific device type, such
as disks, tapesClass

Miniport: Vendor supplied; functionally
linked to specific port driver; manages
hardware specific details

Disk subsystem

Port Miniport

Port: Manages a specific
transport (Storport for

 RAID, FC, SCSI, etc.)

FIGURE 8-1 Windows storage stack

Winload

As you saw in Chapter 4, Winload is the Windows operating system file that conducts the first
portion of the Windows boot process. Although Winload isn’t technically part of the storage
stack, it is involved with storage management because it includes support for accessing disk
devices before the Windows I/O system is operational. Winload resides on the boot volume;
the boot-sector code on the system volume executes Bootmgr. Bootmgr reads the BCD from
the system volume or EFI firmware and presents the computer’s boot choices to the user.
Bootmgr translates the name of the BCD boot entry that a user selects to the appropriate
boot partition and then runs Winload to load the Windows system files (starting with the
registry, Ntoskrnl.exe and its dependencies, and the boot drivers) into memory to continue
the boot process. In all cases, Winload uses the computer firmware to read the disk contain-
ing the system volume.

 Chapter 8 Storage Management 647

Disk Class, Port, and Miniport Drivers

During initialization, the Windows I/O manager starts the disk storage drivers. Storage drivers
in Windows follow a class/port/miniport architecture, in which Microsoft supplies a storage
class driver that implements functionality common to all storage devices and a storage port
driver that implements functionality common to a particular bus—such as a Small Computer
System Interface (SCSI) bus or an Integrated Device Electronics (IDE) system—and OEMs sup-
ply miniport drivers that plug into the port driver to interface Windows to a particular con-
troller implementation.

In the disk storage driver architecture, only class drivers conform to the standard Windows
device driver interfaces. Miniport drivers use a port driver interface instead of the device
driver interface, and the port driver simply implements a collection of device driver support
routines that interface miniport drivers to Windows. This approach simplifies the role of
miniport driver developers and, because Microsoft supplies operating system–specific port
drivers, allows driver developers to focus on hardware-specific driver logic. Windows includes
Disk (\Windows\System32\Drivers\Disk.sys), a class driver that implements functionality com-
mon to disks. Windows also provides a handful of disk port drivers. For example, Scsiport.sys
is the legacy port driver for disks on SCSI buses, and Ataport.sys is a port driver for IDE-
based systems. Most newer drivers use the Storport.sys port driver as a replacement for
Scsiport.sys. Storport.sys is designed to realize the high performance capabilities of hardware
RAID and Fibre Channel adapters. The Storport model is similar to Scsiport, making it easy for
vendors to migrate existing Scsiport miniport drivers to Storport. Miniport drivers that devel-
opers write to use Storport take advantage of several of Storport’s performance enhancing
features, including support for the parallel execution of I/O initiation and completion on
multiprocessor systems, more controllable I/O request-queue architecture, and execution of
more code at lower IRQL to minimize the duration of hardware interrupt masking. Storport
also includes support for dynamic redirection of interrupts and DPCs to the best (most local)
NUMA node on systems that support it.

Both the Scsiport.sys and Ataport.sys drivers implement a version of the disk scheduling
algorithm known as C-LOOK. The drivers place disk I/O requests in lists sorted by the first
sector (also known as the logical block address, or LBA) at which an I/O request is directed.
They use the KeInsertByKeyDeviceQueue and KeRemoveByKeyDeviceQueue functions (docu-
mented in the Windows Driver Kit) representing I/O requests as items and using a request’s
starting sector as the key required by the functions. When servicing requests, the drivers
proceed through the list from lowest sector to highest. When they reach the end of the list
the drivers start back at the beginning, since new requests might have been inserted in the
meantime. If disk requests are spread throughout a disk this approach results in the disk head
continuously moving from near the outermost cylinders of the disk toward the innermost
cylinders. Storport.sys does not implement disk scheduling because it is commonly used for
managing I/Os directed at storage arrays where there is no clearly defined notion of a disk
start and end.

648 Windows Internals, Fifth Edition

Windows ships with several miniport drivers, including one—Aha154x.sys—for Adaptec’s
1540 family of SCSI controllers. On systems that have at least one ATAPI-based IDE device,
Atapi.sys, Pciidex.sys, and Pciide.sys together provide miniport functionality. Most Windows
installations include one or more of the drivers mentioned.

iSCSI Drivers

The development of iSCSI as a disk transport protocol integrates the SCSI protocol with
TCP/IP networking so that computers can communicate with block-storage devices, includ-
ing disks, over IP networks. Storage area networking (SAN) is usually architected on Fibre
Channel networking, but administrators can leverage iSCSI to create relatively inexpensive
SANs from networking technology such as Gigabit Ethernet to provide scalability, disaster
protection, efficient backup, and data protection. Windows support for iSCSI comes in the
form of the Microsoft iSCSI Software Initiator, which can be installed as a feature on Windows
Vista Enterprise and Windows Vista Ultimate, as well as on Windows Server 2008.

The Microsoft iSCSI Software Initiator includes several components:

Initiator This optional component, which consists of the Storport port driver and the
iSCSI miniport driver (\Windows\System32\Drivers\Msiscsi.sys), uses the TCP/IP driver to
implement software iSCSI over standard Ethernet adapters and TCP/IP offloaded net-
work adapters.

Initiator service This service, implemented in \Windows\System32\Iscsiexe.exe, man-
ages the discovery and security of all iSCSI initiators as well as session initiation and ter-
mination. iSCSI device discovery functionality is implemented in \Windows\System32\
Iscsium.dll and conforms to the Internet Storage Name Service (iSNS) protocol.

Management applications These include Iscsicli.exe, a command-line tool for man-
aging iSCSI device connections and security, and the corresponding Control Panel
application.

Some vendors produce iSCSI adapters that offload the iSCSI protocol to hardware. The
Initiator service works with these adapters, which must support iSNS, so that all iSCSI devices,
including those discovered by the Initiator service and those discovered by iSCSI hardware,
are recognized and managed through standard Windows interfaces.

Multipath I/O (MPIO) Drivers

Most disk devices have one path—or series of adapters, cables, and switches—between them
and a computer. Servers requiring high levels of availability use multipathing solutions, where
more than one set of connection hardware exists between the computer and a disk so that
if a path fails the system can still access the disk via an alternate path. Without support from
the operating system or disk drivers, however, a disk with two paths, for example, appears as
two different disks. Windows includes multipath I/O support to manage multipath disks as

 Chapter 8 Storage Management 649

a single disk. This support relies on built-in or third-party drivers called device-specific mod-
ules (DSMs) to manage details of the path management—for example, load balancing poli-
cies that choose which path to use for routing requests and error detection mechanisms to
inform Windows when a path fails. MPIO support is available for Windows Server 2008 in the
form of the Microsoft MPIO Driver Development Kit, which hardware and software vendors
can license.

In a Windows MPIO storage stack, shown in Figure 8-2, the disk driver includes functionality
for MPIO devices. Disk.sys is responsible for claiming ownership of device objects represent-
ing multipath disks—so that it can ensure that only one device object is created to represent
those disks—and for locating the appropriate DSM to manage the paths to the device. The
Multipath Bus Driver (\Windows\System32\Drivers\Mpio.sys) manages connections between
the computer and the device, including power management for the device. Disk.sys informs
Mpio.sys of the presence of the devices for it to manage. Finally, the port driver for a mul-
tipath disk is also MPIO-aware in order to manage information passed up the device stack.
There are therefore a total of three disk device stacks, two representing the physical paths
(children of the adapter device stacks) and one representing the disk (child of the MPIO
adapter device stack). When the latter receives a request, it uses the DSM to determine which
path to forward that request to. The DSM makes the selection based on policy, and the
request is sent to the corresponding disk device stack, which in turn forwards it to the device
via the corresponding adapter.

EXPERIMENT: Watching Physical Disk I/O

Diskmon from Windows Sysinternals (www.microsoft.com/technet/sysinternals) uses the
disk class driver’s Event Tracing for Windows (or ETW, which is described in Chapter 3)
instrumentation to monitor I/O activity to physical disks and display it in a window.
Diskmon updates once a second with new data. For each operation, Diskmon shows the
time, duration, target disk number, type and offset, and length, as you can see in the
screen shown here.

650 Windows Internals, Fifth Edition

MPIO (FDO)

Pnp (PDO)

Virtual adapter
device stack

Disk (FDO)

Port driver
(PDO)

Disk device stack

Disk (FDO)

Port driver
(PDO)

Disk device stack

Port driver
(FDO)

PCI (PDO)

Adapter
device stack

Port driver
(FDO)

PCI (PDO)

Adapter
device stack

FDO = Functional device object
PDO = Physical device object

Note:

Disk (FDO)

Disk device stack

MPIO (PDO) DSM

Adapter 1 Adapter 2

Disk

FIGURE 8-2 Windows MPIO storage stack

Disk Device Objects

The Windows disk class driver creates device objects that represent disks. Device objects that
represent disks have names of the form \Device\HarddiskX\DRX; the number that identifies
the disk replaces both Xs. To maintain compatibility with applications that use older naming
conventions, the disk class driver creates symbolic links with Windows NT 4–formatted names
that refer to the device objects the driver created. For example, the volume manager driver
creates the link \Device\Harddisk0\Partition0 to refer to \Device\Harddisk0\DR0, and \Device\
Harddisk0\Partition1 to refer to the first partition device object of the first disk. For backward
compatibility with applications that expect legacy names, the disk class driver also creates
the same symbolic links in Windows that represent physical drives that it would have created
on Windows NT 4 systems. Thus, for example, the link \GLOBAL??\PhysicalDrive0 references
\Device\Harddisk0\DR0. Figure 8-3 shows the WinObj utility from Sysinternals displaying the

 Chapter 8 Storage Management 651

contents of a Harddisk directory for a basic disk. You can see the physical disk and partition
device objects in the pane at the right.

FIGURE 8-3 WinObj showing a Harddisk directory of a basic disk

As you saw in Chapter 3, the Windows API is unaware of the Windows object manager
namespace. Windows reserves two groups of namespace subdirectories to use, one of which
is the \Global?? subdirectory. (The other group is the collection of per-session \BaseNamed-
Objects subdirectories, which are covered in Chapter 3.) In this subdirectory, Windows makes
available device objects that Windows applications interact with—including COM and parallel
ports—as well as disks. Because disk objects actually reside in other subdirectories, Windows
uses symbolic links to connect names under \Global?? with objects located elsewhere in
the namespace. For each physical disk on a system, the I/O manager creates a \Global??\
PhysicalDriveX link that points to \Device\HarddiskX\DRX. (Numbers, starting from 0, replace
X.) Windows applications that directly interact with the sectors on a disk open the disk by
calling the Windows CreateFile function and specifying the name \\.\PhysicalDriveX (in which
X is the disk number) as a parameter. The Windows application layer converts the name to
\Global??\PhysicalDriveX before handing the name to the Windows object manager.

Partition Manager

The partition manager, \Windows\System32\Drivers\Partmgr.sys, is responsible for dis-
covering, creating, deleting, and managing partitions. To become aware of partitions, the
partition manager acts as the function driver for disk device objects created by disk class
drivers. The partition manager uses the I/O manager’s IoReadPartitionTableEx function to

652 Windows Internals, Fifth Edition

identify partitions and create device objects that represent them. As miniport drivers pres-
ent the disks that they identify early in the boot process to the disk class driver, the disk
class driver invokes the IoReadPartitionTableEx function for each disk. This function invokes
sector-level disk I/O that the class, port, and miniport drivers provide to read a disk’s MBR
or GPT (described later in this chapter) and construct an internal representation of the disk’s
partitioning. The partition manager driver creates device objects to represent each primary
partition (including logical drives within extended partitions) that the driver obtains from
IoRead PartitionTableEx. These names have the form \Device\HarddiskVolumeY, where Y rep-
resents the partition number.

When a partition is added, a private IOCTL command is sent to each registered volume
manager, asking the volume manager if it owns that partition. If so, the partition manager
remembers the specific volume manager that claimed that partition, and from this point on it
notifies that driver when the partition is either deleted or modified. Volume manager device
drivers receive the notification of partitions for disks that they manage and define volume
objects when they account for all the partitions that make up the volumes.

The partition manager is also responsible for ensuring that all disks and partitions have a
unique ID (signature for MBR and GUIDs for GPT). If it encounters two disks with the same
ID, it tries to determine (by writing to one disk and reading from the other) whether they are
two different disks or the same disk being viewed via two different paths (this can happen if
the MPIO software isn’t present or isn’t working correctly). If the two disks are different, the
partition manager changes the ID of one of them; if they are two paths to the same disk, the
partition manager hides all the partitions on one of the disks from the volume managers to
prevent the partitions from being mounted twice.

By managing disk attributes that are persisted in the registry (such as read-only and offline),
the partition manager can perform actions such as hiding partitions from the volume manag-
ers, which inhibits the volumes from manifesting on the system. Clustering and Hyper-V use
these attributes. The partition manager also redirects write operations that are sent directly
to the disk but fall within a partition space to the corresponding volume manager. The vol-
ume manager determines whether to allow the write operation based on whether the vol-
ume is dismounted or not.

Volume Management

Windows has the concept of basic and dynamic disks. Windows calls disks that rely exclusively
on the MBR-style or GPT partitioning scheme basic disks. Dynamic disks implement a more
flexible partitioning scheme than that of basic disks. The fundamental difference between
basic and dynamic disks is that dynamic disks support the creation of new multipartition
volumes. Recall from the list of terms earlier in the chapter that multipartition volumes pro-
vide performance, sizing, and reliability features not supported by simple volumes. Windows

 Chapter 8 Storage Management 653

manages all disks as basic disks unless you manually create dynamic disks or convert existing
basic disks (with enough free space) to dynamic disks. Microsoft recommends that you use
basic disks unless you require the multipartition functionality of dynamic disks.

Note Windows does not support multipartition volumes on basic disks. For a number of rea-
sons, including the fact that laptops usually have only one disk and laptop disks typically don’t
move easily between computers, Windows uses only basic disks on laptops. In addition, only
fixed disks can be dynamic, and disks located on IEEE 1394 or USB buses or on shared cluster
server disks are always basic disks (or fixed dynamic disks).

Basic Disks

This section describes the two types of partitioning, MBR-style and GPT, that Windows uses
to define volumes on basic disks, and the volume manager driver that presents the volumes
to file system drivers. Windows silently defaults to defining all disks as basic disks.

MBR-Style Partitioning

The standard BIOS implementations that BIOS-based (non-EFI) x86 hardware uses dictate one
requirement of the partitioning format in Windows—that the first sector of the primary disk
contains the Master Boot Record (MBR). When a BIOS-based x86 system boots, the comput-
er’s BIOS reads the MBR and treats part of the MBR’s contents as executable code. The BIOS
invokes the MBR code to initiate an operating system boot process after the BIOS performs
preliminary configuration of the computer’s hardware. In Microsoft operating systems such
as Windows, the MBR also contains a partition table. A partition table consists of four entries
that define the locations of as many as four primary partitions on a disk. The partition table
also records a partition’s type. Numerous predefined partition types exist, and a partition’s
type specifies which file system the partition includes. For example, partition types exist for
FAT32 and NTFS.

A special partition type, an extended partition, contains another MBR with its own partition
table. The equivalent of a primary partition in an extended partition is called a logical drive.
By using extended partitions, Microsoft’s operating systems overcome the apparent limit of
four partitions per disk. In general, the recursion that extended partitions permit can con-
tinue indefinitely, which means that no upper limit exists to the number of possible partitions
on a disk. The Windows boot process makes evident the distinction between primary and
logical drives. The system must mark one primary partition of the primary disk as active. The
Windows code in the MBR loads the code stored in the first sector of the active partition (the
system volume) into memory and then transfers control to that code. Because of the role in
the boot process played by this first sector in the primary partition, Windows designates the
first sector of any partition as the boot sector. As you will see in Chapter 13, every partition

654 Windows Internals, Fifth Edition

formatted with a file system has a boot sector that stores information about the structure of
the file system on that partition.

GUID Partition Table Partitioning

As part of an initiative to provide a standardized and extensible firmware platform for oper-
ating systems to use during their boot process, Intel has designed the Extensible Firmware
Interface (EFI) specification. EFI includes a mini–operating system environment implemented
in firmware (typically ROM) that operating systems use early in the system boot process to
load system diagnostics and their boot code. EFI defines a partitioning scheme, called the
GUID (globally unique identifier) Partition Table (GPT) that addresses some of the shortcom-
ings of MBR-style partitioning. For example, the sector addresses that the GPT structures
use are 64 bits wide instead of 32 bits. A 32-bit sector address is sufficient to access only 2
terabytes (TB) of storage, while a GPT allows the addressing of disk sizes into the foreseeable
future. Other advantages of the GPT scheme include the fact that it uses cyclic redundancy
checksums (CRC) to ensure the integrity of the partition table, and it maintains a backup copy
of the partition table. GPT takes its name from the fact that in addition to storing a 36-byte
Unicode partition name for each partition, it assigns each partition a GUID.

Figure 8-4 shows a sample GPT partition layout. Like for MBR-style partitioning, the first
sector of a GPT disk is an MBR that serves to protect the GPT partitioning in case the disk is
accessed from a non-GPT aware operating system. However, the second and last sectors of
the disk store the GPT headers with the actual partition table following the second sector
and preceding the last sector. With its extensible list of partitions, GPT partitioning doesn’t
require nested partitions, as MBR partitions do.

M
BR

Partition
table header

0 1 ... n Partition
table header0 1 ... n

Partition 1

Start
partition

End
partition Last usable block

LBAnLBA1
Start

partition
End

partition

First usable block

LBA0

Primary partition table Backup partition table

Note: LBA = Logical block address

FIGURE 8-4 Example GPT partition layout

 Chapter 8 Storage Management 655

Note Because Windows doesn’t support the creation of multipartition volumes on basic disks,
a new basic disk partition is the equivalent of a volume. For this reason, the Disk Management
MMC snap-in uses the term partition when you create a volume on a basic disk.

Basic Disk Volume Manager

The volume manager driver (\Windows\System32\Drivers\Volmgr.sys) creates disk device
objects that represent volumes on basic disks and plays an integral role in managing all basic
disk volumes, including simple volumes. For each volume, the volume manager creates a
device object of the form \Device\HarddiskVolumeX, in which X is a number (starting from 1)
that identifies the volume.

The volume manager is actually a bus driver because it’s responsible for enumerating basic
disks to detect the presence of basic volumes and report them to the Windows Plug and Play
(PnP) manager. To implement this enumeration, the volume manager leverages the PnP man-
ager, with the aid of the partition manager (Partmgr.sys) driver to determine what basic disk
partitions exist. The partition manager registers with the PnP manager so that Windows can
inform the partition manager whenever the disk class driver creates a partition device object.
The partition manager informs the volume manager about new partition objects through a
private interface and creates filter device objects that the partition manager then attaches
to the partition objects. The existence of the filter objects prompts Windows to inform the
partition manager whenever a partition device object is deleted so that the partition man-
ager can update the volume manager. The disk class driver deletes a partition device object
when a partition in the Disk Management MMC snap-in is deleted. As the volume manager
becomes aware of partitions, it uses the basic disk configuration information to determine
the correspondence of partitions to volumes and creates a volume device object when it has
been informed of the presence of all the partitions in a volume’s description.

Windows volume drive-letter assignment, a process described shortly, creates drive-letter
symbolic links under the \Global?? object manager directory that point to the volume device
objects that the volume manager creates. When the system or an application accesses a vol-
ume for the first time, Windows performs a mount operation that gives file system drivers the
opportunity to recognize and claim ownership for volumes formatted with a file system type
they manage. (Mount operations are described in the section “Volume Mounting” later in this
chapter.)

656 Windows Internals, Fifth Edition

Dynamic Disks

As we’ve stated, dynamic disks are the disk format in Windows necessary for creating mul-
tipartition volumes such as mirrors, striped arrays, and RAID-5 arrays (described later in the
chapter). Dynamic disks are partitioned using Logical Disk Manager (LDM) partitioning. LDM
is part of the Virtual Disk Service (VDS) subsystem in Windows, which consists of user-mode
and device driver components and oversees dynamic disks. A major difference between
LDM’s partitioning and MBR-style and GPT partitioning is that LDM maintains one unified
database that stores partitioning information for all the dynamic disks on a system—includ-
ing multipartition-volume configuration.

The LDM Database

The LDM database resides in a 1-MB reserved space at the end of each dynamic disk. The
need for this space is the reason Windows requires free space at the end of a basic disk
before you can convert it to a dynamic disk. The LDM database consists of four regions,
which Figure 8-5 shows: a header sector that LDM calls the Private Header, a table of con-
tents area, a database records area, and a transactional log area. (The fifth region shown
in Figure 8-5 is simply a copy of the Private Header.) The Private Header sector resides
1 MB before the end of a dynamic disk and anchors the database. As you spend time with
Windows, you’ll quickly notice that it uses GUIDs to identify just about everything, and disks
are no exception. A GUID (globally unique identifier) is a 128-bit value that various compo-
nents in Windows use to uniquely identify objects. LDM assigns each dynamic disk a GUID,
and the Private Header sector notes the GUID of the dynamic disk on which it resides—hence
the Private Header’s designation as information that is private to the disk. The Private Header
also stores the name of the disk group, which is the name of the computer concatenated with
Dg0 (for example, Daryl-Dg0 if the computer’s name is Daryl), and a pointer to the beginning
of the database table of contents. For reliability, LDM keeps a copy of the Private Header in
the disk’s last sector.

The database table of contents is 16 sectors in size and contains information regarding the
database’s layout. LDM begins the database record area immediately following the table of
contents with a sector that serves as the database record header. This sector stores informa-
tion about the database record area, including the number of records it contains, the name
and GUID of the disk group the database relates to, and a sequence number identifier that
LDM uses for the next entry it creates in the database. Sectors following the database record
header contain 128-byte fixed-size records that store entries that describe the disk group’s
partitions and volumes.

A database entry can be one of four types: partition, disk, component, and volume. LDM uses
the database entry types to identify three levels that describe volumes. LDM connects entries
with internal object identifiers. At the lowest level, partition entries describe soft partitions,
which are contiguous regions on a disk; identifiers stored in a partition entry link the entry

 Chapter 8 Storage Management 657

to a component and disk entry. A disk entry represents a dynamic disk that is part of the disk
group and includes the disk’s GUID. A component entry serves as a connector between one or
more partition entries and the volume entry each partition is associated with. A volume entry
stores the GUID of the volume, the volume’s total size and state, and a drive-letter hint. Disk
entries that are larger than a database record span multiple records; partition, component,
and volume entries rarely span multiple records.

Transactional
log

Table of
contents

Database
records

Private Header Database
record header

Private Header
mirror

1 MB

FIGURE 8-5 LDM database layout

LDM requires three entries to describe a simple volume: a partition, component, and volume
entry. The following listing shows the contents of a simple LDM database that defines one
200-MB volume that consists of one partition:

Disk Entry Volume Entry Component Entry Partition Entry

Name: Disk1 Name: Volume1 Name: Volume1-01 Name: Disk1-01

GUID: XXX-XX... ID: 0x408 ID: 0x409 ID: 0x407

Disk ID: 0x404 State: ACTIVE Parent ID: 0x408 Parent ID: 0x409

 Size: 200MB Disk ID: 0x404

 GUID: XXX-XX... Start: 300MB

 Drive Hint: H: Size: 200MB

The partition entry describes the area on a disk that the system assigned to the volume, the
component entry connects the partition entry with the volume entry, and the volume entry
contains the GUID that Windows uses internally to identify the volume. Multipartition vol-
umes require more than three entries. For example, a striped volume (which is described later
in the chapter) consists of at least two partition entries, a component entry, and a volume
entry. The only volume type that has more than one component entry is a mirror; mirrors
have two component entries, each of which represents one-half of the mirror. LDM uses two
component entries for mirrors so that when you break a mirror, LDM can split it at the com-
ponent level, creating two volumes with one component entry each.

The final area of the LDM database is the transactional log area, which consists of a few
sectors for storing backup database information as the information is modified. This setup
safeguards the database in case of a crash or power failure because LDM can use the log to
return the database to a consistent state.

658 Windows Internals, Fifth Edition

EXPERIMENT: Using LDMDump to View the LDM Database

You can use LDMDump from Sysinternals to view detailed information about the con-
tents of the LDM database. LDMDump takes a disk number as a command-line argu-
ment, and its output is usually more than a few screens in size, so you should pipe its
output to a file for viewing in a text editor—for example, ldmdump /d0 > disk.txt. The
following example shows excerpts of LDMDump output. The LDM database header dis-
plays first, followed by the LDM database records that describe a 12-GB disk with three
4-GB dynamic volumes. The volume’s database entry is listed as Volume1. At the end of
the output, LDMDump lists the soft partitions and definitions of volumes it locates in
the database.

C:\>ldmdump /d0

Logical Disk Manager Configuration Dump v1.03

Copyright (C) 2000-2002 Mark Russinovich

PRIVATE HEAD:

Signature : PRIVHEAD

Version : 2.12

Disk Id : b5f4a801-758d-11dd-b7f0-000c297f0108

Host Id : 1b77da20-c717-11d0-a5be-00a0c91db73c

Disk Group Id : b5f4a7fd-758d-11dd-b7f0-000c297f0108

Disk Group Name : WIN-SL5V78KD01W-Dg0

Logical disk start : 3F

Logical disk size : 7FF7C1 (4094 MB)

Configuration start: 7FF800

Configuration size : 800 (1 MB)

Number of TOCs : 2

TOC size : 7FD (1022 KB)

Number of Configs : 1

Config size : 5C9 (740 KB)

Number of Logs : 1

Log size : E0 (112 KB)

TOC 1:

Signature : TOCBLOCK

Sequence : 0x1

Config bitmap start: 0x11

Config bitmap size : 0x5C9

Log bitmap start : 0x5DA

Log bitmap size : 0xE0

...

VBLK DATABASE:

0x000004: [000001] <DiskGroup>

 Name : WIN-SL5V78KD01W-Dg0

 Object Id : 0x0001

 GUID : b5f4a7fd-758d-11dd-b7f0-000c297f010

0x000006: [000003] <Disk>

 Name : Disk1

 Object Id : 0x0002

 Disk Id : b5f4a7fe-758d-11dd-b7f0-000c297f010

 Chapter 8 Storage Management 659

0x000007: [000005] <Disk>

 Name : Disk2

 Object Id : 0x0003

 Disk Id : b5f4a801-758d-11dd-b7f0-000c297f010

0x000008: [000007] <Disk>

 Name : Disk3

 Object Id : 0x0004

 Disk Id : b5f4a804-758d-11dd-b7f0-000c297f010

0x000009: [000009] <Component>

 Name : Volume1-01

 Object Id : 0x0006

 Parent Id : 0x0005

0x00000A: [00000A] <Partition>

 Name : Disk1-01

 Object Id : 0x0007

 Parent Id : 0x3157

 Disk Id : 0x0000

 Start : 0x7C100

 Size : 0x0 (0 MB)

 Volume Off : 0x3 (0 MB)

0x00000B: [00000B] <Partition>

 Name : Disk2-01

 Object Id : 0x0008

 Parent Id : 0x3157

 Disk Id : 0x0000

 Start : 0x7C100

 Size : 0x0 (0 MB)

 Volume Off : 0x7FE80003 (1047808 MB)

0x00000C: [00000C] <Partition>

 Name : Disk3-01

 Object Id : 0x0009

 Parent Id : 0x3157

 Disk Id : 0x0000

 Start : 0x7C100

 Size : 0x0 (0 MB)

 Volume Off : 0xFFD00003 (2095616 MB)

0x00000D: [00000F] <Volume>

 Name : Volume1

 Object Id : 0x0005

 Volume state: ACTIVE

 Size : 0x017FB800 (12279 MB)

 GUID : b5f4a806-758d-11dd-b7f0-c297f0108

 Drive Hint : E:

660 Windows Internals, Fifth Edition

LDM and GPT or MBR-Style Partitioning

When you install Windows on a computer, one of the first things it requires you to do is to
create a partition on the system’s primary physical disk. Windows defines the system vol-
ume on this partition to store the files that it invokes early in the boot process. In addition,
Windows Setup requires you to create a partition that serves as the home for the boot vol-
ume, onto which the setup program installs the Windows system files and creates the sys-
tem directory (\Windows). The system and boot volumes can be the same volume, in which
case you don’t have to create a new partition for the boot volume. The nomenclature that
Microsoft defines for system and boot volumes is somewhat confusing. The system volume
is where Windows places boot files, including the boot loader (Winload) and Boot Manager
(Bootmgr), and the boot volume is where Windows stores operating system files such as
Ntoskrnl.exe, the core kernel file.

Although the partitioning data of a dynamic disk resides in the LDM database, LDM imple-
ments MBR-style partitioning or GPT partitioning so that the Windows boot code can find
the system and boot volumes when the volumes are on dynamic disks. (Winload and the
IA64 firmware, for example, know nothing about LDM partitioning.) If a disk contains the
system or boot volumes, partitions in the MBR or GPT describe the location of those vol-
umes. Otherwise, one partition encompasses the entire usable area of the disk. LDM marks
this partition as type “LDM”. The region encompassed by this place-holding MBR-style or
GPT partition is where LDM creates partitions that the LDM database organizes. On MBR-
partitioned disks the LDM database resides in hidden sectors at the end of the disk, and on
GPT-partitioned disks there exists an LDM metadata partition that encompasses the LDM
database near the beginning of the disk.

Another reason LDM creates an MBR or a GPT is so that legacy disk-management utilities,
including those that run under Windows and under other operating systems in dual-boot
environments, don’t mistakenly believe a dynamic disk is unpartitioned.

Because LDM partitions aren’t described in the MBR or GPT of a disk, they are called soft
partitions; MBR-style and GPT partitions are called hard partitions. Figure 8-6 illustrates this
dynamic disk layout on an MBR-style partitioned disk.

Master Boot Record
LDM partition area

1 MB

LDM database

FIGURE 8-6 Internal dynamic disk organization

 Chapter 8 Storage Management 661

Dynamic Disk Volume Manager

The Disk Management MMC snap-in DLL (DMDiskManager, located in \Windows\System32\
Dmdskmgr.dll), shown in Figure 8-7, is used to create and change the contents of the LDM
database. When you launch the Disk Management MMC snap-in, DMDiskManager loads into
memory and reads the LDM database from each disk and returns the information it obtains
to the user. If it detects a database from another computer’s disk group, it notes that the vol-
umes on the disk are foreign and lets you import them into the current computer’s database
if you want to use them. As you change the configuration of dynamic disks, DMDiskManager
updates its in-memory copy of the database. When DMDiskManager commits changes, it
passes the updated database to the VolMgrX driver (%SystemRoot%\System32\Drivers\Vol-
mgrx.sys). VolMgrX is a kernel-mode DLL that provides dynamic disk functionality for VolMgr,
so it controls access to the on-disk database and creates device objects that represent the
volumes on dynamic disks. When you exit Disk Management, DMDiskManager stops.

FIGURE 8-7 Disk Management MMC snap-in

Multipartition Volume Management

VolMgr is responsible for presenting volumes that file system drivers manage and for map-
ping I/O directed at volumes to the underlying partitions that they’re part of. For simple
volumes, this process is straightforward: the volume manager ensures that volume-relative
offsets are translated to disk-relative offsets by adding the volume-relative offset to the vol-
ume’s starting disk offset.

Multipartition volumes are more complex because the partitions that make up a volume can
be located on discontiguous partitions or even on different disks. Some types of multiparti-
tion volumes use data redundancy, so they require more involved volume-to-disk–offset
translation. Thus, VolMgr uses VolMgrX to process all I/O requests aimed at the multipartition
volumes they manage by determining which partitions the I/O ultimately affects.

662 Windows Internals, Fifth Edition

The following types of multipartition volumes are available in Windows:

Spanned volumes

Mirrored volumes

Striped volumes

RAID-5 volumes

After describing multipartition-volume partition configuration and logical operation for each
of the multipartition-volume types, we’ll cover the way that the VolMgr driver handles IRPs
that a file system driver sends to multipartition volumes. The term volume manager is used to
represent VolMgr and the VolMgrX extension DLL throughout the explanation of multiparti-
tion volumes.

Spanned Volumes

A spanned volume is a single logical volume composed of a maximum of 32 free partitions
on one or more disks. The Disk Management MMC snap-in combines the partitions into a
spanned volume, which can then be formatted for any of the Windows-supported file sys-
tems. Figure 8-8 shows a 100-MB spanned volume identified by drive letter D that has been
created from the last third of the first disk and the first third of the second. Spanned volumes
were called volume sets in Windows NT 4.

NTFS
Volume 2

NTFS
Volume 1

NTFS
Volume 3

NTFS
Volume 2

C:
(100 MB)

E:
(100 MB)

FIGURE 8-8 Spanned volume

A spanned volume is useful for consolidating small areas of free disk space into one larger
volume or for creating a single large volume out of two or more small disks. If the spanned
volume has been formatted for NTFS, it can be extended to include additional free areas
or additional disks without affecting the data already stored on the volume. This extensibil-
ity is one of the biggest benefits of describing all data on an NTFS volume as a file. NTFS
can dynamically increase the size of a logical volume because the bitmap that records the
allocation status of the volume is just another file—the bitmap file. The bitmap file can be
extended to include any space added to the volume. Dynamically extending a FAT volume,
on the other hand, would require the FAT itself to be extended, which would dislocate every-
thing else on the disk.

 Chapter 8 Storage Management 663

A volume manager hides the physical configuration of disks from the file systems installed on
Windows. NTFS, for example, views volume D: in Figure 8-8 as an ordinary 100-MB volume.
NTFS consults its bitmap to determine what space in the volume is free for allocation. It then
calls the volume manager to read or write data beginning at a particular byte offset on the
volume. The volume manager views the physical sectors in the spanned volume as numbered
sequentially from the first free area on the first disk to the last free area on the last disk. It
determines which physical sector on which disk corresponds to the supplied byte offset.

Striped Volumes

A striped volume is a series of up to 32 partitions, one partition per disk, that gets combined
into a single logical volume. Striped volumes are also known as RAID level 0 (RAID-0) vol-
umes. Figure 8-9 shows a striped volume consisting of three partitions, one on each of three
disks. (A partition in a striped volume need not span an entire disk; the only restriction is that
the partitions on each disk be the same size.)

FIGURE 8-9 Striped volume

To a file system, this striped volume appears to be a single 450-MB volume, but a volume
manager optimizes data storage and retrieval times on the striped volume by distributing the
volume’s data among the physical disks. The volume manager accesses the physical sectors
of the disks as if they were numbered sequentially in stripes across the disks, as illustrated in
Figure 8-10.

(150 MB) (150 MB) (150 MB)

0 1 2 3 4 5 6 7
8 9 10 11 12 13 14 15

16 17 18 19 20 21 22 23

 24 25 26 27 ...

FIGURE 8-10 Logical numbering of physical sectors on a striped volume

Because each stripe unit is a relatively narrow 64 KB (a value chosen to prevent small indi-
vidual reads and writes from accessing two disks), the data tends to be distributed evenly
among the disks. Striping thus increases the probability that multiple pending read and

664 Windows Internals, Fifth Edition

write operations will be bound for different disks. And because data on all three disks can
be accessed simultaneously, latency time for disk I/O is often reduced, particularly on heavily
loaded systems.

Spanned volumes make managing disk volumes more convenient, and striped volumes
spread the I/O load over multiple disks. These two volume-management features don’t pro-
vide the ability to recover data if a disk fails, however. For data recovery, a volume manager
implements two redundant storage schemes: mirrored volumes and RAID-5 volumes. These
features are created with the Windows Disk Management administrative tool.

Mirrored Volumes

In a mirrored volume, the contents of a partition on one disk are duplicated in an equal-
sized partition on another disk. Mirrored volumes are sometimes referred to as RAID level 1
(RAID-1). A mirrored volume is shown in Figure 8-11.

FIGURE 8-11 Mirrored volume

When a program writes to drive C:, the volume manager writes the same data to the same
location on the mirror partition. If the first disk or any of the data on its C: partition becomes
unreadable because of a hardware or software failure, the volume manager automatically
accesses the data from the mirror partition. A mirror volume can be formatted for any of the
Windows-supported file systems. The file system drivers remain independent and are not
affected by the volume manager’s mirroring activity.

Mirrored volumes can aid in read I/O throughput on heavily loaded systems. When I/O activ-
ity is high, the volume manager balances its read operations between the primary partition
and the mirror partition (accounting for the number of unfinished I/O requests pending from
each disk). Two read operations can proceed simultaneously and thus theoretically finish in
half the time. When a file is modified, both partitions of the mirror set must be written, but
disk writes are performed in parallel, so the performance of user-mode programs is generally
not affected by the extra disk update.

 Chapter 8 Storage Management 665

Mirrored volumes are the only multipartition volume type supported for system and boot
volumes. The reason for this is that the Windows boot code, including the MBR code and
Winload, don’t have the sophistication required to understand multipartition volumes—
mirrored volumes are the exception because the boot code treats them as simple volumes,
reading from the half of the mirror marked as the boot or system drive in the MBR-style par-
tition table. Because the boot code doesn’t modify the disk, it can safely ignore the other half
of the mirror.

EXPERIMENT: Watching Mirrored Volume I/O Operations

Using the Reliability and Performance Monitor, you can verify that write operations
directed at mirrored volumes copy to both disks that make up the mirror and that read
operations, if relatively infrequent, occur primarily from one half of the volume. This
experiment requires three hard disks. If you don’t have three disks, you can skip the
experiment setup instructions and view the Performance tool screen shot in this experi-
ment that demonstrates the experiment’s results.

Use the Disk Management MMC snap-in to create a mirrored volume. To do this, per-
form the following steps:

 1. Run Disk Management by starting Computer Management, expanding the
Storage tree, and clicking Disk Management (or by inserting Disk Management as
a snap-in in an MMC console).

 2. Right-click on an unallocated space of a drive, and then click New Simple Volume.

 3. Follow the instructions in the New Simple Volume Wizard to create a simple vol-
ume. (Make sure there’s enough room on another disk for a volume of the same
size as the one you’re creating.)

 4. Right-click on the new volume, and then click Add Mirror on the context menu.

Once you have a mirrored volume, run the Performance tool and add counters for
the PhysicalDisk performance object for both disk instances that contain a partition
belonging to the mirror. Select the Disk Writes/sec counters for each instance. Select
a large directory from the third disk (the one that isn’t part of the mirrored volume),
and copy it to the mirrored volume. The Performance tool output window should look
something like the one on the following page as the copy operation progresses.

666 Windows Internals, Fifth Edition

The top two lines, which overlap throughout the timeline, are the Disk Writes/sec
counters for each disk. The screen shot reveals that the volume manager (in this case
VolMgr) is writing the copied file data to both halves of the volume. This read behavior
occurs because the number of outstanding I/O operations during the copy didn’t war-
rant that the volume manager perform more aggressive read-operation load balancing.

RAID-5 Volumes

A RAID-5 volume is a fault tolerant variant of a regular striped volume. RAID-5 volumes
implement RAID level 5. They are also known as striped volumes with rotated parity because
they are based on the striping approach taken by striped volumes. Fault tolerance is achieved
by reserving the equivalent of one disk for storing parity for each stripe. Figure 8-12 is a
visual representation of a RAID-5 volume.

In Figure 8-12, the parity for stripe 1 is stored on disk 1. It contains a byte-for-byte logical
sum (XOR) of the first stripe units on disks 2 and 3. The parity for stripe 2 is stored on disk
2, and the parity for stripe 3 is stored on disk 3. Rotating the parity across the disks in this
way is an I/O optimization technique. Each time data is written to a disk, the parity bytes
corresponding to the modified bytes must be recalculated and rewritten. If the parity were
always written to the same disk, that disk would be busy continually and could become an
I/O bottleneck.

 Chapter 8 Storage Management 667

Disk 1 Disk 2 Disk 3

1
2
3
4
5
6
7

Parity

FIGURE 8-12 RAID-5 volume

Recovering a failed disk in a RAID-5 volume relies on a simple arithmetic principle: in an
equation with n variables, if you know the value of n – 1 of the variables, you can determine
the value of the missing variable by subtraction. For example, in the equation x + y = z,
where z represents the parity stripe unit, the volume manager computes z – y to determine
the contents of x; to find y, it computes z – x. The volume manager uses similar logic to
recover lost data. If a disk in a RAID-5 volume fails or if data on one disk becomes unread-
able, the volume manager reconstructs the missing data by using the XOR operation (bitwise
logical addition).

If disk 1 in Figure 8-12 fails, the contents of its stripe units 2 and 5 are calculated by XORing
the corresponding stripe units of disk 3 with the parity stripe units on disk 2. The contents of
stripes 3 and 6 on disk 1 are similarly determined by XORing the corresponding stripe units
of disk 2 with the parity stripe units on disk 3. At least three disks (or rather, three same-sized
partitions on three disks) are required to create a RAID-5 volume.

The Volume Namespace

The volume namespace mechanism handles the assignment of drive letters to device objects
that represent actual volumes, which lets Windows applications access these drives through
familiar means, and also provides mount and dismount functionality.

The Mount Manager

The Mount Manager device driver (Mountmgr.sys) assigns drive letters for dynamic disk
volumes and basic disk volumes created after Windows is installed, CD-ROMs, floppies,
and removable devices. Windows stores all drive-letter assignments under HKLM\SYSTEM\
MountedDevices. If you look in the registry under that key, you’ll see values with names
such as \??\Volume{X} (where X is a GUID) and values such as \DosDevices\C:. Every volume
has a volume name entry, but a volume doesn’t necessarily have an assigned drive letter.
Figure 8-13 shows the contents of an example Mount Manager registry key. Note that the
MountedDevices key, like the Disk key in Windows NT 4, isn’t included in a control set and so

668 Windows Internals, Fifth Edition

isn’t protected by the last known good boot option. (See the section “Accepting the Boot and
Last Known Good” in Chapter 13 for more information on control sets and the last known
good boot option.)

The data that the registry stores in values for basic disk volume drive letters and volume
names is the Windows NT 4–style disk signature and the starting offset of the first parti-
tion associated with the volume. The data that the registry stores in values for dynamic disk
volumes includes the volume’s VolMgr-internal GUID. When the Mount Manager initializes
during the boot process, it registers with the Windows Plug and Play subsystem so that
it receives notification whenever a device identifies itself as a volume. When the Mount
Manager receives such a notification, it determines the new volume’s GUID or disk signature
and uses the GUID or signature as a guide to look in its internal database, which reflects the
contents of the MountedDevices registry key. The Mount Manager then determines whether
its internal database contains the drive-letter assignment. If the volume has no entry in the
database, the Mount Manager asks VolMgr for a suggested drive-letter assignment and
stores that in the database. VolMgr doesn’t return suggestions for simple volumes, but it
looks at the drive-letter hint in the volume’s database entry for dynamic volumes.

FIGURE 8-13 Mounted devices listed in the Mount Manager’s registry key

If no suggested drive-letter assignment exists for the volume, the Mount Manager uses the
first unassigned drive letter (if one exists), defines a new assignment, creates a symbolic link
for the assignment (for example, \Global??\D:), and updates the MountedDevices registry key.
If there are no available drive letters, no drive-letter assignment is made. At the same time,
the Mount Manager creates a volume symbolic link (that is, \Global??\Volume{X}) that defines
a new volume GUID if the volume doesn’t already have one. This GUID is different from the
volume GUIDs that VolMgr uses internally.

 Chapter 8 Storage Management 669

Mount Points

Mount points let you link volumes through directories on NTFS volumes, which makes
volumes with no drive-letter assignment accessible. For example, an NTFS directory that
you’ve named C:\Projects could mount another volume (NTFS or FAT) that contains your
project directories and files. If your project volume had a file you named \CurrentProject\
Description.txt, you could access the file through the path C:\Projects\CurrentProject\
Description.txt. What makes mount points possible is reparse point technology. (Reparse
points are discussed in more detail in Chapter 11.)

A reparse point is a block of arbitrary data with some fixed header data that Windows asso-
ciates with an NTFS file or directory. An application or the system defines the format and
behavior of a reparse point, including the value of the unique reparse point tag that identi-
fies reparse points belonging to the application or system and specifies the size and meaning
of the data portion of a reparse point. (The data portion can be as large as 16 KB.) Reparse
points store their unique tag in a fixed segment. Any application that implements a reparse
point must supply a file system filter driver to watch for reparse-related return codes for file
operations that execute on NTFS volumes, and the driver must take appropriate action when
it detects the codes. NTFS returns a reparse status code whenever it processes a file opera-
tion and encounters a file or directory with an associated reparse point.

The Windows NTFS file system driver, the I/O manager, and the object manager all partly
implement reparse point functionality. The object manager initiates pathname parsing oper-
ations by using the I/O manager to interface with file system drivers. Therefore, the object
manager must retry operations for which the I/O manager returns a reparse status code. The
I/O manager implements pathname modification that mount points and other reparse points
might require, and the NTFS file system driver must associate and identify reparse point data
with files and directories. You can therefore think of the I/O manager as the reparse point file
system filter driver for many Microsoft-defined reparse points.

One common use of reparse points is the symbolic link functionality offered on Windows
by NTFS (see Chapter 11 for more information on NTFS symbolic links). If the I/O manager
receives a reparse status code from NTFS and the file or directory for which NTFS returned
the code isn’t associated with one of a handful of built-in Windows reparse points, no filter
driver claimed the reparse point. The I/O manager then returns an error to the object man-
ager that propagates as a “file cannot be accessed by the system” error to the application
making the file or directory access.

Mount points are reparse points that store a volume name (\Global??\Volume{X}) as the
reparse data. When you use the Disk Management MMC snap-in to assign or remove path
assignments for volumes, you’re creating mount points. You can also create and display
mount points by using the built-in command-line tool Mountvol.exe (\Windows\System32\
Mountvol.exe).

670 Windows Internals, Fifth Edition

The Mount Manager maintains the Mount Manager remote database on every NTFS volume
in which the Mount Manager records any mount points defined for that volume. The data-
base file resides in the directory System Volume Information on the NTFS volume. Mount
points move when a disk moves from one system to another and in dual-boot environ-
ments—that is, when booting between multiple Windows installations—because of the exis-
tence of the Mount Manager remote database. NTFS also keeps track of reparse points in the
NTFS metadata file \$Extend\$Reparse. (NTFS doesn’t make any of its metadata files available
for viewing by applications.) NTFS stores reparse point information in the metadata file so
that Windows can, for example, easily enumerate the mount points (which are reparse points)
defined for a volume when a Windows application, such as Disk Management, requests
mount-point definitions.

Volume Mounting

Because Windows assigns a drive letter to a volume doesn’t mean that the volume contains
data that has been organized in a file system format that Windows recognizes. The volume-
recognition process consists of a file system claiming ownership for a partition; the process
takes place the first time the kernel, a device driver, or an application accesses a file or direc-
tory on a volume. After a file system driver signals its responsibility for a partition, the I/O
manager directs all IRPs aimed at the volume to the owning driver. Mount operations in
Windows consist of three components: file system driver registration, volume parameter
blocks (VPBs), and mount requests.

Note The partition manager honors the system SAN policy, which can be set with the Windows
DiskPart utility, that specifies whether it should surface disks for visibility to the volume manager.
The default policy in Windows Server 2008 Enterprise and Datacenter editions is to not make
SAN disks visible, which prevents the system from aggressively mounting their volumes.

The I/O manager oversees the mount process and is aware of available file system driv-
ers because all file system drivers register with the I/O manager when they initialize. The
I/O manager provides the IoRegisterFileSystem function to local disk (rather than network)
file system drivers for this registration. When a file system driver registers, the I/O manager
stores a reference to the driver in a list that the I/O manager uses during mount operations.

Every device object contains a VPB data structure, but the I/O manager treats VPBs as mean-
ingful only for volume device objects. A VPB serves as the link between a volume device
object and the device object that a file system driver creates to represent a mounted file
system instance for that volume. If a VPB’s file system reference is empty, no file system has
mounted the volume. The I/O manager checks a volume device object’s VPB whenever an
open API that specifies a file name or a directory name on a volume device object executes.

 Chapter 8 Storage Management 671

For example, if the Mount Manager assigns drive letter D to the second volume on a sys-
tem, it creates a \Global??\D: symbolic link that resolves to the device object \Device\
HarddiskVolume2. A Windows application that attempts to open the \Temp\Test.txt file on
the D: drive specifies the name D:\Temp\Test.txt, which the Windows subsystem converts
to \Global??\D:\Temp\Test.txt before invoking NtCreateFile, the kernel’s file-open routine.
NtCreateFile uses the object manager to parse the name, and the object manager encounters
the \Device\HarddiskVolume2 device object with the path \Temp\Test.txt still unresolved. At
that point, the I/O manager checks to see whether \Device\HarddiskVolume2’s VPB refer-
ences a file system. If it doesn’t, the I/O manager asks each registered file system driver via
a mount request whether the driver recognizes the format of the volume in question as the
driver’s own.

EXPERIMENT: Looking at VPBs

You can look at the contents of a VPB by using the !vpb kernel debugger command.
Because the VPB is pointed to by the device object for a volume, you must first locate
a volume device object. To do this, you must dump a volume manager’s driver object,
locate a device object that represents a volume, and display the device object, which
reveals its Vpb field.

lkd> !drvobj volmgr

Driver object (84905030) is for:

 \Driver\volmgr

Driver Extension List: (id , addr)

Device Object list:

84a64780 849d5b28 84a64518 84a64030

84905e00

The !drvobj command lists the addresses of the device objects a driver owns. In this
example, there are five device objects. One of them represents the programmatic inter-
face to the device driver, and the rest are volume device objects. Because the objects
are listed in reverse order from the way that they were created and the driver creates
the device driver interface object first, you know the first device object listed is that of
a volume. Now execute the !devobj kernel debugger command on the volume device
object address:

lkd> !devobj 84a64780

Device object (84a64780) is for:

 HarddiskVolume4 \Driver\volmgr DriverObject 84905030

Current Irp 00000000 RefCount 0 Type 00000007 Flags 00001050

Vpb 84a64228 Dacl 8b1a8674 DevExt 84a64838 DevObjExt 84a64930 Dope 849fd838 DevNode

 849d5938

ExtensionFlags (0x00000800)

 Unknown flags 0x00000800

AttachedDevice (Upper) 84a66020 \Driver\volsnap

Device queue is not busy

672 Windows Internals, Fifth Edition

The !devobj command shows the Vpb field for the volume device object. (The device
object shown is named HarddiskVolume4.) Now you’re ready to execute the !vpb
command:

lkd> !vpb 84a64228

Vpb at 0x84a64228

Flags: 0x1 mounted

DeviceObject: 0x84a6b020

RealDevice: 0x849d5b28

RefCount: 4311

Volume Label: OS

The command reveals that the volume device object is mounted by a file system driver
that has assigned the volume the name OS. The RealDevice field in the VPB points back
to the volume device object, and the DeviceObject field points to the mounted file sys-
tem device object. You can use !devobj on this address to get more information on the
mounted file system, as seen in the output below, which shows that NTFS has mounted
the volume:

lkd> !devobj 0x84a6b020

Device object (84a6b020) is for:

 \FileSystem\Ntfs DriverObject 84a02ad0

Current Irp 00000000 RefCount 0 Type 00000008 Flags 00040000

DevExt 84a6b0d8 DevObjExt 84a6bc00

ExtensionFlags (0x00000800)

 Unknown flags 0x00000800

AttachedDevice (Upper) 84a63ac0 \FileSystem\FltMgr

Device queue is not busy

The convention followed by file system drivers for recognizing volumes mounted with their
format is to examine the volume’s boot record, which is stored in the first sector of the vol-
ume. Boot records for Microsoft file systems contain a field that stores a file system format
type. File system drivers usually examine this field, and if it indicates a format they manage,
they look at other information stored in the boot record. This information usually includes a
file system name field and enough data for the file system driver to locate critical metadata
files on the volume. NTFS, for example, will recognize a volume only if the Type field is NTFS,
the Name field is “NTFS,” and the critical metadata files described by the boot record are
consistent.

If a file system driver signals affirmatively, the I/O manager fills in the VPB and passes the
open request with the remaining path (that is, \Temp\Test.txt) to the file system driver. The file
system driver completes the request by using its file system format to interpret the data that
the volume stores. After a mount fills in a volume device object’s VPB, the I/O manager hands
subsequent open requests aimed at the volume to the mounted file system driver. If no file
system driver claims a volume, Raw—a file system driver built into Ntoskrnl.exe—claims the
volume and fails all requests to open files on that partition. Figure 8-14 shows a simplified

 Chapter 8 Storage Management 673

example (that is, the figure omits the file system driver’s interactions with the Windows cache
and memory managers) of the path that I/O directed at a mounted volume follows.

NTFS file system driverNTFS file system
device object

\Device\HarddiskVolume2
Disk class driver

Disk port driver
Disk miniport driver

2

3

1

4

5

Application directs file-level (e.g., D:\temp\test.txt)
I/O request at drive letter corresponding to partition
\Device\HarddiskVolume2.

Application I/O request

I/O manager
follows VPB to
mounted file
system device
object.

VPB file

system

reference

I/O manager
routes I/O request
to file system driver
that owns the file
system device
object. File system performs sector-level

volume I/O to service I/O request.

I/O manager
routes sector-level
I/O to disk class
driver.

FIGURE 8-14 Mounted volume I/O flow

Instead of having every file system driver loaded, regardless of whether they have any vol-
umes to manage, Windows tries to minimize memory usage by using a surrogate driver
named File System Recognizer (\Windows\System32\Drivers\Fs_rec.sys) to perform prelimi-
nary file system recognition. File System Recognizer knows enough about each file system
format that Windows supports to be able to examine a boot record and determine whether
it’s associated with a Windows file system driver. When the system boots, File System
Recognizer registers as a file system driver, and when the I/O manager calls it during a file
system mount operation for a new volume, File System Recognizer loads the appropriate
file system driver if the boot record corresponds to one that isn’t loaded. After loading a file
system driver, File System Recognizer forwards the mount IRP to the driver and lets the file
system driver claim ownership of the volume.

Aside from the boot volume, which a driver mounts while the kernel is initializing, file system
drivers mount most volumes when the Chkdsk file system consistency-checking application
runs during a boot sequence. The boot-time version of Chkdsk is a native application (as
opposed to a Windows application) named Autochk.exe (\Windows\System32\Autochk.exe),
and the Session Manager (\Windows\System32\Smss.exe) runs it because it is specified as
a boot-run program in the HKLM\SYSTEM\CurrentControlSet\Control\Session Manager\
BootExecute value. Chkdsk accesses each drive letter to see whether the volume associated
with the letter requires a consistency check.

674 Windows Internals, Fifth Edition

One place in which mounting can occur more than once for the same disk is with remov-
able media. Windows file system drivers respond to media changes by querying the disk’s
volume identifier. If they see the volume identifier change, the driver dismounts the disk and
attempts to remount it.

Volume I/O Operations

File system drivers manage data stored on volumes but rely on volume managers to inter-
act with storage drivers to transfer data to and from the disk or disks on which a volume
resides. File system drivers obtain references to a volume manager’s volume objects through
the mount process and then send the volume manager requests via the volume objects.
Applications can also send the volume manager requests, bypassing file system drivers, when
they want to directly manipulate a volume’s data. File-undelete programs are an example of
applications that do this.

Whenever a file system driver or application sends an I/O request to a device object that rep-
resents a volume, the Windows I/O manager routes the request (which comes in an IRP—a
self-contained package) to the volume manager that created the target device object. Thus,
if an application wants to read the boot sector of the second volume on the system (which is
a simple volume in this example), it opens the device object \Device\HarddiskVolume2 and
then sends the object a request to read 512 bytes starting at offset zero on the device. The
I/O manager sends the application’s request in the form of an IRP to the volume manager
that owns the device object, notifying it that the IRP is directed at the HarddiskVolume2
device.

Because volumes are logical conveniences that Windows uses to represent contiguous areas
on one or more physical disks, the volume manager must translate offsets that are relative
to a volume to offsets that are relative to the beginning of a disk. If volume 2 consists of
one partition that begins 4096 sectors into the disk, the partition manager would adjust the
IRP’s parameters to designate an offset with that value before passing the request to the disk
class driver. The disk class driver uses a miniport driver to carry out physical disk I/O and read
requested data into an application buffer designated in the IRP.

Some examples of a volume manager’s operations will help clarify its role when it handles
requests aimed at multipartition volumes. If a striped volume consists of two partitions, parti-
tion 1 and partition 2, the VolMgr device object intercepts file system disk I/O aimed at the
device object for the volume, and the VolMgr driver adjusts the request before passing it to
the disk class driver. The adjustment that VolMgr makes configures the request to refer to the
correct offset of the request’s target stripe on either partition 1 or partition 2. If the I/O spans
both partitions of the volume, VolMgr must issue two subsidiary I/O requests, one aimed at
each disk. This is shown in Figure 8-15.

 Chapter 8 Storage Management 675

VolMgr driver

\Device\Harddisk0\DR0

\Device\HarddiskVolumeX

Disk class driver

Disk port driver

Disk miniport driver

2

3

1

4

5

File system driver issues
sector-level I/O.

I/O manager routes IRP
to VolMgr driver.

VolMgr driver determines which
partition of the spanned volume
the IRP is directed at and creates
a subsidiary IRP directed at the
disk the partition is located on.

I/O manager routes the IRP
to the disk class driver.

Disk class driver performs
hardware I/O to access the disk.

\Device\Harddisk1\DR1

Stripe partition 1

Stripe partition 2

Harddisk0

Harddisk1

FIGURE 8-15 VolMgr I/O operations

In the case of writes to a mirrored volume, VolMgr splits each request so that each half of the
mirror receives the write operation. For mirrored reads, VolMgr performs a read from half of
a mirror, relying on the other half when a read operation fails.

Virtual Disk Service

A company that makes storage products such as RAID adapters, hard disks, or storage arrays
has to implement custom applications for installing and managing their devices. The use of
different management applications for different storage devices has obvious drawbacks from
the perspective of system administration. These drawbacks include learning multiple inter-
faces and the inability to use standard Windows storage management tools to manage third-
party storage devices.

Windows includes the Virtual Disk Service (or VDS, located at \Windows\System32\Vds.exe),
which provides a unified high-level storage interface so that administrators can manage stor-
age devices from different vendors using the same user interfaces. VDS is shown in Figure
8-16. VDS exports a COM-based API that allows applications to create and format disks and
to view and manage hardware RAID adapters. For example, a utility can use the VDS API to
query the list of physical disks that map to a RAID logical unit number (LUN). Windows disk
management utilities, including the Disk Management MMC snap-in and the DiskPart and
DiskRAID command-line tools, use VDS APIs.

676 Windows Internals, Fifth Edition

Management
applications

Disk
Management

snap-in

Command-line
tools

Virtual disk service

Software providers
Hardware
providers

LUNs

RAID array

Hardware

Microsoft functionality

Non-Microsoft functionality

- Basic disk
- Dynamic disk

- DiskPart
- DiskRAID

FIGURE 8-16 VDS service architecture

VDS supplies two interfaces, one for software providers and one for hardware providers:

Software providers implement interfaces to high-level storage abstractions such as
disks, disk partitions, and volumes. Examples of operations supported by these inter-
faces include creating, extending, and deleting volumes; adding or breaking mirrors;
and formatting and assigning drive letters. VDS looks for registered software provid-
ers in HKLM\SYSTEM\CurrentControlSet\Services\Vds\SoftwareProviders. Windows
includes the VDS Dynamic Disk Provider (\Windows\System32\Vdsdyn.dll) for interfac-
ing to dynamic disks and the VDS Basic Provider (\Windows\System32\Vdsbas.dll) for
interfacing to basic disks.

Hardware vendors implement VDS hardware providers as DLLs that register under
HKLM\SYSTEM\CurrentControlSet\Services\Vds\HardwareProviders and that translate
device-independent VDS commands into commands for their hardware. The hardware
provider allows for management of a storage subsystem such as a hardware RAID array
or an adapter card, and supported operations include creating, extending, deleting,
masking, and unmasking LUNs.

When an application initiates a connection to the VDS API and the VDS service isn’t
started, the Svchost process hosting the RPC service starts the VDS loader process

 Chapter 8 Storage Management 677

(\Windows\System32\Vdsldr.exe), which starts the VDS service process and then exits. When
the last connection to the VDS API closes, the VDS service process exits.

BitLocker Drive Encryption

An operating system can enforce its security policies only while it’s active, so you have to
take additional measures to protect data when the physical security of a system can be
compromised and the data accessed from outside the operating system. Hardware-based
mechanisms such as BIOS passwords and encryption are two technologies commonly used
to prevent unauthorized access, especially on laptops, which are the computers most likely to
be lost or stolen.

While Windows supports the Encrypting File System (EFS), you can’t use EFS to protect access
to sensitive areas of the system, such as the registry hive files. For example, if Group Policy
allows you to log on to your laptop even when you’re not connected to a domain, then your
domain credential verifiers are cached in the registry, so an attacker could use tools to obtain
your domain account password hash and use that to try to obtain your password with a
password cracker. The password would provide access to your account and EFS files (assum-
ing you didn’t store the EFS key on a smart card). To make it easy to encrypt the entire boot
volume, including all its system files and data, Windows includes a full-volume encryption
feature called Windows BitLocker Drive Encryption.

BitLocker helps prevent unauthorized access to data on lost or stolen computers by combin-
ing two major data-protection procedures:

Encrypting the entire Windows operating system volume on the hard disk.

Verifying the integrity of early boot components and boot configuration data.

The most secure implementation of BitLocker leverages the enhanced security capabilities
of a Trusted Platform Module (TPM) version 1.2. The TPM is a hardware component installed
in many newer computers by computer manufacturers. It works with BitLocker to help pro-
tect user data and to ensure that a computer running Windows has not been tampered with
while the system was offline. On computers that do not have a TPM version 1.2, BitLocker can
still encrypt the Windows operating system volume. However, this implementation requires
the user to insert a USB startup key to start the computer or resume from hibernation, and it
does not provide the full offline and preboot protection that a TPM-enabled system does.

BitLocker Architecture

BitLocker’s architecture provides functionality and management mechanisms both in kernel
mode and user mode. At a high level, the main components of BitLocker are:

The Trusted Platform Module driver (%SystemRoot%\System32\Drivers\Tpm.sys), a
kernel-mode driver that accesses the TPM chip.

678 Windows Internals, Fifth Edition

The TPM Base Services, which include a user-mode service that provides user-mode
access to the TPM (%SystemRoot%\System32\tbssvc.dll), a WMI provider, and an MMC
snap-in for configuration (%SystemRoot%\System32\Tpm.msc).

The BitLocker-related code in the Boot Manager (Bootmgr) that authenticates access to
the disk, handles boot-related unlocking, and allows recovery.

The BitLocker filter driver (%SystemRoot%\System32\Drivers\Fvevol.sys), a kernel-mode
filter driver that performs on-the-fly encryption and decryption of the volume.

The BitLocker WMI provider and management script, which allow configuration and
scripting of the BitLocker interface.

In the next sections, we’ll take a look at these various components and the services they pro-
vide. Figure 8-17 provides an overview of the BitLocker architecture.

Camera

TPM

User

Kernel

BitLocker
command line tool

(manage-bde)

TPM
MMC snap-in

BitLocker
Recovery
Wizard

BitLocker
Notify
applet

BitLocker
Setup

Wizard

TPM
Initialization

Wizard

TPM WMI
provider

TPM Base Services
(TBS)

TPM.sys

BitLocker WMI
provider

BitLocker fIlter driver
(fvevol.sys)

Volume manager

File system

I/O manager

Key ring

Shared memory
page

Disk

Boot Manager/
OS loader
(pre-OS)

Active
Directory

Partition manager

FIGURE 8-17 BitLocker architecture

 Chapter 8 Storage Management 679

Encryption Keys

BitLocker encrypts the contents of the volume using a full volume encryption key (FVEK)
and cryptography that uses the AES128-CBC (by default) or AES256-CBC algorithm, with a
Microsoft-specific extension called a diffuser. In turn, the FVEK is encrypted with a volume
master key (VMK) and stored in a special metadata region of the volume. Securing the vol-
ume master key is an indirect way of protecting data on the volume: the addition of the vol-
ume master key allows the system to be rekeyed easily when keys upstream in the trust chain
are lost or compromised. This ability to rekey the system saves the expense of decrypting and
encrypting the entire volume again.

When you configure BitLocker, you have a number of options for how the VMK will be pro-
tected, depending on the system’s hardware capabilities. If the system has a TPM, you can
either encrypt the VMK with the TPM, have the system encrypt the VMK using a key stored
in the TPM and one stored on a USB flash device, encrypt the VMK using a TPM-stored key
and a PIN you enter when the system boots, or a combination of both a PIN and a USB flash
device. For systems that don’t have a compatible TPM, BitLocker offers the option of encrypt-
ing the VMK using a key stored on an external USB flash device.

In any case you’ll need an unencrypted 1.5 GB NTFS system volume, the volume where the
Boot Manager and BCD are stored, because the MBR and boot-sector code are legacy code,
run in 16-bit real mode (as previously discussed), and do not have the ability to perform any
on-the-fly decryption of the same volume they’re running on. This means that these compo-
nents must remain on an unencrypted volume so that the BIOS can access them and they can
run and locate Bootmgr.

Figure 8-18 and Table 8-1 summarize the various ways in which the VMK can be generated.

TABLE 8-1 VMK Sources

Source Identifies Security User Impact

TPM only What it is Protects against software
attacks, but vulnerable to
hardware attacks.

None

TPM + PIN What it is + What you know Adds protection against most
hardware attacks as well.

User must enter
PIN each boot

TPM + USB
key

What it is + What you have Fully protects against hard-
ware attacks, but vulnerable
to stolen USB key.

User must insert
USB key each boot

TPM + USB
key + PIN

What it is + What you have
+ What you know

Maximum level of protection. User must enter
PIN and insert USB
key each boot

USB key only What you have Minimum level of protection
for systems without TPM, but
vulnerable to stolen key.

User must insert
USB key each boot

680 Windows Internals, Fifth Edition

PIN
(4–20 digits)

TPM SRK RSA
2048 bit

TPM SRK RSA
2048 bit

TPM SRK RSA
2048 bit

Startup key
256 bit

Clear key
256 bit

Recovery key
256 bit

Key
sequence

Intermediate
key 1

256 bit

Intermediate
key 2

256 bit

Intermediate
key 2

256 bit

Intermediate
key 1

256 bit

Clear salt
128 bit

Key
stretchEncode

XOR

SHA256 +

AES

AuthData

PCR config

PCR configuration

PCR configuration

RSA

RSA

TPM

TPM and PIN

TPM and startup key

Clear key

Startup key or recovery key

Recovery password

Volume
master

key
256 bit

Full volume
encryption key

256 bit

RSA

AES

AES

AES

AES

AES

FIGURE 8-18 BitLocker key generation

Finally, BitLocker also provides a simple encryption-based authentication scheme to ensure
the integrity of the drive contents. Although AES encryption is currently considered uncrack-
able through brute-force attacks and is one of the most widely used algorithms in the indus-
try today, it doesn’t provide a way to ensure that modified encrypted data can’t in some way

 Chapter 8 Storage Management 681

be modified such that it is translated back to plaintext data that an attacker could make use
of. For example, by precise manipulation of the encrypted data, a hacker might be able to
cause a certain logon function to behave differently and allow all logons.

To protect the system against this type of attack, BitLocker includes a diffuser algorithm
called Elephant. The job of the diffuser is to make sure that even a single bit change in the
ciphertext (encrypted data) will result in a totally random plaintext data output, ensuring that
the modified executable code will most likely arbitrarily crash instead of performing a specific
malicious function. Additionally, when combined with code integrity (see Chapter 3 for more
information on code integrity), the diffuser will also cause core system files to fail their signa-
ture checks, rendering the system unbootable.

Trusted Platform Module (TPM)

A TPM is a tamper-resistant processor mounted on a motherboard that provides various
cryptographic services such as key and random number generation and sealed storage.
Support for TPM in Windows reaches beyond supporting BitLocker, however. Through the
TPM Base Services (TBS), other applications on the system can also take advantage of com-
patible hardware TPM chips and use WMI to administer and script access to the TPM. For
example, Windows uses a TPM as an additional seed into random number generation, which
enhances the overall security of all applications on the system that depend on strong security
or hashing algorithms (including mechanisms such as logons).

Although your computer may have a TPM, that does not necessarily mean that Windows will
be able to support it. There are two requirements for Windows TPM support:

The computer must have a TPM version 1.2 or higher

The computer must have a Trusted Computing Group (TCG)-compliant BIOS. The BIOS
establishes a chain of trust for the preboot environment and must include support for
TCG-specific Static Root of Trust Measurement (SRTM).

The easiest way to determine whether your machine contains a compatible TPM is to run the
TPM MMC snap-in (%SystemRoot%\System32\Tpm.msc). If Windows detects a compatible
TPM, you should see a window similar to the one shown in Figure 8-19. Otherwise, an error
message will appear.

As stated earlier, BitLocker can be configured to use the TPM to perform system integrity
checks on critical early boot components. At a high level, the TPM collects and stores mea-
surements from multiple early boot components and boot configuration data to create a sys-
tem identifier (much like a fingerprint) for that computer. It stores each part of this fingerprint
as a hash in a platform configuration register (PCR). BitLocker uses the hash of these functions

682 Windows Internals, Fifth Edition

to seal the VMK, which is the key that BitLocker uses to protect other keys, including the
FVEKs used to encrypt volumes.

FIGURE 8-19 The TPM MMC snap-in before initializing the TPM.

If the early boot components are changed or tampered with, such as by changing the BIOS
or MBR, or moving the hard disk to a different computer, the TPM prevents BitLocker from
unsealing the VMK, and Windows enters a key recovery mode (described later in the chapter).
If the PCR values match those used to seal the key, however, it unseals the key, and BitLocker
can decrypt the keys used to protect volumes. Once the keys are unsealed, Windows starts
and system protection becomes the responsibility of the user and the operating system.

A platform validation profile supported by TPMs consists of 24 PCRs that can be extended to
contain additional information and only reset after a TPM reset (implying a machine reboot).
Each PCR is associated with components that run when an operating system starts, as shown
in Table 8-2.

BitLocker uses registers 0, 4, 8, 9, 10, and 11 to seal the VMK. This secures the encryption
key against changes to the Core Root of Trust of Measurement (CRTM), BIOS, and platform
extensions; Master Boot Record (MBR) code; the NTFS boot sector; the NTFS boot block; the
Boot Manager; and the BitLocker Access Control.

 Chapter 8 Storage Management 683

TABLE 8-2 Platform Configuration Registers

Index Meaning

0 Core Root of Trust of Measurement (CRTM), BIOS, and platform extensions

1 Platform and motherboard configuration and data

2 Option ROM code

3 Option ROM configuration and data

4 Master Boot Record (MBR) code

5 Master Boot Record (MBR) partition table

6 State transition and wake events

7 Computer manufacturer-specific

8 NTFS boot sector

9 NTFS boot block

10 Boot Manager

11 BitLocker Access Control

12 Defined for use by the static operating system

13 Defined for use by the static operating system

14 Defined for use by the static operating system

15 Defined for use by the static operating system

16 Used for debugging

17 Dynamic CRTM

18 Platform defined

19 Used by a trusted operating system

20 Used by a trusted operating system

21 Used by a trusted operating system

22 Used by a trusted operating system

23 Application support

BitLocker Boot Process

The actual measurements stored in the TPM PCRs are generated by the TPM itself, the TPM
BIOS, and Windows. When the system boots, the TPM does a self-test, following which the
CRTM in the BIOS measures its own hashing and PCR loading code and writes the hash to the
first PCR of the TPM. It then hashes the BIOS and stores that measurement in the first PCR as
well. The BIOS in turn hashes the next component in the boot sequence, the MBR of the boot
drive, and this process continues until the operating system loader is measured. Each subse-
quent piece of code that runs is responsible for measuring the code that it loads and for stor-
ing the measurement in the appropriate register in the TPM.

684 Windows Internals, Fifth Edition

Finally, when the user selects which operating system to boot, the Boot Manager (Bootmgr)
reads the encrypted VMK from the volume and asks the TPM to unseal it. As described previ-
ously, only if all the measurements are the same as when the VMK was sealed, including the
optional PIN, will the TPM successfully decrypt the VMK. This process not only guarantees
that the machine and system files are identical to the applications or operating systems that
are allowed to read the drive, but also verifies the uniqueness of the operating system instal-
lation. For example, even another identical Windows operating system installed on the same
machine will not get access to the drive because Bootmgr takes an active role in protecting
the VMK from being passed to an operating system to which it doesn’t belong (by generat-
ing a MAC hash of several system configuration options).

You can think of this scheme as a verification chain, where each component in the boot
sequence describes the next component to the TPM. Only if all the descriptions match the
original ones given to it will the TPM divulge its secret. BitLocker therefore protects the
encrypted data even when the disk is removed and placed in another system, the system is
booted using a different operating system, or the unencrypted files on the boot volume are
compromised. Figure 8-20 shows the various steps of the preboot process up until Winload
begins loading the operating system.

Pre-OS

Start OS

BIOS

MBR

Boot sector

OS loader

Static OS All boot blobs
unlocked

Volume blob of
target OS unlocked

TPM Init

Boot Manager

Boot block

FIGURE 8-20 BitLocker preboot process

BitLocker Key Recovery

For recovery purposes, BitLocker uses a recovery key (stored on a USB device) or a recov-
ery password (numerical password), as shown in Figure 8-18. You create the recovery key
or recovery password during BitLocker initialization. A copy of the VMK is encrypted with a

 Chapter 8 Storage Management 685

256-bit AES-CCM key that can be computed with the recovery password and a salt stored in
the metadata block. The password is a 48-digit number, eight groups of 6 digits, with three
properties for checksumming:

Each group of 6 digits must be divisible by 11. This check can be used to identify
groups mistyped by the user.

Each group of 6 digits must be less than 2**16 * 11. Each group contains 16 bits of key
information. The eight groups, therefore, hold 128 bits of key.

The sixth digit in each group is a checksum digit.

Inserting the recovery key or typing the recovery password enables an authorized user
to regain access to the encrypted volume in the event of an attempted security breach or
system failure. Figure 8-21 displays the prompt requesting the user to type the recovery
password.

FIGURE 8-21 BitLocker recovery screen

The recovery key or password is also used in cases in which parts of the system have
changed, resulting in different measurements. One common example of this is when a user
has modified the BCD, such as by adding the debug option. Upon reboot, Bootmgr will
detect the change and ask the user to validate it by inputting the recovery key. For this rea-
son, it is extremely important not to lose this key, because it isn’t only used for recovery but
for validating system changes. Another application of the recovery key is for foreign volumes.
Foreign volumes are operating system volumes that were BitLocker-enabled on another
computer and have been transferred to a different Windows computer. An administrator can
unlock these volumes by entering the recovery password.

686 Windows Internals, Fifth Edition

Full Volume Encryption Driver

Unlike EFS, which is implemented by the NTFS file system driver and operates at the file
level, BitLocker encrypts at the volume level using the full volume encryption (FVE) driver
(%SystemRoot%\System32\Drivers\Fvevol.sys), as shown in Figure 8-22.

User mode

Kernel mode

Application

NTFS

FVE filter driver

Volume manager

Disk driver

System volume

FIGURE 8-22 BitLocker filter driver implementation

FVE is a filter driver, so it automatically sees all the I/O requests that NTFS sends to the vol-
ume, encrypting blocks as they’re written and decrypting them as they’re read using the
FVEK assigned to the volume when it’s initially configured to use BitLocker. Because the
encryption and decryption happen beneath NTFS in the I/O system, the volume appears
to NTFS as if it’s unencrypted, and NTFS does not even need to be aware that BitLocker is
enabled. If you attempt to read data from the volume from outside Windows, however, it
appears to be random data.

BitLocker also uses an extra measure to make plain-text attacks in which an attacker knows
the contents of a sector and uses that information to try and derive the key used to encrypt
it more difficult. By combining the FVEK with the sector number to create the key used to
encrypt a particular sector, and passing the encrypted data through the Elephant diffuser,
BitLocker ensures that every sector is encrypted with a slightly different key, resulting in dif-
ferent encrypted data for different sectors even if their contents are identical.

 Chapter 8 Storage Management 687

BitLocker Management

BitLocker provides three different kinds of administrative interfaces, each suited to a par-
ticular role or task. It provides a WMI interface (and works with the TBS WMI interface) for
programmatic access to the BitLocker functionality, a set of Group Policies that allow admin-
istrators to define the behavior across the network or a series of machines, and integration
with Active Directory.

Developers and system administrators with scripting familiarity can access the Win32_Tpm
and Win32_EncryptableVolume interfaces to protect keys, define authentication methods,
define which PCR registers are used as part of the BitLocker profile, and manually initi-
ate encryption or decryption of an entire volume. The manage-bde.wsf script, located in
%SystemRoot%\System32, uses these interfaces to allow command-line management of the
BitLocker service.

On systems that are joined to a domain, the key for each machine can automatically be
backed up as part of a key escrow service, allowing IT administrators to easily recover and
gain access to machines that are part of the corporate network. Additionally, various Group
Policies related to BitLocker can be configured. You can access these by using the Local
Group Policy Editor, under the Computer Configuration, Administrative Templates, Windows
Components, BitLocker Drive Encryption entry. For example, Figure 8-23 displays the option
for enabling the Active Directory key backup functionality.

FIGURE 8-23 BitLocker Group Policy settings

If a TPM chip is present on the system, additional options (such as TPM Key Backup) can be
accessed from the Trusted Platform Module Services entry under Windows Components.

688 Windows Internals, Fifth Edition

Volume Shadow Copy Service

The Volume Shadow Copy Service (VSS) is a built-in Windows mechanism that enables the
creation of consistent, point-in-time copies of data, known as shadow copies or snapshots.
VSS coordinates with applications, file-system services, backup applications, fast-recovery
solutions, and storage hardware to produce consistent shadow copies.

Shadow Copies

Shadow copies are created through one of two mechanisms—clone and copy-on-write. The
VSS provider (described in more detail later) determines the method to use. (Providers can
implement the snapshot as they see fit. For example, certain hardware providers will take a
hybrid approach: clone first, and then copy-on-write.)

Clone Shadow Copies

A clone shadow copy, also called a split mirror, is a full duplicate of the original data on a vol-
ume, created either by software or hardware mirroring. Software or hardware keeps a clone
synchronized with the master copy until the mirror connection is broken in order to create
a shadow copy. At that moment, the live volume (also called the original volume) and the
shadow volume become independent. The live volume is writable and still accepts changes,
but the shadow volume is read-only and stores contents of the live volume at the time it was
created.

Copy-on-Write Shadow Copies

A copy-on-write shadow copy, also called a differential copy, is a differential, rather than a
full, duplicate of the original data. Similar to a clone copy, differential copies can be created
by software or hardware mechanisms. Whenever a change is made to the live data, the block
of data being modified is copied to a “differences area” associated with the shadow copy
before the change is written to the live data block. Overlaying the modified data on the live
data creates a view of the live data at the point in time when the shadow copy was created.

Note The in-box VSS provider that ships with Windows only supports copy-on-write shadow
copies.

VSS Architecture

VSS (%SystemRoot%\System32\Vssvc.exe) coordinates VSS writers, VSS providers, and VSS
requestors. A VSS writer is a software component that enables shadow-copy-aware appli-
cations, such as Microsoft SQL Server, Microsoft Exchange Server, and Active Directory, to

 Chapter 8 Storage Management 689

receive freeze and thaw notifications to ensure that backup copies of their data files are
internally consistent. Implementing a VSS provider allows an ISV or IHV with unique stor-
age schemes to integrate with the shadow copy service. For instance, an IHV with mirrored
storage devices might define a shadow copy as the frozen half of a split mirrored volume.
VSS requestors are the applications that request the creation of volume shadow copies and
include backup utilities and the Windows System Restore feature. Figure 8-24 shows the rela-
tionship between the VSS shadow copy service, writers, providers, and requestors.

Volumes

System
provider

Software
provider

Hardware
provider

Writers Volume Shadow Copy Service Requestor

FIGURE 8-24 VSS architecture

VSS Operation

Regardless of the specific purpose for the copy and the application making use of VSS,
shadow copy creation follows the same steps, shown in Figure 8-25. First, a requestor sends
a command to VSS to enumerate writers, gather metadata, and prepare for the copy (1). VSS
asks each writer to return information on its restore capabilities and an XML description of its
backup components (2). Next, each writer prepares for the copy in its own appropriate way,
which might include completing outstanding transactions and flushing caches. A prepare
command is sent to all involved providers as well (3).

At this point, VSS initiates the commit phase of the copy (4). VSS instructs each writer to
quiesce its data and temporarily freeze all write I/O requests (read requests are still passed
through). VSS then flushes volume file system buffers and requests that the volume file
system drivers freeze their I/O by sending them the IOCTL_VOLSNAP_FLUSH_AND_HOLD_
WRITES device I/O control command, ensuring that all the file system metadata is written
out to disk consistently (5). Once the system is in this state, VSS sends a command telling
the provider to perform the actual copy creation (6). VSS allows up to 10 seconds for the
creation, after which it aborts the operation if it is not already completed in this interval.
After the provider has created the shadow copy, VSS asks the file systems to thaw, or resume
write I/O operations, by sending them the IOCTL_VOLSNAP_RELEASE_WRITES command,
and it releases the writers from their temporary freeze. All queued write I/O operations then
proceed (7).

690 Windows Internals, Fifth Edition

VSS next queries the writers to confirm that I/O operations were successfully held during the
creation to ensure that the created shadow copy is consistent. If the shadow copy is incon-
sistent as the result of file system damage, the shadow copy is deleted by VSS. In other cases
of writer failure, VSS simply notifies the requestor. At this point, the requestor can retry the
procedure from (1), or wait for user action. If the copy was created consistently, VSS tells the
requestor the location of the copy.

An optional final step is to make the snapshot device(s) writable, such that interested writers
such as TxF can perform additional recovery actions on the snapshot device itself. After this
recovery step, the snapshot is sealed read-only and handed out to the requestor.

Note VSS also allows the surfacing of shadow copy devices on a different server—called trans-
portable shadow copies.

Software
provider

Hardware
provider

WritersVolume Shadow
Copy Service

Requestor
2

7

1

4

5

6 3

FIGURE 8-25 VSS shadow copy creation

Shadow Copy Provider

The Shadow Copy Provider (\%SystemRoot%\System32\Drivers\Swprov.dll) implements
 software-based differential copies with the aid of the Volume Shadow Copy Driver
(Volsnap—\%SystemRoot\System32\Drivers\Volsnap.sys). Volsnap is a storage filter driver
that resides between file system drivers and volume manager drivers (the drivers that present
views of the sectors that represent a volume) so that the I/O system forwards it I/O opera-
tions directed at a volume.

When asked by VSS to create a shadow copy, Volsnap queues I/O operations directed at
the target volume and creates a differential file in the volume’s System Volume Information
directory to store volume data that subsequently changes. Volsnap also creates a virtual
volume through which applications can access the shadow copy. For example, if a volume’s

 Chapter 8 Storage Management 691

name in the object manager namespace is \Device\HarddiskVolume1, the shadow volume
would have a name like \Device\HarddiskVolumeShadowCopyN, where N is a unique ID.

Whenever Volsnap sees a write operation directed at a live volume, it reads a copy of the sec-
tors that will be overwritten into a paging file—a backed memory section that’s associated
with the corresponding shadow copy. It services read operations directed at the shadow copy
of modified sectors from this memory section, and it services reads to nonmodified areas
by reading from the live volume. Because the backup utility won’t save the paging file or the
contents of the system-managed System Volume Information directory located on every vol-
ume (which includes shadow copy differential files), Volsnap uses the defragmentation API to
determine the location of these files and directories and does not record changes to them.

Figure 8-26 demonstrates the behavior of applications accessing a volume and a backup
application accessing the volume’s shadow volume copy. When an application writes to a sec-
tor after the snapshot time, the Volsnap driver makes a backup copy, like it has for sectors a,
b, and c of volume C: in the figure. Subsequently, when an application reads from sector c,
Volsnap directs the read to volume C:, but when a backup application reads from sector c,
Volsnap reads the sector from the snapshot. When a read occurs for any unmodified sector,
such as d, Volsnap routes the read to volume C:.

Note Volsnap avoids copy-on-write operations for the paging file, hibernation file, and the
difference data stored in the System Volume Information folder. All other files will get copy-on-
write protection.

Shadow
volume

C:
C:

Backup application Application

File system driver

Volsnap.sys

a b c

a d b c...

Backup read of sector

Application read of sector

Snapshot

C:

FIGURE 8-26 Volsnap operation

692 Windows Internals, Fifth Edition

EXPERIMENT: Looking at Microsoft Shadow Copy Provider Filter

Device Objects

You can see the Microsoft Shadow Copy Provider driver’s device objects attached to
each volume device on a Windows system in a kernel debugger. Every system has at
least one volume, and the following command displays the device object of the first
volume on a system:

lkd> !devobj \device\harddiskvolume1

Device object (84a64030) is for:

 HarddiskVolume1 \Driver\volmgr DriverObject 84905030

Current Irp 00000000 RefCount 0 Type 00000007 Flags 00001050

Vpb 84a40818 Dacl 8b1a8674 DevExt 84a640e8 DevObjExt 84a641e0 Dope 84a02be0 DevNode

 84a64390

ExtensionFlags (0x00000800)

 Unknown flags 0x00000800

AttachedDevice (Upper) 84a656c0 \Driver\volsnap

Device queue is not busy.

The AttachedDevice field in the output for the !devobj command displays the address
of any device object, and the name of the owning driver, attached to (filtering) the
device object being examined. For volume device objects, you should see a device
object belonging to the Volsnap driver, as in the example output.

Uses in Windows

Several features in Windows make use of VSS, including Backup, System Restore, Previous
Versions, and Shadow Copies for Shared Folders. We’ll look at some of these uses and
describe why VSS is needed and which VSS functionality is applicable to the applications.

Backup

A limitation of many backup utilities relates to open files. If an application has a file open for
exclusive access, a backup utility can’t gain access to the file’s contents. Even if the backup
utility can access an open file, the utility runs the risk of creating an inconsistent backup.
Consider an application that updates a file at its beginning and then at its end. A backup
utility saving the file during this operation might record an image of the file that reflects the
start of the file before the application’s modification and the end after the modification. If
the file is later restored the application might deem the entire file corrupt because it might
be prepared to handle the case where the beginning has been modified and not the end,
but not vice versa. These two problems illustrate why most backup utilities skip open files
altogether.

 Chapter 8 Storage Management 693

EXPERIMENT: Viewing Shadow Volume Device Objects

You can see the existence of shadow volume device objects in the object manager
name space by running the Windows backup application (under System Tools in the
Accessories folder of the Start menu) and selecting enough backup data to cause the
backup process to take long enough for you to run WinObj and see the objects in the
\Device subdirectory, as shown here.

Instead of opening files to back up on the live volume, the backup utility opens them on the
shadow volume. A shadow volume represents a point-in-time view of a volume, so by relying
on the shadow copy facility, the backup utility overcomes both the backup problems related
to open files.

Previous Versions and System Restore

The Windows Previous Versions feature also integrates support for automatically creating
volume snapshots, typically one per day, that you can access through Explorer (by opening a
Properties dialog box) using the same interface used by Shadow Copies for Shared Folders.
This enables you to view, restore, or copy old versions of files and directories that you might
have accidentally modified or deleted.

694 Windows Internals, Fifth Edition

Windows also takes advantage of volume snapshots to unify user and system data-protection
mechanisms and avoid saving redundant backup data. When an application installation or
configuration change causes incorrect or undesirable behaviors, you can use System Restore
to restore system files and data to their state as it existed when a restore point was created.
When you use the System Restore user interface in Windows Vista to go back to a restore
point, you’re actually copying earlier versions of modified system files from the snapshot
associated with the restore point to the live volume.

EXPERIMENT: Navigating Through Previous Versions

As you saw earlier, each time Windows creates a new system restore point, this results
in a shadow copy being taken for that volume. You can navigate through time and see
older copies of each drive being shadowed with Windows Explorer. To see a list of all
previous versions of an entire volume, right-click on a partition, such as C:, and select
Restore Previous Versions. You will see a dialog box similar to the one shown here.

Pick any of the versions shown, and then click the Open button. This opens a new
Explorer window displaying that volume at the point in time when the snapshot was
taken. The path shown will include \\localhost\C$\@GMT-<date>-<time>, which is how
Explorer virtualizes the different shadow copies taken. (C$ is the local hidden default
share that Windows networking uses; for more information, see Chapter 12.)

 Chapter 8 Storage Management 695

Internally, each volume shadow copy shown isn’t a complete copy of the drive, so it doesn’t
duplicate the entire contents twice, which would double disk space requirements for every
single copy. Previous Versions uses the copy-on-write mechanism described earlier to create
shadow copies. For example, if the only file that changed between time A and time B, when
a volume shadow copy was taken, is New.txt, the shadow copy will contain only New.txt. This
allows VSS to be used in client scenarios with minimal visible impact on the user, since entire
drive contents are not duplicated and size constraints remain small.

Although shadow copies for previous versions are taken daily (or whenever a Windows
Update or software installation is performed, for example), you can manually request a copy
to be taken. This can be useful if, for example, you’re about to make major changes to the
system or have just copied a set of files you want to save immediately for the purpose of
creating a previous version. You can access these settings by right-clicking Computer on
the Start Menu or desktop, selecting Properties, and then clicking System Protection. You
can also open Control Panel, click System And Maintenance, and then click System. The dia-
log box shown in Figure 8-27 allows you to select the volumes on which to enable System
Restore (which also affects previous versions) and to create an immediate restore point and
name it.

FIGURE 8-27 System Restore and Previous Versions configuration

696 Windows Internals, Fifth Edition

EXPERIMENT: Mapping Volume Shadow Device Objects

Although you can browse previous versions by using Explorer, this doesn’t give you
a permanent interface through which you can access that view of the drive in an
 application-independent, persistent way. You can use the Vssadmin utility (%System-
Root%\System32\Vssadmin.exe) included with Windows to view all the shadow copies
taken, and you can then take advantage of symbolic links to map a copy. This experi-
ment will show you how.

 1. List all shadow copies available on the system by using the list shadows command:

vssadmin list shadows

You’ll see output that resembles the following. Each entry is either a previous ver-
sion copy or a shared folder with shadow copies enabled.

vssadmin 1.1 - Volume Shadow Copy Service administrative command-line tool

(C) Copyright 2001-2005 Microsoft Corp.

Contents of shadow copy set ID: {dfe617b7-ef2b-4280-9f4e-ddf94c2ccfac}

 Contained 1 shadow copies at creation time: 8/27/2008 1:59:58 PM

 Shadow Copy ID: {f455a794-6b0c-49e4-9ae5-e54647fd1f31}

 Original Volume: (C:)\\?\Volume{f5f9d9c3-7466-11dd-9ba5-806e6f6e6963}\

 Shadow Copy Volume: \\?\GLOBALROOT\Device\HarddiskVolumeShadowCopy1

 Originating Machine: WIN-SL5V78KD01W

 Service Machine: WIN-SL5V78KD01W

 Provider: 'Microsoft Software Shadow Copy provider 1.0'

 Type: ClientAccessibleWriters

 Attributes: Persistent, Client-accessible, No auto release,

 Differential, Auto recovered

Contents of shadow copy set ID: {02dad996-e7b0-4d2d-9fb9-7e692be8fe3c}

 Contained 1 shadow copies at creation time: 8/29/2008 1:51:14 AM

 Shadow Copy ID: {79c9ee14-ca1f-4e46-b3f0-0dc98f8eb0d4}

 Original Volume: (C:)\\?\Volume{f5f9d9c3-7466-11dd-9ba5-806e6f6e6963}\

 Shadow Copy Volume: \\?\GLOBALROOT\Device\HarddiskVolumeShadowCopy2.

...

Note that each shadow copy set ID displayed in this output matches the C$ entries
shown by Explorer in the previous experiment, and the tool also displays the
shadow copy volume, which corresponds to the shadow copy device objects that
you can see with WinObj.

 2. You can now use the Mklink.exe utility to create a directory symbolic link (for
more information on symbolic links, see Chapter 11), which will let you map a
shadow copy into an actual location. Use the /d flag to create a directory link, and
specify a folder on your drive to map to the given volume device object. Make
sure to append the path with a backslash (\) as shown here:

mklink /d c:\old \\?\GLOBALROOT\Device\HarddiskVolumeShadowCopy2\

 Chapter 8 Storage Management 697

 3. Finally, with the Subst.exe utility, you can map the c:\old directory to a real vol-
ume using the command shown here:

Subst g: c:\old

You can now access the old contents of your drive from any application by using
the c:\old path, or from any command-prompt utility by using the g:\ path—for
example, try dir g: to list the contents of your drive.

Shadow Copies for Shared Folders

Windows also takes advantage of Volume Shadow Copy to provide a feature that lets stan-
dard users access backup versions of volumes on file servers so that they can recover old
versions of files and folders that they might have deleted or changed. The feature alleviates
the burden on systems administrators who would otherwise have to load backup media and
access previous versions on behalf of these users.

The Properties dialog box for a volume includes a tab named Shadow Copies, shown in
Figure 8-28. An administrator can enable scheduled snapshots of volumes using this tab, as
shown in the following screen. Administrators can also limit the amount of space consumed
by snapshots so that the system deletes old snapshots to honor space constraints.

FIGURE 8-28 Shadow Copies for Shared Folders

698 Windows Internals, Fifth Edition

When a client Windows system (running Windows Vista Business, Enterprise, or Ultimate)
maps a share from a folder on a volume for which snapshots exist, the Previous Versions tab
appears in the Properties dialog box for folders and files on the share, just like for local fold-
ers. The Previous Versions tab shows a list of snapshots that exist on the server, instead of
the client, allowing the user to view or copy a file or folder’s data as it existed in a previous
snapshot.

Conclusion

In this chapter, we’ve reviewed the on-disk organization, components, and operation of
Windows disk storage management. In Chapter 10, we delve into the cache manager, an
executive component integral to the operation of file system drivers that mount the volume
types presented in this chapter. However, next, we’ll take a close look at an integral compo-
nent of the Windows kernel: the memory manager.

 699

Chapter 9

Memory Management

In this chapter, you’ll learn how Windows implements virtual memory and how it manages

the subset of virtual memory kept in physical memory. We’ll also describe the internal struc-

ture and components that make up the memory manager, including key data structures and

algorithms. Before examining these mechanisms, we’ll review the basic services provided by

the memory manager and key concepts such as reserved memory versus committed mem-

ory and shared memory.

Introduction to the Memory Manager

By default, the virtual size of a process on 32-bit Windows is 2 GB. If the image is marked

specifically as large address space aware, and the system is booted with a special option

(described later in this chapter), a 32-bit process can grow to be 3 GB on 32-bit Windows

and to 4 GB on 64-bit Windows. The process virtual address space size on 64-bit Windows

is 7,152 GB on IA64 systems and 8,192 GB on x64 systems. (This value could be increased in

future releases.)

As you saw in Chapter 2 (specifically in Table 2-3), the maximum amount of physical memory

currently supported by Windows ranges from 2 GB to 2,048 GB, depending on which version

and edition of Windows you are running. Because the virtual address space might be larger

or smaller than the physical memory on the machine, the memory manager has two primary

tasks:

Translating, or mapping, a process’s virtual address space into physical memory so

that when a thread running in the context of that process reads or writes to the virtual

address space, the correct physical address is referenced. (The subset of a process’s vir-

tual address space that is physically resident is called the working set. Working sets are

described in more detail later in this chapter.)

Paging some of the contents of memory to disk when it becomes overcommitted—that

is, when running threads or system code try to use more physical memory than is cur-

rently available—and bringing the contents back into physical memory when needed.

In addition to providing virtual memory management, the memory manager provides a

core set of services on which the various Windows environment subsystems are built. These

services include memory mapped files (internally called section objects), copy-on-write

memory, and support for applications using large, sparse address spaces. In addition, the

memory manager provides a way for a process to allocate and use larger amounts of physical

700 Windows Internals, Fifth Edition

memory than can be mapped into the process virtual address space (for example, on 32-bit

systems with more than 4 GB of physical memory). This is explained in the section “Address

Windowing Extensions” later in this chapter.

Memory Manager Components

The memory manager is part of the Windows executive and therefore exists in the file

Ntoskrnl.exe. No parts of the memory manager exist in the HAL. The memory manager con-

sists of the following components:

A set of executive system services for allocating, deallocating, and managing virtual

memory, most of which are exposed through the Windows API or kernel-mode device

driver interfaces

A translation-not-valid and access fault trap handler for resolving hardware-detected

memory management exceptions and making virtual pages resident on behalf of a

process

Several key components that run in the context of six different kernel-mode system

threads:

The working set manager (priority 16), which the balance set manager (a system

thread that the kernel creates) calls once per second as well as when free memory

falls below a certain threshold, drives the overall memory management policies,

such as working set trimming, aging, and modified page writing.

The process/stack swapper (priority 23) performs both process and kernel thread

stack inswapping and outswapping. The balance set manager and the thread-

scheduling code in the kernel awaken this thread when an inswap or outswap

operation needs to take place.

The modified page writer (priority 17) writes dirty pages on the modified list back

to the appropriate paging files. This thread is awakened when the size of the

modified list needs to be reduced.

The mapped page writer (priority 17) writes dirty pages in mapped files to disk

(or remote storage). It is awakened when the size of the modified list needs to

be reduced or if pages for mapped files have been on the modified list for more

than 5 minutes. This second modified page writer thread is necessary because it

can generate page faults that result in requests for free pages. If there were no

free pages and there was only one modified page writer thread, the system could

deadlock waiting for free pages.

 Chapter 9 Memory Management 701

The dereference segment thread (priority 18) is responsible for cache reduction

as well as for page file growth and shrinkage. (For example, if there is no virtual

address space for paged pool growth, this thread trims the page cache so that

the paged pool used to anchor it can be freed for reuse.)

The zero page thread (priority 0) zeroes out pages on the free list so that a cache

of zero pages is available to satisfy future demand-zero page faults. (Memory

zeroing in some cases is done by a faster function called MiZeroInParallel. See the

note in the section “Page List Dynamics.”)

Each of these components is covered in more detail later in the chapter.

Internal Synchronization

Like all other components of the Windows executive, the memory manager is fully reentrant

and supports simultaneous execution on multiprocessor systems—that is, it allows two

threads to acquire resources in such a way that they don’t corrupt each other’s data. To

accomplish the goal of being fully reentrant, the memory manager uses several different

internal synchronization mechanisms to control access to its own internal data structures,

such as spinlocks. (Synchronization objects are discussed in Chapter 3.)

Systemwide resources to which the memory manager must synchronize access include the

page frame number (PFN) database (controlled by a spinlock), section objects and the system

working set (controlled by pushlocks), and page file creation (controlled by a guarded mutex).

Per-process memory management data structures that require synchronization include the

working set lock (held while changes are being made to the working set list) and the address

space lock (held whenever the address space is being changed). Both these locks are imple-

mented using pushlocks.

Examining Memory Usage

The Memory and Process performance counter objects provide access to most of the details

about system and process memory utilization. Throughout the chapter, we’ll include refer-

ences to specific performance counters that contain information related to the component

being described. We’ve included relevant examples and experiments throughout the chapter.

One word of caution, however: different utilities use varying and sometimes inconsistent or

confusing names when displaying memory information. The following experiment illustrates

this point. (We’ll explain the terms used in this example in subsequent sections.)

702 Windows Internals, Fifth Edition

EXPERIMENT: Viewing System Memory Information

The Performance tab in the Windows Task Manager, shown in the following screen

shot, displays basic system memory information. This information is a subset of the

detailed memory information available through the performance counters.

The following table shows the meaning of the memory-related values.

Task Manager Value Definition

Memory bar histogram Physical memory usable by Windows (not available

as a performance counter; represents RAM usable

by the operating system, and does not include BIOS

shadow pages, device memory, and so on). Measured

in available bytes.

Physical Memory (MB): Total Physical memory usable by Windows

Physical Memory (MB): Cached Cache bytes + modified page list bytes + standby

cache core bytes + standby cache normal priority

bytes + standby cache reserve bytes

Physical Memory (MB): Free Free and zero page list bytes

Kernel Memory (MB): Total Pool paged bytes + pool nonpaged bytes

Kernel Memory (MB): Paged Pool paged bytes

Kernel Memory (MB): Nonpaged Pool nonpaged bytes

System: Page File (two numbers

shown)

Committed bytes / commit limit

 Chapter 9 Memory Management 703

To see the specific usage of paged and nonpaged pool, use the Poolmon utility,

described in the “Monitoring Pool Usage” section.

Finally, the !vm command in the kernel debugger shows the basic memory manage-

ment information available through the memory-related performance counters. This

command can be useful if you’re looking at a crash dump or hung system. Here’s an

example of its output from a 512-MB Windows Server 2008 system:

lkd> !vm

*** Virtual Memory Usage ***

 Physical Memory: 130772 (523088 Kb)

 Page File: \??\C:\pagefile.sys

 Current: 1048576 Kb Free Space: 1039500 Kb

 Minimum: 1048576 Kb Maximum: 4194304 Kb

 Available Pages: 47079 (188316 Kb)

 ResAvail Pages: 111511 (446044 Kb)

 Locked IO Pages: 0 (0 Kb)

 Free System PTEs: 433746 (1734984 Kb)

 Modified Pages: 2808 (11232 Kb)

 Modified PF Pages: 2801 (11204 Kb)

 NonPagedPool Usage: 5301 (21204 Kb)

 NonPagedPool Max: 94847 (379388 Kb)

 PagedPool 0 Usage: 4340 (17360 Kb)

 PagedPool 1 Usage: 3129 (12516 Kb)

 PagedPool 2 Usage: 402 (1608 Kb)

 PagedPool 3 Usage: 349 (1396 Kb)

 PagedPool 4 Usage: 420 (1680 Kb)

 PagedPool Usage: 8640 (34560 Kb)

 PagedPool Maximum: 523264 (2093056 Kb)

 Shared Commit: 7231 (28924 Kb)

 Special Pool: 0 (0 Kb)

 Shared Process: 1767 (7068 Kb)

 PagedPool Commit: 8635 (34540 Kb)

 Driver Commit: 2246 (8984 Kb)

 Committed pages: 73000 (292000 Kb)

 Commit limit: 386472 (1545888 Kb)

Total Private: 44889 (179556 Kb)

 0400 svchost.exe 5436 (21744 Kb)

 0980 explorer.exe 4123 (16492 Kb)

 0a7c windbg.exe 3713 (14852 Kb)

704 Windows Internals, Fifth Edition

Services the Memory Manager Provides

The memory manager provides a set of system services to allocate and free virtual memory,

share memory between processes, map files into memory, flush virtual pages to disk, retrieve

information about a range of virtual pages, change the protection of virtual pages, and lock

the virtual pages into memory.

Like other Windows executive services, the memory management services allow their caller

to supply a process handle indicating the particular process whose virtual memory is to be

manipulated. The caller can thus manipulate either its own memory or (with the proper per-

missions) the memory of another process. For example, if a process creates a child process, by

default it has the right to manipulate the child process’s virtual memory. Thereafter, the par-

ent process can allocate, deallocate, read, and write memory on behalf of the child process

by calling virtual memory services and passing a handle to the child process as an argument.

This feature is used by subsystems to manage the memory of their client processes, and it is

also key for implementing debuggers because debuggers must be able to read and write to

the memory of the process being debugged.

Most of these services are exposed through the Windows API. The Windows API has

three groups of functions for managing memory in applications: page granularity vir-

tual memory functions (Virtualxxx), memory-mapped file functions (CreateFileMapping,

CreateFileMappingNuma, MapViewOfFile, MapViewOfFileEx, and MapViewOfFileExNuma),

and heap functions (Heapxxx and the older interfaces Localxxx and Globalxxx, which inter-

nally make use of the Heapxxx APIs). (We’ll describe the heap manager later in this chapter.)

The memory manager also provides a number of services (such as allocating and deallocat-

ing physical memory and locking pages in physical memory for direct memory access [DMA]

transfers) to other kernel-mode components inside the executive as well as to device driv-

ers. These functions begin with the prefix Mm. In addition, though not strictly part of the

memory manager, some executive support routines that begin with Ex are used to allocate

and deallocate from the system heaps (paged and nonpaged pool) as well as to manipulate

look-aside lists. We’ll touch on these topics later in this chapter in the section “Kernel-Mode

Heaps (System Memory Pools).”

Although we’ll be referring to Windows functions and kernel-mode memory management

and memory allocation routines provided for device drivers, we won’t cover the interface

and programming details but rather the internal operations of these functions. Refer to the

Windows Software Development Kit (SDK) and Windows Driver Kit (WDK) documentation on

MSDN for a complete description of the available functions and their interfaces.

 Chapter 9 Memory Management 705

Large and Small Pages

The virtual address space is divided into units called pages. That is because the hardware

memory management unit translates virtual to physical addresses at the granularity of a

page. Hence, a page is the smallest unit of protection at the hardware level. (The various

page protection options are described in the section “Protecting Memory” later in the chap-

ter.) There are two page sizes: small and large. The actual sizes vary based on hardware archi-

tecture, and they are listed in Table 9-1.

TABLE 9-1 Page Sizes

Architecture Small Page Size Large Page Size

x86 4 KB 4 MB (2 MB on PAE systems)

x64 4 KB 2 MB

IA64 8 KB 16 MB

Note IA64 processors support a variety of dynamically configurable page sizes, from 4 KB up to

256 MB. Windows uses 8 KB and 16 MB for small and large pages, respectively, as a result of per-

formance tests that confirmed these values as optimal. Additionally, recent x64 processors sup-

port a size of 1 GB for large pages, but Windows does not currently use this feature.

The advantage of large pages is speed of address translation for references to other data

within the large page. This advantage exists because the first reference to any byte within a

large page will cause the hardware’s translation look-aside buffer (or TLB, which is described

in the section “Translation Look-Aside Buffer”) to have in its cache the information necessary

to translate references to any other byte within the large page. If small pages are used, more

TLB entries are needed for the same range of virtual addresses, thus increasing recycling of

entries as new virtual addresses require translation. This, in turn, means having to go back to

the page table structures when references are made to virtual addresses outside the scope of

a small page whose translation has been cached. The TLB is a very small cache, and thus large

pages make better use of this limited resource.

To take advantage of large pages on systems with more than 255 MB of RAM, Windows

maps with large pages the core operating system images (Ntoskrnl.exe and Hal.dll) as well as

core operating system data (such as the initial part of nonpaged pool and the data structures

that describe the state of each physical memory page). Windows also automatically maps I/O

space requests (calls by device drivers to MmMapIoSpace) with large pages if the request is

of satisfactory large page length and alignment. In addition, Windows allows applications to

map their images, private memory, and page-file-backed sections with large pages. (See the

MEM_LARGE_PAGE flag on the VirtualAlloc, VirtualAllocEx, and VirtualAllocExNuma func-

tions.) You can also specify other device drivers to be mapped with large pages by adding

706 Windows Internals, Fifth Edition

a multistring registry value to HKLM\SYSTEM\CurrentControlSet\Control\Session Manager\

Memory Management\LargePageDrivers and specifying the names of the drivers as sepa-

rately null- terminated strings.

One side-effect of large pages is that because each large page must be mapped with a single

protection (because hardware memory protection is on a per-page basis), if a large page

contains both read-only code and read/write data, the page must be marked as read/write,

which means that the code will be writable. This means device drivers or other kernel-mode

code could, as a result of a bug, modify what is supposed to be read-only operating system

or driver code without causing a memory access violation. However, if small pages are used

to map the kernel, the read-only portions of Ntoskrnl.exe and Hal.dll will be mapped as read-

only pages. Although this reduces efficiency of address translation, if a device driver (or other

kernel-mode code) attempts to modify a read-only part of the operating system, the system

will crash immediately, with the finger pointing at the offending instruction, as opposed to

allowing the corruption to occur and the system crashing later (in a harder-to-diagnose way)

when some other component trips over that corrupted data. If you suspect you are experi-

encing kernel code corruptions, enable Driver Verifier (described later in this chapter), which

will disable the use of large pages.

Reserving and Committing Pages

Pages in a process virtual address space are free, reserved, or committed. Applications can

first reserve address space and then commit pages in that address space. Or they can reserve

and commit in the same function call. These services are exposed through the Windows

VirtualAlloc, VirtualAllocEx, and VirtualAllocExNuma functions.

Reserved address space is simply a way for a thread to reserve a range of virtual addresses

for future use. Attempting to access reserved memory results in an access violation because

the page isn’t mapped to any storage that can resolve the reference.

Committed pages are pages that, when accessed, ultimately translate to valid pages in physi-

cal memory. Committed pages are either private and not shareable or mapped to a view of a

section (which might or might not be mapped by other processes). Sections are described in

two upcoming sections, “Shared Memory and Mapped Files” and “Section Objects.”

If the pages are private to the process and have never been accessed before, they are created

at the time of first access as zero-initialized pages (or demand zero). Private committed pages

can later be automatically written to the paging file by the operating system if memory

demands dictate. Committed pages that are private are inaccessible to any other process

unless they’re accessed using cross-process memory functions, such as ReadProcessMemory

or WriteProcessMemory. If committed pages are mapped to a portion of a mapped file, they

might need to be brought in from disk when accessed unless they’ve already been read ear-

lier, either by the process accessing the page or by another process that had the same file

 Chapter 9 Memory Management 707

mapped and had previously accessed the page, or if they’ve been prefetched by the system.

(See the section “Shared Memory and Mapped Files” later in this chapter.)

Pages are written to disk through normal modified page writing as pages are moved from

the process working set to the modified list and ultimately to disk (or remote storage).

(Working sets and the modified list are explained later in this chapter.) Mapped file pages can

also be written back to disk as a result of an explicit call to FlushViewOfFile or by the mapped

page writer as memory demands dictate.

You can decommit pages and/or release address space with the VirtualFree or VirtualFreeEx

function. The difference between decommittal and release is similar to the difference

between reservation and committal—decommitted memory is still reserved, but released

memory is neither committed nor reserved. (It’s freed.)

Using the two-step process of reserving and committing memory can reduce memory usage

by deferring committing pages until needed but keeping the convenience of virtual contigu-

ity. Reserving memory is a relatively fast and inexpensive operation under Windows because

it doesn’t consume any committed pages (a precious system resource) or process page file

quota (a limit on the number of committed pages a process can consume—not necessarily

page file space). All that needs to be updated or constructed is the relatively small internal

data structures that represent the state of the process address space. (We’ll explain these data

structures, called virtual address descriptors, or VADs, later in the chapter.)

Reserving and then committing memory is useful for applications that need a potentially

large virtually contiguous memory buffer; rather than committing pages for the entire

region, the address space can be reserved and then committed later when needed. A use

of this technique in the operating system is the user-mode stack for each thread. When a

thread is created, a stack is reserved. (1 MB is the default; you can override this size with the

CreateThread and CreateRemoteThread function calls or change it on an imagewide basis by

using the /STACK linker flag.) By default, the initial page in the stack is committed and the

next page is marked as a guard page (which isn’t committed) that traps references beyond

the end of the committed portion of the stack and expands it.

Locking Memory

In general, it’s better to let the memory manager decide which pages remain in physical

memory. However, there might be special circumstances where it might be necessary for an

application or device driver to lock pages in physical memory. Pages can be locked in mem-

ory in two ways:

Windows applications can call the VirtualLock function to lock pages in their process

working set. The number of pages a process can lock can’t exceed its minimum work-

ing set size minus eight pages. Therefore, if a process needs to lock more pages, it

708 Windows Internals, Fifth Edition

can increase its working set minimum with the SetProcessWorkingSetSizeEx function

(referred to in the section “Working Set Management”).

Device drivers can call the kernel-mode functions MmProbeAndLockPages, MmLock-
PagableCodeSection, MmLockPagableDataSection, or MmLockPagableSectionByHandle.

Pages locked using this mechanism remain in memory until explicitly unlocked. No

quota is imposed on the number of pages a driver can lock in memory because (for

the last three APIs) the resident available page charge is obtained when the driver first

loads to ensure that it can never cause a system crash due to overlocking. For the first

API, charges must be obtained or the API will return a failure status.

Allocation Granularity

Windows aligns each region of reserved process address space to begin on an integral

boundary defined by the value of the system allocation granularity, which can be retrieved

from the Windows GetSystemInfo or GetNativeSystemInfo function. This value is 64 KB, a

granularity that is used by the memory manager to efficiently allocate metadata (for exam-

ple, VADs, bitmaps, and so on) to support various process operations. In addition, if support

were added for future processors with larger page sizes (for example, up to 64 KB) or virtu-

ally indexed caches that require systemwide physical-to-virtual page alignment, the risk of

requiring changes to applications that made assumptions about allocation alignment would

be reduced.

Note Windows kernel-mode code isn’t subject to the same restrictions; it can reserve memory

on a single-page granularity (although this is not exposed to device drivers for the reasons

detailed earlier). This level of granularity is primarily used to pack TEB allocations more densely,

and because this mechanism is internal only, this code can easily be changed if a future plat-

form requires different values. Also, for the purposes of supporting 16-bit and MS-DOS appli-

cations on x86 systems only, the memory manager provides the MEM_DOS_LIM flag to the

MapViewOfFileEx API, which is used to force the use of single-page granularity.

Finally, when a region of address space is reserved, Windows ensures that the size and base

of the region is a multiple of the system page size, whatever that might be. For example,

because x86 systems use 4-KB pages, if you tried to reserve a region of memory 18 KB in

size, the actual amount reserved on an x86 system would be 20 KB. If you specified a base

address of 3 KB for an 18-KB region, the actual amount reserved would be 24 KB. Note

that the internal memory manager structure describing the allocation (this structure will be

described later) would then also be rounded to 64-KB alignment/length, thus making the

remainder of it inaccessible.

 Chapter 9 Memory Management 709

Shared Memory and Mapped Files

As is true with most modern operating systems, Windows provides a mechanism to share

memory among processes and the operating system. Shared memory can be defined as

memory that is visible to more than one process or that is present in more than one process

virtual address space. For example, if two processes use the same DLL, it would make sense

to load the referenced code pages for that DLL into physical memory only once and share

those pages between all processes that map the DLL, as illustrated in Figure 9-1.

Process 1

virtual memory

Physical

memory

Process 2

virtual memory

DLL code

FIGURE 9-1 Sharing memory between processes

Each process would still maintain its private memory areas in which to store private data, but

the program instructions and unmodified data pages could be shared without harm. As we’ll

explain later, this kind of sharing happens automatically because the code pages in execut-

able images are mapped as execute-only and writable pages are mapped as copy-on-write.

(See the section “Copy-on-Write” for more information.)

The underlying primitives in the memory manager used to implement shared memory are

called section objects, which are called file mapping objects in the Windows API. The inter-

nal structure and implementation of section objects are described in the section “Section

Objects” later in this chapter.

This fundamental primitive in the memory manager is used to map virtual addresses,

whether in main memory, in the page file, or in some other file that an application wants to

access as if it were in memory. A section can be opened by one process or by many; in other

words, section objects don’t necessarily equate to shared memory.

710 Windows Internals, Fifth Edition

A section object can be connected to an open file on disk (called a mapped file) or to com-

mitted memory (to provide shared memory). Sections mapped to committed memory are

called page-file-backed sections because the pages are written to the paging file if memory

demands dictate. (Because Windows can run with no paging file, page-file-backed sections

might in fact be “backed” only by physical memory.) As with any other empty page that is

made visible to user mode (such as private committed pages), shared committed pages are

always zero-filled when they are first accessed to ensure that no sensitive data is ever leaked.

To create a section object, call the Windows CreateFileMapping or CreateFileMappingNuma
function, specifying the file handle to map it to (or INVALID_HANDLE_VALUE for a page-file-

backed section) and optionally a name and security descriptor. If the section has a name,

other processes can open it with OpenFileMapping. Or you can grant access to section

objects through handle inheritance (by specifying that the handle be inheritable when open-

ing or creating the handle) or handle duplication (by using DuplicateHandle). Device drivers

can also manipulate section objects with the ZwOpenSection, ZwMapViewOfSection, and

ZwUnmapViewOfSection functions.

A section object can refer to files that are much larger than can fit in the address space of a

process. (If the paging file backs a section object, sufficient space must exist in the paging

file and/or RAM to contain it.) To access a very large section object, a process can map only

the portion of the section object that it requires (called a view of the section) by calling the

MapViewOfFile, MapViewOfFileEx, or MapViewOfFileExNuma function and then specifying

the range to map. Mapping views permits processes to conserve address space because only

the views of the section object needed at the time must be mapped into memory.

Windows applications can use mapped files to conveniently perform I/O to files by simply

making them appear in their address space. User applications aren’t the only consumers of

section objects: the image loader uses section objects to map executable images, DLLs, and

device drivers into memory, and the cache manager uses them to access data in cached

files. (For information on how the cache manager integrates with the memory manager, see

Chapter 10.) How shared memory sections are implemented, both in terms of address trans-

lation and the internal data structures, is explained later in this chapter.

 Chapter 9 Memory Management 711

EXPERIMENT: Viewing Memory Mapped Files

You can list the memory mapped files in a process by using Process Explorer from

Windows Sysinternals (www.microsoft.com/technet/sysinternals). To view the memory

mapped files by using Process Explorer, configure the lower pane to show the DLL view.

(Click on View, Lower Pane View, DLLs.) Note that this is more than just a list of DLLs—it

represents all memory mapped files in the process address space. Some of these are

DLLs, one is the image file (EXE) being run, and additional entries might represent

memory mapped data files. For example, the following display from Process Explorer

shows a Microsoft Word process that has memory mapped the Word document being

edited into its address space:

You can also search for memory mapped files by clicking on Find, DLL. This can be use-

ful when trying to determine which process(es) are using a DLL that you are trying to

replace.

Protecting Memory

As explained in Chapter 1, Windows provides memory protection so that no user process can

inadvertently or deliberately corrupt the address space of another process or the operating

system itself. Windows provides this protection in four primary ways.

First, all systemwide data structures and memory pools used by kernel-mode system com-

ponents can be accessed only while in kernel mode—user-mode threads can’t access these

pages. If they attempt to do so, the hardware generates a fault, which in turn the memory

manager reports to the thread as an access violation.

712 Windows Internals, Fifth Edition

Second, each process has a separate, private address space, protected from being accessed

by any thread belonging to another process. The only exceptions are if the process

decides to share pages with other processes or if another process has virtual memory

read or write access to the process object and thus can use the ReadProcessMemory or

WriteProcessMemory function. Each time a thread references an address, the virtual mem-

ory hardware, in concert with the memory manager, intervenes and translates the virtual

address into a physical one. By controlling how virtual addresses are translated, Windows can

ensure that threads running in one process don’t inappropriately access a page belonging to

another process.

Third, in addition to the implicit protection virtual-to-physical address translation offers, all

processors supported by Windows provide some form of hardware-controlled memory pro-

tection (such as read/write, read-only, and so on); the exact details of such protection vary

according to the processor. For example, code pages in the address space of a process are

marked read-only and are thus protected from modification by user threads.

Table 9-2 lists the memory protection options defined in the Windows API. (See the

VirtualProtect, VirtualProtectEx, VirtualQuery, and VirtualQueryEx functions.)

TABLE 9-2 Memory Protection Options Defined in the Windows API

Attribute Description

PAGE_NOACCESS Any attempt to read from, write to, or execute code in this region

causes an access violation.

PAGE_READONLY Any attempt to write to (and on processors with no execute

support, execute code in) memory causes an access violation, but

reads are permitted.

PAGE_READWRITE The page is readable and writable but not executable.

PAGE_EXECUTE Any attempt to write to code in memory in this region causes

an access violation, but execution (and read operations on all

existing processors) is permitted.

PAGE_EXECUTE_READ* Any attempt to write to code in memory in this region causes an

access violation, but executes and reads are permitted.

PAGE_EXECUTE_READWRITE* The page is readable, writable, and executable—no action will

cause an access violation.

PAGE_WRITECOPY Any attempt to write to memory in this region causes the system

to give the process a private copy of the page. On processors

with no execute support, attempts to execute code in memory in

this region cause an access violation.

PAGE_EXECUTE_WRITECOPY Any attempt to write to memory in this region causes the system

to give the process a private copy of the page. Reading and

executing code in this region is permitted. (No copy is made in

this case.)

 Chapter 9 Memory Management 713

Attribute Description

PAGE_GUARD Any attempt to read from or write to a guard page raises an

EXCEPTION_GUARD_PAGE exception and turns off the guard

page status. Guard pages thus act as a one-shot alarm. Note that

this flag can be specified with any of the page protections listed

in this table except PAGE_NOACCESS.

PAGE_NOCACHE Use physical memory that is not cached. This is not recom-

mended for general usage. It is useful for device drivers—for

example, mapping a video frame buffer with no caching.

PAGE_WRITECOMBINE Enables write-combined memory accesses. When enabled,

the processor does not cache memory writes (this can cause

significant memory traffic), but it does try to aggregate write

requests to optimize performance. For example, if multiple writes

are made to the same address, only the most recent write might

occur. This is not typically used for general applications, but it is

useful for device drivers—for example, mapping a video frame

buffer as write combined.

* No execute protection is supported on processors that have the necessary hardware support (for example, all x64
and IA64 processors) but not in older x86 processors.

And finally, shared memory section objects have standard Windows access control lists (ACLs)

that are checked when processes attempt to open them, thus limiting access of shared mem-

ory to those processes with the proper rights. Security also comes into play when a thread

creates a section to contain a mapped file. To create the section, the thread must have at

least read access to the underlying file object or the operation will fail.

Once a thread has successfully opened a handle to a section, its actions are still subject to the

memory manager and the hardware-based page protections described earlier. A thread can

change the page-level protection on virtual pages in a section if the change doesn’t violate

the permissions in the ACL for that section object. For example, the memory manager allows

a thread to change the pages of a read-only section to have copy-on-write access but not

to have read/write access. The copy-on-write access is permitted because it has no effect on

other processes sharing the data.

No Execute Page Protection

No execute page protection (also referred to as data execution prevention, or DEP) causes

an attempt to transfer control to an instruction in a page marked as “no execute” to gener-

ate an access fault. This can prevent certain types of malware from exploiting bugs in the

system through the execution of code placed in a data page such as the stack. DEP can also

catch poorly written programs that don’t correctly set permissions on pages from which

they intend to execute code. If an attempt is made in kernel mode to execute code in a page

marked as no execute, the system will crash with the ATTEMPTED_EXECUTE_OF_NOEXECUTE_

MEMORY bugcheck code. (See Chapter 14 for an explanation of these codes.) If this occurs in

714 Windows Internals, Fifth Edition

user mode, a STATUS_ACCESS_VIOLATION (0xc0000005) exception is delivered to the thread

attempting the illegal reference. If a process allocates memory that needs to be executable,

it must explicitly mark such pages by specifying the PAGE_EXECUTE, PAGE_EXECUTE_READ,

PAGE_EXECUTE_READWRITE, or PAGE_EXECUTE_WRITECOPY flags on the page granularity

memory allocation functions.

On 32-bit x86 systems, the flag in the page table entry to mark a page as nonexecutable is

available only when the processor is running in Physical Address Extension (PAE) mode. (See

the section “Physical Address Extension (PAE)” later in this chapter.) Thus, support for hard-

ware DEP on 32-bit systems requires loading the PAE kernel (\%SystemRoot%\System32\

Ntkrnlpa.exe), even if that system does not require extended physical addressing (for exam-

ple, physical addresses greater than 4 GB). The operating system loader does this automati-

cally unless explicitly configured not to by setting the BCD option pae to ForceDisable.

On 64-bit versions of Windows, execution protection is always applied to all 64-bit processes

and device drivers and can be disabled only by setting the nx BCD option to AlwaysOff.
Execution protection for 32-bit programs depends on system configuration settings,

described shortly. On 64-bit Windows, execution protection is applied to thread stacks (both

user and kernel mode), user-mode pages not specifically marked as executable, kernel paged

pool, and kernel session pool (for a description of kernel memory pools, see the section

“Kernel-Mode Heaps (System Memory Pools).” However, on 32-bit Windows, execution pro-

tection is applied only to thread stacks and user-mode pages, not to paged pool and session

pool.

The application of execution protection for 32-bit processes depends on the value of the BCD

nx option. The settings can be changed by going to the Data Execution Prevention tab under

Computer, Properties, Advanced System Settings, Performance Settings. (See Figure 9-2.)

When you configure no execute protection in the Performance Options dialog box, the BCD

nx option is set to the appropriate value. Table 9-3 lists the variations of the values and how

they correspond to the DEP settings tab. Thirty-two-bit applications that are excluded from

execution protection are listed as registry values under the key HKLM\SOFTWARE\Microsoft\

Windows NT\CurrentVersion\AppCompatFlags\Layers, with the value name being the full

path of the executable and the data set to “DisableNXShowUI”.

On Windows Vista (both 64-bit and 32-bit versions) execution protection for 32-bit processes

is configured by default to apply only to core Windows operating system executables (the

nx BCD option is set to OptIn) so as not to break 32-bit applications that might rely on being

able to execute code in pages not specifically marked as executable, such as self-extracting

or packed applications. On Windows Server 2008 systems, execution protection for 32-bit

applications is configured by default to apply to all 32-bit programs (the nx BCD option is set

to OptOut).

 Chapter 9 Memory Management 715

FIGURE 9-2 Data Execution Prevention tab settings

Note To obtain a complete list of which programs are protected, install the Windows Applica-

tion Compatibility Toolkit (downloadable from www.microsoft.com) and run the Compatibility

Administrator Tool. Click System Database, Applications, and then Windows Components. The

pane at the right shows the list of protected executables.

TABLE 9-3 BCD nx Values

Value Option on DEP Settings Tab Meaning

OptIn Turn on DEP for necessary

Windows programs and

services only.

Enables DEP for core Windows system images.

Enables 32-bit processes to dynamically configure

DEP for their lifetime.

OptOut Turn on DEP for all programs

and services except those that

I select.

Enables DEP for all executables except those

specified. Enables 32-bit processes to dynamically

configure DEP for their lifetime. Enables system

compatibility fixes for DEP.

AlwaysOn No dialog box option for this

setting

Enables DEP for all components with no ability

to exclude certain applications. Disables dynamic

configuration for 32-bit processes, and disables

system compatibility fixes.

AlwaysOff No dialog box option for this

setting

Disables DEP (not recommended). Disables dynamic

configuration for 32-bit processes.

716 Windows Internals, Fifth Edition

Even if you force DEP to be enabled, there are still other methods through which applica-

tions can disable DEP or their own images. For example, regardless of the execution protec-

tion options that are enabled, the image loader (see Chapter 3 for more information about

the image loader) will verify the signature of the executable against known copy-protection

mechanisms (such as SafeDisc and SecuROM) and disable execution protection to provide

compatibility with older copy-protected software such as computer games.

Additionally, to provide compatibility with older versions of the Active Template Library (ATL)

framework (version 7.1 or earlier), the Windows kernel provides an ATL thunk emulation

environment. This environment detects ATL thunk code sequences that have caused the DEP

exception and emulates the expected operation. Application developers can request that ATL

thunk emulation not be applied by using the latest Microsoft C++ compiler and specifying

the /NXCOMPAT flag (which sets the IMAGE_DLLCHARACTERISTICS_NX_COMPAT flag in the

PE header), which tells the system that the executable fully supports DEP. Note that ATL thunk

emulation is permanently disabled if the AlwaysOn value is set.

Finally, if the system is in OptIn or OptOut mode and executing a 32-bit process, the

SetProcessDEPPolicy function allows a process to dynamically disable DEP or to permanently

enable it. (Once enabled through this API, DEP cannot be disabled programmatically for

the lifetime of the process.) This function can also be used to dynamically disable ATL thunk

emulation in case the image wasn’t compiled with the /NXCOMPAT flag. On 64-bit processes

or systems booted with AlwaysOff or AlwaysOn, the function always returns a failure. The

GetProcessDEPPolicy function returns the 32-bit per-process DEP policy (it fails on 64-bit sys-

tems, where the policy is always the same—enabled), while the GetSystemDEPPolicy can be

used to return a value corresponding to the policies in Table 9-3.

EXPERIMENT: Looking at DEP Protection on Processes

Process Explorer can show you the current DEP status for all the processes on your sys-

tem, including whether the process is opted-in or benefiting from permanent protec-

tion. To look at the DEP status for processes, right-click any column in the process tree,

choose Select Columns, and then select DEP Status on the Process Image tab. Three

values are possible:

DEP (permanent) This means that the process has DEP enabled because it is

a “necessary Windows program or service.”

DEP This means that the process opted-in to DEP, either as part of a system-

wide policy to opt-in all 32-bit processes or because of an API call such as

SetProcessDEPPolicy.

Nothing If the column displays no information for this process, DEP is dis-

abled, either because of a systemwide policy or an explicit API call or shim.

 Chapter 9 Memory Management 717

The following Process Explorer window shows an example of a system on which DEP is

enabled for all programs and services.

Software Data Execution Prevention

For older processors that do not support hardware no execute protection, Windows sup-

ports limited software data execution prevention (DEP). One aspect of software DEP reduces

exploits of the exception handling mechanism in Windows. (See Chapter 3 for a description

of structured exception handling.) If the program’s image files are built with safe structured

exception handling (a feature in the Microsoft Visual C++ compiler that is enabled with the

 /SAFESEH flag), before an exception is dispatched, the system verifies that the exception han-

dler is registered in the function table (built by the compiler) located within the image file.

If the program’s image files are not built with safe structured exception handling, software

DEP ensures that before an exception is dispatched, the exception handler is located within a

memory region marked as executable.

Two other methods for software DEP that the system implements are stack cookies and

pointer encoding. The first relies on the compiler to insert special code at the beginning and

end of each potentially exploitable function. The code saves a special numerical value (the

cookie) on the stack on entry and validates the cookie’s value before returning to the caller

saved on the stack (which would have now been corrupted to point to a piece of malicious

code). If the cookie value is mismatched, the application is terminated and not allowed to

continue executing. The cookie value is computed for each boot when executing the first

user-mode thread, and it is saved in the KUSER_SHARED_DATA structure. The image loader

reads this value and initializes it when a process starts executing in user mode. (See Chapter 3

for more information on the shared data section and the image loader.)

The cookie value that is calculated is also saved for use with the EncodeSystemPointer and

DecodeSystemPointer APIs, which implement pointer encoding. When an application or a

DLL has static pointers that are dynamically called, it runs the risk of having malicious code

718 Windows Internals, Fifth Edition

overwrite the pointer values with code that the malware controls. By encoding all pointers

with the cookie value and then decoding them, when malicious code sets a nonencoded

pointer, the application will still attempt to decode the pointer, resulting in a corrupted value

and causing the program to crash. The EncodePointer and DecodePointer APIs provide simi-

lar protection but with a per-process cookie (created on demand) instead of a per-system

cookie.

Note The system cookie is a combination of the system time at generation, the stack value of

the saved system time, the number of page faults, and the current interrupt time.

Copy-on-Write

Copy-on-write page protection is an optimization the memory manager uses to conserve

physical memory. When a process maps a copy-on-write view of a section object that con-

tains read/write pages, instead of making a process private copy at the time the view is

mapped, the memory manager defers making a copy of the pages until the page is written

to. For example, as shown in Figure 9-3, two processes are sharing three pages, each marked

copy-on-write, but neither of the two processes has attempted to modify any data on the

pages.

Page 1

Page 2

Page 3

Physical memory

Original data

Process
address
space

Original data

Process
address
space

FIGURE 9-3 The “before” of copy-on-write

If a thread in either process writes to a page, a memory management fault is generated.

The memory manager sees that the write is to a copy-on-write page, so instead of report-

ing the fault as an access violation, it allocates a new read/write page in physical memory,

copies the contents of the original page to the new page, updates the corresponding page-

mapping information (explained later in this chapter) in this process to point to the new

location, and dismisses the exception, thus causing the instruction that generated the fault

to be reexecuted. This time, the write operation succeeds, but as shown in Figure 9-4, the

newly copied page is now private to the process that did the writing and isn’t visible to the

other process still sharing the copy-on-write page. Each new process that writes to that same

shared page will also get its own private copy.

 Chapter 9 Memory Management 719

Page 1

Page 2

Page 3

Copy of page 2

Physical memory

Original data

Process

address

space

Modified data

Process

address

space

FIGURE 9-4 The “after” of copy-on-write

One application of copy-on-write is to implement breakpoint support in debuggers. For

example, by default, code pages start out as execute-only. If a programmer sets a break-

point while debugging a program, however, the debugger must add a breakpoint instruction

to the code. It does this by first changing the protection on the page to PAGE_EXECUTE_

READWRITE and then changing the instruction stream. Because the code page is part of a

mapped section, the memory manager creates a private copy for the process with the break-

point set, while other processes continue using the unmodified code page.

Copy-on-write is one example of an evaluation technique known as lazy evaluation that the

memory manager uses as often as possible. Lazy-evaluation algorithms avoid performing an

expensive operation until absolutely required—if the operation is never required, no time is

wasted on it.

To examine the rate of copy-on-write faults, see the performance counter Memory: Write

Copies/sec.

Address Windowing Extensions

Although the 32-bit version of Windows can support up to 128 GB of physical memory (as

shown in Table 2-3), each 32-bit user process has by default only a 2-GB virtual address space.

(This can be configured up to 3 GB when using the increaseuserva BCD option, described in

the upcoming section “x86 User Address Space Layouts.”) For 32-bit processes that require

more fine-grained, high-performance control over their physical pages than MapViewOfFile

can provide, Windows provides a set of functions called Address Windowing Extensions (AWE)

that can be used to allocate and access more physical memory than can be represented in a

32-bit process’s limited address space. For example, on a 32-bit Windows Server 2008 system

with 8 GB of physical memory, a database server application could use AWE to allocate and

use perhaps 6 GB of memory as a database cache. An allocation like this can also be done

by memory mapping the file and then mapping views as needed, at the expense of 64-KB

granularity (instead of 4-KB) and without requiring a special privilege.

720 Windows Internals, Fifth Edition

Allocating and using memory via the AWE functions is done in three steps:

 1. Allocating the physical memory to be used

 2. Creating a region of virtual address space to act as a window to map views of the physi-

cal memory

 3. Mapping views of the physical memory into the window

To allocate physical memory, an application can call the Windows functions AllocateUser-
PhysicalPages or AllocateUserPhysicalPagesNuma. (These functions require the Lock

pages in memory user right.) The application then uses the Windows VirtualAlloc or

VirtualAllocExNuma function with the MEM_PHYSICAL flag to create a window in the private

portion of the process’s address space that can then be mapped to any portion of the physi-

cal memory previously allocated. The AWE-allocated memory can then be used with nearly

all the Windows APIs. (For example, the Microsoft DirectX functions can’t use AWE memory.)

For example, if an application creates a 256-MB window in its address space and allocates 4

GB of physical memory (on a system with more than 4 GB of physical memory), the applica-

tion can use the MapUserPhysicalPages or MapUserPhysicalPagesScatter Windows function

to access any portion of the physical memory by mapping the memory into the 256-MB

window. The size of the application’s virtual address space window determines the amount of

physical memory that the application can access with a given mapping. Figure 9-5 shows an

AWE window in a server application address space mapped to a portion of physical memory

previously allocated by AllocateUserPhysicalPages or AllocateUserPhysicalPagesNuma.

FIGURE 9-5 Using AWE to map physical memory

 Chapter 9 Memory Management 721

The AWE functions exist on all editions of Windows and are usable regardless of how much

physical memory a system has. However, AWE is most useful on systems with more than 2 GB

of physical memory because it provides a way for a 32-bit process to control physical page

usage when dealing with more than 2 GB of memory. Another use is for security purposes:

because AWE memory is never paged out, the data in AWE memory can never have a copy in

the paging file that someone could examine by rebooting into an alternate operating system.

(VirtualLock provides the same guarantee for pages in general.)

Finally, there are some restrictions on memory allocated and mapped by the AWE functions:

Pages can’t be shared between processes.

The same physical page can’t be mapped to more than one virtual address in the same

process.

Page protection is limited to read/write, read-only, and no access.

For a description of the page table data structures used to map memory on systems with

more than 4 GB of physical memory, see the section “Physical Address Extension (PAE).”

Kernel-Mode Heaps (System Memory Pools)

At system initialization, the memory manager creates two types of dynamically sized memory

pools that the kernel-mode components use to allocate system memory:

Nonpaged pool Consists of ranges of system virtual addresses that are guaranteed

to reside in physical memory at all times and thus can be accessed at any time (from

any IRQL level and from any process context) without incurring a page fault. One of the

reasons nonpaged pool is required is because of the rule described in Chapter 2: page

faults can’t be satisfied at DPC/dispatch level or above.

Paged pool A region of virtual memory in system space that can be paged into and

out of the system. Device drivers that don’t need to access the memory from DPC/

dispatch level or above can use paged pool. It is accessible from any process context.

Both memory pools are located in the system part of the address space and are mapped in

the virtual address space of every process. The executive provides routines to allocate and

deallocate from these pools; for information on these routines, see the functions that start

with ExAllocatePool in the WDK documentation.

Systems start with four paged pools (combined to make the overall system paged pool) and

one nonpaged pool; more are created, up to a maximum of 64, depending on the number

of NUMA nodes on the system. Having more than one paged pool reduces the frequency

of system code blocking on simultaneous calls to pool routines. Additionally, the different

pools created are mapped across different virtual address ranges that correspond to different

722 Windows Internals, Fifth Edition

NUMA nodes on the system. (The different data structures, such as the large page look-aside

lists, to describe pool allocations are also mapped across different NUMA nodes. More infor-

mation on NUMA optimizations will follow later.)

Nonpaged pool starts at an initial size based on the amount of physical memory on the

system and then grows as needed. For nonpaged pool, the initial size is 3 percent of system

RAM, if this is less than 40 MB, in which case the system will instead use 40 MB as long as

10 percent of RAM results in more than 40 MB; otherwise 10 percent of RAM is chosen as a

minimum.

Pool Sizes

Windows dynamically chooses the maximum size of the pools and allows a given pool to

grow from its initial size to the maximums shown in Table 9-4.

TABLE 9-4 Maximum Pool Sizes

Pool Type Maximum on 32-Bit Systems Maximum on 64-Bit Systems

Nonpaged 75% of physical memory or 2 GB, whichever

is smaller

75% of physical memory or 128 GB,

whichever is smaller

Paged 2 GB 128 GB

Four of these computed sizes are stored in kernel variables, three of which are exposed as

performance counters, and one is computed only as a performance counter value. These

variables and counters are listed in Table 9-5.

TABLE 9-5 System Pool Size Variables and Performance Counters

Kernel Variable

Performance

Counter Description

MmSizeOfNonPagedPoolInBytes Memory: Pool

Nonpaged Bytes

Size of the initial nonpaged

pool. This can be reduced

automatically by the system if

memory demands dictate.

MmMaximumNonPagedPoolInBytes Not available Maximum size of nonpaged pool

Not available Memory: Pool Paged

Bytes

Current total virtual size of paged

pool

MmPagedPoolPage (number of pages) Memory: Pool Paged

Resident Bytes

Current physical (resident) size of

paged pool

MmSizeOfPagedPoolInBytes Not available Maximum (virtual) size of paged

pool

 Chapter 9 Memory Management 723

EXPERIMENT: Determining the Maximum Pool Sizes

You can obtain the pool maximums by using either Process Explorer or live kernel

debugging (explained in Chapter 1). To view pool maximums with Process Explorer, click

on View, System Information. The pool maximums are displayed in the Kernel Memory

section as shown here:

Note that for Process Explorer to retrieve this information, it must have access to the

symbols for the kernel running on your system. (For a description of how to configure

Process Explorer to use symbols, see the experiment “Viewing Process Details with

Process Explorer” in Chapter 1.)

To view the same information by using the kernel debugger, you can use the !vm com-

mand as shown here:

lkd> !vm

*** Virtual Memory Usage ***

 Physical Memory: 851388 (3405552 Kb)

 Page File: \??\C:\pagefile.sys

 Current: 4194304 Kb Free Space: 4109736 Kb

 Minimum: 4194304 Kb Maximum: 4194304 Kb

 Available Pages: 517820 (2071280 Kb)

 ResAvail Pages: 780018 (3120072 Kb)

 Locked IO Pages: 0 (0 Kb)

724 Windows Internals, Fifth Edition

 Free System PTEs: 279002 (1116008 Kb)

 Modified Pages: 26121 (104484 Kb)

 Modified PF Pages: 26107 (104428 Kb)

 NonPagedPool Usage: 10652 (42608 Kb)

 NonPagedPool Max: 523064 (2092256 Kb)

 PagedPool 0 Usage: 9040 (36160 Kb)

 PagedPool 1 Usage: 4007 (16028 Kb)

 PagedPool 2 Usage: 1255 (5020 Kb)

 PagedPool 3 Usage: 946 (3784 Kb)

 PagedPool 4 Usage: 666 (2664 Kb)

 PagedPool Usage: 15914 (63656 Kb)

 PagedPool Maximum: 523264 (2093056 Kb)

On this 4-GB system, nonpaged and paged pool were far from their maximums. You

can also examine the values of the kernel variables listed in Table 9-6:

lkd> ? poi(MmMaximumNonPagedPoolInBytes)

Evaluate expression: 2142470144 = 7fb38000

lkd> ? poi(MmSizeOfPagedPoolInBytes)

Evaluate expression: 2143289344 = 7fc00000

From this example, you can see that the maximum size of both nonpaged and paged

pool is 2 GB, typical values on 32-bit systems with large amounts of RAM. On the sys-

tem used for this example, current nonpaged pool usage was 40 MB and paged pool

usage was 60 MB, so both pools were far from full.

Monitoring Pool Usage

The Memory performance counter object has separate counters for the size of nonpaged

pool and paged pool (both virtual and physical). In addition, the Poolmon utility (in the WDK)

allows you to monitor the detailed usage of nonpaged and paged pool.

When you run Poolmon, you should see a display like the one shown in Figure 9-6.

The highlighted lines you might see represent changes to the display. (You can disable the

highlighting feature by typing a slash (/) while running Poolmon. Type / again to reenable

highlighting.) Type ? while Poolmon is running to bring up its help screen. You can configure

which pools you want to monitor (paged, nonpaged, or both) and the sort order. Also, the

command-line options are shown, which allow you to monitor specific tags (or every tag but

one tag). For example, the command poolmon –iCM will monitor only CM tags (allocations

from the configuration manager, which manages the registry). The columns have the mean-

ings shown in Table 9-6.

 Chapter 9 Memory Management 725

FIGURE 9-6 Poolmon output

TABLE 9-6 Poolmon Columns

Column Explanation

Tag Four-byte tag given to the pool allocation

Type Pool type (paged or nonpaged pool)

Allocs Count of all allocations (The number in parentheses shows the difference in the Allocs

column since the last update.)

Frees Count of all Frees (The number in parentheses shows the difference in the Frees

column since the last update.)

Diff Count of Allocs minus Frees

Bytes Total bytes consumed by this tag (The number in parentheses shows the difference in

the Bytes column since the last update.)

Per Alloc Size in bytes of a single instance of this tag

In this example, CM25-tagged allocations are taking up the most space in paged pool, and

Cont-tagged allocations (contiguous physical memory allocations) are taking up the most

space in nonpaged pool.

For a description of the meaning of the pool tags used by Windows, see the file \Program

Files\Debugging Tools for Windows\Triage\Pooltag.txt. (This file is installed as part of the

Debugging Tools for Windows, described in Chapter 1.) Because third-party device driver

pool tags are not listed in this file, you can use the –c switch on the 32-bit version of

Poolmon that comes with the WDK to generate a local pool tag file (Localtag.txt). This file will

contain pool tags used by drivers found on your system, including third-party drivers. (Note

that if a device driver binary has been deleted after it was loaded, its pool tags will not be

recognized.)

726 Windows Internals, Fifth Edition

Alternatively, you can search the device drivers on your system for a pool tag by using the

Strings.exe tool from Sysinternals. For example, the command

strings %SYSTEMROOT%\system32\drivers*.sys | findstr /i "abcd"

will display drivers that contain the string “abcd”. Note that device drivers do not necessarily

have to be located in %SystemRoot%\System32\Drivers—they can be in any folder. To list the

full path of all loaded drivers, open the Run dialog box from the Start menu, and then type

Msinfo32. Click Software Environment, and then click System Drivers. As already noted, if a

device driver has been loaded and then deleted from the system, it will not be listed here.

An alternative to view pool usage by device driver is to enable the pool tracking feature of

Driver Verifier, explained later in this chapter. While this makes the mapping from pool tag to

device driver unnecessary, it does require a reboot (to enable Driver Verifier on the desired

drivers). After rebooting with pool tracking enabled, you can either run the graphical Driver

Verifier Manager (%SystemRoot%\System32\Verifier.exe) or use the Verifier /Log command to

send the pool usage information to a file.

Finally, if you are looking at a crash dump, you can view pool usage with the kernel debugger

!poolused command. The command !poolused 2 shows nonpaged pool usage sorted by pool

tag using the most amount of pool. The command !poolused 4 lists paged pool usage, again

sorted by pool tag using the most amount of pool. The following example shows the partial

output from these two commands:

lkd> !poolused 2

 Sorting by NonPaged Pool Consumed

 Pool Used:

 NonPaged Paged

 Tag Allocs Used Allocs Used

 Cont 1669 15801344 0 0 Contiguous physical memory allocations for

 device drivers

 Int2 414 5760072 0 0 UNKNOWN pooltag 'Int2', please update

 pooltag.txt

 LSwi 1 2623568 0 0 initial work context

 EtwB 117 2327832 10 409600 Etw Buffer , Binary: nt!etw

 Pool 5 1171880 0 0 Pool tables, etc.

lkd> !poolused 4

 Sorting by Paged Pool Consumed

 Pool Used:

 NonPaged Paged

 Tag Allocs Used Allocs Used

 CM25 0 0 3921 16777216 Internal Configuration manager allocations ,

 Binary: nt!cm

 MmRe 0 0 720 13508136 UNKNOWN pooltag 'MmRe', please update

 pooltag.txt

 MmSt 0 0 5369 10827440 Mm section object prototype ptes ,

 Binary: nt!mm

 Ntff 9 2232 4210 3738480 FCB_DATA , Binary: ntfs.sys

 AlMs 0 0 212 2450448 ALPC message , Binary: nt!alpc

 ViMm 469 440584 608 1468888 Video memory manager , Binary: dxgkrnl.sys

 Chapter 9 Memory Management 727

EXPERIMENT: Troubleshooting a Pool Leak

In this experiment, you will fix a real paged pool leak on your system so that you can

put to use the techniques described in the previous section to track down the leak.

The leak will be generated by the NotMyFault tool from Sysinternals. When you run

NotMyFault.exe, it loads the device driver Myfault.sys and presents the following

dialog box:

 1. Click the Leak Paged button. This causes NotMyFault to begin sending requests

to the Myfault device driver to allocate paged pool. (Do not click the Do Bug

button or you will experience a system crash; this button is used in Chapter 14 to

demonstrate various types of crashes.) NotMyFault will continue sending requests

until you click the Stop Paged button. Note that paged pool is not normally

released even when you close a program that has caused it to occur (by interact-

ing with a buggy device driver); the pool is permanently leaked until you reboot

the system. However, to make testing easier, the Myfault device driver detects

that the process was closed and frees its allocations.

 2. While the pool is leaking, first open Task Manager and click on the Performance

tab. You should notice Kernel Memory (MB): Paged climbing. You can also check

this with Process Explorer’s System Information display. (Click on View and then

System Information.)

728 Windows Internals, Fifth Edition

 3. To determine the pool tag that is leaking, run Poolmon and press the B key to

sort by the number of bytes. Press P twice so that Poolmon is showing only

paged pool. You should notice the pool tag “Leak” climbing to the top of the

list. (Poolmon shows changes to pool allocations by highlighting the lines that

change.)

 4. Now press the Stop Paged button so that you don’t exhaust paged pool on your

system.

 5. Using the technique described in the previous section, run Strings (from

Sysinternals) to look for driver binaries that contain the pool tag “Leak”:

Strings %SystemRoot%\system32\drivers*.sys | findstr Leak

This should display a match on the file Myfault.sys, thus confirming it as the driver

using the “Leak” pool tag.

Look-Aside Lists

Windows also provides a fast memory allocation mechanism called look-aside lists. The basic

difference between pools and look-aside lists is that while general pool allocations can vary

in size, a look-aside list contains only fixed-sized blocks. Although the general pools are more

flexible in terms of what they can supply, look-aside lists are faster because they don’t use

any spinlocks.

Executive components and device drivers can create look-aside lists that match the size

of frequently allocated data structures by using the ExInitializeNPagedLookasideList and

ExInitializePagedLookasideList functions (documented in the WDK). To minimize the overhead

of multiprocessor synchronization, several executive subsystems (such as the I/O manager,

cache manager, and object manager) create separate look-aside lists for each processor for

their frequently accessed data structures. The executive also creates a general per-processor

paged and nonpaged look-aside list for small allocations (256 bytes or less).

If a look-aside list is empty (as it is when it’s first created), the system must allocate from

paged or nonpaged pool. But if it contains a freed block, the allocation can be satisfied very

quickly. (The list grows as blocks are returned to it.) The pool allocation routines automati-

cally tune the number of freed buffers that look-aside lists store according to how often a

device driver or executive subsystem allocates from the list—the more frequent the alloca-

tions, the more blocks are stored on a list. Look-aside lists are automatically reduced in size if

they aren’t being allocated from. (This check happens once per second when the balance set

manager system thread wakes up and calls the function ExAdjustLookasideDepth.)

 Chapter 9 Memory Management 729

EXPERIMENT: Viewing the System Look-Aside Lists

You can display the contents and sizes of the various system look-aside lists with the

kernel debugger !lookaside command. The following excerpt is from the output of this

command:

lkd> !lookaside

Lookaside "nt!IopSmallIrpLookasideList" @ 81f47c00 "Irps"

 Type = 0000 NonPagedPool

 Current Depth = 3 Max Depth = 4

 Size = 148 Max Alloc = 592

 AllocateMisses = 930 FreeMisses = 780

 TotalAllocates = 13748 TotalFrees = 13601

 Hit Rate = 93% Hit Rate = 94%

Lookaside "nt!IopLargeIrpLookasideList" @ 81f47c80 "Irpl"

 Type = 0000 NonPagedPool

 Current Depth = 4 Max Depth = 4

 Size = 472 Max Alloc = 1888

 AllocateMisses = 16555 FreeMisses = 15636

 TotalAllocates = 59287 TotalFrees = 58372

 Hit Rate = 72% Hit Rate = 73%

Lookaside "nt!IopMdlLookasideList" @ 81f47b80 "Mdl "

 Type = 0000 NonPagedPool

 Current Depth = 4 Max Depth = 4

 Size = 96 Max Alloc = 384

 AllocateMisses = 16287 FreeMisses = 15474

 TotalAllocates = 72835 TotalFrees = 72026

 Hit Rate = 77% Hit Rate = 78%

§

Total NonPaged currently allocated for above lists = 0

Total NonPaged potential for above lists = 3280

Total Paged currently allocated for above lists = 744

Total Paged potential for above lists = 1536

Heap Manager

Most applications allocate smaller blocks than the 64-KB minimum allocation granularity

possible using page granularity functions such as VirtualAlloc and VirtualAllocExNuma.

Allocating such a large area for relatively small allocations is not optimal from a memory

usage and performance standpoint. To address this need, Windows provides a component

called the heap manager, which manages allocations inside larger memory areas reserved

using the page granularity memory allocation functions. The allocation granularity in the

heap manager is relatively small: 8 bytes on 32-bit systems, and 16 bytes on 64-bit systems.

730 Windows Internals, Fifth Edition

The heap manager has been designed to optimize memory usage and performance in the

case of these smaller allocations.

The heap manager exists in two places: Ntdll.dll and Ntoskrnl.exe. The subsystem APIs (such

as the Windows heap APIs) call the functions in Ntdll, and various executive components

and device drivers call the functions in Ntoskrnl. Its native interfaces (prefixed with Rtl) are

available only for use in internal Windows components or kernel-mode device drivers. The

documented Windows API interfaces to the heap (prefixed with Heap) are forwarders to the

native functions in Ntdll.dll. In addition, legacy APIs (prefixed with either Local or Global) are

provided to support older Windows applications, which also internally call the heap manager,

using some of its specialized interfaces to support legacy behavior. The C runtime (CRT) also

uses the heap manager when using functions such as malloc and free. The most common

Windows heap functions are:

HeapCreate or HeapDestroy Creates or deletes, respectively, a heap. The initial

reserved and committed size can be specified at creation.

HeapAlloc Allocates a heap block.

HeapFree Frees a block previously allocated with HeapAlloc.

HeapReAlloc Changes the size of an existing allocation (grows or shrinks an existing

block).

HeapLock or HeapUnlock Controls mutual exclusion to the heap operations.

HeapWalk Enumerates the entries and regions in a heap.

Types of Heaps

Each process has at least one heap: the default process heap. The default heap is created

at process startup and is never deleted during the process’s lifetime. It defaults to 1 MB in

size, but it can be made bigger by specifying a starting size in the image file by using the

/HEAP linker flag. This size is just the initial reserve, however—it will expand automatically as

needed. (You can also specify the initial committed size in the image file.)

The default heap can be explicitly used by a program or implicitly used by some Windows

internal functions. An application can query the default process heap by making a call to the

Windows function GetProcessHeap. Processes can also create additional private heaps with

the HeapCreate function. When a process no longer needs a private heap, it can recover the

virtual address space by calling HeapDestroy. An array with all heaps is maintained in each

process, and a thread can query them with the Windows function GetProcessHeaps.

A heap can manage allocations either in large memory regions reserved from the memory

manager via VirtualAlloc or from memory mapped file objects mapped in the process

address space. The latter approach is rarely used in practice, but it’s suitable for scenarios

where the content of the blocks needs to be shared between two processes or between a

 Chapter 9 Memory Management 731

kernel-mode and a user-mode component. The Win32 GUI subsystem driver (Win32k.sys)

uses such a heap for sharing GDI and User objects with user mode. If a heap is built on top of

a memory mapped file region, certain constraints apply with respect to the component that

can call heap functions. First, the internal heap structures use pointers, and therefore do not

allow relocation to different addresses. Second, the synchronization across multiple processes

or between a kernel component and a user process is not supported by the heap functions.

Also, in the case of a shared heap between user mode and kernel mode, the user-mode map-

ping should be read-only to prevent user-mode code from corrupting the heap’s internal

structures, which would result in a system crash. The kernel-mode driver is also responsible

for not putting any sensitive data in a shared heap to avoid leaking it to user mode.

Heap Manager Structure

As shown in Figure 9-7, the heap manager is structured in two layers: an optional front-end

layer and the core heap. The core heap handles the basic functionality and is mostly com-

mon across the user-mode and kernel-mode heap implementations. The core functionality

includes the management of blocks inside segments, the management of the segments, poli-

cies for extending the heap, committing and decommitting memory, and management of

the large blocks.

For user-mode heaps only, an optional front-end heap layer can exist on top of the existing

core functionality. The only front-end supported on Windows is the Low Fragmentation Heap

(LFH). Only one front-end layer can be used for one heap at one time.

Windows heap APIs
(HeapAlloc, HeapFree, LocalAlloc, GlobalAlloc etc.)

Application

Front-end heap layer
(optional)

Core heap layer

 Memory manager

Heap manager

FIGURE 9-7 Heap manager layers

732 Windows Internals, Fifth Edition

Heap Synchronization

The heap manager supports concurrent access from multiple threads by default. However, if

a process is single threaded or uses an external mechanism for synchronization, it can tell the

heap manager to avoid the overhead of synchronization by specifying HEAP_NO_SERIALIZE

either at heap creation or on a per-allocation basis.

A process can also lock the entire heap and prevent other threads from performing heap

operations for operations that would require consistent states across multiple heap calls.

For instance, enumerating the heap blocks in a heap with the Windows function HeapWalk

requires locking the heap if multiple threads can perform heap operations simultaneously.

If heap synchronization is enabled, there is one lock per heap that protects all internal heap

structures. In heavily multithreaded applications (especially when running on multiproces-

sor systems), the heap lock might become a significant contention point. In that case, per-

formance might be improved by enabling the front-end heap, described in an upcoming

section.

The Low Fragmentation Heap

Many applications running in Windows have relatively small heap memory usage (usually less

than 1 MB). For this class of applications, the heap manager’s best-fit policy helps keep a low

memory footprint for each process. However, this strategy does not scale for large processes

and multiprocessor machines. In these cases, memory available for heap usage might be

reduced as a result of heap fragmentation. Performance can suffer in scenarios where only

certain sizes are often used concurrently from different threads scheduled to run on differ-

ent processors. This happens because several processors need to modify the same memory

location (for example, the head of the look-aside list for that particular size) at the same time,

thus causing significant contention for the corresponding cache line.

The LFH avoids fragmentation by managing allocated blocks in predetermined different

block-size ranges called buckets. When a process allocates memory from the heap, the LFH

chooses the bucket that maps to the smallest block large enough to hold the required size.

(The smallest block is 8 bytes.) The first bucket is used for allocations between 1 and 8 bytes,

the second for allocations between 9 and 16 bytes, and so on, until the thirty-second bucket,

which is used for allocations between 249 and 256 bytes, followed by the thirty-third bucket,

which is used for allocations between 257 and 272 bytes, and so on. Finally, the one hundred

twenty-eighth bucket, which is the last, is used for allocations between 15,873 and 16,384

bytes. Table 9-7 summarizes the different buckets, their granularity, and the range of sizes

that they map to.

 Chapter 9 Memory Management 733

TABLE 9-7 Buckets

Buckets Granularity Range

1–32 8 1—256

33–48 16 257–512

49–64 32 513–1,024

65–80 64 1,025–2,048

81–96 128 2,049–4,096

97–112 256 4,097–8,194

113–128 512 8,195–16,384

The LFH addresses these issues by using the core heap manager and look-aside lists. The

Windows heap manager implements an automatic tuning algorithm that can enable the LFH

by default under certain conditions, such as lock contention or the presence of popular size

allocations that have shown better performance with the LFH enabled. For large heaps, a sig-

nificant percentage of allocations is frequently grouped in a relatively small number of buck-

ets of certain sizes. The allocation strategy used by LFH is to optimize the usage for these

patterns by efficiently handling same-size blocks.

To address scalability, the LFH expands the frequently accessed internal structures to a num-

ber of slots that is two times larger than the current number of processors on the machine.

The assignment of threads to these slots is done by an LFH component called the affinity
manager. Initially, the LFH starts using the first slot for heap allocations; however, if a con-

tention is detected when accessing some internal data, the LFH switches the current thread

to use a different slot. Further contentions will spread threads on more slots. These slots

are controlled for each size bucket to improve locality and minimize the overall memory

consumption.

Even if the LFH is enabled as a front-end heap, the less frequent allocation sizes may still

continue to use the core heap functions to allocate memory, while the most popular allo-

cation classes will be performed from the LFH. The LFH can also be disabled by using the

HeapSetInformation API with the HeapCompatibilityInformation class.

Heap Security Features

As the heap manager has evolved, it has taken an increased role in early detection of heap

usage errors and in mitigating effects of potential heap-based exploits. These measures

exist to lessen the security effect of potential vulnerabilities in applications. The metadata

used by the heap for internal management is packed with a high degree of randomiza-

tion to make it difficult for an attempted exploit to patch the internal structures to prevent

crashes or conceal the attack attempt. These blocks are also subject to an integrity check

mechanism on the header to detect simple corruptions such as buffer overruns. Finally, the

heap also uses a small degree of randomization of the base address (or handle). By using the

HeapSetInformation API with the HeapEnableTerminationOnCorruption class, processes can

734 Windows Internals, Fifth Edition

opt in for an automatic termination in case of detected inconsistencies to avoid executing

unknown code.

As an effect of block metadata randomization, using the debugger to dump a block header is

not that useful anymore. For example, the size of the block and whether it is busy or not are

not easy to spot from a regular dump. The same applies to LFH blocks that have a different

type of metadata stored in the header, partially randomized as well. To dump these details,

the !heap –i command in the debugger does all the work to retrieve the metadata fields

from a block, flagging checksum or free list inconsistencies as well if they exist. The com-

mand works for both the LFH and regular heap blocks. The total size of the blocks, the user

requested size, the segment owning the block, as well as the header partial checksum are

available in the output, as shown in the following sample. Because the randomization algo-

rithm uses the heap granularity, the !heap –i command should be used only in the proper

context of the heap containing the block. In the example, the heap handle is 0x001a0000. If

the current heap context was different, the decoding of the header would be incorrect. To set

the proper context, the same !heap –i command with the heap handle as an argument needs

to be executed first.

0:000> !heap -i 001a0000

Heap context set to the heap 0x001a0000

0:000> !heap -i 1e2570

Detailed information for block entry 001e2570

Assumed heap : 0x001a0000 (Use !heap -i NewHeapHandle to change)

Header content : 0x1570F4EC 0x0C0015BE (decoded : 0x07010006 0x0C00000D)

Owning segment : 0x001a0000 (offset 0)

Block flags : 0x1 (busy)

Total block size : 0x6 units (0x30 bytes)

Requested size : 0x24 bytes (unused 0xc bytes)

Previous block size: 0xd units (0x68 bytes)

Block CRC : OK - 0x7

Previous block : 0x001e2508

Next block : 0x001e25a0

Heap Debugging Features

The heap manager leverages the 8 bytes used to store internal metadata as a consistency

checkpoint, which makes potential heap usage errors more obvious, and also includes several

features to help detect bugs by using the following heap functions:

Enable tail checking The end of each block carries a signature that is checked when

the block is released. If a buffer overrun destroyed the signature entirely or partially,

the heap will report this error.

Enable free checking A free block is filled with a pattern that is checked at various

points when the heap manager needs to access the block (such as at removal from

the free list to allocate the block). If the process continued to write to the block after

freeing it, the heap manager will detect changes in the pattern and the error will be

reported.

 Chapter 9 Memory Management 735

Parameter checking This function consists of extensive checking of the parameters

passed to the heap functions.

Heap validation The entire heap is validated at each heap call.

Heap tagging and stack traces support This function supports specifying tags for

allocation and/or captures user-mode stack traces for the heap calls to help narrow the

possible causes of a heap error.

The first three options are enabled by default if the loader detects that a process is started

under the control of a debugger. (A debugger can override this behavior and turn off these

features.) The heap debugging features can be specified for an executable image by set-

ting various debugging flags in the image header using the Gflags tool. (See the section

“Windows Global Flags” in Chapter 3.) Or, heap debugging options can be enabled using

the !heap command in the standard Windows debuggers. (See the debugger help for more

information.)

Enabling heap debugging options affects all heaps in the process. Also, if any of the heap

debugging options are enabled, the LFH will be disabled automatically and the core heap will

be used (with the required debugging options enabled). The LFH is also not used for heaps

that are not expandable (because of the extra overhead added to the existing heap struc-

tures) or for heaps that do not allow serialization.

Pageheap

Because the tail and free checking options described in the preceding sections might be

discovering corruptions that occurred well before the problem was detected, an additional

heap debugging capability, called pageheap, is provided that directs all or part of the heap

calls to a different heap manager. Pageheap is enabled using the Gflags tool (which is part

of the Debugging Tools for Windows). When enabled, the heap manager places allocations

at the end of pages so that if a buffer overrun occurs, it will cause an access violation, mak-

ing it easier to detect the offending code. Optionally, pageheap allows placing the blocks at

the beginning of the pages to detect buffer underrun problems. (This is a rare occurrence.)

The pageheap also can protect freed pages against any access to detect references to heap

blocks after they have been freed.

Note that using the pageheap can result in running out of address space because of the sig-

nificant overhead added for small allocations. Also, performance can suffer as a result of the

increase of references to demand zero pages, loss of locality, and additional overhead caused

by frequent calls to validate heap structures. A process can reduce the impact by specifying

that the pageheap be used only for blocks of certain sizes, address ranges, and/or originat-

ing DLLs.

For more information on pageheap, see the Debugging Tools for Windows Help file.

736 Windows Internals, Fifth Edition

Virtual Address Space Layouts

This section describes the components in the user and system address space, followed by the

specific layouts on 32-bit and 64-bit systems. This information helps you to understand the

limits on process and system virtual memory on both platforms.

Three main types of data are mapped into the virtual address space in Windows: per-process

private code and data, sessionwide code and data, and systemwide code and data.

As explained in Chapter 1, each process has a private address space that cannot be accessed

by other processes (unless they have permission to open the process for read or write access).

Threads within the process can never access virtual addresses outside this private address

space, unless they map to shared memory sections and/or use the cross-process memory

functions that allow access to another process’s address space. The information that describes

the process virtual address space, called page tables, is described in the section on address

translation. Page tables are marked as kernel-mode-only accessible pages so that user

threads in a process cannot modify their own address space layout.

Session space contains information global to each session. (For a description of sessions, see

Chapter 2.) A session consists of the processes and other system objects (such as the window

station, desktops, and windows) that represent a single user’s logon session. Each session

has a session-specific paged pool area used by the kernel-mode portion of the Windows

subsystem (Win32k.sys) to allocate session-private GUI data structures. In addition, each

session has its own copy of the Windows subsystem process (Csrss.exe) and logon process

(Winlogon.exe). The session manager process (Smss.exe) is responsible for creating new

sessions, which includes loading a session-private copy of Win32k.sys, creating the session-

private object manager namespace, and creating the session-specific instances of the Csrss

and Winlogon processes. To virtualize sessions, all sessionwide data structures are mapped

into a region of system space called session space. When a process is created, this range of

addresses is mapped to the pages associated with the session that the process belongs to.

Finally, system space contains global operating system code and data structures visible by

kernel-mode code regardless of which process is currently executing. System space consists

of the following components:

System code Contains the operating system image, HAL, and device drivers used to

boot the system.

System mapped views Used to map Win32k.sys, the loadable kernel-mode part of

the Windows subsystem, as well as kernel-mode graphics drivers it uses. (See Chapter 2

for more information on Win32k.sys.)

 Chapter 9 Memory Management 737

Hyperspace A special region used to map the process working set list, invalidat-

ing page table entries in other page tables (such as when a page is removed from the

standby list), and process creation to set up a new process’s address space.

System working set list The working set list data structures that describe the system

working set.

System cache Virtual address space used to map files open in the system cache. (See

Chapter 10 for detailed information about the cache manager.)

Paged pool Pageable system memory heap.

System page table entries (PTEs) Pool of system PTEs used to map system pages

such as I/O space, kernel stacks, and memory descriptor lists. You can see how many

system PTEs are available by examining the value of the Memory: Free System Page

Table Entries counter in the Reliability and Performance Monitor.

Nonpaged pool Nonpageable system memory heap.

Crash dump information Reserved to record information about the state of a system

crash.

HAL usage System memory reserved for HAL-specific structures.

Note Internally, the system working set is called the system cache working set. This term is mis-

leading, however, because the system working set includes not only the system cache but also

the paged pool, pageable system code and data, and pageable driver code and data.

Now that we’ve described the basic components of the virtual address space in Windows,

let’s examine the specific layout on the x86, IA64, and x64 platforms.

x86 Address Space Layouts

By default, each user process on 32-bit versions of Windows has a 2-GB private address

space; the operating system takes the remaining 2 GB. However, the system can be config-

ured with the increaseuserva BCD boot option to permit user address spaces up to 3 GB. Two

possible address space layouts are shown in Figure 9-8.

The ability for a 32-bit process to grow beyond 2 GB was added to accommodate the need

for 32-bit applications to keep more data in memory than could be done with a 2-GB address

space. Of course, 64-bit systems provide a much larger address space.

738 Windows Internals, Fifth Edition

Application code

Global variables

Per-thread stacks

DLL code

3-GB user space

Kernel and executive

HAL

Boot drivers

1-GB system space

Process page tables

System cache

Paged pool

Nonpaged pool

BFFFFFFF

C0000000

FFFFFFFF
FFC00000

C0000000

C0800000 (x86)
C0C00000 (x86 pae)

80000000

7FFFEFFF

00000000

7FFFF000
64-KB no access area

C0400000 (x86)
C0800000 (x86 pae) Hyperspace

00000000

FFFFFFFF

Reserved for

HAL usage

FIGURE 9-8 x86 virtual address space layouts

For a process to grow beyond 2 GB of address space, the image file must have the

IMAGE_FILE_LARGE_ADDRESS_AWARE flag set in the image header. Otherwise, Windows

reserves the additional address space for that process so that the application won’t see vir-

tual addresses greater than 0x7FFFFFFF. Access to the additional virtual memory is opt-in

because some applications have assumed that they’d be given at most 2 GB of the address

space. Since the high bit of a pointer referencing an address below 2 GB is always zero,

these applications would use the high bit in their pointers as a flag for their own data, clear-

ing it, of course, before referencing the data. If they ran with a 3-GB address space, they

would inadvertently truncate pointers that have values greater than 2 GB, causing program

 Chapter 9 Memory Management 739

errors, including possible data corruption. You set this flag by specifying the linker flag

/LARGEADDRESSAWARE when building the executable. This flag has no effect when running

the application on a system with a 2-GB user address space.

Several system images are marked as large address space aware so that they can take advan-

tage of systems running with large process address spaces. These include:

Lsass.exe The Local Security Authority Subsystem

Inetinfo.exe Internet Information Server

Chkdsk.exe The Check Disk utility

Smss.exe The Session Manager

Dllhst3g.exe A special version of Dllhost.exe (for COM+ applications)

Dispdiag.exe The display diagnostic dump utility

Esentutl.exe The Active Directory Database Utility tool

EXPERIMENT: Checking If an Application Is Large Address Aware

You can use the Dumpbin utility from the Windows SDK to check other executables to

see if they support large address spaces. Use the /HEADERS flag to display the results.

Here’s a sample output of Dumpbin on the Session Manager:

c:\>dumpbin /headers c:\Windows\system32\smss.exe | more

Microsoft (R) COFF/PE Dumper Version 9.00.21022.08

Copyright (C) Microsoft Corporation. All rights reserved.

Dump of file c:\Windows\system32\smss.exe

PE signature found

File Type: EXECUTABLE IMAGE

FILE HEADER VALUES

 14C machine (x86)

 4 number of sections

 47918AFD time date stamp Sat Jan 19 00:30:37 2008

 0 file pointer to symbol table

 0 number of symbols

 E0 size of optional header

 122 characteristics

 Executable

 Application can handle large (>2GB) addresses

 32 bit word machine

Finally, because memory allocations using VirtualAlloc, VirtualAllocEx, and VirtualAllocEx-
Numa start with low virtual addresses and grow higher by default, unless a process allocates

a lot of virtual memory or it has a very fragmented virtual address space, it will never get

740 Windows Internals, Fifth Edition

back very high virtual addresses. Therefore, for testing purposes, you can force memory

allocations to start from high addresses by using the MEM_TOP_DOWN flag or by adding a

DWORD registry value, HKLM\SYSTEM\CurrentControlSet\Control\Session Manager\Memory

Management\AllocationPreference, and setting it to 0x100000.

Figure 9-9 shows two screen shots of the TestLimit utility (shown in previous experiments)

leaking memory on a 32-bit Windows machine booted with and without the increaseuserva
option set to 3 GB. Note that in the second screen shot, TestLimit was able to leak almost

3 GB, as expected.

FIGURE 9-9 TestLimit leaking memory on a 32-bit Windows computer, with and without increaseuserva set
to 3 GB

x86 System Address Space Layout

Although 32-bit versions of Windows implement a dynamic system address space layout by

using a virtual address allocator (we’ll describe this functionality later in this section), there

are still specifically reserved areas, as shown in Figure 9-8. Figure 9-10 shows the different

system structures in memory, but their size is not proportional because it is not fixed.

x86 Session Space

For systems with multiple sessions, the code and data unique to each session is mapped into

system address space but shared by the processes in that session. Figure 9-11 shows the gen-

eral layout of session space.

 Chapter 9 Memory Management 741

80000000 NTLDR loads the kernel, HAL, and
boot drivers here. The kernel

then relocates the drivers to the
system PTE area.

Additional system PTEs, system
cache, or special pool

System mapped views

Session space

Page tables

Hyperspace and process
 working set lists

System cache structures

System cache

Start of paged system area

Crash dump driver area

FFFFFFFF
Reserved for HAL usage

System PTE area

Nonpaged system area

FIGURE 9-10 x86 kernel address space layout

Win32k.sys &
video drivers

MM_SESSION_SPACE
& session WSLs

Mapped views for this session

Paged pool for this session

FIGURE 9-11 x86 session space layout (not proportional)

742 Windows Internals, Fifth Edition

The sizes of the components of session space, just like the rest of kernel system address

space, is dynamically configured and resized by the memory manager on demand.

EXPERIMENT: Viewing Sessions

You can display which processes are members of which sessions by examining the

session ID. This can be viewed with Task Manager, Process Explorer, or the kernel

debugger. Using the kernel debugger, you can list the active sessions with the !session

command as follows:

lkd> !session

Sessions on machine: 2

Valid Sessions: 0 1

Current Session 1

Then you can set the active session using the !session –s command and display the

address of the session data structures and the processes in that session with the

 !sprocess command:

lkd> !session -s 1

Sessions on machine: 2

Implicit process is now 8631dd90

Using session 1

lkd> !sprocess

Dumping Session 1

_MM_SESSION_SPACE 975c6000

_MMSESSION 975c6d00

PROCESS 8631dd90 SessionId: 1 Cid: 0244 Peb: 7ffdf000 ParentCid: 023c

 DirBase: ce2aa0a0 ObjectTable: 97a0c208 HandleCount: 563.

 Image: csrss.exe

PROCESS 8633d4e0 SessionId: 1 Cid: 0288 Peb: 7ffd5000 ParentCid: 023c

 DirBase: ce2aa040 ObjectTable: 97a5f380 HandleCount: 131.

 Image: winlogon.exe

To view the details of the session, dump the MM_SESSION_SPACE structure using the dt
command, as follows:

lkd> dt nt!_MM_SESSION_SPACE 975c6000

 +0x000 ReferenceCount : 25

 +0x004 u : <unnamed-tag>

 +0x008 SessionId : 1

 +0x00c ProcessReferenceToSession : 30

 +0x010 ProcessList : _LIST_ENTRY [0x8631de5c - 0x86dea0ec]

 +0x018 LastProcessSwappedOutTime : _LARGE_INTEGER 0x0

 +0x020 SessionPageDirectoryIndex : 0xc1b09

 +0x024 NonPagablePages : 0x42

 +0x028 CommittedPages : 0x13fa

 +0x02c PagedPoolStart : 0x80000000

 +0x030 PagedPoolEnd : 0xffbfffff

 Chapter 9 Memory Management 743

 +0x034 SessionObject : 0x84adfb80

 +0x038 SessionObjectHandle : 0x8000049c

 +0x03c ResidentProcessCount : 17

 +0x040 ImageLoadingCount : 0

 +0x044 SessionPoolAllocationFailures : [4] 0

 +0x054 ImageList : _LIST_ENTRY [0x863192e8 - 0x88a763c0]

 +0x05c LocaleId : 0x409

 +0x060 AttachCount : 0

 +0x064 AttachGate : _KGATE

 +0x074 WsListEntry : _LIST_ENTRY [0x81f49008 - 0x8ca69074]

 +0x080 Lookaside : [25] _GENERAL_LOOKASIDE

 +0xd00 Session : _MMSESSION

 +0xd38 PagedPoolInfo : _MM_PAGED_POOL_INFO

 +0xd70 Vm : _MMSUPPORT

 +0xdb8 Wsle : 0x80e30058 _MMWSLE

 +0xdbc DriverUnload : 0x81720c71 void +ffffffff81720c71

 +0xdc0 PagedPool : _POOL_DESCRIPTOR

 +0x1df4 PageTables : 0x8631a000 _MMPTE

 +0x1df8 SpecialPool : _MI_SPECIAL_POOL

 +0x1e20 SessionPteLock : _KGUARDED_MUTEX

 +0x1e40 PoolBigEntriesInUse : 639

 +0x1e44 PagedPoolPdeCount : 0x10

 +0x1e48 SpecialPoolPdeCount : 0

 +0x1e4c DynamicSessionPdeCount : 0

 +0x1e50 SystemPteInfo : _MI_SYSTEM_PTE_TYPE

 +0x1e7c PoolTrackTableExpansion : (null)

 +0x1e80 PoolTrackTableExpansionSize : 0

 +0x1e84 PoolTrackBigPages : 0x8a037000

 +0x1e88 PoolTrackBigPagesSize : 0x800

 +0x1e8c SessionPoolPdes : _RTL_BITMAP

EXPERIMENT: Viewing Session Space Utilization

You can view session space memory utilization with the !vm 4 command in the kernel

debugger. For example, the following output was taken from a 32-bit Windows Vista

system with two active sessions:

lkd> !vm 4

.

.

Terminal Server Memory Usage By Session:

 Session ID 0 @ 8ca69000:

 Paged Pool Usage: 5316K

 Commit Usage: 7504K

 Session ID 1 @ 975c6000:

 Paged Pool Usage: 19152K

 Commit Usage: 21524K

744 Windows Internals, Fifth Edition

System Page Table Entries

System page table entries (PTEs) are used to dynamically map system pages such as I/O

space, kernel stacks, and the mapping for memory descriptor lists. System PTEs aren’t an

infinite resource. On 32-bit Windows, the number of available system PTEs is such that the

system can theoretically describe 2 GB of contiguous system virtual address space. On 64-bit

Windows, system PTEs can describe up to 128 GB of contiguous virtual address space.

EXPERIMENT: Viewing System PTE Information

You can see how many system PTEs are available by examining the value of the

Memory: Free System Page Table Entries counter in the Reliability and Performance

Monitor or by using the !sysptes or !vm command in the debugger. You can also dump

the _MI_SYSTEM_PTE_TYPE structure associated with the MiSystemPteInfo global vari-

able. This will also show you how many PTE allocation failures occurred on the system—

a high count indicates a problem and possibly a system PTE leak.

lkd> !sysptes

System PTE Information

 Total System Ptes 46576

 starting PTE: c0400000

 free blocks: 461 total free: 4196 largest free block: 129

lkd> ? nt!MiSystemPteInfo

Evaluate expression: -2114679136 = 81f48ea0

lkd> dt _MI_SYSTEM_PTE_TYPE 81f48ea0

nt!_MI_SYSTEM_PTE_TYPE

 +0x000 Bitmap : _RTL_BITMAP

 +0x008 Hint : 0x31a62

 +0x00c BasePte : 0xc0400000 _MMPTE

 +0x010 FailureCount : 0x81f48ec4 -> 3

 +0x014 Vm : 0x81f4e7e0 _MMSUPPORT

 +0x018 TotalSystemPtes : 12784

 +0x01c TotalFreeSystemPtes : 4234

 +0x020 CachedPteCount : 497

 +0x024 PteFailures : 3

 +0x028 GlobalMutex : (null)

 Chapter 9 Memory Management 745

If you are seeing lots of system PTE failures, you can enable system PTE tracking by

creating a new DWORD value in the HKLM\SYSTEM\CurrentControlSet\Control\Session

Manager\Memory Management key called TrackPtes and setting its value to 1. You can

then use !syspte 4 to show a list of allocators, as shown here:

lkd>!sysptes 4

0x1ca2 System PTEs allocated to mapping locked pages

VA MDL PageCount Caller/CallersCaller

ecbfdee8 f0ed0958 2 netbt!DispatchIoctls+0x56a/netbt!NbtDispatchDevCtrl+0xcd

f0a8d050 f0ed0510 1 netbt!DispatchIoctls+0x64e/netbt!NbtDispatchDevCtrl+0xcd

ecef5000 1 20 nt!MiFindContiguousMemory+0x63

ed447000 0 2 Ntfs!NtfsInitializeVcb+0x30e/Ntfs!NtfsInitializeDevice+0x95

ee1ce000 0 2 Ntfs!NtfsInitializeVcb+0x30e/Ntfs!NtfsInitializeDevice+0x95

ed9c4000 1 ca nt!MiFindContiguousMemory+0x63

eda8e000 1 ca nt!MiFindContiguousMemory+0x63

efb23d68 f8067888 2 mrxsmb!BowserMapUsersBuffer+0x28

efac5af4 f8b15b98 2 ndisuio!NdisuioRead+0x54/nt!NtReadFile+0x566

f0ac688c f848ff88 1 ndisuio!NdisuioRead+0x54/nt!NtReadFile+0x566

efac7b7c f82fc2a8 2 ndisuio!NdisuioRead+0x54/nt!NtReadFile+0x566

ee4d1000 1 38 nt!MiFindContiguousMemory+0x63

efa4f000 0 2 Ntfs!NtfsInitializeVcb+0x30e/Ntfs!NtfsInitializeDevice+0x95

efa53000 0 2 Ntfs!NtfsInitializeVcb+0x30e/Ntfs!NtfsInitializeDevice+0x95

eea89000 0 1 TDI!DllInitialize+0x4f/nt!MiResolveImageReferences+0x4bc

ee798000 1 20 VIDEOPRT!pVideoPortGetDeviceBase+0x1f1

f0676000 1 10 hal!HalpGrowMapBuffers+0x134/hal!HalpAllocateAdapterEx+0x1ff

f0b75000 1 1 cpqasm2+0x2af67/cpqasm2+0x7847

f0afa000 1 1 cpqasm2+0x2af67/cpqasm2+0x6d82

64-Bit Address Space Layouts

The theoretical 64-bit virtual address space is 16 exabytes (18,446,744,073,709,551,616 bytes,

or approximately 17.2 billion GB). Unlike on x86 systems, where the default address space is

divided in two parts (half for a process and half for the system), the 64-bit address is divided

into a number of different size regions whose components match conceptually the portions

of user, system, and session space. The various sizes of these regions, listed in Table 9-8, rep-

resent current implementation limits that could easily be extended in future releases. Clearly,

64 bits provides a tremendous leap in terms of address space sizes.

746 Windows Internals, Fifth Edition

TABLE 9-8 64-Bit Address Space Sizes

Region IA64 x64

Process Address Space 7,152 GB 8,192 GB

System PTE Space 128 GB 128 GB

System Cache 1 TB 1 TB

Paged Pool 128 GB 128 GB

Nonpaged Pool 75% of physical memory 75% of physical memory

Also, on 64-bit Windows, another useful feature of having an image that is large address

space aware is that while running on 64-bit Windows (under Wow64), such an image will

actually receive all 4 GB of user address space available—after all, if the image can support

3-GB pointers, 4-GB pointers should not be any different, because unlike the switch from

2 GB to 3 GB, there are no additional bits involved. Figure 9-12 shows TestLimit, running as

a 32-bit application, reserving address space on a 64-bit Windows machine, followed by the

64-bit version of TestLimit leaking memory on the same machine.

FIGURE 9-12 32-bit and 64-bit TestLimit reserving address space on a 64-bit Windows computer

The detailed IA64 and x64 address space layouts vary slightly. The IA64 address space layout

is shown in Figure 9-13, and the x64 address space layout is shown in Figure 9-14.

 Chapter 9 Memory Management 747

..

0000000000000000

000006FBFFFEFFFF

User mode addresses: 0TB – 7GB

000006FBFFFF0000
64KB no access region

000006FC00000000
Alternate 4KB-page mappings

for x86 process emulation. Spans
8MB to allow for 4GB VA space.

000006FC00800000

000006FFFFFFFFFF

Hyperspace: working set lists
and per process memory

management structures mapped
in this 16GB region.

0000070000000000

000007FFFFFFFFFF

Page table self-mapping structures

1FFFFF0000000000
8GB leaf-level page table map

for user space
1FFFFF01FFFFFFFF

1FFFFFFFFFF00000 8KB parent directory (1st level)

1FFFFFFFC0000000

1FFFFFFFC07FFFFF

8MB page directory (2nd level)
table map for user space

..

..
2000000000000000

Win32k.sys
Session data structures.
This is an 8TB region.

3FFFFF0000000000

3FFFFF01FFFFFFFF

8GB leaf-level page table map
for session space

3FFFFFFFFFF00000
8KB parent directory (1st level)

8000000000000000
Physically addressable memory

for 50 bits of address space
mapped with VHPT 8KB pages

8004000000000000

E000000080000000 The HAL, kernel, initial drivers,
NLS data, and registry load in
this region, which physically

addresses memory

Kernel mode access only

9FFFFF0000000000 VHPT 64KB page for KSEG3 space
(not used)

3FFFFFFFC0000000

3FFFFFFFC07FFFFF

8MB page directory (2nd level)
table map for session space

..

..

E0000000FF002000

E0000000FFFFFFFF

Reserved for the HAL

E000000200000000

E000000600000000

The system cache working set
information resides in this

16GB region.

E000002600000000

Start of paged system area.
Kernel mode access only.

128GB.

E000012600000000

MM_SYSTEM_SPACE_START
for a length of

MI_DYNAMIC_KERNEL_VA_BYTES
is managed by the

MISystemVaBitMap. This is
typically 1TB and is used

for the system cache, system
PTEs, and special pool.

Initial and expansion nonpaged
pool. Kernel mode access only.

Up to 128GB.

8GB leaf-level page table map
for kernel space

FFFFFF0000000000

FFFFFF01FFFFFFFF

FFFFFFFFC0000000

FFFFFFFFC07FFFFF

8MB page directory (2nd level)
table map for kernel space

FFFFFFFFFFF00000 8KB parent directory (1st level)

Shared system pageE0000000FFFE0000

..

Note: MM_SYSTEM_SPACE_START was
deliberately assigned far apart from the top
of virtual memory so a machine with a large
number of bits of physical addressing that
has RAM present at the very top can fit (i.e.,
a PFN database virtual span of ~6TB is
required for 50-bit physical addressing using
an 8KB page size with 8-byte PTEs).

..

..
PFN database

Note: There is actually no gap between
MM_SYSTEM_SPACE_END and the PTE_KBASE
because only the low 43 bits of the VA
are decoded.

..

..

E000070000000000

E000000000000000

FIGURE 9-13 IA64 address space layout

748 Windows Internals, Fifth Edition

Start of system space

0000000000000000
User mode addresses: 8TB minus 64KB

000007FFFFFF0000

000007FFFFFEFFFF

000007FFFFFFFFFF
64KB no access region

FFFFF68000000000
512GB four-level page table map

FFFFF70000000000 Hyperspace: working set lists and per
process memory management struc-
tures mapped in this 512GB region

FFFFF80000000000
Mappings initialized by the loader.

This is a 512GB region.
FFFFF88000000000 Start of paged system area.

Kernel mode access only. 128GB.

FFFFF78000000000 Shared system page
FFFFF78000001000

The system cache working set
information resides in this

512GB – 4K region

FFFF080000000000

FFFFF98000000000

Win32k.sys. Session data structures.
This is a 512GB region.

PFN database

MM_SYSTEM_SPACE_START for a length
of MI_DYNAMIC_KERNEL_VA_BYTES is
managed by the MiSystemVaBitMap.

This is typically 1TB and is used for the
system cache, system PTEs,

and special pool.
FFFFFA8000000000

FFFFFFFF00C00000

Initial and expansion nonpaged pool.
Kernel mode access only.

Up to 128GB.

FFFFFFFFFFFFFFFF

Minimum 4MB reserved for the HAL.
Loader/HAL can consume additional
virtual accesss memory by leaving it

mapped at kernel bootup.

..

Note: A large VA range is deliberately reserved here to
support machines with a large number of bits of physical
addressing with RAM present at the very top (i.e., a PFN
database virtual span of ~6TB is required for 49-bit
physical addressing using a 4KB page size with 8 byte PTEs).

Note: The ranges below are sign-extended for >43 bits
and therefore can be used with interlocked slists.
The system address space above is NOT...

..

..

..

..

FFFFF90000000000

FIGURE 9-14 x64 address space layout

 Chapter 9 Memory Management 749

64-Bit Virtual Addressing Limitations

As discussed previously, 64 bits of virtual address space allow for a possible maximum of

16 exabytes (EB) of virtual memory, a notable improvement over the 4 GB offered by 32-bit

addressing. With such a copious amount of memory, it is obvious that today’s computers, as

well as tomorrow’s foreseeable machines (at least in the consumer market), are not even close

to requiring support for that much memory.

For these reasons, as well as to simplify current chip architecture, the x64 systems that

AMD and Intel support on today’s x64 processors support only 48 bits of virtual address

space, requiring the other 16 bits to be set to the same value as the “valid,” or “imple-

mented,” bits, resulting in canonical addresses. The bottom half of the address space starts

at 0x0000000000000000, with only 12 of those zeroes being part of an actual address

(resulting in an end at 0x00007FFFFFFFFFFF). The top half of the address space starts

at 0xFFFF800000000000, ending at 0xFFFFFFFFFFFFFFFF. As newer processors sup-

port more of the addressing bits, the lower half of memory will expand upward, toward

0x7FFFFFFFFFFFFFFF, while the upper half of memory will expand downward, toward

0x8000000000000000 (a similar split to today’s memory space but with 32 more bits).

In Windows, a number of mechanisms have made, and continue to make, assumptions about

usable bits in the address space: pushlocks, fast references, Patchguard DPC contexts, and

singly linked lists are common examples of data structures that use bits within a pointer for

nonaddressing purposes. Singly linked lists, combined with the lack of a CPU instruction in

the original x64 CPUs required to “port” the data structure to 64-bit Windows, have caused

an interesting memory addressing limit on 64-bit Windows.

Here is the SLIST_HEADER, the data structure Windows uses to represent an entry inside a list:

typedef union _SLIST_HEADER {

 ULONGLONG Alignment;

 struct {

 SLIST_ENTRY Next;

 USHORT Depth;

 USHORT Sequence;

 } DUMMYSTRUCTNAME;

} SLIST_HEADER, *PSLIST_HEADER;

Note that this is an 8-byte structure, guaranteed to be aligned as such, composed of three

elements: the pointer to the next entry (32 bits, or 4 bytes) and depth and sequence num-

bers, each 16 bits (or 2 bytes). To create lock-free push and pop operations, the implementa-

tion makes use of an instruction present on Pentium processors or higher—CMPXCHG8B

(Compare and Exchange 8 bytes), which allows the atomic modification of 8 bytes of data. By

using this native CPU instruction, which also supports the LOCK prefix (guaranteeing atomic-

ity on a multiprocessor system), the need for a spinlock to combine two 32-bit accesses is

eliminated, and all operations on the list become lock free (increasing speed and scalability).

750 Windows Internals, Fifth Edition

On 64-bit computers, addresses are 64 bits, so the pointer to the next entry should logi-

cally be 64 bits. If the depth and sequence numbers remain within the same parameters, the

system must provide a way to modify at minimum 64+32 bits of data—or better yet, 128

bits, in order to increase the entropy of the depth and sequence numbers. However, the first

x64 processors did not implement the essential CMPXCHG16B instruction to allow this. The

implementation, therefore, was written to pack as much information as possible into only 64

bits, which was the most that could be modified atomically at once. The 64-bit SLIST_HEADER

thus looks like this:

struct { // 8-byte header

 ULONGLONG Depth:16;

 ULONGLONG Sequence:9;

 ULONGLONG NextEntry:39;

} Header8;

The first change is the reduction of the space for the sequence number to 9 bits instead of

16 bits, reducing the maximum sequence number the list can achieve. This leaves only 39

bits for the pointer, still far from 64 bits. However, by forcing the structure to be 16-byte

aligned when allocated, 4 more bits can be used because the bottom bits can now always be

assumed to be 0. This gives 43 bits for addresses, but there is one more assumption that can

be made. Because the implementation of linked lists is used either in kernel mode or user

mode but cannot be used across address spaces, the top bit can be ignored, just as on 32-bit

machines. The code will assume the address to be kernel mode if called in kernel mode and

vice versa. This allows us to address up to 44 bits of memory in the NextEntry pointer and is

the defining constraint of the addressing limit in Windows.

Forty-four bits is a much better number than 32. It allows 16 TB of virtual memory to be

described and thus splits Windows into two even chunks of 8 TB for user-mode and kernel-

mode memory. Nevertheless, this is still 16 times smaller than the CPU’s own limit (48 bits is

256 TB), and even farther still from the maximum that 64 bits can describe. So, with scalability

in mind, some other bits do exist in the SLIST_HEADER that define the type of header being

dealt with. This means that when the day comes when all x64 CPUs support 128-bit Compare

and Exchange, Windows can easily take advantage of it (and to do so before then would

mean distributing two different kernel images). Here’s a look at the full 8-byte header:

 struct { // 8-byte header

 ULONGLONG Depth:16;

 ULONGLONG Sequence:9;

 ULONGLONG NextEntry:39;

 ULONGLONG HeaderType:1; // 0: 8-byte; 1: 16-byte

 ULONGLONG Init:1; // 0: uninitialized; 1: initialized

 ULONGLONG Reserved:59;

 ULONGLONG Region:3;

 } Header8;

 Chapter 9 Memory Management 751

Note how the HeaderType bit is overlaid with the Depth bits and allows the implementation

to deal with 16-byte headers whenever support becomes available. For the sake of complete-

ness, here is the definition of the 16-byte header:

 struct { // 16-byte header

 ULONGLONG Depth:16;

 ULONGLONG Sequence:48;

 ULONGLONG HeaderType:1; // 0: 8-byte; 1: 16-byte

 ULONGLONG Init:1; // 0: uninitialized; 1: initialized

 ULONGLONG Reserved:2;

 ULONGLONG NextEntry:60; // last 4 bits are always 0’s

 } Header16;

Notice how the NextEntry pointer has now become 60 bits, and because the structure is still

16-byte aligned, with the 4 free bits, leads to the full 64 bits being addressable.

Dynamic System Virtual Address Space Management

Thirty-two-bit versions of Windows manage the system address space through an internal

kernel virtual allocator mechanism that we’ll describe in this section. Currently, 64-bit ver-

sions of Windows have no need to use the allocator for virtual address space management

(and thus bypass the cost), because each region is statically defined as shown in Table 9-8

earlier.

When the system initializes, the MiInitializeDynamicVa function sets up the basic dynamic

ranges (the ranges currently supported are described in Table 9-9) and sets the avail-

able virtual address to all available kernel space. It then initializes the address space

ranges for boot loader images, process space (hyperspace), and the HAL through the

MiIntializeSystemVaRange function, which is used to set hard-coded address ranges. Later,

when nonpaged pool is initialized, this function is used again to reserve the virtual address

ranges for it. Finally, whenever a driver loads, the address range is relabeled to a driver image

range (instead of a boot loaded range).

After this point, the rest of the system virtual address space can be dynamically requested

and released through MiObtainSystemVa (and its analogous MiObtainSessionVa) and

MiReturnSystemVa. Operations such as expanding the system cache, the system PTEs, non-

paged pool, paged pool, and/or special pool; mapping memory with large pages; creating

the PFN database; and creating a new session all result in dynamic virtual address allocations

for a specific range.

752 Windows Internals, Fifth Edition

TABLE 9-9 System Virtual Address Types

Region Description Limitable

MiVaSessionSpace (0x1) Addresses for session space Yes

MiVaProcessSpace (0x2) Addresses for process address space No

MiVaBootLoaded (0x3) Addresses for images loaded by the boot loader No

MiVaPfnDatabase (0x4) Addresses for the PFN database No

MiVaNonPagedPool (0x5) Addresses for the nonpaged pool Yes

MiVaPagedPool (0x6) Addresses for the paged pool Yes

MiVaSpecialPool (0x7) Addresses for the special pool No

MiVaSystemCache (0x8) Addresses for the system cache Yes

MiVaSystemPtes (0x9) Addresses for system PTEs Yes

MiVaHal (0xA) Addresses for the HAL No

MiVaSessionGlobalSpace (0xB) Addresses for session global space No

MiVaDriverImages (0xC) Addresses for loaded driver images No

Although the ability to dynamically reserve virtual address space on demand allows better

management of virtual memory, it would be useless without the ability to free this memory.

As such, when paged pool or the system cache can be shrunk, or when special pool and

large page mappings are freed, the associated virtual address is freed. (Another case is

when the boot registry is released.) This allows dynamic management of memory depend-

ing on each component’s use. Additionally, components can reclaim memory through

MiReclaimSystemVa, which requests virtual addresses associated with the system cache to be

flushed out (through the dereference segment thread) if available virtual address space has

dropped below 128 MB. (Reclaiming can also be satisfied if initial nonpaged pool has been

freed.)

 Chapter 9 Memory Management 753

EXPERIMENT: Determining the Virtual Address Type

for an Address

Each time the kernel virtual address space allocator obtains virtual memory ranges for

use by a certain type of virtual address, it updates the MiSystemVaType array, which

contains the virtual address type for the newly allocated range.

By taking any given kernel address and calculating its PDE index from the beginning of

system space, you can dump the appropriate byte field in this array to obtain the vir-

tual address type. For example, the following commands will display the virtual address

types for Win32k.sys, the process object for WinDbg, the handle table for WinDbg, the

kernel, a file system cache segment, and hyperspace:

lkd> ?? nt!_MI_SYSTEM_VA_TYPE (((char*)@@(nt!MiSystemVaType))[@@((win32k -

poi(nt!MmSystemRangeStart))/(1000*1000/@@(sizeof(nt!MMPTE))))])

_MI_SYSTEM_VA_TYPE MiVaSessionGlobalSpace (11)

lkd> ?? nt!_MI_SYSTEM_VA_TYPE (((char*)@@(nt!MiSystemVaType))[@@((864753b0 -

poi(nt!MmSystemRangeStart))/(1000*1000/@@(sizeof(nt!MMPTE))))])

_MI_SYSTEM_VA_TYPE MiVaNonPagedPool (5)

lkd> ?? nt!_MI_SYSTEM_VA_TYPE (((char*)@@(nt!MiSystemVaType))[@@((8b2001d0 -

poi(nt!MmSystemRangeStart))/(1000*1000/@@(sizeof(nt!MMPTE))))])

_MI_SYSTEM_VA_TYPE MiVaPagedPool (6)

lkd> ?? nt!_MI_SYSTEM_VA_TYPE (((char*)@@(nt!MiSystemVaType))[@@((nt -

poi(nt!MmSystemRangeStart))/(1000*1000/@@(sizeof(nt!MMPTE))))])

_MI_SYSTEM_VA_TYPE MiVaBootLoaded (3)

lkd> ?? nt!_MI_SYSTEM_VA_TYPE (((char*)@@(nt!MiSystemVaType))[@@((0xb3c80000 -

poi(nt!MmSystemRangeStart))/(1000*1000/@@(sizeof(nt!MMPTE))))])

_MI_SYSTEM_VA_TYPE MiVaSystemCache (8)

lkd> ?? nt!_MI_SYSTEM_VA_TYPE (((char*)@@(nt!MiSystemVaType))[@@((c0400000 -

poi(nt!MmSystemRangeStart))/(1000*1000/@@(sizeof(nt!MMPTE))))])

_MI_SYSTEM_VA_TYPE MiVaProcessSpace (2)

In addition to better proportioning and better management of virtual addresses dedicated

to different kernel memory consumers, the dynamic virtual address allocator also has advan-

tages when it comes to memory footprint reduction. Instead of having to manually preallo-

cate static page table entries and page tables, paging-related structures are allocated on

demand. On both 32-bit and 64-bit systems, this reduces boot-time memory usage because

unused addresses won’t have their page tables allocated. It also means that on 64-bit sys-

tems, the large address space regions that are reserved don’t need to have their page tables

mapped in memory, which allows them to have arbitrarily large limits, especially on systems

that have little physical RAM to back the resulting paging structures.

754 Windows Internals, Fifth Edition

EXPERIMENT: Querying System Virtual Address Usage

You can look at the current usage and peak usage of each system virtual address

type by using the kernel debugger. For each system virtual address type described

in Table 9-9, the MiSystemVaTypeCount, MiSystemVaTypeCountFailures, and

MiSystemVaTypeCountPeak arrays in the kernel contain the sizes, count failures, and

peak sizes for each type. Here’s how you can dump the usage for the system, followed

by the peak usage (you can use a similar technique for the failure counts):

lkd> dd /c 1 MiSystemVaTypeCount l c

81f4f880 00000000

81f4f884 00000028

81f4f888 00000008

81f4f88c 0000000c

81f4f890 0000000b

81f4f894 0000001a

81f4f898 0000002f

81f4f89c 00000000

81f4f8a0 000001b6

81f4f8a4 00000030

81f4f8a8 00000002

81f4f8ac 00000006

lkd> dd /c 1 MiSystemVaTypeCountPeak l c

81f4f840 00000000

81f4f844 00000038

81f4f848 00000000

81f4f84c 00000000

81f4f850 0000003d

81f4f854 0000001e

81f4f858 00000032

81f4f85c 00000000

81f4f860 00000238

81f4f864 00000031

81f4f868 00000000

81f4f86c 00000006

Although theoretically, the different virtual address ranges assigned to components can

grow arbitrarily in size as long as enough system virtual address space is available, the kernel

allocator implements the ability to set limits on each virtual address type for the purposes of

both reliability and stability. Although no limits are imposed by default, system administra-

tors can use the registry to modify these limits for the virtual address types that are currently

marked as limitable (see Table 9-9).

If the current request during the MiObtainSystemVa call exceeds the available limit, a failure

is marked (see the previous experiment) and a reclaim operation is requested regardless

of available memory. This should help alleviate memory load and might allow the virtual

address allocation to work during the next attempt. (Recall, however, that reclaiming affects

only system cache and nonpaged pool).

 Chapter 9 Memory Management 755

EXPERIMENT: Setting System Virtual Address Limits

The MiSystemVaTypeCountLimit array contains limitations for system virtual address

usage that can be set for each type. Currently, the memory manager allows only certain

virtual address types to be limited, and it provides the ability to use an undocumented

system call to set limits for the system dynamically during run time. (These limits can also

be set through the registry, as described at http://msdn.microsoft.com/en-us/library/
bb870880(VS.85).aspx. These limits can be set for those types marked in Table 9-9.

You can use the MemLimit utility from Winsider Seminars & Solutions (www.winsiderss.
com/tools/memlimit.html) to query and set the different limits for these types, and also

to see the current and peak virtual address space usage. Here’s how you can query the

current limits with the –q flag:

C:\ >memlimit.exe -q

MemLimit v1.00 - Query and set hard limits on system VA space consumption

Copyright (C) 2008 Alex Ionescu

www.alex-ionescu.com

System Va Consumption:

Type Current Peak Limit

Non Paged Pool 102400 KB 0 KB 0 KB

Paged Pool 59392 KB 83968 KB 0 KB

System Cache 534528 KB 536576 KB 0 KB

System PTEs 73728 KB 75776 KB 0 KB

Session Space 75776 KB 90112 KB 0 KB

As an experiment, use the following command to set a limit of 100 MB for paged pool:

memlimit.exe -p 100M

And now try running the testlimit –h experiment from Chapter 3 again, which

attempted to create 16 million handles. Instead of reaching the 16 million handle count,

the process will fail, because the system will have run out of address space available for

paged pool allocations.

Finally, as of Windows Vista and Windows Server 2008, the system virtual address space limits

apply only to 32-bit systems, where 1 to 2 GB of kernel address space can lead to exhaustion.

Sixty-four-bit systems have 8 TB of kernel address space, so limiting virtual address space

usage is currently not a concern.

756 Windows Internals, Fifth Edition

System Virtual Address Space Quotas

The system virtual address space limits described in the previous section allow for limiting

systemwide virtual address space usage of certain kernel components, but they work only

on 32-bit systems when applied to the system as a whole. To address more specific quota

requirements that system administrators might have, the memory manager also collaborates

with the process manager to enforce either systemwide or user-specific quotas for each

process.

The PagedPoolQuota, NonPagedPoolQuota, PagingFileQuota, and WorkingSetPagesQuota

values in the HKLM\SYSTEM\CurrentControlSet\Control\Session Manager\Memory

Management key can be configured to specify how much memory of each type a given pro-

cess can use. This information is read at initialization, and the default system quota block is

generated and then assigned to all system processes (user processes will get a copy of the

default system quota block unless per-user quotas have been configured as explained next).

To enable per-user quotas, subkeys under the registry key HKLM\SYSTEM\CurrentControl-

Set\Session Manager\Quota System can be created, each one representing a given user SID.

The values mentioned previously can then be created under this specific SID subkey, enforc-

ing the limits only for the processes created by that user. Table 9-10 shows how to configure

these values, which can be configured at run time or not, and which privileges are required.

TABLE 9-10 Process Quota Types

Value Name Description Value Type Dynamic Privilege

PagedPoolQuota Maximum size of

paged pool that can

be allocated by this

process

Size in MB Only for

processes

running with

the system

token

SeIncreaseQuota-

Privilege

NonPagedPoolQuota Maximum size of

nonpaged pool that

can be allocated by

this process

Size in MB Only for

processes

running with

the system

token

SeIncreaseQuota-

Privilege

PagingFileQuota Maximum number of

pages that a process

can have backed by

the page file

Pages Only for

processes

running with

the system

token

SeIncreaseQuota-

Privilege

WorkingSetPages-

Quota

Maximum number

of pages that a

process can have in

its working set (in

physical memory)

Pages Yes SeIncreaseBase-

PriorityPrivilege

unless operation is

a purge request

 Chapter 9 Memory Management 757

User Address Space Layout

Just as address space in the kernel is dynamic, the user address space in Windows Vista and

later versions is also built dynamically—the addresses of the thread stacks, process heaps,

and loaded images (such as DLLs and an application’s executable) are dynamically computed

(if the application and its images support it) through a mechanism known as Address Space

Layout Randomization, or ASLR.

At the operating system level, user address space is divided into a few well-defined regions of

memory, shown in Figure 9-15. The executable and DLLs themselves are present as memory

mapped image files, followed by the heap(s) of the process and the stack(s) of its thread(s).

Apart from these regions (and some reserved system structures such as the TEBs and PEB),

all other memory allocations are run-time dependent and generated. ASLR is involved with

the location of all these regions and, combined with DEP, provides a mechanism for making

remote exploitation of a system through memory manipulation harder to achieve—by hav-

ing code and data at dynamic locations, an attacker cannot typically hardcode a meaningful

offset.

Thread stack

Dynamic-base DLLs

Executable Randomly chosen
executable load address

Process heapUser

address

space

Kernel

address

space

Randomly chosen
image load address

Thread stack

Thread stack

FIGURE 9-15 User address space layout with ASLR enabled

758 Windows Internals, Fifth Edition

EXPERIMENT: Analyzing User Virtual Address Space

The Vmmap utility from Sysinternals can show you a detailed view of the virtual mem-

ory being utilized by any process on your machine, divided into categories for each

type of allocation, summarized as follows:

Image Displays memory allocations used to map the process and its depen-

dencies (such as dynamic libraries) and any other memory mapped image files

Private Displays memory allocations marked as private, such as internal data

structures, other than the stack and heap

Shareable Displays memory allocations marked as shareable, typically includ-

ing shared memory (but not memory mapped files, which are either Image or

Mapped File)

Mapped File Displays memory allocations for memory mapped data files

Heap Displays memory allocated for the heap(s) that this process owns

Stack Displays memory allocated for the stack of each thread in this process

System Displays kernel memory allocated for the process (such as the process

object)

The following screen shot shows a typical view of Explorer as seen through Vmmap.

 Chapter 9 Memory Management 759

Depending on the type of memory allocation, Vmmap can show additional informa-

tion, such as file names (for mapped files), heap IDs (for heap allocations), and thread

IDs (for stack allocations). Furthermore, each allocation’s cost is shown both in commit-

ted memory and working set memory. The size and protection of each allocation is also

displayed.

ASLR begins at the image level, with the executable for the process and its dependent

DLLs. Any image file that has specified ASLR support in its PE header (IMAGE_DLL_

CHARACTERISTICS_DYNAMIC_BASE), typically specified by using the /DYNAMICBASE linker

flag in Microsoft Visual Studio, and contains a relocation section will be processed by ASLR.

When such an image is found, the system selects an image offset valid globally for the cur-

rent boot. This offset is selected from a bucket of 256 values, all of which are 64-KB aligned.

Note You can control ASLR behavior by creating a key called MoveImages under HKLM\

SYSTEM\CurrentControlSet\Session Manager\Memory Management. Setting this value to 0 will

disable ASLR, while a value of 0xFFFFFFFF (–1) will enable ASLR regardless of the IMAGE_DLL_

CHARACTERISTICS_DYNAMIC_BASE flag. (Images must still be relocatable, however.)

Image Randomization

For executables, the load offset is calculated by computing a delta value each time an exe-

cutable is loaded. This value is a pseudo-random 8-bit number from 0x10000 to 0xFE0000,

calculated by taking the current processor’s time stamp counter (TSC), shifting it by four

places, and then performing a division modulo 254 and adding 1. This number is then mul-

tiplied by the allocation granularity of 64 KB discussed earlier. By adding 1, the memory

manager ensures that the value can never be 0, so executables will never load at the address

in the PE header if ASLR is being used. This delta is then added to the executable’s preferred

load address, creating one of 256 possible locations within 16 MB of the image address in the

PE header.

For DLLs, computing the load offset begins with a per-boot, systemwide value called the

image bias, which is computed by MiInitializeRelocations and stored in MiImageBias. This

value corresponds to the time stamp counter (TSC) of the current CPU when this function was

called during the boot cycle, shifted and masked into an 8-bit value, which provides 256 pos-

sible values. Unlike executables, this value is computed only once per boot and shared across

the system to allow DLLs to remain shared in physical memory and relocated only once.

Otherwise, if every DLL was loaded at a different location inside different processes, each DLL

would have a private copy loaded in physical memory.

760 Windows Internals, Fifth Edition

Once the offset is computed, the memory manager initializes a bitmap called the

MiImageBitMap. This bitmap is used to represent ranges from 0x50000000 to 0x78000000

(stored in MiImageBitMapHighVa), and each bit represents one unit of allocation (64 KB, as

mentioned earlier). Whenever the memory manager loads a DLL, the appropriate bit is set

to mark its location in the system; when the same DLL is loaded again, the memory manager

shares its section object with the already relocated information.

As each DLL is loaded, the system scans the bitmap from top to bottom for free bits. The

MiImageBias value computed earlier is used as a start index from the top to randomize the

load across different boots as suggested. Because the bitmap will be entirely empty when

the first DLL (which is always Ntdll.dll) is loaded, its load address can easily be calculated:

0x78000000 – MiImageBias * 0x10000. Each subsequent DLL will then load in a 64-KB chunk

below. Because of this, if the address of Ntdll.dll is known, the addresses of other DLLs could

easily be computed. To mitigate this possibility, the order in which known DLLs are mapped

by the Session Manager during initialization is also randomized when Smss loads.

Finally, if no free space is available in the bitmap (which would mean that most of the region

defined for ASLR is in use, the DLL relocation code defaults back to the executable case, load-

ing the DLL at a 64-KB chunk within 16 MB of its preferred base address.

Stack Randomization

The next step in ASLR is to randomize the location of the initial thread’s stack (and, subse-

quently, of each new thread). This randomization is enabled unless the flag StackRandomiza-
tion Disabled was enabled for the process and consists of first selecting one of 32 possible

stack locations separated by either 64 KB or 256 KB. This base address is selected by finding

the first appropriate free memory region and then choosing the xth available region, where x

is once again generated based on the current processor’s TSC shifted and masked into a 5-bit

value (which allows for 32 possible locations).

Once this base address has been selected, a new TSC-derived value is calculated, this one

9 bits long. The value is then multiplied by 4 to maintain alignment, which means it can

be as large as 2,048 bytes (half a page). It is added to the base address to obtain the final

stack base.

Heap Randomization

Finally, ASLR randomizes the location of the initial process heap (and subsequent heaps)

when created in user mode. The RtlCreateHeap function uses another pseudo-random,

TSC-derived value to determine the base address of the heap. This value, 5 bits this time, is

multiplied by 64 KB to generate the final base address, starting at 0, giving a possible range

of 0x00000000 to 0x001F0000 for the initial heap. Additionally, the range before the heap

base address is manually deallocated in an attempt to force an access violation if an attack is

doing a brute-force sweep of the entire possible heap address range.

 Chapter 9 Memory Management 761

EXPERIMENT: Looking at ASLR Protection on Processes

You can use Process Explorer from Sysinternals to look over your processes (and, just as

important, the DLLs they load) to see if they support ASLR. To look at the ASLR status

for processes, right-click on any column in the process tree, choose Select Columns,

and then check ASLR Enabled on the Process Image tab. The following screen shot

displays an example of a system on which you can notice that ASLR is enabled for all

in-box Windows programs and services but that some third-party applications and ser-

vices are not yet built with ASLR support.

Address Translation

Now that you’ve seen how Windows structures the virtual address space, let’s look at how it

maps these address spaces to real physical pages. User applications and system code refer-

ence virtual addresses. This section starts with a detailed description of 32-bit x86 address

translation and continues with a brief description of the differences on the 64-bit IA64 and

x64 platforms. In the next section, we’ll describe what happens when such a translation

doesn’t resolve to a physical memory address (paging) and explain how Windows manages

physical memory via working sets and the page frame database.

762 Windows Internals, Fifth Edition

x86 Virtual Address Translation

Using data structures the memory manager creates and maintains called page tables, the CPU

translates virtual addresses into physical addresses. Each virtual address is associated with a

system-space structure called a page table entry (PTE), which contains the physical address

to which the virtual one is mapped. For example, Figure 9-16 shows how three consecutive

virtual pages are mapped to three physically discontiguous pages on an x86 system. There

may not even be any PTEs for regions that have been marked as reserved or committed but

never accessed, because the page table itself might be allocated only when the first page

fault occurs.

FIGURE 9-16 Mapping virtual addresses to physical memory (x86)

The dashed line connecting the virtual pages to the PTEs in Figure 9-16 represents the indi-

rect relationship between virtual pages and physical memory.

Note Kernel-mode code (such as device drivers) can reference physical memory addresses by

mapping them to virtual addresses. For more information, see the memory descriptor list (MDL)

support routines described in the WDK documentation.

 Chapter 9 Memory Management 763

By default, Windows on an x86 system uses a two-level page table structure to translate vir-

tual to physical addresses. (x86 systems running the PAE kernel use a three-level page table—

this section assumes non-PAE systems.) A 32-bit virtual address mapped by a normal 4-KB

page is interpreted as three separate components—the page directory index, the page table

index, and the byte index—that are used as indexes into the structures that describe page

mappings, as illustrated in Figure 9-17. The page size and the PTE width dictate the width of

the page directory and page table index fields. For example, on x86 systems, the byte index

is 12 bits because pages are 4,096 bytes (212 = 4,096).

FIGURE 9-17 Components of a 32-bit virtual address on x86 systems

The page directory index is used to locate the page table in which the virtual address’s PTE is

located. The page table index is used to locate the PTE, which, as mentioned earlier, contains

the physical address to which a virtual page maps. The byte index finds the proper address

within that physical page. Figure 9-18 shows the relationship of these three values and how

they are used to map a virtual address into a physical address.

KPROCESS

Page directory

index

Page table

index

Byte

index

Physical addressCR3

Page directory
(one per process, 1,024 entries)

Page tables
(up to 512 per process

plus up to 512 systemwide,
1,024 entries per table)

Physical address
space

Desired byte

Desired page
Index

PFN

PFN

PTE

Index

PDE

Index

FIGURE 9-18 Translating a valid virtual address (x86-specific)

764 Windows Internals, Fifth Edition

The following basic steps are involved in translating a virtual address:

 1. The memory management hardware locates the page directory for the current process.

On each process context switch, the hardware is told the address of a new process page

directory by the operating system setting a special CPU register (CR3 in Figure 9-18).

 2. The page directory index is used as an index into the page directory to locate the page

directory entry (PDE) that describes the location of the page table needed to map the

virtual address. The PDE contains the page frame number (PFN) of the page table (if it

is resident—page tables can be paged out or not yet created). In both of these cases,

the page table is first made resident before proceeding. For large pages, the PDE points

directly to the PFN of the target page, and the rest of the address is treated as the byte

offset within this frame.

 3. The page table index is used as an index into the page table to locate the PTE that

describes the physical location of the virtual page in question.

 4. The PTE is used to locate the page. If the page is valid, it contains the PFN of the page

in physical memory that contains the virtual page. If the PTE indicates that the page

isn’t valid, the memory management fault handler locates the page and tries to make it

valid. (See the section on page fault handling.) If the page should not be made valid (for

example, because of a protection fault), the fault handler generates an access violation

or a bug check.

 5. When the PTE is pointed to a valid page, the byte index is used to locate the address of

the desired data within the physical page.

Now that you have the overall picture, let’s look at the detailed structure of page directories,

page tables, and PTEs.

Page Directories

Each process has a single page directory, a page the memory manager creates to map

the location of all page tables for that process. The physical address of the process page

directory is stored in the kernel process (KPROCESS) block, but it is also mapped virtually

at address 0xC0300000 on x86 systems (0xC0600000 on systems running the PAE kernel

image). Most code running in kernel mode references virtual addresses, not physical ones.

(For more detailed information about KPROCESS and other process data structures, refer to

Chapter 5.)

The CPU knows the location of the page directory page because a special register (CR3 on

x86 systems) inside the CPU that is loaded by the operating system contains the physical

address of the page directory. Each time a context switch occurs to a thread that is in a dif-

ferent process than that of the currently executing thread, this register is loaded from the

KPROCESS block of the target process being switched to by the context-switch routine in the

kernel. Context switches between threads in the same process don’t result in reloading the

 Chapter 9 Memory Management 765

physical address of the page directory because all threads within the same process share the

same process address space.

The page directory is composed of page directory entries (PDEs), each of which is 4 bytes long

(8 bytes on systems running the PAE kernel image) and describes the state and location of all

the possible page tables for that process. (If the page table does not yet exist, the VAD tree

is consulted to determine whether an access should materialize it.) (As described later in the

chapter, page tables are created on demand, so the page directory for most processes points

only to a small set of page tables.) The format of a PDE isn’t repeated here because it’s mostly

the same as a hardware PTE.

On x86 systems running in non-PAE mode, 1,024 page tables are required to describe the full

4-GB virtual address space. The process page directory that maps these page tables contains

1,024 PDEs. Therefore, the page directory index needs to be 10 bits wide (210 = 1,024). On

x86 systems running in PAE mode, there are 512 entries in a page table (because the PTE size

is 8 bytes and page tables are 4 KB in size). Because there are 4 page directories, the result is

a maximum of 2,048 page tables.

EXPERIMENT: Examining the Page Directory and PDEs

You can see the physical address of the currently running process’s page directory by

examining the DirBase field in the !process kernel debugger output:

lkd> !process

PROCESS 87248070 SessionId: 1 Cid: 088c Peb: 7ffdf000 ParentCid: 06d0

 DirBase: ce2a8980 ObjectTable: a72ba408 HandleCount: 95.

 Image: windbg.exe

 VadRoot 86ed30a0 Vads 85 Clone 0 Private 3474. Modified 187. Locked 1.

 DeviceMap 98fd1008

 Token affe1c48

 ElapsedTime 00:18:17.182

 UserTime 00:00:00.000

 KernelTime 00:00:00.000

You can see the page directory’s virtual address by examining the kernel debugger out-

put for the PTE of a particular virtual address, as shown here:

lkd> !pte 50001

 VA 00050001

PDE at 00000000C0600000 PTE at 00000000C0000280

contains 0000000056C74867 contains 80000000C0EBD025

pfn 56c74 ---DA--UWEV pfn c0ebd ----A--UR-V

The PTE part of the kernel debugger output is defined in the section “Page Tables and

Page Table Entries.”

Because Windows provides a private address space for each process, each process has its

own set of process page tables to map that process’s private address space. However, the

766 Windows Internals, Fifth Edition

page tables that describe system space are shared among all processes (and session space is

shared only among processes in a session). To avoid having multiple page tables describing

the same virtual memory, when a process is created, the page directory entries that describe

system space are initialized to point to the existing system page tables. If the process is part

of a session, session space page tables are also shared by pointing the session space page

directory entries to the existing session page tables.

Page Tables and Page Table Entries

The process page directory entries point to individual page tables. Page tables are composed

of an array of PTEs. The virtual address’s page table index field (as shown in Figure 9-17) indi-

cates which PTE within the page table maps the data page in question. On x86 systems, the

page table index is 10 bits wide (9 on PAE), allowing you to reference up to 1,024 4-byte PTEs

(512 8-byte PTEs on PAE systems). However, because 32-bit Windows provides a 4-GB private

virtual address space, more than one page table is needed to map the entire address space.

To calculate the number of page tables required to map the entire 4-GB process virtual

address space, divide 4 GB by the virtual memory mapped by a single page table. Recall that

each page table on an x86 system maps 4 MB (2 MB on PAE) of data pages. Thus, 1,024 page

tables (4 GB/4 MB)—or 2,048 page tables (4 GB/2 MB) for PAE—are required to map the full

4-GB address space.

You can use the !pte command in the kernel debugger to examine PTEs. (See the experiment

“Translating Addresses.”) We’ll discuss valid PTEs here and invalid PTEs in a later section. Valid

PTEs have two main fields: the page frame number (PFN) of the physical page containing the

data or of the physical address of a page in memory, and some flags that describe the state

and protection of the page, as shown in Figure 9-19.

Reserved (writable on multi-
processor systems)
Software field (prototype PTE)
Software field (copy-on-write)
Global
Reserved (large page if PDE)
Dirty
Accessed
Cache disabled
Write through
Owner
Write (writable on multi-
processor systems)
Valid

Protection

Page frame number U P Cw Gl L D A Cd Wt O W V

31 01112 10 9 8 7 6 5 4 3 2 1

FIGURE 9-19 Valid x86 hardware PTEs

 Chapter 9 Memory Management 767

As you’ll see later, the bits labeled Reserved in Figure 9-19 are used only when the PTE

is valid. (The bits are interpreted by software.) Table 9-11 briefly describes the hardware-

defined bits in a valid PTE.

TABLE 9-11 PTE Status and Protection Bits

Name of Bit Meaning

Accessed Page has been read.

Cache disabled Disables caching for that page.

Copy-on-write Page is using copy-on-write (described earlier).

Dirty Page has been written to.

Global Translation applies to all processes. (For example, a translation buffer flush

won’t affect this PTE.)

Large page Indicates that the PDE maps a 4-MB page (or 2 MB on PAE systems). See the

section “Large and Small Pages” earlier in the chapter.

Owner Indicates whether user-mode code can access the page or whether the page is

limited to kernel-mode access.

Prototype The PTE is a prototype PTE, which is used as a template to describe shared

memory associated with section objects.

Valid Indicates whether the translation maps to a page in physical memory.

Write through Disables caching of writes to this page so that changes are immediately flushed

to disk.

Write Indicates whether the page is writable. (The Write bit is stored in a reserved bit

in the PTE.)

On x86 systems, a hardware PTE contains a Dirty bit and an Accessed bit. The Accessed bit is

clear if a physical page represented by the PTE hasn’t been read or written since the last time

it was cleared; the processor sets this bit when the page is read or written if and only if the

bit is clear at the time of access. The memory manager sets the Dirty bit when a page is first

written, compared to the backing store copy. In addition to those two bits, the x86 memory

management implementation uses a Write bit to provide page protection. When this bit

is clear, the page is read-only; when it is set, the page is read/write. If a thread attempts

to write to a page with the Write bit clear, a memory management exception occurs, and

the memory manager’s access fault handler (described in the next section) must determine

whether the thread can write to the page (for example, if the page was really marked copy-

on-write) or whether an access violation should be generated.

The additional Write bit implemented in software (as described above) is used to optimize

flushing of the PTE cache (called the translation look-aside buffer, described in the next

section).

768 Windows Internals, Fifth Edition

Byte Within Page

Once the memory manager has found the physical page in question, it must find the

requested data within that page. This is where the byte index field comes in. The byte index

field tells the CPU which byte of data in the page you want to reference. On x86 systems, the

byte index is 12 bits wide, allowing you to reference up to 4,096 bytes of data (the size of a

page). So, adding the byte offset to the physical page number retrieved from the PTE com-

pletes the translation of a virtual address to a physical address.

Translation Look-Aside Buffer

As you’ve learned so far, each hardware address translation requires two lookups: one to

find the right page table in the page directory and one to find the right entry in the page

table. Because doing two additional memory lookups for every reference to a virtual address

would result in unacceptable system performance, all CPUs cache address translations so that

repeated accesses to the same addresses don’t have to be retranslated. The processor pro-

vides such a cache in the form of an array of associative memory called the translation look-
aside buffer, or TLB. Associative memory, such as the TLB, is a vector whose cells can be read

simultaneously and compared to a target value. In the case of the TLB, the vector contains

the virtual-to-physical page mappings of the most recently used pages, as shown in Figure

9-20, and the type of page protection, size, attributes, and so on applied to each page. Each

entry in the TLB is like a cache entry whose tag holds portions of the virtual address and

whose data portion holds a physical page number, protection field, valid bit, and usually a

dirty bit indicating the condition of the page to which the cached PTE corresponds. If a PTE’s

global bit is set (used for system space pages that are globally visible to all processes), the TLB

entry isn’t invalidated on process context switches.

Virtual address TLB

.

.

.

FIGURE 9-20 Accessing the translation look-aside buffer

 Chapter 9 Memory Management 769

Virtual addresses that are used frequently are likely to have entries in the TLB, which pro-

vides extremely fast virtual-to-physical address translation and, therefore, fast memory

access. If a virtual address isn’t in the TLB, it might still be in memory, but multiple memory

accesses are needed to find it, which makes the access time slightly slower. If a virtual page

has been paged out of memory or if the memory manager changes the PTE, the memory

manager is required to explicitly invalidate the TLB entry. If a process accesses it again, a page

fault occurs, and the memory manager brings the page back into memory (if needed) and

re-creates its PTE entry (which then results in an entry for it in the TLB).

Physical Address Extension (PAE)

The Intel x86 Pentium Pro processor introduced a memory-mapping mode called Physical
Address Extension (PAE). With the proper chipset, the PAE mode allows 32-bit operating

systems access to up to 64 GB of physical memory on current Intel x86 processors and up

to 1,024 GB of physical memory when running on x64 processors in legacy mode (although

Windows currently limits this to 64 GB due to the size of the PFN database required to map

so much memory). When the processor executes in PAE mode, the memory management

unit (MMU) divides virtual addresses mapped by normal pages into four fields, as shown in

Figure 9-21.

CR3

PFN

Page directory
(up to 4 per process,
512 entries per table,

8 bytes wide)

Page tables
(512 entries per
table, 8 bytes

wide)

Physical address
space

Page directory pointers table
(one per process, 4 entries)

Page directory
pointers index

Page directory
index

Page table
index

Page byte
offset

KPROCESS

Physical address

Index

Desired
page

Desired
byte

Index Index Index

Index

PFN

PFN

PDE

PDE

PTE

31 29 20 11

FIGURE 9-21 Page mappings with PAE

The MMU still implements page directories and page tables, but a third level, the page direc-

tory pointer table, exists above them. PAE mode can address more memory than the stan-

dard translation mode not because of the extra level of translation but because PDEs and

770 Windows Internals, Fifth Edition

PTEs are 64 bits wide rather than 32 bits. A 32-bit system represents physical addresses inter-

nally with 24 bits, which gives the ability to support a maximum of 224+12 bytes, or 64 GB,

of memory. One way in which 32-bit applications can take advantage of such large memory

configurations is described in the earlier section “Address Windowing Extensions.” However,

even if applications are not using such functions, the memory manager will use all available

physical memory for multiple processes’ working sets, file cache, and trimmed private data

through the use of the system cache, standby, and modified lists (described in the section

“Page Frame Number Database”).

As explained in Chapter 2, there is a special version of the 32-bit Windows kernel with sup-

port for PAE called Ntkrnlpa.exe. This PAE kernel is loaded on 32-bit systems that have hard-

ware support for nonexecutable memory (described earlier in the section “No Execute Page

Protection”) or on systems that have more than 4 GB of RAM on an edition of Windows that

supports more than 4 GB of RAM (for example, Windows Server 2008 Enterprise Edition). To

force the loading of this PAE-enabled kernel, you can set the pae BCD option to ForceEnable.

Note that the PAE kernel is present on all 32-bit Windows systems, even systems with small

memory without hardware no-execute support. The reason for this is to facilitate device

driver testing. Because the PAE kernel presents 64-bit addresses to device drivers and other

system code, booting with pae even on a small memory system allows device driver devel-

opers to test parts of their drivers with large addresses. The other relevant BCD option is

nolowmem, which discards memory below 4 GB (assuming you have at least 5 GB of physical

memory) and relocates device drivers above this range. This guarantees that drivers will be

presented with physical addresses greater than 32 bits, which makes any possible driver sign

extension bugs easier to find.

EXPERIMENT: Translating Addresses

To clarify how address translation works, this experiment shows a real example of

translating a virtual address on an x86 PAE system (which is typical on today’s proces-

sors, which support hardware no-execute protection, not because PAE itself is actually

in use), using the available tools in the kernel debugger to examine page directories,

page tables, and PTEs. In this example, we’ll work with a process that has virtual address

0x50001 currently mapped to a valid physical address. In later examples, you’ll see how

to follow address translation for invalid addresses with the kernel debugger.

First let’s convert 0x50001 to binary and break it into the three fields that are used to

translate an address. In binary, 0x50001 is 101.0000.0000.0000.0001. Breaking it into

the component fields yields the following:

 Chapter 9 Memory Management 771

To start the translation process, the CPU needs the physical address of the process page

directory, stored in the CR3 register while a thread in that process is running. You can

display this address by examining the CR3 register itself or by dumping the KPROCESS

block for the process in question with the !process command, as shown here:

lkd> !process

PROCESS 87248070 SessionId: 1 Cid: 088c Peb: 7ffdf000 ParentCid: 06d0

 DirBase: ce2a8980 ObjectTable: a72ba408 HandleCount: 95.

 Image: windbg.exe

 VadRoot 86ed30a0 Vads 85 Clone 0 Private 3559. Modified 187. Locked 1.

 DeviceMap 98fd1008

 Token affe1c48

In this case, the page directory is stored at physical address 0xce2a8980. As shown in

the preceding illustration, the page directory index field in this example is 0. Therefore,

the PDE is at physical address 0xce2a8980.

The kernel debugger !pte command displays the PDE and PTE that describe a virtual

address, as shown here:

lkd> !pte 50001

 VA 00050001

PDE at 00000000C0600000 PTE at 00000000C0000280

contains 0000000056C74867 contains 80000000C0EBD025

pfn 56c74 ---DA--UWEV pfn c0ebd ----A--UR-V

In the first column the kernel debugger displays the PDE, and in the second column

it displays the PTE. Notice that the PDE address is shown as a virtual address, not a

physical address—as noted earlier, the process page directory starts at virtual address

0xC0600000 on x86 systems with PAE (in this case, the PAE kernel is loaded because

the CPU supports no-execute protection). Because we’re looking at the first PDE in the

page directory, the PDE address is the same as the page directory address.

The PTE is at virtual address 0xC0000280. You can compute this address by multiply-

ing the page table index (0x50 in this example) by the size of a PTE: 0x50 multiplied by

8 (on a non-PAE system, this would be 4) equals 0x280. Because the memory manager

maps page tables starting at 0xC0000000, adding 280 yields the virtual address shown

in the kernel debugger output: 0xC0000280. The page table page is at PFN 0x56c74,

and the data page is at PFN 0xc0ebd.

The PTE flags are displayed to the right of the PFN number. For example, the PTE that

describes the page being referenced has flags of --A--UR-V. Here, A stands for accessed

(the page has been read), U for user-mode page (as opposed to a kernel-mode page),

R for read-only page (rather than writable), and V for valid. (The PTE represents a valid

page in physical memory.)

772 Windows Internals, Fifth Edition

IA64 Virtual Address Translation

The virtual address space for IA64 is divided into eight regions by the hardware. Each region

can have its own set of page tables. Windows uses five of the regions, three of which have

page tables. Table 9-12 lists the regions and how they are used.

TABLE 9-12 The IA64 Regions

Region Use

0 User code and data

1 Session space code and data

2 Unused

3 Unused

4 Kseg3, which is a cached 1-to-1 mapping of physical memory. No page tables are

needed for this region because the necessary TLB inserts are done directly by the

memory manager.

5 Kseg4, which is a noncached 1-to-1 mapping for physical memory. This is used only in

a few places for accessing I/O locations such as the I/O port range. There are no page

tables needed for this region.

6 Unused

7 Kernel code and data

Address translation by 64-bit Windows on the IA64 platform uses a three-level page table

scheme. Each process has a page directory pointer structure that contains 1,024 pointers to

page directories. Each page directory contains 1,024 pointers to page tables, which in turn

point to physical pages. Figure 9-22 shows the format of an IA64 hardware PTE.

FIGURE 9-22 IA64 page table entry

 Chapter 9 Memory Management 773

x64 Virtual Address Translation

64-bit Windows on the x64 architecture uses a four-level page table scheme. Each process

has a top-level extended page directory (called the page map level 4) that contains 512

pointers to a third-level structure called a page parent directory. Each page parent directory

contains 512 pointers to second-level page directories, each of which contain 512 pointers

to the individual page tables. Finally, the page tables (each of which contain 512 page table

entries) point to pages in memory. Current implementations of the x64 architecture limit vir-

tual addresses to 48 bits. The components that make up this 48-bit virtual address are shown

in Figure 9-23. The connections between these structures are shown in Figure 9-24. Finally,

the format of an x64 hardware page table entry is shown in Figure 9-25.

FIGURE 9-23 x64 virtual address

Page table
selector

Page dir
pointer

Page table
entry selector

Byte within
page

Page map
level 4

Page map
level 4

Page directory
pointers

Page
directories

Page
tables

Physical pages
(up to 248)CR3

PFN 0

1

2

3

4

5

6

7

8

9

10

11

12
.
.
.

47 0

FIGURE 9-24 x64 address translation structures

774 Windows Internals, Fifth Edition

U P Cw Gl L DNX A Cd Wt O W V

63 62 5152 40 39 12 91011 8 7 6 5 4 23 1 0

Software field (copy on write)

Page Frame Number

Global

Accessed

Large page
Dirty

Cache disabled

Owner
Write
Valid

Write through

Reserved
No execute

Software
(working
set index)

Reserved

Software field (prototype PTE)

FIGURE 9-25 x64 hardware page table entry

Page Fault Handling

Earlier, you saw how address translations are resolved when the PTE is valid. When the PTE

valid bit is clear, this indicates that the desired page is for some reason not (currently) acces-

sible to the process. This section describes the types of invalid PTEs and how references to

them are resolved.

Note Only the 32-bit x86 PTE formats are detailed in this book. PTEs for 64-bit systems contain

similar information, but their detailed layout is not presented.

A reference to an invalid page is called a page fault. The kernel trap handler (introduced in

the section “Trap Dispatching” in Chapter 3) dispatches this kind of fault to the memory man-

ager fault handler (MmAccessFault) to resolve. This routine runs in the context of the thread

that incurred the fault and is responsible for attempting to resolve the fault (if possible) or

raise an appropriate exception. These faults can be caused by a variety of conditions, as listed

in Table 9-13.

TABLE 9-13 Reasons for Access Faults

Reason for Fault Result

Accessing a page that isn’t resident in memory

but is on disk in a page file or a mapped file

Allocate a physical page, and read the desired page

from disk and into the relevant working set

Accessing a page that is on the standby or

modified list

Transition the page to the relevant process, session,

or system working set

Accessing a page that isn’t committed (for

example, reserved address space or address

space that isn’t allocated)

Access violation

Accessing a page from user mode that can be

accessed only in kernel mode

Access violation

 Chapter 9 Memory Management 775

Reason for Fault Result

Writing to a page that is read-only Access violation

Accessing a demand-zero page Add a zero-filled page to the relevant working set

Writing to a guard page Guard-page violation (if a reference to a user-mode

stack, perform automatic stack expansion)

Writing to a copy-on-write page Make process-private (or session-private) copy of

page, and replace original in process or system

working set

Writing to a page that is valid but hasn’t been

written to the current backing store copy

Set dirty bit in PTE

Executing code in a page that is marked as no

execute

Access violation (supported only on hardware

platforms that support no execute protection)

The following section describes the four basic kinds of invalid PTEs that are processed by the

access fault handler. Following that is an explanation of a special case of invalid PTEs, proto-

type PTEs, which are used to implement shareable pages.

Invalid PTEs

The following list details the four kinds of invalid PTEs and their structure. Some of the flags

are the same as those for a hardware PTE as described in Table 9-11.

Page file The desired page resides within a paging file. An in-page operation is initi-

ated, as illustrated in Figure 9-26.

0

31 412 5 091011 1

Page file offset Protection Page frame number

Prototype
Transition

Valid

FIGURE 9-26 An in-page operation

Demand zero The desired page must be satisfied with a page of zeros. The pager

looks at the zero page list. If the list is empty, the pager takes a page from the free list

and zeroes it. If the free list is also empty, it takes a page from one of the standby lists

and zeroes it. The PTE format is the same as the page file PTE shown in the previous

entry, but the page file number and offset are zeros.

Transition The desired page is in memory on either the standby, modified, or

 modified-no-write list or not on any list. The page will be removed from the list (if it is

on one) and added to the working set as shown in Figure 9-27.

776 Windows Internals, Fifth Edition

31 12 5 091011 1234

Page frame number Protection

Prototype
Transition

Valid

1 1 0

Protection
Cache disable
Write through
Owner
Write

FIGURE 9-27 A transition operation

Unknown The PTE is zero, or the page table doesn’t yet exist. In both cases, this flag

means that you should examine the virtual address descriptors (VADs) to determine

whether this virtual address has been committed. If so, page tables are built to rep-

resent the newly committed address space. (See the discussion of VADs later in the

chapter.)

Prototype PTEs

If a page can be shared between two processes, the memory manager uses a software struc-

ture called prototype page table entries (prototype PTEs) to map these potentially shared

pages. For page-file-backed sections, an array of prototype PTEs is created when a section

object is first created; for mapped files, portions of the array are created on demand as each

view is mapped. These prototype PTEs are part of the segment structure, described at the

end of this chapter.

When a process first references a page mapped to a view of a section object (recall that the

VADs are created only when the view is mapped), the memory manager uses the information

in the prototype PTE to fill in the real PTE used for address translation in the process page

table. When a shared page is made valid, both the process PTE and the prototype PTE point

to the physical page containing the data. To track the number of process PTEs that reference

a valid shared page, a counter in its PFN database entry is incremented. Thus, the memory

manager can determine when a shared page is no longer referenced by any page table and

thus can be made invalid and moved to a transition list or written out to disk.

When a shareable page is invalidated, the PTE in the process page table is filled in with a

 special PTE that points to the prototype PTE entry that describes the page, as shown in

Fig ure 9-28.

 Chapter 9 Memory Management 777

0

31 11 078910 1
PTE address

(bits 7 through 27)
PTE address

(bits 0 through 6)

Prototype
Valid

FIGURE 9-28 Structure of an invalid PTE that points to the prototype PTE

Thus, when the page is later accessed, the memory manager can locate the prototype PTE

using the information encoded in this PTE, which in turn describes the page being refer-

enced. A shared page can be in one of six different states as described by the prototype PTE

entry:

Active/valid The page is in physical memory as a result of another process that

accessed it.

Transition The desired page is in memory on the standby or modified list (or not on

any list).

Modified-no-write The desired page is in memory and on the modified-no-write list.

(See Table 9-20.)

Demand zero The desired page should be satisfied with a page of zeros.

Page file The desired page resides within a page file.

Mapped file The desired page resides within a mapped file.

Although the format of these prototype PTE entries is the same as that of the real PTE entries

described earlier, these prototype PTEs aren’t used for address translation—they are a layer

between the page table and the page frame number database and never appear directly in

page tables.

By having all the accessors of a potentially shared page point to a prototype PTE to resolve

faults, the memory manager can manage shared pages without needing to update the page

tables of each process sharing the page. For example, a shared code or data page might be

paged out to disk at some point. When the memory manager retrieves the page from disk,

it needs only to update the prototype PTE to point to the page’s new physical location—the

PTEs in each of the processes sharing the page remain the same (with the valid bit clear and

still pointing to the prototype PTE). Later, as processes reference the page, the real PTE will

get updated.

Figure 9-29 illustrates two virtual pages in a mapped view. One is valid, and the other is

invalid. As shown, the first page is valid and is pointed to by the process PTE and the pro-

totype PTE. The second page is in the paging file—the prototype PTE contains its exact

location. The process PTE (and any other processes with that page mapped) points to this

prototype PTE.

778 Windows Internals, Fifth Edition

FIGURE 9-29 Prototype page table entries

In-Paging I/O

In-paging I/O occurs when a read operation must be issued to a file (paging or mapped) to

satisfy a page fault. Also, because page tables are pageable, the processing of a page fault

can incur additional I/O if necessary when the system is loading the page table page that

contains the PTE or the prototype PTE that describes the original page being referenced.

The in-page I/O operation is synchronous—that is, the thread waits on an event until the I/O

completes—and isn’t interruptible by asynchronous procedure call (APC) delivery. The pager

uses a special modifier in the I/O request function to indicate paging I/O. Upon completion

of paging I/O, the I/O system triggers an event, which wakes up the pager and allows it to

continue in-page processing.

While the paging I/O operation is in progress, the faulting thread doesn’t own any critical

memory management synchronization objects. Other threads within the process are allowed

to issue virtual memory functions and handle page faults while the paging I/O takes place.

But a number of interesting conditions that the pager must recognize when the I/O com-

pletes are exposed:

Another thread in the same process or a different process could have faulted the same

page (called a collided page fault and described in the next section).

The page could have been deleted (and remapped) from the virtual address space.

The protection on the page could have changed.

The fault could have been for a prototype PTE, and the page that maps the prototype

PTE could be out of the working set.

 Chapter 9 Memory Management 779

The pager handles these conditions by saving enough state on the thread’s kernel stack

before the paging I/O request such that when the request is complete, it can detect these

conditions and, if necessary, dismiss the page fault without making the page valid. When and

if the faulting instruction is reissued, the pager is again invoked and the PTE is reevaluated in

its new state.

Collided Page Faults

The case when another thread in the same process or a different process faults a page that

is currently being in-paged is known as a collided page fault. The pager detects and handles

collided page faults optimally because they are common occurrences in multithreaded sys-

tems. If another thread or process faults the same page, the pager detects the collided page

fault, noticing that the page is in transition and that a read is in progress. (This information

is in the PFN database entry.) In this case, the pager may issue a wait operation on the event

specified in the PFN database entry, or it can choose to issue a parallel I/O to protect the file

systems from deadlocks (the first I/O to complete “wins,” and the others are discarded). This

event was initialized by the thread that first issued the I/O needed to resolve the fault.

When the I/O operation completes, all threads waiting on the event have their wait satisfied.

The first thread to acquire the PFN database lock is responsible for performing the in-page

completion operations. These operations consist of checking I/O status to ensure that the I/O

operation completed successfully, clearing the read-in-progress bit in the PFN database, and

updating the PTE.

When subsequent threads acquire the PFN database lock to complete the collided page fault,

the pager recognizes that the initial updating has been performed because the read-in-

 progress bit is clear and checks the in-page error flag in the PFN database element to ensure

that the in-page I/O completed successfully. If the in-page error flag is set, the PTE isn’t

updated and an in-page error exception is raised in the faulting thread.

Clustered Page Faults

The memory manager prefetches large clusters of pages to satisfy page faults and populate

the system cache. The prefetch operations read data directly into the system’s page cache

instead of into a working set in virtual memory, so the prefetched data does not consume

virtual address space, and the size of the fetch operation is not limited to the amount of vir-

tual address space that is available. (Also, no expensive TLB-flushing Inter-Processor Interrupt

is needed if the page will be repurposed.) The prefetched pages are put on the standby list

and marked as in transition in the PTE. If a prefetched page is subsequently referenced, the

memory manager adds it to the working set. However, if it is never referenced, no system

resources are required to release it. If any pages in the prefetched cluster are already in

memory, the memory manager does not read them again. Instead, it uses a dummy page to

represent them so that an efficient single large I/O can still be issued, as Figure 9-30 shows.

780 Windows Internals, Fifth Edition

Pages Y and Z are already in memory, so
the corresponding MDL entries point to
the systemwide dummy page.

Virtual address space

A
Y
Z
B

MDL 1 . . . n

A
X (replaces Y)
X (replaces Z)

B

Header

Physical memory

A

Y

Z

B

Systemwide
dummy page X

FIGURE 9-30 Usage of dummy page during virtual address to physical address mapping in an MDL

In the figure, the file offsets and virtual addresses that correspond to pages A, Y, Z, and B are

logically contiguous, although the physical pages themselves are not necessarily contiguous.

Pages A and B are nonresident, so the memory manager must read them. Pages Y and Z are

already resident in memory, so it is not necessary to read them. (In fact, they might already

have been modified since they were last read in from their backing store, in which case it

would be a serious error to overwrite their contents.) However, reading pages A and B in a

single operation is more efficient than performing one read for page A and a second read for

page B. Therefore, the memory manager issues a single read request that comprises all four

pages (A, Y, Z, and B) from the backing store. Such a read request includes as many pages as

make sense to read, based on the amount of available memory, the current system usage,

and so on.

When the memory manager builds the memory descriptor list (MDL) that describes the

request, it supplies valid pointers to pages A and B. However, the entries for pages Y and Z

point to a single systemwide dummy page X. The memory manager can fill the dummy page

X with the potentially stale data from the backing store because it does not make X visible.

However, if a component accesses the Y and Z offsets in the MDL, it sees the dummy page X

instead of Y and Z.

The memory manager can represent any number of discarded pages as a single dummy

page, and that page can be embedded multiple times in the same MDL or even in multiple

concurrent MDLs that are being used for different drivers. Consequently, the contents of the

locations that represent the discarded pages can change at any time.

Page Files

Page files are used to store modified pages that are still in use by some process but have

had to be written to disk (because they were unmapped or memory pressure resulted in

a trim). Page file space is reserved when the pages are initially committed, but the actual

optimally clustered page file locations cannot be chosen until pages are written out to disk.

 Chapter 9 Memory Management 781

The important point is that the system commit limit is charged for private pages as they are

created. Thus, the Process: Page File Bytes performance counter is actually the total process

private committed memory, of which none, some, or all may be in the paging file. (In fact, it’s

the same as the Process: Private Bytes performance counter.)

The memory manager keeps track of private committed memory usage on a global basis,

termed commitment, and on a per-process basis as page file quota. (Again, this memory

usage doesn’t represent page file usage—it represents private committed memory usage.)

Commitment and page file quota are charged whenever virtual addresses that require new

private physical pages are committed. Once the global commit limit has been reached (physi-

cal memory and the page files are full), allocating virtual memory will fail until processes free

committed memory (for example, when a process exits or calls VirtualFree).

When the system boots, the Session Manager process (described in Chapter 13) reads the

list of page files to open by examining the registry value HKLM\SYSTEM\CurrentControlSet\

Control\Session Manager\Memory Management\PagingFiles. This multistring registry value

contains the name, minimum size, and maximum size of each paging file. Windows supports

up to 16 paging files. On x86 systems running the normal kernel, each page file can be a

maximum of 4,095 MB. On x86 systems running the PAE kernel and x64 systems, each page

file can be 16 terabytes (TB) while the maximum is 32 TB on IA64 systems. Once open, the

page files can’t be deleted while the system is running because the System process (described

in Chapter 2) maintains an open handle to each page file. The fact that the paging files are

open explains why the built-in defragmentation tool cannot defragment the paging file while

the system is up. To defragment your paging file, use the freeware Pagedefrag tool from

Sysinternals. It uses the same approach as other third-party defragmentation tools—it runs

its defragmentation process early in the boot process before the page files are opened by

the Session Manager.

Because the page file contains parts of process and kernel virtual memory, for security rea-

sons the system can be configured to clear the page file at system shutdown. To enable this,

set the registry value HKLM\SYSTEM\CurrentControlSet\Control\Session Manager\Memory

Management\ClearPageFileAtShutdown to 1. Otherwise, after shutdown, the page file will

contain whatever data happened to have been paged out while the system was up. This data

could then be accessed by someone who gained physical access to the machine.

If no paging files are specified, the system virtual memory commit limit is based on available

memory. If the minimum and maximum paging file sizes are both zero, this indicates a sys-

tem managed paging file, which causes the system to choose the page file size as shown in

Table 9-14.

TABLE 9-14 Default Page File Sizes

System Memory Size Minimum Page File Size Maximum Page File Size

< 1 GB 1.5 * RAM 3 * RAM

>= 1 GB 1 * RAM 3 * RAM

782 Windows Internals, Fifth Edition

EXPERIMENT: Viewing System Page Files

To view the list of page files, look in the registry at HKLM\SYSTEM\CurrentControlSet\

Control\Session Manager\Memory Management\PagingFiles. This entry contains the

paging file configuration settings modified through the System utility in Control Panel.

Open the properties window for your computer, click Advanced System Settings, click

the Settings button in the Performance area, click the Advanced tab, and finally, click

the Change button in the Virtual Memory section.

To add a new page file, Control Panel uses the (internal only) NtCreatePagingFile system

service defined in Ntdll.dll. Page files are always created as noncompressed files, even if the

directory they are in is compressed. To keep new page files from being deleted, a handle is

duplicated into the System process so that when the creating process closes the handle to

the new page file, another process can still open the page file.

The performance counters listed in Table 9-15 allow you to examine private committed

memory usage on a systemwide or per-page-file basis. There’s no way to determine how

much of a process’s private committed memory is resident and how much is paged out to

paging files.

TABLE 9-15 Committed Memory and Page File Performance Counters

Performance Counter Description

Memory: Committed Bytes Number of bytes of virtual (not reserved) memory that has been

committed. This number doesn’t necessarily represent page file

usage because it includes private committed pages in physical

memory that have never been paged out. Rather, it represents the

charged amount that must be backed by page file space and/or RAM.

Memory: Commit Limit Number of bytes of virtual memory that can be committed without

having to extend the paging files; if the paging files can be extended,

this limit is soft.

Paging File: % Usage Percentage of the paging file committed.

Paging File: % Usage Peak Highest percentage of the paging file committed.

Note that these counters can assist you in choosing a page file size. Although most users

do it, basing page file size as a function of RAM makes no sense (except for saving a crash

dump) because the more memory you have, the less likely you are to need to page data out.

To determine how much page file space your system really needs based on the mix of appli-

cations that have run since the system booted, examine the peak commit charge in Process

Explorer’s System Information display. This number represents the peak amount of page file

space since the system booted that would have been needed if the system had to page out

the majority of private committed virtual memory (which rarely happens).

 Chapter 9 Memory Management 783

If the page file on your system is too big, the system will not use it any more or less—in other

words, increasing the size of the page file does not change system performance, it simply

means the system can have more committed virtual memory. If the page file is too small for

the mix of applications you are running, you might get the “system running low on virtual

memory” error message. In this case, first check to see whether a process has a memory leak

by examining the process private bytes count. If no process appears to have a leak, check the

system paged pool size—if a device driver is leaking paged pool, this might also explain the

error. (See the “Troubleshooting a Pool Leak” experiment in the “Kernel-Mode Heaps (System

Memory Pools)” section for how to troubleshoot a pool leak.)

EXPERIMENT: Viewing Page File Usage with Task Manager

You can also view committed memory usage with Task Manager by clicking its

Performance tab. You’ll see the following counters related to page files:

Note that the Memory Usage bar is actually the sum of all the process’s private working

sets and not the system commit total—that number is actually displayed as the Page

File number in the System area. The first number represents potential page file usage,

not actual page file usage. It is how much page file space would be used if the majority

of the private committed virtual memory in the system had to be paged out all at once.

The second number displayed is the commit limit, which displays the maximum virtual

memory usage that the system can support before running out of virtual memory (it

includes virtual memory backed in physical memory as well as by the paging files).

784 Windows Internals, Fifth Edition

Process Explorer’s System Information display shows an additional piece of information

about system commit usage, namely the percentage of the peak as compared to the

limit and the current usage as compared to the limit:

Stacks

Whenever a thread runs, it must have access to a temporary storage location in which to

store function parameters, local variables, and the return address after a function call. This

part of memory is called a stack. On Windows, the memory manager provides two stacks for

each thread, the user stack and the kernel stack, as well as per-processor stacks called DPC
stacks. We have already described how the stack can be used to generate stack traces and

how exceptions and interrupts store structures on the stack, and we have also talked about

how system calls, traps, and interrupts cause the thread to switch from a user stack to its ker-

nel stack. Now, we’ll look at some extra services the memory manager provides to efficiently

use stack space.

 Chapter 9 Memory Management 785

User Stacks

When a thread is created, the memory manager automatically reserves a predetermined

amount of memory, which by default is 1 MB. This amount can be configured in the call to

the CreateThread or CreateRemoteThread function or when compiling the application, by

using the /STACKRESERVE switch in the Microsoft C/C++ compiler, which will store the infor-

mation in the image header. Although 1 MB is reserved, only the first 64 KB (unless the PE

header of the image specifies otherwise) of the stack will be committed, along with a guard

page. When a thread’s stack grows large enough to touch the guard page, an exception

will occur, causing an attempt to allocate another guard. Through this mechanism, a user

stack doesn’t immediately consume all 1 MB of committed memory but instead grows with

demand. (However, it will never shrink back.)

EXPERIMENT: Creating the Maximum Number of Threads

With only 2 GB of user address space available to each 32-bit process, the relatively

large memory that is reserved for each thread’s stack allows for an easy calculation of

the maximum number of threads that a process can support: a little less than 2,048,

for a total of nearly 2 GB of memory (unless the increaseuserva BCD option is used and

the image is large address space aware). By forcing each new thread to use the smallest

possible stack reservation size, 64 KB, the limit can grow to about 30,400 threads, which

you can test for yourself by using the TestLimit utility from Sysinternals. Here is some

sample output:

C:\>testlimit -t

Testlimit - tests Windows limits

By Mark Russinovich

Creating threads...

Created 30399 threads. Lasterror: 8

If you attempt this experiment on a 64-bit Windows installation (with 8 TB of user

address space available), you would expect to see potentially hundreds of thousands

of threads created (as long as sufficient memory were available). Interestingly, however,

TestLimit will actually create fewer threads than on a 32-bit machine, which has to do

with the fact that Testlimit.exe is a 32-bit application and thus runs under the Wow64

environment. (See Chapter 3 for more information on Wow64.) Each thread will there-

fore have not only its 32-bit Wow64 stack but also its 64-bit stack, thus consuming

more than twice the memory, while still keeping only 2 GB of address space. To prop-

erly test the thread-creation limit on 64-bit Windows, use the Testlimit64.exe binary

instead.

Note that you will need to terminate TestLimit with Process Explorer or Task Manager—

using Ctrl+C to break the application will not function because this operation itself cre-

ates a new thread, which will not be possible once memory is exhausted.

786 Windows Internals, Fifth Edition

Kernel Stacks

Although user stack sizes are typically 1 MB, the amount of memory dedicated to the ker-

nel stack is significantly smaller: 12 KB, followed by another guard PTE (for a total of 16 KB

of virtual address space). Code running in the kernel is expected to have less recursion than

user code, as well as contain more efficient variable use and keep stack buffer sizes low.

Additionally, because kernel stacks live in system address space, their memory usage has a

bigger impact of the system: the 2,048 threads really consumed only 1 GB of pageable virtual

memory due to their user stacks. On the other hand, they consumed 360 MB of actual physi-

cal memory with their kernel stacks.

Although kernel code is usually not recursive, interactions between graphics system calls

handled by Win32k.sys and its subsequent callbacks into user mode can cause recursive

 re-entries in the kernel on the same kernel stack. As such, Windows provides a mechanism

for dynamically expanding and shrinking the kernel stack from its initial size of 16 KB. As

each additional graphics call is performed from the same thread, another 16-KB kernel stack

is allocated (anywhere in system address space; the memory manager provides the ability to

jump stacks when nearing the guard page). Whenever each call returns to the caller (unwind-

ing), the memory manager frees the additional kernel stack that had been allocated, as

shown in Figure 9-31.

This mechanism allows reliable support for recursive system calls, as well as efficient use of

system address space, and is also provided for use by driver developers when performing

recursive callouts through the KeExpandKernelStackAndCallout API, as necessary.

Unwind when nested
callback is complete

16 KB kernel-mode stack

Additional 16 KB stack

Additional 16 KB stack

FIGURE 9-31 Kernel stack jumping

 Chapter 9 Memory Management 787

EXPERIMENT: Viewing Kernel Stack Usage

You can use the MemInfo tool from Winsider Seminars & Solutions to display the physi-

cal memory currently being occupied by kernel stacks. The –u flag displays physical

memory usage for each component, as shown here:

C:\>MemInfo.exe -u | findstr /i "Kernel Stack"

 Kernel Stack: 980 (3920 kb)

Note the kernel stack after repeating the previous TestLimit experiment:

C:\>MemInfo.exe -u | findstr /i "Kernel Stack"

 Kernel Stack: 92169 (368676 kb)

Running TestLimit a couple more times would easily exhaust physical memory on a

32-bit system, and this limitation results in one of the primary limits on systemwide

32-bit thread count.

DPC Stack

Finally, Windows keeps a per-processor DPC stack available for use by the system whenever

DPCs are executing, an approach that isolates the DPC code from the current thread’s kernel

stack (which is unrelated to the DPC’s actual operation because DPCs run in arbitrary thread

context). The DPC stack is also configured as the initial stack for handling the SYSENTER or

SYSCALL instruction during a system call. Because the CPU is responsible for switching the

stack, it doesn’t know how to access the current thread’s kernel stack, as this is an internal

Windows implementation detail, so Windows configures the per-processor DPC stack as the

stack pointer.

Virtual Address Descriptors

The memory manager uses a demand-paging algorithm to know when to load pages into

memory, waiting until a thread references an address and incurs a page fault before retriev-

ing the page from disk. Like copy-on-write, demand paging is a form of lazy evaluation—

waiting to perform a task until it is required.

The memory manager uses lazy evaluation not only to bring pages into memory but also to

construct the page tables required to describe new pages. For example, when a thread com-

mits a large region of virtual memory with VirtualAlloc or VirtualAllocExNuma, the memory

manager could immediately construct the page tables required to access the entire range of

allocated memory. But what if some of that range is never accessed? Creating page tables

for the entire range would be a wasted effort. Instead, the memory manager waits to create

a page table until a thread incurs a page fault, and then it creates a page table for that page.

788 Windows Internals, Fifth Edition

This method significantly improves performance for processes that reserve and/or commit a

lot of memory but access it sparsely.

With the lazy-evaluation algorithm, allocating even large blocks of memory is a fast opera-

tion. When a thread allocates memory, the memory manager must respond with a range

of addresses for the thread to use. To do this, the memory manager maintains another set

of data structures to keep track of which virtual addresses have been reserved in the pro-

cess’s address space and which have not. These data structures are known as virtual address
descriptors (VADs).

Process VADs

For each process, the memory manager maintains a set of VADs that describes the status

of the process’s address space. VADs are structured as a self-balancing AVL tree algorithm

(named after their inventors, Adelson-Velskii and Landis) that better balances the VAD tree,

resulting in, on average, fewer comparisons when searching for a VAD corresponding with a

virtual address. A diagram of a VAD tree is shown in Figure 9-32.

Range: 20000000 through 2000FFFF
Protection: Read/write
Inheritance: Yes

Range: 00002000 through 0000FFFF
Protection: Read-only
Inheritance: No

Range: 4E000000 through 4F000000
Protection: Copy-on-write
Inheritance: Yes

Range: 32000000 through 3300FFFF
Protection: Read-only
Inheritance: No

Range: 7AAA0000 through 7AAA00FF
Protection: Read/write
Inheritance: No

FIGURE 9-32 Virtual address descriptors

When a process reserves address space or maps a view of a section, the memory manager

creates a VAD to store any information supplied by the allocation request, such as the range

of addresses being reserved, whether the range will be shared or private, whether a child

process can inherit the contents of the range, and the page protection applied to pages in

the range.

 Chapter 9 Memory Management 789

When a thread first accesses an address, the memory manager must create a PTE for the

page containing the address. To do so, it finds the VAD whose address range contains the

accessed address and uses the information it finds to fill in the PTE. If the address falls outside

the range covered by the VAD or in a range of addresses that are reserved but not commit-

ted, the memory manager knows that the thread didn’t allocate the memory before attempt-

ing to use it and therefore generates an access violation.

EXPERIMENT: Viewing Virtual Address Descriptors

You can use the kernel debugger’s !vad command to view the VADs for a given process.

First find the address of the root of the VAD tree with the !process command. Then

specify that address to the !vad command, as shown in the following example of the

VAD tree for a process running Notepad.exe:

lkd> !process 0 1 notepad.exe

PROCESS 8718ed90 SessionId: 1 Cid: 1ea68 Peb: 7ffdf000 ParentCid: 0680

 DirBase: ce2aa880 ObjectTable: ee6e01b0 HandleCount: 48.

 Image: notepad.exe

 VadRoot 865f10e0 Vads 51 Clone 0 Private 210. Modified 0. Locked 0.

lkd> !vad 865f10e0

VAD level start end commit

8a05bf88 (6) 10 1f 0 Mapped READWRITE

88390ad8 (5) 20 20 1 Private READWRITE

87333740 (6) 30 33 0 Mapped READONLY

86d09d10 (4) 40 41 0 Mapped READONLY

882b49a0 (6) 50 50 1 Private READWRITE

877bf260 (5) 60 61 0 Mapped READONLY

86c0bb10 (6) 70 71 0 Mapped READONLY

86fd1800 (3) 80 81 0 Mapped READONLY

8a125d00 (5) 90 91 0 Mapped READONLY

8636e878 (6) a0 a0 0 Mapped READWRITE

871a3998 (4) b0 1af 51 Private READWRITE

a20235f0 (5) 200 20f 1 Private READWRITE

86e7b308 (2) 210 24f 19 Private READWRITE

877f1618 (4) 250 317 0 Mapped READONLY

87333380 (5) 340 37f 26 Private READWRITE

87350cd8 (3) 3a0 3af 3 Private READWRITE

86c09cc0 (5) 3b0 4b2 0 Mapped READONLY

86e759d8 (4) 510 537 4 Mapped Exe EXECUTE_WRITECOPY

8688c2e8 (1) 540 8bf 0 Mapped READONLY

867e2a68 (4) 8c0 14bf 0 Mapped READONLY

8690ad20 (5) 14c0 156f 0 Mapped READONLY

873851a8 (3) 15e0 15ef 8 Private READWRITE

86390d20 (4) 15f0 196f 0 Mapped READONLY

86c6b660 (5) 1970 19ef 1 Private READWRITE

87873318 (2) 1a00 1bff 0 Mapped LargePagSec READONLY

88bd9bc0 (5) 1c00 1fff 0 Mapped READONLY

86d9c558 (4) 2000 20ff 12 Private READWRITE

790 Windows Internals, Fifth Edition

86c7f318 (6) 2100 24ff 0 Mapped READONLY

88394ab0 (5) 73b40 73b81 4 Mapped Exe EXECUTE_WRITECOPY

8690b1b0 (3) 74da0 74f3d 15 Mapped Exe EXECUTE_WRITECOPY

88b917e8 (5) 75100 7513e 5 Mapped Exe EXECUTE_WRITECOPY

86c180a0 (4) 761f0 762b7 3 Mapped Exe EXECUTE_WRITECOPY

86660fd0 (5) 763f0 764b2 2 Mapped Exe EXECUTE_WRITECOPY

865f10e0 (0) 765a0 76665 16 Mapped Exe EXECUTE_WRITECOPY

86c4a058 (4) 76890 76902 5 Mapped Exe EXECUTE_WRITECOPY

b138eb10 (5) 769a0 769a8 2 Mapped Exe EXECUTE_WRITECOPY

877debb8 (3) 769b0 769fa 3 Mapped Exe EXECUTE_WRITECOPY

8718c0c0 (4) 76a00 76b43 8 Mapped Exe EXECUTE_WRITECOPY

88a9ad08 (2) 76b50 76b6d 2 Mapped Exe EXECUTE_WRITECOPY

8a112960 (5) 76b70 76bec 17 Mapped Exe EXECUTE_WRITECOPY

863b6a58 (4) 76bf0 76c7c 4 Mapped Exe EXECUTE_WRITECOPY

863d6400 (3) 76c80 76d1c 3 Mapped Exe EXECUTE_WRITECOPY

86bc1d18 (5) 76d20 76dfa 4 Mapped Exe EXECUTE_WRITECOPY

8717fd20 (4) 76e00 76e57 3 Mapped Exe EXECUTE_WRITECOPY

a2065008 (5) 76e60 7796e 25 Mapped Exe EXECUTE_WRITECOPY

8a0216b0 (1) 77970 77a96 11 Mapped Exe EXECUTE_WRITECOPY

87079410 (4) 77b20 77bc9 8 Mapped Exe EXECUTE_WRITECOPY

87648ba0 (3) 7f6f0 7f7ef 0 Mapped READONLY

86c5e858 (4) 7ffb0 7ffd2 0 Mapped READONLY

8707fe88 (2) 7ffde 7ffde 1 Private READWRITE

86e5e848 (3) 7ffdf 7ffdf 1 Private READWRITE

Total VADs: 51 average level: 5 maximum depth: 6

Rotate VADs

A video card driver must typically copy data from the user-mode graphics application to vari-

ous other system memory, including the video card memory and the AGP port’s memory,

both of which have different caching attributes as well as addresses. In order to quickly allow

these different views of memory to be mapped into a process, and to support the different

cache attributes, the memory manager implements rotate VADs, which allow video drivers

to transfer data directly by using the GPU and to rotate unneeded memory in and out of

the process view pages on demand. Figure 9-33 shows an example of how the same virtual

address can rotate between video RAM and virtual memory.

 Chapter 9 Memory Management 791

Virtual address space
Page table

Video RAM or AGP

User’s data

User’s virtual
address

Entry for user’s
virtual address

Page-file-backed page

User’s data

FIGURE 9-33 Rotate virtual address descriptors

NUMA

Each new release of Windows provides new enhancements to the memory manager to better

make use of Non Uniform Memory Architecture (NUMA) machines, such as large server sys-

tems (but also Intel i7 and AMD Opteron SMP workstations). The NUMA support in the mem-

ory manager adds intelligent knowledge of node information such as location, topology, and

access costs to allow applications and drivers to take advantage of NUMA capabilities, while

abstracting the underlying hardware details.

When the memory manager is initializing, it calls the MiComputeNumaCosts function to per-

form various page and cache operations on different nodes and then computes the time it

took for those operations to complete. Based on this information, it builds a node graph of

access costs (the distance between a node and any other node on the system). When the sys-

tem requires pages for a given operation, it consults the graph to choose the most optimal

node (that is, the closest). If no memory is available on that node, it chooses the next closest

node, and so on.

Although the memory manager ensures that, whenever possible, memory allocations

come from the ideal processor’s node (the ideal node) of the thread making the alloca-

tion, it also provides functions that allow applications to choose their own node, such

as the VirtualAllocExNuma, CreateFileMappingNuma, MapViewOfFileExNuma, and

AllocateUserPhysicalPagesNuma APIs.

The ideal node isn’t used only when applications allocate memory but also during kernel

operation and page faults. For example, when a thread is running on a nonideal processor

and takes a page fault, the memory manager won’t use the current node but will instead

792 Windows Internals, Fifth Edition

allocate memory from the thread’s ideal node. Although this might result in slower access

time while the thread is still running on this CPU, overall memory access will be optimized as

the thread migrates back to its ideal node. In any case, if the ideal node is out of resources,

the closest node to the ideal node is chosen and not a random other node. Just like user-

mode applications, however, drivers can specify their own node when using APIs such as

MmAllocatePagesforMdlEx or MmAllocateContiguousMemorySpecifyCacheNode.

Various memory manager pools and data structures are also optimized to take advantage of

NUMA nodes. The memory manager tries to evenly use physical memory from all the nodes

on the system to hold the nonpaged pool. When a nonpaged pool allocation is made, the

memory manager looks at the ideal node and uses it as an index to choose a virtual memory

address range inside nonpaged pool that corresponds to physical memory belonging to this

node. In addition, per-NUMA node pool freelists are created to efficiently leverage these

types of memory configurations. Apart from nonpaged pool, the system cache and system

PTEs are also similarly allocated across all nodes, as well as the memory manager’s look-

aside lists.

Finally, when the system needs to zero pages, it does so in parallel across different NUMA

nodes by creating threads with NUMA affinities that correspond to the nodes in which the

physical memory is located. The logical prefetcher and SuperFetch (described later) also use

the ideal node of the target process when prefetching, while soft page faults cause pages to

migrate to the ideal node of the faulting thread.

Section Objects

As you’ll remember from the section on shared memory earlier in the chapter, the section
object, which the Windows subsystem calls a file mapping object, represents a block of mem-

ory that two or more processes can share. A section object can be mapped to the paging file

or to another file on disk.

The executive uses sections to load executable images into memory, and the cache manager

uses them to access data in a cached file. (See Chapter 10 for more information on how the

cache manager uses section objects.) You can also use section objects to map a file into a

process address space. The file can then be accessed as a large array by mapping different

views of the section object and reading or writing to memory rather than to the file (an activ-

ity called mapped file I/O). When the program accesses an invalid page (one not in physical

memory), a page fault occurs and the memory manager automatically brings the page into

memory from the mapped file (or page file). If the application modifies the page, the mem-

ory manager writes the changes back to the file during its normal paging operations (or the

application can flush a view by using the Windows FlushViewOfFile function).

 Chapter 9 Memory Management 793

Section objects, like other objects, are allocated and deallocated by the object manager.

The object manager creates and initializes an object header, which it uses to manage the

objects; the memory manager defines the body of the section object. The memory man-

ager also implements services that user-mode threads can call to retrieve and change the

attributes stored in the body of section objects. The structure of a section object is shown in

 Fig ure 9-34.

FIGURE 9-34 A section object

Table 9-16 summarizes the unique attributes stored in section objects.

TABLE 9-16 Section Object Body Attributes

Attribute Purpose

Maximum size The largest size to which the section can grow in bytes; if mapping a file,

the maximum size is the size of the file.

Page protection Page-based memory protection assigned to all pages in the section

when it is created.

Paging file/Mapped file Indicates whether the section is created empty (backed by the paging

file—as explained earlier, page-file-backed sections use page-file

resources only when the pages need to be written out to disk) or loaded

with a file (backed by the mapped file).

Based/Not based Indicates whether a section is a based section, which must appear at the

same virtual address for all processes sharing it, or a nonbased section,

which can appear at different virtual addresses for different processes.

794 Windows Internals, Fifth Edition

EXPERIMENT: Viewing Section Objects

With the Object Viewer (Winobj.exe from Sysinternals), you can see the list of sections

that have global names. You can list the open handles to section objects with any of the

tools described in the “Object Manager” section in Chapter 3 that list the open handle

table. (As explained in Chapter 3, these names are stored in the object manager direc-

tory \Sessions\x\BaseNamedObjects, where x is the appropriate Session directory.

You can use Process Explorer from Sysinternals to view mapped files. Select DLLs from

the Lower Pane View entry of the View menu. Files marked as “Data” in the Mapping

column are mapped files (rather than DLLs and other files the image loader loads as

modules). Here’s an example:

The data structures maintained by the memory manager that describe mapped sections are

shown in Figure 9-35. These structures ensure that data read from mapped files is consistent,

regardless of the type of access (open file, mapped file, and so on).

For each open file (represented by a file object), there is a single section object pointers struc-

ture. This structure is the key to maintaining data consistency for all types of file access as

well as to providing caching for files. The section object pointers structure points to one or

two control areas. One control area is used to map the file when it is accessed as a data file,

and one is used to map the file when it is run as an executable image.

A control area in turn points to subsection structures that describe the mapping informa-

tion for each section of the file (read-only, read-write, copy-on-write, and so on). The control

area also points to a segment structure allocated in paged pool, which in turn points to the

prototype PTEs used to map to the actual pages mapped by the section object. As described

earlier in the chapter, process page tables point to these prototype PTEs, which in turn map

the pages being referenced.

 Chapter 9 Memory Management 795

File object

File object

VAD
Section
object

Segment

Prototype
PTEs

PFN
database

entry
Next

subsection

Subsection

Data section
control area

Image section control area
(if file is an executable image)

Page
directory

Page table

Section object
pointers

FIGURE 9-35 Internal section structures

Although Windows ensures that any process that accesses (reads or writes) a file will always

see the same, consistent data, there is one case in which two copies of pages of a file

can reside in physical memory (but even in this case, all accessors get the latest copy and

data consistency is maintained). This duplication can happen when an image file has been

accessed as a data file (having been read or written) and then run as an executable image (for

example, when an image is linked and then run—the linker had the file open for data access,

and then when the image was run, the image loader mapped it as an executable). Internally,

the following actions occur:

 1. If the executable file was created using the file mapping APIs (or the cache manager), a

data control area is created to represent the data pages in the image file being read or

written.

 2. When the image is run and the section object is created to map the image as an

executable, the memory manager finds that the section object pointers for the image

file point to a data control area and flushes the section. This step is necessary to ensure

that any modified pages have been written to disk before accessing the image through

the image control area.

 3. The memory manager then creates a control area for the image file.

 4. As the image begins execution, its (read-only) pages are faulted in from the image file

(or copied directly over from the data file if the corresponding data page is resident).

796 Windows Internals, Fifth Edition

Because the pages mapped by the data control area might still be resident (on the standby

list), this is the one case in which two copies of the same data are in two different pages in

memory. However, this duplication doesn’t result in a data consistency issue because, as

mentioned, the data control area has already been flushed to disk, so the pages read from

the image are up to date (and these pages are never written back to disk).

EXPERIMENT: Viewing Control Areas

To find the address of the control area structures for a file, you must first get the

address of the file object in question. You can obtain this address through the kernel

debugger by dumping the process handle table with the !handle command and noting

the object address of a file object. Although the kernel debugger !file command dis-

plays the basic information in a file object, it doesn’t display the pointer to the section

object pointers structure. Then, using the dt command, format the file object to get the

address of the section object pointers structure. This structure consists of three point-

ers: a pointer to the data control area, a pointer to the shared cache map (explained in

Chapter 10), and a pointer to the image control area. From the section object pointers

structure, you can obtain the address of a control area for the file (if one exists) and

feed that address into the !ca command.

For example, if you open a PowerPoint file and display the handle table for that process

using !handle, you will find an open handle to the PowerPoint file as shown below. (For

information on using !handle, see the “Object Manager” section in Chapter 3.)

lkd> !handle 1 f 86f57d90 File

.

.

0324: Object: 865d2768 GrantedAccess: 00120089 Entry: c848e648

Object: 865d2768 Type: (8475a2c0) File

 ObjectHeader: 865d2750 (old version)

 HandleCount: 1 PointerCount: 1

 Directory Object: 00000000 Name: \Users\Administrator\Documents\Downloads\

SVR-T331_WH07 (1).pptx {HarddiskVolume3}

Taking the file object address (865d2768) and formatting it with dt results in this:

lkd> dt nt!_FILE_OBJECT 865d2768

 +0x000 Type : 5

 +0x002 Size : 128

 +0x004 DeviceObject : 0x84a62320 _DEVICE_OBJECT

 +0x008 Vpb : 0x84a60590 _VPB

 +0x00c FsContext : 0x8cee4390

 +0x010 FsContext2 : 0xbf910c80

 +0x014 SectionObjectPointer : 0x86c45584 _SECTION_OBJECT_POINTERS

 Chapter 9 Memory Management 797

Then taking the address of the section object pointers structure (0x86c45584) and for-

matting it with dt results in this:

lkd> dt 0x86c45584 nt!_SECTION_OBJECT_POINTERS

 +0x000 DataSectionObject : 0x863d3b00

 +0x004 SharedCacheMap : 0x86f10ec0

 +0x008 ImageSectionObject : (null)

Finally, use !ca to display the control area using the address:

lkd> !ca 0x863d3b00

ControlArea @ 863d3b00

 Segment b1de9d48 Flink 00000000 Blink 8731f80c

 Section Ref 1 Pfn Ref 48 Mapped Views 2

 User Ref 0 WaitForDel 0 Flush Count 0

 File Object 86cf6188 ModWriteCount 0 System Views 2

 WritableRefs 0

 Flags (c080) File WasPurged Accessed

 No name for file

Segment @ b1de9d48

 ControlArea 863d3b00 ExtendInfo 00000000

 Total Ptes 100

 Segment Size 100000 Committed 0

 Flags (c0000) ProtectionMask

Subsection 1 @ 863d3b48

 ControlArea 863d3b00 Starting Sector 0 Number Of Sectors 100

 Base Pte bf85e008 Ptes In Subsect 100 Unused Ptes 0

 Flags d Sector Offset 0 Protection 6

 Accessed

 Flink 00000000 Blink 8731f87c MappedViews 2

Another technique is to display the list of all control areas with the !memusage com-

mand. The following excerpt is from the output of this command:

lkd> !memusage

 loading PFN database

loading (100% complete)

Compiling memory usage data (99% Complete).

 Zeroed: 2654 (10616 kb)

 Free: 584 (2336 kb)

 Standby: 402938 (1611752 kb)

 Modified: 12732 (50928 kb)

 ModifiedNoWrite: 3 (12 kb)

 Active/Valid: 431478 (1725912 kb)

 Transition: 1186 (4744 kb)

 Bad: 0 (0 kb)

 Unknown: 0 (0 kb)

 TOTAL: 851575 (3406300 kb)

 Building kernel map

 Finished building kernel map

Scanning PFN database - (100% complete)

798 Windows Internals, Fifth Edition

 Usage Summary (in Kb):

Control Valid Standby Dirty Shared Locked PageTables name

86d75f18 0 64 0 0 0 0 mapped_file(netcfgx.dll)

8a124ef8 0 4 0 0 0 0 No Name for File

8747af80 0 52 0 0 0 0 mapped_file(iebrshim.dll)

883a2e58 24 8 0 0 0 0 mapped_file(WINWORD.EXE)

86d6eae0 0 16 0 0 0 0 mapped_file(oem13.CAT)

84b19af8 8 0 0 0 0 0 No Name for File

b1672ab0 4 0 0 0 0 0 No Name for File

88319da8 0 20 0 0 0 0 mapped_file(Microsoft-Windows-

MediaPlayer-Package~31bf3856ad364e35~x86~en-US~6.0.6001.18000.cat)

8a04db00 0 48 0 0 0 0 mapped_file(eapahost.dll)

The Control column points to the control area structure that describes the mapped file.

You can display control areas, segments, and subsections with the kernel debugger !ca

command. For example, to dump the control area for the mapped file Winword.exe in

this example, type the !ca command followed by the Control number, as shown here:

lkd> !ca 883a2e58

ControlArea @ 883a2e58

 Segment ee613998 Flink 00000000 Blink 88a985a4

 Section Ref 1 Pfn Ref 8 Mapped Views 1

 User Ref 2 WaitForDel 0 Flush Count 0

 File Object 88b45180 ModWriteCount 0 System Views ffff

 WritableRefs 80000006

 Flags (40a0) Image File Accessed

 File: \PROGRA~1\MICROS~1\Office12\WINWORD.EXE

Segment @ ee613998

 ControlArea 883a2e58 BasedAddress 2f510000

 Total Ptes 57

 Segment Size 57000 Committed 0

 Image Commit 1 Image Info ee613c80

 ProtoPtes ee6139c8

 Flags (20000) ProtectionMask

Subsection 1 @ 883a2ea0

 ControlArea 883a2e58 Starting Sector 0 Number Of Sectors 2

 Base Pte ee6139c8 Ptes In Subsect 1 Unused Ptes 0

 Flags 2 Sector Offset 0 Protection 1

Subsection 2 @ 883a2ec0

 ControlArea 883a2e58 Starting Sector 2 Number Of Sectors a

 Base Pte ee6139d0 Ptes In Subsect 2 Unused Ptes 0

 Flags 6 Sector Offset 0 Protection 3

Subsection 3 @ 883a2ee0

 ControlArea 883a2e58 Starting Sector c Number Of Sectors 1

 Base Pte ee6139e0 Ptes In Subsect 1 Unused Ptes 0

 Flags a Sector Offset 0 Protection 5

 Chapter 9 Memory Management 799

Subsection 4 @ 883a2f00

 ControlArea 883a2e58 Starting Sector d Number Of Sectors 28b

 Base Pte ee6139e8 Ptes In Subsect 52 Unused Ptes 0

 Flags 2 Sector Offset 0 Protection 1

Subsection 5 @ 883a2f20

 ControlArea 883a2e58 Starting Sector 298 Number Of Sectors 1

 Base Pte ee613c78 Ptes In Subsect 1 Unused Ptes 0

 Flags 2 Sector Offset 0 Protection 1

Driver Verifier

As introduced in Chapter 7, Driver Verifier is a mechanism that can be used to help find and

isolate commonly found bugs in device driver or other kernel-mode system code. This sec-

tion describes the memory management–related verification options Driver Verifier provides

(the options related to device drivers are described in Chapter 7).

The verification settings are stored in the registry under HKLM\SYSTEM\CurrentControlSet\

Control\Session Manager\Memory Management. The value VerifyDriverLevel contains a

bitmask that represents the verification types enabled. The VerifyDrivers value contains the

names of the drivers to validate. (These values won’t exist in the registry until you select driv-

ers to verify in the Driver Verifier Manager.) If you choose to verify all drivers, VerifyDrivers is

set to an asterisk (*) character. Depending on the settings you have made, you might need to

reboot the system for the selected verification to occur.

Early in the boot process, the memory manager reads the Driver Verifier registry values to

determine which drivers to verify and which Driver Verifier options you enabled. (Note that

if you boot in safe mode, any Driver Verifier settings are ignored.) Subsequently, if you’ve

selected at least one driver for verification, the kernel checks the name of every device driver

it loads into memory against the list of drivers you’ve selected for verification. For every

device driver that appears in both places, the kernel invokes the VfLoadDriver function, which

calls other internal Vf* functions to replace the driver’s references to a number of kernel

functions with references to Driver Verifier–equivalent versions of those functions. For exam-

ple, ExAllocatePool is replaced with a call to VerifierAllocatePool. The windowing system driver

(Win32k.sys) also makes similar changes to use Driver Verifier–equivalent functions.

Now that we’ve reviewed how Driver Verifier is set up, we’ll examine the six memory-related

verification options that can be applied to device drivers: Special Pool, Pool Tracking, Force

IRQL Checking, Low Resources Simulation, Miscellaneous Checks, and Automatic Checks

Special Pool The Special Pool option causes the pool allocation routines to bracket pool

allocations with an invalid page so that references before or after the allocation will result

in a kernel-mode access violation, thus crashing the system with the finger pointed at the

800 Windows Internals, Fifth Edition

buggy driver. Special pool also causes some additional validation checks to be performed

when a driver allocates or frees memory.

When special pool is enabled, the pool allocation routines allocate a region of kernel mem-

ory for Driver Verifier to use. Driver Verifier redirects memory allocation requests that drivers

under verification make to the special pool area rather than to the standard kernel-mode

memory pools. When a device driver allocates memory from special pool, Driver Verifier

rounds up the allocation to an even-page boundary. Because Driver Verifier brackets the

allocated page with invalid pages, if a device driver attempts to read or write past the end of

the buffer, the driver will access an invalid page, and the memory manager will raise a kernel-

mode access violation.

Figure 9-36 shows an example of the special pool buffer that Driver Verifier allocates to a

device driver when Driver Verifier checks for overrun errors.

Random signature

Invalid page

Invalid page

Driver buffer

Page 0

Page 2

Page 1

FIGURE 9-36 Layout of special pool allocations

By default, Driver Verifier performs overrun detection. It does this by placing the buffer that

the device driver uses at the end of the allocated page and fills the beginning of the page

with a random pattern. Although the Driver Verifier Manager doesn’t let you specify under-

run detection, you can set this type of detection manually by adding the DWORD registry

value HKLM\SYSTEM\CurrentControlSet\Control\Session Manager\Memory Management\

PoolTagOverruns and setting it to 0 (or by running the Gflags utility and selecting the Verify

Start option instead of the default option, Verify End). When Windows enforces underrun

detection, Driver Verifier allocates the driver’s buffer at the beginning of the page rather than

at the end.

The overrun-detection configuration includes some measure of underrun detection as

well. When the driver frees its buffer to return the memory to Driver Verifier, Driver Verifier

ensures that the pattern preceding the buffer hasn’t changed. If the pattern is modified, the

device driver has underrun the buffer and written to memory outside the buffer.

 Chapter 9 Memory Management 801

Special pool allocations also check to ensure that the processor IRQL at the time of an alloca-

tion and deallocation is legal. This check catches an error that some device drivers make: allo-

cating pageable memory from an IRQL at DPC/dispatch level or above.

You can also configure special pool manually by adding the DWORD registry value HKLM\

SYSTEM\CurrentControlSet\Control\Session Manager\Memory Management\PoolTag, which

represents the allocation tags the system uses for special pool. Thus, even if Driver Verifier

isn’t configured to verify a particular device driver, if the tag the driver associates with the

memory it allocates matches what is specified in the PoolTag registry value, the pool alloca-

tion routines will allocate the memory from special pool. If you set the value of PoolTag to

0x0000002a or to the wildcard (*), all memory that drivers allocate is from special pool, pro-

vided there’s enough virtual and physical memory. (The drivers will revert to allocating from

regular pool if there aren’t enough free pages—bounding exists, but each allocation uses two

pages.)

Pool Tracking If pool tracking is enabled, the memory manager checks at driver unload

time whether the driver freed all the memory allocations it made. If it didn’t, it crashes the

system, indicating the buggy driver. Driver Verifier also shows general pool statistics on the

Driver Verifier Manager’s Pool Tracking tab. You can also use the !verifier kernel debugger

command. This command shows more information than Driver Verifier and is useful to driver

writers.

Driver Verifier can also perform locked memory page tracking, which additionally checks for

pages that have been left locked after an I/O operation and generates the DRIVER_LEFT_

LOCKED_PAGES_IN_PROCESS instead of the PROCESS_HAS_LOCKED_PAGES crash code—the

former indicates the driver responsible for the error as well as the function responsible for

the locking of the pages.

Force IRQL Checking One of the most common device driver bugs occurs when a driver

accesses pageable data or code when the processor on which the device driver is execut-

ing is at an elevated IRQL. As explained in Chapter 3, the memory manager can’t service a

page fault when the IRQL is DPC/dispatch level or above. The system often doesn’t detect

instances of a device driver accessing pageable data when the processor is executing at a

high IRQL level because the pageable data being accessed happens to be physically resident

at the time. At other times, however, the data might be paged out, which results in a system

crash with the stop code IRQL_NOT_LESS_OR_EQUAL (that is, the IRQL wasn’t less than or

equal to the level required for the operation attempted—in this case, accessing pageable

memory).

802 Windows Internals, Fifth Edition

Although testing device drivers for this kind of bug is usually difficult, Driver Verifier makes

it easy. If you select the Force IRQL Checking option, Driver Verifier forces all kernel-mode

pageable code and data out of the system working set whenever a device driver under verifi-

cation raises the IRQL. The internal function that does this is MiTrimAllSystemPagableMemory.

With this setting enabled, whenever a device driver under verification accesses pageable

memory when the IRQL is elevated, the system instantly detects the violation, and the result-

ing system crash identifies the faulty driver.

Another common driver crash that results from incorrect IRQL usage occurs when synchroni-

zation objects are part of data structures that are paged and then waited on. Synchronization

objects should never be paged because the dispatcher needs to access them at an ele-

vated IRQL, which would cause a crash. Driver Verifier checks whether any of the follow-

ing structures are present in pageable memory: KTIMER, KMUTEX, KSPIN_LOCK, KEVENT,

KSEMAPHORE, ERESOURCE, FAST_MUTEX.

Low Resources Simulation Enabling Low Resources Simulation causes Driver Verifier to

randomly fail memory allocations that verified device drivers perform. In the past, developers

wrote many device drivers under the assumption that kernel memory would always be avail-

able and that if memory ran out, the device driver didn’t have to worry about it because the

system would crash anyway. However, because low-memory conditions can occur temporar-

ily, it’s important that device drivers properly handle allocation failures that indicate kernel

memory is exhausted.

The driver calls that will be injected with random failures include the ExAllocatePool*,
MmProbe AndLockPages, MmMapLockedPagesSpecifyCache, MmMapIoSpace, MmAllocate-
ContiguousMemory, MmAllocatePagesForMdl, IoAllocateIrp, IoAllocateMdl, IoAllocateWork-
Item, and IoAllocateErrorLogEntry APIs. Additionally, you can specify the probability that

allocation will fail (6 percent by default), which applications should be subject to the simula-

tion (all are by default), which pool tags should be affected (all are by default), and what delay

should be used before fault injection starts (the default is 7 minutes after the system boots,

which is enough time to get past the critical initialization period in which a low-memory con-

dition might prevent a device driver from loading).

After the delay period, Driver Verifier starts randomly failing allocation calls for device drivers

it is verifying. If a driver doesn’t correctly handle allocation failures, this will likely show up as

a system crash.

Miscellaneous Checks Some of the checks that Driver Verifier calls “miscellaneous” allow

Driver Verifier to detect the freeing of certain system structures in the pool that are still

active. For example, Driver Verifier will check for:

Active work items in freed memory (a driver calls ExFreePool to free a pool block in

which one or more work items queued with IoQueueWorkItem are present).

 Chapter 9 Memory Management 803

Active resources in freed memory (a driver calls ExFreePool before calling ExDelete-
Resource to destroy an ERESOURCE object).

Active look-aside lists in freed memory (a driver calls ExFreePool before calling

ExDelete NPagedLookasideList or ExDeletePagedLookasideList to delete the look-aside

list).

Finally, when verification is enabled, Driver Verifier also performs certain automatic checks

that cannot be enabled or disabled. These include:

Calling MmProbeAndLockPages or MmProbeAndLockProcessPages on a memory

descriptor list (MDL) having incorrect flags. For example, it is incorrect to call

MmProbeAndLockPages for an MDL setup by calling MmBuildMdlForNonPagedPool.

Calling MmMapLockedPages on an MDL having incorrect flags. For example, it is

incorrect to call MmMapLockedPages for an MDL that is already mapped to a system

address. Another example of incorrect driver behavior is calling MmMapLockedPages
for an MDL that was not locked.

Calling MmUnlockPages or MmUnmapLockedPages on a partial MDL (created by using

IoBuildPartialMdl).

Calling MmUnmapLockedPages on an MDL that is not mapped to a system address.

Driver Verifier is a valuable addition to the arsenal of verification and debugging tools

available to device driver writers. Many device drivers that first ran with Driver Verifier had

bugs that Driver Verifier was able to expose. Thus, Driver Verifier has resulted in an overall

improvement in the quality of all kernel-mode code running in Windows

Page Frame Number Database

In several previous sections, we’ve concentrated on the virtual view of a Windows process—

page tables, PTEs, and VADs. In the remainder of this chapter, we’ll explain how Windows

manages physical memory, starting with how Windows keeps track of physical memory.

Whereas working sets describe the resident pages owned by a process or the system, the

page frame number (PFN) database describes the state of each page in physical memory. The

page states are listed in Table 9-17.

804 Windows Internals, Fifth Edition

TABLE 9-17 Page States

Status Description

Active (also called Valid) The page is part of a working set (either a process working set or

the system working set) or it’s not in any working set (for example,

nonpaged kernel page) and a valid PTE usually points to it.

Transition A temporary state for a page that isn’t owned by a working set and

isn’t on any paging list. A page is in this state when an I/O to the page

is in progress. The PTE is encoded so that collided page faults can

be recognized and handled properly. (Note that this use of the term

“transition” differs from the use of the word in the section on Invalid

PTEs; an invalid transition PTE refers to a page on the standby or

modified list.)

Standby The page previously belonged to a working set but was removed

(or was prefetched/clustered directly into the standby list). The page

wasn’t modified since it was last written to disk. The PTE still refers to

the physical page but is marked invalid and in transition.

Modified The page previously belonged to a working set but was removed.

However, the page was modified while it was in use and its current

contents haven’t yet been written to disk or remote storage. The PTE

still refers to the physical page but is marked invalid and in transition.

It must be written to the backing store before the physical page can

be reused.

Modified no-write Same as a modified page, except that the page has been marked so

that the memory manager’s modified page writer won’t write it to

disk. The cache manager marks pages as modified no-write at the

request of file system drivers. For example, NTFS uses this state for

pages containing file system metadata so that it can first ensure that

transaction log entries are flushed to disk before the pages they are

protecting are written to disk. (NTFS transaction logging is explained

in Chapter 11.)

Free The page is free but has unspecified dirty data in it. (These pages can’t

be given as a user page to a user process without being initialized with

zeros, for security reasons.)

Zeroed The page is free and has been initialized with zeros by the zero page

thread (or was determined to already contain zeros).

Rom The page represents read-only memory

Bad The page has generated parity or other hardware errors and can’t be

used. This is also used internally by the system for pages that may be

transitioning from one state to another or are on internal look-aside

caches.

The PFN database consists of an array of structures that represent each physical page of

memory on the system. The PFN database and its relationship to page tables are shown in

Figure 9-37. As this figure shows, valid PTEs usually point to entries in the PFN database, and

the PFN database entries (for nonprototype PFNs) point back to the page table that is using

them (if it is being used by a page table). For prototype PFNs, they point back to the proto-

type PTE.

 Chapter 9 Memory Management 805

Process 2
page table

.

.

.

Process 3
page table

.

.

.

Process 1
page table

Valid

Invalid:
disk address

Invalid:
transition

Valid

Invalid:
disk address

Valid

Valid

Invalid:
transition
Invalid:

disk address

.

.

.

PFN database

In use

Standby list

In use

In use

Modified list

Prototype PTE

Forward pointer

.

.

.

Backward pointer

FIGURE 9-37 Page tables and the page frame number database

Of the page states listed in Table 9-17, six are organized into linked lists so that the memory

manager can quickly locate pages of a specific type. (Active/valid pages, transition pages, and

overloaded “bad” pages aren’t in any systemwide page list.) Additionally, the standby state is

actually associated with eight different lists ordered by priority (we’ll talk about page priority

in the next section). Figure 9-38 shows an example of how these entries are linked together.

806 Windows Internals, Fifth Edition

.

.

.

PFN database

Active

Zeroed

Free

Standby

Bad

Modified no-
write

Read only
memory

Modified

Active

Active

FIGURE 9-38 Page lists in the PFN database

In the next section, you’ll find out how these linked lists are used to satisfy page faults and

how pages move to and from the various lists.

EXPERIMENT: Viewing the PFN Database

You can use the MemInfo tool from Winsider Seminars & Solutions to dump the size

of the various paging lists by using the –s flag. The following is the output from this

command:

C:\>MemInfo.exe -s

MemInfo v2.00 - Show PFN database information

Copyright (C) 2007-2009 Alex Ionescu

www.alex-ionescu.com

Initializing PFN Database... Done

 Chapter 9 Memory Management 807

PFN Database List Statistics

 Zeroed: 487 (1948 kb)

 Free: 0 (0 kb)

 Standby: 379745 (1518980 kb)

 Modified: 1052 (4208 kb)

 ModifiedNoWrite: 0 (0 kb)

 Active/Valid: 142703 (570812 kb)

 Transition: 184 (736 kb)

 Bad: 0 (0 kb)

 Unknown: 2 (8 kb)

 TOTAL: 524173 (2096692 kb)

Using the kernel debugger !memusage command, you can obtain similar information,

although this will take considerably longer and will require booting into debugging

mode.

Page List Dynamics

Figure 9-39 shows a state diagram for page frame transitions. For simplicity, the modified-

no-write list isn’t shown.

Page frames move between the paging lists in the following ways:

When the memory manager needs a zero-initialized page to service a demand-zero

page fault (a reference to a page that is defined to be all zeros or to a user-mode com-

mitted private page that has never been accessed), it first attempts to get one from

the zero page list. If the list is empty, it gets one from the free page list and zeroes the

page. If the free list is empty, it goes to the standby list and zeroes that page.

One reason zero-initialized pages are required is to meet C2 security requirements. C2

specifies that user-mode processes must be given initialized page frames to prevent

them from reading a previous process’s memory contents. Therefore, the memory

manager gives user-mode processes zeroed page frames unless the page is being read

in from a backing store. If that’s the case, the memory manager prefers to use nonze-

roed page frames, initializing them with the data off the disk or remote storage.

808 Windows Internals, Fifth Edition

Demand-zero
page faults

Page read from
disk or kernel
allocations

Standby
page list

ROM
page list

Process
working

sets

Working set
replacement

Modified
page list

“Soft”
page
faults

Free
page
list

Zero
page
list

Bad
page
list

Zero
page

thread

Modified
page
writer

FIGURE 9-39 State diagram for page frames

The zero page list is populated from the free list by a system thread called the zero
page thread (thread 0 in the System process). The zero page thread waits on a gate

object to signal it to go to work. When the free list has eight or more pages, this gate

is signaled. However, the zero page thread will run only if no other threads are run-

ning, because the zero page thread runs at priority 0 and the lowest priority that a user

thread can be set to is 1.

Note When memory needs to be zeroed as a result of a physical page allocation by a

driver that calls MmAllocatePagesForMdl or MmAllocatePagesForMdlEx, by a Windows

application that calls AllocateUserPhysicalPages or AllocateUserPhysicalPagesNuma, or

when an application allocates large pages, the memory manager zeroes the memory by

using a higher performing function called MiZeroInParallel that maps larger regions than

the zero page thread, which only zeroes a page at a time. In addition, on multiprocessor

systems, the memory manager creates additional system threads to perform the zeroing in

parallel (and in a NUMA-optimized fashion on NUMA platforms).

 Chapter 9 Memory Management 809

When the memory manager doesn’t require a zero-initialized page, it goes first to the

free list. If that’s empty, it goes to the zeroed list. If the zeroed list is empty, it goes to

the standby lists. Before the memory manager can use a page frame from the standby

lists, it must first backtrack and remove the reference from the invalid PTE (or prototype

PTE) that still points to the page frame. Because entries in the PFN database contain

pointers back to the previous user’s page table (or to a prototype PTE for shared pages),

the memory manager can quickly find the PTE and make the appropriate change.

When a process has to give up a page out of its working set (either because it refer-

enced a new page and its working set was full or the memory manager trimmed its

working set), the page goes to the standby lists if the page was clean (not modified)

or to the modified list if the page was modified while it was resident. When a process

exits, all the private pages go to the free list. Also, when the last reference to a page-

file-backed section is closed, these pages also go to the free list.

Page Priority

Because every page of memory has a priority in the range 0 to 7, the memory manager

divides the standby list into eight lists that each store pages of a particular priority. When the

memory manager wants to take a page from the standby list, it takes pages from low-priority

lists first, as shown in Figure 9-40. A page’s priority usually reflects the priority of the thread

that first causes its allocation. (If the page is shared, it reflects the highest memory prior-

ity among the sharing threads.) A thread inherits its page-priority value from the process

to which it belongs. The memory manager uses low priorities for pages it reads from disk

speculatively when anticipating a process’s memory accesses.

Pages removed Prioritized

standby lists

1

0

7

6

5

4

3

2

Pages added

FIGURE 9-40 Prioritized standby lists

810 Windows Internals, Fifth Edition

By default, processes have a page-priority value of 5, but functions allow applications and

the system to change process and thread page-priority values. You can look at the memory

priority of a thread with Process Explorer (per-page priority can be displayed by looking at

the PFN entries, as you’ll see in an experiment later in the chapter). Figure 9-41 shows Process

Explorer’s Threads tab displaying information about Winlogon’s main thread. Although the

thread priority itself is high, the memory priority is still the standard 5.

FIGURE 9-41 Process Explorer’s Threads tab.

The real power of memory priorities is realized only when the relative priorities of pages are

understood at a high level, which is the role of SuperFetch, covered at the end of this chapter.

EXPERIMENT: Viewing the Prioritized Standby Lists

You can use the MemInfo tool from Winsider Seminars & Solutions to dump the size of

each standby paging list by using the –c flag. MemInfo will also display the number of

repurposed pages for each standby list—this corresponds to the number of pages in

each list that had to be reused to satisfy a memory allocation, and thus thrown out of

the standby page lists. The following is the relevant output from this command:

C:\>MemInfo.exe -s

MemInfo v2.00 - Show PFN database information

Copyright (C) 2007-2009 Alex Ionescu

www.alex-ionescu.com

 Chapter 9 Memory Management 811

Initializing PFN Database... Done

Priority Standby Repurposed

0 - Idle 1756 (7024 KB) 798 (3192 KB)

1 - Very Low 236518 (946072 KB) 0 (0 KB)

2 - Low 37014 (148056 KB) 0 (0 KB)

3 - Background 64367 (257468 KB) 0 (0 KB)

4 - Background 15576 (62304 KB) 0 (0 KB)

5 - Normal 14445 (57780 KB) 0 (0 KB)

6 - SuperFetch 3889 (15556 KB) 0 (0 KB)

7 - SuperFetch 6641 (26564 KB) 0 (0 KB)

TOTAL 380206 (1520824 KB) 798 (3192 KB)

You can add the –i flag to MemInfo to display the live state of the standby page lists

and repurpose counts, which is useful for tracking memory usage as well as the follow-

ing experiment. Additionally, the system information panel in Process Explorer (choose

View, System Information) can also be used to display the live state of the prioritized

standby lists, as shown in this screen shot:

On the system used in this experiment (see the previous MemInfo output), there is about

7 MB of cached data at priority 0, and more than 900 MB at priority 1. Your system prob-

ably has some data in those priorities as well. The following shows what happens when

we use the TestLimit tool from Sysinternals to commit and touch 1 GB of memory. Here is

the command you use (to leak and touch memory in chunks of 50 MB):

testlimit –d 50

812 Windows Internals, Fifth Edition

Here is the output of MemInfo during the leak:

Priority Standby Repurposed

0 - Idle 0 (0 KB) 2554 (10216 KB)

1 - Very Low 92915 (371660 KB) 141352 (565408 KB)

2 - Low 35783 (143132 KB) 0 (0 KB)

3 - Background 50666 (202664 KB) 0 (0 KB)

4 - Background 15236 (60944 KB) 0 (0 KB)

5 - Normal 34197 (136788 KB) 0 (0 KB)

6 - SuperFetch 2912 (11648 KB) 0 (0 KB)

7 - SuperFetch 5876 (23504 KB) 0 (0 KB)

TOTAL 237585 (950340 KB) 143906 (575624 KB)

And here is the output after the leak:

Priority Standby Repurposed

0 - Idle 0 (0 KB) 2554 (10216 KB)

1 - Very Low 5 (20 KB) 234351 (937404 KB)

2 - Low 0 (0 KB) 35830 (143320 KB)

3 - Background 9586 (38344 KB) 41654 (166616 KB)

4 - Background 15371 (61484 KB) 0 (0 KB)

5 - Normal 34208 (136832 KB) 0 (0 KB)

6 - SuperFetch 2914 (11656 KB) 0 (0 KB)

7 - SuperFetch 5881 (23524 KB) 0 (0 KB)

TOTAL 67965 (271860 KB) 314389 (1257556 KB)

Note how the lower-priority standby page lists were used first (shown by the repur-

posed count) and are now depleted, while the higher lists still contain valuable cached

data.

Modified Page Writer

The memory manager employs two system threads to write pages back to disk and move

those pages back to the standby lists (based on their priority). One system thread writes out

modified pages (MiModifiedPageWriter) to the paging file, and a second one writes modified

pages to mapped files (MiMappedPageWriter). Two threads are required to avoid creating

a deadlock, which would occur if the writing of mapped file pages caused a page fault that

in turn required a free page when no free pages were available (thus requiring the modified

page writer to create more free pages). By having the modified page writer perform mapped

file paging I/Os from a second system thread, that thread can wait without blocking regular

page file I/O.

Both threads run at priority 17, and after initialization they wait for separate objects to trigger

their operation. The mapped page writer is woken in the following cases:

The MmMappedPageWriterEvent event was signaled by the memory manager’s work-

ing set manager (MmWorkingSetManager), which runs as part of the kernel’s balance

 Chapter 9 Memory Management 813

set manager (once every second). The working set manager signals this event if the

number of filesystem-destined pages on the modified page list has reached more than

800. This event can also be signaled when a request to flush all pages is being pro-

cessed or when the system is attempting to obtain free pages (and more than 16 are

available on the modified page list).

One of the MiMappedPageListHeadEvent events associated with the 16 mapped page

lists has been signaled. Each time a mapped page is dirtied, it is inserted into one of

these 16 mapped page lists based on a bucket number (MiCurrentMappedPageBucket).
This bucket number is updated by the working set manager whenever the system con-

siders that mapped pages have gotten old enough, which is currently 100 seconds (the

MiWriteGapCounter variable controls this and is incremented whenever the working set

manager runs). The reason for these additional events is to reduce data loss in the case

of a system crash or power failure by eventually writing out modified mapped pages

even if the modified list hasn’t reached its threshold of 800 pages.

The modified page writer waits on a single gate object (MmModifiedPageWriterGate), which

can be signaled in the following scenarios:

The working set manager detects that the size of the zeroed and free page lists has

dropped below 20,000 pages.

A request to flush all pages has been received.

The number of available pages (MmAvailablePages) has dropped below 262,144

pages during the working set manager’s check, or below 256 pages during a page list

operation.

Additionally, the modified page writer also waits on an event (MiRescanPageFilesEvent) and

an internal event in the paging file header (MmPagingFileHeader), which allows the system to

manually request flushing out data to the paging file when needed.

When invoked, the mapped page writer attempts to write as many pages as possible to disk

with a single I/O request. It accomplishes this by examining the original PTE field of the PFN

database elements for pages on the modified page list to locate pages in contiguous loca-

tions on the disk. Once a list is created, the pages are removed from the modified list, an I/O

request is issued, and, at successful completion of the I/O request, the pages are placed at

the tail of the standby list corresponding to their priority.

Pages that are in the process of being written can be referenced by another thread. When

this happens, the reference count and the share count in the PFN entry that represents the

physical page are incremented to indicate that another process is using the page. When the

I/O operation completes, the modified page writer notices that the reference count is no lon-

ger 0 and doesn’t place the page on any standby list.

814 Windows Internals, Fifth Edition

PFN Data Structures

Although PFN database entries are of fixed length, they can be in several different states,

depending on the state of the page. Thus, individual fields have different meanings depend-

ing on the state. The states of a PFN entry are shown in Figure 9-42.

PFN for a page in a

working set

PFN for a page on the standby

or the modified list

PFN for a page with

an I/O in progress

PFN for a page belonging

to a kernel stack

Kernel stack owner Link to next stack PFN

PTE address

Share count

Original PTE contents

Flags Type

Reference count

Priority

Caching attributes

Page colorFlagsPFN of PTE

Event address

PTE address

Share count

Original PTE contents

Flags Type

Reference count

Priority

Caching attributes

Page colorFlagsPFN of PTE

Forward link

PTE address

Backward link

Original PTE contents

Flags Type

Reference count

Priority

Caching attributes

Page colorFlagsPFN of PTE

Working set index

PTE address

Share count

Original PTE contents

Flags Type

Reference count

Priority

Caching attributes

Page colorFlagsPFN of PTE

FIGURE 9-42 States of PFN database entries

Several fields are the same for several PFN types, but others are specific to a given type of

PFN. The following fields appear in more than one PFN type:

PTE address Virtual address of the PTE that points to this page.

Reference count The number of references to this page. The reference count is incre-

mented when a page is first added to a working set and/or when the page is locked in

memory for I/O (for example, by a device driver). The reference count is decremented

when the share count becomes 0 or when pages are unlocked from memory. When the

share count becomes 0, the page is no longer owned by a working set. Then, if the ref-

erence count is also zero, the PFN database entry that describes the page is updated to

add the page to the free, standby, or modified list.

Type The type of page represented by this PFN. (Types include active/valid, standby,

modified, modified-no-write, free, zeroed, bad, and transition.)

 Chapter 9 Memory Management 815

Flags The information contained in the flags field is shown in Table 9-18.

Priority The priority associated with this PFN, which will determine on which standby

list it will be placed.

Original PTE contents All PFN database entries contain the original contents of the

PTE that pointed to the page (which could be a prototype PTE). Saving the contents

of the PTE allows it to be restored when the physical page is no longer resident. PFN

entries for AWE allocations are exceptions; they store the AWE reference count in this

field instead.

PFN of PTE Physical page number of the page table page containing the PTE that

points to this page.

Color Besides being linked together on a list, PFN database entries use an additional

field to link physical pages by “color,” their location in the processor CPU memory

cache. Windows attempts to minimize unnecessary thrashing of CPU memory caches

by using different physical pages in the CPU cache. It achieves this optimization by

avoiding using the same cache entry for two different pages wherever possible. For sys-

tems with direct mapped caches, optimally using the hardware’s capabilities can result

in a significant performance advantage.

Flags A second flags field is used to encode additional information on the PTE. These

flags are described in Table 9-19.

TABLE 9-18 Flags Within PFN Database Entries

Flag Meaning

Write in progress Indicates that a page write operation is in progress. The first DWORD

contains the address of the event object that will be signaled when the

I/O is complete.

Modified state Indicates whether the page was modified. (If the page was modified, its

contents must be saved to disk before removing it from memory.)

Read in progress Indicates that an in-page operation is in progress for the page. The first

DWORD contains the address of the event object that will be signaled

when the I/O is complete.

Rom Indicates that this page comes from the computer’s firmware or another

piece of read-only memory such as a device register.

In-page error Indicates that an I/O error occurred during the in-page operation on

this page. (In this case, the first field in the PFN contains the error code.)

Kernel stack Indicates that this page is being used to contain a kernel stack. In this

case, the PFN entry contains the owner of the stack and the next stack

PFN for this thread.

Removal requested Indicates that the page is the target of a remove (due to ECC/scrubbing

or hot memory removal).

Parity error Indicates that the physical page contains parity or error correction

control errors.

816 Windows Internals, Fifth Edition

TABLE 9-19 Secondary Flags Within PFN Database Entries

Flag Meaning

PFN image verified The code signature for this PFN (contained in the cryptographic signa-

ture catalog for the image being backed by this PFN) has been verified.

AWE allocation This PFN backs an AWE allocation.

Prototype PTE Indicates that the PTE referenced by the PFN entry is a prototype PTE.

(For example, this page is shareable.)

The remaining fields are specific to the type of PFN. For example, the first PFN in Figure 9-42

represents a page that is active and part of a working set. The share count field represents

the number of PTEs that refer to this page. (Pages marked read-only, copy-on-write, or

shared read/write can be shared by multiple processes.) For page table pages, this field is the

number of valid and transition PTEs in the page table. As long as the share count is greater

than 0, the page isn’t eligible for removal from memory.

The working set index field is an index into the process working set list (or the system or ses-

sion working set list, or zero if not in any working set) where the virtual address that maps

this physical page resides. If the page is a private page, the working set index field refers

directly to the entry in the working set list because the page is mapped only at a single vir-

tual address. In the case of a shared page, the working set index is a hint that is guaranteed

to be correct only for the first process that made the page valid. (Other processes will try to

use the same index where possible.) The process that initially sets this field is guaranteed to

refer to the proper index and doesn’t need to add a working set list hash entry referenced by

the virtual address into its working set hash tree. This guarantee reduces the size of the work-

ing set hash tree and makes searches faster for these particular direct entries.

The second PFN in Figure 9-42 is for a page on either the standby or the modified list. In this

case, the forward and backward link fields link the elements of the list together within the

list. This linking allows pages to be easily manipulated to satisfy page faults. When a page

is on one of the lists, the share count is by definition 0 (because no working set is using the

page) and therefore can be overlaid with the backward link. The reference count is also 0 if

the page is on one of the lists. If it is nonzero (because an I/O could be in progress for this

page—for example, when the page is being written to disk), it is first removed from the list.

The third PFN in Figure 9-42 is for a page that belongs to a kernel stack. As mentioned ear-

lier, kernel stacks in Windows are dynamically allocated, expanded, and freed whenever a

callback to user mode is performed and/or returns, or when a driver performs a callback

and requests stack expansion. For these PFNs, the memory manager must keep track of the

thread actually associated with the kernel stack, or if it is free it keeps a link to the next free

look-aside stack.

The fourth PFN in Figure 9-42 is for a page that has an I/O in progress (for example, a page

read). While the I/O is in progress, the first field points to an event object that will be signaled

when the I/O completes. If an in-page error occurs, this field contains the Windows error sta-

tus code representing the I/O error. This PFN type is used to resolve collided page faults.

 Chapter 9 Memory Management 817

EXPERIMENT: Viewing PFN Entries

You can examine individual PFN entries with the kernel debugger !pfn command.

You first need to supply the PFN as an argument. (For example, !pfn 1 shows the first

entry, !pfn 2 shows the second, and so on.) In the following example, the PTE for virtual

address 0x50000 is displayed, followed by the PFN that contains the page directory,

and then the actual page:

lkd> !pte 50000

 VA 00050000

PDE at 00000000C0600000 PTE at 00000000C0000280

contains 000000002C9F7867 contains 800000002D6C1867

pfn 2c9f7 ---DA--UWEV pfn 2d6c1 ---DA--UW-V

lkd> !pfn 2c9f7

 PFN 0002C9F7 at address 834E1704

 flink 00000026 blink / share count 00000091 pteaddress C0600000

 reference count 0001 Cached color 0 Priority 5

 restore pte 00000080 containing page 02BAA5 Active M

 Modified

lkd> !pfn 2d6c1

 PFN 0002D6C1 at address 834F7D1C

 flink 00000791 blink / share count 00000001 pteaddress C0000280

 reference count 0001 Cached color 0 Priority 5

 restore pte 00000080 containing page 02C9F7 Active M

 Modified

You can also use the MemInfo tool to obtain information about a PFN. MemInfo can

sometimes give you more information than the debugger’s output, and it does not

require being booted into debugging mode. Here’s MemInfo’s output for those same

two PFNs:

C:\>meminfo -p 2c9f7

PFN: 2c9f7

PFN List: Active and Valid

PFN Type: Page Table

PFN Priority: 5

Page Directory: 0x866168C8

Physical Address: 0x2C9F7000

C:\>meminfo -p 2d6c1

PFN: 2d6c1

PFN List: Active and Valid

PFN Type: Process Private

PFN Priority: 5

EPROCESS: 0x866168C8 [windbg.exe]

Physical Address: 0x2D6C1000

MemInfo correctly recognized that the first PFN was a page table and that the second

PFN belongs to WinDbg, which was the active process when the !pte 50000 command

was used in the debugger.

818 Windows Internals, Fifth Edition

In addition to the PFN database, the system variables in Table 9-20 describe the overall state

of physical memory.

TABLE 9-20 System Variables That Describe Physical Memory

Variable Description

MmNumberOfPhysicalPages Total number of physical pages available on the system

MmAvailablePages Total number of available pages on the system—the sum of the

pages on the zeroed, free, and standby lists

MmResidentAvailablePages Total number of physical pages that would be available if every

process were at its minimum working set size

Physical Memory Limits

Now that you’ve learned how Windows keeps track of physical memory, we’ll describe how

much of it Windows can actually support. Because most systems access more code and data

than can fit in physical memory as they run, physical memory is in essence a window into the

code and data used over time. The amount of memory can therefore affect performance,

because when data or code that a process or the operating system needs is not present, the

memory manager must bring it in from disk or remote storage.

Besides affecting performance, the amount of physical memory impacts other resource lim-

its. For example, the amount of nonpaged pool, operating system buffers backed by physical

memory, is obviously constrained by physical memory. Physical memory also contributes to

the system virtual memory limit, which is the sum of roughly the size of physical memory

plus the current configured size of any paging files. Physical memory also can indirectly limit

the maximum number of processes.

Windows support for physical memory is dictated by hardware limitations, licensing, operat-

ing system data structures, and driver compatibility. Table 9-21 lists the currently supported

amounts of physical memory across editions of Windows Vista and Windows Server 2008,

along with the limiting factors.

Although some 64-bit processors can access up to 2 TB of physical memory (and up to 1 TB

even when running 32-bit operating systems through an extended version of PAE), the maxi-

mum 32-bit limit supported by Windows Server Datacenter and Enterprise is 64 GB. This

restriction comes from the fact that structures the memory manager uses to track physical

memory (the PFN database entries seen earlier) would consume too much of the CPU’s 32-bit

virtual address space on larger systems. Because a PFN entry is 28 bytes, on a 64-GB system

this requires about 465 MB for the PFN database, which leaves only 1.5 GB for mapping the

kernel, device drivers, system cache, and other system data structures, making the 64-GB

restriction a reasonable cutoff. On systems with the increaseuserva BCD option set, the kernel

might have as little as 1 GB of virtual address space, so allowing the PFN database to con-

sume more than half of available address space would lead to premature exhaustion of other

resources.

 Chapter 9 Memory Management 819

TABLE 9-21 Physical Memory Support

Version 32-Bit Limit 64-Bit Limit Limiting Factors

Windows Server

2008 Datacenter and

Enterprise

64 GB 2 TB on IA64,

1 TB on x64

Hardware PTE size on 32-bit, PFN

database size if running 32-bit Windows

on 64-bit hardware, hardware platform

support on 64-bit

Windows Server 2008

Standard and Web

Server

4 GB 32 GB Licensing

Windows Server 2008

HPC Edition

N/A 128 GB Licensing

Windows Vista

Ultimate, Enterprise,

and Business

4 GB 128 GB Licensing on 64-bit, licensing, hardware

support, and driver compatibility on 32-bit

Windows Vista Home

Premium

4 GB 16 GB Licensing on 64-bit, licensing, hardware

support, and driver compatibility on 32-bit

Windows Vista Home

Basic

4 GB 8 GB Licensing on 64-bit, licensing, hardware

support, and driver compatibility on 32-bit

Windows Vista Starter 1 GB N/A Licensing

The memory manager could accommodate more memory by mapping pieces of the PFN

database into the system address as needed, but that would add complexity and reduce

performance with the added overhead of mapping, unmapping, and locking operations. It’s

only recently that systems have become large enough for that to be considered, but because

the system address space is not a constraint for mapping the entire PFN database on 64-bit

Windows, support for more memory is left to 64-bit Windows.

The maximum 2-TB limit of 64-bit Windows Server 2008 Datacenter for Itanium doesn’t

come from any implementation or hardware limitation, but because Microsoft will support

only configurations it can test. As of the release of Windows Server 2008, the largest Itanium

system available was 2 TB, so Windows caps its use of physical memory there. On x64 con-

figurations, the 1-TB limit derives from the maximum amount of memory that current x64

page tables can address.

Windows Client Memory Limits

64-bit Windows client editions support different amounts of memory as a differentiating

feature, with the low end being 4 GB for Windows Vista Home Basic, increasing to 128 GB for

the Ultimate, Enterprise, and Business editions. All 32-bit Windows client editions, however,

support a maximum of 4 GB of physical memory, which is the highest physical address acces-

sible with the standard x86 memory management mode.

Although client SKUs support PAE addressing modes in order to provide hardware no-

execute protection (which would also enable access to more than 4 GB of physical memory),

820 Windows Internals, Fifth Edition

testing revealed that many of the systems would crash, hang, or become unbootable because

some device drivers, commonly those for video and audio devices found typically on clients

but not servers, were not programmed to expect physical addresses larger than 4 GB. As a

result, the drivers truncated such addresses, resulting in memory corruptions and corruption

side effects. Server systems commonly have more generic devices, with simpler and more

stable drivers, and therefore had not generally revealed these problems. The problematic

client driver ecosystem led to the decision for client editions to ignore physical memory that

resides above 4 GB, even though they can theoretically address it. Driver developers are

encouraged to test their systems with the nolowmem BCD option, which will force the kernel

to use physical addresses above 4 GB only, if sufficient memory exists on the system to allow

it. This will immediately lead to the detection of such issues in faulty drivers.

32-Bit Client Effective Memory Limits

While 4 GB is the licensed limit for 32-bit client editions, the effective limit is actually lower

and dependent on the system’s chipset and connected devices. The reason is that the physi-

cal address map includes not only RAM but device memory, and x86 and x64 systems typi-

cally map all device memory below the 4 GB address boundary to remain compatible with

32-bit operating systems that don’t know how to handle addresses larger than 4 GB. Newer

chipsets do support PAE-based device remapping, but client editions of Windows do not

support this feature for the driver compatibility problems explained earlier (otherwise, drivers

would receive 64-bit pointers to their device memory).

If a system has 4 GB of RAM and devices such as video, audio, and network adapters that

implement windows into their device memory that sum to 500 MB, 500 MB of the 4 GB of

RAM will reside above the 4 GB address boundary, as seen in Figure 9-43.

0

RAM

Device memory

Device memory

4 GB

4.5 GB

RAM

RAM

Inaccessible
RAM

FIGURE 9-43 Physical memory layout on a 4-GB system

 Chapter 9 Memory Management 821

The result is that if you have a system with 3 GB or more of memory and you are running

a 32-bit Windows client, you may not be getting the benefit of all of the RAM. You can see

how much RAM Windows has detected as being installed in the System Properties dialog

box, but to see how much memory is actually available to Windows, you need to look at Task

Manager’s Performance page or the Msinfo32 and Winver utilities. On a 4-GB laptop, when

booted with 32-bit Windows Vista, the amount of physical memory available is 3.5 GB, as

seen in the Msinfo32 utility:

Installed Physical Memory (RAM) 4.00 GB
Total Physical Memory 3.50 GB

You can see the physical memory layout with the MemInfo tool from Winsider Seminars &

Solutions. Figure 9-44 shows the output of MemInfo when run on the Windows Vista system,

using the –r switch to dump physical memory ranges:

FIGURE 9-44 Memory ranges on a 32-bit Windows system

Note the gap in the memory address range from page 9F0000 to page 100000, and another

gap from DFE6D000 to FFFFFFFF (4 GB). When the system is booted with 64-bit Windows

Vista, on the other hand, all 4 GB show up as available (see Figure 9-45), and you can see how

Windows uses the remaining 500 MB of RAM that are above the 4-GB boundary.

FIGURE 9-45 Memory ranges on an x64 Windows system

You can use Device Manager on your machine to see what is occupying the various reserved

memory regions that can’t be used by Windows (and that will show up as holes in MemInfo’s

output). To check Device Manager, run devmgmt.msc, select Resources By Connection on

the View menu, and then expand the Memory node. On the laptop computer used for the

output shown in Figure 9-46, the primary consumer of mapped device memory is, unsurpris-

ingly, the video card, which consumes 256 MB in the range E0000000-EFFFFFFF.

822 Windows Internals, Fifth Edition

FIGURE 9-46 Hardware-reserved memory ranges on a 32-bit Windows system

Other miscellaneous devices account for most of the rest, and the PCI bus reserves additional

ranges for devices as part of the conservative estimation the firmware uses during boot.

The consumption of memory addresses below 4 GB can be drastic on high-end gaming sys-

tems with large video cards. For example, on a test machine with 8 GB of RAM and two 1-GB

video cards, only 2.2 GB of the memory was accessible by 32-bit Windows. A large memory

hole from 8FEF0000 to FFFFFFFF is visible in the MemInfo output from the system on which

64-bit Windows is installed, shown in Figure 9-47.

FIGURE 9-47 Memory ranges on a 64-bit Windows system

Device Manager revealed that 512 MB of the more than 2-GB gap is for the video cards

(256 MB each) and that the firmware had reserved more either for dynamic mappings or

because it was conservative in its estimate. Finally, even systems with as little as 2 GB can be

prevented from having all their memory usable under 32-bit Windows because of chipsets

that aggressively reserve memory regions for devices.

Working Sets

Now that we’ve looked at how Windows keeps track of physical memory, and how much

memory it can support, we’ll explain how Windows keeps a subset of virtual addresses in

physical memory.

As you’ll recall, the term used to describe a subset of virtual pages resident in physical mem-

ory is called a working set. There are three kinds of working sets:

Process working sets contain the pages referenced by threads within a single process.

 Chapter 9 Memory Management 823

The system working set contains the resident subset of the pageable system code (for

example, Ntoskrnl.exe and drivers), paged pool, and the system cache.

Each session has a working set that contains the resident subset of the kernel-mode

session-specific data structures allocated by the kernel-mode part of the Windows

subsystem (Win32k.sys), session paged pool, session mapped views, and other session-

space device drivers.

Before examining the details of each type of working set, let’s look at the overall policy for

deciding which pages are brought into physical memory and how long they remain. After

that, we’ll explore the various types of working sets.

Demand Paging

The Windows memory manager uses a demand-paging algorithm with clustering to load

pages into memory. When a thread receives a page fault, the memory manager loads into

memory the faulted page plus a small number of pages preceding and/or following it. This

strategy attempts to minimize the number of paging I/Os a thread will incur. Because pro-

grams, especially large ones, tend to execute in small regions of their address space at any

given time, loading clusters of virtual pages reduces the number of disk reads. For page faults

that reference data pages in images, the cluster size is 3 pages. For all other page faults, the

cluster size is 7 pages.

However, a demand-paging policy can result in a process incurring many page faults when its

threads first begin executing or when they resume execution at a later point. To optimize the

startup of a process (and the system), Windows has an intelligent prefetch engine called the

logical prefetcher, described in the next section. Further optimization and prefetching is per-

formed by another component called SuperFetch, that we’ll describe later in the chapter.

Logical Prefetcher

During a typical system boot or application startup, the order of faults is such that some

pages are brought in from one part of a file, then perhaps from a distant part of the same

file, then from a different file, perhaps from a directory, and then again from the first file. This

jumping around slows down each access considerably and, thus, analysis shows that disk seek

times are a dominant factor in slowing boot and application startup times. By prefetching

batches of pages all at once, a more sensible ordering of access, without excessive backtrack-

ing, can be achieved, thus improving the overall time for system and application startup. The

pages that are needed can be known in advance because of the high correlation in accesses

across boots or application starts.

The prefetcher tries to speed the boot process and application startup by monitoring the

data and code accessed by boot and application startups and using that information at the

824 Windows Internals, Fifth Edition

beginning of a subsequent boot or application startup to read in the code and data. When

the prefetcher is active, the memory manager notifies the prefetcher code in the kernel of

page faults, both those that require that data be read from disk (hard faults) and those that

simply require data already in memory be added to a process’s working set (soft faults). The

prefetcher monitors the first 10 seconds of application startup. For boot, the prefetcher by

default traces from system start through the 30 seconds following the start of the user’s shell

(typically Explorer) or, failing that, up through 60 seconds following Windows service initial-

ization or through 120 seconds, whichever comes first.

The trace assembled in the kernel notes faults taken on the NTFS Master File Table (MFT)

metadata file (if the application accesses files or directories on NTFS volumes), on referenced

files, and on referenced directories. With the trace assembled, the kernel prefetcher code

waits for requests from the prefetcher component of the SuperFetch service (%SystemRoot%\

System32\Sysmain.dll), running in a copy of Svchost. The Supferfetch service is responsible for

both the logical prefetching component in the kernel and for the SuperFetch component that

we’ll talk about later. The prefetcher signals the event \KernelObjects\PrefetchTracesReady to

inform the SuperFetch service that it can now query trace data.

Note You can enable or disable prefetching of the boot or application startups by editing the

DWORD registry value HKLM\SYSTEM\CurrentControlSet\Control\Session Manager\Memory

Management\PrefetchParameters\EnablePrefetcher. Set it to 0 to disable prefetching altogether,

1 to enable prefetching of only applications, 2 for prefetching of boot only, and 3 for both boot

and applications.

The SuperFetch service (which hosts the logical prefetcher, although it is a completely sepa-

rate component from the actual SuperFetch functionality) performs a call to the internal

NtQuerySystemInformation system call requesting the trace data. The logical prefetcher post-

processes the trace data, combining it with previously collected data, and writes it to a file

in the %SystemRoot%\Prefetch folder, which is shown in Figure 9-48. The file’s name is the

name of the application to which the trace applies followed by a dash and the hexadecimal

representation of a hash of the file’s path. The file has a .pf extension; an example would be

NOTEPAD.EXE-AF43252301.PF.

There are two exceptions to the file name rule. The first is for images that host other compo-

nents, including the Microsoft Management Console (%SystemRoot%\System32\Mmc.exe),

the Service Hosting Process (%SystemRoot%\System32\Svchost.exe), the Run DLL Component

(%SystemRoot%\System32\Rundll32.exe), and Dllhost (%SystemRoot%\System32\Dllhost.exe).

Because add-on components are specified on the command line for these applications,

the prefetcher includes the command line in the generated hash. Thus, invocations of

these applications with different components on the command line will result in differ-

ent traces. The prefetcher reads the list of executables that it should treat this way from

the HostingAppList value in its parameters registry key, HKLM\SYSTEM\CurrentControlSet\

 Chapter 9 Memory Management 825

Control\Session Manager\Memory Management\PrefetchParameters, and then allows the

SuperFetch service to query this list through the NtQuerySystemInformation API.

The other exception to the file name rule is the file that stores the boot’s trace, which is

always named NTOSBOOT-B00DFAAD.PF. (If read as a word, “boodfaad” sounds similar to

the English words boot fast.) Only after the prefetcher has finished the boot trace (the time of

which was defined earlier) does it collect page fault information for specific applications.

FIGURE 9-48 Prefetch folder

EXPERIMENT: Looking Inside a Prefetch File

A prefetch file’s contents serve as a record of files and directories accessed during the

boot or an application startup, and you can use the Strings utility from Sysinternals to

see the record. The following command lists all the files and directories referenced dur-

ing the last boot:

C:\Windows\Prefetch>Strings –n 5 ntosboot-boodfaad.pf

Strings v2.4

Copyright (C) 1999-2007 Mark Russinovich

Sysinternals - www.sysinternals.com

NTOSBOOT

\DEVICE\HARDDISKVOLUME1\$MFT

\DEVICE\HARDDISKVOLUME1\WINDOWS\SYSTEM32\DRIVERS\TUNNEL.SYS

826 Windows Internals, Fifth Edition

\DEVICE\HARDDISKVOLUME1\WINDOWS\SYSTEM32\DRIVERS\TUNMP.SYS

\DEVICE\HARDDISKVOLUME1\WINDOWS\SYSTEM32\DRIVERS\I8042PRT.SYS

\DEVICE\HARDDISKVOLUME1\WINDOWS\SYSTEM32\DRIVERS\KBDCLASS.SYS

\DEVICE\HARDDISKVOLUME1\WINDOWS\SYSTEM32\DRIVERS\VMMOUSE.SYS

\DEVICE\HARDDISKVOLUME1\WINDOWS\SYSTEM32\DRIVERS\MOUCLASS.SYS

\DEVICE\HARDDISKVOLUME1\WINDOWS\SYSTEM32\DRIVERS\PARPORT.SYS

. . .

When the system boots or an application starts, the prefetcher is called to give it an oppor-

tunity to perform prefetching. The prefetcher looks in the prefetch directory to see if a

trace file exists for the prefetch scenario in question. If it does, the prefetcher calls NTFS to

prefetch any MFT metadata file references, reads in the contents of each of the directories

referenced, and finally opens each file referenced. It then calls the memory manager func-

tion MmPrefetchPages to read in any data and code specified in the trace that’s not already

in memory. The memory manager initiates all the reads asynchronously and then waits for

them to complete before letting an application’s startup continue.

EXPERIMENT: Watching Prefetch File Reads and Writes

If you capture a trace of application startup with Process Monitor from Sysinternals on

a client edition of Windows (Windows Server editions disable prefetching by default),

you can see the prefetcher check for and read the application’s prefetch file (if it exists),

and roughly 10 seconds after the application started, see the prefetcher write out a

new copy of the file. Below is a capture of Notepad startup with an Include filter set to

“prefetch” so that Process Monitor shows only accesses to the %SystemRoot%\Prefetch

directory:

Lines 1 through 4 show the Notepad prefetch file being read in the context of the

Notepad process during its startup. Lines 5 through 11, which have time stamps 10 sec-

onds later than the first three lines, show the SuperFetch service, which is running in the

context of a Svchost process, write out the updated prefetch file.

To minimize seeking even further, every three days or so, during system idle periods,

the SuperFetch service organizes a list of files and directories in the order that they are

 Chapter 9 Memory Management 827

referenced during a boot or application start and stores the list in a file named Windows\

Prefetch\Layout.ini, shown in Figure 9-49. This list also includes frequently accessed files

tracked by SuperFetch.

FIGURE 9-49 Prefetch defragmentation layout file

Then it launches the system defragmenter with a command-line option that tells the defrag-

menter to defragment based on the contents of the file instead of performing a full defrag.

The defragmenter finds a contiguous area on each volume large enough to hold all the listed

files and directories that reside on that volume and then moves them in their entirety into the

area so that they are stored one after the other. Thus, future prefetch operations will even be

more efficient because all the data read in is now stored physically on the disk in the order it

will be read. Because the files defragmented for prefetching usually number only in the hun-

dreds, this defragmentation is much faster than full volume defragmentations. (See Chapter

11 for more information on defragmentation.)

Placement Policy

When a thread receives a page fault, the memory manager must also determine where in

physical memory to put the virtual page. The set of rules it uses to determine the best posi-

tion is called a placement policy. Windows considers the size of CPU memory caches when

choosing page frames to minimize unnecessary thrashing of the cache.

If physical memory is full when a page fault occurs, a replacement policy is used to deter-

mine which virtual page must be removed from memory to make room for the new page.

Common replacement policies include least recently used (LRU) and first in, first out (FIFO).

The LRU algorithm (also known as the clock algorithm, as implemented in most versions of

UNIX) requires the virtual memory system to track when a page in memory is used. When a

828 Windows Internals, Fifth Edition

new page frame is required, the page that hasn’t been used for the greatest amount of time

is removed from the working set. The FIFO algorithm is somewhat simpler; it removes the

page that has been in physical memory for the greatest amount of time, regardless of how

often it’s been used.

Replacement policies can be further characterized as either global or local. A global replace-

ment policy allows a page fault to be satisfied by any page frame, whether or not that frame

is owned by another process. For example, a global replacement policy using the FIFO algo-

rithm would locate the page that has been in memory the longest and would free it to satisfy

a page fault; a local replacement policy would limit its search for the oldest page to the set of

pages already owned by the process that incurred the page fault. Global replacement poli-

cies make processes vulnerable to the behavior of other processes—an ill-behaved applica-

tion can undermine the entire operating system by inducing excessive paging activity in all

processes.

Windows implements a combination of local and global replacement policy. When a working

set reaches its limit and/or needs to be trimmed because of demands for physical memory,

the memory manager removes pages from working sets until it has determined there are

enough free pages.

Working Set Management

Every process starts with a default working set minimum of 50 pages and a working set

maximum of 345 pages. Although it has little effect, you can change the process working

set limits with the Windows SetProcessWorkingSetSize function, though you must have the

“increase scheduling priority” user right to do this. However, unless you have configured the

process to use hard working set limits, these limits are ignored, in that the memory manager

will permit a process to grow beyond its maximum if it is paging heavily and there is ample

memory (and conversely, the memory manager will shrink a process below its working set

minimum if it is not paging and there is a high demand for physical memory on the system).

Hard working set limits can be set using the SetProcessWorkingSetSizeEx function along with

the QUOTA_LIMITS_HARDWS_ENABLE flag, but it is almost always better to let the system

manage your working set instead of setting your own hard working set minimums.

The maximum working set size can’t exceed the systemwide maximum calculated at system

initialization time and stored in the kernel variable MiMaximumWorkingSet, which is a hard

upper limit based on the working set maximums listed in Table 9-22.

TABLE 9-22 Upper Limit for Working Set Maximums

Windows Version Working Set Maximum

x86 2,047.9 MB

x86 versions of Windows booted with increaseuserva 2,047.9 MB+ user virtual address increase (MB)

IA64 7,152 GB

x64 8,192 GB

 Chapter 9 Memory Management 829

When a page fault occurs, the process’s working set limits and the amount of free memory

on the system are examined. If conditions permit, the memory manager allows a process to

grow to its working set maximum (or beyond if the process does not have a hard working

set limit and there are enough free pages available). However, if memory is tight, Windows

replaces rather than adds pages in a working set when a fault occurs.

Although Windows attempts to keep memory available by writing modified pages to disk,

when modified pages are being generated at a very high rate, more memory is required in

order to meet memory demands. Therefore, when physical memory runs low, the working
set manager, a routine that runs in the context of the balance set manager system thread

(described in the next section), initiates automatic working set trimming to increase the

amount of free memory available in the system. (With the Windows SetProcess Working Set-
SizeEx function mentioned earlier, you can also initiate working set trimming of your own

process—for example, after process initialization.)

The working set manager examines available memory and decides which, if any, working

sets need to be trimmed. If there is ample memory, the working set manager calculates how

many pages could be removed from working sets if needed. If trimming is needed, it looks

at working sets that are above their minimum setting. It also dynamically adjusts the rate at

which it examines working sets as well as arranges the list of processes that are candidates

to be trimmed into an optimal order. For example, processes with many pages that have not

been accessed recently are examined first; larger processes that have been idle longer are

considered before smaller processes that are running more often; the process running the

foreground application is considered last; and so on.

When it finds processes using more than their minimums, the working set manager looks

for pages to remove from their working sets, making the pages available for other uses. If

the amount of free memory is still too low, the working set manager continues removing

pages from processes’ working sets until it achieves a minimum number of free pages on the

system.

The working set manager tries to remove pages that haven’t been accessed recently. It does

this by checking the accessed bit in the hardware PTE to see whether the page has been

accessed. If the bit is clear, the page is aged, that is, a count is incremented indicating that the

page hasn’t been referenced since the last working set trim scan. Later, the age of pages is

used to locate candidate pages to remove from the working set.

If the hardware PTE accessed bit is set, the working set manager clears it and goes on to

examine the next page in the working set. In this way, if the accessed bit is clear the next time

the working set manager examines the page, it knows that the page hasn’t been accessed

since the last time it was examined. This scan for pages to remove continues through the

working set list until either the number of desired pages has been removed or the scan has

returned to the starting point. (The next time the working set is trimmed, the scan picks up

where it left off last.)

830 Windows Internals, Fifth Edition

EXPERIMENT: Viewing Process Working Set Sizes

You can use the Performance tool to examine process working set sizes by looking at

the performance counters shown in the following table.

Counter Description

Process: Working Set Current size of the selected process’s working set in bytes

Process: Working Set Peak Peak size of the selected process’s working set in bytes

Process: Page Faults/sec Number of page faults for the process that occur each second

Several other process viewer utilities (such as Task Manager and Process Explorer) also

display the process working set size.

You can also get the total of all the process working sets by selecting the _Total pro-

cess in the instance box in the Performance tool. This process isn’t real—it’s simply a

total of the process-specific counters for all processes currently running on the system.

The total you see is misleading, however, because the size of each process working set

includes pages being shared by other processes. Thus, if two or more processes share a

page, the page is counted in each process’s working set.

EXPERIMENT: Viewing the Working Set List

You can view the individual entries in the working set by using the kernel debugger

!wsle command. The following example shows a partial output of the working set list of

WinDbg.

lkd> !wsle 7

Working Set @ c0802000

 FirstFree 209c FirstDynamic 6

 LastEntry 242e NextSlot 6 LastInitialized 24b9

 NonDirect 0 HashTable 0 HashTableSize 0

Reading the WSLE data ..

Virtual Address Age Locked ReferenceCount

 c0600203 0 1 1

 c0601203 0 1 1

 c0602203 0 1 1

 c0603203 0 1 1

 c0604213 0 1 1

 c0802203 0 1 1

 2865201 0 0 1

 1a6d201 0 0 1

 3f4201 0 0 1

 707ed101 0 0 1

 Chapter 9 Memory Management 831

 2d27201 0 0 1

 2d28201 0 0 1

 772f5101 0 0 1

 2d2a201 0 0 1

 2d2b201 0 0 1

 2d2c201 0 0 1

 779c3101 0 0 1

 c0002201 0 0 1

 7794f101 0 0 1

 7ffd1109 0 0 1

 7ffd2109 0 0 1

 7ffc0009 0 0 1

 7ffb0009 0 0 1

 77940101 0 0 1

 77944101 0 0 1

 112109 0 0 1

 320109 0 0 1

 322109 0 0 1

 77949101 0 0 1

 110109 0 0 1

 77930101 0 0 1

 111109 0 0 1

Notice that some entries in the working set list are page table pages (the ones with

addresses greater than 0xC0000000), some are from system DLLs (the ones in the

0x7nnnnnnn range), and some are from the code of Windbg.exe itself.

Balance Set Manager and Swapper

Working set expansion and trimming take place in the context of a system thread called the

balance set manager (routine KeBalanceSetManager). The balance set manager is created

during system initialization. Although the balance set manager is technically part of the ker-

nel, it calls the memory manager’s working set manager (MmWorkingSetManager) to per-

form working set analysis and adjustment.

The balance set manager waits for two different event objects: an event that is signaled when

a periodic timer set to fire once per second expires and an internal working set manager

event that the memory manager signals at various points when it determines that working

sets need to be adjusted. For example, if the system is experiencing a high page fault rate

or the free list is too small, the memory manager wakes up the balance set manager so that

it will call the working set manager to begin trimming working sets. When memory is more

plentiful, the working set manager will permit faulting processes to gradually increase the

size of their working sets by faulting pages back into memory, but the working sets will grow

only as needed.

832 Windows Internals, Fifth Edition

When the balance set manager wakes up as the result of its 1-second timer expiring, it takes

the following five steps:

 1. It queues a DPC associated to a 1-second timer. The DPC routine is the KiScanReady-
Queues routine, which looks for threads that might warrant having their priority

boosted because they are CPU starved. (See the section “Priority Boosts for CPU

Starvation” in Chapter 5.)

 2. Every fourth time the balance set manager wakes up because its 1-second timer has

expired, it signals an event that wakes up another system thread called the swapper

(KiSwapperThread) (routine KeSwapProcessOrStack).

 3. The balance set manager then checks the look-aside lists and adjusts their depths if

necessary (to improve access time and to reduce pool usage and pool fragmentation).

 4. It adjusts IRP credits to optimize the usage of the per-processor look-aside lists used in

IRP completion. This allows better scalability when certain processors are under heavy

I/O load.

 5. It calls the memory manager’s working set manager. (The working set manager has its

own internal counters that regulate when to perform working set trimming and how

aggressively to trim.)

The swapper is also awakened by the scheduling code in the kernel if a thread that needs to

run has its kernel stack swapped out or if the process has been swapped out. The swapper

looks for threads that have been in a wait state for 15 seconds (or 3 seconds on a system with

less than 12 MB of RAM). If it finds one, it puts the thread’s kernel stack in transition (moving

the pages to the modified or standby lists) so as to reclaim its physical memory, operating

on the principle that if a thread’s been waiting that long, it’s going to be waiting even longer.

When the last thread in a process has its kernel stack removed from memory, the process is

marked to be entirely outswapped. That’s why, for example, processes that have been idle for

a long time (such as Winlogon is after you log on) can have a zero working set size.

System Working Set

Just as processes have working sets, the pageable code and data in the operating system are

managed by a single system working set. Five different kinds of pages can reside in the sys-

tem working set:

System cache pages

Paged pool

Pageable code and data in Ntoskrnl.exe

Pageable code and data in device drivers

System mapped views

 Chapter 9 Memory Management 833

You can examine the size of the system working set or the size of the five components that

contribute to it with the performance counters or system variables shown in Table 9-23. Keep

in mind that the performance counter values are in bytes whereas the system variables are

measured in terms of pages.

You can also examine the paging activity in the system working set by examining the

Memory: Cache Faults/sec performance counter, which describes page faults that occur in

the system working set (both hard and soft).

TABLE 9-23 System Working Set Performance Counters

Performance Counter

(in Bytes)

System Variable

(in Pages) Description

Memory: Cache Bytes* MmSystemCache-
 Ws.Working SetSize

Total size of system working set (including

the cache, paged pool, pageable Ntoskrnl

and driver code, and system mapped

views); this is not the size of the system

cache alone, even though the name

implies that it is.

Memory: Cache Bytes

Peak

MmSystemCacheWs.Peak Peak system working set size.

Memory: System Cache

Resident Bytes

MmSystemCachePage Physical memory consumed by the system

cache.

Memory: System Code

Resident Bytes

MmSystemCodePage Physical memory consumed by pageable

code in Ntoskrnl.exe.

Memory: System Driver

Resident Bytes

MmSystemDriverPage Physical memory consumed by pageable

device driver code.

Memory: Pool Paged

Resident Bytes

MmPagedPoolPage Physical memory consumed by paged

pool.

* Internally, this working set is called the system cache working set, even though the system cache is just one of five
different components in it. Thus, several utilities think they are displaying the size of the file cache when they are
displaying the total size of the system working set.

MmSystemCacheWs.Page Fault Count is the system variable that contains the value for this

counter.

Memory Notification Events

Windows provides a way for user-mode processes and kernel-mode drivers to be noti-

fied when physical memory, paged pool, nonpaged pool, and commit charge are low and/

or plentiful. This information can be used to determine memory usage as appropriate. For

example, if available memory is low, the application can reduce memory consumption. If

available paged pool is high, the driver can allocate more memory. Finally, the memory

manager also provides an event that permits notification when corrupted pages have been

detected.

834 Windows Internals, Fifth Edition

User-mode processes can be notified only of low or high memory conditions. An applica-

tion can call the CreateMemoryResourceNotification function, specifying whether low or

high memory notification is desired. A handle can be provided to any of the wait functions.

When memory is low (or high), the wait completes, thus notifying the thread of the condi-

tion. Alternatively, the QueryMemoryResourceNotification can be used to query the system

memory condition at any time.

Drivers, on the other hand, use the specific event name that the memory manager has set up

in the \KernelObjects directory, since notification is implemented by the memory manager

signaling one of the globally named event objects it defines, shown in Table 9-24.

TABLE 9-24 Memory Manager Notification Events

Event Name Description

HighCommitCondition This event is set when the commit charge is near the maximum

commit limit. In other words, memory usage is very high, very

little space is available in physical memory or paging files, and the

operating system cannot increase the size of its paging files.

HighMemoryCondition This event is set whenever the amount of free physical memory

exceeds the defined amount.

HighNonPagedPoolCondition This event is set whenever the amount of nonpaged pool exceeds the

defined amount.

HighPagedPoolCondition This event is set whenever the amount of paged pool exceeds the

defined amount.

LowCommitCondition This event is set when the commit charge is low, relative to the current

commit limit. In other words, memory usage is low and a lot of space

is available in physical memory or paging files.

LowMemoryCondition This event is set whenever the amount of free physical memory falls

below the defined amount.

LowNonPagedPoolCondition This event is set whenever the amount of free nonpaged pool falls

below the defined amount.

LowPagedPoolCondition This event is set whenever the amount of free paged pool falls below

the defined amount.

MaximumCommitCondition This event is set when the commit charge is near the maximum

commit limit. In other words, memory usage is very high, very

little space is available in physical memory or paging files, and the

operating system cannot increase the size or number of paging files.

MemoryErrors A bad page (non-zeroed zero page) has been detected.

When a given memory condition is detected, the appropriate event is signaled, thus waking

up any waiting threads.

 Chapter 9 Memory Management 835

Note The high and low memory values can be overridden by adding a DWORD registry value,

LowMemoryThreshold or HighMemoryThreshold, under HKLM\SYSTEM\CurrentControlSet\

Session Manager\Memory Management that specifies the number of megabytes to use as the

low or high threshold. The system can also be configured to crash the system when a bad page

is detected, instead of signaling a memory error event, by setting the PageValidationAction

DWORD registry value in the same key.

EXPERIMENT: Viewing the Memory Resource Notification Events

To see the memory resource notification events, run Winobj from Sysinternals and click

on the KernelObjects folder. You will see both the low and high memory condition

events shown in the right pane:

If you double-click either event, you can see how many handles and/or references have

been made to the objects.

To see whether any processes in the system have requested memory resource

notification, search the handle table for references to “LowMemoryCondition” or

“HighMemoryCondition.” You can do this by using Process Explorer’s Find menu and

choosing the Handle capability or by using WinDbg. (For a description of the handle

table, see the section on the “Object Manager” in Chapter 3.)

836 Windows Internals, Fifth Edition

Proactive Memory Management (SuperFetch)

Traditional memory management in operating systems has focused on the demand-paging

model we’ve shown until now, with some advancements in clustering and prefetching so that

disk I/Os can be optimized at the time of the demand-page fault. Client versions of Windows

Vista and later releases, however, include a significant improvement in the management of

physical memory with the implementation of SuperFetch, a memory management scheme

that enhances the least-recently accessed approach with historical information and proactive

memory management.

The standby list management of previous Windows versions has had two limitations. First,

the prioritization of pages relies only on the recent past behavior of processes and does not

anticipate their future memory requirements. Second, the data used for prioritization is lim-

ited to the list of pages owned by a process at any given point in time. These shortcomings

can result in scenarios in which the computer is left unattended for a brief period of time,

during which a memory-intensive system application runs (doing work such as an antivirus

scan or a disk defragmentation) and then causes subsequent interactive application use (or

launch) to be sluggish. The same situation can happen when a user purposely runs a data

and/or memory intensive application and then returns to use other programs, which appear

to be significantly less responsive.

This decline in performance occurs because the memory-intensive application forces the

code and data that active applications had cached in memory to be overwritten by the

 memory-intensive activities—applications perform sluggishly as they have to request their

data and code from disk. Client versions of Windows Vista and later take a big step toward

resolving these limitations with SuperFetch.

Components

SuperFetch is composed of several components in the system that work hand in hand to pro-

actively manage memory and limit the impact on user activity when SuperFetch is perform-

ing its work. These components include:

Tracer The tracer mechanisms are part of a kernel component (Pf) that allows

SuperFetch to query detailed page usage, session, and process information at any time.

SuperFetch also makes use of the FileInfo driver (%SystemRoot%\System32\Drivers\

Fileinfo.sys) to track file usage.

Trace Collector and Processor This collector works with the tracing components to

provide a raw log based on the tracing data that has been acquired. This tracing data

is kept in memory and handed off to the processor. The processor then hands the

 Chapter 9 Memory Management 837

log entries in the trace to the agents, which maintain history files (described below) in

memory and persist them to disk when the service stops (such as during a reboot).

Agents SuperFetch keeps file page access information in history files, which keep

track of virtual offsets. Agents group pages by attributes, such as:

Page access while the user was active

Page access by a foreground process

Hard fault while the user was active

Page access during an application launch

Page access upon the user returning after a long idle period

Scenario manager This component, also called the context agent, manages the three

SuperFetch scenario plans: hibernation, standby, and fast-user switching The kernel-

mode part of the scenario manager provides APIs for initiating and terminating sce-

narios, managing current scenario state, and associating tracing information with these

scenarios.

Rebalancer Based on the information provided by the SuperFetch agents, as well as

the current state of the system (such as the state of the prioritized page lists), the rebal-

ancer, a specialized agent that is located in the SuperFetch user-mode service, queries

the PFN database and reprioritizes it based on the associated score of each page, thus

building the prioritized standby lists. The rebalancer can also issue commands to the

memory manager that modify the working sets of processes on the system, and it is

the only agent that actually takes action on the system—other agents merely filter

information for the rebalancer to use in its decisions. Other than reprioritization, the

rebalancer also initiates prefetching through the prefetcher thread, which makes use of

FileInfo and kernel services to preload memory with useful pages.

Finally, all these components make use of facilities inside the memory manager that allow

querying detailed information about the state of each page in the PFN database, the current

page counts for each page list and prioritized list, and more. Figure 9-50 displays an archi-

tectural diagram of SuperFetch’s multiple components. SuperFetch components also make

use of prioritized I/O (see Chapter 7 for more information on I/O priority) to minimize user

impact.

838 Windows Internals, Fifth Edition

Page access
trace

File Info
trace

Memory
prioritizer

Prefetch
thread

Working set
complement

Rebalancer
core

Rebalancer

Core
propagation

Pfn database

User data

User data

User data

User data

Core

Core

Core

Agent

Agent

Agent

Trace processor

Trace
collector

Section info
database

Log
entries

Pfn reprioritizer

Memory
manager

SuperFetch tracer FileInfo
minifilter

File name – key
information

Page access
buffers

Prefetch
requests

Prefetch
requests

Pfn
query

requests

Pfn set
requests

Completed
page access
and FileInfo

traces

User mode

SuperFetch
prefetcher

Page access
trace

FileInfo
trace

Trace list

Page
access
traces

File key
lookup

Pfn
query/set
requests

Kernel mode

FIGURE 9-50 SuperFetch architectural diagram

Tracing and Logging

SuperFetch makes most of its decisions based on information that has been integrated,

parsed, and post-processed from raw traces and logs, making these two components among

the most critical. Tracing is similar to ETW in some ways because it makes use of certain trig-

gers in code throughout the system to generate events, but it also works in conjunction

with facilities already provided by the system, such as power manager notification, process

 Chapter 9 Memory Management 839

callbacks, and file system filtering. The tracer also makes use of traditional page aging mech-

anisms that exist in the memory manager, as well as newer working set aging and access

tracking implemented for SuperFetch.

SuperFetch always keeps a trace running and continuously queries trace data from the sys-

tem, which tracks page usage and access through the memory manager’s access bit tracking

and working set aging. To track file-related information, which is as critical as page usage

because it allows prioritization of file data in the cache, SuperFetch leverages existing filtering

functionality with the addition of the FileInfo driver. (See Chapter 7 for more information on

filter drivers.) This driver sits on the file system device stack and monitors access and changes

to files at the stream level (for more information on NTFS data streams, see Chapter 11),

which provides it with fine-grained understanding of file access. The main job of the FileInfo

driver is to associate streams (identified by a unique key, currently implemented as the

FsContext field of the respective file object) with file names so that the user-mode SuperFetch

service can identify the specific file steam and offset with which a page in the standby list

belonging to a memory mapped section is associated. It also provides the interface for

prefetching file data transparently, without interfering with locked files and other file system

state. The rest of the driver ensures that the information stays consistent by tracking dele-

tions, renaming operations, truncations, and the reuse of file keys by implementing sequence

numbers.

At any time during tracing, the rebalancer might be invoked to repopulate pages differently.

These decisions are made by analyzing information such as the distribution of memory within

working sets, the zero page list, the modified page list and the standby page lists, the num-

ber of faults, the state of PTE access bits, the per-page usage traces, current virtual address

consumption, and working set size.

A given trace can be either a page access trace, in which the tracer keeps track (by using the

access bit) of which pages were accessed by the process (both file page and private memory),

or a name logging trace, which monitors the file-name-to-file-key-mapping updates (which

allow SuperFetch to map a page associated with a file object) to the actual file on disk.

Although a SuperFetch trace only keeps track of page accesses, the SuperFetch service pro-

cesses this trace in user mode and goes much deeper, adding its own richer information

such as where the page was loaded from (such as resident memory or a hard page fault),

whether this was the initial access to that page, and what the rate of page access actually is.

Additional information, such as the system state, is also kept, as well as information about in

which recent scenarios each traced page was last referenced. The generated trace informa-

tion is kept in memory through a logger into data structures, which identify, in the case of

page access traces, a virtual-address-to-working-set pair or, in the case of a name logging

trace, a file-to-offset pair. SuperFetch can thus keep track of which range of virtual addresses

for a given process have page-related events and which range of offsets for a given file have

similar events.

840 Windows Internals, Fifth Edition

Scenarios

One aspect of SuperFetch that is distinct from its primary page repriorization and prefetching

mechanisms (covered in more detail in the next section) is its support for scenarios, which are

specific actions on the machine for which SuperFetch strives to improve the user experience.

These scenarios are standby and hibernation as well as fast user switching. Each of these

scenarios has different goals, but all are centered around the main purpose of minimizing or

removing hard faults.

For hibernation, the goal is to intelligently decide which pages are saved in the hiberna-

tion file other than the existing working set pages. The goal is to minimize the amount

of time that it takes for the system to become responsive after a resume.

For standby, the goal is to completely remove hard faults after resume. Because a typi-

cal system can resume in less than 2 seconds, but can take 5 seconds to spin-up the

hard drive after a long sleep, a single hard fault could cause such a delay in the resume

cycle. SuperFetch prioritizes pages needed after a standby to remove this chance.

For fast user switching, the goal is to keep an accurate priority and understanding of

each user’s memory, so that switching to another user will cause the user’s session to

be immediately usable, and not require a large amount of lag time to allow pages to be

faulted in.

Scenarios are hardcoded, and SuperFetch manages them through the NtSetSystem-
Information and NtQuerySystemInformation APIs that control system state. For SuperFetch

purposes, a special information class, SystemSuperFetchInformation, is used to control the

kernel-mode components and to generate requests such as starting, ending, and querying a

scenario or associating one or more traces with a scenario.

Each scenario is defined by a plan file, which contains, at minimum, a list of pages associ-

ated with the scenario. Page priority values are also assigned according to certain rules we’ll

describe next. When a scenario starts, the scenario manager is responsible for responding to

the event by generating the list of pages that should be brought into memory and at which

priority.

Page Priority and Rebalancing

We’ve already seen that the memory manager implements a system of page priorities to

define from which standby list pages will be repurposed for a given operation and in which

list a given page will be inserted. This mechanism provides benefits when processes and

threads can have associated priorities—such that a defragmenter process doesn’t pollute the

standby page list and/or steal pages from an interactive, foreground process—but its real

power is unleashed through SuperFetch’s page prioritization schemes and rebalancing, which

don’t require manual application input or hardcoded knowledge of process importance.

 Chapter 9 Memory Management 841

SuperFetch assigns page priority based on an internal score it keeps for each page, part of

which is based on frequency-based usage. This usage counts how many times a page was

used in given relative time intervals, such as an hour, a day, or a week. Time of use is also kept

track of, which records for how long a given page has not been accessed. Finally, data such as

where this page comes from (which list) and other access patterns are used to compute this

final score, which is then translated into a priority number, which can be anywhere from 1 to

6 (7 is used for another purpose described later). Going down each level, the lower standby

page list priorities are repurposed first, as shown in the Experiment “Viewing Prioritized

Standby Lists.” Priority 5 is typically used for normal applications, while priority 1 is meant for

background applications that third-party developers can mark as such. Finally, priority 6 is

used to keep a certain number of high-importance pages as far away as possible from repur-

posing. The other priorities are a result of the score associated with each page.

Because SuperFetch “learns” a user’s system, it can start from scratch with no existing histori-

cal data and slowly build up an understanding of the different page usage accesses associ-

ated with the user. However, this would result in a significant learning curve whenever a new

application, user, or service pack was installed. Instead, by using an internal tool, Microsoft

has the ability to pretrain SuperFetch to capture SuperFetch data and then turn it into pre-

built traces. Before Windows shipped, the SuperFetch team traced common usages and pat-

terns that all users will probably encounter, such as clicking the Start menu, opening Control

Panel, or using the File Open/Save dialog box. This trace data was then saved to history files

(which ship as resources in Sysmain.dll) and is used to prepopulate the special priority 7 list,

which is where the most critical data is placed and which is very rarely repurposed. Pages at

priority 7 are file pages kept in memory even after the process has exited and even across

reboots (by being repopulated at the next boot). Finally, pages with priority 7 are static, in

that they are never reprioritized, and SuperFetch will never dynamically load pages at priority

7 other than the static pretrained set.

The prioritized list is loaded into memory (or prepopulated) by the rebalancer, but the actual

act of rebalancing is actually handled both by SuperFetch and the memory manager. As

shown earlier, the prioritized standby page list mechanism is internal to the memory man-

ager, and decisions as to which pages to throw out first and which to protect are innate,

based on the priority number. The rebalancer actually does its job not by manually rebalanc-

ing memory but by reprioritizing it, which will cause the operation of the memory manager

to perform the needed tasks. The rebalancer is also responsible for reading the actual pages

from disk, if needed, so that they are present in memory (prefetching). It then assigns the pri-

ority that is mapped by each agent to the score for each page, and the memory manager will

then ensure that the page is treated according to its importance.

The rebalancer can also take action without relying on other agents; for example, if it

notices that the distribution of pages across paging lists is suboptimal or that the number

of repurposed pages across different priority levels is detrimental. The rebalancer also has

the ability to cause working set trimming if needed, which might be required for creating an

842 Windows Internals, Fifth Edition

appropriate budget of pages that will be used for SuperFetch prepopulated cache data. The

rebalancer will typically take low-utility pages—such as those that are already marked as low

priority, pages that are zeroed, and pages with valid contents but not in any working set and

have been unused—and build a more useful set of pages in memory, given the budget it has

allocated itself.

Once the rebalancer has decided which pages to bring into memory and at which prior-

ity level they need to be loaded (as well as which pages can be thrown out), it performs the

required disk reads to prefetch them. It also works in conjunction with the I/O manager’s pri-

oritization schemes so that the I/Os are performed with very low priority and do not interfere

with the user. It is important to note that the actual memory consumption used by prefetch-

ing is all backed by standby pages—as described earlier in the discussion of page dynam-

ics, standby memory is available memory because it can be repurposed as free memory for

another allocator at any time. In other words, if SuperFetch is prefetching the “wrong data,”

there is no real impact to the user, because that memory can be reused when needed and

doesn’t actually consume resources.

Finally, the rebalancer also runs periodically to ensure that pages it has marked as high pri-

ority have actually been recently used. Because these pages will rarely (sometimes never)

be repurposed, it is important not to waste them on data that is rarely accessed but may

have appeared to be frequently accessed during a certain time period. If such a situation is

detected, the rebalancer runs again to push those pages down in the priority lists.

In addition to the rebalancer, a special agent called the application launch agent is also

involved in a different kind of prefetching mechanism, which attempts to predict application

launches and builds a Markov chain model that describes the probability of certain applica-

tion launches given the existence of other application launches within a time segment. These

time segments are divided across four different periods—morning, noon, evening, and

night; roughly 6 hours each—and are also kept track of separately as weekdays or weekends.

For example, if on Saturday and Sunday evening a user typically launches Outlook (to send

e-mail) after having launched Word (to write letters), the application launch agent will prob-

ably have prefetched Outlook based on the high probability of it running after Word during

weekend evenings.

Because systems today have sufficiently large amounts of memory, on average more than 2

GB (although SuperFetch works well on low-memory systems, too), the actual real amount of

memory that frequently used processes on a machine need resident for optimal performance

ends up being a manageable subset of their entire memory footprint, and SuperFetch can

often fit all the pages required into RAM. When it can’t, technologies such as ReadyBoost and

ReadyDrive can further avoid disk usage.

 Chapter 9 Memory Management 843

Robust Performance

A final performance enhancing functionality of SuperFetch is called robustness, or robust
performance. This component, managed by the user-mode SuperFetch service, but ultimately

implemented in the kernel (Pf routines), watches for specific file I/O access that might harm

system performance by populating the standby lists with unneeded data. For example, if a

process were to copy a large file across the file system, the standby list would be populated

with the file’s contents, even though that file might never be accessed again (or not for a long

period of time). This would throw out any other data within that priority (and if this was an

interactive and useful program, chances are its priority would’ve been at least 5).

SuperFetch responds to two specific kinds of I/O access patterns: sequential file access (going

through all the data in a file) and sequential directory access (going through every file in a

directory). When SuperFetch detects that a certain amount of data (past an internal thresh-

old) has been populated in the standby list as a result of this kind of access, it applies aggres-

sive deprioritization (robustion) to the pages being used to map this file, within the targeted

process only (so as not to penalize other applications). These pages, so-called robusted,

essentially become reprioritized to priority 2.

Because this component of SuperFetch is reactive and not predictive, it does take some time

for the robustion to kick in. SuperFetch will therefore keep track of this process for the next

time it runs. Once SuperFetch has determined that it appears that this process always per-

forms this kind of sequential access, SuperFetch remembers it and robusts the file pages as

soon as they’re mapped, instead of waiting on the reactive behavior. At this point, the entire

process is now considered robusted for future file access.

Just by applying this logic, however, SuperFetch could potentially hurt many legitimate appli-

cations or user scenarios that perform sequential access in the future. For example, by using

the Sysinternals Strings.exe utility, you can look for a string in all executables that are part

of a directory. If there are many files, SuperFetch would likely perform robustion. Now, next

time you run Strings with a different search parameter, it would run just as slowly as it did the

first time, even though you’d expect it to run much faster. To prevent this, SuperFetch keeps a

list of processes that it watches into the future, as well as an internal hard-coded list of excep-

tions. If a process is detected to later re-access robusted files, robustion is disabled on the

process in order to restore expected behavior.

The main point to remember when thinking about robustion, and SuperFetch optimizations

in general, is that SuperFetch constantly monitors usage patterns and updates its under-

standing of the system, so that it can avoid fetching useless data. Although changes in a

user’s daily activities or application startup behavior might cause SuperFetch to incorrectly

“pollute” the cache with irrelevant data or to throw out data that SuperFetch might think is

useless, it will quickly adapt to any pattern changes. If the user’s actions are erratic and ran-

dom, the worst that can happen is that the system behaves in a similar state as if SuperFetch

was not present at all. If SuperFetch is ever in doubt or cannot track data reliably, it quiets

844 Windows Internals, Fifth Edition

itself and doesn’t make changes to a given process or page, keeping the behavior as it would

have been on a Windows XP machine, for example.

ReadyBoost

Although RAM today is somewhat easily available and relatively cheap compared to a decade

ago, it still doesn’t beat the cost of secondary storage such as hard disk drives. Unfortunately,

hard disks today contain many moving parts, are fragile, and, more importantly, relatively

slow compared to RAM, especially during seeking, so storing active SuperFetch data on the

drive would be as bad as paging out a page and hard faulting it inside memory. (Solid state

disks offset some of these disadvantages, but they are pricier and still slow compared to

RAM.) On the other hand, portable solid state media such as USB keys, CompactFlash cards,

and Secure Digital cards provide a useful compromise. They are cheaper than RAM and avail-

able in larger sizes, but they also have seek times much shorter than hard drives because of

the lack of moving parts.

Random disk I/O is especially expensive because disk head seek times are on the order of 10

milliseconds—an eternity for today’s 3-GHz processors. Flash memory, however, can service

random reads up to 10 times faster than a typical hard disk. Windows therefore includes a

feature called ReadyBoost to take advantage of flash memory storage devices by creating an

intermediate caching layer on them that logically sits between memory and disks.

ReadyBoost consists of a service (%SystemRoot%\System32\Emdmgmt.dll) that runs in a

Service Host process and a volume filter driver (%SystemRoot%\System32\Drivers\Ecache.sys).

(Emd is short for External Memory Device, the working name for ReadyBoost during its

development.) When you insert a flash device like a USB key into a system, the ReadyBoost

service looks at the device to determine its performance characteristics and stores the results

of its test in HKLM\SOFTWARE\Microsoft\Windows NT\CurrentVersion\Emdmgmt, as shown

in Figure 9-51.

FIGURE 9-51 ReadyBoost device test results in the registry

 Chapter 9 Memory Management 845

If you aren’t already using a device for caching and the new device is between 256 MB and 32

GB in size, has a transfer rate of 2.5 MB per second or higher for random 4-KB reads, and has

a transfer rate of 1.75 MB per second or higher for random 512-KB writes, then ReadyBoost

will ask if you’d like to dedicate up to 4 GB of the storage for disk caching. (Although

ReadyBoost can use NTFS, it limits the maximum cache size to 4 GB to accommodate FAT32

limitations.) If you agree, the service creates a caching file named Ready Boost.sfcache in the

root of the device, which it will use to store cached pages (the initial cache is built by query-

ing SuperFetch’s cache, but later contents are fully managed by ReadyBoost independently).

After the ReadyBoost service initializes caching, the Ecache.sys device driver intercepts all

reads and writes to local hard disk volumes (C:\, for example) and copies any data being read

or written into the caching file that the service created, with certain exceptions such as data

that hasn’t been read in a long while, or data that belongs to Volume Snapshot requests.

Ecache.sys compresses data and typically achieves a 2:1 compression ratio, so a 4-GB cache

file will usually contain 8 GB of data. The driver encrypts each block it writes using Advanced

Encryption Standard (AES) encryption with a randomly generated per-boot session key in

order to guarantee the privacy of the data in the cache if the device is removed from the

system.

When ReadyBoost sees random reads that can be satisfied from the cache, it services them

from there, but because hard disks have better sequential read access than flash memory, it

lets reads that are part of sequential access patterns go directly to the disk even if the data

is in the cache. Likewise, when reading the cache, if large I/Os have to be done, the on-disk

cache will be read insead.

One disadvantage of depending on flash media is that the user can remove it at any time,

which means the system can never solely store critical data on the media (as we’ve seen,

writes always go to the secondary storage first). A related technology, ReadyDrive, covered in

the next section, offers additional benefits and solves this problem.

ReadyDrive

ReadyDrive is a Windows feature that takes advantage of hybrid hard disk drives called

H-HDDs. An H-HDD is a disk with embedded nonvolatile flash memory (also known as

NVRAM). Typical H-HDDs include between 50 MB and 512 MB of cache, but the Windows

cache limit is 2 TB.

Windows uses ATA-8 commands to define the disk data to be held in the flash memory. For

example, Windows will save boot data to the cache when the system shuts down, allowing for

846 Windows Internals, Fifth Edition

faster restarting. It also stores portions of hibernation file data in the cache when the system

hibernates so that the subsequent resume is faster. Because the cache is enabled even when

the disk is spun down, Windows can use the flash memory as a disk-write cache, which avoids

spinning up the disk when the system is running on battery power. Keeping the disk spindle

turned off can save much of the power consumed by the disk drive under normal usage.

Another consumer of ReadyDrive is SuperFetch, since it offers the same advantages as

ReadyBoost with some enhanced functionality, such as not requiring an external flash device

and having the ability to work persistently. Because the cache is on the actual physical hard

drive (which typically a user cannot remove while the computer is running), the hard drive

controller typically doesn’t have to worry about the data disappearing and can avoid making

writes to the actual disk, using solely the cache.

RAM Optimization Software

While SuperFetch provides valuable and realistic optimization of memory usage for

the various scenarios it aims to support, many third-party software manufacturers are

involved in the distribution of so-called “RAM Optimization” software, which aims to

significantly increase available memory on a user’s system. These memory optimizers

typically present a user interface that shows a graph labeled “Available Memory,” and

a line typically shows the amount of memory that the optimizer will try to free when it

runs. After the optimization job runs, the utility’s available memory counter often goes

up, sometimes dramatically, implying that the tool is actually freeing up memory for

application use. RAM optimizers work by allocating and then freeing large amounts of

virtual memory. The following illustration shows the effect a RAM optimizer has on a

system:

Before:

Word Explorer File cache Available

During:

Avail. RAM optimizer

Available

After:

Word

File cacheExplorer

Standby
pages

Standby pages

 Chapter 9 Memory Management 847

The Before bar depicts the process and system working sets, the pages in standby lists,

and free memory before optimization. The During bar shows that the RAM optimizer

creates a high memory demand, which it does by incurring many page faults in a short

time. In response, the memory manager increases the RAM optimizer’s working set.

This working-set expansion occurs at the expense of free memory, followed by standby

pages and—when available memory becomes low—at the expense of other process

working sets. The After bar illustrates how, after the RAM optimizer frees its memory,

the memory manager moves all the pages that were assigned to the RAM optimizer to

the free page list (which ultimately get zeroed by the zero page thread and moved to

the zeroed page list), thus contributing to the free memory value.

Although gaining more free memory might seem like a good thing, it isn’t. As RAM

optimizers force the available memory counter up, they force other processes’ data and

code out of memory. If you’re running Microsoft Word, for example, the text of open

documents and the program code that was part of Word’s working set before the opti-

mization (and was therefore present in physical memory) must be reread from disk as

you continue to edit your document. Additionally, by depleting the standby lists, valu-

able cached data is lost, including much of SuperFetch’s cache. The performance deg-

radation can be especially severe on servers, where the trimming of the system working

set causes cached file data in physical memory to be thrown out, causing hard faults

the next time it is accessed.

Conclusion

In this chapter, we’ve examined how the Windows memory manager implements virtual

memory management. As with most modern operating systems, each process is given access

to a private address space, protecting one process’s memory from another’s but allow-

ing processes to share memory efficiently and securely. Advanced capabilities, such as the

inclusion of mapped files and the ability to sparsely allocate memory, are also available. The

Windows environment subsystem makes most of the memory manager’s capabilities avail-

able to applications through the Windows API.

The next chapter covers a component tightly integrated with the memory manager, the

cache manager.

 849

Chapter 10

Cache Manager

The cache manager is a set of kernel-mode functions and system threads that cooperate with

the memory manager to provide data caching for all Windows file system drivers (both local

and network). In this chapter, we’ll explain how the cache manager, including its key inter-

nal data structures and functions, works; how it is sized at system initialization time; how it

interacts with other elements of the operating system; and how you can observe its activity

through performance counters. We’ll also describe the five flags on the Windows CreateFile

function that affect file caching.

Note None of the cache manager’s internal functions are outlined in this chapter beyond the

depth required to explain how the cache manager works. The programming interfaces to the

cache manager are documented in the Windows Driver Kit (WDK). For more information about

the WDK, see www.microsoft.com/whdc/devtools/wdk/default.mspx.

Key Features of the Cache Manager

The cache manager has several key features:

Supports all file system types (both local and network), thus removing the need for

each file system to implement its own cache management code

Uses the memory manager to control which parts of which files are in physical memory

(trading off demands for physical memory between user processes and the operating

system)

Caches data on a virtual block basis (offsets within a file)—in contrast to many caching

systems, which cache on a logical block basis (offsets within a disk volume)—allowing

for intelligent read-ahead and high-speed access to the cache without involving

file system drivers (This method of caching, called fast I/O, is described later in this

chapter.)

Supports “hints” passed by applications at file open time (such as random versus

sequential access, temporary file creation, and so on)

Supports recoverable file systems (for example, those that use transaction logging) to

recover data after a system failure

Although we’ll talk more throughout this chapter about how these features are used in the

cache manager, in this section we’ll introduce you to the concepts behind these features.

850 Windows Internals, Fifth Edition

Single, Centralized System Cache

Some operating systems rely on each individual file system to cache data, a practice that

results either in duplicated caching and memory management code in the operating system

or in limitations on the kinds of data that can be cached. In contrast, Windows offers a cen-

tralized caching facility that caches all externally stored data, whether on local hard disks,

floppy disks, network file servers, or CD-ROMs. Any data can be cached, whether it’s user

data streams (the contents of a file and the ongoing read and write activity to that file) or file

system metadata (such as directory and file headers). As you’ll discover in this chapter, the

method Windows uses to access the cache depends on the type of data being cached.

The Memory Manager

One unusual aspect of the cache manager is that it never knows how much cached data is

actually in physical memory. This statement might sound strange because the purpose of a

cache is to keep a subset of frequently accessed data in physical memory as a way to improve

I/O performance. The reason the cache manager doesn’t know how much data is in physical

memory is that it accesses data by mapping views of files into system virtual address spaces,

using standard section objects (file mapping objects in Windows API terminology). (Section

objects are the basic primitive of the memory manager and are explained in detail in Chapter

9.) As addresses in these mapped views are accessed, the memory manager pages in blocks

that aren’t in physical memory. And when memory demands dictate, the memory manager

pages data out of the cache and back to the files that are open in (mapped into) the cache.

By caching on the basis of a virtual address space using mapped files, the cache manager

avoids generating read or write I/O request packets (IRPs) to access the data for files it’s cach-

ing. Instead, it simply copies data to or from the virtual addresses where the portion of the

cached file is mapped and relies on the memory manager to fault in (or out) the data into (or

out of) memory as needed. This process allows the memory manager to make global trade-

offs on how much memory to give to the system cache versus how much to give to user pro-

cesses. (The cache manager also initiates I/O, such as lazy writing, which is described later in

this chapter; however, it calls the memory manager to write the pages.) Also, as you’ll learn in

the next section, this design makes it possible for processes that open cached files to see the

same data as do processes that are mapping the same files into their user address spaces.

Cache Coherency

One important function of a cache manager is to ensure that any process accessing cached

data will get the most recent version of that data. A problem can arise when one process

opens a file (and hence the file is cached) while another process maps the file into its address

space directly (using the Windows MapViewOfFile function). This potential problem doesn’t

occur under Windows because both the cache manager and the user applications that map

 Chapter 10 Cache Manager 851

files into their address spaces use the same memory management file mapping services.

Because the memory manager guarantees that it has only one representation of each unique

mapped file (regardless of the number of section objects or mapped views), it maps all views

of a file (even if they overlap) to a single set of pages in physical memory, as shown in Figure

10-1. (For more information on how the memory manager works with mapped files, see

Chapter 9.)

System address
space

View 2

File

View 1

User address
space

System address
space

View 2

User address
space

Control area

4 GB

System
cache

2 GB

Mapped file

0

4 GB

System
cache

2 GB

0

Size

0

FIGURE 10-1 Coherent caching scheme

So, for example, if Process 1 has a view (View 1) of the file mapped into its user address

space, and Process 2 is accessing the same view via the system cache, Process 2 will see any

changes that Process 1 makes as they’re made, not as they’re flushed. The memory manager

won’t flush all user-mapped pages—only those that it knows have been written to (because

they have the modified bit set). Therefore, any process accessing a file under Windows always

sees the most up-to-date version of that file, even if some processes have the file open

through the I/O system and others have the file mapped into their address space using the

Windows file mapping functions.

852 Windows Internals, Fifth Edition

Note Cache coherency in this case refers to coherency between user-mapped data and cached

I/O and not between noncached and cached hardware access and I/Os, which are almost guaran-

teed to be incoherent. Also, cache coherency is somewhat more difficult for network redirectors

than for local file systems because network redirectors must implement additional flushing and

purge operations to ensure cache coherency when accessing network data. See Chapter 11 for a

description of opportunistic locking, the Windows distributed cache coherency mechanism.

Virtual Block Caching

The Windows cache manager uses a method known as virtual block caching, in which the

cache manager keeps track of which parts of which files are in the cache. The cache manager

is able to monitor these file portions by mapping 256-KB views of files into system virtual

address spaces, using special system cache routines located in the memory manager. This

approach has the following key benefits:

It opens up the possibility of doing intelligent read-ahead; because the cache tracks

which parts of which files are in the cache, it can predict where the caller might be

going next.

It allows the I/O system to bypass going to the file system for requests for data that is

already in the cache (fast I/O). Because the cache manager knows which parts of which

files are in the cache, it can return the address of cached data to satisfy an I/O request

without having to call the file system.

Details of how intelligent read-ahead and fast I/O work are provided later in this chapter.

Stream-Based Caching

The cache manager is also designed to do stream caching, as opposed to file caching. A

stream is a sequence of bytes within a file. Some file systems, such as NTFS, allow a file to

contain more than one stream; the cache manager accommodates such file systems by cach-

ing each stream independently. NTFS can exploit this feature by organizing its master file

table (described in Chapter 11) into streams and by caching these streams as well. In fact,

although the cache manager might be said to cache files, it actually caches streams (all files

have at least one stream of data) identified by both a file name and, if more than one stream

exists in the file, a stream name.

Note Internally, the cache manager is not aware of file or stream names, but uses pointers to

these objects.

 Chapter 10 Cache Manager 853

Recoverable File System Support

Recoverable file systems such as NTFS are designed to reconstruct the disk volume structure

after a system failure. This capability means that I/O operations in progress at the time of a

system failure must be either entirely completed or entirely backed out from the disk when

the system is restarted. Half-completed I/O operations can corrupt a disk volume and even

render an entire volume inaccessible. To avoid this problem, a recoverable file system main-

tains a log file in which it records every update it intends to make to the file system structure

(the file system’s metadata) before it writes the change to the volume. If the system fails,

interrupting volume modifications in progress, the recoverable file system uses information

stored in the log to reissue the volume updates.

Note The term metadata applies only to changes in the file system structure: file and directory

creation, renaming, and deletion.

To guarantee a successful volume recovery, every log file record documenting a volume

update must be completely written to disk before the update itself is applied to the volume.

Because disk writes are cached, the cache manager and the file system must coordinate

metadata updates by ensuring that the log file is flushed ahead of metadata updates. Overall,

the following actions occur in sequence:

 1. The file system writes a log file record documenting the metadata update it intends to

make.

 2. The file system calls the cache manager to flush the log file record to disk.

 3. The file system writes the volume update to the cache—that is, it modifies its cached

metadata.

 4. The cache manager flushes the altered metadata to disk, updating the volume struc-

ture. (Actually, log file records are batched before being flushed to disk, as are volume

modifications.)

When a file system writes data to the cache, it can supply a logical sequence number (LSN)

that identifies the record in its log file, which corresponds to the cache update. The cache

manager keeps track of these numbers, recording the lowest and highest LSNs (representing

the oldest and newest log file records) associated with each page in the cache. In addition,

data streams that are protected by transaction log records are marked as “no write” by NTFS

so that the mapped page writer won’t inadvertently write out these pages before the cor-

responding log records are written. (When the mapped page writer sees a page marked this

way, it moves the page to a special list that the cache manager then flushes at the appropri-

ate time, such as when lazy writer activity takes place.)

854 Windows Internals, Fifth Edition

When it prepares to flush a group of dirty pages to disk, the cache manager determines the

highest LSN associated with the pages to be flushed and reports that number to the file sys-

tem. The file system can then call the cache manager back, directing it to flush log file data

up to the point represented by the reported LSN. After the cache manager flushes the log file

up to that LSN, it flushes the corresponding volume structure updates to disk, thus ensuring

that it records what it’s going to do before actually doing it. These interactions between the

file system and the cache manager guarantee the recoverability of the disk volume after a

system failure.

Cache Virtual Memory Management

Because the Windows system cache manager caches data on a virtual basis, it uses up

regions of system virtual address space (instead of physical memory) and manages them

in structures called virtual address control blocks, or VACBs. VACBs define these regions of

address space into 256-KB slots called views. When the cache manager initializes during the

bootup process, it allocates an initial array of VACBs to describe cached memory. As caching

requirements grow and more memory is required, the cache manager allocates more VACB

arrays, as needed. It can also shrink virtual address space as other demands put pressure on

the system.

At a file’s first I/O (read or write) operation, the cache manager maps a 256-KB view of the

256-KB-aligned region of the file that contains the requested data into a free slot in the sys-

tem cache address space. For example, if 10 bytes starting at an offset of 300,000 bytes were

read into a file, the view that would be mapped would begin at offset 262144 (the second

256-KB-aligned region of the file) and extend for 256 KB.

The cache manager maps views of files into slots in the cache’s address space on a round-

robin basis, mapping the first requested view into the first 256-KB slot, the second view into

the second 256-KB slot, and so forth, as shown in Figure 10-2. In this example, File B was

mapped first, File A second, and File C third, so File B’s mapped chunk occupies the first slot

in the cache. Notice that only the first 256-KB portion of File B has been mapped, which is

due to the fact that only part of the file has been accessed and because although File C is

only 100 KB (and thus smaller than one of the views in the system cache), it requires its own

256-KB slot in the cache.

The cache manager guarantees that a view is mapped as long as it’s active (although views

can remain mapped after they become inactive). A view is marked active, however, only

during a read or write operation to or from the file. Unless a process opens a file by speci-

fying the FILE_FLAG_RANDOM_ACCESS flag in the call to CreateFile, the cache manager

unmaps inactive views of a file as it maps new views for the file if it detects that the file is

being accessed sequentially. Pages for unmapped views are sent to the standby or modified

lists (depending on whether they have been changed), and because the memory manager

 Chapter 10 Cache Manager 855

exports a special interface for the cache manager, the cache manager can direct the pages

to be placed at the end or front of these lists. Pages that correspond to views of files opened

with the FILE_FLAG_SEQUENTIAL_SCAN flag are moved to the front of the lists, whereas

all others are moved to the end. This scheme encourages the reuse of pages belonging to

sequentially read files and specifically prevents a large file copy operation from affecting

more than a small part of physical memory. The flag also affects unmapping: the cache man-

ager will aggressively unmap views when this flag is supplied.

System cache

View

View 0
View 1
View 2
View 3
View 4
View 5
View 6
View 7
View 8

Section 0
Section 1

Section 0
Section 1
Section 2

Section 0

File A (500 KB)

File B (750 KB)

File C (100 KB)

FIGURE 10-2 Files of varying sizes mapped into the system cache

If the cache manager needs to map a view of a file and there are no more free slots in the

cache, it will unmap the least recently mapped inactive view and use that slot. If no views are

available, an I/O error is returned, indicating that insufficient system resources are available

to perform the operation. Given that views are marked active only during a read or write

operation, however, this scenario is extremely unlikely because thousands of files would have

to be accessed simultaneously for this situation to occur.

Cache Size

In the following sections, we’ll explain how Windows computes the size of the system cache,

both virtually and physically. As with most calculations related to memory management, the

size of the system cache depends on a number of factors.

Cache Virtual Size

On a 32-bit Windows system, the virtual size of the system cache is limited solely by the

amount of kernel-mode virtual address space and the SystemCacheLimit registry key that

856 Windows Internals, Fifth Edition

can be optionally configured. (See Chapter 9 for more information on limiting the size of

the kernel virtual address space.) This means that the cache size is capped by the 2-GB sys-

tem address space, but it is typically significantly smaller because the system address space

is shared with other resources, including system paged table entries (PTEs), nonpaged and

paged pool, and page tables. The maximum virtual cache size is 1,024 GB (1 TB) on 64-bit

Windows.

Cache Working Set Size

As mentioned earlier, one of the key differences in the design of the cache manager from

that of other operating systems is the delegation of physical memory management to the

global memory manager. Because of this, the existing code that handles working set expan-

sion and trimming, as well as managing the modified and standby lists, is also used to control

the size of the system cache, dynamically balancing demands for physical memory between

processes and the operating system.

The system cache doesn’t have its own working set but rather shares a single system set

that includes cache data, paged pool, pageable Ntoskrnl code, and pageable driver code.

As explained in the section “System Working Set” in Chapter 9, this single working set is

called internally the system cache working set even though the system cache is just one of

the components that contribute to it. For the purposes of this book, we’ll refer to this work-

ing set simply as the system working set. Also explained in Chapter 9 is the fact that if the

LargeSystemCache registry value is 1, the memory manager favors the system working set

over that of processes running on the system.

You can examine the physical size of the system cache compared to that of the total system

working set as well as page fault information on the system working set by examining the

performance counters or system variables listed in Table 10-1.

TABLE 10-1 System Variables for the Physical Size of the System Cache

and Page Fault Information

Performance Counter System Variable (in Pages) Description

Memory: System Cache

Resident Bytes

MmSystemCachePage Physical memory consumed

by the system cache.

Memory: Cache Bytes MmSystemCacheWs.WorkingSetSize Total size of the system work-

ing set (including the cache,

paged pool, pageable code,

and system mapped views).

This is not the size of the

cache (as the name implies)!

Memory: Cache Bytes

Peak

MmSystemCacheWs.PeakWorkingSetSize Peak system working set size.

Memory: Cache Faults/

sec

MmSystemCacheWs.PageFaultCount Page faults in the system

working set (not just the

cache).

 Chapter 10 Cache Manager 857

EXPERIMENT: Looking at the Cache’s Working Set

The !filecache debugger command dumps information about the physical memory the

cache is using, the current and peak working set sizes, the number of valid pages asso-

ciated with views, and the names of files mapped into views, where applicable, as you

can see in the following output. (File system drivers cache metadata, such as directory

structures and volume bitmaps, by using unnamed file streams.)

lkd> !filecache

***** Dump file cache******

 Reading and sorting VACBs ...

 Processing 572 active VACBs ...

File Cache Information

 Current size 91372 kb

 Peak size 112580 kb

 572 Control Areas

 Loading file cache database (100% of 523264 PTEs)

 SkippedPageTableReads = 936

 File cache has 14099 valid pages

 Usage Summary (in Kb):

Control Valid Standby/Dirty Shared Locked FsContext Name

84445288 5220 16 0 0 8443dd70 $Mft

84bbcaf8 76 0 0 0 87748b18 $Directory

850b5158 4 0 0 0 9000e528 $Directory

8522b008 1136 0 0 0 900b3d80 INDEX.BTR

84c6b008 60 0 0 0 8d7b5708 $Directory

8443e2a8 3088 6656 0 0 8443e578 $LogFile

84c03ae8 68 0 0 0 93fc4548

Microsoft-Windows-Resource-Exhaustion-Detector%4Operational.evtx

84453368 28 0 0 0 93f79d08 $Directory

84a20398 20 0 0 0 93ea18d8 $Directory

850f4298 288 128 0 0 91dbf0f8

Microsoft-Windows-RestartManager%4Operational.evtx

8520f2e0 5792 120 0 0 93e60a08 ntkrpamp.pdb

850e6bc8 4 0 0 0 85cffd08 $Directory

8505d910 4 0 0 0 92e560f8 $Directory

8443d368 4 0 0 0 8443d760 $MftMirr

84ba59d8 128 0 0 0 8de50d80 NTUSER.DAT

84446820 512 0 0 0 84446a98 $BitMap

84447270 12 0 0 0 844475a0 $Mft

84f36880 128 0 0 0 8de21358 NTUSER.DAT

8444c440 44 0 0 0 8318be60 $Directory

8462a8e0 16656 0 0 0 877560f8 COMPONENTS

84402a00 4 0 0 0 83144d08 $Directory

...

858 Windows Internals, Fifth Edition

Cache Physical Size

While the system working set includes the amount of physical memory that is mapped into

views in the cache’s virtual address space, it does not necessarily reflect the total amount

of file data that is cached in physical memory. There can be a discrepancy between the two

values because additional file data might be in the memory manager’s standby or modified

page lists.

Recall from Chapter 9 that during the course of working set trimming or page replacement

the memory manager can move dirty pages from a working set to either the standby list or

modified page list, depending on whether the page contains data that needs to be written to

the paging file or another file before the page can be reused. If the memory manager didn’t

implement these lists, any time a process accessed data previously removed from its working

set, the memory manager would have to hard-fault it in from disk. Instead, if the accessed

data is present on either of these lists, the memory manager simply soft-faults the page back

into the process’s working set. Thus, the lists serve as in-memory caches of data that’s stored

in the paging file, executable images, or data files. Thus, the total amount of file data cached

on a system includes not only the system working set but the combined sizes of the standby

and modified page lists as well.

An example illustrates how the cache manager can cause much more file data than that con-

tainable in the system working set to be cached in physical memory. Consider a system that

acts as a dedicated file server. A client application accesses file data from across the network,

while a server, such as the file server driver (\Windows\System32\Drivers\Srv2.sys, described

in Chapter 13), uses cache manager interfaces to read and write file data on behalf of the

client. If the client reads through several thousand files of 1 MB each, the cache manager

will have to start reusing views when it runs out of mapping space (and can’t enlarge the

VACB mapping area). For each file read thereafter, the cache manager unmaps views and

remaps them for new files. When the cache manager unmaps a view, the memory manager

doesn’t discard the file data in the cache’s working set that corresponds to the view, it moves

the data to the standby list. In the absence of any other demand for physical memory, the

standby list can consume almost all the physical memory that remains outside the system

working set. In other words, virtually all the server’s physical memory will be used to cache

file data, as shown in Figure 10-3.

Standby list
System

working set
assigned to virtual cache

Other

~7 GB960 MB

8 GB physical memory

FIGURE 10-3 Example in which most of physical memory is being used by the file cache

 Chapter 10 Cache Manager 859

Because the total amount of file data cached includes the system working set, modified page

list, and standby list—the sizes of which are all controlled by the memory manager—it is in

a sense the real cache manager. The cache manager subsystem simply provides convenient

interfaces for accessing file data through the memory manager. It also plays an important

role with its read-ahead and write-behind policies in influencing what data the memory

manager keeps present in physical memory, as well as with managing system virtual address

views of the space.

To try and accurately reflect the total amount of file data that’s cached on a system, both

Task Manager and Process Explorer show a value named System Cache in their performance

view that reflects the combined size of the system working set, standby list, and modified

page list. Figure 10-4 shows the system information view in Process Explorer and the System

Cache value in the Physical Memory area in the middle of the figure.

FIGURE 10-4 Process Explorer’s System Information dialog box

Cache Data Structures

The cache manager uses the following data structures to keep track of cached files:

Each 256-KB slot in the system cache is described by a VACB.

Each separately opened cached file has a private cache map, which contains informa-

tion used to control read-ahead (discussed later in the chapter).

860 Windows Internals, Fifth Edition

Each cached file has a single shared cache map structure, which points to slots in the

system cache that contain mapped views of the file.

These structures and their relationships are described in the next sections.

Systemwide Cache Data Structures

As previously described, the cache manager keeps track of the state of the views in the sys-

tem cache by using an array of data structures called virtual address control block (VACB)

arrays that are stored in nonpaged pool. On a 32-bit system, each VACB is 32 bytes in size

and a VACB array is 128 KB, resulting in 4,096 VACBs per array. On a 64-bit system, a VACB

is 64 bytes, resulting in 2,048 VACBs per array. The cache manager allocates the initial VACB

array during system initialization and links it into the systemwide list of VACB arrays called

CcVacbArrays. Each VACB represents one 256-KB view in the system cache, as shown in

Figure 10-5. The structure of a VACB is shown in Figure 10-6.

Additionally, each VACB array is composed of two kinds of VACB: low priority mapping VACBs

and high priority mapping VACBs. The system allocates 64 initial high priority VACBs for each

VACB array. High priority VACBs have the distinction of having their views preallocated from

system address space. When the memory manager has no views to give to the cache man-

ager at the time of mapping some data, and if the mapping request is marked as high prior-

ity, the cache manager will use one of the preallocated views present in a high priority VACB.

It uses these high priority VACBs, for example, for critical file system metadata as well as for

purging data from the cache. After high priority VACBs are gone, however, any operation

requiring a VACB view will fail with insufficient resources. Typically, the mapping priority is

set to the default of low, but by using the PIN_HIGH_PRIORITY flag when pinning (described

later) cached data, file systems can request a high priority VACB to be used instead, if one is

needed.

System VACB array list

VACB n array

VACB 0 array
VACB 1 array
VACB 2 array
VACB 3 array
VACB 4 array
VACB 5 array
VACB 6 array
VACB 7 array

. . .

. . .

. . .

. . .

. . .

. . .

System cache

View n

View 0
View 1
View 2
View 3
View 4
View 5
View 6
View 7

. . .

. . .

. . .

. . .

. . .

. . .

FIGURE 10-5 System VACB array

 Chapter 10 Cache Manager 861

Virtual address of data in system cache

Pointer to shared cache map

File offset Active count

Link entry to LRU list head

Pointer to owning VACB array

FIGURE 10-6 VACB structure

As you can see in Figure 10-6, the first field in a VACB is the virtual address of the data in the

system cache. The second field is a pointer to the shared cache map structure, which identi-

fies which file is cached. The third field identifies the offset within the file at which the view

begins (always based on 256-KB granularity). Given this granularity, the bottom 16 bits of

the file offset will always be zero, so those bits are reused to store the number of references

to the view—that is, how many active reads or writes are accessing the view. The fourth field

links the VACB into a list of least-recently-used (LRU) VACBs when the cache manager frees

the VACB; the cache manager first checks this list when allocating a new VACB. Finally, the

fifth field links this VACB to the VACB array header representing the array in which the VACB

is stored.

During an I/O operation on a file, the file’s VACB reference count is incremented and then it’s

decremented when the I/O operation is over. When the reference count is nonzero the VACB

is active. For access to file system metadata, the active count represents how many file system

drivers have the pages in that view locked into memory.

EXPERIMENT: Looking at VACBs and VACB Statistics

The cache manager internally keeps track of various values that are useful to develop-

ers and support engineers when debugging crash dumps. All these debugging vari-

ables start with the CcDbg prefix, which makes it easy to see the whole list, thanks to

the x command:

lkd> x nt!*ccdbg*

81d7c09c nt!CcDbgNumberOfFailedMappingsDueToVacbSpace = <no type information>

81d7c0a8 nt!CcDbgNumberOfVacbArraysAllocated = <no type information>

81d7c08c nt!CcDbgNumberOfFailedBitmapAllocations = <no type information>

81d7c098 nt!CcDbgNumberOfFailedHighPriorityMappingsDueToMmResources = <no type

information>

...

Using these variables and your knowledge of the VACB array header data structures,

you can use the kernel debugger to list all the VACB array headers. The CcVacbArrays
variable stores the list head, which you can print with the dl or !list command, and then

use the debugger’s support for list traversal and type referencing to dump the contents

of the _VACB_ARRAY_HEADERs on the list:

862 Windows Internals, Fifth Edition

lkd> !list "-t _LIST_ENTRY.Flink -e -x \"dt _VACB_ARRAY_HEADER @$extret\"

poi(CcVacbArrays)"

dt _VACB_ARRAY_HEADER @$extret

nt!_VACB_ARRAY_HEADER

 +0x000 Links : _LIST_ENTRY [0x81d7c0c8 - 0x81d7c0c8]

 +0x008 MappingCount : 0x810

 +0x00c Reserved : 0

The output shows that the system has only one VACB array with 2,064 (0x810) active

VACBs.

Finally, the CcNumberOfFreeVacbs variable stores the number of VACBs on the free

VACB list. Dumping this variable on the system used for the experiment results in 2,032

(0x7f1):

lkd> dd CcNumberOfFreeVacbs l 1

81d7c0d8 000007f1

As expected, the sum of the free (2,032) and active VACBs (0x7f1—2,064 decimal) on

a 32-bit system with one VACB array equals 4,096, the number of VACBs in one VACB

array. If the system were to run out of free VACBs, the cache manager would try to allo-

cate a new VACB array.

Per-File Cache Data Structures

Each open handle to a file has a corresponding file object. (File objects are explained in detail

in Chapter 7.) If the file is cached, the file object points to a private cache map structure that

contains the location of the last two reads so that the cache manager can perform intelligent

read-ahead (described later in the section “Intelligent Read-Ahead”). In addition, all the pri-

vate cache maps for open instances of a file are linked together.

Each cached file (as opposed to file object) has a shared cache map structure that describes

the state of the cached file, including its size and its valid data length. (The function of the

valid data length field is explained in the section “Write-Back Caching and Lazy Writing.”) The

shared cache map also points to the section object (maintained by the memory manager and

which describes the file’s mapping into virtual memory), the list of private cache maps associ-

ated with that file, and any VACBs that describe currently mapped views of the file in the sys-

tem cache. (See Chapter 9 for more about section object pointers.) The relationships among

these per-file cache data structures are illustrated in Figure 10-7.

When asked to read from a particular file, the cache manager must determine the answers to

two questions:

 1. Is the file in the cache?

 2. If so, which VACB, if any, refers to the requested location?

 Chapter 10 Cache Manager 863

In other words, the cache manager must find out whether a view of the file at the desired

address is mapped into the system cache. If no VACB contains the desired file offset, the

requested data isn’t currently mapped into the system cache.

Shared cache map

Entry 3

List of private
cache maps
Open count

File size
Valid data length

Entry 0
Entry 1
Entry 2

Section object pointers

File object

File object

Private cache map

Read-ahead information

Pointer to
additional VACB

index array

Next private
cache map
for this file

Next shared
cache map

VACB

VACB index
array

VACB index array

FIGURE 10-7 Per-file cache data structures

To keep track of which views for a given file are mapped into the system cache, the cache

manager maintains an array of pointers to VACBs, which is known as the VACB index array.

The first entry in the VACB index array refers to the first 256 KB of the file, the second entry

to the second 256 KB, and so on. The diagram in Figure 10-8 shows four different sections

from three different files that are currently mapped into the system cache.

When a process accesses a particular file in a given location, the cache manager looks in

the appropriate entry in the file’s VACB index array to see whether the requested data has

been mapped into the cache. If the array entry is nonzero (and hence contains a pointer to a

VACB), the area of the file being referenced is in the cache. The VACB, in turn, points to the

location in the system cache where the view of the file is mapped. If the entry is zero, the

cache manager must find a free slot in the system cache (and therefore a free VACB) to map

the required view.

864 Windows Internals, Fifth Edition

System cache

View

View 0
View 1
View 2
View 3
View 4
View 5
View 6
View 7
View 8

System VACB array

VACB

VACB 0
VACB 1
VACB 2
VACB 3
VACB 4
VACB 5
VACB 6
VACB 7

Section 0
Section 1

Section 0
Section 1
Section 2

Section 0

File A (500 KB)

File B (750 KB)

File C (100 KB)

Entry 0
Entry 1

File A VACB
Index array

Entry 2
Entry 3

Entry 0
Entry 1

File B VACB
Index array

Entry 2
Entry 3

Entry 0
Entry 1

File C VACB
Index array

Entry 2
Entry 3

FIGURE 10-8 VACB index arrays

As a size optimization, the shared cache map contains a VACB index array that is four entries

in size. Because each VACB describes 256 KB, the entries in this small, fixed-size index array

can point to VACB array entries that together describe a file of up to 1 MB. If a file is larger

than 1 MB, a separate VACB index array is allocated from nonpaged pool, based on the size

of the file divided by 256 KB and rounded up in the case of a remainder. The shared cache

map then points to this separate structure.

As a further optimization, the VACB index array allocated from nonpaged pool becomes a

sparse multilevel index array if the file is larger than 32 MB, where each index array consists

of 128 entries. You can calculate the number of levels required for a file with the following

formula:

(Number of bits required to represent file size – 18) / 7

Round the result of the equation up to the next whole number. The value 18 in the equation

comes from the fact that a VACB represents 256 KB, and 256 KB is 218. The value 7 comes

from the fact that each level in the array has 128 entries and 27 is 128. Thus, a file that has a

size that is the maximum that can be described with 63 bits (the largest size the cache man-

ager supports) would require only seven levels. The array is sparse because the only branches

that the cache manager allocates are ones for which there are active views at the lowest-level

index array. Figure 10-9 shows an example of a multilevel VACB array for a sparse file that is

large enough to require three levels.

 Chapter 10 Cache Manager 865

VACB

Shared
cache map

Pointer to
additional VACB

index array

0

127

0

127

0

127

0

127

0

127

0

127

VACB

VACB

FIGURE 10-9 Multilevel VACB arrays

This scheme is required to efficiently handle sparse files that might have extremely large file

sizes with only a small fraction of valid data because only enough of the array is allocated

to handle the currently mapped views of a file. For example, a 32-GB sparse file for which

only 256 KB is mapped into the cache’s virtual address space would require a VACB array

with three allocated index arrays because only one branch of the array has a mapping and a

32-GB (235 bytes) file requires a three-level array. If the cache manager didn’t use the multi-

level VACB index array optimization for this file, it would have to allocate a VACB index array

with 128,000 entries, or the equivalent of 1,000 VACB index arrays.

866 Windows Internals, Fifth Edition

EXPERIMENT: Looking at Shared and Private Cache Maps

You can use the kernel debugger’s dt command to look at the shared and private cache

map data structure definitions and examine the structures on a live system. First, exe-

cute the !filecache command and locate an entry in the VACB output with a file name

you recognize. In this example, the file is the Debugging Tools for Windows Help file:

8653c828 120 160 0 0 debugger.chw

The first address is that of a control area data structure, which the memory manager

uses to keep track of an address range. (See Chapter 9 for more information.) The con-

trol area stores the pointer to the file object that corresponds to the view in the cache.

A file object identifies an instance of an open file. Execute the following command

using the address of the control area of the entry you identified to see the control area

structure:

lkd> !ca 8653c828

ControlArea @8653c828

 Segment: e1bce428 Flink 0 Blink 0

 Section Ref 1 Pfn Ref 46 Mapped Views 4

 User Ref 0 WaitForDel 0 Flush Count 0

 File Object 86960228 ModWriteCount 0 System Views 0

 Flags (8008080) File WasPurged Accessed

 File: \Program Files\Debugging Tools for Windows (x86)\debugger.chw

Next look at the file object referenced by the control area with this command:

lkd> dt nt!_FILE_OBJECT 0x86960228

 +0x000 Type : 5

 +0x002 Size : 128

 +0x004 DeviceObject : 0x84a69a18 _DEVICE_OBJECT

 +0x008 Vpb : 0x84a63278 _VPB

 +0x00c FsContext : 0x9ae3e768

 +0x010 FsContext2 : 0xad4a0c78

 +0x014 SectionObjectPointer : 0x86724504 _SECTION_OBJECT_POINTERS

 +0x018 PrivateCacheMap : 0x86b48460

 +0x01c FinalStatus : 0

 +0x020 RelatedFileObject : (null)

 +0x024 LockOperation : 0 ''

...

The private cache map is at offset 0x18:

lkd> dt nt!_PRIVATE_CACHE_MAP 0x86b48460

 +0x000 NodeTypeCode : 766

 +0x000 Flags : _PRIVATE_CACHE_MAP_FLAGS

 +0x000 UlongFlags : 0x1402fe

 +0x004 ReadAheadMask : 0xffff

 +0x008 FileObject : 0x86960228 _FILE_OBJECT

 +0x010 FileOffset1 : _LARGE_INTEGER 0x146

 Chapter 10 Cache Manager 867

 +0x018 BeyondLastByte1 : _LARGE_INTEGER 0x14a

 +0x020 FileOffset2 : _LARGE_INTEGER 0x14a

 +0x028 BeyondLastByte2 : _LARGE_INTEGER 0x156

 +0x030 ReadAheadOffset : [2] _LARGE_INTEGER 0x0

 +0x040 ReadAheadLength : [2] 0

 +0x048 ReadAheadSpinLock : 0

 +0x04c PrivateLinks : _LIST_ENTRY [0x86b48420 - 0x86b48420]

 +0x054 ReadAheadWorkItem : (null)

Finally, you can locate the shared cache map in the SectionObjectPointer field of the

file object and then view its contents:

lkd> dt nt!_SECTION_OBJECT_POINTERS 0x86724504

 +0x000 DataSectionObject : 0x867548f0

 +0x004 SharedCacheMap : 0x86b48388

 +0x008 ImageSectionObject : (null)

lkd> dt nt!_SHARED_CACHE_MAP 0x86b48388

 +0x000 NodeTypeCode : 767

 +0x002 NodeByteSize : 320

 +0x004 OpenCount : 1

 +0x008 FileSize : _LARGE_INTEGER 0x125726

 +0x010 BcbList : _LIST_ENTRY [0x86b48398 - 0x86b48398]

 +0x018 SectionSize : _LARGE_INTEGER 0x140000

 +0x020 ValidDataLength : _LARGE_INTEGER 0x125726

 +0x028 ValidDataGoal : _LARGE_INTEGER 0x125726

 +0x030 InitialVacbs : [4] (null)

 +0x040 Vacbs : 0x867de330 -> 0x84738b30 _VACB

 +0x044 FileObjectFastRef : _EX_FAST_REF

 +0x048 ActiveVacb : 0x84738b30 _VACB

...

Alternatively, you can use the !fileobj command to look up and display much of this

information automatically. For example, using this command on the same file object

referenced earlier results in the following output:

lkd> !fileobj 0x86960228

\Program Files\Debugging Tools for Windows (x86)\debugger.chw

Device Object: 0x84a69a18 \Driver\volmgr

Vpb: 0x84a63278

Event signalled

Access: Read SharedRead SharedWrite

Flags: 0xc0042

 Synchronous IO

 Cache Supported

 Handle Created

 Fast IO Read

FsContext: 0x9ae3e768 FsContext2: 0xad4a0c78

Private Cache Map: 0x86b48460

CurrentByteOffset: 156

868 Windows Internals, Fifth Edition

Cache Data:

 Section Object Pointers: 86724504

 Shared Cache Map: 86b48388 File Offset: 156 in VACB number 0

 Vacb: 84738b30

 Your data is at: b1e00156

File System Interfaces

The first time a file’s data is accessed for a read or write operation, the file system driver is

responsible for determining whether some part of the file is mapped in the system cache. If

it’s not, the file system driver must call the CcInitializeCacheMap function to set up the per-

file data structures described in the preceding section.

Once a file is set up for cached access, the file system driver calls one of several functions to

access the data in the file. There are three primary methods for accessing cached data, each

intended for a specific situation:

The copy method copies user data between cache buffers in system space and a pro-

cess buffer in user space.

The mapping and pinning method uses virtual addresses to read and write data directly

from and to cache buffers.

The physical memory access method uses physical addresses to read and write data

directly from and to cache buffers.

File system drivers must provide two versions of the file read operation—cached and

noncached—to prevent an infinite loop when the memory manager processes a page fault.

When the memory manager resolves a page fault by calling the file system to retrieve data

from the file (via the device driver, of course), it must specify this noncached read operation

by setting the “no cache” flag in the IRP.

Figure 10-10 illustrates the typical interactions between the cache manager, the memory

manager, and file system drivers in response to user read or write file I/O. The cache manager

is invoked by a file system through the copy interfaces (the CcCopyRead and CcCopyWrite

paths). To process a CcFastCopyRead or CcCopyRead read, for example, the cache manager

creates a view in the cache to map a portion of the file being read and reads the file data

into the user buffer by copying from the view. The copy operation generates page faults as it

accesses each previously invalid page in the view, and in response the memory manager initi-

ates noncached I/O into the file system driver to retrieve the data corresponding to the part

of the file mapped to the page that faulted.

The next three sections explain these cache access mechanisms, their purpose, and how

they’re used.

 Chapter 10 Cache Manager 869

MmFlushSection

File system
driver

Storage
device
driver

Cache
manager

Lazy writer

Read-ahead

Virtual
memory
manager

Page fault
handler

Modified and
mapped page

writer

Page fault

Page faultNtCreateSection

MmCreateSection

CcCopyRead
CcCopyWrite

FastloRead, FastloWrite

loPageRead
loAsynchronousPageWrite

NtReadFile/NtWriteFile

IRP

Noncached
and paging I/O

CcFastCopyRead
CcFastCopyWrite

FIGURE 10-10 File system interaction with cache and memory managers

Copying to and from the Cache

Because the system cache is in system space, it is mapped into the address space of every

process. As with all system space pages, however, cache pages aren’t accessible from user

mode because that would be a potential security hole. (For example, a process might not

have the rights to read a file whose data is currently contained in some part of the system

cache.) Thus, user application file reads and writes to cached files must be serviced by kernel-

mode routines that copy data between the cache’s buffers in system space and the applica-

tion’s buffers residing in the process address space. The functions that file system drivers can

use to perform this operation are listed in Table 10-2.

TABLE 10-2 Kernel-Mode Functions for Copying to and from the Cache

Function Description

CcCopyRead Copies a specified byte range from the system cache to a user buffer

CcFastCopyRead Faster variation of CcCopyRead, but limited to 32-bit file offsets and

 synchronous reads

CcCopyWrite Copies a specified byte range from a user buffer to the system cache

CcFastCopyWrite Variant of CcCopyWrite, but limited to 32-bit file offsets and synchronous,

non-write-through writes; used by redirectors

You can examine read activity from the cache via the performance counters or system per-

processor variables stored in the processor’s control block (KPRCB) listed in Table 10-3.

870 Windows Internals, Fifth Edition

TABLE 10-3 KPRCB Fields for Examining Read Activity from the Cache

Performance Counter KPRCB Field (Count) Description

Cache: Copy Read Hits % (CcCopyReadWait +
CcCopyReadNoWait) /
(CcCopyReadWait +
(CcCopyReadWaitMiss +
CcCopyReadNoWait) +
CcCopyReadNoWaitMiss)

Percentage of copy reads to parts of files

that were in the cache (A copy read can

still generate paging I/O—the Memory:

Cache Faults/sec counter reports page

fault activity for the system working set

but includes both hard and soft page

faults, so the counter still doesn’t indicate

actual paging I/O caused by cache faults.)

Cache: Copy Reads/sec CcCopyReadWait +
CcCopyReadNoWait

Total copy reads from the cache

Cache: Sync Copy

Reads/sec

CcCopyReadWait Synchronous copy reads from the cache

Cache: Async Copy

Reads/sec

CcCopyReadNoWait Asynchronous copy reads from the cache

Caching with the Mapping and Pinning Interfaces

Just as user applications read and write data in files on a disk, file system drivers need to read

and write the data that describes the files themselves (the metadata, or volume structure

data). Because the file system drivers run in kernel mode, however, they could, if the cache

manager were properly informed, modify data directly in the system cache. To permit this

optimization, the cache manager provides the functions shown in Table 10-4. These func-

tions permit the file system drivers to find where in virtual memory the file system metadata

resides, thus allowing direct modification without the use of intermediary buffers.

TABLE 10-4 Functions for Finding Metadata Locations

Function Description

CcMapData Maps the byte range for read access

CcPinRead Maps the byte range for read/write access and pins it

CcPreparePinWrite Maps and pins the byte range for write access (reads are not valid)

CcPinMappedData Pins a previously mapped buffer

CcSetDirtyPinnedData Notifies the cache manager that the data has been modified

CcUnpinData Releases the pages so that they can be removed from memory

If a file system driver needs to read file system metadata in the cache, it calls the cache man-

ager’s mapping interface to obtain the virtual address of the desired data. The cache man-

ager touches all the requested pages to bring them into memory and then returns control to

the file system driver. The file system driver can then access the data directly.

If the file system driver needs to modify cache pages, it calls the cache manager’s pinning

services, which keep the pages active in virtual memory so that they cannot be reclaimed.

 Chapter 10 Cache Manager 871

The pages aren’t actually locked into memory (such as when a device driver locks pages for

direct memory access transfers). Most of the time, a file system driver will mark its metadata

stream “no write”, which instructs the memory manager’s mapped page writer (explained in

Chapter 9) to not write the pages to disk until explicitly told to do so. When the file system

driver unpins (releases) them, the cache manager releases its resources so that it can lazily

flush any changes to disk and release the cache view that the metadata occupied.

The mapping and pinning interfaces solve one thorny problem of implementing a file system:

buffer management. Without directly manipulating cached metadata, a file system must

predict the maximum number of buffers it will need when updating a volume’s structure. By

allowing the file system to access and update its metadata directly in the cache, the cache

manager eliminates the need for buffers, simply updating the volume structure in the virtual

memory the memory manager provides. The only limitation the file system encounters is the

amount of available memory.

You can examine pinning and mapping activity in the cache via the performance counters or

per-processor variables stored in the processor’s control block (KPRCB) listed in Table 10-5.

TABLE 10-5 KPRCB Fields for Examining Pinning and Mapping Activity

Performance Counter KPRCB Field (Count) Description

Cache: Data Map Hits % (CcMapDataWait +
CcMapDataNoWait) /
(CcMapDataWait +
CcMapDataNoWait) +
(CcMapDataWaitMiss +
CcMapDataNoWaitMiss)

Percentage of data maps to parts of

files that were in the cache (A copy

read can still generate paging I/O.)

Cache: Data Maps/sec CcMapDataWait +
CcMapDataNoWait

Total data maps from the cache

Cache: Sync Data Maps/sec CcMapDataWait Synchronous data maps from the

cache

Cache: Async Data Maps/sec CcMapDataNoWait Asynchronous data maps from the

cache

Cache: Data Map Pins/sec CcPinMappedDataCount Number of requests to pin mapped

data

Cache: Pin Read Hits % (CcPinReadWait +
CcPinReadNoWait) /
(CcPinReadWait +
CcPinReadNoWait) +
(CcPinReadWaitMiss +
CcPinReadNoWaitMiss)

Percentage of pinned reads to parts

of files that were in the cache (A pin

read can still generate paging I/O.)

Cache: Pin Reads/sec CcPinReadWait +
CcPinReadNoWait

Total pinned reads from the cache

Cache: Sync Pin Reads/sec CcPinReadWait Synchronous pinned reads from the

cache

Cache: Async Pin Reads/sec CcPinReadNoWait Asynchronous pinned reads from the

cache

872 Windows Internals, Fifth Edition

Caching with the Direct Memory Access Interfaces

In addition to the mapping and pinning interfaces used to access metadata directly in the

cache, the cache manager provides a third interface to cached data: direct memory access
(DMA). The DMA functions are used to read from or write to cache pages without interven-

ing buffers, such as when a network file system is doing a transfer over the network.

The DMA interface returns to the file system the physical addresses of cached user data

(rather than the virtual addresses, which the mapping and pinning interfaces return), which

can then be used to transfer data directly from physical memory to a network device.

Although small amounts of data (1 KB to 2 KB) can use the usual buffer-based copying inter-

faces, for larger transfers the DMA interface can result in significant performance improve-

ments for a network server processing file requests from remote systems.

To describe these references to physical memory, a memory descriptor list (MDL) is used.

(MDLs were introduced in Chapter 9.) The four separate functions described in Table 10-6

create the cache manager’s DMA interface.

TABLE 10-6 Functions That Create the DMA Interface

Function Description

CcMdlRead Returns an MDL describing the specified byte range

CcMdlReadComplete Frees the MDL

CcMdlWrite Returns an MDL describing a specified byte range (possibly containing

zeros)

CcMdlWriteComplete Frees the MDL, and marks the range as modified

You can examine MDL activity from the cache via the performance counters or per-processor

variables stored in the processor’s control block (KPRCB) listed in Table 10-7.

TABLE 10-7 KPRCB Fields for Examining MDL Activity from the Cache

Performance Counter KPRCB Field (Count) Description

Cache: MDL Read Hits % (CcMdlReadWait +
CcMdlReadNoWait) /
(CcMdlReadWait +
CcMdlReadNoWait) +
(CcMdlReadWaitMiss +
CcMdlReadNoWaitMiss)

Percentage of MDL reads to parts of

files that were in the cache (References

to pages satisfied by an MDL read can

still generate paging I/O.)

Cache: MDL Reads/sec CcMdlReadWait +
CcMdlReadNoWait

Total MDL reads from the cache

Cache: Sync MDL Reads/sec CcMdlReadWait Synchronous MDL reads from the

cache

Cache: Async MDL Reads/sec CcMdlReadNoWait Asynchronous MDL reads from the

cache

 Chapter 10 Cache Manager 873

Fast I/O

Whenever possible, reads and writes to cached files are handled by a high-speed mechanism

named fast I/O. Fast I/O is a means of reading or writing a cached file without going through

the work of generating an IRP, as described in Chapter 7. With fast I/O, the I/O manager calls

the file system driver’s fast I/O routine to see whether I/O can be satisfied directly from the

cache manager without generating an IRP.

Because the cache manager is architected on top of the virtual memory subsystem, file

system drivers can use the cache manager to access file data simply by copying to or from

pages mapped to the actual file being referenced without going through the overhead of

generating an IRP.

Fast I/O doesn’t always occur. For example, the first read or write to a file requires setting

up the file for caching (mapping the file into the cache and setting up the cache data struc-

tures, as explained earlier in the section “Cache Data Structures”). Also, if the caller specified

an asynchronous read or write, fast I/O isn’t used because the caller might be stalled during

paging I/O operations required to satisfy the buffer copy to or from the system cache and

thus not really providing the requested asynchronous I/O operation. But even on a synchro-

nous I/O, the file system driver might decide that it can’t process the I/O operation by using

the fast I/O mechanism, say, for example, if the file in question has a locked range of bytes (as

a result of calls to the Windows LockFile and UnlockFile functions). Because the cache man-

ager doesn’t know what parts of which files are locked, the file system driver must check the

validity of the read or write, which requires generating an IRP. The decision tree for fast I/O is

shown in Figure 10-11.

These steps are involved in servicing a read or a write with fast I/O:

 1. A thread performs a read or write operation.

 2. If the file is cached and the I/O is synchronous, the request passes to the fast I/O entry

point of the file system driver stack. If the file isn’t cached, the file system driver sets up

the file for caching so that the next time, fast I/O can be used to satisfy a read or write

request.

 3. If the file system driver’s fast I/O routine determines that fast I/O is possible, it calls the

cache manager’s read or write routine to access the file data directly in the cache. (If

fast I/O isn’t possible, the file system driver returns to the I/O system, which then gen-

erates an IRP for the I/O and eventually calls the file system’s regular read routine.)

 4. The cache manager translates the supplied file offset into a virtual address in the cache.

 5. For reads, the cache manager copies the data from the cache into the buffer of the

process requesting it; for writes, it copies the data from the buffer to the cache.

874 Windows Internals, Fifth Edition

 6. One of the following actions occurs:

For reads where FILE_FLAG_RANDOM_ACCESS wasn’t specified when the file was

opened, the read-ahead information in the caller’s private cache map is updated.

Read-ahead may also be queued for files for which the FO_RANDOM_ACCESS

flag is not specified.

For writes, the dirty bit of any modified page in the cache is set so that the lazy

writer will know to flush it to disk.

For write-through files, any modifications are flushed to disk.

No

Generate IRP

NtReadFile

Synchronize
and cached

data?

Fast I/O
possible?

Is file cached?

Cache manager
copies data to or

from process buffer

Cache manager
initializes cache

Cache complete

Yes

No

No Yes

Yes

File system driver Cache manager

Is Sync?

Return pending

Yes

No

Is Sync?No Yes

FIGURE 10-11 Fast I/O decision tree

The performance counters or per-processor variables stored in the processor’s control block

(KPRCB) listed in Table 10-8 can be used to determine the fast I/O activity on the system.

 Chapter 10 Cache Manager 875

TABLE 10-8 KPRCB Fields for Determining Fast I/O Activity

Performance Counter KPRCB Field (Count) Description

Cache: Sync Fast Reads/sec CcFastReadWait Synchronous reads that were handled as

fast I/O requests

Cache: Async Fast Reads/sec CcFastReadNoWait Asynchronous reads that were handled

as fast I/O requests (These are always

zero because asynchronous fast reads

aren’t done in Windows.)

Cache: Fast Read Resource

Misses/sec

CcFastReadResourceMiss Fast I/O operations that couldn’t be sat-

isfied because of resource conflicts (This

situation can occur with FAT but not

with NTFS.)

Cache: Fast Read Not

Possibles/sec

CcFastReadNotPossible Fast I/O operations that couldn’t be

satisfied (The file system driver decides;

for example, files with byte range locks

can’t use fast I/O.)

Read Ahead and Write Behind

In this section, you’ll see how the cache manager implements reading and writing file data

on behalf of file system drivers. Keep in mind that the cache manager is involved in file I/O

only when a file is opened without the FILE_FLAG_NO_BUFFERING flag and then read from

or written to using the Windows I/O functions (for example, using the Windows ReadFile and

WriteFile functions). Mapped files don’t go through the cache manager, nor do files opened

with the FILE_FLAG_NO_BUFFERING flag set.

Note When an application uses the FILE_FLAG_NO_BUFFERING flag to open a file, its file I/O

must start at device-aligned offsets and be of sizes that are a multiple of the alignment size; its

input and output buffers must also be device-aligned virtual addresses. For file systems, this usu-

ally corresponds to the sector size (512 bytes on NTFS, typically, and 2,048 bytes on CDFS). One

of the benefits of the cache manager, apart from the actual caching performance, is the fact that

it performs intermediate buffering to allow arbitrarily aligned and sized I/O.

Intelligent Read-Ahead

The cache manager uses the principle of spatial locality to perform intelligent read-ahead

by predicting what data the calling process is likely to read next based on the data that it is

reading currently. Because the system cache is based on virtual addresses, which are contigu-

ous for a particular file, it doesn’t matter whether they’re juxtaposed in physical memory.

File read-ahead for logical block caching is more complex and requires tight cooperation

between file system drivers and the block cache because that cache system is based on the

876 Windows Internals, Fifth Edition

relative positions of the accessed data on the disk, and, of course, files aren’t necessarily

stored contiguously on disk. You can examine read-ahead activity by using the Cache: Read

Aheads/sec performance counter or the CcReadAheadIos system variable.

Reading the next block of a file that is being accessed sequentially provides an obvious per-

formance improvement, with the disadvantage that it will cause head seeks. To extend read-

ahead benefits to cases of strided data accesses (both forward and backward through a file),

the cache manager maintains a history of the last two read requests in the private cache map

for the file handle being accessed, a method known as asynchronous read-ahead with history.

If a pattern can be determined from the caller’s apparently random reads, the cache manager

extrapolates it. For example, if the caller reads page 4000 and then page 3000, the cache

manager assumes that the next page the caller will require is page 2000 and prereads it.

Note Although a caller must issue a minimum of three read operations to establish a predict-

able sequence, only two are stored in the private cache map.

To make read-ahead even more efficient, the Win32 CreateFile function provides a flag indi-

cating forward sequential file access: FILE_FLAG_SEQUENTIAL_SCAN. If this flag is set, the

cache manager doesn’t keep a read history for the caller for prediction but instead performs

sequential read-ahead. However, as the file is read into the cache’s working set, the cache

manager unmaps views of the file that are no longer active and, if they are unmodified,

directs the memory manager to place the pages belonging to the unmapped views at the

front of the standby list so that they will be quickly reused. It also reads ahead two times as

much data (2 MB instead of 1 MB, for example). As the caller continues reading, the cache

manager prereads additional blocks of data, always staying about one read (of the size of the

current read) ahead of the caller.

The cache manager’s read-ahead is asynchronous because it is performed in a thread sepa-

rate from the caller’s thread and proceeds concurrently with the caller’s execution. When

called to retrieve cached data, the cache manager first accesses the requested virtual page to

satisfy the request and then queues an additional I/O request to retrieve additional data to

a system worker thread. The worker thread then executes in the background, reading addi-

tional data in anticipation of the caller’s next read request. The preread pages are faulted into

memory while the program continues executing so that when the caller requests the data it’s

already in memory.

For applications that have no predictable read pattern, the FILE_FLAG_RANDOM_ACCESS flag

can be specified when the CreateFile function is called. This flag instructs the cache manager

not to attempt to predict where the application is reading next and thus disables read-ahead.

The flag also stops the cache manager from aggressively unmapping views of the file as the

file is accessed so as to minimize the mapping/unmapping activity for the file when the appli-

cation revisits portions of the file.

 Chapter 10 Cache Manager 877

Write-Back Caching and Lazy Writing

The cache manager implements a write-back cache with lazy write. This means that data

written to files is first stored in memory in cache pages and then written to disk later. Thus,

write operations are allowed to accumulate for a short time and are then flushed to disk all at

once, reducing the overall number of disk I/O operations.

The cache manager must explicitly call the memory manager to flush cache pages because

otherwise the memory manager writes memory contents to disk only when demand for

physical memory exceeds supply, as is appropriate for volatile data. Cached file data, how-

ever, represents nonvolatile disk data. If a process modifies cached data, the user expects the

contents to be reflected on disk in a timely manner.

The decision about how often to flush the cache is an important one. If the cache is flushed

too frequently, system performance will be slowed by unnecessary I/O. If the cache is flushed

too rarely, you risk losing modified file data in the cases of a system failure (a loss especially

irritating to users who know that they asked the application to save the changes) and running

out of physical memory (because it’s being used by an excess of modified pages).

To balance these concerns, once per second the cache manager’s lazy writer function exe-

cutes on a system worker thread and queues one-eighth of the dirty pages in the system

cache to be written to disk. If the rate at which dirty pages are being produced is greater

than the amount the lazy writer had determined it should write, the lazy writer writes an

additional number of dirty pages that it calculates are necessary to match that rate. System

worker threads from the systemwide critical worker thread pool actually perform the I/O

operations.

Note The cache manager provides a means for file system drivers to track when and how much

data has been written to a file. After the lazy writer flushes dirty pages to the disk, the cache

manager notifies the file system, instructing it to update its view of the valid data length for

the file. (The cache manager and file systems separately track the valid data length for a file in

memory.)

You can examine the activity of the lazy writer by examining the cache performance counters

or per-processor variables stored in the processor’s control block (KPRCB) listed in Table 10-9.

TABLE 10-9 KPRCB Fields for Examining the Activity of the Lazy Writer

Performance Counter KPRCB Field (Count) Description

Cache: Lazy Write Flushes/sec CcLazyWriteIos Number of lazy writer flushes

Cache: Lazy Write Pages/sec CcLazyWritePages Number of pages written by the lazy

writer

878 Windows Internals, Fifth Edition

EXPERIMENT: Watching the Cache Manager in Action

In this experiment, we’ll use Process Monitor to view the underlying file system activity,

including cache manager read-ahead and write-behind, when Windows Explorer copies

a large file (in this example, a CD-ROM image) from one local directory to another.

First, configure Process Monitor’s filter to include the source and destination file paths,

the Explorer.exe and System processes, and the ReadFile and WriteFile operations. In

this example, the c:\source.iso file was copied to c:\programming\source.iso, so the fil-

ter is configured as follows:

You should see a Process Monitor trace like the one shown here after you copy the file:

 Chapter 10 Cache Manager 879

The first few entries show the initial I/O processing performed by the copy engine and

the first cache manager operations. Here are some of the things that you can see:

The initial 1-MB cached read from Explorer at the first entry. The size of this

read depends on an internal matrix calculation based on the file size and can

vary from 128 KB to 1 MB. Because this file was large, the copy engine chose

1 MB.

The 1-MB read is followed by 16 64-KB noncached reads. Noncached reads

typically indicate activity due to page faults or cache manager access. A closer

look at the stack trace for these events, which you can see by double-clicking

an entry and choosing the Stack tab, reveals that indeed the CcCopyRead

cache manager routine, which is called by the NTFS driver’s read routine,

causes the memory manager to fault the source data into physical memory:

After these 64-KB page fault I/Os, the cache manager’s read-ahead mechanism

starts reading the file, which includes the System process’s subsequent non-

cached 2-MB read at the 1-MB offset. Because of the file size and Explorer’s

read I/O sizes, the cache manager chose 2 MB as the optimal read-ahead size.

The stack trace for one of the read-ahead operations, shown next, confirms

that one of the cache manager’s worker threads is performing the read-ahead.

880 Windows Internals, Fifth Edition

After this point, Explorer’s 1-MB reads aren’t followed by 64-KB page faults, because

the read-ahead thread stays ahead of Explorer, prefetching the file data with its 2-MB

noncached reads. Eventually, after reading about 4 MB of the file, Explorer starts per-

forming writes to the destination file. These are sequential, cached 64-KB writes. After

about 32 MB of reads, the first WriteFile operation from the System process occurs,

shown here:

 Chapter 10 Cache Manager 881

The write operation’s stack trace, shown here, indicates that the memory manager’s

mapped page writer thread was actually responsible for the write:

This occurs because for the first couple of megabytes of data, the cache manager

hadn’t started performing write-behind, so the memory manager’s mapped page

writer began flushing the modified destination file data (see Chapter 9 for more infor-

mation on the mapped page writer).

To get a clearer view of the cache manager operations, remove Explorer from the

Process Monitor’s filter so that only the System process operations are visible, as shown

next.

882 Windows Internals, Fifth Edition

With this view, it’s much easier to see the cache manager’s 16-MB write-behind opera-

tions (the maximum write sizes are 1 MB on client versions of Windows and 32 MB on

server versions; this experiment was performed on a server system). The Time Of Day

column shows that these operations occur almost exactly 1 second apart. The stack

trace for one of the write-behind operations, shown here, verifies that a cache manager

worker thread is performing write-behind:

 Chapter 10 Cache Manager 883

As an added experiment, try repeating this process with a remote copy instead (from

one Windows system to another) and by copying files of varying sizes. You’ll notice

some different behaviors by the copy engine and the cache manager, both on the

receiving and sending sides.

Disabling Lazy Writing for a File

If you create a temporary file by specifying the flag FILE_ATTRIBUTE_TEMPORARY in a call

to the Windows CreateFile function, the lazy writer won’t write dirty pages to the disk unless

there is a severe shortage of physical memory or the file is explicitly flushed. This character-

istic of the lazy writer improves system performance—the lazy writer doesn’t immediately

write data to a disk that might ultimately be discarded. Applications usually delete temporary

files soon after closing them.

Forcing the Cache to Write Through to Disk

Because some applications can’t tolerate even momentary delays between writing a file

and seeing the updates on disk, the cache manager also supports write-through caching

on a per–file object basis; changes are written to disk as soon as they’re made. To turn on

write-through caching, set the FILE_FLAG_WRITE_THROUGH flag in the call to the CreateFile

function. Alternatively, a thread can explicitly flush an open file, by using the Windows

FlushFileBuffers function, when it reaches a point at which the data needs to be written to

disk. You can observe cache flush operations that are the result of write-through I/O requests

or explicit calls to FlushFileBuffers via the performance counters or per-processor variables

stored in the processor’s control block (KPRCB) shown in Table 10-10.

TABLE 10-10 KPRCB Fields for Viewing Cache Flush Operations

Performance Counter KPRCB Field (Count) Description

Cache: Data Flushes/sec CcDataFlushes Number of times cache pages were flushed

explicitly because of write through or because

of the lazy writer

Cache: Data Flush Pages/sec CcDataPages Number of pages flushed explicitly because

of write through or because of the lazy writer

Flushing Mapped Files

If the lazy writer must write data to disk from a view that’s also mapped into another pro-

cess’s address space, the situation becomes a little more complicated, because the cache

manager will only know about the pages it has modified. (Pages modified by another process

are known only to that process because the modified bit in the page table entries for modi-

fied pages is kept in the process private page tables.) To address this situation, the memory

884 Windows Internals, Fifth Edition

manager informs the cache manager when a user maps a file. When such a file is flushed in

the cache (for example, as a result of a call to the Windows FlushFileBuffers function), the

cache manager writes the dirty pages in the cache and then checks to see whether the file

is also mapped by another process. When the cache manager sees that the file is, the cache

manager then flushes the entire view of the section to write out pages that the second pro-

cess might have modified. If a user maps a view of a file that is also open in the cache, when

the view is unmapped, the modified pages are marked as dirty so that when the lazy writer

thread later flushes the view, those dirty pages will be written to disk. This procedure works

as long as the sequence occurs in the following order:

 1. A user unmaps the view.

 2. A process flushes file buffers.

If this sequence isn’t followed, you can’t predict which pages will be written to disk.

EXPERIMENT: Watching Cache Flushes

You can see the cache manager map views into the system cache and flush pages to

disk by running the Reliability and Performance Monitor and adding the Data Maps/

sec and Lazy Write Flushes/sec counters and then copying a large file from one location

to another. The generally higher line in the following screen shot shows Data Maps/sec

and the other shows Lazy Write Flushes/sec.

 Chapter 10 Cache Manager 885

Write Throttling

The file system and cache manager must determine whether a cached write request will

affect system performance and then schedule any delayed writes. First the file system asks

the cache manager whether a certain number of bytes can be written right now without

hurting performance by using the CcCanIWrite function and blocking that write if necessary.

For asynchronous I/O, the file system sets up a callback with the cache manager for automat-

ically writing the bytes when writes are again permitted by calling CcDeferWrite. Otherwise,

it just blocks and waits on CcCanIWrite to continue. Once it’s notified of an impending

write operation, the cache manager determines how many dirty pages are in the cache and

how much physical memory is available. If few physical pages are free, the cache manager

momentarily blocks the file system thread that’s requesting to write data to the cache. The

cache manager’s lazy writer flushes some of the dirty pages to disk and then allows the

blocked file system thread to continue. This write throttling prevents system performance

from degrading because of a lack of memory when a file system or network server issues a

large write operation.

Note The effects of write throttling are global to the system because the resource it is based

on, available physical memory, is global to the system. This means that if heavy write activity to a

slow device triggers write throttling, writes to other devices will also be throttled.

The dirty page threshold is the number of pages that the system cache will allow to be dirty

before throttling cached writers. This value is computed at system initialization time and

depends on the product type (client or server). Two other values are also computed—the top
dirty page threshold and the bottom dirty page threshold. Depending on memory consump-

tion and the rate at which dirty pages are being processed, the lazy writer calls the internal

function CcAdjustThrottle, which, on server systems, performs dynamic adjustment of the

current threshold based on the calculated top and bottom values. This adjustment is made

to preserve the read cache in cases of a heavy write load that will inevitably overrun the

cache and become throttled. Table 10-11 lists the algorithms used to calculate the dirty page

thresholds.

TABLE 10-11 Algorithms for Calculating the Dirty Page Thresholds

Product

Type

Dirty Page

Threshold

Top Dirty Page

Threshold

Bottom Dirty Page

Threshold

Client Physical pages / 8 Physical pages / 8 Physical pages / 8

Server Physical pages / 2 Physical pages / 2 Physical pages / 8

Write throttling is also useful for network redirectors transmitting data over slow communi-

cation lines. For example, suppose a local process writes a large amount of data to a remote

file system over a 9600-baud line. The data isn’t written to the remote disk until the cache

manager’s lazy writer flushes the cache. If the redirector has accumulated lots of dirty pages

886 Windows Internals, Fifth Edition

that are flushed to disk at once, the recipient could receive a network timeout before the

data transfer completes. By using the CcSetDirtyPageThreshold function, the cache manager

allows network redirectors to set a limit on the number of dirty cache pages they can toler-

ate (for each stream), thus preventing this scenario. By limiting the number of dirty pages, the

redirector ensures that a cache flush operation won’t cause a network timeout.

EXPERIMENT: Viewing the Write-Throttle Parameters

The !defwrites kernel debugger command dumps the values of the kernel vari-

ables the cache manager uses, including the number of dirty pages in the file cache

(CcTotalDirtyPages), when determining whether it should throttle write operations:

lkd> !defwrites

*** Cache Write Throttle Analysis ***

 CcTotalDirtyPages: 7 (28 Kb)

 CcDirtyPageThreshold: 425694 (1702776 Kb)

 MmAvailablePages: 572387 (2289548 Kb)

 MmThrottleTop: 450 (1800 Kb)

 MmThrottleBottom: 80 (320 Kb)

 MmModifiedPageListHead.Total: 10477 (41908 Kb)

Write throttles not engaged

This output shows that the number of dirty pages is far from the number that triggers

write throttling (CcDirtyPageThreshold), so the system has not engaged in any write

throttling.

System Threads

As mentioned earlier, the cache manager performs lazy write and read-ahead I/O opera-

tions by submitting requests to the common critical system worker thread pool. However, it

does limit the use of these threads to one less than the total number of critical system worker

threads for small and medium memory systems (two less than the total for large memory

systems).

Internally, the cache manager organizes its work requests into four lists (though these are

serviced by the same set of executive worker threads):

The express queue is used for read-ahead operations.

The regular queue is used for lazy write scans (for dirty data to flush), write-behinds,

and lazy closes.

The fast teardown queue is used when the memory manager is waiting for the data

section owned by the cache manager to be freed so that the file can be opened with

 Chapter 10 Cache Manager 887

an image section instead, which causes CcWriteBehind to flush the entire file and tear

down the shared cache map.

The post tick queue is used for the cache manager to internally register for a notifica-

tion after each “tick” of the lazy writer thread—in other words, at the end of each pass.

To keep track of the work items the worker threads need to perform, the cache manager

creates its own internal per-processor look-aside list, a fixed-length list—one for each pro-

cessor—of worker queue item structures. (Look-aside lists are discussed in Chapter 9.) The

number of worker queue items depends on system size: 32 for small-memory systems, 64 for

medium-memory systems, 128 for large-memory client systems, and 256 for large-memory

server systems. For cross-processor performance, the cache manager also allocates a global
look-aside list at the same sizes as just described.

Conclusion

The cache manager provides a high-speed, intelligent mechanism for reducing disk I/O and

increasing overall system throughput. By caching on the basis of virtual blocks, the cache

manager can perform intelligent read-ahead. By relying on the global memory manager’s

mapped file primitive to access file data, the cache manager can provide the special fast I/O

mechanism to reduce the CPU time required for read and write operations and also leave

all matters related to physical memory management to the single Windows global memory

manager, thus reducing code duplication and increasing efficiency.

 889

Chapter 11

File Systems

In this chapter, we present an overview of the file system formats supported by Windows.

We then describe the types of file system drivers and their basic operation, including how

they interact with other system components, such as the memory manager and the cache

manager. Following that is a description of how to use Process Monitor from Windows

Sysinternals (at www.microsoft.com/technet/sysinternals) to troubleshoot a wide variety of file

system access problems.

In the balance of the chapter, we first describe the Common Log File System (CLFS), a trans-

actional logging virtual file system implemented on the native Windows file system format,

NTFS. Then we focus on the on-disk layout of NTFS and its advanced features, such as com-

pression, recoverability, quotas, symbolic links, transactions (which use the services provided

by CLFS), and encryption.

To fully understand this chapter, you should be familiar with the terminology introduced in

Chapter 8, including the terms volume and partition. You’ll also need to be acquainted with

these additional terms:

Sectors are hardware-addressable blocks on a storage medium. Hard disks for x86

systems almost always define a 512-byte sector size; however, Windows also supports

large sector disks, which are a new technology that allows access to even larger disks.

Thus, if the sector size is the standard 512 bytes and the operating system wants to

modify the 632nd byte on a disk, it must write a 512-byte block of data to the second

sector on the disk.

File system formats define the way that file data is stored on storage media, and they

affect a file system’s features. For example, a format that doesn’t allow user permissions

to be associated with files and directories can’t support security. A file system format

can also impose limits on the sizes of files and storage devices that the file system sup-

ports. Finally, some file system formats efficiently implement support for either large or

small files or for large or small disks. NTFS and exFAT are examples of file system for-

mats that offer a different set of features and usage scenarios.

Clusters are the addressable blocks that many file system formats use. Cluster size is

always a multiple of the sector size, as shown in Figure 11-1. File system formats use

clusters to manage disk space more efficiently; a cluster size that is larger than the sec-

tor size divides a disk into more manageable blocks. The potential trade-off of a larger

cluster size is wasted disk space, or internal fragmentation, that results when file sizes

aren’t perfect multiples of cluster sizes.

890 Windows Internals, Fifth Edition

Sector

Cluster (4 sectors)

FIGURE 11-1 Sectors and a cluster on a disk

Metadata is data stored on a volume in support of file system format management. It

isn’t typically made accessible to applications. Metadata includes the data that defines

the placement of files and directories on a volume, for example.

Windows File System Formats

Windows includes support for the following file system formats:

CDFS

UDF

FAT12, FAT16, and FAT32

exFAT

NTFS

Each of these formats is best suited for certain environments, as you’ll see in the following

sections.

CDFS

CDFS (\Windows\System32\Drivers\Cdfs.sys), or CD-ROM file system, is a read-only file

system driver that supports a superset of the ISO-9660 format as well as a superset of the

Joliet disk format. While the ISO-9660 format is relatively simple and has limitations such as

ASCII uppercase names with a maximum length of 32 characters, Joliet is more flexible and

supports Unicode names of arbitrary length, for example. If structures for both formats are

present on a disk (to offer maximum compatibility), CDFS uses the Joliet format. CDFS has a

couple of restrictions:

A maximum file size of 4 GB

A maximum of 65,535 directories

 Chapter 11 File Systems 891

CDFS is considered a legacy format because the industry has adopted the Universal Disk

Format (UDF) as the standard for optical media.

UDF

The Windows UDF file system implementation is OSTA (Optical Storage Technology

Association) UDF-compliant. (UDF is a subset of the ISO-13346 format with extensions for

formats such as CD-R and DVD-R/RW.) OSTA defined UDF in 1995 as a format to replace the

ISO-9660 format for magneto-optical storage media, mainly DVD-ROM. UDF is included in

the DVD specification and is more flexible than CDFS. The UDF file system format has the fol-

lowing traits:

Directory and file names can be 254 ASCII or 127 Unicode characters long.

Files can be sparse. (Sparse files are defined later in the chapter.)

File sizes are specified with 64-bits.

Support for access control lists (ACLs).

Support for alternate data streams.

The UDF driver supports UDF versions up to 2.60. The UDF format was designed with rewrit-

able media in mind. The Windows UDF driver (\Windows\System32\Drivers\Udfs.sys) pro-

vides read-write support for DVD-RAM, CD-R/RW, and DVD+-R/RW drives when using UDF

2.50 and read-only support when using UDF 2.60. However, Windows does not implement

support for certain UDF features such as named streams and access control lists.

FAT12, FAT16, and FAT32

Windows supports the FAT file system primarily to enable upgrades from previous versions

of Windows, for compatibility with other operating systems in multiboot systems, and as a

format for flash drives or memory cards. The Windows FAT file system driver is implemented

in \Windows\System32\Drivers\Fastfat.sys.

The name of each FAT format includes a number that indicates the number of bits the format

uses to identify clusters on a disk. FAT12’s 12-bit cluster identifier limits a partition to storing

a maximum of 212 (4,096) clusters. Windows uses cluster sizes from 512 bytes to 8 KB in size,

which limits a FAT12 volume size to 32 MB.

Note All FAT file system types reserve the first two clusters and the last 16 clusters of a volume,

so the number of usable clusters for a FAT12 volume, for instance, is slightly less than 4,096.

892 Windows Internals, Fifth Edition

FAT16, with a 16-bit cluster identifier, can address 216 (65,536) clusters. On Windows, FAT16

cluster sizes range from 512 bytes (the sector size) to 64 KB, which limits FAT16 volume sizes

to 4 GB. The cluster size Windows uses depends on the size of a volume. The various sizes are

listed in Table 11-1. If you format a volume that is less than 16 MB as FAT by using the for-
mat command or the Disk Management snap-in, Windows uses the FAT12 format instead of

FAT16.

TABLE 11-1 Default FAT16 Cluster Sizes in Windows

Volume Size Default Cluster Size

0–32 MB 512 bytes

32 MB–64 MB 1 KB

64 MB–128 MB 2 KB

128 MB–256 MB 4 KB

256 MB–512 MB 8 KB

512 MB–1,024 MB 16 KB

1,024 MB–2,048 MB 32 KB

2,048 MB–4,096 MB 64 KB

A FAT volume is divided into several regions, which are shown in Figure 11-2. The file alloca-

tion table, which gives the FAT file system format its name, has one entry for each cluster

on a volume. Because the file allocation table is critical to the successful interpretation of a

volume’s contents, the FAT format maintains two copies of the table so that if a file system

driver or consistency-checking program (such as Chkdsk) can’t access one (because of a bad

disk sector, for example), it can read from the other.

FIGURE 11-2 FAT format organization

Entries in the file allocation table define file-allocation chains (shown in Figure 11-3) for files

and directories, where the links in the chain are indexes to the next cluster of a file’s data. A

file’s directory entry stores the starting cluster of the file. The last entry of the file’s alloca-

tion chain is the reserved value of 0xFFFF for FAT16 and 0xFFF for FAT12. The FAT entries for

unused clusters have a value of 0. You can see in Figure 11-3 that FILE1 is assigned clusters

2, 3, and 4; FILE2 is fragmented and uses clusters 5, 6, and 8; and FILE3 uses only cluster 7.

Reading a file from a FAT volume can involve reading large portions of a file allocation table

to traverse the file’s allocation chains.

 Chapter 11 File Systems 893

FILE1 0002

0003 0004 0006 0008FFFF FFFF 0000FFFF

FILE2

2 3 4 5 6 7 8 9

0005 FILE3 0007

FIGURE 11-3 Sample FAT file-allocation chains

The root directory of FAT12 and FAT16 volumes is preassigned enough space at the start of a

volume to store 256 directory entries, which places an upper limit on the number of files and

directories that can be stored in the root directory. (There’s no preassigned space or size limit

on FAT32 root directories.) A FAT directory entry is 32 bytes and stores a file’s name, size,

starting cluster, and time stamp (last-accessed, created, and so on) information. If a file has a

name that is Unicode or that doesn’t follow the MS-DOS 8.3 naming convention, additional

directory entries are allocated to store the long file name. The supplementary entries pre-

cede the file’s main entry. Figure 11-4 shows a sample directory entry for a file named “The

quick brown fox.” The system has created a THEQUI~1.FOX 8.3 representation of the name

(that is, you don’t see a “.” in the directory entry because it is assumed to come after the

eighth character) and used two more directory entries to store the Unicode long file name.

Each row in the figure is made up of 16 bytes.

Second (and last) long entry

Short entry

First long entry

0x42 w n . f o 0x0F 0x00 xCheck
sum

0x0000 0xFFFF 0xFFFF 0xFFFF 0xFFFF 0x0000 0xFFFF 0xFFFF

0x01 T h e q 0x0F 0x00 uCheck
sum

i c k b 0x0000 or

T H E Q U I ˜ 1 F O X 0x20 NT Create time

Create date Last access
date 0x0000 Last modi-

fied time
Last modi-
fied date First cluster File size

FIGURE 11-4 FAT directory entry

894 Windows Internals, Fifth Edition

FAT32 uses 32-bit cluster identifiers but reserves the high 4 bits, so in effect it has 28-bit

cluster identifiers. Because FAT32 cluster sizes can be as large as 32 KB, FAT32 has a theoreti-

cal ability to address 8-terabyte (TB) volumes. Although Windows works with existing FAT32

volumes of larger sizes (created in other operating systems), it limits new FAT32 volumes to

a maximum of 32 GB. FAT32’s higher potential cluster numbers let it manage disks more

efficiently than FAT16; it can handle up to 128-GB volumes with 512-byte clusters. Table 11-2

shows default cluster sizes for FAT32 volumes.

TABLE 11-2 Default Cluster Sizes for FAT32 Volumes

Partition Size Default Cluster Size

32 MB–8 GB 4 KB

8 GB–16 GB 8 KB

16 GB–32 GB 16 KB

32 GB 32 KB

Besides the higher limit on cluster numbers, other advantages FAT32 has over FAT12 and

FAT16 include the fact that the FAT32 root directory isn’t stored at a predefined location on

the volume, the root directory doesn’t have an upper limit on its size, and FAT32 stores a

second copy of the boot sector for reliability. A limitation FAT32 shares with FAT16 is that the

maximum file size is 4 GB because directories store file sizes as 32-bit values.

exFAT

Designed by Microsoft, the Extended File Allocation Table file system (exFAT, also called

FAT64) is an improvement over the traditional FAT file systems and is specifically designed for

flash drives. The main goal of exFAT is to provide some of the advanced functionality offered

by NTFS, but without the metadata structure overhead and metadata logging that create

write patterns not suited for many flash media devices.

As the FAT64 name implies, the file size limit is increased to 264, allowing files up to 16 exa-

bytes. This change is also matched by an increase in the maximum cluster size, which is cur-

rently implemented as 32 MB but can be as large as 2255 sectors. exFAT also adds a bitmap

that tracks free clusters, which improves the performance of allocation and deletion opera-

tions. Finally, exFAT allows more than 1,000 files in a single directory. These characteristics

result in increased scalability and support for large disk sizes.

Additionally, exFAT implements certain features previously available only in NTFS, such as

support for access control lists (ACLs) and transactions (called Transaction-Safe FAT, or TFAT).

While the Windows Embedded CE implementation of exFAT includes these features, the ver-

sion of exFAT in Windows Vista and Windows Server 2008 does not.

Note ReadyBoost (described in Chapter 9) does not work with exFAT-formatted flash drives.

 Chapter 11 File Systems 895

NTFS

As we said at the beginning of the chapter, the NTFS file system is the native file system for-

mat of Windows. NTFS uses 64-bit cluster numbers. This capacity gives NTFS the ability to

address volumes of up to 16 exaclusters; however, Windows limits the size of an NTFS vol-

ume to that addressable with 32-bit clusters, which is slightly less than 256 TB (using 64-KB

clusters). Table 11-3 shows the default cluster sizes for NTFS volumes. (You can override the

default when you format an NTFS volume.) NTFS also supports 232–1 files per volume. The

NTFS format allows for files that are 16 exabytes in size, but the implementation limits the

maximum file size to 16 TB.

TABLE 11-3 Default Cluster Sizes for NTFS Volumes

Volume Size Default Cluster Size

512 MB or less 512 bytes

512 MB–1,024 MB (1 GB) 1 KB

1,024 MB–2,048 MB (2 GB) 2 KB

Greater than 2,048 MB 4 KB

NTFS includes a number of advanced features, such as file and directory security, alternate

data streams, disk quotas, sparse files, file compression, symbolic (soft) and hard links, sup-

port for transactional semantics, and encryption. One of its most significant features is recov-
erability. If a system is halted unexpectedly, the metadata of a FAT volume can be left in an

inconsistent state, leading to the corruption of large amounts of file and directory data. NTFS

logs changes to metadata in a transactional manner so that file system structures can be

repaired to a consistent state with no loss of file or directory structure information. (File data

can be lost, however.) Additionally, the NTFS driver in Windows also implements self-healing,

a mechanism through which it makes most minor repairs to corruption of file system on-disk

structures while Windows is running and without requiring a reboot.

We’ll describe NTFS data structures and advanced features in detail later in this chapter.

File System Driver Architecture

File system drivers (FSDs) manage file system formats. Although FSDs run in kernel mode,

they differ in a number of ways from standard kernel-mode drivers. Perhaps most signifi-

cant, they must register as an FSD with the I/O manager and they interact more exten-

sively with the memory manager. For enhanced performance, file system drivers also

usually rely on the services of the cache manager. Thus, they use a superset of the exported

Ntoskrnl.exe functions that standard drivers use. Just as for standard kernel-mode drivers,

you must have the Windows Driver Kit (WDK) to build file system drivers. (See Chapter 1 and

www.microsoft.com/whdc/devtoolswdk for more information on the WDK.)

896 Windows Internals, Fifth Edition

Windows has two different types of file system drivers:

Local FSDs manage volumes directly connected to the computer.

Network FSDs allow users to access data volumes connected to remote computers.

Local FSDs

Local FSDs include Ntfs.sys, Fastfat.sys, Exfat.sys, Udfs.sys, Cdfs.sys, and the Raw FSD (inte-

grated in Ntoskrnl.exe). Figure 11-5 shows a simplified view of how local FSDs interact

with the I/O manager and storage device drivers. As we described in the section “Volume

Mounting” in Chapter 8, a local FSD is responsible for registering with the I/O manager. Once

the FSD is registered, the I/O manager can call on it to perform volume recognition when

applications or the system initially access the volumes. Volume recognition involves an exam-

ination of a volume’s boot sector and often, as a consistency check, the file system metadata.

The first sector of every Windows-supported file system format is reserved as the volume’s

boot sector. A boot sector contains enough information so that a local FSD can both identify

the volume on which the sector resides as containing a format that the FSD manages and

locate any other metadata necessary to identify where metadata is stored on the volume.

When a local FSD recognizes a volume, it creates a device object that represents the

mounted file system format. The I/O manager makes a connection through the volume

parameter block (VPB) between the volume’s device object (which is created by a storage

device driver) and the device object that the FSD created. The VPB’s connection results in the

I/O manager redirecting I/O requests targeted at the volume device object to the FSD device

object. (See Chapter 8 for more information on VPBs.)

ApplicationApplication

Logical
volume

(partition)

I/O manager

File system driver

Storage device drivers

FIGURE 11-5 Local FSD

 Chapter 11 File Systems 897

To improve performance, local FSDs usually use the cache manager to cache file system data,

including metadata. (For more information on the cache manager, see Chapter 10.) They also

integrate with the memory manager so that mapped files are implemented correctly. For

example, they must query the memory manager whenever an application attempts to trun-

cate a file in order to verify that no processes have mapped the part of the file beyond the

truncation point. (See Chapter 9 for more information on the memory manager.) Windows

doesn’t permit file data that is mapped by an application to be deleted either through trun-

cation or file deletion.

Local FSDs also support file system dismount operations, which permit the system to discon-

nect the FSD from the volume object. A dismount occurs whenever an application requires

raw access to the on-disk contents of a volume or the media associated with a volume is

changed. The first time an application accesses the media after a dismount, the I/O manager

reinitiates a volume mount operation for the media.

Remote FSDs

Remote FSDs consist of two components: a client and a server. A client-side remote FSD

allows applications to access remote files and directories. The client FSD accepts I/O requests

from applications and translates them into network file system protocol commands that the

FSD sends across the network to a server-side component, which is typically a remote FSD. A

server-side FSD listens for commands coming from a network connection and fulfills them by

issuing I/O requests to the local FSD that manages the volume on which the file or directory

that the command is intended for resides.

Windows includes a client-side remote FSD named LANMan Redirector (redirector) and a

server-side remote FSD named LANMan Server (\%SystemRoot%\System32\Drivers\Srv2.sys).

The redirector is implemented as a port/miniport driver combination, where the port driver

(\%SystemRoot%\System32\Drivers\Rdbss.sys) is implemented as a driver subroutine library,

and the miniport (\%SystemRoot%\System32\Drivers\Mrxsmb.sys) uses services imple-

mented by the port driver. Another redirector miniport driver is WebDAV (\%SystemRoot%\

System32\Drivers\Mrxdav.sys), which implements the client side of file access over HTTP.

The port/miniport model simplifies redirector development because the port driver, which

all remote FSD miniport drivers share, handles many of the mundane details involved with

interfacing a client-side remote FSD to the Windows I/O manager. In addition to the FSD

components, both LANMan Redirector and LANMan Server include Windows services named

Workstation and Server, respectively. Figure 11-6 shows the relationship between a client

accessing files remotely from a server through the redirector and server FSDs.

898 Windows Internals, Fifth Edition

Disk

Protocol driver
(TDI transport)

Protocol driver
(TDI transport)

Local FSD
(NTFS, FAT)

File data

Network

Client
application Kernel32.dll

Ntdll.dll

Cache
manager

Server
FSD

Cache
manager

Redirector
FSD

FIGURE 11-6 Common Internet File System file sharing

Windows relies on the Common Internet File System (CIFS) protocol to format messages

exchanged between the redirector and the server. CIFS is a version of Microsoft’s Server

Message Block (SMB) protocol. (For more information on CIFS, go to www.cifs.com.)

Like local FSDs, client-side remote FSDs usually use cache manager services to locally cache

file data belonging to remote files and directories. However, client-side remote FSDs must

implement a distributed cache coherency protocol, called oplock (opportunistic locking), so

that the data an application sees when it accesses a remote file is the same as the data appli-

cations running on other computers that are accessing the same file see. Although server-

side remote FSDs participate in maintaining cache coherency across their clients, they don’t

cache data from the local FSDs because local FSDs cache their own data.

When a client wants to access a server file, it must first request an oplock. The client dictates

the kind of caching that the client can perform based on the type of oplock that the server

grants.

There are three main types of oplocks:

A Level I oplock is granted when a client has exclusive access to a file. A client holding

this type of oplock for a file can cache both reads and writes on the client system.

A Level II oplock represents a shared file lock. Clients that hold a Level II oplock can

cache reads, but writing to the file invalidates the Level II oplock.

 Chapter 11 File Systems 899

A Batch oplock is the most permissive kind of oplock. A client with this oplock can

cache both reads and writes to the file as well as open and close the file without

requesting additional oplocks. Batch oplocks are typically used only to support the

execution of batch files, which can open and close a file repeatedly as they execute.

If a client has no oplock, it can cache neither read nor write data locally and instead must

retrieve data from the server and send all modifications directly to the server.

An example, shown in Figure 11-7, will help illustrate oplock operation. The server automati-

cally grants a Level I oplock to the first client to open a server file for access. The redirec-

tor on the client caches the file data for both reads and writes in the file cache of the client

machine. If a second client opens the file, it too requests a Level I oplock. However, because

there are now two clients accessing the same file, the server must take steps to present a

consistent view of the file’s data to both clients. If the first client has written to the file, as

is the case in Figure 11-7, the server revokes its oplock and grants neither client an oplock.

When the first client’s oplock is revoked, or broken, the client flushes any data it has cached

for the file back to the server.

Time

File open

Cached read(s)
Cached write(s)

Flushes cached
modified data

Noncached read(s)
Noncached write(s)

Client 1 Client 2

Grant Level I
oplock to Client 1

File open

Oplock request

Oplock
request

Level I grant

Oplock break
to none

Data flush

No oplock
granted

Noncached read(s)
Noncached write(s)

Break Client 1
to no oplock

Do not grant
Client 2 oplock

Server

FIGURE 11-7 Oplock example

If the first client hadn’t written to the file, the first client’s oplock would have been broken

to a Level II oplock, which is the same type of oplock the server would grant to the second

client. Now both clients can cache reads, but if either writes to the file, the server revokes

their oplocks so that noncached operation commences. Once oplocks are broken, they aren’t

granted again for the same open instance of a file. However, if a client closes a file and then

reopens it, the server reassesses what level of oplock to grant the client based on which other

clients have the file open and whether or not at least one of them has written to the file.

900 Windows Internals, Fifth Edition

EXPERIMENT: Viewing the List of Registered File Systems

When the I/O manager loads a device driver into memory, it typically names the driver

object it creates to represent the driver so that it’s placed in the \Driver object manager

directory. The driver objects for any driver the I/O manager loads that have a Type

attribute value of SERVICE_FILE_SYSTEM_DRIVER (2) are placed in the \FileSystem direc-

tory by the I/O manager. Thus, using a tool such as WinObj (from Sysinternals), you can

see the file systems that have registered on a system, as shown in the following screen

shot. (Note that some file system drivers also place device objects in the \FileSystem

directory.)

Another way to see registered file systems is to run the System Information viewer.

Run Msinfo32 from the Start menu’s Run dialog box and select System Drivers under

Software Environment. Sort the list of drivers by clicking the Type column, and drivers

with a Type attribute of SERVICE_FILE_SYSTEM_DRIVER group together.

 Chapter 11 File Systems 901

Note that just because a driver registers as a file system driver type doesn’t mean that it

is a local or remote FSD. For example, Npfs (Named Pipe File System), which is visible in

the list just shown, is a network API driver that supports named pipes but implements a

private namespace, and therefore is in some ways like a file system driver. See Chapter

12 for an experiment that reveals the Npfs namespace.

File System Operation

Applications and the system access files in two ways: directly, via file I/O functions (such as

ReadFile and WriteFile), and indirectly, by reading or writing a portion of their address space

that represents a mapped file section. (See Chapter 9 for more information on mapped files.)

Figure 11-8 is a simplified diagram that shows the components involved in these file sys-

tem operations and the ways in which they interact. As you can see, an FSD can be invoked

through several paths:

From a user or system thread performing explicit file I/O

From the memory manager’s modified and mapped page writers

Indirectly from the cache manager’s lazy writer

Indirectly from the cache manager’s read-ahead thread

From the memory manager’s page fault handler

902 Windows Internals, Fifth Edition

Process

Handle
table

File object

File object

Data
attribute

File
control
block

Named
stream

NTFS data
structures

Stream
control
blocks

...

Object
manager

data
structures

Master file
table

...

NTFS
database
(on disk)

FIGURE 11-8 Components involved in file system I/O

The following sections describe the circumstances surrounding each of these scenarios and

the steps FSDs typically take in response to each one. You’ll see how much FSDs rely on the

memory manager and the cache manager.

Explicit File I/O

The most obvious way an application accesses files is by calling Windows I/O functions

such as CreateFile, ReadFile, and WriteFile. An application opens a file with CreateFile and

then reads, writes, or deletes the file by passing the handle returned from CreateFile to

other Windows functions. The CreateFile function, which is implemented in the Kernel32.dll

Windows client-side DLL, invokes the native function NtCreateFile, forming a complete root-

relative pathname for the path that the application passed to it (processing “.” and “..” symbols

in the pathname) and prepending the path with “\??” (for example, \??\C:\Daryl\Todo.txt).

The NtCreateFile system service uses ObOpenObjectByName to open the file, which parses

the name starting with the object manager root directory and the first component of the

path name (“??”). Chapter 3 includes a thorough description of object manager name resolu-

tion and its use of process device maps, but we’ll review the steps it follows here with a focus

on volume drive letter lookup.

 Chapter 11 File Systems 903

The first step the object manager takes is to translate \?? to the process’s per-session

namespace directory that the DosDevicesDirectory field of the device map structure in the

process object references (which was propagated from the first process in the logon session

by using the logon session references field in the logon session’s token). Only volume names

for network shares and drive letters mapped by the Subst.exe utility are typically stored

in the per-session directory, so on those systems when a name (C: in this example) is not

present in the per-session directory, the object manager restarts its search in the directory

referenced by the GlobalDosDevicesDirectory field of the device map associated with the

per-session directory. The GlobalDosDevicesDirectory always points at the \Global?? direc-

tory, which is where Windows stores volume drive letters for local volumes. (See the section

“Session Namespace” in Chapter 3 for more information.)

The symbolic link for a volume drive letter points to a volume device object under \Device,

so when the object manager encounters the volume object, the object manager hands the

rest of the pathname to the parse function that the I/O manager has registered for device

objects, IopParseDevice. (In volumes on dynamic disks, a symbolic link points to an interme-

diary symbolic link, which points to a volume device object.) Figure 11-9 shows how volume

objects are accessed through the object manager namespace. The figure shows how the

\GLOBAL??\C: symbolic link points to the \Device\HarddiskVolume3 volume device object.

After locking the caller’s security context and obtaining security information from the caller’s

token, IopParseDevice creates an I/O request packet (IRP) of type IRP_MJ_CREATE, creates

a file object that stores the name of the file being opened, follows the VPB of the volume

device object to find the volume’s mounted file system device object, and uses IoCallDriver
to pass the IRP to the file system driver that owns the file system device object.

When an FSD receives an IRP_MJ_CREATE IRP, it looks up the specified file, performs secu-

rity validation, and if the file exists and the user has permission to access the file in the way

requested, returns a success code. The object manager creates a handle for the file object in

the process’s handle table, and the handle propagates back through the calling chain, finally

reaching the application as a return parameter from CreateFile. If the file system fails the cre-

ate operation, the I/O manager deletes the file object it created for it.

We’ve skipped over the details of how the FSD locates the file being opened on the volume,

but a ReadFile function call operation shares many of the FSD’s interactions with the cache

manager and storage driver. Both ReadFile and CreateFile are system calls that map to I/O

manager functions, but the NtReadFile system service doesn’t need to perform a name

lookup—it calls on the object manager to translate the handle passed from ReadFile into

a file object pointer. If the handle indicates that the caller obtained permission to read the

file when the file was opened, NtReadFile proceeds to create an IRP of type IRP_MJ_READ

and sends it to the FSD on which the file resides. NtReadFile obtains the FSD’s device object,

which is stored in the file object, and calls IoCallDriver, and the I/O manager locates the FSD

from the device object and gives the IRP to the FSD.

904 Windows Internals, Fifth Edition

FIGURE 11-9 Drive-letter name resolution

If the file being read can be cached (that is, the FILE_FLAG_NO_BUFFERING flag wasn’t

passed to CreateFile when the file was opened), the FSD checks to see whether caching has

already been initiated for the file object. The PrivateCacheMap field in a file object points to

a private cache map data structure (which we described in Chapter 10) if caching is initiated

for a file object. If the FSD hasn’t initialized caching for the file object (which it does the first

time a file object is read from or written to), the PrivateCacheMap field will be null. The FSD

calls the cache manager CcInitializeCacheMap function to initialize caching, which involves

the cache manager creating a private cache map and, if another file object referring to the

same file hasn’t initiated caching, a shared cache map and a section object.

After it has verified that caching is enabled for the file, the FSD copies the requested file

data from the cache manager’s virtual memory to the buffer that the thread passed to the

ReadFile function. The file system performs the copy within a try/except block so that it

catches any faults that are the result of an invalid application buffer. The function the file

system uses to perform the copy is the cache manager’s CcCopyRead function. CcCopyRead

takes as parameters a file object, file offset, and length.

 Chapter 11 File Systems 905

When the cache manager executes CcCopyRead, it retrieves a pointer to a shared cache map,

which is stored in the file object. Recall from Chapter 10 that a shared cache map stores

pointers to virtual address control blocks (VACBs), with one VACB entry for each 256-KB

block of the file. If the VACB pointer for a portion of a file being read is null, CcCopyRead

allocates a VACB, reserving a 256-KB view in the cache manager’s virtual address space, and

maps (using MmMapViewInSystemCache) the specified portion of the file into the view. Then

CcCopyRead simply copies the file data from the mapped view to the buffer it was passed

(the buffer originally passed to ReadFile). If the file data isn’t in physical memory, the copy

operation generates page faults, which are serviced by MmAccessFault.

When a page fault occurs, MmAccessFault examines the virtual address that caused the

fault and locates the virtual address descriptor (VAD) in the VAD tree of the process that

caused the fault. (See Chapter 9 for more information on VAD trees.) In this scenario, the VAD

describes the cache manager’s mapped view of the file being read, so MmAccessFault calls

MiDispatchFault to handle a page fault on a valid virtual memory address. MiDispatchFault
locates the control area (which the VAD points to) and through the control area finds a file

object representing the open file. (If the file has been opened more than once, there might

be a list of file objects linked through pointers in their private cache maps.)

With the file object in hand, MiDispatchFault calls the I/O manager function IoPageRead to

build an IRP (of type IRP_MJ_READ) and sends the IRP to the FSD that owns the device object

the file object points to. Thus, the file system is reentered to read the data that it requested

via CcCopyRead, but this time the IRP is marked as noncached and paging I/O. These flags

signal the FSD that it should retrieve file data directly from disk, and it does so by determin-

ing which clusters on disk contain the requested data and sending IRPs to the volume man-

ager that owns the volume device object on which the file resides. The volume parameter

block (VPB) field in the FSD’s device object points to the volume device object.

The memory manager waits for the FSD to complete the IRP read and then returns control to

the cache manager, which continues the copy operation that was interrupted by a page fault.

When CcCopyRead completes, the FSD returns control to the thread that called NtReadFile,

having copied the requested file data—with the aid of the cache manager and the memory

manager—to the thread’s buffer.

The path for WriteFile is similar except that the NtWriteFile system service generates an IRP of

type IRP_MJ_WRITE and the FSD calls CcCopyWrite instead of CcCopyRead. CcCopyWrite, like

CcCopyRead, ensures that the portions of the file being written are mapped into the cache

and then copies to the cache the buffer passed to WriteFile.

If a file’s data is already stored in the system’s working set, there are several variants on

the scenario we’ve just described. If a file’s data is already stored in the cache, CcCopyRead

doesn’t incur page faults. Also, under certain conditions, NtReadFile and NtWriteFile call an

FSD’s fast I/O entry point instead of immediately building and sending an IRP to the FSD.

Some of these conditions follow: the portion of the file being read must reside in the first

906 Windows Internals, Fifth Edition

4 GB of the file, the file can have no locks, and the portion of the file being read or written

must fall within the file’s currently allocated size.

The fast I/O read and write entry points for most FSDs call the cache manager’s CcFastCopy-
Read and CcFastCopyWrite functions. These variants on the standard copy routines ensure

that the file’s data is mapped in the file system cache before performing a copy operation.

If this condition isn’t met, CcFastCopyRead and CcFastCopyWrite indicate that fast I/O isn’t

possible. When fast I/O isn’t possible, NtReadFile and NtWriteFile fall back on creating an IRP.

(See the section “Fast I/O” in Chapter 10 for a more complete description of fast I/O.)

Memory Manager’s Modified and Mapped Page Writer

The memory manager’s modified and mapped page writer threads wake up periodi-

cally and when available memory runs low to flush modified pages. The threads call

IoAsynchronousPageWrite to create IRPs of type IRP_MJ_WRITE and write pages to either a

paging file or a file that was modified after being mapped. Like the IRPs that MiDispatchFault
creates, these IRPs are flagged as noncached and paging I/O. Thus, an FSD bypasses the file

system cache and issues IRPs directly to a storage driver to write the memory to disk.

Cache Manager’s Lazy Writer

The cache manager’s lazy writer thread also plays a role in writing modified pages because

it periodically flushes views of file sections mapped in the cache that it knows are dirty.

The flush operation, which the cache manager performs by calling MmFlushSection, trig-

gers the memory manager to write any modified pages in the portion of the section

being flushed to disk. Like the modified and mapped page writers, MmFlushSection uses

IoSynchronousPageWrite to send the data to the FSD.

Cache Manager’s Read-Ahead Thread

The cache manager includes a thread that is responsible for attempting to read data from

files before an application, a driver, or a system thread explicitly requests it. The read-ahead

thread uses the history of read operations that were performed on a file, which are stored

in a file object’s private cache map, to determine how much data to read. When the thread

performs a read-ahead, it simply maps the portion of the file it wants to read into the cache

(allocating VACBs as necessary) and touches the mapped data. The page faults caused by

the memory accesses invoke the page fault handler, which reads the pages into the system’s

working set.

Memory Manager’s Page Fault Handler

We described how the page fault handler is used in the context of explicit file I/O and

cache manager read-ahead, but it is also invoked whenever any application accesses virtual

 Chapter 11 File Systems 907

memory that is a view of a mapped file and encounters pages that represent portions of a

file that aren’t part of the application’s working set. The memory manager’s MmAccessFault
handler follows the same steps it does when the cache manager generates a page fault from

CcCopyRead or CcCopyWrite, sending IRPs via IoPageRead to the file system on which the file

is stored.

File System Filter Drivers

A filter driver that layers over a file system driver is called a file system filter driver. (See

Chapter 7 for more information on filter drivers.) The ability to see all file system requests

and optionally modify or complete them enables a range of applications, including remote

file replication services, file encryption, efficient backup, and licensing. Every commercial on-

access virus scanner includes a file system filter driver that intercepts IRPs that deliver IRP_MJ_

CREATE commands that issue whenever an application opens a file. Before propagating the

IRP to the file system driver to which the command is directed, the virus scanner examines

the file being opened to ensure that it’s clean of a virus. If the file is clean, the virus scanner

passes the IRP on, but if the file is infected the virus scanner communicates with its associated

Windows service process to quarantine or clean the file. If the file can’t be cleaned, the driver

fails the IRP (typically with an access-denied error) so that the virus cannot become active.

Process Monitor

Process Monitor (Procmon), a system activity monitoring utility from Sysinternals that has

been used throughout this book, is an example of a passive filter driver, which is one that

does not modify the flow of IRPs between applications and file system drivers. Windows

includes the Filesystem Filter Manager (%SystemRoot%\System32\Drivers\Fltmgr.sys) as

part of a port/miniport model for file system filter drivers. The Filesystem Filter Manager

greatly simplifies the development of filter drivers by interfacing a filter miniport driver to the

Windows I/O system and providing services for querying file names, attaching to volumes,

and interacting with other filters. Process Monitor’s file system monitoring is implemented as

a minifilter driver.

Process Monitor works by extracting a file system filter device driver from its executable

image (Procmon.exe) the first time you run it after a boot, installing the driver in memory,

and then deleting the driver image from disk. Through the Process Monitor GUI, you can

direct the driver to monitor file system activity on local volumes that have assigned drive

letters, network shares, named pipes, and mail slots. When the driver receives a command

to start monitoring a volume, it registers filtering callbacks with the Filter Manager, which is

attached to the device object that represents a mounted file system on the volume. After an

attach operation, the I/O manager redirects an IRP targeted at the underlying device object

to the driver owning the attached device, in this case the Filter Manager, which sends the

event to registered minifilter drivers, in this case Process Monitor.

908 Windows Internals, Fifth Edition

When the Process Monitor driver intercepts an IRP, it records information about the IRP’s

command, including target file name and other parameters specific to the command (such as

read and write lengths and offsets) to a nonpaged kernel buffer. Twice a second the Process

Monitor GUI sends an IRP to Process Monitor’s interface device object, which requests a copy

of the buffer containing the latest activity and displays the activity in its output window.

Process Monitor’s use is described further in the next section, “Troubleshooting File System

Problems.”

Troubleshooting File System Problems

Chapter 4 describes the way that the system and applications store data in the registry.

Registry-related problems such as misconfigured security and missing registry values and

keys are the source of many system and application failures. The system and applications also

use files to store data, and they access executable and DLL image files. Misconfigured NTFS

security and missing files or directories are therefore also a common source of system and

application failures because the system and applications often make assumptions about what

they should be able to access and then misbehave in unexpected ways when the assumptions

are violated.

Process Monitor shows all file activity as it occurs, which makes it an ideal tool for trouble-

shooting file system–related system and application failures. To run Process Monitor the first

time on a system, an account must have the Load Driver and Debug privileges. After loading,

the driver remains resident, so subsequent executions require only the Debug privilege.

Process Monitor Basic vs. Advanced Modes

When you run Process Monitor, it starts in basic mode, which shows the file system activity

most often useful for troubleshooting. When in basic mode, Process Monitor omits certain

file system operations from being displayed, including:

I/O to NTFS metadata files

I/O to the paging file

I/O generated by the System process

I/O generated by the Process Monitor process

While in basic mode, Process Monitor also reports file I/O operations with friendly names

rather than with the IRP types used to represent them. For example, both IRP_MJ_WRITE and

FASTIO_WRITE operations display as WriteFile, and IRP_MJ_CREATE operations show as Open

if they represent an open operation and as Create for the creation of new files.

 Chapter 11 File Systems 909

EXPERIMENT: Viewing File System Activity on an Idle System

Windows file system drivers implement support for file change notification, which

enables applications to request notifications of file system changes without polling for

them. The Windows functions for doing so include ReadDirectoryChangesW and the

FindFirstChangeNotification, FindNextChangeNotification pair. When you run Process

Monitor on a system that’s idle, you should therefore not see the repeated accesses

to files or directories because that activity unnecessarily negatively affects a system’s

overall performance.

Run Process Monitor, and after several seconds examine the output log to see whether

you can spot polling behavior. Right-click on an output line associated with polling,

click Properties on the context menu, and then click the Process tab in the Properties

dialog box to view details of the process performing the activity.

Process Monitor Troubleshooting Techniques

The two basic Process Monitor troubleshooting techniques for file system problems are

identical to those for registry-related problems: looking in a Process Monitor trace at the

last thing an application did before it failed, or comparing a Process Monitor trace of a

failing application with a trace from a working system. See the section “Process Monitor

Troubleshooting Techniques” in Chapter 4 for more information on these techniques.

Entries in a Process Monitor trace that have values of NAME NOT FOUND, NO SUCH FILE,

PATH NOT FOUND, SHARING VIOLATION, and ACCESS DENIED in the Result column are ones

that you should investigate. The first three are reported when an application or the system

attempts to open a nonexistent file or directory. In many cases, these errors do not indicate a

serious problem. When you execute a program from the Start menu’s Run dialog box without

specifying its full path, for instance, Windows Explorer will search the directories listed in the

system PATH environment variable for the image file until it locates the file or has searched

all the listed directories. Each attempt to find the image in a directory that does not contain

it results in a Process Monitor output line similar to this:

25314 7:44:27.4180943 PM Explorer.EXE 1640 CreateFile C:\Program Files\

Microsoft Windows Performance Toolkit\test.exe NAME NOT FOUND Desired Access: Read

Attributes, Disposition: Open, Options: Open Reparse Point, Attributes: n/a, ShareMode:

Read, Write, Delete, AllocationSize: n/a

Access-denied errors are a common source of file system–related application failures, and

they occur when an application does not have permission to open the file or directory for the

access types it desires. Some applications do not check error codes or perform error recov-

ery, and they fail by crashing or terminating; others display misleading error messages that

mask the root cause of the error.

910 Windows Internals, Fifth Edition

Buffer-overflow exploits are a serious security concern, but a code result of BUFFER

OVERFLOW is simply a file system driver’s way to indicate to an application that the buffer

it specified to store result data was too small to hold the data. Application developers use

this behavior to determine how large a buffer should be because the file system driver also

returns the size of the buffer required to store the data. Operations with a buffer overflow

result are usually followed by the same operation with a successful result.

Process Monitor has been used extensively within Microsoft and other organizations to solve

difficult or nearly impossible-to-diagnose problems.

Common Log File System

Transactional semantics for a database or a journaled file system often require keeping track

of changes made to the data and metadata contained in the files or entries. Typically, these

changes are stored in data structures called log records through an operation called logging.

These log records can then be used to undo (roll back), redo, or validate the changes at a

later time, even across system reboots.

Windows provides this kind of logging service through the Common Log File System (CLFS)

to support the transactional features built into Windows, including transactional NTFS (TxF)

and transactional registry (TxR), and to enable third-party developers to take advantage of

similar technology. CLFS provides both user-mode and kernel-mode services for creating,

reading, and writing CLFS log files. The services are flexible and extensible, which allows the

implementation details and structure of the log records stored in a log file to be defined by a

caller.

Although CLFS calls itself a file system, it actually provides a virtual abstraction layer on top

of NTFS by using streams and containers, described later. What CLFS exposes as a single vir-

tual log file could actually be a single physical log file, a single log file divided into multiple

physical files, or even different log files each divided into multiple physical files. Later, we’ll

describe how NTFS interacts with CLFS to provide transactional support.

Marshalling

Internally, CLFS encapsulates the functionality of the Algorithm for Recovery and Isolation

Exploiting Semantics (ARIES), which allows it to provide reliable recovery and replication of

operations by using an industry-approved standard. However, CLFS is not limited to support-

ing ARIES; it is well suited to a variety of logging scenarios. You can find the full ARIES specifi-

cation at www.sai.msu.su/~megera/postgres/gist/papers/concurrency/p94-mohan.pdf.

The primary job of any high-performance transactional log is to allow log clients to accu-

rately repeat history. CLFS does this by marshalling client log records into memory buffers,

forcing them to stable storage, and reading records back on request. After a record makes it

 Chapter 11 File Systems 911

to stable storage and the storage media is intact, CLFS is able to read the record across sys-

tem failures.

Both user-mode and kernel-mode clients marshal data buffers into log records that are part

of a marshalling area maintained in the client’s address space. When creating a marshalling

area, a client must specify the number and size of the log I/O buffers it wants to maintain in

its marshaling area. The marshalling runtime implements policy on allocating log I/O buffers,

appending them to the log internal queue and flushing them to disk. Clients can override the

default marshalling code policy by forcing queue appends and flushes to disk via API calls.

One of the design goals of the CLFS marshalling runtime is to minimize kernel transitions,

which it achieves, among other things, through log-space reservation, a requirement for sup-

porting scenarios such as transaction rollbacks. Every time the log marshalling area talks to

the CLFS driver (which implies a kernel transition for user-mode clients), the marshalling area

tries to negotiate a desired amount of reserved space, usually larger than what is currently

required. This means that if the client requires more space in the future, the marshalling area

can immediately satisfy the new request without issuing a new kernel transition. Note, how-

ever, that if the amount of the reservation cannot be satisfied, the marshalling area will try to

get just enough of the reservation to satisfy the user’s request (without extra reserved space),

which could potentially lead to additional kernel transitions.

Log Types

CLFS supports two types of logs: dedicated logs and multiplexed logs (also called common

logs). A dedicated log has a single stream of log records that is used by all the log’s clients.

A multiplexed log has several streams: each stream has its own clients and its own memory

buffers for marshalling log records, but the records from all those buffers are multiplexed

into a single queue and written to a single log on stable storage. Multiplexing allows the I/O

operations of several streams to be consolidated. When a log is created or opened, CLFS

determines whether the log is dedicated or multiplexed depending on whether a dedicated

log path or a multiplexed log path is specified.

If the request is for a client on a dedicated log (called a physical client), CLFS locates the phys-

ical file control block (FCB) object for the file proper and handles the request.

If the request is for a client on a multiplexed log (called a virtual client), CLFS locates the cor-

responding virtual FCB and context control block (CCB) objects to translate the request into

an operation on the physical FCB object. CLFS then handles the operation on the CLFS physi-

cal FCB object as just described.

In either case, if the request is a cached read, CLFS uses the cache manager’s services for

accessing cached data. (For more information on the cache manager, see Chapter 10.) Just as

it does for requests from other file system drivers, the cache manager maps a view of the file

and references the view, which might cause the memory manager to issue noncached reads

912 Windows Internals, Fifth Edition

to CLFS against the physical log. For flushes and noncached reads, CLFS finds the target con-

tainer object through the log metadata and issues IRPs to NTFS directly. Figure 11-10 shows

the possible CLFS paths for a request coming from user mode or kernel mode.

CLFS user-mode APIs

I/O managerCLFS kernel-mode APIs

CLFS requests

CLFS virtual FCBs

CLFS physical FCBs

CLFS CCBs

Cache managerCLFS BLF files

CLFS containers

NTFS

User mode

Kernel mode

Physical log

Flush/noncached read Cached read

Virtual log

Physical log
noncached
read

FIGURE 11-10 CLFS request paths

Because each stream of a multiplexed log provides its clients with the illusion that their

stream is the entire log, CLFS must include metadata in the physical log that identifies which

client each data block belongs to. This data is called the owner page and is always exactly one

page (4 KB) in size. Each 512 KB of client data results in an owner page to describe it. Since

dedicated logs require no tracking of client and data mapping, they don’t include owner

pages. Figure 11-11 shows two clients writing log records to a multiplexed log and how the

writes are kept together in a unified flush queue that can then be uniformly flushed to physi-

cal storage through a single I/O operation.

 Chapter 11 File Systems 913

t4t3t2t1 t5

t4t3t2t1 t5

Exclusive lock on flush queue

t4t3t1 t2 t5

Client A
Write three blocks at time t1, t3, and t4

Client B
Write two blocks at time t2 and t5

Multiplex

Flush

Log flush queue

Log physical storage

Client vs. data mapping
(owner page)

FIGURE 11-11 CLFS multiplexing

The flush queue will be emptied in the following conditions:

The amount of data in the flush queue exceeds a certain threshold. (The default is

40,000 bytes.)

The CLFS flush API is called.

A restart area is being written, and the log needs to be flushed beyond the restart area.

When flushing, CLFS scans the flush queue and determines how many entries need to be

flushed. It then issues IRPs to NTFS for the corresponding log files of each of the entries and

waits for all the IRPs to complete. If some IRPs fail, CLFS may re-issue IRPs (failures such as

low memory condition, lack of quota, and so on are subject to retry) to redo the work and

wait again.

Log Layout

A log file is made up of a base log file (BLF) that contains metadata and up to 1,023 contain-
ers that hold the actual data. The base log file is initially 64 KB in size and grows as needed.

The log metadata stores information about the log, including the beginning of the log, the

container size, the container path, the location from which restart operations should be per-

formed, the log state, the log name, and the log clients. For consistency in case a system fail-

ure occurs during a log update, the base log file stores two copies of the log metadata, and

914 Windows Internals, Fifth Edition

when it makes updates it overwrites the older copy. The BFL stores a value, the dump count,
that indicates which copy is newer.

A container is the unit of allocation for an active physical log stream. All the containers in a

log have the same size, which is a multiple of 512 KB with a 4 GB maximum size. A CLFS cli-

ent grows or shrinks a log stream by adding or deleting containers from the log file. CLFS

implements containers as contiguous files on the volume on which the BLF resides. Figure

11-12 shows the relationship between a base log file and the associated log data stored in

containers.

Log metadata
Container

Container

Data

Data

Data

. . .

. . .

. . .

(1st copy)
Dump count

log containers

(2nd copy)
Dump count

log containers

Log data

Log start LSN

FIGURE 11-12 CLFS base log file and containers

Internally, the CLFS driver places the containers in a container queue to give clients a logical

view of a single contiguous physical log stream; in doing so, the CLFS driver maps the physi-
cal container identifier to a logical container identifier. Containers are recycled when the tail of

the active log migrates beyond the last sector of the container. Recycling a container involves

moving it from the tail to the head of the container queue and appropriately updating its

logical container identifier.

Log Sequence Numbers

When a client writes a record to a stream, CLFS returns a log sequence number (LSN) that

identifies the log record for future reference. The LSNs assigned to the records that are writ-

ten to a particular stream form an increasing sequence. That is, the LSN assigned to a record

that is written to a stream is always greater than the LSN assigned to the previous record

written to that same stream. Two critical LSNs that the base log file keeps track of are the log
start LSN and the restart LSN, which, as described earlier, are stored in the BLF metadata.

 Chapter 11 File Systems 915

An LSN is 64 bits wide and consists of three parts, as shown in Figure 11-13:

A 32-bit container index that identifies the log container where the log record resides

A 23-bit block offset that identifies an offset within a container

A 9-bit record offset that identifies a record within a block

Block offsetContainer ID Record offset

32 bits 23 bits 9 bits

FIGURE 11-13 CLFS LSN structure

Log Blocks

Because it is possible that a write to a log might fail, which is called a torn write, CLFS uses log
blocks to track whether log records are fully committed to storage. CLFS stores log records

within log blocks, which correspond to 512-byte sectors, and reads and writes data to a log

using log blocks. Each log block includes a 2-byte sector signature at the end of each sector

in the block that stores a sequence number and flags, as well as a copy of the most recently

committed signatures in a signature array at the end of the block, as shown in Figure 11-14.

Only if all the sector signatures in a log block are valid and match the signatures in the array,

does CLFS consider the block valid. If a log block is partially written and a system failure

occurs, for example, the signatures won’t match, and CLFS considers the log block invalid.

Original content copied to signature
array. Reused as sector signature.

Sector 1 Sector 2 Sector 3

Padding
(0s)

Block
header

Signature
array

. . .Record
data

Record
data

Record
header

Record
header

FIGURE 11-14 CLFS log blocks

Owner Pages

As mentioned previously, each 512-KB block of data in a multiplexed log (called a region) is

correlated with its virtual log through an owner page. Each region consists of 4-KB pages,
and each page contains one or more sectors, which contain log blocks. The owner page is

the last page of a region, as shown in Figure 11-15. Because the owner page is itself a log

block, CLFS can detect torn writes on the owner page, just as for a log record, by using the

log block signature array.

916 Windows Internals, Fifth Edition

Block split by owner page

Owner
page

Owner
pageBlockBlock Block BlockBlockBlock

4 KB 4 KB

512 KB 512 KB

FIGURE 11-15 CLFS regions and owner pages

An owner page contains two kinds of information:

For each sector in the region, the virtual log to which the sector belongs as well as the

sector’s serial number (starting from 0). Because the sector size is 512 bytes, there can

be at most 1,024 sectors in a region.

For each virtual log, the minimum and maximum virtual log LSN for the region. These

values give the range of valid virtual LSNs for the region.

CLFS can tell by looking at the owner page of a virtual log LSN whether the record specified

by the LSN resides in the current region or not. If the record does not reside in the current

region, CLFS can decide whether it should search the previous region or the next region by

comparing the virtual log LSN with the virtual log LSN range for the region.

When CLFS inserts log blocks into a multiplexed log’s physical FCB flush queue, if it finds

that the current log block will overlap the owner page of the current region, it splits the cur-

rent log block and inserts an owner page log block after the first half of the split log block

(as shown in Figure 11-15). In other words, the owner page is only written to disk after the

region that it describes becomes full. When a client reopens a multiplexed log file, CLFS scans

the regions and rebuilds an in-memory owner page describing the latest region for which it

hasn’t written an owner page log block.

Note that when reopening the log file, CLFS doesn’t know exactly where the log end LSN

is, so it must find the LSN to avoid losing data or using corrupted data. For a dedicated log,

CLFS reads the log blocks sequentially until an invalid log block is found and then sets the

end of the log there. For a multiplexed log, CLFS reads the last owner page (the base log file

saves a copy of the last flushed owner page’s LSN when the log metadata is last flushed) and

verifies it is indeed valid. CLFS then reads the next region’s owner page repeatedly until an

invalid owner page is found. After that, CLFS scans backward to find the first region with only

valid log data blocks. CLFS then assumes the end of the log must fall within the next region.

It will scan log block by log block until an invalid log block is found and then set the end of

the log there.

 Chapter 11 File Systems 917

Translating Virtual LSNs to Physical LSNs

CLFS relies on physical LSNs to identify log blocks within a physical log. However, CLFS com-

bines several virtual logs in a physical log for multiplexed logs and uses virtual LSNs to locate

log blocks in a virtual log. Therefore, for a virtual log client, a log block can be addressed

both by a physical LSN and by a virtual LSN.

To translate a virtual log LSN to a physical log LSN, CLFS follows these steps:

 1. Reads the owner page for the region indicated by the virtual log LSN.

 2. Checks the owner page’s virtual LSN region to see whether the virtual LSN is actually in

the region or not. Most of the time the log block will be in the region.

 3. If the virtual LSN is in the region, CLFS refers to the sector to client mapping in the

owner page to find the physical LSN’s block offset. Given a client’s virtual LSN and its

size, CLFS can calculate the virtual LSN of the next log block. Applying this rule, CLFS

can deterministically calculate the physical LSN of every virtual log block in the region,

as shown in Figure 11-16.

 4. If the virtual LSN is not in the region, CLFS searches either the previous region or the

next region depending on whether the virtual LSN is smaller or larger than the current

region’s virtual LSN range.

Owner page
Sector 0: Client 1 1st sector of block
Sector 1: Client 1 2nd sector of block
Sector 2: Client 2 1st sector of block
Sector 3: Client 2 2nd sector of block
Sector 4: Client 2 3rd sector of block
Sector 5: Client 2 4th sector of block
Sector 6: Client 1 1st sector of block
Sector 7: Client 1 2nd sector of block
Sector 8: Client 1 1st sector of block
Sector 9: Client 1 2nd sector of block
Sector 10: Client 2 1st sector of block
Client 1 virtual LSN range (0.0.0 ~ 0.1400.0)
Client 2 virtual LSN range (0.0.0 ~ 0.1600.0)

To translate client 1 virtual LSN 0.1000.0:
1. Search owner page. The first sector
 that belongs to client 1 is physical LSN
 0.0.0. This block’s size is 2 sectors. So,
 its next virtual LSN must be 0.400.0.
2. Search owner page again. The next
 block that belongs to client 1 is physical
 LSN 0.C00.0. This block’s size is 2 sectors.
 So, its next virtual LSN must be 0.1000.0.
 Find a match.
3. Search the owner page again. The next
 block that belongs to client 1 is physical
 LSN 0.1000.0. Done. Return 0.1000.0.

Virtual LSNs

EA B C D

Client 1
0.0.0

Client 2
0.C00.0

Client 1
0.1000.0

Client 1
0.400.0

Client 2
0.0.0

0.0.0 0.C00.0 0.1000.0 0.1400.00.400.0Physical LSNs

FIGURE 11-16 CLFS virtual to physical LSN translation

918 Windows Internals, Fifth Edition

Management Policies

Each CLFS log can be defined by a set of management policies that are configurable by the

client. Table 11-4 lists these policies and their usage.

TABLE 11-4 CLFS Management Policies

Policy Name Description

ClfsMgmtPolicyMaximumSize Specifies the maximum size of a log.

ClfsMgmtPolicyMinimumSize Specifies the minimum size of a log.

ClfsMgmtPolicyNewContainerSize Specifies the size of new containers that are created.

ClfsMgmtPolicyGrowthRate Specifies how many new containers will be added to the log

each time the log grows. Can be specified as either a relative

percentage or an absolute number.

ClfsMgmtPolicyLogTail Specifies how much free space will be requested when a client

is notified to move its log tail. Can be specified as either a

minimum percentage of free space or a minimum number of

containers.

ClfsMgmtPolicyAutoShrink Specifies when the log will shrink based on the percentage of

the log that is free.

ClfsMgmtPolicyAutoGrow Specifies whether the log should grow when fewer than two

containers are free.

ClfsMgmtPolicyNewContainerPrefix Specifies a prefix for the file name of each container, as well as

the full path to the directory where the containers are located.

NTFS Design Goals and Features

In the following section, we’ll look at the requirements that drove the design of NTFS. Then in

the subsequent section, we’ll examine the advanced features of NTFS.

High-End File System Requirements

From the start, NTFS was designed to include features required of an enterprise-class file sys-

tem. To minimize data loss in the face of an unexpected system outage or crash, a file system

must ensure that the integrity of its metadata is guaranteed at all times; and to protect sensi-

tive data from unauthorized access, a file system must have an integrated security model.

Finally, a file system must allow for software-based data redundancy as a low-cost alternative

to hardware-redundant solutions for protecting user data. In this section, you’ll find out how

NTFS implements each of these capabilities.

Recoverability

To address the requirement for reliable data storage and data access, NTFS provides file

system recovery based on the concept of an atomic transaction. Atomic transactions are a

 Chapter 11 File Systems 919

technique for handling modifications to a database so that system failures don’t affect the

correctness or integrity of the database. The basic tenet of atomic transactions is that some

database operations, called transactions, are all-or-nothing propositions. (A transaction

is defined as an I/O operation that alters file system data or changes the volume’s direc-

tory structure.) The separate disk updates that make up the transaction must be executed

atomically—that is, once the transaction begins to execute, all its disk updates must be com-

pleted. If a system failure interrupts the transaction, the part that has been completed must

be undone, or rolled back. The rollback operation returns the database to a previously known

and consistent state, as if the transaction had never occurred.

NTFS uses atomic transactions to implement its file system recovery feature. If a program

initiates an I/O operation that alters the structure of an NTFS volume—that is, changes the

directory structure, extends a file, allocates space for a new file, and so on—NTFS treats that

operation as an atomic transaction. It guarantees that the transaction is either completed or,

if the system fails while executing the transaction, rolled back. The details of how NTFS does

this are explained in the section “NTFS Recovery Support” later in the chapter. In addition,

NTFS uses redundant storage for vital file system information so that if a sector on the disk

goes bad, NTFS can still access the volume’s critical file system data.

Security

Security in NTFS is derived directly from the Windows object model. Files and directories are

protected from being accessed by unauthorized users. (For more information on Windows

security, see Chapter 6.) An open file is implemented as a file object with a security descrip-

tor stored on disk as a part of the file. Before a process can open a handle to any object,

including a file object, the Windows security system verifies that the process has appropri-

ate authorization to do so. The security descriptor, combined with the requirement that a

user log on to the system and provide an identifying password, ensures that no process

can access a file unless given specific permission to do so by a system administrator or by

the file’s owner. (For more information about security descriptors, see the section “Security

Descriptors and Access Control” in Chapter 6, and for more details about file objects, see the

section “Opening Devices” in Chapter 7.)

Data Redundancy and Fault Tolerance

In addition to recoverability of file system data, some customers require that their own

data not be endangered by a power outage or catastrophic disk failure. The NTFS recovery

capabilities do ensure that the file system on a volume remains accessible, but they make no

guarantees for complete recovery of user files. Protection for applications that can’t risk los-

ing file data is provided through data redundancy.

Data redundancy for user files is implemented via the Windows layered driver model

(explained in Chapter 7), which provides fault-tolerant disk support. NTFS communicates

with a volume manager, which in turn communicates with a hard disk driver to write data to

920 Windows Internals, Fifth Edition

disk. A volume manager can mirror, or duplicate, data from one disk onto another disk so

that a redundant copy can always be retrieved. This support is commonly called RAID level
1. Volume managers also allow data to be written in stripes across three or more disks, using

the equivalent of one disk to maintain parity information. If the data on one disk is lost or

becomes inaccessible, the driver can reconstruct the disk’s contents by means of exclusive-

OR operations. This support is called RAID level 5. (See Chapter 8 for more information on

striped volumes, mirrored volumes, and RAID-5 volumes.)

Advanced Features of NTFS

In addition to NTFS being recoverable, secure, reliable, and efficient for mission-critical sys-

tems, it includes the following advanced features that allow it to support a broad range of

applications. Some of these features are exposed as APIs for applications to leverage, and

others are internal features:

Multiple data streams

Unicode-based names

General indexing facility

Dynamic bad-cluster remapping

Hard links

Symbolic (soft) links and junctions

Compression and sparse files

Change logging

Per-user volume quotas

Link tracking

Encryption

POSIX support

Defragmentation

Read-only support and dynamic partitioning

The following sections provide an overview of these features.

Multiple Data Streams

In NTFS, each unit of information associated with a file—including its name, its owner, its

time stamps, its contents, and so on—is implemented as a file attribute (NTFS object attri-

bute). Each attribute consists of a single stream—that is, a simple sequence of bytes. This

generic implementation makes it easy to add more attributes (and therefore more streams)

 Chapter 11 File Systems 921

to a file. Because a file’s data is “just another attribute” of the file and because new attributes

can be added, NTFS files (and file directories) can contain multiple data streams.

An NTFS file has one default data stream, which has no name. An application can create

additional, named data streams and access them by referring to their names. To avoid alter-

ing the Windows I/O APIs, which take a string as a file name argument, the name of the data

stream is specified by appending a colon (:) to the file name. Because the colon is a reserved

character, it can serve as a separator between the file name and the data stream name, as

illustrated in this example:

myfile.dat:stream2

Each stream has a separate allocation size (which defines how much disk space has been

reserved for it), actual size (which is how many bytes the caller has used), and valid data

length (which is how much of the stream has been initialized). In addition, each stream is

given a separate file lock that is used to lock byte ranges and to allow concurrent access.

One component in Windows that uses multiple data streams is the Attachment Execution

Service, which is invoked whenever the standard Windows API for saving Internet-based

attachments is used by applications such as Internet Explorer or Outlook. Depending on

which zone the file was downloaded from (such as the My Computer zone, the Intranet zone

or the Untrusted zone), Windows Explorer might warn the user that the file came from a pos-

sibly untrusted location or even completely block access to the file. For example, Figure 11-17

shows the dialog box that’s displayed when executing Process Explorer after it was down-

loaded from the Sysinternals site.

FIGURE 11-17 Security warning for files downloaded from the Internet

Other applications can use the multiple data stream feature as well. A backup utility, for

example, might use an extra data stream to store backup-specific time stamps on files. Or

an archival utility might implement hierarchical storage in which files that are older than a

certain date or that haven’t been accessed for a specified period of time are moved to tape.

922 Windows Internals, Fifth Edition

The utility could copy the file to tape, set the file’s default data stream to 0, and add a data

stream that specifies the name and location of the tape on which the file is stored.

EXPERIMENT: Looking at Streams

Most Windows applications aren’t designed to work with alternate named streams, but

both the echo and more commands are. Thus, a simple way to view streams in action

is to create a named stream using echo and then display it using more. The following

command sequence creates a file named test with a stream named stream:

C:\>echo hello > test:stream

C:\>more < test:stream

hello

C:\>

If you perform a directory listing, test’s file size doesn’t reflect the data stored in the

alternate stream because NTFS returns the size of only the unnamed data stream for

file query operations, including directory listings.

C:\>dir test

 Volume in drive C is WINDOWS

 Volume Serial Number is 3991-3040

 Directory of C:\

08/01/00 02:37p 0 test

 1 File(s) 0 bytes

 112,558,080 bytes free

You can determine what files and directories on your system have alternate data

streams with the Streams utility from Sysinternals (see the following output) or by using

the /r switch in the dir command.

C:\>streams test

Streams v1.56 - Enumerate alternate NTFS data streams

Copyright (C) 1999-2007 Mark Russinovich

Sysinternals - www.sysinternals.com

 C:\Temp\test:

 :stream:$DATA 8

Unicode-Based Names

Like Windows as a whole, NTFS is fully Unicode enabled, using Unicode characters to store

names of files, directories, and volumes. Unicode, a 16-bit character-coding scheme, allows

each character in each of the world’s major languages to be uniquely represented, which

aids in moving data easily from one country to another. Unicode is an improvement over the

 Chapter 11 File Systems 923

traditional representation of international characters—using a double-byte coding scheme

that stores some characters in 8 bits and others in 16 bits, a technique that requires loading

various code pages to establish the available characters. Because Unicode has a unique rep-

resentation for each character, it doesn’t depend on which code page is loaded. Each direc-

tory and file name in a path can be as many as 255 characters long and can contain Unicode

characters, embedded spaces, and multiple periods.

General Indexing Facility

The NTFS architecture is structured to allow indexing of file attributes on a disk volume.

This structure enables the file system to efficiently locate files that match certain criteria—

for example, all the files in a particular directory. The FAT file system indexes file names but

doesn’t sort them, making lookups in large directories slow.

Several NTFS features take advantage of general indexing, including consolidated security

descriptors, in which the security descriptors of a volume’s files and directories are stored in

a single internal stream, have duplicates removed, and are indexed using an internal security

identifier that NTFS defines. The use of indexing by these features is described in the section

“NTFS On-Disk Structure” later in this chapter.

Dynamic Bad-Cluster Remapping

Ordinarily, if a program tries to read data from a bad disk sector, the read operation fails

and the data in the allocated cluster becomes inaccessible. If the disk is formatted as a fault-

tolerant NTFS volume, however, the Windows fault-tolerant driver dynamically retrieves a

good copy of the data that was stored on the bad sector and then sends NTFS a warning that

the sector is bad. NTFS allocates a new cluster, replacing the cluster in which the bad sector

resides, and copies the data to the new cluster. It flags the bad cluster and no longer uses

it. This data recovery and dynamic bad-cluster remapping is an especially useful feature for

file servers and fault-tolerant systems or for any application that can’t afford to lose data. If

the volume manager isn’t loaded when a sector goes bad, NTFS still replaces the cluster and

doesn’t reuse it, but it can’t recover the data that was on the bad sector.

Hard Links

A hard link allows multiple paths to refer to the same file. (Hard links are not supported on

directories.) If you create a hard link named C:\Documents\Spec.doc that refers to the exist-

ing file C:\Users\Administrator\Documents\Spec.doc, the two paths link to the same on-disk

file and you can make changes to the file using either path. Processes can create hard links

with the Windows CreateHardLink function or the ln POSIX function.

NTFS implements hard links by keeping a reference count on the actual data, where each

time a hard link is created for the file, an additional file name reference is made to the data.

This means that if you have multiple hard links for a file, you can delete the original file name

924 Windows Internals, Fifth Edition

that referenced the data (C:\Users\Administrator\Documents\Spec.doc in our example), and

the other hard links (C:\Documents\Spec.doc) will remain and point to the data. However,

because hard links are on-disk local references to data (represented by file reference records),
they can exist only within the same volume and can’t span volumes or computers.

EXPERIMENT: Creating a Hard Link

There are two ways you can create a hard link: the fsutil hardlink create command or

the mklink utility with the /H option. In this experiment we’ll use mklink because we’ll

use this utility later to create a symbolic link as well. First, create a file called test.txt and

add some text to it, as shown here.

C:\>echo hello > test.txt

Now create a hard link called hard.txt as shown here:

C:\>mklink hard.txt test.txt /H

Hardlink created for hard.txt <<===>> test.txt

If you list the directory’s contents, you’ll notice that the two files will be identical in

every way, with the same creation date, permissions, and file size; only the file names

differ.

C:\>dir *.txt

 Volume in drive C is OS

 Volume Serial Number is 38D4-EA71

 Directory of C:\

10/18/2008 11:55 PM 8 hard.txt

10/18/2008 11:55 PM 8 test.txt

 2 File(s) 16 bytes

 0 Dir(s) 10,646,011,904 bytes free

Symbolic (Soft) Links and Junctions

In addition to hard links, NTFS supports another type of file-name aliasing called symbolic
links or soft links. Unlike hard links, symbolic links are strings that are interpreted dynamically

and can be relative or absolute paths that refer to locations on any storage device, includ-

ing ones on a different local volume or even a share on a different system. This means that

symbolic links don’t actually increase the reference count of the original file, so deleting the

original file will result in the loss of the data, and a symbolic link that points to a non-existing

file will be left behind. Finally, unlike hard links, symbolic links can point to directories, not

just files, which gives them an added advantage.

For example, if the path C:\Drivers is a directory symbolic link that redirects to

C:\%SystemRoot%\ System32\Drivers, an application reading C:\Drivers\Ntfs.sys actually reads

C:\%System Root%\ System\Drivers\Ntfs.sys. Directory symbolic links are a useful way to lift

 Chapter 11 File Systems 925

directories that are deep in a directory tree to a more convenient depth without disturbing

the original tree’s structure or contents. The example just cited lifts the Drivers directory to

the volume’s root directory, reducing the directory depth of Ntfs.sys from three levels to one

when Ntfs.sys is accessed through the directory symbolic link. File symbolic links work much

the same way—you can think of them as shortcuts, except they are actually implemented on

the file system instead of being .lnk files managed by Windows Explorer. Just like hard links,

symbolic links can be created with the mklink utility (without the /H option) or through the

CreateSymbolicLink API.

Because certain legacy applications might not behave securely in the presence of sym-

bolic links, especially across different machines, the creation of symbolic links requires the

SeCreateSymbolicLink privilege, which is typically granted only to administrators. The file

system also has a behavior option called SymLinkEvaluation that can be configured with the

following command:

fsutil behavior set SymLinkEvaluation

By default, the Windows default symbolic link evaluation policy allows only local-to-local and

local-to-remote symbolic links but not the opposite, as shown here:

C:\>fsutil behavior query SymLinkEvaluation

Local to local symbolic links are enabled

Local to remote symbolic links are enabled.

Remote to local symbolic links are disabled.

Remote to Remote symbolic links are disabled.

Symbolic links are based on an NTFS mechanism called reparse points. (Reparse points are

discussed further in the section “Reparse Points” later in this chapter.) A reparse point is a

file or directory that has a block of data called reparse data associated with it. Reparse data

is user-defined data about the file or directory, such as its state or location, that can be read

from the reparse point by the application that created the data, a file system filter driver, or

the I/O manager. When NTFS encounters a reparse point during a file or directory lookup,

it returns a reparse status code, which signals file system filter drivers that are attached to

the volume and the I/O manager to examine the reparse data. Each reparse point type has

a unique reparse tag. The reparse tag allows the component responsible for interpreting

the reparse point’s reparse data to recognize the reparse point without having to check the

reparse data. A reparse tag owner, either a file system filter driver or the I/O manager, can

choose one of the following options when it recognizes reparse data:

The reparse tag owner can manipulate the pathname specified in the file I/O operation

that crosses the reparse point and let the I/O operation reissue with the altered path-

name. Junctions (described shortly) take this approach to redirect a directory lookup,

for example.

The reparse tag owner can remove the reparse point from the file, alter the file in some

way, and then reissue the file I/O operation.

926 Windows Internals, Fifth Edition

There are no Windows functions for creating reparse points. Instead, processes must use the

FSCTL_SET_REPARSE_POINT file system control code with the Windows DeviceIoControl func-

tion. A process can query a reparse point’s contents with the FSCTL_GET_REPARSE_POINT

file system control code. The FILE_ATTRIBUTE_REPARSE_POINT flag is set in a reparse

point’s file attributes, so applications can check for reparse points by using the Windows

GetFileAttributes function.

Another type of reparse point that NTFS supports is the junction. Junctions are a legacy NTFS

concept and work almost identically to directory symbolic links, except they can only be local

to a volume. There is no advantage to using a junction instead of a directory symbolic link,

except that junctions are compatible with older versions of Windows, while directory sym-

bolic links are not.

EXPERIMENT: Creating a Symbolic Link

This experiment shows you the main difference between a symbolic link and a hard

link, even when dealing with files on the same volume. Create a symbolic link called

soft.txt as shown here, pointing to the test.txt file created in the previous experiment:

C:\>mklink soft.txt test.txt

symbolic link created for soft.txt <<===>> test.txt

If you list the directory’s contents, you’ll notice that the symbolic link doesn’t have a file

size and is identified by the <SYMLINK> type. Furthermore, you’ll note that the creation

time is that of the symbolic link, not of the target file. The symbolic link can also have

security permissions that are different from the permissions on the target file.

C:\>dir *.txt

 Volume in drive C is OS

 Volume Serial Number is 38D4-EA71

 Directory of C:\

10/18/2008 11:55 PM 8 hard.txt

10/19/2008 12:28 AM <SYMLINK> soft.txt [test.txt]

10/18/2008 11:55 PM 8 test.txt

 3 File(s) 16 bytes

 0 Dir(s) 10,636,480,512 bytes free

Finally, if you delete the original test.txt file, you can verify that both the hard link and

symbolic link still exist but that the symbolic link does not point to a valid file anymore,

while the hard link references the file data.

 Chapter 11 File Systems 927

Compression and Sparse Files

NTFS supports compression of file data. Because NTFS performs compression and decom-

pression procedures transparently, applications don’t have to be modified to take advantage

of this feature. Directories can also be compressed, which means that any files subsequently

created in the directory are compressed.

Applications compress and decompress files by passing DeviceIoControl the FSCTL_SET_

COMPRESSION file system control code. They query the compression state of a file or direc-

tory with the FSCTL_GET_COMPRESSION file system control code. A file or directory that is

compressed has the FILE_ATTRIBUTE_COMPRESSED flag set in its attributes, so applications

can also determine a file or directory’s compression state with GetFileAttributes.

A second type of compression is known as sparse files. If a file is marked as sparse, NTFS

doesn’t allocate space on a volume for portions of the file that an application designates as

empty. NTFS returns 0-filled buffers when an application reads from empty areas of a sparse

file. This type of compression can be useful for client/server applications that implement

circular-buffer logging, in which the server records information to a file and clients asynchro-

nously read the information. Because the information that the server writes isn’t needed after

a client has read it, there’s no need to store the information in the file. By making such a file

sparse, the client can specify the portions of the file it reads as empty, freeing up space on

the volume. The server can continue to append new information to the file without fear that

the file will grow to consume all available space on the volume.

As for compressed files, NTFS manages sparse files transparently. Applications specify

a file’s sparseness state by passing the FSCTL_SET_SPARSE file system control code to

DeviceIoControl. To set a range of a file to empty, applications use the FSCTL_SET_ZERO_

DATA code, and they can ask NTFS for a description of what parts of a file are sparse by using

the control code FSCTL_QUERY_ALLOCATED_RANGES. One application of sparse files is the

NTFS change journal, described next.

Change Logging

Many types of applications need to monitor volumes for file and directory changes. For

example, an automatic backup program might perform an initial full backup and then incre-

mental backups based on file changes. An obvious way for an application to monitor a vol-

ume for changes is for it to scan the volume, recording the state of files and directories, and

on a subsequent scan detect differences. This process can adversely affect system perfor-

mance, however, especially on computers with thousands or tens of thousands of files.

An alternate approach is for an application to register a directory notification by using the

FindFirstChangeNotification or ReadDirectoryChangesW Windows function. As an input

parameter, the application specifies the name of a directory it wants to monitor, and the

function returns whenever the contents of the directory change. Although this approach

928 Windows Internals, Fifth Edition

is more efficient than volume scanning, it requires the application to be running at all

times. Using these functions can also require an application to scan directories because

FindFirstChangeNotification doesn’t indicate what changed—just that something in the direc-

tory has changed. An application can pass a buffer to ReadDirectoryChangesW that the FSD

fills in with change records. If the buffer overflows, however, the application must be pre-

pared to fall back on scanning the directory.

NTFS provides a third approach that overcomes the drawbacks of the first two: an application

can configure the NTFS change journal facility by using the DeviceIoControl function’s FSCTL_

CREATE_USN_JOURNAL file system control code to have NTFS record information about file

and directory changes to an internal file called the change journal. A change journal is usually

large enough to virtually guarantee that applications get a chance to process changes with-

out missing any. Applications use the FSCTL_QUERY_USN_JOURNAL file system control code

to read records from a change journal, and they can specify that the DeviceIoControl function

not complete until new records are available.

Per-User Volume Quotas

Systems administrators often need to track or limit user disk space usage on shared storage

volumes, so NTFS includes quota-management support. NTFS quota-management support

allows for per-user specification of quota enforcement, which is useful for usage tracking and

tracking when a user reaches warning and limit thresholds. NTFS can be configured to log an

event indicating the occurrence to the System event log if a user surpasses his warning limit.

Similarly, if a user attempts to use more volume storage then her quota limit permits, NTFS

can log an event to the System event log and fail the application file I/O that would have

caused the quota violation with a “disk full” error code.

NTFS tracks a user’s volume usage by relying on the fact that it tags files and directories with

the security ID (SID) of the user who created them. (See Chapter 6 for a definition of SIDs.)

The logical sizes of files and directories a user owns count against the user’s administrator-

defined quota limit. Thus, a user can’t circumvent his or her quota limit by creating an empty

sparse file that is larger than the quota would allow and then fill the file with nonzero data.

Similarly, whereas a 50-KB file might compress to 10 KB, the full 50 KB is used for quota

accounting.

By default, volumes don’t have quota tracking enabled. You need to use the Quota tab of a

volume’s Properties dialog box, shown in Figure 11-18, to enable quotas, to specify default

warning and limit thresholds, and to configure the NTFS behavior that occurs when a user

hits the warning or limit threshold. The Quota Entries tool, which you can launch from this

dialog box, enables an administrator to specify different limits and behavior for each user.

Applications that want to interact with NTFS quota management use COM quota interfaces,

including IDiskQuotaControl, IDiskQuotaUser, and IDiskQuotaEvents.

 Chapter 11 File Systems 929

FIGURE 11-18 Volume Properties dialog box

Link Tracking

Shell shortcuts allow users to place files in their shell namespace (on their desktop, for exam-

ple) that link to files located in the file system namespace. The Windows Start menu uses shell

shortcuts extensively. Similarly, object linking and embedding (OLE) links allow documents

from one application to be transparently embedded in the documents of other applications.

The products of the Microsoft Office suite, including PowerPoint, Excel, and Word, use OLE

linking.

Although shell and OLE links provide an easy way to connect files with one another and with

the shell namespace, they can be difficult to manage if a user moves the source of a shell

or OLE link (a link source is the file or directory to which a link points). NTFS in Windows

includes support for a service application called distributed link-tracking, which maintains the

integrity of shell and OLE links when link targets move. Using the NTFS link-tracking support,

if a link target located on an NTFS volume moves to any other NTFS volume within the origi-

nating volume’s domain, the link-tracking service can transparently follow the movement and

update the link to reflect the change.

NTFS link-tracking support is based on an optional file attribute known as an object ID. An

application can assign an object ID to a file by using the FSCTL_CREATE_OR_GET_OBJECT_ID

(which assigns an ID if one isn’t already assigned) and FSCTL_SET_OBJECT_ID file system

930 Windows Internals, Fifth Edition

control codes. Object IDs are queried with the FSCTL_CREATE_OR_GET_OBJECT_ID and

FSCTL_GET_OBJECT_ID file system control codes. The FSCTL_DELETE_OBJECT_ID file system

control code lets applications delete object IDs from files.

Encryption

Corporate users often store sensitive information on their computers. Although data stored

on company servers is usually safely protected with proper network security settings and

physical access control, data stored on laptops can be exposed when a laptop is lost or sto-

len. NTFS file permissions don’t offer protection because NTFS volumes can be fully accessed

without regard to security by using NTFS file-reading software that doesn’t require Windows

to be running. Furthermore, NTFS file permissions are rendered useless when an alternate

Windows installation is used to access files from an administrator account. Recall from

Chapter 6 that the administrator account has the take-ownership and backup privileges, both

of which allow it to access any secured object by overriding the object’s security settings.

NTFS includes a facility called Encrypting File System (EFS), which users can use to encrypt

sensitive data. The operation of EFS, as that of file compression, is completely transparent

to applications, which means that file data is automatically decrypted when an application

running in the account of a user authorized to view the data reads it and is automatically

encrypted when an authorized application changes the data.

Note NTFS doesn’t permit the encryption of files located in the system volume’s root directory

or in the \Windows directory because many files in these locations are required during the boot

process and EFS isn’t active during the boot process. BitLocker, described in Chapter 6, is a tech-

nology much better suited for environments in which this is a requirement because it supports

full-volume encryption.

EFS relies on cryptographic services supplied by Windows in user mode, so it consists of both

a kernel-mode component that tightly integrates with NTFS as well as user-mode DLLs that

communicate with the Local Security Authority Subsystem (Lsass) and cryptographic DLLs.

Files that are encrypted can be accessed only by using the private key of an account’s EFS

private/public key pair, and private keys are locked using an account’s password. Thus, EFS-

encrypted files on lost or stolen laptops can’t be accessed using any means (other than a

brute-force cryptographic attack) without the password of an account that is authorized to

view the data.

Applications can use the EncryptFile and DecryptFile Windows API functions to encrypt and

decrypt files, and FileEncryptionStatus to retrieve a file or directory’s EFS-related attributes,

such as whether the file or directory is encrypted. A file or directory that is encrypted has the

FILE_ATTRIBUTE_ENCRYPTED flag set in its attributes, so applications can also determine a

file or directory’s encryption state with GetFileAttributes.

 Chapter 11 File Systems 931

POSIX Support

As explained in Chapter 2, one of the mandates for Windows was to fully support the POSIX

1003.1 standard. In the file system area, the POSIX standard requires support for case-

sensitive file and directory names, traversal permissions (where security for each directory

of a path is used when determining whether a user has access to a file or directory), a “file-

change-time” time stamp (which is different from the MS-DOS “time-last-modified” stamp),

and hard links. NTFS implements each of these features.

Defragmentation

Even though NTFS makes efforts to keep files contiguous, a volume’s files can still become

fragmented over time, especially when there is limited free space. A file is fragmented if its

data occupies discontiguous clusters. For example, Figure 11-19 shows a fragmented file

consisting of five fragments. However, like most file systems (including versions of FAT on

Windows), NTFS makes no special efforts to keep files contiguous, other than to reserve a

region of disk space known as the master file table (MFT) zone for the MFT. (NTFS lets other

files allocate from the MFT zone when volume free space runs low.) Keeping an area free for

the MFT can help it stay contiguous, but it, too, can become fragmented. (See the section

“Master File Table” later in this chapter for more information on MFTs.)

Fragmented file Contiguous file

FIGURE 11-19 Fragmented and contiguous files

To facilitate the development of third-party disk defragmentation tools, Windows includes a

defragmentation API that such tools can use to move file data so that files occupy contiguous

clusters. The API consists of file system controls that let applications obtain a map of a vol-

ume’s free and in-use clusters (FSCTL_GET_VOLUME_BITMAP), obtain a map of a file’s cluster

usage (FSCTL_GET_RETRIEVAL_POINTERS), and move a file (FSCTL_MOVE_FILE).

Windows includes a built-in defragmentation tool that is accessible by using the Disk

Defragmenter utility (\%SystemRoot%\System32\Dfrgui.exe), shown in Figure 11-20, as well

as a command-line interface, \%SystemRoot%\System32\Defrag.exe, that you can run inter-

actively or schedule but that does not produce detailed reports or offer control—such as

excluding files or directories—over the defragmentation process.

932 Windows Internals, Fifth Edition

FIGURE 11-20 Disk Defragmenter

The only limitation imposed by the defragmentation implementation in NTFS is that paging

files and NTFS log files cannot be defragmented.

Dynamic Partitioning

The NTFS driver allows users to dynamically resize any partition, including the system parti-

tion, either shrinking or expanding it (if enough space is available). Expanding a partition

is easy if enough space exists on the disk and is performed through the FSCTL_EXPAND_

VOLUME file system control code. Shrinking a partition is a more complicated process,

because it requires moving any file system data that is currently in the area to be thrown

away to the region that will still remain after the shrinking process (a mechanism similar to

defragmentation). Shrinking is implemented by two components: the shrinking engine and

the file system driver.

The shrinking engine is implemented in user mode. It communicates with NTFS to determine

the maximum number of reclaimable bytes—that is, how much data can be moved from

the region that will be resized into the region that will remain. The shrinking engine uses the

standard defragmentation mechanism shown earlier, which doesn’t support relocating page

file fragments that are in use or any other files that have been marked as unmovable with

the FSCTL_MARK_HANDLE file system control code (like the hibernation file). The master

file table backup and other NTFS metadata files (described later), including the change jour-

nal, also cannot be moved, which limits the minimum size of the shrunk volume and causes

wasted space.

The file system driver shrinking code is responsible for ensuring that the volume remains in

a consistent state throughout the shrinking process. To do so, it exposes an interface that

 Chapter 11 File Systems 933

uses three requests that describe the current operation, which are sent through the FSCTL_

SHRINK_VOLUME control code:

The ShrinkPrepare request, which must be issued before any other operation. This

request takes the desired size of the new volume in sectors and is used so that the file

system can block further allocations outside the new volume boundary. The prepare

request doesn’t verify whether the volume can actually be shrunk by the specified

amount, but it does make sure that the amount is numerically valid and that there

aren’t any other shrinking operations ongoing. Note that after a prepare operation, the

file handle to the volume becomes associated with the shrink request. If the file handle

is closed, the operation is assumed to be aborted.

The ShrinkCommit request, which the shrinking engine issues after a ShrinkPrepare

request. In this state, the file system attempts the removal of the requested num-

ber of clusters in the most recent prepare request. (If multiple prepare requests have

been sent with different sizes, the last one is the determining one.) The ShrinkCommit

request assumes that the shrinking engine has completed and will fail if any allocated

blocks remain in the area to be shrunk.

The ShrinkAbort request, which can be issued by the shrinking engine or caused by

events such as the closure of the file handle to the volume. This request undoes the

commit operation by returning the partition to its original size and allows new alloca-

tions outside the shrunk region to occur again. However, defragmentation changes

made by the shrinking engine remain.

If a system is rebooted during a shrinking operation, NTFS restores the file system to a con-

sistent state via its metadata recovery mechanism, explained later in the chapter. Because the

actual shrink operation isn’t executed until all other operations have been completed, the

volume retains its original size and only defragmentation operations that had already been

flushed out to disk persist.

Finally, shrinking a volume has several effects on the volume shadow copy mechanism (for

more information on VSS, see Chapter 8). Recall that the copy-on-write mechanism allows

VSS to simply retain parts of the file that were actually modified while still linking to the orig-

inal file data. For deleted files, this file data will not be associated with visible files but appear

as free space instead—free space that will likely be located in the area that is about to be

shrunk. The shrinking engine therefore communicates with VSS to engage it in the shrinking

process. In summary, the VSS mechanism’s job is to copy deleted file data into its differencing

area and to increase the differencing area as required to accommodate additional data. This

detail is important because it poses another constraint on the size to which even volumes

with ample free space can shrink.

934 Windows Internals, Fifth Edition

NTFS File System Driver

As described in Chapter 7, in the framework of the Windows I/O system, NTFS and other file

systems are loadable device drivers that run in kernel mode. They are invoked indirectly by

applications that use Windows or other I/O APIs (such as POSIX). As Figure 11-21 shows, the

Windows environment subsystems call Windows system services, which in turn locate the

appropriate loaded drivers and call them. (For a description of system service dispatching,

see the section “System Service Dispatching” in Chapter 3.)

Environment
subsystem

or DLL

User mode

Kernel mode

Kernel

Object
manager

Security
reference
monitor

Windows
executive

… Advanced
local

procedure
call

facility

Memory
manager

Windows system services

NTFS driver

Volume
manager

Disk driver

I/O manager

FIGURE 11-21 Components of the Windows I/O system

The layered drivers pass I/O requests to one another by calling the Windows executive’s I/O

manager. Relying on the I/O manager as an intermediary allows each driver to maintain inde-

pendence so that it can be loaded or unloaded without affecting other drivers. In addition,

the NTFS driver interacts with the three other Windows executive components, shown in the

left side of Figure 11-22, that are closely related to file systems.

The log file service (LFS) is the part of NTFS that provides services for maintaining a log of

disk writes. The log file that LFS writes is used to recover an NTFS-formatted volume in the

case of a system failure. (See the section “Log File Service (LFS)” later in the chapter.)

 Chapter 11 File Systems 935

Log file

service

Write the
cache

Cache

manager

Access the mapped
file or flush the cache

Memory

manager

Flush the
log file

Log the
transaction

Read/write the file

Load data
from disk

into
memory

Read/write a
mirrored or
striped volume

Read/write
the disk

Disk driver

Volume
manager

NTFS driver

I/O manager

FIGURE 11-22 NTFS and related components

The cache manager is the component of the Windows executive that provides systemwide

caching services for NTFS and other file system drivers, including network file system drivers

(servers and redirectors). All file systems implemented for Windows access cached files by

mapping them into system address space and then accessing the virtual memory. The cache

manager provides a specialized file system interface to the Windows memory manager for

this purpose. When a program tries to access a part of a file that isn’t loaded into the cache

(a cache miss), the memory manager calls NTFS to access the disk driver and obtain the file

contents from disk. The cache manager optimizes disk I/O by using its lazy writer threads to

call the memory manager to flush cache contents to disk as a background activity (asynchro-

nous disk writing). (For a complete description of the cache manager, see Chapter 10.)

NTFS participates in the Windows object model by implementing files as objects. This imple-

mentation allows files to be shared and protected by the object manager, the component of

Windows that manages all executive-level objects. (The object manager is described in the

section “Object Manager” in Chapter 3.)

An application creates and accesses files just as it does other Windows objects: by means of

object handles. By the time an I/O request reaches NTFS, the Windows object manager and

security system have already verified that the calling process has the authority to access the

file object in the way it is attempting to. The security system has compared the caller’s access

token to the entries in the access control list for the file object. (See Chapter 6 for more infor-

mation about access control lists.) The I/O manager has also transformed the file handle into

a pointer to a file object. NTFS uses the information in the file object to access the file on

disk.

936 Windows Internals, Fifth Edition

Figure 11-23 shows the data structures that link a file handle to the file system’s on-disk

structure.

FIGURE 11-23 NTFS data structures

NTFS follows several pointers to get from the file object to the location of the file on disk.

As Figure 11-23 shows, a file object, which represents a single call to the open-file system

service, points to a stream control block (SCB) for the file attribute that the caller is trying to

read or write. In Figure 11-23, a process has opened both the unnamed data attribute and a

named stream (alternate data attribute) for the file. The SCBs represent individual file attri-

butes and contain information about how to find specific attributes within a file. All the SCBs

for a file point to a common data structure called a file control block (FCB). The FCB contains

a pointer (actually, a file reference, explained in the section “File Reference Numbers” later in

this chapter) to the file’s record in the disk-based master file table (MFT), which is described

in detail in the following section.

 Chapter 11 File Systems 937

NTFS On-Disk Structure

This section describes the on-disk structure of an NTFS volume, including how disk space is

divided and organized into clusters, how files are organized into directories, how the actual

file data and attribute information is stored on disk, and finally, how NTFS data compression

works.

Volumes

The structure of NTFS begins with a volume. A volume corresponds to a logical partition on a

disk, and it is created when you format a disk or part of a disk for NTFS. You can also create a

RAID volume that spans multiple disks by using the Windows Disk Management MMC snap-

in or the diskpart command available from the Windows command prompt.

A disk can have one volume or several. NTFS handles each volume independently of the oth-

ers. Three sample disk configurations for a 150-MB hard disk are illustrated in Figure 11-24.

FIGURE 11-24 Sample disk configurations

A volume consists of a series of files plus any additional unallocated space remaining on the

disk partition. In the FAT file system, a volume also contains areas specially formatted for use

by the file system. An NTFS volume, however, stores all file system data, such as bitmaps and

directories, and even the system bootstrap, as ordinary files.

Note The on-disk format of NTFS volumes on Windows Vista and Windows Server 2008 is ver-

sion 3.1, the same as on Windows XP and Windows Server 2003. The version number of a volume

is stored in its $Volume metadata file.

Clusters

The cluster size on an NTFS volume, or the cluster factor, is established when a user formats

the volume with either the format command or the Disk Management MMC snap-in. The

default cluster factor varies with the size of the volume, but it is an integral number of physi-

cal sectors, always a power of 2 (1 sector, 2 sectors, 4 sectors, 8 sectors, and so on). The clus-

ter factor is expressed as the number of bytes in the cluster, such as 512 bytes, 1 KB, or 2 KB.

938 Windows Internals, Fifth Edition

Internally, NTFS refers only to clusters. (However, NTFS forms low-level volume I/O operations

such that clusters are sector-aligned and have a length that is a multiple of the sector size.)

NTFS uses the cluster as its unit of allocation to maintain its independence from physical sec-

tor sizes. This independence allows NTFS to efficiently support very large disks by using a

larger cluster factor or to support nonstandard disks that have a sector size other than 512

bytes. On a larger volume, use of a larger cluster factor can reduce fragmentation and speed

allocation, at a small cost in terms of wasted disk space. Both the format command available

from the command prompt and the Format menu option under the All Tasks option on the

Action menu in the Disk Management MMC snap-in choose a default cluster factor based on

the volume size, but you can override this size.

NTFS refers to physical locations on a disk by means of logical cluster numbers (LCNs). LCNs

are simply the numbering of all clusters from the beginning of the volume to the end. To

convert an LCN to a physical disk address, NTFS multiplies the LCN by the cluster factor to

get the physical byte offset on the volume, as the disk driver interface requires. NTFS refers

to the data within a file by means of virtual cluster numbers (VCNs). VCNs number the clusters

belonging to a particular file from 0 through m. VCNs aren’t necessarily physically contigu-

ous, however; they can be mapped to any number of LCNs on the volume.

Master File Table

In NTFS, all data stored on a volume is contained in files, including the data structures used

to locate and retrieve files, the bootstrap data, and the bitmap that records the allocation

state of the entire volume (the NTFS metadata). Storing everything in files allows the file

system to easily locate and maintain the data, and each separate file can be protected by a

security descriptor. In addition, if a particular part of the disk goes bad, NTFS can relocate the

metadata files to prevent the disk from becoming inaccessible.

The MFT is the heart of the NTFS volume structure. The MFT is implemented as an array of

file records. The size of each file record is fixed at 1 KB, regardless of cluster size. (The struc-

ture of a file record is described in the “File Records” section later in this chapter.) Logically,

the MFT contains one record for each file on the volume, including a record for the MFT

itself. In addition to the MFT, each NTFS volume includes a set of metadata files containing

the information that’s used to implement the file system structure. Each of these NTFS meta-

data files has a name that begins with a dollar sign ($), although the signs are hidden. For

example, the file name of the MFT is $MFT. The rest of the files on an NTFS volume are nor-

mal user files and directories, as shown in Figure 11-25.

Usually, each MFT record corresponds to a different file. If a file has a large number of attri-

butes or becomes highly fragmented, however, more than one record might be needed for

a single file. In such cases, the first MFT record, which stores the locations of the others, is

called the base file record.

 Chapter 11 File Systems 939

$MFT - MFT

$MFTMirr - MFT mirror

$LogFile - Log file

\ - Root directory

$Volume - Volume file

$AttrDef - Attribute definition table

Reserved for NTFS
metadata files

0

1

2

3

4

5

$BitMap - Volume cluster allocation file

$Boot - Boot sector

$BadClus - Bad-cluster file

$Extend - Extended metadata directory

$Secure - Security settings file

$UpCase - Uppercase character mapping

6

7

8

9

10

11

12

Unused

$Extend\$Quota - Quota information

$Extend\$ObjId - Distributed link tracking information

$Extend\$RmMetadata\$Repair - RM repair information

$Extend\$Reparse - Backreferences to reparse points

$Extend\$RmMetadata - RM metadata directory

23

24

25

26

27

28

$Extend\$RmMetadata\$TxfLog - TxF log directory

$Extend\$RmMetadata\$Txf - TxF metadata directory

$Extend\$RmMetadata\$TxfLog\$Tops - TOPS file

$Extend\$RmMetadata\$TxfLog\$TxfLog.blf - TxF BLF

User files and directories

29

30

31

32

33

Unused

FIGURE 11-25 File records for NTFS metadata files in the MFT

When it first accesses a volume, NTFS must mount it—that is, read metadata from the disk

and construct internal data structures so that it can process application file system accesses.

To mount the volume, NTFS looks in the boot sector to find the physical disk address of the

MFT. The MFT’s own file record is the first entry in the table; the second file record points to

a file located in the middle of the disk called the MFT mirror (file name $MFTMirr) that con-

tains a copy of the first few rows of the MFT. This partial copy of the MFT is used to locate

metadata files if part of the MFT file can’t be read for some reason.

Once NTFS finds the file record for the MFT, it obtains the VCN-to-LCN mapping information

in the file record’s data attribute and stores it in memory. Each run (runs are explained later

in this chapter in the section “Resident and Nonresident Attributes”) has a VCN-to-LCN map-

ping and a run length because that’s all the information necessary to locate an LCN for any

VCN. This mapping information tells NTFS where the runs composing the MFT are located

940 Windows Internals, Fifth Edition

on the disk. NTFS then processes the MFT records for several more metadata files and opens

the files. Next, NTFS performs its file system recovery operation (described in the section

“Recovery”), and finally, it opens its remaining metadata files. The volume is now ready for

user access.

Note For the sake of clarity, the text and diagrams in this chapter depict a run as including a

VCN, an LCN, and a run length. NTFS actually compresses this information on disk into an LCN/

next-VCN pair. Given a starting VCN, NTFS can determine the length of a run by subtracting the

starting VCN from the next VCN.

As the system runs, NTFS writes to another important metadata file, the log file (file name

$LogFile). NTFS uses the log file to record all operations that affect the NTFS volume struc-

ture, including file creation or any commands, such as copy, that alter the directory structure.

The log file is used to recover an NTFS volume after a system failure and is also described in

the “Recovery” section later in this chapter.

Another entry in the MFT is reserved for the root directory (also known as “\”). Its file record

contains an index of the files and directories stored in the root of the NTFS directory struc-

ture. When NTFS is first asked to open a file, it begins its search for the file in the root direc-

tory’s file record. After opening a file, NTFS stores the file’s MFT file reference so that it can

directly access the file’s MFT record when it reads and writes the file later.

NTFS records the allocation state of the volume in the bitmap file (file name $BitMap). The

data attribute for the bitmap file contains a bitmap, each of whose bits represents a cluster

on the volume, identifying whether the cluster is free or has been allocated to a file.

The security file (file name $Secure) stores the volume-wide security descriptor database.

NTFS files and directories have individually settable security descriptors, but to conserve

space, NTFS stores the settings in a common file, which allows files and directories that have

the same security settings to reference the same security descriptor. In most environments,

entire directory trees have the same security settings, so this optimization provides a signifi-

cant savings.

Another system file, the boot file (file name $Boot), stores the Windows bootstrap code. For

the system to boot, the bootstrap code must be located at a specific disk address. During

formatting, however, the format command defines this area as a file by creating a file record

for it. Creating the boot file allows NTFS to adhere to its rule of making everything on the

disk a file. The boot file as well as NTFS metadata files can be individually protected by

means of the security descriptors that are applied to all Windows objects. Using this “every-

thing on the disk is a file” model also means that the bootstrap can be modified by normal

file I/O, although the boot file is protected from editing.

NTFS also maintains a bad-cluster file (file name $BadClus) for recording any bad spots on

the disk volume and a file known as the volume file (file name $Volume), which contains the

volume name, the version of NTFS for which the volume is formatted, and a bit that when

 Chapter 11 File Systems 941

set signifies that a disk corruption has occurred and must be repaired by the Chkdsk utility.

(The Chkdsk utility is covered in more detail later in the chapter.) The uppercase file (file name

$UpCase) includes a translation table between lowercase and uppercase characters. NTFS

maintains a file containing an attribute definition table (file name $AttrDef) that defines the

attribute types supported on the volume and indicates whether they can be indexed, recov-

ered during a system recovery operation, and so on.

NTFS stores several metadata files in the extensions (directory name $Extend) metadata direc-

tory, including the object identifier file (file name $ObjId), the quota file (file name $Quota),

the change journal file (file name $UsnJrnl), the reparse point file (file name $Reparse), and the

default resource manager directory (directory name $RmMetadata). These files store informa-

tion related to optional features of NTFS. The object identifier file stores file object IDs, the

quota file stores quota limit and behavior information on volumes that have quotas enabled,

the change journal file records file and directory changes, and the reparse point file stores

information about which files and directories on the volume include reparse point data.

The default resource manager directory contains directories related to transactional NTFS

(TxF) support, including the transaction log directory (directory name $TxfLog), the transac-
tion isolation directory (directory name $Txf), and the transaction repair directory (file name

$Repair). The transaction log directory contains the TxF base log file (file name $TxfLog.blf)

and any number of log container files, depending on the size of the transaction log, but it

always contains at least two: one for the Kernel Transaction Manager (KTM) log stream (file

name $TxfLogContainer00000000000000000001), and one for the TxF log stream (file name

$TxfLogContainer00000000000000000002). The transaction log directory also contains the

TxF old page stream (file name $Tops), which we’ll describe later.

EXPERIMENT: Viewing NTFS Information

You can use the built-in Fsutil.exe command-line program to view information about an

NTFS volume, including the placement and size of the MFT and MFT zone:

C:\Users\Administrator>fsutil fsinfo ntfsinfo c:

NTFS Volume Serial Number : 0x9a38d50e38d4ea71

Version : 3.1

Number Sectors : 0x0000000015c82ff0

Total Clusters : 0x0000000002b905fe

Free Clusters : 0x000000000013c332

Total Reserved : 0x0000000000000780

Bytes Per Sector : 512

Bytes Per Cluster : 4096

Bytes Per FileRecord Segment : 1024

Clusters Per FileRecord Segment : 0

Mft Valid Data Length : 0x0000000023db0000

Mft Start Lcn : 0x00000000000c0000

Mft2 Start Lcn : 0x00000000016082ff

Mft Zone Start : 0x0000000002751f60

Mft Zone End : 0x000000000275cd60

RM Identifier: CF7234E7-39E3-11DC-BDCE-00188BDD5F49

942 Windows Internals, Fifth Edition

File Reference Numbers

A file on an NTFS volume is identified by a 64-bit value called a file reference. The file refer-

ence consists of a file number and a sequence number. The file number corresponds to the

position of the file’s file record in the MFT minus 1 (or to the position of the base file record

minus 1 if the file has more than one file record). The sequence number, which is incre-

mented each time an MFT file record position is reused, enables NTFS to perform internal

consistency checks. A file reference is illustrated in Figure 11-26.

FIGURE 11-26 File reference

File Records

Instead of viewing a file as just a repository for textual or binary data, NTFS stores files as a

collection of attribute/value pairs, one of which is the data it contains (called the unnamed
data attribute). Other attributes that comprise a file include the file name, time stamp infor-

mation, and possibly additional named data attributes. Figure 11-27 illustrates an MFT record

for a small file.

Master file table

Standard
information Filename

…

Data

FIGURE 11-27 MFT record for a small file

Each file attribute is stored as a separate stream of bytes within a file. Strictly speaking, NTFS

doesn’t read and write files—it reads and writes attribute streams. NTFS supplies these attri-

bute operations: create, delete, read (byte range), and write (byte range). The read and write

services normally operate on the file’s unnamed data attribute. However, a caller can specify

a different data attribute by using the named data stream syntax.

 Chapter 11 File Systems 943

Table 11-5 lists the attributes for files on an NTFS volume. (Not all attributes are present for

every file.)

TABLE 11-5 Attributes for NTFS Files

Attribute Attribute Type Name Description

Volume information $VOLUME_INFORMATION,

$VOLUME_NAME

These attributes are present only in

the $Volume metadata file. They store

volume version and label information.

Standard information $STANDARD_INFORMATION File attributes such as read-only, archive,

and so on; time stamps, including when

the file was created or last modified; and

how many directories point to the file (its

hard link count).

Filename $FILE_NAME The file’s name in Unicode characters. A

file can have multiple filename attributes,

as it does when a hard link to a file exists

or when a file with a long name has an

automatically generated “short name” for

access by MS-DOS and 16-bit Windows

applications.

Security descriptor $SECURITY_DESCRIPTOR This attribute is present for backward

compatibility with previous versions of

NTFS. The latest versions of NTFS store

all security descriptors in the $Secure

metadata file, sharing descriptors among

files and directories that have the same

settings. Previous versions of NTFS stored

private security descriptor information

with each file and directory.

Data $DATA The contents of the file. In NTFS, a file

has one default unnamed data attribute

and can have additional named data

attributes—that is, a file can have

multiple data streams. A directory has

no default data attribute but can have

optional named data attributes.

Index root, index

allocation, and index

bitmap

$INDEX_ROOT,

$INDEX_ALLOCATION,

$BITMAP

Three attributes used to implement file

name allocation and bitmap indexes for

large directories (directories only).

Attribute list $ATTRIBUTE_LIST A list of the attributes that make up the

file and the file reference of the MFT file

record in which each attribute is located.

This seldom-used attribute is present

when a file requires more than one MFT

file record.

944 Windows Internals, Fifth Edition

Attribute Attribute Type Name Description

Object ID $OBJECT_ID A 64-byte identifier for a file or directory,

with the lowest 16 bytes (128 bits) unique

to the volume. The link-tracking service

assigns object IDs to shell shortcut and

OLE link source files. NTFS provides

APIs so that files and directories can be

opened with their object ID rather than

their file name.

Reparse information $REPARSE_POINT This attribute stores a file’s reparse point

data. NTFS junctions and mount points

include this attribute.

Extended attributes $EA, $EA_INFORMATION Extended attributes aren’t actively

used but are provided for backward

compatibility with OS/2 applications.

Logged utility stream $LOGGED_UTILITY_STREAM EFS stores data in this attribute ($EFS)

that’s used to manage a file’s encryption,

such as the encrypted version of the key

needed to decrypt the file and a list of

users who are authorized to access the

file. When a file or directory becomes

part of a transaction, TxF also stores

transaction data in the $TXF_DATA

attribute, such as the file’s unique

transaction ID.

Table 11-5 shows attribute names; however, attributes actually correspond to numeric type

codes, which NTFS uses to order the attributes within a file record. The file attributes in an

MFT record are ordered by these type codes (numerically in ascending order), with some

attribute types appearing more than once—if a file has multiple data attributes, for example,

or multiple file names.

Each attribute in a file record is identified with its attribute type code and has a value and an

optional name. An attribute’s value is the byte stream composing the attribute. For example,

the value of the $FILE_NAME attribute is the file’s name; the value of the $DATA attribute is

whatever bytes the user stored in the file.

Most attributes never have names, although the index-related attributes and the $DATA

attribute often do. Names distinguish between multiple attributes of the same type that a

file can include. For example, a file that has a named data stream has two $DATA attributes:

an unnamed $DATA attribute storing the default unnamed data stream and a named $DATA

attribute having the name of the alternate stream and storing the named stream’s data.

 Chapter 11 File Systems 945

File Names

Both NTFS and FAT allow each file name in a path to be as many as 255 characters long. File

names can contain Unicode characters as well as multiple periods and embedded spaces.

However, the FAT file system supplied with MS-DOS is limited to 8 (non-Unicode) characters

for its file names, followed by a period and a 3-character extension. Figure 11-28 provides a

visual representation of the different file namespaces Windows supports and shows how they

intersect.

"TrailingDots..."
"SameNameDifferentCase"
"samenamedifferentcase"
"TrailingSpaces "

Examples

"LongFileName"
"UnicodeName. "
"File.Name.With.Dots"
"File.Name2.With.Dots"
"Name With Embedded Spaces"
".BeginningDot"

"EIGHTCHR.123"
"CASEBLND.TYP"

POSIX
subsystem

Windows
subsystem

MS-DOS–Windows
clients

FIGURE 11-28 Windows file namespaces

The POSIX subsystem requires the biggest namespace of all the application execution envi-

ronments that Windows supports, and therefore the NTFS namespace is equivalent to the

POSIX namespace. The POSIX subsystem can create names that aren’t visible to Windows and

MS-DOS applications, including names with trailing periods and trailing spaces. Ordinarily,

creating a file using the large POSIX namespace isn’t a problem because you would do that

only if you intended the POSIX subsystem or POSIX client systems to use that file.

The relationship between 32-bit Windows (Windows) applications and MS-DOS and 16-bit

Windows applications is a much closer one, however. The Windows area in Figure 11-28

represents file names that the Windows subsystem can create on an NTFS volume but that

MS-DOS and 16-bit Windows applications can’t see. This group includes file names longer

than the 8.3 format of MS-DOS names, those containing Unicode (international) characters,

those with multiple period characters or a beginning period, and those with embedded

spaces. When a file is created with such a name, NTFS automatically generates an alternate,

MS-DOS-style file name for the file. Windows displays these short names when you use the

/x option with the dir command.

946 Windows Internals, Fifth Edition

The MS-DOS file names are fully functional aliases for the NTFS files and are stored in the

same directory as the long file names. The MFT record for a file with an autogenerated

MS-DOS file name is shown in Figure 11-29.

Standard

information

NTFS

file name

MS-DOS

file name Data

New filename
attribute

FIGURE 11-29 MFT file record with an MS-DOS filename attribute

The NTFS name and the generated MS-DOS name are stored in the same file record and

therefore refer to the same file. The MS-DOS name can be used to open, read from, write

to, or copy the file. If a user renames the file using either the long file name or the short file

name, the new name replaces both the existing names. If the new name isn’t a valid MS-DOS

name, NTFS generates another MS-DOS name for the file (note that NTFS only generates

MS-DOS-style file names for the first file name).

Note Hard links are implemented in a similar way. When a hard link to a file is created, NTFS

adds another file name attribute to the file’s MFT file record. The two situations differ in one

regard, however. When a user deletes a file that has multiple names (hard links), the file record

and the file remain in place. The file and its record are deleted only when the last file name (hard

link) is deleted. If a file has both an NTFS name and an autogenerated MS-DOS name, however, a

user can delete the file using either name.

Here’s the algorithm NTFS uses (the algorithm is actually implemented in the kernel function

RtlGenerate8dot3Name and is also used by other drivers, such as CDFS, FAT, and third-party

file systems) to generate an MS-DOS name from a long file name:

 1. Remove from the long name any characters that are illegal in MS-DOS names, includ-

ing spaces and Unicode characters. Remove preceding and trailing periods. Remove all

other embedded periods, except the last one.

 2. Truncate the string before the period (if present) to six characters (it may already be six

or fewer because this algorithm is applied when any character that is illegal in MS-DOS

is present in the name); if it is two or fewer characters, generate and concatenate a

four-character hex checksum string. Append the string ~n (where n is a number, start-

ing with 1, that is used to distinguish different files that truncate to the same name).

Truncate the string after the period (if present) to three characters.

 3. Put the result in uppercase letters. MS-DOS is case-insensitive, and this step guarantees

that NTFS won’t generate a new name that differs from the old only in case.

 Chapter 11 File Systems 947

 4. If the generated name duplicates an existing name in the directory, increment the ~n

string. If n is greater than 4, and a checksum was not concatenated already, truncate

the string before the period to two characters and generate and concatenate a four-

character hex checksum string.

Table 11-6 shows the long Windows file names from Figure 11-28 and their NTFS-generated

MS-DOS versions. The current algorithm and the examples in Figure 11-28 should give you

an idea of what NTFS-generated MS-DOS-style file names look like.

Note Although not generally recommended because it can cause incompatibilities with appli-

cations that rely on them, you can disable short name generation by setting HKLM\SYSTEM\

CurrentControlSet\Control\FileSystem\NtfsDisable8dot3NameCreation in the registry to a

DWORD value of 1.

TABLE 11-6 NTFS-Generated File Names

Windows Long Name NTFS-Generated Short Name

LongFileName LONGFI~1

UnicodeName.ΦΔΠΛ UNICOD~1

File.Name.With.Dots FILENA~1.DOT

File.Name2.With.Dots FILENA~2.DOT

File.Name3.With.Dots FILENA~3.DOT

File.Name4.With.Dots FILENA~4.DOT

File.Name5.With.Dots FIF596~1.DOT

Name With Embedded Spaces NAMEWI~1

.BeginningDot BEGINN~1

25¢.two characters 255440~1.TWO

© 6E2D~1

Tunneling

NTFS uses the concept of tunneling to allow compatibility with older programs that

depend on the file system to cache certain file metadata for a period of time even after

the file is gone, such as when it has been deleted or renamed. With tunneling, any new

file created with the same name as the original file, and within a certain period of time,

will keep some of the same metadata. The idea is to replicate behavior expected by

MS-DOS programs when using the safe save programming method, in which modified

data is copied to a temporary file, the original file is deleted, and then the temporary

file is renamed to the original name. The expected behavior in this case is that the

renamed temporary file should appear to be the same as the original file, otherwise the

creation time would continuously update itself with each modification (which is how

the modified time is used).

948 Windows Internals, Fifth Edition

NTFS uses tunneling so that when a file name is removed from a directory, its long

name and short name, as well as its creation time, are saved into a cache. When a new

file is added to a directory, the cache is searched to see whether there is any tunneled

data to restore. Because these operations apply to directories, each directory instance

has its own cache, which is deleted if the directory is removed. NTFS will use tunnel-

ing for the following series of operations if the names used result in the deletion and

 re-creation of the same file name:

Delete + Create

Delete + Rename

Rename + Create

Rename + Rename

By default, NTFS keeps the tunneling cache for 15 seconds, although you can modify

this timeout by modifying the MaximumTunnelEntryAgeInSeconds value in the HKLM\

SYSTEM\CurrentControlSet\Control\FileSystem registry key. Tunneling can also be com-

pletely disabled by creating a new value called MaximumTunnelEntries and setting it to

0; however, this will cause older applications to break if they rely on the compatibility

behavior.

You can see tunneling in action with the following simple experiment in the command

prompt:

 1. Create a file called file1.

 2. Wait for more than 15 seconds (the default tunnel cache timeout).

 3. Create a file called file2.

 4. Perform a dir /TC. Note the creation times.

 5. Rename file1 to file.

 6. Rename file2 to file1.

 7. Perform a dir /TC. Note that the creation times are identical.

Resident and Nonresident Attributes

If a file is small, all its attributes and their values (its data, for example) fit in the file record.

When the value of an attribute is stored directly in the MFT, the attribute is called a resident
attribute. (In Figure 11-29, for example, all attributes are resident.) Several attributes are

defined as always being resident so that NTFS can locate nonresident attributes. The stan-

dard information and index root attributes are always resident, for example.

 Chapter 11 File Systems 949

Each attribute begins with a standard header containing information about the attribute,

information that NTFS uses to manage the attributes in a generic way. The header, which is

always resident, records whether the attribute’s value is resident or nonresident. For resident

attributes, the header also contains the offset from the header to the attribute’s value and

the length of the attribute’s value, as Figure 11-30 illustrates for the filename attribute.

Standard
information Filename Data

“RESIDENT”
Offset: 8h
Length: 14h

Attribute header

Attribute value

MYFILE.DAT

FIGURE 11-30 Resident attribute header and value

When an attribute’s value is stored directly in the MFT, the time it takes NTFS to access the

value is greatly reduced. Instead of looking up a file in a table and then reading a succes-

sion of allocation units to find the file’s data (as the FAT file system does, for example), NTFS

accesses the disk once and retrieves the data immediately.

The attributes for a small directory, as well as for a small file, can be resident in the MFT, as

Figure 11-31 shows. For a small directory, the index root attribute contains an index of file

references for the files and the subdirectories in the directory.

FIGURE 11-31 MFT file record for a small directory

Of course, many files and directories can’t be squeezed into a 1-KB, fixed-size MFT record.

If a particular attribute, such as a file’s data attribute, is too large to be contained in an MFT

file record, NTFS allocates clusters for the attribute’s data separate from the MFT. This area

is called a run (or an extent). If the attribute’s value later grows (if a user appends data to the

file, for example), NTFS allocates another run for the additional data. Attributes whose values

are stored in runs rather than in the MFT are called nonresident attributes. The file system

decides whether a particular attribute is resident or nonresident; the location of the data is

transparent to the process accessing it.

950 Windows Internals, Fifth Edition

When an attribute is nonresident, as the data attribute for a large file might be, its header

contains the information NTFS needs to locate the attribute’s value on the disk. Figure 11-32

shows a nonresident data attribute stored in two runs.

NTFS
extended
attributes

Standard
information Filename Data

Data Data

FIGURE 11-32 MFT file record for a large file with two data runs

Among the standard attributes, only those that can grow can be nonresident. For files, the

attributes that can grow are the data and the attribute list (not shown in Figure 11-32). The

standard information and filename attributes are always resident.

A large directory can also have nonresident attributes (or parts of attributes), as Figure 11-33

shows. In this example, the MFT file record doesn’t have enough room to store the index of

files that make up this large directory. A part of the index is stored in the index root attri-

bute, and the rest of the index is stored in nonresident runs called index buffers. The index

root, index allocation, and bitmap attributes are shown here in a simplified form. They are

described in more detail in the next section. The standard information and filename attri-

butes are always resident. The header and at least part of the value of the index root attri-

bute are also resident for directories.

Index
allocation Bitmap

Standard
information Filename Index root

Index buffers file1 file2 file3 file5 file6

Index of files

file4 file8

FIGURE 11-33 MFT file record for a large directory with a nonresident file name index

When a file’s (or a directory’s) attributes can’t fit in an MFT file record and separate alloca-

tions are needed, NTFS keeps track of the runs by means of VCN-to-LCN mapping pairs.

LCNs represent the sequence of clusters on an entire volume from 0 through n. VCNs number

the clusters belonging to a particular file from 0 through m. For example, the clusters in the

runs of a nonresident data attribute are numbered as shown in Figure 11-34.

 Chapter 11 File Systems 951

Standard
information

0 1 2 3

1355 1356 1357 1358

Filename Data

Data Data

File 16

4 5 6 7

1588 1589 1590 1591

VCN

LCN

FIGURE 11-34 VCNs for a nonresident data attribute

If this file had more than two runs, the numbering of the third run would start with VCN 8.

As Figure 11-35 shows, the data attribute header contains VCN-to-LCN mappings for the two

runs here, which allows NTFS to easily find the allocations on the disk.

Standard
information

0 1 2 3

1355 1356 1357 1358

Filename Data

Data Data

File 16

4 5 6 7

1588 1589 1590 1591

VCN

LCN

1355

1588

4

4

0

4

Starting
VCN

Starting
LCN

Number of
clusters

FIGURE 11-35 VCN-to-LCN mappings for a nonresident data attribute

Although Figure 11-34 shows just data runs, other attributes can be stored in runs if there

isn’t enough room in the MFT file record to contain them. And if a particular file has too

many attributes to fit in the MFT record, a second MFT record is used to contain the addi-

tional attributes (or attribute headers for nonresident attributes). In this case, an attribute

called the attribute list is added. The attribute list attribute contains the name and type code

of each of the file’s attributes and the file reference of the MFT record where the attribute

is located. The attribute list attribute is provided for those cases in which a file grows so

large or so fragmented that a single MFT record can’t contain the multitude of VCN-to-

LCN mappings needed to find all its runs. Files with more than 200 runs typically require an

attribute list.

Data Compression and Sparse Files

NTFS supports compression on a per-file, per-directory, or per-volume basis. (NTFS com-

pression is performed only on user data, not file system metadata.) You can tell whether a

volume is compressed by using the Windows GetVolumeInformation function. To retrieve the

952 Windows Internals, Fifth Edition

actual compressed size of a file, use the Windows GetCompressedFileSize function. Finally,

to examine or change the compression setting for a file or directory, use the Windows

DeviceIoControl function. (See the FSCTL_GET_COMPRESSION and FSCTL_SET_COMPRESSION

file system control codes.) Keep in mind that although setting a file’s compression state com-

presses (or decompresses) the file right away, setting a directory’s or volume’s compression

state doesn’t cause any immediate compression or decompression. Instead, setting a direc-

tory’s or volume’s compression state sets a default compression state that will be given to all

newly created files and subdirectories within that directory or volume.

The following section introduces NTFS compression by examining the simple case of com-

pressing sparse data. The subsequent sections extend the discussion to the compression of

ordinary files and sparse files.

Compressing Sparse Data

Sparse data is often large but contains only a small amount of nonzero data relative to its

size. A sparse matrix is one example of sparse data. As described earlier, NTFS uses VCNs,

from 0 through m, to enumerate the clusters of a file. Each VCN maps to a corresponding

LCN, which identifies the disk location of the cluster. Figure 11-36 illustrates the runs (disk

allocations) of a normal, noncompressed file, including its VCNs and the LCNs they map to.

0 1 2 3

1355 1356 1357 1358

Data Data

4 5 6 7

1588 1589 1590 1591

Data

8 9 10 11

2033 2034 2035 2036

FIGURE 11-36 Runs of a noncompressed file

This file is stored in 3 runs, each of which is 4 clusters long, for a total of 12 clusters. Figure

11-37 shows the MFT record for this file. As described earlier, to save space the MFT record’s

data attribute, which contains VCN-to-LCN mappings, records only one mapping for each

run, rather than one for each cluster. Notice, however, that each VCN from 0 through 11 has

a corresponding LCN associated with it. The first entry starts at VCN 0 and covers 4 clusters,

the second entry starts at VCN 4 and covers 4 clusters, and so on. This entry format is typical

for a noncompressed file.

1355

1588

4

4

0

2033 48

4

Starting
VCN

Starting
LCN

Number of
clusters

FIGURE 11-37 MFT record for a noncompressed file

 Chapter 11 File Systems 953

When a user selects a file on an NTFS volume for compression, one NTFS compression tech-

nique is to remove long strings of zeros from the file. If the file’s data is sparse, it typically

shrinks to occupy a fraction of the disk space it would otherwise require. On subsequent

writes to the file, NTFS allocates space only for runs that contain nonzero data.

Figure 11-38 depicts the runs of a compressed file containing sparse data. Notice that certain

ranges of the file’s VCNs (16–31 and 64–127) have no disk allocations.

0 15

133

Data

Data

Data

Data

134 135 136 137 138 139 140 141 142 143 144 145 146 147 148

32 47

193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208

48 63

96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111

128 143

324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339

FIGURE 11-38 Runs of a compressed file containing sparse data

The MFT record for this compressed file omits blocks of VCNs that contain zeros and there-

fore have no physical storage allocated to them. The first data entry in Figure 11-39, for

example, starts at VCN 0 and covers 16 clusters. The second entry jumps to VCN 32 and cov-

ers 16 clusters.

133

193

16

16

0

96 1648

32

Starting
VCN

Starting
LCN

Number of
clusters

324 16128

FIGURE 11-39 MFT record for a compressed file containing sparse data

When a program reads data from a compressed file, NTFS checks the MFT record to deter-

mine whether a VCN-to-LCN mapping covers the location being read. If the program is

954 Windows Internals, Fifth Edition

reading from an unallocated “hole” in the file, it means that the data in that part of the file

consists of zeros, so NTFS returns zeros without accessing the disk. If a program writes non-

zero data to a “hole,” NTFS quietly allocates disk space and then writes the data. This tech-

nique is very efficient for sparse file data that contains a lot of zero data.

Compressing Nonsparse Data

The preceding example of compressing a sparse file is somewhat contrived. It describes

“compression” for a case in which whole sections of a file were filled with zeros but the

remaining data in the file wasn’t affected by the compression. The data in most files isn’t

sparse, but it can still be compressed by the application of a compression algorithm.

In NTFS, users can specify compression for individual files or for all the files in a directory.

(New files created in a directory marked for compressed are automatically compressed—

existing files must be compressed individually.) When it compresses a file, NTFS divides the

file’s unprocessed data into compression units 16 clusters long (equal to 8 KB for a 512-byte

cluster, for example). Certain sequences of data in a file might not compress much, if at all; so

for each compression unit in the file, NTFS determines whether compressing the unit will save

at least 1 cluster of storage. If compressing the unit won’t free up at least 1 cluster, NTFS allo-

cates a 16-cluster run and writes the data in that unit to disk without compressing it. If the

data in a 16-cluster unit will compress to 15 or fewer clusters, NTFS allocates only the number

of clusters needed to contain the compressed data and then writes it to disk. Figure 11-40

illustrates the compression of a file with four runs. The unshaded areas in this figure repre-

sent the actual storage locations that the file occupies after compression. The first, second,

and fourth runs were compressed; the third run wasn’t. Even with one noncompressed run,

compressing this file saved 26 clusters of disk space, or 41 percent.

0 15

19 20 21 22

16 31

23 24 25 26 27 28 29 30

32 47

11297 98 99 100 101 102 103 104 105 106 107 108 109 110 111

48 63

113 114 115 116 117 118 119 120 121 122

Noncompressed data

Compressed dataCompressed data

Compressed dataCompressed data

Compressed dataCompressed data

FIGURE 11-40 Data runs of a compressed file

 Chapter 11 File Systems 955

Note Although the diagrams in this chapter show contiguous LCNs, a compression unit need

not be stored in physically contiguous clusters. Runs that occupy noncontiguous clusters produce

slightly more complicated MFT records than the one shown in Figure 11-40.

When it writes data to a compressed file, NTFS ensures that each run begins on a virtual

16-cluster boundary. Thus the starting VCN of each run is a multiple of 16, and the runs

are no longer than 16 clusters. NTFS reads and writes at least one compression unit at a

time when it accesses compressed files. When it writes compressed data, however, NTFS

tries to store compression units in physically contiguous locations so that it can read them

all in a single I/O operation. The 16-cluster size of the NTFS compression unit was chosen

to reduce internal fragmentation: the larger the compression unit, the less the overall disk

space needed to store the data. This 16-cluster compression unit size represents a trade-off

between producing smaller compressed files and slowing read operations for programs that

randomly access files. The equivalent of 16 clusters must be decompressed for each cache

miss. (A cache miss is more likely to occur during random file access.) Figure 11-41 shows the

MFT record for the compressed file shown in Figure 11-40.

19

23

4

8

0

97 1632

16

Starting
VCN

Starting
LCN

Number of
clusters

113 1048

FIGURE 11-41 MFT record for a compressed file

One difference between this compressed file and the earlier example of a compressed

file containing sparse data is that three of the compressed runs in this file are less than 16

clusters long. Reading this information from a file’s MFT file record enables NTFS to know

whether data in the file is compressed. Any run shorter than 16 clusters contains com-

pressed data that NTFS must decompress when it first reads the data into the cache. A run

that is exactly 16 clusters long doesn’t contain compressed data and therefore requires no

decompression.

If the data in a run has been compressed, NTFS decompresses the data into a scratch buf-

fer and then copies it to the caller’s buffer. NTFS also loads the decompressed data into the

cache, which makes subsequent reads from the same run as fast as any other cached read.

NTFS writes any updates to the file to the cache, leaving the lazy writer to compress and

write the modified data to disk asynchronously. This strategy ensures that writing to a com-

pressed file produces no more significant delay than writing to a noncompressed file would.

956 Windows Internals, Fifth Edition

NTFS keeps disk allocations for a compressed file contiguous whenever possible. As the

LCNs indicate, the first two runs of the compressed file shown in Figure 11-39 are physically

contiguous, as are the last two. When two or more runs are contiguous, NTFS performs disk

read-ahead, as it does with the data in other files. Because the reading and decompression of

contiguous file data take place asynchronously before the program requests the data, subse-

quent read operations obtain the data directly from the cache, which greatly enhances read

performance.

Sparse Files

Sparse files (the NTFS file type, as opposed to files that consist of sparse data, described ear-

lier) are essentially compressed files for which NTFS doesn’t apply compression to the file’s

nonsparse data. However, NTFS manages the run data of a sparse file’s MFT record the same

way it does for compressed files that consist of sparse and nonsparse data.

The Change Journal File

The change journal file, \$Extend\$UsnJrnl, is a sparse file in which NTFS stores records of

changes to files and directories. Applications like the Windows File Replication Service (FRS)

and the Windows Search service make use of the journal to respond to file and directory

changes as they occur.

The journal stores change entries in the $J data stream and the maximum size of the journal

in the $Max data stream. Entries are versioned and include the following information about a

file or directory change:

The time of the change

The reason for the change (see Table 11-7)

The file or directory’s attributes

The file or directory’s name

The file or directory’s file reference number

The file reference number of the file’s parent directory

The security ID

The update sequence number (USN) of the record

 Chapter 11 File Systems 957

TABLE 11-7 Change Journal Change Reasons

Identifier Reason

USN_REASON_DATA_OVERWRITE The data in the file or directory was overwritten

USN_REASON_DATA_EXTEND Data was added to the file or directory

USN_REASON_DATA_TRUNCATION The data in the file or directory was truncated

USN_REASON_NAMED_DATA_OVERWRITE The data in a file’s data stream was overwritten

USN_REASON_NAMED_DATA_EXTEND The data in a file’s data stream was extended

USN_REASON_NAMED_DATA_TRUNCATION The data in a file’s data stream was truncated

USN_REASON_FILE_CREATE A new file or directory was created

USN_REASON_FILE_DELETE A file or directory was deleted

USN_REASON_EA_CHANGE The extended attributes for a file or directory

changed

USN_REASON_SECURITY_CHANGE The security descriptor for a file or directory was

changed

USN_REASON_RENAME_OLD_NAME A file or directory was renamed; this is the old

name

USN_REASON_RENAME_NEW_NAME A file or directory was renamed; this is the new

name

USN_REASON_INDEXABLE_CHANGE The indexing state for the file or directory was

changed (whether or not the Indexing service will

process this file or directory)

USN_REASON_BASIC_INFO_CHANGE The file or directory attributes and/or the time

stamps were changed

USN_REASON_HARD_LINK_CHANGE A hard link was added or removed from the file or

directory

USN_REASON_COMPRESSION_CHANGE The compression state for the file or directory was

changed

USN_REASON_ENCRYPTION_CHANGE The encryption state (EFS) was enabled or disabled

for this file or directory

USN_REASON_OBJECT_ID_CHANGE The object ID for this file or directory was changed

USN_REASON_REPARSE_POINT_CHANGE The reparse point for a file or directory was

changed, or a new reparse point (such as a

symbolic link) was added or deleted from a file or

directory

USN_REASON_STREAM_CHANGE A new data stream was added to or removed from

a file or renamed

USN_REASON_TRANSACTED_CHANGE This value is added (ORed) to the change reason to

indicate that the change was the result of a recent

commit of a TxF transaction

USN_REASON_CLOSE The handle to a file or directory was closed,

indicating that this is the final modification made

to the file in this series of operations

958 Windows Internals, Fifth Edition

EXPERIMENT: Reading the Change Journal

You can use the Usndump.exe command-line program from Winsider Seminars &

Solutions (www.winsiderss.com/tools/usndump/usndump.htm) to dump the contents of

the change journal if the current volume has one. You can also create, delete, or query

journal information with the built-in Fsutil.exe utility, as shown here:

C:\>fsutil usn queryjournal c:

Usn Journal ID : 0x01c89ddaec1b9648

First Usn : 0x0000000038140000

Next Usn : 0x000000003a22fa50

Lowest Valid Usn : 0x0000000000000000

Max Usn : 0x00000fffffff0000

Maximum Size : 0x0000000002000000

Allocation Delta : 0x0000000000400000

The output indicates the maximum size of the change journal on the volume and its

current state. As a simple experiment to see how NTFS records changes in the journal,

create a file called Usn.txt in the current directory, rename it to UsnNew.txt, and then

dump the journal with Usndump, as shown here:

C:\>echo hello > Usn.txt

C:\>ren Usn.txt UsnNew.txt

C:\>Usndump.exe

...

File Ref# : 0x00670000000006BF

ParentFile Ref# : 0x0005000000000005

Usn : 0x0000000000000000

SecurityId : 0x00000000

Reason : 0x00000100 (USN_REASON_FILE_CREATE)

Name (014) : usn.txt

File Ref# : 0x00670000000006BF

ParentFile Ref# : 0x0005000000000005

Usn : 0x0000000000000050

SecurityId : 0x00000000

Reason : 0x00000102 (USN_REASON_FILE_CREATE | USN_REASON_DATA_EXTEND)

Name (014) : usn.txt

File Ref# : 0x00670000000006BF

ParentFile Ref# : 0x0005000000000005

Usn : 0x00000000000000A0

SecurityId : 0x00000000

Reason : 0x80000102 (USN_REASON_FILE_CREATE | USN_REASON_DATA_EXTEND)

Name (014) : usn.txt

File Ref# : 0x00670000000006BF

ParentFile Ref# : 0x0005000000000005

Usn : 0x0000000000000138

SecurityId : 0x00000000

Reason : 0x00001000 (USN_REASON_RENAME_OLD_NAME)

Name (014) : usn.txt

 Chapter 11 File Systems 959

File Ref# : 0x00670000000006BF

ParentFile Ref# : 0x0005000000000005

Usn : 0x0000000000000188

SecurityId : 0x00000000

Reason : 0x00002000 (USN_REASON_RENAME_NEW_NAME)

Name (020) : UsnNew.txt

File Ref# : 0x00670000000006BF

ParentFile Ref# : 0x0005000000000005

Usn : 0x00000000000001D8

SecurityId : 0x00000000

Reason : 0x80002000 (USN_REASON_CLOSE | USN_REASON_RENAME_NEW_NAME)

Name (020) : UsnNew.txt

The entries reflect the individual modification operations involved in the operations

underlying the command-line operations.

The journal is sparse so that it never overflows; when the journal’s on-disk size exceeds the

maximum defined for the file, NTFS simply begins zeroing the file data that precedes the

window of change information having a size equal to the maximum journal size, as shown in

Figure 11-42. To prevent constant resizing when an application is continuously exceeding the

journal’s size, NTFS shrinks the journal only when its size is twice an application-defined value

over the maximum configured size.

File name
Type of change
Time of change
File MFT entry number
…

$J Alternate stream

Virtual size of $UsnJrnl:$J

Physical size of $UsnJrnl:$J

Change Entry

Empty

…

FIGURE 11-42 Change journal ($UsnJrnl) space allocation

960 Windows Internals, Fifth Edition

Indexing

In NTFS, a file directory is simply an index of file names—that is, a collection of file names

(along with their file references) organized in a particular way for quick access. To create a

directory, NTFS indexes the filename attributes of the files in the directory. The MFT record

for the root directory of a volume is shown in Figure 11-43.

0 1 2 3

1355 1356 1357 1358

file0 file11 file12 file13 file14file1 file3

File 5

8 9 10 11

2033 2034 2035 2036

VCN

LCN

VCN

LCN

4 5 6 7

1588 1589 1590 1591

VCN

LCN

Standard
information Filename Index root

Index
allocation Bitmap

Index of files

file4 file10 file15
"\" VCN-to-LCN

mappings

file6 file8 file9

FIGURE 11-43 File name index for a volume’s root directory

Conceptually, an MFT entry for a directory contains in its index root attribute a sorted list of

the files in the directory. For large directories, however, the file names are actually stored in

4-KB, fixed-size index buffers that contain and organize the file names. Index buffers imple-

ment a b-tree data structure, which minimizes the number of disk accesses needed to find a

particular file, especially for large directories. The index root attribute contains the first level

of the b-tree (root subdirectories) and points to index buffers containing the next level (more

subdirectories, perhaps, or files).

Figure 11-43 shows only file names in the index root attribute and the index buffers (file6, for

example), but each entry in an index also contains the file reference in the MFT where the file

is described and time stamp and file size information for the file. NTFS duplicates the time

stamp and file size information from the file’s MFT record. This technique, which is used by

FAT and NTFS, requires updated information to be written in two places. Even so, it’s a signifi-

cant speed optimization for directory browsing because it enables the file system to display

each file’s time stamps and size without opening every file in the directory.

 Chapter 11 File Systems 961

The index allocation attribute maps the VCNs of the index buffer runs to the LCNs that

indicate where the index buffers reside on the disk, and the bitmap attribute keeps track of

which VCNs in the index buffers are in use and which are free. Figure 11-43 shows one file

entry per VCN (that is, per cluster), but file name entries are actually packed into each cluster.

Each 4-KB index buffer can contain about 20 to 30 file name entries.

The b-tree data structure is a type of balanced tree that is ideal for organizing sorted data

stored on a disk because it minimizes the number of disk accesses needed to find an entry.

In the MFT, a directory’s index root attribute contains several file names that act as indexes

into the second level of the b-tree. Each file name in the index root attribute has an optional

pointer associated with it that points to an index buffer. The index buffer it points to contains

file names with lexicographic values less than its own. In Figure 11-43, for example, file4 is a

first-level entry in the b-tree. It points to an index buffer containing file names that are (lexi-

cographically) less than itself—the file names file0, file1, and file3. Note that the names file1,

file3, and so on that are used in this example are not literal file names but names intended to

show the relative placement of files that are lexicographically ordered according to the dis-

played sequence.

Storing the file names in b-trees provides several benefits. Directory lookups are fast because

the file names are stored in a sorted order. And when higher-level software enumerates the

files in a directory, NTFS returns already-sorted names. Finally, because b-trees tend to grow

wide rather than deep, NTFS’s fast lookup times don’t degrade as directories grow.

NTFS also provides general support for indexing data besides file names, and several NTFS

features—including object IDs, quota tracking, and consolidated security—use indexing to

manage internal data.

Object IDs

In addition to storing the object ID assigned to a file or directory in the $OBJECT_ID attri-

bute of its MFT record, NTFS also keeps the correspondence between object IDs and their

file reference numbers in the $O index of the \$Extend\$ObjId metadata file. The index col-

lates entries by object ID, making it easy for NTFS to quickly locate a file based on its ID. This

feature allows applications, using undocumented native API functionality, to open a file or

directory using its object ID. Figure 11-44 demonstrates the correspondence of the $ObjId

metadata file and $OBJECT_ID attributes in MFT records.

962 Windows Internals, Fifth Edition

ID passed when an
application opens a

file using its object ID

$O index

$ObjId metadata file MFT entry

MFT

Object ID 0

MFT entry number
optional application data

MFT entry number
optional application data

Object ID 1

Object ID 2

MFT entry number
optional application data

Standard
information

$O index
root

$O index
allocationFilename

File 3 $OBJECT_ID

File 1 $OBJECT_ID

File 2 $OBJECT_ID
…

FIGURE 11-44 $ObjId and $OBJECT_ID relationships

Quota Tracking

NTFS stores quota information in the \$Extend\$Quota metadata file, which consists of

the indexes $O and $Q. Figure 11-45 shows the organization of these indexes. Just as NTFS

assigns each security descriptor a unique internal security ID, NTFS assigns each user a unique

user ID. When an administrator defines quota information for a user, NTFS allocates a user ID

that corresponds to the user’s SID. In the $O index, NTFS creates an entry that maps an SID to

a user ID and sorts the index by user ID; in the $Q index, NTFS creates a quota control entry.

A quota control entry contains the value of the user’s quota limits, as well as the amount of

disk space the user consumes on the volume.

SID taken from
application when a file
or directory is created

$O index

SID 0

User ID 0

SID 1

User ID 1

SID 2

User ID 2

User ID taken from a file’s
$STANDARD_INFORMATION

attribute during a file operation

$Q index

User ID 0

Quota entry for user 0

User ID 1

Quota entry for user 1

User ID 2

Quota entry for user 2

FIGURE 11-45 $Quota indexing

 Chapter 11 File Systems 963

When an application creates a file or directory, NTFS obtains the application user’s SID and

looks up the associated user ID in the $O index. NTFS records the user ID in the new file or

directory’s $STANDARD_INFORMATION attribute, which counts all disk space allocated to

the file or directory against that user’s quota. Then NTFS looks up the quota entry in the $Q

index and determines whether the new allocation causes the user to exceed his or her warn-

ing or limit threshold. When a new allocation causes the user to exceed a threshold, NTFS

takes appropriate steps, such as logging an event to the System event log or not letting the

user create the file or directory. As a file or directory changes size, NTFS updates the quota

control entry associated with the user ID stored in the $STANDARD_INFORMATION attribute.

NTFS uses general indexing to efficiently correlate user IDs with account SIDs, and, given a

user ID, to efficiently look up a user’s quota control information.

Consolidated Security

NTFS has always supported security, which lets an administrator specify which users can

and can’t access individual files and directories. NTFS optimizes disk utilization for security

descriptors by using a central metadata file named $Secure to store only one instance of

each security descriptor on a volume.

The $Secure file contains two index attributes—$SDH and $SII—and a data-stream attribute

named $SDS, as Figure 11-46 shows. NTFS assigns every unique security descriptor on a vol-

ume an internal NTFS security ID (not to be confused with an SID, which uniquely identifies

computers and user accounts) and hashes the security descriptor according to a simple hash

algorithm. A hash is a potentially nonunique shorthand representation of a descriptor. Entries

in the $SDH index map the security descriptor hashes to the security descriptor’s storage

location within the $SDS data attribute, and the $SII index entries map NTFS security IDs to

the security descriptor’s location in the $SDS data attribute.

When you apply a security descriptor to a file or directory, NTFS obtains a hash of the

descriptor and looks through the $SDH index for a match. NTFS sorts the $SDH index entries

according to the hash of their corresponding security descriptor and stores the entries in a

b-tree. If NTFS finds a match for the descriptor in the $SDH index, NTFS locates the offset of

the entry’s security descriptor from the entry’s offset value and reads the security descrip-

tor from the $SDS attribute. If the hashes match but the security descriptors don’t, NTFS

looks for another matching entry in the $SDH index. When NTFS finds a precise match, the

file or directory to which you’re applying the security descriptor can reference the existing

security descriptor in the $SDS attribute. NTFS makes the reference by reading the NTFS

security identifier from the $SDH entry and storing it in the file or directory’s $STANDARD_

INFORMATION attribute. The NTFS $STANDARD_INFORMATION attribute, which all files and

directories have, stores basic information about a file, including its attributes, time stamp

information, and security identifier.

964 Windows Internals, Fifth Edition

Hash of a security
descriptor when a security

setting is applied to a
file or directory

$SDH index

Hash 1

$SDS offset

Hash 2

$SDS offset

Hash 0

$SDS offset

$SDS data stream

Security descriptor
0

Security descriptor
1

Security descriptor
2

ID taken from a file’s
$STANDARD_INFORMATION

attribute during a file or
directory security check

$SII index

NTFS security ID 0

$SDS offset

NTFS security ID 1

$SDS offset

NTFS security ID 2

$SDS offset

FIGURE 11-46 $Secure indexing

If NTFS doesn’t find in the $SDH index an entry that has a security descriptor that matches

the descriptor you’re applying, the descriptor you’re applying is unique to the volume and

NTFS assigns the descriptor a new internal security ID. NTFS internal security IDs are 32-bit

values, whereas SIDs are typically several times larger, so representing SIDs with NTFS secu-

rity IDs saves space in the $STANDARD_INFORMATION attribute. NTFS then adds the security

descriptor to the $SDS attribute, which is sorted in a b-tree by the NTFS security ID, and it

adds to the $SDH and $SII indexes entries that reference the descriptor’s offset in the $SDS

data.

When an application attempts to open a file or directory, NTFS uses the $SII index to look up

the file or directory’s security descriptor. NTFS reads the file or directory’s internal security

ID from the MFT entry’s $STANDARD_INFORMATION attribute. It then uses the $Secure file’s

$SII index to locate the ID’s entry in the $SDS attribute. The offset into the $SDS attribute lets

NTFS read the security descriptor and complete the security check. NTFS stores the 32 most

recently accessed security descriptors with their $SII index entries in a cache so that it will

access the $Secure file only when the $SII isn’t cached.

NTFS doesn’t delete entries in the $Secure file, even if no file or directory on a volume

references the entry. Not deleting these entries doesn’t significantly decrease disk space

because most volumes, even those used for long periods, have relatively few unique security

descriptors.

NTFS’s use of general indexing lets files and directories that have the same security set-

tings efficiently share security descriptors. The $SII index lets NTFS quickly look up a security

descriptor in the $Secure file while performing security checks, and the $SDH index lets NTFS

 Chapter 11 File Systems 965

quickly determine whether a security descriptor being applied to a file or directory is already

stored in the $Secure file and can be shared.

Reparse Points

As described earlier in the chapter, a reparse point is a block of up to 16 KB of application-

defined reparse data and a 32-bit reparse tag that are stored in the $REPARSE_POINT attri-

bute of a file or directory. Whenever an application creates or deletes a reparse point, NTFS

updates the \$Extend\$Reparse metadata file, in which NTFS stores entries that identify the

file record numbers of files and directories that contain reparse points. Storing the records

in a central location enables NTFS to provide interfaces for applications to enumerate all a

volume’s reparse points or just specific types of reparse points, such as mount points. (See

Chapter 8 for more information on mount points.) The \$Extend\$Reparse file uses the gen-

eral indexing facility of NTFS by collating the file’s entries (in an index named $R) by reparse

point tags.

Transaction Support

By leveraging the Kernel Transaction Manager (KTM) support in the kernel, as well as the

facilities provided by the Common Log File System that were described earlier, NTFS imple-

ments a transactional model called Transactional NTFS or TxF. TxF provides a set of user-

mode APIs that applications can use for transacted operations on their files and directories

and also a file system control (FSCTL) interface for managing its resource managers.

Note Support for TxF was added to the NTFS driver starting with Windows Vista and Windows

Server 2008 without actually changing the format of the NTFS data structures, which is why the

NTFS format version number, 3.1, is the same as for Windows XP and Windows Server 2003. TxF

achieves backward compatibility by reusing the attribute type that was previously used only for

EFS support instead of adding a new one.

The overall architecture for TxF, shown in Figure 11-47, uses several components:

Transacted APIs implemented in the Kernel32.dll library

A library for reading TxF logs (%SystemRoot%\System32\Txfw32.dll)

A COM component for TxF logging functionality (%SystemRoot\System32\Txflog.dll)

The transactional NTFS library inside the NTFS driver

The CLFS infrastructure for reading and writing log records

966 Windows Internals, Fifth Edition

User mode

Kernel mode

CLFS libraryTxF library

Application

Transacted APIs

NTFS driver CLFS driver

FIGURE 11-47 TxF architecture

Isolation

Although transactional file operations are opt-in, just like the transactional registry (TxR)

operations described in Chapter 4, TxF has an impact on regular applications that are not

transaction-aware because it ensures that the transactional operations are isolated. For

example, if an antivirus program is scanning a file that’s currently being modified by another

application via a transacted operation, TxF must make sure that the scanner reads the pre-

transaction data, while applications that access the file within the transaction work with the

modified data. This model is called read-committed isolation.

Read-committed isolation involves the concept of transacted writers and transacted readers.
The former always view the most up-to-date version of a file, including all changes made

by the transaction that is currently associated with the file. At any given time, there can be

only one transacted writer for a file, which means that its write access is exclusive. Transacted

readers, on the other hand, only have access to the committed version of the file at the time

they open the file. They are therefore isolated from changes made by transacted writers. This

allows for readers to have a consistent view of a file, even when a transacted writer commits

its changes. To see the updated data, the transacted reader must open a new handle to the

modified file.

Nontransacted writers, on the other hand, are prevented from opening the file by both trans-

acted writers and transacted readers, so they cannot make changes to the file without being

part of the transaction. Nontransacted readers act similarly to transacted readers in that they

see only the file contents that were last committed when the file handle was open. Unlike

transacted readers, however, they do not receive read-committed isolation, and as such they

always receive the updated view of the latest committed version of a transacted file without

 Chapter 11 File Systems 967

having to open a new file handle. This allows non-transaction-aware applications to behave

as expected.

To summarize, TxF’s read-committed isolation model has the following characteristics:

Changes are isolated from transacted readers

Changes are rolled back (undone) if the associated transaction is rolled back, if the

machine crashes, or if the volume is forcibly dismounted.

Changes are flushed to disk if the associated transaction is committed.

EXPERIMENT: Understanding and Managing Transactions

In this experiment we’ll use the Transactdemo.exe tool to create a new file, add some

data to it as part of a transaction, and see how nontransacted clients interact with the

file while the transaction is active. First, open a Command Prompt window and run

Transactdemo.exe:

C:\>Transactdemo.exe

Transaction Demo v1.0

by Mark Russinovich

Transaction created: {5CD5E900-9DA8-11DD-8379-005056C00008}

Created C:\TransactionDemo.txt.

Pass TransDemo the GUID listed above to see the transacted file.

Rollback or commit transaction? (r/c):

Transactdemo creates c:\TransactionDemo.txt within a transaction that it has not com-

mitted. Open a second Command Prompt window, and use the dir command to look

for the presence of the TransactionDemo.txt file:

C:\>dir transactiondemo.txt

 Volume in drive C is OS

 Volume Serial Number is 0C30-686E

 Directory of C:\

File Not Found

According to this second command prompt, the file doesn’t even exist. Now simulate a

nontransacted writer by trying to add data to the file via the echo command:

C:\>echo Hello > TransactionDemo.txt

The function attempted to use a name that is reserved for use by another transaction.

As expected, nontransacted writers are blocked from modifying the file.

968 Windows Internals, Fifth Edition

The Ktmutil and Fsutil built-in applications can be very useful for dealing with transac-

tional operations on the file system. For example, you can get a list of all current trans-

actions on the system with the following command:

C:\>ktmutil list transactions

TxGuid Description

-------------------------------------- ---

{5cd5e900-9da8-11dd-8379-005056c00008} Demo Transaction?

Note that the GUID matches what Transactdemo returned. With the GUID, you can now

use the Fsutil command to query information about the transaction and to commit it

or roll it back. For example, here’s how to list the files part of the transaction and the

owner account:

C:\>fsutil transaction query all {5cd5e900-9da8-11dd-8379-005056c00008}

dwOutcome: 1

dwIsolationLevel: 0

dwIsolationFlags: 0

dwTimeout: -1

Owner: BUILTIN\Administrators

Number of Files: 1

---- \TransactionDemo.txt

Although the Transactdemo tool presents you with the option to roll back or commit

the current transaction, the Fsutil utility allows commits or rollbacks to any ongoing

transaction your account has access to. Go back to the command prompt where you

ran Transactdemo and press C to commit the transaction, after which the file becomes

a standard nontransacted file.

Transactional APIs

TxF implements transacted versions of the Windows file I/O APIs, which use the suffix

Transacted:

Create APIs CreateDirectoryTransacted, CreateFileTransacted,
CreateHardLinkTransacted, CreateSymbolicLinkTransacted

Find APIs FindFirstFileNameTransacted, FindFirstFileTransacted,
FindFirstStreamTransacted

Query APIs GetCompressedFileSizeTransacted, GetFileAttributesTransacted,
GetFullPathNameTransacted, GetLongPathNameTransacted

Delete APIs DeleteFileTransacted, RemoveDirectoryTransacted

Copy and Move/Rename APIs CopyFileTransacted, MoveFileTransacted

Set APIs SetFileAttributesTransacted

 Chapter 11 File Systems 969

In addition, some APIs automatically participate in transacted operations when the file han-

dle they are passed is part of a transaction, like one created by the CreateFileTransacted API.

Table 11-8 lists Windows APIs that have modified behavior when dealing with a transacted

file handle.

TABLE 11-8 API Behavior Changed by TxF

API Name Change

CloseHandle Transactions will not be committed until all applications

close transacted handles to the file.

CreateFileMapping, MapViewOfFile Modifications to mapped views of a file part of a transaction

will be associated with the transaction themselves.

FindNextFile, ReadDirectoryChanges,
GetInformationByHandle, GetFileSize

If the file handle is part of a transaction, read-isolation rules

will be applied to these operations.

GetVolumeInformation Function will return FILE_SUPPORTS_TRANSACTIONS if the

volume supports TxF.

ReadFile, WriteFile Read and write operations to a transacted file handle will be

part of the transaction.

SetFileInformationByHandle Changes to the FileBasicInfo, FileRenameInfo,

FileAllocationInfo, FileEndOfFileInfo, and FileDispositionInfo

classes will be transacted if the file handle is part of a

transaction.

SetEndOfFile, SetFileShortName,
SetFileTime

Changes will be transacted if the file handle is part of a

transaction.

Resource Managers

Just like TxR uses a resource manager (RM) to keep track of transactional metadata and log

files, TxF uses a default resource manager, one for each volume, to keep track of its trans-

actional state. TxF, however, also supports additional resource managers called secondary
resource managers. These resource managers can be defined by application writers and

have their metadata located in any directory of the application’s choosing, defining their

own transactional work units for undo, backup, restore, and redo operations. TxF uses the

default resource manager for transacted APIs, and applications that use transactions with

the Distributed Transaction Coordinator or the .NET Framework’s System.Transaction classes

create and manage secondary TxF resource managers with TxF resource manager file system

control commands. Applications can create and manage secondary RMs by using file system

control codes defined for TxF, such as FSCTL_TXFS_CREATE_SECONDARY_RM, FSCTL_TXFS_

START_RM, and FSCTL_TXFS_SHUTDOWN_RM. When a secondary RM is created, it must

be made consistent by one or more FSCTL_TXFS_ROLLFORWARD_REDO calls followed by

FSCTL_TXFS_ROLLFORWARD_UNDO, which redo and/or undo operations that were stored in

the log but never committed (such as in the case of a machine crash). We’ll cover the recovery

970 Windows Internals, Fifth Edition

procedure for resource managers shortly. Both the default resource manager and secondary

resource managers contain a number of metadata files and directories that describe their

current state:

The $Txf directory, which is where files are linked when they are deleted or overwrit-

ten by transactional operations. If a file is deleted in a transaction, read-isolation rules

specify that nontransacted readers should still be able to access the file before the

delete operation is actually committed. This isolation is achieved by moving the trans-

action-deleted file into the $Txf directory. The NTFS driver will then keep track of the

isolation by inserting a temporary structure in the SCB of the parent directory where

the deleted file was originally located. In this way, the file will continue to show up if the

parent is enumerated, and it will store the file reference, allowing the file to be opened.

When the transaction is committed, NTFS deletes the temporary structure and deletes

the file from the $Txf directory. On the other hand, if the transaction is rolled back,

NTFS moves the file back to its original directory.

The $Tops, or TxF Old Page Stream (TOPS) file, which contains a default data stream

and an alternate stream called $T. The default stream for the TOPS file contains meta-

data about the resource manager, such as its GUID, its CLFS log policy, and the LSN at

which recovery should start. The $T stream contains file data that is partially overwrit-

ten by a transactional writer (as opposed to a full overwrite, which would move the file

into the $Txf directory). NTFS keeps a structure in memory that keeps track of which

parts of a file are being modified under a transaction so that nontransacted readers

can still access the noncommitted data by having their reads forwarded to $Tops:$T.

When the transaction is committed or aborted, the pages are either moved from the

$T stream into the original file or simply thrown out in the case of an abort.

The TxF log files, which are CLFS log files storing transaction records. For the default

resource manager, these files are part of the $TxfLog directory, but secondary resource

managers can store them anywhere. TxF uses a multiplexed base log file called

$TxfLog.blf, which contains two streams: the KtmLog stream used for Kernel Transaction

Manager metadata records, and the TxfLog stream, which contains the TxF log records.

Each stream is stored in CLFS log containers that start with $TxfLogContainer and are

followed by a unique, increasing ID, such as 00000000000000000001. As the TxF log

grows, more container files are created.

As described earlier, the default resource manager stores its files in the \$Extend\$RmMetadata

directory on each NTFS-formatted volume on the machine.

 Chapter 11 File Systems 971

EXPERIMENT: Querying Resource Manager Information

You can use the built-in Fsutil.exe command-line program to query information about

the default resource manager, as well as to create, start, and stop secondary resource

managers and configure their logging policies and behaviors. The following command

queries information about the default resource manager, which is identified by the root

directory (\):

C:\>fsutil resource info \

RM Identifier: CF7234E7-39E3-11DC-BDCE-00188BDD5F49

KTM Log Path for RM: \Device\HarddiskVolume3\$Extend\$RmMetadata\$TxfLog\

 $TxfLog::KtmLog

Space used by TOPS: 79 Mb

TOPS free space: 100%

RM State: Active

Running transactions: 0

One phase commits: 0

Two phase commits: 1

System initiated rollbacks: 0

Age of oldest transaction: 00:00:00

Logging Mode: Simple

Number of containers: 2

Container size: 10 Mb

Total log capacity: 20 Mb

Total free log space: 14 Mb

Minimum containers: 2

Maximum containers: 20

Log growth increment: 2 container(s)

Auto shrink: Not enabled

RM prefers availability over consistency.

As mentioned, the fsutil resource command has many options for configuring TxF

resource managers, including the ability to create a secondary resource manager in any

directory of your choice. For example, you can use the fsutil resource create c:\rmtest
command to create a secondary resource manager in the Rmtest directory, followed by

the fsutil resource start c:\rmtest command to initiate it. Note the presence of the $Tops

and $TxfLogContainer* files and of the TxfLog and $Txf directories in this folder.

On-Disk Implementation

As shown earlier in Table 11-5, TxF uses the $LOGGED_UTILITY_STREAM attribute type to

store additional data for files and directories that are or have been part of a transaction. This

attribute is called $TXF_DATA and contains important information that allows TxF to keep

active offline data for a file part of a transaction. The attribute is permanently stored in the

MFT; that is, even after the file is not part of a transaction anymore, the stream remains,

for reasons we’ll explain shortly. The major components of the attribute are shown in

Figure 11-48.

972 Windows Internals, Fifth Edition

File reference to RM root

Flags

TxF file ID (TxID)

LSN for NTFS metadata

LSN for user data

LSN for directory index

USN index

FIGURE 11-48 $TXF_DATA attribute

The first field shown is the file reference to the root of the resource manager responsible for

the transaction associated with this file. For the default resource manager, the file reference

ID is 5, which is the file record for the root directory (\), as shown earlier in Figure 11-25. TxF

needs this information when it creates an FCB for the file so that it can link it to the correct

resource manager, which in turn needs to create an enlistment for the transaction when a

transacted file request is received by NTFS. (For more information on enlistments and trans-

actions, see the KTM section in Chapter 3.)

Another important piece of data stored in the $TXF_DATA attribute is the TxF file ID, or TxID,

and this explains why $TXF_DATA attributes are never deleted. Because NTFS writes file

names to its records when writing to the transaction log, it needs a way to uniquely identify

files in the same directory that may have had the same name. For example, if sample.txt is

deleted from a directory in a transaction and later a new file with the same name is created

in the same directory (and as part of the same transaction), TxF needs a way to uniquely

identify the two instances of sample.txt. This identification is provided by a 64-bit unique

number, the TxID, that TxF increments when a new file (or an instance of a file) becomes part

of a transaction. Because they can never be reused, TxIDs are permanent, so the $TXF_DATA

attribute will never be removed from a file.

Last but not least, three CLFS LSNs are stored for each file part of a transaction. Whenever

a transaction is active, such as during create, rename, or write operations, TxF writes a log

record to its CLFS log. Each record is assigned an LSN, and that LSN gets written to the

appropriate field in the $TXF_DATA attribute. The first LSN is used to store the log record

that identifies the changes to NTFS metadata in relation to this file. For example, if the stan-

dard attributes of a file are changed as part of a transacted operation, TxF must update the

relevant MFT file record, and the LSN for the log record describing the change is stored. TxF

uses the second LSN when the file’s data is modified. Finally, TxF uses the third LSN when the

file name index for the directory requires a change related to a transaction the file took part

in, or when a directory was part of a transaction and received a TxID.

The $TXF_DATA attribute also stores internal flags that describe the state information to

TxF and the index of the USN record that was applied to the file on commit. A TxF transac-

tion can span multiple USN records that may have been partly updated by NTFS’s recovery

 Chapter 11 File Systems 973

mechanism (described shortly), so the index tells TxF how many more USN records must be

applied after a recovery.

Logging Implementation

As mentioned earlier, each time a change is made to the disk because of an ongoing trans-

action, TxF writes a record of the change to its log. TxF uses a variety of log record types to

keep track of transactional changes, but regardless of the record type, all TxF log records

have a generic header that contains information identifying the type of the record, the action

related to the record, the TxID that the record applies to, and the GUID of the KTM transac-

tion that the record is associated with.

A redo record specifies how to reapply a change part of a transaction that’s already been

committed to the volume if the transaction has actually never been flushed from cache to

disk. An undo record, on the other hand, specifies how to reverse a change part of a trans-

action that hasn’t been committed at the time of a rollback. Some records are redo-only,

meaning they don’t contain any equivalent undo data, while other records contain both redo

and undo information.

Through the TOPS file, TxF maintains two critical pieces of data, the base LSN and the restart
LSN. The base LSN determines the LSN of the first valid record in the log, while the restart

LSN indicates at which LSN recovery should begin when starting the resource manager.

When TxF writes a restart record, it updates these two values, indicating that changes have

been made to the volume and flushed out to disk—meaning that the file system is fully con-

sistent up to the new restart LSN.

TxF also writes compensating log records or CLRs. These records store the actions that are

being performed during transaction rollback (explained next). They’re primarily used to store

the undo-next LSN, which allows the recovery process to avoid repeated undo operations

by bypassing undo records that have already been processed, a situation that can happen if

the system fails during the recovery phase and has already performed part of the undo pass.

Finally, TxF also deals with prepare records, abort records, and commit records, which describe

the state of the KTM transactions related to TxF.

Recovery Implementation

When a resource manager starts because of an FSCTL_TXFS_START_RM call (or, for the default

resource manager, as soon as the volume is mounted), TxF runs the recovery process. It reads

the TOPS file to determine the restart LSN, where the recovery process should start, and then

reads each record forward through the log (called the redo pass). As each record is being

processed, TxF opens the file referenced by the record and compares the LSN in the $TXF_DATA

attribute with the LSN in the record. If the LSN stored in the attribute is greater than or equal

to the LSN of the log record, the action is not applied because the on-disk copy of the file

is as new or newer than that of the log record action. If the LSN is not greater than or equal

974 Windows Internals, Fifth Edition

to the LSN in the record, the log contains information about the file that was never written

to the file itself. In this case, TxF applies whichever action was recorded in the log record and

updates the LSN in the $TXF_DATA attribute with the LSN from the record.

As TxF is processing its redo pass, it builds its transaction table, which describes the opera-

tions that it has completed; if it encounters an abort or commit record along the way, TxF

discards the related transactions. By the end of the redo pass, TxF parses the final transaction

table and connects to the KTM to see whether the KTM recorded a commit or an abort for

the transactions. (KTM stores this information in the KtmLog stream of the TxF multiplexed

log, as explained earlier.)

After TxF has finished communicating with the KTM, it looks at any leftover transactions in

the transaction table and begins the undo pass. In the undo pass, TxF aborts all the remain-

ing transactions in the transaction table by traversing each transaction’s undo LSN chain

and applying the undo action for each log record. At the end of the undo pass, the resource

manager is consistent and initialized.

This process is very similar to the log file service’s recovery procedure, which is described

later in more detail. You should refer to this description for a complete picture of the stan-

dard transactional recovery mechanisms.

NTFS Recovery Support

NTFS recovery support ensures that if a power failure or a system failure occurs, no file sys-

tem operations (transactions) will be left incomplete and the structure of the disk volume will

remain intact without the need to run a disk repair utility. The NTFS Chkdsk utility is used to

repair catastrophic disk corruption caused by I/O errors (bad disk sectors, electrical anoma-

lies, or disk failures, for example) or software bugs. But with the NTFS recovery capabilities in

place, Chkdsk is rarely needed.

As mentioned earlier (in the section “Recoverability”), NTFS uses a transaction-processing

scheme to implement recoverability. This strategy ensures a full disk recovery that is also

extremely fast (on the order of seconds) for even the largest disks. NTFS limits its recovery

procedures to file system data to ensure that at the very least the user will never lose a vol-

ume because of a corrupted file system; however, unless an application takes specific action

(such as flushing cached files to disk), NTFS’s recovery support doesn’t guarantee user data to

be fully updated if a crash occurs. This is the job of Transactional NTFS (TxF).

The following sections detail the transaction-logging scheme NTFS uses to record modi-

fications to file system data structures and explain how NTFS recovers a volume if the

system fails.

 Chapter 11 File Systems 975

Design

NTFS implements the design of a recoverable file system. These file systems ensure volume

consistency by using logging techniques (sometimes called journaling) originally devel-

oped for transaction processing. If the operating system crashes, the recoverable file system

restores consistency by executing a recovery procedure that accesses information that has

been stored in a log file. Because the file system has logged its disk writes, the recovery

procedure takes only seconds, regardless of the size of the volume. The recovery procedure

for a recoverable file system is exact, guaranteeing that the volume will be restored to a

consistent state.

A recoverable file system incurs some costs for the safety it provides. Every transaction that

alters the volume structure requires that one record be written to the log file for each of the

transaction’s suboperations. This logging overhead is ameliorated by the file system’s batch-
ing of log records—writing many records to the log file in a single I/O operation. In addition,

the recoverable file system can employ the optimization techniques of a lazy write file sys-

tem. It can even increase the length of the intervals between cache flushes because the file

system can be recovered if the system crashes before the cache changes have been flushed

to disk. This gain over the caching performance of lazy write file systems makes up for, and

often exceeds, the overhead of the recoverable file system’s logging activity.

Neither careful write nor lazy write file systems guarantee protection of user file data. If the

system crashes while an application is writing a file, the file can be lost or corrupted. Worse,

the crash can corrupt a lazy write file system, destroying existing files or even rendering an

entire volume inaccessible.

The NTFS recoverable file system implements several strategies that improve its reliability

over that of the traditional file systems. First, NTFS recoverability guarantees that the volume

structure won’t be corrupted, so all files will remain accessible after a system failure. Second,

although NTFS doesn’t guarantee protection of user data in the event of a system crash—

some changes can be lost from the cache—applications can take advantage of the NTFS

write-through and cache-flushing capabilities to ensure that file modifications are recorded

on disk at appropriate intervals.

Both cache write-through—forcing write operations to be immediately recorded on disk—

and cache flushing—forcing cache contents to be written to disk—are efficient operations.

NTFS doesn’t have to do extra disk I/O to flush modifications to several different file sys-

tem data structures because changes to the data structures are recorded—in a single write

operation—in the log file; if a failure occurs and cache contents are lost, the file system

modifications can be recovered from the log. Furthermore, unlike the FAT file system, NTFS

guarantees that user data will be consistent and available immediately after a write-through

operation or a cache flush, even if the system subsequently fails.

976 Windows Internals, Fifth Edition

Metadata Logging

NTFS provides file system recoverability by using the same logging technique used by TxF,

which consists of recording all operations that modify file system metadata to a log file.

Unlike TxF, however, NTFS’s built-in file system recovery support doesn’t make use of CLFS

but uses an internal logging implementation called the log file service. Another difference

is that while TxF is used only when callers opt-in for transacted operations, NTFS records all

metadata changes so that the file system can be made consistent in the face of a system

failure.

Log File Service

The log file service (LFS) is a series of kernel-mode routines inside the NTFS driver that NTFS

uses to access the log file. NTFS passes the LFS a pointer to an open file object, which speci-

fies a log file to be accessed. The LFS either initializes a new log file or calls the Windows

cache manager to access the existing log file through the cache, as shown in Figure 11-49.

Note that although LFS and CLFS have similar sounding names, they are separate logging

implementations used for different reasons, although their operation is similar in many ways.

Log file
service

Flush the
log file

Read/write/flush
the log file

Log the transaction

Write the
volume updates

NTFS driver
…

I/O manager

Cache
manager

Call the memory
manager to access

the mapped file

FIGURE 11-49 Log file service (LFS)

The LFS divides the log file into two regions: a restart area and an “infinite” logging area, as

shown in Figure 11-50.

 Chapter 11 File Systems 977

FIGURE 11-50 Log file regions

NTFS calls the LFS to read and write the restart area. NTFS uses the restart area to store con-

text information such as the location in the logging area at which NTFS will begin to read

during recovery after a system failure. The LFS maintains a second copy of the restart data

in case the first becomes corrupted or otherwise inaccessible. The remainder of the log file

is the logging area, which contains transaction records NTFS writes to recover a volume in

the event of a system failure. The LFS makes the log file appear infinite by reusing it circularly

(while guaranteeing that it doesn’t overwrite information it needs). Just like CLFS, the LFS uses

LSNs to identify records written to the log file. As the LFS cycles through the file, it increases

the values of the LSNs. NTFS uses 64 bits to represent LSNs, so the number of possible LSNs

is so large as to be virtually infinite.

NTFS never reads transactions from or writes transactions to the log file directly. The LFS

provides services that NTFS calls to open the log file, write log records, read log records in

forward or backward order, flush log records up to a particular LSN, or set the beginning of

the log file to a higher LSN. During recovery, NTFS calls the LFS to perform the same actions

as described in the TxF recovery section: a redo pass for nonflushed committed changes, fol-

lowed by an undo pass for noncommitted changes.

Here’s how the system guarantees that the volume can be recovered:

 1. NTFS first calls the LFS to record in the (cached) log file any transactions that will mod-

ify the volume structure.

 2. NTFS modifies the volume (also in the cache).

 3. The cache manager prompts the LFS to flush the log file to disk. (The LFS implements

the flush by calling the cache manager back, telling it which pages of memory to flush.

Refer back to the calling sequence shown in Figure 11-49.)

 4. After the cache manager flushes the log file to disk, it flushes the volume changes (the

metadata operations themselves) to disk.

These steps ensure that if the file system modifications are ultimately unsuccessful, the corre-

sponding transactions can be retrieved from the log file and can be either redone or undone

as part of the file system recovery procedure.

978 Windows Internals, Fifth Edition

File system recovery begins automatically the first time the volume is used after the system

is rebooted. NTFS checks whether the transactions that were recorded in the log file before

the crash were applied to the volume, and if they weren’t, it redoes them. NTFS also guaran-

tees that transactions not completely logged before the crash are undone so that they don’t

appear on the volume.

Log Record Types

The NTFS recovery mechanism uses similar log record types as the TxF recovery mechanism:

update records, which correspond to the redo and undo records that TxF uses, and checkpoint
records, which are similar to the restart records used by TxF. Figure 11-51 shows three update

records in the log file. Each record represents one suboperation of a transaction, creating a

new file. The redo entry in each update record tells NTFS how to reapply the suboperation to

the volume, and the undo entry tells NTFS how to roll back (undo) the suboperation.

Redo: Allocate/initialize an MFT file record
Undo: Deallocate the file record

Redo: Set bits 3–9 in the bitmap
Undo: Clear bits 3–9 in the bitmap

Redo: Add the file name to the index
Undo: Remove the file name from the index

LFS restart area Logging area

Log file records

T1a T1b T1c… ...

FIGURE 11-51 Update records in the log file

After logging a transaction (in this example, by calling the LFS to write the three update

records to the log file), NTFS performs the suboperations on the volume itself, in the cache.

When it has finished updating the cache, NTFS writes another record to the log file, record-

ing the entire transaction as complete—a suboperation known as committing a transaction.

Once a transaction is committed, NTFS guarantees that the entire transaction will appear on

the volume, even if the operating system subsequently fails.

When recovering after a system failure, NTFS reads through the log file and redoes each

committed transaction. Although NTFS completed the committed transactions from before

the system failure, it doesn’t know whether the cache manager flushed the volume modifi-

cations to disk in time. The updates might have been lost from the cache when the system

failed. Therefore, NTFS executes the committed transactions again just to be sure that the

disk is up to date.

After redoing the committed transactions during a file system recovery, NTFS locates all the

transactions in the log file that weren’t committed at failure and rolls back each suboperation

that had been logged. In Figure 11-51, NTFS would first undo the T1c suboperation and then

follow the backward pointer to T1b and undo that suboperation. It would continue to follow

 Chapter 11 File Systems 979

the backward pointers, undoing suboperations, until it reached the first suboperation in the

transaction. By following the pointers, NTFS knows how many and which update records it

must undo to roll back a transaction.

Redo and undo information can be expressed either physically or logically. As the lowest

layer of software maintaining the file system structure, NTFS writes update records with

physical descriptions that specify volume updates in terms of particular byte ranges on the

disk that are to be changed, moved, and so on, unlike TxF, which uses logical descriptions that

express updates in terms of operations such as “delete file A.dat.” NTFS writes update records

(usually several) for each of the following transactions:

Creating a file

Deleting a file

Extending a file

Truncating a file

Setting file information

Renaming a file

Changing the security applied to a file

The redo and undo information in an update record must be carefully designed because

although NTFS undoes a transaction, recovers from a system failure, or even operates nor-

mally, it might try to redo a transaction that has already been done or, conversely, to undo

a transaction that never occurred or that has already been undone. Similarly, NTFS might try

to redo or undo a transaction consisting of several update records, only some of which are

complete on disk. The format of the update records must ensure that executing redundant

redo or undo operations is idempotent, that is, has a neutral effect. For example, setting a bit

that is already set has no effect, but toggling a bit that has already been toggled does. The

file system must also handle intermediate volume states correctly.

In addition to update records, NTFS periodically writes a checkpoint record to the log file, as

illustrated in Figure 11-52.

Checkpoint
record

LFS restart area

NTFS restart

Logging area

Log file records

LSN
2058

LSN
2061

... ...LSN
2059

LSN
2060

FIGURE 11-52 Checkpoint record in the log file

980 Windows Internals, Fifth Edition

A checkpoint record helps NTFS determine what processing would be needed to recover

a volume if a crash were to occur immediately. Using information stored in the checkpoint

record, NTFS knows, for example, how far back in the log file it must go to begin its recovery.

After writing a checkpoint record, NTFS stores the LSN of the record in the restart area so

that it can quickly find its most recently written checkpoint record when it begins file sys-

tem recovery after a crash occurs—this is similar to the restart LSN used by TxF for the same

reason.

Although the LFS presents the log file to NTFS as if it were infinitely large, it isn’t. The gener-

ous size of the log file and the frequent writing of checkpoint records (an operation that usu-

ally frees up space in the log file) make the possibility of the log file filling up a remote one.

Nevertheless, the LFS, just like CLFS, accounts for this possibility by tracking several numbers:

The available log space

The amount of space needed to write an incoming log record and to undo the write,

should that be necessary

The amount of space needed to roll back all active (noncommitted) transactions,

should that be necessary

If the log file doesn’t contain enough available space to accommodate the total of the last

two items, the LFS returns a “log file full” error, and NTFS raises an exception. The NTFS

exception handler rolls back the current transaction and places it in a queue to be restarted

later.

To free up space in the log file, NTFS must momentarily prevent further transactions on files.

To do so, NTFS blocks file creation and deletion and then requests exclusive access to all

system files and shared access to all user files. Gradually, active transactions either are com-

pleted successfully or receive the “log file full” exception. NTFS rolls back and queues the

transactions that receive the exception.

Once it has blocked transaction activity on files as just described, NTFS calls the cache man-

ager to flush unwritten data to disk, including unwritten log file data. After everything is

safely flushed to disk, NTFS no longer needs the data in the log file. It resets the beginning of

the log file to the current position, making the log file “empty.” Then it restarts the queued

transactions. Beyond the short pause in I/O processing, the “log file full” error has no effect

on executing programs.

This scenario is one example of how NTFS uses the log file not only for file system recovery

but also for error recovery during normal operation. You’ll find out more about error recov-

ery in the following section.

 Chapter 11 File Systems 981

Recovery

NTFS automatically performs a disk recovery the first time a program accesses an NTFS

volume after the system has been booted. (If no recovery is needed, the process is trivial.)

Recovery depends on two tables NTFS maintains in memory: a transaction table, which

behaves just like the one TxF maintains, and a dirty page table, which records which pages in

the cache contain modifications to the file system structure that haven’t yet been written to

disk. This data must be flushed to disk during recovery.

NTFS writes a checkpoint record to the log file once every 5 seconds. Just before it does, it

calls the LFS to store a current copy of the transaction table and of the dirty page table in the

log file. NTFS then records in the checkpoint record the LSNs of the log records containing

the copied tables. When recovery begins after a system failure, NTFS calls the LFS to locate

the log records containing the most recent checkpoint record and the most recent copies

of the transaction and dirty page tables. It then copies the tables to memory.

The log file usually contains more update records following the last checkpoint record. These

update records represent volume modifications that occurred after the last checkpoint

record was written. NTFS must update the transaction and dirty page tables to include these

operations. After updating the tables, NTFS uses the tables and the contents of the log file to

update the volume itself.

To effect its volume recovery, NTFS scans the log file three times, loading the file into mem-

ory during the first pass to minimize disk I/O. Each pass has a particular purpose:

 1. Analysis

 2. Redoing transactions

 3. Undoing transactions

Analysis Pass

During the analysis pass, as shown in Figure 11-53, NTFS scans forward in the log file from

the beginning of the last checkpoint operation to find update records and use them to

update the transaction and dirty page tables it copied to memory. Notice in the figure that

the checkpoint operation stores three records in the log file and that update records might

be interspersed among these records. NTFS therefore must start its scan at the beginning of

the checkpoint operation.

982 Windows Internals, Fifth Edition

FIGURE 11-53 Analysis pass

Most update records that appear in the log file after the checkpoint operation begins repre-

sent a modification to either the transaction table or the dirty page table. If an update record

is a “transaction committed” record, for example, the transaction the record represents must

be removed from the transaction table. Similarly, if the update record is a “page update”

record that modifies a file system data structure, the dirty page table must be updated to

reflect that change.

Once the tables are up to date in memory, NTFS scans the tables to determine the LSN of the

oldest update record that logs an operation that hasn’t been carried out on disk. The trans-

action table contains the LSNs of the noncommitted (incomplete) transactions, and the dirty

page table contains the LSNs of records in the cache that haven’t been flushed to disk. The

LSN of the oldest update record that NTFS finds in these two tables determines where the

redo pass will begin. If the last checkpoint record is older, however, NTFS will start the redo

pass there instead.

Note In the TxF recovery model, there is no distinct analysis pass. Instead, as described in the

TxF recovery section, TxF performs the equivalent work in the redo pass.

Redo Pass

During the redo pass, as shown in Figure 11-54, NTFS scans forward in the log file from the

LSN of the oldest update record, which it found during the analysis pass. It looks for “page

update” records, which contain volume modifications that were written before the system

failure but that might not have been flushed to disk. NTFS redoes these updates in the cache.

Beginning of
checkpoint operation

Oldest unwritten
log record

Dirty page
table

Update
record

Update
record

Transaction
table

Checkpoint
record

Update
record

FIGURE 11-54 Redo pass

 Chapter 11 File Systems 983

When NTFS reaches the end of the log file, it has updated the cache with the necessary vol-

ume modifications, and the cache manager’s lazy writer can begin writing cache contents to

disk in the background.

Undo Pass

After it completes the redo pass, NTFS begins its undo pass, in which it rolls back any transac-

tions that weren’t committed when the system failed. Figure 11-55 shows two transactions in

the log file; transaction 1 was committed before the power failure, but transaction 2 wasn’t.

NTFS must undo transaction 2.

LSN
4044

LSN
4049

LSN
4045

LSN
4046

LSN
4047

LSN
4048

“Transaction committed” recordTransaction 1

Transaction 2

Power failure

FIGURE 11-55 Undo pass

Suppose that transaction 2 created a file, an operation that comprises three suboperations,

each with its own update record. The update records of a transaction are linked by backward

pointers in the log file because they are usually not contiguous.

The NTFS transaction table lists the LSN of the last-logged update record for each noncom-

mitted transaction. In this example, the transaction table identifies LSN 4049 as the last

update record logged for transaction 2. As shown from right to left in Figure 11-56, NTFS

rolls back transaction 2.

... LSN
4044

LSN
4049

LSN
4045

LSN
4046

LSN
4047

LSN
4048

Transaction 1

Transaction 2

Redo: Allocate/initialize an MFT file record
Undo: Deallocate the file record

Redo: Add the file name to the index
Undo: Remove the file name from the index

Redo: Set bits 3–9 in the bitmap
Undo: Clear bits 3–9 in the bitmap

FIGURE 11-56 Undoing a transaction

984 Windows Internals, Fifth Edition

After locating LSN 4049, NTFS finds the undo information and executes it, clearing bits 3

through 9 in its allocation bitmap. NTFS then follows the backward pointer to LSN 4048,

which directs it to remove the new file name from the appropriate file name index. Finally, it

follows the last backward pointer and deallocates the MFT file record reserved for the file, as

the update record with LSN 4046 specifies. Transaction 2 is now rolled back. If there are other

noncommitted transactions to undo, NTFS follows the same procedure to roll them back.

Because undoing transactions affects the volume’s file system structure, NTFS must log the

undo operations in the log file. After all, the power might fail again during the recovery, and

NTFS would have to redo its undo operations!

When the undo pass of the recovery is finished, the volume has been restored to a consis-

tent state. At this point, NTFS is prepared to flush the cache changes to disk to ensure that

the volume is up to date. Before doing so, however, it executes a callback that TxF registers

for notifications of LFS flushes. Because TxF and NTFS both use write-ahead logging, TxF

must flush its log through CLFS before the NTFS log is flushed to ensure consistency of its

own metadata. (And similarly, the TOPS file must be flushed before the CLFS-managed log

files.) NTFS then writes an “empty” LFS restart area to indicate that the volume is consistent

and that no recovery need be done if the system should fail again immediately. Recovery is

complete.

NTFS guarantees that recovery will return the volume to some preexisting consistent state,

but not necessarily to the state that existed just before the system crash. NTFS can’t make

that guarantee because, for performance, it uses a “lazy commit” algorithm, which means

that the log file isn’t immediately flushed to disk each time a “transaction committed” record

is written. Instead, numerous “transaction committed” records are batched and written

together, either when the cache manager calls the LFS to flush the log file to disk or when

the LFS writes a checkpoint record (once every 5 seconds) to the log file. Another reason the

recovered volume might not be completely up to date is that several parallel transactions

might be active when the system crashes and some of their “transaction committed” records

might make it to disk whereas others might not. The consistent volume that recovery pro-

duces includes all the volume updates whose “transaction committed” records made it to

disk and none of the updates whose “transaction committed” records didn’t make it to disk.

NTFS uses the log file to recover a volume after the system fails, but it also takes advantage

of an important “freebie” it gets from logging transactions. File systems necessarily contain

a lot of code devoted to recovering from file system errors that occur during the course of

normal file I/O. Because NTFS logs each transaction that modifies the volume structure, it can

use the log file to recover when a file system error occurs and thus can greatly simplify its

error handling code. The “log file full” error described earlier is one example of using the log

file for error recovery.

 Chapter 11 File Systems 985

Most I/O errors a program receives aren’t file system errors and therefore can’t be resolved

entirely by NTFS. When called to create a file, for example, NTFS might begin by creating a

file record in the MFT and then enter the new file’s name in a directory index. When it tries to

allocate space for the file in its bitmap, however, it could discover that the disk is full and the

create request can’t be completed. In such a case, NTFS uses the information in the log file

to undo the part of the operation it has already completed and to deallocate the data struc-

tures it reserved for the file. Then it returns a “disk full” error to the caller, which in turn must

respond appropriately to the error.

NTFS Bad-Cluster Recovery

The volume manager included with Windows (VolMgr) can recover data from a bad sector

on a fault-tolerant volume, but if the hard disk doesn’t use the SCSI protocol or runs out of

spare sectors, a volume manager can’t perform sector sparing to replace the bad sector. (See

Chapter 8 for more information on the volume manager.) When the file system reads from

the sector, the volume manager instead recovers the data and returns the warning to the file

system that there is only one copy of the data.

The FAT file system doesn’t respond to this volume manager warning. Moreover, neither

FAT nor the volume manager keeps track of the bad sectors, so a user must run the Chkdsk

or Format utility to prevent the volume manager from repeatedly recovering data for the

file system. Both Chkdsk and Format are less than ideal for removing bad sectors from use.

Chkdsk can take a long time to find and remove bad sectors, and Format wipes all the data

off the partition it’s formatting.

In the file system equivalent of a volume manager’s sector sparing, NTFS dynamically

replaces the cluster containing a bad sector and keeps track of the bad cluster so that it won’t

be reused. (Recall that NTFS maintains portability by addressing logical clusters rather than

physical sectors.) NTFS performs these functions when the volume manager can’t perform

sector sparing. When a volume manager returns a bad-sector warning or when the hard disk

driver returns a bad-sector error, NTFS allocates a new cluster to replace the one containing

the bad sector. NTFS copies the data that the volume manager has recovered into the new

cluster to reestablish data redundancy.

Figure 11-57 shows an MFT record for a user file with a bad cluster in one of its data runs as

it existed before the cluster went bad. When it receives a bad-sector error, NTFS reassigns the

cluster containing the sector to its bad-cluster file. This prevents the bad cluster from being

allocated to another file. NTFS then allocates a new cluster for the file and changes the file’s

VCN-to-LCN mappings to point to the new cluster. This bad-cluster remapping (introduced

earlier in this chapter) is illustrated in Figure 11-57. Cluster number 1357, which contains the

bad sector, must be replaced by a good cluster.

986 Windows Internals, Fifth Edition

0 1 2

1355 1356 1357

Bad

3 4 5

1588 1589 1590

1355

1588

3

3

0

3

Starting
VCN

Starting
LCN

Number of
clusters

FIGURE 11-57 MFT record for a user file with a bad cluster

Bad-sector errors are undesirable, but when they do occur, the combination of NTFS and

the volume manager provides the best possible solution. If the bad sector is on a redundant

volume, the volume manager recovers the data and replaces the sector if it can. If it can’t

replace the sector, it returns a warning to NTFS, and NTFS replaces the cluster containing the

bad sector.

If the volume isn’t configured as a redundant volume, the data in the bad sector can’t be

recovered. When the volume is formatted as a FAT volume and the volume manager can’t

recover the data, reading from the bad sector yields indeterminate results. If some of the file

system’s control structures reside in the bad sector, an entire file or group of files (or poten-

tially, the whole disk) can be lost. At best, some data in the affected file (often, all the data in

the file beyond the bad sector) is lost. Moreover, the FAT file system is likely to reallocate the

bad sector to the same or another file on the volume, causing the problem to resurface.

Like the other file systems, NTFS can’t recover data from a bad sector without help from a

volume manager. However, NTFS greatly contains the damage a bad sector can cause. If

NTFS discovers the bad sector during a read operation, it remaps the cluster the sector is in,

as shown in Figure 11-58. If the volume isn’t configured as a redundant volume, NTFS returns

a “data read” error to the calling program. Although the data that was in that cluster is lost,

the rest of the file—and the file system—remains intact; the calling program can respond

appropriately to the data loss, and the bad cluster won’t be reused in future allocations. If

NTFS discovers the bad cluster on a write operation rather than a read, NTFS remaps the

cluster before writing and thus loses no data and generates no error.

The same recovery procedures are followed if file system data is stored in a sector that goes

bad. If the bad sector is on a redundant volume, NTFS replaces the cluster dynamically, using

the data recovered by the volume manager. If the volume isn’t redundant, the data can’t be

recovered, and NTFS sets a bit in the volume file that indicates corruption on the volume.

The NTFS Chkdsk utility checks this bit when the system is next rebooted, and if the bit is set,

Chkdsk executes, fixing the file system corruption by reconstructing the NTFS metadata.

 Chapter 11 File Systems 987

Standard
information

0

1357

Filename Data

Bad

VCN

Bad-
cluster

file

LCN

1357 10

Starting
VCN

Starting
LCN

Number of
clusters

Standard
information

0 1 2

1355 1356 1049

Filename Data

3 4 5

1588 1589 1590

VCN

User
file

LCN

1355

1588

2

3

0

1049 1

1588 33

2

Starting
VCN

Starting
LCN

Number of
clusters

FIGURE 11-58 Bad-cluster remapping

In rare instances, file system corruption can occur even on a fault-tolerant disk configura-

tion. A double error can destroy both file system data and the means to reconstruct it. If the

system crashes while NTFS is writing the mirror copy of an MFT file record—of a file name

index or of the log file, for example—the mirror copy of such file system data might not be

fully updated. If the system were rebooted and a bad-sector error occurred on the primary

disk at exactly the same location as the incomplete write on the disk mirror, NTFS would be

unable to recover the correct data from the disk mirror. NTFS implements a special scheme

for detecting such corruptions in file system data. If it ever finds an inconsistency, it sets the

corruption bit in the volume file, which causes Chkdsk to reconstruct the NTFS metadata

when the system is next rebooted. Because file system corruption is rare on a fault-tolerant

disk configuration, Chkdsk is seldom needed. It is supplied as a safety precaution rather than

as a first-line data recovery strategy.

The use of Chkdsk on NTFS is vastly different from its use on the FAT file system. Before writ-

ing anything to disk, FAT sets the volume’s dirty bit and then resets the bit after the modifi-

cation is complete. If any I/O operation is in progress when the system crashes, the dirty bit

988 Windows Internals, Fifth Edition

is left set and Chkdsk runs when the system is rebooted. On NTFS, Chkdsk runs only when

unexpected or unreadable file system data is found and NTFS can’t recover the data from a

redundant volume or from redundant file system structures on a single volume. (The system

boot sector is duplicated, as are the parts of the MFT required for booting the system and

running the NTFS recovery procedure. This redundancy ensures that NTFS will always be able

to boot and recover itself.)

Table 11-9 summarizes what happens when a sector goes bad on a disk volume format-

ted for one of the Windows-supported file systems according to various conditions we’ve

described in this section.

TABLE 11-9 Summary of NTFS Data Recovery Scenarios

Scenario

With a SCSI Disk That Has Spare

Sectors

With a Non-SCSI Disk or a Disk

with No Spare Sectors1

Fault-tolerant

volume2

 1. Volume manager recovers the

data.

 2. Volume manager performs

sector sparing (replaces the bad

sector).

 3. File system remains unaware of

the error.

 1. Volume manager recovers the

data.

 2. Volume manager sends the data

and a bad-sector error to the file

system.

 3. NTFS performs cluster

remapping.

Non-fault-tolerant

volume

 1. Volume manager can’t recover

the data.

 2. Volume manager sends a bad-

sector error to the file system.

 3. NTFS performs cluster

remapping. Data is lost.3

 1. Volume manager can’t recover

the data.

 2. Volume manager sends a bad-

sector error to the file system.

 3. NTFS performs cluster

remapping. Data is lost.

1 In neither of these cases can a volume manager perform sector sparing: (1) hard disks that don’t use the SCSI pro-
tocol have no standard interface for providing sector sparing; (2) some hard disks don’t provide hardware support
for sector sparing, and SCSI hard disks that do provide sector sparing can eventually run out of spare sectors if a
lot of sectors go bad.

2 A fault-tolerant volume is one of the following: a mirror set or a RAID-5 set.
3 In a write operation, no data is lost: NTFS remaps the cluster before the write.

If the volume on which the bad sector appears is a fault-tolerant volume (a mirrored or

RAID-5 volume) and if the hard disk is one that supports sector sparing (and that hasn’t run

out of spare sectors), it doesn’t matter which file system you’re using (FAT or NTFS). The vol-

ume manager replaces the bad sector without the need for user or file system intervention.

If a bad sector is located on a hard disk that doesn’t support sector sparing, the file system

is responsible for replacing (remapping) the bad sector or—in the case of NTFS—the cluster

in which the bad sector resides. The FAT file system doesn’t provide sector or cluster remap-

ping. The benefits of NTFS cluster remapping are that bad spots in a file can be fixed without

harm to the file (or harm to the file system, as the case may be) and that the bad cluster

won’t be reallocated to the same or another file.

 Chapter 11 File Systems 989

Self-Healing

With today’s multiterabyte storage devices, taking a volume offline for a consistency check

can result in a service outage of many hours. Recognizing that many disk corruptions are

localized to a single file or portion of metadata, NTFS implements a self-healing feature to

repair damage while a volume remains online. When NTFS detects corruption, it prevents

access to the damaged file or files and creates a system worker thread that executes Chkdsk-

like corrections to the corrupted data structures, allowing access to the repaired files when it

has finished. Access to other files continues normally during this operation, minimizing ser-

vice disruption.

You can use the fsutil repair set command to view and set a volume’s repair options, which

are summarized in Table 11-10. The Fsutil utility uses the FSCTL_SET_REPAIR file system con-

trol code to set these settings, which are saved in the VCB for the volume.

TABLE 11-10 NTFS Self-Healing Behaviors

Flag Behavior

SET_REPAIR_ENABLED Enable self-healing for the volume.

SET_REPAIR_WARN_ABOUT_

DATA_LOSS

If the self-healing process is unable to fully recover a file, specifies

whether the user should be visually warned.

SET_REPAIR_DISABLED_AND_

BUGCHECK_ON_CORRUPTION

If the NtfsBugCheckOnCorrupt NTFS registry value was set by

using fsutil behavior set NtfsBugCheckOnCorrupt 1 and this flag

is set, the system will crash with a STOP error 0x24, indicating file

system corruption. This setting is automatically cleared during

boot time to avoid repeated reboot cycles.

In all cases, including when the visual warning is disabled (the default), NTFS will log any self-

healing operation it undertook in the System event log.

Apart from periodic automatic self-healing, NTFS also supports manually initiated self-

healing cycles through the FSCTL_INITIATE_REPAIR and FSCTL_WAIT_FOR_REPAIR control

codes, which can be initiated with the fsutil repair initiate and fsutil repair wait commands.

This allows the user to force the repair of a specific file and to wait until repair of that file is

complete.

To check the status of the self-healing mechanism, the FSCTL_QUERY_REPAIR control code or

the fsutil repair query command can be used, as shown here:

C:\>fsutil repair query c:

Self healing is enabled for volume c: with flags 0x1.

 flags: 0x01 - enable general repair

 0x08 - warn about potential data loss

 0x10 - disable general repair and bugcheck once on first corruption

990 Windows Internals, Fifth Edition

Encrypting File System Security

EFS security relies on cryptography support. The first time a file is encrypted, EFS assigns

the account of the user performing the encryption a private/public key pair for use in file

encryption. Users can encrypt files via Windows Explorer by opening a file’s Properties dia-

log box, clicking Advanced, and then selecting the Encrypt Contents To Secure Data option,

as shown in Figure 11-59. Users can also encrypt files via a command-line utility named

cipher. Windows automatically encrypts files that reside in directories that are designated as

encrypted directories. When a file is encrypted, EFS generates a random number for the file

that EFS calls the file’s file encryption key (FEK). EFS uses the FEK to encrypt the file’s contents

with a stronger variant of the Data Encryption Standard (DES) algorithm—Triple-DES (3DES)

or Advanced Encryption Standard (AES). EFS stores the file’s FEK with the file but encrypts the

FEK with the user’s EFS public key by using the RSA public key–based encryption algorithm.

After EFS completes these steps, the file is secure: other users can’t decrypt the data without

the file’s decrypted FEK, and they can’t decrypt the FEK without the private key.

FIGURE 11-59 Encrypt files by using the Advanced Attributes dialog box

EFS FEK Key Strength

The default FEK encryption algorithm is AES. The Windows AES algorithm uses 256-

bit keys. Use of 3DES allows access to larger sized keys, so if you require greater key

strength you can enable 3DES encryption in one of two ways: either as the algorithm

for all system cryptographic services or just for EFS.

To have 3DES be the encryption algorithm for all system cryptographic services, open

the Local Security Policy Editor by entering secpol.msc in the Run dialog box from the

Start menu and open the Security Options node under Local Policies. View the proper-

ties of System Cryptography: Use FIPS Compliant Algorithms For Encryption, Hashing

And Signing, and enable it.

To enable 3DES for EFS only, create the DWORD value HKLM\SOFTWARE\Microsoft\

Windows NT\CurrentVersion\EFS\AlgorithmID, set it to 0x6603, and reboot.

 Chapter 11 File Systems 991

EFS uses a private/public key algorithm to encrypt FEKs. To encrypt file data, EFS uses AES

or 3DES because both are symmetric encryption algorithms, which means that they use the

same key to encrypt and decrypt data. Symmetric encryption algorithms are typically very

fast, which makes them suitable for encrypting large amounts of data, such as file data.

However, symmetric encryption algorithms have a weakness: you can bypass their security if

you obtain the key. If multiple users want to share one encrypted file protected only by AES

or 3DES, each user would require access to the file’s FEK. Leaving the FEK unencrypted would

obviously be a security problem, but encrypting the FEK once would require all the users to

share the same FEK decryption key—another potential security problem.

Keeping the FEK secure is a difficult problem, which EFS addresses with the public key–based

half of its encryption architecture. Encrypting a file’s FEK for individual users who access the

file lets multiple users share an encrypted file. EFS can encrypt a file’s FEK with each user’s

public key and can store each user’s encrypted FEK with the file. Anyone can access a user’s

public key, but no one can use a public key to decrypt the data that the public key encrypted.

The only way users can decrypt a file is with their private key, which the operating system

must access. A user’s private key decrypts the user’s encrypted copy of a file’s FEK. Public

key–based algorithms are usually slow, but EFS uses these algorithms only to encrypt FEKs.

Splitting key management between a publicly available key and a private key makes key

management a little easier than symmetric encryption algorithms do and solves the dilemma

of keeping the FEK secure.

Windows stores a user’s private keys in the user’s profile directory (typically under \Users)

within the AppData\Roaming\Microsoft\Crypto\RSA subdirectory. To protect private keys,

Windows encrypts all files within the RSA folder with a random symmetric key called the

user’s master key. The master key is 64 bytes in length and is generated by a strong random

number generator. The master key is also stored in the user’s profile under the AppData\

Roaming\Microsoft\Protect directory and is 3DES-encrypted with a key that’s in part based

on the user’s password. When a user changes his or her password, master keys are automati-

cally unencrypted and re-encrypted using the new password.

Several components work together to make EFS work, as the diagram of EFS architecture in

Figure 11-60 shows. EFS support is merged into the NTFS driver. Whenever NTFS encounters

an encrypted file, NTFS executes EFS functions that it contains. The EFS functions encrypt

and decrypt file data as applications access encrypted files. Although EFS stores an FEK with

a file’s data, users’ public keys encrypt the FEK. To encrypt or decrypt file data, EFS must

decrypt the file’s FEK with the aid of cryptography services that reside in user mode.

992 Windows Internals, Fifth Edition

Cryptographic
service

providers

Microsoft Base
Cryptographic
Provider 1.0Lsasrv

EFS functions

Lsass

…

ALPC

KSecDD

Encrypted
file access

Kernel mode

User mode

Application

NTFS

FIGURE 11-60 EFS architecture

The Local Security Authority Subsystem (Lsass; \%SystemRoot%\System32\Lsass.exe) man-

ages logon sessions but also handles EFS key management chores. For example, when EFS

needs to decrypt an FEK to decrypt file data a user wants to access, NTFS sends a request

to Lsass. EFS sends the request via an advanced local procedure call (ALPC) message. The

KSecDD (\%SystemRoot%\System32\Drivers\Ksecdd.sys) device driver exports functions for

other drivers that need to send ALPC messages to Lsass. The Local Security Authority Server

(Lsasrv; \%SystemRoot%\System32\Lsasrv.dll) component of Lsass that listens for remote pro-

cedure call (RPC) requests passes requests to decrypt an FEK to the appropriate EFS-related

decryption function, which also resides in Lsasrv. Lsasrv uses functions in Microsoft CryptoAPI

(also referred to as CAPI) to decrypt the FEK, which the NTFS driver sent to Lsass in encrypted

form.

CryptoAPI comprises cryptographic service provider (CSP) DLLs that make various cryp-

tography services (such as encryption/decryption and hashing) available to applications.

The CSP DLLs manage retrieval of user private and public keys, for example, so that Lsasrv

doesn’t need to concern itself with the details of how keys are protected or even with the

details of the encryption algorithms. EFS uses the RSA encryption algorithms provided by the

Microsoft Enhanced Cryptographic provider (\%SystemRoot%\System32\Rsaenh.dll). After

Lsasrv decrypts an FEK, Lsasrv returns the FEK to the NTFS driver via an ALPC reply mes-

sage. After EFS receives the decrypted FEK, EFS can use AES to decrypt the file data for NTFS.

 Chapter 11 File Systems 993

Let’s look at the details of how EFS integrates with NTFS and how Lsasrv uses CryptoAPI to

manage keys.

Encrypting a File for the First Time

The NTFS driver calls its internal EFS functions when it encounters an encrypted file. A file’s

attributes record that the file is encrypted in the same way that a file records that it is com-

pressed (discussed earlier in this chapter). NTFS has specific interfaces for converting a file

from nonencrypted to encrypted form, but user-mode components primarily drive the pro-

cess. As described earlier, Windows lets you encrypt a file in two ways: by using the cipher
command-line utility or by checking the Encrypt Contents To Secure Data check box in

the Advanced Attributes dialog box for a file in Windows Explorer. Both Windows Explorer

and the cipher command rely on the EncryptFile Windows API that Advapi32.dll (Advanced

Windows APIs DLL) exports. Advapi32 loads another DLL, Feclient.dll (File Encryption Client

DLL), to obtain APIs that Advapi32 can use to invoke EFS interfaces in Lsasrv via ALPC.

When Lsasrv receives an RPC message from Feclient to encrypt a file, Lsasrv uses the

Windows impersonation facility to impersonate the user that ran the application (either

cipher or Windows Explorer) that is encrypting the file. (Impersonation is described in

Chapter 6.) This procedure lets Windows treat the file operations that Lsasrv performs as if

the user who wants to encrypt the file is performing them. Lsasrv usually runs in the System

account. (The System account is described in Chapter 6.) In fact, if it doesn’t impersonate the

user, Lsasrv usually won’t have permission to access the file in question.

Lsasrv next creates a log file in the volume’s System Volume Information directory into which

Lsasrv records the progress of the encryption process. The log file usually has the name Efs0.

log, but if other files are undergoing encryption, increasing numbers replace the 0 until a

unique log file name for the current encryption is created.

CryptoAPI relies on information that a user’s registry profile stores, so if the profile is not

already loaded, Lsasrv next uses the LoadUserProfile API function of Userenv.dll (User Envi-

ron ment DLL) to load the profile into the registry of the user it is impersonating. Typically,

the user profile is already loaded because Winlogon loads a user’s profile when a user logs

on. However, if a user uses the Windows RunAs command to log on to a different account,

when the user tries to access encrypted files from that account, the account’s profile might

not be loaded.

Lsasrv then generates an FEK for the file by using the RSA encryption facilities of the

Microsoft Base Cryptographic Provider 1.0 CSP.

994 Windows Internals, Fifth Edition

Constructing Key Rings

At this point, Lsasrv has an FEK and can construct EFS information to store with the file,

including an encrypted version of the FEK. Lsasrv reads the HKEY_ CURRENT_USER\Software\

Microsoft\Windows NT\CurrentVersion\EFS\CurrentKeys\CertificateHash value of the user

performing the encryption to obtain the user’s public key signature. (Note that this key

doesn’t appear in the registry until a file or folder is encrypted.) Lsasrv uses the signature to

access the user’s public key and encrypt FEKs.

Lsasrv can now construct the information that EFS stores with the file. EFS stores only one

block of information in an encrypted file, and that block contains an entry for each user shar-

ing the file. These entries are called key entries, and EFS stores them in the Data Decryption

Field (DDF) portion of the file’s EFS data. A collection of multiple key entries is called a key
ring because, as mentioned earlier, EFS lets multiple users share encrypted files.

Figure 11-61 shows a file’s EFS information format and key entry format. EFS stores enough

information in the first part of a key entry to precisely describe a user’s public key. This data

includes the user’s security ID (SID) (note that the SID is not guaranteed to be present), the

container name in which the key is stored, the cryptographic provider name, and the private/

public key pair certificate hash. Only the private/public key pair certificate hash is used by

the decryption process. The second part of the key entry contains an encrypted version of

the FEK. Lsasrv uses the CryptoAPI to encrypt the FEK with the RSA algorithm and the user’s

public key.

EFS information

Header

Data
decryption

field

Data
recovery

field

Version

Checksum

Number of DDF key entries

DDF key entry 1

DDF key entry 2

Number of DRF key entries

DRF key entry 1

Key entry

User SID
(S-1-5-21-...)

Container name
(ee341-2144-55ba...)

Provider name
(Microsoft Base Cryptographic Provider 1.0)

EFS certificate hash
(cb3e4e...)

Encrypted FEK
(03fe4f3c...)

FIGURE 11-61 Format of EFS information and key entries

Next, Lsasrv creates another key ring that contains recovery key entries. EFS stores infor-

mation about recovery key entries in a file’s Data Recovery Field (DRF). The format of DRF

entries is identical to the format of DDF entries. The DRF’s purpose is to let designated

accounts, or Recovery Agents, decrypt a user’s file when administrative authority must have

 Chapter 11 File Systems 995

access to the user’s data. For example, suppose a company employee forgot his or her logon

password. An administrator can reset the user’s password, but without Recovery Agents, no

one can recover the user’s encrypted data.

Recovery Agents are defined with the Encrypted Data Recovery Agents security policy of

the local computer or domain. This policy is available from the Local Security Policy MMC

snap-in, as shown in Figure 11-62. When you use the Add Recovery Agent Wizard (by right-

clicking Encrypting File System and then clicking Add Data Recovery Agent), you can add

Recovery Agents and specify which private/public key pairs (designated by their certificates)

the Recovery Agents use for EFS recovery. Lsasrv interprets the recovery policy when it initial-

izes and when it receives notification that the recovery policy has changed. EFS creates a DRF

key entry for each Recovery Agent by using the cryptographic provider registered for EFS

recovery.

FIGURE 11-62 Encrypted Data Recovery Agents group policy

In the final step in creating EFS information for a file, Lsasrv calculates a checksum for the

DDF and DRF by using the MD5 hash facility of Base Cryptographic Provider 1.0. Lsasrv stores

the checksum’s result in the EFS information header. EFS references this checksum during

decryption to ensure that the contents of a file’s EFS information haven’t become corrupted

or been tampered with.

Encrypting File Data

Figure 11-63 illustrates the flow of the encryption process. After Lsasrv constructs the nec-

essary information for a file a user wants to encrypt, it can begin encrypting the file. Lsasrv

creates a backup file, Efs0.tmp, for the file undergoing encryption. (Lsasrv uses higher num-

bers in the backup file name if other backup files exist.) Lsasrv creates the backup file in the

directory that contains the file undergoing encryption. Lsasrv applies a restrictive security

descriptor to the backup file so that only the System account can access the file’s contents.

Lsasrv next initializes the log file that it created in the first phase of the encryption process.

Finally, Lsasrv records in the log file that the backup file has been created. Lsasrv encrypts the

original file only after the file is completely backed up.

996 Windows Internals, Fifth Edition

Lsasrv next sends the EFS kernel-mode code inside NTFS a command to add to the original

file the EFS information that it just created. The EFS kernel-mode code takes the EFS infor-

mation that Lsasrv sent and applies the information to the file, which lets EFS add the $EFS

attribute to NTFS files. Execution returns to Lsasrv, which copies the contents of the file

undergoing encryption to the backup file. When the backup copy is complete, including

backups of all alternate data streams, Lsasrv records in the log file that the backup file is up

to date. Lsasrv then sends another command to NTFS to tell NTFS to encrypt the contents of

the original file.

Application

Application writes data
to an encrypted file.

NTFS file
system
driver

Cache
manager

User mode

Kernel mode
NTFS places data in
file system cache.

2

Cache manager lazy
writes data to disk via NTFS.

3

1

NTFS uses EFS code to encrypt
file contents headed to disk.
NTFS writes encrypted
file contents to disk.

4

VolumeVolume

FIGURE 11-63 Flow of EFS

When NTFS receives the EFS command to encrypt the file, NTFS deletes the contents of the

original file and copies the backup data to the file. After NTFS copies each section of the file,

NTFS flushes the section’s data from the file system cache, which prompts the cache man-

ager to tell NTFS to write the file’s data to disk. Because the file is marked as encrypted, at

this point in the file-writing process, NTFS calls its EFS routines to encrypt the data before it

writes the data to disk. EFS uses the unencrypted FEK that NTFS passes it to perform AES or

3DES encryption of the file as appropriate, one sector (512 bytes) at a time.

After EFS encrypts the file, Lsasrv records in the log file that the encryption was successful

and deletes the file’s backup copy. Finally, Lsasrv deletes the log file and returns control to

the application that requested the file’s encryption.

 Chapter 11 File Systems 997

Encryption Process Summary

The following list summarizes the steps EFS performs to encrypt a file:

 1. The user profile is loaded if necessary.

 2. A log file is created in the System Volume Information directory with the name Efsx.log,

where x is a unique number (for example, Efs0.log). As subsequent steps are performed,

records are written to the log so that the file can be recovered in case the system fails

during the encryption process.

 3. Base Cryptographic Provider 1.0 generates a random 128-bit FEK for the file.

 4. A user EFS private/public key pair is generated or obtained. HKEY_CURRENT_USER\

Software\Microsoft\Windows NT\CurrentVersion\EFS\CurrentKeys\CertificateHash iden-

tifies the user’s key pair.

 5. A DDF key ring is created for the file that has an entry for the user. The entry contains a

copy of the FEK that has been encrypted with the user’s EFS public key.

 6. A DRF key ring is created for the file. It has an entry for each Recovery Agent on the

system, with each entry containing a copy of the FEK encrypted with the agent’s EFS

public key.

 7. A backup file with a name in the form Efs0.tmp is created in the same directory as the

file to be encrypted.

 8. The DDF and DRF key rings are added to a header and augment the file as its EFS

attribute.

 9. The backup file is marked as encrypted, and the original file is copied to the backup.

 10. The original file’s contents are destroyed, and the backup is copied to the original. This

copy operation results in the data in the original file being encrypted because the file is

now marked as encrypted.

 11. The backup file is deleted.

 12. The log file is deleted.

 13. The user profile is unloaded (if it was loaded in step 1).

If the system crashes during the encryption process, either the original file remains intact

or the backup file contains a consistent copy. When Lsasrv initializes after a system crash, it

looks for log files under the System Volume Information subdirectory on each NTFS volume

on the system. If Lsasrv finds one or more log files, it examines their contents and determines

how recovery should take place. Lsasrv deletes the log file and the corresponding backup

file if the original file wasn’t modified at the time of the crash; otherwise, Lsasrv copies the

998 Windows Internals, Fifth Edition

backup file over the original, partially encrypted file and then deletes the log and backup.

After Lsasrv processes log files, the file system will be in a consistent state with respect to

encryption, with no loss of user data.

The Decryption Process

The decryption process begins when a user opens an encrypted file. NTFS examines the file’s

attributes when opening the file and reads the $EFS attribute associated with the encrypted

file. NTFS completes the necessary steps to open the file and ensures that the user opening

the file has access privileges to the file’s encrypted data (that is, that an encrypted FEK in

either the DDF or DRF key ring corresponds to a private/public key pair associated with the

user). As EFS performs this validation, EFS obtains the file’s decrypted FEK to use in subse-

quent data operations the user might perform on the file.

EFS can’t decrypt an FEK and relies on Lsasrv (which can use CryptoAPI) to perform FEK

decryption. EFS sends an ALPC message by way of the Ksecdd.sys driver to Lsasrv that asks

Lsasrv to obtain the decrypted form of the encrypted FEK in the $EFS attribute data (the EFS

data) that corresponds to the user who is opening the file.

When Lsasrv receives the ALPC message, Lsasrv executes the Userenv.dll (User Environment

DLL) LoadUserProfile API function to bring the user’s profile into the registry, if the profile

isn’t already loaded. Lsasrv proceeds through each key field in the EFS data, using the user’s

private key to try to decrypt each FEK. For each key, Lsasrv attempts to decrypt a DDF or

DRF key entry’s FEK. If the certificate hash in a key field doesn’t refer to a key the user owns,

Lsasrv moves on to the next key field. If Lsasrv can’t decrypt any DDF or DRF key field’s FEK,

the user can’t obtain the file’s FEK. Consequently, EFS denies access to the application open-

ing the file. However, if Lsasrv identifies a hash as corresponding to a key the user owns, it

decrypts the FEK with the user’s private key using CryptoAPI.

Because Lsasrv processes both DDF and DRF key rings when decrypting an FEK, it automati-

cally performs file recovery operations. If a Recovery Agent that isn’t registered to access

an encrypted file (that is, it doesn’t have a corresponding field in the DDF key ring) tries to

access a file, EFS will let the Recovery Agent gain access because the agent has access to a

key pair for a key field in the DRF key ring.

Decrypted FEK Caching

Traveling the path from the NTFS driver to Lsasrv and back can take a relatively long time—

in the process of decrypting an FEK, CryptoAPI results in more than 2,000 registry API calls

and 400 file system accesses on a typical system. The NTFS driver uses a cache to try to avoid

this expense.

 Chapter 11 File Systems 999

Decrypting File Data

After an application opens an encrypted file, the application can read from and write to the

file. NTFS uses EFS to decrypt file data as NTFS reads the data from the disk and before NTFS

places the data in the file system cache. Similarly, when an application writes data to a file,

the data remains in unencrypted form in the file system cache until the application or the

cache manager uses NTFS to flush the data back to disk. When an encrypted file’s data writes

back from the cache to the disk, NTFS uses EFS to encrypt the data.

As stated earlier, EFS performs encryption and decryption in 512-byte units. The 512-byte

size is the most convenient for the driver because disk reads and writes occur in multiples of

the 512-byte sector.

Backing Up Encrypted Files

An important aspect of any file encryption facility’s design is that file data is never available

in unencrypted form except to applications that access the file via the encryption facility.

This restriction particularly affects backup utilities, in which archival media store files. EFS

addresses this problem by providing a facility for backup utilities so that the utilities can back

up and restore files in their encrypted states. Thus, backup utilities don’t have to be able to

decrypt file data, nor do they need to encrypt file data in their backup procedures.

Backup utilities use the EFS API functions OpenEncryptedFileRaw, ReadEncryptedFileRaw,

WriteEncryptedFileRaw, and CloseEncryptedFileRaw in Windows to access a file’s encrypted

contents. The Advapi32.dll library provides these API functions, which all use ALPC to invoke

corresponding functions in Lsasrv. For example, after a backup utility opens a file for raw

access during a backup operation, the utility calls ReadEncryptedFileRaw to obtain the file

data. The Lsasrv function EfsReadFileRaw issues control commands (which the EFS session key

encrypts with AES or 3DES) to the NTFS driver to read the file’s EFS attribute first and then

the encrypted contents.

EfsReadFileRaw might have to perform multiple read operations to read a large file.

As EfsReadFileRaw reads each portion of such a file, Lsasrv sends an RPC message to

Advapi32.dll that executes a callback function that the backup program specified when it

issued the ReadEncryptedFileRaw API function. EfsReadFileRaw hands the encrypted data

it just read to the callback function, which can write the data to the backup media. Backup

utilities restore encrypted files in a similar manner. The utilities call the WriteEncryptedFileRaw

API function, which invokes a callback function in the backup program to obtain the unen-

crypted data from the backup media while Lsasrv’s EfsWriteFileRaw function is restoring the

file’s contents.

1000 Windows Internals, Fifth Edition

EXPERIMENT: Viewing EFS Information

EFS has a handful of other API functions that applications can use to manipulate

encrypted files. For example, applications use the AddUsersToEncryptedFile API function

to give additional users access to an encrypted file and RemoveUsersFromEncryptedFile

to revoke users’ access to an encrypted file. Applications use the QueryUsersOn-
EncryptedFile function to obtain information about a file’s associated DDF and DRF key

fields. QueryUsersOnEncryptedFile returns the SID, certificate hash value, and display

information that each DDF and DRF key field contains. The following output is from the

EFSDump utility, from Sysinternals, when an encrypted file is specified as a command-

line argument:

C:\>efsdump test.txt

EFS Information Dumper v1.02

Copyright (C) 1999 Mark Russinovich

Systems Internals – http://www.sysinternals.com

test.txt:

DDF Entry:

 DARYL\Mark:

 CN=Mark,L=EFS,OU=EFS File Encryption Certificate

DRF Entry:

 Unknown user:

 EFS Data Recovery

You can see that the file test.txt has one DDF entry for user Mark and one DRF entry for

the EFS Data Recovery agent, which is the only Recovery Agent currently registered on

the system.

Conclusion

Windows supports a wide variety of file system formats accessible to both the local system

and remote clients. The file system filter driver architecture provides a clean way to extend

and augment file system access, and NTFS provides a reliable, secure, scalable file system for-

mat for local file system storage. In the next chapter, we’ll look at networking on Windows.

 1001

Chapter 12

Networking

Windows was designed with networking in mind, and it includes broad networking support

that is integrated with the I/O system and the Windows API. The four basic types of network-

ing software are services, APIs, protocols, and network adapter device drivers, and each is

layered on the next to form a network stack. Windows has well-defined interfaces for each

layer, so in addition to using the wide variety of APIs, protocols, and adapter device drivers

that ship with Windows, third parties can extend the operating system’s networking capabili-

ties by developing their own.

In this chapter, we take you from the top of the Windows networking stack to the bottom.

First, we present the mapping between the Windows networking software components and

the Open Systems Interconnection (OSI) reference model. Then we briefly describe the net-

working APIs available on Windows and explain how they are implemented. You’ll learn how

multiple redirector support and name resolution work and how protocol drivers are imple-

mented. After looking at the implementation of network adapter device drivers, we examine

binding, which is the glue that connects services, protocol stacks, and network adapters.

Windows Networking Architecture

The goal of network software is to take a request (usually an I/O request) from an application

on one machine, pass it to another machine, execute the request on the remote machine,

and return the results to the first machine. In the course of this process, the request must be

transformed several times. A high-level request, such as “read x number of bytes from file

y on machine z,” requires software that can determine how to get to machine z and what

communication software that machine understands. Then the request must be altered for

transmission across a network—for example, divided into short packets of information. When

the request reaches the other side, it must be checked for completeness, decoded, and sent

to the correct operating system component for execution. Finally, the reply must be encoded

for sending back across the network.

The OSI Reference Model

To help different computer manufacturers standardize and integrate their networking

software, in 1984 the International Organization for Standardization (ISO) defined a soft-

ware model for sending messages between machines. The result was the Open Systems
Interconnection (OSI) reference model. The model defines six layers of software and one physi-

cal layer of hardware, as shown in Figure 12-1.

1002 Windows Internals, Fifth Edition

Application

Presentation

Session

Transport

Network

Data-link

Physical

7

6

5

4

3

2

1

Application

Presentation

Session

Transport

Network

Data-link

Physical

7

6

5

4

3

2

1

FIGURE 12-1 OSI reference model

The OSI reference model is an idealized scheme that few systems implement precisely, but it’s

often used to frame discussions of networking principles. Each layer on one machine assumes

that it is “talking to” the same layer on the other machine. Both machines “speak” the same

language, or protocol, at the same level. In reality, however, a network transmission must

pass down each layer on the client machine, be transmitted across the network, and then

pass up the layers on the destination machine until it reaches a layer that can understand and

implement the request.

The purpose of each layer in the OSI model is to provide services to higher layers and to

abstract how the services are implemented at lower layers. Detailing the purpose of each

layer is beyond the scope of this book, but here are some brief descriptions of the various

layers:

Application layer Handles information transfer between two network applications,

including functions such as security checks, identification of the participating machines,

and initiation of the data exchange.

Presentation layer Handles data formatting, including issues such as whether lines

end in a carriage return/line feed (CR/LF) or just a carriage return (CR), whether data is

to be compressed or encrypted, and so forth.

Session layer Manages the connection between cooperating applications, including

high-level synchronization and monitoring of which application is “talking” and which is

“listening.”

Transport layer On the client, this layer divides messages into packets and assigns

them sequence numbers to ensure that they are all received in the proper order. On

the destination, it assembles packets that have been received. It also shields the session

layer from the effects of changes in hardware.

Network layer Creates packet headers and handles routing, congestion control, and

internetworking. It is the highest layer that understands the network’s topology—that

is, the physical configuration of the machines in the network, any limitations in band-

width, and so on.

 Chapter 12 Networking 1003

Data-link layer Transmits low-level data frames, waits for acknowledgment that they

were received, and retransmits frames that were lost over unreliable lines as a result of

collisions.

Physical layer Passes bits to the network cable or other physical transmission

medium.

The gray lines in Figure 12-1 represent protocols used in transmitting a request to a remote

machine. As stated earlier, each layer of the hierarchy assumes that it is speaking to the same

layer on another machine and uses a common protocol. The collection of protocols through

which a request passes on its way down and back up the layers of the network is called a

 protocol stack.

Windows Networking Components

Figure 12-2 provides an overview of the components of Windows networking, showing how

each component fits into the OSI reference model and which protocols are used between

layers. The mapping between OSI layers and networking components isn’t precise, which

is the reason that some components cross layers. The various components include the

following:

Networking APIs provide a protocol-independent way for applications to communicate

across a network. Networking APIs can be implemented in user mode or in both user

mode and kernel mode, and in some cases they are wrappers around another network-

ing API that implements a specific programming model or provides additional services.

(Note that the term networking API also describes any programming interfaces pro-

vided by networking-related software.)

Transport Driver Interface (TDI) clients are legacy kernel-mode device drivers that usu-

ally implement the kernel-mode portion of a networking API’s implementation. TDI

clients get their name from the fact that the I/O request packets (IRPs) they send to

protocol drivers are formatted according to the Windows Transport Driver Interface

standard (documented in the Windows Driver Kit). This standard specifies a common

programming interface for kernel-mode device drivers. (See Chapter 7 for more infor-

mation about IRPs.)

TDI transports, also known as transports, Network Driver Interface Specification (NDIS)
protocol drivers, and protocol drivers, are kernel-mode protocol drivers. They accept

IRPs from TDI clients and process the requests these IRPs represent. This processing

might require network communications with a peer, prompting the TDI transport to

add protocol-specific headers (for example, TCP, UDP, and/or IP) to data passed in the

IRP and to communicate with adapter drivers using NDIS functions (also documented in

1004 Windows Internals, Fifth Edition

the Windows Driver Kit). TDI transports generally facilitate application network commu-

nications by transparently performing message operations such as segmentation and

reassembly, sequencing, acknowledgment, and retransmission.

Winsock Kernel (WSK) is a transport-independent, kernel-mode networking API that

replaces the legacy TDI mechanism. WSK provides network communication by using

socketlike programming semantics similar to user-mode Winsock, while also providing

unique features such as asynchronous I/O operations built on IRPs and event callbacks.

WSK also natively supports IP version 6 (IPv6) functionality in the Next Generation TCP/

IP network stack in Windows.

The Windows Filtering Platform (WFP) is a set of APIs and system services that provide

the ability to create network filtering applications. The WFP allows applications to inter-

act with packet processing at different levels of the Windows networking stack, much

like file system filters. Similarly, network data can be traced, filtered, and also modified

before it reaches its destination.

WFP callout drivers are kernel-mode drivers that implement one or more callouts, which

extend the capabilities of the WFP by processing TCP/IP-based network data in ways

that extend the basic functionality provided by the WFP.

The NDIS library (Ndis.sys) provides encapsulation for adapter drivers, hiding from

them specifics of the Windows kernel-mode environment. The NDIS library exports

functions for use by TDI transports as well as support functions for adapter drivers.

NDIS miniport drivers are kernel-mode drivers that are responsible for interfacing TDI

transports to particular network adapters. NDIS miniport drivers are written so that

they are wrapped by the Windows NDIS library. NDIS miniport drivers don’t process

IRPs; rather, they register a call-table interface to the NDIS library that contains point-

ers to functions corresponding to ones that the NDIS library exports to TDI transports.

NDIS miniport drivers communicate with network adapters by using NDIS library func-

tions that resolve to hardware abstraction layer (HAL) functions.

As Figure 12-2 shows, the OSI layers don’t correspond to actual software. WSK transport pro-

viders, for example, frequently cross several boundaries. In fact, the bottom three layers of

software and the hardware layer are often referred to collectively as “the transport.” Software

components residing in the upper three layers are referred to as “users of the transport.”

 Chapter 12 Networking 1005

Winsock
app/

service

Peer-to-
peer infra-
structure

WinInet
app

WinHTTP
app

WinInet
API

WinHTTP
API

IIS 7 H
TTP

services

Third
-party

ap
p

lication
H

TTPA
PI.D

LL

W
ind

ow
s Filtering

 Platform
 (W

FP)
Insp

ection A
PI

U
se

r m
o

d
e
 K

e
rn

e
l m

o
d

e
Winsock 2.0 API

(Transport and namespace functions)

. . .

WS2_32.DLL

Winsock
catalogWinsock 2.0 SPI

Transport SPI functions Namespace SPI functions

Application
layer

Presentation
layer

Session
layer

Transport

&

Network

layers

Framing
layer

Data-Link
layer

Layered service providers
 TCP UDP
LSP #1 LSP #1

LSP #2LSP #2 . . .
.

(Namespace LSPs
not supported)

Transport service providers

Transport
service providers

TCP/IP UDP . . .

Namespace
service providers

DNS X.500 . . .

Third-party
TDI client

Third-party
WSK client HTTP.SYS

Next Generation Network Protocol Stack (NetIO)

NetBIOS
NetBT.SYS

TCPIP.SYS

AFD.SYS

Winsock driver

Transport Driver Interface (TDI) Winsock Kernel (WSK)

802.3 WAN 1394 Loopback IP tunnel

Network Driver Interface Specification (NDIS) API PPP/SLIP

. . .

RAW
ATM

ATM.SYS
Third-party

provider
UDP TCP/IP IPSec

FIGURE 12-2 OSI model and Windows networking components

In the remainder of this chapter, we’ll examine the networking components shown in Figure

12-2 (as well as others not shown in the figure), looking at how they fit together and how

they relate to Windows as a whole.

1006 Windows Internals, Fifth Edition

Networking APIs

Windows implements multiple networking APIs to provide support for legacy applications

and compatibility with industry standards. In this section, we’ll briefly look at the networking

APIs and describe how applications use them. It’s important to keep in mind that the decision

about which API an application uses depends on characteristics of the API, such as which pro-

tocols the API can layer over, whether the API supports reliable or bidirectional communica-

tion, and the API’s portability to other Windows platforms the application might run on. We’ll

discuss the following networking APIs:

Windows Sockets (Winsock)

Winsock Kernel

Remote procedure call (RPC)

Web access APIs

Named pipes and mailslots

NetBIOS

Other networking APIs

Windows Sockets

The original Windows Sockets (Winsock) (version 1.0) was Microsoft’s implementation of

BSD (Berkeley Software Distribution) Sockets, a programming API that became the standard

by which UNIX systems have communicated over the Internet since the 1980s. Support for

sockets on Windows makes the task of porting UNIX networking applications to Windows

relatively straightforward. The modern versions of Winsock include most of the functional-

ity of BSD Sockets but also include Microsoft-specific enhancements, which continue to

evolve. Winsock supports reliable-connection-oriented communication as well as unreliable-

 connectionless communication. Windows provides Winsock 2.2, which adds numerous

features beyond the BSD Sockets specification, such as functions that take advantage of

Windows asynchronous I/O to offer far better performance and scalability than straight BSD

Socket programming.

Winsock includes the following features:

Support for scatter-gather and asynchronous application I/O.

Quality of service (QoS) conventions so that applications can negotiate latency and

bandwidth requirements when the underlying network supports QoS.

Extensibility so that Winsock can be used with protocols other than those Windows

requires it to support.

 Chapter 12 Networking 1007

Support for integrated namespaces other than those defined by a protocol that an

application is using with Winsock. A server can publish its name in Active Directory, for

example, and by using namespace extensions, a client can look up the server’s address

in Active Directory.

Support for multipoint messages where messages transmit from a single source to mul-

tiple receivers simultaneously.

We’ll examine typical Winsock operation and then describe ways that Winsock can be

extended.

Winsock Client Operation

The first step a Winsock application takes is to initialize the Winsock API with a call to an ini-

tialization function. A Winsock application’s next step is to create a socket that will represent

a communications endpoint. The application obtains the address of the server to which it

wants to connect by calling getaddrinfo (and later calling freeaddrinfo to release the informa-

tion). The getaddrinfo function returns the list of addresses assigned to the server, and the cli-

ent attempts to connect to each one in turn until it is able to establish a connection with one

of them. This ensures that a client that supports both IP version 4 (IPv4) and IPv6 will connect

to the appropriate and/or most efficient address on a server that might have both IPv4 and

IPv6 addresses assigned to it. Winsock is a protocol-independent API, so an address can be

specified for any protocol installed on the system over which Winsock operates (TCP/IP or

TCP/IP with IPv6). After obtaining the server address, a connection-oriented client attempts

to connect to the server by using connect and specifying the server address.

When a connection is established, the client can send and receive data over its socket using

recv and send, for example. A connectionless client specifies the remote address with con-

nectionless APIs, such as the connectionless equivalents of send and recv, and sendto and

recvfrom. Clients can also use the select and WSAPoll APIs to wait on or poll multiple sockets

for synchronous I/O operations or to check their state.

Winsock Server Operation

The sequence of steps for a server application differs from that of a client. After initializing

the Winsock API, the server creates a socket and then binds it to a local address by using

bind. Again, the address type specified—whether TCP/IP, TCP/IP with IPv6, or some other

address type—is up to the server application.

If the server is connection oriented, it performs a listen operation on the socket, indicating

the backlog, or the number of connections the server asks Winsock to hold until the server

is able to accept them. Then it performs an accept operation to allow a client to connect to

the socket. If there is a pending connection request, the accept call completes immediately;

otherwise, it completes when a connection request arrives. When a connection is made, the

1008 Windows Internals, Fifth Edition

accept function returns a new socket that represents the server’s end of the connection. The

server can perform receive and send operations by using functions such as recv and send.

Like Winsock clients, servers can use the select and WSAPoll functions to query the state of

one or more sockets; however, the Winsock WSAEventSelect function and overlapped I/O

extensions are preferable for higher scalability. Figure 12-3 shows connection-oriented com-

munication between a Winsock client and server.

Server
application

Client
application

listen connect

send, recv
accept

FIGURE 12-3 Connection-oriented Winsock operation

After binding an address, a connectionless server is no different from a connectionless cli-

ent: it can send and receive data over the socket simply by specifying the remote address

with each operation. Most connectionless protocols are unreliable and in general will not

know whether the destination actually received the sent data packets, known as datagrams.
Datagram protocols are ideal for quick message passing, where the overhead of establishing

a connection is too much and reliability is not required (although an application can build

reliability on top of the protocol).

Winsock Extensions

In addition to supporting functions that correspond directly to those implemented in BSD

Sockets, Microsoft has added a handful of functions that aren’t part of the Winsock stan-

dard. Two of these functions, AcceptEx and TransmitFile, are worth describing because many

Web servers on Windows use them to achieve high performance. AcceptEx is a version of the

accept function that, in the process of establishing a connection with a client, returns the cli-

ent’s address and the client’s first message. AcceptEx allows the server application to prepost

multiple accept operations so that high volumes of incoming connection requests can be

handled. With this function, a Web server avoids executing multiple Winsock functions that

would otherwise be required.

After establishing a connection with a client, a Web server sometimes sends a file, such as a

Web page, to the client. The TransmitFile function’s implementation is integrated with the

Windows cache manager so that a client can send a file directly from the file system cache.

Sending data in this way is called zero-copy because the server doesn’t have to touch the

 Chapter 12 Networking 1009

file data to send it; it simply specifies a handle to a file and the ranges of the file to send.

In addition, TransmitFile allows a server to prepend or append data to the file’s data so

that the server can send header information, which might include the name of the Web

server and a field that indicates to the client the size of the message the server is sending.

Internet Information Services (IIS), which is included with Windows, uses both AcceptEx and

TransmitFile.

Windows also supports a handful of other, multifunction APIs, including ConnectEx, Dis-
con nectEx, and TransmitPackets. ConnectEx establishes a connection and sends the first

message on the connection. DisconnectEx closes a connection and allows the socket han-

dle representing the connection to be reused in a call to AcceptEx or ConnectEx. Finally,

TransmitPackets is similar to TransmitFile, except that it allows for the sending of in-memory

data in addition to or in lieu of file data. Finally, by using the WSAImpersonateSocketPeer and

WSARevertImpersonation functions, Winsock servers can perform impersonation (described

in Chapter 6) to perform authorization or to gain access to resources based on the client’s

security credentials.

Extending Winsock

Winsock is an extensible API on Windows because third parties can add a transport service
provider that interfaces Winsock with other protocols or layers on top of existing protocols to

provide functionality such as proxying. Third parties can also add a namespace service pro-
vider to augment Winsock’s name-resolution facilities. Service providers plug in to Winsock

by using the Winsock service provider interface (SPI). When a transport service provider is

registered with Winsock, Winsock uses the transport service provider to implement socket

functions, such as connect and accept, for the address types that the provider indicates it

implements. There are no restrictions on how the transport service provider implements the

functions, but the implementation usually involves communicating with a transport driver in

kernel mode.

A requirement of any Winsock client/server application is for the server to make its address

available to clients so that the clients can connect to the server. Standard services that exe-

cute on the TCP/IP protocol use “well-known addresses” to make their addresses available. As

long as a browser knows the name of the computer a Web server is running on, it can con-

nect to the Web server by specifying the well-known Web server address (the IP address of

the server concatenated with :80, the port number used for HTTP). Namespace service pro-

viders make it possible for servers to register their presence in other ways. For example, one

namespace service provider might on the server side register the server’s address in Active

Directory, and on the client side look up the server’s address in Active Directory. Namespace

service providers supply this functionality to Winsock by implementing standard Winsock

name-resolution functions such as getaddrinfo and getnameinfo.

1010 Windows Internals, Fifth Edition

EXPERIMENT: Looking at Winsock Service Providers

The Net Shell (Netsh.exe) utility included with Windows is able to show the registered

Winsock transport and namespace providers by using the netsh winsock show catalog

command. For example, if there are two TCP/IP transport service providers, the first one

listed is the default provider for Winsock applications using the TCP/IP protocol. Here’s

sample output from Netsh showing the registered transport service providers:

C:\Users\Administrator>netsh winsock show catalog

Winsock Catalog Provider Entry

--

Entry Type: Base Service Provider

Description: MSAFD Tcpip [TCP/IP]

Provider ID: {E70F1AA0-AB8B-11CF-8CA3-00805F48A192}

Provider Path: %SystemRoot%\system32\mswsock.dll

Catalog Entry ID: 1001

Version: 2

Address Family: 2

Max Address Length: 16

Min Address Length: 16

Socket Type: 1

Protocol: 6

Protocol Chain Length: 1

Winsock Catalog Provider Entry

--

Entry Type: Base Service Provider

Description: MSAFD Tcpip [UDP/IP]

Provider ID: {E70F1AA0-AB8B-11CF-8CA3-00805F48A192}

Provider Path: %SystemRoot%\system32\mswsock.dll

Catalog Entry ID: 1002

Version: 2

Address Family: 2

Max Address Length: 16

Min Address Length: 16

Socket Type: 2

Protocol: 17

Protocol Chain Length: 1

Winsock Catalog Provider Entry

--

Entry Type: Base Service Provider

Description: MSAFD Tcpip [RAW/IP]

Provider ID: {E70F1AA0-AB8B-11CF-8CA3-00805F48A192}

Provider Path: %SystemRoot%\system32\mswsock.dll

Catalog Entry ID: 1003

Version: 2

Address Family: 2

Max Address Length: 16

Min Address Length: 16

Socket Type: 3

Protocol: 0

Protocol Chain Length: 1

 Chapter 12 Networking 1011

You can also use the Autoruns utility from Windows Sysinternals (www.microsoft.com/
technet/sysinternals) to view namespace and transport providers, as well as to disable

those that might be causing problems or unwanted behavior on the system.

Winsock Implementation

Winsock’s implementation is shown in Figure 12-4. Its application interface consists of an API

DLL, Ws2_32.dll (\%SystemRoot%\System32\Ws2_32.dll), which provides applications access

to Winsock functions. Ws2_32.dll calls on the services of namespace and transport service

providers to carry out name and message operations. The Mswsock.dll library acts as a trans-

port service provider for the protocols Microsoft provides support for in Winsock and uses

Winsock Helper libraries that are protocol specific to communicate with kernel-mode pro-

tocol drivers. For example, Wshtcpip.dll is the TCP/IP helper. Mswsock.dll (\%SystemRoot%\

System32\Mswsock.dll) implements the Microsoft Winsock extension functions, such as

TransmitFile, AcceptEx, and WSARecvEx.

Windows ships with helper DLLs for TCP/IP, TCP/IP with IPv6, Bluetooth, NetBIOS, IrDA

(Infrared Data Association), and PGM (Pragmatic General Multicast). It also includes

namespace service providers for DNS (TCP/IP), Active Directory (LDAP), and NLA (Network

Location Awareness).

NtReadFile,
NtWriteFile,

NtCreateFile,
NtDeviceIoControlFile

User mode

Kernel mode

Application Ws2_32.dll

TDI
TLNPI

Wshtcpip.dll, ...

Ntdll.dll

Service providers
SPI

\Device\AFD
AFD FSD

NetBIOS TCP/IPProtocol drivers

Mswsock.dll, ...

TLNPI

FIGURE 12-4 Winsock implementation

1012 Windows Internals, Fifth Edition

Like the named pipe and mailslot APIs (described later in this chapter), Winsock integrates

with the Windows I/O model and uses file handles to represent sockets. This support

requires the aid of a kernel-mode file system driver, so Msafd.dll uses the services of the

Ancillary Function Driver (AFD—\%SystemRoot%\System32\Drivers\Afd.sys) to implement

socket-based functions. AFD is a Transport Layer Network Provider Interface (TLNPI) client

and executes network socket operations, such as sending and receiving messages, by send-

ing TDI IRPs to protocol drivers. AFD isn’t coded to use particular protocol drivers; instead,

Msafd.dll informs AFD of the name of the protocol used for each socket so that AFD can

open the device object representing the protocol.

Winsock Kernel (WSK)

To enable kernel-mode drivers and modules to have access to networking API interfaces

similar to those available to user-mode applications, Windows implements a socket-based

networking programming interface called Winsock Kernel (WSK). WSK replaces the legacy

TDI API interface present on older versions of Windows but maintains the TDI SPI interface

for transport providers. Compared to TDI, WSK provides better performance and scalability

and much easier programming, because it relies less on internal kernel behavior and more

on socket-based semantics. Additionally, WSK was written to take full advantage of the latest

technologies in the Windows TCP/IP stack, which TDI was not originally anticipated to sup-

port. As shown in Figure 12-5, WSK makes use of the Network Module Registrar (NMR) com-

ponent of Windows to attach to and detach from transport devices, and it can be used, just

like Winsock, to support many different kinds of network clients—for example, the Http.sys

driver for the HTTP Server API (mentioned later in the chapter) is a WSK client.

I/O manager

Kernel-mode networking client applications

Winsock Kernel (WSK)

Transport
(TCP/IPv4)

Network
Module
Registrar
(NMR)

Transport
(TCP/IPv6)

Transport
(third party)

. . .

FIGURE 12-5 WSK overview

WSK Implementation

WSK’s implementation is shown in Figure 12-6. At its core is the WSK subsystem itself, which

uses the Next Generation TCP/IP Stack (%SystemRoot%\System32\Drivers\Netio.sys) but is

actually implemented in AFD. The subsystem is responsible for the provider side of the WSK

 Chapter 12 Networking 1013

API. The subsystem interfaces with transport providers (shown at the bottom of Figure 12-5)

to provide support for various transport protocols. Attached to the WSK subsystem are WSK

applications, which are kernel-mode drivers that implement the client-side WSK API in order

to perform network operations. The WSK subsystem calls WSK applications to notify them of

asynchronous events.

WSK
application

WSK
provider NPI

WSK
subsystem

WSK
client NPI

WSK
registration
functions

FIGURE 12-6 WSK implementation

WSK applications are bound to the WSK subsystem through the NMR or through the WSK’s

registration functions, which allow WSK applications to dynamically detect when the WSK

subsystem becomes available and then load their own dispatch table to describe the pro-

vider and client-side implementations of the WSK API. These implementations provide the

standard WSK socket-based functions, such as WskSocket, WskAccept, WskBind, WskConnect,
WskReceive, and WskSend, which have similar semantics (but not necessarily similar parame-

ters) as their user-mode Winsock counterparts. However, unlike user-mode Winsock, the WSK

subsystem defines four different kinds of socket categories, which identify which functions

and events are available:

Basic sockets, which are used only to get and set information on the transport. They

cannot be used to send or receive data or be bound to an address.

Listening sockets, which are used for sockets that accept only incoming connections.

Datagram sockets, which are used solely for sending and receiving datagrams.

Connection-oriented sockets, which support all the functionality required to send and

receive network traffic over an established connection.

Apart from the socket functions described, WSK also provides events through which appli-

cations are notified of network status. Unlike the model for socket functions, in which a

client controls the connection, events allow the subsystem to control the connection and

merely notify the client. These include the WskAcceptEvent, WskInspectEvent, WskAbortEvent,
WskReceiveFromEvent, WskReceiveEvent, WskDisconnectEvent, and WskSendBacklogEvent
routines.

1014 Windows Internals, Fifth Edition

Finally, like user-mode Winsock, WSK can be extended through extension interfaces that

applications can associate with sockets. These extensions can enhance the default functional-

ity provided by the WSK subsystem.

Remote Procedure Call

Remote procedure call (RPC) is a network programming standard originally developed in the

early 1980s. The Open Software Foundation (now The Open Group) made RPC part of the

distributed computing environment (DCE) distributed computing standard. Although there

is a second RPC standard, SunRPC, the Microsoft RPC implementation is compatible with the

OSF/DCE standard. RPC builds on other networking APIs, such as named pipes or Winsock, to

provide an alternate programming model that in some sense hides the details of networking

programming from an application developer.

RPC Operation

An RPC facility is one that allows a programmer to create an application consisting of any

number of procedures, some that execute locally and others that execute on remote com-

puters via a network. It provides a procedural view of networked operations rather than a

transport-centered view, thus simplifying the development of distributed applications.

Networking software is traditionally structured around an I/O model of processing. In

Windows, for example, a network operation is initiated when an application issues a remote

I/O request. The operating system processes the request accordingly by forwarding it to a

redirector, which acts as a remote file system by making the client interaction with the remote

file system invisible to the client. The redirector passes the operation to the remote file sys-

tem, and after the remote system fills the request and returns the results, the local network

card interrupts. The kernel handles the interrupt, and the original I/O operation completes,

returning results to the caller.

RPC takes a different approach altogether. RPC applications are like other structured applica-

tions, with a main program that calls procedures or procedure libraries to perform specific

tasks. The difference between RPC applications and regular applications is that some of the

procedure libraries in an RPC application execute on remote computers, as shown in Figure

12-7, whereas others execute locally.

To the RPC application, all the procedures appear to execute locally. In other words, instead

of making a programmer actively write code to transmit computational or I/O-related

requests across a network, handle network protocols, deal with network errors, wait for

results, and so forth, RPC software handles these tasks automatically. And the Windows RPC

facility can operate over any available transports loaded into the system.

 Chapter 12 Networking 1015

RPC client application

ServerFunction()

RPC stub libraryRPC stub library

RPC server application

ServerFunction() {

}

Network

...

FIGURE 12-7 RPC operation

To write an RPC application, the programmer decides which procedures will execute locally

and which will execute remotely. For example, suppose an ordinary workstation has a net-

work connection to a Cray supercomputer or to a machine designed specifically for high-

speed vector operations. If the programmer were writing an application that manipulated

large matrices, it would make sense from a performance point of view to off-load the math-

ematical calculations to the remote computer by writing the program as an RPC application.

RPC applications work like this: As an application runs, it calls local procedures as well as pro-

cedures that aren’t present on the local machine. To handle the latter case, the application is

linked to a local static-link library or DLL that contains stub procedures, one for each remote

procedure. For simple applications, the stub procedures are statically linked with the applica-

tion, but for bigger components the stubs are included in separate DLLs. In DCOM, covered

later in the chapter, the latter method is typically used. The stub procedures have the same

name and use the same interface as the remote procedures, but instead of performing the

required operations, the stub takes the parameters passed to it and marshals them for trans-

mission across the network. Marshaling parameters means ordering and packaging them in

a particular way to suit a network link, such as resolving references and picking up a copy of

any data structures that a pointer refers to.

The stub then calls RPC run-time procedures that locate the computer where the remote

procedure resides, determine which transport mechanisms that computer uses, and send

the request to it using local transport software. When the remote server receives the RPC

request, it unmarshals the parameters (the reverse of marshaling them), reconstructs the

original procedure call, and calls the procedure. When the server finishes, it performs the

reverse sequence to return results to the caller.

In addition to the synchronous function-call-based interface described here, Windows RPC

also supports asynchronous RPC. Asynchronous RPC lets an RPC application execute a func-

tion but not wait until the function completes to continue processing. Instead, the applica-

tion can execute other code and later, when a response has arrived from the server, the

RPC runtime notifies the client that the operation has completed. The RPC runtime uses

1016 Windows Internals, Fifth Edition

the notification mechanism requested by the client. If the client uses an event synchroni-

zation object for notification, it waits for the signaling of the event object by calling the

WaitForSingleObject or WaitForMultipleObject function. If the client provides an asynchro-

nous procedure call (APC), the runtime queues the execution of the APC to the thread that

executed the RPC function. If the client program uses an I/O completion port as its notifica-

tion mechanism, it must call GetQueuedCompletionStatus to learn of the function’s comple-

tion. Alternatively, a client can poll for completion by calling RpcAsyncGetCallStatus.

In addition to the RPC runtime, Microsoft’s RPC facility includes a compiler, called the

Microsoft Interface Definition Language (MIDL) compiler. The MIDL compiler simplifies the

creation of an RPC application. The programmer writes a series of ordinary function proto-

types (assuming a C or C++ application) that describe the remote routines and then places

the routines in a file. The programmer then adds some additional information to these proto-

types, such as a network-unique identifier for the package of routines and a version number,

plus attributes that specify whether the parameters are input, output, or both. The embel-

lished prototypes form the developer’s Interface Definition Language (IDL) file.

Once the IDL file is created, the programmer compiles it with the MIDL compiler, which pro-

duces both client-side and server-side stub routines, mentioned previously, as well as header

files to be included in the application. When the client-side application is linked to the stub

routines file, all remote procedure references are resolved. The remote procedures are then

installed, using a similar process, on the server machine. A programmer who wants to call an

existing RPC application need only write the client side of the software and link the applica-

tion to the local RPC run-time facility.

The RPC runtime uses a generic RPC transport provider interface to talk to a transport pro-

tocol. The provider interface acts as a thin layer between the RPC facility and the transport,

mapping RPC operations onto the functions provided by the transport. The Windows RPC

facility implements transport provider DLLs for named pipes, HTTP, TCP/IP, and UDP. In a

similar fashion, the RPC facility is designed to work with different network security facilities.

Most of the Windows networking services are RPC applications, which means that both local

processes and processes on remote computers can call them. Thus, a remote client computer

can call the server service to list shares, open files, write to print queues, or activate users on

your server, all subject to security constraints, of course.

Server name publishing, which is the ability of a server to register its name in a location acces-

sible for client lookup, is in RPC and is integrated with Active Directory. If Active Directory

isn’t installed, the RPC name locator services fall back on NetBIOS broadcast. This behavior

allows RPC to function on stand-alone servers and workstations.

 Chapter 12 Networking 1017

RPC Security

Windows RPC includes integration with security support providers (SSPs) so that RPC clients

and servers can use authenticated or encrypted communications. When an RPC server wants

secure communication, it tells the RPC runtime what authentication service to add to the

list of available authentication services. When a client wants to use secure communication, it

binds to the server. At that time, it must tell the RPC runtime the authentication service and

authentication level it wants. Various authentication levels exist to ensure that only authorized

clients connect to a server, verify that each message a server receives originates at an autho-

rized client, check the integrity of RPC messages to detect manipulation, and even encrypt

RPC message data. Obviously, higher authentication levels require more processing. The

 client can also optionally specify the server principal name. A principal is an entity that the

RPC security system recognizes. The server must register its SSP-specific principal name with

an SSP.

An SSP handles the details of performing network communication authentication and

encryption, not only for RPC but also for Winsock. Windows includes a number of built-in

SSPs, including a Kerberos SSP to implement Kerberos version 5 authentication (including AES

support) and Secure Channel (SChannel), which implements Secure Sockets Layer (SSL) and

the Transport Layer Security (TLS) protocols. SChannel also supports TLS and SSL extensions,

which allow you to use the AES cipher as well as elliptic curve cryptographic (ECC) ciphers

on top of the protocols. Also, because it supports an open cryptographic interface (OCI) and

crypto-agile capabilities, SChannel allows government organizations to substitute the exist-

ing ciphers with more complex combinations. In the absence of a specified SSP, RPC software

uses the built-in security of the underlying transport. Some transports, such as named pipes

or local RPC, have built-in security. Others, like TCP, do not, and in this case RPC makes unse-

cure calls in the absence of a specified SSP.

Another feature of RPC security is the ability of a server to impersonate the security identity

of a client with the RpcImpersonateClient function. After a server has finished performing

impersonated operations on behalf of a client, it returns to its own security identity by calling

RpcRevertToSelf or RpcRevertToSelfEx. (See Chapter 6 for more information on impersonation.)

RPC Implementation

RPC implementation is depicted in Figure 12-8, which shows that an RPC-based application

links with the RPC run-time DLL (\%SystemRoot%\System32\Rpcrt4.dll). The RPC run-time

DLL provides marshaling and unmarshaling functions for use by an application’s RPC function

stubs as well as functions for sending and receiving marshaled data. The RPC run-time DLL

includes support routines to handle RPC over a network as well as a form of RPC called local
RPC. Local RPC can be used for communication between two processes located on the same

system, and the RPC run-time DLL uses the advanced local procedure call (ALPC) facilities

in kernel mode as the local networking API. (See Chapter 3 for more information on ALPCs.)

1018 Windows Internals, Fifth Edition

When RPC is based on nonlocal communication mechanisms, the RPC run-time DLL uses the

Winsock or named pipe APIs.

User mode

Kernel mode

Application

Active
Directory

Client
stubs

Rpcrt4.dll
Winsock Named pipes LPC

Svchost.exe Rpcss.dll

Ntdll.dll

Ws2_32.dll

Winsock service
providers

Named pipe FSD AFD FSD
Advanced local
procedure call

facility

FIGURE 12-8 RPC implementation

The RPC subsystem (RPCSS—\%SystemRoot%\System32\Rpcss.dll) is implemented as a

Windows service. RPCSS is itself an RPC application that communicates with instances of itself

on other systems to perform name lookup, registration, and dynamic endpoint mapping. (For

clarity, Figure 12-8 doesn’t show RPCSS linked with the RPC run-time DLL.)

Windows also includes support for RPC in kernel mode through the kernel-mode RPC driver

(%SystemRoot%\System32\Drivers\Msrpc.sys). Kernel-mode RPC is for internal use by the

system and is implemented on top of ALPC. Winlogon includes an RPC server with a docu-

mented set of interfaces that user-mode RPC clients can access, while Win32k.sys includes

an RPC client that communicates with Winlogon for internal notifications, such as the secure

attention sequence (SAS; see Chapter 6 for more information). The TCP/IP stack in Windows

(as well as the WFP) also uses kernel-mode RPC to communicate with the Network Store
Interface (NSI) service, which handles network routing information.

Web Access APIs

To ease the development of Internet applications, Windows provides both client and server

Internet APIs. By using the APIs, applications can provide and use FTP and HTTP services

without knowledge of the intricacies of the corresponding protocols. The client APIs include

Windows Internet, also known as WinInet, which enables applications to interact with the FTP

and HTTP protocols, and WinHTTP, which enables applications to interact with the HTTP pro-

tocol and is more suitable than WinInet in certain situations. HTTP Server is a server-side API

that enables the development of Web server applications.

 Chapter 12 Networking 1019

WinInet

WinInet supports the FTP and HTTP 1.0 and 1.1 protocols. The APIs break down into sub-API

sets specific to each protocol. Using the FTP-related APIs—such as InternetConnect to con-

nect to an FTP server, FtpFindFirstFile and FtpFindNextFile to enumerate the contents of an

FTP directory, and FtpGetFile and FtpPutFile to receive and send files—an application devel-

oper avoids the details of establishing a connection and formatting TCP/IP messages to the

FTP protocol. The HTTP-related APIs provide similar levels of abstraction, providing cookie

persistence, automatic dial-up services, client-side file caching, and automatic credential dia-

log handling. WinInet is used by core Windows components such as Windows Explorer and

Internet Explorer.

WinHTTP

The current version of the WinHTTP API, 6.0, is available on Windows Vista and Windows

Server 2008. It provides an abstraction of the HTTP/1.1 protocol for HTTP client applications

similar to what the WinInet HTTP-related APIs provide. However, whereas the WinInet HTTP

API is intended for user-interactive client-side applications, the WinHTTP API is designed

for server applications that communicate with HTTP servers. Server applications are often

implemented as Windows services that do not provide a user interface and so do not desire

the dialog boxes that WinInet APIs display. In addition, the WinHTTP APIs are more scalable

(such as supporting uploads of greater than 4 GB) and offer security functionality, such as

thread impersonation, not available from the WinInet API. WinHTTP also provides support

for chunked transfer encoding, issuer list retrieval for SSL authentication, client certificate

requests, and port range reservations.

HTTP

Using the HTTP Server API, which Windows Vista and Windows Server 2008 implement,

server applications can register to receive HTTP requests for particular URLs, receive HTTP

requests, and send HTTP responses. The HTTP Server API includes SSL support so that

applications can exchange data over secure HTTP connections. The API includes server-side

caching capabilities, synchronous and asynchronous I/O models, and both IPv4 and IPv6

addressing. IIS version 7, the version that ships with Windows Server 2008, uses the HTTP

Server API.

The HTTP Server API, which applications access through the Httpapi.dll library, relies on the

kernel-mode Http.sys driver. Http.sys starts on demand the first time any application on the

system calls HttpInitialize. Applications then call HttpCreateServerSession to initialize a server

session for the HTTP Server API. Next they use HttpCreateRequestQueue to create a private

request queue and HttpCreateUrlGroup to create a URL group, specifying the URLs that they

want to handle requests for with HttpAddUrlToUrlGroup. Using the request queues and their

registered URLs (which they associate by using HttpSetUrlGroupProperty), Http.sys allows

more than one application to service HTTP requests on a given port (port 80 for example),

1020 Windows Internals, Fifth Edition

with each servicing HTTP requests to different parts of the URL namespace, as shown in

Figure 12-9.

Server session

Request
queue

Request
queue

Request
queue

Worker process Worker processWorker process
Creator or
controller
process

URL group

URL URLURL

URL group

URL URLURL

URL group

URL URLURL . . .

.

.

HTTP kernel mode

FIGURE 12-9 HTTP request queues and URL groups

HttpReceiveHttpRequest receives incoming requests directed at registered URLs, and

HttpSendHttpResponse sends HTTP responses. Both functions offer asynchronous operation

so that an application can use GetOverlappedResult or I/O completion ports to determine

when an operation is completed.

Applications can use Http.sys to cache data in nonpaged physical memory by calling

HttpAddFragmentToCache and associating a fragment name (specified as a URL prefix) with

the cached data. Http.sys invokes the memory manager function MmAllocatePagesForMdlEx

to allocate unmapped physical pages (for large requests, Http.sys also attempts to use large

pages to optimize access to the buffered data). When Http.sys requires a virtual address

mapping for the physical memory described by an entry in the cache—for instance, when

it copies data to the cache or sends data from the cache—it uses MmMap Locked Pages-
SpecifyCache and then MmUnmapLockedPages after it completes its access. Http.sys main-

tains cached data until an application invalidates it or an optional application-specified

timeout associated with the data expires. Http.sys also trims cached data in a worker thread

that wakes up when the low memory notification event is signaled. (See Chapter 9 for infor-

mation on the low memory notification event.) When an application specifies one or more

fragment names in a call to HttpSendHttpResponse, Http.sys passes a pointer to the cached

data in physical memory to the TCP/IP driver and avoids a copy operation. Http.sys also

 Chapter 12 Networking 1021

contains code for performing server-side authentication, including full SSL support, which

removes the need to call back to the user-mode API to perform encryption and decryption

of traffic.

Finally, the HTTP Server API contains many configuration options that clients can use to set

functionality, such as authentication policies, bandwidth throttling, logging, connection lim-

its, server state, response caching, and SSL certificate binding.

Named Pipes and Mailslots

Named pipes and mailslots are programming APIs for interprocess communication. Named

pipes provide for reliable bidirectional communications, whereas mailslots provide unreliable

unidirectional data transmission. An advantage of mailslots is that they support broadcast

capability. In Windows, both APIs take advantage of Windows security, which allows a server

to control precisely which clients can connect to it.

The names that servers assign to named pipes and clients conform to the Windows Universal

Naming Convention (UNC), which is a protocol-independent way to identify resources on a

Windows network. The implementation of UNC names is described later in the chapter.

Named Pipe Operation

Named pipe communication consists of a named pipe server and a named pipe client. A

named pipe server is an application that creates a named pipe to which clients can connect.

A named pipe’s name has the format \\Server\Pipe\PipeName. The Server component of the

name specifies the computer on which the named pipe server is executing. (A named pipe

server can’t create a named pipe on a remote system.) The name can be a DNS name (for

example, mspress.microsoft.com), a NetBIOS name (mspress), or an IP address (131.107.0.1).

The Pipe component of the name must be the string “Pipe”, and PipeName is the unique

name assigned to a named pipe. The unique portion of the named pipe’s name can include

subdirectories; an example of a named pipe name with a subdirectory is \\MyComputer\Pipe\

MyServerApp\ConnectionPipe.

A named pipe server uses the CreateNamedPipe Windows function to create a named pipe.

One of the function’s input parameters is a pointer to the named pipe name, in the form

\\.\Pipe\PipeName. The “\\.\” is a Windows-defined alias for “this computer.” Other param-

eters the function accepts include an optional security descriptor that protects access to the

named pipe, a flag that specifies whether the pipe should be bidirectional or unidirectional, a

value indicating the maximum number of simultaneous connections the pipe supports, and a

flag specifying whether the pipe should operate in byte mode or message mode.

Most networking APIs operate only in byte mode, which means that a message sent with one

send function might require the receiver to perform multiple receive operations, building up

the complete message from fragments. A named pipe operating in message mode simplifies

1022 Windows Internals, Fifth Edition

the implementation of a receiver because there is a one-to-one correspondence between

send and receive requests. A receiver therefore obtains an entire message each time it com-

pletes a receive operation and doesn’t have to concern itself with keeping track of message

fragments.

The first call to CreateNamedPipe for a particular name creates the first instance of that name

and establishes the behavior of all named pipe instances having that name. A server cre-

ates additional instances, up to the maximum specified in the first call, with additional calls

to CreateNamedPipe. After creating at least one named pipe instance, a server executes the

ConnectNamedPipe Windows function, which enables the named pipe the server created

to establish connections with clients. ConnectNamedPipe can be executed synchronously

or asynchronously, and it doesn’t complete until a client establishes a connection with the

instance (or an error occurs).

A named pipe client uses the Windows CreateFile or CallNamedPipe function, specifying the

name of the pipe a server has created, to connect to a server. If the server has performed

a ConnectNamedPipe call, the client’s security profile and the access it requests to the pipe

(read, write) are validated against the named pipe’s security descriptor. (See Chapter 6 for

more information on the security-check algorithms Windows uses.) If the client is granted

access to a named pipe, it receives a handle representing the client side of a named pipe

connection and the server’s call to ConnectNamedPipe completes.

After a named pipe connection is established, the client and server can use the ReadFile and

WriteFile Windows functions to read from and write to the pipe. Named pipes support both

synchronous and asynchronous operations for message transmittal. Figure 12-10 shows a

server and client communicating through a named pipe instance.

Server
application

Client
application

\\Server\Pipe\AppPipe

Named pipe
instances

Client named pipe
endpoint

FIGURE 12-10 Named pipe communications

Another characteristic of the named pipe networking API is that it allows a server to imper-

sonate a client by using the ImpersonateNamedPipeClient function. See the “Impersonation”

section in Chapter 6 for a discussion of how impersonation is used in client/server applica-

tions. A second advanced area of functionality of the named pipe API is that it allows for

atomic send and receive operations through the TransactNamedPipe API, which behaves

according to a simple transactional model in which a message is both sent and received in

the same operation.

 Chapter 12 Networking 1023

Mailslot Operation

Mailslots provide an unreliable unidirectional broadcast mechanism. One example of an

application that can use this type of communication is a time-synchronization service, which

might broadcast a source time across the domain every few seconds. Receiving the source-

time message isn’t crucial for every computer on the network and is therefore a good candi-

date for the use of mailslots.

Like named pipes, mailslots are integrated with the Windows API. A mailslot server creates

a mailslot by using the CreateMailslot function. CreateMailslot accepts a name of the form

“\\.\Mailslot\MailslotName” as an input parameter. Again like named pipes, a mailslot server

can create mailslots only on the machine it’s executing on, and the name it assigns to a

mailslot can include subdirectories. CreateMailslot also takes a security descriptor that con-

trols client access to the mailslot. The handles returned by CreateMailslot are overlapped,

which means that operations performed on the handles, such as sending and receiving mes-

sages, are asynchronous.

Because mailslots are unidirectional and unreliable, CreateMailslot doesn’t take many of the

parameters that CreateNamedPipe does. After it creates a mailslot, a server simply listens for

incoming client messages by executing the ReadFile function on the handle representing the

mailslot.

Mailslot clients use a naming format similar to that used by named pipe clients but with

variations that make it possible to broadcast messages to all the mailslots of a given name

within the client’s domain or a specified domain. To send a message to a particular instance

of a mailslot, the client calls CreateFile, specifying the computer-specific name. An example

of such a name is “\\Server\Mailslot\MailslotName”. (The client can specify “\\.\” to represent

the local computer.) If the client wants to obtain a handle representing all the mailslots of a

given name on the domain it’s a member of, it specifies the name in the format “*\Mailslot\

MailslotName”, and if the client wants to broadcast to all the mailslots of a given name within

a different domain, the format it uses is “\\DomainName\Mailslot\MailslotName”.

After obtaining a handle representing the client side of a mailslot, the client sends messages

by calling WriteFile. Because of the way mailslots are implemented, only messages smaller

than 424 bytes can be broadcast. If a message is larger than 424 bytes, the mailslot imple-

mentation uses a reliable communications mechanism that requires a one-to-one client/

server connection, which precludes broadcast capability. This limitation makes mailslots

 generally unsuitable for messages larger than 424 bytes. Figure 12-11 shows an example of a

client broadcasting to multiple mailslot servers within a domain.

1024 Windows Internals, Fifth Edition

Server
application

Client
application

Client mailslot
endpointServer

application
\\Server2\Mailslot\AppSlot

\\Server1\Mailslot\AppSlot

*\Mailslot\AppSlot

FIGURE 12-11 Mailslot broadcast

Named Pipe and Mailslot Implementation

As evidence of their tight integration with Windows, named pipe and mailslot functions are

all implemented in the Kernel32.dll Windows client-side DLL. ReadFile and WriteFile, which

are the functions applications use to send and receive messages using named pipes or

mailslots, are the primary Windows I/O routines. The CreateFile function, which a client uses

to open either a named pipe or a mailslot, is also a standard Windows I/O routine. However,

the names specified by named pipe and mailslot applications specify file system namespaces

managed by the named pipe file system driver (\%SystemRoot%\System32\Drivers\Npfs.sys)

and the mailslot file system driver (\%SystemRoot%\System32\Drivers\Msfs.sys), as shown in

Figure 12-12.

The named pipe file system driver creates a device object named \Device\NamedPipe and

a symbolic link to that object named \Global??\Pipe. The mailslot file system driver creates

a device object named \Device\Mailslot and a symbolic link named \Global??\Mailslot that

points to that object. (See Chapter 3 for an explanation of the \Global?? object manager

directory.) Names passed to CreateFile of the form \\.\Pipe\… and \\.\Mailslot\… have their

prefix of \\.\ translated to \Global??\ so that the names resolve through a symbolic link to

a device object. The special functions CreateNamedPipe and CreateMailslot use the corre-

sponding native functions NtCreateNamedPipeFile and NtCreateMailslotFile.

Application

\Device\NamedPipe
Named pipe FSD

Kernel32.dll

Ntdll.dll

\Device\Mailslot
Mailslot FSD

FIGURE 12-12 Named pipe and mailslot implementation

 Chapter 12 Networking 1025

Later in the chapter, we’ll discuss how the redirector file system driver is involved when a

name that specifies a remote named pipe or mailslot resolves to a remote system. However,

when a named pipe or mailslot is created by a server or opened by a client, the appropriate

file system driver (FSD) on the machine where the named pipe or mailslot is located is even-

tually invoked. There are several reasons why FSDs in kernel mode implement named pipes

and mailslots, the main one being that they integrate with the object manager namespace

and can use file objects to represent opened named pipes and mailslots. This integration

results in several benefits:

The FSDs use kernel-mode security functions to implement standard Windows security

for named pipes and mailslots.

Applications can use CreateFile to open a named pipe or mailslot because FSDs inte-

grate with the object manager namespace.

Applications can use Windows functions such as ReadFile and WriteFile to interact with

named pipes and mailslots.

The FSDs rely on the object manager to track handle and reference counts for file

objects representing named pipes and mailslots.

The FSDs can implement their own named pipe and mailslot namespaces, complete

with subdirectories.

Because named pipes and mailslots use name resolution that relies on the redirector FSD to

communicate across the network, they indirectly rely on the Server Message Block (SMB) pro-

tocol. SMB works by using the TCP/IP and TCP/IP with IPv6 protocols, so applications running

on systems that have at least one of these in common can use named pipes and mailslots.

For more information about SMB, see Chapter 11.

EXPERIMENT: Listing the Named Pipe Namespace and Watching

Named Pipe Activity

It’s not possible to use the Windows API to open the root of the named pipe FSD

and perform a directory listing, but you can do this by using native API services. The

PipeList tool from Sysinternals shows you the names of the named pipes defined on a

computer as well as the number of instances that have been created for a name and

the maximum number of instances as defined by a server’s call to CreateNamedPipe.

Here’s an example of PipeList output:

C:\>pipelist

PipeList v1.01

by Mark Russinovich

http://www.sysinternals.com

1026 Windows Internals, Fifth Edition

Pipe Name Instances Max Instances

--------- --------- -------------

InitShutdown 3 -1

lsass 6 -1

protected_storage 3 -1

ntsvcs 3 -1

scerpc 3 -1

net\NtControlPipe1 1 1

plugplay 3 -1

net\NtControlPipe2 1 1

Winsock2\CatalogChangeListener-394-0 1 1

epmapper 3 -1

Winsock2\CatalogChangeListener-25c-0 1 1

LSM_API_service 3 -1

net\NtControlPipe3 1 1

eventlog 3 -1

net\NtControlPipe4 1 1

Winsock2\CatalogChangeListener-3f8-0 1 1

net\NtControlPipe5 1 1

net\NtControlPipe6 1 1

net\NtControlPipe0 1 1

atsvc 3 -1

Winsock2\CatalogChangeListener-438-0 1 1

Winsock2\CatalogChangeListener-2c8-0 1 1

net\NtControlPipe7 1 1

net\NtControlPipe8 1 1

net\NtControlPipe9 1 1

net\NtControlPipe10 1 1

net\NtControlPipe11 1 1

net\NtControlPipe12 1 1

142CDF96-10CC-483c-A516-3E9057526912 1 1

net\NtControlPipe13 1 1

net\NtControlPipe14 1 1

TSVNCache-000000000001b017 20 -1

TSVNCacheCommand-000000000001b017 2 -1

Winsock2\CatalogChangeListener-2b0-0 1 1

Winsock2\CatalogChangeListener-468-0 1 1

TermSrv_API_service 3 -1

Ctx_WinStation_API_service 3 -1

PIPE_EVENTROOT\CIMV2SCM EVENT PROVIDER 2 -1

net\NtControlPipe15 1 1

keysvc 3 -1

It’s clear from this output that several system components use named pipes as their

communications mechanism. For example, the InitShutdown pipe is created by

Winlogon to accept remote shutdown commands, and the Atsvc pipe is created by the

Task Scheduler service to enable applications to communicate with it to schedule tasks.

You can determine what process has each of these pipes open by using the object

search facility in Process Explorer.

 Chapter 12 Networking 1027

Note A Max Instances value of –1 means that there is no upper limit on the number of

instances.

NetBIOS

Until the 1990s, the Network Basic Input/Output System (NetBIOS) programming API had

been the most widely used network programming API on PCs. NetBIOS allows for both

 reliable-connection-oriented and unreliable-connectionless communication. Windows sup-

ports NetBIOS for its legacy applications. Microsoft discourages application developers from

using NetBIOS because other APIs, such as named pipes and Winsock, are much more flex-

ible and portable. NetBIOS is supported by the TCP/IP protocol on Windows.

NetBIOS Names

NetBIOS relies on a naming convention whereby computers and network services are

assigned a 16-byte name called a NetBIOS name. The sixteenth byte of a NetBIOS name

is treated as a modifier that can specify a name as unique or as part of a group. Only one

instance of a unique NetBIOS name can be assigned to a network, but multiple applications

can assign the same group name. A client can broadcast messages by sending them to a

group name.

To support interoperability with Windows NT 4 systems as well as Windows 9x/Me, Windows

automatically defines a NetBIOS name for a domain that includes up to the first 15 bytes of

the left-most Domain Name System (DNS) name that an administrator assigns to the domain.

For example, if a domain were named mspress.microsoft.com, the NetBIOS name of the

domain would be mspress. Similarly, Windows requires an administrator to assign each com-

puter a NetBIOS name at the time of installation.

Another concept used by NetBIOS is that of LAN adapter (LANA) numbers. A LANA num-

ber is assigned to every NetBIOS-compatible protocol that layers above a network adapter.

For example, if a computer has two network adapters and TCP/IP and NWLink can use

either adapter, there would be four LANA numbers. LANA numbers are important because

a NetBIOS application must explicitly assign its service name to each LANA through which

it’s willing to accept client connections. If the application listens for client connections on a

particular name, clients can access the name only via protocols on the network adapters for

which the name is registered.

The “Windows Internet Name Service” section later in this chapter describes the resolution of

NetBIOS names to TCP/IP addresses.

1028 Windows Internals, Fifth Edition

NetBIOS Operation

A NetBIOS server application uses the NetBIOS API to enumerate the LANAs present on a

system and assign a NetBIOS name representing the application’s service to each LANA. If

the server is connection oriented, it performs a NetBIOS listen command to wait for client

connection attempts. After a client is connected, the server executes NetBIOS functions to

send and receive data. Connectionless communication is similar, but the server simply reads

messages without establishing connections.

A connection-oriented client uses NetBIOS functions to establish a connection with a

NetBIOS server and then executes further NetBIOS functions to send and receive data. An

established NetBIOS connection is also known as a session. If the client wants to send con-

nectionless messages, it simply specifies the NetBIOS name of the server with the send

function.

NetBIOS consists of a number of functions, but they all route through the same interface:

Netbios. This routing scheme is the result of a legacy left over from the time when NetBIOS

was implemented on MS-DOS as an MS-DOS interrupt service. A NetBIOS application would

execute an MS-DOS interrupt and pass a data structure to the NetBIOS implementation that

specified every aspect of the command being executed. As a result, the Netbios function in

Windows takes a single parameter, which is a data structure that contains the parameters

specific to the service the application requests.

EXPERIMENT: Using Nbtstat to See NetBIOS Names

You can use the Nbtstat command, which is included with Windows, to list the active

sessions on a system, the NetBIOS-to-TCP/IP name mappings cached on a computer,

and the NetBIOS names defined on a computer. Here’s an example of the Nbtstat com-

mand with the –n option, which lists the NetBIOS names defined on the computer:

C:\Users\Administrator>nbtstat -n

Local Area Connection:

Node IpAddress: [192.168.0.193] Scope Id: []

 NetBIOS Local Name Table

 Name Type Status

 WIN-NLRTEOW2ILZ<00> UNIQUE Registered

 WORKGROUP <00> GROUP Registered

 WIN-NLRTEOW2ILZ<20> UNIQUE Registered

 Chapter 12 Networking 1029

NetBIOS API Implementation

The components that implement the NetBIOS API are shown in Figure 12-13. The Netbios
function is exported to applications by \%SystemRoot%\System32\Netapi32.dll. Netapi32.dll

opens a handle to the kernel-mode driver named the NetBIOS emulator (\%SystemRoot%\

System32\Drivers\Netbios.sys) and issues Windows DeviceIoControl file commands on behalf

of an application. The NetBIOS emulator translates NetBIOS commands issued by an applica-

tion into TDI commands that it sends to protocol drivers.

User mode

Kernel mode

Application

\Device\Netbios
NetBIOS

emulation driver

Netapi32.dll
Netbios

Ntdll.dll

NtDeviceIoControlFile

TDI

\Device\Netbt_XXX
NetBT

TCP/IP

TDI IRP

FIGURE 12-13 NetBIOS API implementation

If an application wants to use NetBIOS over the TCP/IP protocol, the NetBIOS emulator

requires the presence of the NetBT driver (\%SystemRoot%\System32\Drivers\Netbt.sys).

NetBT is known as the NetBIOS over TCP/IP driver and is responsible for supporting NetBIOS

semantics that are inherent to the NetBIOS Extended User Interface (NetBEUI) protocol

(included in previous versions of Windows) but not the TCP/IP protocol. For example, NetBIOS

relies on NetBEUI’s message-mode transmission and NetBIOS name resolution facilities, so

the NetBT driver implements them on top of the TCP/IP protocol.

1030 Windows Internals, Fifth Edition

Other Networking APIs

Windows includes other networking APIs that are used less frequently or are layered on

the APIs already described (and outside the scope of this book). Five of these, however—

Background Intelligent Transfer Service (BITS), Distributed Component Object Model

(DCOM), Message Queuing, Peer-to-Peer Infrastructure (P2P), and Universal Plug and Play

(UPnP) with Plug and Play Extensions (PnP-X)—are important enough to the operation of a

Windows system and many applications to merit brief descriptions.

BITS

The BITS API, currently at version 3.0 on Windows Vista and Windows Server 2008, allows

application developers to transfer files between a client and a server asynchronously with

transfer jobs, which can be either download, upload, or upload-reply. A download job down-

loads a file from a client, an upload job uploads a file to a server, and an upload-reply job

receives a reply from the server after the data transfer is complete. BITS continues to transfer

files even after the requesting application has exited, as long as there is an active network

connection (BITS will not force a connection, such as initiating a dial-up connection) and the

user who initiated the transfer is still logged on. If the network connection is dropped, the

user logs off, or the system is restarted, BITS suspends the transfer, retaining enough infor-

mation to resume the job when the user logs on again and the connection is restored.

BITS also allows for prioritization of different jobs, based on two priority classes: foreground

transfers and background transfers. Background transfers are further divided into three

priority levels. BITS uses a scheduling algorithm in which higher-level priorities preempt

lower-priority transfers, while equal priorities execute concurrently. Therefore, under the BITS

scheduling algorithm, lower-priority jobs remain suspended until no higher-priority jobs are

eligible for execution.

Furthermore, BITS only makes use of idle networking bandwidth to perform its transfers,

and it fine-tunes the upload and download speeds based on the amount of idle network-

ing bandwidth available. If client network applications start using more bandwidth, BITS

decreases its own usage to give priority to the user’s network activities.

Finally, BITS supports peer caching, and if a job allows it, BITS will attempt to obtain the

content from one or more peers instead of the direct Internet source, especially in LAN

environments.

Note Peer caching is disabled by default, and jobs must explicitly permit downloading from

peers. BITS implements its own peer-caching protocols and does not make use of the Peer-to-

Peer Infrastructure described in the next section.

 Chapter 12 Networking 1031

Peer-to-Peer Infrastructure

Peer-to-Peer Infrastructure is a set of APIs that cover different technologies to enhance the

Windows networking stack by providing flexible peer-to-peer (P2P) support for applications

and services. The P2P infrastructure covers four major technologies, shown in Figure 12-14.

Graph
maintenance

Winsock API

Microsoft TCP/IP version 6 protocol

Graphing Grouping

NSP

Identity
Manager

WIn32 APIs

Crypto API

Flood and
synchronization

Store

Group
SSP

Group
security

PNRP

FIGURE 12-14 Peer-to-peer architecture

Peer-to-Peer Graphing allows applications to pass data between peers efficiently and

reliably by using nodes and events.

Peer-to-Peer Namespace Provider enables serverless name resolution of peers and

their services (described later in the “Name Resolution” section).

Peer-to-Peer Grouping combines graphing and namespace technologies to group and

isolate services and/or peers into a defined group and uniquely identify it.

Peer-to-Peer Identity Manager enhances the services offered by the namespace pro-

vider to securely create, publish, and identify peer names, as well as to identify group

members that are part of the grouping API.

The Peer-to-Peer Infrastructure in Windows is also paired with the Peer-to-Peer Collaboration

Interface, which adds support for creating collaborative P2P applications, such as online

games and group instant messaging, and supersedes the Real-Time Communications (RTC)

architecture in earlier versions of Windows. It also provides presence capabilities through the

People Near Me (PNM) architecture.

DCOM

Microsoft’s COM API lets applications consist of different components, each component

being a replaceable self-contained module. A COM object exports an object-oriented

1032 Windows Internals, Fifth Edition

interface to methods for manipulating the data within the object. Because COM objects pre-

sent well-defined interfaces, developers can implement new objects to extend existing inter-

faces and dynamically update applications with the new support.

DCOM extends COM by letting an application’s components reside on different computers,

which means that applications don’t need to be concerned that one COM object might be

on the local computer and another might be across the LAN. DCOM thus provides loca-

tion transparency, which simplifies developing distributed applications. DCOM isn’t a self-

 contained API but relies on RPC to carry out its work.

Message Queuing

Message Queuing is a general-purpose platform for developing distributed applications that

take advantage of loosely coupled messaging. Message Queuing is therefore an API and a

messaging infrastructure. Its flexibility comes from the fact that its queues serve as message

repositories in which senders can queue messages for receivers, and receivers can de-queue

the messages at their discretion. Senders and receivers do not need to establish connections

to use Message Queuing, nor do they even need to be executing at the same time, which

allows for disconnected asynchronous message exchange.

A notable feature of Message Queuing is that it is integrated with Microsoft Transaction

Server (MTS) and SQL Server, so it can participate in Microsoft Distributed Transaction

Coordinator (MS DTC) coordinated transactions. Using MS DTC with Message Queuing allows

you to develop reliable transaction functionality for three-tier applications.

UPnP with PnP-X

Universal Plug and Play is an architecture for peer-to-peer network connectivity of intelligent

appliances, devices, and control points. It is designed to bring easy-to-use, flexible, standards-

based connectivity to ad-hoc, managed, or unmanaged networks, whether these networks

are in the home, in small businesses, or attached directly to the Internet. Universal Plug and

Play is a distributed, open networking architecture that uses existing TCP/IP and Web tech-

nologies to enable seamless proximity networking in addition to control and data transfer

among networked devices.

Universal Plug and Play supports zero-configuration, invisible networking, and automatic dis-

covery for a range of device categories from a wide range of vendors. This enables a device

to dynamically join a network, obtain an IP address, and convey its capabilities upon request.

Then other control points can use the Control Point API with UPnP technology to learn about

the presence and capabilities of other devices. A device can leave a network smoothly and

automatically when it is no longer in use.

Plug and Play Extensions (PnP-X), shown in Figure 12-15, is an additional component of

Windows that allows network-attached devices to integrate with the Plug and Play manager

 Chapter 12 Networking 1033

in the kernel. With PnP-X, network-connected devices are shown in the Device Manager like

locally attached devices and provide the same installation, management, and behavioral

experience as a local device. (For example, installation is performed through the standard

Add New Hardware wizard.)

Function discovery API

IPBusEnum

Plug and Play

Device driver

Network discovery providers

Third partySSDPWSD

DevNode

Network Explorer user interface

FIGURE 12-15 PnP-X implementation

PnP-X uses a virtual network bus driver that uses an IP bus enumerator (%SystemRoot%\

System32\Ipbusenum.dll) to discover PnP-X compatible devices, which include UPnP devices

(through the Simple Service Discovery Protocol) and newer Device Profile for Web Services

(DPWS) devices (through the WS-Discovery protocol). The IP bus enumerator reports devices

it discovers to the Plug and Play manager, which uses user-mode Plug and Play manager

services if needed (such as for driver installation). Similar to wireless discovery (like Bluetooth)

and unlike wired device discovery (USB), however, PnP-X enumeration and driver installation

must be explicitly requested by a user from the Network Explorer.

Note DPWS is a specification created by Microsoft that has goals similar to those of UPnP but is

tightly integrated with Web services standards and frameworks and allows greater extensibility

than UPnP.

Multiple Redirector Support

Applications can examine or access resources on remote systems in two ways. One way is

by using the UNC standard with Windows functions to directly address a remote resource; a

second way is by using the Windows Networking (WNet) API to enumerate computers and

resources that those computers export for sharing. Both these approaches use the capabili-

ties of a redirector to find their way to the network. As we stated earlier, to access SMB serv-

ers from a client, Microsoft supplies an SMB redirector, which has a kernel-mode component

called the redirector FSD and a user-mode component called the Workstation service. (SMB is

described in Chapter 11.) Microsoft also makes available redirectors that can access WebDAV

resources, Terminal Services–shared drives, and resources shared by Novell NetWare servers.

1034 Windows Internals, Fifth Edition

Third parties can add their own redirectors to Windows. In this section, we’ll examine the

software that decides which redirector to invoke when remote I/O requests are issued. Here

are the responsible components:

Multiple Provider Router (MPR) is a DLL (\%SystemRoot%\System32\Mpr.dll) that deter-

mines which network to access when an application uses the Windows WNet API for

browsing remote file systems.

Multiple UNC Provider (MUP) is a driver (\%SystemRoot%\System32\Drivers\Mup.sys)

that determines which network to access when an application uses the Windows I/O

API to open remote files.

Multiple Provider Router

The Windows WNet functions allow applications (including the Network and Sharing Center)

to connect to network resources, such as file servers and printers, and to browse the differ-

ent share points. Because the WNet API can be called to work across different networks using

different transport protocols, software must be present to send the request correctly over

the network and to understand the results that the remote server returns. Figure 12-16 shows

the redirector software responsible for these tasks.

Application Mpr.dll
WNet API

Ntlanman.dll
Other redirector

provider

Workstation
service

RPC

Ntdll.dll

Other redirectorRedirector FSD

FIGURE 12-16 MPR components

A provider is software that establishes Windows as a client of a remote network server. Some

of the operations a WNet provider performs include making and breaking network connec-

tions as well as supporting network printing. The built-in SMB WNet provider includes a DLL,

 Chapter 12 Networking 1035

the Workstation service, and the redirector. Other network vendors need to supply only a

DLL and a redirector.

When an application calls a WNet routine, the call passes directly to the MPR DLL. MPR takes

the call and determines which network provider recognizes the resource being accessed.

Each provider DLL beneath MPR supplies a set of standard functions collectively called the

network provider interface. This interface allows MPR to determine which network the appli-

cation is trying to access and to direct the request to the appropriate WNet provider soft-

ware. The SMB Workstation service’s provider is \%SystemRoot%\System32\Ntlanman.dll, as

directed by the ProviderPath value under the HKLM\SYSTEM\CurrentControlSet\Services\

lanmanworkstation\NetworkProvider registry key.

When called by the WNetAddConnection2 or WNetAddConnection3 API function to connect

to a remote network resource, MPR checks the HKLM\SYSTEM\CurrentControlSet\Control\

NetworkProvider\HwOrder\ProviderOrder registry value to determine which network provid-

ers are loaded. It polls them one at a time in the order in which they’re listed in the registry

until a redirector recognizes the resource or until all available providers have been polled.

You can change the ProviderOrder by using the Advanced Settings dialog box shown in

Figure 12-17. You can access the dialog box by first opening the Network Connections folder

(by right-clicking the Network icon on the desktop or Start menu, selecting Properties from

the pop-up menu to display the Network and Sharing Center, and then clicking Manage

Network Connections). Open the Advanced menu, choose Advanced Settings, and then click

the Provider Order tab.

FIGURE 12-17 The provider order editor

1036 Windows Internals, Fifth Edition

The WNetAddConnection function can also assign a drive letter or device name to a remote

resource. When called to do so, WNetAddConnection routes the call to the appropriate net-

work provider. The provider, in turn, creates a symbolic-link object in the object manager

namespace that maps the drive letter being defined to the redirector (that is, the remote FSD)

for that network.

Figure 12-18 shows the Session 0 DosDevices directory corresponding to the LUID (Logon ID)

of the user that performed the drive letter mapping, which is where connections to remote

file shares are stored. The symbolic link created by network providers relies on MUP to serve

as the connection between a network path and the corresponding redirector. The figure

shows that MUP creates a device object named \Device\LanmanRedirector, which is itself a

symbolic link to \Device\MUP (which is not shown in the figure because the symbolic link is

in the \Device directory) with additional text included in the symbolic link’s value indicating

to the MUP redirector which mini-redirector the drive letter corresponds to. The \Global??

directory shows you the drive letters available to the system session—others will be mapped

in the session-specific DosDevices directory.

FIGURE 12-18 Resolving a network resource name

Then, when the WNet or other API calls the object manager to open a resource on a different

network, the object manager uses the device object as a jumping-off point into the remote

file system. It calls an I/O manager parse method associated with the device object to locate

the redirector FSD that can handle the request. (See Chapter 11 for more information on file

system drivers.)

 Chapter 12 Networking 1037

Multiple UNC Provider

The Multiple UNC Provider is a networking component similar to MPR but which registers

itself as a file system with the I/O manager, allowing it to field all remote file system I/O

requests. MUP takes such requests and, like MPR, determines which local redirector rec-

ognizes the remote resource. Unlike MPR, MUP is a device driver (loaded at system boot

time) that issues I/O requests to lower-layer drivers, in this case to redirectors, as shown in

Figure 12-19.

When MUP loads during the boot it creates a device object named \Device\Mup. When

a network redirector, like SMB, loads the redirector, it creates an unnamed device

object and supplies a device name (for example \Device\LanmanRedirector) to regis-

ter itself with MUP as a UNC provider by calling the function FsRtlRegisterUncProviderEx.
FsRtlRegisterUncProviderEx creates a symbolic link name for the specified device name to

point to its own device object, \Device\Mup. Because all network redirectors’ namespaces are

represented as symbolic links to the MUP device object, filter drivers can attach to \Device\

Mup to intercept all remote file I/O operations.

Application Kernel32.dll
File I/O API

Ntdll.dll

TDI

Redirector
FSD

Other
redirector

Protocol driver
(TDI transport)

\Device\MUP
MUP

UNC mapping
cache

FIGURE 12-19 Multiple UNC Provider (MUP)

The MUP driver is activated when an application first attempts to open a remote file or

device by specifying a UNC name (instead of a redirected drive letter, as described earlier).

When the Windows client-side DLL Kernel32.dll (which is the DLL that exports file-I/O-related

APIs) receives a file I/O request with UNC paths, the subsystem appends the UNC path to

the string \Global??\UNC and then calls the NtCreateFile system service to open the file.

1038 Windows Internals, Fifth Edition

\global??\UNC resolves to \Device\Mup, and MUP must determine which provider should

process the request.

When the MUP driver receives an I/O, MUP uses the HKLM\SYSTEM\CurrentControlSet\

Control\NetworkProvider\Order\ProviderOrder registry value to determine priority order of

the network providers that registered with it using FsRtlRegisterUncProviderEx. It polls them

one at a time in the order in which they’re listed in the value until one of them indicates that

it recognizes the path or until all available providers have been polled. MUP ignores those

redirectors that are listed in the registry key but not registered. When a redirector recognizes

a path the redirector indicates how much of the path is unique to it. For example, if the path

is \\WIN2K3SERVER\PUBLIC\Windowsinternals\Chap12.doc, the redirector might recognize it

and claim the prefix \\WIN2K3SERVER\PUBLIC as its own. The MUP driver caches this infor-

mation and thereafter sends requests beginning with that prefix directly to the redirector,

skipping the polling operation. The MUP driver’s cache has a timeout feature, so after a

period, a prefix’s association with a particular redirector expires.

To simplify development of redirectors, Windows implements a mini-redirector model

similar to the miniport driver model used by other device classes (see Chapter 7). The

equivalent of the port driver in this case is the Redirected Drive Buffering Subsystem

(RDBSS) (%SystemRoot%\System32\Drivers\Rdbss.sys). WebDAV and SMB redirec-

tors are mini-redirectors that register with RDBSS by using RxRegisterMinirdr (instead of

FsRtlRegisterUncProviderEx). As shown in Figure 12-20, RDBSS is ultimately responsible for

communicating with MUP and the I/O manager and for providing mapped-file buffering

through the cache manager.

Redirected Drive Buffering Subsystem

LAN Manager
mini-redirector:

mrxsmb.sys

TS
mini-redirector:

rdpdr.sys

WebDAV
mini-redirector:

mrxdav.sys

Network transports

Cache
manager

I/O
system

Local file
systems

FIGURE 12-20 Mini-redirector architecture

 Chapter 12 Networking 1039

Name Resolution

Name resolution is the process by which a character-based name, such as www.micro-

 soft.com or Mycomputer, is translated into a numeric address, such as 192.168.1.1, that the

protocol stack can recognize. This section describes the three TCP/IP-related name resolu-

tion protocols provided by Windows: Domain Name System (DNS), Windows Internet Name

Service (WINS), and Peer Name Resolution Protocol (PNRP).

Domain Name System

Domain Name System (DNS) is a standard by which Internet names (such as www.micro-
 soft.com) are translated to their corresponding IP addresses. A network application that

wants to resolve a DNS name to an IP address sends a DNS lookup request using the TCP/IP

protocol to a DNS server. DNS servers implement a distributed database of name/IP address

pairs that are used to perform translations, and each server maintains the translations for

a particular zone. Describing the details of DNS is outside the scope of this book, but DNS

is the foundation of naming in Windows and so it is the primary Windows name resolution

protocol.

The Windows DNS server is implemented as a Windows service (\%SystemRoot%\System32\

Dns.exe) that is included in server versions of Windows. Standard DNS server implementation

relies on a text file as the translation database, but the Windows DNS server can be config-

ured to store zone information in Active Directory.

Windows Internet Name Service

A networking service called Windows Internet Name Service (WINS) maintains the map-

ping between NetBIOS names and IP addresses used for NetBIOS-based TCP/IP applica-

tions. If WINS isn’t installed, NetBIOS uses local broadcast messages for name operations

on a subnet. Note that NetBIOS names are secondary to DNS names for Windows Sockets

applications; computer names are registered and resolved first through DNS, with Windows

falling back on NetBIOS names only if DNS name resolution fails. Link-Local Multicast Name

Resolution (LLMNR) is a secondary fallback mechanism, used in cases in which IPv4 is not

installed on the host machine. LLMNR extends the DNS packet format to allow both IPv4 and

IPv6 name resolution to function on the same local link.

Peer Name Resolution Protocol

The Peer Name Resolution Protocol (PNRP) is a distributed peer-to-peer protocol that allows

for dynamic name resolution and publication exclusively across IPv6 networks. It allows

Internet-connected devices to publish peer names and their associated IPv6 address, as well

as optional information. Other devices will then resolve the peer name, retrieve the IPv6

address, and establish a connection.

1040 Windows Internals, Fifth Edition

PNRP offers significant advantages over DNS, mainly by being distributed, which means that

it is essentially serverless (other than for early bootstrapping), can scale to potentially millions

of names, and is fault tolerant and bottleneck free. Because it includes secure name publica-

tion services, changes to name records can be performed from any system. DNS generally

requires contacting a DNS server administrator to perform updates. PNRP name updates

also occur in real time, making it appropriate for highly mobile devices, whereas DNS caches

results. Finally, PNRP allows for naming more than just computers and services by allowing

extended information to be published with name records.

Windows exposes PNRP via a PNRP API for applications and services, as well as by extending

the getaddrinfo Winsock API described earlier in the chapter to perform resolution of PNRP

IDs (described next) when an address includes the reserved .pnrp.net domain suffix.

PNRP peer names (also called P2P IDs) are made up of two components:

Authority For secure clients (which have their name records signed by a certifying

authority), the authority is identified by an SHA-1 hash of an associated public key,

while for unsecured clients, it is zero. If a client is secure, PNRP validates the name

record before publishing it.

Classifier The classifier uses a simple string to identify a service provided by a peer,

which allows multiple services to be provided by the same device.

To create a PNRP ID, PNRP hashes the P2P ID and combines it with a unique 128-bit ID

called the service location, as shown in Figure 12-21. The service location identifies different

instances of the same P2P ID in the same cloud. (PNRP uses two clouds: a global cloud, which

corresponds to all IPv6 addresses on the Internet, and the link-local cloud, which corresponds

to IPv6 addresses within a single subnet.)

authority.classifier

Public key

Friendly nameHash

Hash

(128 bits) Service location (128 bits)

} P2P ID

} PNRP ID

FIGURE 12-21 PNRP ID generation

 Chapter 12 Networking 1041

PNRP Resolution and Publication

PNRP name resolution occurs in two phases:

Endpoint determination In this phase, the requesting peer determines the IPv6

address associated with the peer responsible for publishing the PNRP ID of the desired

service.

PNRP ID resolution In this phase, once the requesting peer has located and con-

firmed the availability of the peer associated with the IPv6 address, it sends a PNRP

request message for the PNRP ID of the service being requested. The peer providing

the service replies to confirm the PNRP ID and can supply a comment and up to 4 KB of

additional data, such as context information related to the service.

During the first phase, PNRP iterates over nodes while locating the publishing node, such

that the node performing name resolution will be responsible for contacting nodes that

are successively closer to the desired PNRP ID. Each iteration works as follows: Once a peer

receives a request message, it performs a lookup in its cache for the requested PNRP ID. If a

match is found, the request message is sent directly; otherwise, it is sent to the next closest

PNRP ID (by seeing how much of the ID matches).

When a node receives a request message for which it cannot find a PNRP ID, it checks the

distance of any other IDs in the cache to the target ID. If it finds a node that is closer, the

requested node sends a reply to the requesting node, where the reply contains the IPv6

address of the peer that most closely matches the target PNRP ID. The requesting node can

then use the IPv6 address to send another query to that address’s node. If no node is closer,

the requesting node is notified, and that node sends the request to the next closest node.

Assuming PNRP IDs of 200, 350, 450, 500, and 800, Figure 12-22 depicts a possible endpoint

determination phase for an example in which peer A is trying to find the endpoint for PNRP

800 (peer E).

To publish its PNRP ID(s), a peer first sends PNRP publication messages to its closest neigh-

bors (entries in its cache that have IDs that are in the lowest levels) to seed their caches. It

then randomly chooses nodes in the cloud that are not neighbors and sends them PNRP

name resolution requests for its own PNRP ID. Through the mechanism described earlier, the

endpoint determination phase will result in the seeding of the PNRP ID across the caches of

the random nodes that were chosen in the cloud.

1042 Windows Internals, Fifth Edition

A

E

D

C

B

2

3

1

4

5

6

200

500

450

800

350

1 Peer A sends a PNRP
request message to the
node that registered the PNRP
ID of 500 (peer C) because it is
the closest (numerically) to 800.

2 Peer C does not have an entry for the
PNRP ID of 800 or any entries that are
closer to 800, so it sends back a response
indicating that it could not find an entry
closer to 800.

3 Peer A now sends a PNRP request message
to the next closest PNRP ID (450), peer B.

5 Peer A sends a PNRP request
to peer E.

4 Peer B does have an entry in
its cache for the PNRP ID of
800, so it sends the IPv6
address of peer E to peer A.

6 Peer E sends a positive name
resolution response back to
peer A.

FIGURE 12-22 Example of PNRP name resolution.

Location and Topology

Today’s networked computers often move between networks that require different con-

figuration settings, for example, a corporate LAN and a home-based wireless network.

Additionally, today’s networks are complex, often spanning multiple devices across different

topologies. Windows includes the Network Location Awareness (NLA) service to enable the

dynamic configuration of network applications and settings based on location, and Link-

Layer Topology Discovery (LLTD) to enable the intelligent discovery and mapping of net-

worked devices.

Network Location Awareness (NLA)

The NLA service provider is implemented as a Winsock Namespace Provider (NSP) and

provides the necessary framework for allowing computers and devices that move across

different networks to select the most appropriate configuration settings. For example, an

application taking advantage of NLA can detect when the user moves from a high-speed

 Chapter 12 Networking 1043

LAN to a high-latency wireless network and fine-tune its bandwidth use appropriately. NLA

can also detect when a home computer on a LAN may also have a secondary VPN connec-

tion to the office and select the proper configuration options.

Instead of having developers rely on manual network interface information to figure out the

type of network, and the IP addresses or DNS names associated with them, NLA provides a

standardized query API for enumerating all the local network attachment information and

correlating it with network interface information. The NLA API also includes notifications that

enable applications to respond to changes when they occur. NLA provides applications two

pieces of location information:

Logical network identity This identity is based on the logical network’s DNS domain

name. If one does not exist, NLA uses custom static information stored in the registry

together with the network’s subnet address as the identity.

Logical network interfaces For each network that a device is attached to, NLA creates

an adapter name that identifies interfaces such as NICs or RAS connections in a unique

fashion. Applications use adapter names with the IP Helper API (%SystemRoot%\

System32\Iphlpapi.dll) to query interface information and characteristics.

Each logical network is implemented as a service class with an associated GUID and proper-

ties. NLA creates instances of that service class when it returns information about a logi-

cal network. Service classes are schemas that describe a namespace; they define the name,

identifier, and namespace-specific information that is common to all instances. These classes

are then used in combination with the WSALookupService* API when performing name

resolution.

Link-Layer Topology Discovery (LLTD)

The LLTD protocol operates over both wired and wireless networks and enables applica-

tions to discover the topology of a network. For example, the Network Map functionality

in Windows uses LLTD to draw the local network topology for the connected devices that

support the LLTD protocol. Additionally, LLTD supports Quality of Service (QoS) extensions,

which allow applications to diagnose network problems such as low signal strength on a

wireless network and bandwidth constraints on home networks. Because it operates on the

OSI Data-link layer (2), LLTD works only on a single subnet, and therefore can’t cross routers,

but its capabilities make it suitable for most home and small-office networks.

The LLTD Mapper I/O and the LLTD Responder components implement LLTD. The former is

responsible for the discovery process and for generating network maps. Because it uses a

protocol different from IP, the LLTD Mapper uses NDIS APIs to directly send commands to

the network via the network adapter. The LLTD Responder listens for and responds to discov-

ery commands with information about the computer. As mentioned earlier, only devices that

have a responder are shown in the network map.

1044 Windows Internals, Fifth Edition

Protocol Drivers

Networking API drivers must take API requests and translate them into low-level network

protocol requests for transmission across the network. The API drivers rely on transport pro-

tocol drivers in kernel mode to do the actual translation. Separating APIs from underlying

protocols gives the networking architecture the flexibility of letting each API use a number of

different protocols. The Internet’s explosive growth and reliance on the TCP/IP protocol has

made TCP/IP the preeminent protocol in Windows. The Defense Advanced Research Projects

Agency (DARPA) developed TCP/IP in 1969 specifically as the foundation for the Internet;

therefore, TCP/IP has WAN-friendly characteristics such as routability and good WAN perfor-

mance. TCP/IP is the preferred Windows protocol and is installed by default, although it can

be removed.

However, the 4-byte network addresses used by the IPv4 protocol on the legacy TCP/IP

stack limits the number of public IP addresses to roughly 4 billion, which is a limit that will be

pressed as more and more devices, such as cell phones and PDAs, acquire an Internet pres-

ence. For that reason, the IPv6 protocol, which has 16-byte addresses, is gaining adoption.

Windows includes a combined TCP/IP stack, called the Next Generation TCP/IP Stack, which

supports both IP and IPv6. When operating on IPv6 networks, the stack also supports coex-

istence with IPv4 networks through the use of tunneling. The Next Generation TCP/IP Stack

offers several advanced features to improve network performance, some of which are out-

lined in the following list:

Receive Window Auto Tuning. The TCP protocol defines a receive window size, which

determines how much data a receiver can accept before the server requests an

acknowledgment. A higher size favors low-latency networks with high throughput,

while lower values work better on networks such as Wi-Fi. The Windows TCP/IP stack

is capable of analyzing the conditions of a network and choosing the optimal receive

window size, adjusting it as needed if the network conditions change.

Compound TCP (CTCP). While automatically changing the receive window size allows

more data to be received, CTCP aggressively increases the amount of data that can be

sent by a machine, while monitoring bandwidth, latency, and packet loss. Using CTCP

on a high-bandwidth, low-latency network can significantly improve transfer speeds.

CTCP is disabled by default.

Explicit Congestion Notification (ECN). Whenever a TCP packet is lost, the TCP protocol

assumes that the data was dropped because of router congestion and enforces conges-

tion control, dramatically lowering the sender’s transmission rate. ECN allows routers

to explicitly mark packets as being forwarded during congestion, which is read by the

Windows TCP/IP stack as a sign that transmission rates should be lowered. Lowering

rates in this manner results in better performance than relying on congestion control.

ECN is disabled by default.

 Chapter 12 Networking 1045

High-loss throughput improvements, including the NewReno Fast Recovery Algorithm,

Enhanced Selective Acknowledgment (SACK), Forward RTO-Recovery (F-RTO), and

Limited Transit. These algorithms reduce the overall retransmission of acknowledg-

ments or TCP segments during high-loss scenarios while still maintaining the integrity

of the TCP stream. This allows for greater bandwidth in these environments and pre-

serves TCP’s reliable transport semantics.

The Next Generation TCP/IP Stack (\%SystemRoot%\Drivers\Tcpip.sys), shown in Figure 12-23,

implements TCP, UDP, IP, ARP, ICMP, and IGMP. To support legacy protocols such as NetBIOS,

which make use of the deprecated TDI interface, the network stack also includes a com-

ponent called TDX, which creates device objects that represent particular protocols so that

clients can obtain a file object representing a protocol and issue network I/O to the protocol

using TDI IRPs. The TDX component creates several device objects that represent various TDI

client–accessible protocols: \Device\Tcp6, \Device\Tcp, \Device\Udp6, \Device\Udp, \Device\

Rawip, and \Device\Tdx.

WSK clients

User mode

Kernel mode

Ancillary
Function

Driver

TDI clients

TDX

TDI

WSK

Winsock

IPv6 tunnelIPv4 tunnelLoopbackWLAN802.3

IPv4 IPv6

TCP RAWUDP

NDIS

Next Generation TCP/IP Stack (Tcpip.sys)

Windows
Filtering
Platform
API

FIGURE 12-23 Windows Next Generation TCP/IP Stack

EXPERIMENT: Looking at TCP/IP’s Device Objects

Using the kernel debugger to look at a live system, you can examine TCP/IP’s device

objects. After performing the !drvobj command to see the addresses of each of the

driver’s device objects, execute !devobj to view the name and other details about the

device object.

kd> !drvobj tdx

Driver object (861d9478) is for:

 \Driver\tdx

Driver Extension List: (id , addr)

1046 Windows Internals, Fifth Edition

Device Object list:

861db310 861db440 861d8440 861d03e8

861cd440 861d2318 861d9350

lkd> !devobj 861cd440

Device object (861cd440) is for:

 Tcp6 \Driver\tdx DriverObject 861d9478

Current Irp 00000000 RefCount 7 Type 00000012 Flags 00000050

Dacl 8b1bc54c DevExt 861cd4f8 DevObjExt 861cd500

ExtensionFlags (0x00000800)

 Unknown flags 0x00000800

Device queue is not busy.

lkd> !devobj 861db440

Device object (861db440) is for:

 RawIp \Driver\tdx DriverObject 861d9478

Current Irp 00000000 RefCount 0 Type 00000012 Flags 00000050

Dacl 8b1bc54c DevExt 861db4f8 DevObjExt 861db500

ExtensionFlags (0x00000800)

 Unknown flags 0x00000800

Device queue is not busy.

lkd> !devobj 861d8440

Device object (861d8440) is for:

 Udp6 \Driver\tdx DriverObject 861d9478

Current Irp 00000000 RefCount 0 Type 00000012 Flags 00000050

Dacl 8b1bc54c DevExt 861d84f8 DevObjExt 861d8500

ExtensionFlags (0x00000800)

 Unknown flags 0x00000800

Device queue is not busy.

lkd> !devobj 861d03e8

Device object (861d03e8) is for:

 Udp \Driver\tdx DriverObject 861d9478

Current Irp 00000000 RefCount 6 Type 00000012 Flags 00000050

Dacl 8b1bc54c DevExt 861d04a0 DevObjExt 861d04a8

ExtensionFlags (0x00000800)

 Unknown flags 0x00000800

Device queue is not busy.

lkd> !devobj 861cd440

Device object (861cd440) is for:

 Tcp6 \Driver\tdx DriverObject 861d9478

Current Irp 00000000 RefCount 7 Type 00000012 Flags 00000050

Dacl 8b1bc54c DevExt 861cd4f8 DevObjExt 861cd500

ExtensionFlags (0x00000800)

 Unknown flags 0x00000800

Device queue is not busy.

lkd> !devobj 861d2318

Device object (861d2318) is for:

 Tcp \Driver\tdx DriverObject 861d9478

Current Irp 00000000 RefCount 167 Type 00000012 Flags 00000050

Dacl 8b1bc54c DevExt 861d23d0 DevObjExt 861d23d8

ExtensionFlags (0x00000800)

 Unknown flags 0x00000800

Device queue is not busy.

lkd> !devobj 861d9350

Device object (861d9350) is for:

 Tdx \Driver\tdx DriverObject 861d9478

 Chapter 12 Networking 1047

Current Irp 00000000 RefCount 0 Type 00000021 Flags 00000050

Dacl 8b0649a8 DevExt 00000000 DevObjExt 861d9408

ExtensionFlags (0x00000800)

 Unknown flags 0x00000800

Device queue is not busy.

Windows Filtering Platform (WFP)

Windows includes a rich and extensible platform for monitoring, intercepting, and processing

network traffic at all levels in the network stack. Other Windows networking services extend

basic networking features of the TCP/IP protocol driver by relying on the WFP. These include

network address translation (NAT), IP filtering, IP inspection, and Internet Protocol Security

(IPSec). Figure 12-24 shows how the different components of the WFP are integrated with the

TCP/IP stack. These include:

Filter engine The filter engine is implemented in both user mode and kernel mode

and performs all the filtering operations on the network. Each filter engine compo-

nent consists of filtering layers, one for each component of the network stack. The

user-mode engine, responsible for RPC and IPSec keying policy, among other things,

contains approximately 10 filters, while the kernel-mode engine, which performs the

network and transport layer filtering of the TCP/IP stack, contains around 50.

Shims Shims are the kernel-mode components that reside between the network stack

and the filter engine. They are responsible for making the decision to allow or block

network traffic based on their filtering behavior, which is defined by the filter engine.

A shim operates in three steps: it parses the incoming data to match incoming values

with entries in the filter engine, calls the filter engine to return an action based on the

incoming values, and then interprets the action (drop the packet, for example).

Base filtering engine (BFE) The BFE is a user-mode service (%SystemRoot%\

System32\Bfe.dll) that manages all WFP operations. It is responsible for adding and

removing filters from the WFP stack, managing the filter configuration, and enforcing

security on the filter database.

Callout drivers Callout drivers are kernel-mode components that add custom filtering

functionality outside the basic support provided by the WFP. Callout drivers associate

callout functions with one or more kernel-mode filtering layers, and the WFP enables

callout functions to perform deep packet inspection and modification. Network address

translation (described next) and IPSec, are implemented as callout drivers, for example.

1048 Windows Internals, Fifth Edition

Base filtering engine
(bfe)

Third party
antivirus callout

Third party parental
control callout

Third party
IDS callout

Third party
NAT callout

IPSec callout

Stream layer shim

Application layer
enforcement (con-

nection management)

Transport layer shim
(TCP/UDP)

Network layer shim
(IPv4/IPv6)

Stream/datagram
data layer

(v4/v6)

Inbound/outbound
ALE layer
(v4/v6)

Inbound/outbound
transport layer

(v4/v6)

Inbound/outbound
IP layer
(v4/v6)

KM filter engine

IPSec
framing

User mode

Kernel mode

TCP/IP stack
(tcpip.sys)

C
la

ss
ify

 A
PI

C
al

lo
ut

 A
PI

RP
C

 in
te

rf
ac

e
(c

la
ss

ify
)

SF
P

ke
rn

el
 c

lie
nt

(f
w

p
kc

In
t.s

ys
)

IKE and IPSec
layers (v4/v6)UM RPC layers

UM filter
engine

RPC interface (management)

Socket
application

Third party
firewall

Windows
Firewall
(mpssvc)

Legacy
IPSec policy

service
(policy-
agent)Ws2_32.dll

C manage-
ment API

(fwpucInt.dll)

C manage-
ment API

(fwpucInt.dll)

C manage-
ment API

(fwpucInt.dll)

C manage-
ment API

(fwpucInt.dll)
C

la
ss

ify
 A

PI
(f

w
p

uc
In

t.d
ll)

RPC server
application

RPC
runtime

(rpcrt4.dll)

IKE protocol
AuthIP

protocol
(ikeext)

IOCTL interface

FIGURE 12-24 Windows Filtering Platform architecture

 Chapter 12 Networking 1049

Network Address Translation

Network address translation (NAT) is a routing service that allows multiple private IP

addresses to map to a single public IP address. Without NAT, each computer of a LAN must

be assigned a public IP address to communicate across the Internet. NAT allows one com-

puter of the LAN to be assigned an IP address and the other computers to use private IP

addresses and be connected to the Internet through that computer. NAT translates between

private IP addresses and the public IP address as necessary, routing packets between LAN

computers and the Internet.

NAT components on Windows consist of a NAT device driver, \%SystemRoot%\System32\

Drivers\Ipnat.sys, that interfaces with the WFP stack as a callout driver, as well as editors that

can perform additional packet processing beyond address and port translation. NAT can be

installed as a routing protocol component with the Routing And Remote Access MMC snap-

in or by configuring Internet Connection Sharing (ICS), although NAT is much more configu-

rable when installed using the Routing And Remote Access MMC snap-in.

IP Filtering

Windows includes a very basic IP filtering capability with which a user can choose to allow

only certain ports or IP protocols into or out of the network. While this capability can serve

to protect a computer from unauthorized network accesses, its drawback is that it is static

and does not automatically create new filters for traffic initiated by applications running on

the computer.

Windows also includes host firewall capability, called Windows Firewall, that goes beyond the

basic filtering just described. Windows Firewall uses WFP to provide a stateful firewall, which

is one that keeps track of traffic flow so that it distinguishes between TCP/IP traffic that origi-

nates on the local LAN and unsolicited traffic that originates on the Internet. When Windows

Firewall is enabled on an interface, one of three profiles can be applied—public, private, and

domain. By default, when the public profile is chosen (or until a profile is selected), all unso-

licited incoming and outgoing traffic received and sent by the computer is discarded, other

than traffic from network services and other system applications. A user or application can

define exceptions so that services running on the computer, such as file and printer sharing

or a Web site, can be accessed from other computers.

The Windows Firewall service, which executes in a Svchost process, uses the BFE to pass

exception rules defined in the configuration user interface to the IPNat driver. The WFP filter

engine executes the callback functions of each registered callout driver as it processes both

inbound and outbound IP packets. A callback function can provide NAT functionality by

modifying source and destination addresses in a packet, or as a firewall by returning a sta-

tus code to TCP/IP that requests that TCP/IP drop the packet and cease processing for it. In

kernel mode, Windows Firewall uses a driver (%SystemRoot%\System32\Drivers\Mpsdrv.sys)

that provides support for PPTP and FTP filtering, since those protocols provide their own

1050 Windows Internals, Fifth Edition

independent control and data channels. The driver must analyze the control channel to fig-

ure out which data channel to manipulate. The driver is also used for displaying notification

windows when an application starts listening on a socket.

Internet Protocol Security

Internet Protocol Security (IPSec), which is integrated with the Windows TCP/IP stack, helps

protect unicast (IPSec itself supports multicast, but the Windows implementation does not)

IP data against attacks such as eavesdropping, sniffer attacks, data modification, IP address

spoofing, and man-in-the-middle attacks (as long as the identity of the remote machine

can be verified, such as a VPN). You can use IPSec to provide defense-in-depth against

network-based attacks from untrusted computers; certain attacks that can result in the

denial-of- service of applications, services, or the network; data corruption, data theft, and

user-credential theft; and the administrative control over servers, other computers, and the

network. IPSec helps defend against network-based attacks through cryptography-based

security services, security protocols, and dynamic key management.

IPSec provides the following properties for unicast IP packets sent between trusted hosts:

Data origin authentication, which verifies the origin of an IP packet and ensures that

unauthenticated parties cannot access data.

Data integrity, which protects an IP packet from being modified in transit without being

detected.

Data confidentiality, which encrypts the payload of IP packets before transmission. Data

confidentiality ensures that only the IPSec peer with which a computer is communicat-

ing can read and interpret the contents of the packets. This property is optional.

Anti-replay (or replay protection), which ensures that each IP packet is unique and can’t

be reused. This property prevents an attacker from intercepting IP packets and insert-

ing modified packets into a data stream between a source computer and a destination

computer. When anti-replay is used, attackers cannot reply to captured messages to

establish a session or gain unauthorized access to data.

You can use IPSec to help defend against network-based attacks by configuring host-based

IPSec packet filtering and enforcing trusted communications. When you use IPSec for host-

based IPSec packet filtering, IPSec can permit or block specific types of unicast IP traffic

based on source and destination address combinations and specific protocols and specific

ports.

In an Active Directory environment, Group Policy can be used to configure domains, sites,

and organizational units (OUs), and IPSec policies (called connection security rules) can

then be assigned as required to Group Policy objects (GPOs) through Windows Firewall

with Advanced Security configuration settings. Alternatively, you can configure and assign

local IPSec policies. Active Directory–based connection security rules are stored in Active

 Chapter 12 Networking 1051

Directory, and a copy of the current policy is maintained in a cache in the local registry. Local

connection security rules are stored in the local system registry.

To establish trusted communications, IPSec uses mutual authentication, and it supports the

following authentication methods through AuthIP, Microsoft’s extension to Internet Key

Exchange (IKE):

Interactive user Kerberos 5 credentials or interactive user NTLMv2 credentials

User x.509 certificates

Computer SSL certificates

NAP health certificates

Anonymous authentication (optional authentication)

Preshared key

If AuthIP is not available, plain IKE is also supported by IPSec. The Windows implementation

of IPSec is based on IPSec Requests for Comments (RFCs). The Windows IPSec architecture

includes Windows Firewall with Advanced Security, the legacy IPSec Policy Agent, the IKE and

Authenticated Internet Protocol (AuthIP) protocols, and an IPSec WFP callout driver.

Windows Firewall with Advanced Security In addition to the filtering functional-

ity described earlier, the Windows Firewall service is also responsible for providing the

security and policy configuration settings for IPSec, which can be configured through

Group Policy either locally or on an Active Directory domain.

Legacy IPSec Policy Agent The legacy IPSec Policy Agent runs as a service. In the

Services snap-in in the Microsoft Management Console (MMC), the IPSec Policy Agent

appears in the list of computer services under the name IPSEC Policy Agent. The IPSec

Policy Agent obtains legacy IPSec policy from an Active Directory domain or the local

registry and then passes IP address filters to the IPSec driver and authentication and

security settings to IKE. These policies are honored for compatibility with older versions

of Windows, which implement IPSec management through Active Directory.

IKE and AuthIP IKE is a protocol that supports the authentication and key negotia-

tion services required by IPSec. For outgoing traffic, IKE waits for requests to negotiate

security associations (SAs) from the IPSec driver, negotiates the SAs, and then sends

the SA settings back to the IPSec driver. For incoming traffic, IKE receives a negotiation

request directly from the remote peer, and all other traffic from the peer is dropped

until the SAs have been successfully negotiated. SAs are a combination of mutually

agreeable IPSec policy settings and keys that defines the security services, mechanisms,

and keys that are used to help secure communications between IPSec peers. Each SA is

a one-way or simplex connection that secures the traffic it carries. IKE negotiates main

mode SAs and quick mode SAs when requested by the IPSec driver. The IKE main mode

(or ISAKMP) SA protects the IKE negotiation. The quick mode (or IPSec) SAs protect

1052 Windows Internals, Fifth Edition

application traffic. AuthIP is an extension to IKE supported by Windows Vista and later

versions. It adds a secondary authentication mechanism to increase security and sim-

plify maintenance and configuration of IPSec.

IPSec WFP callout driver The IPSec WFP callout driver is a device driver

(\%SystemRoot%\System32\Drivers\Ipsec.sys) that is bound to the WFP and that pro-

cesses packets that pass through the TCP/IP driver. The IPSec driver monitors and

secures outbound unicast IP traffic, and it monitors, decrypts, and validates inbound

unicast IP packets. The WFP receives filters from the IPSec Policy Agent and invokes the

callout, which then permits, blocks, or secures packets as required. To secure traffic, the

IPSec driver uses active SA settings, or it requests that new SAs be created.

You can use the Windows Firewall with Advanced Security (Wf.msc) snap-in that is available in

MMC to create and manage connection security rules by using the New Connection Security

Rule Wizard, shown in Figure 12-25. This snap-in can be used to create, modify, and store

local connection security rules or Active Directory–based connection security rules, and to

modify connection security rules on remote computers. Alternatively, you can use the Netsh

utility with the netsh advfirewall consec command to manage connection security rules. After

IPSec-secured communication is established, you can monitor IPSec information for local

computers and for remote computers by using the Windows Firewall with Advanced Security

snap-in or the Netsh utility with the netsh advfirewall monitor command.

FIGURE 12-25 New Connection Security Rule Wizard

 Chapter 12 Networking 1053

NDIS Drivers

When a protocol driver wants to read or write messages formatted in its protocol’s format

from or to the network, the driver must do so using a network adapter. Because expecting

protocol drivers to understand the nuances of every network adapter on the market (pro-

prietary network adapters number in the thousands) isn’t feasible, network adapter vendors

provide device drivers that can take network messages and transmit them via the vendors’

proprietary hardware. In 1989, Microsoft and 3Com jointly developed the Network Driver

Interface Specification (NDIS), which lets protocol drivers communicate with network adapter

drivers in a device-independent manner. Network adapter drivers that conform to NDIS are

called NDIS drivers or NDIS miniport drivers. The version of NDIS that ships with Windows

Vista SP1 and Windows Server 2008 is NDIS 6.1.

The NDIS library (\%SystemRoot%\System32\Drivers\Ndis.sys) implements the NDIS bound-

ary that exists between network transports, such as the TCP/IP driver, and NDIS drivers. The

NDIS library is a helper library that NDIS driver clients use to format commands they send

to NDIS drivers. NDIS drivers interface with the library to receive requests and send back

responses. Figure 12-26 shows the relationship between various NDIS-related components.

WSK transport

NDIS

HAL

NDIS NBL

NDIS library

NDIS intermediate driver

NDIS miniport driver

NDIS protocol interface

NDIS miniport interface

NDIS protocol interface

NDIS miniport interface

NDIS filter driver
NDIS filter interface

NDIS filter interface

FIGURE 12-26 NDIS components

Instead of merely providing the NDIS boundary helper routines, the NDIS library provides

NDIS drivers with an entire execution environment. NDIS drivers aren’t genuine Windows

drivers because they can’t function without the encapsulation the NDIS library gives them.

1054 Windows Internals, Fifth Edition

This insulation layer wraps NDIS drivers so thoroughly that NDIS drivers don’t accept and

process IRPs. Rather, protocol drivers such as TCP/IP call a function in the NDIS library,

NdisAllocateNetBuffer, and pass the packets to an NDIS miniport by calling an NDIS library

function (NdisSendNetBufferLists, for example). Additionally, to make development simpler, all

components of the Windows Next Generation TCP/IP Stack make use of net buffers, includ-

ing TCP/IP and WSK, which streamlines communications with NDIS.

NDIS includes the following features:

NDIS drivers can report whether or not their network medium is active, which allows

Windows to display a network connected/disconnected icon on the taskbar. This fea-

ture also allows protocols and other applications to be aware of this state and react

accordingly. The TCP/IP transport, for example, will use this information to determine

when it should reevaluate addressing information it receives from DHCP.

NDIS drivers can be paused and resumed, which enables run-time reconfiguration, such

as during a response to a Plug and Play event. This allows dynamic operations such as

binding and unbinding a protocol driver without requiring a reboot.

TCP/IP offloading, including task and chimney offloading. Task offloading allows a

miniport to use advanced features of a network adapter to perform operations such as

packet checksums and IPSec. NDIS includes support for IPSec Task Offload Version 2,

which includes support for additional cryptography suites used in IPSec, such as AES,

as well as IPv6 support. Chimney offloading provides a direct connection (the so-called

chimney) between network applications and the network card hardware, enabling

greater offloading and connection state management to be implemented by the net-

work card. These offloading operations can improve system performance by relieving

the CPU from the tasks.

Receive scaling enables multiple processors to perform packet receive operations and

appropriate scaling to be selected based on the most efficient use of available target

processors. NDIS supports the receive-side scaling (RSS) interface at the hardware level

and queues DPCs to the appropriate processors.

Wake-on-LAN allows a wake-on-LAN-capable network adapter to bring Windows out

of a suspend power state. Events that can trigger the network adapter to signal the sys-

tem include media connections (such as plugging a network cable into the adapter), the

receipt of protocol-specific patterns registered by a protocol (the TCP/IP transport asks

to be woken for Address Resolution Protocol [ARP] requests), and, for Ethernet adapt-

ers, the receipt of a magic packet (a network packet that contains 16 contiguous copies

of the adapter’s Ethernet address).

Header-data split allows compatible network cards to improve network performance

by splitting the data and header part of an Ethernet frame into different buffers and

subsequently combining the buffers into smaller regions of memory than if the buf-

fers were combined. This allows more efficient memory usage as well as better caching

because multiple headers can fit in a single page.

 Chapter 12 Networking 1055

Connection-oriented NDIS (CoNDIS) allows NDIS drivers to manage connection-

 oriented media such as PPP devices. (CoNDIS is described in more detail shortly.)

The interfaces that the NDIS library provides for NDIS drivers to interface with network

adapter hardware are available via functions that translate directly to corresponding func-

tions in the HAL.

EXPERIMENT: Listing the Loaded NDIS Miniports

The Ndiskd kernel debugger extension library includes the !miniports and !miniport
commands, which let you list the loaded miniports using a kernel debugger and, given

the address of a miniport block (a data structure Windows uses to track miniports),

see detailed information about the miniport driver. The following example shows the

!miniports and !miniport commands being used to list all the miniports and then specif-

ics about the miniport responsible for interfacing the system to a PCI Ethernet adapter.

(Note that WAN miniport drivers work with dial-up connections.)

lkd> .load ndiskd

Loaded ndiskd extension DLL

lkd> !miniports

NDIS Driver verifier level: 0

NDIS Failed allocations : 0

Miniport Driver Block: 86880d78, Version 0.0

 Miniport: 868cf0e8, NetLuidIndex: 1, IfIndex: 9, RAS Async Adapter

Miniport Driver Block: 84c3be60, Version 4.0

 Miniport: 84c3c0e8, NetLuidIndex: 3, IfIndex: 15, VMware Virtual Ethernet Adapter

Miniport Driver Block: 84c29240, Version 0.0

 Miniport: 84c2b438, NetLuidIndex: 0, IfIndex: 2, WAN Miniport (SSTP)

...

lkd> !miniport 84bcc0e8

 Miniport 84bcc0e8 : Broadcom NetXtreme 57xx Gigabit Controller, v6.0

 AdapterContext : 85f6b000

 Flags : 0c452218

 BUS_MASTER, 64BIT_DMA, IGNORE_TOKEN_RING_ERRORS

 DESERIALIZED, RESOURCES_AVAILABLE, SUPPORTS_MEDIA_SENSE

 DOES_NOT_DO_LOOPBACK, SG_DMA,

 NOT_MEDIA_CONNECTED,

 PnPFlags : 00610021

 PM_SUPPORTED, DEVICE_POWER_ENABLED, RECEIVED_START

 HARDWARE_DEVICE, NDIS_WDM_DRIVER,

 MiniportState : STATE_RUNNING

 IfIndex : 10

 Ndis5MiniportInNdis6Mode : 0

 InternalResetCount : 0000

 MiniportResetCount : 0000

 References : 5

 UserModeOpenReferences: 0

1056 Windows Internals, Fifth Edition

 PnPDeviceState : PNP_DEVICE_STARTED

 CurrentDevicePowerState : PowerDeviceD0

 Bus PM capabilities

 DeviceD1: 0

 DeviceD2: 0

 WakeFromD0: 0

 WakeFromD1: 0

 WakeFromD2: 0

 WakeFromD3: 1

 SystemState DeviceState

 PowerSystemUnspecified PowerDeviceUnspecified

 S0 D0

 S1 PowerDeviceUnspecified

 S2 PowerDeviceUnspecified

 S3 D3

 S4 D3

 S5 D3

 SystemWake: S5

 DeviceWake: D3

 WakeupMethods Enabled 2:

 WAKE_UP_PATTERN_MATCH

 WakeUpCapabilities:

 MinMagicPacketWakeUp: 4

 MinPatternWakeUp: 4

 MinLinkChangeWakeUp: 0

 Current PnP and PM Settings: : 00000030

 DISABLE_WAKE_UP, DISABLE_WAKE_ON_RECONNECT,

 Translated Allocated Resources:

 Memory: ecef0000, Length: 10000

 Interrupt Level: 9, Vector: a8

 MediaType : 802.3

 DeviceObject : 84bcc030, PhysDO : 848fd6b0 Next DO: 848fc7b0

 MapRegisters : 00000000

 FirstPendingPkt: 00000000

 DriverVerifyFlags : 00000000

 Miniport Interrupt : 85f72000

 Miniport version 6.0

 Miniport Filter List:

 Miniport Open Block Queue:

 8669bad0: Protocol 86699530 = NDISUIO, ProtocolBindingContext 8669be88, v6.0

 86690008: Protocol 86691008 = VMNETBRIDGE, ProtocolBindingContext 866919b8, v5.0

 84f81c50: Protocol 849fb918 = TCPIP6, ProtocolBindingContext 84f7b930, v6.1

 84f7b230: Protocol 849f43c8 = TCPIP, ProtocolBindingContext 84f7b5e8, v6.1

The Flags field for the miniport that was examined indicates that the miniport sup-

ports 64-bit direct memory access operation (64BIT_DMA), that the media is currently

not active (NOT_MEDIA_CONNECTED), and that it can dynamically detect whether the

media is connected or disconnected (SUPPORTS_MEDIA_SENSE). Also listed are the

adapter’s system-to-device power-state mappings and the bus resources that the Plug

and Play manager assigned to the adapter. (See the section “The Power Manager” in

Chapter 7 for more information on power-state mappings.)

 Chapter 12 Networking 1057

Variations on the NDIS Miniport

The NDIS model also supports hybrid network transport NDIS drivers, called NDIS intermedi-
ate drivers. These drivers lie between transport drivers and NDIS drivers. To an NDIS driver,

an NDIS intermediate driver looks like a transport driver; to a transport driver, an NDIS inter-

mediate driver looks like an NDIS driver. NDIS intermediate drivers can see all network traf-

fic taking place on a system because the drivers lie between protocol drivers and network

drivers. Software that provides fault tolerant and load balancing options for network adapt-

ers, such as Microsoft’s Network Load Balancing Provider, are based on NDIS intermediate

drivers.

Finally, the NDIS model also implements lightweight filter drivers (LWDs), which are similar

to intermediate drivers but specifically designed for filtering network traffic. LWDs sup-

port dynamic insertion and removal while the protocol stack is running. Filter drivers have

the ability to filter almost all communications to and from the underlying miniport adapter

because they’re not associated with a particular protocol driver. They also have the ability

to select only certain services for filtering and to be bypassed for those that they are not

interested in. Just like insertion and removal, these service bindings are also dynamic and can

change at run time.

Connection-Oriented NDIS

Support for connection-oriented network hardware (for example, PPP) is native in Windows,

which makes connection management and establishment standard in the Windows network

architecture. Connection-oriented NDIS drivers use many of the same APIs that standard

NDIS drivers use; however, connection-oriented NDIS drivers send packets through estab-

lished network connections rather than place them on the network medium.

In addition to miniport support for connection-oriented media, NDIS includes definitions for

drivers that work to support a connection-oriented miniport driver:

Call managers are NDIS drivers that provide call setup and teardown services for

 connection-oriented clients (described shortly). A call manager uses a connection-

oriented miniport to exchange signaling messages with other network entities such as

network switches or other call managers. A call manager supports one or more signal-

ing protocols.

An integrated miniport call manager (MCM) is a connection-oriented miniport driver

that also provides call manager services to connection-oriented clients. An MCM is

essentially an NDIS miniport driver with a built-in call manager.

1058 Windows Internals, Fifth Edition

A connection-oriented client uses the call setup and teardown services of a call

manager or MCM and the send and receive services of a connection-oriented NDIS

miniport driver. A connection-oriented client can provide its own protocol services to

higher levels in the network stack, or it can implement an emulation layer that inter-

faces connectionless legacy protocols and connection-oriented media. An example of

an emulation layer fulfilled by a connection-oriented client is a LAN emulation (LANE),

which hides the connected-oriented characteristics of ATM and presents a connection-

less media (such as Ethernet) to protocols above it.

Figure 12-27 shows the relationships between these components.

NDIS

NDIS library

MCM driver

NDIS library

Connection-oriented
NDIS miniport driver

NDIS library

Call manager

Connection-oriented
client

Connection management Data
transmission
and receipt

Data
transmission
and receipt

Connection
management

FIGURE 12-27 Connection-oriented NDIS drivers

 Chapter 12 Networking 1059

EXPERIMENT: Using Network Monitor to Capture

Network Packets

Microsoft provides a tool named Network Monitor that lets you capture packets that

flow through one or more NDIS miniport drivers on your system by installing an NDIS

lightweight filter driver (Netmon). You can obtain the latest version of Network Monitor

by going to the Microsoft Support Knowledge Base Article http://support.micro-
 soft.com/kb/955998. When you first start Network Monitor, you’ll see a window similar

to the one shown here:

In the Select Networks pane, Network Monitor lets you select which network connec-

tion you want to monitor. After selecting one or more, start the capture environment

by clicking the New Capture button on the toolbar. You can now initiate monitoring by

clicking the Start button on the toolbar. Perform operations that generate network

activity on the connection you’re monitoring (such as browsing to a Web site), and after

you see that Network Monitor has captured packets, stop monitoring by clicking the

Stop button. In the Frame Summary pane, you will see all the raw network traffic dur-

ing the capture period. The Network Conversations pane will display network traffic

isolated by process, whenever possible. By clicking on the Iexplore.exe process in this

example, Network Monitor shows only the relevant frames in the Frame Summary view,

as shown next.

1060 Windows Internals, Fifth Edition

The window shows the HTTP packets that Network Monitor captured as the Microsoft

Web site was accessed through Internet Explorer. If you click on a frame, Network

Monitor displays a view of the packet that breaks it apart to show various layered appli-

cation and protocol headers in the Frame Details pane, as shown in the previous screen

shot.

Network Monitor also includes a number of other features, such as capture triggers and

filters, that make it a powerful tool for troubleshooting network problems. You can also

add parsers for other protocols, as well as view and modify their source code. Network

Monitor parsers are hosted on CodePlex, the Microsoft open source project site.

Remote NDIS

Prior to the development of Remote NDIS, a vendor that developed a USB network device,

for example, had to provide a driver that interfaced with NDIS as a miniport driver as well as

interfacing with a USB WDM bus driver, as shown in Figure 12-28. If the vendor’s hardware

supported other buses, such as IEEE 1394, the vendor was required to implement drivers that

interfaced with each specific bus type.

 Chapter 12 Networking 1061

TCP/IP

PCI bus

NDIS

NDIS
miniport

USB bus driver

USB controller

USB controller
driver

USB network
device

Device
firmware

USB cable

FIGURE 12-28 NDIS miniport driver for a USB network device

Remote NDIS is a specification for network devices on dynamic Plug and Play I/O buses such

as USB, IEEE 1394, Bluetooth, and Infiniband. The specification eliminates the need for a

hardware vendor to write an NDIS miniport driver at all by defining bus-independent mes-

sages and the mechanism by which the messages are transmitted over various buses. Remote

NDIS messages mirror the NDIS interface and include messages for initializing and resetting

a device, transmitting and receiving packets, setting and querying device parameters, and

indicating media link status.

The Remote NDIS architecture, in Figure 12-29, relies on a Microsoft-supplied NDIS miniport

driver, \%SystemRoot%\System32\Drivers\Rndismp.sys, that translates NDIS commands and

forwards them to a bus transport driver for the bus on which a device is located. The archi-

tecture allows for a single NDIS miniport driver to be used for all Remote NDIS drivers and a

single bus transport driver for each supported bus.

TCP/IP

PCI bus

NDIS

Remote NDIS
miniport

USB bus driver

USB controller

Remote NDIS
USB miniport

USB controller
driver

USB network
device

Device
firmware

USB cable

FIGURE 12-29 Remote NDIS architecture for USB network devices

1062 Windows Internals, Fifth Edition

Currently, Remote NDIS for USB devices is included on Windows. While Remote NDIS on

IEEE 1394 is fully specified, Windows does not yet support it, nor does it support it over

Infiniband.

QoS

If no special measures are taken, IP traffic is delivered over a network on a first-come, first-

serve basis. Applications have no control over the priority of their messages, and they can

experience bursty network behavior, where they occasionally obtain high throughput and

low latencies, but otherwise receive poor network performance. While this level of service is

acceptable in most situations, an increasing number of network applications demand more

consistent service levels, or quality of service (QoS) guarantees. Video conferencing, media

streaming, and enterprise resource planning (ERP) are examples of applications that require

good network performance. QoS allows an application to specify minimum bandwidth and

maximum latencies, which can be satisfied only if every networking software and hardware

component between a sender and a receiver supports QoS standards such as IEEE 802.1P,

an industry standard that specifies the format of QoS packets and how OSI layer 2 devices

(switches and network adapters) respond to them.

Windows supports QoS through a policy-based QoS implementation that takes full advantage

of the Next Generation TCP/IP network stack, the WFP, and NDIS lightweight filter drivers.

The implementation allows for managing or prioritizing bandwidth use based on different

conditions, such as the application, the source or destination IP address, the protocol being

used, and the source or destination ports. Network administrators typically apply QoS set-

tings to a logon session or a computer with Active Directory–based Group Policy, but they

can be applied locally as well.

Policy-based QoS provides two methods through which bandwidth can be managed. The

first uses a special field in the IP header called the Differentiated Services Code Point (DSCP).

Routers that support DSCP read the value and separate packets into specific queues. The QoS

architecture in Windows can mark outgoing packets with the appropriate DSCP field so that

network devices can provide differentiated levels of service. The other bandwidth manage-

ment method is the ability to simply throttle outgoing traffic based on the conditions out-

lined earlier, where the QoS components limit bandwidth to a specified rate.

The Windows QoS implementation consists of several components, as shown in Figure 12-30.

First, the QoS Client Side Extension (%SystemRoot%\System32\Gptext.dll) notifies the Group

Policy client and the QoS Inspection Module that QoS settings have changed. Next, the QoS

Inspection Module (eQoS), which is a WFP packet-inspection component implemented in the

TCP/IP driver that reacts to policy changes, retrieves the updated policy and works with the

transport layer and QoS Packet Scheduler to mark traffic that matches the policy. Finally,

the QoS Packet Scheduler, or Pacer (%SystemRoot%\System32\Drivers\Pacer.sys), provides

 Chapter 12 Networking 1063

the NDIS lightweight filter functionality, such as throttling and setting the DSCP value, to

control packet scheduling based on the QoS policies. Pacer also provides the GQoS (Generic

QoS) and TC (Traffic Control) API support for legacy Windows applications that used these

mechanisms.

In addition to the systemwide, policy-based QoS support provided by the QoS architecture,

Windows enables specific classes of socket-based applications to have individual and specific

control of QoS behavior through an API called the Quality Windows Audio/Video Experience,

or qWAVE. Network-based multimedia applications, like Voice over IP (VoIP), can use the

qWAVE API to query information on real-time network bandwidth and adapt to changing

network conditions, as well as to prioritize packets to efficiently use the available bandwidth.

qWAVE also takes advantage of the topology protocols described earlier to dynamically

determine if the current network devices will support the required bandwidth for a video

stream, for example. It can notify applications of diminishing bandwidth, at which point the

multimedia application is expected to reduce the stream quality, for example.

User mode

Kernel mode

QoS NPI

QoS client-side
extension

Group Policy engine

NDIS 6.0

Next Generation TCP/IP Stack (tcpip.sys)

Insp
ection

interface

QoS
inspection

module

Group Policy client service

Pacer.sys

Framing layer (802.3/802.11/etc.)

Network layer (IPv4/IPv6)

Transport layer (TCP/UDP)

FIGURE 12-30 Policy-based QoS architecture

qWAVE is implemented in the QoS2 (%SystemRoot%\System32\Qwave.dll) API library and

provides four main components:

Admission control, which determines, when a new network multimedia stream is

started, if the current network can support the sustained bandwidth requested.

1064 Windows Internals, Fifth Edition

Caching, which allows the detailed admission control checks to be bypassed if similar

usage patterns occurred in the past and the calculation result was already cached.

Monitoring and probing, which keep track of available bandwidth and notify applica-

tions during low-bandwidth or high-latency situations.

Traffic tagging and shaping, which uses the 802.11p and DSCP technologies mentioned

earlier to tag packets with the appropriate priority to ensure timely delivery.

Figure 12-31 shows the general overview of the qWAVE architecture:

qWAVE

A/V
transport
UDP/TCP

Traffic tagging
and shipping

Monitoring
and probing

Admission control

Caching

Multimedia and real-time collaboration applications

Media and real-time communications platforms

Physical media

FIGURE 12-31 qWAVE architecture

Binding

The final piece in the Windows networking architecture puzzle is the way in which the

components at the various layers—networking API layer, transport driver layer, NDIS driver

layer—locate one another. The name of the process that connects the layers is binding.

You’ve witnessed binding taking place if you’ve changed your network configuration by add-

ing or removing a component using the Network Connections folder.

When you install a networking component, you must supply an INF file for the component.

(INF files are described in Chapter 7.) This file includes directions that setup API routines must

follow to install and configure the component, including binding dependencies or binding

relationships. A developer can specify binding dependencies for a proprietary component so

that the Service Control Manager (the Service Control Manager is described in Chapter 4) will

not only load the component in the correct order but will load the component only if other

components the proprietary component depends on are present on the system. Binding

relationships, which the bind engine determines with the aid of additional information in a

 Chapter 12 Networking 1065

component’s INF file, establish connections between components at the various layers. The

connections specify which components a network component on one layer can use on the

layer beneath it.

For example, the Workstation service (redirector) will automatically bind to the TCP/IP pro-

tocol. The order of the binding, which you can examine on the Adapters And Bindings tab

in the Advanced Settings dialog box, shown in Figure 12-32, determines the priority of the

binding. (See the section “Multiple Redirector Support” earlier in this chapter for instructions

on how to launch the Advanced Settings dialog box.) When the redirector receives a request

to access a remote file, it submits the request to both protocol drivers simultaneously. When

the response comes, the redirector waits until it has also received responses from any higher-

priority protocol drivers. Only then will the redirector return the result to the caller. Thus, it

can be advantageous to reorder bindings so that bindings of high priority are also the most

performance efficient or applicable to most of the computers in your network. You can also

manually remove bindings with the Advanced Settings dialog box.

FIGURE 12-32 Editing bindings with the Advanced Settings dialog box

The Bind value, in the Linkage subkey of a network component’s registry configuration key,

stores binding information for that component. For example, if you examine HKLM\SYSTEM\

CurrentControlSet\Services\LanmanWorkstation\Linkage\Bind, you’ll see the binding infor-

mation for the Workstation service.

1066 Windows Internals, Fifth Edition

Layered Network Services

Windows includes network services that build on the APIs and components we’ve presented

in this chapter. Describing the capabilities and detailed internal implementation of these ser-

vices is outside the scope of this book, but this section provides a brief overview of remote

access, Active Directory, Network Load Balancing, and Distributed File System (DFS), includ-

ing DFS Replication (DFSR).

Remote Access

Remote access, which is available with Windows Server with the Routing and Remote Access

service, allows remote access clients to connect to remote access servers and access network

resources such as files, printers, and network services as if the client were physically con-

nected to the remote access server’s network. Windows provides two types of remote access:

Dial-up remote access is used by clients that connect to a remote access server via

a telephone or other telecommunications infrastructure. The telecommunications

medium is used to create a temporary physical or virtual connection between the client

and the server.

Virtual private network (VPN) remote access lets a VPN client establish a virtual point-

to-point connection to the server over an IP network such as the Internet. Windows

also supports the Secure Socket Transmission Protocol (SSTP), which is a newer tunnel-

ing protocol for VPN connections that has the ability to pass through most firewalls and

routers that block PPTP or L2TP/IPSec traffic. It does so by packaging PPP data over the

SSL channel of the HTTPS protocol. Because the latter operates on port 443 and is usu-

ally part of typical Web browsing behavior, it is much more likely to be available than

traditional VPN tunneling protocols.

Remote access differs from remote control solutions because remote access acts as a proxy

connection to a Windows network, whereas remote control software executes applications

on a server, presenting a user interface to the client.

Active Directory

Active Directory is the Windows implementation of Lightweight Directory Access Protocol

(LDAP) directory services. Active Directory is based on a database that stores objects repre-

senting resources defined by applications in a Windows network. For example, the structure

and membership of a Windows domain, including the user account and password informa-

tion, are stored in Active Directory.

 Chapter 12 Networking 1067

Object classes and the attributes that define properties of objects are specified by a schema.

The objects in the Active Directory are hierarchically arranged, much like the registry’s logi-

cal organization, where container objects can store other objects, including other container

objects. (See Chapter 6 for more information on container objects.)

Active Directory supports a number of APIs that clients can use to access objects within an

Active Directory database:

The LDAP C API is a C language API that uses the LDAP networking protocol.

Applications written in C or C++ can use this API directly, and applications written in

other languages can access the APIs through translation layers.

Active Directory Service Interfaces (ADSI) is a COM interface to Active Directory imple-

mented on top of LDAP that abstracts the details of LDAP programming. ADSI supports

multiple languages, including Microsoft Visual Basic, C, and Microsoft Visual C++. ADSI

can also be used by Microsoft Windows Script Host (WSH) applications.

Messaging API (MAPI) is supported for compatibility with Microsoft Exchange client

and Outlook Address Book client applications.

Security Account Manager (SAM) APIs are built on top of Active Directory to provide

an interface to logon authentication packages such as MSV1_0 (\%SystemRoot%\

System32\Msv1_0.dll, which is used for legacy NT LAN Manager authentication) and

Kerberos (\%SystemRoot%\System32\Kdcsvc.dll).

Windows NT 4 networking APIs (Net APIs) are used by Windows NT 4 clients to gain

access to Active Directory through SAM.

NTDS API is used to look up SIDs and GUIDs in an Active Directory implementation

(via DsCrackNames mostly) as well as for its main purposes, Active Directory manage-

ment and replication. Several third parties have written applications that monitor Active

Directory from these APIs.

Active Directory is implemented as a database file that by default is named \%SystemRoot%\

Ntds\Ntds.dit, and that is replicated across the domain controllers in a domain. The Active

Directory directory service, which is a Windows service that executes in the Local Security

Authority Subsystem (Lsass) process, manages the database, using DLLs that implement the

on-disk structure of the database as well as provide transaction-based updates to protect

the integrity of the database. The Active Directory database store is based on a version of

the Extensible Storage Engine (ESE), also known as JET Blue, database used by Microsoft

Exchange Server 2007, Desktop Search, and Windows Mail. The ESE library (%SystemRoot%\

System32\Esent.dll) provides routines for accessing the database, which are open for other

applications to use as well. Figure 12-33 shows the Active Directory architecture.

1068 Windows Internals, Fifth Edition

Lsass

Net Logon service
(Netlogon.dll)

NT LAN Manager
(Msv1_0.dll)

SAM server
(Samsrv.dll)

Active Directory
directory service

(Ntdsa.dll)

Esent.dll

Remote Net Logon service
(for legacy support only)

Kerberos client
authentication DLL

(Kerberos.dll)

Kerberos Key
Distribution Center

(Kdcsvc.dll)

Active
Directory
(Ntds.dit)

MAPI

LDAP/ADSI

Net API

SAM
API

Winsock

SAM
API

FIGURE 12-33 Active Directory architecture

Network Load Balancing

As we stated earlier in the chapter, Network Load Balancing, which is included with Windows

Server 2008, is based on NDIS lightweight filter technology. Network Load Balancing allows

for the creation of a cluster containing up to 32 computers, which are called cluster hosts
in Network Load Balancing. The cluster can maintain multiple dedicated IP addresses and a

single virtual IP address that is published for access by clients. Client requests go to all the

computers in the cluster, but only one cluster host responds to the request. The Network

Load Balancing NDIS drivers effectively partition the client space among available cluster

hosts in a distributed manner. This way, each host handles its portion of incoming client

requests and every client request always gets handled by one and only one host. The cluster

host that determines it should handle a client request allows the request to propagate up to

the TCP/IP protocol driver and eventually a server application; the other cluster hosts don’t.

If a cluster host fails, the rest of the cluster realizes that the cluster host is no longer a candi-

date for processing requests and redistributes the incoming client requests to the remaining

 Chapter 12 Networking 1069

cluster hosts. No new client requests are sent to the downed cluster host. Another cluster

host can be added to the cluster as a replacement, and it will then seamlessly start handling

client requests.

Network Load Balancing isn’t a general-purpose clustering solution because the server

application that clients communicate with must have certain characteristics: the first is that it

must be based on protocols supported by the Windows TCP/IP stack, and the second is that

it must be able to handle client requests on any system in a Network Load Balancing cluster.

This second requirement typically means that an application that must have access to shared

state in order to service client requests must manage the shared state itself—Network Load

Balancing doesn’t include services for automatically distributing shared state across cluster

hosts. Applications that are ideally suited for Network Load Balancing include a Web server

that serves static content, Windows Media Server, and Terminal Services. Figure 12-34 shows

an example of a Network Load Balancing operation.

User mode

Kernel mode

Web server

Computer 1

TCP/IP driver

NDIS library

Network Load
Balancing NDIS

lightweight filter driver

NDIS miniport driver

User mode

Kernel mode

Web server

Computer 2

TCP/IP driver

NDIS library

Network Load
Balancing NDIS

lightweight filter driver

NDIS miniport driver

Network Load
Balancing

distributed view

Clients

...

FIGURE 12-34 Network Load Balancing operation

Distributed File System and DFS Replication

Distributed File System (DFS) is a service that layers on top of the Workstation service to

connect together file shares into a single namespace. The file shares can reside on the same

computer or on different computers, and DFS provides client access to the resources in a

location-transparent manner. The root of a DFS namespace must be a file share defined on a

Windows server.

1070 Windows Internals, Fifth Edition

In addition to delivering a unified network-resource namespace, DFS provides other benefits

through DFS replica sets. An administrator can create a DFS replica set from two or more

shares and use a replication mechanism such as File Replication Service (FRS) to copy data

between the shares of a replica set to keep their contents synchronized. DFS provides sev-

eral forms of load balancing by ordering and/or selecting members of a replica set to fulfill a

client request for data on the replica set. In addition, DFS achieves high availability by rout-

ing requests to the working member or members of a replica set when a member becomes

unavailable.

The components that make up the DFS architecture are shown in Figure 12-35. The server-

side implementation of DFS consists of a Windows service (\%SystemRoot%\System32\

Dfssvc.exe) and a device driver (\%SystemRoot%\System32\Drivers\Dfs.sys). The DFS service

is responsible for exporting DFS topology-management interfaces and maintaining the DFS

topology in either the registry (on non–Active Directory systems) or Active Directory. The DFS

driver performs topology lookups when it receives a client request so that it can direct the

client to the system where the file it is requesting resides.

User mode

Kernel mode

Application

Active
Directory

Kernel32.dll
File I/O API

User mode

Kernel mode

Ntdll.dll

Dfsc.sys Dfs.sys

Registry

DFS client DFS server

Redirector
FSD

Dfssvc.exe

DFS topology

FIGURE 12-35 DFS components

On the client side, DFS support is implemented in another device driver (%SystemRoot%\

System32\Drivers\Dfsc.sys) and uses the SMB redirector for its internal communication

with DFS servers. The DFS client provider is implemented in \%SystemRoot%\System32\

Ntlanman.dll. When a client issues a file I/O request that specifies a file in the DFS namespace,

the DFS client driver communicates with the target file server by using the appropriate

redirector.

DFS also includes DFS Replication (DFSR). Its primary purpose is to replicate the contents

of any DFS share, as well as the domain controller’s \SYSVOL directory, which is where

Windows domain controllers store logon scripts and Group Policy files. (Group Policy permits

 Chapter 12 Networking 1071

administrators to define usage and security policies for the computers that belong to a

domain.) DFSR allows for distributed multimaster replication, which enables any server to

perform replication activity. When a replicated directory or file is changed, the changes are

propagated to the other domain controllers.

The fundamental concept in DFSR is a replica set, which consists of two or more systems that

replicate between themselves the contents of a directory tree according to an administra-

tively defined schedule and replication topology, which is the set of connections that defines

the relationship between domain controllers in a forest and the directory partition replicas

they share. Only directories on NTFS volumes can be replicated because DFSR relies on the

NTFS change journal to detect changes to files in directories in a replica set. Because DFSR is

based on multimaster replication, it can theoretically support hundreds or even thousands of

systems as part of a replica set, and the computers of a replica set (called a replica group) can

be connected with arbitrary network topologies (such as ring, star, or mesh). Computers can

also be members of multiple replica sets. DFSR uses Remote Differential Compression (RDC)

to compress replica sets, which means that only differences between two servers are repli-

cated, reducing bandwidth. DFSR is implemented as a Windows service (\%SystemRoot%\

System32\Dfsr.exe) that uses authenticated RPC with encryption to communicate between

instances of itself running on different computers. In addition, because Active Directory con-

tains its own replication capabilities, DFSR uses Active Directory APIs to retrieve FRS configu-

ration information from a domain’s Active Directory. DFSR also exposes a WMI interface for

tracing, configuration, and management of the service.

Conclusion

The Windows network architecture provides a flexible infrastructure for networking APIs,

network protocol drivers, and network adapter drivers. The Windows networking architec-

ture takes advantage of I/O layering to give networking support the extensibility to evolve as

computer networking evolves. When new protocols appear, developers can write a TDI trans-

port to implement the protocol on Windows. Similarly, new APIs can interface to existing

Windows protocol drivers. Finally, the range of networking APIs implemented on Windows

affords network application developers a range of possible implementations, each with dif-

ferent programming models and protocol support.

 1073

Chapter 13

Startup and Shutdown

In this chapter, we’ll describe the steps required to boot Windows and the options that can

affect system startup. Understanding the details of the boot process will help you diagnose

problems that can arise during a boot. Then we’ll explain the kinds of things that can go

wrong during the boot process and how to resolve them. Finally, we’ll explain what occurs on

an orderly system shutdown.

Boot Process

In describing the Windows boot process, we’ll start with the installation of Windows and pro-

ceed through the execution of boot support files. Device drivers are a crucial part of the boot

process, so we’ll explain the way that they control the point in the boot process at which they

load and initialize. Then we’ll describe how the executive subsystems initialize and how the

kernel launches the user-mode portion of Windows by starting the Session Manager process

(Smss.exe), which starts the initial two sessions (session 0 and session 1). Along the way, we’ll

highlight the points at which various text appears on the screen to help you correlate the

internal process with what you see when you watch Windows boot.

The early phases of the boot process differ significantly on x86 and x64 systems with a BIOS

(basic input output system) versus systems with an EFI (Extensible Firmware Interface). EFI is

a newer standard that does away with much of the legacy 16-bit code that BIOS systems use

and allows the loading of preboot programs and drivers to support the operating system

loading phase. The next sections describe the portions of the boot process specific to BIOS-

based systems and are followed with a section describing the EFI-specific portions of the

boot process.

To support these different firmware implementations (as well as EFI 2.0, also called Unified

EFI, or UEFI), Windows provides a boot architecture that abstracts many of the differences

away from users and developers in order to provide a consistent environment and experience

regardless of the type of firmware used on the installed system.

BIOS Preboot

The Windows boot process doesn’t begin when you power on your computer or press the

reset button. It begins when you install Windows on your computer. At some point during

the execution of the Windows Setup program, the system’s primary hard disk is prepared

with code that takes part in the boot process. Before we get into what this code does, let’s

1074 Windows Internals, Fifth Edition

look at how and where Windows places the code on a disk. Since the early days of MS-DOS, a

standard has existed on x86 systems for the way physical hard disks are divided into volumes.

Microsoft operating systems split hard disks into discrete areas known as partitions and use

file systems (such as FAT and NTFS) to format each partition into a volume. A hard disk can

contain up to four primary partitions. Because this apportioning scheme would limit a disk

to four volumes, a special partition type, called an extended partition, further allocates up to

four additional partitions within each extended partition. Extended partitions can contain

extended partitions, which can contain extended partitions, and so on, making the number

of volumes an operating system can place on a disk effectively infinite. Figure 13-1 shows an

example of a hard disk layout, and Table 13-1 summarizes the files involved in the BIOS boot

process. (You can learn more about Windows partitioning in Chapter 8, which covers storage

management.)

TABLE 13-1 BIOS Boot Process Components

Component Processor Execution Responsibilities Location

Master Boot

Record (MBR)

16-bit real mode Reads and loads partition

boot sectors

Per storage device

Boot sector 16-bit real mode Reads the root directory to

load Bootmgr.

Per partition

Bootmgr 16-bit real mode and

32-bit without paging

Reads the Boot

Configuration Database

(BCD), presents boot menu,

and allows execution

of preboot programs

such as the Memory Test

 application (Memtest.exe).

If a 64-bit installation is

booted, switches to 64-bit

long mode before loading

Winload.

Per system

Winload.exe 32-bit protected mode

with paging, 64-bit

protected mode if

booting a Win64

installation

Loads Ntoskrnl.exe and its

dependencies (Bootvid.dll

on 32-bit systems, Hal.dll,

Kdcom.dll, Ci.dll, Clfs.sys,

Pshed.dll) and boot-start

device drivers.

Per Windows

installation

Winresume.exe 32-bit protected

mode, 64-bit protect-

ed mode if resuming a

Win64 installation

If resuming after a

hibernation state, resumes

from the hibernation file

(Hiberfil.sys) instead of

typical Windows loading.

Per Windows

installation

 Chapter 13 Startup and Shutdown 1075

Component Processor Execution Responsibilities Location

Memtest.exe 32-bit protected mode If selected from the Boot

Manager, starts up and

provides a graphical inter-

face for scanning memory

and detecting damaged

RAM.

Per system

Ntoskrnl.exe Protected mode with

paging

Initializes executive sub-

systems and boot and

system-start device drivers,

prepares the system for

running native applica-

tions, and runs Smss.exe.

Per Windows

installation

Hal.dll Protected mode with

paging

Kernel-mode DLL that

interfaces Ntoskrnl and

drivers to the hardware.

Per Windows

installation

Smss.exe Native application Initial instance starts a

copy of itself to initialize

each session. The ses-

sion 0 instance loads the

Windows subsystem driver

(Win32k.sys) and starts

the Windows subsystem

process (Csrss.exe) and

Windows initialization

process (Wininit.exe). All

other per-session instances

start a Csrss and Winlogon

process.

Per Windows

installation

Wininit.exe Windows application Starts the service control

manager (SCM), the Local

Security Authority pro-

cess (LSASS), and the local

session manager (LSM).

Initializes the rest of the

registry and performs

user-mode initialization

tasks.

Per Windows

installation

Winlogon.exe Windows application Coordinates logon and

user security, launches

LogonUI.

Per Windows

installation

Logonui.exe Windows application Presents interactive logon

dialog box.

Per Windows

installation

Services.exe Windows application Loads and initializes auto-

start device drivers and

Windows services.

Per Windows

installation

1076 Windows Internals, Fifth Edition

Partition 1 Partition 2

Partition table

1
2
3
4

Boot code

Partition 4Partition 3
(Extended)

Partitions within an
extended partition

MBR Boot sector Extended partition boot record

Boot partition

FIGURE 13-1 Sample hard disk layout

Physical disks are addressed in units known as sectors. A hard disk sector on a BIOS PC is

typically 512 bytes. Utilities that prepare hard disks for the definition of volumes, such as the

Windows Setup program, write a sector of data called a Master Boot Record (MBR) to the first

sector on a hard disk. (MBR partitioning is described in Chapter 8.) The MBR includes a fixed

amount of space that contains executable instructions (called boot code) and a table (called

a partition table) with four entries that define the locations of the primary partitions on the

disk. When a BIOS-based computer boots, the first code it executes is called the BIOS, which

is encoded into the computer’s ROM. The BIOS selects a boot device, reads that device’s MBR

into memory, and transfers control to the code in the MBR.

The MBRs written by Microsoft partitioning tools, such as the one integrated into Windows

Setup and the Disk Management MMC snap-in, go through a similar process of reading and

transferring control. First, an MBR’s code scans the primary partition table until it locates a

partition containing a flag that signals the partition is bootable. When the MBR finds at least

one such flag, it reads the first sector from the flagged partition into memory and transfers

control to code within the partition. This type of partition is called a system partition, and the

first sector of such a partition is called a boot sector. The volume defined for this partition is

called the system volume.

Operating systems generally write boot sectors to disk without a user’s involvement. For

example, when Windows Setup writes the MBR to a hard disk, it also writes the file system

boot code (part of the boot sector) to the first bootable partition of the disk.

Before writing to a partition’s boot sector, Windows Setup ensures that the boot partition is

formatted with NTFS, the only supported file system that Windows can boot from, or formats

 Chapter 13 Startup and Shutdown 1077

the boot partition (and any other partition) with NTFS. Note that the format of the system

partition can be any format that Windows supports (such as FAT32). If partitions are already

formatted appropriately, you can instruct Setup to skip this step. After Setup formats the sys-

tem partition, Setup copies the Boot Manager program (Bootmgr) that Windows uses to the

system partition (the system volume).

Another of Setup’s roles is to prepare the Boot Configuration Database (BCD), which on BIOS

systems is stored in the \Boot\BCD file on the root directory of the system volume. This file

contains options for starting the version of Windows that Setup installs and any preexisting

Windows installations. If the BCD already exists, the Setup program simply adds new entries

relevant to the new installation.

The BIOS Boot Sector and Bootmgr

Setup must know the partition format before it writes a boot sector because the contents

of the boot sector vary depending on the format. For a partition that is in NTFS format,

Windows writes NTFS-capable code. The role of the boot-sector code is to give Windows

information about the structure and format of a volume and to read in the Bootmgr file

from the root directory of the volume. Thus, the boot-sector code contains just enough

read-only file system code to accomplish this task. After the boot-sector code loads Bootmgr

into memory, it transfers control to Bootmgr’s entry point. If the boot-sector code can’t find

Bootmgr in the volume’s root directory, it displays the error message “BOOTMGR is missing”.

Bootmgr begins its existence while a system is executing in an x86 operating mode called

real mode. In real mode, no virtual-to-physical translation of memory addresses occurs, which

means that programs that use the memory addresses interpret them as physical addresses

and that only the first 1 MB of the computer’s physical memory is accessible. Simple MS-DOS

programs execute in a real-mode environment. However, the first action Bootmgr takes is

to switch the system to protected mode. Still no virtual-to-physical translation occurs at this

point in the boot process, but a full 32 bits of memory becomes accessible. After the system

is in protected mode, Bootmgr can access all of physical memory. After creating enough

page tables to make memory below 16 MB accessible with paging turned on, Bootmgr

enables paging. Protected mode with paging enabled is the mode in which Windows exe-

cutes in normal operation.

After Bootmgr enables protected mode, it is fully operational. However, it still relies on func-

tions supplied by BIOS to access IDE-based system and boot disks as well as the display.

Bootmgr’s BIOS-interfacing functions briefly switch the processor back to a mode in which

services provided by the BIOS can be executed, called real mode. Bootmgr next reads the

BCD file from the \Boot directory using built-in file system code. Like the boot sector’s code,

Bootmgr contains read-only NTFS code (Bootmgr also supports other file systems, such as

FAT, El Torito CDFS, UDFS, and WIM files); unlike the boot sector’s code, however, Bootmgr’s

file system code can read subdirectories.

1078 Windows Internals, Fifth Edition

Note Bootmgr and other boot applications can still write to preallocated files on NTFS volumes,

because only the data needs to be written, instead of performing all the complex allocation

work that is typically required on an NTFS volume. This is how these applications can write to

bootsect.dat, for example.

Bootmgr next clears the screen. If Windows enabled the BCD setting to inform Bootmgr of

a hibernation resume, this shortcuts the boot process by launching Winresume.exe, which

will read the contents of the file into memory and transfer control to code in the kernel that

resumes a hibernated system. That code is responsible for restarting drivers that were active

when the system was shut down. Hiberfil.sys will be valid only if the last time the computer

was shut down it was hibernated. (See the section “The Power Manager” in Chapter 7 for

information on hibernation.)

If there is more than one boot-selection entry in the BCD, Bootmgr presents the user with

the boot-selection menu (if there is only one entry, Bootmgr bypasses the menu and pro-

ceeds to launch Winload.exe). Selection entries in the BCD direct Bootmgr to the partition on

which the Windows system directory (typically \Windows) of the selected installation resides.

This partition might be the same as the system partition, or it might be another primary or

extended partition.

Entries in the BCD can include optional arguments that Bootmgr, Winload, and other compo-

nents involved in the boot process interpret. Table 13-2 contains a list of these options and

their effects for Bootmgr, Table 13-3 shows a list of BCD options for boot applications, and

Table 13-4 shows BCD options for the Windows boot loader.

The Bcdedit.exe tool provides a convenient interface for setting a number of the switches.

Some options that are included in the BCD save to the registry value HKLM\SYSTEM\

CurrentControlSet\Control\SystemStartOptions if they correspond to command-line switches;

otherwise, they are kept only in the BCD.

TABLE 13-2 BCD Options for the Windows Boot Manager (Bootmgr)

BCD Element Values Meaning

bcdfilepath Path Points to the Boot Configuration Database (usually \Boot\BCD)

file on the disk.

displaybootmenu Boolean Determines whether the Boot Manager shows the boot menu

or picks the default entry automatically.

keyringaddress Physical

address

Specifies the physical address where the BitLocker key ring is

located.

noerrordisplay Boolean Silences the output of errors encountered by the Boot

Manager.

resume Boolean Whether or not resuming from hibernation should be attempt-

ed. This option is automatically set when Windows hibernates.

timeout Seconds Number of seconds that the Boot Manager should wait before

choosing the default entry.

 Chapter 13 Startup and Shutdown 1079

TABLE 13-3 BCD Options for Boot Applications

BCD Element Values Meaning

badmemoryaccess Boolean Forces usage of memory pages in the Bad Page List

(see Chapter 9 for more information on the page

lists).

badmemorylist Array of page frame

numbers (PFNs)

Specifies a list of physical pages on the system that

are known to be bad because of faulty RAM.

baudrate Baud rate in bps Specifies an override for the default baud rate

(19200) at which a remote kernel debugger host

will connect through a serial port.

bootdebug Boolean Enables remote boot debugging for the boot load-

er. With this option enabled, you can use Kd.exe or

Windbg.exe to connect to the boot loader.

bootems Boolean Used to cause Windows to enable Emergency

Management Services (EMS) for boot applications,

which reports boot information and accepts system

management commands through a serial port.

channel Channel between 0

and 62

Used in conjunction with {debugtype, 1394} to

specify the IEEE 1394 channel through which kernel

debugging communications will flow.

configaccesspolicy Default,

DisallowMmConfig

Configures whether the system uses memory

mapped I/O to access the PCI manufacturer’s con-

figuration space or falls back to using the HAL’s I/O

port access routines. Can sometimes be helpful in

solving platform device problems.

debugaddress Hardware address Specifies the hardware address of the serial (COM)

port used for debugging.

debugport COM port number Specifies an override for the default serial port

(usually COM2 on systems with at least two serial

ports) to which a remote kernel debugger host is

connected.

debugstart Active, AutoEnable,

Disable

Specifies settings for the debugger when kernel

debugging is enabled. AutoEnable enables the

debugger when a breakpoint or kernel exception,

including kernel crashes, occurs.

debugtype Serial, 1394, USB Specifies whether kernel debugging will be com-

municated through a serial, FireWire (IEEE 1394), or

USB 2.0 port. (The default is serial.)

emsbaudrate Baud rate in bps Specifies the baud rate to use for EMS.

emsport COM port number Specifies the serial (COM) port to use for EMS.

extendedinput Boolean Enables boot applications to leverage BIOS support

for extended console input.

firstmegabytepolicy UseNone, UseAll,

UsePrivate

Specifies how the low 1 MB of physical memory is

consumed by the HAL to mitigate corruptions by

the BIOS during power transitions.

1080 Windows Internals, Fifth Edition

BCD Element Values Meaning

graphicsmodedisabled Boolean Disables graphics mode for boot applications.

graphicsresolution Resolution Sets the graphics resolution for boot applications.

initialconsoleinput Boolean Specifies an initial character that the system inserts

into the PC/AT keyboard input buffer.

locale Localization string Sets the locale for the boot application (such as

EN-US).

noumex Boolean Disables user-mode exceptions when kernel de-

bugging is enabled. If you experience system hangs

(freezes) when booting in debugging mode, try

enabling this option.

novesa Boolean Disables the usage of VESA display modes.

relocatephysical Physical address Relocates an automatically selected NUMA node’s

physical memory to the specified physical address.

testsigning Boolean Enables test-signing mode, which allows driver

 developers to load locally signed 64-bit drivers.

This option results in a watermarked desktop.

truncatememory Address in bytes Disregards physical memory above the specified

physical address.

TABLE 13-4 BCD Options for the Windows Boot Loader (Winload)

BCD Element Values Meaning

advancedoptions Boolean If false, executes the default behavior of launching

the auto-recovery command boot entry when the

boot fails; otherwise, displays the boot error and

offers the user the advanced boot option menu

 associated with the boot entry. This is equivalent to

pressing F8.

bootlog Boolean Causes Windows to write a log of the boot to the file

%SystemRoot%\Ntbtlog.txt.

bootstatuspolicy DisplayAllFailures,

IgnoreAllFailures,

IgnoreShutdown-

Failures,

IgnoreBoot-

Failures

Overrides the system’s default behavior of offering

the user a troubleshooting boot menu if the system

did not complete the previous boot or shutdown.

clustermodeaddressing Number of

processors

Defines the maximum number of processors

to include in a single Advanced Programmable

Interrupt Controller (APIC) cluster.

configflags Flags Specifies processor-specific configuration flags.

dbgtransport Transport image

name

Overrides using one of the default kernel debug-

ging transports (Kdcom.dll, Kd1394, Kdusb.dll) and

instead uses the given file, permitting specialized

debugging transports to be used that are not typi-

cally supported by Windows.

 Chapter 13 Startup and Shutdown 1081

BCD Element Values Meaning

debug Boolean Enables kernel-mode debugging.

detecthal Boolean Enables the dynamic detection of the HAL.

driverloadfailurepolicy Fatal,

UseErrorControl

Describes the loader behavior to use when a boot

driver has failed to load. Fatal will prevent booting,

while UseErrorControl causes the system to honor a

driver’s default error behavior, specified in its service

key.

ems Boolean Instructs the kernel to use EMS as well. (If only

bootems is used, only the boot loader will use EMS.)

exportascd Boolean If this option is set, the kernel will treat the ramdisk

file specified as an ISO image and not a Windows

Installation Media (WIM) or System Deployment

Image (SDI) file.

hal HAL image name Overrides the default file name for the HAL image

(hal.dll). This option can be useful when booting a

combination of a checked HAL and checked kernel

(requires specifying the kernel element as well).

halbreakpoint Boolean Causes the HAL to stop at a breakpoint early in HAL

initialization. The first thing the Windows kernel

does when it initializes is to initialize the HAL, so

this breakpoint is the earliest one possible (unless

boot debugging is used). If the switch is used with-

out the /DEBUG switch, the system will elicit a blue

screen with a STOP code of 0x00000078 (PHASE0_

EXCEPTION).

hypervisorbaudrate Baud rate in bps If using serial hypervisor debugging, specifies the

baud rate to use.

hypervisorchannel Channel number

from 0 to 62

If using FireWire (IEEE 1394) hypervisor debugging,

specifies the channel number to use.

hypervisordebug Boolean Enables debugging the hypervisor.

hypervisordebugport COM port

number

If using serial hypervisor debugging, specifies the

COM port to use.

hypervisordebugtype Serial, 1394 Specifies which hardware port to use for hypervisor

debugging.

hypervisorlaunchtype Off, Auto Enables loading of the hypervisor on a Hyper-V sys-

tem, or forces it to be disabled.

hypervisorpath Hypervisor binary

image name

Specifies the path of the hypervisor binary.

increaseuserva Size in MB Increases the size of the user process address space

from 2 GB to the specified size, up to 3 GB (and

therefore reduces the size of system space). Giving

virtual-memory-intensive applications such as

 database servers a larger address space can improve

their performance. (See the section “Address Space

Layout” in Chapter 9 for more information.)

1082 Windows Internals, Fifth Edition

BCD Element Values Meaning

kernel Kernel image

name

Overrides the default file name for the kernel image

(ntoskrnl.exe). This option can be useful when boot-

ing a combination of a checked HAL and checked

kernel (requires specifying the hal element to be

used as well).

lastknowngood Boolean Boots the last known good configuration, instead of

the current control set.

loadoptions Extra command-

line parameters

This option is used to add other command-line

parameters that are not defined by BCD elements.

These parameters could be used to configure or

define the operation of other components on the

system that might not be able to use the BCD (such

as legacy components).

maxproc Boolean Forces the maximum number of supported proces-

sors that Windows will report to drivers and applica-

tions to accommodate the arrival of additional CPUs

via dynamic processor support.

msi Default,

ForceDisable

Allows disabling support for message signaled

interrupts.

nocrashautoreboot Boolean Disables the automatic reboot after a system crash

(blue screen).

nointegritychecks Boolean Disables integrity checks performed by Windows

when loading drivers. Automatically removed at the

next reboot.

nolowmem Boolean Requires that PAE be enabled and that the system

have more than 4 GB of physical memory. If these

conditions are met, the PAE-enabled version of the

Windows kernel, Ntkrnlpa.exe, won’t use the first 4

GB of physical memory. Instead, it will load all appli-

cations and device drivers and allocate all memory

pools from above that boundary. This switch is use-

ful only to test device-driver compatibility with large

memory systems.

numproc Number of

processors

Specifies the number of CPUs that can be used on a

multiprocessor system. Example: /NUMPROC=2 on

a four-way system will prevent Windows from using

two of the four processors

nx OptIn, OptOut,

AlwaysOff,

AlwaysOn

This option is available only on 32-bit versions of

Windows when running on processors that support

no-execute memory and only when PAE (explained

further in the pae entry) is also enabled. It enables

no-execute protection. No-execute protection is

always enabled on 64-bit versions of Windows on

x64 processors. See Chapter 9 for a description of

this behavior.

 Chapter 13 Startup and Shutdown 1083

BCD Element Values Meaning

onecpu Boolean Causes Windows to use only one CPU on a multipro-

cessor system.

optionsedit Boolean Enables the options editor in the Boot Manager.

With this option, Boot Manager allows the user to

interactively set on-demand command-line options

and switches for the current boot. This is equivalent

to pressing F10.

pae Default,

ForceEnable,

ForceDisable

Default allows the boot loader to determine whether

the system supports PAE and loads the PAE kernel.

ForceEnable forces this behavior, while ForceDisable

forces the loader to load the non–PAE version of

the Windows kernel, even if the system is detected

as supporting x86 PAEs and has more than 4 GB of

physical memory.

pciexpress Default,

ForceDisable

Can be used to disable support for PCI Express buses

and devices.

perfmem Size in MB Size of the buffer to allocate for performance data

logging. This option acts similarly to the remove-
memory element, since it prevents Windows from

seeing the size specified as available memory.

quietboot Boolean Instructs Windows not to initialize the VGA video

driver responsible for presenting bitmapped graph-

ics during the boot process. The driver is used to

display boot progress information, so disabling

it will disable the ability of Windows to show this

information.

ramdiskimagelength Length in bytes Size of the ramdisk specified.

ramdiskimageoffset Offset in bytes If the ramdisk contains other data (such as a header)

before the virtual file system, instructs the boot

loader where to start reading the ramdisk file from.

ramdisksdipath Image file name Specifies the name of the SDI ramdisk to load.

ramdisktftpblocksize Block size If loading a WIM ramdisk from a network Trivial FTP

(TFTP) server, specifies the block size to use.

ramdisktftpclientport Port number If loading a WIM ramdisk from a network TFTP

 server, specifies the port.

ramdisktftpwindowsize Window size If loading a WIM ramdisk from a network TFTP

 server, specifies the window size to use.

removememory Amount in bytes Specifies an amount of memory Windows won’t use.

restrictapiccluster Cluster number Defines the largest APIC cluster number to be used

by the system.

resumeobject Object GUID Describes which application to use for resuming

from hibernation, typically Winresume.exe.

1084 Windows Internals, Fifth Edition

BCD Element Values Meaning

safeboot Minimal,

Network,

DsRepair

Specifies options for a safe-mode boot. Minimal cor-

responds to safe mode without networking, Network

to safe mode with networking, and DsRepair to safe

mode with Directory Services Restore mode. (Safe

mode is described later in this chapter.)

safebootalternateshell Boolean Tells Windows to use the program specified by

the HKLM\SYSTEM\CurrentControlSet\Control\

SafeBoot\AlternateShell value as the graphical shell

rather than the default, which is Windows Explorer.

This option is referred to as Safe Mode With

Command Prompt in the alternate boot menu.

sos Boolean Causes Windows to list the device drivers marked

to load at boot time and then to display the sys-

tem version number (including the build num-

ber), amount of physical memory, and number of

processors.

stampdisks Boolean Specifies that Winload will write an MBR disk sig-

nature to a RAW disk when booting Windows PE

(Preinstallation Environment). This can be required in

deployment environments in order to create a map-

ping from operating system–enumerated hard disks

to BIOS-enumerated hard disks to know which disk

should be the system disk.

targetname Name For USB 2.0 debugging, assigns a name to the

 machine that is being debugged.

usefirmwarepcisettings Boolean Stops Windows from dynamically assigning IO/IRQ

resources to PCI devices and leaves the devices con-

figured by the BIOS. See Microsoft Knowledge Base

article Q148501 for more information.

usephysicaldestination Boolean Forces the use of the APIC in physical destination

mode.

vga Boolean Forces Windows to use of the VGA display driver

instead of the third-party high-performance driver.

winpe Boolean Used by Windows PE, this option causes the configu-

ration manager to load the registry SYSTEM hive as a

volatile hive such that changes made to it in memory

are not saved back to the hive image.

If the user doesn’t select an entry from the selection menu within the timeout period the

BCD specifies, Bootmgr chooses the default selection specified in the BCD (if there is only one

entry, it chooses this one). Once the boot selection has been made, Bootmgr loads the boot

loader associated with that entry, which will be Winload.exe for Windows installations.

 Chapter 13 Startup and Shutdown 1085

Winload.exe also contains code that queries the system’s ACPI BIOS to retrieve basic device

and configuration information. This information includes the following:

The time and date information stored in the system’s CMOS (nonvolatile memory)

The number, size, and type of disk drives on the system

Legacy device information, such as buses (for example, ISA, PCI, EISA, Micro Channel

Architecture [MCA]), mice, parallel ports, and video adapters are not queried and

instead faked out

This information is gathered into internal data structures that will be stored under the HKLM\

HARDWARE\DESCRIPTION registry key later in the boot.

Next, Winload begins loading the files from the boot volume needed to start the kernel ini-

tialization. The boot volume is the volume that corresponds to the partition on which the

system directory (usually \Windows) of the installation being booted is located. The steps

Winload follows here include:

 1. Loads the appropriate kernel and HAL images (Ntoskrnl.exe and Hal.dll by default) as

well as any of their dependencies. If Winload fails to load either of these files, it prints

the message “Windows could not start because the following file was missing or cor-

rupt”, followed by the name of the file.

 2. Reads in the VGA font file (by default, vgaoem.fon). If this file fails, the same error mes-

sage as described in step 1 will be shown.

 3. Reads in the NLS (National Language System) files used for internationalization. By

default, these are l_intl.nls, c_1252.nls, and c_437.nls.

 4. Reads in the SYSTEM registry hive, \Windows\System32\Config\System, so that it can

determine which device drivers need to be loaded to accomplish the boot. (A hive

is a file that contains a registry subtree. You’ll find more details about the registry in

Chapter 4.)

 5. Scans the in-memory SYSTEM registry hive and locates all the boot device drivers. Boot

device drivers are drivers necessary to boot the system. These drivers are indicated in

the registry by a start value of SERVICE_BOOT_START (0). Every device driver has a reg-

istry subkey under HKLM\SYSTEM\CurrentControlSet\Services. For example, Services

has a subkey named fvevol for the BitLocker driver, which you can see in Figure 13-2.

(For a detailed description of the Services registry entries, see the section “Services” in

Chapter 4.)

1086 Windows Internals, Fifth Edition

FIGURE 13-2 BitLocker driver service settings

 6. Adds the file system driver that’s responsible for implementing the code for the type of

partition (NTFS) on which the installation directory resides to the list of boot drivers to

load. Winload must load this driver at this time; if it didn’t, the kernel would require the

drivers to load themselves, a requirement that would introduce a circular dependency.

 7. Loads the boot drivers, which should only be drivers that, like the file system driver for

the boot volume, would introduce a circular dependency if the kernel was required to

load them. To indicate the progress of the loading, Winload updates a progress bar

displayed below the text “Starting Windows”. If the sos option is specified in the BCD,

Winload doesn’t display the progress bar but instead displays the file names of each

boot driver. Keep in mind that the drivers are loaded but not initialized at this time—

they initialize later in the boot sequence.

 8. Prepares CPU registers for the execution of Ntoskrnl.exe.

This action is the end of Winload’s role in the boot process. At this point, Winload calls

the main function in Ntoskrnl.exe (KiSystemStartup) to perform the rest of the system

initialization.

The EFI Boot Process

An EFI-compliant system has firmware that runs boot loader code that’s been programmed

into the system’s nonvolatile RAM (NVRAM) by Windows Setup. The boot code reads the

BCD’s contents, which are also stored in NVRAM. The Bcdedit.exe tool mentioned earlier also

has the ability to abstract the firmware’s NVRAM variables in the BCD, allowing for full trans-

parency of this mechanism.

 Chapter 13 Startup and Shutdown 1087

The EFI standard defines the ability to prompt the user with an EFI Boot Manager that can

be used to select an operating system or additional applications to load. However, to pro-

vide a consistent user interface between BIOS systems and EFI systems, Windows sets a

2- second timeout for selecting the EFI Boot Manager, after which the EFI-version of Bootmgr

(Bootmgfw.efi) loads instead.

Hardware detection occurs next, where the boot loader uses EFI interfaces to determine the

number and type of the following devices:

Network adapters

Video adapters

Keyboards

Disk controllers

Storage devices

On EFI systems, all operations and programs execute in the native CPU mode with pag-

ing enabled and no part of the Windows boot process executes in 16-bit mode. Note that

although EFI is supported on both 32-bit and 64-bit systems, Windows provides support for

EFI only on 64-bit platforms.

Just as Bootmgr does on x86 and x64 systems, the EFI Boot Manager presents a menu of

boot selections with an optional timeout. Once a boot selection is made, the loader navigates

to the subdirectory on the EFI System partition corresponding to the selection and loads the

EFI version of the Windows boot loader (Winload.efi).

The EFI specification requires that the system have a partition designated as the EFI System

partition that is formatted with the FAT file system and is between 100 MB and 1 GB in size

or up to one percent of the size of the disk, and each Windows installation has a subdirectory

on the EFI System partition under EFI\Microsoft.

Note that through the unified boot process and model in Windows Vista, the components

in Table 13-1 apply almost identically to EFI systems, except that those ending in .exe end in

.efi, and they use EFI APIs and services instead of BIOS interrupts. Another difference is that

to avoid limitations of the MBR partition format (including a maximum of four partitions per

disk), EFI systems use the GPT (GUID Partition Table) format, which uses GUIDs to identify dif-

ferent partitions and their roles on the system.

Note Although the EFI standard has been available since early 2001, very few computer manu-

facturers have started using this technology because of backward compatibility concerns and

the difficulty of moving from an entrenched 20-year-old technology to a new one. Two notable

exceptions are Itanium machines and Apple’s Intel Macintosh computers. The latter, however,

require a specialized BIOS emulation module to load Windows, because of implementation

incompatibilities.

1088 Windows Internals, Fifth Edition

Initializing the Kernel and Executive Subsystems

When Winload calls Ntoskrnl, it passes a data structure called the loader parameter block

that contains the system and boot partition paths, a pointer to the memory tables Winload

generated to describe the physical memory on the system, a pointer to the in-memory copy

of the HARDWARE and SYSTEM registry hives, a pointer to the list of boot drivers Winload

loaded, as well as various other information related to the boot processing performed until

this point.

Ntoskrnl then begins the first of its two-phase initialization process, called phase 0 and phase
1. Most executive subsystems have an initialization function that takes a parameter that iden-

tifies which phase is executing.

During phase 0, interrupts are disabled. The purpose of this phase is to build the rudimentary

structures required to allow the services needed in phase 1 to be invoked. Ntoskrnl’s main

function calls KiSystemStartup, which in turn calls HalInitializeProcessor and KiInitializeKernel
for each CPU. KiInitializeKernel, if running on the boot CPU, performs systemwide ker-

nel initialization, such as initializing internal lists and other data structures that all CPUs

share. It also checks whether virtualization was specified as a BCD option (hypervisor-
launchtype), and whether the CPU supports hardware virtualization technology. The first

instance of KiInitializeKernel then calls the function responsible for orchestrating phase 0,

InitBootProcessor, while subsequent processors only call HalInitSystem.

InitBootProcessor starts by initializing the pool look-aside pointers for the initial CPU and by

checking for and honoring the BCD burnmemory boot option, where it discards the amount

of physical memory the value specifies. It then performs enough initialization of the NLS files

that were loaded by Winload (described earlier) to allow Unicode to ANSI and OEM transla-

tion to work. Next, it continues by calling the HAL function HalInitSystem, which gives the

HAL a chance to gain system control before Windows performs significant further initializa-

tion. One responsibility of HalInitSystem is to prepare the system interrupt controller of each

CPU for interrupts and to configure the interval clock timer interrupt, which is used for CPU

time accounting. (See the section “Quantum Accounting” in Chapter 5 for more on CPU time

accounting.)

When HalInitSystem returns control, InitBootProcessor proceeds by computing the recip-

rocal for timer expiration. Reciprocals are used for optimizing divisions on most modern

processors. They can perform multiplications faster, and because Windows must divide the

current 64-bit time value in order to find out which timers need to expire, this static calcula-

tion reduces interrupt latency when the clock interval fires. InitBootProcessor then continues

by setting up the system root path and searching the kernel image for the location of the

crash message strings it displays on blue screens, caching their location to avoid looking up

the strings during a crash, which could be dangerous and unreliable. Next, InitBootProcessor
initializes the quota functionality part of the process manager and reads the control vector.

 Chapter 13 Startup and Shutdown 1089

This data structure contains more than 150 kernel-tuning options that are part of the HKLM\

SYSTEM\CurrentControlSet\Control registry key, including information such as the licensing

data and version information for the installation.

InitBootProcessor is now ready to call the phase 0 initialization routines for the executive,

Driver Verifier, and memory manager. These components perform the following initialization

steps:

 1. The executive initializes various internal locks, resources, lists, and variables and vali-

dates that the product suite type in the registry is valid, discouraging casual modifica-

tion of the registry in order to “upgrade” to a SKU of Windows that was not actually

purchased. This is only one of the many such checks in the kernel.

 2. The Driver Verifier, if enabled, initializes various settings and behaviors based on the

current state of the system (such as whether safe mode is enabled) and verification

options. It also picks which drivers to target for tests that target randomly chosen

drivers.

 3. The memory manager constructs page tables and internal data structures that are nec-

essary to provide basic memory services. It also builds and reserves an area for the sys-

tem file cache and creates memory areas for the paged and nonpaged pools (described

in Chapter 9). The other executive subsystems, the kernel, and device drivers use these

two memory pools for allocating their data structures.

Next, InitBootProcessor calls HalInitializeBios to set up the BIOS emulation code part of the

HAL. This code is used both on real BIOS systems, as well as on EFI systems, to allow access

(or to emulate access) to 16-bit real mode interrupts and memory, which are used mainly

by Bootvid to display the early VGA boot screen and bugcheck screen. After the function

returns, the kernel initializes the Bootvid library and displays early boot status messages by

calling InbvEnableBootDriver and InbvDriverInitailize.

At this point, InitBootProcessor enumerates the boot-start drivers that were loaded by

Winload and calls DbgLoadImageSymbols to inform the kernel debugger (if attached) to load

symbols for each of these drivers. If the host debugger has configured the break on symbol
load option, this will be the earliest point for a kernel debugger to gain control of the sys-

tem. InitBootProcessor now calls HvlInitSystem, which attempts to connect to the hypervisor

in case Windows might be running inside a Hyper-V host system’s child partition. When the

function returns, it calls HeadlessInit to initialize the serial console if the machine was config-

ured for Emergency Management Services (EMS).

Next, InitBootProcessor builds the versioning information that will be used later in the boot

process, such as the build number, service pack version, and beta version status. Then it cop-

ies the NLS tables that Winload previously loaded into paged pool, re-initializes them, and

creates the kernel stack trace database if the global flags specify creating one. (For more

information on the global flags, see Chapter 3.)

1090 Windows Internals, Fifth Edition

Finally, InitBootProcessor calls the object manager, security reference monitor, process man-

ager, user-mode debugging framework, and the Plug and Play manager. These components

perform the following initialization steps:

 1. During the object manager initialization, the objects that are necessary to construct

the object manager namespace are defined so that other subsystems can insert objects

into it. A handle table is created so that resource tracking can begin.

 2. The security reference monitor initializes the token type object and then uses the

object to create and prepare the first local system account token for assignment to the

initial process. (See Chapter 6 for a description of the local system account.)

 3. The process manager performs most of its initialization in phase 0, defining the process

and thread object types and setting up lists to track active processes and threads. The

process manager also creates a process object for the initial process and names it Idle.

As its last step, the process manager creates the System process and a system thread

to execute the routine Phase1Initialization. This thread doesn’t start running right away

because interrupts are still disabled.

 4. The user-mode debugging framework creates the definition of the debug object type

that is used for attaching a debugger to a process and receiving debugger events. For

more information on user-mode debugging, see Chapter 3.

 5. The Plug and Play manager’s phase 0 initialization then takes place, which involves sim-

ply initializing an executive resource used to synchronize bus resources.

When control returns to KiInitializeKernel, the last step is to allocate the DPC stack for the

current processor and the I/O privilege map save area (on x86 systems only), after which con-

trol proceeds to the Idle loop, which then causes the system thread created in step 3 of the

previous process description to begin executing phase 1. (Secondary processors wait to begin

their initialization until step 8 of phase 1, described in the following list.)

Phase 1 consists of the following steps:

 1. Phase1InitializationDiscard, which, as the name implies, discards the code that is part of

the INIT section of the kernel image in order to preserve memory.

 2. The initialization thread sets its priority to 31, the highest possible, in order to prevent

preemption.

 3. HalInitSystem prepares the system to accept interrupts from devices and to enable

interrupts.

 4. The boot video driver is called, which in turn displays the Windows startup screen,

which by default consists of a black screen and a progress bar. If the quietboot boot

option was used, this step will not occur.

 5. The kernel builds various strings and version information, which are displayed on the

boot screen through Bootvid if the sos boot option was enabled. This includes the

 Chapter 13 Startup and Shutdown 1091

full version information, number of processors supported, and amount of memory

supported.

 6. The power manager’s initialization is called.

 7. The system time is initialized (by calling HalQueryRealTimeClock) and then stored as the

time the system booted.

 8. On a multiprocessor system, the remaining processors are initialized by

KeStartAllProcessors and HalAllProcessorsStarted. The number of processors that will be

initialized and supported depends on a combination of the actual physical count, the

licensing information for the installed SKU of Windows, boot options such as numproc
and onecpu, and whether dynamic partitioning is enabled (Windows Server 2008 sys-

tems only). After all the available processors have initialized, the affinity of the system

process is updated to include all processors.

 9. The object manager creates the namespace root directory (\), \ObjectTypes direc-

tory, and the DOS device name mapping directory (\Global??). It then creates the

\DosDevices symbolic link that points at the Windows subsystem device name mapping

directory.

 10. The executive is called to create the executive object types, including semaphore,

mutex, event, and timer.

 11. The I/O manager is called to create the I/O manager object types, including device,

driver, controller, adapter, and file objects.

 12. The kernel debugger library finalizes initialization of debugging settings and param-

eters if the debugger has not been triggered prior to this point.

 13. The transaction manager also creates its object types, such as the enlistment, resource

manager, and transaction manager types.

 14. The kernel initializes scheduler (dispatcher) data structures and the system service dis-

patch table.

 15. If the Driver Verifier is enabled and, depending on verification options, pool verification

is enabled, object handle tracing is started for the system process.

 16. The security reference monitor creates the \Security directory in the object manager

namespace and initializes auditing data structures if auditing is enabled.

 17. The memory manager is called to create the section object and the memory manager’s

system worker threads (which are explained in Chapter 9).

 18. NLS tables are mapped into system space so that they can be easily mapped by user-

mode processes.

 19. Ntdll.dll is mapped into the system address space.

 20. The cache manager initializes the file system cache data structures and creates its

worker threads.

1092 Windows Internals, Fifth Edition

 21. The configuration manager creates the \Registry key object in the object manager

namespace and copies the initial registry data passed by Winload into the HARDWARE

and SYSTEM hives.

 22. The errata manager initializes and scans the registry for errata information, as well as

the INF (driver installation file, described in Chapter 7) database containing errata for

various drivers.

 23. SuperFetch and the prefetcher are initialized.

 24. The current time zone information is initialized.

 25. Global file system driver data structures are initialized.

 26. Phase 1 of debugger-transport-specific information is performed by calling the

KdDebuggerInitialize1 routine in the registered transport, such as Kdcom.dll.

 27. The Plug and Play manager calls the Plug and Play BIOS.

 28. The advanced local procedure call (ALPC) subsystem initializes the ALPC port type and

ALPC waitable port type objects. The older LPC objects are set as aliases.

 29. If the system was booted with boot logging (with the BCD bootlog option), the boot

log file is initialized. If the system was booted in safe mode, a string is displayed on the

boot screen with the current safe mode boot type.

 30. The executive is called to execute its second initialization phase, where it configures

part of the Windows licensing functionality in the kernel, such as validating the registry

settings that hold license data. Also, if persistent data from boot applications is present
(such as memory diagnostic results or resume from hibernation information), the rel-

evant log files and information are written to disk or to the registry.

 31. The MiniNT/WinPE registry keys are created if this is such a boot, and the NLS object

directory is created in the namespace, which will be used later to host the section

objects for the various memory-mapped NLS files.

 32. The I/O manager initialization now takes place. This stage is a complex phase of system

startup that accounts for most of the boot time.

The I/O manager first initializes various internal structures and creates the driver and

device object types. It then calls the Plug and Play manager, power manager, and

HAL to begin the various stages of dynamic device enumeration and initialization.

(Because this process is complex and specific to the I/O system, we cover the details

in Chapter 7.) Then the Windows Management Instrumentation (WMI) subsystem is

initialized, which provides WMI support for device drivers. (See the section “Windows

Management Instrumentation” in Chapter 4 for more information.) This also initializes

Event Tracing for Windows (ETW). Next, all the boot-start drivers are called to perform

their driver-specific initialization, and then the system-start device drivers are loaded

and initialized. (Details on the processing of the driver load control information on the

 Chapter 13 Startup and Shutdown 1093

registry are also covered in Chapter 7.) Finally, the Windows subsystem device names

are created as symbolic links in the object manager’s namespace.

 33. The transaction manager sets up the Windows software trace preprocessor (WPP) and

ETW and initializes with WMI. (ETW and WMI are described in Chapter 4.)

 34. Now that boot-start and system-start drivers are loaded, the errata manager loads the

INF database with the driver errata and begins parsing it, which includes applying reg-

istry PCI configuration workarounds.

 35. If the computer is booting in safe mode, this fact is recorded in the registry.

 36. Unless explicitly disabled in the registry, paging of kernel-mode code (in Ntoskrnl and

drivers) is enabled.

 37. The configuration manager makes sure that all processors on an SMP system are identi-

cal in terms of the features that they support; otherwise, it crashes the system.

 38. On 32-bit systems, VDM (Virtual Dos Machine) support is initialized, which includes

determining whether the processor supports Virtual Machine Extensions (VME).

 39. The process manager is called to set up rate limiting for jobs, initialize the static envi-

ronment for protected processes, and look up the various system-defined entry points

in the user-mode system library (Ntdll.dll).

 40. The power manager is called to initialize various power management structures.

 41. The rest of the licensing information for the system is initialized, including caching the

current policy settings stored in the registry.

 42. The security reference monitor is called to create the Command Server Thread that

communicates with Lsass. (See the section “Security System Components” in Chapter 6

for more on how security is enforced in Windows.)

 43. The Session Manager (Smss) process (introduced in Chapter 2) is started. Smss is

responsible for creating the user-mode environment that provides the visible interface

to Windows—its initialization steps are covered in the next section.

 44. All the memory used up by the loader parameter block and all its references is now

freed.

As a final step before considering the executive and kernel initialization complete, the phase

1 initialization thread waits for the handle to the Session Manager process with a timeout

value of 5 seconds. If the Session Manager process exits before the 5 seconds elapse, the sys-

tem crashes with a SESSION5_INITIALIZATION_FAILED stop code.

If the 5-second wait times out (that is, if 5 seconds elapse), the Session Manager is assumed

to have started successfully, and the phase 1 initialization function calls the memory man-

ager’s zero page thread function (explained in Chapter 9). Thus, this system thread becomes

the zero page thread for the remainder of the life of the system.

1094 Windows Internals, Fifth Edition

Smss, Csrss, and Wininit

Smss is like any other user-mode process except for two differences: First, Windows considers

Smss a trusted part of the operating system. Second, Smss is a native application. Because it’s

a trusted operating system component, Smss can perform actions few other processes can

perform, such as creating security tokens. Because it’s a native application, Smss doesn’t use

Windows APIs—it uses only core executive APIs known collectively as the Windows native

API. Smss doesn’t use the Win32 APIs because the Windows subsystem isn’t executing when

Smss launches. In fact, one of Smss’s first tasks is to start the Windows subsystem.

Smss then calls the configuration manager executive subsystem to finish initializing the

registry, fleshing the registry out to include all its keys. The configuration manager is pro-

grammed to know where the core registry hives are stored on disk (excluding hives corre-

sponding to user profiles), and it records the paths to the hives it loads in the HKLM\SYSTEM\

CurrentControlSet\Control\hivelist key.

The main thread of Smss performs the following initialization steps:

 1. Marks itself as a critical process and its main thread as a critical thread. As discussed

earlier, this will cause the kernel to crash the system if Smss quits unexpectedly. Smss

also enables the automatic affinity update mode to support dynamic processor addi-

tion (see Chapter 5 for more information).

 2. Creates protected prefixes for the mailslot and named pipe file system drivers, creating

privileged paths for administrators and service accounts to communicate through those

paths.

 3. Calls SmpInit, which tunes the maximum concurrency level for Smss, meaning the maxi-

mum number of parallel sessions that will be created by spawning copies of Smss into

other sessions. This is at minimum four and at most the number of active CPUs.

 4. SmpInit then creates an ALPC port object (\SmApiPort) to receive client requests (such

as to load a new subsystem or create a session).

 5. SmpInit calls SmpLoadDataFromRegistry, which starts by setting up the default envi-

ronment variables for the system, and sets the SAFEBOOT variable if the system was

booted in safe mode.

 6. SmpLoadDataFromRegistry calls SmpInitializeDosDevices to define the symbolic links for

MS-DOS device names (such as COM1 and LPT1).

 7. SmpLoadDataFromRegistry creates the \Sessions directory in the object manager’s

namespace (for multiple sessions).

 8. SmpLoadDataFromRegistry runs any programs defined in HKLM\SYSTEM\Current-

Control Set\Control\Session Manager\BootExecute with SmpExecuteCommand. Typically,

this value contains one command to run Autochk (the boot-time version of Chkdsk).

 9. SmpLoadDataFromRegistry calls SmpProcessFileRenames to perform delayed file

rename and delete operations as directed by HKLM\SYSTEM\CurrentControlSet\

 Chapter 13 Startup and Shutdown 1095

Control\Session Manager\PendingFileRenameOperations and HKLM\SYSTEM\

CurrentControlSet\Control\Session Manager\PendingFileRenameOperations2.

 10. SmpLoadDataFromRegistry calls SmpCreatePagingFiles to create additional paging files.

Paging file configuration is stored under HKLM\SYSTEM\CurrentControlSet\Control\

Session Manager\Memory Management\PagingFiles.

 11. SmpLoadDataFromRegistry initializes the registry by calling the native function

NtInitializeRegistry. The configuration manager builds the rest of the registry by load-

ing the registry hives for the HKLM\SAM, HKLM\SECURITY, and HKLM\SOFTWARE

keys. Although HKLM\SYSTEM\CurrentControlSet\Control\hivelist locates the hive files

on disk, the configuration manager is coded to look for them in \Windows\System32\

Config.

 12. SmpLoadDataFromRegistry calls SmpCreateDynamicEnvironmentVariables to add

system environment variables that are defined in HKLM\SYSTEM\CurrentControlSet\

Session Manager\Environment, as well as processor-specific environment variables such

as NUMBER_PROCESSORS, PROCESSOR_ARCHITECTURE, and PROCESSOR_LEVEL.

 13. SmpLoadDataFromRegistry runs any programs defined in HKLM\SYSTEM\Current-

ControlSet\Control\Session Manager\SetupExecute with SmpExecuteCommand.

Typically, this value is set only if Windows is being booted as part of the second stage

of installation and Setupcl.exe is the default value.

 14. SmpLoadDataFromRegistry calls SmpConfigureSharedSessionData to initialize the list of

subsystems that will be started in each session (both immediately and deferred) as well

as the Session 0 initialization command (which, by default, is to launch the Wininit.exe

process). The initialization command can be overridden by creating a string value called

S0InitialCommand in HKLM\SYSTEM\CurrentControlSet\Control\Session Manager and

setting it as the path to another program.

 15. SmpLoadDataFromRegistry calls SmpInitializeKnownDlls to open known DLLs, and

creates section objects for them in the \Knowndlls directory of the object man-

ager namespace. The list of DLLs considered known is located in HKLM\SYSTEM\

CurrentControlSet\Control\Session Manager\KnownDLLs, and the path to the directory

in which the DLLs are located is stored in the Dlldirectory value of the key.

 16. Finally, SmpLoadDataFromRegistry calls SmpTranslateSystemPartitionInformation to

convert the SystemPartition key stored in HKLM\SYSTEM\Setup, which is stored in

native NT object manager path format, to a volume drive letter stored in the BootDir

value. Among other components, Windows Update uses this registry key to figure out

what the system volume is.

 17. At this point, SmpLoadDataFromRegistry returns to SmpInit, which returns to the

main thread entry point. Smss then creates the number of initial sessions that were

defined (typically, only one, session 0, but you can change this number through the

NumberOfInitialSessions registry value in the Smss registry key mentioned earlier) by

1096 Windows Internals, Fifth Edition

calling SmpCreateInitialSession, which creates an Smss process for each user session.

This function’s main job is to call SmpStartCsr to start Csrss in each session.

 18. As part of Csrss’s initialization, it loads the kernel-mode part of the Windows subsystem

(Win32k.sys). The initialization code in Win32k.sys uses the video driver to switch the

screen to the resolution defined by the default profile, so this is the point at which the

screen changes from the VGA mode the boot video driver uses to the default resolution

chosen for the system.

 19. Meanwhile, each spawned Smss in a different user session starts the other subsystem

processes, such as Psxss if the Subsystem for Unix-based Applications feature was

installed. (See Chapter 3 for more information on subsystem processes.)

 20. The first Smss from session 0 executes the Session 0 initialization command (described

in step 14), by default launching the Windows initialization process (Wininit). Other

Smss instances start the interactive logon manager process (Winlogon), which, unlike

Wininit, is hardcoded. The startup steps of Wininit and Winlogon are described shortly.

Pending File Rename Operations

The fact that executable images and DLLs are memory-mapped when they are used

makes it impossible to update core system files after Windows has finished boot-

ing (unless hotpatching technology is used, which is only for Microsoft patches to

the operating system). The MoveFileEx Windows API has an option to specify that

a file move be delayed until the next boot. Service packs and hotfixes that must

update in-use memory-mapped files install replacement files onto a system in tem-

porary locations and use the MoveFileEx API to have them replace otherwise in-

use files. When used with that option, MoveFileEx simply records commands in the

PendingFileRenameOperations and PendingFileRenameOperations2 values under

HKLM\SYSTEM\CurrentControlSet\Control\Session Manager. These registry values are

of type MULTI_SZ, where each operation is specified in pairs of file names: the first

file name is the source location, and the second is the target location. Delete opera-

tions use an empty string as their target path. You can use the Pendmoves utility from

Windows Sysinternals (www.microsoft.com/technet/sysinternals) to view registered

delayed rename and delete commands.

After performing these initialization steps, the main thread in Smss waits forever on the pro-

cess handle of Winlogon, while the other ALPC threads wait for messages to create new ses-

sions or subsystems. If either Wininit or Csrss terminate unexpectedly, the kernel crashes the

system because these processes are marked as critical. If Winlogon terminates unexpectedly,

the session associated with it is logged off.

 Chapter 13 Startup and Shutdown 1097

Wininit then performs its startup steps, such as creating the initial window station and desk-

top objects. It also configures the Session 0 window hook, which is used by the Interactive

Services Detection service (UI0Detect.exe) to provide backward compatibility with inter-

active services (see Chapter 4 for more information on services). Wininit then creates the

service control manager (SCM) process (\Windows\System32\Services.exe), which loads all

services and device drivers marked for auto-start, and the Local Security Authority subsys-

tem (Lsass) process (\Windows\System32\Lsass.exe). Finally, it loads the local session man-

ager (\Windows\System32\Lsm.exe). On session 1 and beyond, Winlogon runs instead and

loads the registered credential providers for the system (by default, the Microsoft credential

provider supports password-based and smartcard-based logons) into a child process called

LogonUI (\Windows\System32\Logonui.exe, which is responsible for displaying the logon

interface. (For more details on the startup sequence for Wininit, Winlogon, and Lsass, see the

section “Winlogon Initialization” in Chapter 6.)

After the SCM initializes the auto-start services and drivers and a user has successfully logged

on at the console, the SCM deems the boot successful. The registry’s last known good

control set (as indicated by HKLM\SYSTEM\Select\LastKnownGood) is updated to match

\CurrentControlSet.

Note Because noninteractive servers might never have an interactive logon, they might not

get LastKnownGood updated to reflect the control set used for a successful boot. You can over-

ride the definition of a successful boot by setting HKLM\SOFTWARE\Microsoft\Windows NT\

CurrentVersion\Winlogon\ReportBootOk to 0, writing a custom boot verification program that

calls the NotifyBootConfigStatus Windows API when a boot is successful, and entering the path to

the verification program in HKLM\SYSTEM\CurrentControlSet\Control\BootVerificationProgram.

After launching the SCM, Winlogon waits for an interactive logon notification from the

credential provider. When it receives a logon and validates the logon (a process for which

you can find more information in the section “User Logon Steps” in Chapter 6), Winlogon

loads the registry hive from the profile of the user logging in and maps it to HKCU. It then

sets the user’s environment variables that are stored in HKCU\Environment and notifies the

Winlogon notification packages registered in HKLM\SOFTWARE\Microsoft\Windows NT\

CurrentVersion\Winlogon\Notify that a logon has occurred.

Winlogon next starts the shell by launching the executable or executables specified in HKLM\

SOFTWARE\Microsoft\Windows NT\CurrentVersion\WinLogon\Userinit (with multiple exe-

cutables separated by commas) that by default points at \Windows\System32\Userinit.exe.

Userinit.exe performs the following steps:

 1. Processes the user scripts specified in HKCU\Software\Policies\Microsoft\Windows\

System\Scripts and the machine logon scripts in HKLM\SOFTWARE\Policies\Microsoft\

Windows\System\Scripts. (Because machine scripts run after user scripts, they can over-

ride user settings.)

1098 Windows Internals, Fifth Edition

 2. If Group Policy specifies a user profile quota, starts \Windows\System32\Proquota.exe

to enforce the quota for the current user.

 3. Launches the comma-separated shell or shells specified in HKCU\Software\Microsoft\

Windows NT\CurrentVersion\Winlogon\Shell. If that value doesn’t exist, Userinit.exe

launches the shell or shells specified in HKLM\SOFTWARE\Microsoft\Windows NT\

CurrentVersion\Winlogon\Shell, which is by default Explorer.exe.

Winlogon then notifies registered network providers that a user has logged in. The Microsoft

network provider, Multiple Provider Router (\Windows\System32\Mpr.dll), restores the user’s

persistent drive letter and printer mappings stored in HKCU\Network and HKCU\Printers,

respectively. Figure 13-3 shows the process tree as seen in Process Monitor after a logon

(using its boot logging capability). Note the Smss processes that are dimmed (meaning that

they have since exited). These refer to the spawned copies that initialized each session.

FIGURE 13-3 Process tree during logon

 Chapter 13 Startup and Shutdown 1099

ReadyBoot

Windows uses the standard logical boot-time prefetcher (described in Chapter 9) if the sys-

tem has less than 512 MB of memory, but if the system has 700 MB or more of RAM, it uses

an in-RAM cache to optimize the boot process. The size of the cache depends on the total

RAM available, but it is large enough to create a reasonable cache and yet allow the system

the memory it needs to boot smoothly.

After every boot, the ReadyBoost service (see Chapter 9 for information on ReadyBoost) uses

idle CPU time to calculate a boot-time caching plan for the next boot. It analyzes file trace

information from the five previous boots and identifies which files were accessed and where

they are located on disk. It stores the processed traces in %SystemRoot%\Prefetch\Readyboot

as .fx files and saves the caching plan under HKLM\SYSTEM\CurrentControlSet\Services\

Ecache\Parameters in REG_BINARY values named for internal disk volumes they refer to.

The cache is implemented by the same device driver that implements ReadyBoost caching

(Ecache.sys), but the cache’s population is guided by the boot plan previously stored in the

registry. Although the boot cache is compressed like the ReadyBoost cache, another differ-

ence between ReadyBoost and ReadyBoot cache management is that while in ReadyBoot

mode, other than the ReadyBoost service’s updates, the cache doesn’t change to reflect data

that’s read or written during the boot. The ReadyBoost service deletes the cache 90 seconds

after the start of the boot, or if other memory demands warrant it, and records the cache’s

statistics in HKLM\SYSTEM\CurrentControlSet\Services\Ecache\Parameters\ReadyBootStats,

as shown in Figure 13-4.

FIGURE 13-4 ReadyBoot statistics

1100 Windows Internals, Fifth Edition

Images That Start Automatically

In addition to the Userinit and Shell registry values in Winlogon’s key, there are many

other registry locations and directories that default system components check and process

for automatic process startup during the boot and logon processes. The Msconfig utility

(Windows\System32\Msconfig.exe) displays the images configured by several of the locations.

The Autoruns tool, which you can download from Sysinternals and that is shown in Figure

13-5, examines more locations than Msconfig and displays more information about the

images configured to automatically run. By default, Autoruns shows only the locations that

are configured to automatically execute at least one image, but selecting the Include Empty

Locations entry on the Options menu causes Autoruns to show all the locations it inspects.

The Options menu also has selections to direct Autoruns to hide Microsoft entries, but you

should always combine this option with Verify Image Signatures; otherwise, you risk hiding

malicious programs that include false information about their company name information.

FIGURE 13-5 The Autoruns tool available from Sysinternals

EXPERIMENT: Autoruns

Many users are unaware of how many programs execute as part of their logon. Original

equipment manufacturers (OEMs) often configure their systems with add-on utilities

that execute in the background using registry values or file system directories pro-

cessed for automatic execution and so are not normally visible. See what programs are

configured to start automatically on your computer by running the Autoruns utility

from Sysinternals. Compare the list shown in Autoruns with that shown in Msconfig

and identify any differences. Then ensure that you understand the purpose of each

program.

 Chapter 13 Startup and Shutdown 1101

Troubleshooting Boot and Startup Problems

This section presents approaches to solving problems that can occur during the Windows

startup process as a result of hard disk corruption, file corruption, missing files, and third-

party driver bugs. First we describe three Windows boot-problem recovery modes: last

known good, safe mode, and Windows Recovery Environment (WinRE). Then we present

common boot problems, their causes, and approaches to solving them. The solutions refer to

last known good, safe mode, WinRE, and other tools that ship with Windows.

Last Known Good

Last known good (LKG) is a useful mechanism for getting a system that crashes during the

boot process back to a bootable state. Because the system’s configuration settings are stored

in HKLM\SYSTEM\CurrentControlSet\Control and driver and service configuration is stored

in HKLM\SYSTEM\CurrentControlSet\Services, changes to these parts of the registry can

render a system unbootable. For example, if you install a device driver that has a bug that

crashes the system during the boot, you can press the F8 key during the boot and select

last known good from the resulting menu. The system marks the control set that it was

using to boot the system as failed by setting the Failed value of HKLM\SYSTEM\Select and

then changes HKLM\SYSTEM\Select\Current to the value stored in HKLM\SYSTEM\Select\

LastKnownGood. It also updates the symbolic link HKLM\SYSTEM\CurrentControlSet to point

at the LastKnownGood control set. Because the new driver’s key is not present in the Services

subkey of the LastKnownGood control set, the system will boot successfully.

Safe Mode

Perhaps the most common reason Windows systems become unbootable is that a device

driver crashes the machine during the boot sequence. Because software or hardware config-

urations can change over time, latent bugs can surface in drivers at any time. Windows offers

a way for an administrator to attack the problem: booting in safe mode. Safe mode is a boot

configuration that consists of the minimal set of device drivers and services. By relying on

only the drivers and services that are necessary for booting, Windows avoids loading third-

party and other nonessential drivers that might crash.

When Windows boots, you press the F8 key to enter a special boot menu that contains the

safe-mode boot options. You typically choose from three safe-mode variations: Safe Mode,

Safe Mode With Networking, and Safe Mode With Command Prompt. Standard safe mode

includes the minimum number of device drivers and services necessary to boot successfully.

Networking-enabled safe mode adds network drivers and services to the drivers and services

that standard safe mode includes. Finally, safe mode with command prompt is identical to

standard safe mode except that Windows runs the command prompt application (Cmd.exe)

instead of Windows Explorer as the shell when the system enables GUI mode.

1102 Windows Internals, Fifth Edition

Windows includes a fourth safe mode—Directory Services Restore mode—which is different

from the standard and networking-enabled safe modes. You use Directory Services Restore

mode to boot the system into a mode where the Active Directory service of a domain con-

troller is offline and unopened. This allows you to perform repair operations on the database

or restore it from backup media. All drivers and services, with the exception of the Active

Directory service, load during a Directory Services Restore mode boot. In cases where you

can’t log on to a system because of Active Directory database corruption, this mode enables

you to repair the corruption.

Driver Loading in Safe Mode

How does Windows know which device drivers and services are part of standard and

networking-enabled safe mode? The answer lies in the HKLM\SYSTEM\CurrentControlSet\

Control\SafeBoot registry key. This key contains the Minimal and Network subkeys. Each sub-

key contains more subkeys that specify the names of device drivers or services or of groups

of drivers. For example, the vga.sys subkey identifies the VGA display device driver that the

startup configuration includes. The VGA display driver provides basic graphics services for

any PC-compatible display adapter. The system uses this driver as the safe-mode display

driver in lieu of a driver that might take advantage of an adapter’s advanced hardware fea-

tures but that might also prevent the system from booting. Each subkey under the SafeBoot

key has a default value that describes what the subkey identifies; the vga.sys subkey’s default

value is “Driver”.

The Boot file system subkey has as its default value “Driver Group”. When developers design

a device driver’s installation script, they can specify that the device driver belongs to a driver

group. The driver groups that a system defines are listed in the List value of the HKLM\

SYSTEM\CurrentControlSet\Control\ServiceGroupOrder key. A developer specifies a driver

as a member of a group to indicate to Windows at what point during the boot process the

driver should start. The ServiceGroupOrder key’s primary purpose is to define the order in

which driver groups load; some driver types must load either before or after other driver

types. The Group value beneath a driver’s configuration registry key associates the driver with

a group.

Driver and service configuration keys reside beneath HKLM\SYSTEM\CurrentControlSet\

Services. If you look under this key, you’ll find the VgaSave key for the VGA display device

driver, which you can see in the registry is a member of the Video Save group. Any file sys-

tem drivers that Windows requires for access to the Windows system drive are automatically

loaded as if part of the Boot file system group. Other file system drivers are part of the File

system group, which the standard and networking-enabled safe-mode configurations also

include.

 Chapter 13 Startup and Shutdown 1103

When you boot into a safe-mode configuration, the boot loader (Winload) passes an asso-

ciated switch to the kernel (Ntoskrnl.exe) as a command-line parameter, along with any

switches you’ve specified in the BCD for the installation you’re booting. If you boot into any

safe mode, Winload sets the safeboot BCD option with a value describing the type of safe

mode you select. For standard safe mode, Winload sets minimal, and for networking-enabled

safe mode, it adds network. Winload adds minimal and sets safebootalternateshell for safe

mode with command prompt and dsrepair for Directory Services Restore mode.

The Windows kernel scans boot parameters in search of the safe-mode switches early during

the boot, during the InitSafeBoot function, and sets the internal variable InitSafeBootMode

to a value that reflects the switches the kernel finds. The kernel writes the InitSafeBootMode

value to the registry value HKLM\SYSTEM\CurrentControlSet\Control\SafeBoot\Option\

OptionValue so that user-mode components, such as the SCM, can determine what boot

mode the system is in. In addition, if the system is booting in safe mode with command

prompt, the kernel sets the HKLM\SYSTEM\CurrentControlSet\Control\SafeBoot\Option\

UseAlternateShell value to 1. The kernel records the parameters that Winload passes to it in

the value HKLM\SYSTEM\CurrentControlSet\Control\SystemStartOptions.

When the I/O manager kernel subsystem loads device drivers that HKLM\SYSTEM\

CurrentControlSet\Services specifies, the I/O manager executes the function IopLoadDriver.
When the Plug and Play manager detects a new device and wants to dynamically load

the device driver for the detected device, the Plug and Play manager executes the func-

tion PipCallDriverAddDevice. Both these functions call the function IopSafebootDriverLoad

before they load the driver in question. IopSafebootDriverLoad checks the value of

InitSafeBootMode and determines whether the driver should load. For example, if the sys-

tem boots in standard safe mode, IopSafebootDriverLoad looks for the driver’s group, if the

driver has one, under the Minimal subkey. If IopSafebootDriverLoad finds the driver’s group

listed, IopSafebootDriverLoad indicates to its caller that the driver can load. Otherwise,

IopSafebootDriverLoad looks for the driver’s name under the Minimal subkey. If the driver’s

name is listed as a subkey, the driver can load. If IopSafebootDriverLoad can’t find the driver

group or driver name subkeys, the driver can’t load. If the system boots in networking-

enabled safe mode, IopSafebootDriverLoad performs the searches on the Network subkey. If

the system doesn’t boot in safe mode, IopSafebootDriverLoad lets all drivers load.

Note An exception exists regarding the drivers that safe mode excludes from a boot: Winload,

rather than the kernel, loads any drivers with a Start value of 0 in their registry key, which speci-

fies loading the drivers at boot time. Winload doesn’t check the SafeBoot registry key because

it assumes that any driver with a Start value of 0 is required for the system to boot success-

fully. Because Winload doesn’t check the SafeBoot registry key to identify which drivers to load,

Winload loads all boot-start drivers (and later Ntoskrnl starts them).

1104 Windows Internals, Fifth Edition

Safe-Mode-Aware User Programs

When the service control manager (SCM) user-mode component (which Services.exe imple-

ments) initializes during the boot process, the SCM checks the value of HKLM\SYSTEM\

CurrentControlSet\Control\SafeBoot\Option\OptionValue to determine whether the system

is performing a safe-mode boot. If so, the SCM mirrors the actions of IopSafebootDriverLoad.

Although the SCM processes the services listed under HKLM\SYSTEM\CurrentControlSet\

Services, it loads only services that the appropriate safe-mode subkey specifies by name.

You can find more information on the SCM initialization process in the section “Services” in

Chapter 4.

Userinit, the component that initializes a user’s environment when the user logs on

(\Windows\System32\Userinit.exe), is another user-mode component that needs to know

whether the system is booting in safe mode. It checks the value of HKLM\SYSTEM\Current-

ControlSet\Control\SafeBoot\Option\UseAlternateShell. If this value is set, Userinit runs the

program specified as the user’s shell in the value HKLM\SYSTEM\CurrentControlSet\Control\

SafeBoot\AlternateShell rather than executing Explorer.exe. Windows writes the program

name Cmd.exe to the AlternateShell value during installation, making the Windows command

prompt the default shell for safe mode with command prompt. Even though the command

prompt is the shell, you can type Explorer.exe at the command prompt to start Windows

Explorer, and you can run any other GUI program from the command prompt as well.

How does an application determine whether the system is booting in safe mode? By call-

ing the Windows GetSystemMetrics(SM_CLEANBOOT) function. Batch scripts that need to

perform certain operations when the system boots in safe mode look for the SAFEBOOT_

OPTION environment variable because the system defines this environment variable only

when booting in safe mode.

Boot Logging in Safe Mode

When you direct the system to boot into safe mode, Winload hands the string specified by

the bootlog option to the Windows kernel as a parameter, together with the parameter that

requests safe mode. When the kernel initializes, it checks for the presence of the boot log

parameter whether or not any safe-mode parameter is present. If the kernel detects a boot

log string, the kernel records the action the kernel takes on every device driver it consid-

ers for loading. For example, if IopSafebootDriverLoad tells the I/O manager not to load a

driver, the I/O manager calls IopBootLog to record that the driver wasn’t loaded. Likewise,

after IopLoadDriver successfully loads a driver that is part of the safe-mode configuration,

IopLoadDriver calls IopBootLog to record that the driver loaded. You can examine boot logs

to see which device drivers are part of a boot configuration.

 Chapter 13 Startup and Shutdown 1105

Because the kernel wants to avoid modifying the disk until Chkdsk executes, late in the boot

process, IopBootLog can’t simply dump messages into a log file. Instead, IopBootLog records

messages in the HKLM\SYSTEM\CurrentControlSet\BootLog registry value. As the first

 user-mode component to load during a boot, the Session Manager (\Windows\System32\

Smss.exe) executes Chkdsk to ensure the system drives’ consistency and then completes

registry initialization by executing the NtInitializeRegistry system call. The kernel takes this

action as a cue that it can safely open a log file on the disk, which it does, invoking the func-

tion IopCopyBootLogRegistryToFile. This function creates the file Ntbtlog.txt in the Windows

system directory (\Windows by default) and copies the contents of the BootLog registry value

to the file. IopCopyBootLogRegistryToFile also sets a flag for IopBootLog that lets IopBootLog

know that writing directly to the log file, rather than recording messages in the registry, is

now OK. The following output shows the partial contents of a sample boot log:

Microsoft (R) Windows (R) Version 6.0 (Build 6000)

10 4 2007 09:04:53.375

Loaded driver \SystemRoot\system32\ntkrnlpa.exe

Loaded driver \SystemRoot\system32\hal.dll

Loaded driver \SystemRoot\system32\kdcom.dll

Loaded driver \SystemRoot\system32\mcupdate_GenuineIntel.dll

Loaded driver \SystemRoot\system32\PSHED.dll

Loaded driver \SystemRoot\system32\BOOTVID.dll

Loaded driver \SystemRoot\system32\CLFS.SYS

Loaded driver \SystemRoot\system32\CI.dll

Loaded driver \SystemRoot\system32\drivers\Wdf01000.sys

Loaded driver \SystemRoot\system32\drivers\WDFLDR.SYS

Loaded driver \SystemRoot\system32\drivers\acpi.sys

Loaded driver \SystemRoot\system32\drivers\WMILIB.SYS

Loaded driver \SystemRoot\system32\drivers\msisadrv.sys

Loaded driver \SystemRoot\system32\drivers\pci.sys

Loaded driver \SystemRoot\system32\drivers\volmgr.sys

Loaded driver \SystemRoot\system32\DRIVERS\compbatt.sys

Loaded driver \SystemRoot\system32\DRIVERS\BATTC.SYS

Loaded driver \SystemRoot\System32\drivers\mountmgr.sys

Loaded driver \SystemRoot\system32\drivers\intelide.sys

Loaded driver \SystemRoot\system32\drivers\PCIIDEX.SYS

Loaded driver \SystemRoot\system32\DRIVERS\pciide.sys

Loaded driver \SystemRoot\System32\drivers\volmgrx.sys

Loaded driver \SystemRoot\system32\drivers\atapi.sys

Loaded driver \SystemRoot\system32\drivers\ataport.SYS

Loaded driver \SystemRoot\system32\drivers\fltmgr.sys

Loaded driver \SystemRoot\system32\drivers\fileinfo.sys

§

Did not load driver @battery.inf,%acpi\acpi0003.devicedesc%;Microsoft AC Adapter

Did not load driver @battery.inf,%acpi\pnp0c0a.devicedesc%;Microsoft ACPI-Compliant Control

Method Battery

Did not load driver @oem46.inf,%nvidia_g71.dev_0297.1%;NVIDIA GeForce Go 7950 GTX

Did not load driver @oem5.inf,%nic_mpciex%;Intel(R) PRO/Wireless 3945ABG Network Connection

Did not load driver @netb57vx.inf,%bcm5750a1clnahkd%;Broadcom NetXtreme 57xx Gigabit

Controller

Did not load driver @sdbus.inf,%pci\cc_080501.devicedesc%;SDA Standard Compliant SD Host

Controller

§

1106 Windows Internals, Fifth Edition

Windows Recovery Environment (WinRE)

Safe mode is a satisfactory fallback for systems that become unbootable because a device

driver crashes during the boot sequence, but in some situations a safe-mode boot won’t help

the system boot. For example, if a driver that prevents the system from booting is a member

of a Safe group, safe-mode boots will fail. Another example of a situation in which safe mode

won’t help the system boot is when a third-party driver, such as a virus scanner driver, that

loads at the boot prevents the system from booting. (Boot-start drivers load whether or not

the system is in safe mode.) Other situations in which safe-mode boots will fail are when a

system module or critical device driver file that is part of a safe-mode configuration becomes

corrupt or when the system drive’s Master Boot Record (MBR) is damaged.

You can get around these problems by using the Windows Recovery Environment. The

Windows Recovery Environment provides an assortment of tools and automated repair tech-

nologies to automatically fix the most common startup problems. It includes five main tools:

Startup Repair An automated tool that detects the most common Windows startup

problems and automatically attempts to repair them.

System Restore Allows restoring to a previous restore point in cases in which you

cannot boot the Windows installation to do so, even in safe mode.

Complete PC Restore Called ASR (Automated System Recovery) in previous versions

of Windows, this restores a Windows installation from a complete backup, not just a

system restore point, which may not contain all damaged files and lost data.

Windows Memory Diagnostic Tool Performs memory diagnostic tests that check for

signs of faulty RAM. Faulty RAM can be the reason for random kernel and application

crashes and erratic system behavior.

Command Prompt For cases where troubleshooting or repair requires manual inter-

vention (such as copying files from another drive or manipulating the BCD), you can

use the command prompt to have a full Windows shell that can launch any Windows

program—unlike the Recovery Console on earlier versions of Windows, which only sup-

ported a limited set of specialized commands.

When you boot a system from the Windows CD or boot disks, Windows Setup gives you

the choice of installing Windows or repairing an existing installation. If you choose to repair

an installation, the system displays a dialog box called System Recovery Options, shown in

Figure 13-6.

Some OEMs install WinRE to a recovery partition on their systems. On these systems, you can

access WinRE by using the F8 option to access advanced boot options during Bootmgr exe-

cution. If you see an option Repair Your Computer, your machine has a local hard disk copy.

By following the instructions at the Microsoft WinRE blog (http://blogs.msdn.com/winre) you

can also install WinRE on the hard disk yourself from your Windows installation media and

Windows Automated Installation Kit (AIK).

 Chapter 13 Startup and Shutdown 1107

FIGURE 13-6 The System Recovery Options dialog box

Additionally, if your system failed to boot as the result of damaged files or any other reason

that Winload can understand, it instructs Bootmgr to automatically start WinRE at the next

reboot cycle. Instead of the dialog box shown in Figure 13-6, the recovery environment will

automatically launch the Startup Repair tool, shown in Figure 13-7.

FIGURE 13-7 The Startup Repair tool

At the end of the scan and repair cycle, the tool will automatically attempt to fix any damage

found, including replacing system files from the installation media. You can click the details

link to see information about the damage that was fixed. For example, in Figure 13-8, the

Startup Repair tool fixed a damaged boot sector.

1108 Windows Internals, Fifth Edition

FIGURE 13-8 Details view of the Startup Repair tool

If the Startup Repair tool cannot automatically fix the damage, or if you cancel the operation,

you’ll get a chance to try other methods and the System Recovery Options dialog box will be

displayed.

Boot Status File

Windows uses a boot status file (%SystemRoot%\Bootstat.dat) to record the fact that

it has progressed through various stages of the system life cycle, including boot and

shutdown. This allows the Boot Manager, Windows loader, and the Startup Repair

tool to detect abnormal shutdown or a failure to shut down cleanly and offer the user

recovery and diagnostic boot options, like Last Known Good and Safe Mode. This

binary file contains information through which the system reports the success of the

following phases of the system life cycle:

Boot (the definition of a successful boot is the same as the one used for deter-

mining Last Known Good status, which was described earlier)

Shutdown

Resume from hibernate or suspend

The boot status file also indicates whether a problem was last detected and the recov-

ery options shown, indicating that the user has been made aware of the problem and

taken action. Runtime Library APIs (Rtl) in Ntdll.dll contain the private interfaces that

Windows uses to read from and write to the file. Like the BCD, it cannot be edited by

users.

 Chapter 13 Startup and Shutdown 1109

Solving Common Boot Problems

This section describes problems that can occur during the boot process, describing their

symptoms, causes, and approaches to solving them. To help you locate a problem that you

might encounter, they are organized according to the place in the boot at which they occur.

Note that for most of these problems, you should be able to simply boot into the Windows

Recovery Environment and allow the Startup Repair tool to scan your system and perform

any automated repair tasks.

MBR Corruption

Symptoms A system that has Master Boot Record (MBR) corruption will execute the

BIOS power-on self test (POST), display BIOS version information or OEM branding,

switch to a black screen, and then hang. Depending on the type of corruption the MBR

has experienced, you might see one of the following messages: “Invalid partition table,”

“Error loading operating system,” or “Missing operating system.”

Cause The MBR can become corrupt because of hard-disk errors, disk corruption as a

result of a driver bug while Windows is running, or intentional scrambling as a result of

a virus.

Resolution Boot into the Windows Recovery Environment, choose the Command

Prompt option, and then execute the bootrec /fixmbr command. This command

replaces the executable code in the MBR.

Boot Sector Corruption

Symptoms Boot sector corruption can look like MBR corruption, where the system

hangs after BIOS POST at a black screen, or you might see the messages “A disk read

error occurred,” “BOOTMGR is missing,” or “ BOOTMGR is compressed” displayed on a

black screen.

Cause The boot sector can become corrupt because of hard-disk errors, disk corrup-

tion as a result of a driver bug while Windows is running, or intentional scrambling as a

result of a virus.

Resolution Boot into the Windows Recovery Environment, choose the Command

Prompt option, and then execute the bootrec /fixboot command. This command

rewrites the boot sector of the volume that you specify. You should execute the com-

mand on both the system and boot volumes if they are different.

BCD Misconfiguration

Symptom After BIOS POST, you’ll see a message that begins “Windows could not start

because of a computer disk hardware configuration problem,” “Could not read from

selected boot disk,” or “Check boot path and disk hardware.”

1110 Windows Internals, Fifth Edition

Cause The BCD has been deleted, become corrupt, or no longer references the boot

volume because the addition of a partition has changed the name of the volume.

Resolution Boot into the Windows Recovery Environment, choose the Command

Prompt option, and then execute the bootrec /scanos and bootrec /rebuildbcd com-

mands. These commands will scan each volume looking for Windows installations.

When they discover an installation, they will ask you whether they should add it to the

BCD as a boot option and what name should be displayed for the installation in the

boot menu. For other kinds of BCD-related damage, you can also use Bcdedit.exe to

perform tasks such as building a new BCD from scratch or cloning an existing good

copy.

System File Corruption

Symptoms There are several ways the corruption of system files—which include

executables, drivers, or DLLs—can manifest. One way is with a message on a black

screen after BIOS POST that says, “Windows could not start because the following

file is missing or corrupt,” followed by the name of a file and a request to reinstall

the file. Another way is with a blue screen crash during the boot with the text, “STOP:

0xC0000135 {Unable to Locate Component}.”

Causes The volume on which a system file is located is corrupt or one or more system

files have been deleted or become corrupt.

Resolution Boot into the Windows Recovery Environment, choose the Command

Prompt option, and then execute the chkdsk command. Chkdsk will attempt to repair

volume corruption. If Chkdsk does not report any problems, obtain a backup copy

of the system file in question. One place to check is in the \Windows\winsxs\Backup

directory, in which Windows places copies of many system files for access by Windows

Resource Protection. (See the “Windows Resource Protection” sidebar.) If you cannot

find a copy of the file there, see if you can locate a copy from another system in the

network. Note that the backup file must be from the same service pack or hotfix as the

file that you are replacing.

In some cases, multiple system files are deleted or become corrupt, so the repair process can

involve multiple reboots and boot failures as you repair the files one by one. If you believe

the system file corruption to be extensive, you should consider restoring the system from a

backup image, such as one generated by Windows Vista CompletePC Backup or from a sys-

tem restore point.

When you run Windows Backup (located in the System folder under Accessories on the Start

menu), you can generate a CompletePC backup image, which includes all the files on the sys-

tem and boot volumes, plus a floppy disk on which it stores information about the system’s

disks and volumes. To restore a system from an ASR backup image, back up boot from the

Windows setup media and press F2 when prompted.

 Chapter 13 Startup and Shutdown 1111

If you do not have a backup from which to restore, a last resort is to execute a Windows

repair install: boot from the Windows setup media, and follow the wizard as if you were

going to perform a new installation. The wizard will ask you whether you want to perform a

repair or fresh install. When you tell it that you want to repair, Setup reinstalls all system files,

leaving your application data and registry settings intact.

Windows Resource Protection

To preserve the integrity of the many components involved in the boot process,

as well as other critical Windows files, libraries, and applications, Windows imple-

ments a technology called Windows Resource Protection (WRP). WRP is implemented

through access control lists (ACLs) that protect critical system files on the machine. It

is also exposed through an API (located in \Windows\System32\Sfc.dll and \Windows\

System32\Sfc_os.dll) that can be accessed by the Sfc.exe utility to manually check a file

for corruption and restore it.

WRP will also protect entire critical folders if required, even locking down the folder so

that it is inaccessible by administrators (without modifying the access control list on the

folder). The only supported way to modify WRP-protected files is through the Windows

Modules Installer service, which can run under the TrustedInstaller account. This service

is used for the installation of patches, service packs, hotfixes, and Windows Update.

This account has access to the various protected files and is trusted by the system (as

its name implies) to modify critical files and replace them. WRP also protects critical

registry keys, and it may even lock entire registry trees if all the values and subkeys are

considered to be critical.

Unlike the previous incarnation of WRP, called WFP (Windows File Protection), this

implementation does not make use of file and directory change notifications to prevent

replacement of critical files. Instead, the ACL on protected files, directories, or registry

keys is set so that only the TrustedInstaller account is able to modify or delete these

files. Application developers can use the SfcIsFileProtected or SfcIsKeyProtected APIs to

check whether a file or registry key is locked down.

For backward compatibility, certain installers are considered well-known—an applica-

tion compatibility shim exists that will suppress the “access denied” error that certain

installers would receive while attempting to modify WRP-protected resources. Instead,

the installer receives a fake “success” code, but the modification isn’t made. This virtual-

ization is similar to the User Access Control (UAC) virtualization technology discussed in

Chapter 6, but it applies to write operations as well. It applies if the following are true:

The application is a legacy application, meaning that it does not contain a

manifest file compatible with Windows Vista or Windows Server 2008 with the

requestedExecutionLevel value set.

1112 Windows Internals, Fifth Edition

The application is trying to modify a WRP-protected resource (the file or reg-

istry key contains the TrustedInstaller SID).

The application is being run under an administrator account (always true on

systems with UAC enabled because of automatic installer program detection).

WRP copies files that are needed to restart Windows to the cache directory located at

\Windows\winsxs\Backup. Critical files that are not needed to restart Windows are not

copied to the cache directory. The size of the cache directory and the list of files copied

to the cache cannot be modified. To recover a file from the cache directory, you can

use the System File Checker (Sfc.exe) tool, which can scan your system for modified pro-

tected files and restore them from a good copy.

System Hive Corruption

Symptoms If the System registry hive (which is discussed along with hive files in the

section “The Registry” in Chapter 4) is missing or corrupted, Winload will display the

message “Windows could not start because the following file is missing or corrupt:

\WINDOWS\SYSTEM32\CONFIG\SYSTEM,” on a black screen after the BIOS POST.

Causes The System registry hive, which contains configuration information necessary

for the system to boot, has become corrupt or has been deleted.

Resolution Boot into the Windows Recovery Environment, choose the Command

Prompt option, and then execute the chkdsk command. If the problem is not corrected,

obtain a backup of the System registry hive. Windows makes copies of the registry

hives every 12 hours (keeping the immediately previous copy with a .OLD extension) in

a folder called \Windows\System32\Config\RegBack, so copy the file named System to

\Windows\System32\Config.

If System Restore is enabled (System Restore is discussed in Chapter 11), you can often obtain

a more recent backup of the registry hives, including the System hive, from the most recent

restore point. You can choose System Restore from the Windows Recovery Environment to

restore your registry from the last restore point.

Post–Splash Screen Crash or Hang

Symptoms Problems that occur after the Windows splash screen displays, the desktop

appears, or you log on fall into this category and can appear as a blue screen crash or a

hang, where the entire system is frozen or the mouse cursor tracks the mouse but the

system is otherwise unresponsive.

 Chapter 13 Startup and Shutdown 1113

Causes These problems are almost always a result of a bug in a device driver, but they

can sometimes be the result of corruption of a registry hive other than the System hive.

Resolution You can take several steps to try and correct the problem. The first thing

you should try is the last known good configuration. Last known good (LKG), which is

described earlier in this chapter and in the “Services” section of Chapter 4, consists of

the registry control set that was last used to boot the system successfully. Because a

control set includes core system configuration and the device driver and services regis-

tration database, using a version that does not reflect changes or newly installed driv-

ers or services might avoid the source of the problem. You access last known good by

pressing the F8 key early in the boot process to access the same menu from which you

can boot into safe mode.

As stated earlier in the chapter, when you boot into LKG, the system saves the control set that

you are avoiding and labels it as the failed control set. You can leverage the failed control set

in cases where LKG makes a system bootable to determine what was causing the system to

fail to boot by exporting the contents of the current control set of the successful boot and

the failed control set to .reg files. You do this by using the Regedit’s export functionality,

which you access under the File menu:

 1. Run Regedit, and select HKLM\SYSTEM\CurrentControlSet.

 2. Select Export from the File menu, and save to a file named good.reg.

 3. Open HKLM\SYSTEM\Select, read the value of Failed, and select the subkey named

HKLM\SYSTEM\ControlXXX, where XXX is the value of Failed.

 4. Export the contents of the control set to bad.reg.

 5. Use WordPad (which is found under Accessories on the Start menu) to globally replace

all instances of CurrentControlSet in good.reg with ControlSet.

 6. Use WordPad to change all instances of ControlXXX (replacing XXX with the value of

the Failed control set) in bad.reg with ControlSet.

 7. Run Windiff from the Support Tools, and compare the two files.

The differences between a failed control set and a good one can be numerous, so you

should focus your examination on changes beneath the Control subkey as well as under the

Parameters subkeys of drivers and services registered in the Services subkey. Ignore changes

made to Enum subkeys of driver registry keys in the Services branch of the control set.

If the problem you’re experiencing is caused by a driver or service that was present on the

system since before the last successful boot, LKG will not make the system bootable. Similarly,

if a problematic configuration setting changed outside the control set or was made before

the last successful boot, LKG will not help. In those cases, the next option to try is safe mode

1114 Windows Internals, Fifth Edition

(described earlier in this section). If the system boots successfully in safe mode and you know

that particular driver was causing the normal boot to fail, you can disable the driver by using

the Device Manager (accessible from the Hardware tab of the System Control Panel item). To

do so, select the driver in question and choose Disable from the Action menu. If you recently

updated the driver, and believe that the update introduced a bug, you can choose to roll

back the driver to its previous version instead, also with the Device Manager. To restore a

driver to its previous version, double-click on the device to open its Properties dialog box

and click Roll Back Driver on the Driver tab.

On systems with System Restore enabled, an option when LKG fails is to roll back all system

state (as defined by System Restore) to a previous point in time. Safe mode detects the exis-

tence of restore points, and when they are present it will ask you whether you want to log

on to the installation to perform a manual diagnosis and repair or launch the System Restore

Wizard. Using System Restore to make a system bootable again is attractive when you know

the cause of a problem and want the repair to be automatic or when you don’t know the

cause but do not want to invest time to determine the cause.

If System Restore is not an option or you want to determine the cause of a crash during the

normal boot and the system boots successfully in safe mode, attempt to obtain a boot log

from the unsuccessful boot by pressing F8 to access the special boot menu and choosing

the boot logging option. As described earlier in this chapter, Session Manager (\Windows\

System32\Smss.exe) saves a log of the boot that includes a record of device drivers that the

system loaded and chose not to load to \Windows\ntbtlog.txt, so you’ll obtain a boot log if

the crash or hang occurs after Session Manager initializes. When you reboot into safe mode,

the system appends new entries to the existing boot log. Extract the portions of the log file

that refer to the failed attempt and safe-mode boots into separate files. Strip out lines that

contain the text “Did not load driver”, and then compare them with a text comparison tool

such as Windiff. One by one, disable the drivers that loaded during the normal boot but not

in the safe-mode boot until the system boots successfully again. (Then reenable the drivers

that were not responsible for the problem.)

If you cannot obtain a boot log from the normal boot (for instance, because the system is

crashing before Session Manager initializes), if the system also crashes during the safe-mode

boot, or if a comparison of boot logs from the normal and safe-mode boots do not reveal

any significant differences (for example, when the driver that’s crashing the normal boot

starts after Session Manager initializes), the next tool to try is the Driver Verifier combined

with crash dump analysis. (See Chapter 14 for more information on both these topics.)

 Chapter 13 Startup and Shutdown 1115

Shutdown

If someone is logged on and a process initiates a shutdown by calling the Windows Exit-
WindowsEx function, a message is sent to that session’s Csrss instructing it to perform the

shutdown. Csrss in turn impersonates the caller and sends an RPC message to Winlogon, tell-

ing it to perform a system shutdown. Winlogon then impersonates the currently logged-on

user (who might or might not have the same security context as the user who initiated the

system shutdown) and calls ExitWindowsEx with some special internal flags. Again, this call

causes a message to be sent to the Csrss process inside that session, requesting a system

shutdown.

This time, Csrss sees that the request is from Winlogon and loops through all the pro-

cesses in the logon session of the interactive user (again, not the user who requested a

shutdown) in reverse order of their shutdown level. A process can specify a shutdown level,

which indicates to the system when they want to exit with respect to other processes, by

calling SetProcessShutdownParameters. Valid shutdown levels are in the range 0 through

1023, and the default level is 640. Explorer, for example, sets its shutdown level to 2 and

Task Manager specifies 1. For each process that owns a top-level window, Csrss sends the

WM_QUERYENDSESSION message to each thread in the process that has a Windows mes-

sage loop. If the thread returns TRUE, the system shutdown can proceed. Csrss then sends

the WM_ENDSESSION Windows message to the thread to request it to exit. Csrss waits the

number of seconds defined in HKCU\Control Panel\Desktop\HungAppTimeout for the thread

to exit. (The default is 5000 milliseconds.)

If the thread doesn’t exit before the timeout, Csrss fades out the screen and displays the

hung-program screen shown in Figure 13-9. (You can disable this screen by changing the

registry value HKCU\Control Panel\Desktop\AutoEndTasks to 1.) This screen indicates which

programs are currently running and, if available, their current state. Windows indicates which

program isn’t shutting down in a timely manner and gives the user a choice of either killing

the process or aborting the shutdown. (There is no timeout on this screen, which means that

a shutdown request could wait forever at this point.) Additionally, third-party applications

can add their own specific information regarding state—for example, a virtualization product

could display the number of actively running virtual machines.

If the thread does exit before the timeout, Csrss continues sending the WM_QUERYEND-

SESSION/WM_ENDSESSION message pairs to the other threads in the process that own win-

dows. Once all the threads that own windows in the process have exited, Csrss terminates the

process and goes on to the next process in the interactive session.

1116 Windows Internals, Fifth Edition

EXPERIMENT: Witnessing the HungAppTimeout

You can see the use of the HungAppTimeout registry value by running Notepad, enter-

ing text into its editor, and then logging off. After the amount of time specified by the

HungAppTimeout registry value has expired, Csrss.exe presents a prompt that asks you

whether or not you want to end the Notepad process, which has not exited because it’s

waiting for you to tell it whether or not to save the entered text to a file. If you click the

Cancel button, Csrss.exe aborts the shutdown.

As a second experiment, if you try shutting down again (with Notepad’s query dialog

box still open), Notepad will display its own message box to inform you that shutdown

cannot cleanly proceed. However, this dialog box is merely an informational message

to help users—Csrss.exe will still consider that Notepad is “hung” and display the user

interface to terminate unresponsive processes.

If Csrss finds a console application, it invokes the console control handler by sending the

CTRL_LOGOFF_EVENT event. (Only service processes receive the CTRL_SHUTDOWN_EVENT

event on shutdown.) If the handler returns FALSE, Csrss kills the process. If the handler returns

TRUE or doesn’t respond by the number of seconds defined by HKCU\Control Panel\Desktop\

WaitToKillAppTimeout (the default is 20,000 milliseconds), Csrss displays the hung-program

screen shown in Figure 13-9.

Next, Winlogon calls ExitWindowsEx to have Csrss terminate any COM processes that are part

of the interactive user’s session.

At this point, all the processes in the interactive user’s session have been terminated. Wininit

next calls ExitWindowsEx, which this time executes within the system process context. This

causes Wininit to send a message to the Csrss part of session 0, where the services live. Csrss

then looks at all the processes belonging to the system context and performs and sends the

WM_QUERYENDSESSION/WM_ENDSESSION messages to GUI threads (as before). Instead

of sending CTRL_LOGOFF_EVENT, however, it sends CTRL_ SHUTDOWN_EVENT to console

applications that have registered control handlers. Note that the SCM is a console program

that does register a control handler. When it receives the shutdown request, it in turn sends

 Chapter 13 Startup and Shutdown 1117

the service shutdown control message to all services that registered for shutdown notifica-

tion. For more details on service shutdown (such as the shutdown timeout Csrss uses for the

SCM), see the “Services” section in Chapter 4.

FIGURE 13-9 Hung program screen

Although Csrss performs the same timeouts as when it was terminating the user processes,

it doesn’t display any dialog boxes and doesn’t kill any processes. (The registry values for the

system process timeouts are taken from the default user profile.) These timeouts simply allow

system processes a chance to clean up and exit before the system shuts down. Therefore,

many system processes are in fact still running when the system shuts down, such as Smss,

Wininit, Services, and Lsass.

Once Csrss has finished its pass notifying system processes that the system is shutting

down, Winlogon finishes the shutdown process by calling the executive subsystem function

NtShutdownSystem. This function calls the function PoSetSystemPowerState to orchestrate the

shutdown of drivers and the rest of the executive subsystems (Plug and Play manager, power

manager, executive, I/O manager, configuration manager, and memory manager).

For example, PoSetSystemPowerState calls the I/O manager to send shutdown I/O packets to

all device drivers that have requested shutdown notification. This action gives device drivers

a chance to perform any special processing their device might require before Windows exits.

1118 Windows Internals, Fifth Edition

The stacks of worker threads are swapped in, the configuration manager flushes any modified

registry data to disk, and the memory manager writes all modified pages containing file data

back to their respective files. If the option to clear the paging file at shutdown is enabled, the

memory manager clears the paging file at this time. The I/O manager is called a second time

to inform the file system drivers that the system is shutting down. System shutdown ends

in the power manager. The action the power manager takes depends on whether the user

specified a shutdown, a reboot, or a power down.

Conclusion

In this chapter, we’ve examined the detailed steps involved in starting and shutting down

Windows (both normally and in error cases). We’ve examined the overall structure of

Windows and the core system mechanisms that get the system going, keep it running, and

eventually shut it down. The final chapter of this book explains how to deal with an unusual

type of shutdown: system crashes.

 1119

Chapter 14

Crash Dump Analysis

Almost every Windows user has heard of, if not experienced, the infamous “blue screen of

death.” This ominous term refers to the blue screen that is displayed when Windows crashes,

or stops executing, because of a catastrophic fault or an internal condition that prevents the

system from continuing to run.

In this chapter, we’ll cover the basic problems that cause Windows to crash, describe the

information presented on the blue screen, and explain the various configuration options

available to create a crash dump, a record of system memory at the time of a crash that can

help you figure out which component caused the crash and why. This section is not intended

to provide detailed troubleshooting information on how to analyze a Windows system crash.

This section will also show you how to analyze a crash dump to identify a faulty driver or

component. The effort required to perform basic crash dump analysis is minimal and takes

a few minutes. Even if an analysis ascertains the problematic driver for only one out of every

five or ten crash dumps, it’s still worth doing: one successful analysis can avoid future data

loss, system downtime, and frustration.

Why Does Windows Crash?

Windows crashes (stops execution and displays the blue screen) for many possible reasons. A

common source is a reference to a memory address that causes an access violation, either a

write operation to read-only memory or a read operation on an address that is not mapped.

Another common cause is an unexpected exception or trap. Crashes also occur when a kernel

subsystem (such as the memory manager and power manager) or a driver (such as a USB or

display driver) detect inconsistencies in their operation.

When a kernel-mode device driver or subsystem causes an illegal exception, Windows faces a

difficult dilemma. It has detected that a part of the operating system with the ability to access

any hardware device and any valid memory has done something it wasn’t supposed to do.

But why does that mean Windows has to crash? Couldn’t it just ignore the exception and let

the device driver or subsystem continue as if nothing had happened? The possibility exists

that the error was isolated and that the component will somehow recover. But what’s more

likely is that the detected exception resulted from deeper problems—for example, from a

general corruption of memory or from a hardware device that’s not functioning properly.

Permitting the system to continue operating would probably result in more exceptions, and

data stored on disk or other peripherals could become corrupt—a risk that’s too high to take.

So Windows adopts a fail fast policy in attempting to prevent the corruption in RAM from

spreading to disk.

1120 Windows Internals, Fifth Edition

The Blue Screen

Regardless of the reason for a system crash, the function that actually performs the crash

is KeBugCheckEx, documented in the Windows Driver Kit (WDK). This function takes a stop
code (sometimes called a bugcheck code) and four parameters that are interpreted on a per–

stop code basis. After KeBugCheckEx masks out all interrupts on all processors of the system,

it switches the display into a low-resolution VGA graphics mode (one implemented by all

Windows-supported video cards), paints a blue background, and then displays the stop code,

followed by some text suggesting what the user can do. Finally, KeBugCheckEx calls any regis-

tered device driver bugcheck callbacks (registered by calling the KeRegisterBugCheckCallback

function), allowing drivers an opportunity to stop their devices. It then calls registered reason

callbacks (registered with KeRegisterBugCheckReasonCallback), which allow drivers to append

data to the crash dump or write crash dump information to alternate devices.

(It’s possible that system data structures have been so seriously corrupted that the blue

screen isn’t displayed.) Figure 14-1 shows a sample Windows blue screen.

FIGURE 14-1 Example of a blue screen

KeBugCheckEx displays the textual representation of the stop code near the top of the blue

screen and the numeric stop code and four parameters at the bottom of the blue screen.

The first line in the Technical information section lists the stop code and the four additional

parameters passed to KeBugCheckEx. A text line near the top of the screen provides the text

equivalent of the stop code’s numeric identifier. According to the example in Figure 14-1, the

 Chapter 14 Crash Dump Analysis 1121

stop code 0x000000D1 is a DRIVER_IRQL_NOT_LESS_OR_EQUAL crash. When a parameter

contains an address of a piece of operating system or device driver code (as in Figure 14-1),

Windows displays the base address of the module the address falls in, the date stamp, and

the file name of the device driver. This information alone might help you pinpoint the faulty

component.

Although there are more than 300 unique stop codes, most are rarely, if ever, seen on pro-

duction systems. Instead, just a few common stop codes represent the majority of Windows

system crashes. Also, the meaning of the four additional parameters depends on the stop

code (and not all stop codes have extended parameter information). Nevertheless, looking up

the stop code and the meaning of the parameters (if applicable) might at least assist you in

diagnosing the component that is failing (or the hardware device that is causing the crash).

You can find stop code information in the section “Bug Checks (Blue Screens)” in the Debug-

ging Tools for Windows help file. (For information on the Debugging Tools for Windows, see

Chapter 1.) You can also search Microsoft’s Knowledge Base (http://support.microsoft.com) for

the stop code and the name of the suspect hardware or application. You might find informa-

tion about a workaround, an update, or a service pack that fixes the problem you’re having.

The Bugcodes.h file in the WDK contains a complete list of the 300 or so stop codes, with

some additional details on the reasons for some of them.

Based on data collected from the release of Windows Vista through the release of Windows

Vista SP1, the top 30 stop codes account for 96 percent of crashes and can be grouped into a

dozen categories:

Page fault A page fault on memory backed by data in a paging file or a memory-

mapped file occurs at an IRQL of DPC/dispatch level or above, which would require the

memory manager to have to wait for an I/O operation to occur. The kernel cannot wait

or reschedule threads at an IRQL of DPC/dispatch level or higher. (See Chapter 3 for

details on IRQLs.) This category also includes page faults in nonpaged areas. The com-

mon stop codes are:

0xA - IRQL_NOT_LESS_OR_EQUAL

0xD1 - DRIVER_IRQL_NOT_LESS_OR_EQUAL

Power management A device driver or an operating system function running in ker-

nel mode is in an inconsistent or invalid power state. Most frequently, some component

has failed to complete a power management I/O request operation within 10 minutes.

This crash category is new in Windows Vista. In previous versions of the Windows oper-

ating system, these failures generally resulted in a system hang with no crash. The stop

codes are:

0x9F - DRIVER_POWER_STATE_FAILURE

0xA0 - INTERNAL_POWER_ERROR

1122 Windows Internals, Fifth Edition

Exceptions and traps A device driver or an operating system function running in ker-

nel mode incurs an unexpected exception or trap. The common stop codes are:

0x1E - KMODE_EXCEPTION_NOT_HANDLED

0x3B - SYSTEM_SERVICE_EXCEPTION

0x7E - SYSTEM_THREAD_EXCEPTION_NOT_HANDLED

0x7F - UNEXPECTED_KERNEL_MODE_TRAP

0x8E - KERNEL_MODE_EXCEPTION_NOT_HANDLED with P1 != 0xC0000005

STATUS_ACCESS_VIOLATION

Access violations A device driver or an operating system function running in kernel

mode incurs a memory access violation, which is caused either by attempting to write

to a read-only page or by attempting to read an address that isn’t currently mapped

and therefore is not a valid memory location. The common stop codes are:

0x50 - PAGE_FAULT_IN_NONPAGED_AREA

0x8E - KERNEL_MODE_EXCEPTION_NOT_HANDLED with P1 = 0xC0000005

STATUS_ACCESS_VIOLATION

Display The display device driver detects that it can no longer control the graphics

processing unit or detects an inconsistency in video memory management. The com-

mon stop codes are:

0xEA - THREAD_STUCK_IN_DEVICE_DRIVER

0x10E - VIDEO_MEMORY_MANAGEMENT_INTERNAL

0x116 - VIDEO_TDR_FAILURE

Pool The kernel pool manager detects an improper pool reference. The common stop

codes are:

0xC2 - BAD_POOL_CALLER

0xC5 - DRIVER_CORRUPTED_EXPOOL

Memory management The kernel memory manager detects a corruption of memory

management data structures or an improper memory management request. The com-

mon stop codes are:

0x1A - MEMORY_MANAGEMENT

0x4E - PFN_LIST_CORRUPT

Consistency check This is a catch-all category for various other consistency checks

performed by the kernel or device drivers. The common stop codes are:

0x18 - REFERENCE_BY_POINTER

0x35 - NO_MORE_IRP_STACK_LOCATIONS

0x44 - MULTIPLE_IRP_COMPLETE_REQUESTS

 Chapter 14 Crash Dump Analysis 1123

0xCE - DRIVER_UNLOADED_WITHOUT_CANCELLING_PENDING_OPERATIONS

0x8086 – This is a stop code used by the Intel storage driver iastor.sys

Hardware A hardware error, such as a machine check or a nonmaskable interrupt

(NMI), occurs. This category also includes disk failures when the memory manager is

attempting to read data to satisfy page faults. The common stop codes are:

0x77 – KERNEL_STACK_INPAGE_ERROR

0x7A - KERNEL_DATA_INPAGE_ERROR

0x124 - WHEA_UNCORRECTABLE_ERROR

0x101 - CLOCK_WATCHDOG_TIMEOUT (Software bugs can cause these errors too,

but they are most common on over-clocked hardware systems.)

USB An unrecoverable error occurs in a universal serial bus operation. The common

stop code is:

0xFE - BUGCODE_USB_DRIVER

Critical object A fatal error occurs in a critical object without which Windows cannot

continue to run. The common stop code is:

0xF4 - CRITICAL_OBJECT_TERMINATION

NTFS file system A fatal error is detected by the NTFS file system. The common stop

code is:

0x24 - NTFS_FILE_SYSTEM

Figure 14-2 shows the distribution of these categories for Windows Vista SP1 in September

2008:

NTFS file system,
1.5%

Critical object,
2.3%

USB, 2.7%

Memory management,
4.8%

Pool, 5.5%

Display, 7.8%

Power management,
17.4%

Page fault, 20.6%

Exception and trap,
9.8% Access violation,

15.4%

Other, 4.0%

Hardware, 3.6%

Consistency check, 4.7%

FIGURE 14-2 Distribution of error categories for Windows Vista SP1 as of September 2008.

1124 Windows Internals, Fifth Edition

Troubleshooting Crashes

You often begin seeing blue screens after you install a new software product or piece of

hardware. If you’ve just added a driver, rebooted, and gotten a blue screen early in system

initialization, you can reset the machine, press the F8 key when instructed, and then select

Last Known Good Configuration. Enabling last known good causes Windows to revert to

a copy of the registry’s device driver registration key (HKLM\SYSTEM\CurrentControlSet\

Services) from the last successful boot (before you installed the driver). From the perspective

of last known good, a successful boot is one in which all services and drivers have finished

loading and at least one logon has succeeded. (Last known good is further described in

Chapter 13.)

During the reboot after a crash, the Boot Manager (Bootmgr) will automatically detect that

Windows did not shut down properly and display a Windows Error Recovery message simi-

lar to the one shown in Figure 14-3. This screen gives you the option to attempt booting

into safe mode so that you can disable or uninstall the software component that might be

broken.

FIGURE 14-3 An example of a Windows Error Recovery message

 Chapter 14 Crash Dump Analysis 1125

If you keep getting blue screens, an obvious approach is to uninstall the components you

added just before the first blue screen appeared. If some time has passed since you added

something new or you added several things at about the same time, you need to note the

names of the device drivers referenced in any of the parameters. If you recognize any of the

names as being related to something you just added (such as Storport.sys if you put on a new

SCSI drive), you’ve possibly found your culprit.

Many device drivers have cryptic names, but one approach you can take to figure out which

application or hardware device is associated with a name is to find out the name of the ser-

vice in the registry associated with a device driver by searching for the name of the device

driver under the HKLM\SYSTEM\CurrentControlSet\Services key. This branch of the registry

is where Windows stores registration information for every device driver in the system. If you

find a match, look for values named DisplayName and Description. Some drivers fill in these

values to describe the device driver’s purpose. For example, you might find the string “Virus

Scanner” in the DisplayName value, which can implicate the antivirus software you have run-

ning. The list of drivers can be displayed in the System Information tool (from the Start menu,

select Programs, System Tools, System Information. In System Information, expand Software

Environment, and then select System Drivers. Process Explorer also lists the currently loaded

drivers, including their version numbers and load addresses, in the DLL view of the System

process. Another option is to open the Properties dialog box for the driver file and examine

the information on the Details tab, which often contains the description and company infor-

mation for the driver. Keep in mind that the registry information and file description are pro-

vided by the driver manufacturer, and there is nothing to guarantee their accuracy.

More often than not, however, the stop code and the four associated parameters aren’t

enough information to troubleshoot a system crash. For example, you might need to exam-

ine the kernel-mode call stack to pinpoint the driver or system component that triggered

the crash. Also, because the default behavior on Windows systems is to automatically reboot

after a system crash, it’s unlikely that you would have time to record the information dis-

played on the blue screen. That is why, by default, Windows attempts to record information

about the system crash to the disk for later analysis, which takes us to our next topic, crash

dump files.

Crash Dump Files

By default, all Windows systems are configured to attempt to record information about the

state of the system when the system crashes. You can see these settings by opening the

System tool in Control Panel, clicking the Advanced tab in the System Properties dialog box,

and then clicking the Settings button under Startup And Recovery. The default settings for a

Windows system are shown in Figure 14-4.

1126 Windows Internals, Fifth Edition

FIGURE 14-4 Crash dump settings

Three levels of information can be recorded on a system crash:

Complete memory dump A complete memory dump contains all of physical memory

at the time of the crash. This type of dump requires that a page file be at least the

size of physical memory plus 1 MB for the header. Device drivers can take advantage

of up to 256 MB for device dump data, but the additional space is not required for a

header. Because it can require an inordinately large page file on large memory sys-

tems, this type of dump file is the least common setting. If the system has more than

2 GB of RAM, this option will be disabled in the UI, but you can manually enable it by

setting the CrashDumpEnabled value to 1 in the HKLM\SYSTEM\CurrentControlSet\

Control\CrashControl registry key. At initialization time, Windows will check whether

the page-file size is large enough for a complete dump and automatically switch to

creating a small memory dump if not. Large server systems might not have space for

a complete dump but may be able to dump useful information, so you can add the

IgnorePagefileSize value to the same registry key to have the system generate a dump

file until it runs out of space.

Kernel memory dump A kernel memory dump contains only the kernel-mode read/

write pages present in physical memory at the time of the crash. This type of dump

doesn’t contain pages belonging to user processes. Because only kernel-mode code

can directly cause Windows to crash, however, it’s unlikely that user process pages are

necessary to debug a crash. In addition, all data structures relevant for crash dump

analysis—including the list of running processes, stack of the current thread, and list of

loaded drivers—are stored in nonpaged memory that saves in a kernel memory dump.

 Chapter 14 Crash Dump Analysis 1127

There is no way to predict the size of a kernel memory dump because its size depends

on the amount of kernel-mode memory allocated by the operating system and driv-

ers present on the machine. This is the default setting for both Windows Vista and

Windows Server 2008.

Small memory dump A small memory dump, which is typically between 128 KB and

1 MB in size and is also called a minidump or triage dump, contains the stop code and

parameters, the list of loaded device drivers, the data structures that describe the cur-

rent process and thread (called the EPROCESS and ETHREAD—described in Chapter

5), the kernel stack for the thread that caused the crash, and additional memory con-

sidered potentially relevant by crash dump heuristics, such as the pages referenced by

processor registers that contain memory addresses and secondary dump data added

by drivers.

Note Device drivers can register a secondary dump data callback routine by calling KeRegister-
BugCheckReasonCallback. The kernel invokes these callbacks after a crash and a callback routine

can add additional data to a crash dump file, such as device hardware memory or device infor-

mation for easier debugging. Up to 256 MB can be added systemwide by all drivers, depending

on the space required to store the dump and the size of the file into which the dump is written,

and each driver can add at most one-eighth of the available additional space. Once the additional

space is consumed, drivers subsequently called are not offered the chance to add data.

The debugger indicates that it has limited information available to it when it loads a mini-

dump, and basic commands like !process, which lists active processes, don’t have the data

they need. Here is an example of !process executed on a minidump:

Microsoft (R) Windows Debugger Version 6.10.0003.233 X86

Copyright (c) Microsoft Corporation. All rights reserved.

Loading Dump File [C:\Windows\Minidump\Mini100108-01.dmp]

Mini Kernel Dump File: Only registers and stack trace are available

...

0: kd> !process 0 0

**** NT ACTIVE PROCESS DUMP ****

GetPointerFromAddress: unable to read from 81d3a86c

Error in reading nt!_EPROCESS at 00000000

A kernel memory dump includes more information, but switching to a different process’s

address space mappings won’t work because required data isn’t in the dump file. Here is an

example of the debugger loading a kernel memory dump, followed by an attempt to switch

process address spaces:

Microsoft (R) Windows Debugger Version 6.10.0003.233 X86

Copyright (c) Microsoft Corporation. All rights reserved.

1128 Windows Internals, Fifth Edition

Loading Dump File [C:\Windows\MEMORY.DMP]

Kernel Summary Dump File: Only kernel address space is available

...

0: kd> !process 0 0 explorer.exe

PROCESS 867250a8 ...

0: kd> .process 867250a8 ...

Process 867250a8 has invalid page directories

While a complete memory dump is a superset of the other options, it has the drawback

that its size tracks the amount of physical memory on a system and can therefore become

unwieldy. It’s not unusual for systems today to have several gigabytes of memory, resulting

in crash dump files that are too large to be uploaded to an FTP server or burned onto a CD.

Because user-mode code and data are not used during the analysis of most crashes (because

crashes originate as a result of problems in kernel memory, and system data structures reside

in kernel memory) much of the data stored in a complete memory dump is not relevant to

analysis and therefore contributes wastefully to the size of a dump file. A final disadvantage is

that the paging file on the boot volume (the volume with the \Windows directory) must be at

least as large as the amount of physical memory on the system plus up to 365 MB. Because

the size of the paging files required, in general, inversely tracks the amount of physical mem-

ory present, this requirement can force the paging file to be unnecessarily large. You should

therefore consider the advantages offered by the small and kernel memory dump options.

An advantage of a minidump is its small size, which makes it convenient for exchange via

e-mail, for example. In addition, each crash generates a file in the directory \Windows\

Minidump with a unique file name consisting of the string “Mini” plus the date plus

a sequence number that counts the number of minidumps on that day (for example,

Mini082608-01.dmp). A disadvantage of minidumps is that to analyze them, you must have

access to the exact images used on the system that generated the dump at the time you ana-

lyze the dump. (At a minimum, a copy of the matching Ntoskrnl.exe is needed to perform the

most basic analysis.) This can be problematic if you want to analyze a dump on a system dif-

ferent from the system that generated the dump. However, the Microsoft symbol server con-

tains images (and symbols) for all recent Windows versions, so you can set the image path in

the debugger to point to the symbol server, and the debugger will automatically download

the needed images. (Of course, the Microsoft symbol server won’t have images for third-

party drivers you have installed.)

A more significant disadvantage is that the limited amount of data stored in the dump can

hamper effective analysis. You can also get the advantages of minidumps even when you

configure a system to generate kernel or complete crash dumps by opening the larger

crash with WinDbg and using the .dump /m command to extract a minidump. Note that a

minidump is automatically created even if the system is set for full or kernel dumps.

 Chapter 14 Crash Dump Analysis 1129

Note You can use the .dump command from within Livekd to generate a memory image of a

live system that you can analyze offline without stopping the system. This approach is useful

when a system is exhibiting a problem, but is still delivering services, and you want to trouble-

shoot the problem without interrupting service. The resultant crash image isn’t necessarily fully

consistent because the contents of different regions of memory reflect different points in time,

but it might contain information useful for an analysis.

The kernel memory dump option offers a practical middle ground. Because it contains all

of kernel-mode-owned physical memory, it has the same level of analysis-related data as a

complete memory dump, but it omits the usually irrelevant user-mode data and code, and

therefore can be significantly smaller. As an example, on a system running Windows Vista

with 4 GB of RAM, a kernel memory dump was 160 MB in size.

When you configure kernel memory dumps, the system checks whether the paging file is

large enough, as described earlier. Some general recommendations follow in Table 14-1, but

these are only estimated sizes because there is no way to predict the size of a kernel memory

dump. The reason you can’t predict the size of a kernel memory dump is that its size depends

on the amount of kernel-mode memory in use by the operating system and drivers present

on the machine at the time of the crash.

TABLE 14-1 Default Minimum Paging File Sizes for Kernel Dumps

System Memory Size Minimum Page File Size for Kernel Dumps

< 128 MB 50 MB

< 4 GB 200 MB

< 8 GB 400 MB

>= 8 GB 800 MB

Therefore, it is possible that at the time of the crash, the paging file is too small to hold a

kernel dump. If you want to see the size of a kernel dump on your system, force a manual

crash either by configuring the option to allow you to initiate a manual system crash from

the console or by using the Notmyfault tool described later in this chapter. (Both these

approaches are described later in the chapter.) When you reboot, you can check to make sure

that a kernel dump was generated and check its size to gauge how large to make your boot

volume paging file. To be conservative, on 32-bit systems you can choose a page file size of

2 GB plus up to 356 MB, because 2 GB is the maximum kernel-mode address space available

(unless you are booting with the 3gb and/or userva boot options, in which case this can be up

to 3 GB). If you do not have enough space on the boot volume for saving the memory.dmp

file, you can choose a location on any other local hard disk through the dialog box shown in

Figure 14-4.

1130 Windows Internals, Fifth Edition

Crash Dump Generation

When the system boots, it checks the crash dump options configured by reading the registry

value HKLM\SYSTEM\CurrentControlSet\Control\CrashControl. If a dump is configured, it

makes a copy of the disk miniport driver used to write to the boot volume in memory and

gives it the same name as the miniport with the word “dump_” prefixed. It also checksums the

components involved with writing a crash dump—including the copied disk miniport driver,

the I/O manager functions that write the dump, and the map of where the boot volume’s

paging file is on disk—and saves the checksum. When KeBugCheckEx executes, it checksums

the components again and compares the new checksum with that obtained at the boot. If

there’s not a match, it does not write a crash dump, because doing so would likely fail or

corrupt the disk. Upon a successful checksum match, KeBugCheckEx writes the dump infor-

mation directly to the sectors on disk occupied by the paging file, bypassing the file system

driver and storage driver stack (which might be corrupted or even have caused the crash).

Note Because the page file is created early in system startup during memory manager initializa-

tion, most crashes the are caused by bugs in system-start driver initialization result in a dump

file. Crashes in early Windows boot components such as the HAL or the initialization of boot driv-

ers occur too early for the system to have a page file, so using another computer to debug the

startup process is the only way to perform dump analysis in those cases.

When the Session Manager (SMSS) re-initializes the page file during the boot process, it calls

the function SmpCheckForCrashDump, which looks in the boot volume’s current paging file

(created by the kernel during the boot process) to see whether a crash dump is present. SMSS

then checks whether the target dump file is on a different volume than the paging file. If so,

it renames the paging file to a temporary dump file name, Dumpxxx.tmp (where xxx is the

current low value of the system’s tick count), and truncates the file to the size of the dump

data. (This information is stored in the header on top of each dump file.) It also removes

both the hidden and system attributes from the file. SMSS then creates the volatile registry

key HKLM\SYSTEM\CurrentControlSet\Control\CrashControl\MachineCrash and stores the

temporary dump file name in the value “DumpFile”. It then writes a REG_DWORD to the

“TempDestination” value indicating whether the dump file location is only the temporary

destination. If the paging file is on the same volume as the destination dump file, a tempo-

rary dump file isn’t used, and the paging file is directly renamed to the dump file name. In

this case, the DumpFile value will be %SystemRoot%\Memory.dmp and TempDestination will

be 0.

Later in the boot, Wininit checks for the presence of the MachineCrash key, and if it exists,

Wininit launches WerFault, which reads the TempDestination and DumpFile values and

either renames or copies the temporary file to its target location (typically %System Root%\

Mem ory.dmp, unless configured otherwise) depending on whether the target is on the

 Chapter 14 Crash Dump Analysis 1131

same volume as the Windows directory. WerFault then writes the final dump file name to the

FinalDumpFile Location value in the MachineCrash key. These steps are shown in Figure 14-5.

User mode

Kernel mode

Session
Manager

WerFault

NtCreatePagingFile

Dumpxxx.tmp

Paging file

2

3

1

Wininit
Memory.dmp

4 SMSS

“MachineCrash”

5 Wininit

FIGURE 14-5 Crash dump file generation

To support machines that might not have a paging file or no paging file on the boot vol-

ume, for example on systems that boot from a SAN or read-only media, Windows also

supports the use of a dedicated dump file that is configured in the DedicatedDumpFile and

DumpFileSize values under the HKLM\SYSTEM\CurrentControlSet\Control\CrashControl reg-

istry key. When a dedicated dump file is specified, the crash dump driver (%SystemRoot%\

System32\Drivers\Crashdmp.sys) creates the dump file of the required size and writes the

crash data there instead of the paging file. If a full or kernel dump is configured but there is

not enough space on the target volume to create the dedicated dump file of the required

size, the system falls back to writing a minidump.

Windows Error Reporting

As mentioned in Chapter 3, Windows includes a facility called Windows Error Reporting

(WER), which facilitates the automatic submission of process and system failures (such as

crashes and/or hangs) to Microsoft (or an internal error reporting server) for analysis. This

feature is enabled by default, but it can be modified by changing WER’s behavior, which

takes the additional step of determining whether the system is configured to send a crash

dump to Microsoft (or a private server, explained further in the “Online Crash Analysis” sec-

tion later in the chapter) for analysis on a reboot following a crash. The WER Advanced

Settings screen, which you access from the Problem Reports And Solutions screen of the

Control Panel’s System applet, is shown in Figure 14-6. This dialog box allows you to config-

ure the system’s error reporting settings.

1132 Windows Internals, Fifth Edition

FIGURE 14-6 Error reporting configuration dialog box

As mentioned earlier, if Wininit.exe finds the HKLM\SYSTEM\CurrentControlSet\Control\

CrashControl\MachineCrash key, it executes WerFault.exe with the –k –c flags (the k flag indi-

cates kernel error reporting, and the c flag indicates that the full or kernel dump should be

converted to a minidump) to have WerFault.exe check for a kernel crash dump file. WerFault

takes the following steps for preparing to send a crash dump report to the Microsoft Online

Crash Analysis (OCA) site (or, if configured, an internal error reporting server):

 1. If the type of dump it generated was not a minidump, it extracts a minidump

from the dump file and stores it in the default location of \Windows\Minidumps,

unless otherwise configured through the MinidumpDir value in the HKLM\SYSTEM\

CurrentControlSet\Control\CrashControl\ key.

 2. It writes the name of the minidump files to HKLM\SOFTWARE\Microsoft\Windows\

Windows Error Reporting\KernelFaults\Queue.

 3. It adds a command to execute WerFault.exe (\Windows\System32\WerFault.exe) to

HKLM\SOFTWARE\Microsoft\Windows\CurrentVersion\RunOnce so that WerFault is

executed one more time during the first user’s logon to the system for purposes of

actually sending the error report.

 Chapter 14 Crash Dump Analysis 1133

Online Crash Analysis

When the WerFault utility executes during logon, as a result of having configured itself

to start, it checks the HKLM\SOFTWARE\Microsoft\Windows\Windows Error Reporting\

KernelFaults\Queue key to look for queued reports that may have been added in the previ-

ous dump conversion phase. It also checks whether there are previously unsent crash reports

from previous sessions. If there are, it launches WerFault.exe with the –k –q flags (the q flag

specifies the usage of queued reporting mode) to generate an XML-formatted file contain-

ing a basic description of the system, including the operating system version, a list of drivers

installed on the machine, and the list of Plug and Play drivers loaded on the system at the

time of the crash.

If configured to ask for user input (which is not the default), it then presents the dialog box

shown in Figure 14-7, which asks the user whether he or she wants to send an error report

to Microsoft. If the user chooses to send the error report, and unless overridden by Group

Policy, WerFault sends the XML file and minidump to http://oca.microsoft.com, which for-

wards the data to a server farm for automated analysis, described in the next section.

FIGURE 14-7 Crash dump error reporting dialog box

The server farm’s automated analysis uses the same analysis engine that the Microsoft

kernel debuggers use when you load a crash dump file into them (described shortly). The

analysis generates a bucket ID, which is a signature that identifies a particular crash type.

The server farm queries a database using the bucket ID to see whether a resolution has

been found for the crash, and it sends a URL back to WerFault that refers it to the OCA Web

site (http://oca.microsoft.com). If configured to do so, WerFault launches the Windows Error

Reporting Console, or WerCon (%SystemRoot%\System32\Wercon.exe), which is a pro-

gram that allows users to interface with WER for receiving problem resolution and tracking

1134 Windows Internals, Fifth Edition

information as well as for configuring WER behavior. When browsing for solutions, WerCon

contains an Internet browser frame to open the page on the WER Web site that reports the

preliminary crash analysis. If a resolution is available, the page instructs the user where to

obtain a hotfix, service pack, or third-party driver update.

Basic Crash Dump Analysis

If OCA fails to identify a resolution or you are unable to submit the crash to OCA, an alter-

native is analyzing crashes yourself. As mentioned earlier, WinDbg and Kd both execute the

same analysis engine used by OCA when you load a crash dump file, and the basic analysis

can sometimes pinpoint the problem. So you might be fortunate and have the crash dump

solved by the automatic analysis. But if not, there are some straightforward techniques to try

to solve the crash.

This section explains how to perform basic crash analysis steps, followed by tips on leverag-

ing the Driver Verifier (which is introduced in Chapter 7) to catch buggy drivers when they

corrupt the system so that a crash dump analysis pinpoints them.

Note OCA’s automated analysis may occasionally identify a highly likely cause of a crash but

not be able to inform you of the suspected driver. This happens because it only reports the cause

for crashes that have their bucket ID entry populated in the OCA database, and entries are cre-

ated only when Microsoft crash-analysis engineers have verified the cause. If there’s no bucket ID

entry, OCA reports that the crash was caused by “unknown driver.”

Notmyfault

You can use the Notmyfault utility from Windows Sysinternals (www.microsoft.com/technet/
sysinternals) to generate the crashes described here. Notmyfault consists of an executable

named Notmyfault.exe and a driver named Myfault.sys. When you run the Notmyfault

executable, it loads the driver and presents the dialog box shown in Figure 14-8, which allows

you to crash the system in various ways or to cause the driver to leak paged pool. The crash

types offered represent the ones most commonly seen by Microsoft’s product support ser-

vices. Selecting an option and clicking the Do Bug button causes the executable to tell the

driver, by using the DeviceIoControl Windows API, which type of bug to trigger.

Note You should execute Notmyfault crashes on a test system or on a virtual machine because

there is a small risk that memory it corrupts will be written to disk and result in file or disk

corruption.

 Chapter 14 Crash Dump Analysis 1135

User mode

Kernel mode

IOCTL Interface

MyFault.sys

FIGURE 14-8 Notmyfault

Note The names of the Notmyfault executable and driver highlight the fact that user mode

cannot directly cause the system to crash. The Notmyfault executable can cause a crash only by

loading a driver to perform an illegal operation for it in kernel mode.

Basic Crash Dump Analysis

The most straightforward Notmyfault crash to debug is the one caused by selecting the

High IRQL Fault (Kernelmode) option and clicking the Do Bug button. This causes the driver

to allocate a page of paged pool, free the pool, raise the IRQL to above DPC/dispatch level,

and then touch the page it has freed. (See Chapter 3 for more information on IRQLs.) If that

doesn’t cause a crash, the process continues by reading memory past the end of the page

until it causes a crash by accessing invalid pages. The driver performs several illegal opera-

tions as a result:

 1. It references memory that doesn’t belong to it.

1136 Windows Internals, Fifth Edition

 2. It references paged pool at an IRQL that’s DPC/dispatch level or higher, which is illegal

because page faults are not permitted when the processor IRQL is DPC/dispatch level

or higher.

 3. When it goes past the end of the memory that it had allocated, it tries to reference

memory that is potentially invalid.

The reason the first page reference might not cause a crash is that it won’t generate a page

fault if the page that the driver frees remains in the system working set. (See Chapter 9 for

information on the system working set.)

When you load a crash generated with this bug into WinDbg, the tool’s analysis displays

something like this:

Microsoft (R) Windows Debugger Version 6.9.0003.113 X86

Copyright (c) Microsoft Corporation. All rights reserved.

Loading Dump File [C:\windows\MEMORY.DMP]

Kernel Summary Dump File: Only kernel address space is available

Symbol search path is: srv*c:\programming\symbols*http://msdl.microsoft.com/download/

symbols

Executable search path is:

Windows Server 2008 Kernel Version 6001 (Service Pack 1) MP (2 procs) Free x86 compatible

Product: WinNt, suite: TerminalServer SingleUserTS

Built by: 6001.18063.x86fre.vistasp1_gdr.080425-1930

Kernel base = 0x81804000 PsLoadedModuleList = 0x8191bc70

Debug session time: Sun Sep 21 22:58:19.994 2008 (GMT-4)

System Uptime: 2 days 0:11:17.876

Loading Kernel Symbols

..

..

Loading User Symbols

Loading unloaded module list

.......

* *

* Bugcheck Analysis *

* *

Use !analyze -v to get detailed debugging information.

BugCheck D1, {a35db800, 1c, 0, 9879c3dd}

*** ERROR: Module load completed but symbols could not be loaded for myfault.sys

Probably caused by : myfault.sys (myfault+3dd)

Followup: MachineOwner

 Chapter 14 Crash Dump Analysis 1137

The first thing to note is that WinDbg reports errors trying to load symbols for Myfault.sys

and Notmyfault.exe. These are expected because the symbol files for Myfault.sys and

Notmyfault.exe are not on the symbol-file path (which is configured to point at the Microsoft

symbol server). You’ll see similar errors for third-party drivers and executables that do not

ship with the operating system.

The analysis text itself is terse, showing the numeric stop code and bug-check parameters

followed by a “Probably caused by” line that shows the analysis engine’s best guess at the

offending driver. In this case it’s on the mark and points directly at Myfault.sys, so there’s no

need for manual analysis.

The “Followup” line is not generally useful except within Microsoft, where the debugger looks

for the module name in the Triage.ini file that’s located within the Triage directory of the

Debugging Tools for Windows installation directory. The Microsoft-internal version of that

file lists the developer or group responsible for handling crashes in a specific driver, and the

debugger displays the developer’s or group’s name in the Followup line when appropriate.

Verbose Analysis

Even though the basic analysis of the Notmyfault crash identifies the faulty driver, you should

always have the debugger execute a verbose analysis by entering the command:

!analyze –v

The first obvious difference between the verbose and default analysis is the description of

the stop code and its parameters. Following is the output of the command when executed on

the same dump:

DRIVER_IRQL_NOT_LESS_OR_EQUAL (d1)

An attempt was made to access a pageable (or completely invalid) address at an

interrupt request level (IRQL) that is too high. This is usually

caused by drivers using improper addresses.

If kernel debugger is available get stack backtrace.

Arguments:

Arg1: a35db800, memory referenced

Arg2: 0000001c, IRQL

Arg3: 00000000, value 0 = read operation, 1 = write operation

Arg4: 9879c3dd, address which referenced memory

This saves you the trouble of opening the help file to find the same information, and the text

sometimes suggests troubleshooting steps, an example of which you’ll see in the next section

on advanced crash dump analysis.

1138 Windows Internals, Fifth Edition

The other potentially useful information in a verbose analysis is the stack trace of the thread

that was executing on the processor that crashed at the time of the crash. Here’s what it looks

like for the same dump:

STACK_TEXT:

80395b78 9879c3dd badb0d00 8312d054 00000003 nt!KiTrap0E+0x2ac

WARNING: Stack unwind information not available. Following frames may be wrong.

80395c44 81a505e5 855802e0 849e26c0 849e2730 myfault+0x3dd

80395c64 81a50d8a 83746238 855802e0 00000000 nt!IopSynchronousServiceTail+0x1d9

80395d00 81a3aa61 83746238 849e26c0 00000000 nt!IopXxxControlFile+0x6b7

80395d34 8185ba7a 0000007c 00000000 00000000 nt!NtDeviceIoControlFile+0x2a

80395d34 770f9a94 0000007c 00000000 00000000 nt!KiFastCallEntry+0x12a

0012f4a0 77e84c9b 0000007c 00000000 00000000 ntdll!ZwDeviceIoControlFile+0xb

0012f504 004017c3 0000007c 83360018 00000000 KERNEL32!DeviceIoControl+0x100

000200ac 00000000 00000000 00000000 00000000 NotMyfault+0x17c3

The preceding stack shows that the Notmyfault executable image, shown at the bottom,

invoked the DeviceIoControl function in Kernel32.dll, which in turn invoked ZwDeviceIo-
Control File in Ntdll.dll, and so on, until finally the system crashed with the execution of an

instruction in the Myfault image. A stack trace like this can be useful because crashes some-

times occur as the result of one driver passing another one that is improperly formatted or

corrupt or has illegal parameters. The driver that’s passed the invalid data might cause a crash

and get the blame in an analysis, when the stack reveals that another driver was involved. In

this sample trace, no driver other than Myfault is listed. (The module “nt” is Ntoskrnl.)

If the driver singled out by an analysis is unfamiliar to you, use the lm (list modules) command

to look at the driver’s version information. Add the k (kernel modules) and v (verbose) options

along with the m (match) option followed by the name of the driver and a wildcard:

lkd> lm kv m myfault*

start end module name

a98e1000 a98e1ec0 myfault (deferred)

 Image path: \??\C:\Windows\system32\drivers\myfault.sys

 Image name: myfault.sys

 Timestamp: Sat Oct 14 16:09:18 2006 (453143EE)

 CheckSum: 0000295E

 ImageSize: 00000EC0

 File version: 2.0.0.0

 Product version: 2.0.0.0

 File flags: 0 (Mask 3F)

 File OS: 40004 NT Win32

 File type: 3.7 Driver

 File date: 00000000.00000000

 Translations: 0409.04b0

 CompanyName: Sysinternals

 ProductName: Sysinternals Myfault

 InternalName: myfault.sys

 OriginalFilename: myfault.sys

 ProductVersion: 2.0

 FileVersion: 2.0

 FileDescription: Crash Test Driver

 LegalCopyright: Copyright (C) M. Russinovich 2002-2004

 Chapter 14 Crash Dump Analysis 1139

In addition to using the description to identify the purpose of a driver, you can also use the

file and product version numbers to see whether the version installed is the most up-to-date

version available. (You can do this by checking the vendor Web site, for instance.) If version

information isn’t present (because it might have been paged out of physical memory at the

time of the crash), look at the driver image file’s properties in Windows Explorer on the sys-

tem that crashed.

Using Crash Troubleshooting Tools

The crash generated in the preceding section with Notmyfault’s High IRQL Fault (Kernel-

mode) option poses no challenge for the debugger’s automated analysis. Unfortunately, most

crashes are not so easy and sometimes are impossible to debug. There are several levels of

increasing severity in terms of system performance degradation that might help turn system

crashes that cannot be analyzed into ones that can be. If the crashes generated after you

configure a level and reboot aren’t revealing the cause, try the next level.

 1. If there are one or more drivers you consider likely sources of the crashes—because

they were introduced into the system relatively recently, they were recently updated, or

the circumstances of the crash implicate them—enable them for verification using the

Driver Verifier and check all the verification options except for low resources simulation.

(See Chapter 7 for more information on Driver Verifier.)

 2. Enable the same level of verification as in level 1 on all unsigned drivers in the system.

 3. Enable the same verification as in level 1 on all drivers in the system. To maintain rea-

sonable performance, you may want to divide the drivers into groups, enabling the

Driver Verifier on one group at a time between reboots

Obviously, before you spend time and energy making system configuration changes and

analyzing crashes, you should ensure that your system’s kernel and drivers are the most

recent available by using the services of Windows Update and third-party driver support

sites.

Note If your system becomes unbootable because the Driver Verifier detects a driver error and

crashes the system, then start in safe mode (where verification is disabled), run the Driver Verifier,

and delete verification settings.

The following sections demonstrate how the Driver Verifier can make impossible-to-debug

crashes into ones that you can solve.

1140 Windows Internals, Fifth Edition

Buffer Overrun, Memory Corruptions, and Special Pool

By far the most common source of crashes on Windows is pool corruption. Pool corrup-

tion usually occurs when a driver suffers from a buffer overrun or buffer underrun bug that

causes it to overwrite data past either the end or start of a buffer it has allocated from paged

or nonpaged pool. The Executive’s pool-tracking structures reside on either side of a pool

buffer and separate buffers from each other. These bugs, therefore, cause corruption to the

pool tracking structures, to buffers owned by other drivers, or to both. You can often catch

the culprit of a pool overrun by using the !pool command to examine the surrounding pool

tags. Find the address at which the corruption occurred and use !pool address_of_corruption.

This command will display all the pool allocations that are on the same page as the corrup-

tion. Looking in the left column, find the range of the corrupted address and then look at

the allocation just previous to it and find its pool tag. This will likely be the culprit in a buf-

fer overrun. You can use the pooltag.txt file in the Triage folder of the Debugging Tools for

Windows installation directory to find the driver that owns the pool tag, or use the Strings

utility from Sysinternals.

Pool corruption can also occur when a driver writes to pool it had previously owned but sub-

sequently freed. This is called a use after free bug and is usually caused by a race condition in

a driver. These bugs are particularly hard to debug because the driver that corrupts memory

no longer has any traceable ties to the memory, such as a neighboring pool tag as in a buf-

fer overrun. Another fairly common cause of pool corruption is direct memory access (DMA).

DMA occurs when hardware writes directly to RAM instead of going through a driver; how-

ever, the driver is still responsible for coordinating the whole process by allocating the mem-

ory that the hardware will write to and programming the hardware registers of the device

with the details of the operation. If a driver has a bug that releases the memory it is using for

DMA before the hardware writes to it, the memory can be given to another driver or even to

a user-mode application, which will certainly not expect to have hardware writing to it.

The crashes caused by pool corruption are virtually impossible to debug because the system

crashes when corrupted data is referenced, not when the corruption occurs. However, some-

times you can take steps to at least obtain a clue about what corrupted the memory. The first

step is to try to determine the size of the corruption by looking at the corrupted data. If the

corruption is a single bit, it was likely caused by bad RAM. If the corruption is fairly small, it

could be caused by hardware or software, and finding a root cause will be nearly impossible.

In the case of large corruptions, you can look for patterns in the corruption, like strings (for

example, HTTP packet payloads, file contents of text-based files, and so on) or audio/video

data (usually patterns of integers less than 1,024). Open an MP3 file in a hex editor to get an

idea of what audio data looks like in memory.

 Chapter 14 Crash Dump Analysis 1141

Note To assist in catching pool corruptions, Windows checks the consistency of a buffer’s pool-

tracking structures, and those of the buffer’s immediate neighbors, on every pool allocation and

free operation. Thus, buffer overruns are likely to be detected shortly after the corruption and

identified with a crash that has the BAD_POOL_HEADER stop code.

You can generate a pool corruption crash by running Notmyfault and selecting the Buffer

Overflow bug. This causes Myfault to allocate a buffer and then overwrite the 40 bytes fol-

lowing the buffer. There can be a significant delay between the time you click the Do Bug

button and when a crash occurs, and you might even have to generate pool usage by exer-

cising applications before a crash occurs, which highlights the distance between a corruption

and its effect on system stability. An analysis of the resultant crash almost always reports

Ntoskrnl or another driver as being the likely cause, which demonstrates the usefulness of a

verbose analysis with its description of the stop code:

DRIVER_CORRUPTED_EXPOOL (c5)

An attempt was made to access a pageable (or completely invalid) address at an

interrupt request level (IRQL) that is too high. This is

caused by drivers that have corrupted the system pool. Run the driver

verifier against any new (or suspect) drivers, and if that doesn’t turn up

the culprit, then use gflags to enable special pool.

Arguments:

Arg1: 4f4f4f53, memory referenced

Arg2: 00000002, IRQL

Arg3: 00000001, value 0 = read operation, 1 = write operation

Arg4: 81926886, address which referenced memory

The advice in the description is to run the Driver Verifier against any new or suspect drivers

or to use Gflags to enable special pool. Both accomplish the same thing: to have the system

detect a potential corruption when it occurs and crash the system in a way that makes the

automated analysis point at the driver causing the corruption.

If the Driver Verifier’s special pool option is enabled, verified drivers use special pool, rather

than paged or nonpaged pool, for any allocations they make for buffers slightly less than a

page in size. A buffer allocated from special pool is sandwiched between two invalid pages

and by default is aligned against the top of the page. The special pool routines also fill the

unused portions of the page in which the buffer resides with a random pattern. Figure 14-9

depicts a special pool allocation.

The system detects any buffer overruns of under a page in size at the time of the over-

run because they cause a page fault on the invalid page following the buffer. The signature

serves to catch buffer underruns at the time the driver frees a buffer because the integrity of

the pattern placed there at the time of allocation will have been compromised.

1142 Windows Internals, Fifth Edition

Page n+2 Invalid

Invalid

Buffer

Signature

Page n+1

Page n

Higher
addresses

FIGURE 14-9 Special pool buffer allocation

To see how the use of special pool causes a crash that the analysis engine easily diagnoses,

run the Driver Verifier Manager. Choose the Create Custom Settings (For Code Developers)

option on the first page of the wizard, choose Select Individual Settings From A Full List on

the second, and then select Special Pool. Choose the Select Drivers From A List option on the

subsequent page, and on the page that lists drivers press the button to add unloaded drivers,

and then type myfault.sys into the File Find dialog box. (You do not have to find myfault.sys

in the File Find dialog box; just enter its name.) Then check the myfault.sys driver, exit the

wizard, and reboot.

When you run Notmyfault and cause a buffer overflow, the system will immediately crash

and the analysis of the dump reports this:

Probably caused by : myfault.sys (myfault+3f1)

A verbose analysis describes the stop code like this:

DRIVER_PAGE_FAULT_BEYOND_END_OF_ALLOCATION (d6)

N bytes of memory was allocated and more than N bytes are being referenced.

This cannot be protected by try-except.

When possible, the guilty driver’s name (Unicode string) is printed on

the bugcheck screen and saved in KiBugCheckDriver.

Arguments:

Arg1: beb50000, memory referenced

Arg2: 00000001, value 0 = read operation, 1 = write operation

Arg3: ec3473f1, if non-zero, the address which referenced memory.

Arg4: 00000000, (reserved)

Special pool made an elusive bug into one that instantly reveals itself and makes the analysis

trivial.

 Chapter 14 Crash Dump Analysis 1143

Code Overwrite and System Code Write Protection

A driver with a bug that causes corruption or misinterpretation of its own data structures can

reference memory the driver doesn’t own when it interprets corrupted data as a memory

pointer value. The target of the pointer can be anything in the virtual address space, includ-

ing data belonging to other drivers, invalid memory, or the code of other drivers or the ker-

nel. As with buffer overruns, by the time that corruption is detected and the system crashes,

it’s usually impossible to identify the driver that caused the corruption. Enabling special pool

increases the chance of catching wild-pointer bugs, but it does not catch code corruption.

When you run Notmyfault and select the Code Overwrite option, the Myfault driver corrupts

the entry point to the NtReadFile kernel function. One of two things will happen at this point:

if your system has 255 MB or less of physical memory, you’ll get a crash for which an analysis

points at Myfault.sys. The stop code description that a verbose analysis displays tells you that

Myfault attempted to write to read-only memory:

ATTEMPTED_WRITE_TO_READONLY_MEMORY (be)

An attempt was made to write to readonly memory. The guilty driver is on the

stack trace (and is typically the current instruction pointer).

When possible, the guilty driver’s name (Unicode string) is printed on

the bugcheck screen and saved in KiBugCheckDriver.

Arguments:

Arg1: 804bb7fd, Virtual address for the attempted write.

Arg2: 004bb121, PTE contents.

Arg3: b804db60, (reserved)

Arg4: 0000000b, (reserved)

However, if you have more than 255 MB of memory, you’ll get a different type of crash

because the attempt to corrupt the memory isn’t caught. Because NtReadFile is a com-

monly executed system service that is used by the Windows subsystem to read keyboard and

mouse input, the system will almost immediately crash as a thread attempts to execute the

corrupted code and generates an illegal instruction fault. The analysis of crashes generated

with this bug is always wrong, but it might vary, with Win32k.sys and Ntoskrnl.exe commonly

being the analyzer’s best guess as to what’s responsible. The bugcheck description for these

crashes is:

KMODE_EXCEPTION_NOT_HANDLED (1e)

This is a very common bugcheck. Usually the exception address pinpoints

the driver/function that caused the problem. Always note this address

as well as the link date of the driver/image that contains this address.

Arguments:

Arg1: c0000005, The exception code that was not handled

Arg2: 80461885, The address that the exception occurred at

Arg3: 00000000, Parameter 0 of the exception

Arg4: 00000000, Parameter 1 of the exception

The reason for the different behaviors on different configurations relates to a mechanism

called system code write protection. If system code write protection is enabled, the memory

1144 Windows Internals, Fifth Edition

manager maps Ntoskrnl.exe, the HAL, and boot drivers using standard physical pages (4 KB

on x86 and x64, and 8 KB on IA64). Because the granularity of protection in an image is

the standard page size, the memory manager can write-protect code pages so that an

attempt to modify them generates an access fault (as seen in the first crash). However, when

system code write protection is disabled on systems with more than 255 MB of RAM, the

memory manager uses large pages (4 MB on x86, and 16 MB on IA64 and x86-64) to map

Ntoskrnl.exe and the HAL.

If system code write protection is off and crash analysis reports unlikely causes for a crash

or you suspect code corruption, you should enable it. Verifying at least one driver with the

Driver Verifier is the easiest way to enable it. You can also enable it manually by adding two

registry values under HKLM\SYSTEM\CurrentControlSet\Control\Session Manager\Memory

Management. First, specify the amount of RAM at which the memory manager uses large

pages instead of standard pages to map Ntoskrnl.exe as an effectively infinite value. You do

this by creating a DWORD value called LargePageMinimum and setting it to 0xFFFFFFFF. Then

add another DWORD value named EnforceWriteProtection and set it to 1. You must reboot

for the changes to take effect.

Note When the debugger has access to the image files included in a crash dump, the analysis

internally executes the !chkimg debugger command to verify that a copy of an image in a crash

dump matches the on-disk image and reports any differences. Note that chkimg will always

report discrepancies in Ntoskrnl.exe if you’ve enabled the Driver Verifier.

Advanced Crash Dump Analysis

The preceding section leverages the Driver Verifier to create crashes that the debugger’s

automated analysis engine can resolve. You might still encounter cases where you cannot

get a system to produce easily analyzable crashes and, if so, you will need to execute manual

analysis to try and determine what the problem is. Here are some examples of basic com-

mands that can provide clues during crash analysis. The Debugging Tools for Windows help

file provides complete documentation on these and other commands as well as examples of

how to use them during crash analysis:

Use the !process 0 0 debugger command to look at the processes running, and make

sure that you understand the purpose of each one. Try disabling or uninstalling unnec-

essary applications and services.

Use the lm command with the kv option to list the loaded kernel-mode drivers. Make

sure that you understand the purpose of any third-party drivers and that you have the

most recent versions.

 Chapter 14 Crash Dump Analysis 1145

Use the !vm command to see whether the system has exhausted virtual memory,

paged pool, or nonpaged pool. If virtual memory is exhausted, the committed pages

will be close to the commit limit, so try to identify a potential memory leak by exam-

ining the list of processes to see which one reports high commit usage. If nonpaged

pool or paged pool is exhausted (that is, the usage is close to the maximum), see the

“Troubleshooting a Pool Leak” experiment in Chapter 9.

There are other debugging commands that can prove useful, but more advanced knowledge

is required to apply them. The !irp command is one of them. The next section shows the use

of this command to identify a suspect driver.

Stack Trashes

Stack overrun or stack trashing typically results from a buffer overrun or underrun or when

a driver passes a buffer address located on the stack to a lower driver on the device stack,

which then performs the work asynchronously.

In the case of a buffer overrun or underrun, instead of residing in pool, as you saw with

Notmyfault’s buffer overrun bug, the target buffer is on the stack of the thread that executes

the bug. This type of bug is another one that’s difficult to debug because the stack is the

foundation for any crash dump analysis.

In the case of passing buffers on the stack to lower drivers, if the lower driver returns to the

caller immediately because it used a completion routine to perform the work, instead of

returning synchronously, when the completion routine is called, it will use the stack address

that was passed previously, which could now correspond to a different state on the caller’s

stack and result in corruption.

When you run Notmyfault and select Stack Trash, the Myfault driver overruns a buffer it allo-

cates on the kernel stack of the thread that executes it. When Myfault tries to return control

to the Ntoskrnl function that was invoked, it reads the return address, which is the address at

which it should continue executing, from the stack. The address was corrupted by the stack-

buffer overrun, so the thread continues execution at some different address in memory—an

address that might not even contain code. An illegal exception and crash occur when the

thread executes an illegal CPU instruction or it references invalid memory.

The driver that the crash dump analysis of a stack overrun points the blame at will vary from

crash to crash, but the stop code will almost always be KMODE_EXCEPTION_NOT_HANDLED.

If you execute a verbose analysis, the stack trace looks like this:

STACK_TEXT:

881fc744 81c82590 0000008e c0000005 00000000 nt!KeBugCheckEx+0x1e

881fcb14 81ca45da 881fcb30 00000000 881fcb84 nt!KiDispatchException+0x1a9

881fcb7c 81ca458e 881fcc44 00000000 badb0d00 nt!CommonDispatchException+0x4a

881fcc2c 81d07fd3 9762b658 84736e68 84736e68 nt!Kei386EoiHelper+0x186

1146 Windows Internals, Fifth Edition

881fcc44 81e98615 99321810 84736e68 84736ed8 nt!IofCallDriver+0x63

881fcc64 81e98dba 9762b658 99321810 00000000 nt!IopSynchronousServiceTail+0x1d9

881fcd00 81e82a8d 9762b658 84736e68 00000000 nt!IopXxxControlFile+0x6b7

881fcd34 81ca3a1a 0000007c 00000000 00000000 nt!NtDeviceIoControlFile+0x2a

881fcd34 779e9a94 0000007c 00000000 00000000 nt!KiFastCallEntry+0x12a

WARNING: Frame IP not in any known module. Following frames may be wrong.

0012f9f4 00000000 00000000 00000000 00000000 0x779e9a94

Notice how the call to IofCallDriver leads immediately to Kei386EoiHelper and into an excep-

tion, instead of a driver’s IRP dispatch routine. This is consistent with the stack having been

corrupted and the IRP dispatch routine causing an exception when attempting to return to

its caller by referencing a corrupted return address. Unfortunately, mechanisms like special

pool and system code write protection can’t catch this type of bug. Instead, you must take

some manual analysis steps to determine indirectly which driver was operating at the time of

the corruption. One way is to examine the IRPs that are in progress for the thread that was

executing at the time of the stack trash. When a thread issues an I/O request, the I/O man-

ager stores a pointer to the outstanding IRP on the IRP list of the ETHREAD structure for the

thread. The !thread debugger command dumps the IRP list of the target thread. (If you don’t

specify a thread object address, !thread dumps the processor’s current thread.) Then you can

look at the IRP with the !irp command:

lkd> !thread

THREAD 858d1aa0 Cid 0248.02c0 Teb: 7ffd9000 Win32Thread: ffad4e90 RUNNING on processor 0

IRP List:

 bc5a7f68: (0006,0094) Flags: 00000000 Mdl: 00000000

Not impersonating

Attached Process 84f45d90

...

lkd> !irp bc5a7f68

Irp is active with 1 stacks 1 is current (= 0x837a7ab8)

 No Mdl Thread 858d1aa0: Irp stack trace.

 cmd flg cl Device File Completion-Context

>[e, 0] 0 0 856f6378 8504f290 00000000-00000000

 \Driver\MYFAULT Args: 00000000 00000000 83360010 00000000

The output shows that the IRP’s current and only stack location (designated with the “>” pre-

fix) is owned by the Myfault driver. If this were a real crash, the next steps would be to ensure

that the driver version installed is the most recent available, install the new version if it isn’t,

and if it is, to enable the Driver Verifier on the driver (with all settings except low memory

simulation).

Manually analyzing the stack is often the most powerful technique when dealing with crashes

such as these. Typically, this involves dumping the current stack pointer register (for example,

esp and rsp on 32-bit and x64 respectively). However, because the code responsible for

crashing the system itself might modify the stack in ways that make analysis difficult, the

processor responsible for crashing the system provides a backing store for the current data

in the stack, called KiPreBugcheckStackSaveArea, which contains a copy of the stack before

 Chapter 14 Crash Dump Analysis 1147

any code in KeBugCheckEx executes. By using the dps (dump pointer with symbols) command

in the debugger, you can dump this area (instead of the CPU’s stack pointer register) and

resolve symbols in an attempt to discover any potential stack traces. In this crash, here’s what

dumping the stack area eventually revealed on a 32-bit system.

kd> dps KiPreBugcheckStackSaveArea KiPreBugcheckStackSaveArea+3000

81d7dd20 881fcc44

81d7dd24 98fcf406 myfault+0x406

81d7dd28 badb0d00

Although this data was located among many other different functions, it is of special interest

because it mentions a function in the Myfault driver, which as we’ve seen was currently exe-

cuting an IRP, that doesn’t show on the stack. For more information on manual stack analysis,

see the Debugging Tools for Windows help file and the additional resources referenced later

in this chapter.

Hung or Unresponsive Systems

If a system becomes unresponsive (that is, you are receiving no response to keyboard

or mouse input), the mouse freezes, or you can move the mouse but the system doesn’t

respond to clicks, the system is said to have hung. A number of things can cause the system

to hang:

A device driver does not return from its interrupt service (ISR) routine or deferred pro-

cedure call (DPC) routine

A high priority real-time thread preempts the windowing system driver’s input threads

A deadlock (when two threads or processors hold resources each other wants and nei-

ther will yield what they have) occurs in kernel mode

You can check for deadlocks by using the Driver Verifier option called deadlock detection.

Deadlock detection monitors the use of spinlocks, fast mutexes, and mutexes, looking for

patterns that could result in a deadlock. (For more information on these and other synchro-

nization primitives, see Chapter 3.) If one is found, the Driver Verifier crashes the system with

an indication of which driver causes the deadlock. The simplest form of deadlock occurs

when two threads hold resources each other thread wants and neither will yield what they

have or give up waiting for the one they want. The first step to troubleshooting hung systems

is therefore to enable deadlock detection on suspect drivers, then unsigned drivers, and then

all drivers, until you get a crash that pinpoints the driver causing the deadlock.

There are two ways to approach a hanging system so that you can apply the manual crash

troubleshooting techniques described in this chapter to determine what driver or compo-

nent is causing the hang: the first is to crash the hung system and hope that you get a dump

that you can analyze, and the second is to break into the system with a kernel debugger and

analyze the system’s activity. Both approaches require prior setup and a reboot. You use the

1148 Windows Internals, Fifth Edition

same exploration of system state with both approaches to try and determine the cause of the

hang.

To manually crash a hung system, you must first add the DWORD registry value HKLM\

SYSTEM\CurrentControlSet\Services\i8042prt\Parameters\CrashOnCtrlScroll and set it to 1.

After rebooting, the i8042 port driver, which is the port driver for PS2 keyboard input, moni-

tors keystrokes in its ISR (discussed further in Chapter 3) looking for two presses of the scroll

lock key while the right control key is depressed. When the driver sees that sequence, it

calls KeBugCheckEx with the MANUALLY_INITIATED_CRASH (0xE2) stop code that indicates a

manually initiated crash. When the system reboots, open the crash dump file and apply the

techniques mentioned earlier to try and determine why the system was hung (for example,

determining what thread was running when the system hung, what the kernel stack indicates

was happening, and so on). Note that this works for most hung system scenarios, but it won’t

work if the i8042 port driver’s ISR doesn’t execute. (The i8042 port driver’s ISR won’t execute

if all processors are hung as a result of their IRQL being higher than the ISR’s IRQL, or if cor-

ruption of system data structures extends to interrupt-related code or data.)

Note Manually crashing a hung system by using the support provided in the i8042 port driver

does not work with USB keyboards. It works with PS2 keyboards only.

You can also trigger a crash if your hardware has a built-in “crash” button. (Some high-end

servers have this.) In this case, the crash is initiated by signaling the nonmaskable inter-

rupt (NMI) pin of the system’s motherboard. To enable this, set the registry DWORD value

HKLM\SYSTEM\CurrentControlSet\Control\CrashControl\NMICrashDump to 1. Then, when

you press the dump switch, an NMI is delivered to the system and the kernel’s NMI interrupt

handler calls KeBugCheckEx. This works in more cases than the i8042 port driver mecha-

nism because the NMI IRQL is always higher than that of the i8042 port driver interrupt. See

www.microsoft.com/whdc/system/sysinternals/dmpsw.mspx for more information.

If you are unable to manually generate a crash dump, you can attempt to break into the

hung system by first making the system boot into debugging mode. You do this in one of

two ways. You can press the F8 key during the boot and select Debugging Mode, or you

can create a debugging-mode boot option in the BCD by copying an existing boot entry

and adding the debug option. When using the F8 approach, the system will use the default

connection (Serial Port COM2 and 19200 Baud), but you can use the F10 key to display the

Edit Boot Options screen to edit debug-related boot options. With the debug option, you

must also configure the connection mechanism to be used between the host system running

the kernel debugger and the target system booting in debugging mode and then config-

ure the debugport and baudrate switches appropriately for the connection type. The three

connection types are a null modem cable using a serial port, an IEEE 1394 (FireWire) cable

using 1394 ports on each system, or a USB 2.0 host-to-host cable using USB ports on each

 Chapter 14 Crash Dump Analysis 1149

system. For details on configuring the host and target system for kernel debugging, see the

Debugging Tools for Windows help file.

When booting in debugging mode, the system loads the kernel debugger at boot time and

makes it ready for a connection from a kernel debugger running on a different computer

connected through a serial cable, IEEE 1394 cable, or USB 2.0 host-to-host cable. Note that

the kernel debugger’s presence does not affect performance. When the system hangs, run

the WinDbg or Kd debugger on the connected system, establish a kernel debugging connec-

tion, and break into the hung system. This approach will not work if interrupts are disabled or

the kernel debugger has become corrupted.

Note Booting a system in debugging mode does not affect performance if it’s not connected to

another system; however, a system that’s configured to automatically reboot after a crash will not

do so if it’s booted with kernel debugging enabled, because the kernel debugger waits for a con-

nection from another system after a crash.

Instead of leaving the system in its halted state while you perform analysis, you can also use

the debugger .dump command to create a crash dump file on the host debugger machine.

Then you can reboot the hung system and analyze the crash dump offline (or submit it to

Microsoft). Note that this can take a long time if you are connected using a serial null modem

cable or USB 2.0 connection (versus a higher speed 1394 connection), so you might want to

just capture a minidump using the .dump /m command. Alternatively, if the target machine

is capable of writing a crash dump, you can force it to do so by issuing the .crash command

from the debugger. This will cause the target machine to create a dump on its local hard

drive that you can examine after the system reboots.

You can cause a hang by running Notmyfault and selecting the Hang option. This causes the

Myfault driver to queue a DPC on each processor of the system that executes an infinite loop.

Because the IRQL of the processor while executing DPC functions is DPC/dispatch level, the

keyboard ISR will respond to the special keyboard crashing sequence.

Once you’ve broken into a hung system or loaded a manually generated dump from a hung

system into a debugger, you should execute the !analyze command with the –hang option.

This causes the debugger to examine the locks on the system and try to determine whether

there’s a deadlock, and if so, what driver or drivers are involved. However, for a hang like the

one that Notmyfault’s Hang option generates, the !analyze analysis command will report

nothing useful.

If the !analyze command doesn’t pinpoint the problem, execute !thread and !process in each

of the dump’s CPU contexts to see what each processor is doing. (Switch CPU contexts with

the ~ command—for example, use ~1 to switch to processor 1’s context.) If a thread has

hung the system by executing in an infinite loop at an IRQL of DPC/dispatch level or higher,

you’ll see the driver module in which it has become stuck in the stack trace of the !thread

1150 Windows Internals, Fifth Edition

command. The stack trace of the crash dump you get when you crash a system experiencing

the Notmyfault hang bug looks like this:

STACK_TEXT:

f9e66ed8 f9b0d681 000000e2 00000000 00000000 nt!KeBugCheckEx+0x19

f9e66ef4 f9b0cefb 0069b0d8 010000c6 00000000 i8042prt!I8xProcessCrashDump+0x235

f9e66f3c 804ebb04 81797d98 8169b020 00010009 i8042prt!I8042KeyboardInterruptService+0x21c

f9e66f3c fa12e34a 81797d98 8169b020 00010009 nt!KiInterruptDispatch+0x3d

WARNING: Stack unwind information not available. Following frames may be wrong.

ffdff980 8169b288 f9e67000 0000210f 00000004 myfault+0x34a

8054ace4 ffdff980 804ebf58 00000000 0000319c 0x8169b288

8054ace4 ffdff980 804ebf58 00000000 0000319c 0xffdff980

8169ae9c 8054ace4 f9b12b0f 8169ac88 00000000 0xffdff980

...

The top few lines of the stack trace reference the routines that execute when you type the

i8042 port driver’s crash key sequence. The presence of the Myfault driver indicates that it

might be responsible for the hang. Another command that might be revealing is !locks, which

dumps the status of all executive resource locks. By default, the command lists only resources

that are under contention, which means that they are both owned and have at least one

thread waiting to acquire them. Examine the thread stacks of the owners with the !thread

command to see what driver they might be executing in. Sometimes you will find that the

owner of one of the locks is waiting for an IRP to complete (a list of IRPs related to a thread is

displayed in the !thread output). In these cases it is very hard to tell why an IRP is not making

forward progress. (IRPs are usually queued to privately managed driver queues before they

are completed). One thing you can do is examine the IRP with the !irp command and find

the driver that pended the IRP (it will have the word “pending” displayed in its stack location

from the !irp output). Once you have the driver name, you can use the !stacks command to

look for other threads that the driver might be running on, which often provides clues about

what the lock-owning driver is doing. Much of the time you will find the driver is deadlocked

or waiting on some other resource that is blocked waiting for the driver.

When There Is No Crash Dump

In this section, we’ll address how to troubleshoot systems that for some reason are not

recording a crash dump. One reason why a crash dump might not be recorded is if the pag-

ing file on the boot volume is too small to hold the dump. This can easily be remedied by

increasing the size of the paging file. A second reason why there might not be a crash dump

recorded is because the kernel code and data structures needed to write the crash dump

have been corrupted at the time of the crash. As described earlier, this data is checksummed

when the system boots, and if the checksum made at the time of the crash does not match,

the system does not even attempt to save the crash dump (so as not to risk corrupting data

on the disk). So in this case, you need to catch the system as it crashes and then try to deter-

mine the reason for the crash.

 Chapter 14 Crash Dump Analysis 1151

Another reason occurs when the disk subsystem for the system disk is not able to process

disk write requests (a condition that might have triggered the system failure itself). One such

condition would be a hardware failure in the disk controller or maybe a cabling issue near the

hard disk.

Yet another possibility occurs when the system has drivers that have registered to add sec-

ondary dump data to the dump file. When the driver callbacks are called, they might incor-

rectly access data structures located in paged memory (for example), which will lead to a

second crash.

One simple option is to turn off the Automatically Restart option in the Startup And Recovery

settings so that if the system crashes, you can examine the blue screen on the console.

However, only the most straightforward crashes can be solved from just the blue-screen text.

To perform more in-depth analysis, you need to use the kernel debugger to look at the sys-

tem at the time of the crash. This can be done by booting the system in debugging mode,

which is described in the previous section. When a system is booted in debugging mode and

crashes, instead of painting the blue screen and attempting to record the dump, it will wait

forever until a host kernel debugger is connected. In this way, you can see the reason for

the crash and perhaps perform some basic analysis using the kernel debugger commands

described earlier. As mentioned in the previous section, you can use the .dump command in

the debugger to save a copy of the crashed system’s memory space for later debugging, thus

allowing you to reboot the crashed system and debug the problem offline.

The operating system code and data structures that handle processor exceptions can become

corrupted such that a series of recursive faults occur. One example of this would be if the

operating system trap handler got corrupted and caused a page fault. This would invoke the

page fault handler, which would fault again, and so on. If such a situation occurred, the sys-

tem would be hopelessly stuck. To prevent such a situation from occurring, CPUs have a built-

in recursive fault protection mechanism, which sets a hard limit on the depth of a recursive

fault. On most x86 processors, a fault can nest to two levels deep. When the third recursive

fault occurs, the processor resets itself and the machine reboots. This is called a triple fault.
This can happen when there’s a faulty hardware component as well. Even a kernel debugger

won’t be invoked in a triple fault situation. However, sometimes the mere fact that the kernel

debugger doesn’t activate can confirm that there’s a problem with newly added hardware or

drivers.

Note You can use the kernel debugger to trigger a triple fault on a machine by setting a break-

point on the kernel debugger dispatch routine KiDispatchException. This happens because the

exception dispatcher now causes a breakpoint exception, which invokes the exception dispatcher,

and so on.

1152 Windows Internals, Fifth Edition

EXPERIMENT: The Blue Screen Screen Saver

A great way to remind yourself of what a blue screen looks like or to fool your

office workers and friends is to run the Sysinternals Blue Screen screen saver from

Sysinternals. The screen saver simulates authentic looking blue screens that reflect the

version of Windows on which you run it, generating all blue screen text using actual

system information such as the list of loaded drivers. It also mimics an automatic-

reboot, complete with the Windows startup splash screen. Note that unlike other

screen savers, where a mouse movement dismisses them, the Blue Screen screen saver

requires a key press.

Using the following syntax for the Psexec tool from Sysinternals, you can even run the

screen saver on another system:

psexec \\computername –i –d "c:\sysinternalsbluescreen.scr" –s

The command requires that you have administrative privilege on the remote system.

(You can use the –u and –p Psexec switches to specify alternate credentials.) Make sure

that your coworker has a sense of humor!

Conclusion

Although many crashes can be analyzed with some of the techniques described in this chap-

ter, many require analysis that goes beyond the scope of this book. Here are some additional

resources that may be useful if you want to learn more advanced crash analysis techniques

and information:

The Microsoft Platforms Global Escalation Services team blog at http://blogs.msdn.com/
ntdebugging provides various tips and tricks and real-life scenarios encountered by the

team.

The Web site www.dumpanalysis.org provides hundreds of patterns and advanced

analysis scenarios and hints.

 1153

Glossary

access control list (ACL) The part of a secu-
rity descriptor that enumerates who has
what access to an object. The owner of an
object can change the object’s ACL to allow
or disallow others access to the object. An
ACL is made up of an ACL header and zero
or more access control entry (ACE) struc-
tures. An ACL with zero ACEs is called a null
ACL and indicates that no user has access
to the object.

access token A data structure that contains
the security identification of a process or a
thread, which includes its security ID (SID),
the list of groups that the user is a mem-
ber of, User Access Control (UAC) virtual-
ization state, and the list of privileges that
are enabled and disabled. Each process has
a primary access token that it inherits by
default from its creating process.

add-device routine A routine implemented
by drivers that supports Plug and Play.
The Plug and Play manager sends a driver
notification via this routine whenever a
device for which the driver is responsible
is detected. In this routine, a driver typi-
cally allocates a device object to represent
the device.

Address Windowing Extensions (AWE) A
mechanism in Windows that allows a 32-bit
application to allocate up to 64 GB of phys-
ical memory and then map views, or win-
dows, into its 2-GB virtual address space.
Using AWE puts the burden of managing
mappings of virtual-to-physical memory on
the programmer but solves the immediate
need of being able to directly access more
physical memory than can be mapped at
any one time in a 32-bit process address
space.

advanced local procedure call (ALPC) An
interprocess communication facility for
high-speed message passing (not avail-
able through the Windows API but rather
through an internal mechanism available
only to Windows operating system com-
ponents). ALPCs are typically used between
a server process and one or more client
processes of that server. An ALPC connec-
tion can be established between two user-
mode processes or between a kernel-mode
component and a user-mode process.

affinity mask A bitmask that specifies the
processors on which the thread is allowed
to run. The initial thread affinity mask is
inherited from the process affinity mask.

aging A process performed on a page that
increments a count indicating that the
page hasn’t been referenced since the last
working set trim scan. On a single-pro-
cessor system, the working set manager
tries to remove pages that haven’t been
accessed recently. It does this by first clear-
ing the accessed bit in the hardware page
table entry (PTE) and then later checking
the bit to see whether the page has been
accessed. If the bit remains clear, the page
wasn’t accessed between scans and is aged.
Later, the age of pages is used to locate
candidate pages to remove from the work-
ing set.

alertable wait state A thread state that
the thread enters either by waiting on
an object handle and specifying that
its wait is alertable (with the Windows
WaitForMultipleObjectsEx function) or by
testing directly whether it has a pending
APC (using SleepEx). In both cases, if a user-
mode APC is pending, the kernel interrupts

1154 Glossary

(alerts) the thread, transfers control to the
APC routine, and resumes the thread’s exe-
cution when the APC routine completes.
User-mode APCs are delivered to a thread
only when it’s in an alertable wait state.

allocation granularity The granularity
with which virtual memory is allocated.
Windows aligns each region of reserved
process address space to begin on an
integral boundary defined by the system
allocation granularity value, which can be
retrieved from the Windows GetSystemInfo
or GetNativeSystemInfo function. Currently,
this value is 64 KB. This size was chosen
so that if support were added for future
processors with large page sizes (for
example, up to 64 KB), the risk of requir-
ing changes to applications that made
assumptions about allocation alignment
would be reduced. (Windows kernel-mode
code isn’t subject to the same restrictions;
it can reserve memory on a single-page
granularity.)

altitudes A way for different vendors to
register a “height” on the registry filter-
ing stack so that the order in which the
system calls each callback routine can
be deterministic and correct. This avoids
a scenario in which an antivirus product
would be scanning encrypted keys before
an encryption product would run its own
callback to decrypt them.

APC queue A queue in which asynchronous
procedure calls (APCs) waiting to execute
reside. The APC queues (one for user mode
and one for kernel mode) are thread-spe-
cific—each thread has its own APC queues
(unlike the DPC queue, which is processor-
wide).

asymmetric multiprocessing (ASMP) A sys-
tem of processing on a multiprocessor sys-
tem that typically selects one processor to
execute operating system code while other
processors run only user code.

asynchronous I/O An I/O model that allows
an application to issue an I/O request and
then continue executing while the request is
completed. This type of I/O can improve an
application’s throughput because it allows
the application to continue with other work
while an I/O operation is in progress.

asynchronous procedure call (APC) A func-
tion that provides a way for user programs
and system code to execute code in the
context of a particular user thread (and
hence a particular process address space).
An APC can be either kernel mode or user
mode. (Kernel-mode APCs don’t require
“permission” from a target thread to run
in that thread’s context, as user-mode
APCs do.)

asynchronous read-ahead with history A
method in which the cache manager main-
tains a history of the last two read requests
in the private cache map for the file handle
being accessed.

atomic transaction A technique for han-
dling modifications to a database so that
system failures don’t affect the correctness
or integrity of the database. The basic tenet
of atomic transactions is that some data-
base operations, called transactions, are
all-or-nothing propositions. The separate
disk updates that make up the transac-
tion must be executed atomically; that is,
once the transaction begins to execute, all
its disk updates must be completed. If a
system failure interrupts the transaction,
the part that has been completed must
be undone, or rolled back. The rollback
operation returns the database to a previ-
ously known and consistent state, as if the
transaction had never occurred. See also
transaction.

attribute list A special kind of file attribute
in an NTFS file header that contains addi-
tional attributes. The attribute list is created
if a particular file has too many attributes

 Glossary 1155

to fit in the master file table (MFT) record.
The attribute list attribute contains the
name and type code of each of the file’s
attributes and the file reference of the MFT
record where the attribute is located.

authentication packages Dynamic-link
libraries (DLLs) that run in the context of
the LSASS process and that implement
Windows authentication policy. An authen-
tication DLL is responsible for checking
whether a given user name and password
match, and if so, returning to LSASS infor-
mation detailing the user’s security identity.
Windows authentication packages include
Kerberos and MSV1_0.

automatic working set trimming When
physical memory runs low, the working set
manager, a routine that runs in the context
of the balance set manager system thread,
initiates automatic working set trimming to
increase the amount of free memory avail-
able in the system.

bad-cluster file A system file (file name
$Bad-Clus) that records any bad spots on
the disk volume.

bad-cluster remapping A process in which
NTFS dynamically retrieves good data from
a cluster with a bad sector, allocates a new
cluster, and copies the data to the new
cluster.

balance set manager A system thread that
wakes up once per second to check and
possibly initiate various scheduling and
memory management–related events.

basic disk A disk that relies on the MBR-
style or GPT partitioning scheme. See also
dynamic disk.

BitLocker Drive Encryption A full-volume
encryption feature that helps prevent
unauthorized access to data on lost or
stolen computers by combining two major
data-protection procedures: encrypting the
entire Windows operating system volume

on the hard disk and verifying the integrity
of early boot components and boot con-
figuration data.

bitmap file A system file (file name $BitMap)
in which NTFS records the allocation state
of the volume. The data attribute for the
bitmap file contains a bitmap, each of
whose bits represents a cluster on the vol-
ume, identifying whether the cluster is free
or has been allocated to a file.

boot code Instructions executed when a
system is booted.

boot device drivers Device drivers neces-
sary to boot the system.

boot file A system file (file name $Boot) that
stores the Windows bootstrap code.

boot sector The first sector of the partition
marked as active and from which the MBR
boots. The boot sector contains informa-
tion identifying the partition’s file system
format and structure.

boot volume The volume that corresponds
to the partition on which the system direc-
tory (usually \Windows) of the installation
being booted is located. The boot volume
can be, but does not have to be, the same
as the system volume.

bus driver Driver that services a bus control-
ler, adapter, bridge, or any device that has
child devices. Bus drivers are required driv-
ers, and Microsoft generally provides them;
each type of bus (such as PCI, PCMCIA, and
USB) on a system has one bus driver.

cache manager The component of the
Windows executive that provides system-
wide caching services for NTFS and other
file system drivers, including network file
system drivers (servers and redirectors).

change journal An internal file where an
NTFS file system can record information
that allows applications to efficiently moni-
tor file and directory changes. A change

1156 Glossary

journal is usually large enough to virtually
guarantee that applications get a chance to
process changes without missing any.

checked build A special debug version of
Windows that is available only as part of
the MSDN Professional (or Universal) sub-
scription. The checked build is created by
compiling the Windows sources with the
compile-time flag “DBG” defined.

checkpoint record A record that helps
NTFS determine what processing would
be needed to recover a volume if a crash
were to occur immediately. This record also
includes redo and undo information.

class driver A type of kernel-mode device
driver that implements the I/O processing
for a particular class of devices, such as disk,
tape, or CD-ROM.

clock algorithm A working set page replace-
ment policy implemented on uniprocessor
systems, similar to a least recently used
policy (as implemented in most versions
of UNIX).

clock interrupt handler A system routine
that updates the system time and then dec-
rements a counter that tracks how long the
current thread has run.

cluster factor The cluster size on a volume,
which is established when a user formats
the volume with either the format com-
mand or the Disk Management Microsoft
Management Console (MMC) snap-in.

clustering A method by which the memory
manager resolves a page fault by reading
into memory several pages near the page
explicitly accessed.

clusters Same-size allocation units into which
a volume is divided. Each cluster must be
uniquely numbered using 16 bits.

code integrity A mechanism that authen-
ticates the integrity and source of execut-
able images (such as applications, DLLs, or

drivers) by validating a digital certificate
contained within the image’s resources.
This mechanism works in conjunction
with system policies, defining how signing
should be enforced.

collided page fault A fault that occurs when
another thread or process faults a page
that is currently being in-paged.

commitment The process by which the
memory manager keeps track of private
committed memory usage on a global
basis.

common model A set of classes in the
Common Information Model (CIM) that
represent objects that are specific to man-
agement areas of a system but indepen-
dent of a particular implementation. These
classes are considered an extension of the
CIM core model. See also core model.

complete memory dump A memory dump
that contains all of physical memory at
the time of the crash. This type of dump
requires that a page file be at least the
size of physical memory plus 1 MB for the
header. Because it can require an inordi-
nately large page file on large memory
systems, this type of dump file is the least
common.

completion port A mechanism to deliver
I/O completion notification to threads.
Once a file is associated with a completion
port, any asynchronous I/O operations that
complete on the file result in a completion
packet being queued to the completion
port. A thread can wait for any outstanding
I/Os to complete on multiple files simply
by waiting for a completion packet to be
queued to the completion port. With com-
pletion ports, concurrency, or the number
of threads that an application has actively
servicing client requests, is controlled with
the aid of the system.

 Glossary 1157

configuration manager A major compo-
nent of the executive that’s responsible for
implementing and managing the system
registry.

container object A namespace object that
can hold other objects, including other
container objects. Examples of containers
are directories in the file system namespace
and keys in the registry namespace.

context switch The procedure of saving
the volatile machine state associated with
a running thread, loading another thread’s
volatile state, and starting the new thread’s
execution.

control objects A set of kernel objects that
establishes semantics for controlling vari-
ous operating system functions. This set
includes the kernel process object, the
asynchronous procedure call (APC) object,
the deferred procedure call (DPC) object,
and several objects the I/O system uses,
such as the interrupt object.

core model A set of classes in the Common
Information Model (CIM) provided as part
of the WBEM standard. These classes are
CIM’s basic language and represent objects
that apply to all areas of management. See
also common model.

crash dump A record of system memory at
the time of a crash that can help you figure
out which component caused the crash.

credential provider Credential providers
are COM objects located inside DLLs. The
default providers are %SystemRoot%\
System32\authui.dll and %Systemroot%\
System32\SmartcardCredentialProvider.dll,
which support both password and smart-
card PIN authentication. Windows allows
other credential providers to be installed,
enabling it to use different user-identifica-
tion mechanisms.

critical sections Sections of code that access
a nonshareable resource. To ensure correct

code, only one thread at a time can execute
in a critical section.

deadlock detection A Driver Verifier option
that monitors the use of spinlocks, fast
mutexes, and mutexes, looking for patterns
that could result in deadlock.

deferred procedure call (DPC) A routine
that performs most of the work involved
in handling a device interrupt after the
interrupt service routine (ISR) executes.
The DPC routine executes at an interrupt
request level (IRQL) that is lower than that
of the ISR to avoid blocking other inter-
rupts unnecessarily. A DPC routine initiates
I/O completion and starts the next queued
I/O operation on a device.

deferred procedure call (DPC) object A ker-
nel control object that describes a request
to defer interrupt processing to DPC/dis-
patch level. (See interrupt request levels
[IRQLS].) This object isn’t visible to user-
mode programs but is visible to device
drivers and other system code. The most
important piece of information the DPC
object contains is the address of the system
function that the kernel will call when it
processes the DPC interrupt.

Deferred Ready A state used for threads
that have been selected to run on a specific
processor but have not yet been scheduled.
This state exists so that the kernel can mini-
mize the amount of time the systemwide
lock on the scheduling database is held.

demand-paging policies A fetch policy that
loads a page into physical memory only
when a page fault occurs. In a demand-
paging system, a process incurs many page
faults when its threads first begin executing
because the threads reference the initial set
of pages they need to get going. Once this
set of pages is loaded into memory, the
paging activity of the process decreases.

1158 Glossary

desired access rights The accesses desired
by a process opening an object.

device drivers Loadable kernel-mode mod-
ules (typically ending in .sys) that interface
between the I/O system and the relevant
hardware. Device drivers on Windows don’t
manipulate hardware devices directly, but
rather they call parts of the hardware
application layer (HAL) to interface with
the hardware.

device ID A device identifier reported to the
Plug and Play manager. The identifiers are
bus-specific; for a USB bus, an identifier
consists of a vendor ID (VID) for the hard-
ware vendor that made the device and a
product ID (PID) that the vendor assigned
to the device.

device instance ID (DIID) An identifier con-
sisting of a device ID and an instance ID
that the Plug and Play manager uses to
locate the device’s key in the enumeration
branch of the registry (HKLM\SYSTEM\
CurrentControlSet\Enum).

device object A data structure that repre-
sents a physical or logical device on the
system and describes its characteristics,
such as the alignment it requires for buf-
fers and the location of its device queue to
hold incoming I/O request packets.

device-specific module (DSM) Built-in or
third-party drivers used to manage details
of the path management, such as load bal-
ancing policies that choose which path to
use for routing requests and error detec-
tion mechanisms to inform Windows when
a path fails.

device tree An internal tree the Plug and
Play manager creates that represents the
relationships between devices. Nodes
in the tree are called devnodes. See also
devnode.

devnode A node in a device tree. A devnode
contains information about the device

objects that represent the device as well
as other Plug and Play–related information
the Plug and Play manager stores. See also
device tree.

direct memory access (DMA) A third
interface provided by the cache manager
to cached data. The DMA functions are
used to read from or write to cache pages
without intervening buffers, such as when
a network file system is doing a transfer
over the network.

dirty page threshold The number of pages
that the system cache will allow to be dirty
before throttling cached writers. The value
is computed at system initialization time
and depends on the product type (client
or server).

discretionary access control Allows the
owner of a resource to determine who can
access the resource and what they can do
with it. The owner grants rights that per-
mit various kinds of access to a user or to
a group.

disk group The name of a computer concat-
enated with Dg0 (for example, Daryl-Dg0
if the computer’s name is Daryl).

dispatch code Instructions of assembly lan-
guage code stored in an interrupt object
when it is initialized. When an interrupt
occurs, this code is executed.

dispatch routines The main functions that
a device driver provides. Some examples
of dispatch routines are open, close, read,
and write, and any other capabilities the
device, file system, or network supports.
When called on to perform an I/O opera-
tion, the I/O manager generates an IRP and
calls a driver through one of the driver’s
dispatch routines.

dispatcher A set of routines in the kernel that
implement Windows scheduling. Windows
doesn’t have a single “scheduler” module
or routine—the code is spread throughout

 Glossary 1159

the kernel in which scheduling-related
events occur.

dispatcher database A set of data structures
the kernel maintains to make thread-sched-
uling decisions. The dispatcher database
keeps track of which threads are waiting
to execute and which processors are exe-
cuting which threads. See also dispatcher
ready queue.

dispatcher header A data structure that
contains the object type, the signaled state,
and a list of the threads waiting on that
object.

dispatcher objects A set of kernel objects
that incorporate synchronization capabili-
ties and alter or affect thread scheduling.
The dispatcher objects include the kernel
thread, mutex (called mutant internally),
event, kernel event pair, semaphore, timer,
and waitable timer.

dispatcher ready queue The most impor-
tant structure in the dispatcher database
(located at DispatcherReadyListHead). The
dispatcher ready queue is really a series of
queues, one queue for each scheduling pri-
ority. The queues contain threads that are
in the ready state, waiting to be scheduled
for execution.

display driver Driver that translates device-
independent graphics requests into device-
specific requests. The device-specific
requests are then paired with a kernel-
mode video miniport driver to complete
video display support. A display driver is
responsible for implementing drawing
operations, either by writing directly to
the frame buffer or by communicating
with the graphics accelerator chip on the
controller.

driver object Data structure that represents
an individual driver in the system and
records for the I/O manager the address

of each of the driver’s dispatch routines
(entry points).

Driver Verifier A mechanism that can be
used to help find and isolate commonly
found bugs in device drivers or other
kernel-mode system code. Microsoft uses
Driver Verifier to check its own device driv-
ers as well as all device drivers that ven-
dors submit for Hardware Compatibility
List (HCL) testing.

dynamic disk A disk that supports multipar-
tition volumes, providing a more flexible
partitioning scheme than that of a basic
disk. See also basic disk.

dynamic-link library (DLL) A set of callable
subroutines linked as a binary image that
can be dynamically loaded by applications
that use them.

environment subsystems User processes
and DLLs that expose the native operat-
ing system services to user applications,
thus providing an operating system envi-
ronment, or personality. Windows Vista
Ultimate and Enterprise include support
for an enhanced POSIX subsystem called
Subsystem for Unix-based Applications.

event An object with a persistent state (sig-
naled or not signaled) that can be used for
synchronization; also, a system occurrence
that triggers an action.

exception A synchronous condition that
results from the execution of a particular
instruction. Running a single program with
the same data under the same conditions
can reproduce exceptions.

exception dispatcher A kernel module that
services all exceptions, except those simple
enough to be resolved by the trap handler.
The exception dispatcher’s job is to find an
exception handler that can “dispose of” the
exception.

1160 Glossary

executive The upper layer of Ntoskrnl.exe.
(The kernel is the lower layer.) The execu-
tive contains the base operating system
services, such as the process and thread
manager, the memory manager, the secu-
rity reference monitor, the I/O system, and
the cache manager. See also kernel.

executive objects Objects implemented by
various components of the executive (such
as the process manager, memory manager,
I/O subsystem, and so on). The executive
objects and object services are primitives
that the environment subsystems use to
construct their own versions of objects and
other resources. Because executive objects
are typically created either by an environ-
ment subsystem on behalf of a user appli-
cation or by various components of the
operating system as part of their normal
operation, many of them contain (encap-
sulate) one or more kernel objects. See also
kernel objects.

executive resources Resources that provide
exclusive access (such as a mutex) as well
as shared read access (multiple readers
sharing read-only access to a structure).
Because executive resources are available
only to kernel-mode code, they aren’t
accessible from the Windows API.

extended partition A special partition
type that contains a master boot record
(MBR) with its own partition table. By using
extended partitions, Microsoft’s operat-
ing systems overcome the apparent limit
of four partitions per disk. In general, the
recursion that extended partitions permit
can continue indefinitely, which means
that no upper limit exists to the number
of possible partitions on a disk. See also
partition.

fast I/O A means of reading or writing a
cached file without going through the work
of generating an I/O request packet (IRP).

fast LPC A special interprocess commu-
nication facility used to send messages
between threads.

file mapping objects Windows API under-
lying primitives in the memory manager
that are used to implement shared memory
(called section objects internally). See also
section object.

file reference A 64-bit value that identifies a
file on an NTFS volume. The file reference
consists of a file number and a sequence
number. The file number corresponds to
the position of the file’s file record in the
master file table minus 1 (or to the position
of the base file record minus 1 if the file has
more than one file record).

file system driver (FSD) A type of kernel-
mode device driver that accepts I/O
requests to files and satisfies the requests
by issuing its own, more explicit, requests
to physical device drivers. See also local file
system driver (FSD), network file system
driver (FSD).

file system filter driver A type of kernel-
mode device driver that intercepts I/O
requests, performs additional process-
ing, and passes them on to lower-level
drivers.

file system format Defines the way that
file data is stored on storage media and
impacts a file system’s features. For exam-
ple, a format that doesn’t allow user per-
missions to be associated with files and
directories can’t support security. A file
system format can also impose limits on
the sizes of files and storage devices that
the file system supports.

filter device object (FiDO) A device object
that can be part of a devnode. One or more
optional FiDOs can layer either between
the physical device object (PDO) and the
functional device object (FDO) or above
the FDO. See also devnode, functional

 Glossary 1161

device object (FDO), physical device object
(PDO).

filter driver See file system filter driver.

frame-based exception handlers The mech-
anism that permits each stack frame in a
call stack to have its own exception handler
declared.

foreground application The process that
owns the thread that owns the window
that’s in focus.

free build The version of the Windows
system that can be purchased as a retail
product. It is built with full compiler optimi-
zations turned on and has internal symbol
table information stripped out from the
images. See also checked build.

function driver The main device driver that
provides the operational interface for its
device. It is a required driver unless the
device is used raw (an implementation in
which I/O is done by the bus driver and any
bus filter drivers, such as SCSI PassThru).
A function driver is the driver that knows
the most about a particular device and is
usually the only driver that accesses device-
specific registers.

functional device object (FDO) A device
object that is a required part of a devnode.
The function driver that the Plug and Play
manager loads to manage a detected
device creates the FDO. An FDO represents
the logical interface to a device. See also
devnode, filter device object (FiDO), physi-
cal device object (PDO).

granted access rights The accesses granted
to a thread by the security reference moni-
tor as the result of a successful object
open.

handle An object identifier. A process
receives a handle to an object when it cre-
ates or opens an object by name. Referring
to an object by its handle is faster than

using its name because the object man-
ager can skip the name lookup and find
the object directly.

handle table A table that contains point-
ers to all the objects that the process has
opened a handle to. Handle tables are
implemented as a three-level scheme,
similar to the way that the x86 memory
management unit implements virtual-to-
physical address translation.

hardware abstraction layer (HAL) A load-
able kernel-mode module (Hal.dll) that
provides the low-level interface to the
hardware platform on which Windows is
running. The HAL hides hardware-depen-
dent details such as I/O interfaces, interrupt
controllers, and multiprocessor communi-
cation mechanisms—any functions that
are architecture-specific and machine-
dependent.

hardware device drivers Device drivers that
manipulate hardware to write output to
or retrieve input from a physical device or
network. There are many types of hardware
device drivers, such as bus drivers, human
interface drivers, mass storage drivers, and
so on.

hash A statistically unique value that is gen-
erated from a block of data (for example,
a file) using cryptographic algorithms.
Because different data results in differ-
ent hashes, hashes can be used to detect
changes to data from corruption or tam-
pering. The Windows driver signing facility
uses hashes.

heap A region of one or more pages that
can be subdivided and allocated in smaller
chunks by a set of functions provided by
the heap manager.

heap manager A component that man-
ages allocations inside larger memory
areas reserved using the page granular-
ity memory allocation functions. The

1162 Glossary

allocation granularity in the heap man-
ager is relatively small: 8 bytes on 32-bit
systems and 16 bytes on 64-bit systems.
The heap manager has been designed to
optimize memory usage and performance
in the case of these smaller allocations. The
heap manager functions exist in two places:
Ntdll.dll and Ntoskrnl.exe. The subsystem
APIs (such as the Windows heap APIs) use
the copy in Ntdll, and various executive
components and device drivers use the
copy in Ntoskrnl.

hive One of a number of files stored on disk
that contain registry information. Each hive
contains a registry tree, which has a key
that serves as the root or starting point
of the tree.

hyperspace A special region used to map
the process working set list, invalidating
page table entries in other page tables
(such as when a page is removed from the
standby list), and on process creation set-
ting up a new process’s address space.

hypervisor A thin piece of low-level system
software that uses strictly hardware-assisted
virtualization support. A hypervisor handles
notifications as well as the various config-
uration steps required for allowing guest
operating systems to run concurrently.

I/O completion routine A routine imple-
mented by a layered driver that will notify
the driver when a lower-level driver finishes
processing an I/O request packet (IRP). For
example, the I/O manager calls a file sys-
tem driver’s I/O completion routine after a
device driver finishes transferring data to
or from a file. The completion routine noti-
fies the file system driver about the opera-
tion’s success, failure, or cancellation, and
it allows the file system driver to perform
cleanup operations.

I/O request packet (IRP) A data struc-
ture that controls how the I/O operation

is processed at each stage. Most I/O
requests are represented by an IRP, which
travels from one I/O system component
to another.

I/O subsystem API The internal executive
system services (such as NtReadFile and
NtWriteFile) that subsystem DLLs call to
implement a subsystem’s documented I/O
functions.

I/O system The Windows executive compo-
nent that accepts I/O requests (from both
user-mode and kernel-mode callers) and
delivers them, in a different form, to I/O
devices.

ideal processor The preferred processor
that a particular thread should run on.

idle summary A bitmask (KiIdleSummary)
in which each set bit represents an idle
processor.

image loader A component that performs
initialization work for applications outside
the kernel, preparing context and the envi-
ronment. Some of the main tasks of the
image loader include initializing the user-
mode state for an application, parsing the
import table of the application to look for
required DLLs, loading and unloading DLLs
at run time, allowing for run-time patch-
ing, handling manifest files, and reading
the application compatibility database for
any shims and loading the shim engine DLL
if required.

impersonation A mechanism through which
a thread can assume a different security
context than that of its process. When a
thread is impersonating, security valida-
tion mechanisms use the thread’s secu-
rity context instead of that of the thread’s
process.

initialization routine A driver routine that
the I/O manager executes when it loads
the driver into the operating system. The

 Glossary 1163

initialization routine creates system objects
that the I/O manager uses to recognize and
access the driver.

in-paging I/O A condition that occurs when
a read operation must be issued to a file
(paging or mapped) to satisfy a page fault.
The in-page I/O operation is synchronous—
the thread waits on an event until the I/O
completes—and isn’t interruptible by asyn-
chronous procedure call (APC) delivery.

instancing The term for making separate
copies of the same parts of a namespace.
Instancing \DosDevices makes it possible
for each user to have different drive letters
and Windows objects such as serial ports.

integrity level An element of the integ-
rity mechanism Windows uses to achieve
intrauser isolation. The Windows integ-
rity mechanism is used by User Account
Control (UAC) elevations, Protected Mode
Internet Explorer (PMIE), and User Interface
Privilege Isolation (UIPI). To support migrat-
ing from previous versions of Windows
(whose registry keys and files would not
include integrity level information), as well
as to make it simpler for application devel-
opers, all objects have an implicit integrity
level in order to avoid having to manually
specify one.

intelligent file read-ahead A technique
that predicts what data the calling thread
is likely to read next based on the data it’s
currently reading.

interprocessor interrupt (IPI) An interrupt
the kernel issues to request that another
processor perform an action, such as dis-
patching a particular thread for execution
or updating its translation look-aside buf-
fer cache.

interrupt An asynchronous event (one that
can occur at any time) that is unrelated to
what the processor is executing. Interrupts

are generated primarily by I/O devices,
processor clocks, or timers, and they can
be enabled or disabled.

interrupt dispatch table (IDT) A data struc-
ture that Windows uses to locate the rou-
tine that will handle a particular interrupt.
The interrupt request level (IRQL) of the
interrupting source serves as a table index,
and table entries point to the interrupt-
handling routines.

interrupt dispatcher A submodule of the
kernel’s trap handler that responds to
interrupts.

interrupt object A kernel control object that
allows device drivers to register interrupt
service routines (ISRs) for their devices.
An interrupt object contains all the infor-
mation the kernel needs to associate a
device ISR with a particular level of inter-
rupt, including the address of the ISR, the
interrupt request level (IRQL) at which the
device interrupts, and the entry in the ker-
nel’s interrupt dispatch table with which the
ISR should be associated.

interrupt request (IRQ) A value identifying
an interrupt. On x86 systems, external I/O
interrupts come into one of the lines on an
interrupt controller. The controller in turn
interrupts the processor on a single line.
Once the processor is interrupted, it queries
the controller to get the interrupt request
(IRQ). The interrupt controller translates
the IRQ to an interrupt number, uses this
number as an index into the interrupt dis-
patch table (IDT), and transfers control to
the appropriate interrupt dispatch routine.
At system boot time, Windows fills in the
IDT with pointers to the kernel routines that
handle each interrupt and exception.

interrupt request levels (IRQLs) An inter-
rupt priority scheme imposed by Windows.
The kernel represents IRQLs internally as

1164 Glossary

a number from 0 through 31 (0 to 15 on
64-bit Windows), with higher numbers
representing higher-priority interrupts.
Although the kernel defines the standard
set of IRQLs for software interrupts, the
HAL maps hardware-interrupt numbers
to the IRQLs.

interrupt service routine (ISR) A device
driver routine that the kernel’s interrupt
dispatcher transfers control to when a
device issues an interrupt. In the Windows
I/O model, ISRs run at a high device inter-
rupt request level (IRQL), so they perform
as little work as possible to avoid blocking
lower-level interrupts unnecessarily. An
ISR usually queues a deferred procedure
call (DPC), which runs at a lower IRQL, to
execute the remainder of interrupt pro-
cessing. Only drivers for interrupt-driven
devices have ISRs; a file system, for exam-
ple, doesn’t have one.

job object A nameable, securable, shareable
object in Windows that controls certain
attributes of processes associated with the
job. A job object’s basic function is to allow
groups of processes to be managed and
manipulated as a unit. The job object also
records basic accounting information for
all processes associated with the job and
for all processes that were associated with
the job but have since terminated.

journaling A logging technique originally
developed for transaction processing that
a recoverable file system such as NTFS uses
to ensure volume consistency.

kernel The lowest layer in Ntoskrnl.exe.
The kernel, a component of the executive,
determines how the operating system uses
the processor or processors and ensures
that they are used prudently. The kernel
provides thread scheduling and dispatch-
ing, trap handling and exception dispatch-
ing, interrupt handling and dispatching,

and multiprocessor synchronization. See
also executive.

kernel debugger A tool used to debug driv-
ers, troubleshoot hung systems, and exam-
ine crash dumps. It is also a useful tool for
investigating Windows internals because it
can display internal Windows system infor-
mation not visible through any standard
utility.

kernel handle table A table (referenced inter-
nally with the name ObpKernelHandleTable)
whose handles are accessible only from
kernel mode and in any process context.
A kernel-mode function can reference the
handles in this table in any process context
with no performance impact.

kernel memory dump A type of memory
dump (the default on Windows Server sys-
tems) that contains only the kernel-mode
read/write pages present in physical mem-
ory at the time of the crash. A kernel mem-
ory dump doesn’t contain pages belonging
to user processes. Because only kernel-
mode code can directly cause Windows
to crash, however, it’s unlikely that user
process pages are necessary to debug a
crash. There is no way to predict the size
of a kernel memory dump because its size
depends on the amount of kernel-mode
memory allocated by the operating system
and drivers present on the machine.

kernel mode A privileged mode of code
execution in a processor in which all mem-
ory is totally accessible and all CPU instruc-
tions can be issued. Operating system code
(such as system services and device drivers)
runs in kernel mode. See also user mode.

kernel objects A primitive set of objects
implemented by the Windows kernel.
These objects aren’t visible to user-mode
code but are created and used only within
the executive. Kernel objects provide fun-
damental capabilities, such as synchroniza-

 Glossary 1165

tion, on which executive objects are built.
See also executive objects.

kernel streaming filter drivers Kernel-mode
drivers chained together to perform signal
processing on data streams, such as record-
ing or displaying audio and video.

Kernel Transaction Manager (KTM) Provides
a common, two-phase commit mechanism
to resource managers such as the transac-
tional registry (TxR) and transactional NTFS
(TxF).

kernel-mode device driver The only type of
driver that can directly control and access
hardware devices.

kernel-mode graphics driver A Windows
subsystem display or print device driver
that translates device-independent graph-
ics (GDI) requests into device-specific
requests.

key A mechanism to refer to data in the reg-
istry. Although keys appear in the object
manager namespace, the registry manages
them in a way similar to how it manages file
objects. Zero or more key values are associ-
ated with a key object; key values contain
data about the key. The term key also is
used for a unique identifier that identifies
the instance of the keyed event (an asso-
ciation of the keyed event to a single criti-
cal section) when a thread signals a keyed
event or performs a wait on it.

key control block A structure that stores the
name of a registry key, includes the cell
index of the key node that the control block
refers to, and contains a flag that notes
whether the configuration manager needs
to delete the key cell that the key control
block refers to when the last handle for
the key closes. In Windows, all key control
blocks are in an alphabetized binary tree
to enable quick searches for existing key
control blocks by name. A key object points
to its corresponding key control block, so

if two applications open the same registry
key, each will receive a key object and both
key objects will point to a common key
control block.

key object An object type the configuration
manager defines to integrate the regis-
try’s namespace with the kernel’s general
namespace.

keyed event A synchronization object that
allows a thread to specify a “key” for which
it waits, where the thread wakes when
another thread of the same process sig-
nals the event with the same key. Keyed
events were originally implemented to help
processes deal with low-memory situations
when using critical sections.

last known good control set A copy
of the critical boot-time information
under the registry key HKLM\SYSTEM\
CurrentControlSet, made when a user
successfully logs on. The last known good
control set can be selected at boot time in
case configuration changes made to the
registry result in the system not being able
to boot successfully.

lazy IRQL A performance optimization that
avoids Programmable Interrupt Controller
(PIC) accesses. When the interrupt request
level (IRQL) is raised, the HAL notes the
new IRQL internally instead of changing
the interrupt mask. If a lower-priority inter-
rupt subsequently occurs, the HAL sets the
interrupt mask to the settings appropriate
for the first interrupt and postpones the
lower-priority interrupt until the IRQL is
lowered. Thus, if no lower-priority inter-
rupts occur while the IRQL is raised, the
HAL doesn’t need to modify the PIC.

lazy writer A set of system threads that call
the memory manager to flush cache con-
tents to disk as a background activity (asyn-
chronous disk writing). The cache manager
optimizes disk I/O by using its lazy writer.

1166 Glossary

legacy drivers Device drivers written for
Microsoft Windows NT but that run
unchanged on Windows 2000 and later.
They are differentiated from other Windows
drivers in that they don’t support power
management or work with the Windows
Plug and Play manager.

local file system driver (FSD) A driver that
manages volumes directly connected to
the computer. See also file system driver.

local kernel debugging The ability to con-
nect the kernel debugger to the local
running system to view internal state (as
opposed to connecting to a target system
booted in debugging mode using a null
modem or 1394 cable).

local security authority (LSA) server A
user-mode process running the image
\%SystemRoot%\System32\LSASS.exe that
is responsible for the local system security
policy (such as which users are allowed to
log on to the machine, password policies,
privileges granted to users and groups, and
the system security auditing settings), user
authentication, and sending security audit
messages to the Event Log. The LSA ser-
vice (Lsasrv—\Winnt\System32\Lsasrv.dll), a
library that LSASS loads, implements most
of this functionality.

local security authority (LSA) server policy

database A database (stored in the reg-
istry under HKLM\SECURITY) that contains
the system security policy settings. This
database includes such information as what
domains are trusted to authenticate logon
attempts, who has permission to access the
system and how (interactive, network, and
service logons), who is assigned which priv-
ileges, and what kind of security auditing
is to be performed.

Local Security Authority subsystem

(Lsass) The system user-mode process
responsible for authentication of accounts
accessing a computer.

Local System account A predefined local
account that is used to start a service
and provide the security context for that
service. The name of the account is NT
AUTHORITY\System. This account does
not have a password, and any password
information that you supply is ignored.
The Local System account has full access
to the system, including the directory ser-
vice on domain controllers. Because the
Local System account acts as a computer
on the network, it has access to network
resources.

log file A metadata file (file name $LogFile)
NTFS uses to record all operations that
affect the NTFS volume structure, includ-
ing file creation or any commands, such as
Copy, that alter the directory structure. The
log file is used to recover an NTFS volume
after a system failure.

log hive A registry hive the configuration
manager uses to make sure that a non-
volatile registry hive (one with an on-disk
file) is always in a recoverable state. Each
nonvolatile hive has an associated log hive,
which is a hidden file with the same base
name as the hive and a .logN extension.
See also hive.

logical cluster numbers (LCNs) The num-
bers of all clusters from the beginning of
the volume to the end with which NTFS
refers to physical locations on a disk. To
convert an LCN to a physical disk address,
NTFS multiplies the LCN by the cluster
factor to get the physical byte offset on
the volume, as the disk driver interface
requires.

logical prefetcher The kernel component
that monitors boot and application startup
file access and that preemptively reads that
data to speed up subsequent booting and
application startups.

 Glossary 1167

logical sequence numbers (LSNs) The num-
bers that NTFS uses to identify records
written to the log file.

logon process A user-mode process run-
ning Winlogon.exe that is responsible for
capturing the username and password,
sending them to the local security author-
ity server for verification, and creating the
initial process in the user’s session.

look-aside list A fast memory allocation
mechanism that contains only fixed-sized
blocks. Look-aside lists can be either page-
able or nonpageable, so they are allocated
from paged or nonpaged pool.

mapped file I/O The ability to view a file
residing on disk as part of a process’s vir-
tual memory. A program can access the file
as a large array without buffering data or
performing disk I/O. The program accesses
memory, and the memory manager uses its
paging mechanism to load the correct page
from the disk file. If the application writes
to its virtual address space, the memory
manager writes the changes back to the
file as part of normal paging.

marshalling area An area maintained in the
client’s address space. Both user-mode and
kernel-mode clients marshal data buffers
into log records that are part of a marshal-
ling area. When creating a marshalling area,
a client must specify the number and size
of the log I/O buffers it wants to maintain
in the area. The marshalling runtime imple-
ments policy on allocating log I/O buffers,
appending them to the log internal queue
and flushing them to disk. Clients can over-
ride the default marshalling code policy by
forcing queue appends and flushes to disk
via API calls.

mask The process whereby interrupts wait
for an executing thread to lower the IRQL
before the interrupt is processed. Interrupts
from a source with an IRQL above the cur-
rent level interrupt the processor, whereas

interrupts from sources with IRQLs equal to
or below the current level are masked until
an executing thread lowers the IRQL.

master file table (MFT) The heart of the
NTFS volume structure. The MFT is imple-
mented as an array of file records. The size
of each file record is fixed at 1 KB, regard-
less of cluster size.

memory manager The Windows executive
component that implements demand-
paged virtual memory, giving each pro-
cess the illusion that it has a large virtual
address space (while mapping a subset of
that address space to physical memory).

metadata Data that describes the files on a
disk; also called volume structure data.

metadata files A set of files in each NTFS
volume that contains the information used
to implement the file system structure.

MFT mirror An NTFS metadata file (file name
$MFTMirr) located in the middle of the disk
called that contains a copy of the first few
rows of the master file table.

miniport driver A type of kernel-mode
device driver that maps a generic I/O
request to a type of port into an adapter
type, such as a specific SCSI adapter.

mirrored volume A volume on which the
contents of a partition on one disk are
duplicated in an equal-sized partition on
another disk. Mirrored volumes are some-
times referred to as RAID level 1 (RAID-1).

mirror set A technique by which the con-
tents of a partition on one disk are dupli-
cated in an equal-size partition on another
disk.

modified page writer A thread in the virtual
memory manager that is responsible for
limiting the size of the modified page list by
writing pages to their backing store loca-
tions when the list becomes too big. The
modified page writer consists of two system

1168 Glossary

threads: one to write out modified pages
(MiModifiedPageWriter) to the paging file
and a second one to write modified pages
to mapped files (MiMappedPageWriter).

mount A technique NTFS uses when it first
accesses a volume; in this context, to mount
means to prepare the volume for use. To
mount the volume, NTFS looks in the boot
file to find the physical disk address of the
master file table.

mount points A mechanism that permits
the linking of volumes through directories
on NTFS volumes, which makes volumes
accessible with no drive-letter assignment.
Reparse points in NTFS make mount points
possible.

MSDN Microsoft Developer Network,
Microsoft’s support program for devel-
opers. For more information, see msdn.
microsoft.com.

multipartition volumes Objects that repre-
sent sectors from multiple partitions and
that file system drivers manage as a single
unit. Multipartition volumes offer perfor-
mance, reliability, and sizing features that
simple volumes don’t.

multipathing Where more than one set of
hardware exists between the computer and
a disk so that if a path fails, the system can
still access the disk via an alternate path.

mutant Internal name for a mutex.

mutex A synchronization mechanism used
to serialize access to a resource.

mutual exclusion A means whereby only
one thread or processor is allowed access
to a resource at any given time.

name retention The first phase of object
retention, which the object manager imple-
ments. Name retention is controlled by
the number of open handles to an object
that exist. Every time a process opens a
handle to an object, the object manager

increments the open handle counter in the
object’s header. As processes finish using
the object and close their handles to it,
the object manager decrements the open
handle counter. When the counter drops to
0, the object manager deletes the object’s
name from its global namespace. This dele-
tion prevents new processes from opening
a handle to the object.

native application An application that
uses only system service APIs provided by
Ntdll and that isn’t a client of the Windows
subsystem. Smss (Session Manager) is an
example of a native application.

network file system driver (FSD) A driver
that allows users to access data volumes
connected to remote computers. See also
file system driver.

network logon service A Windows service
that sets up the secure channel to a domain
controller, over which security requests,
such as an interactive logon, are sent.

network redirectors and servers File system
drivers that transmit remote I/O requests
to a machine on the network and receive
such requests, respectively.

nonpaged pool Memory pool that consists
of ranges of system virtual addresses that
are guaranteed to be resident in physi-
cal memory at all times and thus can be
accessed from any address space without
incurring paging I/O. Nonpaged pool is
created at system initialization and is used
by kernel-mode components to allocate
system memory.

Ntdll.dll A special system-support library
primarily for the use of subsystem DLLs
that contains system service dispatch stubs
to Windows executive system services and
internal support functions used by subsys-
tems, subsystem DLLs, and other native
images.

 Glossary 1169

Ntkrnlmp.exe The executive and kernel for
multiprocessor systems.

Ntoskrnl.exe The executive and kernel for
uniprocessor systems.

object In the Windows executive, a single,
run-time instance of a statically defined
object type.

object attribute A field of data in an object
that partially defines the object’s state.

object directory A container object for
other objects. The object directory is used
to implement the hierarchical namespace
within which other object types are
stored.

object handle An index into a process-spe-
cific handle table, pointed to by the execu-
tive process (EPROCESS) block.

object manager The Windows execu-
tive component responsible for creating,
deleting, protecting, and tracking objects.
The object manager centralizes resource
control operations that would otherwise
be scattered throughout the operating
system.

object methods The means for manipulat-
ing objects, usually to read or change the
object attributes. For example, the open
method for a process would accept a pro-
cess identifier as input and return a pointer
to the object as output.

object reuse protection A means of pre-
venting users from seeing data that another
user has deleted or from accessing memory
that another user previously used and then
released. Object reuse protection prevents
potential security holes by initializing all
objects, including files and memory, before
they are allocated to a user.

object type A system-defined data type,
including services that operate on instances
of the data type and a set of object attri-
butes; sometimes called an object class.

page directory A page the memory man-
ager creates to map the location of all page
tables for that process. Each process has a
single page directory.

page directory entries (PDEs) The page
directory is composed of PDEs, each of
which is 4 bytes long and describes the
state and location of all the possible page
tables for that process.

page fault A reference to an invalid page.
The kernel trap handler dispatches this kind
of fault to the memory manager fault han-
dler (MmAccessFault) to resolve.

page file backed section A section object
that is mapped to committed memory.

page file quota A limit on the number of
committed pages a process can consume—
not necessarily page file space.

page frame number (PFN) database De-
scribes the state of each page in physical
memory.

page table A page of mapping informa-
tion (made up of an array of page table
entries) the operating system constructs
that describes the location of the virtual
pages in a process address space. Because
Windows provides a private address space
for each process, each process has its own
set of process page tables to map that
private address space because the map-
pings will be different for each process. The
page tables that describe system space are
shared among all processes.

page table entry (PTE) An entry in a pro-
cess’s page table that contains the address
to which the virtual address is mapped. The
page can be in physical memory or it can
be on disk.

paged pool A region of virtual memory in
system space that can be paged in and out
of the system process’s working set. Paged
pool is created at system initialization and

1170 Glossary

is used by kernel-mode components to
allocate system memory. Uniprocessor sys-
tems have two paged pools; multiproces-
sor systems have four. Having more than
one paged pool reduces the frequency of
system code blocking on simultaneous calls
to pool routines.

paging The process of moving memory
contents to disk, freeing physical memory
so that it can be used for other processes
or for the operating system itself. Because
most systems have much less physical
memory than the total virtual memory in
use by the running processes (2 GB or 3 GB
for each process), the memory manager
transfers, or pages, some of the memory
contents to disk.

partition A discrete area of the hard disk
in Microsoft operating systems. File sys-
tems (such as FAT and NTFS) format each
partition into a volume. A hard disk can
contain up to four primary partitions. See
also extended partition.

partition table A part of the master boot
record (MBR) that consists of four entries
that define the locations of as many as
four primary partitions on a disk. The par-
tition table also records a partition’s type.
Numerous predefined partition types exist,
and a partition’s type specifies which file
system the partition includes.

Peer-to-Peer Infrastructure A set of APIs
that cover dif ferent technologies to
enhance the Windows networking stack by
providing flexible peer-to-peer (P2P) sup-
port for applications and services. The P2P
infrastructure covers four major technolo-
gies: Peer-to-Peer Graphing, Peer-to-Peer
Namespace Provider, Peer-to-Peer Group-
ing, and Peer-to-Peer Identity Manager.

Physical Address Extension (PAE) A mem-
ory-mapping mode included in all Intel x86
processors since the Pentium Pro. With the
proper chipset, the PAE mode allows access

to up to 64 GB of physical memory. When
the x86 executes in PAE mode, the memory
management unit (MMU) divides virtual
addresses into four fields.

physical device object (PDO) A device
object that’s a required part of a devnode.
The PDO represents the physical interface
to a device. See also devnode.

Plug and Play (PnP) manager A major
component of the executive that deter-
mines which drivers are required to sup-
port a particular device and loads those
drivers. The PnP manager retrieves the
hardware resource requirements for each
device during enumeration. Based on the
resource requirements of each device,
the PnP manager assigns the appropriate
hardware resources such as I/O ports, IRQs,
DMA channels, and memory locations. It is
also responsible for sending proper event
notification for device changes (addition or
removal of a device) on the system.

port driver A type of kernel-mode device
driver that implements the processing of an
I/O request specific to a type of I/O port,
such as SCSI.

port object A single executive object that
an advanced local procedure call (ALPC)
exports to maintain the state needed for
communication.

power manager A major component of the
executive that coordinates power events
and generates power management I/O
notifications to device drivers. When the
system is idle, the power manager can be
configured to reduce power consumption
by putting the CPU to sleep. Changes in
power consumption by individual devices
are handled by device drivers but are coor-
dinated by the power manager.

printer driver A driver that translates device-
independent graphics requests to printer-
specific commands. These commands are

 Glossary 1171

then typically forwarded to a kernel-mode
port driver such as the parallel port driver
(Parport.sys) or the USB printer port driver
(Usbprint.sys).

private cache map A structure that contains
the location of the last two reads so that
the cache manager can perform intelligent
read-ahead.

process The virtual address space and con-
trol information necessary for the execu-
tion of a set of thread objects.

process and thread manager The services in
the executive that export the process and
thread object. These services use primitive
functions in the kernel to create processes
and threads.

process ID A unique identifier for a process
(internally called a client ID).

process working set The subset of a pro-
cess’s virtual address space that is resident
and owned by the running process. See also
system working set.

processor affinity The set of processors a
thread is permitted to run on.

processor control region (PCR) A data
structure that along with its extension,
the processor control block (PRCB), con-
tains information about the state of each
processor in the system, such as the cur-
rent interrupt request level (IRQL), a pointer
to the hardware interrupt dispatch table
(IDT), the currently running thread, and
the next thread selected to run. The kernel
and the HAL use this information to per-
form architecture-specific and machine-
specific actions. Portions of the PCR and
PRCB structures are defined publicly in the
Windows Device Driver Kit (DDK) header
file Ntddk.h.

program A static sequence of instructions.

protected mode A state during the boot
process in which no virtual-to-physical

translation occurs but a full 32 bits of mem-
ory becomes accessible. After the system
is in protected mode, BootMgr can access
all of physical memory.

protected processes Processes that exist
alongside normal Windows processes; they
add significant constraints to the access
rights that other processes on the system
(even when running with administrative
privileges) can request.

protocol driver A driver that implements
a networking protocol such as TCP/IP,
NetBEUI, or IPX/SPX.

prototype page table entries (prototype

PTEs) A software structure the memory
manager uses to map potentially shared
pages when a page can be shared between
two processes. An array of prototype PTEs
is created when a section object is first
created.

quality of service (QoS) A networking tech-
nology that ensures that critical network
applications receive highest priority.

quantum The length of time a thread is
allowed to run before Windows interrupts
the thread to find out whether another
thread at the same priority level is wait-
ing to run or whether the thread’s priority
needs to be reduced.

quantum target An estimate of what the
number of CPU clock cycles a thread has
consumed should be when its turn would
be given up. This target should be equal
to an equivalent number of clock interval
timer ticks because the calculation of clock
cycles per quantum is based on the clock
interval timer frequency.

quantum unit A value that represents how
long a thread can run until its quantum
expires. This value represents one-third of
a clock interval.

1172 Glossary

queue A method for threads to enqueue and
dequeue notifications of the completion of
I/O operations (called an I/O completion
port in the Windows API).

queued spinlock A special type of spin-
lock that is used only by the kernel and
not exported for executive components
or device drivers. A queued spinlock scales
better on multiprocessor systems than a
standard spinlock does. See also spinlock.

quota charges In the Windows object man-
ager, the record of how much the object
manager subtracts from a process’s allotted
paged and/or nonpaged pool quota when
a thread in the process opens a handle to
the object.

RAID-5 volume A fault tolerant variant of
a regular stripe volume. Fault tolerance is
achieved by reserving the equivalent of
one disk for storing parity for each stripe.
Also called stripe volume with parity.

ready summary A bit mask (ReadySummary)
that Windows maintains to speed up
the selection of which thread to run or
preempt.

real mode An operating mode in which no
virtual-to-physical translation of memory
addresses occurs, which means that pro-
grams that use the memory addresses
interpret them as physical addresses and
that only the first 1 MB of the comput-
er’s physical memory is accessible. Simple
MS-DOS programs execute in a real-mode
environment.

recoverability An advanced feature of NTFS
that allows a system to recover from an
unexpected system halt. If a system is
halted unexpectedly, the metadata of a FAT
volume can be left in an inconsistent state,
leading to the corruption of large amounts
of file and directory data. NTFS imple-
ments recoverability by logging changes
to metadata in a transactional manner so

that file system structures can be repaired
to a consistent state with no loss of file or
directory structure information. (File data
can be lost, however.)

reference count The object manager’s
record of how many object pointers it has
dispensed to operating system processes.
The object manager increments a reference
count for an object each time it gives out
a pointer to the object; when kernel-mode
components finish using the pointer, they
call the object manager to decrement the
object’s reference count.

reparse data User-defined data about the
file or directory, such as its state or location,
that can be read from the reparse point by
the application that created the data, a file
system filter driver, or the I/O manager.

reparse point An NTFS file or directory that
has a block of data called reparse data
associated with it.

reparse tag The reparse tag allows the com-
ponent responsible for interpreting the
reparse point’s reparse data to recognize
the reparse point without having to check
the reparse data.

resident attribute An attribute that is stored
directly in the master file table. (If a file is
small, all its attributes and their values [its
data, for example] fit in the file record.)

resource arbitration A process by which
the Plug and Play (PnP) manager optimally
assigns hardware resources so that each
device meets the requirements necessary
for its operation. Because hardware devices
can be added to the system after boot-time
resource assignment, the PnP manager
must also be able to reassign resources to
accommodate the needs of dynamically
added devices.

restricted token A token created from a
primary or impersonation token using
the CreateRestrictedToken function. The

 Glossary 1173

restricted token is a copy of the token it’s
derived from, with some possible modifica-
tions: Privileges can be removed from the
token’s privilege array. SIDs in the token
can be marked as deny-only. SIDS in the
token can be marked as restricted.

ring A privilege level defined in the x86 and
x64 processor architectures to protect sys-
tem code and data from being overwritten
either inadvertently or maliciously by code
of lesser privilege. Windows on the x86 and
x64 platforms use privilege level 0 (or ring
0) for kernel mode and privilege level 3 (or
ring 3) for user mode.

safe mode A boot configuration that con-
sists of the minimal set of device drivers
and services. By relying on only the drivers
and services that are necessary for boot-
ing, Windows avoids loading third-party
and other nonessential drivers that might
crash.

SAM database A database (stored in the
registry under HKLM\SAM) that contains
the defined users and groups, along with
their passwords and other attributes.

scatter/gather I/O A kind of high-perfor-
mance I/O Windows supports, available
via the Windows ReadFileScatter and
WriteFileGather functions. These functions
allow an application to issue a single read
or write from more than one buffer in vir-
tual memory to a contiguous area of a file
on disk. To use scatter/gather I/O, the file
must be opened for noncached I/O, the
user buffers being used have to be page-
aligned, and the I/Os must be asynchro-
nous (overlapped).

section object An object that represents a
block of memory that two or more pro-
cesses can share. A section object can be
mapped to the paging file or to another file
on disk. The executive uses section objects
to load executable images into memory,
and the cache manager uses them to access

data in a cached file. In the Windows sub-
system, a section object is called a file-
mapping object.

section object pointers Structure for each
open file (represented by a file object) that
is the key to maintaining data consistency
for all types of file access as well as to pro-
viding caching for files. The section object
pointers structure points to one or two
control areas. One control area is used to
map the file when accessed as a data file,
and one is used to map the file when it is
run as an executable image.

sector A hardware-addressable portion of a
physical disk. A hard disk sector on a BIOS
PC is typically 512 bytes. Utilities that pre-
pare hard disks for the definition of vol-
umes, such as the Windows Setup program,
write a sector of data called a master boot
record (MBR) to the first sector on a hard
disk. The MBR includes a fixed amount of
space that contains executable instructions
(called boot code) and a partition table
with four entries that define the locations
of the primary partitions on the disk. See
also boot code, partition table.

secure attention sequence (SAS) A key-
stroke combination that when entered noti-
fies Winlogon of a user logon request.

secure logon facility Requires that users
can be uniquely identified and that they
must be granted access to the computer
only after they have been authenticated
in some way.

Security Accounts Manager (SAM) ser-

vice A set of subroutines responsible for
managing the database that contains the
user names and groups defined on the local
machine or for a domain (if the system is
a domain controller). The SAM runs in the
context of the LSASS process.

security auditing A way in which Windows
detects and records important security-

1174 Glossary

related events or any attempts to create,
access, or delete system resources. Logon
identifiers record the identities of all users,
making it easier to trace anyone who per-
forms an unauthorized action.

security descriptor The data structure that
specifies who can perform what actions on
an object. A security descriptor consists of
attributes.

security identifier (SID) A means of uniquely
identifying entities that perform actions in
a system. A SID is a variable-length numeric
value that consists of a SID structure revi-
sion number, a 48-bit identifier authority
value, and a variable number of 32-bit
subauthority or relative identifier (RID)
values.

security quality of service (SQOS) The
indicator specified by a client opening a
server resource that specifies the maximum
level of client impersonation the server is
allowed.

security reference monitor (SRM) A com-
ponent in the Windows executive (Ntoskrnl.
exe) that enforces security policies on the
local computer. It guards operating system
resources, performing run-time object pro-
tection and auditing.

semaphore A counter that provides a
resource gate by allowing some maximum
number of threads to access the resources
protected by the semaphore.

server processes User processes that are
Windows services, such as the Event Log
and Schedule services. Many add-on
server applications, such as Microsoft SQL
Server and Microsoft Exchange Server, also
include components that run as Windows
services.

session Consists of the processes and other
system objects (such as the window station,
desktops, and windows) that represent a
single user’s workstation logon session.

Each session has a session-specific paged
pool area used by the kernel-mode portion
of the Windows subsystem (Win32k.sys) to
allocate session-private GUI data structures.
In addition, each session has its own copy
of the Windows subsystem process (Csrss.
exe) and logon process (Winlogon.exe).

session space A component that contains
information global to each session. All ses-
sionwide data structures are mapped into
this region of system space. When a pro-
cess is created, this range of addresses is
mapped to the pages appropriate to the
session that the process belongs to.

shared cache map A structure that describes
the state of a cached file, including its size
and its valid data length.

shared memory Memory visible to more
than one process or that is present in more
than one virtual address space.

shrinking engine In the file system, a
mechanism that communicates with NTFS
to determine the maximum number of
reclaimable bytes—how much data can be
moved from a region that will be resized
into a region that will remain.

shadow copies The Volume Shadow Copy
Service (VSS) is a built-in Windows mecha-
nism that enables the creation of consis-
tent, point-in-time copies of data. These
are known as shadow copies or snapshots.
VSS coordinates with applications, file-
system services, backup applications, fast-
recovery solutions, and storage hardware
to produce consistent shadow copies.

signaled state One state of a synchroniza-
tion object. At any given moment, a syn-
chronization object is in either the signaled
state or the nonsignaled state.

simple volume A set of objects that repre-
sent sectors from a single partition that file
system drivers manage as a single unit.

 Glossary 1175

single sign-on The ability for logon infor-
mation to be simultaneously authenticated
on more than one system. For example,
a user logging on to a Windows system
might simultaneously be authenticated on
a UNIX server. That user would then be able
to access resources of the UNIX server from
the machine running Windows without
requiring additional authentication.

small memory dump A small memory dump
(typically between 128 KB and 1 MB in size)
containing the stop code and parameters,
the list of loaded device drivers, the data
structures that describe the current pro-
cess and thread (called the EPROCESS and
ETHREAD), and the kernel stack for the
thread that caused the crash.

spanned volume A single logical volume
composed of a maximum of 32 free par-
titions on one or more disks. The Disk
Management Microsoft Management
Console (MMC) snap-in combines the
partitions into a spanned volume, which
can then be formatted for any of the file
systems that Windows supports.

sparse files Files, often large, that contain
only a small amount of nonzero data rela-
tive to their size.

spinlock The locking mechanism the ker-
nel uses to achieve multiprocessor mutual
exclusion. The spinlock gets its name from
the fact that the kernel (and thus, the pro-
cessor) is held in limbo, “spinning,” until
it gets the lock. Spinlocks, like the data
structures they protect, reside in global
memory. See also queued spinlock.

stack frame Information, representing the
activation of a procedure, that is pushed
onto the stack when a procedure is invoked.
A stack frame can have one or more excep-
tion handlers associated with it, each of
which protects a particular block of code
in the source program.

stream A sequence of bytes within a file.

striped volume Series of up to 32 partitions,
one partition per disk, that combines into a
single logical volume. Striped volumes are
also known as RAID level 0 (RAID-0) vol-
umes. A partition in a striped volume need
not span an entire disk; the only restriction
is that the partitions on each disk be the
same size.

stop code An error code that classifies the
type of error detected by a component
that crashes the system.

structured exception handling A type of
exception handling that allows applications
to gain control when exceptions occur. The
application can then fix the condition and
return to the place the exception occurred,
unwind the stack (thus terminating execu-
tion of the subroutine that raised the excep-
tion), or declare back to the system that the
exception isn’t recognized, and continue
searching for an exception handler that
might process the exception.

subsection A structure that describes the
mapping information for each section of
the file (read-only, read-write, copy-on-
write, and so on).

subsystem dynamic-link libraries (DLLs) DLLs
that translate a documented function into
the appropriate undocumented Windows
system service calls. This translation might
or might not involve sending a message to
the environment subsystem process that is
serving the user application.

Subsystem for Unix-based Applications

(SUA) An enhanced POSIX subsystem
that provides nearly 2,000 UNIX functions
and 300 UNIX-like tools and utilities. SUA
can be enabled on any Windows Server
2008 machine, as well as for Windows Vista
Ultimate and Enterprise editions.

SuperFetch A memory management
scheme that enhances the least-recently

1176 Glossary

accessed approach with historical infor-
mation and proactive memory manage-
ment. SuperFetch is composed of several
components in the system that work hand
in hand to proactively manage memory
and limit the impact on user activity when
SuperFetch is performing its work.

symbolic link A mechanism for referring to
an object name indirectly.

symmetric encryption algorithm An algo-
rithm that uses the same key to encrypt
and decrypt data. Symmetric encryption
algorithms are typically very fast, which
makes them suitable for encrypting large
amounts of data, such as file data. They do
have a weakness, however; their security
can be bypassed if their key is obtained.

symmetric multiprocessing (SMP) A mul-
tiprocessing operating system in which
there is no master processor—the operat-
ing system as well as user threads can be
scheduled to run on any processor. All the
processors share just one memory space.

synchronization A thread’s ability to syn-
chronize its execution by waiting for an
object to change from one state to another.
A thread can synchronize with executive
process, thread, file, event, semaphore,
mutex, and timer objects. Section, port,
access token, object directory, symbolic-
link, profile, and key objects don’t support
synchronization.

synchronous I/O A model for I/O in which a
device performs a data transfer and returns
a status code when the I/O is complete. The
program can then access the transferred
data immediately. When used in their
simplest form, the Windows ReadFile and
WriteFile functions are executed synchro-
nously. They complete an I/O operation
before returning control to the caller.

system access control list (SACL) Specifies
which operations by which users should be
logged in the security audit log.

system code write protection The setting of
the read-only parts of the kernel as read-
only pages.

system audit ACE An access-control entry
(ACE) contained by a system access-con-
trol list (SACL) that, along with the system
audit-object ACE, specifies which opera-
tions performed on the object by specific
users or groups should be audited. System
audit-object ACEs specify a GUID indicating
the types of objects or subobjects that the
ACE applies to and an optional GUID that
controls propagation of the ACE to particu-
lar child object types. If an SACL is null, no
auditing takes place on the object.

system cache Pages used to map files open
in the system cache.

system page table entries (PTEs) Pool of
system PTEs used to map system pages
such as I/O space, kernel stacks, and mem-
ory descriptor lists.

system partition The partition that contains
core operating system files. The boot parti-
tion is identified by the system at startup.
The code in a master boot record (MBR)
scans the primary partition table until it
locates a partition containing a flag that
signals the partition is bootable. When the
MBR finds at least one such flag, it reads
the first sector from the flagged partition
into memory and transfers control to code
within the partition.

system service dispatch table Table in
which each entry contains a pointer to a
system service rather than to an interrupt
handling routine.

system services (or executive system ser-

vices) Native functions in the Windows
operating system that are callable from
user mode. For example, NtCreateProcess

 Glossary 1177

is the internal system service the Windows
CreateProcess function calls to create a new
process.

system support processes User processes,
such as the logon process and the Session
Manager, that are not Windows ser-
vices (that is, not started by the service
controller).

system thread A kind of thread that runs
only in kernel mode. System threads
always reside in the system process. These
threads have all the attributes and contexts
of regular user-mode threads (such as a
hardware context, priority, and so on) but
run only in kernel-mode executing code
loaded in system-space code, whether that
be in Ntoskrnl.exe or in any other loaded
device driver. System threads don’t have
a user process address space and hence
must allocate any dynamic storage from
operating system memory heaps, such as
paged or nonpaged pool.

system worker threads Threads created in
the system process during system initializa-
tion that exist solely to perform work on
behalf of other threads.

system working set The physical memory
being used by the system cache, paged
pool, pageable code in Ntoskrnl.exe, and
pageable code in device drivers. See also
process working set.

thread An entity within a process that
Windows schedules for execution. A thread
includes the contents of a set of volatile
registers representing the state of the pro-
cessor; two stacks, one for the thread to use
while executing in kernel mode and one
for executing in user mode; a private stor-
age area for use by subsystems, run-time
libraries, and DLLs; and a unique identifier
called a thread ID (also internally called a
client ID).

thread context A thread’s volatile registers,
the stacks, and the private storage area.
Because this information is different for each
machine architecture that Windows runs
on, this structure is architecture-specific.
In fact, the CONTEXT structure returned
by the Windows GetThreadContext func-
tion is the only public data structure in the
Windows API that is machine-dependent.

timer A mechanism that notifies a thread
when a fixed period of time elapses.

transaction An I/O operation that alters file
system data or changes the volume’s direc-
tory structure. The separate disk updates
that make up the transaction must be exe-
cuted atomically; that is, once the transac-
tion begins to execute, all its disk updates
must be completed. If a system failure
interrupts the transaction, the part that
has been completed must be undone, or
rolled back. The rollback operation returns
the database to a previously known and
consistent state, as if the transaction had
never occurred.

transaction table A table that keeps track
of transactions that have been started but
that aren’t yet committed. The subopera-
tions of these active transactions must be
removed from the disk during recovery.

Transactional NTFS (TxF) A transactional
model that NTFS implements by leverag-
ing the Kernel Transaction Manger (KTM)
support in the kernel as well as facilities
provided by the Common Log File System.
TxF provides a set of user-mode APIs that
applications can use for transacted opera-
tions on their files and directories and also
a file system control (FSCTL) interface for
managing its resource managers. See also
Kernel Transaction Manager (KTM).

Transactional Registry (TxR) An API that
developers can use to implement robust
error-recovery capabilities when perform-
ing registry operatations. TxR is supported

1178 Glossary

by the Kernel Transaction Manager (KTM).
See also Kernel Transaction Manager
(KTM).

transition A kind of invalid page table
entry (PTE) in which the desired page is
in memory on either the standby, modi-
fied, or modified-no-write list. The page
is removed from the list and added to the
working set.

translation look-aside buffer (TLB) A CPU
cache of recently translated virtual page
numbers.

trap A processor’s mechanism for capturing
an executing thread when an exception or
an interrupt occurs, switching it from user
mode into kernel mode, and transferring
control to a fixed location in the operating
system. In Windows, the processor trans-
fers control to the kernel’s trap handler.

trap frame A data structure in which the
execution state of the interrupted thread
is stored. This information allows the ker-
nel to resume execution of the thread after
handling the interrupt or the exception. The
trap frame is usually a subset of a thread’s
complete context.

trap handler A module in the kernel that
acts as a switchboard, fielding exceptions
and interrupts detected by the proces-
sor and transferring control to code that
handles the condition.

trusted facility management Requires sup-
port for separate account roles for admin-
istrative functions. For example, separate
accounts are provided for administration
(Administrators), user accounts charged
with backing up the computer, and stan-
dard users.

trusted path functionality Prevents Trojan
horse programs from being able to inter-
cept users’ names and passwords as they
try to log in. The trusted path functional-
ity in Windows comes in the form of its

Ctrl+Alt+Delete logon-attention sequence,
which cannot be intercepted by nonprivi-
leged applications. This sequence of key-
strokes, which is also known as the secure
attention sequence (SAS), always pops up
a logon dialog box, so would-be Trojan
horses can easily be recognized. A Trojan
horse presenting a fake logon dialog box
will be bypassed when the SAS is entered.

type object An internal system object that
contains information common to each
instance of the object.

Unicode An international character set stan-
dard that defines unique 16-bit values for
most of the world’s known character sets.

update records Update records corre-
spond to the redo and undo records that
Transactional NTFS (TxF) uses.

User Account Control UAC is a mechanism
meant to enable users to run more eas-
ily with standard user rights, as opposed
to administrative rights. Without admin-
istrative rights, users cannot accidentally
(or deliberately) modify system settings,
malware can’t normally alter system secu-
rity settings or disable antivirus software,
and users can’t compromise the sensi-
tive information of other users on shared
computers.

user mode The nonprivileged processor
mode that applications run in. A limited
set of interfaces is available in this mode,
and the access to system data is limited.
See also kernel mode.

user-mode debugging A framework respon-
sible for sending events to the user-mode
debugging API—allowing breakpoints and
stepping through code to work—as well as
for changing contexts of running threads.

VACB index array An array of pointers main-
tained by the cache manager to keep track
of which views for a given file are mapped
to the system cache.

 Glossary 1179

view The portion of the section object
required by a process. A section object
can refer to files that are much larger
than can fit in the address space of a
process. (If the paging file backs a sec-
tion object, sufficient space must exist in
the paging file to contain it.) To access a
very large section object, a process can
map only a view of the section by calling
the MapViewOfFile, MapViewOfFileEx, or
MapViewOfFileExNuma function and then
specifying the range to map. Mapping
views permits processes to conserve
address space because only the views of
the section object needed at the time must
be mapped into memory. See also section
object.

virtual address control blocks (VACBs) The
data structures that the cache manager
uses to manage the system address space
into which it maps files. When the cache
manager initializes during the bootup pro-
cess, it allocates an initial array of VACBs
to describe cached memory. As caching
requirements grow and more memory
is required, the cache manager allocates
more VACB arrays, as needed.

virtual address descriptors (VADs) Data
structures the memory manager maintains
that keep track of which virtual addresses
have been reserved in the process’s address
space. VADs are structured as a self-bal-
ancing AVL tree algorithm (named after
its inventors, Adelson-Velskii and Landis)
that better balances the VAD tree, resulting
in, on average, fewer comparisons when
searching for a VAD corresponding with a
virtual address.

virtual address space A set of virtual mem-
ory addresses that a process can use.

virtual block caching A method the
Windows cache manager uses to keep
track of which parts of which files are in
the cache.

virtual cluster numbers (VCNs) VCNs num-
ber the clusters belonging to a particular
file from 0 through m. VCNs aren’t neces-
sarily physically contiguous, but they can
be mapped to any number of logical clus-
ter numbers (LCNs) on a volume.

virtual device drivers (VDDs) Drivers used to
emulate 16-bit MS-DOS applications. They
trap what an MS-DOS application thinks
are references to I/O ports and translate
them into native Windows I/O functions.
Because Windows is a fully protected oper-
ating system, user-mode MS-DOS appli-
cations can’t access hardware directly and
thus must go through a real kernel-mode
device driver. Because 64-bit editions of
Windows do not support 16-bit applica-
tions anymore, these types of drivers are
not present on that architecture.

virtualization One of the key technologies
in the software industry, used by system
administrators, developers, and testers
alike. Virtualization refers to the ability to
run multiple operating systems simultane-
ously. One operating system, in which the
virtualization software is executing, is called
the host, while the other operating systems
are running as guests inside the virtual-
ization software. The usage scenarios for
virtualization cover everything from test-
ing an application on different platforms
to having fully virtual servers all actually
running as part of the same machine and
managed through one central point.

volume One or more logical disk partitions
that are treated as a single unit.

volume file A system file (file name $Volume)
that contains the volume name, the version
of NTFS for which the volume is format-
ted, and a bit that when set signifies that a
disk corruption has occurred and must be
repaired by the Chkdsk utility.

volume set A single logical volume com-
posed of a maximum of 32 areas of free

1180 Glossary

space on one or more disks. Spanned vol-
umes were called volume sets in Windows
NT 4.

wait block A data structure that represents
a thread waiting on an object. Each thread
that is in a wait state has a list of the wait
blocks that represent the objects the thread
is waiting on. Each dispatcher object has a
list of the wait blocks that represent which
threads are waiting on the object.

wait hint A value indicating how long a
service should wait before informing the
system a shutdown is complete.

WDM drivers Device drivers that adhere to
the Windows Driver Model (WDM). WDM
includes support for Windows power man-
agement, Plug and Play, and Windows
Management Instrumentation (WMI).
There are three types of WDM drivers: bus
drivers, function drivers, and filter drivers.

WDM Windows Management Instru-

mentation routines Enable device drivers
to publish performance and configuration
information and receive commands from
the user-mode WMI service. Consumers
of WMI information can be on the local
machine or remote across the network.

WFP callout drivers Kernel-mode drivers
that implement one or more callouts, which
extend the capabilities of the Windows
Filtering Platform (WFP) by processing
TCP/IP-based network data in ways that
extend the basic functionality provided
by the WFP. See also Windows Filtering
Platform (WFP).

Windows API The system programming
interface to the Windows operating sys-
tem family. In this book, the term Windows
API refers to both the 32-bit and 64-bit
programming interfaces to Windows Vista
and Windows Server 2008.

Windows Diagnostic Infrastructure (WDI) A
mechanism that helps to detect, diagnose,

and resolve common problem scenarios
with minimal user intervention. Windows
components implement triggers that cause
WDI to launch scenario-specific trouble-
shooting modules to detect the occurrence
of a problem scenario. A trigger can indi-
cate that the system is approaching or has
reached a problematic state.

Windows Driver Foundation A model
intended to simplify driver development
by providing two frameworks, the Kernel-
Mode Driver Framework (KMDF) and the
User-Mode Driver Framework (UMDF).

Windows services A mechanism to start
processes at system startup time that pro-
vide services not tied to an interactive user.
Services are similar to UNIX daemon pro-
cesses and often implement the server side
of client/server applications.

window station A window station contains
desktops, and desktops contain windows.
Only one window station can be visible
on a console and receive user mouse and
keyboard input. In a Terminal Services envi-
ronment, one window station per session
is visible, but services all run as part of the
console session.

Windows drivers Device drivers that inte-
grate with the Windows power manager
and Plug and Play manager, when required.
They include drivers for mass storage
devices, protocol stacks, and network
adapters.

Windows Filtering Platform (WFP) A set of
APIs and system services that provide the
ability to create network filtering applica-
tions. The WFP allows applications to inter-
act with packet processing at different
levels of the Windows networking stack,
much like file system filters. Similarly, net-
work data can be traced, filtered, and also
modified before it reaches its destination.

 Glossary 1181

work item A unit of work placed on a queue
dispatcher object when an executive com-
ponent requests a system worker thread’s
services by calling the executive functions
ExQueueWorkItem or IoQueueWorkItem.
(Device drivers should use only the lat-
ter because this associates the work item
with a Device object, allowing for greater
accountability and the handling of sce-
narios in which a driver unloads while its
work item is active.) These functions place
a work item on a queue dispatcher object
where the threads look for work.

working set A subset of virtual pages resi-
dent in physical memory. There are two
kinds of working sets—process working
sets and the system working set. On sys-
tems with Terminal Services enabled, each
session also has a working set.

working set manager A routine that runs
in the context of the balance set manager

system thread to initiate automatic working
set trimming to increase the amount of free
memory available in the system. Although
Windows attempts to keep memory avail-
able by writing modified pages to disk, when
modified pages are being generated at a
very high rate, more memory is required to
meet memory demands. The working set
manager is called when physical memory
runs low (when MmAvailablePages is less
than MmMinimumFreePages).

write throttling Prevents system perfor-
mance from degrading because of a lack
of memory when a file system or network
server issues a large write operation.

zero page thread A kernel-mode system
thread (thread 0 in the system process).
A zero page thread zeroes out pages on
the free list so that a cache of zero pages
is available to satisfy future demand-zero
page faults.

 1183

Index

Symbols and
Numbers
! commands. See kernel debugger

commands
!analyze command, 1149
!apic command, 91
!devhandles command, 155–156
!devstack command, 579
!drvobj command, 671
!exqueue command, 200
!gflag command, 202
!handle command, 133, 154
!htrace command, 156
!idt command, 88–89, 102
!ioapic command, 91
!irp command, 1145–1147
!irql command, 95
!locks command, 191
!numa command, 437
!object command, 144, 489,

552–553
!obtrace command, 156
!pcr command, 62–64, 95
!pic command, 91
!process command

data displayed by, 345
identifying processes with, 144
job process associations,

displaying, 447–449
process page directory physical

addresses, 765
running processes, viewing all,

1144
!qlocks command, 176
!ready command, 391
!reg dumppool, 273
!reg findkcb, 278
!reg hivelist, 274
!reg kcb, 278
!reg openkeys, 278
!thread command, 376, 569
!timer command, 109
!vm command

memory data listed by, 703
memory exhaustion, checking

for, 1145
!wsle command, 830
.NET Framework components, 3
32-bit emulation on 64-bit

Windows. See Wow64
3DES (Triple-DES), 990–991

64-bit Windows versions (x64)
address space layouts, 745–746
address spaces, 15
CMPXCHG16B processor

instruction issue, 749–750
execution prevention, 714
Itanium versions. See IA64 CPUs
kernel mode code signing, 17
memory and processor support,

table of, 44–45
physical memory limits for,

818–819
process size limitations, 699
singly linked lists issue, 749–751
technologies supported by, 38
UAC virtualization disabled for

applications, 522
virtual addressing limitations,

749–751
x64 address translation, 773

A
AAM (Admin Approval Mode),

528–533
AcceptEx function, 1008
access checks

AccessCheck. See AccessCheck
tool

default security, 460
discretionary. See discretionary

access checks
events causing, 459–460
file object security, 460
integrity levels, 464–473
mandatory policies, 473
masks. See access masks
mechanics of, 459–461
ObCheckObjectAccess function

for, 459–460
ordering of ACEs, 497
referencing events causing, 460
SeAccessCheck function, 460
SIDs for, 461–464
tokens. See tokens
user-mode checks, 461

access control
access-denied errors, 909
ACEs. See ACEs (access control

entries)
ACLs. See ACLs (access control

lists)

checks. See access checks
desired access rights, 157, 1158
determining for objects, 492–501
discretionary. See discretionary

access control
effective permissions, 500
entries. See ACEs (access control

entries)
lists. See ACLs (access control lists)
mandatory integrity control, 22
masks. See access masks
object access checks. See access

checks
owner rights of objects, 495–497
privileged, 22
protected processes, 346–348
security descriptors for. See

security descriptors
stop codes from violations, 1122
tokens. See tokens
types of, 22
user logon test for, 518

access faults, page. See page faults
access masks

algorithm for applying, 496–497
DACL algorithm, role in, 495
defined, 486–487
granted-access masks, 495
protected processes, table for,

347
access tokens. See tokens
AccessCheck tool

object access, displaying, 158
object integrity levels, viewing,

472–473
security descriptors, viewing, 488

account rights
defined, 501
displaying, 501
functions for changing, 503
mechanism for, 502–503
table of user rights, 503

accounts
HKLM\SAM subkey, 258
local service account, 288, 291
local system. See local system

accounts
network service account, 290–291
privileges of. See privileges,

account
rights of. See account rights
service applications, for, 288–291
trusted facili ty management, 453

1184 ACEs

ACEs (access control entries)
access masks, 496–497
ACLs, relation to, 1153
callback ACEs, 486–487
DACLs, types appearing in,

486–487
discretionary access checks using,

495
effective permissions, 500
GUI permissions editors issue,

498–499
inheritance flags, 487
inheritance mechanics, 490–492
order of, results from, 497–499
security descriptor interactions

with, 485–488
SIDs for, 462
system audit types, 488, 1176

ACLs (access control lists)
accumulation of ACE access rights,

487
assignment to new objects,

490–491
composition of, 486–487
defined, 1153
discretionary. See DACLs

(discretionary access control
lists)

displaying for objects, 157–158
entries in. See ACEs (access control

entries)
inheritance mechanics, 490–492
section objects, of, 713
service accounts, isolation issues

with, 294–300
system. See SACLs (system access

control lists)
ACPI (Advanced Configuration and

Power Interface), 636–638
act as part of operating system

privilege, 508, 510
activation stacks, thread, 381
Active Directory

ACE types for, 487
ADSI service interfaces, 1067
APIs for accessing, 1066–1067
authentication against, 518
connection security rules

management, 1052
defined, 454–455
Directory Services Restore mode,

1102
Distributed File System (DFS)

service, 1069–1071
ID lookups, 1067
IPSec for policies, 1050
MAPI support, 1067
SAM (Security Accounts Manager)

service, 1067
server name publishing, 1016

shadow copies, enabling, 688–689
Windows NT 4 networking APIs,

1067
Winsock support for, 1009, 1011

Active page state, 804
active parti tions, 653–654
active processor masks, 434
add-device routines, 548, 607, 1153
address spaces

64-bit, 15, 745–751
ASLR for user address space,

757–761
AWE. See AWE (Address

Windowing Extension)
committing pages, 706–708
CreateProcess function, setup by,

355–357
granularity of allocations, 708
hypervisor managed, 238–239
kernel mode, 16
large address space aware images,

699, 739, 746
layouts of. See virtual address

space layouts
marshalling areas, 1167
pools. See pools, memory
private, 712
processes marked for extra space,

14–15
reserving pages, 706–708
section objects for mapping. See

section objects
shareable memory, 758
sizes of, 14–15
system. See system address spaces
user mode, 16
viewing with Vmmap utili ty,

758–759
virtual. See virtual address spaces
Wow64, 211
x86 address space layouts,

737–740
address translation

byte index fields, 768
caching of results, 768–769
defined, 761
IA64, 772
PAE, 769–771
page directory mechanics,

764–766
page table mechanics, 766–767
PTE mechanics, 762–763, 766–767
steps for, 764
translation look-aside buffers,

767–769
x64, 773
x86 mechanics overview, 762–764

Address Windowing Extension.
See AWE (Address Windowing
Extension)

Admin Approval Mode (AAM),
528–533

administrative rights, 473–474,
528–533

Advanced Configuration and Power
Interface (ACPI), 636–638

Advanced Encryption Standard
(AES), 990–991

Advanced Local Procedure Calls.
See ALPCs (Advanced Local
Procedure Calls)

AES (Advanced Encryption
Standard), 990–991

AFD (Ancillary Function Driver),
1012

affinity manager, LFH, 733
affinity masks

defined, 1153
drawbacks of, 440
functions for, 395
image headers, set ting in, 439
job processor affinity set ting, 447
job wide, 439
NUMA functions, 438
SetProcessAffinityMask function,

438
SetThreadAffinityMask function,

438
set ting for processes, 439
thread affinity masks, 438–439
uniprocessor flags, 439

aging, 1153
AIS (application information service),

529–531
alertable wait states, 1153–1154
AllocateUserPhysicalPages function,

720
allocation. See memory manager
allocation granularity values, 708,

1153–1154
Allow logon rights, table of, 503
ALPCs (Advanced Local Procedure

Calls)
client-server connections,

205–206
components using, 202–203
defined, 202, 1153
LPCs, 203
message exchange methods,

204–205
port objects, 205–206, 1170
role in executive, 60
RPC use of, 202–204, 1017–1018
securing, 206
security component use of, 457
UMDF support, 203
viewing, 203–204
Winlogon to Lsass, 515

alti tudes, 170, 280, 1154
AMD64, 38

 authentication 1185

ANSI string parameters, 23–24
APCs (asynchronous procedure calls)

APC level IRQL, 97
defined, 1154
device driver use of, 113
disabling, 112
executive use of, 112
I/O completion with, 575–577
interrupts, 112–114
KTHREAD field for, 373
modes with, 112
objects, 112
queues, 112, 1154
thread control with, 112
types of, 112–113
user mode, 113
wait queue reordering by, 114

APICs (Advanced Programmable
Interrupt Controllers)

BCD option for maximum
processor number, 1080

hypervisors with, 238
IRQ to IRQL mapping, 96
mechanics of, 89–91

APIs (application programming
interfaces)

AuthZ, 500–501
DeviceIoControlFile API, 214–215
HTTP Server API, 1019–1021
Hyper-V API library, 232
I/O subsystem API, 1162
job related, table of, 446
scheduling related, 395–396
translating DLL API functions to

service calls, 54
Win32. See Win32 API
Windows. See Windows API
Windows Networking API,

1033–1036
application information service

(AIS), 529–531
application layer, OSI, 1002
Application Verifier tool, 604
applications

compatibili ty shims, 522–523
crashes following new installations

of, 1124–1125
foreground, 1161
installing, UAC issues with. See

UAC (User Account Control)
legacy, well-known installers,

1111–1112
native applications, 1168
registries, reading during startup,

250
services. See service applications
Software Restriction Policies

controls for, 533–535
user, 36

architecture
applications in separate mode, 34
assembly language components,

38–39
boot process abstraction, 1073
C language, 35
checked build version, 47–49
core components, file names of,

37–38
design goals of Windows NT,

33–34
device drivers, 68–69
diagram of, 35–36, 49
executive component of, 37
fast LPC, 55
HAL (hardware abstraction layer),

37–39
hardware isolation by kernel,

64–65
Hyper-V, 230–231, 235–236
kernel mode, 34–35, 37
layered design, 38
microkernel-based operating

systems, 34–35
monolithic operating systems, 34
networking, overview of, 1001
Ntdll.dll, 57–58
object-oriented kernel code, 35
operating system model, 34–35
portabili ty, 38–39
scalabili ty of, 43
server versions compared to client

versions, 43–47
subsystem DLLs, 36–37
system processes. See system

processes
user-mode components, 36
windowing and graphics system,

37
Windows Driver Model. See WDM

(Windows Driver Model) drivers
Windows subsystem. See

Windows subsystem
WMI, 318–319

ARIES (Algorithm for Recovery and
Isolation Exploiting Semantics),
910

ASLR (Address Space Layout
Randomization)

disabling, 759
heap randomization, 760
image randomization by, 759–760
mechanics of, 759
purpose of, 757
stack randomization, 760
viewing processes for support

status, 761
ASMP (asymmetric multiprocessing),

39, 1154

ASR (Automated System Recovery).
See Complete PC Restore

assemblies, 364–366
assembly language components of

Windows, 38–39
asynchronous I/O

cancellations, 588
defined, 1154
Driver Verifier completion

simulation, 606
mechanics of, 563
requests to layered drivers,

578–587
asynchronous read-ahead with

history, 876, 1154
asynchronous RPC, 1015–1016
Ataport.sys, 647
ATL (Active Template Library) DEP

compatibili ty, 716
atomic execution, 197
atomic transactions, 918–919, 1154.

See also NTFS recovery support
Attachment Execution Service, 921
attribute lists, NTFS, 1154–1155
attributes, file

at tribute definition tables,
940–941

attribute streams, 942
resident at tributes, 948–951
table of, 943–944
type codes, 944
unnamed data at tribute, 942

attributes, object. See object
at tributes

audio, 346–347, 430–434
auditing, security

audit events, 511
defined, 1173–1174
local security policy, 511
Lsass support for, 511
privilege for, 505
privileges related to, 511
queuing of messages for, 512
TCSEC rating criteria for, 452

authentication
AuthIP, 1051–1052
calls to, 514
credential providers, 79
data origin authentication, 1050
IPSec-supported methods, 1051
Kerberos. See Kerberos

authentication
levels of, 1017
LSASS. See LSASS (local security

authentication server process)
MSV1_0, 513, 517–518
packages (DLLs), 455, 513, 1155
RPC, for, 1017
user logons, packages for, 517

1186 authority, P2P

authority, P2P, 1040
AuthZ API, 500–501
Autochk, 1094
automatic working set trimming,

1155
auto-reset events, 195
Autoruns tool, 1011, 1100
AWE (Address Windowing

Extension)
defined, 1153
mechanics of, 719–721
purpose of, 15

B
Background Intelligent Transfer

Service (BITS), 1030
backups, 506, 692–693, 999
bad cluster files, 940–941, 1155
Bad page state, 804
bad-cluster remapping, 1155
balance set manager

defined, 1155
mechanics of, 427–430
memory manager, as a

component of, 700
system thread, as a, 76
working set expansion and

trimming by, 831–832
bandwidth reservation for I/O,

603–604
base LSNs, 973
base priority determination, 393
BaseNamedObjects namespace, 167
basic disks

defined, 652–653, 1155
enumeration of, 655
GPT partitioning, 654
MBR partitioning, 653–654
types of devices limited to, 653
volume manager with, 655

basic volumes, mounting, 667–668
.bat files, process creation for, 353
BCD (Boot Configuration Database)

bad physical pages list, 1079
BCDEdit utility, 256
Bootmgr file read of, 1077
debugging options, 1079–1080,

1148–1149
default selection by Bootmgr,

1084
editing tool for, 1078
entry storage, 255
HKEY_LOCAL_MACHINE\BCD,

255–257
hypervisor options, 1081
multiple boot selection entries

in, 1078
optional argument for Bootmgr,

1078

options for boot applications,
table of, 1079–1080

preparation by Setup, 1077
Registry Editor for editing,

256–257
troubleshooting configuration

issues, 1109–1110
watermarked desktop option,

1080
Winload options, 1080–1084

BFE (base filtering engine), 1047
binding, network, 1064–1065
bins, registry, 269–272
BIOS (basic I/O system)

BitLocker boot process, 683
boot process files, table of,

1074–1075
MBR reads by, 653
setup process for, 1073–1077
x64 vs. x86 boots, 1073

BitLocker
architecture of, 677–678
boot process, 683–684
cryptography algorithms of, 679
defined, 1155
Elephant diffuser algorithm, 681,

686
foreign volumes, 685
FVE (full volume encryption), 686
FVEK with, 679
Group Policy for, 687
key escrow services, 687
keys, 679–681
major protection capabilities of,

677
management of, 687
passwords for recovery, 684–685
PCRs (platform configuration

registers), 681–683
programmatic access to, 687
purpose of, 677
recoveries, 684–685
sealing VMKs, 681–682
sector encryption keys, 686
system change recoveries, 685
TPM for, 677, 681–683, 687
unsealing VMKs, 684
VMKs, 679–681

bitmap files ($BitMap), 940, 1155
BITS (Background Intelligent

Transfer Service), 1030
B-level security, 453
BLFs (base log files), 913–914
blocks, hive, 269
blue screen of death

causes of, 1119–1120
debugging causes. See crash

dump analysis
example, 1120
screen saver simulation of, 1152

stop code interpretation. See stop
codes

Bluetooth, 616, 1011
boot code, defined, 1155
boot loader

Bootmgr loads, 1084
image system addresses, 752
parameter block structure, 1088

boot process. See also EFI
(Extensible Firmware Interface)

architecture, abstraction of, 1073
automatic process startups, 1100
BCD file reads, 1077
BIOS role in. See BIOS (basic I/O

system)
BitLocker boot process, 683–684
boot disk based, recovery options,

1106
Boot Manager. See Bootmgr

(Windows Boot Manager)
boot start driver issues, 1106
boot status files, 1108
boot-selection menu

presentation, 1078
Bootvid initialization, 1089
code, defined, 1155
Csrss, starting and initialization,

1095–1096
disk access during boots, 646
DPC stack allocation, 1090
driver enumeration and symbol

loads, 1089
Driver Verifier initialization, 1089
EFI boot process, 1086–1087
executive Phase I initialization,

1089
HAL initiation steps, 1088–1089
hard disk setup for, 1073–1074
HKLM\SYSTEM subkey, 259
I/O manager initializations,

1091–1093
InitBootProcessor responsibilities,

1088–1090
KiInitializeKernel responsibilities,

1088–1099
last known good. See last known

good control sets
logging in safe mode, 1104–1105,

1114
MBRs, control transfer to, 1076.

See also MBR (Master Boot
Record)

memory manager, initializations
by, 1089, 1091

NTFS recoveries on, 981
Ntoskrnl phases, 1088–1093
object manager initializations,

1090
page file reads, 781
Phase 0 steps, 1088–1090

 cache manager 1187

Phase 1 steps, 1090–1093
prefetching, 823–827
process manager initializations,

1090, 1093
ReadyBoot, 1099
registry fixes during, 279
registry initializations, 1095
registry, reading of, 250
safe mode, 1101
SCM with, 300, 304, 1097
screen crashes during, 1112–1114
security reference monitor

initializations, 1090
Session Manager initialization,

1093–1096
system hive corruption, 1112
tracing with Process Monitor,

265–266
troubleshooting, 1106–1114
Wininit steps of, 1097
Winload role in, 1084–1086
Winlogon steps for, 1097–1098
x64 vs. x86, 1073

boot sectors
creation of, 1076
defined, 1155
format dependence of, 1077
FSD use of, 896
system partition, relation to, 1076
troubleshooting corruption issues,

1109
boot volumes, 1155
Bootmgr (Windows Boot Manager)

BCD optional arguments for, 1078
BIOS-interfacing functions, 1077
boot loader loads, 1084
boot-selection menu

presentation, 1078
crashes, detecting on reboot,

1124
defined, 1074
hibernation resumes, 1078
paging enabling by, 1077
protected mode, switching to,

1077
reading in of file, 1077
real mode execution, 1077
screen clears by, 1078
storage read role, 646

Bootvid initialization, 1089
Bootvid.dll, 67
boundary descriptors, 164
BSD Sockets, 1006
buckets, 732–733
buffer overflow errors, file systems,

910
buffers, I/O

buffer management types,
570–571

Direct I/O, 570

driver use of, 571
FILE_FLAG_NO_BUFFERING flag,

875
IRP references for, 571
mechanics of, 570–571
Neither I/O, 571
overruns, 1140–1142
pool corruption, 1140–1142

bugcheck codes. See stop codes
bus drivers

defined, 69, 542–543, 1155
device enumeration role, 624–628
HAL acting as, 624–625
instance IDs, 630
IRQ mapping IRQLs, 96
Multipath Bus Driver, 649
Plug and Play support, 621
responsibilities of, 542–543
Root virtual bus driver, 624–625

Bypass Traverse Checking privilege,
505, 509

C
C language, 35, 38–39
C2 security ratings, 451–452
cache manager

!defwrites debugger command,
886

!filecache debugger command,
857

architecture of, 850
boots, initialization during, 1091
buffer management, 871
CcDbg debugging variables,

861–862
client/server example, 858
coherency of data, 850–852
copying method, 869
data structure overview, 859–860
defined, 849, 1155
determining if files are in the

cache, 862–863
dirty page threshold, 885–886
disabling lazy writing, 883
DMA caching, 872
fast I/O, 873–875
fast teardown queues, 886–887
file I/O not handled by, 875
file mapping objects with, 850
file system drivers, 868, 904–905
file system interface overview, 868
flushing mapped files, 883–884
flushing of cache pages, 877
global look-aside lists, 887
hint support, 849
I/O operation interactions, 868
initialization for files not in cache,

868

intelligent read-ahead, 875–876,
878–883, 1163

key features of, 849
lazy writing, 877–883, 906, 1165
least recently used VACBs, 861
logical sequence numbers (LSNs),

853–854
mapped files, 566, 710
mapped page writer thread of,

881
mapping interfaces, 870–871
memory manager use by,

849–850
metadata, functions for finding

locations of, 870
modified page lists, 858–859
NTFS cache flushing operations,

977
NTFS file system driver with, 935
per-file data structures, 862–868
per-processor look-aside lists, 887
physical memory size, 858–859
pinning interfaces, 870–871
post tick queues, 887
private cache map structures,

862–867
private cache maps, 1171
purpose of, 59
queue types used by, 886–887
read activity, examining, 869–870
read-ahead. See intelligent read-

ahead
recoverable file system support,

853–854
remote file system driver oplock

protocol, 898–899
section objects, 850, 862
shared cache map structures,

862–867, 1174
size computation, 855–859
size system variables, table of, 856
standby lists, 858–859
stream-based caching, 852
system space to application buffer

issue, 869
system threads of, 886–887
systemwide data structures,

860–862
VACBs. See VACBs (virtual address

control blocks)
viewing cache maps, 866–867
viewing file system activity of,

878–883
views, 854–855, 862–863
virtual address space model, 850
virtual block caching, 852
virtual memory management,

854–855
virtual size, 855–856
working set size, 856–857

1188 cache-aware pushlocks

cache manager, continued
write throttling, 885–886
write-back caching, 877–883
write-behinds, 878–882
write-through caching, 883

cache-aware pushlocks, 193
caches, CPU-specific code variants,

64
caches, HTTP, 1020–1021
call managers, NDIS, 1057
callbacks

bugcheck callbacks, 1120
callback ACEs, 486–487
driver, 170
Evtlo callback routines, 607
fast dispatch routines, 549
KMDF, 607, 614
reason callbacks for crash dumps,

1120
Wow64, 212

callouts, WFP, 1004, 1047
cancel I/O routines, 549, 587–592
case sensitivity of object names, 163
.cat files, 538–539
catalog files, assembly, 365
catalog files, device driver, 635–636
CBS (Component Based Servicing),

subkey for, 257–258
CC (Common Criteria), 453
CDFS (CD-ROM file system),

890–891, 896
CD-ROM drives, 890–891, 896
cells, registry

bins, 270–271
configuration management of,

272–276
data types of, 270
defined, 269–270
examining, 271
indexes, 271
maps, 272–276
organization of, 271

certificates, 533, 1051
change journal files, 941, 956–959,

1155–1156
change logging, NTFS, 927–928
charge notification, 834
checked build version, 47–49, 1156
checkpoint records, 1156
child partitions, hypervisor, 230,

232–234
chimney offloading, 1054
Chkdsk utility

Autochk run during boots, 1094
bad sector fixes by, 986–988
NTFS preventing need for, 974
system file corruption, fixing, 1110

chunked transfer encoding, 1019
Ci.dll, 67

CIFS (Common Internet File System)
protocol, 898

CIM (Common Information Model)
CIMOM (CIM Object Manager),

319
class model of, 320–321
common model, 1156
core model, 1157
Event Log provider use of,

321–322
MOF with, 322
specification for, 319–320

class drivers, 543, 1156
classifier, P2P, 1040
CLFS (Common Log File System)

ARIES, 910
base log files, 913–914
Clfs.sys, 67
common logs, 911
containers, 913–914
dedicated logs, 911–913
dump counts, 913–914
flush queues, 912–913
identifiers of containers, 914
layout of logs, 913–914
log blocks, 915
log space reservation, 911
LSNs (log sequence numbers),

914–915, 917
management policies, 918
marshalling, 910–911
multiplexed logs, 911–913
owner pages, 912, 915–916
pages, 915
physical vs. virtual clients, 911
purpose of, 910
regions, 915
sector signatures, 915
torn writes, 915
TxF log files, 970
types of logs, 911–913
virtual logs, 916
virtual LSNs, 916–917

client versions of Windows
architecture compared to server

versions, 43–47
list of, 43–44
optimization compared to servers,

46
physical memory limits for,

818–822
client/server model

impersonation with, 480–483
LogonUser function with, 481–483
remote file system drivers for,

897–899
Client/Server Run-Time Subsystem.

See Csrss.exe
clock algorithm, 827–828, 1156
clock interrupt handler, 1156

clock interval timer frequencies,
406–407

clock, system, 97
Clockres, 407
clone shadow copies, 688
C-LOOK algorithm, 647
close object method, 148
clouds, P2P, 1040
CLR. See Common Language

Runtime (CLR)
clustered page faults, 779–780
clustering, memory manager, 1156
clusters, file

bad clusters, 940–941, 985–988,
1155

defined, 889, 1156
dynamic bad-cluster remapping,

923
factors, defined, 1156
FAT size variations, 891–894
LCNs (logical cluster numbers),

938–940, 950–951
NTFS, 937–938
sectors, relationship to, 937–938
size of, setting, 937
sizes of, 895
VCNs (virtual cluster numbers),

938–940, 950–951
.cmd files, process creation for, 353
CMPXCHG16B processor instruction,

749–750
code corruption from drivers,

1143–1144
code integrity, 246–247, 1156
collided page faults, 779, 1156
COM (Component Object Model)

distributed. See DCOM
(Distributed Component Object
Model)

HKEY_CLASSES_ROOT class
registries, 255

WMI COM API, 319
comctl32.dll, 365
command prompts

safe mode with, 1101, 1104
troubleshooting with, 1106

commit charge notification, 834
commit charges, 782, 833–834
committed pages, 706–708, 710,

1156
common controls DLL, 365
Common Criteria (CC), 453
Common Internet File System (CIFS)

protocol, 898
Common Language Runtime

(CLR), 3
Common Log File System. See CLFS

(Common Log File System)
common logging file system driver

(Clfs.sys), 67

 crash dump analysis 1189

common model, CIM, 1156
compatible IDs, 634
complete memory dumps,

1126–1128, 1156
Complete PC Restore, 1106, 1110
completion ports. See I/O

completion ports
Compound TCP (CTCP), 1044
compression support, NTFS

file, directory, and volume basis,
951–952

nonsparse data compression,
954–956

sparse data compression, 952–954
sparse files, 956
types of compression, 927

concurrency values, 593–595
CoNDIS (connection-oriented NDIS),

1055, 1057–1060
condition variables, 195–196
confidentiality, IPSec for, 1050
configuration manager

altitude, 280
ASCII vs. Unicode storage, 281
bins, 269–272
blocks, 269
cell indexes, 271
cells, 269–272
defined, 266, 1157
dirty sector arrays, 279
hive syncs, 279
hives, loading of, 266
kernel handle tables, 268
key control blocks, 276–278, 281
key object type, 276
lazy write operations, 279
log hives, 278–279
memory mapping of hives,

272–276
namespace integration, 276
new keys created by applications,

277
operation flow control, 277–278
performance optimizations by,

280–281
registry filtering, 280
registry initialization during

boots, 1095
search methods of, 272
self-healing operations, 279
symbolic links, 268
Windows executive, as

component of, 59
ConnectEx function, 1009
connecting an interrupt object,

105–106
connections, network, 1007–1008
consent elevations, 529
consistency check stop codes,

1122–1123

console windows, DLLs supporting,
54

consumers, ETW, 207
container objects, 1157
containers, log system, 913–914
context switching

address space sharing within
processes, 764–765

address translation after, 764
architecture dependence of,

64–65
defined, 1157
mechanics of, 418
minimizing, goal of, 592–593
multiprocessor threads, 435
quantum ends allowing for, 407
thread scheduling requiring, 392

control areas of section objects,
796–798

control objects, 62, 1157
control sets, 1113–1114
controllers, ETW, 207
cookies, stack, 717–718
copy-on-write page protection,

718–719
copy-on-write shadow copies, 688
core model, CIM, 1157
counters

descriptions of, viewing, 25
disk performance, 665–666
performance. See performance

counters
CPs. See credential providers (CPs)
CPU Stress tool

CPU starvation boosts, watching,
428–430

priority boosts, viewing, 423–425
CPU utilization, 9, 382
CPUs

dynamic processor addition, 238
GetLogicalProcessorInformation

function, 395
ideal processors, 1162
Itanium. See IA64 CPUs
memory cache entries, 815
memory protection built into, 712
mode-related performance

counters, 17–19
multiple-core, 40. See also SMP

(symmetric multiprocessing)
portability between architectures,

38
privilege levels of, 16
rate limits on, 444–445
starvation, priority level boosts

for, 427–430
unified kernel, 41
utilization. See CPU utilization
virtual, 237–238

CR3 register, 764–765

crash analysis server, Microsoft, 121
crash dump analysis

!analyze command, 1149
!irp command, 1145–1147, 1150
!locks command, 1150
!process command, 1144,

1149–1150
!stacks command, 1150
!thread command, 1149–1150
!vm command, 1145
advanced, using manual

commands, 1144–1145
auxiliary computer dump

captures, 1130, 1148–1149
basic analysis overview, 1134
booting into debugging mode,

1148–1149
bucket ID entries, 1134
causes of crashes, 1119
checksums, pre-write, 1130
code corruption from drivers,

1143–1144
complete memory dumps,

1126–1128
deadlock detection, 1147
dedicated dump files, 1131
default generation of crash

dumps, 1125
defined, 1119
device driver secondary dumps,

1127
dps (dump pointer with symbols)

command, 1146–1147
Drive Verifier as an aid to, 1139
driver information, viewing,

1138–1139
exceptions, kernel-mode, 1119
fail fast policy of Windows, 1119
generation of dumps, mechanics

of, 1130–1131
hung systems, troubleshooting,

1147–1150
IRP analysis, 1146
Kd for, 1134
KeBugCheckEx function,

1120–1121
kernel memory dumps,

1126–1129
lm kv command, 1144
manually crashing hung systems,

1148
miniport drivers for dumps, 1130
missing dumps, 1150–1152
Notmyfault utility, 1134–1139
OCA (Online Crash Analysis),

1133–1134
parameter information with stop

codes, 1120–1121
pool corruption, 1140–1142
recursive faults, 1151

1190 crash dumps

crash dump analysis, continued
reporting settings, 1131–1132
sending reports to Microsoft,

1132
small memory dumps, 1127–1128
stack traces of executing threads,

1138, 1149–1150
stack trashes, 1145–1147
Startup And Recovery settings,

1125
stop codes, 1120–1123
troubleshooting crashes,

1124–1125
WER for. See WER (Windows Error

Reporting)
WinDbg for, 1134, 1137

crash dumps
analysis of. See crash dump

analysis
defined, 1157
system space for, 737

create global object privilege, 168
CreateEventEx for access checks,

159
CreateFile function

asynchronous I/O flag for, 563
file system driver operations after

calling, 902–906
mailslots with, 1024
named pipes with, 1024
read-ahead flags of, 876
write-through caching flag, 883

CreateProcess functions
address space setup steps, 357
debugging notifications, 363
decision tree for image types,

table of, 353
elevation check, 362
EPROCESS block setup, 354–355
executive objects vs. subsystem

process creation, 349
executive process object creation

stage, 354–359
executive process object

finalization, 359
handle table initialization, 355
initial process address space

creation, 355–356
initialization in new process

context stage, 363–370
job binding, 359
LdrpInitializeProcess, 369
NtCreateUserProcess with, 349,

351–352, 360
opening of executable images,

351–354
parameter validation and

conversion step, 350–351
parent process inheritance,

354–355

PEB setup, 357–358
performance options, applying,

355
prefetch checks, 363, 369
process creation overview,

348–349
PspAllocateProcess, 354–359
PspInsertProcess, 359
PspUserThreadStartup, 363–364
registry checks, 352, 367
section object creation, 351–352
single CPU flag, 358
stages, list of, 349
support images, 352
SxS setup, 361
table of, 344
thread execution start stage, 362
thread initialization stage,

359–360
thread seed initialization, 356
thread stack creation, 360
user vs. kernel mode, viewing,

367–368
validation checks, 361
viewing startup process, 366–370
virtualization check, 362
Windows subsystem operations

stage, 360–362
CreateThread function, 117–118,

380–381
Creator Group ID group, 462
Creator Owner ID group, 462
creator process IDs, 5–6
credential manger, 508
credential providers (CPs)

default and third-party, 514
defined, 455, 1157
logon role of, 79
user logon role, 516–517

critical code sections
advantages of, 194
condition variables, 195–196
defined, 171, 1157
EnterCriticalSection function,

187–188
kernel critical sections, 172
keyed events, 187–189
limitations of, 195
mutexes in, 194–195
semaphores in, 194–195
shared mode, 194
spinlocks for, 173–174, 177
SRW locks as replacement for, 196
user mode, staying in, 194

critical object stop codes, 1123
critical sections. See critical code

sections
critical worker threads, 199
CryptoAPI, 992–998
cryptographic services, 930

Csr functions, 58, 361
Csrss.exe. See also Windows

subsystem
boot process initialization of,

1095–1096
critical nature of, 1096
DLLs loaded by, 54
integrity levels of threads created

by, 494
process creation operations by,

361–362
process data structures of,

335–336
purpose of, 51–52
session manager launching of, 78
shutdowns, 1115–1118

CTCP TCP (Compound), 1044
Ctrl+Alt+Delete logon attention

beginning user logon, 516–517
desktop chosen by, 515
SAS implementation with, 516
trusted path functionality of, 453

CurrentControlSet subkey, 308–309

D
DACLs (discretionary access control

lists)
ACE flags, 487
ACEs of, 486–488
assignment to new objects,

490–491
Create APIs with, 159
discretionary access checks using,

495
inheritance mechanics, 490–492
security descriptors, in, 485–487
tokens, of, 476

daemon processes. See services
Data Collector Set Kernel Trace logs,

208–210
data execution prevention. See DEP

(data execution prevention)
data integrity, IPSec for, 1050
data origin authentication, 1050
data structures, process, 335–342
datagrams, 1008, 1013
data-link layer, OSI, 1003
DbgUi functions

DbgPrintEx function, 48–49
native application support,

217–218
Ntdll support for, 58
responsibilities of, 216

DCE (distributed computing
environment), 1014

DCOM (Distributed Component
Object Model), 1015, 1031–1032

DDE (Dynamic Data Exchange)
impersonation, 481

 device drivers 1191

deadlocks, 194, 1147–1150, 1157
debug objects, 216
debug ports, 216
debug programs privilege, 346, 506,

509–510
debugger commands, kernel. See

kernel debugger commands
debugging

BCD options for, 1079–1080
booting into debugging mode,

1148–1149
checked build version use, 47–49
commands, kernel. See kernel

debugger commands
copy-on-write with, 719
DbgPrintEx function, 48–49
DbgUi functions, 58
Debugging Tools. See Debugging

Tools for Windows
Driver Verifier, 604–606
HD content playback prohibition,

348
heap manager features for,

734–735
kernel data structures. See kernel

debugging
process creation checks, 363
tools for Windows. See

Debugging Tools for Windows
user mode. See user-mode

debugging
user-mode debugging framework

of executive, 60
Debugging Tools for Windows

attaching to user-mode
processes, 27

capabilities for kernel debugging,
28

command-line version, 28
crash dump files, 28
debugger extension commands,

29
dt command, 29–30
help file for, 29–30
invasive attachment option, 27
LiveKd tool with, 30–31
local kernel debugging, 28
noninvasive attachment option,

27
pageheap, 735
remote connection kernel

debugging, 28
source for latest versions, 27
stop codes, viewing, 1121. See

also stop codes
substructures, viewing, 30

decrementing, interlocked, 172–173
decryption, EFS, 998–999
default resource manager, TxR,

969–971

deferred deletion of objects, 160
deferred ready lists, 435
Deferred Ready thread execution

state, 400, 1157
defragmentation

API for, 931
fragmentation defined, 931
paging files, special tool for, 781
SuperFetch service use of,

826–827
tool for, 931–932

delayed worker threads, 199
delegation, privilege for, 506
deletion of objects, 148, 160
demand paging, 823, 1157
demand zero, 706–707
Deny logon rights, table of, 503
DEP (data execution prevention)

ATL framework compatibility, 716
BCD options for, 714–716
bugcheck codes from, 713–714
changing computer settings for,

714
defined, 713–714
PAE mode requirement, 714
pointer encoding, 717–718
registry values for exclusions, 714
self-disabling applications, 716
SetProcessDEPPolicy function, 716
software DEP, 717–718
stack cookies, 717–718
viewing, 715–717

dependencies, loading, 222–227
Dependency Walker tool, 52, 66
dereference segment threads, 701
desired access rights, 157, 1158
desktops

application, created by Winlogon,
515

association of windows with by
CreateProcess, 351

crashes or hangs, troubleshooting,
1112–1114

Desktop object type, 137, 148–149
watermarked desktop BCD

option, 1080
Winlogon desktop, 515

device driver functions, 58, 61,
547–550

device drivers
add-device routines, 548
APCs with, 113
architecture, place in, 37, 68–69
autostarting by SCM, 303–307
blue screens, data displayed in,

1120–1121
boot phase designation, 624
break on symbol load boot

option, 1089
bugcheck callbacks, 1120

bus. See bus drivers
cancel I/O routines, 549, 587–592
catalog files, 635–636
checked build version use, 47–49
class drivers, 543
completion ports for. See I/O

completion ports
crash dumps, secondary, 1127
crashes following new installations

of, 1124–1125
CRITICAL_STRUCTURE_

CORRUPTION crashes, work
arounds, 245–246

defined, 68, 538, 1158
detecting illegitimate

modifications, 247
development framework for.

See WDF (Windows Driver
Foundation)

device identifiers, 630
device objects, 550–555
DeviceIoControlFile API, 214–215
dispatch routines, 548, 568
DPC routines, 549
driver objects, 550–555
driver signing policies, 634–636
Driver Verifier tool. See Driver

Verifier
enumeration, PnP, 624–628
error logging routines, 550
fast dispatch routines, 549
file objects, 555–562
file system. See file system drivers

(FSDs)
filter. See filter drivers
forcing IRQL checking with Driver

Verifier, 802
FSDs. See file system drivers (FSDs)
function drivers. See function

drivers
functions, 58, 61, 547–550
Group values, 623–624
HAL, relationship to, 68
hardware device drivers, 68
I/O completion routines, 549
I/O requests to layered drivers,

578–587
I/O requests to single-layered

drivers, 572–578
INF files, 538–539, 632–634
initialization routines, 548
installation of, PnP, 632–636
IRP processing, 540
ISRs. See ISRs (interrupt service

routines)
kernel access with, 69
kernel address space access

dangers, 16
kernel-mode operation of, 68

1192 device enumeration

device drivers, continued
Kernel Patch Protection (KPP)

against, 244–246
kernel streaming filter drivers, 68
kernel-mode, categories of, 542
KMDF. See KMDF (Kernel-Mode

Driver Framework)
layering of, 543–544
listing loaded, 71
load and unload privilege, 507,

510
load order of, 623–624, 626–627,

631–632
low resources simulation by Driver

Verifier, 802
miniport drivers, 543
names of devices, displaying,

552–553, 1125
network redirectors and servers,

68
Non–Plug and Play. See Non–Plug

and Play drivers
opening devices, 555–562
PAE support for, 770, 819–820
paged pools for, 721
Plug and Play. See Plug and Play

drivers
pools used by, monitoring,

725–726
port drivers, 543
portability of, 68
printer drivers, 542
protected driver lists, 636
protocol drivers, 68
reason callbacks for crash dumps,

1120
registry key records of, 628
safe mode loading of, 1102–1103
services registry parameters, table

of, 283–287
spinlocks with, 174–175
stacks, viewing, 579
start I/O routines, 548
Start values, 623–624
startup errors, 307–308
structures of, 547–550
system thread creation, 76
system threads, mapping to,

76–77
system worker threads for,

198–199
system-shutdown notification

routines, 550
Tag values, 624
test-signing mode, 1080
types of, 68, 541–542
UMDF. See UMDF (User-Mode

Driver Framework)

unkillable processes, debugging,
590–592

unload routines, 550
VDDs (virtual device drivers), 542
viewing lists of, 546–547
WDM. See WDM (Windows Driver

Model) drivers
Windows Driver Foundation.

See WDF (Windows Driver
Foundation)

Windows Driver Model. See WDM
(Windows Driver Model) drivers

Wow64 I/O request issues,
214–215

device enumeration, 624–628
device IDs, 630, 1158
Device Manager

devnodes, viewing, 631
memory, viewing reserved, 821
viewing devices, 626

device objects
!devobj command, 671
creation by drivers, 550–551
defined, 550, 1158
enumeration of, 551
listing addresses of, 671
names of, viewing, 552
partition objects, 651–652
symbolic links for, 551
VPB data structures of, 670

device trees
defined, 1158
devnodes of, 1158
PnP manager creation of, 625–628

devices
device instance IDs. See DIIDs

(device instance IDs)
drivers for. See device drivers
registry key records of, 628

device-specific modules (DSMs),
648–649

devnodes
defined, 1158
device identifiers, 630
device objects of, 628–629
DIIDs (device instance IDs), 630
driver loading, 630–632
enumeration, use in, 625–627
FDOs (functional device objects),

629, 1161
FiDOs (filter device objects),

628–629, 1160–1161
IRP flow, 627, 629
PDOs (physical device objects),

628
unloaded drivers during boots,

632
viewing with !devnode command,

627–628

viewing with Device Manager, 631
DFS (Distributed File System) service,

1069–1071
Diagnostic Policy Service (DPS),

330–331
diagnostics, WDI for, 329–333
Differentiated Services Code Point

(DSCP), 1062
digital rights management, 346–348
DIIDs (device instance IDs), 630,

1158
direct I/O, 570–571
directories, file

Bypass Traverse Checking
privilege, 505, 509

index buffers, 950
nonresident attributes of, 950
restore files and directories

privilege, 507, 510
synchronization services privilege,

508
virtualization, UAC, 523–526

directories, object, 163
Directory object type, 137
Directory Services Restore mode,

1102
DirectX Win32k.sys wrappers, 54
dirty pages

cache manager flushes to disk,
541–542

mapped page writer, 700
modified page writer, 700
threshold, 885–886, 1158

DisconnectEx function, 1009
disconnecting an interrupt object,

105–106
discretionary access checks, 492,

494–497
discretionary access control

defined, 22, 1158
object protection, 458
TCSEC rating criteria for, 452

Disk (Disk.sys) driver, 647, 649–651
Disk Defragmenter, 931–932
disk groups, 1158
Disk Management MMC snap-in,

661–663, 665
disk storage drivers

class drivers, 647
class/port/miniport architecture

of, 647
C-LOOK algorithm, 647
Disk driver, 647
disk object representation,

650–651
DSMs (device-specific modules),

648–649
iSCSI drivers, 648
miniport drivers, 543, 647

 Driver Verifier 1193

MPIO (Multipath I/O) drivers,
648–649

port drivers, 647
request mechanics, 647
Scsiport.sys, 647
startup by Windows I/O manager,

647
symbolic links for disk objects,

650–651
Diskmon tool, 649
disks

basic. See basic disks
CD. See CD-ROM drives
defined, 645
defragmenting. See

defragmentation
diagnostics for, 332
drivers for. See disk storage

drivers
dynamic. See dynamic disks
IDs of, 652
integrity checking with Driver

Verifier, 606
letters for. See drive letters
monitoring disk activity, 649
names, backward compatibility

for, 650–651
objects representing, 650–651
partitions of. See partitions, disk
paths to, 648–649
ReadyDrive for H-HDD, 845–846
sectors of. See sectors
seek times, improvement with

prefetching, 823
setup for boot process, 1073–1074
virtual memory saved to. See

paging virtual memory to disks
volumes. See volumes

dispatch code, 101, 1158
dispatch routines, device driver, 548
dispatcher databases

defined, 1159
mechanics of, 404–405
multiprocessor thread scheduling

considerations, 434–435
dispatcher headers

debug active flag, 183
defined, 182–183, 1159
dt command, viewing with, 184
flags, table of, 185
KTHREAD field for, 372
Type field, 185

dispatcher objects
defined, 62, 178–179, 1159
dispatcher headers, 182–185
fast mutexes built on, 189
key traits of, 178
manual reset events, 182
nonsignaled state, 179
signaled state, 179–180

wait blocks, 183–186
WaitForMultipleObjects function,

178–179
WaitForSingleObject function,

178–179
dispatchers

defined, 1158–1159
headers, 1159
KMDF queue dispatch methods,

614
ready queues, 1159

dispatching
dispatcher locks, 594
exception. See exception

dispatching
fast dispatch routines, 549
interrupt. See interrupt

dispatching
objects for. See dispatcher objects
routines implementing. See

dispatchers
threads, 392
trap. See trap dispatching

display device drivers, 1122, 1159.
See also video

Distributed File System (DFS)
service, 1069–1071

distributed link-tracking service,
929–930

distributed transaction coordinator.
See DTC (distributed transaction
coordinator)

DLLs (dynamic-link libraries)
core subsystem, file names of, 37
defined, 4, 1159
HAL, 65
hotpatches to, 242–244
isolating application distributions

of, 364
known, opening during boots,

1095
loading by image loader, 222–227
mapped files, viewing as, 711
memory-mapping of, updating

issues from, 1096
randomization of image file

addresses, 759–760
subsystem DLLs, 36–37, 1175
translating API functions to

service calls, 54
user address space for, 757

DMA (direct memory access)
caching with, 872
defined, 1158
Driver Verifier, checking with, 606
I/O buffering, 570–571
pool corruption from, 1140

DMDiskManager, 661
DNS (Domain Name System)

client service account, 290–291

implementation of, 1039
NetBIOS names, 1027
PNRP advantages over, 1040
Winsock service provider for, 1011

domain controllers, 454–455
domains, 454–455, 473–474
DOS machine (VDM) processes, 54
DosDevices namespace, 167–168
doubly linked list ExInterlocked

functions, 176–177
DPC stacks, 787
DPC/dispatch level IRQLs, 97,

100–101, 106–107, 171–172
DPCs (deferred procedure calls)

boot process, stack allocation
during, 1090

clock IRQL with, 109
CPU time of, 75
defined, 1157
device interrupts, mechanics of,

573–574
DPC/dispatch IRQL (interrupt

request level), 97, 106–107
idle thread role for, 419
interrupt dispatching, 106–111
interrupt generation rules, table

of, 108
kernel use of, 109
monitoring with Process Explorer,

110–111
multiple processor issues, 108
object representation of, 107,

1157
purpose of, 107
queues, 107
restrictions requiring scheduler

thread changes, 100–101
routines for device drivers, 549
spinlocks with. See spinlocks
threaded, 110
unresponsiveness from, 110

DPS (Diagnostic Policy Service),
330–331

DPWS (Device Profile for Web
Services), 1033

drive letters
assigned by mounting. See

mounting devices
checking on boot, 673
mapping by network providers,

1036
registry storage of, 667–668

driver objects, 550–555, 1159
Driver Verifier

active items in free memory
checks, 802–803

boot initializations by, 1089
deadlock detection, 1147, 1157
defined, 1159

1194 drivers

Driver Verifier, continued
enabling system code write

protection, 1144
forcing IRQL checking, 802
I/O verification, 604–606
locked memory page tracking,

801
low resources simulation by, 802
MDL checks, 803
mechanics of verification, 799
memory management options,

799–803
overview of troubleshooting

crashes with, 1139
Pool Tracking, 801
purpose of, 799
registry settings for, 799
special pool option, 1141–1142
Special Pool verification, 799–801

drivers. See also device drivers
altitude filtering, 170
boot start driver issues, 1106
callbacks, 170
code corruption from, 1143–1144
detecting illegitimate

modifications, 247
driver host processes, 616
Driver Verifier tool. See Driver

Verifier
file system. See file system drivers

(FSDs)
function. See function drivers
image ranges of, 751–752
installation of, PnP, 632–636
IRP processing, 540
lightweight filter drivers (LWDs),

1057
NDIS, 1053–1054
pool corruption caused by,

1140–1142
protected driver lists, 636

drives, disk. See disks
drives, logical, 653–654
DSCP (Differentiated Services Code

Point), 1062
DSMs (device-specific modules),

648–649, 1158
dt nt!_kinterrupt command,

102–106
dt nt!_OBJECT_HEADER command,

144
dt nt!_OBJECT_INITIALIZER

command, 145
dt nt!_OBJECT_TYPE command, 145
DTC (distributed transaction

coordinator), 240, 969–970
dump analysis. See crash dump

analysis

Dumpbin utility, 738–739
DVDs, UDF (Universal Disk Format),

891
dynamic disks

advantages over basic disks, 656
defined, 652–653, 1159
LDM partitioning for, 656–660
MBR or GPT partitioning for, 660
volume manager for, 661

dynamic-link libraries. See DLLs
(dynamic-link libraries)

dynamic processor additions
HAL support for, 441
overview of, 441
thread synchronization for,

441–442
dynamic volumes, drive letters for,

667–668
dynamic worker threads, 199–200

E
ECN (Explicit Congestion

Notification), 1044
editions of Microsoft Windows. See

versions of Microsoft Windows
EFI (Extensible Firmware Interface)

Boot Manager, 1087
boot process mechanics,

1086–1087
GPT structure of, 654
hardware detection, 1087
System partition for, 1087
x64 vs. x86 boots, 1073

EFS (Encrypting File System)
algorithm choices with, 990–991
architecture of, 991
backups of encrypted files, 999
crashes during encryption,

997–998
CryptoAPI with, 992–998
DDF (Data Decryption Field),

994–1000
decrypted FEK caching, 998
decryption process, 998–999
disadvantages for system file

protection, 677
DRF (Data Recovery Field),

994–1000
Encrypt Contents command of

Properties dialog box, 990
FEKs (file encryption keys),

990–991
file data encryption mechanics,

995–996
first time file encryption, 993
key pair assignment, 990
key ring construction, 994–995
KSecDD functions for, 455

Lsasrv with, 992–999
Lsass management of, 992
NTFS file attribute supporting,

944
NTFS use of, 930
overview of, 990
private keys, 991
public keys, 991
read/write process by

applications, 999
Recovery Agents, 994–1000
steps for encryption, outline of,

997–998
symmetric file data encryption,

991
user master keys, 991
viewing with EFSDump, 1000

elevations, UAC, 528–533
EM64T, 38
Embedded Standard, Windows,

104–106
EMS (Emergency Management

Services), 1079, 1081
encryption

EFS. See EFS (Encrypting File
System)

hashes, 1161
NTFS support for, 930
RPC, types available for, 1017
symmetric algorithms for, 1176

Enlistment objects, KTM, 241
enumeration of devices, 624–628
enumeration-based driver loading,

623
environment subsystems

defined, 1159
DLLs loaded by Csrss.exe, 54
executive objects, relationship

to, 136
role of, 51
server processes, 36

environment variables, setting
during boots, 1095

EPROCESS blocks
!process command, displaying

with, 345
DeviceMap field, 164–167
protected process access bit,

347–348
setup by CreateProcess function,

354–355
structure of, 335–342

ERESOURCE. See executive resources
errata manager, 60, 1092–1093
error logging routines, device driver,

550
errors

access-denied errors, 909
blue screens, causing. See stop

codes

 Explicit Congestion Notification 1195

difficulties for recovery, 240
KTM for recovery. See KTM

(Kernel Transaction Manager)
memory pages not found. See

page faults
startup errors, 307–308
troubleshooting. See crash dump

analysis; debugging
Windows hardware error

architecture, 61
ETHREAD blocks

creation by PspAllocateThread,
360

defined, 370
displaying, 374
fields of, 370–372

ETW (Event Tracing for Windows)
application types with, 207
defined, 61
enabling of, 207
Etw functions, 58
kernel logger, enabling, 208–210
kernel trace classes for, 207–208

Event Log
CIM basis for, 321–322
permissions for, 511
provider for, 320

Event Logger, 511
Event object type, 137
Event Tracing for Windows. See ETW

(Event Tracing for Windows)
events

defined, 1159
gate primitives, 189
keyed events, 186–187
manual reset events, 182
priority level boosts after waits

for, 421–422
synchronization based, 179

Everyone group, 462
Evtlo callback routines, 607
exception dispatching

64-bit application, 116
architecture-independent

exceptions, 114
debug event for, 217
debug registry key values, 120
debuggers with, 116–117
defined, 1159
exception handling role of, 114
frame-based exception handlers,

115
interrupt numbers, 114–115
kernel traps, 115
mechanism of, 116–117
POSIX, 117
start-of-thread function, 117–118
structured exception handling,

114

unhandled exceptions, 117–120
vectored exception handling, 116
WER. See WER (Windows Error

Reporting)
Wow64, 212

exception handling
basic concepts of, 114
mechanism of, 116–117
predefined interrupt numbers

for, 114
RtlUserThreadStart setup for, 364
safe structured exception

handling, 717–718
exceptions

defined, 86, 1159
dispatching. See exception

dispatching
handling. See exception handling
kernel-mode, 1119
stop codes from, 1122
structured exception handling,

114
table of, 114–115
unhandled exceptions, 117–120

Exchange Server shadow copies,
688–689

executable files
accessed as data, then as

executable, 795–796
load offset for address ranges,

759
processes from. See processes
section objects for, 792

executive mutexes. See fast mutexes
executive objects

creation of, 136
defined, 135, 1160
environment subsystems,

relationship to, 136
table of, 136–137
Windows subsystem use of, 136

executive process object creation,
354–359

executive resources
boosts during executive resource

waits, 422–423
defined, 190, 1160
key traits of, 178
listing, 191
mechanism of, 191
synchronization, 179

executive system services,
1176–1177. See also native
system services

executive, Windows
ALPC, 60
APCs with, 112
boot process initialization of

subsystems, 1088–1093

cache manager, 59
common run-time library

functions of, 60
configuration manager, 59
defined, 37, 1160
device driver functions, 58
Driver Verifier, 61
errata manager, 60
Event Tracing for Windows, 61.

See also ETW (Event Tracing for
Windows)

fast mutex acquisition functions,
189

function prefixes, table of, 72–73
hypervisor library, 60
I/O manager component of. See

I/O manager
Interlocked functions, 176–177
internal memory functions of, 58
Iop functions of, 58
kernel debugger library, 60
kernel of. See kernel, Windows
kernel transaction manager, 60
logical prefetcher, 60. See also

logical prefetching
major components of, 59–60
memory manager as part of, 59
Ntoskrnl.exe, place in, 58
object manager. See object

manager
PnP manager, 59. See also Plug

and Play manager
power manager component. See

power manager
process and thread manager, 59
SRM (security reference monitor),

59
subsystem DLL function calls to,

53
SuperFetch, 60. See also

SuperFetch service
support routines, 60
system services functions, 58
user-mode debugging

framework, 60
WDK functions, 58
Windows diagnostic

infrastructure, 61
Windows Driver Model Windows

Management instrumentation
routines, 59

Windows hardware error
architecture, 61

exFAT, 894
ExInterlocked functions, 176–177
exit from system service operations,

364
Explicit Congestion Notification

(ECN), 1044

1196 explicit driver loading

explicit driver loading, 623
Explorer.exe, Userinit process for, 80
extended partitions, 653–654, 1160
Extensible Firmware Interface (EFI),

654

F
facilities, displaying, 47
fail fast policy of Windows, 1119
failed control sets, 1113–1114
fast dispatch routines, 549
fast I/O

defined, 1160
determination when used, 873
displaying file system driver

object table for, 564–565
performance counters, table of,

874–875
purpose of, 873
steps for I/O with, 873–874

fast LPC, 55
fast mutexes, 178, 189–190
fast user switching, 20, 840
FAT file systems

cluster sizes, table of, 892
exFAT, 894
FAT32, 894
file names, 945
format organization, 892
mechanics of, 891–894
recovery issues, 985–988

fault tolerance, 923. See also RAID
level 5

faults, page. See page faults
FCBs (file control blocks), 936
FCL. See Framework Class Library

(FCL)
FDOs (functional device objects),

1161
FEKs (file encryption keys), 990–991
fibers, 12
FiDOs (filter device objects),

1160–1161
file attributes, NTFS, 940–944,

948–951
file control blocks (FCBs), 936
file mapping objects, 12, 136, 1160.

See also section objects
file names, 255, 945–948
file objects

!fileobj command, 560
attributes, table of, 555–556
cached file pointers, 862
defined, 555
extension fields, table of, 556
File object type, 136
handles to devices, viewing,

559–560
NTFS interactions with, 935–936

opening of files, 557
security of, 558
shared underlying resources,

mechanics for, 560–561
symbolic links for, 556, 561–562
viewing data structures of, 557
viewing name mappings, 561–562

file records, NTFS, 938
file references, 1160
file system drivers (FSDs)

boot sectors, use of, 896
cache manager lazy writer, 906
cache responsibilities, 868, 897
caching file metadata with

mapping and pinning, 870–871
caching operations, 904–905
defined, 68, 542, 1160
dismount operations, 897
explicit file I/O operations,

902–906
file change notification support,

909
filter drivers. See file system filter

drivers
I/O manager interactions, 896
invocation path overview,

901–902
IRP handling, 903–906
kernel-mode drivers, differences

with standard, 895–896
LANMan, 897–899
layering of, 543–544
local, 896–897
mailslots with, 1025
memory manager modified and

mapped page writer, 906
memory manager page fault

handler, 906–907
named pipes with, 1025
neither I/O for, 571
NTFS driver, 934–936
operations of, 896–897
oplock protocol, 898–899
Raw, 896
remote, 897–899
requests to layered drivers,

578–587
shrinking engine with, 932–933
volume device objects, 896
volume I/O operations, 674–675
volume mounting, 670–674
volume recognition, 672–673, 896
VPBs with, 896
WDK required to build, 895–896
WebDAV, 897

file system filter drivers
defined, 68, 907, 1160
Filesystem Filter Manager, 907
Process Monitor as example of,

907–908

virus scanner use of, 907
file system runtime library, 61
file systems

access-denied errors, 909
buffer management by cache

manager, 871
buffer overflow errors, 910
caching for. See cache manager
CDFS, 890–891
clusters. See clusters, file
common logging. See CLFS

(Common Log File System)
common logging file system

driver (Clfs.sys), 67
defragmentation, 931–932
drivers. See file system drivers

(FSDs)
exFAT, 894
FAT. See FAT file systems
formats, 889–890, 1160
logical sequence numbers (LSNs),

853–854
metadata defined, 890
metadata update steps ensuring

recovery, 853
NTFS. See NTFS (NT File System)
overview of, 889–890
recovery from corruption of,

986–988
sectors of. See sectors
stop code for fatal errors, 1123
troubleshooting, 908–910
UDF (Universal Disk Format), 891
viewing registered, 900–901
Wow64 file system redirection,

212–213
FileInfo driver, 839
files

access-denied errors, 909
attributes, NTFS. See file

attributes, NTFS
CreateFile function, 557
creation of objects for, 136
file change notifications, 909
handles to open files, searching

for, 155–156
NTFS. See NTFS (NT File System)
object IDs for, 929–930
object security for, 460
objects, default, 146
reference numbers, NTFS, 942
restore files and directories

privilege, 507, 510
symbolic links, 167
virtualization, UAC, 523–526
writing to, access checks on, 460

filter drivers
defined, 543, 1161
file system. See file system filter

drivers

 hardware 1197

FVE (full volume encryption), 686
lightweight filter drivers (LWDs),

1057
loading order, 631–632
Plug and Play support, 621
purpose of, 69–70
UMDF reflectors, 617

filter engine, WFP, 1047
filtered admin tokens, 483–484
fingerprint readers, 79
firmware environment modify

privilege, 508
flags object header field, 139
flags, global, 200–202
flash memory, 844–846
floating point state, 101–102
foreground processes, 423–425,

1161
foreign volumes, 685
frame-based exception handlers,

115, 1161
frames, stack, 1175
Framework Class Library (FCL), 3
free builds of Windows, 1161
Free page state, 804
freeing virtual memory pages, 707
FRS (File Replication Service),

Windows, 956
FSDs. See file system drivers (FSDs)
Fsutil.exe

default resource manager queries,
971

NTFS volume information, 941
self-healing checks, 989
transaction queries, 968

FTP, WinInet API for, 1019
function drivers

defined, 69, 543, 1161
FDOs (functional device objects),

1161
loading order, 631–632

functional device objects. See FDOs
(functional device objects)

functions
cache copying, 869
fiber functions, 12
kernel support. See kernel support

functions
Ntdll.dll system support library,

57–58
prefixes, table of, 72–73
process-related, table of, 344–345
system services, 58
thread creation and manipulation,

table of, 380
time in, determining, 97–100
Windows API, 4

G
Gait Waiting thread execution state,

401
games, MMCSS with, 430–434
gates, 178, 189–190, 192–193
GDI (Graphics Device Interface)

batched operations, 55
direct access for, 55
functions for, 54–55
GDI/User objects, 135
service descriptor tables for,

130–133
Win32k.sys, contained in, 54
windowing and graphics system,

37
GDTs (global descriptor tables), 64
Get process functions, table of,

344–345
GetThreadContext function, 12
Gflags.exe tool

enabling special pool with, 1141
image loader, viewing debug

output from, 221
viewing and editing flags,

200–202
global clouds, P2P, 1040
global flags, 200–202
global replacement policies, 828
GPT partitioning, 654, 660
granted access rights. See also

access control
defined, 1161
granted-access masks, 495
mechanics of, 157

granularity of memory allocations,
708

graphics device drivers, 54
Graphics Device Interface. See GDI

(Graphics Device Interface)
guarded mutexes, 178, 189–190
GUI permissions editors, 498–499
GUID Partition Table. See GPT

partitioning

H
HAL (hardware abstraction layer)

architecture, role in, 65–67
BCD options for, 1081
bus driver, acting as, 624–625
checked build version, 49
defined, 37, 1161
determining version running, 66
device drivers, interaction with, 68
DLLs for, 37, 65
driver verifier option, 604
dynamic processor support, 441
Hal.dll, 1075
I/O system component, as a, 539

IRQ mapping IRQLs, 96
kernel dependencies, viewing, 66
lazy IRQL, 93
NSIS miniport driver functions

for, 1004
portability role of, 38–39
purpose of, 65
system space for, 737, 752
undocumented interfaces,

viewing, 72–73
handles

!devhandles command, 155–156
!handle command, 154
!htrace command, 156
access masks of, 153
accessing objects without, 150
advantages of, 150
counters for, 159–161
creation of, 149
debugging mechanisms, 156
defined, 149, 1161
duplication of, 149
flags of, 153
granted access rights, 157
Handle count object header field,

139
handle information object

subheader, 139–140
Handle tool, 151
Handle Tracing Database, 156
Handle Viewer, 133
inheritance of, 149, 153
kernel handle tables, 154–156
leaks, 156
names of objects with, 163
object, 1169
object manager rights to, 150
Object Reference Tracing, 156
object retention, role in, 159–161
okay to close object method, 148
open file handles, searching for,

155–156
per process maximum, 151–153
processes, lists for, 5, 13
protect from close flag, 153
session namespaces, viewing,

168–169
structure of, 153
subhandle tables, 152
tables for, 150–152, 1161
Testlimit tool for, 152–153
user mode process requirement

for, 149
viewing open, 150–151

hard disks. See disks
hard links, 923–924
hardware

crashes following new installations
of, 1124–1125

disk drives. See disks

1198 hardware abstraction layer

hardware, continued
hardware IDs, 634
HKEY_LOCAL_MACHINE\

HARDWARE subkey, 258
interrupt processing. See interrupt

dispatching
kernel support role, 64–65
memory. See physical memory
processors. See CPUs
stop codes for, 1123
Windows hardware error

architecture, 61
hardware abstraction layer. See HAL

(hardware abstraction layer)
hardware device drivers, 68, 1161.

See also device drivers
Hardware Installation Wizard, 632
hashes, 1161
headers, object. See object headers
heap manager

affinity manager of LFH, 733
allocation management, 730–731
architecture of, 730
C runtime use of, 730
core functionality, 731
debugging features, 734–735
defined, 1161–1162
front end layer, 731
functions for, 730
granularity of allocations by,

729–730
LFHs (Low Fragmentation Heaps),

732–733
locking heaps, 732
pageheap, debugging with, 735
purpose of, 729–730
security features, 733–734
structure of, 731
synchronization of heaps, 732

heaps
address ranges, viewing, 758
allocation management, 730–731
block header dumps, 734
buckets, 732–733
creation by processes, 730
default process heaps, 730
defined, 1161
destruction by processes, 730
functions for, 730
HeapWalk block enumeration

function, 732
IDs, displaying, 759
image loader initialization of,

220, 222
kernel mode. See pools, memory
LFHs (Low Fragmentation Heaps),

732–733
locking, 732
manager for. See heap manager

memory-mapped, issues with,
730–731

multiprocessor issues, 732
pageheap, debugging with, 735
randomization by ASLR, 760
security issues of, 733–734
synchronization, 732
system. See pools, memory

H-HDDs, 844–845
hibernation, 840, 1078
hierarchy prioritization strategy for

I/O, 599
high-IRQL synchronization

ExInterlocked functions, 176–177
fast mutexes, 189–190
Interlocked functions, 172–173
kernel critical sections, 172
motivation for, 171–172
overview of, 171–172
queued spinlocks, 175–176
spinlocks. See spinlocks

hives, registry
!reg hivelist, 274
ASCII vs. Unicode storage, 281
base blocks, 269
bins, 269–272
blocks, 269
cell indexes, 271
cells, 269–272
defined, 1162
dirty sector arrays, 279
handles, viewing, 268
key cell type, 270
lazy write operations, 279
loading with Regedit, 267
log hives, 278–279
memory mapping, 272–276
memory usage, viewing, 274
paged pool usage, viewing with

!reg dumppool, 273
root keys of, 266
security-descriptor cell type, 270
size limits of, 268
structure of, 266, 269–272
subkey cell type, 270
symbolic links, 268
syncs, 279
system hive corruption, 1112
table of registry and file paths,

267
value cell type, 270
value-list cell type, 270
version numbers, 269
volatile, 266

HKEY_CLASSES_ROOT (HKCR), 255
HKEY_CURRENT_CONFIGURATION

(HKCC), 259
HKEY_CURRENT_USER (HKCU), 253
HKEY_LOCAL_MACHINE (HKLM)

BCD subkey, 255–257

COMPONENTS subkey, 257–258
CurrentControlSet subkey,

308–309
defined, 23, 255
HARDWARE subkey, 258
hive file paths for, table of, 267
SAM subkey, 258
SECURITY subkey, 258
Services subkey, 282–287
SOFTWARE subkey, 258
SYSTEM subkey, 259, 268

HKEY_PERFORMANCE_DATA
(HKPD), 259

HKEY_USERS (HKU)
\DEFAULT, 253
hive file paths for, table of, 267
purpose of, 253
user profiles, 254

hooks to keystrokes, 516
host-based virtualization, 228
hotfixes, pending file moves for,

1096
hotpatches, 242–244
HTTP (Hypertext Transport Protocol)

1.0, WinInet API for, 1019
cache functions, 1020–1021
HTTP Server API, 1019–1021
Http.sys, 1019–1020
RPC transport interface for, 1016
serving. See Web servers
WebDAV miniport driver, 897
WinHTTP, 1019

hung systems, troubleshooting,
1147–1150

HungAppTimeout registry values,
1115–1116

hypercritical worker threads, 199
hyperspace, 737, 1162
hyperthreading

defined, 40
ideal processor numbers with, 440
idling processors, thread

preferences while, 443
pause assembly instructions, 174
viewing information for, 436

Hyper-V
address spaces for, 238–239
AMD vs. Intel implementations,

232
API library for, 232
architecture of, 230–231
child partitions, 230, 232–234
emulated devices, 235
enlightened storage I/O, 236
enlightenments, 229, 233–234
GPA (guest physical address)

space, 238–239
Guest Virtual Address Spaces,

232–233
hardware device support, 234–237

 idle system polling behavior 1199

hardware virtualization, 228
hypervisor architecture, 228
hypervisor component, 232
hypervisor stack, 230–231
I/O architecture, 235–236
integration components, 235–236
intercept mechanism, 239
memory, 238–239
partitions overview, 230
patch issues, 245
purpose of, 229
root partitions, 230–232
scheduler, 237
slowness of installations, 235
SPA (system physical address)

space, 238–239
synthetic devices, 235–237
VDevs (virtual devices), 234–235
VID (VM infrastructure driver), 232
virtual machine (VM) service, 231
virtual processors, 237–238
virtualization overview, 228
VMBus, 236–237
VSCs (virtualization service

clients), 233, 236–237
VSPs (virtualization service

providers), 232, 236–237
Windows Server Core, 231
worker processes, 231–232,

234–235
hypervisors. See also Hyper-V

BCD options for, 1081
defined, 1162
library, 60

I
I/O completion ports

advantages of, 592–593
completion status tests, 563
concurrency values, 593–595
creating, 595
defined, 1156
IoCompletion objects, 593
lock contention issues, 594
mechanics of, 593–597
notification modes, 597–598
queue basis of, 595–597
scalability from, 43
thread agnostic I/O, 587, 595
worker factory use of, 388

I/O completion routines, 1162
I/O manager

advantages of, 540
boots, initializations during,

1091–1093
cancellations, I/O, 587–592
defined, 538

device driver dispatch routines,
548

device load order role, 626
device objects, 550–555
driver abstraction, 540
driver objects, 550–555
driver verifier option, 604
drivers, layering of, 543–544
error logging routines of device

drivers, 550
fast I/O with, 565, 873–875
file object security, 460
file system driver interactions, 896
initialization routines, device

driver, 548
IRPs, 539–540, 570–571
MDLs (memory descriptor lists),

570–571
neither I/O, 571
NTFS file system driver

interactions with, 934–935
opening files, 557–561
packet-driven nature of, 539
requests to layered drivers,

578–587
requests to single-layered drivers,

572–578
shutdowns, 1117–1118
start I/O routines, 548
Start value for, 623–624
UMDF management, 617
volume mounting role, 670–671
Windows executive, as

component of, 59
I/O priorities

hierarchy prioritization strategy,
599

idle prioritization strategy, 599
purpose of, 598
storage port driver strategy, 600
system storage driver strategy,

600–601
table of, 598–599
viewing, 601–602

I/O processing
asynchronous I/O, 563
bandwidth reservation, 603–604
buffered I/O, 570–571
caching files, 565–566
cancellations, I/O, 587–592
completion ports. See I/O

completion ports
direct I/O, 570–571
fast I/O, 564–565
I/O completion, 575–577
in-paging I/O, 778–779
interrupts, mechanics of, 573–574
IoCompletion objects, 593. See

also I/O completion ports

IRPs in, 566–571
locked user buffers, 587
mapped file I/O, 565–566
neither I/O, 571
priorities, 598–603
requests to layered drivers,

578–587
requests to single-layered drivers,

572–578
scatter/gather I/O, 566
scheduled file I/O, 603–604
status blocks, 575
synchronization issues, 577–578
synchronous I/O, 563, 572–578
thread agnostic I/O, 587
thread termination cancellations,

589–592
types of I/O, 563–571
unkillable processes, debugging,

590–592
I/O subsystem API, 1162
I/O system. See also I/O processing

components of, 537–539
defined, 1162
design goals of, 537–538
device drivers. See device drivers
file abstraction, 540–541
file objects, 555–562
I/O completion routines, 549
INF files, 538–539
KMDF. See KMDF (Kernel-Mode

Driver Framework)
manager. See I/O manager
miniport drivers, 543
packet-driven nature of, 539
Plug and Play. See Plug and Play

manager
port drivers, 543
power management with. See

power manager
typical processing, 540–541
UMDF. See UMDF (User-Mode

Driver Framework)
I/O, explicit file, 902–906
IA64 CPUs

address translation, 772
page sizes for, 705
versions of Windows for, 44–45
virtual address space layouts, 746
Wow64 restrictions, 215

IDE, Ataport.sys, 647
ideal processors, 440–441, 1162
IDL (Interface Definition Language),

1016
idle prioritization strategy for I/O,

599
idle process, 75
idle summary masks, 434
idle system polling behavior, 909

1200 idle threads

idle threads, 418–419
IDTs (interrupt dispatch tables)

defined, 1163
entry numbers, 89
indexes for, 88
interrupt objects, 101
one per processor rule, 89
viewing, 88–89

IEEE 1394 (FireWire), UMDF with,
616

IIS (Internet Information Server),
1019

IKE (Internet Key Exchange),
1051–1052

image files
accessed as data, then as

executable, 795–796
address ranges for, displaying, 758
DLLs. See DLLs (dynamic-link

libraries)
image bias computation, 759
large address space awareness,

699, 739, 746
loading. See image loader
randomization of, 759–760

image global flags, 200–202
image loader

behavior of, 220
bound import tables, 226
defined, 1162
dependencies of DLLs, loading,

222–227
flags, loader data table entry, 225
forwarder entries, 226
import parsing steps, 226–227
initialization steps of, 222
Ldr functions, 58
LDR_DATA_TABLE_ENTRY

structures, 223–225
linked DLLs, loading, 222, 226–227
loaded module database, 223–225
loader data table entries, 223–225
loader data table entry fields,

table of, 223
loader snaps, 221
mapped files, 710
Ntdll.dll, residence in, 220
PEB_LDR_DATA, 223–225
post-process initialization steps,

227–228
purpose of, 220
relocation, 226
tasks of, 220
viewing debug output from, 221

impersonation
advantages of, 480–481
client/server model with, 480–483
defined, 458, 1162
disadvantages of, 481

mechanisms available for, 481
modifiers for settings, 482
named pipes, for, 1022
privilege for, 506
RPC, for, 1017
servers, limitations on use of,

482–483
spoofing issues, 482–483
SQOS levels, 482
system global data location okay

for, 522
Winsock functions for, 1009

indexing NTFS files, 923, 960–961
INF files, 538–539, 632–634,

1064–1065
init once. See run once initialization
initialization routines, device driver,

548, 607, 1162–1163
Initialized thread execution state,

401
in-page I/O operations, 778–779,

1163
input/output. See I/O system
instack queued spinlocks, 176
InstallShield, 64-bit Windows issues,

215
instance IDs, PnP, 630
instancing namespaces, 1163
integrity levels

access of processes based on, 492
AccessCheck tool, displaying with,

158
default policies, 492
defined, 1163
explicit object integrity levels,

471–472
implicit object integrity levels, 471
launching programs in Low, 480
mandatory integrity checks, 492
object, viewing, 472–473
objects, of, 471–473
PMIE example, 466–470
process propagation of, 466
purpose of, 459
SIDs for, 464–465
spoofing prevention, 482–483
UIPI with, 493–494
viewing for processes, 465–466

integrity of data, IPSec for, 1050
intelligent read-ahead

defined, 1163
mechanics of, 875–876
preventing, 876
private cache maps, 1171
viewing with Process Monitor,

878–883
Interactive Services Detection

service, 299–300
intercepts, hypervisor management

of, 239

Interface Definition Language (IDL),
1016

Interlocked functions, 172–173
Internet APIs. See also Web access

APIs
FTP, 1019
HTTP APIs. See HTTP (Hypertext

Transport Protocol)
Internet Explorer

memory address ranges, viewing
for, 758

Protected Mode integrity levels,
466–470

Internet Key Exchange (IKE),
1051–1052

interrupt controllers
APICs, 89–91
IA64 systems, 90
IRQ queries, 88
IRQ to IDT mapping, 89
MP Specification, 89–90
PICs, 89–91
purpose of, 88
routing algorithms, 89–90
slaves, 89–90
state storage by KPCR, 62–64
x64 systems, 89–90
x86 systems, 89–90

interrupt dispatching
APC interrupts, 112–114
APICs, 89–91
connecting an interrupt object,

105–106
disconnecting an interrupt object,

105–106
dispatch code, 101
dispatchers defined, 1163
DPC interrupts, 106–111
dt nt!_kinterrupt command,

102–106
floating point state, 101–102
hardware interrupt overview,

88–89
I/O device generated of

interrupts, 87
interrupt objects, 101–106
IRQ queries, 88
IRQLs. See IRQLs (interrupt

request levels)
IRQs. See IRQs (interrupt requests)
ISRs, handing control to, 87
KiInterruptDispatch, 101
KiInterruptTemplate, 101
masked interrupts, 93–94
message-based interrupts, 106
overview of trap dispatching,

85–87
PICs, 89–91
Plug and Play manager with, 105

 jobs 1201

real-time processing issues,
104–106

service routines. See ISRs
(interrupt service routines)

software generated interrupts, 87
software interrupt overview, 106
tables. See IDTs (interrupt dispatch

tables)
trap handler installation, 87
x64 systems, 89–90
x86 systems, 89–90

interrupt objects, 101–106, 1163
interrupt request levels. See IRQLs

(interrupt request levels)
interrupt service routines. See ISRs

(interrupt service routines)
interrupts

APC interrupts, 112–114
controllers. See interrupt

controllers
defined, 86, 1163
device-based, mechanics of,

573–574
disabling by kernel, 87
dispatching. See interrupt

dispatching
dt nt!_kinterrupt command,

102–106
idle thread role for, 419
IoConnectInterruptEx API, 106
KINTERRUPT objects, 102,

174–175
masked, 93–94, 172
message-based interrupts, 106
request levels. See IRQLs

(interrupt request levels)
requests. See IRQs (interrupt

requests)
routing algorithms, 89–90
service routines. See ISRs

(interrupt service routines)
viewing objects associated with,

102–106
intrinsic functions, 172–173
IoCompletion objects, 137, 593
IoConnectInterruptEx API, 106
IoQueueWork functions, 198
IP filtering, 1049–1050
IPIs (interprocessor interrupts), 96,

1163
IPSec (Internet Protocol Security),

1050–1052, 1054
IPv4, 1044–1045
IPv6

HTTP Server API support for, 1019
Next Generation TCP/IP Stack for,

1044–1045
Peer Name Resolution Protocol

(PNRP), 1039–1041

SMB (Server Message Block)
protocol with, 1025

Winsock support for, 1007
WSK (Winsock Kernel) support

for, 1004
IrDA, Winsock Helper library for,

1011
IRPs (I/O request packets)

!irp debugger command, 570
associated, 584–585
buffer management, 570–571
cancel I/O routines, 549
components of, 568
crash dump analysis of, 1146,

1150
defined, 1162
device driver dispatch routines,

548
device trees, flow through, 627
examining, 581–582
file system driver handling of,

903–906
function codes, 568
headers of, 568
I/O completion, 575
I/O manager creation of, 539–540
IRP stack locations, 579
KMDF model with, 612–614
lists of, 569
mechanics of, 566–567
monitoring with Driver Verifier,

606
stack locations, 568–570
start I/O routines, 548
thread termination cancellations,

589–592
uncompleted, 581–582

IRQLs (interrupt request levels)
!irql command, 95
APC level, 97
clock level, 97, 109
correctable machine check levels,

97
crashes due to, 101
defined, 92, 1163–1164
device levels, 97
DPC/dispatch level, 97, 100–101,

106–107, 171–172
fast mutex raising of, 189
forcing IRQL checking with Driver

Verifier, 802
high level, 96
high, crashing systems with,

1135–1137
high, synchronization. See high-

IRQL synchronization
interprocessor interrupt level, 96
interrupt objects, 101–106
IPIs, 96

kernel-mode thread effects, 94
lazy IRQL, 93, 1165
levels, list of predefined, 96–97
levels, purposes of specific, 96
low, synchronization. See low-

IRQL synchronization
mapping IRQs to, 96
masked interrupts, 93–94, 172
multiprocessor system issues,

434–435
numbers for, 92
page fault stop codes, 1121
passive level, 97
PCR, values saved to, 95
power fail level, 96
processor IRQL settings, 93
profile level, 97
servicing order, 92–93
synchronization dependence on,

171–172
system worker threads for

lowering, 198
thread scheduling, raising for, 405
threads, of, 399
user-mode code level, 96

IRQs (interrupt requests)
defined, 1163
mapping IRQLs to, 96
mapping to IDTs, 89
queries for, 88
real-time processing issues,

104–106
verifying with Device Manager,

103–104
iSCSI drivers, 648
isolation of services, 294–300
isolation of transactions by TxR,

966–968
ISRs (interrupt service routines)

connecting an interrupt object,
105–106

control, transfers to, 87
defined, 1164
device driver use of, 548–549
device interrupts, mechanics of,

573–574
interrupt objects, 101–106
Plug and Play manager with, 105
purpose of, 87

Itanium processors. See IA64 CPUs

J
jobs

!job command, 447
binding during process creation,

359
default working sets, 447
defined, 13
job objects defined, 445, 1164

1202 Joliet disk format

jobs, continued
maximum active processes limit,

446
object type for, 136
per-process user-mode CPU time

limits, 446
process priority class, 447
processor affinity setting, 447
scheduling class, 446
security limits, 447
user-interface limits, 447
user-mode CPU time limits, 446
viewing names and processes of,

447–449
virtual memory limits, 447
Windows API functions for, table

of, 446
Joliet disk format, 890–891
journaling, 1164
junctions, 926

K
Kd.exe, 28, 1134
Ke spinlock functions, 174–175
KeAcquireStackQueuedSpinLock,

176
KeBugCheckEx function, 87,

1120–1121
KeInitThread, 360
Kenrate tool, 97–100
Kerberos authentication

domains, user logons to, 517
IPSec support for, 1051
mechanics of logons, 518
purpose of, 513

kernel debugger commands
!analyze command, 1149
!apic command, 91
!dbgprint command, 49
!defwrites command, 886
!devhandles command, 155–156
!devnode command, 627
!devstack command, 579
!drvobj command, 671
!exqueue command, 200
!gflag command, 202
!handle command, 133, 154
!heap, 734
!htrace, 156
!idt command, 88–89, 102
!ioapic command, 91
!irp command, 1145–1147
!irql command, 95
!job command, 447
!locks command, 191
!memusage command, 807
!miniports, 1055
!numa command, 437

!object command, 144, 489,
552–553

!obtrace, 156
!pcr command, 62–64, 95
!pic command, 91
!popolicy command, 642
!process command, 144, 345,

447–449, 765, 1144
!qlocks command, 176
!ready command, 391
!reg dumppool, 273
!reg findkcb, 278
!reg hivelist, 274
!reg kcb, 278
!reg openkeys, 278
!teb command, 378
!thread command, 184, 376, 569
!timer command, 109
!token command, 478
!vm command, 703, 1145
!wdfkd.wdfldr, 608
!wsle, 830
defined, 29
lm kv, 547

kernel debugging
! commands. See kernel debugger

commands
attaching Debugging Tools to

user-mode processes, 27
booting into debugging mode,

1148–1149
crash dump files, 28
crashes, viewing with host

debuggers, 1151
debug events, table of, 216–217
debugger extension commands,

29
defined, 26
dt command, 29–30
handle tables, viewing, 154
help file for, 29–30
KPCR, displaying, 62–64
LiveKd tool for, 30–31
local, 28
remote connection method, 28
security descriptors, viewing,

488–490
substructures, viewing, 30
symbol files, 26–27
tools for, 26
Windows executive library, 60

kernel dispatcher objects. See
dispatcher objects

kernel event tracing, 207–210
kernel handle tables, 1164
kernel logger. See KT Kernel Logger
Kernel Memory counters, 702
kernel memory dumps, 1126–1129,

1164

kernel mode
access dangers, 16
address space of, 16
architecture, role in system, 34–35
cache copying functions, 869
code signing (KMCS), 17
components of Windows, 37
defined, 16, 1164
device drivers. See kernel-mode

device drivers
executive, Windows, 37
HAL (hardware abstraction layer),

37
handle tables for, 154–156
heaps. See pools, memory
KMDF. See KMDF (Kernel-Mode

Driver Framework)
monitoring in Task Manager, 18
Ntdll.dll system support library,

calls from, 57–58
performance counters for, 17–19
switching with user mode, 17
system service dispatching,

127–129
system threads. See system

threads
time in, determining, 97–100
windowing and graphics system,

37
Kernel-Mode Driver Framework

(KMDF). See KMDF (Kernel
Mode Driver Framework)

kernel objects, 135, 1164–1165
Kernel Patch Protection (KPP),

244–246
Kernel Profiler tool, 97–100
kernel profiling, 97
kernel queue worker factory

support, 388
Kernel Security Device Driver. See

KSecDD (Kernel Security Device
Driver)

kernel stacks, 786–787, 816
kernel streaming filter drivers, 68,

1165
kernel support functions, 4
kernel transaction manager. See

KTM (Kernel Transaction
Manager)

kernel trap handlers. See trap
dispatching

kernel variables, 342–343, 379
kernel, Windows

boot process initialization of
subsystems, 1088–1093

compatibility between Windows
versions, 45

context switching, 64–65
control objects, 62

 KTM 1203

debuggers in. See kernel
debugging

defined, 37, 1164
dispatcher objects. See dispatcher

objects
executive objects, relationship

to, 61
handle tables for, 154–156
hardware support role, 64–65
kernel-mode components of

Windows, 37
KPCR. See KPCR (kernel processor

control region)
KPRCB. See KPRCB (kernel

processor control block)
microkernel-based operating

systems, 34–35
mode for processes. See kernel

mode
MS-DOS support, 64
Ntoskrnl.exe binaries links, 67
objects, 61–62
processor control region, 62–64
protected process support, 347
structure of, 61
transaction manager. See KTM

(Kernel Transaction Manager)
unified for multiple CPUs, 41
user-written code for, using

device drivers, 69
variables. See kernel variables

Kernel32.dll
CreateThread function, 380–381
mailslots implementation by,

1024–1026
named pipes implementation by,

1024–1026
process initializing operations,

360–362
kernel-mode device drivers

bus drivers, 542–543
C programming language for, 550
categories of, 542
class drivers, 543
defined, 1165
file objects, 555–562
file system. See file system drivers

(FSDs)
filter drivers, 543
function drivers, 543
I/O requests to single-layered

drivers, 572–578
layering of, 543–544
listing, 546
lm kv command, listing with, 1144
miniport drivers, 543
Non–Plug and Play drivers, 542,

550
Plug and Play drivers, 542
port drivers, 543

structures of, 547–550
WDM. See WDM (Windows Driver

Model) drivers
kernel-mode graphics drivers, 1165
kernel-mode system threads. See

system threads
KeServiceDescriptorTable, 130–133
KeSynchronizeExecution, 578
key objects, 137, 276, 1165
keyed events, 186–189, 1165
keys, encryption, 991
keys, registry

cell indexes, 271
control blocks, 1165
defined, 251, 1165
HKEY_CLASSES_ROOT, 255
HKEY_CURRENT_CONFIGURATION

(HKCC), 259
HKEY_CURRENT_USER, 253
HKEY_LOCAL_MACHINE. See

HKEY_LOCAL_MACHINE
(HKLM)

HKEY_PERFORMANCE_DATA
(HKPD), 259

HKEY_USERS (HKU), 253–254
key cell type, 270
key control blocks, 276–278, 281
key object type, 276–277
naming convention, 251
new, created by applications, 277
object namespace form of key

names, 276
root keys. See root keys, registry
subkeys, 251
symbolic links, 268
value types, 251–252

KINTERRUPT, 102, 174–175
KiThreadStartup, 363
KiWaitTest function, 179
KMCS (kernel-mode code signing),

17, 246–247
KMDF (Kernel-Mode Driver

Framework)
add-device routines, 607
attributes, table of, 612
callback routines for events,

607–608, 614
data model for, 608–612
defined, 70
dispatch methods for queues, 614
displaying drivers, 608
events, 607–608
Evtlo callback routines, 607
handler tasks, 614
handlers for IRPs, 612–613
hierarchy of, 609–611
I/O model, 612–614
initialization routines, 607
IRPs with, 612–614
object contexts, 611–612

object management, 608–609
object types, table of, 609–610
power management states, 614
queues for, 613–614
structure of drivers for, 607
suitability of, 607
WDM, relation to, 607, 612

KOBJECTS enumeration, 185
KPCR (kernel processor control

region), 62–64
KPP (Kernel Patch Protection),

244–246
KPRCB (kernel processor control

block)
cache mapping and pinning fields,

871
cache MDL activity fields, 872
cache read activity fields, 869–870
fast I/O fields, 874–875
flush operation fields, 883
lazy write fields, 877
mechanism of, 62–64
thread-scheduling fields, 405

KPROCESS blocks
creation of, 356
KeInitializeProcess, 356
page directories addresses, 764
structure of, 338–340

KSecDD (Kernel Security Device
Driver), 455

KT Kernel Logger, 207–210
KTHREAD blocks

defined, 372
displaying, 375
fields, table of, 372–373
initialization during process

creation, 360
system service pointer field, 372

KTM (Kernel Transaction Manager)
APIs for, 260
CommitTransaction function, 261
CreateTransaction function, 260
deferred deletion of objects, 160
defined, 60, 1165
DTC, enabling of, 240
Enlistment objects, 241
Ktmutil.exe tool for viewing, 241
logging operations, 260–261
NTFS use of, 240
purpose of, 240
resource manager (RM), 261–262
Resource Manager (RM) objects,

241
Tm object types, 137
Transaction Manager (TM)

objects, 241
Transaction objects, 241
TxF with, 240, 973
TxR with, 240

1204 languages, single worldwide binary for

L
languages, single worldwide binary

for, 24
LANMan, 897–899
large address space aware images,

699, 739, 746
large pages, 705–706
last known good control sets

BCD option for booting, 1082
defined, 1165
HKLM\SYSTEM subkey, 259
mechanics of, 1101
SCM management of, 308–309
screen crashes during boots, for

correction of, 1113
last processor numbers, 440
latency, striped volumes for

reducing, 663–664
layered design of Windows, 38
lazy evaluation, 719, 787
lazy IRQL, 93, 1165
lazy writing, 877–883, 906, 1165
LCNs (logical cluster numbers)

data runs with, 950–951
defined, 1166
physical addresses, conversion

to, 938
VCN-to-LCN mapping, 939–940

LDAP (Lightweight Directory Access
Protocol), 1011, 1067

LDM (Logical Disk Manager)
partitioning

advantages of, 656
database for, 656–657
GPT or MBR with, 660
LDMDump, 658
viewing databases, 658
volume manager for, 661

Ldr. See image loader
LdrpInitializeProcess, 369
LDTs (local descriptor tables), 64
legacy drivers, 1166
LFHs (Low Fragmentation Heaps),

732–733
LFS (log file service), 976–978, 981
licensing, determining features

enabled by, 46–47
lightweight filter drivers (LWDs),

1057
line-based interrupts, 106
Link-Layer Topology Discovery

(LLTD), 1043
link-local clouds, P2P, 1040
Link-Local Multicast Name

Resolution (LLMNR), 1039
links, hard, 923–924
lists, ExInterlocked functions for,

176–177
LiveKd tool, 30–31, 1129

LKG. See last known good control
sets

LLMNR (Link-Local Multicast Name
Resolution), 1039

LLTD (Link-Layer Topology
Discovery), 1043

lm kv command, 1144
load and unload device drivers

privilege, 510
load balancing, network, 1068–1069
loaded module database, 223–225
loader data table entries, 223–225
loader snaps, 221
loader, image. See image loader
local FDSs, 896–897, 1166
Local group, SID for, 462
local kernel debugging, 28, 1166
local procedure calls

advanced. See ALPCs (Advanced
Local Procedure Calls)

fast. See fast LPC
LPCs replaced by ALPCs, 203

local replacement policies, 828
local RPC, 1017–1018
local security authentication server

process. See LSASS (local
security authentication server
process)

Local Security Authority Server
(Lsasrv), 992–998

Local Security Authority subsystem.
See Lsass (Local Security
Authority subsystem)

local security policy, 511
Local Security Policy Editor, 501,

511, 533–535
local service account, 288, 291
local system accounts

characteristics of, 289
defined, 288, 1166
group memberships of, 289
privileges of, 289–290
service applications running in,

288–290
Windows subsystem services in,

297
locally unique identifiers. See LUIDs

(locally unique identifiers)
LocalService default service

groupings, 314
location awareness. See NLA

(Network Location Awareness)
locking pages in physical memory,

707–708
log hives, 278–279, 1166
log sequence numbers (LSNs),

914–915
log start LSNs, 914
logging

base log files, 913–914

boot logging in safe mode, 1114
cache manager recovery support,

853–854
change logging, 927–928
CLFS. See CLFS (Common Log File

System)
common logging file system

driver (Clfs.sys), 67
containers, 913–914
dedicated logs, 911–913
defined, 910, 1166
Event Log logging. See Event Log;

Event Logger
event tracing for, 207–210
journaling, 1164
kernel logger, enabling, 208–210
log record structures, 910
LSNs (log sequence numbers),

914–915, 917
multiplexed logs, 911–913
NTFS log file writes, 940
security event log management

privilege, 511
torn writes, 915
transaction logs. See CLFS

(Common Log File System)
TxF logging, 973

Logical Disk Manager (LDM)
partitioning, 656–660

logical drives, 653–654
logical network identity and

interfaces, 1043
logical prefetching

DLL loading by, 369
mechanics of, 823–827
prefetcher kernel component,

1166
process initialization, during, 363

logical processors, 435
logical sequence numbers (LSNs),

853
logoffs, tracing with Process

Monitor, 265–266
logons. See also Winlogon

access check step, 518
account rights retrieval for,

502–503
authentication calls, 514
authentication of. See

authentication
components of, 513
credential providers for, 514
Ctrl+Alt+Delete logon attention,

453, 515–516
interface, displaying, 514. See also

LogonUI
listing active sessions, 519–520
logon process, 1167. See also

Winlogon
manager for. See Winlogon

 memory 1205

overview of, 513–515
registry, reading of, 250
SCM, notification of success to,

308–309
secure logon facility rating, 452
single sign-ons, 515
tokens, created for, 473, 518
tracing with Process Monitor,

265–266
trusted path functionality, 453
user interface for. See LogonUI
user logon steps, 516–518
user profiles, loading, 520

LogonUI
credential provider use of, 79
defined, 455
network secondary authentication

capabilities, 515
purpose of, 514
user logon steps, 516–518

LogonUser function, 481–483
look-aside lists, 728–729, 1167
low-IRQL synchronization

condition variables, 195–196
dispatcher headers, 182–185
event setting mechanism, 179
executive resources, 190–191
guarded mutexes, 189–190
kernel dispatcher objects. See

dispatcher objects
keyed events, 186–187
KiWaitTest function, 179
mechanisms for, lists of, 178
purpose of, 177–178
pushlocks, 192–193
SRW locks, 196
wait blocks, 183–186

low-memory conditions
keyed events, 187–188
simulating to test drivers, 802
trimming working sets to free

up, 829
LPCs (local procedure calls)

advanced. See ALPCs (Advanced
Local Procedure Calls)

fast. See fast LPC
KSecDD functions for, 455

LRU (least recently used) algorithm,
827–828

LSA (Local Security Authority)
account right retrieval, 502–503
audit record messages to, 512
policy database, 1166
server process, 1166

Lsasrv (Local Security Authority
Server), 992–999

LSASS (local security authentication
server process)

access token generation, 80
defined, 80

logging on services, 305
mechanics of, 80
SCM calls to, 301–302
services contained by, 313

Lsass (Local Security Authority
subsystem)

act as part of operating system
privilege, 508, 510

audit responsibilities, 511
defined, 454, 1166
EFS management, 992
initialization, 457
KSecDD functions for, 455
local security policy, 511
policy database, 454
SAM service, 454
token creation by, 473
user logon steps, 516–518
Winlogon authentication calls

to, 514
LSNs (log sequence numbers)

base LSNs, 973
defined, 1167
mechanics of, 914–915
restart LSNs, 914, 973–974
translating virtual of physical, 917

LSNs (logical sequence numbers),
853–854

LUIDs (locally unique identifiers),
476–477, 520

LWDs (lightweight filter drivers),
1057

M
magic packages, 1054
mailslots

defined, 1021
file system drivers for, 1025
implementation of, 1024–1026
operation of, 1023
UNC names for, 1021

Managed Object Format (MOF)
language, 319–323

management applications, 318–319
mandatory integrity checks, 492
mandatory integrity control, 22
mandatory labels, 471
mandatory policies, object, 473
mandatory policies, token, 476
manifests, assembly, 364–365
manual-reset events, 195
MAPI support, 1067
mapped files

ACLs for, 713
address ranges, viewing, 758
defined, 710
I/O of, 565–566, 1167
image loader with, 710
MapView functions, 710

prototype PTEs, 776–777
viewing with Process Explorer, 711

mapped page writer, 700, 812–813
MapUserPhysicalPages functions,

720
MapView functions, 710
marshalling areas, 1167
masks, access, 496–497
masks, active processor, 434
masks, affinity. See affinity masks
masks, IRQL, 93–94, 1167
Master Boot Record. See MBR

(Master Boot Record)
master file tables, NTFS, 938–941
MBR (Master Boot Record)

bootable partition searches by,
1076

GPT disks, on, 654
partition tables, 1170
partitioning based on, 653–654,

660
transfer of control to, 1076
troubleshooting corruption issues,

1109
MBR partitioning, 653–654, 660
MCMs (miniport call managers),

1057–1058
MDLs (memory descriptor lists)

Direct I/O memory descriptions,
570–571

DMA caching use of, 872
Driver Verifier checks of, 803
dummy pages, 780
support routines, 762

Media Foundation API, 346–348
MemInfo tool

paging list dumps with, 806
PFN entries, 817
physical memory layout, 821
standby paging list sizes, 810–812

MemLimit utility, 755
memory

!vm command, 703
64-bit address spaces, 15
address spaces for. See address

spaces
amounts supported, 818–819
bad physical pages list, BCD, 1079
commit charge notification, 834
committed. See committed pages
diagnostics tool, 332
execution prevention. See DEP

(data execution prevention)
file mapping objects, 12
flash, ReadyBoost for, 844–845
Hyper-V management of, 238–239
look-aside lists, 728–729
low, simulating to test drivers, 802
low, trimming to increase. See

working set manager

1206 Memory and Process performance counters

memory, continued
manager. See memory manager
mapped files. See mapped files
mapping virtual to physical. See

address translation
mapping with PAE. See PAE

(Physical Address Extension)
Memory bar histogram, 702
nonpaged, 570–571
notification events, 833–835
paging. See paging virtual

memory to disks
paging defined, 1170
physical. See physical memory
Physical Memory counters, 702
pools. See pools, memory
priority numbers, 809–812
private address spaces for

processes, 712, 758
proactive management of. See

SuperFetch service
process page file quotas, 707
process virtual address spaces, 12
protecting, 711–713
quotas for types of processes, 756
RAM. See physical memory
registry hives, mapping of,

272–276
shared memory sections, 12
SuperFetch. See SuperFetch

service
versions of Windows, amount

supported by, 44–45
virtual implementation for

processes. See virtual memory
system

Write Copies/sec counter, 719
zeroing, 701, 808

Memory and Process performance
counters. See performance
counters

Memory Diagnostic Tool, Windows,
1106

memory dumps
analysis. See crash dump analysis
kernel. See kernel memory dumps

memory manager
boot initializations by, 1089, 1091
cache manager use of, 849–850
cache size issues, 855–859
cluster prefetches, 779–780
clustering, 1156
commitment, 1156
component overview, 700–701
copy-on-write page protection,

718–719
core services overview, 699–700
defined, 1167
demand paging, 787, 823
dereference segment threads, 701

DLL loading, 760
driver verifier option, 604
exception handler of, 700
execution prevention. See DEP

(data execution prevention)
executive, as component of, 59,

700
flushing of cache pages, 877
granularity of allocations, 708
Http.sys with, 1020–1021
internal synchronization of, 701
kernel-mode system thread

components, 700–701
logical prefetching, 823–827
look-aside lists, 728–729
mapped file I/O, 1167
mapped page writer, 700
mapping virtual to physical

memory, 699
Mm functions of, 704
modified and mapped page

writer, 812–813, 906
modified page writer, 700
multiprocessor system

capabilities, 701
notification events, 833–835
NUMA support, 791–792
page directories, 764–766
page fault handler, 906–907
page fault handling. See page

faults
page file management. See page

files
page priority handling, 809–812
page table creation, 762, 787–788
page units, 705–706
paging function of, 699
permissions for sections, 713
placement policies, 827–828
pools. See pools, memory
primary tasks of, 699
process handle permissions, 704
process/stack swapper

component, 700
prototype PTEs, 776–777
PTEs, setting bits in, 767
pushlocks in, 193
quotas, 756
replacement policies, 827–828
section objects. See section

objects
services overview, 704
shared memory sections, 709–711
stop codes generated by, 1122
system thread use, 76
transparency of, 14
virtual address spaces. See virtual

address space layouts
Windows API functions exposing

services of, 704

working set manager, 700
zero page threads, 701
zeroing memory, 807–809

memory-mapped executable issues,
1096

memory-mapped file functions, 704
Memtest.exe, 1075
Message Queuing API, 1032
message-based interrupts, 106
metadata

base log file structure, 913–914
defined, 890, 1167
extensions metadata directory,

NTFS, 941
logging by NTFS recovery support

system, 976–980
NTFS metadata, 938, 947–948
update steps ensuring recovery,

853
methods, object. See object

methods
MFTs (master file tables), NTFS

defined, 1167
mechanics of, 938–941
mirrors, 1167
TxF data stored in, 971
viewing information about, 941

microkernel-based operating
systems, 34–35

Microsoft Developer Network
(MSDN), 1168

Microsoft Interface Definition
Language (MIDL) compiler,
1016

Microsoft Systems Center 2007, 121
Microsoft Transaction Server (MTS),

1032
MIDL (Microsoft Interface Definition

Language) compiler, 1016
MiInitialize functions, 751
MiModifiedPageWriter, 812–813,

906
minidumps, 1127–1128
miniport drivers

defined, 543, 1167
Flags field, 1056
LANMan Redirector, 897
listing loaded, 1055
MCMs (miniport call managers),

1057–1058
NDIS, 1004, 1053
partitioning information, 651–652
place in disk driver architecture,

647
Remote NDIS, 1060–1062
WebDAV, 897
Windows-supplied, 648

mirror sets, 1167
mirrored volumes, 664–666, 675,

1167

 named pipes 1207

MiSystemVaType array, 753
MiSystemVaTypeCountLimit array,

755
mklink utility, 923–926
Mm functions, 704, 708
MMCSS (MultiMedia Class Scheduler

Service), 420, 430–434
modes

kernel. See kernel mode
performance counters for, 17–19
purpose of, 16
switching between by

applications, 17
user. See user mode
viewing in Task Manager, 18

modified and mapped page writer,
700, 812–813, 906, 1167–1168

Modified no-write page state, 804
Modified page state, 804
modified page writer, 700, 812–813,

906
Mount Manager, 667–674
mount points, 669–670, 1168
mounting devices

defined, 1168
dismount operations, 897
Plug and Play with, 668
registry storage of data for,

667–668
removable media, 674
reparse points, 669
types of devices mounted,

667–668
volume mounting, 670–671, 939
VPBs (volume parameter blocks),

670–673
MoveFileEx API, 1096
MP Specification, 89–90
MPIO (Multipath I/O) drivers,

648–649
MPR (Multiple Provider Router), 303,

1034–1036
MS DTC (Microsoft Distributed

Transaction Coordinator), 1032
Msconfig utility, 1100
MSDN (Microsoft Developer

Network), 1168
MS-DOS

file names, 945–947
granularity of memory allocations,

708
kernel support for, 64
support images for process

creation, 352–353
symbolic link creation by Smss,

1094
Msinfo32, 71, 546
MSV1_0, 513, 517–518
MTS (Microsoft Transaction Server),

1032

multimedia playback priority
boosts, 420

multipartition volumes, 645,
661–667, 1168

Multipath I/O (MPIO), 648–649
multipathing, 1168
multiple core system thread

scheduling, 435
Multiple Provider Router. See MPR

(Multiple Provider Router)
multiple redirector support,

1033–1038
multiple sessions, Terminal Services

for, 19–20
Multiple UNC Provider. See MUP

(Multiple UNC Provider)
multiprocessor systems. See

also SMP (symmetric
multiprocessing)

boot initialization of extra
processors, 1091

fast mutexes, advantages of, 189
heap scaling issues, 732
idle threads, 418–419
IPIs (interprocessor interrupts), 96
memory manager capabilities

for, 701
number of supported processors,

40
scalability, 43
thread scheduling. See

multiprocessor thread
scheduling

unified kernel, 41
versions of Windows, amount

supported by, 44–45
multiprocessor thread scheduling

active processor masks, 434
affinity masks, 438–440
compared to uniprocessor

systems, 434
dispatcher database

considerations, 434–435
dynamic processor issues,

441–442
ideal processor numbers, 440–441
idle processors, scheduling while

there are, 443
idle summary masks, 434
IRQL issues, 434–435
last processor numbers, 440
logical processors, 435
no idle processors, choosing

when, 443–444
NUMA systems, 436–438
per-CPU deferred ready state

thread list, 435
specific CPUs, selecting threads

for, 444

multitasking. See also SMP
(symmetric multiprocessing)

defined, 39
preemption scheduling scenario,

414
voluntary switch scenario, 413

multithreading
atomic execution problem, 197
ideal processor numbers with, 440
multiprocessor support for, 43

MUP (Multiple UNC Provider)
defined, 1034
MPR use of, 1036
operation of, 1037–1038

mutants. See mutexes
mutexes

critical sections, inside, 194–195
defined, 1168
executive mutexes. See fast

mutexes
fast mutexes, 189–190
guarded mutexes, 189–190
Mutex object type, 137
OS/2 history of, 137
purpose of, 182

mutual exclusion, 170–171, 1168.
See also synchronization

N
name resolution

defined, 1039
DNS. See DNS (Domain Name

System)
LLMNR (Link-Local Multicast

Name Resolution), 1039
Peer Name Resolution Protocol

(PNRP), 1039–1041
WINS, 1039
Winsock name-resolution

functions, 1009
name retention, 159, 1168
named pipes

defined, 1021
driver for, protected prefix for,

1094
file system drivers for, 1025
format for names, 1021
functions for, 1021–1022, 1024
impersonation for, 481, 1022
implementation of, 1024–1026
mode options, 1021–1022
operation of, 1021–1022
PipeList tool, 1025–1026
reading and writing functions,

1022
RPC with, 1016–1018
servers, 1021
transactions with, 1022
UNC names for, 1021
viewing, 1025–1026

1208 names of objects

names of objects
base object names, listing, 165
case sensitivity of, 163
directories, 163
global visibility of, 162
handles, relation to, 163
kernel objects, 163–164
management of, 162–166
network visibility of, 164
private namespaces, 164
session namespaces, 167–169
single-instancing with named

objects, 166
squatting attacks, 164

namespaces
BaseNamedObjects, 167
DosDevices, 167–168
global, 167
instancing, 167, 1163
Key object type, 137
local, 167
private namespaces, 164–167
registry, 276
session namespaces, 167–169
virtualization, UAC, 521–528
volume, 667
Winsock, adding service providers

to, 1009
WMI, 324–325

NAP health certificates, 1051
NAT (network address translation),

1049–1050
National Computer Security Center

(NCSC), 451
native applications, 1168
native system services, 4, 51,

130–133
Nbtstat command, 1028
NCSC (National Computer Security

Center), 451
NDIS (Network Driver Interface

Specification)
activity awareness of drivers, 1054
call managers, 1057–1058
components of, 1053–1055
connection-oriented (CoNDIS),

1055, 1057–1060
drivers, 1053–1054
header-data split capability, 1054
interfaces for drivers, 1055
intermediate drivers, 1057
IPSec with, 1054
library (Ndis.sys), 1004, 1053–1054
lightweight filter drivers (LWDs),

1057
listing loaded miniports, 1055
load balancing drivers, 1068–1069
MCMs (miniport call managers),

1057–1058
miniport drivers, 1004, 1053, 1056

Network Monitor, 1059–1060
protocol drivers, 1003–1004,

1053–1054
purpose of, 1053
receive scaling ability, 1054
Remote, 1060–1062
run-time configuration capability

of, 1054
TCP/IP offloading, 1054
wake-on-LAN, 1054

neither I/O, 571
NetBIOS (network basic I/O system)

API implementation, 1029
disadvantages of, 1027
LAN adapter (LANA) numbers,

1027–1028
name system, 1027
Next Generation TCP/IP Stack

with, 1045
operation of, 1028
routing scheme for, 1028
sessions, 1028
TCP/IP, over, 1029
viewing names with Nbtstat, 1028
WINS name resolution for, 1039
Winsock Helper library for, 1011

Netlogon, 455, 518
Netsh.exe, 1010, 1052
network adapters

header-data split capability, 1054
logical network interfaces for,

1043
NDIS miniport drivers, 1004
wake-on-LAN, 1054

Network and Sharing Center, 1034
network drives, SCM notification

role, 303
network file system, 872, 1168
Network Load Balancing, 1068–1069
Network Location Awareness (NLA),

1011, 1042–1043
network logon service, 1168
Network Map functionality, 1043
Network Monitor, 1059–1060
network protocol drivers. See

protocol drivers
network provider interfaces, 1035
network redirectors and servers, 68,

852, 885–886, 1168
network service account, 288,

290–291
networking

adapters. See network adapters
APIs for. See networking APIs
architecture for, overview of, 1001
binding, 1064–1065
BITS (Background Intelligent

Transfer Service), 1030
components for, list of, 1003–1005
datagrams, 1008, 1013

diagnostics for, 332
file system drivers, network, 1168
filtering for. See WFP (Windows

Filtering Platform)
goal for, 1001
Helper libraries for protocols with

Winsock, 1011
IP filtering, 1049–1050
IPSec (Internet Protocol Security),

1050–1052
layers, OSI, 1002–1003
LLTD (Link-Layer Topology

Discovery), 1043
location awareness. See NLA

(Network Location Awareness)
mailslots for. See mailslots
Message Queuing API, 1032
MUP for. See MUP (Multiple UNC

Provider)
named pipes for. See named pipes
NAT, 1049–1050
NetBIOS API. See NetBIOS

(Network Basic I/O System)
network layer, OSI, 1002
Network Monitor, 1059–1060
NetworkService default service

groupings, 314
OSI Reference Model, 1001–1003
Peer-to-Peer Infrastructure APIs,

1031
protocol drivers. See protocol

drivers
QoS (Quality of Service),

1062–1064
redirectors. See network

redirectors and servers
remote access, 1066
remote procedure call API. See

RPC (remote procedure call)
request-reply model, 1001
restriction rules, table of, 297
software types in stacks, 1001
stacks for. See stacks, network
TCP/IP protocol. See TCP/IP
TDI clients. See TDI (Transport

Driver Interface) clients
topology discovery. See LLTD

(Link-Layer Topology Discovery)
transport service providers,

adding, 1009
UPnP (Universal Plug and Play),

1032–1033
Web access. See Web access APIs
well-known addresses for

Winsock, 1009
Winsock API for. See Winsock
WNet API, 1033–1036

networking APIs
kernel. See WSK (Winsock Kernel)
list of, 1006

 NTFS 1209

mailslots. See mailslots
named pipes. See named pipes
NetBIOS. See NetBIOS (network

basic I/O system)
purpose of, 1003
RPC. See RPC (remote procedure

call)
sockets. See Winsock
Web access. See Web access APIs

Next Generation TCP/IP Stack,
1012–1013, 1044–1045,
1053–1054

NLA (Network Location Awareness),
1011, 1042–1043

NLS for internationalization, 222
NMR (Network Module Registrar),

1012–1013
no execute page protection,

713–718. See also DEP (data
execution prevention)

Nobody group, 462
nodes, NUMA, 436–438
nonpaged memory, 570–571
nonpaged pools

corruption of, 1140–1142
defined, 721, 1168
initial sizes of, 722
location of, 721
monitoring usage of, 724–728
notification events, 834
number of, 721–722
quotas for, 756
reservation of addresses for, 751
sizes of, 722–724
system, 737
system space addresses for, 752

Non–Plug and Play drivers
defined, 542
device object creation, 550–551
legacy drivers, 620–621
Process Monitor device driver

mechanics, 262
Start values, 623–624

nonsignaled state, 179
nonuniform memory access

architecture. See NUMA (Non
Uniform Memory Architecture)

No-Read-Up object policy, 473, 492
notification events, 195, 833–835
Notmyfault tool

Buffer Overflow bug, creating,
1141–1142

code corruption from drivers,
1143–1144

driver information commands,
1138–1139

Hang option, 1149–1150
High IRQL Fault option,

1135–1137
launching, 1134

pool leak detections, 727–728
Stack Crash option, 1145–1147
stack traces of executing threads,

1138
stop codes shown by, 1137
unkillable processes, debugging,

590–592
verbose analysis with, 1137–1139

NtCreateFile system service, 902
NtCreateUserProcess, 349, 351–352,

360
Ntddk.h ASSERT macro, 48
Ntdll.dll

defined, 37, 1168
functions in, 57–58
heap manager functions, 730
hotpatching, 242
image loader, 220
NtCreateFile function, 557
purpose of, 57
system services functions, 58
undocumented interfaces,

viewing, 72–73
user-mode debugging role,

217–218
NTFS (NT File System)

$DATA attribute, 943–944
advanced feature list, 920
advanced feature overview, 895
atomic transactions, 918–919
attribute lists, 1154–1155
attributes, file, 940–944, 948–951
bad clusters, 940–941, 985–988
base file records, 938
bitmap file of allocation state,

940, 1155
boot file, 940
cache manager recoverable file

system support, 853–854
cache manager with file system

driver, 935
change journal files, 941, 956–959
change logging, 927–928
clusters for, 895, 937–938
compression support, 927,

951–956
data attribute, 943
default resource manager

directory, 941
defined, 895
defragmentation support,

931–932
design goals of, 918–920
dynamic bad-cluster remapping,

923
dynamic partitioning, 932–933
encryption support. See EFS

(Encrypting File System)
extensions metadata directory,

941

FCBs (file control blocks), 936
file names, 945–948
file objects and handles, 935–936
file records, 938, 942–944
file reference numbers, 942
file system driver of, 934–936
Filename attribute, 943
hard links, 923–924
I/O manager interactions with file

system driver, 934–935
indexing facility of, 923, 943,

960–961
KTM update support for, 240
LCNs (logical cluster numbers),

938–940, 950–951
local file system driver for,

896–897
log file writes, 940
metadata files, 938
MFTs (master file tables), 938–941,

971
mirror, MTF, 939
mount points with, 669–670
mounting volumes, 939
MS-DOS file names, 945–947
nonresident attributes, 948–951
Ntfs.sys, 896
object IDs, 929–930, 941, 944, 961
OLE linking, 929–930
per-user volume quotas, 928
physical disk address calculations,

938
POSIX support, 931
quota files, 941, 962–963
recovery support. See NTFS

recovery support
redundancy support, 919–920
reparse points. See reparse points
resident attributes, 948–951
rollback operations, 918–919
root directory records, 940
SCBs (stream control blocks), 936
sector relationship to clusters, 938
security descriptor attribute. See

security descriptors
security file, 940
security model of, 919
self-healing feature, 895, 989
shortcuts, shell, tracking support

for, 929–930
shrinking engine, 932–933
spanned volumes, 662–663
sparse data compression, 952–954
sparse files, 927, 956
stop code for fatal errors, 1123
stream-based caching, 852
streams, 920–922
symbolic links, 924–926
tunneling file metadata, 947–948
TxF. See TxF (Transactional NTFS)

1210 NTFS recovery support

NTFS (NT File System), continued
Unicode-based names, 922–923
uppercase file, 940–941
VCNs (virtual cluster numbers),

938–940, 950–951
viewing volume information with

Fsutil.exe, 941
volume file, 940–941
volumes, 937

NTFS recovery support
analysis passes, 981–982
atomic transaction basis of,

918–919
bad-cluster recoveries, 985–988
batching, 975
cache flushing operations, 975,

977
checkpoint records, 978–980
committed transactions, 978–979,

984
dirty page tables, 981–985
errors, file system, 984–985
file system corruption, recovery

from, 986–988
guaranteed consistent states, 984
importance of, 895
journaling, 975
lazy writes, 975
LFS (log file service), 976–978
LFS calls for recovery, 981
limits without TxF, 974
log file resets, 980
log file size issues, 980
log record types, 978–980
mechanics of recoveries, 981–985
metadata logging by, 976–980
overhead from, 975
overview of, 974
recoverable file system design,

975
redo entries, 978–979
redo passes, 982–983
reliability strategies of, 975
rollbacks, 978–979
scenarios, table of, 988
self-healing feature, 989
transaction tables, 981–985
TxF for. See TxF (Transactional

NTFS)
types of transactions tracked, 979
undo entries, 978–979
undo passes, 983–984
update records, 978–981
write-through operations, 975

NtGlobalFlag variable, 200–202
Ntkrnlmp.exe, 1169
Ntkrnlpa.exe, 37, 770
Ntoskrnl.exe

binaries linked to, 67
boot phase mechanics, 1088–1093

defined, 37, 1075, 1169
executive functions in, 58
executive of, 1160
HAL dependencies, 66–67
heap manager functions, 730
memory manager, 700
undocumented interfaces,

viewing, 72–73
version, checking which is

running, 41–42
NtReadFile function, 1143
NUMA (Non Uniform Memory

Architecture)
defined, 40
functions for application node

choice, 791
ideal nodes selection, 791–792
ideal processor numbers with, 440
mechanics of, 791–792
memory manager support for,

791–792
node graph construction, 791
page pool dependence on,

721–722
thread synchronization

mechanisms, 436–438

O
object attributes

defined, 21, 1169
flags, table of, 140–142
ObjectAttributes parameter, 21
type-specific, 143–147

Object Browser, WMI, 325–326
object directories, 1169
object headers, 138–140, 144, 162
object IDs, NTFS

application use of, 961
attribute for, 944
defined, 929–930
storage of, 941

object manager
access checks, 459–461
attribute flags, table of, 140–142
boot initializations, 1090
C2 security compliance, 134
close object method, 148
default object type, 146–147
defined, 21, 60, 1169
delete object method, 148
executive. See executive objects
filtering, 170
flags, table of, 140–142
generic services, 142–143
goals of, 134–135
granted access rights, 157
handles, object, 149–157. See also

handles
header fields, 138–140

headers, accessing, 142
methods, object, 147–149
names management, 162–166
namespaces, 133
naming scheme, 134
network I/O calls, 1036
object retention, 159–161
object security. See object security
object-tracking debug flag, 143
okay to close object method, 149
open object method, 148
Openfiles /query command

handle display, 133–134
parse object method, 148–149
purpose of, 133
pushlocks in, 193
resource accounting, 161–162
resource management role, 134
retention of objects goal, 135
section object management, 793
security descriptor management,

488
security object method, 149
security role of, 458
services, non-generic, 142
session namespaces, 167–169
session object isolation goal, 135
subheaders, 139–140
subheaders, accessing, 142
symbolic links, 167
synchronization, 146–147, 179
tools for viewing, 133
type creation issues, 147
type initializer fields, 146
type objects, 143–147
types with, 142
WinObj tool, 133

object methods
close object method, 148
defined, 21, 147, 1169
delete object method, 148
extensibility, 147
object manager with, 147–149
okay to close object method, 149
open object method, 148
parse object method, 148–149
security object method, 149
type creation issues, 147

Object Reference Tracing, 156
object retention, 159–161
object security

access checks for. See access
checks

access determination mechanics,
492–501

access masks, 496–497
ACLs, assignment to new objects,

490–491
ACLs, displaying for objects,

157–158

 page faults 1211

AuthZ API, 500–501
denial of service attacks, 164
desired access rights, 157
Ex versions of API vs. open API,

159
granted access rights, 157
integrity levels, 471–473
mandatory policies, 473
object manager role in, 458
overview of, 458–459
reuse protection, 452
security descriptors for. See

security descriptors
security reference monitor, 157
squatting attacks, 164
tokens, 473–480
UIPI for user processes, 493–494

object types
advantages of, 142
defined, 21, 1169
type data structures, viewing, 145
type object header field, 139

Object Viewer, 794
object-oriented kernel code, 35
objects

accessing without handles, 150
attributes. See object attributes
bodies of, 142
control objects, 62, 1157
creator information subheader,

139–140
data structures, compared to, 21
default object type, 146–147
deferred deletion of, 160
defined, 21, 1169
deletion of, 160
executive, 135
filtering, 170
Flags type initializer field, 146
flags, table of, 140–142
GDI/User objects, 135
global object create privilege, 506
handle information subheader,

139–140
handles for, 1169. See also handles
headers. See object headers
integrity levels of, 471–473
kernel, 61–62. See also kernel

objects
labels, modification privilege, 507
manager. See object manager
mandatory labels, 471
methods. See object methods
name information subheader,

139–140
names management, 162–166
ObjectAttributes parameter, 21
ObpCreateHandle function, 459
okay to close object method,

148–149

opening by name, 459
owner rights of, 495–497
permanent, 159
pointers to. See pointers, object
quota charges, 162
quota information subheader,

139–140
reference counts, 160
retention of, 159–161
reuse protection, 1169
security. See object security
security descriptors of. See

security descriptors
signaled state effects by type, 180
structure overview, 138
subheaders, 139–140
tasks performed by, 21
temporary, 159–161
type data structures, viewing, 145
type objects, 143–147
types. See object types

ObpCreateHandle function, 459
ObRegisterCallback API, 170
OCA (Online Crash Analysis),

1133–1134
OCI (open cryptographic interface),

1017
okay to close object method,

148–149
OLE (object linking and embedding),

929–930
one-time initialization. See run once

initialization
Online Crash Analysis (OCA),

1133–1134
open cryptographic interface (OCI),

1017
open object method, 148
Open Systems Interconnection (OSI)

reference model, 1001–1003
OpenEvent for access checks, 159
Openfiles /query command handle

display, 133–134
operating system model, 34–35
oplock protocol, 898–899
Orange Book, 451
OSI Reference Model

correlation with Windows APIs,
1004–1005

defined, 1001–1002
layers in, 1002–1003
protocol stacks, 1003

OTS (over-the-shoulder) elevation,
528–533

output. See I/O system
over-the-shoulder (OTS) elevation,

528–533
owner rights of objects, 495–497,

508, 510

P
P2P IDs, 1040
packet filtering, IPSec for, 1050
PAE (Physical Address Extension)

address translation example,
770–771

BCD options for, 1082–1083
defined, 37, 1170
DEP requirements, 714
device driver issues, 819–820
internal system file names, table

of, 41
kernel differences when present,

41
mechanics of, 769–771
Ntkrnlpa.exe, 770
Ntoskrnl.exe, checking version of,

41–42
page directory pointer tables,

769–771
page tables for, 763
purpose of, 769

page directories
address translation mechanics,

764–766
CPU register for, 764–765
defined, 764, 1169
indexes, 763
locating for the current process,

764
locating PDEs (page directory

entries), 764
structure of, 765
viewing address of for running

processes, 765
virtual addresses of, viewing, 765
widths for, 763
x64, 773

page directory pointer tables, PAE,
769–771

page faults
clustered, 779–780
collided page faults, 779
defined, 774, 1169
demand paging triggered by, 823
demand zero faults, 775, 807–809
in-page I/O operations from,

778–779
invalid PTE basis of, 774
invalid PTE types, 775–776
page file access faults, 775
prototype PTEs, 776–777
PTE unknown faults, 776
reasons for, table of, 774–775
replacement policies, 827–828
signaling page table creation with,

787–788
transition faults, 775

1212 page files

page files. See also paging virtual
memory to disks

adding new, 782
clearing at shutdown, 781
commit limit, viewing, 783
committed memory, relation to,

710
criteria for sizing, 782–783
default sizes, table of, 781
defragmenting, 781
locking with AWE, 721
maximum sizes of, 781
performance counter meaning,

780–781
performance counters for, 782
potential page file usage, viewing,

783
Process Explorer data on, 784
purpose of, 780–781
quotas for, 756, 781, 1169
registry tracking of, 781
Session Manager reads during

boots, 781
system running on virtual

memory errors, 783
viewing system page files, 782
viewing usage with Task Manager,

783
page frame numbers. See PFNs

(page frame numbers)
page tables

creation by memory manager, 762
defined, 1169
entries. See PTEs (page table

entries)
indexes for locating PTEs, 763, 766
kernel-mode-only marking of, 736
lazy evaluation for construction

of, 787–788
locating PTEs in indexes, 764
locating with page directory

indexes, 763
maximum number of, 765
mechanics of translations,

766–767
number required to cover address

space, 766
page directories of. See page

directories
private address space maps,

765–766
structure of, 763
x64, 773

paged pools
corruption of, 1140–1142
defined, 721, 1169–1170
limiting size of, 755
location of, 721
monitoring usage of, 724–728

notification events, 834
number of, 721–722
quotas for, 756
sizes of, 722–724
system paged pool, 737
system space addresses for, 752

Pagedefrag tool, 781
page-file-backed sections, 710, 1169
pageheap feature, 735
pages

bad, notification of, 834
committing, 706–708
copy-on-write page protection,

718–719
creation for initial process address

space, 355–356
defined, 705
disk writes of, 707. See also paging

virtual memory to disks
execution prevention. See DEP

(data execution prevention)
invalid, references to. See page

faults
large page advantages, 705–706
large page security issue, 706
locked memory page tracking,

801
locking in physical memory,

707–708
memory manager modified and

mapped page writer, 906
memory protection options,

712–713
owner pages, CLFS, 915–916
page fault handler, 906–907
page-related structure allocation,

753
pool corruption of, 1140–1142
prefetched, 779–780
priority numbers, 809–812
private, 706–707
reserving, 706–708
shared, 776–777
sizes of, 705–706
states, table of, 804
synchronization objects in bug,

802
tables of. See page tables

paging. See paging virtual memory
to disks

paging files. See page files
paging virtual memory to disks

!vm command, 703, 1145
address translation, 705–706
Bootmgr enabling of, 1077
cache management for, 701
defined, 14, 1170
dereference segment threads, 701
files on disk. See page files

free page requests, 700
freeing virtual memory pages, 707
in-page I/O operations, 778–779
Kernel Memory counters, 702
mapped page writer, 700
memory manager role in, 699–700
modified page writer, 700
purpose of, 14
System Page File counter, 702
writing pages to, 707
zero page threads, 701

parse object method, 148–149
partition manager

multipartition volume
management, 661–667

PnP coordination, 655
responsibilities of, 651–652
SAN policy, 670–671

partition tables, 1170
partitions, disk

active partitions, 653–654
boot sectors of, 653–654,

1073–1077
defined, 645, 1170
dynamic partitioning, 932–933
EFI (Extensible Firmware

Interface), 654
EFI System partitions, 1087
extended, 653–654
GPT partitioning, 654
hard versus soft, 660
hidden, 652
IDs of, 652
LDM partitioning. See LDM

(Logical Disk Manager)
partitioning

manager for. See partition
manager

MBR partitioning, 653–654
mirror sets, 1167
partition tables, 653
primary partitions, 653
spanned volumes, 662–663
stored key conversion to volume

drive letters, 1095
striped volumes, 663–664
volume equivalence for basic

disks, 655
volume possession mechanics,

652
Windows installations,

partitioning during, 660
partitions, hypervisor

child partitions, 230, 232–234
overview of, 230
root partitions, 230–232

passwords
credential providers, 79
user logon request mechanics,

516–517

 physical memory 1213

patches, 242–246
PatchGuard, 244–246
pause assembly instructions,

spinlocks with, 174
PCA (Program Compatibility

Assistant), 333
PCR (processor control region)

defined, 1171
IRQL values saved to, 95
viewing contents of, 95

PCRs (platform configuration
registers), 681–683

PDEs (page directory entries)
defined, 1169
locating, 764
PAE address translation example,

770–771
PAE width for, 769–771
PFNs in, 764
structure of, 765

PDOs (physical device objects), 628,
1160–1161, 1170

PEB (process environment block)
address space for, 335
CreateProcess setup of, 357–358
dumping, 342
initial value fields, table of,

357–358
purpose of, 340–341
structure of, 341
Windows replacements for initial

value fields, table of, 358
Peer Name Resolution Protocol

(PNRP), 1039–1041
Peer-to-Peer Infrastructure APIs

defined, 1170
mechanics of, 1031

per processor flags, 175–176
performance

counters. See performance
counters

diagnostics, 332
I/O caching. See cache manager
quantums, controlling, 408–410

performance counters
cache mapping and pinning, 871
cache MDL activity, 872
cache read activity fields, 869–870
Data Maps/sec, 884
fast I/O, 874–875
flush operation fields, 883
HKEY_PERFORMANCE_DATA

(HKPD), 259
Kernel Memory counters, 702
lazy write counters, 877, 884
Memory: Free System Page Table

Entries, 744
Memory: Write Copies/sec

counter, 719

memory-related, table of,
702–703

mode-related, 17–19
page file, table of, 782
Performance Data Helper (PDH)

functions, 259
Physical Memory counters, 702
pool size counters, 724
Process: Page File Bytes counter,

780–781
process related, table of, 343–344
Read Aheads/sec, 875–876
System Page File counter, 702
thread related, table of, 379–380
working set size counters, 830

Performance Monitor
counter descriptions, viewing, 25
CPU starvation boosts, watching,

428–430
disk monitoring with, 665–666
mode related counters, 17–19
priority boosts, viewing, 423–425
starting as Reliability and

Performance Monitor, 25
system threads, finding running,

76
thread execution states, viewing,

402–404
working set size counters, 830

performance options, applying to,
355

permanent objects, 159
permissions. See access control
PFNs (page frame numbers)

!memusage command, 807
Active state, 804
Bad state, 804
collided page faults processing,

779
Color field, 815
database structure of, 804
defined, 1169
field in PTEs, 766
fields of, variance of, 814–817
flags, 815–816
Free state, 804
I/Os in progress, 816
kernel stack field, 816
list link field, 816
lists of pages by state, 805
Modified no-write state, 804
Modified state, 804
Original PTE contents field, 815
page list mechanics, 807–809
page location step, 764
page priority handling, 809–812,

815
page states, table of, 804
PDEs, inside of, 764
PFN of PTE field, 815

physical memory limits, as reason
for limiting, 818–819

PTE address field, 814
PTE changes from, 809
purpose of, 803
reference count field, 814
Rom state, 804
share count field, 816
Standby state, 804, 809–812
synchronized access to database

of, 701
system space addresses for, 752
Transition state, 804
Valid state, 804
viewing the database, 806–807
viewing the entries in, 817
working set index field, 816
zero page threads, 808
zero pages, 804, 807–808

PGM (Pragmatic General Multicast)
Winsock Helper library, 1011

physical device objects. See PDOs
(physical device objects)

physical disks. See disks
physical layer, OSI, 1003
physical memory

!filecache debugger command,
857

!vm command, 703
32-bit client limits to useful,

820–821
amounts supported, 818–822
availability, viewing with Task

Manager, 821
AWE functions, 719–721
cache size in, 858–859
committed virtual pages for,

706–708
copy-on-write page protection,

718–719
DMA caching, 872
free, notification events, 834
freed memory checks, 802–803
granularity of allocations, 708
layout, viewing, 821
limitations, 818–819
locking pages in, 707–708
low, trimming to increase. See

working set manager
mapping virtual memory system

to. See address translation
Memory bar histogram, 702
nonpaged pools, 721
optimization software, 846–847
paging defined, 1170
PFN databases of. See PFNs (page

frame numbers)
Physical Memory counters, 702
priority numbers, 809–812
replacement policies, 827–828

1214 PICs

physical memory, continued
reserved, viewing, 821–822
shared memory sections, 709–711
SuperFetch. See SuperFetch

service
system variables describing, 818
system working sets in, 856–857
versions of Windows, amount

supported by, 44–45
virtual address space in. See

working sets
working sets of. See working sets

PICs (Programmable Interrupt
Controllers), 89–91

PIDs (product IDs), 1158
PipeList tool, 1025–1026
placement policies, 827–828
Plug and Play

drivers. See Plug and Play drivers
manager. See Plug and Play

manager
PnP-X (Plug and Play Extensions),

1032–1033
UPnP (Universal Plug and Play),

1032–1033
Plug and Play drivers

boot initialization, 1090
defined, 542
device objects, 550–551
load order, 631–632
loading responsibility, 619
manager, support for, 621–622
signing policies, 634–636
UMDF reflectors for, 617

Plug and Play manager
capabilities provided by, 619–620
commands to drivers, 621–622
compatible IDs, 634
defined, 538, 1170
device identifiers, 630
device trees, 625–628
devnodes of trees. See devnodes
digital signing policy, 247
DIIDs (device instance IDs), 630
docking station removal privilege,

508
driver loading responsibility, 619
driver signing policies, 634–636
driver support for, 621–622
enumeration of devices, 624–628
filter driver support for, 621
hardware IDs, 634
Hardware Installation Wizard

calls, 632
inf files, 632–634
installation of drivers, 632–636
instance IDs, 630
interrupt chaining, 105
levels of support for non-PnP

devices, 620–621

load order of drivers, 626–627
Mount Manager registration with,

668
network device support, 620
notifications, 621
protected driver lists, 636
purpose of, 619
query-remove commands, 621
query-stop commands, 622
remove commands, 621
resource arbitration, 619, 621
Root virtual bus driver, 624–625
start device commands, 621
Start values, 623–624
state transitions, 622
stop commands, 622
surprise-remove commands, 622
volume manager, coordination

with, 655
Windows executive, as

component of, 59
PMIE (Protected Mode Internet

Explorer), 466–470
PnP. See Plug and Play
PnP (Plug and Play) manager. See

Plug and Play manager
PnP-X (Plug and Play Extensions),

1032–1033
PNRP (Peer Name Resolution

Protocol), 1039–1041
pointers, object

Pointer count object header field,
139

pointer encoding, 717–718
retention, role in, 160

policies
log management, 918
lsass database, 454
Software Restriction Policies,

533–535
pools, memory

!poolused command, 726
!vm command, 1145
allocation routines for, 721
corruption of, 1140–1142
defined, 4
device drivers, viewing usage by,

725–726
Driver Verifier special pool option,

1141–1142
Driver Verifier tracking of, 726
executive allocation routines for,

60
Gflags, enabling special, 1141
hives usage of, viewing with !reg

dumppool, 273
Kernel Memory counters, 702
leaks, detecting, 727–728
location of, 721
look-aside lists, 728–729

monitoring usage of, 724–728
nonpaged pools, 721
NUMA node dependence,

721–722
number of, 721–722
paged pools, 721
pool tags, 157, 725–726
Pool Tracking for drivers, 801
Poolmon tool, 724–726
sizes of, 722–724
Special Pool verification, 799–801

pools, thread. See worker factories
port drivers

C-LOOK algorithm, 647
defined, 1170
LANMan Redirector, 897
MPIO-aware, 649
place in disk driver architecture,

647
Scsiport.sys, 647
undocumented interfaces of, 543
Windows-supplied, 647

port objects, 1170
portability, 38–39, 68
POSIX

configuring, 57
DLL for, 52
enhanced version availability,

50–51
exception dispatching, 117
name space support for, 945
NTFS support for, 931
SUA. See SUA (Subsystem for

Unix-based Applications)
subsystem functions, 56–57
support images for process

creation, 352
user-mode processes for, 36
Windows subsystem, calls to, 53

power manager
!popolicy command, 642
ACPI compliance, 636–638
commands, sending of, 639–640
control of device power by drivers

and applications, 643–644
defined, 1170
device power states, 638
driver power operation, 639–643
hardware latency characteristic of

states, 636
option configuration, 641–642
PnP manager queries to devices,

639
policies, displaying, 642
power consumption characteristic

of states, 636
query commands, 640
sleeping states of, 637–638
software resumption

characteristic of states, 636

 Process Monitor 1215

stop codes for crashes, 1121
system power capabilities,

viewing, 641
system state definitions, table

of, 637
system to device state mappings,

639–640
time out values, 643
transition decisions, 638–639
viewing device status, 640
Windows executive, as

component of, 59
PPP support, 1057
PPs (Protection Profiles), 453
PRCB (processor control block)

IRQL values saved to, 95
multiprocessor thread scheduling,

434–435
queued spinlock pointers in, 175
ready queues, 404

preemptive multitasking, 413–414
prefetching. See logical prefetching
prefixes, function name, table of,

72–73
presentation layer, OSI, 1002
Previous Versions, 693–695, 698
primary partitions, 653
principal names, RPC, 1017
printer drivers

64-bit, from 32-bit processes, 215
defined, 1170–1171
port drivers with, 542

priority classes
job processes, setting for, 447
organization of threads by, 393
specifying, 350–351, 396
viewing, 397

priority levels, thread
balance set manager use of,

427–430
booster function, 395
boosts during executive resource

waits, 422–423
boosts to, list of cases for, 419
CPU starvation, boosts for,

427–430
determination of, 393–395
foreground process boosts after

waits, 423–425
functions for getting/setting, 395
GUI thread wake-up boosts,

425–427
I/O completion boosts to,

420–423
MMCSS boosts, 430–434
multimedia playback boost, 420
preemption scheduling scenario,

414
privilege for increasing, 506

quantum end scenario, 415–417
ready queues for, 404
real-time priorities, 399
tools for viewing, 396–398
voluntary switch scenario, 413
waits for events and semaphores,

boosts after, 421–422
private address space page tables,

765–766
private cache maps, 1171
private committed pages, 706–707
private memory allocations, 712,

758
private namespaces, 164–167
private pages, 706–707
privilege levels of CPUs, 16
privileged access control, 22
privileges, account

APIs for checking, 503
assignment tools, 501
component enforcement of, 503
defined, 501
displaying, 501
enabling of, 503–504
security auditing, 511
super privileges, 509–510
table of, 505–508

procedure calls. See local procedure
calls

process and thread manager. See
process manager

process blocks. See EPROCESS
blocks

Process Explorer
access rights, displaying for

objects, 158
ASLR support status of processes,

761
color coding of processes, 11
CPU utilization, viewing, 9
DEP settings, viewing, 716–717
device drivers, listing, 546
Difference Highlight Duration

option, 11
DPCs, display of time used by, 75
DPCs, monitoring, 110–111
evading single-instancing, 166
full paths for images, 11
handles, viewing open, 150–151
hive handles, viewing, 268
I/O priorities, 602–603
information available from, 8–9
integrity levels, viewing, 465–466
interrupts, 75
job objects, viewing, 447–449
layout of, 10
mapped files, viewing, 711
mapping system threads, 77

page file data, 784
page priority, viewing, 810
priority, viewing, 397
privileges, viewing, 503–504
processes requesting memory

resource notification, 835
section objects, viewing, 794
security descriptors, viewing, 488
service processes, 82, 315
session namespaces, 168–169
SIDs, viewing, 463–464
System Idle Process, 418
thread start addresses, viewing,

117–119
threads, viewing, 381–386
tree view, 11
viewing process details with,

10–11
worker factories, viewing,

388–390
process IDs, 5, 1171
process manager

boot initializations, 1090, 1093
CPU rate limit enforcement, 445
defined, 1171
quotas for address spaces, 756
thread creation, 380–381
Windows executive, as

component of, 59
Process Monitor

access-denied errors, 909
application settings, locating, 263
basic vs. advanced modes, 908
BUFFER OVERFLOW trace results,

264–265
cache file system activity, viewing,

878–883
device driver mechanics, 262
file system filter drivers, as

example of, 907–908
file system traces, 909–910
friendly names for I/O, 908
I/O priorities, viewing, 601–602
idle system polling behavior, 909
integrity levels, PMIE, 466–470
logon traces, 265–266
prefetcher activity, viewing, 826
privileges required for, 908
registry monitoring overview, 262
registry troubleshooting

techniques, 264–265
registry, viewing idle system

activity, 262
repetitive polling of registry,

viewing, 262
traces with, 264–265
troubleshooting file systems,

908–910
unprivileged user sessions,

tracing, 265

1216 Process object type

Process Monitor, continued
viewing process startup process,

366–370
viewing system processes tree, 74

Process object type, 136
Process: Page File Bytes counter,

780–781
process page file quotas, 707
process VADs, 788–789
process working sets, 822, 1171
process/stack swapper, 700
processes

access tokens of, 5, 13
address space limitations on,

14–15
ASLR support status of, 761
components of, 5
CPU utilization, viewing, 9
creating. See CreateProcess

functions
data structures of, 335–342
debug ports of, 216
defined, 1171
elevation of, 528–533
EPROCESS blocks, 335–342, 345
executable programs of, 5
Explorer. See Process Explorer
functions related to, table of,

344–345
handles for objects. See handles
handles of, 5, 13. See also handles
idle, swapping out of memory,

832
IDs of. See process IDs
image loader initialization of, 222
integrity levels of, 465–466
jobs, relationship to, 13, 445
kernel global variables for, table

of, 342–343
KPROCESS blocks, 338–340
object basis of, 21
page directories of, 764–766
page file quotas, 707
page priority, 809–810
parent process IDs, viewing, 5–6
PEB (process environment block),

335–342
performance counters for, table

of, 343–344
priority of, 394–395
private address spaces of, 712, 736
Process Explorer for viewing, 8–9
programs, distinguished from, 5
protected processes, 346–348,

384–386
quantum reset values, 407
security structure for, 512
server processes, 1174
shared memory sections, 12,

709–711

signaled states for
synchronization, 179–180

start-of-thread function, 117–118
system. See system processes
system addresses for, 752
Task Manager, viewing

information with, 6–8
thread scheduling indifference to,

392–393
threads as components of, 5
threads of. See threads
unkillable I/O, debugging,

590–592
virtual address descriptors, 13
virtual address spaces of, 5, 12
virtual size limits, 699

Processor: % Privileged Time
counter, 17–19

Processor: % User Time counter,
17–19

processor affinity, 1171
processor masks, active. See active

processor masks
processors. See CPUs
profile system performance

privilege, 508
Program Compatibility Assistant

(PCA), 333
programs

application programs. See
applications

defined, 1171
processes, distinguished from, 5

protected driver lists, 636
protected mode, 1077, 1171
protected processes

access masks for, table of, 347
defined, 1171
mechanics of, 346–348
purpose of, 346
threads of, viewing, 384–386

protecting memory, 711–713
Protection Profiles (PPs), 453
protocol device classes, 616
protocol drivers

defined, 68, 1171
NDIS for device independence.

See NDIS (Network Driver
Interface Specification)

purpose of, 1044
TDI. See TDI (Transport Driver

Interface) transports
protocol stacks, 1003. See also

stacks, network
prototype PTEs, 776–777, 794, 1171
providers

ETW, 207
network provider interfaces, 1035
ordering of, 1035
WNET, 1034–1035

PsCreateSystemThread function, 76
Psexec tool

Blue Screen tool, running, 1152
launching programs at Low

integrity level, 480
PsExec, viewing security descriptors

with, 456
PsGetSid, 463
Pshed.dll, 67
PspAllocateProcess, 354–359
PspAllocateThread, 359–360
PspCreateThread, 359–360, 381
PspCreateThreadNotifyRoutine

variable, 379
PspInsertProcess, 359
PspInsertThread, 359–360
PspUserThreadStartup, 363–364
Psxss startup, 1096
PTEs (page table entries)

Accessed bits, 767
byte index fields, 768
byte indexes, 763–764
defined, 762, 1169
Dirty bits, 767, 775
fields of, 766
flags in, 766
invalid. See page faults
invalid types of, 775–776
limitations of, 744
locating in page table indexes,

764, 766
locating with page table indexes,

763
mechanics of translations,

766–767
PAE address translation example,

770–771
PAE width for, 769–771
page location step, 764
performance counter for, 744
PFN field, 766
PFNs, pointers from, 809
prefetched pages in, 779
prototype PTEs, 776–777
status and protection bits, table

of, 767
structure of, 763
system, 737, 1176
system space, 744–745
system space addresses for, 752
tracking and viewing, 745
transition, 1178
translation look-aside buffers,

767–769
widths, 763
Write bits, 767

pushlocks, 178, 192–193

 registries 1217

Q
QoS (Quality of Service), 1043,

1062–1064, 1171
Quality Windows Audio/Video

Experience (qWAVE), 1063–1064
quantums, thread

accounting for, 407–408
boosting, 410
clock intervals for, 406–408
controlling, 408–410
defined, 392, 1171
end processing, triggering of, 407
initial value set by CreateProcess,

356
job scheduling class, 446
jobs, values for, 409
partial quantum decay, 407
process reset values, 407
Programs vs. Background Services

settings, 409–410
quantum end scenario, 415–417
quantum targets, 406–407
registry values for, 410–412
reset values, 407
Short vs. Long settings, 410–412
targets, 1171
units, 1171
Variable vs. Fixed settings,

410–412
windows in foreground, effect

of, 410
query name object method, 148
queued spinlocks, 175–176, 1172
queues

defined, 1172
dispatcher ready threads, 404
I/O completion ports based on,

595–597
WDFQUEUE for KMDF, 613–614
work items, 1181

quotas
charges, 162, 1172
management system, 444–445
NTFS tracking of, 962–963
per user for disk space, 928
system address space, 756

qWAVE (Quality Windows Audio/
Video Experience), 1063–1064

R
race conditions, use after free bugs,

1140
RAID level 0, 663–664
RAID level 1, 664–666
RAID level 5, 666–667, 1172
RAM. See physical memory
RAM optimization software,

846–847

ramdisks, BCD options for, 1083
Raw FSD, 896
read I/O operations. See I/O

processing
read-ahead, intelligent. See

intelligent read-ahead
read-committed isolation, 966
ReadFile function

file system driver operations after
calling, 902–906

mailslots with, 1024–1025
named pipes with, 1024–1025
synchronous I/O, 563

ReadFileEx, 113, 577
ReadProcessMemory function,

706–707
ready queues, dispatcher, 404, 435
ready summary bit masks, 1172
Ready thread execution state, 400
ReadyBoost, 844–845, 1099
ReadyBoot, 1099
ReadyDrive, 845–846
real mode, 1077, 1172
real-time priorities, 399
real-time processing, 104–106, 399
receive scaling, 1054
Receive Window Auto Tuning, 1044
recovery

cache manager recoverable file
system support, 853–854

CLFS support for. See CLFS
(Common Log File System)

FAT file systems, 985–988
NTFS bad-cluster recoveries,

985–988
NTFS design goal for, 918–919
NTFS support for. See NTFS

recovery support
recoverability defined, 1172
TxF implementation of, 973–974

recursive faults, 1151
redirectors, 897–899, 1033–1038,

1065
redundancy, NTFS support for,

919–920
reference counts, 160, 1172
referencing objects, access checks

for, 460
Reg.exe, 249–250
Regedit, 249–250, 267, 1112–1114
Regini.exe, 249–250
registries

altitude, 280
application settings, locating, 263
application startups reading of,

250
ASCII vs. Unicode storage, 281
bins, 269–272
boot loader reading of, 250
cell indexes, 271

cells. See cells, registry
configuration management

subsystem. See configuration
manager

drive letter storage in, 667–668
editing, overview of tools for,

249–250
enumeration of devices in, 628,

630
filtering, 280
hives of. See hives, registry
HKEY_CLASSES_ROOT, 255
HKEY_CURRENT_CONFIGURATION

(HKCC), 259
HKEY_CURRENT_USER, 253
HKEY_LOCAL_MACHINE (HKLM),

255–259
HKEY_PERFORMANCE_DATA

(HKPD), 259
HKEY_USERS, 253–254
initialization during boots,

1094–1095
kernel reading of, 250
key control blocks, 276–278, 281
key object type, 137, 276
keys. See keys, registry
KTM support for updates to, 240
logon process reading of, 250
memory mapping of, 272–276
memory usage, viewing, 274
modification scenarios, common,

250
monitoring overview, 262
namespaces of, 276
object namespace form of key

names, 276
operation flow control, 277–278
overview of, 23
paged pool usage, viewing with

!reg dumppool, 273
performance optimizations of,

280–281
polling vs. notification of changes

in, 250
quantums, settings for, 410–412
readings of, principal times for,

250
REG_ value types, table of,

251–252
REG_LINK type, 251–252
Regedit.exe. See Regedit
RegNotifyChangeKey function,

262
repetitive polling, viewing, 262
resource manager (RM), 261–262
root keys. See root keys, registry
security descriptors, 280–281
security-descriptor cell type, 270
Services subkey values, table of,

282–287

1218 Registry Editor

registries, continued
session manager configuration

information, 78
structure of, 252
subkeys, 251. See also keys,

registry
System.sav, 279
transaction operations on. See TxR

(Transactional Registry)
troubleshooting techniques,

Process Monitor, 264–265
value types, 251–252
virtualization of, 526–528
Wow64 structure for, 213–214

Registry Editor, 256–257
Reliability and Performance

Monitor. See Performance
Monitor

remote access, 1066
remote connections, Terminal

Services for, 19–20
remote FSDs (file system drivers),

897–899
Remote NDIS, 1060–1062
Remote Registry Service, 291
reparse data, 1172
reparse points

defined, 1172
junctions, 926
mount points with, 669
NTFS reparse point attribute, 944,

965
NTFS reparse point files, 941
symbolic links, 925–926

reparse tags, 1172
replacement policies, 827–828
replay protection, IPSec for, 1050
request packets. See IRPs (I/O

request packets)
reserving pages, 706–708
resident attribute, 1172
resource accounting, 161–162
resource arbitration, Plug and Play

manager, 619, 621, 1172
Resource Manager (RM)

group for, 462
objects, KTM, 241
TxF use of, 969–971

Resource Monitor, 25–26
resources

exhaustion prevention, 332
file objects, 555–562
low, simulation by Driver Verifier,

802
mutual exclusion rule, 170–171
TxF resource managers, 969–971

restart LSNs, 914, 973–974
restore files and directories

privilege, 510
restricted tokens, 483, 1172–1173

resuming after hibernation, 1078
rings, 1173
RM. See Resource Manager (RM)
Rom page state, 804
root keys, registry

defined, 251
hive root keys, relation to, 266
HKEY_CLASSES_ROOT, 255
HKEY_CURRENT_CONFIGURATION

(HKCC), 259
HKEY_CURRENT_USER, 253
HKEY_LOCAL_MACHINE (HKLM),

255–259
HKEY_PERFORMANCE_DATA

(HKPD), 259
HKEY_USERS, 253–254
tables of, 252

root partitions, hypervisor, 230–232
Root virtual bus driver, 624–625
rotate VADs, 790
routines, kernel support. See kernel

support functions
Routing and Remote Access service,

1066
RPC (remote procedure call)

advantages for programmers,
1014–1015

ALPC support for, 202–204
asynchronous version of,

1015–1016
availability of networking

provided by, 1016
defined, 1014
IDL (Interface Definition

Language), 1016
impersonation for, 481, 1017
implementation, 1017–1018
kernel-mode support for, 1018
local execution, appearance of,

1014
local RPC, 1017–1018
marshalling for remote execution,

1015
MIDL compiler for, 1016
named pipes with, 1017–1018
notification mechanism of,

1015–1016
operation mechanics, 1014–1016
principal names, 1017
procedural model of, 1014
purpose of, 1014
run-time DLL for, 1017–1018
security issues, 1017
server name publishing, 1016
stub procedures libraries, 1015
subsystem, 1018
transport provider interface of,

1016
unmarshalling procedures, 1015
Winsock with, 1017–1018

Rtl functions
Ntdll as container of, 58
RtlUserThreadStart, 364

Run As Administrator command, 531
run as functionality, 528–533
run once initialization, 197–198
run time library. See Rtl functions
Running thread execution state, 400

S
SACLs (system access control lists)

ACE types in, 488
assignment to new objects, 491
defined, 1176
security descriptors, in, 485–487
system audit ACEs, 1176

safe mode
boot logging in, 1104–1105
defined, 1173
Directory Services Restore mode,

1102
driver loading in, 1102–1103
F8 command for, 1101
options of, 1101–1102
purpose of, 1101
services loaded in, 1104
user program awareness of, 1104
Userinit in, 1104

safe structured exception handling,
717–718

SAM (Security Accounts Manager)
service

APIs, 1067
database for, 1173
defined, 454, 1173
viewing descriptors for, 456

SANs (storage area networks)
iSCSI drivers, 648
policy for volumes, 670–671

SAS (secure attention sequence)
beginning user logon, 516–517
B-level security provided by, 453
defined, 1173
logon process role of, 79
mechanics of, 516
notifications to Winlogon, 515

scalability
architectural support for, 43
dispatcher databases for, 404
worker factory, 387

scatter/gather I/O, 566, 1173
ScAutoStartServices, 303–304
SCBs (stream control blocks), 936
ScGenerateServiceDB, 300–301
SChannel (Secure Channel), 1017
scheduled file I/O, 603–604
scheduling threads. See thread

scheduling

 security descriptors 1219

SCM (service control manager)
application registration by,

282–283
auto started services, 303–307
auto starts completed event, 307
binding dependencies, specifying

for, 1064–1065
boot steps for, 1097
command processing for

applications, 287–288
database generation, 300–301
delayed auto starts, 306–307
dependencies, 304
device driver loading, 302, 306
failed service starts, 306
failures of services, 310–311
groups, organization of, 300–301
ImagePath values, 305
last known good boots, 308–309
logging on services, 305
looping through services stage,

306
LSASS calls, 301–302
network drive notifications, 303
preshutdown notifications,

312–313
privilege creation by, 291–292
recovery options, 310–311
RPC pipes of, 302
SCP dialog function, 300
SCP interaction with, 317
service processes, launching, 306
service startup process, 287,

303–307
service tags, 316
services database, 301
shared services processes,

313–316
shutdown mechanism, 311–313
shutdown preparations, 302
startup errors, 307–308
startup of, 300–302
SvcCtrlMain, 300–301
synchronization event of, 300
system architecture role, 80–82
time out value, 311

SCPs (service control programs)
defined, 317
policy layering, 317
SCM dialog function for, 300
Services MMC snap-in as example,

317
screen crashes during boots,

1112–1114
SCSI, 647–648
SDK. See Windows Software

Development Kit (SDK)
Search service change journals, 956
secondary resource manager, TxR,

969–971

section objects
access rights, 710
ACLs for, 713
Based attribute, 793
committed virtual pages, 706–708
control areas, 794, 796–798
copy-on-write page protection,

718–719
creation of, 351–352, 710
data structures for mapped

sections, 794
defined, 1173
execution prevention. See DEP

(data execution prevention)
executive use of, 792
mapped file I/O, 565–566, 792
mapped files, 710–711, 792
Maximum size attribute, 793
object manager allocation control

of, 793
page file backed sections, 1169
Page protection attribute, 793
Paging file/Mapped file attribute,

793
pointer structure, 794
pointers, 1173
prototype PTEs, 776–777, 794
Section object type, 136
segment structures, 794
sharing memory with, 709–711
structure of, 793
subsection structures, 794
subsections, 1175
viewing, 794
viewing mapped files, 711
views of partial sections, 710, 1179

sectors
bad-cluster recoveries, 985–988
boot sectors, use of, 896
clusters, relationship to, 937–938
defined, 645, 889, 1173

secure attention sequence (SAS),
79, 453

Secure Channel (SChannel), 1017
secure logon facilities, 1173
Secure Sockets Layer. See SSL

(Secure Sockets Layer)
security

access. See access control
auditing. See auditing, security
authentication for. See

authentication
AuthZ API, 500–501
B-level security, 453
C2 security ratings, 451–452
Common Criteria, 453
components, system, 454–457
contexts. See security contexts
descriptors. See security

descriptors

directory services. See Active
Directory

heap management, 733–734
HKLM\SECURITY subkey, 258
impersonating threads. See

impersonation
integrity mechanism. See integrity

levels
IPSec (Internet Protocol Security),

1050–1052, 1054
KSecDD, 455
locking paging files, 721
Lsass. See Lsass (Local Security

Authority subsystem)
LSASS. See LSASS (local security

authentication server process)
object access checks. See access

checks
object method, 148–149
object protection. See object

security
object reuse protection, 452
overview of, 22–23
protected process issues. See

protected processes
rating standards for, 451–453
reference monitor. See SRM

(security reference monitor)
routine, default object method

for, 147
RPC issues, 1017
security-descriptor cell type, 270
STs (Security Targets), 453
Trusted Computer System

Evaluation Criteria, 451–453
trusted facility management, 453
trusted path functionality, 453
Windows subsystem, 22–23

security contexts
access tokens of processes, 5
defined, 473
threads, of, 12
threads, when differing from their

processes. See impersonation
tokens for identifying. See tokens

security descriptors
access determination with,

492–501
ACEs with, 485–488
attributes, list of, 485
DACL assignments to objects,

490–491
defined, 484–485, 1174
flags, table of, 485–486
NTFS attribute for, 943, 963–965
NTFS security file database of, 940
NTFS use of, 919
null DACL access rights, 487
object header fields, 139, 489
object manager with, 488

1220 security quality of service

security descriptors, continued
privilege for accessing, 507
viewing, 488–490

security quality of service (SQOS)
levels, 482

security reference monitor. See SRM
(security reference monitor)

segment structure prototype PTEs,
776–777

self-healing file systems, 989
semaphores

critical sections, inside, 194–195
defined, 1174
priority level boosts after waits

for, 421–422
Semaphore object type, 137

Server service, 897
server versions of Windows

architecture compared to client
versions, 43–47

list of, 43–44
optimization compared to clients,

46
physical memory limits for,

818–819
servers

communications ports, ALPC, 205
connection ports, ALPC, 205
name publishing, 1016
remote file system drivers for,

897–899
Server Message Block (SMB)

protocol, 898, 1025
server processes, defined, 1174
Web. See Web servers

service applications
accounts for, 288
alternative accounts, configuring,

291
auto starting of, 303–307
control handlers for, 287
CreateService function, 282–283
defined, 282
dependencies, 304
error control registry values, 284
installation and registration of,

282–283
isolation issues, 294–300
least privilege, running with,

291–294
local service account with, 291
local system account with,

288–290
multiple services per process,

286–287
network service account with,

290–291
registry key creation, 282–283
SCM command processing,

287–288

SCMs, relation to, 282
SCPs, control by, 282
security contexts for, 288
security descriptors, 286
Session 0 Isolation, 297–300
settings, table of, 283–287
SID registry values, 286
SIDs for, 295–300
Start registry values, 284
StartService function, 282
StartServiceCtrlDispatcher, 287
startup process, 303–307
status messages of, 287
Type registry values, 284, 286–287
user accounts, running under, 297
user interaction, configuring for,

298–299
Windows Services MMC snap-in,

291
service control manager. See SCM

(service control manager)
service descriptor tables, 130–133
service packs, pending file moves

for, 1096
service processes, 36
services

applications. See service
applications

components implemented as, 81
components of, 282
CurrentControlSet subkey,

308–309
defined, 4, 281, 1180
dialog box display prohibition,

297
failures and recoveries, 310–311
generic object manager, 142–143
groupings, table of, 314
ImagePath values, 305
Interactive Services Detection,

299–300
isolation issues, 294–300
listing, 81–82
mapping, 81
names of, 81
native system. See native system

services
privileges, viewing, 293–294
Process Explorer, viewing in, 82
recoveries, 310–311
Sc.exe tool, 293–294
SCM. See SCM (service control

manager)
SCPs. See SCPs (service control

programs)
server processes, 1174
service control manager (SCM),

80–82
Service Host (SvcHost), 313
Services registry key, 308–309

Services.exe, 81
shared processes, 313–316
shutdown mechanics, 1115–1118
shutdown mechanism, 311–313
SIDs for, 295–300
startup errors, 307–308
startup process, 303–307
types of, 4
user mode processes, 36
viewing services running inside

processes, 315–316
Services MMC snap-in, 291, 310–311
Services.exe. See SCM (service

control manager)
Session 0 Isolation, 297–300
session layer, OSI, 1002
Session Manager. See Smss.exe

(Session Manager)
session namespaces, 167–169
session spaces

defined, 736, 1174
global space addresses, 752
memory utilization, viewing, 743
system addresses for, 752
x86 layout of, 740–743

session working sets, 823
sessions

defined, 1174
multiple, 19–20
number of, 20
process membership in,

displaying, 742
version differences for, 20
viewing MM_SESSION_SPACE, 742

Setup, Windows
BCD preparation, 1077
boot sector creation by,

1076–1077
boot sector format dependence,

1077
EFI firmware setup, 1086
system partition formatting,

1076–1077
Sfc.exe (System File Checker),

1111–1112
shadow copies. See VSS (Volume

Shadow Copy Service)
shared assemblies, 364–365
shared cache maps, 862–867, 1174
shared memory sections. See also

section objects
defined, 709, 1174
prototype PTEs, 776–777
thread vs. process addressable

space, 12
shatter attacks, 494
shims, WFP, 1047
shortcuts, shell, 929–930
shrinking engine, 1174
shrinking partitions, 932–933

 Standby page state 1221

shutdowns
mechanics of, 1115–1118
privileges to, 507–508
services shutdown mechanism,

311–313
system-shutdown notification

routines, device driver, 550
side-by-side assemblies. See SxS

(Side-by-Side Assembly)/Fusion
SideShow, UMDF with, 616
SIDs (Security IDs)

access checks, for, 461–462
assignment of, 461–462
built-in, 462
defined, 461, 1174
enabled vs. disabled, 496
format of, 461
group, in tokens, 475–476
integrity levels with, 464–465
Owner Rights SID, 495–496
relative identifiers (RIDs), 461
restricted tokens, in, 483
security descriptors, in, 485–487
services, for, 295–300
user logons, generation for,

516–517
user, file tagging with, 928
viewing, 463–464
well-known
Winlogon session SIDs, 462

Sigcheck utility, 533
signaled state, 179–180, 1174
signed drivers, 634–636
simple volumes, 645, 1174
single sign-ons, 515, 1175
single-instancing with named

objects, 166
singly linked lists, 176–177, 749–751
slim reader writer locks. See SRW

(slim reader writer) locks
SlPolicy tool, 46–47
small memory dumps, 1127–1128,

1175
smartcard credential providers, 79
SMB (Server Message Block)

protocol
CIFS version of, 898
named pipe and mailslot reliance

on, 1025
WNet provider for, 1034–1035

SMP (symmetric multiprocessing)
ASMP compared to, 39
defined, 39, 1176
identical processor check during

boot, 1093
mutual exclusion rule, 171
scalability support, 43
threading synchronization.

See multiprocessor thread
scheduling

Smss.exe (Session Manager)
concurrency level, setting, 1094
configuration manager call during

boot, 1094
crashes on Csrss and Winlogon

termination, 79
critical process setting, 1094
Csrss, starting, 1095–1096
defined, 1075
known DLLs, opening, 1095
MS-DOS device symbolic link

creation, 1094
page files, reads during boots, 781
processes launched by, 78
protected prefix creation by, 1094
purpose of, 78–79
registry information for, 78
Smpinit duties, 1094
special characteristics of, 1094
start of process during boots,

1093–1096
subsystems, initializing lists to run

during boots, 1095
Terminal Services sessions, 79
user session creation, 78–79
Wininit/Winlogon launches, 1096

snapshots. See VSS (Volume Shadow
Copy Service)

sockets. See Winsock
soft links. See symbolic links
software DEP (data execution

prevention), 717–718
Software Development Kit.

See Windows Software
Development Kit (SDK)

software interrupts. See interrupt
dispatching

Software Restriction Policies,
533–535

spanned volumes, 662–663, 1175
sparse data compression, 952–954
sparse files, 927, 956, 1175
spinlocks

availability to executive, 174–175
defined, 173, 1175
device drivers requiring, 174–175
disadvantages of, 177
ExInterlocked functions, 176–177
global queued, 175
hardware support for, 173
instack queued spinlocks, 176
IRQLs of, 174
Ke functions with, 174–175
KeAcquireStackQueuedSpinLock,

176
lock operation, 173
mechanism of, 173–175
pause assembly instructions, 174
queued, 175–176

splash-screen crashes or hangs,
troubleshooting, 1112–1114

SQL Server shadow copies, enabling,
688–689

SQOS (security quality of service)
levels, 482, 1174

squatting attacks, 164
SRM (security reference monitor)

access checks, 459–461
auditing role, 511
boot initializations, 1090
calls to, 157
defined, 1174
discretionary access checks, 497
impersonation with. See

impersonation
inputs to model, 461
integrity levels with, 464
mechanics of, 457
privilege to act as part of the

operating system, 508, 510
responsibilities of, 454
SeAccessCheck function, 460
SID inputs to, 461–464
tokens with. See tokens
Windows executive, as

component of, 59
SRW (slim reader writer) locks, 196
SSL (Secure Sockets Layer)

HTTP Server API support for,
1019–1021

IPSec certificate support, 1051
SSP implementation of, 1017
WinHTTP support for, 1019

SSPIs (Security Support Provider
Interfaces)

built-in, list of, 1017
impersonation for, 481
RPC with, 1017

SSTP (Secure Socket Transmission
Protocol), 1066

stack cookies, 717–718
stack crashing, 124–125, 1145–1147
stacks, memory

address ranges for, 758
DPC stacks, 787
frames of, 1175
kernel stacks, 786–787
process/stack swapper, 700
randomization by ASLR, 760
threads, reservations for, 707
two stacks per thread model, 784
user stacks, 785
viewing for threads, 382–383

stacks, network
layers of software types

supporting, 1001
Next Generation TCP/IP Stack,

1012–1013, 1044–1045
OSI Reference Model, 1001–1003
protocol stacks, 1003

stacks, storage. See storage stacks
Standby page state, 804, 809–812

1222 Standby thread execution state

Standby thread execution state, 400
standby, SuperFetch service

scenario for, 840
start I/O routines, 548
start-of-thread function, 117–118
Startup And Recovery settings, 1125
startups

automatic program executions
during, 1100

boots. See boot process
last known good. See last known

good control sets
startup repair tool, 332
Startup Repair tool, 1106–1108
troubleshooting with WinRE,

1106–1108
stop codes

access violation-based, 1122
blue screens, displayed in,

1120–1121
consistency check based,

1122–1123
critical object termination, 1123
defined, 1175
DEP-based, 713–714
display-based, 1122
exception-based, 1122, 1145
file system, 1123
hardware error based, 1123
IRQL issues, 1121
KeBugCheckEx function, as inputs

to, 1120–1121
kernel pool manager generated,

1122
memory management based,

1122
Notmyfault, shown by, 1137
page fault, 1121
parameter information with,

1120–1121
power management, 1121
reference information for, 1121
trap-based, 1122
USB error based, 1123

storage
basic disk based. See basic disks
BitLocker for security. See

BitLocker
class drivers. See storage class

drivers
defragmentation, 931–932
disks for. See disks
drivers for. See disk storage

drivers
dynamic. See dynamic disks
importance of, 645
latency, striped volumes for

reducing, 663–664
per user volume quotas, 928
port drivers, 647

self-healing, 989
stacks. See storage stacks
symbolic links for disk objects,

650–651
terminology, 645
Winload support for, 646

storage class drivers
Disk driver, 647
disk object representation,

650–651
place in disk driver architecture,

647
storage stacks

driver architecture of, 646
MPIO, 649
system storage driver strategy,

600–601
Storport.sys, 647
streams

caching based on, 852
defined, 1175
multiple data streams feature of

NTFS, 920–922
SCBs (stream control blocks), 936

string parameters, 23–24
Strings utility, viewing prefetch files

with, 825
striped volumes, 663–664, 674, 1175
structured exception handling, 114,

1175
STs (Security Targets), 453
SUA (Subsystem for Unix-based

Applications)
advantages over POSIX, 56
as enhancement to POSIX, 50–51
boot startup of, 1096
configuring, 57
defined, 1175
launching, 57

subheaders, object
conditions required for presence

of, 140
defined, 139
Subheader offsets field of

headers, 139
table of, 139–140

subkeys, registry, 251
subsections, 1175
subsystem DLLs, 1175
Subsystem for Unix-based

Applications. See SUA
(Subsystem for Unix-based
Applications)

subsystems
binding of executable images

to, 51
DLLs, applications calls to, 53
DLLs, purpose of, 36–37, 52
environment, role of, 51
I/O subsystem API, 1162

initializing lists to run during
boots, 1095

Ntdll.dll system support library,
57–58

POSIX, 56–57
RPC, 1018
specifying binding in Visual C++,

51
Unix-based applications, for. See

SUA (Subsystem for Unix-based
Applications)

viewing type for images, 52
Windows. See Windows

subsystem
super privileges, 509–510
super users, 509
SuperFetch service

advantages of, 842
agents, 837
application launch agent, 842
architecture of, 837
defined, 1175–1176
FileInfo driver with, 839
logical prefetches, role in,

823–827
memory manager, use of, 837
overview of, 836
page access tracking, 839
page prioritization, 840–841
ReadyDrive with, 846
rebalancer, 837, 841–842
robustness component, 843–844
Scenario manager, 837, 840
Trace Collector and Processor,

836–837
Tracer mechanism, 836, 838–839

support images, 352
SvcCtrlMain, 300–301
swapper, working set, 832
SxS (Side-by-Side Assembly)/Fusion

allocation by image loader, 222
mechanism of, 364
setup during process creation, 361
shared assembly capability, 365

symbol files for kernel debugging,
26–27

symbolic links
creating, 924–926
default evaluation policy, 925
defined, 1176
device objects, of, 551
disk objects, 650–651
explicit I/O operations, use in, 903
file object, 556, 561–562
keys for, registry, 268
mechanics of, 924–925
MS-DOS device, creation by Smss,

1094
network provider creation of,

1036

 system services 1223

NTFS feature for, 924–926
object manager implementation

of, 167
privilege for creating, 506, 925
reparse point basis of, 925–926

symmetric encryption algorithms,
1176

symmetric multiprocessing. See SMP
(symmetric multiprocessing)

synchronization
condition variables, 195–196
critical code sections for, 194–195
deadlocks, 194
defined, 146, 1176
dispatcher headers, 182–185
DPC/dispatch level, dependence

on, 171–172
events, condition variables to

replace, 195
executive resources, 190–191
executive, visibility to

programmers, 178–179
ExInterlocked functions, 176–177
gates, 189
guarded mutexes, 189–190
heaps, of, 732
high-IRQL. See high-IRQL

synchronization
Interlocked functions, 172–173
IRQL checking with Driver Verifier,

802
kernel dispatcher objects. See

dispatcher objects
kernel mechanisms, table of, 178
keyed events, 186–187
KiWaitTest function, 179
KTHREAD data for. See KTHREAD

blocks
mutexes. See mutexes
mutual exclusion, 170–171
nonsignaled state, 179
object support for, 146–147
overview of, 170–172
pushlocks, 192–193
queued spinlocks, 175–176
run once initialization, 197–198
signaled state, 179–180, 1174
spinlocks. See spinlocks
user-mode code primitives for, list

of, 178
user-visible objects, 178–179
wait blocks, 183–186

synchronous I/O
cancellations, 588
defined, 563, 1176
requests to single-layered drivers,

572–578
Sysinternals tools, 32
system address spaces

cache pages in, 869

code, 736
components of, 736–737
crash dump information space,

737
defined, 736
dynamic management of, 751–755
HAL space, 737
hyperspace, 737
initialization functions, 751
kernel virtual allocator

mechanism, 751–752
limiting range size by type,

754–755
mapped views, 736
MemLimit utility, 755
nonpaged pools, 737
paged pools, 737
page-related structure allocation,

753
PTEs, 737, 744–745
quotas, 756
reclaiming memory, 752–754
requests and releases, dynamic,

751
types of addresses, determining,

753
types of addresses, table of, 752
types of addresses, viewing usage,

754
working set list, 737
x86 system address space layouts,

740
system architecture. See architecture
system audit ACEs, 488, 1176
system cache. See also cache

manager
defined, 737, 1176
prefetched pages, 779–780
system space addresses for, 752
working set, 737

System Calls/Sec counter, 133
system code write protection,

1143–1144, 1176
System File Checker, 1111–1112
system files, 41, 1110–1111
system functions

accessing internal, 69
DPCs for execution of, 107
KeBugCheckEx function, 87
services, 58
Windows. See Windows

subsystem
system global flags, 200–202
system global location namespace

virtualization, 521–528
system hive corruption, 1112
system idle process, 75, 418
System Information viewer, 900–901
system memory pools. See pools,

memory

System Page File counter, 702
system partitions

boot process role of, 1076
defined, 1176
formatting by Windows Setup,

1076–1077
System process

mapping system threads, 76–77
purpose of, 75
threads. See system threads

system processes
DPCs (deferred procedure calls),

75
idle process, 75
interrupts, 75
list of common, 74
LSASS. See LSASS (local security

authentication server process)
service control manager, 80–82
session manager. See Smss.exe

(Session Manager)
System process, 75–77
System process threads. See

system threads
tree of, 74
Userinit, 80
Winlogon. See Winlogon

system PTEs (page table entries),
737, 1176

System Restore
purpose of, 1106
rolling back option, 1114
shadow copies for, 694

system service dispatching
32-bit, 125–127
64-bit, 127
defined, 125
dispatch tables, 127, 129, 1176
drivers with, 128–129
epc for IA64, 127
handler registration, 126
iretd instruction, 125
kernel mode, 127–129
KeServiceDescriptorTable,

130–133
KiSystemService, 126, 128–129
mapping call numbers to

functions, 130–133
monitoring activity of, 133
previous mode values, 128
processor detection, 127
service descriptor tables, 130–133
syscall for 32-bit AMD processors,

126
syscall for x64, 127
sysenter instruction, 125, 127
sysexit instruction, 125
trampolines, 129
Zw calls, 128–129

system services, 58, 1176–1177

1224 system support processes

system support processes, 36, 1177
system threads

balance set manager, 76
components calling, 76
defined, 1177
device driver creation of, 76
mapping to device drivers, 76–77
mechanics of, 75–76
memory for, 75
PsCreateSystemThread function,

76
tracing to calling routines, 76–77

system timers, 109
system variables

physical memory, for, 818
system working set, 833

system volumes, 660, 1076
system worker threads

cache manager use of, 886–887
defined, 198, 1177
device drivers with, 198–199
dynamic worker threads, 199–200
lazy writes with, 877
listing, 200
mechanics of, 198–199
number created, 199
requesting, 198
types of, 199

system working sets. See also
working sets

components included in, 856
defined, 823, 1177
examining, 833
list data structures of, 737
size computations, 833
system cache working set

misnomer, 737
types of pages in, 832
viewing, 856–857

system-shutdown notification
routines, 550

systemwide cookies, 363
systemwide data structures,

protection of, 711

T
take ownership privilege, 510
Task Manager

Applications tab, 7–8
kernel mode, monitoring, 18
Memory Usage bar, 783
page file usage, viewing, 783
physical memory availability, 821
process information, viewing with,

6–8
process priority, viewing, 397
System Idle Process, 418
virtualization status, changing,

525

virtualization status, viewing, 522
TCBs (thread control blocks). See

KTHREAD blocks
TCP/IP

binding to, 1065
Compound TCP (CTCP), 1044
ECN (Explicit Congestion

Notification), 1044
filtering. See WFP (Windows

Filtering Platform)
high loss throughput

improvements for, 1045
logging activity with kernel

logger, 208–210
name resolution protocols for,

1039
NDIS offloading of, 1054
NetBIOS over, 1029
Next Generation TCP/IP Stack,

1012–1013, 1044–1045,
1053–1054

preferred Windows protocol,
reasons for, 1044

QoS implementation, 1062–1063
Receive Window Auto Tuning,

1044
RPC transport interface for, 1016
UMDF with, 616
viewing device objects of, 1045
Winsock Helper library for, 1011

TCSEC (Trusted Computer System
Evaluation Criteria), 451–453

TDI (Transport Driver Interface)
clients

defined, 1003
replacement API for. See WSK

(Winsock Kernel)
TDI (Transport Driver Interface)

transports
defined, 1003–1004
NDIS functions for, 1004
TDI interface availability in WSK,

1012
TDX, 1045
TEBs (thread environment blocks)

!teb command, 378
allocation by PspAllocateThread,

360
CreateThread setup of, 381
granularity of memory allocations,

708
KTHREAD pointer to, 373
storage of, 377
viewing, 378

temporary objects, 159–161
Terminal Server registry hives

memory issues, 268
Terminal Services

API for, 20
interactive window stations, 167

purpose of, 19–20
session manager session creation

for, 79
session namespaces, 167–168
version differences for, 20

Terminated thread execution state,
401

termination of threads, 417
TestLimit tool

handle creation limits, 152–153
memory leak data, 740
reserving address space with, 746

thread agnostic I/O
file object attribute data for, 556
I/O completion ports for, 587, 595.

See also I/O completion ports
locking user buffers mechanism,

587
mechanisms for, 587
user-initiated cancellation, 588

thread IDs, 12, 759
Thread object type, 136
thread pools. See worker factories
thread scheduling

!ready command, 391
API functions for, 395–396
balance set manager, 427–430
base priority determination,

393–395
code locations for, 392
context switching, 392
CPU rate limits, 444–445
current priority determination,

394
dispatcher databases, 404–405
dispatchers, 392
execution states for, 400–404
increase scheduling priority

privilege, 399
IRQLs with, 399, 405
KPRCB thread-scheduling fields,

405
KTHREAD field for data, 373
multiprocessor. See

multiprocessor thread
scheduling

overview of, 391
preemption scheduling scenario,

414
priority levels, 393–395
priority-driven nature of, 391
process indifference of, 392–393
quantum end scenario, 415–417
quantums. See quantums, thread
real-time priorities, 399
SetThreadIdealProcessor function,

395
sleep functions, 396
SwitchToThread function, 396
termination of threads, 417

 tracing 1225

tools for viewing priorities,
396–398

viewing ready threads, 391
voluntary switch scenario, 413
wait functions, 396

Thread: % Privileged Time counter,
17–19

Thread: % User Time counter, 17–19
threaded DPCs, 110
threads

access rights denied for protected
processes, table of, 384–386

access tokens of, 13
activation stacks, 381
alertable wait states, 1153–1154
APC control of, 112
completion ports for. See I/O

completion ports
components of, 12
context switching, 418
contexts of, 12, 1177
CPU register contents, 12
CreateProcess creation of,

359–360
creation steps, 380–381
creation, DLLs supporting, 54
critical worker threads, 199
data structures of, 370–378
Deferred Ready state, 1157
defined, 1177
delayed worker threads, 199
dispatcher databases, 404–405
dispatching, 392. See also thread

scheduling
dynamic worker threads, 199–200
environment blocks. See TEBs

(thread environment blocks)
ETHREAD blocks, 360, 370–378
examining activity of, 381–386
execution states for, 400–404
fibers compared to, 12
functions for creating and

manipulating, table of, 380
hypercritical worker threads, 199
I/O processing cancellations,

589–592
idle threads, 418–419
IDs of. See thread IDs
impersonation by. See

impersonation
KeInitThread, 360
kernel variables for, 379
killing in Process Explorer,

396–398
KiThreadStartup, 363
KTHREAD data. See KTHREAD

blocks
message states, viewing in Task

Manager, 7–8
modes, switching between, 17

multiprocessor support for
multiple, 43

multiprocessor, scheduling.
See multiprocessor thread
scheduling

mutual exclusion principle,
170–171

NtCreateThreadEx, 381
number per client requests,

importance of, 592–593
page priority, 809–810
performance counters for,

379–380
pools of. See worker factories
priority levels, 393–395
processes, as components of, 5
processes, use of resources of, 12
protected process threads,

384–386
PspAllocateThread, 359–360
PspCreateThread, 359–360, 381
PspInsertThread, 359–360
quantums. See quantums, thread
reserving memory for user-mode

stacks, 707
scheduling. See thread scheduling
security contexts pf, 12
security structure for, 512
seed initialization during process

creation, 356
shared memory sections, 12
signaled state, 179–180
spinlock acquisition, 174
stack crashing, 124–125
stack creation, 360
stack randomization, 760
stacks of, 12
stacks, viewing, 382–383
start addresses, viewing, 117–119,

382–383
storage area of, 12
system. See system threads
system worker. See system worker

threads
TEBs. See TEBs (thread

environment blocks)
termination of, 417
timers, 1177
TLS (thread-local storage), 12
TpWorkerFactory object type, 137
trap frames, 86–87
viewing information for, 376–377
wait queue reordering by APCs,

114
waiting, swapping memory of, 832
Windows subsystem structures

for, 371
thunk context setup, 364
time

change privileges, 508

system, 109
Timer object type, 137
timers, thread, 1177

TLBs (translation look-aside buffers),
767–769, 1178

Tlist.exe tool
process tree, viewing with, 5–6
thread information, 377

TLS (thread-local storage), 12
Tm object types, 137
tokens

!token debugger command, 478
create a token object privilege,

506, 510
DACLs of, 476
defined, 473, 1153
discretionary access checks using,

496–497
dt nt!_TOKEN debugger

command, 477
expiration time field, 477
fields of, 476–477
filtered admin tokens, 474,

483–484
flags of, 476
group SIDs in, 475–476
information contained in, 474
inheritance of, 474
LogonUser function creation of,

474
LSASS generation of, 80
LUIDs of, 476–477
mandatory integrity policies,

475–476
mandatory policies of, 476
primary compared to

impersonation, 476. See also
impersonation

privilege arrays, 476, 483
processes, of, 5, 13
restricted, 483
SIDs, restrictions with, 483
threads, of, 13
Token object type, 137
user logons, created for, 473, 518
viewing, 477–479

tools used in book, list of, 24–25
topology discovery. See LLTD (Link-

Layer Topology Discovery)
torn writes, 915
TPM (Trusted Platform Module)

defined, 677–678
Services, 687
TBS, 681–683

TpWorkerFactory object type, 137
tracing

consumers, ETW, 207
controllers, ETW, 207
ETW (Event Tracing for Windows),

207–210

1226 Transactional Registry

tracing, continued
kernel events, 207–210
kernel trace classes for, 207–208
NtTraceControl system call, 207
providers, ETW, 207

Transactional Registry. See TxR
(Transactional Registry)

transactions
atomic transactions, 918–919
boots, manager initializations

during, 1091–1093
CLFS support for. See CLFS

(Common Log File System)
defined, 1177
Fsutil.exe transaction queries, 968
isolation of, 966–968
KTM for. See KTM (Kernel

Transaction Manager)
Ktmutil.exe tool for viewing, 241
listing current, 968
named pipes, for, 1022
nontransacted writers and

readers, 966–967
rollback operations, 918–919, 967
tables, transaction, 1177
TM (Transaction Manager)

objects, 241
Tm object types, 137
Transact-demo.exe tool, 967–968
transacted writers and readers,

966
TxF. See TxF (Transactional NTFS)
TxR. See TxR (Transactional

Registry)
transfer jobs, 1030
Transition page state, 804
transition PTE, 1178
Transition thread execution state,

401
translating virtual to physical

addresses. See address
translation

translation look-aside buffers,
767–769

TransmitFile function, 1008–1009
TransmitPackets function, 1009
Transport Driver Interface clients.

See TDI (Transport Driver
Interface) clients

transport drivers, NDIS intermediate
drivers, 1057

transport layer, OSI, 1002,
1004–1005

transport protocol drivers. See
protocol drivers

transport provider interface, RPC,
1016

transport service providers
adding to Winsock, 1009
Mswsock.dll, 1011

NMR with WSK for, 1012
TDI. See TDI (Transport Driver

Interface) transports
transports. See TDI (Transport Driver

Interface) transports
trap dispatching

activators of, 85–86
exceptions. See exception

dispatching
handlers. See trap handlers
interrupts. See interrupt

dispatching
KeBugCheckEx function, 87
machine state capture, 86–87
page fault dispatching, 774
system service traps. See system

service dispatching
trap frames, 86–87, 1178
trap handlers

control transfer mechanism, 87
defined, 85, 1178
interrupt handler installation, 87
KeBugCheckEx function, 87

traps, 85, 1178
triage dumps, 1127
trimming, working set, 1155
triple faults, 1151
Triple-DES (3DES), 990–991
troubleshooting file systems,

908–910
Trusted Computer System

Evaluation Criteria (TCSEC),
451–453

trusted facility management, 453,
1178

trusted path functionality, 453, 1178
Trusted Platform Module. See TPM

(Trusted Platform Module)
TSCs (time stamp counters), 759–760
TxF (Transactional NTFS)

$TXT_DATA attribute, 971–973
APIs for, 968–969
architecture of, 965
CLRs (compensating log records),

973
defined, 1177
directories for, 941
Fsutil.exe transaction queries, 968
isolation of transactions, 966–967
KTM with, 240, 973
listing current transactions, 968
log files, 970
logging implementation, 973
LSN storage by, 972
LSNs, base and restart, 973
MFT, permanent data stores for

TxF, 971–973
recovery implementation of,

973–974
redo passes, 973–974

redo records, 973
resource managers of, 969–971
rollback criteria, 967
TOPS files, 970–971, 973–974
Transact-demo.exe tool, 967–968
transaction tables, 974
TxIDs, 972
undo passes, 974
undo records, 973
undo-next LSNs, 973
USN records, 972–973

TxR (Transactional Registry)
APIs for, 260
CommitTransaction function, 261
CreateTransaction function,

260–261
defined, 1177–1178
internal log files, 261
isolation levels, 261
KTM with, 240
logging operations, 260–261
resource manager (RM), 261–262
subkeys, deletions of, 260

type initializer fields, 146
type objects

defined, 143, 1178
initializer fields, table of, 146
uniform formats of objects with,

142
viewing, 144–145

U
UAC (User Account Control)

application-compatibility shims,
522–523

compatibility flags, using to run
applications, 533

compatible manifests with, 522
defined, 1178
digital signatures, effects of,

529–530
domain-based elevation, 529
elevation dialog boxes, 529–530
elevations, 528–533
file virtualization, 523–526
File Virtualization Filter Driver, 524
filtered admin tokens with,

483–484
HKEY_CLASSES_ROOT, 255
integrity levels of objects, impact

of, 471–472
issues and solutions of, 520–521
LSASS access token generation, 80
namespace virtualization, 521–528
purpose of, 520–521
registry virtualization, 526–528
requesting administrative rights,

531–533
super privileges with, 509

 Valid page state 1227

trustinfo elements in manifests,
532

UIPI bypasses, 532
viewing virtualization status, 522
virtualization status, changing,

525
UDF (Universal Disk Format), 891
UDP, RPC transport interface for,

1016
UI Access flag, 494
UIPI (User Interface Privilege

Isolation)
integrity levels for messaging,

493–494
UAC bypasses, 532

UMDF (User-Mode Driver
Framework)

architecture of, 616–619
defined, 70, 542
driver host processes, 616
driver manager, 618
host processes, 618
I/O manager with, 617
kernel-mode drivers for, 618
KMDF compared to, 616
protocol device classes, 616
reflectors, 617
stacks of drivers, 616–617

UNC (Universal Naming Convention)
defined, 1021
MUP. See MUP (Multiple UNC

Provider)
undocumented interfaces, 72–73
Unicode

defined, 1178
NTFS names based on, 922–923
Windows internal use of, 23–24

uniprocessor flag, 439
Universal Disk Format (UDF), 891
Universal Naming Convention.

See UNC (Universal Naming
Convention)

Universal Plug and Play (UPnP),
1032–1033

UNIX. See POSIX; SUA (Subsystem
for Unix-based Applications)

unkillable processes, debugging,
590–592

unload routines, 550
unresponsive systems, 1147–1150
update records, 1178
updates (hotpatches), 242–244
UPnP (Universal Plug and Play),

1032–1033
USB

PIDs (product IDs), 630
Remote NDIS for, 1060–1062
stop code for, 1123
UMDF with, 616, 618–619

user-mode drivers, 70
VIDs (vendor IDs), 630

use after free bugs, 1140
User Account Control. See UAC (User

Account Control)
user address spaces

ASLR for, 757–761
DLL image files in, 757
dynamic management of, 757
heap randomization, 760
image randomization, 759–760
layout of, 757–758
quotas for, 756
stack randomization, 760
types for allocations, 758
viewing with Vmmap utility,

758–759
user applications, types of, 36
user data, system global storage

issue, 521–522
USER functions

purpose of, 54
windowing and graphics system,

37
User Interface Privilege Isolation.

See UIPI (User Interface
Privilege Isolation)

user mode
address space of, 16
APCs, 113
attaching Debugging Tools to

processes, 27
AuthZ API security, 500–501
components of system

architecture, 36
critical sections, staying in, 194
debugging framework of

executive, 60
defined, 16, 1178
DLL function calls remaining in, 53
environment subsystem server

processes, 36
image loader initialization of

processes, 222
performance counters for, 17–19
services processes, 36
switching with kernel mode, 17
system support processes, 36
Windows subsystem use of, 56

user names
user logon request mechanics,

516–517
Winlogon processing of, 79–80

user process address space BCD
option, 1081

user profiles
HKEY_USERS, 253–254
storage locations for, 254

User Profiles management dialog
box, 254

USER service, service descriptor
tables for, 130–133

user stacks, 785
Userinit

LSASS invoking of, 80
purpose of, 80
safe mode awareness, 1104

user-mode debugging
boot initialization, 1090
consumers, 217
create events, 217
DbgUi APIs, 216–218
debug events, table of, 216–217
debug object, 216
debug ports, 216
defined, 1178
handles management, 219
kernel support for, 216–217
Kernel32.dll support for, 219
load dll events, 217
mechanics of debugger requests,

217
modules supporting, 216
native support for, 217–219
Ntdll.dll, 217–218
producers, 217
viewing debugger objects,

218–219
Windows subsystem support for,

219
User-Mode Driver Framework

(UMDF), 70
user-mode drivers, 70
users, super, 509
Usndump.exe change journal

dumps, 947–959

V
VACBs (virtual address control

blocks)
array structures, 860–862
defined, 1178–1179
index arrays, 863–865, 1178
priority mapping levels, 860
views, cache, 854–855

VADs (virtual address descriptors)
address translation role, 765
defined, 13, 1179
demand paging, 787
process VADs, 788–789
prototype PTEs with, 776–777
purpose of, 787–788
rotate VADs, 790
structure of, 788
viewing, 789

Valid page state, 804

1228 VCNs

VCNs (virtual cluster numbers)
arrangement of, 938
defined, 1179
mappings to LCNs, 939–940,

950–951
VDDs (virtual device drivers), 542,

1179
VDM (virtual DOS machine)

processes, 54, 353–354
VDS (Virtual Disk Service), 675–677
vectored exception handling, 116
versions of Microsoft Windows

checked build version, 47–49
client. See client versions of

Windows
determining edition booted,

45–46
key differences between, 44
list of, 43–44
optimization differences between,

46
physical memory limits for,

818–822
server. See server versions of

Windows
table of, 1

video
drivers, GDI direct access to, 55
GDI. See GDI (Graphics Device

Interface)
mapped memory for, 821–822
MMCSS with, 430–434
rotate VADs for drivers, 790
VGA mode to default resolution

change during boots, 1096
VIDs (vendor IDs), 1158
views, section object, 710, 1179
views, VACB, 854–855, 862–863
virtual address control blocks

(VACBs). See VACBs (virtual
address control blocks)

virtual address descriptors.
See VADs (virtual address
descriptors)

virtual address space layouts
64-bit, 745–746
64-bit addressing limitations,

749–751
escaping 2GB process limits in

x86, 738–739
high addresses, forcing allocation

of, 739–740
IA64, 746
large address space awareness,

738–739
process address space overview,

736
session spaces, 736
shareable memory, 758

system space components,
736–737

types of data mapped into, 736
user address space layouts,

757–758
x86 address space layouts,

737–740
x86 session space layouts,

740–743
x86 system address space, 740

virtual address spaces
ASLR for user address space,

757–761
AWE functions with, 719–721
committing pages, 706–708
components of addresses for

translations, 763
defined, 1179
dynamic system management of,

751–755
freeing virtual memory pages, 707
layouts of. See virtual address

space layouts
limiting range size by type,

754–755
mapping to physical pages. See

address translation
nonpaged pool space. See

nonpaged pools
paged pool space. See paged

pools
pages, defined, 705. See also

pages; paging virtual memory
to disks

placement policies, 827–828
pools. See pools, memory
priority numbers, 809–812
process size limits, 699
quotas, 756
reclaiming memory, 752–754
reserving pages, 706–708
section objects for mapping. See

section objects
sizes of pages, 705–706
types of addresses, determining,

753
types of addresses, viewing usage,

754
viewing with Vmmap utility,

758–759
working sets of. See working sets

virtual address translation. See
address translation

virtual block caching, 852, 1179
Virtual Disk Service. See VDS (Virtual

Disk Service)
virtual DOS machine (VDM)

processes, 54
virtual memory system

!vm command, 1145
64-bit address spaces, 15
address space of. See virtual

address spaces
AWE extensions of, 15
cache manager with, 854–855
job limits for, 447
kernel mode address space, 16
mapping, 14
memory protection, 712
paging to disks, 14. See also

paging virtual memory to disks
purpose of, 14
RAM optimization software effect

on, 846–847
size of address spaces, 14–15

virtual memory, disk storage of.
See page files; paging virtual
memory to disks

virtual pages. See paging virtual
memory to disks; virtual
memory system

VirtualAlloc functions, 706–708, 720
virtualization, 362, 1179. See also

Hyper-V
virtualization, UAC, 521–528
VirtualLock function, 707–708
virus scanner use of file system filter

drivers, 907
Vista, Windows. See client versions

of Windows
VMBus, 236–237
VMKs (volume master keys)

purpose of, 679–681
sealing, 681–682
unsealing, 684

Vmmap utility, 758–759
volume files, 1179
volume manager

application direct requests, 674
bad-cluster recoveries, 985–988
basic disk management, 655
DMDiskManager, 661
driver nature of, 655
drivers, layering with file system

drivers, 544
dynamic disk, 661
I/O operations, 674–675
mirrored volumes, 664–667
mount operations, 655, 668
multipartition volume

management, 661–667
names of device objects, 650–651
object creation, 655
partition possession mechanics,

652
PnP manager, coordination with,

655
spanned volumes, 662–663

 WER 1229

striped volumes, 663–664
VolMgr, 661–662
VolMgrX, 661–662

volume master keys. See VMKs
(volume master keys)

volume sets, 662, 1179–1180. See
also spanned volumes

Volume Shadow Copy Service. See
VSS (Volume Shadow Copy
Service)

volumes
basic disks, equivalence to

partitions, 655
boot volume creation, 660
boot volumes defined, 1155
cache manager recoverable file

system support, 853–854
compression, testing for, 951–952
defined, 1179
dismount operations, 897
FAT, 892–894
foreign volumes, BitLocker, 685
I/O operations of, 674–675
MFTs (master file tables), 938–941
mirrored volumes, 664–667
mount points for, 669–670
namespace mechanism, 667
NTFS, 937
privilege for task performance,

507
quotas, per-user, 928
RAID level 0, 663–664
RAID level 1, 664–666
RAID level 5, 666–667
shrinking, 933
simple compared to

multipartition, 645
snapshots, scheduling for,

697–698
spanned volumes, 662–663
striped volumes, 663–664
system volumes, 660
types of multipartition volumes,

662
VPBs (volume parameter blocks),

670–673
VPBs (volume parameter blocks)

file system driver interactions
with, 896

mount mechanics with, 670–673
VPNs (Virtual Private Networks),

1066
VSS (Volume Shadow Copy Service)

architecture of, 688–689
backups, using for, 692–693
clone shadow copies, 688
copy-on-write shadow copies, 688
defined, 688
device objects of, 692–693
differential copies, 688

operation of, 689–690
Previous Versions feature use of,

693–695, 698
scheduling snapshots for volumes,

697–698
shadow copies defined, 1174
Shadow Copy Provider, 690–692
steps for copy creation, 689–690
System Restore use of, 694
transportable copies, 690
types of copy mechanisms, 688
Volsnap (Volume Shadow Copy

Driver), 690–692
Vssadmin utility for viewing

copies, 696–697

W
wait blocks

defined, 183, 1180
KTHREAD fields for, 373
relationship to threads and

dispatcher objects, 183
viewing, 184, 186

wait hints, 1180
wait queues, 114, 413
wait state

alertable wait states, 1153–1154
boosts during executive resource

waits, 422–423
priority level boosts after events

and semaphore waits, 421–422
voluntary switching from, 413
Waiting thread execution state,

401
WaitForMultipleObjects function,

178–179
WaitForSingleObject function,

178–179
wake-on-LAN, 1054
watermarked desktop option, 1080
WBEM (Web-Based Enterprise

Management)
basis for WMI, 318
CIM specification, 319–320
WbetTest tool, 323

WDF (Windows Driver Foundation)
defined, 1180
KMDF compared to UMDF, 70
purpose of, 70

Wdfkd.dll, 608
WDI (Windows Diagnostic

Infrastructure), 61, 329–333,
1180

WDK (Windows Driver Kit)
ASSERT macro, 48
documentation, 31
downloading, 31
file system drivers, required to

build, 895–896

header files, 31–32
Windows executive functions, 58

WDM (Windows Driver Model)
drivers

bus drivers, 69, 542–543
categories of, 542–543
defined, 69, 1180
filter drivers, 69–70
function drivers, 69
interactions of, 543
types of drivers, 69
WMI routines. See WMI (Windows

Management Instrumentation)
Web access APIs

HTTP Server API, 1019–1021
purpose of, 1018
WinHTTP, 1019
WinInet, 1019

Web servers
cache functions, 1020–1021
configuration functions for, 1021
HTTP Server API, 1019–1021
Http.sys, 1019–1020
port range reservations, 1019
request queues, 1019–1020
URL groups, 1019–1020
well-known addresses for

Winsock, 1009
WinHTTP API for, 1019
Winsock extensions for,

1008–1009
Web services, DPWS, 1033
WebDAV, 897
well-known addresses for Winsock,

1009
well-known installers, 1111–1112
WER (Windows Error Reporting)

ALPC error ports, 124
analysis at Microsoft, 1133–1134
configuration options, 122–124
configuring, 120
crashed unhandled exception

filters, 122
debugger option, 121
defined, 120
error report options, 121
Microsoft Systems Center 2007

with, 121
OCA (Online Crash Analysis),

1133–1134
purpose of, 1131
sending of reports to Microsoft,

1133
settings screen for, 1131
silent process deaths, 122–125
solutions suggested to users,

1133–1134
unhandled exceptions triggering

mechanism, 121
user input requests, 1133

1230 WFP

WER (Windows Error Reporting),
continued

Wercon.exe, launching, 120
WerFault dump operations, 1132
WerFault execution during logons,

1133
WerFault pre-dump operations,

1130–1131
WerFault.exe, 121

WFP (Windows File Protection)
callout drivers, 1180
differences with WRP, 1111

WFP (Windows Filtering Platform)
BFE (base filtering engine), 1047,

1049–1050
callout drivers, 1004, 1047
components of, 1047
defined, 1004, 1180
filter engine, 1047
IPSec callout driver, 1052
NAT support, 1049
shims, 1047
Windows Firewall support,

1049–1050
WHQL (Windows Hardware Quality

Labs), 538–539, 635
Win16, process creation for,

353–354
Win32 API. See also Windows API

defined, 2
history of, 3–4

Win32k.sys. See also Windows
subsystem

components contained in, 54
defined, 37
GDI components, 54–55
kernel load during boots, 1096
system mapped views for, 736
threads, structures for, 371

WinDbg
crash dump analysis with, 1134,

1137
kernel debugging with, 28
loader databases, viewing,

223–225
viewing user-mode debugger

objects, 218–219
window stations

defined, 1180
opening by SCM, 305
service access to, 297–299
Winlogon, creation of, 515

windows
priority level boosts for, 425–427
quantums, effect of windows in

foreground on, 410
windows and graphics system, 37

Windows 3.1, 353–354
Windows API

categories of callable functions, 2

defined, 2, 1180
documentation in SDK, 2
functions, 4
Heap interfaces, 730
history of, 3–4
memory manager functions, 704
memory protection options,

712–713
Windows Boot Loader. See Winload

(Windows Boot Loader)
Windows Boot Manager. See

Bootmgr (Windows Boot
Manager)

Windows Diagnostic Infrastructure.
See WDI (Windows Diagnostic
Infrastructure)

Windows Driver Foundation.
See WDF (Windows Driver
Foundation)

Windows Driver Kit. See WDK
(Windows Driver Kit)

Windows drivers, 1180. See also
device drivers

Windows Error Reporting (WER). See
WER (Windows Error Reporting)

Windows executive. See executive,
Windows

Windows Filtering Platform. See
WFP (Windows Filtering
Platform)

Windows Firewall
connection security rules

management, 1052
IPSec support for, 1051
network restriction rules, 296–297
WFP support for, 1049–1050

Windows hardware error
architecture, 61

Windows Internet Name Service
(WINS), 1039

Windows Management
Instrumentation. See WMI
(Windows Management
Instrumentation)

Windows Media Player, 166,
430–434

Windows Memory Diagnostic Tool,
1106

Windows native API, 1094
Windows Networking API,

1033–1036
Windows Next Generation TCP/

IP Stack. See Next Generation
TCP/IP Stack

Windows NT
legacy drivers, 1166
networking APIs, 1067

Windows Recovery Environment
(WinRE), 1106–1108

Windows Resources Protection
(WRP), 1111–1112

Windows Server. See server versions
of Windows

Windows Server Core, 231
Windows services. See services
Windows Setup. See Setup,

Windows
Windows Sockets. See Winsock
Windows Software Development

Kit (SDK)
latest version of, obtaining, 31
Windows API documentation in, 2

Windows subsystem. See also
Win32k.sys

calls from other subsystems, 53
components of, 54
CreateProcess operations with,

360–362
DirectX wrappers, 54
DLLs loaded by Csrss.exe, 54
DLLs translating API functions to

service calls, 54
DLLs, application calls to, 53
executive objects, 136
file specification of, 51
GDI, 54–56
importance of, 51
kernel load during boots, 1096
kernel-mode device driver, 54
launch by Smss during boot

process, 1094
startup values, 51
threads, structures for, 371
undocumented interfaces, 72–73
user interface control calls, 54
user-mode functions, 56
window manager, 54

Windows System Resource Manager
(WSRM), 398–399

Windows Task Manager
Performance tab, 702–703

Windows Transport Driver Interface
standard, 1003

Windows Update
hotpatches, 242–244
TxR use by, 261

Windows Vista. See client versions
of Windows

Windows, versions of. See versions
of Microsoft Windows

WindowStation object type
components represented by, 137
okay to close object method, 149
open object method, 148

WinHTTP, 1019
WinInet, 1019
Wininit

boot steps of, 1097
critical nature of, 1096

 working set manager 1231

defined, 1075
Smss launches of during boots,

1096
Winlogon steps compared to, 516

Winload (Windows Boot Loader)
autorecovery BCD option for,

1080
BCD options for, table of,

1080–1084
boot volume file load steps,

1085–1086
configuration queries by, 1085
defined, 1074
loading by Bootmgr, 1084
registry fixes by, 279
storage support in, 646
troubleshooting menu, BCD

option for, 1080
WinRE, automatic launches of,

1107
Winlogon

activity triggers for, 80
authentication, 79
authentication calls to Lsass, 514
boot steps of, 1097–1098
credential providers, 79, 514
Ctrl+Alt+Delete logon attention,

515–516
defined, 455
desktops created by, 515
locked nature of desktop, 516
LogonUI, 79
LSASS calls, 80
Lsass connection creation, 515
passwords, 79–80
request handling by, 79
responsibilities of, 513
SAS notifications, 515
SCM, notification of success to,

308–309
secure attention sequence, 79
session SIDs, 462
shutdown initiation, 311
shutdown mechanics, 1115–1117
Smss launches of during boots,

1096
system initialization steps,

515–516
user logon steps, 516–518
user names, 79–80
window station creation, 515

WinObj tool
ACL display for objects, 157–158
ALPC port objects, viewing, 203
base object names, listing, 165
device object name display, 552
disk objects, displaying, 650–651
file systems, viewing registered,

900
memory condition events, 835

object manager namespace,
viewing, 133

purpose of, 133
session namespaces, 168
type objects, listing, 144

WinRE (Windows Recovery
Environment), 1106–1108

Winresume, 1074
WINS (Windows Internet Name

Service), 1039
Winsock

accept operations, 1007–1008
AcceptEx function, 1008
AFD (Ancillary Function Driver),

1012
binds, 1007
BSD Sockets basis of, 1006
client operation, 1007
ConnectEx function, 1009
connection backlogs, 1007–1008
connectionless operation, 1008
connection-oriented operation,

1007–1008
datagrams, 1008
DisconnectEx function, 1009
DLLs for, 1011
extensibility by third parties,

1009–1011
extension APIs, 1008–1009
feature list, 1006–1007
file handles for sockets, 1012
Helper libraries, 1011
history of, 1006
impersonation functions, 1009
implementation of, 1011–1012
initialization, 1007
IPv6 support, 1007
kernel API. See WSK (Winsock

Kernel)
listen operations, 1007–1008
Mswsock.dll, 1011
multipoint message support, 1007
name-resolution functions, 1009
namespace support, 1007, 1009
PNRP for IPv6, 1040
polling sockets, 1007–1008
protocol independence of, 1007
receive functions, 1007–1008
RPC run-time DLL use of,

1017–1018
select functions, 1007–1008
send functions, 1007–1008
server operation, 1007–1008
showing providers with Netsh,

1010
socket creation, 1007
SPI (service provider interface),

1009
TransmitFile function, 1008–1009
TransmitPackets function, 1009

transport service providers,
adding, 1009

well-known addresses with, 1009
Ws2_32.dll, 1011
WSAPoll functions, 1007–1008

Winsock Kernel. See WSK (Winsock
Kernel)

WinSta0, 167
WMI (Windows Management

Instrumentation)
APIs for, 319
architecture of, 318–319
association classes, 325–327
CIM with, 320–323
CIMOM, 319
COM API, 319
defined, 318
dynamic designator, 323
Event Log provider example, 320
infrastructure, 319
managed objects, 318–319
management applications,

318–319
MOF with, 320–323
namespace for, 324–325
Object Browser, 325–326
providers, 318–320
registry settings, 328
scripting support, 326
security issues, 329
service mechanics, 327–328
SQL support, 327
WDM routines, 1180
WMIC utility, 328

WNet API, 1033–1036
work items, 1181
worker factories

API for, 386
defined, 386
Factory object, 387
I/O completion ports, 388
kernel queue support for, 388
object manager type for, 387
responsibilities of, 387–388
scalability benefit of, 387
stop codes from bad references,

1122
viewing, 388–390
Vista compared to pre-Vista,

386–387
worker threads. See system worker

threads
working set manager

aging pages, 1153
automatic trimming, 1155
calls from and to the balance set

manager, 831–832
defined, 1181
purpose of, 700
trimming initialization by, 829

1232 working sets

working sets
automatic trimming of, 829, 1155
balance set manager context of,

831–832
clock algorithm for, 1156
defined, 699, 1181
demand paging, 823
entries, viewing, 830
freeing a page during PFN

operations, 809
lock implementation for, 701
logical prefetching, 823–827
manager. See working set

manager
mechanics of, 829
PFN index field for, 816
placement policies, 827–828
process working sets, 822, 1171
quotas for, 756
replacement policies, 827–828
session working sets, 823
size of, viewing, 830
sizing of, 828–829
swapper mechanics, 832
system. See system working sets
system cache, 737

Workstation service, 897
Wow64

16-bit applications, 215
16-bit installer applications, 215
address space for, 211, 746
architecture of, 211
defined, 211
device driver issues, 214–215
DLLs for, 211
exception dispatching, 212
file system redirection, 212–213
I/O control functions, 214–215
IA64 (Itanium) issues, 215

printing from 32-bit processes,
215

registry reflected keys, 214
registry spli ts, 213–214
restrictions for, 215
Sysnative virtual directory, 213
system calls, 212
user callbacks, 212

WPD (Windows Portable Device)
Framework, 616

WQL (WMI Query Language), 327
write I/O operations. See also I/O

processing
fast I/O steps for, 873–874
lazy writing, 877–883
write throt tling, 885–886
write-through caching, 883

write throt tling, 1181
write-back caching, 877–883
WriteFile function

file system driver operations after
calling, 902–906

mailslots with, 1024–1025
named pipes with, 1024–1025
synchronous I/O, 563

WriteFileEx
I/O completion, 577
user-mode APCs with, 113

WriteProcessMemory function,
706–707

writing, memory protection against,
712–713

WRP (Windows Resources
Protection), 1111–1112

WS Discovery, 1033
Ws2_32.dll, 1011. See also Winsock
WSK (Winsock Kernel)

advantages of, 1012
binding of applications, 1013
defined, 1004

events of, 1013
extension interfaces, 1014
implementation, 1012–1014
NMR (Network Module Registrar)

with, 1012–1013
registration functions, 1013
socket categories, 1013
TDI SPI interface availabili ty in,

1012
WSRM (Windows System Resource

Manager), 398–399

X
x.509 certificates, 1051
x64 Windows. See 64-bit Windows

versions (x64)
x86 systems

address space layouts, 737–740
session space layouts, 740–743
system address space layouts, 740

XP, Windows. See client versions of
Windows

Z
zero page threads, 701, 808, 1181
Zeroed page state, 804
zone security system, 921

Mark Russinovich

Mark Russinovich is a technical fellow in the Windows Core Operating

System Division. He is a member of the core team that provides archi-

tectural direction and oversight across Windows, with a focus on secu-

rity and virtualization. Mark is currently working on the technical

direction and architectural plan for Windows 8. He also continues

 developing tools for the Windows Sysinternals Web site, the most pop-

ular TechNet subsite, with 2 million downloads per month. Mark consis-

tently delivers the top-rated sessions at major IT and developer

conferences, including Microsoft TechEd, TechReady, and WinHEC.

Mark has written dozens of magazine articles and serves as contributing editor for both

Microsoft TechNet and Windows IT Pro magazines. Mark joined Microsoft in 2006 when the

85-person company he cofounded 10 years earlier, Winternals Software, was acquired along

with Sysinternals. At Winternals he was chief software architect, defining the business and

technical direction for the company.

David Solomon

David Solomon, president of David Solomon Expert Seminars

(www.solsem.com), has focused on explaining the internals of the

Microsoft Windows NT operating system line since 1992. He has taught

his world-renowned Windows internals classes to thousands of devel-

opers and IT professionals worldwide. His clients include all the major

software and hardware companies, including Microsoft. He was nomi-

nated a Microsoft Most Valuable Professional in 1993 and from

2005–2008.

Prior to starting his own company, David worked for nine years

as a project leader and developer in the VMS operating system development group at

Digital Equipment Corporation. His first book was entitled Windows NT for Open VMS
Professionals (Digital Press/Butterworth Heinemann, 1996). It explained Windows NT to VMS-

knowledgeable programmers and system administrators. His second book, Inside Windows
NT, Second Edition (Microsoft Press, 1998), covered the internals of Windows NT 4.0. Since

the third edition (Inside Windows 2000) David has coauthored this book series with Mark

Russinovich.

In addition to organizing and teaching seminars, David is a regular speaker at technical con-

ferences such as Microsoft TechEd and Microsoft PDCs. He has also served as technical chair

for several past Windows NT conferences. When he’s not researching Windows, David enjoys

sailing, reading, and watching Star Trek.

Alex Ionescu

Alex Ionescu is the founder of Winsider Seminars & Solutions Inc., spe-

cializing in low-level system software for administrators and develop-

ers. He also teaches Windows internals courses for David Solomon

Expert Seminars, including at Microsoft. Alex was the lead kernel devel-

oper for ReactOS, an open source clone of Windows XP/Windows

Server 2003 written from scratch, for which he wrote most of the

Windows NT–based kernel.

Alex is also very active in the security research community, discover-

ing and reporting several vulnerabilities related to the Windows kernel

and presenting talks at conferences such as Blackhat and Recon. Alex’s experience in oper-

ating system design and kernel coding dates back to his early adolescence, when he first

played with John Fine’s educational operating system and kernel and boot loader code. Since

then he has been active in the area of NT kernel development, offering help and advice for

driver developers, as well as in the NT reverse engineering and security fields, where he has

published a number of articles and source code, such as documentation for the Linux NTFS

project, extensive papers on the Visual Basic metadata and pseudo-code format and NTFS

structures and data streams. In the last three years, he has contributed to patches and devel-

opment in two major commercially used operating system kernels.

who literally wrote the book on Windows internals!
SIT DOWN WITH THE EXPERTS

“These videos drill into the core of the platform,
capture its technical essence and present it in a
powerful interactive video format.”–Rob Short,
Vice President Core Technologies,
Microsoft Corporation

If you liked their
book, you’ll love
hearing them in
person. Get one of
their video tutorials
or come to a live
class.

LIVE, INSTRUCTOR LED CLASSES
If you’re an IT professional deploying
and supporting Windows servers and
workstations, you need to be able to
dig beneath the surface when things go
wrong. In our classes, you’ll gain a deep
understanding of the internals of the
operating system and how to leverage
advanced troubleshooting tools to
solve system and application problems
and understand performance issues
more effectively. Attend a public class
or schedule a private on site seminar
at your location. For dates, course de-
tails, pricing, and registration informa-
tion, see www.solsem.com.

“The information given
in this class should be
required for all Windows
engineers/administrators.”

“This course holds the
key to understanding
Windows.”

“Should be required train-
ing for anyone responsible
for Windows software
development, administra-
tion, or design.”

To view video samples or for a detailed outline,
 visit www.solsem.com or email videos@solsem.com

INTERACTIVE DVD TUTORIAL
Sit down with the experts who
literally wrote the book on Win-
dows internals. Windows Internals
COMPLETE consists of 12 hours of
interactive training taking you under
the hood of the operating system to
learn how the kernel components
work. As the ultimate compliment,
Microsoft Corporation licensed these
videos for their corporate training
worldwide.
The Sysinternals Video Library (also
12 hours) covers essential Windows
troubleshooting topics such as crash
dump analysis and memory trouble-
shooting as well as how to leverage key
Sysinternals tools.

Windows Internals, Fifth Edition and MCTS Exam 70-660

This book delivers in-depth, kernel-level insights into the Windows OS. You may also find it helpful

when preparing for the following topics in Microsoft Certification Exam 70-660:

Exam Objectives/Skills See Topic-Related Coverage Here

Identifying Architectural Components

Identify memory types and mechanisms Chapter 9

Identify I/O mechanisms Chapter 7, see “I/O Processing”; Chapter 3

Identify subsystems Chapter 2, see “Key System Components”

Identify processor functions and architecture Chapter 3, see “System Service Dispatching”; Chapter 5, see

“Overview of Windows Scheduling”

Identify processes and threads Chapter 5, see “Process Internals,” “Thread Internals,” and

“Thread Scheduling”

Designing Solutions

Optimize a system for its drivers Chapter 7, see “Device Drivers” and “The Plug and Play (PnP)

Manager”; Chapter 3, see “Interrupt Dispatching” and “System

Worker Threads”; Chapter 9, see “Driver Verifier”

Design applications Chapter 3, see “Windows Global Flags,” “Exception

Dispatching,” and “Synchronization”; Chapter 5, see “Thread

Internals”; Chapter 9; Chapter 6

Deploy compatible applications Chapter 3, see “Windows Global Flags” (limited coverage)

Identify optimal I/O models for applications Chapter 7, see “I/O Processing” and “I/O Completion Ports”

Monitoring Windows

Monitor I/O latency Chapters 1, 7, and 8

Monitor I/O throughput Chapters 3, 7, 8, and 11

Monitor memory usage Chapter 9

Monitor CPU utilization Chapters 5 and 14

Monitor handled and unhandled exceptions Chapter 3, see “Exception Dispatching”; Chapter 14, see

“Windows Error Reporting”

Analyzing User Mode

Analyze heap leaks Chapter 9, see “Heap Manager”

Analyze heap corruption Chapter 9, see “Heap Manager”

Handle leaks Chapter 3, see “Object Handles and the Process Handle Table”

Resolve image load issues Chapter 3, see “Image Loader”

Analyze services and host processes Chapter 4, see “Services”

Analyze cross-process application calls Not covered

Analyze the modification of executables at

run time

Not covered

Analyze GUI performance issues Not covered

Exam Objectives/Skills See Topic-Related Coverage Here

Analyzing Kernel Mode

Find and identify objects in object manager

namespaces and identify the objects’

attributes

Chapter 3, see “Object Manager”

Analyze Plug and Play (PnP) device failure Chapter 7, see “The Plug and Play (PnP) Manager”; Chapter 13

Analyze pool corruption Chapters 1 and 3

Analyze pool leaks Chapters 1, 3, 9, and 14

Isolate the root cause of S state failure Chapter 7, see “Power Manager”

Analyze kernel mode CPU utilization Chapter 14, see “Hung or Unresponsive Systems”; Chapter 3

Debugging Windows

Debug memory Chapters 9 and 14

Identify a pending I/O Chapter 7

Identify a blocking thread Chapter 3, see “Synchronization”; Chapter 5, see “Thread

Scheduling”

Identify a runaway thread Chapter 5, see “Thread Scheduling”; Chapter 14

Debug kernel crash dumps Chapters 14, 3, and 5

Debug user crash dumps Not covered

Set up the debugger Chapters 14, 13, and 1

For complete information on MCTS Exam 70-660, go to www.microsoft.com/learning/en/us/Exams/70-
660.aspx. And for more information on Microsoft certifications, visit www.microsoft.com/learning.

	Cover
	Home Page
	Copyright

	Dedication
	Table of Contents
	Foreword
	Acknowledgments
	Introduction
	Structure of the Book
	History of the Book
	Fifth Edition Changes
	Hands-On Experiments
	Topics Not Covered
	A Warning and a Caveat
	Find Additional Content Online
	Support
	From the Authors
	From Microsoft Press
	Questions and Comments

	Chapter 1: Concepts and Tools
	Windows Operating System Versions
	Foundation Concepts and Terms
	Windows API
	Services, Functions, and Routines
	Processes, Threads, and Jobs
	Virtual Memory
	Kernel Mode vs. User Mode
	Terminal Services and Multiple Sessions
	Objects and Handles
	Security
	Registry
	Unicode

	Digging into Windows Internals
	Reliability and Performance Monitor
	Kernel Debugging
	Windows Software Development Kit
	Windows Driver Kit
	Sysinternals Tools

	Conclusion

	Chapter 2: System Architecture
	Requirements and Design Goals
	Operating System Model
	Architecture Overview
	Portability
	Symmetric Multiprocessing
	Scalability
	Differences Between Client and Server Versions
	Checked Build

	Key System Components
	Environment Subsystems and Subsystem DLLs
	Ntdll.dll
	Executive
	Kernel
	Hardware Abstraction Layer
	Device Drivers
	System Processes

	Conclusion

	Chapter 3: System Mechanisms
	Trap Dispatching
	Interrupt Dispatching
	Exception Dispatching
	System Service Dispatching

	Object Manager
	Executive Objects
	Object Structure

	Synchronization
	High-IRQL Synchronization
	Low-IRQL Synchronization

	System Worker Threads
	Windows Global Flags
	Advanced Local Procedure Calls (ALPCs)
	Kernel Event Tracing
	Wow64
	Wow64 Process Address Space Layout
	System Calls
	Exception Dispatching
	User Callbacks
	File System Redirection
	Registry Redirection and Reflection
	I/O Control Requests
	16-Bit Installer Applications
	Printing
	Restrictions

	User-Mode Debugging
	Kernel Support
	Native Support
	Windows Subsystem Support

	Image Loader
	Early Process Initialization
	Loaded Module Database
	Import Parsing
	Post Import Process Initialization

	Hypervisor (Hyper-V)
	Partitions
	Root Partition
	Child Partitions
	Hardware Emulation and Support

	Kernel Transaction Manager
	Hotpatch Support
	Kernel Patch Protection
	Code Integrity
	Conclusion

	Chapter 4: Management Mechanisms
	The Registry
	Viewing and Changing the Registry
	Registry Usage
	Registry Data Types
	Registry Logical Structure
	Transactional Registry (TxR)
	Monitoring Registry Activity
	Registry Internals

	Services
	Service Applications
	The Service Control Manager
	Service Startup
	Startup Errors
	Accepting the Boot and Last Known Good
	Service Failures
	Service Shutdown
	Shared Service Processes
	Service Tags
	Service Control Programs

	Windows Management Instrumentation
	Providers
	The Common Information Model and the Managed Object Format Language
	Class Association
	WMI Implementation
	WMI Security

	Windows Diagnostic Infrastructure
	WDI Instrumentation
	Diagnostic Policy Service
	Diagnostic Functionality

	Conclusion

	Chapter 5: Processes, Threads, and Jobs
	Process Internals
	Data Structures
	Kernel Variables
	Performance Counters
	Relevant Functions

	Protected Processes
	Flow of CreateProcess
	Stage 1: Converting and Validating Parameters and Flags
	Stage 2: Opening the Image to Be Executed
	Stage 3: Creating the Windows Executive Process Object (PspAllocateProcess)
	Stage 4: Creating the Initial Thread and Its Stack and Context
	Stage 5: Performing Windows Subsystem–Specific Post-Initialization
	Stage 6: Starting Execution of the Initial Thread
	Stage 7: Performing Process Initialization in the Context of the New Process

	Thread Internals
	Data Structures
	Kernel Variables
	Performance Counters
	Relevant Functions
	Birth of a Thread

	Examining Thread Activity
	Limitations on Protected Process Threads

	Worker Factories (Thread Pools)
	Thread Scheduling
	Overview of Windows Scheduling
	Priority Levels
	Windows Scheduling APIs
	Relevant Tools
	Real-Time Priorities
	Thread States
	Dispatcher Database
	Quantum
	Scheduling Scenarios
	Context Switching
	Idle Thread
	Priority Boosts
	Multiprocessor Systems
	Multiprocessor Thread-Scheduling Algorithms
	CPU Rate Limits

	Job Objects
	Conclusion

	Chapter 6: Security
	Security Ratings
	Trusted Computer System Evaluation Criteria
	The Common Criteria

	Security System Components
	Protecting Objects
	Access Checks
	Security Descriptors and Access Control

	Account Rights and Privileges
	Account Rights
	Privileges
	Super Privileges

	Security Auditing
	Logon
	Winlogon Initialization
	User Logon Steps

	User Account Control
	Virtualization
	Elevation

	Software Restriction Policies
	Conclusion

	Chapter 7: I/O System
	I/O System Components
	The I/O Manager
	Typical I/O Processing

	Device Drivers
	Types of Device Drivers
	Structure of a Driver
	Driver Objects and Device Objects
	Opening Devices

	I/O Processing
	Types of I/O
	I/O Request to a Single-Layered Driver
	I/O Requests to Layered Drivers
	I/O Cancellation
	I/O Completion Ports
	I/O Prioritization
	Driver Verifier

	Kernel-Mode Driver Framework (KMDF)
	Structure and Operation of a KMDF Driver
	KMDF Data Model
	KMDF I/O Model

	User-Mode Driver Framework (UMDF)
	The Plug and Play (PnP) Manager
	Level of Plug and Play Support
	Driver Support for Plug and Play
	Driver Loading, Initialization, and Installation
	Driver Installation

	The Power Manager
	Power Manager Operation
	Driver Power Operation
	Driver and Application Control of Device Power

	Conclusion

	Chapter 8: Storage Management
	Storage Terminology
	Disk Drivers
	Winload
	Disk Class, Port, and Miniport Drivers
	Disk Device Objects
	Partition Manager

	Volume Management
	Basic Disks
	Dynamic Disks
	Multipartition Volume Management
	The Volume Namespace
	Volume I/O Operations
	Virtual Disk Service

	BitLocker Drive Encryption
	BitLocker Architecture
	Encryption Keys
	Trusted Platform Module (TPM)
	BitLocker Boot Process
	BitLocker Key Recovery
	Full Volume Encryption Driver
	BitLocker Management

	Volume Shadow Copy Service
	Shadow Copies
	VSS Architecture
	VSS Operation
	Uses in Windows

	Conclusion

	Chapter 9: Memory Management
	Introduction to the Memory Manager
	Memory Manager Components
	Internal Synchronization
	Examining Memory Usage

	Services the Memory Manager Provides
	Large and Small Pages
	Reserving and Committing Pages
	Locking Memory
	Allocation Granularity
	Shared Memory and Mapped Files
	Protecting Memory
	No Execute Page Protection
	Copy-on-Write
	Address Windowing Extensions

	Kernel-Mode Heaps (System Memory Pools)
	Pool Sizes
	Monitoring Pool Usage
	Look-Aside Lists

	Heap Manager
	Types of Heaps
	Heap Manager Structure
	Heap Synchronization
	The Low Fragmentation Heap
	Heap Security Features
	Heap Debugging Features
	Pageheap

	Virtual Address Space Layouts
	x86 Address Space Layouts
	x86 System Address Space Layout
	x86 Session Space
	System Page Table Entries
	64-Bit Address Space Layouts
	64-Bit Virtual Addressing Limitations
	Dynamic System Virtual Address Space Management
	System Virtual Address Space Quotas
	User Address Space Layout

	Address Translation
	x86 Virtual Address Translation
	Translation Look-Aside Buffer
	Physical Address Extension (PAE)
	IA64 Virtual Address Translation
	x64 Virtual Address Translation

	Page Fault Handling
	Invalid PTEs
	Prototype PTEs
	In-Paging I/O
	Collided Page Faults
	Clustered Page Faults
	Page Files

	Stacks
	User Stacks
	Kernel Stacks
	DPC Stack

	Virtual Address Descriptors
	Process VADs
	Rotate VADs

	NUMA
	Section Objects
	Driver Verifier
	Page Frame Number Database
	Page List Dynamics
	Page Priority
	Modified Page Writer
	PFN Data Structures

	Physical Memory Limits
	Windows Client Memory Limits

	Working Sets
	Demand Paging
	Logical Prefetcher
	Placement Policy
	Working Set Management
	Balance Set Manager and Swapper
	System Working Set
	Memory Notification Events

	Proactive Memory Management (SuperFetch)
	Components
	Tracing and Logging
	Scenarios
	Page Priority and Rebalancing
	Robust Performance
	ReadyBoost
	ReadyDrive

	Conclusion

	Chapter 10: Cache Manager
	Key Features of the Cache Manager
	Single, Centralized System Cache
	The Memory Manager
	Cache Coherency
	Virtual Block Caching
	Stream-Based Caching
	Recoverable File System Support

	Cache Virtual Memory Management
	Cache Size
	Cache Virtual Size
	Cache Working Set Size
	Cache Physical Size

	Cache Data Structures
	Systemwide Cache Data Structures
	Per-File Cache Data Structures

	File System Interfaces
	Copying to and from the Cache
	Caching with the Mapping and Pinning Interfaces
	Caching with the Direct Memory Access Interfaces

	Fast I/O
	Read Ahead and Write Behind
	Intelligent Read-Ahead
	Write-Back Caching and Lazy Writing
	Write Throttling
	System Threads

	Conclusion

	Chapter 11: File Systems
	Windows File System Formats
	CDFS
	UDF
	FAT12, FAT16, and FAT32
	exFAT
	NTFS

	File System Driver Architecture
	Local FSDs
	Remote FSDs
	File System Operation
	File System Filter Drivers

	Troubleshooting File System Problems
	Process Monitor Basic vs. Advanced Modes
	Process Monitor Troubleshooting Techniques

	Common Log File System
	NTFS Design Goals and Features
	High-End File System Requirements
	Advanced Features of NTFS

	NTFS File System Driver
	NTFS On-Disk Structure
	Volumes
	Clusters
	Master File Table
	File Reference Numbers
	File Records
	File Names
	Resident and Nonresident Attributes
	Data Compression and Sparse Files
	The Change Journal File
	Indexing
	Object IDs
	Quota Tracking
	Consolidated Security
	Reparse Points
	Transaction Support

	NTFS Recovery Support
	Design
	Metadata Logging
	Recovery
	NTFS Bad-Cluster Recovery
	Self-Healing

	Encrypting File System Security
	Encrypting a File for the First Time
	The Decryption Process
	Backing Up Encrypted Files

	Conclusion

	Chapter 12: Networking
	Windows Networking Architecture
	The OSI Reference Model
	Windows Networking Components

	Networking APIs
	Windows Sockets
	Winsock Kernel (WSK)
	Remote Procedure Call
	Web Access APIs
	Named Pipes and Mailslots
	NetBIOS
	Other Networking APIs

	Multiple Redirector Support
	Multiple Provider Router
	Multiple UNC Provider

	Name Resolution
	Domain Name System
	Windows Internet Name Service
	Peer Name Resolution Protocol

	Location and Topology
	Network Location Awareness (NLA)
	Link-Layer Topology Discovery (LLTD)

	Protocol Drivers
	Windows Filtering Platform (WFP)

	NDIS Drivers
	Variations on the NDIS Miniport
	Connection-Oriented NDIS
	Remote NDIS
	QoS

	Binding
	Layered Network Services
	Remote Access
	Active Directory
	Network Load Balancing
	Distributed File System and DFS Replication

	Conclusion

	Chapter 13: Startup and Shutdown
	Boot Process
	BIOS Preboot
	The BIOS Boot Sector and Bootmgr
	The EFI Boot Process
	Initializing the Kernel and Executive Subsystems
	Smss, Csrss, and Wininit
	ReadyBoot
	Images That Start Automatically

	Troubleshooting Boot and Startup Problems
	Last Known Good
	Safe Mode
	Windows Recovery Environment (WinRE)
	Solving Common Boot Problems

	Shutdown
	Conclusion

	Chapter 14: Crash Dump Analysis
	Why Does Windows Crash?
	The Blue Screen
	Troubleshooting Crashes
	Crash Dump Files
	Crash Dump Generation

	Windows Error Reporting
	Online Crash Analysis
	Basic Crash Dump Analysis
	Notmyfault
	Basic Crash Dump Analysis
	Verbose Analysis

	Using Crash Troubleshooting Tools
	Buffer Overrun, Memory Corruptions, and Special Pool
	Code Overwrite and System Code Write Protection

	Advanced Crash Dump Analysis
	Stack Trashes
	Hung or Unresponsive Systems
	When There Is No Crash Dump

	Conclusion

	Glossary
	Index
	About the Authors
	Mark Russinovich
	David Solomon
	Alex Ionescu

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.6
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ARA <FFFE270633062A062E062F0645062000470630064706200027064406250639062F0627062F0627062A0620004406250646063406270621062000450633062A0646062F0627062A062000410064006F0062006500200050004400460020004A064506430646062000270644062A06390627064506440620004506390647062706200048062A062A063606450646062000390644062706450627062A0620002A0645064A064A063206200048063106480627062806370620002A063406390628064A06290620004806250634062706310627062A062000450631062C0639064A062906200048063906460627063506310620002A0641062706390644064A0629062000480637062806420627062A062E0020004A06450643064606200041062A062D062000450633062A0646062F0627062A0620005000440046002000270644064506460634062306290620002806270633062A062E062F062706450620004100630072006F0062006100740020004806410064006F00620065002000520065006100640065007200200037002E003000200023064806200023062D062F062B062E0029000D000A00>
 /CHS <FEFF4F7F75288FD94E9B8BBE7F6E6765521B5EFA7684002000410064006F006200650020005000440046002065876863517759078F8552A95DE55177FF0C53735305542B68077B7E30018D8594FE63A530014E667B7E30014EA44E9251437D20548C56FE5C423002521B5EFA76840020005000440046002065874EF653EF4EE54F7F75280020004100630072006F0062006100740020548C002000410064006F00620065002000520065006100640065007200200037002E00300020621666F49AD87248672C676562535F003002>
 /CHT <FEFF4F7F752890194E9B8A2D5B9A5EFA7ACB7684002000410064006F006200650020005000440046002065874EF651775099535452A95DE55177FF0C53735305542B6A197C6430018D8590237D50300166F87C6430014E9252D551437D20548C57165C6430025EFA7ACB76840020005000440046002065874EF653EF4EE54F7F75280020004100630072006F0062006100740020548C002000410064006F00620065002000520065006100640065007200200037002E00300020621666F49AD87248672C958B555F3002>
 /CZE <FEFF005400610074006F0020006E006100730074006100760065006E00ED00200070006F0075017E0069006A007400650020006B0020007600790074007600E101590065006E00ED00200073006E00610064006E006F00200070015900ED0073007400750070006E00FD0063006800200064006F006B0075006D0065006E0074016F002000410064006F006200650020005000440046002C0020006B00740065007200E90020006F00620073006100680075006A00ED00200074006100670079002C00200068007900700065007200760061007A00620079002C0020007A00E1006C006F017E006B0079002C00200069006E0074006500720061006B007400690076006E00ED0020007000720076006B0079002000610020007600720073007400760079002E00200056007900740076006F01590065006E00E900200064006F006B0075006D0065006E007400790020005000440046002000620075006400650020006D006F017E006E00E90020006F007400650076015900ED007400200076002000700072006F006700720061006D0065006300680020004100630072006F00620061007400200061002000410064006F00620065002000520065006100640065007200200037002E0030002000610020006E006F0076011B006A016100ED00630068002E>
 /DAN <FEFF004200720075006700200064006900730073006500200069006E0064007300740069006C006C0069006E006700650072002000740069006C0020006100740020006F0070007200650074007400650020006C0065007400740069006C006700E6006E00670065006C006900670065002000410064006F006200650020005000440046002D0064006F006B0075006D0065006E007400650072002C002000640065007200200069006E006400650068006F006C0064006500720020006B006F006400650072002C002000680079007000650072006C0069006E006B0073002C00200062006F0067006D00E60072006B00650072002C00200069006E0074006500720061006B007400690076006500200065006C0065006D0065006E0074006500720020006F00670020006C00610067002E0020004400650020006F007000720065007400740065006400650020005000440046002D0064006F006B0075006D0065006E0074006500720020006B0061006E002000E50062006E00650073002000690020004100630072006F00620061007400200065006C006C006500720020004100630072006F006200610074002000520065006100640065007200200037002E00300020006F00670020006E0079006500720065002E>
 /DEU <FEFFFEFF00560065007200770065006E00640065006E0020005300690065002000640069006500730065002000450069006E007300740065006C006C0075006E00670065006E0020007A0075006D002000450072007300740065006C006C0065006E00200076006F006E0020007A0075006700E4006E0067006C0069006300680065006E002000410064006F006200650020005000440046002D0044006F006B0075006D0065006E00740065006E0020006D0069007400200054006100670073002C002000480079007000650072006C0069006E006B0073002C0020004C006500730065007A00650069006300680065006E002C00200069006E0074006500720061006B0074006900760065006E00200045006C0065006D0065006E00740065006E00200075006E00640020004500620065006E0065006E002E002000450072007300740065006C006C007400650020005000440046002D0044006F006B0075006D0065006E007400650020006B00F6006E006E0065006E0020006D006900740020004100630072006F00620061007400200075006E0064002000410064006F00620065002000520065006100640065007200200037002E00300020006F0064006500720020006800F600680065007200200067006500F600660066006E00650074002000770065007200640065006E002E>
 /ENU (Use these settings to create accessible Adobe PDF documents that include tags, hyperlinks, bookmarks, interactive elements, and layers. Created PDF documents can be opened with Acrobat and Adobe Reader 7.0 and later.)
 /ESP <FEFF005500740069006C0069006300650020006500730074006100200063006F006E0066006900670075007200610063006900F3006E0020007000610072006100200063007200650061007200200064006F00630075006D0065006E0074006F0073002000500044004600200061006300630065007300690062006C00650073002000640065002000410064006F00620065002000710075006500200069006E0063006C007500790061006E0020006500740069007100750065007400610073002C002000680069007000650072007600ED006E00630075006C006F0073002C0020006D00610072006300610064006F0072006500730020006400650020007000E100670069006E0061002C00200065006C0065006D0065006E0074006F007300200069006E00740065007200610063007400690076006F007300200079002000630061007000610073002E002000530065002000700075006500640065006E00200061006200720069007200200064006F00630075006D0065006E0074006F00730020005000440046002000630072006500610064006F007300200063006F006E0020004100630072006F006200610074002C002000410064006F00620065002000520065006100640065007200200037002E003000200079002000760065007200730069006F006E0065007300200070006F00730074006500720069006F007200650073002E>
 /FRA <FEFF005500740069006C006900730065007A00200063006500730020006F007000740069006F006E007300200070006F0075007200200063007200E900650072002000640065007300200064006F00630075006D0065006E00740073002000410064006F006200650020005000440046002000610063006300650073007300690062006C0065007300200064006F007400E90073002000640065002000620061006C0069007300650073002C00200064002700680079007000650072006C00690065006E0073002C0020006400650020007300690067006E006500740073002C00200064002700E9006C00E9006D0065006E0074007300200069006E007400650072006100630074006900660073002000650074002000640065002000630061006C0071007500650073002E0020004C0065007300200064006F00630075006D0065006E0074007300200050004400460020006F006200740065006E00750073002000730027006F0075007600720065006E0074002000640061006E00730020004100630072006F006200610074002000650074002000410064006F00620065002000520065006100640065007200200037002E00300020002800650074002000760065007200730069006F006E007300200075006C007400E900720069006500750072006500730029002E>
 /GRE <FEFF03A703C103B703C303B903BC03BF03C003BF03B903AE03C303C403B5002003B103C503C403AD03C2002003C403B903C2002003C103C503B803BC03AF03C303B503B903C2002003B303B903B1002003BD03B1002003B403B703BC03B903BF03C503C103B303AE03C303B503C403B5002003C003C103BF03C303C003B503BB03AC03C303B903BC03B1002003AD03B303B303C103B103C603B1002000410064006F006200650020005000440046002003C403B1002003BF03C003BF03AF03B1002003C003B503C103B903BB03B103BC03B203AC03BD03BF03C503BD002003B503C403B903BA03AD03C403B503C2002C002003C503C003B503C103C303C503BD03B403AD03C303B503B903C2002C002003C303B503BB03B903B403BF03B403B503AF03BA03C403B503C2002C002003B103BB03BB03B703BB03B503C003B903B403C103B103C303C403B903BA03AC002003C303C403BF03B903C703B503AF03B1002003BA03B103B9002003B503C003AF03C003B503B403B1002E002003A403B1002003AD03B303B303C103C603B10020005000440046002003C003BF03C5002003B403B703BC03B903BF03C503C103B303BF03CD03BD03C403B103B9002003BC03C003BF03C103BF03CD03BD002003BD03B1002003B103BD03BF03B903C703B803BF03CD03BD002003BC03B5002003C403BF0020004100630072006F006200610074002003BA03B103B9002000410064006F00620065002000520065006100640065007200200037002E0030002003BA03B103B9002003BD03B503CC03C403B503C103B7002E>
 /HEB <FEFF05d405e905ea05de05e905d5002005d105e705d105d905e205d505ea002005d005dc05d4002005dc05d905e605d905e805ea002005de05e105de05db05d9002000410064006f006200650020005000440046002005e005d205d905e905d905dd002005d405db05d505dc05dc05d905dd002005ea05d205d905dd002c002005e705d905e905d505e805d9002d05e205dc002c002005e105d905de05e005d905d505ea002c002005e805db05d905d105d905dd002005d005d905e005d805e805d005e705d805d905d105d905d905dd002005d505e905db05d105d505ea002e002005de05e105de05db05d90020005000440046002005e905e005d505e605e805d5002005e005d905ea05df002005dc05e405ea05d505d7002005d1002d0020004100630072006f006200610074002005d505d1002d002000410064006f00620065002000520065006100640065007200200037002e0030002005d505d205e805e105d005d505ea002005de05ea05e705d305de05d505ea002005d905d505ea05e8002e>
 /HUN <FEFF004100200062006500E1006C006C00ED007400E10073006F006B0020006800610073007A006E00E1006C0061007400E100760061006C0020006300ED006D006B00E9006B00650074002C002000680069007600610074006B006F007A00E10073006F006B00610074002C0020006B00F6006E00790076006A0065006C007A0151006B00650074002C00200069006E0074006500720061006B007400ED007600200065006C0065006D0065006B00650074002000E900730020007200E90074006500670065006B00650074002000740061007200740061006C006D0061007A00F300200068006F007A007A00E1006600E900720068006500740151002000410064006F00620065002000500044004600200064006F006B0075006D0065006E00740075006D006F006B0061007400200068006F007A0068006100740020006C00E9007400720065002E002000410020006C00E90074007200650068006F007A006F00740074002000500044004600200064006F006B0075006D0065006E00740075006D006F006B00200061007A0020004100630072006F006200610074002000E9007300200061007A002000410064006F00620065002000520065006100640065007200200037002E003000200061006C006B0061006C006D0061007A00E10073006F006B006B0061006C002C0020007600610067007900200061007A002000610074007400F3006C0020006B00E9007301510062006200690020007600650072007A006900F3006B006B0061006C0020006E00790069007400680061007400F3006B0020006D00650067002E>
 /ITA <FEFF005500740069006C0069007A007A006100720065002000710075006500730074006500200069006D0070006F007300740061007A0069006F006E00690020007000650072002000630072006500610072006500200064006F00630075006D0065006E00740069002000410064006F0062006500200050004400460020006100630063006500730073006900620069006C0069002000630068006500200069006E0063006C00750064006F006E006F0020007400610067002C0020006C0069006E006B00200069007000650072007400650073007400750061006C0069002C0020007300650067006E0061006C0069006200720069002C00200065006C0065006D0065006E0074006900200069006E007400650072006100740074006900760069002000650020006C006900760065006C006C0069002E002000C800200070006F00730073006900620069006C006500200061007000720069007200650020006900200064006F00630075006D0065006E007400690020005000440046002000630072006500610074006900200063006F006E0020004100630072006F00620061007400200065002000410064006F00620065002000520065006100640065007200200037002E003000200065002000760065007200730069006F006E006900200073007500630063006500730073006900760065002E>
 /JPN <FEFF30BF30B0300130CF30A430D130FC30EA30F330AF30013057304A308A300130A430F330BF30E930AF30C630A330D6306A89817D20300130EC30A430E430FC3092542B308030A230AF30BB30B730D630EB306A002000410064006F0062006500200050004400460020658766F830924F5C62103059308B306B306F30013053308C3089306E8A2D5B9A30924F7F75283057307E305930024F5C62103055308C305F00200050004400460020306F0020004100630072006F0062006100740020304A30883073002000410064006F00620065002000520065006100640065007200200037002E003000204EE5964D3067958B304F30533068304C3067304D307E30593002>
 /KOR <FEFFD0DCADF8002C0020D558C774D37CB9C1D06C002C0020CC45AC08D53C002C0020B300D654D6150020C694C18C0020BC0F0020B808C774C5B4AC000020D3ECD568B418C5B40020C788C5B40020C0ACC6A9C790AC000020C27DAC8C0020C561C138C2A4D5600020C2180020C788B294002000410064006F0062006500200050004400460020BB38C11CB97C0020C791C131D558B824BA740020C774B7ECD55C0020C124C815C7440020C0ACC6A9D569B2C8B2E4002E0020C774C6400020AC19C7400020C635C158C7440020C0ACC6A9D558C5EC0020C791C131B41C00200050004400460020BB38C11CB2940020004100630072006F0062006100740020BC0F002000410064006F00620065002000520065006100640065007200200037002E00300020C774C0C1C5D0C11C0020C5F40020C2180020C788C2B5B2C8B2E4002E>
 /NLD (Gebruik deze instellingen om toegankelijke Adobe PDF-documenten met labels, hyperlinks, bladwijzers, interactieve elementen en lagen te maken. U kunt gemaakte PDF-documenten openen met Acrobat en Adobe Reader 7.0 en hoger.)
 /NOR <FEFF004200720075006B00200064006900730073006500200069006E006E007300740069006C006C0069006E00670065006E0065002000740069006C002000E50020006F0070007000720065007400740065002000740069006C0067006A0065006E00670065006C006900670065002000410064006F006200650020005000440046002D0064006F006B0075006D0065006E00740065007200200073006F006D00200069006E006E00650068006F006C0064006500720020006B006F006400650072002C002000680079007000650072006B006F0062006C0069006E006700650072002C00200062006F006B006D00650072006B00650072002C00200069006E0074006500720061006B007400690076006500200065006C0065006D0065006E0074006500720020006F00670020006C00610067002E0020004F0070007000720065007400740065006400650020005000440046002D0064006F006B0075006D0065006E0074006500720020006B0061006E002000E50070006E00650073002000690020004100630072006F0062006100740020006F0067002000410064006F00620065002000520065006100640065007200200037002E00300020006F0067002000730065006E006500720065002E>
 /POL <FEFF005A006100200070006F006D006F00630105002000740079006300680020007500730074006100770069006501440020006D006F017C006E0061002000740077006F0072007A0079010700200142006100740077006F00200064006F0073007401190070006E006500200064006F006B0075006D0065006E00740079002000410064006F006200650020005000440046002C0020007A006100770069006500720061006A0105006300650020007A006E00610063007A006E0069006B0069002C002000680069007000650072014201050063007A0061002C0020007A0061006B014200610064006B0069002C00200065006C0065006D0065006E0074007900200069006E0074006500720061006B007400790077006E00650020006900200077006100720073007400770079002E0020005500740077006F0072007A006F006E006500200077002000740065006E002000730070006F007300F3006200200064006F006B0075006D0065006E0074007900200050004400460020006D006F017C006E00610020006F007400770069006500720061010700200077002000700072006F006700720061006D0061006300680020004100630072006F00620061007400200069002000410064006F00620065002000520065006100640065007200200037002E00300020006900200069006300680020006E006F00770073007A00790063006800200077006500720073006A006100630068002E>
 /PTB <FEFF00550073006500200065007300740061007300200063006F006E00660069006700750072006100E700F5006500730020007000610072006100200063007200690061007200200064006F00630075006D0065006E0074006F007300200061006300650073007300ED00760065006900730020005000440046002000410064006F00620065002000710075006500200069006E0063006C00750065006D00200074006100670073002C002000680079007000650072006C0069006E006B0073002C0020006D00610072006300610064006F007200650073002C00200065006C0065006D0065006E0074006F007300200069006E0074006500720061007400690076006F007300200065002000630061006D0061006400610073002E0020004F007300200064006F00630075006D0065006E0074006F00730020005000440046002000630072006900610064006F007300200070006F00640065006D0020007300650072002000610062006500720074006F007300200063006F006D0020004100630072006F00620061007400200065002000410064006F00620065002000520065006100640065007200200037002E00300020006F007500200070006F00730074006500720069006F007200650073002E>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610063006300650073006900620069006c00650020006300610072006500200069006e0063006c007500640020007400610067007500720069002c002000680069007000650072006c0069006e006b007500720069002c002000730065006d006e0065002000640065002000630061007200740065002c00200065006c0065006d0065006e0074006500200069006e0074006500720061006300740069007600650020015f0069002000730074007200610074007500720069002e00200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f0062006100740020015f0069002000410064006f00620065002000520065006100640065007200200037002e0030002c002000700072006500630075006d0020015f00690020006300750020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043F043E043B044C04370443043904420435002004340430043D043D044B04350020043D0430044104420440043E0439043A043800200434043B044F00200441043E043704340430043D0438044F00200434043E044104420443043F043D044B0445002000410064006F006200650020005000440046002D0434043E043A0443043C0435043D0442043E0432002C00200441043E0434043504400436043004490438044500200442043504330438002C002004330438043F0435044004410441044B043B043A0438002C002004370430043A043B04300434043A0438002C00200438043D0442043504400430043A044204380432043D044B04350020044D043B0435043C0435043D0442044B0020043800200441043B043E0438002E00200421043E043704340430043D043D044B04350020005000440046002D0434043E043A0443043C0435043D0442044B0020043C043E0436043D043E0020043E0442043A0440044B043204300442044C002004410020043F043E043C043E0449044C044E0020004100630072006F00620061007400200438002000410064006F00620065002000520065006100640065007200200037002E00300020043800200431043E043B043504350020043F043E04370434043D043804450020043204350440044104380439002E>
 /SUO <FEFF004B00E40079007400E40020006E00E40069007400E4002000610073006500740075006B0073006900610020006C0075006F0064006500730073006100730069002000680065006C00700070006F006B00E400790074007400F600690073006900E4002000410064006F0062006500200050004400460020002D0064006F006B0075006D0065006E007400740065006A0061002C0020006A006F0074006B0061002000730069007300E4006C007400E4007600E400740020006B006F006F00640069006D00650072006B0069006E007400F6006A00E4002C002000680079007000650072006C0069006E006B006B0065006A00E4002C0020006B00690072006A0061006E006D00650072006B006B0065006A00E4002C002000760075006F0072006F007600610069006B0075007400740065006900730069006100200065006C0065006D0065006E007400740065006A00E40020006A00610020007400610073006F006A0061002E002000410073006500740075007300740065006E0020006100760075006C006C00610020006C0075006F0064007500740020005000440046002D0064006F006B0075006D0065006E00740069007400200076006F00690020006100760061007400610020004100630072006F0062006100740020006A0061002000410064006F00620065002000520065006100640065007200200037002E0030003A006C006C0061002000740061006900200075007500640065006D006D0061006C006C0061002000760065007200730069006F006C006C0061002E>
 /SVE <FEFF0041006E007600E4006E00640020006400650020006800E4007200200069006E0073007400E4006C006C006E0069006E006700610072006E00610020006600F60072002000610074007400200073006B0061007000610020006C00E4007400740069006C006C006700E4006E0067006C006900670061002000410064006F006200650020005000440046002D0064006F006B0075006D0065006E007400200073006F006D00200069006E006E0065006800E5006C006C006500720020007400610067006700610072002C002000680079007000650072006C00E4006E006B00610072002C00200062006F006B006D00E40072006B0065006E002C00200069006E0074006500720061006B007400690076006100200065006C0065006D0065006E00740020006F006300680020006C0061006700650072002E00200044006500200064006F006B0075006D0065006E007400200064007500200073006B00610070006100720020006B0061006E002000F600700070006E00610073002000690020004100630072006F0062006100740020006F00630068002000410064006F00620065002000520065006100640065007200200037002E003000200065006C006C00650072002000730065006E006100720065002E>
 /TUR <FEFF0130006D006C00650072002C002000680069007000650072002000620061011F006C00610072002C002000790065007200200069006D006C006500720069002C002000650074006B0069006C0065015F0069006D006C0069002000F6011F0065006C006500720020007600650020006B00610074006D0061006E006C006100720020006900E7006500720065006E0020006500720069015F0069006C006500620069006C00690072002000410064006F006200650020005000440046002000620065006C00670065006C0065007200690020006F006C0075015F007400750072006D0061006B0020006900E70069006E00200062007500200061007900610072006C0061007201310020006B0075006C006C0061006E0131006E002E0020004F006C0075015F0074007500720075006C0061006E0020005000440046002000620065006C00670065006C0065007200690020004100630072006F006200610074002000760065002000410064006F00620065002000520065006100640065007200200037002E003000200076006500200073006F006E00720061006B00690020007300FC007200FC006D006C0065007200690079006C00650020006100E70131006C006100620069006C00690072002E>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f002000410064006f006200650020005000440046002d0434043e043a0443043c0435043d044204560432002c0020044f043a04560020043c045604410442044f0442044c00200442043504330438002c002004330456043f04350440043f043e04410438043b0430043d043d044f002c002004370430043a043b04300434043a0438002c00200456043d0442043504400430043a044204380432043d045600200435043b0435043c0435043d044204380020043900200448043004400438002e0020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004320020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200037002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements true
 /GenerateStructure true
 /IncludeBookmarks true
 /IncludeHyperlinks true
 /IncludeInteractive true
 /IncludeLayers true
 /IncludeProfiles true
 /MultimediaHandling /EmbedAll
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

