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Foreword

It’s both a pleasure and an honor for me to write the foreword for this latest edition of 

Windows Internals. Many significant changes have occurred in Windows since the last edition 

of the book, and David, Mark, and Alex have done an excellent job of updating the book to 

address them. Whether you are new to Windows internals or an old hand at kernel develop-

ment, you will find lots of detailed analysis and examples to help improve your understand-

ing of the core mechanisms of Windows as well as the general principles of operating system 

design.

Today, Windows enjoys unprecedented breadth and depth in the computing world. Variants 

of the original Windows NT design run on everything from Xbox game consoles to desktop 

and laptop computers to clusters of servers with dozens of processors and petabytes of stor-

age. Advances such as hypervisors, 64-bit computing, multicore and many-core processor 

designs, flash-based storage, and wireless and peer-to-peer networking continue to provide 

plenty of interesting and innovative areas for operating system design.

One such area of innovation is security. Over the past decade, the entire computing indus-

try—and Microsoft in particular—has been confronted with huge new threats, and security 

has become the top issue facing many of our customers. Attacks such as Blaster and Sasser 

threatened to bring the entire Internet to its knees, and Windows was at the eye of the hur-

ricane. It was obvious to us that we could no longer afford to do business as usual, as many 

of the usability and simplicity features designed into Windows were being used to attack it 

for nefarious reasons. At first the hackers were teenagers trying to gain notoriety by breaking 

into systems or adding graffiti to a corporate Web site, but pretty soon the attacks intensified 

and went underground. The hackers became more sophisticated and evaded inspection. You 

rarely see headlines about viruses and worms these days, but make no mistake—botnets and 

identity theft are big business today, as are industrial and government espionage through 

targeted attacks.

In January 2002, Bill Gates sent his now-famous “Trustworthy Computing” memorandum to 

all Microsoft employees. It was a call to action that resonated well and charted the course 

for how we would build software and conduct business over the coming years. Nearly the 

entire Windows engineering team was diverted to work on Windows XP SP2, a service pack 

dedicated almost entirely to improving the security of the operating system. The Security 

Development Lifecycle (SDL) was developed and applied to all Microsoft products, with 

particular emphasis on Windows Vista as the first version of the operating system designed 

from the ground up to be secure. SDL specifies strict guidelines and processes for secure 

software development. Sophisticated tools have been developed to scan everything from 

source code to system binaries to network protocols for common security vulnerabilities. 

Every time a new security vulnerability is discovered, it is analyzed, and mitigations are devel-

oped to address that potential attack vector. Windows Vista has now been in the market for 
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two years, and it is by far the most secure version of Windows. Some industry analysts have 

pointed out that it is, in fact, the most secure general purpose operating system shipping 

today.

The Windows team has continued to innovate over the past few years. Windows XP, Windows 

Server 2003, Windows Server 2003 R2, Windows XP SP2, Windows Vista, Windows Server 

2008, and Hyper-V are all major accomplishments and great successes—as well as great addi-

tions to the Windows family of products. 

Frankly, I can’t think of a more exciting and challenging topic. Nor can I think of a more 

authoritative and well-written book. David, Mark, and Alex have done a thorough job of dis-

secting the Windows architecture and providing diagnostic tools for hands-on learning. I 

hope you enjoy reading and learning about Windows as much as we all enjoy working on it.

Ben Fathi 
Corporate Vice President, Windows Core Development 

Microsoft Corporation
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Introduction

Windows Internals, Fifth Edition is intended for advanced computer professionals (both devel-

opers and system administrators) who want to understand how the core components of 

the Windows Vista and  Windows Server 2008 operating systems work internally. With this 

knowledge, developers can better comprehend the rationale behind design choices when 

building applications specific to the Windows platform. Such knowledge can also help devel-

opers debug complex problems. System administrators can benefit from this information as 

well, because understanding how the operating system works “under the covers” facilitates 

understanding the performance behavior of the system and makes troubleshooting system 

problems much easier when things go wrong. After reading this book, you should have a 

better understanding of how Windows works and why it behaves as it does.

Structure of the Book

The first two chapters (“Concepts and Tools” and “System Architecture”) lay the foundation 

with definitions and explanations of terms and concepts used throughout the rest of the 

book. The next two chapters—“System Mechanisms” and “Management Mechanisms”—

describe key underlying mechanisms in the system. The next eight chapters explain the core 

components of the operating system: processes, threads, and jobs; security; the I/O system; 

storage management; memory management; the cache manager; file systems; and network-

ing. The last two chapters cover startup and shutdown process and crash dump analysis.

History of the Book

This is the fifth edition of a book that was originally called Inside Windows NT (Microsoft 

Press, 1992), written by Helen Custer (prior to the initial release of Microsoft Windows NT 3.1). 

Inside Windows NT was the first book ever published about Windows NT and provided key 

insights into the architecture and design of the system. Inside Windows NT, Second Edition 

(Microsoft Press, 1998) was written by David Solomon. It updated the original book to cover 

Windows NT 4.0 and had a greatly increased level of technical depth. Inside Windows 2000, 
Third Edition (Microsoft Press, 2000) was authored by David Solomon and Mark Russinovich. 

It added many new topics, such as startup and shutdown, service internals, registry inter-

nals, file system drivers, and networking. It also covered kernel changes in Windows 2000, 

such as the Windows Driver Model (WDM), Plug and Play, power management, Windows 

Management Instrumentation (WMI), encryption, the job object, and Terminal Services. 

Windows Internals, Fourth Edition was the Windows XP and Windows Server 2003 update 
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and added more content focused on helping IT professionals make use of their knowledge of 

Windows internals, such as using key tools from Windows Sysinternals (www.microsoft.com/
technet/sysinternals) and analyzing crash dumps.

Fifth Edition Changes

This latest edition has been updated to cover the kernel changes made in Windows Vista 

and Windows Server 2008. Hands-on experiments have been updated to reflect changes 

in tools, and newly added experiments use tools not available when the fourth edition was 

written. Additionally, content has been added to cover mechanisms that were not previously 

described, such as the image loader and user-mode debugging facility, and information 

about previously covered subjects has been expanded as well.

Hands-On Experiments

Even without access to the Windows source code, you can glean much about Windows 

internals from tools such as the kernel debugger and tools from Sysinternals and Winsider 

Seminars & Solutions (www.winsiderss.com). When a tool can be used to expose or demon-

strate some aspect of the internal behavior of Windows, the steps for trying the tool yourself 

are listed in “Experiment” boxes. These appear throughout the book, and we encourage you 

to try these as you’re reading—seeing visible proof of how Windows works internally will 

make much more of an impression on you than just reading about it will.

Topics Not Covered

Windows is a large and complex operating system. This book doesn’t cover everything rele-

vant to Windows internals but instead focuses on the base system components. For example, 

this book doesn’t describe COM+, the Windows distributed object-oriented programming 

infrastructure, or the .NET Framework, the foundation of managed code applications.

Because this is an internals book and not a user, programming, or system administration 

book, it doesn’t describe how to use, program, or configure Windows.

A Warning and a Caveat

Because this book describes undocumented behavior of the internal architecture and opera-

tion of the Windows operating system (such as internal kernel structures and functions), this 
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content is subject to change between releases. (External interfaces, such as the Windows API, 

are not subject to incompatible changes.)

By “subject to change,” we don’t necessarily mean that details described in this book will 
change between releases, but you can’t count on them not changing. Any software that uses 

these undocumented interfaces might not work on future releases of Windows. Even worse, 

software that runs in kernel mode (such as device drivers) and uses these undocumented 

interfaces might experience a system crash when running on a newer release of Windows.

Find Additional Content Online

As new or updated material becomes available that complements this book, it will be posted 

online on the Microsoft Press Online Developer Tools Web site. The type of material you 

might find includes updates to book content, articles, links to companion content, errata, 

sample chapters, and more. This Web content is available at www.microsoft.com/learning/
books/online/developer and is updated periodically.

Support

Every effort has been made to ensure the accuracy of this book. Should you run into any 

problems or issues, please refer to the sources listed below.

From the Authors

This book isn’t perfect. No doubt it contains some inaccuracies, or possibly we’ve omitted 

some topics we should have covered. If you find anything you think is incorrect, or if you 

believe we should have included material that isn’t here, please feel free to send e-mail to 

winint@solsem.com. Updates and corrections will be posted on the Web site http://technet.
microsoft.com/en-us/sysinternals/bb963901.aspx.

From Microsoft Press

Microsoft Press provides corrections for books through the World Wide Web at the following 

address:

www.microsoft.com/mspress/support
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Questions and Comments

In addition to sending feedback directly to the authors, if you have comments, questions, or 

ideas regarding the presentation or use of this book, you can send them to Microsoft using 

either of the following methods:

Postal mail:

Microsoft Press 
Attn: Windows Internals Editor 
One Microsoft Way 
Redmond, WA 98052-6399

E-mail:

mspinput@microsoft.com

Please note that product support isn’t offered through these mail addresses. For support 

information, visit Microsoft’s Web site at http://support.microsoft.com/.
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Chapter 1

Concepts and Tools

In this chapter, we’ll introduce the key Microsoft Windows operating system concepts and 

terms we’ll be using throughout this book, such as the Windows API, processes, threads, vir-

tual memory, kernel mode and user mode, objects, handles, security, and the registry. We’ll 

also introduce the tools that you can use to explore Windows internals, such as the kernel 

debugger, the Reliability and Performance Monitor, and key tools from Windows Sysinternals 
(www.microsoft.com/technet/sysinternals). In addition, we’ll explain how you can use the 

Windows Driver Kit (WDK) and the Windows Software Development Kit (SDK) as  resources 

for finding further information on Windows internals.

Be sure that you understand everything in this chapter—the remainder of the book is written 

assuming that you do.

Windows Operating System Versions

This book covers the two most recent versions of the Microsoft Windows operating sys-

tem based on the Windows NT code base: Windows Vista (32-bit and 64-bit versions) and 

Windows Server 2008 (32-bit and 64-bit versions). Unless specifically stated, the text applies 

to all versions. As background information, Table 1-1 lists the releases of the Windows NT 

code base, their internal version number, and the external product name.

TABLE 1-1 Windows Operating System Releases

Product Name Internal Version Number Release Date

Windows NT 3.1 3.1 July 1993

Windows NT 3.5 3.5 September 1994

Windows NT 3.51 3.51 May 1995

Windows NT 4.0 4.0 July 1996

Windows 2000 5.0 December 1999

Windows XP 5.1 August 2001

Windows Server 2003 5.2 March 2003

Windows Vista 6.0 (Build 6000) January 2007

Windows Server 2008 6.0 (Build 6001) March 2008
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Foundation Concepts and Terms

In the course of this book, we’ll be referring to some structures and concepts that might be 

unfamiliar to some readers. In this section, we’ll define the terms we’ll be using throughout. 

You should become familiar with them before proceeding to subsequent chapters.

Windows API

The Windows application programming interface (API) is the system programming inter-

face to the Windows operating system family. Prior to the introduction of 64-bit versions of 

Windows XP and Windows Server 2003, the programming interface to the 32-bit versions of 

the Windows operating systems was called the Win32 API, to distinguish it from the original 

16-bit Windows API, which was the programming interface to the original 16-bit versions of 

Windows. In this book, the term Windows API refers to both the 32-bit and 64-bit program-

ming interfaces to Windows Vista and Windows Server 2008.

Note The Windows API is described in the Windows Software Development Kit (SDK) documen-

tation. (See the section “Windows Software Development Kit” later in this chapter.) This docu-

mentation is available for free viewing online at www.msdn.microsoft.com. It is also included with 

all subscription levels to the Microsoft Developer Network (MSDN), Microsoft’s support program 

for developers. For more information, see www.msdn.microsoft.com. An excellent description of 

how to program the Windows base API is the book Windows via C/C++, Fifth Edition by Jeffrey 

Richter and Christophe Nasarre (Microsoft Press, 2007).

The Windows API consists of thousands of callable functions, which are divided into the fol-

lowing major categories:

Base Services

Component Services

User Interface Services

Graphics and Multimedia Services

Messaging and Collaboration

Networking

Web Services

This book focuses on the internals of the key base services, such as processes and threads, 

memory management, I/O, and security.
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What About .NET?

The .NET Framework consists of a library of classes called the Framework Class Library 

(FCL) and a Common Language Runtime (CLR) that provides a managed code execution 

environment with features such as just-in-time compilation, type verification, garbage 

collection, and code access security. By offering these features, the CLR provides a 

development environment that improves programmer productivity and reduces com-

mon programming errors. For an excellent description of the .NET Framework and its 

core architecture, see CLR via C#, Second Edition by Jeffrey Richter (Microsoft Press, 

2006).

The CLR is implemented as a classic COM server whose code resides in a standard user-

mode Windows DLL. In fact, all components of the .NET Framework are implemented 

as standard user-mode Windows DLLs layered over unmanaged Windows API func-

tions. (None of the .NET Framework runs in kernel mode.) Figure 1-1 illustrates the rela-

tionship between these components:

.NET Application
(Standard User-Mode EXEs)

Framework Class Library Assemblies
(Standard User-Mode DLLs)

CLR DLLs
(COM server)

Windows API DLLs

Windows Kernel

User mode
(managed code)

User mode
(unmanaged code)

Kernel mode

FIGURE 1-1 Relationship between .NET Framework components

History of the Win32 API

Interestingly, Win32 wasn’t slated to be the original programming interface to 

Microsoft Windows NT. Because the Windows NT project started as a replacement for 

OS/2 version 2, the primary programming interface was the 32-bit OS/2 Presentation 

Manager API. A year into the project, however, Microsoft Windows 3.0 hit the mar-

ket and took off. As a result, Microsoft changed direction and made Windows NT the 

future replacement for the Windows family of products as opposed to the replacement 

for OS/2. It was at this juncture that the need to specify the Windows API arose—

before this, the Windows API existed only as a 16-bit interface.
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Although the Windows API would introduce many new functions that hadn’t been 

available on Windows 3.1, Microsoft decided to make the new API compatible with the 

16-bit Windows API function names, semantics, and use of data types whenever pos-

sible to ease the burden of porting existing 16-bit Windows applications to Windows 

NT. So those of you who are looking at the Windows API for the first time and wonder-

ing why many function names and interfaces seem inconsistent should keep in mind 

that one reason for the inconsistency was to ensure that the Windows API is compatible 

with the old 16-bit Windows API.

Services, Functions, and Routines

Several terms in the Windows user and programming documentation have different mean-

ings in different contexts. For example, the word service can refer to a callable routine in the 

operating system, a device driver, or a server process. The following list describes what cer-

tain terms mean in this book:

Windows API functions Documented, callable subroutines in the Windows API. 

Examples include CreateProcess, CreateFile, and GetMessage.

Native system services (or executive system services) The undocumented, underly-

ing services in the operating system that are callable from user mode. For example, 

NtCreateProcessEx is the internal system service the Windows CreateProcess func-

tion calls to create a new process. (For a definition of native functions, see the section 

“System Service Dispatching” in Chapter 3.)

Kernel support functions (or routines) Subroutines inside the Windows operating 

system that can be called only from kernel mode (defined later in this chapter). For 

example, ExAllocatePoolWithTag is the routine that device drivers call to allocate mem-

ory from the Windows system heaps (called pools).

Windows services Processes started by the Windows service control manager. 

(Although the registry defines Windows device drivers as “services,” we don’t refer to 

them as such in this book.) For example, the Task Scheduler service runs in a user-mode 

process that supports the at command (which is similar to the UNIX commands at or 

cron).

DLLs (dynamic-link libraries) A set of callable subroutines linked together as a binary 

file that can be dynamically loaded by applications that use the subroutines. Examples 

include Msvcrt.dll (the C run-time library) and Kernel32.dll (one of the Windows API 

subsystem libraries). Windows user-mode components and applications use DLLs 

extensively. The advantage DLLs provide over static libraries is that applications can 

share DLLs, and Windows ensures that there is only one in-memory copy of a DLL’s 

code among the applications that are referencing it.
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Processes, Threads, and Jobs

Although programs and processes appear similar on the surface, they are fundamentally dif-

ferent. A program is a static sequence of instructions, whereas a process is a container for a 

set of resources used when executing the instance of the program. At the highest level of 

abstraction, a Windows process comprises the following:

A private virtual address space, which is a set of virtual memory addresses that the pro-

cess can use

An executable program, which defines initial code and data and is mapped into the 

process’s virtual address space

A list of open handles to various system resources, such as semaphores, communication 

ports, and files, that are accessible to all threads in the process

A security context called an access token that identifies the user, security groups, privi-

leges, User Access Control (UAC) virtualization state, session, and limited user account 

state associated with the process

A unique identifier called a process ID (internally part of an identifier called a client ID)

At least one thread of execution (although an “empty” process is possible, it is not 

useful)

Each process also points to its parent or creator process. However, if the parent exits, this 

information is not updated. Therefore, it is possible for a process to point to a nonexistent 

parent. This is not a problem, as nothing relies on this information being present. The follow-

ing experiment illustrates this case.

EXPERIMENT: Viewing the Process Tree

One unique attribute about a process that most tools don’t display is the parent or cre-

ator process ID. You can retrieve this value with the Performance Monitor (or program-

matically) by querying the Creating Process ID. The Tlist.exe tool (in the Debugging 

Tools for Windows) can show the process tree by using the /t switch. Here’s an example 

of output from tlist /t:

C:\>tlist /t  

System Process (0)  

System (4)  

  smss.exe (480)  

csrss.exe (548)  

wininit.exe (612)  

      services.exe (656)  

        svchost.exe (848)  

        svchost.exe (880)  

        svchost.exe (924)  

        svchost.exe (980)  

          audiodg.exe (1040) 
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        svchost.exe (1108) 

          dwm.exe (123) 

        svchost.exe (96)  

          taskeng.exe (604) 

          tasking.exe (1532) 

        SLsvc.exe (1814)  

        svchost.exe (2988) 

      lsass.exe (672)  

      lsm.exe (680)  

csrss.exe (624)  

winlogon.exe (824) 

explorer.exe (724) Program Manager 

  WINWORD.EXE (3512) WinInt5E_Chapter01.doc [Compatibility Mode] - Microsoft Word  

  cmd.exe (3936) Command Prompt - tlist /t  

    tlist.exe (1344)

The list indents each process to show its parent/child relationship. Processes whose par-

ents aren’t alive are left-justified (as is Explorer.exe in the preceding example) because 

even if a grandparent process exists, there’s no way to find that relationship. Windows 

maintains only the creator process ID, not a link back to the creator of the creator, and 

so forth.

To demonstrate the fact that Windows doesn’t keep track of more than just the parent 

process ID, follow these steps:

 1. Open a Command Prompt window.

 2. Type start cmd (which starts a second command prompt).

 3. Bring up Task Manager.

 4. Switch to the second command prompt.

 5. Type mspaint (which runs Microsoft Paint).

 6. Click the intermediate (second) Command Prompt window.

 7. Type exit. (Notice that Paint remains.)

 8. Switch to Task Manager.

 9. Click the Applications tab.

 10. Right-click on the Command Prompt task, and select Go To Process.

 11. Click on the Cmd.exe process highlighted in blue.

 12. Right-click on this process, and select End Process Tree.

 13. Click Yes in the Task Manager Warning message box.

The first Command Prompt window will disappear, but you should still see the Paint 

window because it was the grandchild of the command prompt process you termi-

nated; and because the intermediate process (the parent of Paint) was terminated, there 

was no link between the parent and the grandchild.
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A number of tools for viewing (and modifying) processes and process information are avail-

able. The following experiments illustrate the various views of process information you can 

obtain with some of these tools. These tools are included within Windows itself and within 

the Debugging Tools for Windows, the Windows SDK, and from Sysinternals. Many of these 

tools show overlapping subsets of the core process and thread information, sometimes iden-

tified by different names.

Probably the most widely used tool to examine process activity is Task Manager. (Interest-

ingly, there is no such thing as a “task” in the Windows kernel, so Task Manager is really a tool 

to manage processes.) The following experiment shows the difference between what Task 

Manager lists as applications and processes.

EXPERIMENT: Viewing Process Information with Task Manager

The built-in Windows Task Manager provides a quick list of the processes running on 

the system. You can start Task Manager in one of three ways: (1) press Ctrl+Shift+Esc, (2) 

right-click on the taskbar and select Task Manager, or (3) press Ctrl+Alt+Delete and click 

the Task Manager button. Once Task Manager has started, click the Processes tab to see 

the list of running processes. Notice that processes are identified by the name of the 

image of which they are an instance. Unlike some objects in Windows, processes can’t 

be given global names. To display additional details, choose Select Columns from the 

View menu and select additional columns to be added, as shown here:

Although what you see in the Task Manager Processes tab is clearly a list of processes, 

what the Applications tab displays isn’t as obvious. The Applications tab lists the 

top-level visible windows on all the desktops in the interactive window station. (By 

default, there are two desktop objects—you can create more by using the Windows 

CreateDesktop function.) The Status column indicates whether or not the thread that  
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owns the window is in a Windows message wait state. “Running” means the thread 

is waiting for windowing input; “Not Responding” means the thread isn’t waiting for 

windowing input (for example, the thread might be running or waiting for I/O or some 

Windows synchronization object).

From the Applications tab, you can match a task to the process that owns the thread 

that owns the task window by right-clicking on the task name and choosing Go To 

Process.

Process Explorer, from Sysinternals, shows more details about processes and threads than any 

other available tool, which is why you will see it used in a number of experiments through-

out the book. The following are some of the unique things that Process Explorer shows or 

enables:

Full path name for the image being executed

Process security token (list of groups and privileges, virtualization state, and session)

Highlighting to show changes in the process and thread list

List of services inside service-hosting processes, including display name and description

Processes that are part of a job and job details
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Processes running .NET applications and .NET-specific details (such as the list of app-

domains and CLR performance counters)

Start time for processes and threads

Complete list of memory-mapped files (not just DLLs)

Ability to suspend a process

Ability to kill an individual thread

Easy identification of which processes were consuming the most CPU time over a 

period of time (The Reliability and Performance Monitor can display process CPU uti-

lization for a given set of processes, but it won’t automatically show processes created 

after the performance monitoring session has started–only a manual trace in binary 

output format can do that.)

Process Explorer also provides easy access to information in one place, such as:

Process tree (with ability to collapse parts of the tree)

Open handles in a process (including unnamed handles) without prior setup (The 

Microsoft tools to show open handles require the setting of a systemwide flag and a 

reboot before they can be used.)

List of DLLs (and memory-mapped files) in a process

Thread activity within a process

User-mode thread stacks (including mapping of addresses to names using the debug-

ging tools’ symbol engine)

Kernel-mode thread stacks for system threads (including mapping of addresses to 

names using the debugging tools’ symbol engine)

Context switch delta (a better representation of CPU activity, as explained in Chapter 5)

Time stamp counter (an even better representation of precise CPU activity, as explained 

in Chapter 5)

64-bit vs. 32-bit image type

Integrity level

Virtualization state

Kernel memory (paged and nonpaged pool) limits (other tools show only current size)

An introductory experiment using Process Explorer follows.



10 Windows Internals, Fifth Edition

EXPERIMENT: Viewing Process Details with Process Explorer

Download the latest version of Process Explorer from Sysinternals and run it. The first 

time you run it, you will receive a message that symbols are not currently configured. 

If properly configured, Process Explorer can access symbol information to display the 

symbolic name of the thread start function and functions on its call stack (available by 

double-clicking on a process and clicking on the Threads tab). This is useful for iden-

tifying what threads are doing within a process. To access symbols, you must have 

the Debugging Tools for Windows installed (described later in this chapter). Then click 

on Options, choose Configure Symbols, and fill in the appropriate symbols path. For 

example:

In the preceding example, the on-demand symbol server is being used to access 

 symbols and a copy of the symbol files is being stored on the local machine in the 

 c:\symbols folder. For more information on configuring use of the symbol server, see 

www.microsoft.com/whdc/devtools/debugging/debugstart.mspx.

When Process Explorer starts, it shows by default the process list on the top half and 

the open handles for the currently selected process on the bottom half. It also shows 

tooltips for four kinds of hosting processes:

The running services inside a service-hosting process (Svchost.exe) if you 

hover your mouse over the name

The running COM object tasks part of a Taskeng.exe process

The target of a Rundll32.exe process (used for things such as Control Panel 

items)

The COM object being hosted inside a Dllhost.exe process
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Here are a few steps to walk you through some basic capabilities of Process Explorer:

 1. Turn off the lower pane by deselecting View, Show Lower Pane. (The lower pane 

can show open handles or mapped DLLs and memory-mapped files—these are 

explored in Chapters 3 and 9.)

 2. Notice that processes hosting services are highlighted by default in pink. Your 

own processes are highlighted in blue. (These colors can be configured.)

 3. Hover your mouse pointer over the image name for processes, and notice the full 

path displayed by the tooltip.

 4. Click on View, Select Columns, and add the image path.

 5. Sort on the process column, and notice the tree view disappears. (You can either 

display tree view or sort by any of the columns shown.) Click again to sort from Z 

to A. Then click again, and the display returns to tree view.

 6. Deselect View, Show Processes From All Users to show only your processes.

 7. Go to Options, Difference Highlight Duration, and change the value to 5 seconds. 

Then launch a new process (anything), and notice the new process highlighted in 

green for 5 seconds. Exit this new process, and notice the process is highlighted in 

red for 5 seconds before disappearing from the display. This can be useful to see 

processes being created and exiting on your system.

 8. Finally, double-click on a process and explore the various tabs available from 

the process properties display. (These will be referenced in various experiments 

throughout the book where the information being shown is being explained.)
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A thread is the entity within a process that Windows schedules for execution. Without it, the 

process’s program can’t run. A thread includes the following essential components:

The contents of a set of CPU registers representing the state of the processor.

Two stacks, one for the thread to use while executing in kernel mode and one for exe-

cuting in user mode.

A private storage area called thread-local storage (TLS) for use by subsystems, run-time 

libraries, and DLLs.

A unique identifier called a thread ID (also internally called a client ID—process IDs and 

thread IDs are generated out of the same namespace, so they never overlap).

Threads sometimes have their own security context that is often used by multithreaded 

server applications that impersonate the security context of the clients that they serve.

The volatile registers, stacks, and private storage area are called the thread’s context. Because 

this information is different for each machine architecture that Windows runs on, this struc-

ture, by necessity, is architecture-specific. The Windows GetThreadContext function provides 

access to this architecture-specific information (called the CONTEXT block).

Fibers vs. Threads

Fibers allow an application to schedule its own “threads” of execution rather than rely 

on the priority-based scheduling mechanism built into Windows. Fibers are often called 

“lightweight” threads, and in terms of scheduling, they’re invisible to the kernel because 

they’re implemented in user mode in Kernel32.dll. To use fibers, a call is first made to 

the Windows ConvertThreadToFiber function. This function converts the thread to a 

running fiber. Afterward, the newly converted fiber can create additional fibers with 

the CreateFiber function. (Each fiber can have its own set of fibers.) Unlike a thread, 

however, a fiber doesn’t begin execution until it’s manually selected through a call to 

the SwitchToFiber function. The new fiber runs until it exits or until it calls SwitchToFiber, 
again selecting another fiber to run. For more information, see the Windows SDK docu-

mentation on fiber functions.

Although threads have their own execution context, every thread within a process shares the 

process’s virtual address space (in addition to the rest of the resources belonging to the pro-

cess), meaning that all the threads in a process can write to and read from each other’s mem-

ory. Threads cannot accidentally reference the address space of another process, however, 

unless the other process makes available part of its private address space as a shared memory 
section (called a file mapping object in the Windows API) or unless one process has the right 

to open another process to use cross-process memory functions such as ReadProcessMemory 

and WriteProcessMemory.
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In addition to a private address space and one or more threads, each process has a security 

identification and a list of open handles to objects such as files, shared memory sections, or 

one of the synchronization objects such as mutexes, events, or semaphores, as illustrated in 

Figure 1-2.

Process 
object

VAD VAD VAD

Virtual address descriptors (VADs)

Thread Thread Thread . . . 

Access token

Access token

Object

Object

Handle table

FIGURE 1-2 A process and its resources

Every process has a security context that is stored in an object called an access token. The 

process access token contains the security identification and credentials for the process. By 

default, threads don’t have their own access token, but they can obtain one, thus allowing 

individual threads to impersonate the security context of another process—including pro-

cesses running on a remote Windows system—without affecting other threads in the process. 

(See Chapter 6 for more details on process and thread security.)

The virtual address descriptors (VADs) are data structures that the memory manager uses to 

keep track of the virtual addresses the process is using. These data structures are described in 

more depth in Chapter 9.

Windows provides an extension to the process model called a job. A job object’s main func-

tion is to allow groups of processes to be managed and manipulated as a unit. A job object 

allows control of certain attributes and provides limits for the process or processes associated 

with the job. It also records basic accounting information for all processes associated with the 

job and for all processes that were associated with the job but have since terminated. In some 

ways, the job object compensates for the lack of a structured process tree in Windows—yet 

in many ways it is more powerful than a UNIX-style process tree.

You’ll find out much more about the internal structure of jobs, processes and threads, 

the mechanics of process and thread creation, and the thread-scheduling algorithms in 

Chapter 5.
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Virtual Memory

Windows implements a virtual memory system based on a flat (linear) address space that 

provides each process with the illusion of having its own large, private address space. Virtual 

memory provides a logical view of memory that might not correspond to its physical layout. 

At run time, the memory manager, with assistance from hardware, translates, or maps, the 

virtual addresses into physical addresses, where the data is actually stored. By controlling the 

protection and mapping, the operating system can ensure that individual processes don’t 

bump into one another or overwrite operating system data. Figure 1-3 illustrates three virtu-

ally contiguous pages mapped to three discontiguous pages in physical memory.

FIGURE 1-3 Mapping virtual memory to physical memory

Because most systems have much less physical memory than the total virtual memory in use 

by the running processes, the memory manager transfers, or pages, some of the memory 

contents to disk. Paging data to disk frees physical memory so that it can be used for other 

processes or for the operating system itself. When a thread accesses a virtual address that has 

been paged to disk, the virtual memory manager loads the information back into memory 

from disk. Applications don’t have to be altered in any way to take advantage of paging 

because hardware support enables the memory manager to page without the knowledge or 

assistance of processes or threads.

The size of the virtual address space varies for each hardware platform. On 32-bit x86 sys-

tems, the total virtual address space has a theoretical maximum of 4 GB. By default, Windows 

allocates half this address space (the lower half of the 4-GB virtual address space, from 

x00000000 through x7FFFFFFF) to processes for their unique private storage and uses the 

other half (the upper half, addresses x80000000 through xFFFFFFFF) for its own protected 

operating system memory utilization. The mappings of the lower half change to reflect the 

virtual address space of the currently executing process, but the mappings of the upper half 

always consist of the operating system’s virtual memory. Windows Vista and Windows Server 

2008 support boot-time options (the increaseuserva qualifier in the Boot Configuration Data-

base (BCD), described in Chapter 13) that give processes running specially marked programs 



 Chapter 1 Concepts and Tools 15

(the large address space aware flag must be set in the header of the executable image) the 

ability to use up to 3 GB of private address space (leaving 1 GB for the operating system). 

This option allows applications such as database servers to keep larger portions of a database 

in the process address space, thus reducing the need to map subset views of the database. 

Figure 1-4 shows the two virtual address space layouts supported by 32-bit Windows.

Default

2 GB User
process space

3 GB User space

2 GB System
space

3 GB User
process space

1 GB System
space

FIGURE 1-4 Address space layouts for 32-bit Windows

Although 3 GB is better than 2 GB, it’s still not enough virtual address space to map very 

large (multigigabyte) databases. To address this need on 32-bit systems, Windows provides 

a mechanism called Address Windowing Extension (AWE), which allows a 32-bit application 

to allocate up to 64 GB of physical memory and then map views, or windows, into its 2-GB 

virtual address space. Although using AWE puts the burden of managing mappings of virtual 

to physical memory on the programmer, it does address the need of being able to directly 

access more physical memory than can be mapped at any one time in a 32-bit process 

address space.

64-bit Windows provides a much larger address space for processes: 7152 GB on IA-64 sys-

tems and 8192 GB on x64 systems. Figure 1-5 shows a simplified view of the 64-bit system 

address space layouts. (For a detailed description, see Chapter 9.) Note that these sizes do not 

represent the architectural limits for these platforms. Sixty-four bits of address space is over 

17 billion GB, but current 64-bit hardware limits this to smaller values. And Windows imple-

mentation limits in the current versions of 64-bit Windows reduce this to 8192 GB (8 TB).

x64

8192 GB
(8 TB) User

process space

IA-64

8192 GB
System space

7152 GB
(7 TB) User

process space

7152 GB
System space

FIGURE 1-5 Address space layouts for 64-bit Windows

Details of the implementation of the memory manager, including how address translation 

works and how Windows manages physical memory, are described in Chapter 9.
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Kernel Mode vs. User Mode

To protect user applications from accessing and/or modifying critical operating system data, 

Windows uses two processor access modes (even if the processor on which Windows is run-

ning supports more than two): user mode and kernel mode. User application code runs in user 

mode, whereas operating system code (such as system services and device drivers) runs in 

kernel mode. Kernel mode refers to a mode of execution in a processor that grants access to 

all system memory and all CPU instructions. By providing the operating system software with 

a higher privilege level than the application software has, the processor provides a necessary 

foundation for operating system designers to ensure that a misbehaving application can’t 

disrupt the stability of the system as a whole.

Note The architecture of the x86 and x64 processor defines four privilege levels, or rings, to 

protect system code and data from being overwritten either inadvertently or maliciously by 

code of lesser privilege. Windows uses privilege level 0 (or ring 0) for kernel mode and privilege 

level 3 (or ring 3) for user mode. The reason Windows uses only two levels is that some hardware 

architectures that were supported in the past (such as Compaq Alpha and Silicon Graphics MIPS) 

implemented only two privilege levels.

Although each Windows process has its own private memory space, the kernel-mode operat-

ing system and device driver code share a single virtual address space. Each page in virtual 

memory is tagged as to what access mode the processor must be in to read and/or write the 

page. Pages in system space can be accessed only from kernel mode, whereas all pages in 

the user address space are accessible from user mode. Read-only pages (such as those that 

contain static data) are not writable from any mode. Additionally, on processors that support 

no-execute memory protection, Windows marks pages containing data as nonexecutable, 

thus preventing inadvertent code execution in data areas. 

Thirty-two-bit Windows doesn’t provide any protection to private read/write system memory 

being used by components running in kernel mode. In other words, once in kernel mode, 

operating system and device driver code has complete access to system space memory and 

can bypass Windows security to access objects. Because the bulk of the Windows operating 

system code runs in kernel mode, it is vital that components that run in kernel mode be care-

fully designed and tested to ensure that they don’t violate system security and cause system 

instability.

This lack of protection also emphasizes the need to take care when loading a third-party 

device driver, because once in kernel mode the software has complete access to all operating 

system data. This vulnerability was one of the reasons behind the driver-signing mechanism 

introduced in Windows, which warns the user if an attempt is made to add an unauthorized 

(unsigned) driver. (See Chapter 7 for more information on driver signing.) Also, a mecha-

nism called Driver Verifier helps device driver writers to find bugs (such as buffer overruns 

or memory leaks) that can cause security or reliability issues. Driver Verifier is explained in 

Chapter 9.
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Additionally, also on 64-bit versions of Windows, the kernel mode code signing (KMCS) 

policy dictates that 64-bit device drivers must be signed with a cryptographic key assigned 

by one of the major code certification authorities. Unlike 32-bit versions of Windows, the user 

cannot explicitly force the installation of an unsigned driver, even as an administrator (unless 

this restriction is disabled manually at boot time by pressing F8 and choosing the advanced 

boot option Disable Driver Signature Enforcement). 

As you’ll see in Chapter 2, user applications switch from user mode to kernel mode when 

they make a system service call. For example, a Windows ReadFile function eventually needs 

to call the internal Windows routine that actually handles reading data from a file. That 

routine, because it accesses internal system data structures, must run in kernel mode. The 

transition from user mode to kernel mode is accomplished by the use of a special processor 

instruction that causes the processor to switch to kernel mode. The operating system traps 

this instruction, notices that a system service is being requested, validates the arguments the 

thread passed to the system function, and then executes the internal function. Before return-

ing control to the user thread, the processor mode is switched back to user mode. In this 

way, the operating system protects itself and its data from perusal and modification by user 

processes.

Note A transition from user mode to kernel mode (and back) does not affect thread scheduling 

per se—a mode transition is not a context switch. Further details on system service dispatching 

are included in Chapter 3.

Thus, it’s normal for a user thread to spend part of its time executing in user mode and part 

in kernel mode. In fact, because the bulk of the graphics and windowing system also runs 

in kernel mode, graphics-intensive applications spend more of their time in kernel mode 

than in user mode. An easy way to test this is to run a graphics-intensive application such as 

Microsoft Paint or Microsoft Chess Titans and watch the time split between user mode and 

kernel mode using one of the performance counters listed in Table 1-2.

TABLE 1-2 Mode-Related Performance Counters

Object: Counter Function

Processor: % Privileged Time Percentage of time that an individual CPU (or all CPUs) has 

run in kernel mode during a specified interval

Processor: % User Time Percentage of time that an individual CPU (or all CPUs) has 

run in user mode during a specified interval

Process: % Privileged Time Percentage of time that the threads in a process have run in 

kernel mode during a specified interval

Process: % User Time Percentage of time that the threads in a process have run in 

user mode during a specified interval

Thread: % Privileged Time Percentage of time that a thread has run in kernel mode 

during a specified interval

Thread: % User Time Percentage of time that a thread has run in user mode dur-

ing a specified interval
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EXPERIMENT: Kernel Mode vs. User Mode

You can use the Reliability and Performance Monitor to see how much time your sys-

tem spends executing in kernel mode vs. in user mode. Follow these steps:

 1. Run the Reliability and Performance Monitor by opening the Start menu and 

selecting Programs/Administrative Tools/Reliability and Performance Monitor. 

Choose the Performance Monitor view.

 2. Click the Add button (+) on the toolbar.

 3. With the Processor performance object selected, click the % Privileged Time 

counter and, while holding down the Ctrl key, click the % User Time counter.

 4. Click Add, and then click Close.

 5. Move the mouse rapidly back and forth. You should notice, similar to the illus-

tration below, the % Privileged Time line going up when you move the mouse 

around, reflecting the time spent servicing the mouse interrupts and the time 

spent in the graphics part of the windowing system (which, as explained in 

Chapter 2, runs primarily as a device driver in kernel mode). 

 6. When you’re finished, just close the tool.

You can also quickly see this activity by using Task Manager. Just click the Performance 

tab, and then select Show Kernel Times from the View menu. The CPU usage bar will 

show total CPU usage in green and kernel-mode time in red.
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To see how the Reliability and Performance Monitor itself uses kernel time and 

user time, run it again, but add the individual Process counters % User Time and % 

Privileged Time for every process in the system:

 1. If it’s not already running, run the Reliability and Performance Monitor again. (If it 

is already running, start with a blank display by clicking the New Counter Set but-

ton on the toolbar.)

 2. Click the Add button (+) on the toolbar.

 3. Change the performance object to Process.

 4. Select the % Privileged Time and % User Time counters.

 5. Select all processes in the Instance box (except the _Total process).

 6. Click Add, and then click Close.

 7. Move the mouse rapidly back and forth.

 8. Press Ctrl+H to turn on highlighting mode. This highlights the currently selected 

counter in black.

 9. Scroll through the counters at the bottom of the display to identify the processes 

whose threads were running when you moved the mouse, and note whether they 

were running in user mode or kernel mode.

You should see the Reliability and Performance Monitor process (by looking in the 

Instance column for the mmc process) kernel-mode and user-mode time go up when 

you move the mouse because it is executing application code in user mode and  calling 

Windows functions that run in kernel mode. You’ll also notice kernel-mode thread 

ac tivity in a process named csrss when you move the mouse. This activity occurs 

because the Windows subsystem’s kernel-mode raw input thread, which handles key-

board and mouse input, is attached to this process. (See Chapter 2 for more informa-

tion about system threads.) Finally, the process named Idle that you see spending 

nearly 100 percent of its time in kernel mode isn’t really a process—it’s a fake process 

used to account for idle CPU cycles. As you can observe from the mode in which the 

threads in the Idle process run, when Windows has nothing to do, it does it in kernel 

mode.

Terminal Services and Multiple Sessions

Terminal Services refers to the support in Windows for multiple interactive user sessions 

on a single system. With Windows Terminal Services, a remote user can establish a session 

on another machine, log in, and run applications on the server. The server transmits the 
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graphical user interface to the client, and the client transmits the user’s input back to the 

server. (Similar to the X Window System, Windows Vista and Windows Server 2008 permit 

running individual applications on a server system with the display remoted to the client 

instead of remoting the entire desktop.)

The first session is considered the services session, or session zero, and contains system 

service–hosting processes (explained in further detail in Chapter 4). The first login session at 

the physical console of the machine is session one, and additional sessions can be created 

through the use of the remote desktop connection program (Mstsc.exe) or through the use 

of fast user switching (described later).

Windows Vista permits a single remote user to connect to the machine, but if someone is 

logged in at the console, the workstation is locked (that is, someone can be using the sys-

tem either locally or remotely, but not at the same time). Windows Vista Home Premium 

and Ultimate editions allow one interactive session and up to four Media Center Extender 

sessions.

Windows Server 2008 supports two simultaneous remote connections. (This is to facilitate 

remote management—for example, use of management tools that require being logged in 

to the machine being managed.) Windows Server 2008 Standard and Datacenter editions can 

support more than two sessions if appropriately licensed and configured as a terminal server.

Although Windows Vista editions other than Media Center do not support multiple remote 

desktop connections, they do support multiple sessions created locally through a feature 

called fast user switching. When a user chooses to disconnect their session instead of log 

off (for example, by clicking Start, clicking Log Off, and choosing Switch User or by holding 

down the Windows key and pressing L), the current session (that is, the processes running in 

that session and all the session-wide data structures that describe the session) remains in the 

system and the system returns to the main logon screen. If a new user logs in, a new session 

is created.

For applications that want to be aware of running in a terminal server session, there are a 

set of Windows APIs for programmatically detecting that as well as for controlling various 

aspects of Terminal Services. (See the Windows SDK for details.)

Chapter 2 describes briefly how sessions are created and has some experiments showing how 

to view session information with various tools, including the kernel debugger. The “Object 

Manager” section in Chapter 3 describes how the system namespace for objects is instanti-

ated on a per-session basis and how applications that need to be aware of other instances 

of themselves on the same system can accomplish that. Finally, Chapter 9 covers how the 

memory manager sets up and manages session-wide data.
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Objects and Handles

In the Windows operating system, an object is a single, run-time instance of a statically 

defined object type. An object type comprises a system-defined data type, functions that 

operate on instances of the data type, and a set of object attributes. If you write Windows 

applications, you might encounter process, thread, file, and event objects, to name just a few 

examples. These objects are based on lower-level objects that Windows creates and man-

ages. In Windows, a process is an instance of the process object type, a file is an instance of 

the file object type, and so on.

An object attribute is a field of data in an object that partially defines the object’s state. An 

object of type process, for example, would have attributes that include the process ID, a base 

scheduling priority, and a pointer to an access token object. Object methods, the means for 

manipulating objects, usually read or change the object attributes. For example, the open 

method for a process would accept a process identifier as input and return a pointer to the 

object as output.

Note Although there is a parameter named ObjectAttributes that a caller supplies when creat-

ing an object using either the Windows API or native object services, that parameter shouldn’t be 

confused with the more general meaning of the term as used in this book.

The most fundamental difference between an object and an ordinary data structure is that 

the internal structure of an object is opaque. You must call an object service to get data out 

of an object or to put data into it. You can’t directly read or change data inside an object. 

This difference separates the underlying implementation of the object from code that merely 

uses it, a technique that allows object implementations to be changed easily over time.

Objects, through the help of a kernel component called the object manager, provide a conve-

nient means for accomplishing the following four important operating system tasks:

Providing human-readable names for system resources

Sharing resources and data among processes

Protecting resources from unauthorized access

Reference tracking, which allows the system to know when an object is no longer in use 

so that it can be automatically deallocated

Not all data structures in the Windows operating system are objects. Only data that needs to 

be shared, protected, named, or made visible to user-mode programs (via system services) is 

placed in objects. Structures used by only one component of the operating system to imple-

ment internal functions are not objects. Objects and handles (references to an instance of an 

object) are discussed in more detail in Chapter 3.
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Security

Windows was designed from the start to be secure and to meet the requirements of vari-

ous formal government and industry security ratings, such as the Common Criteria for 

Information Technology Security Evaluation (CCITSE) specification. Achieving a government-

approved security rating allows an operating system to compete in that arena. Of course, 

many of these required capabilities are advantageous features for any multiuser system.

The core security capabilities of Windows include discretionary (need-to-know) and man-

datory integrity protection for all shareable system objects (such as files, directories, pro-

cesses, threads, and so forth), security auditing (for accountability of subjects, or users and 

the actions they initiate), user authentication at logon, and the prevention of one user from 

accessing uninitialized resources (such as free memory or disk space) that another user has 

deallocated.

Windows has three forms of access control over objects. The first form—discretionary access 

control—is the protection mechanism that most people think of when they think of oper-

ating system security. It’s the method by which owners of objects (such as files or printers) 

grant or deny access to others. When users log in, they are given a set of security credentials, 

or a security context. When they attempt to access objects, their security context is com-

pared to the access control list on the object they are trying to access to determine whether 

they have permission to perform the requested operation.

Privileged access control is necessary for those times when discretionary access control isn’t 

enough. It’s a method of ensuring that someone can get to protected objects if the owner 

isn’t available. For example, if an employee leaves a company, the administrator needs a way 

to gain access to files that might have been accessible only to that employee. In that case, 

under Windows, the administrator can take ownership of the file so that you can manage its 

rights as necessary.

Finally, mandatory integrity control is required when an additional level of security control 

is required to protect objects that are being accessed from within the same user account. 

It’s used both to isolate Protected Mode Internet Explorer from a user’s configuration and to 

protect objects created by an elevated administrator account from access by a nonelevated 

administrator account. (See Chapter 6 for more information on User Account Control—UAC.)

Security pervades the interface of the Windows API. The Windows subsystem implements 

object-based security in the same way the operating system does; the Windows subsystem 

protects shared Windows objects from unauthorized access by placing Windows secu-

rity descriptors on them. The first time an application tries to access a shared object, the 

Windows subsystem verifies the application’s right to do so. If the security check succeeds, 

the Windows subsystem allows the application to proceed.
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The Windows subsystem implements object security on a number of shared objects, some 

of which were built on top of native Windows objects. The Windows objects include desktop 

objects, window objects, menu objects, files, processes, threads, and several synchronization 

objects.

For a comprehensive description of Windows security, see Chapter 6.

Registry

If you’ve worked at all with Windows operating systems, you’ve probably heard about or 

looked at the registry. You can’t talk much about Windows internals without referring to the 

registry because it’s the system database that contains the information required to boot and 

configure the system, systemwide software settings that control the operation of Windows, 

the security database, and per-user configuration settings (such as which screen saver to use).

In addition, the registry is a window into in-memory volatile data, such as the current hard-

ware state of the system (what device drivers are loaded, the resources they are using, and so 

on) as well as the Windows performance counters. The performance counters, which aren’t 

actually “in” the registry, are accessed through the registry functions. See Chapter 4 for more 

on how performance counter information is accessed from the registry.

Although many Windows users and administrators will never need to look directly into the 

registry (because you can view or change most configuration settings with standard admin-

istrative utilities), it is still a useful source of Windows internals information because it con-

tains many settings that affect system performance and behavior. (If you decide to directly 

change registry settings, you must exercise extreme caution; any changes might adversely 

affect system performance or, worse, cause the system to fail to boot successfully.) You’ll find 

references to individual registry keys throughout this book as they pertain to the compo-

nent being described. Most registry keys referred to in this book are under HKEY_LOCAL_

MACHINE, which we’ll abbreviate throughout as HKLM.

For further information on the registry and its internal structure, see Chapter 4.

Unicode

Windows differs from most other operating systems in that most internal text strings are 

stored and processed as 16-bit-wide Unicode characters. Unicode is an international char-

acter set standard that defines unique 16-bit values for most of the world’s known character 

sets. (For more information about Unicode, see www.unicode.org as well as the programming 

documentation in the MSDN Library.)

Because many applications deal with 8-bit (single-byte) ANSI character strings, Windows 

functions that accept string parameters have two entry points: a Unicode (wide, 16-bit) and 
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an ANSI (narrow, 8-bit) version. The Windows 95, Windows 98, and Windows Millennium 

Edition implementations of Windows don’t implement all the Unicode interfaces to all the 

Windows functions, so applications designed to run on one of these operating systems as 

well as Windows Vista and Windows Server 2008 typically use the narrow versions. If you call 

the narrow version of a Windows function, input string parameters are converted to Unicode 

before being processed by the system and output parameters are converted from Unicode 

to ANSI before being returned to the application. Thus, if you have an older service or piece 

of code that you need to run on Windows but this code is written using ANSI character text 

strings, Windows will convert the ANSI characters into Unicode for its own use. However, 

Windows never converts the data inside files—it’s up to the application to decide whether to 

store data as Unicode or as ANSI.

Regardless of language, all versions of Windows contain the same functions. Instead of hav-

ing separate language versions, Windows has a single worldwide binary so that a single 

installation can support multiple languages (by adding various language packs). Applications 

can also take advantage of Windows functions that allow single worldwide application bina-

ries that can support multiple languages.

Digging into Windows Internals

Although much of the information in this book is based on reading the Windows source code 

and talking to the developers, you don’t have to take everything on faith. Many details about 

the internals of Windows can be exposed and demonstrated by using a variety of available 

tools, such as those that come with Windows and the Windows debugging tools. These tool 

packages are briefly described later in this section.

To encourage your exploration of Windows internals, we’ve included “Experiment” sidebars 

throughout the book that describe steps you can take to examine a particular aspect of 

Windows internal behavior. (You already saw a few of these sections earlier in this chapter.) 

We encourage you to try these experiments so that you can see in action many of the inter-

nals topics described in this book.

Table 1-3 shows a list of the principal tools used in this book and where they come from.

TABLE 1-3 Tools for Viewing Windows Internals

Tool Image Name Origin

Startup Programs Viewer AUTORUNS Sysinternals 

Access Check ACCESSCHK Sysinternals

Dependency Walker DEPENDS Windows SDK or  

www.dependencywalker.com

DLL List LISTDLLS Sysinternals

Global Flags GFLAGS Debugging tools
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Tool Image Name Origin

Handle Viewer HANDLE Sysinternals

Kernel debuggers WINDBG, KD Debugging tools, Windows SDK

Logon Sessions LOGONSESSIONS Sysinternals

Object Viewer WINOBJ Sysinternals

Reliability and Performance Monitor PERFMON.MSC Windows built-in tool

Pool Monitor POOLMON Windows Driver Kit

Process Explorer PROCEXP Sysinternals

Get SID tool PSGETSID Sysinternals

Process Monitor REGMON Sysinternals

Service Control SC Windows built-in tool

Task (Process) List TLIST Debugging tools

Task Manager TASKMGR Windows built-in tool

Reliability and Performance Monitor

We’ll refer to the Reliability and Performance Monitor found in the Administrative Tools 

folder on the Start menu (or via Control Panel) throughout this book; specifically, we’ll focus 

on the Performance Monitor and Resource Monitor. The Performance Monitor has three 

functions: system monitoring, viewing performance counter logs, and setting alerts (by using 

data collector sets, which also contain performance counter logs and trace and configura-

tion data). For simplicity, when we refer to the Performance Monitor, we are referring to the 

System Monitor function within the tool.

The Performance Monitor can provide more information about how your system is operat-

ing than any other single utility. It includes hundreds of counters for various objects. For each 

major topic described in this book, a table of the relevant Windows performance counters is 

included.

The Performance Monitor contains a brief description for each counter. To see the descrip-

tions, select a counter in the Add Counters window and select the Show Description 

check box. 

Although all the low-level system monitoring we’ll do in this book can be done with the 

Performance Monitor, Windows Vista also includes a Resource Monitor utility that shows 

four primary system resources: CPU, Disk, Network, and Memory. In their basic states, these 

resources are displayed with the same level of information that you would find in Task 

Manager. However, they also provide columns that can be expanded for more information.

When expanded, the CPU column displays information about per-process CPU usage, just like 

Task Manager. However, it adds a column for average CPU usage, which can give you a better 

idea of which processes are most active. The Disk column, on the other hand, displays per-file 
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information for I/Os in a way that makes it easy to identify the most accessed, written to, or 

read from files on the system.

The Networking column displays the active network connections and which processes own 

them, as well as how much data is going through them. This information makes it possible to 

see background network activity that might be hard to detect otherwise. Finally, the Memory 

column displays much of the same information that one can obtain with Task Manager, but it 

is organized for the entire system.

Note that all the Windows performance counters are accessible programmatically. The sec-

tion “HKEY_PERFORMANCE_DATA” in Chapter 4 has a brief description of the components 

involved in retrieving performance counters through the Windows API.

Kernel Debugging

Kernel debugging means examining internal kernel data structures and/or stepping through 

functions in the kernel. It is a useful way to investigate Windows internals because you can 

display internal system information not available through any other tools and get a clearer 

idea of code flows within the kernel.

Kernel debugging can be performed with a variety of tools: the Debugging Tools for 

Windows from Microsoft, LiveKD from Sysinternals, or Syser Debugger from www.syser-
 soft.com. However, we’ll focus on the Windows debugging tools because they are the only 

supported way to perform kernel debugging on Windows. Before describing these tools, let’s 

examine a set of files that you’ll need in order to perform any type of kernel debugging.

Symbols for Kernel Debugging

Symbol files contain the names of functions and variables. They are generated by the linker 

and used by debuggers to reference and display these names during a debug session. This 

information is not usually stored in the binary image because it is not needed to execute the 

code. This means that binaries are smaller and faster. However, this means that when debug-

ging, you must make sure that the debugger can access the symbol files that are associated 

with the images you are referencing during a debugging session.

To use any of the kernel debugging tools to examine internal Windows kernel data structures 

(such as the process list, thread blocks, loaded driver list, memory usage information, and so 

on), you must have the correct symbol files for at least the kernel image, Ntoskrnl.exe. (The 

section “Architecture Overview” in Chapter 2 explains more about this file.) Symbol table 

files must match the version of the image they were taken from. For example, if you install 

a Windows Service Pack or hot fix that updates the kernel, you must obtain the matching, 

updated symbol files for at least the kernel image; otherwise, you’ll get a symbol error when 

you try to start the kernel debugger.
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While it is possible to download and install symbols for various versions of Windows, updated 

symbols for hot fixes are not always available. The easiest solution to obtain the correct ver-

sion of symbols for debugging is to use the Microsoft on-demand symbol server by using 

a special syntax for the symbol path that you specify in the debugger. For example, the fol-

lowing symbol path causes the debugging tools to load required symbols from the Internet 

symbol server and keep a local copy in the c:\symbols folder:

srv*c:\symbols*http://msdl.microsoft.com/download/symbols

For detailed instructions on how to use the symbol server, see the debugging tools help file 

or the Web page www.microsoft.com/whdc/devtools/debugging/debugstart.mspx.

Debugging Tools for Windows

The Debugging Tools for Windows package contains advanced debugging tools used 

in this book to explore Windows internals. You can find the latest 32-bit version at 

www.microsoft.com/whdc/devtools/debugging/installx86.mspx and the latest 64-bit  version at 

www.microsoft.com/whdc/devtools/debugging/install64bit.mspx. These tools can be used to 

debug user-mode processes as well as the kernel. (See the following sidebar.)

Note The Debugging Tools for Windows are updated frequently and released independently of 

Windows operating system versions, so check often for new versions.

User-Mode Debugging

The debugging tools can also be used to attach to a user-mode process and examine 

and/or change process memory. There are two options when attaching to a process:

Invasive Unless specified otherwise, when you attach to a running process, 

the DebugActiveProcess Windows function is used to establish a connection 

between the debugger and the debugee. This permits examining and/or 

changing process memory, setting breakpoints, and performing other debug-

ging functions. Windows allows you to stop debugging without killing the 

target process, as long as the debugger is detached, not killed.

Noninvasive With this option, the debugger simply opens the process with 

the OpenProcess function. It does not attach to the process as a debugger. 

This allows you to examine and/or change memory in the target process, but 

you cannot set breakpoints. 

You can also open user-mode process dump files with the debugging tools. User-mode 

dump files are explained in Chapter 3 in the section on exception dispatching.
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There are two primary variants of the Microsoft debuggers that can be used for kernel 

debugging: a command-line version (Kd.exe) and a graphical user interface (GUI) version 

(Windbg.exe). Both provide the same set of commands, so which you choose is a matter of 

personal preference. You can perform three types of kernel debugging with these tools:

Open a crash dump file created as a result of a Windows system crash. (See Chapter 14 

for more information on crash dumps.)

Connect to a live, running system and examine the system state (or set breakpoints if 

you’re debugging device driver code). This operation requires two computers—a target 

and a host. The target is the system being debugged, and the host is the system run-

ning the debugger. The target system can be either local (connected to the host via 

a null modem cable, an IEEE 1394 cable, or a USB 2.0 cable) or remote (connected to 

the host via a modem). The target system must be booted in debugging mode (either 

by pressing F8 during the boot process and selecting Debugging Mode or by adding 

the option with the BCDEdit tool). You can also connect through a named pipe, which 

is useful when debugging through a virtual machine product such as Virtual PC or 

VMWare, by exposing the guest operating system’s serial port as a named pipe device.

Windows systems also allow you to connect to the local system and examine the sys-

tem state. This is called local kernel debugging. To initiate local kernel debugging with 

WinDbg, open the File menu, choose Kernel Debug, click on the Local tab, and then 

click OK. The target system must be booted in debugging mode, a side effect of which 

is that the Windows decoders for protected content, such as MPEG2 DVD movies, will 

intentionally fault to prevent access to content decryption keys. An example output 

screen is shown in Figure 1-6. Some kernel debugger commands do not work when 

used in local kernel debugging mode (such as creating a memory dump with the .dump 

command—however, this can be done with LiveKD, described later in this section).

FIGURE 1-6 Local kernel debugging
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Once connected in kernel debugging mode, you can use one of the many debugger exten-
sion commands (commands that begin with “!”) to display the contents of internal data 

structures such as threads, processes, I/O request packets, and memory management infor-

mation. Throughout this book, the relevant kernel debugger commands and output are 

included as they apply to each topic being discussed. An excellent companion reference is 

the Debugger.chm help file, contained in the WinDbg installation folder, which documents all 

the kernel debugger functionality and extensions. In addition, the dt (display type) command 

can format over 1,000 kernel structures because the kernel symbol files for Windows contain 

type information that the debugger can use to format structures.

EXPERIMENT: Displaying Type Information for Kernel Structures

To display the list of kernel structures whose type information is included in the kernel 

symbols, type dt nt!_* in the kernel debugger. A sample partial output is shown below:

lkd> dt nt!_*  

          nt!_LIST_ENTRY  

          nt!_LIST_ENTRY  

          nt!_IMAGE_NT_HEADERS  

          nt!_IMAGE_FILE_HEADER  

          nt!_IMAGE_OPTIONAL_HEADER  

          nt!_IMAGE_NT_HEADERS  

          nt!_LARGE_INTEGER

You can also use the dt command to search for specific structures by using its wildcard 

lookup capability. For example, if you were looking for the structure name for an inter-

rupt object, type dt nt!_*interrupt*:

lkd> dt nt!_*interrupt*  

          nt!_KINTERRUPT  

          nt!_KINTERRUPT_MODE 

          nt!_KINTERRUPT_POLARITY 

          nt!_PCI_HOTPLUG_SLOT_INTERRUPT 

Then, you can use dt to format a specific structure as shown below:

lkd> dt nt!_kinterrupt  

nt!_KINTERRUPT  

   +0x002 Size             : Int2B 

   +0x004 InterruptListEntry : _LIST_ENTRY 

   +0x00c ServiceRoutine   : Ptr32     unsigned char  

   +0x010 MessageServiceRoutine : Ptr32     unsigned char  

   +0x014 MessageIndex     : Uint4B 

   +0x018 ServiceContext   : Ptr32 Void 

   +0x01c SpinLock         : Uint4B 

   +0x020 TickCount        : Uint4B 

   +0x024 ActualLock       : Ptr32 Uint4B 

   +0x028 DispatchAddress  : Ptr32     void  

   +0x02c Vector           : Uint4B 

   +0x030 Irql             : UChar 

   +0x031 SynchronizeIrql  : UChar 

   +0x032 FloatingSave     : UChar 
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   +0x033 Connected        : UChar 

   +0x034 Number           : Char 

   +0x035 ShareVector      : UChar 

   +0x038 Mode             : _KINTERRUPT_MODE 

   +0x03c Polarity         : _KINTERRUPT_POLARITY 

   +0x040 ServiceCount     : Uint4B 

   +0x044 DispatchCount    : Uint4B 

   +0x048 Rsvd1            : Uint8B 

   +0x050 DispatchCode     : [135] Uint4B

Note that dt does not show substructures (structures within structures) by default. To 

recurse through substructures, use the –r switch. For example, using this switch to dis-

play the kernel interrupt object shows the format of the _LIST_ENTRY structure stored 

at the InterruptListEntry field:

lkd> dt nt!_kinterrupt -r  

nt!_KINTERRUPT  

   +0x000 Type             : Int2B 

   +0x002 Size             : Int2B 

   +0x004 InterruptListEntry : _LIST_ENTRY 

      +0x000 Flink            : Ptr32 _LIST_ENTRY 

         +0x000 Flink            : Ptr32 _LIST_ENTRY 

         +0x004 Blink            : Ptr32 _LIST_ENTRY 

      +0x004 Blink            : Ptr32 _LIST_ENTRY 

         +0x000 Flink            : Ptr32 _LIST_ENTRY 

         +0x004 Blink            : Ptr32 _LIST_ENTRY

The Debugging Tools for Windows help file also explains how to set up and use the kernel 

debuggers. Additional details on using the kernel debuggers that are aimed primarily at 

device driver writers can be found in the Windows Driver Kit documentation. There are also 

several useful Knowledge Base articles on the kernel debugger. Search for “debugref” in the 

Windows Knowledge Base (an online database of technical articles) on support.microsoft.com.

LiveKd Tool

LiveKd is a free tool from Sysinternals that allows you to use the standard Microsoft ker-

nel debuggers just described to examine the running system without booting the system 

in debugging mode. This approach might be useful when kernel-level troubleshooting is 

required on a machine that wasn’t booted in debugging mode—certain issues may be hard 

to reproduce reliably, so a reboot with the debug option enabled may not reexhibit the error.

You run LiveKd just as you would WinDbg or Kd. LiveKd passes any command-line options 

you specify to the debugger you select. By default, LiveKd runs the new command-line ker-

nel debugger (Kd). To run WinDbg, specify the –w switch. To see the help files for LiveKd 

switches, specify the –? switch.
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LiveKd presents a simulated crash dump file to the debugger, so you can perform any opera-

tions in LiveKd that are supported on a crash dump. Because LiveKd is relying on physical 

memory to back the simulated dump, the kernel debugger might run into situations in which 

data structures are in the middle of being changed by the system and are inconsistent. Each 

time the debugger is launched, it starts with a fresh view of the system state. If you want 

to refresh the snapshot, quit the debugger (with the q command), and LiveKd will ask you 

whether you want to start it again. If the debugger enters a loop in printing output, press 

Ctrl+C to interrupt the output, quit, and rerun it. If it hangs, press Ctrl+Break, which will ter-

minate the debugger process and ask you whether you want to run the debugger again.

Windows Software Development Kit

The Windows Software Development Kit (SDK) is available as part of the MSDN subscrip-

tion program or can be downloaded for free from www.msdn.microsoft.com. It contains the 

documentation, C header files, and libraries necessary to compile and link Windows applica-

tions. (Although Microsoft Visual C++ comes with a copy of these header files, the versions 

contained in the Windows SDK always match the latest version of the Windows operating 

systems, whereas the version that comes with Visual C++ might be an older version that was 

current when Visual C++ was released.) From an internals perspective, items of interest in the 

Windows SDK include the Windows API header files (\Program Files\Microsoft SDK\Include) 

as well as some utilities (such as Pstat.exe and Vadump.exe). A few of these tools are also 

shipped as sample source code in both the Windows SDK and the MSDN Library.

Windows Driver Kit

The Windows Driver Kit (WDK) is also available through the MSDN subscription program, and 

just like the Windows SDK, it is available for free download. The Windows Driver Kit docu-

mentation is included in the MSDN Library.

Although the WDK is aimed at device driver developers, it is an abundant source of Windows 

internals information. For example, while Chapter 7 describes the I/O system architecture, 

driver model, and basic device driver data structures, it does not describe the individual ker-

nel support functions in detail. The WDK documentation contains a comprehensive descrip-

tion of all the Windows kernel support functions and mechanisms used by device drivers in 

both a tutorial and reference form.

Besides including the documentation, the WDK contains header files (in particular, ntddk.h, 

ntifs.h, and wdm.h) that define key internal data structures and constants as well as inter-

faces to many internal system routines. These files are useful when exploring Windows 

internal data structures with the kernel debugger because although the general layout and 

content of these structures are shown in this book, detailed field-level descriptions (such as 

size and data types) are not. A number of these data structures (such as object dispatcher 
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headers, wait blocks, events, mutants, semaphores, and so on) are, however, fully described in 

the WDK.

So if you want to dig into the I/O system and driver model beyond what is presented in this 

book, read the WDK documentation (especially the Kernel-Mode Driver Architecture Design 

Guide and Reference manuals). Another excellent source is Programming the Microsoft 
Windows Driver Model, Second Edition by Walter Oney (Microsoft Press, 2002).

Sysinternals Tools

Many experiments in this book use freeware tools that you can download from Sysinternals. 

Mark Russinovich, coauthor of this book, wrote most of these tools. The most popular tools 

include Process Explorer and Process Monitor. Note that many of these utilities involve the 

installation and execution of kernel-mode device drivers and thus require administrator 

privileges.

Conclusion

In this chapter, you’ve been introduced to the key Windows technical concepts and terms 

that will be used throughout the book. You’ve also had a glimpse of the many useful tools 

available for digging into Windows internals. Now we’re ready to begin our exploration of the 

internal design of the system, beginning with an overall view of the system architecture and 

its key components.
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Chapter 2

System Architecture

Now that we’ve covered the terms, concepts, and tools you need to be familiar with, we’re 

ready to start our exploration of the internal design goals and structure of the Microsoft 

Windows operating system. This chapter explains the overall architecture of the system—

the key components, how they interact with each other, and the context in which they run. 

To provide a framework for understanding the internals of Windows, let’s first review the 

requirements and goals that shaped the original design and specification of the system.

Requirements and Design Goals

The following requirements drove the specification of Windows NT back in 1989:

Provide a true 32-bit, preemptive, reentrant, virtual memory operating system

Run on multiple hardware architectures and platforms

Run and scale well on symmetric multiprocessing systems

Be a great distributed computing platform, both as a network client and as a server

Run most existing 16-bit MS-DOS and Microsoft Windows 3.1 applications

Meet government requirements for POSIX 1003.1 compliance

Meet government and industry requirements for operating system security

Be easily adaptable to the global market by supporting Unicode

To guide the thousands of decisions that had to be made to create a system that met these 

requirements, the Windows NT design team adopted the following design goals at the 

beginning of the project:

Extensibility The code must be written to comfortably grow and change as market 

requirements change.

Portability The system must be able to run on multiple hardware architectures and 

must be able to move with relative ease to new ones as market demands dictate.

Reliability and robustness The system should protect itself from both internal mal-

function and external tampering. Applications should not be able to harm the operat-

ing system or other applications.

Compatibility Although Windows NT should extend existing technology, its user 

interface and APIs should be compatible with older versions of Windows and with 
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MS-DOS. It should also interoperate well with other systems, such as UNIX, OS/2, and 

NetWare.

Performance Within the constraints of the other design goals, the system should be 

as fast and responsive as possible on each hardware platform.

As we explore the details of the internal structure and operation of Windows, you’ll see how 

these original design goals and market requirements were woven successfully into the con-

struction of the system. But before we start that exploration, let’s examine the overall design 

model for Windows and compare it with other modern operating systems.

Operating System Model

In most multiuser operating systems, applications are separated from the operating system 

itself—the operating system kernel code runs in a privileged processor mode (referred to as 

kernel mode in this book), with access to system data and to the hardware; application code 

runs in a nonprivileged processor mode (called user mode), with a limited set of interfaces 

available, limited access to system data, and no direct access to hardware. When a user-mode 

program calls a system service, the processor traps the call and then switches the calling 

thread to kernel mode. When the system service completes, the operating system switches 

the thread context back to user mode and allows the caller to continue.

Windows is similar to most UNIX systems in that it’s a monolithic operating system in the 

sense that the bulk of the operating system and device driver code shares the same kernel-

mode protected memory space. This means that any operating system component or device 

driver can potentially corrupt data being used by other operating system components.

Is Windows a Microkernel-Based System?

Although some claim it as such, Windows isn’t a microkernel-based operating system in 

the classic definition of microkernels, where the principal operating system components 

(such as the memory manager, process manager, and I/O manager) run as separate 

processes in their own private address spaces, layered on a primitive set of services the 

microkernel provides. For example, the Carnegie Mellon University Mach operating 

system, a contemporary example of a microkernel architecture, implements a minimal 

kernel that comprises thread scheduling, message passing, virtual memory, and device 

drivers. Everything else, including various APIs, file systems, and networking, runs in 

user mode. However, commercial implementations of the Mach microkernel operat-

ing system typically run at least all file system, networking, and memory management 

code in kernel mode. The reason is simple: the pure microkernel design is commercially 

impractical because it’s too inefficient.
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Does the fact that so much of Windows runs in kernel mode mean that it’s more sus-

ceptible to crashes than a true microkernel operating system? Not at all. Consider the 

following scenario. Suppose the file system code of an operating system has a bug that 

causes it to crash from time to time. In a traditional operating system, a bug in kernel-

mode code such as the memory manager or the file system would likely crash the 

entire operating system. In a pure microkernel operating system, such components run 

in user mode, so theoretically a bug would simply mean that the component’s process 

exits. But in practical terms, the system would crash because recovering from the failure 

of such a critical process would likely be impossible.

All these operating system components are, of course, fully protected from errant applica-

tions because applications don’t have direct access to the code and data of the privileged 

part of the operating system (although they can quickly call other kernel services). This pro-

tection is one of the reasons that Windows has the reputation for being both robust and 

stable as an application server and as a workstation platform yet fast and nimble from the 

perspective of core operating system services, such as virtual memory management, file I/O, 

networking, and file and print sharing.

The kernel-mode components of Windows also embody basic object-oriented design prin-

ciples. For example, they don’t in general reach into one another’s data structures to access 

information maintained by individual components. Instead, they use formal interfaces to pass 

parameters and access and/or modify data structures.

Despite its pervasive use of objects to represent shared system resources, Windows is not 

an object-oriented system in the strict sense. Most of the operating system code is written 

in C for portability and because C development tools are widely available. C doesn’t directly 

support object-oriented constructs such as dynamic binding of data types, polymorphic 

functions, or class inheritance. Therefore, the C-based implementation of objects in Windows 

borrows from, but doesn’t depend on, features of particular object-oriented languages.

Architecture Overview

With this brief overview of the design goals and packaging of Windows, let’s take a look 

at the key system components that make up its architecture. A simplified version of this 

architecture is shown in Figure 2-1. Keep in mind that this diagram is basic—it doesn’t show 

everything. (For example, the networking components and the various types of device driver 

layering are not shown.)
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FIGURE 2-1 Simplified Windows architecture

In Figure 2-1, first notice the line dividing the user-mode and kernel-mode parts of the 

Windows operating system. The boxes above the line represent user-mode processes, and 

the components below the line are kernel-mode operating system services. As mentioned in 

Chapter 1, user-mode threads execute in a protected process address space (although while 

they are executing in kernel mode, they have access to system space). Thus, system support 

processes, service processes, user applications, and environment subsystems each have their 

own private process address space.

The four basic types of user-mode processes are described as follows:

Fixed (or hardwired) system support processes, such as the logon process and the 

Session Manager, that are not Windows services. (That is, they are not started by the 

service control manager. Chapter 4 describes services in detail.)

Service processes that host Windows services, such as the Task Scheduler and Print 

Spooler services. Services generally have the requirement that they run independently 

of user logons. Many Windows server applications, such as Microsoft SQL Server and 

Microsoft Exchange Server, also include components that run as services.

User applications, which can be one of five types: Windows 32-bit, Windows 64-bit, 

Windows 3.1 16-bit, MS-DOS 16-bit, or POSIX 32-bit.

Environment subsystem server processes, which implement part of the support for the 

operating system environment, or personality presented to the user and programmer. 

Windows NT originally shipped with three environment subsystems: Windows, POSIX, 

and OS/2. However, OS/2 last shipped with Windows 2000. Windows Vista Ultimate 

and Enterprise include support for an enhanced POSIX subsystem called Subsystem for 

Unix-based Applications (SUA).

In Figure 2-1, notice the “Subsystem DLLs” box below the “Service processes” and “User 

 applications” boxes. Under Windows, user applications don’t call the native Windows 
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operating system services directly; rather, they go through one or more subsystem dynamic-
link libraries (DLLs). The role of the subsystem DLLs is to translate a documented function into 

the appropriate internal (and generally undocumented) native system service calls. This trans-

lation might or might not involve sending a message to the environment subsystem process 

that is serving the user application.

The kernel-mode components of Windows include the following:

The Windows executive contains the base operating system services, such as memory 

management, process and thread management, security, I/O, networking, and inter-

process communication.

The Windows kernel consists of low-level operating system functions, such as thread 

scheduling, interrupt and exception dispatching, and multiprocessor synchronization. 

It also provides a set of routines and basic objects that the rest of the executive uses to 

implement higher-level constructs.

Device drivers include both hardware device drivers, which translate user I/O func-

tion calls into specific hardware device I/O requests, as well as file system and network 

drivers.

The hardware abstraction layer (HAL) is a layer of code that isolates the kernel, device 

drivers, and the rest of the Windows executive from platform-specific hardware differ-

ences (such as differences between motherboards).

The windowing and graphics system implements the graphical user interface (GUI) func-

tions (better known as the Windows USER and GDI functions), such as dealing with win-

dows, user interface controls, and drawing.

Table 2-1 lists the file names of the core Windows operating system components. (You’ll need 

to know these file names because we’ll be referring to some system files by name.) Each of 

these components is covered in greater detail both later in this chapter and in the chapters 

that follow.

TABLE 2-1 Core Windows System Files

File Name Components

Ntoskrnl.exe Executive and kernel

Ntkrnlpa.exe (32-bit systems only) Executive and kernel with support for Physical Address 

Extension (PAE), which allows addressing of up to 64 GB of 

physical memory

Hal.dll Hardware abstraction layer

Win32k.sys Kernel-mode part of the Windows subsystem

Ntdll.dll Internal support functions and system service dispatch 

stubs to executive functions

Kernel32.dll, Advapi32.dll, User32.dll, 

Gdi32.dll

Core Windows subsystem DLLs
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Before we dig into the details of these system components, though, let’s examine how 

Windows achieves portability across multiple hardware architectures.

Portability

Windows was designed to run on a variety of hardware architectures, including Intel-based 

CISC systems as well as RISC systems. The initial release of Windows NT supported the x86 

and MIPS architectures. Support for the Digital Equipment Corporation (which was bought by 

Compaq, which later merged with Hewlett-Packard) Alpha AXP was added shortly thereafter. 

(Although Alpha AXP was a 64-bit processor, Windows NT ran in 32-bit mode. During the 

development of Windows 2000, a native 64-bit version was running on Alpha AXP, but this 

never was released.) Support for a fourth processor architecture, the Motorola PowerPC, was 

added in Windows NT 3.51. Because of changing market demands, however, support for the 

MIPS and PowerPC architectures was dropped before development began on Windows 2000. 

Later, Compaq withdrew support for the Alpha AXP architecture, resulting in Windows 2000 

being supported only on the x86 architecture. Windows XP and Windows Server 2003 added 

support for three 64-bit processor families: the Intel Itanium IA-64 family, the AMD64 fam-

ily, and the Intel 64-bit Extension Technology (EM64T) for x86 (which is compatible with the 

AMD64 architecture, although there are slight differences in instructions supported). The lat-

ter two processor families are called 64-bit extended systems and in this book are referred to 

as x64. (How Windows runs 32-bit applications on 64-bit Windows is explained in Chapter 3.)

Windows achieves portability across hardware architectures and platforms in two primary 

ways:

Windows has a layered design, with low-level portions of the system that are processor-

architecture-specific or platform-specific isolated into separate modules so that upper 

layers of the system can be shielded from the differences between architectures and 

among hardware platforms. The two key components that provide operating system 

portability are the kernel (contained in Ntoskrnl.exe) and the hardware abstraction layer 

(or HAL, contained in Hal.dll). Both these components are described in more detail 

later in this chapter. Functions that are architecture-specific (such as thread context 

switching and trap dispatching) are implemented in the kernel. Functions that can dif-

fer among systems within the same architecture (for example, different motherboards) 

are implemented in the HAL. The only other component with a significant amount of 

 architecture-specific code is the memory manager, but even that is a small amount 

compared to the system as a whole.

The vast majority of Windows is written in C, with some portions in C++. Assembly lan-

guage is used only for those parts of the operating system that need to communicate 

directly with system hardware (such as the interrupt trap handler) or that are extremely 

performance-sensitive (such as context switching). Assembly language code exists not 

only in the kernel and the HAL but also in a few other places within the core operat-

ing system (such as the routines that implement interlocked instructions as well as one 
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module in the local procedure call facility), in the kernel-mode part of the Windows 

subsystem, and even in some user-mode libraries, such as the process startup code in 

Ntdll.dll (a system library explained later in this chapter).

Symmetric Multiprocessing

Multitasking is the operating system technique for sharing a single processor among mul-

tiple threads of execution. When a computer has more than one processor, however, it can 

execute multiple threads simultaneously. Thus, whereas a multitasking operating system only 

appears to execute multiple threads at the same time, a multiprocessing operating system 

actually does it, executing one thread on each of its processors.

As mentioned at the beginning of this chapter, one of the key design goals for Windows was 

that it had to run well on multiprocessor computer systems. Windows is a symmetric multi-
processing (SMP) operating system. There is no master processor—the operating system as 

well as user threads can be scheduled to run on any processor. Also, all the processors share 

just one memory space. This model contrasts with asymmetric multiprocessing (ASMP), in 

which the operating system typically selects one processor to execute operating system ker-

nel code while other processors run only user code. The differences in the two multiprocess-

ing models are illustrated in Figure 2-2.
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FIGURE 2-2 Symmetric vs. asymmetric multiprocessing



40 Windows Internals, Fifth Edition

Windows Vista and Windows Server 2008 also support two modern types of multiprocessor 

systems: hyperthreading and NUMA (non-uniform memory architecture). These are briefly 

mentioned in the following paragraphs. (For a complete, detailed description of the schedul-

ing support for these systems, see the thread scheduling section in Chapter 5.) 

Naturally, Windows also natively supports multicore systems—because these systems have 

real physical cores (simply on the same package), the original SMP code in Windows treats 

them as discrete processors, except for certain accounting and identification tasks (such as 

licensing, described shortly) that distinguish between cores on the same processor and cores 

on different sockets.

Hyperthreading is a technology introduced by Intel that provides many logical processors 

on one physical processor. Each logical processor has its CPU state, but the execution engine 

and onboard cache are shared. This permits one logical CPU to make progress while the 

other logical CPUs are busy (such as performing interrupt processing work, which prevents 

threads from running on that logical processor). The scheduling algorithms are enhanced to 

make optimal use of multiprocessor hyperthreaded machines, such as by scheduling threads 

on an idle physical processor versus choosing an idle logical processor on a physical proces-

sor whose other logical processors are busy.

In NUMA systems, processors are grouped in smaller units called nodes. Each node has 

its own processors and memory and is connected to the larger system through a cache-

coherent interconnect bus. Windows on a NUMA system still runs as an SMP system, in that 

all processors have access to all memory—it’s just that node-local memory is faster to refer-

ence than memory attached to other nodes. The system attempts to improve performance 

by scheduling threads on processors that are in the same node as the memory being used. It 

attempts to satisfy memory-allocation requests from within the node, but will allocate mem-

ory from other nodes if necessary.

Although Windows was originally designed to support up to 32 processors, nothing inherent 

in the multiprocessor design limits the number of processors to 32—that number is simply an 

obvious and convenient limit because 32 processors can easily be represented as a bit mask 

using a native 32-bit data type. In fact, the 64-bit versions of Windows support up to 64 pro-

cessors, because the native size of a word on a 64-bit machine is 64 bits.

The actual number of supported processors depends on the edition of Windows being 

used. (See Table 2-3.) This number is stored in the system license policy file (\Windows\

ServiceProfiles\NetworkService\AppData\Roaming\Microsoft\SoftwareLicensing\tokens.dat) 

as a policy value called “Kernel-MaximumProcessors.” (Keep in mind that tampering with that 

data is a violation of the software license and modifying licensing policies to allow the use of 

more processors involves more than just changing this value.)
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As of Windows Vista and Windows Server 2008, there is a unified kernel regardless of 

whether the system is a uniprocessor or multiprocessor machine. This change, compared to 

earlier versions of Windows, which had separate kernels for each machine type, was made 

both because the majority of systems currently sold include at least two cores and because 

the few uniprocessor-only optimizations result in negligible performance improvement. 

However, 32-bit versions of Windows still come in two flavors of the kernel, depending on 

whether PAE is enabled and supported. Because no-execute memory support (known as NX 

on AMD processors and XD on Intel processors) in today’s processors makes use of PAE struc-

tures, most 32-bit systems use the PAE kernel. On 64-bit Windows systems there is no PAE 

kernel (there isn’t a need for it), so there is only a single kernel image.

At installation time, the appropriate files are selected and copied to the local %SystemRoot% 

directory. Table 2-2 shows the correspondence of installed file names to their original names 

on the installation media. 

TABLE 2-2 Internal System File Names

 

Type of File

Name of PAE Version on 

Distribution Media

Name of Non-PAE Version on 

Distribution Media

Kernel Ntkrpamp.exe Ntkrnlmp.exe

HAL Depends on system type (See the 

list of HALs in Table 2-5.)

Depends on system type (See the 

list of HALs in Table 2-5.)

The rest of the system files that make up Windows (including all utilities, libraries, and device 

drivers) have the same version on all types of systems (that is, they handle multiprocessor 

synchronization and PAE issues correctly). You should use this approach on any software you 

build, whether it is a Windows application or a device driver—keep multiprocessor synchroni-

zation issues in mind when you design your software, and test the software on both unipro-

cessor and multiprocessor systems. For legacy applications, Windows implements a number 

of flags to provide backward compatibility. For example, applications need to be specifically 

made “large address aware” for PAE support, and they can also set a “uniprocessor only” field 

in their image if they break on SMP systems.

EXPERIMENT: Checking Which Ntoskrnl Version You’re Running

Windows has no utility to show which version of Ntoskrnl you are running. However, an 

Event Log entry is written each time the system boots that does record the type of ker-

nel image that loaded (multiprocessor and free vs. checked), as shown in the following 

screen shot. (From the Start menu, select Programs/Administrative Tools/Event Viewer, 

select Windows Logs/System, and then double-click an Event Log entry with an Event 

ID of 6009, indicating the entry was written at the system start.)
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This Event Log entry doesn’t indicate whether you booted the PAE version of the 

kernel image that supports more than 4 GB of physical memory (Ntkrnlpa.exe). 

However, you can tell if you booted the PAE kernel by looking at the registry value 

HKLM\SYSTEM\CurrentControlSet\Control\Session Manager\Memory Management\

PhysicalAddressExtension. You can also determine which version of the kernel you’re 

running by using WinDbg and opening a local kernel debugging session. Be sure you 

have the symbols loaded (enter the .reload command), and then type the “list module” 

command to list details for the kernel image (nt): lm mv nt. The output below shows a 

PAE multiprocessor kernel, as you can tell by the name.

lkd> lm vm nt 

start    end        module name 

82000000 823a1000   nt         (pdb symbols)           

    c:\programming\symbols\ntkrpamp.pdb\7018E534B06E4A5BB6C63F6F2AA802072\ntkrpamp.pdb 

    Loaded symbol image file: ntkrpamp.exe 

    Image path: ntkrpamp.exe 

    Image name: ntkrpamp.exe 

    Timestamp:        Tue Oct 09 21:46:20 2007 (470C2EEC) 

    CheckSum:         00366023 

    ImageSize:        003A1000 

    File version:     6.0.6000.20697 

    Product version:  6.0.6000.20697 

    File flags:       0 (Mask 3F) 

    File OS:          40004 NT Win32 

    File type:        1.0 App 

    File date:        00000000.00000000 

    Translations:     0409.04b0 

    CompanyName:      Microsoft Corporation 
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    ProductName:      Microsoft® Windows® Operating System 

    InternalName:     ntkrpamp.exe 

    OriginalFilename: ntkrpamp.exe 

    ProductVersion:   6.0.6000.20697 

    FileVersion:      6.0.6000.20697 (vista_ldr.071009-1543) 

    FileDescription:  NT Kernel & System 

    LegalCopyright:   © Microsoft Corporation. All rights reserved.

Scalability

One of the key issues with multiprocessor systems is scalability. To run correctly on an SMP 

system, operating system code must adhere to strict guidelines and rules. Resource conten-

tion and other performance issues are more complicated in multiprocessing systems than in 

uniprocessor systems and must be accounted for in the system’s design. Windows incorpo-

rates several features that are crucial to its success as a multiprocessor operating system:

The ability to run operating system code on any available processor and on multiple 

processors at the same time

Multiple threads of execution within a single process, each of which can execute simul-

taneously on different processors

Fine-grained synchronization within the kernel (such as spinlocks, queued spinlocks, 

and pushlocks, described in Chapter 3) as well as within device drivers and server pro-

cesses, which allows more components to run concurrently on multiple processors

Programming mechanisms such as I/O completion ports (described in Chapter 7) that 

facilitate the efficient implementation of multithreaded server processes that can scale 

well on multiprocessor systems

The scalability of the Windows kernel has evolved over time. For example, Windows Server 

2003 has per-CPU scheduling queues, which permit thread scheduling decisions to occur 

in parallel on multiple processors. Multiprocessor thread scheduling details are covered in 

Chapter 5. Further details on multiprocessor synchronization can be found in Chapter 3.

Differences Between Client and Server Versions

Windows ships in both client and server retail packages. There are six client versions of 

Windows Vista: Windows Vista Home Basic, Windows Vista Home Premium, Windows Vista 

Business, Windows Vista Ultimate, Windows Vista Enterprise, and Windows Vista Starter. 

There are five main variants of Windows Server 2008: Windows Web Server 2008, Windows 

Server 2008 Standard, Windows Server 2008 Enterprise, Windows Server 2008 Datacenter, 

and Windows Server 2008 for Itanium-Based Systems.
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Additionally, there are “N” versions of the client that do not include Windows Media Player. 

Finally, the Standard, Enterprise, and Datacenter editions of Windows Server 2008 also 

include “without Hyper-V” editions, which do not include Hyper-V. (Hyper-V virtualization is 

discussed in Chapter 3).

These versions differ by:

The number of processors supported (in terms of physical packages, not cores)

The amount of physical memory supported

The number of concurrent network connections supported (For example, a maximum 

of 10 concurrent connections are allowed to the file and print services in the client 

version.)

Support for Tablet PC and/or Media Center Edition

Support for features such as BitLocker, DVD burning, Windows Fax and Scan, Backup, 

and more than 100 other configurable licensing policy values

Layered services that come with Windows Server editions that don’t come with the cli-

ent editions (for example, directory services and clustering)

Table 2-3 lists the differences in memory and processor support for Windows Vista and 

Windows Server 2008. For a detailed comparison chart of the different editions of Windows 

Server 2008, see www.microsoft.com/windowsserver2008/en/us/compare-specs.aspx.

TABLE 2-3 Differences Between Windows Vista and Windows Server 2008

 

 

 

 

Number of 

Processors 

Supported 

(32-Bit 

Edition)

Physical 

Memory 

Supported 

(32-Bit 

Edition)

Number of 

Processors 

Supported 

(64-Bit 

Edition)

Physical 

Memory 

Supported 

(Itanium 

Editions)

Physical 

Memory 

Supported 

(x64 

Editions)

Windows Vista 

Starter Edition

1 4 GB Not available Not available Not  available

Windows Vista 

Home Basic 

Edition

1 4 GB 1 Not available 8 GB

Windows Vista 

Home Premium

1 4 GB 1 Not available 16 GB

Windows Vista 

Business

2 4 GB 2 Not available 128 GB

Windows Vista 

Enterprise

2 4 GB 2 Not available 128 GB

Windows Vista 

Ultimate

2 4 GB 2 Not available 128 GB

Windows Web 

Server 2008

2 4 GB 2 Not available 32 GB
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Number of 

Processors 

Supported 

(32-Bit 

Edition)

Physical 

Memory 

Supported 

(32-Bit 

Edition)

Number of 

Processors 

Supported 

(64-Bit 

Edition)

Physical 

Memory 

Supported 

(Itanium 

Editions)

Physical 

Memory 

Supported 

(x64 

Editions)

Windows Server 

2008 Standard 

Edition

4 4 GB 4 Not available 32 GB

Windows Server 

2008 Enterprise 

Edition

8 32 GB 8 Not available 2048 GB

Windows Server 

2008 Datacenter 

Edition

32  64 GB 64 2048 GB 2048 GB

Windows 

Server 2008 for 

Itanium-Based 

Systems

Not available Not available 64 2048 GB Not  available

Although there are several client and server retail packages of the Windows operating sys-

tem, they share a common set of core system files, including the kernel image, Ntoskrnl.exe 

(and the PAE version, Ntkrnlpa.exe); the HAL libraries; the device drivers; and the base system 

utilities and DLLs. Starting with Windows Vista SP1, these files are identical for all editions of 

Windows.

Note Because Windows Vista shipped about a year before Windows Server 2008, there was 

a short period during which the two operating systems had different kernels (development on 

Windows Server 2008 was continuing on an updated version of the Vista kernel). As Windows 

Vista SP1 was being developed, the kernels for the two editions were synced up, and both 

Windows Vista SP1 and Windows Server 2008 launched together, unifying the kernels for the 

first time since Windows 2000. 

With so many different versions of Windows, but with each having the same kernel 

image, how does the system know which edition is booted? By querying the registry val-

ues ProductType and ProductSuite under the HKLM\SYSTEM\CurrentControlSet\Control\

ProductOptions key. ProductType is used to distinguish whether the system is a client sys-

tem or a server system (of any flavor). The valid values are listed in Table 2-4. The result is 

stored in the system global variable MmProductType, which can be queried from a device 

driver using the kernel-mode support function MmIsThisAnNtAsSystem, documented in the 

Windows Driver Kit (WDK). These values are loaded into the registry based on the licensing 

policy file described earlier.
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TABLE 2-4 ProductType Registry Values

Edition of Windows Value of ProductType

Windows Vista WinNT

Windows Server 2008 (domain controller) LanmanNT

Windows Server 2008 (server only) ServerNT

A different registry value, ProductPolicy, contains a cached copy of the data inside the 

tokens.dat file, which differentiates between the editions of Windows and the features that 

they enable.

If user programs need to determine which edition of Windows is running, they can call the 

Windows VerifyVersionInfo function, documented in the Windows Software Development 

Kit (SDK). Device drivers can call the kernel-mode function RtlGetVersion, documented in 

the WDK.

So if the core files are essentially the same for the client and server versions, how do the 

systems differ in operation? In short, server systems are by default optimized for system 

throughput as high-performance application servers, whereas the client version, although it 

has server capabilities, is optimized for response time for interactive desktop use. For exam-

ple, based on the product type, several resource allocation decisions are made differently 

at system boot time, such as the size and number of operating system heaps (or pools), the 

number of internal system worker threads, and the size of the system data cache. Also, run-

time policy decisions, such as the way the memory manager trades off system and process 

memory demands, differ between the server and client editions. Even some thread schedul-

ing details have different default behavior in the two families (the default length of the time 

slice, or thread quantum—see Chapter 5 for details). Where there are significant operational 

differences in the two products, these are highlighted in the pertinent chapters throughout 

the rest of this book. Unless otherwise noted, everything in this book applies to both the cli-

ent and server versions.

EXPERIMENT: Determining Features Enabled by Licensing Policy

As mentioned earlier, Windows supports more than 100 different features that can 

be enabled through the software licensing mechanism. These policy settings deter-

mine the various differences not only between a client Windows installation (such 

as Windows Vista) and a server installation (such as Windows Server 2008) but also 

between each edition (or SKU) of the operating system, such as enabling BitLocker sup-

port on Ultimate and Enterprise editions of Vista. You can use the SlPolicy tool available 

from Winsider Seminars & Solutions (www.winsiderss.com/tools/slpolicy.htm) to display 

these policy values on your machine.
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Policy settings are organized by a facility, which represents the owner module for 

which the policy applies. You can display a list of all facilities on your system by running 

Slpolicy.exe with the –f switch: 

SlPolicy v1.01 - Show Software Licensing Policies 

Copyright (C) 2008 Alex Ionescu 

www.alex-ionescu.com 

 

Software Licensing Facilities: 

 

Kernel 

Licensing and Activation 

Core

You can then add the name of any facility after the switch to display the policy value 

for that facility. For example, to look at the limitations on CPUs and available memory, 

use the Kernel facility. Here’s the expected output on a machine running Windows Vista 

Ultimate:

C:\>SlPolicy.exe -f Kernel 

 

Slpolicy v1.01 - Show Software Licensing Policies 

Copyright (C) 2008 Alex Ionescu 

www.alex-ionescu.com 

 

Kernel 

------ 

Processor Limit: 2 

Maximum Memory Allowed (x86): 4096 MB 

Maximum Memory Allowed (x64): 131072 MB 

Maximum Memory Allowed (IA64): 131072 MB 

Maximum Physical Page: 4096

Checked Build

There is a special debug version of Windows called the checked build (available only with an 

MSDN Professional or higher subscription). It is a recompilation of the Windows source code 

with a compile-time flag defined called “DBG” (to cause compile time conditional debugging 

and tracing code to be included). Also, to make it easier to understand the machine code, 

the post-processing of the Windows binaries to optimize code layout for faster execution is 

not performed. (See the section “Performance-Optimized Code” in the Debugging Tools for 

Windows help file.)

The checked build is provided primarily to aid device driver developers because it performs 

more stringent error checking on kernel-mode functions called by device drivers or other 

system code. For example, if a driver (or some other piece of kernel-mode code) makes an 

invalid call to a system function that is checking parameters (such as acquiring a spinlock 
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at the wrong interrupt level), the system will stop execution when the problem is detected 

rather than allow some data structure to be corrupted and the system to possibly crash at a 

later time.

EXPERIMENT: Determining If You Are Running the Checked Build

There is no built-in tool to display whether you are running the checked build or 

the retail build (called the free build). However, this information is available through 

the “Debug” property of the Windows Management Instrumentation (WMI) Win32_

OperatingSystem class. The following sample Visual Basic script displays this property:

strComputer = "."  

Set objWMIService = GetObject("winmgmts:" _  

 & "{impersonationLevel=impersonate}!\\" & strComputer & "\root\cimv2")  

Set colOperatingSystems = objWMIService.ExecQuery _  

 ("SELECT * FROM Win32_OperatingSystem")  

For Each objOperatingSystem in colOperatingSystems  

 Wscript.Echo "Caption: " & objOperatingSystem.Caption  

 Wscript.Echo "Debug: " & objOperatingSystem.Debug  

 Wscript.Echo "Version: " & objOperatingSystem.Version  

Next

To try this, type in the preceding script and save it as file. The following is the output 

from running the script:

C:\>cscript osversion.vbs  

Microsoft (R) Windows Script Host Version 5.7 

Copyright (C) Microsoft Corporation. All rights reserved.  

  

Caption: Microsoft Windows Vista 

Debug: False  

Version: 6.0.6000

This system is not running the checked build, as the Debug flag shown here says False.

Much of the additional code in the checked-build binaries is a result of using the ASSERT 

macro, which is defined in the WDK header file Ntddk.h and documented in the WDK docu-

mentation. This macro tests a condition (such as the validity of a data structure or parameter), 

and if the expression evaluates to FALSE, the macro calls the kernel-mode function RtlAssert, 
which calls DbgPrintEx to send the text of the debug message to a debug message buffer. If 

a kernel debugger is attached, this message is displayed automatically followed by a prompt 

asking the user what to do about the assertion failure (breakpoint, ignore, terminate pro-

cess, or terminate thread). If the system wasn’t booted with the kernel debugger (using the 

debug option in the Boot Configuration Database—BCD) and no kernel debugger is currently 

attached, failure of an ASSERT test will bugcheck the system. For a list of ASSERT checks 

made by some of the kernel support routines, see the section “Checked Build ASSERTs” in the 

WDK documentation.
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The checked build is also useful for system administrators because of the additional detailed 

informational tracing that can be enabled for certain components. (For detailed instruc-

tions, see the Microsoft Knowledge Base Article number 314743, titled HOWTO: Enable 
Verbose Debug Tracing in Various Drivers and Subsystems.) This information output is sent to 

an internal debug message buffer using the DbgPrintEx function referred to earlier. To view 

the debug messages, you can either attach a kernel debugger to the target system (which 

requires booting the target system in debugging mode), use the !dbgprint command while 

performing local kernel debugging, or use the Dbgview.exe tool from Windows Sysinternals 

(www.microsoft.com/technet/sysinternals).

You don’t have to install the entire checked build to take advantage of the debug ver-

sion of the operating system. You can just copy the checked version of the kernel image 

(Ntoskrnl.exe) and the appropriate HAL (Hal.dll) to a normal retail installation. The advantage 

of this approach is that device drivers and other kernel code get the rigorous checking of the 

checked build without having to run the slower debug versions of all components in the sys-

tem. For detailed instructions on how to do this, see the section “Installing Just the Checked 

Operating System and HAL” in the WDK documentation. 

Finally, the checked build can also be useful for testing user-mode code only because the 

timing of the system is different. (This is because of the additional checking taking place 

within the kernel and the fact that the components are compiled without optimizations.) 

Often, multithreaded synchronization bugs are related to specific timing conditions. By run-

ning your tests on a system running the checked build (or at least the checked kernel and 

HAL), the fact that the timing of the whole system is different might cause latent timing bugs 

to surface that do not occur on a normal retail system.

Key System Components

Now that we’ve looked at the high-level architecture of Windows, let’s delve deeper into the 

internal structure and the role each key operating system component plays. Figure 2-3 is a 

more detailed and complete diagram of the core Windows system architecture and compo-

nents than was shown earlier in the chapter (in Figure 2-1). Note that it still does not show all 

components (networking in particular, which is explained in Chapter 12).

The following sections elaborate on each major element of this diagram. Chapter 3 explains 

the primary control mechanisms the system uses (such as the object manager, interrupts, 

and so forth). Chapter 13 describes the process of starting and shutting down Windows, 

and Chapter 4 details management mechanisms such as the registry, service processes, and 

Windows Management Instrumentation. Then the remaining chapters explore in even more 

detail the internal structure and operation of key areas such as processes and threads, mem-

ory management, security, the I/O manager, storage management, the cache manager, the 

Windows file system (NTFS), and networking.
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Environment Subsystems and Subsystem DLLs

Although the basic POSIX subsystem that originally shipped with Windows no longer ships 

with the system, a greatly enhanced version is available on Windows Vista Ultimate and 
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Enterprise editions, called Subsystem for Unix-based Applications (SUA [POSIX]), shown in 

Figure 2-3.

As we’ll explain shortly, the Windows subsystem is special in that Windows can’t run without 

it. (It owns the keyboard, mouse, and display, and it is required to be present even on server 

systems with no interactive users logged in.) In fact, the other two subsystems are configured 

to start on demand, whereas the Windows subsystem must always be running.

The subsystem startup information is stored under the registry key HKLM\SYSTEM\

CurrentControlSet\Control\Session Manager\SubSystems. Figure 2-4 shows the values under 

this key.

FIGURE 2-4 Registry Editor showing Windows startup information

The Required value lists the subsystems that load when the system boots. The value has 

two strings: Windows and Debug. The Windows value contains the file specification of the 

Windows subsystem, Csrss.exe, which stands for Client/Server Run-Time Subsystem. (See the 

Note later in this section.) Debug is blank (because it’s used for internal testing) and there-

fore does nothing. The Optional value indicates that the POSIX subsystem will be started on 

demand. The registry value Kmode contains the file name of the kernel-mode portion of the 

Windows subsystem, Win32k.sys (explained later in this chapter).

The role of an environment subsystem is to expose some subset of the base Windows execu-

tive system services to application programs. Each subsystem can provide access to different 

subsets of the native services in Windows. That means that some things can be done from an 

application built on one subsystem that can’t be done by an application built on another sub-

system. For example, a Windows application can’t use the POSIX fork function.

Each executable image (.exe) is bound to one and only one subsystem. When an image is run, 

the process creation code examines the subsystem type code in the image header so that 

it can notify the proper subsystem of the new process. This type code is specified with the 

/SUBSYSTEM qualifier of the link command in Microsoft Visual C++.
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Note As a historical note, the reason the Windows subsystem process is called Csrss.exe is that 

in the original design of Windows NT, all the subsystems were going to execute as threads inside 

a single systemwide environment subsystem process. When the POSIX and OS/2 subsystems 

were removed and put in their own processes, the file name for the Windows subsystem process 

wasn’t changed.

As mentioned earlier, user applications don’t call Windows system services directly. Instead, 

they go through one or more subsystem DLLs. These libraries export the documented 

interface that the programs linked to that subsystem can call. For example, the Windows 

subsystem DLLs (such as Kernel32.dll, Advapi32.dll, User32.dll, and Gdi32.dll) implement the 

Windows API functions. The POSIX subsystem DLL (Psxdll.dll) implements the POSIX API 

functions.

EXPERIMENT: Viewing the Image Subsystem Type

You can see the image subsystem type by using the Dependency Walker tool 

(Depends.exe) in the Windows SDK. For example, notice the image types for two differ-

ent Windows images, Notepad.exe (the simple text editor) and Cmd.exe (the Windows 

command prompt):

This shows that Notepad is a GUI program, while Cmd is a console, or character-based, 

program. And although this implies there are two different subsystems for GUI and 

character-based programs, there is just one Windows subsystem, and GUI programs 

can have consoles, just like console programs can display GUIs.
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When an application calls a function in a subsystem DLL, one of three things can occur:

The function is entirely implemented in user mode inside the subsystem DLL. In other 

words, no message is sent to the environment subsystem process, and no Windows 

executive system services are called. The function is performed in user mode, and the 

results are returned to the caller. Examples of such functions include GetCurrentProcess 
(which always returns –1, a value that is defined to refer to the current process in all 

process-related functions) and GetCurrentProcessId. (The process ID doesn’t change for 

a running process, so this ID is retrieved from a cached location, thus avoiding the need 

to call into the kernel.)

The function requires one or more calls to the Windows executive. For example, the 

Windows ReadFile and WriteFile functions involve calling the underlying internal (and 

undocumented) Windows I/O system services NtReadFile and NtWriteFile, respectively.

The function requires some work to be done in the environment subsystem process. 

(The environment subsystem processes, running in user mode, are responsible for 

maintaining the state of the client applications running under their control.) In this case, 

a client/server request is made to the environment subsystem via a message sent to the 

subsystem to perform some operation. The subsystem DLL then waits for a reply before 

returning to the caller.

Some functions can be a combination of the second and third items just listed, such as the 

Windows CreateProcess and CreateThread functions.

Although Windows was designed to support multiple, independent environment subsys-

tems, from a practical perspective, having each subsystem implement all the code to handle 

windowing and display I/O would result in a large amount of duplication of system functions 

that, ultimately, would have negatively affected both system size and performance. Because 

Windows was the primary subsystem, the Windows designers decided to locate these basic 

functions there and have the other subsystems call on the Windows subsystem to perform 

display I/O. Thus, the POSIX subsystem calls services in the Windows subsystem to perform 

display I/O. (In fact, if you examine the subsystem type for these images, you’ll see that they 

are Windows executables.)

Let’s take a closer look at each of the environment subsystems.
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Windows Subsystem

The Windows subsystem consists of the following major components:

The environment subsystem process (Csrss.exe) loads three DLLs (Basesrv.dll, Winsrv.dll, 

and Csrsrv.dll) that contain support for:

Console (text) windows

Creating and deleting processes and threads

Portions of the support for 16-bit virtual DOS machine (VDM) processes

Side-by-Side (SxS)/Fusion and manifest support

Other miscellaneous functions, such as GetTempFile, DefineDosDevice, 

ExitWindowsEx, and several natural language support functions

The kernel-mode device driver (Win32k.sys) contains:

The window manager, which controls window displays; manages screen output; 

collects input from keyboard, mouse, and other devices; and passes user mes-

sages to applications.

The Graphics Device Interface (GDI), which is a library of functions for graph-

ics output devices. It includes functions for line, text, and figure drawing and for 

graphics manipulation.

Wrappers for DirectX support that is implemented in another kernel driver 

(Dxgkrnl.sys).

Subsystem DLLs (such as Kernel32.dll, Advapi32.dll, User32.dll, and Gdi32.dll) translate 

documented Windows API functions into the appropriate and mostly undocumented 

kernel-mode system service calls to Ntoskrnl.exe and Win32k.sys.

Graphics device drivers are hardware-dependent graphics display drivers, printer driv-

ers, and video miniport drivers.

Applications call the standard USER functions to create user interface controls, such as win-

dows and buttons, on the display. The window manager communicates these requests to the 

GDI, which passes them to the graphics device drivers, where they are formatted for the dis-

play device. A display driver is paired with a video miniport driver to complete video display 

support.

The GDI provides a set of standard two-dimensional functions that let applications communi-

cate with graphics devices without knowing anything about the devices. GDI functions medi-

ate between applications and graphics devices such as display drivers and printer drivers. The 

GDI interprets application requests for graphic output and sends the requests to graphics 

display drivers. It also provides a standard interface for applications to use varying graphics 

output devices. This interface enables application code to be independent of the hardware 
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devices and their drivers. The GDI tailors its messages to the capabilities of the device, often 

dividing the request into manageable parts. For example, some devices can understand 

directions to draw an ellipse; others require the GDI to interpret the command as a series 

of pixels placed at certain coordinates. For more information about the graphics and video 

driver architecture, see the “Design Guide” section of the “Display (Adapters and Monitors)” 

chapter in the Windows Driver Kit.

Prior to Windows NT 4, the window manager and graphics services were part of the user-

mode Windows subsystem process. In Windows NT 4, the bulk of the windowing and graph-

ics code was moved from running in the context of the Windows subsystem process to a set 

of callable services running in kernel mode (in the file Win32k.sys). The primary reason for 

this shift was to improve overall system performance. Having a separate server process that 

contains the Windows graphics subsystem required multiple thread and process context 

switches, which consumed considerable CPU cycles and memory resources even though the 

original design was highly optimized.

For example, for each thread on the client side there was a dedicated, paired server thread 

in the Windows subsystem process waiting on the client thread for requests. A special inter-

process communication facility called fast LPC was used to send messages between these 

threads. Unlike normal thread context switches, transitions between paired threads via fast 

LPC don’t cause a rescheduling event in the kernel, thereby enabling the server thread to run 

for the remaining time slice of the client thread before having to take its turn in the kernel’s 

preemptive thread scheduler. Moreover, shared memory buffers were used to allow fast 

passing of large data structures, such as bitmaps, and clients had direct but read-only access 

to key server data structures to minimize the need for thread/process transitions between 

clients and the Windows server. Also, GDI operations were (and still are) batched. Batching 

means that a series of graphics calls by a Windows application aren’t “pushed” over to the 

server and drawn on the output device until a GDI batching queue is filled. You can set the 

size of the queue by using the Windows GdiSetBatchLimit function, and you can flush the 

queue at any time with GdiFlush. Conversely, read-only properties and data structures of GDI, 

once they were obtained from the Windows subsystem process, were cached on the client 

side for fast subsequent access.

Despite these optimizations, however, the overall system performance was still not adequate 

for graphics-intensive applications. The obvious solution was to eliminate the need for the 

additional threads and resulting context switches by moving the windowing and graphics 

system into kernel mode. Also, once applications have called into the window manager and 

the GDI, those subsystems can access other Windows executive components directly without 

the cost of user-mode or kernel-mode transitions. This direct access is especially important 

in the case of the GDI calling through video drivers, a process that involves interaction with 

video hardware at high frequencies and high bandwidths.
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So, what remains in the user-mode process part of the Windows subsystem? All the drawing 

and updating for console or text windows are handled by it because console applications 

have no notion of repainting a window. It’s easy to see this activity—simply open a command 

prompt and drag another window over it, and you’ll see the Windows subsystem consuming 

CPU time as it repaints the console window. But other than console window support, only a 

few Windows functions result in sending a message to the Windows subsystem process any-

more: process and thread creation and termination, network drive letter mapping, and cre-

ation of temporary files. In general, a running Windows application won’t be causing many, if 

any, context switches to the Windows subsystem process.

POSIX Subsystem

POSIX, an acronym loosely defined as “a portable operating system interface based on UNIX,” 

refers to a collection of international standards for UNIX-style operating system interfaces. 

The POSIX standards encourage vendors implementing UNIX-style interfaces to make them 

compatible so that programmers can move their applications easily from one system to 

another.

Windows initially implemented only one of the many POSIX standards, POSIX.1, formally 

known as ISO/IEC 9945-1:1990 or IEEE POSIX standard 1003.1-1990. This standard was 

included primarily to meet U.S. government procurement requirements set in the mid-to-

late 1980s that mandated POSIX.1 compliance as specified in Federal Information Processing 

Standard (FIPS) 151-2, developed by the National Institute of Standards and Technology. 

Windows NT 3.5, 3.51, and 4 were formally tested and certified according to FIPS 151-2.

Because POSIX.1 compliance was a mandatory goal for Windows, the operating system was 

designed to ensure that the required base system support was present to allow for the imple-

mentation of a POSIX.1 subsystem (such as the fork function, which is implemented in the 

Windows executive, and the support for hard file links in the Windows file system). 

Windows Vista and Windows Server 2008 provide the Windows Subsystem for Unix-based 

Applications (SUA), which includes an enhanced POSIX subsystem environment that provides 

nearly 2,000 UNIX functions and 300 UNIX-like tools and utilities. (See http://technet.micro-
soft.com/en-us/library/cc779522.aspx for more information on SUA.) SUA can be enabled 

on any Windows Server 2008 machine, as well as Windows Vista Ultimate and Enterprise 

editions. 

This enhanced POSIX subsystem assists in porting UNIX applications to Windows because 

it also supports the POSIX.2 standard, which adds many APIs (such as the pthread API) and 

libraries to the bare set that POSIX.1 defined. Additionally, it also adds support for 64-bit 

binaries and, most importantly, mixed-mode support, meaning that for the first time UNIX-

based applications can call Windows APIs alongside POSIX APIs, greatly alleviating the task of 

porting the application.
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EXPERIMENT: Watching the POSIX Subsystem Start

The POSIX subsystem is configured by default to start the first time a POSIX executable 

is run, so you can watch it start by running a POSIX program, such as one of the POSIX 

utilities that comes with SUA. Follow these steps to watch the POSIX subsystem start:

 1. Start a command prompt.

 2. Run Process Explorer and check that the POSIX subsystem isn’t already run-

ning (that is, that there’s no Psxss.exe process on the system). Make sure Process 

Explorer is displaying the process list in tree view (by pressing Ctrl+T).

 3. Run a POSIX program, such as the C Shell or Korn Shell included with the SUA.

 4. Go back to Process Explorer and notice the new Psxss.exe process that is a child 

of Smss.exe (which, depending on your different highlight duration, might still be 

highlighted as a new process on the display).

To compile and link a POSIX application in Windows requires the POSIX headers and librar-

ies from the Windows SDK. POSIX executables are linked against the POSIX subsystem 

library, Psxdll.dll. Because by default Windows is configured to start the POSIX subsystem on 

demand, the first time you run a POSIX application, the POSIX subsystem process (Psxss.exe) 

must be started. It remains running until the system reboots. (If you kill the POSIX subsys-

tem process, you won’t be able to run more POSIX applications until you reboot.) The POSIX 

image itself isn’t run directly—instead, a special support image called Posix.exe is launched, 

which in turn creates a child process to run the POSIX application.

For more information on how Windows handles running POSIX applications, see the section 

“Flow of CreateProcess” in Chapter 5.

Ntdll.dll

Ntdll.dll is a special system support library primarily for the use of subsystem DLLs. It contains 

two types of functions:

System service dispatch stubs to Windows executive system services

Internal support functions used by subsystems, subsystem DLLs, and other native 

images

The first group of functions provides the interface to the Windows executive system ser-

vices that can be called from user mode. There are more than 400 such functions, such as 

NtCreateFile, NtSetEvent, and so on. As noted earlier, most of the capabilities of these func-

tions are accessible through the Windows API. (A number are not, however, and are for use 

within the operating system.)
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For each of these functions, Ntdll contains an entry point with the same name. The code 

inside the function contains the architecture-specific instruction that causes a transition into 

kernel mode to invoke the system service dispatcher (explained in more detail in Chapter 3), 

which, after verifying some parameters, calls the actual kernel-mode system service that con-

tains the real code inside Ntoskrnl.exe.

Ntdll also contains many support functions, such as the image loader (functions that start 

with Ldr), the heap manager, and Windows subsystem process communication functions 

(functions that start with Csr). Ntdll also contains general run-time library routines (functions 

that start with Rtl), support for user-mode debugging (functions that start with DbgUi) and 

Event Tracing for Windows (functions starting in Etw), and the user-mode asynchronous pro-

cedure call (APC) dispatcher and exception dispatcher. (APCs and exceptions are explained in 

Chapter 3.) Finally, you’ll find a small subset of the C Run-Time (CRT) routines, limited to those 

routines that are part of the string and standard libraries (such as memcpy, strcpy, itoa, and 

so on).

Executive

The Windows executive is the upper layer of Ntoskrnl.exe. (The kernel is the lower layer.) The 

executive includes the following types of functions:

Functions that are exported and callable from user mode. These functions are called 

system services and are exported via Ntdll. Most of the services are accessible through 

the Windows API or the APIs of another environment subsystem. A few services, how-

ever, aren’t available through any documented subsystem function. (Examples include 

LPCs and various query functions such as NtQueryInformationProcess, specialized func-

tions such as NtCreatePagingFile, and so on.)

Device driver functions that are called through the use of the DeviceIoControl function. 

This provides a general interface from user mode to kernel mode to call functions in 

device drivers that are not associated with a read or write.

Functions that can be called only from kernel mode that are exported and are docu-

mented in the WDK.

Functions that are exported and callable from kernel mode but are not documented in 

the WDK (such as the functions called by the boot video driver, which start with Inbv). 

Functions that are defined as global symbols but are not exported. These include 

internal support functions called within Ntoskrnl, such as those that start with Iop 

(internal I/O manager support functions) or Mi (internal memory management support 

functions).

Functions that are internal to a module that are not defined as global symbols.
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The executive contains the following major components, each of which is covered in detail in 

a subsequent chapter of this book:

The configuration manager (explained in Chapter 4) is responsible for implementing and 

managing the system registry.

The process and thread manager (explained in Chapter 5) creates and terminates pro-

cesses and threads. The underlying support for processes and threads is implemented 

in the Windows kernel; the executive adds additional semantics and functions to these 

lower-level objects.

The security reference monitor (or SRM, described in Chapter 6) enforces security poli-

cies on the local computer. It guards operating system resources, performing run-time 

object protection and auditing.

The I/O manager (explained in Chapter 7) implements device-independent I/O and is 

responsible for dispatching to the appropriate device drivers for further processing.

The Plug and Play (PnP) manager (explained in Chapter 7) determines which drivers 

are required to support a particular device and loads those drivers. It retrieves the 

hardware resource requirements for each device during enumeration. Based on the 

resource requirements of each device, the PnP manager assigns the appropriate hard-

ware resources such as I/O ports, IRQs, DMA channels, and memory locations. It is 

also responsible for sending proper event notification for device changes (addition or 

removal of a device) on the system.

The power manager (explained in Chapter 7) coordinates power events and generates 

power management I/O notifications to device drivers. When the system is idle, the 

power manager can be configured to reduce power consumption by putting the CPU 

to sleep. Changes in power consumption by individual devices are handled by device 

drivers but are coordinated by the power manager.

The Windows Driver Model Windows Management Instrumentation routines (explained 

in Chapter 4) enable device drivers to publish performance and configuration infor-

mation and receive commands from the user-mode WMI service. Consumers of WMI 

information can be on the local machine or remote across the network.

The cache manager (explained in Chapter 10) improves the performance of file-based 

I/O by causing recently referenced disk data to reside in main memory for quick access 

(and by deferring disk writes by holding the updates in memory for a short time before 

sending them to the disk). As you’ll see, it does this by using the memory manager’s 

support for mapped files.

The memory manager (explained in Chapter 9) implements virtual memory, a memory 

management scheme that provides a large, private address space for each process that 

can exceed available physical memory. The memory manager also provides the under-

lying support for the cache manager.
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The logical prefetcher and Superfetch (explained in Chapter 9) accelerate system and 

process startup by optimizing the loading of data referenced during the startup of the 

system or a process.

In addition, the executive contains four main groups of support functions that are used by 

the executive components just listed. About a third of these support functions are docu-

mented in the WDK because device drivers also use them. These are the four categories of 

support functions:

The object manager, which creates, manages, and deletes Windows executive objects 

and abstract data types that are used to represent operating system resources such 

as processes, threads, and the various synchronization objects. The object manager is 

explained in Chapter 3.

The Advanced LPC facility (ALPC, explained in Chapter 3) passes messages between a 

client process and a server process on the same computer. Among other things, ALPC is 

used as a local transport for remote procedure call (RPC), an industry-standard commu-

nication facility for client and server processes across a network.

A broad set of common run-time library functions, such as string processing, arithmetic 

operations, data type conversion, and security structure processing.

Executive support routines, such as system memory allocation (paged and nonpaged 

pool), interlocked memory access, as well as three special types of synchronization 

objects: resources, fast mutexes, and pushlocks.

The executive also contains a variety of other infrastructure routines, some of which we will 

only mention briefly throughout the book: 

The kernel debugger library, which allows debugging of the kernel from a debugger 

supporting KD, a portable protocol supported over a variety of transports (such as USB 

and IEEE 1394) and implemented by WinDbg and the Kd.exe utilities.

The user-mode debugging framework, which is responsible for sending events to the 

user-mode debugging API and allowing breakpoints and stepping through code to 

work, as well as for changing contexts of running threads.

The kernel transaction manager, which provides a common, two-phase commit mecha-

nism to resource managers, such as the transactional registry (TxR) and transactional 

NTFS (TxF).

The hypervisor library, part of the Hyper-V stack in Windows Server 2008, provides 

kernel support for the virtual machine environment and optimizes certain parts of the 

code when the system knows it’s running in a client partition (virtual environment).

The errata manager provides workarounds for nonstandard or noncompliant hardware 

devices.
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The Driver Verifier implements optional integrity checks of kernel-mode drivers and 

code.

Event Tracing for Windows provides helper routines for systemwide event tracing for 

kernel-mode and user-mode components.

The Windows diagnostic infrastructure enables intelligent tracing of system activity 

based on diagnostic scenarios.

The Windows hardware error architecture support routines provide a common frame-

work for reporting hardware errors.

The file-system runtime library provides common support routines for file system 

drivers.

Kernel

The kernel consists of a set of functions in Ntoskrnl.exe that provide fundamental mecha-

nisms (such as thread scheduling and synchronization services) used by the executive compo-

nents, as well as low-level hardware architecture–dependent support (such as interrupt and 

exception dispatching), that is different on each processor architecture. The kernel code is 

written primarily in C, with assembly code reserved for those tasks that require access to spe-

cialized processor instructions and registers not easily accessible from C.

Like the various executive support functions mentioned in the preceding section, a number 

of functions in the kernel are documented in the WDK (and can be found by searching for 

functions beginning with Ke) because they are needed to implement device drivers.

Kernel Objects

The kernel provides a low-level base of well-defined, predictable operating system primitives 

and mechanisms that allow higher-level components of the executive to do what they need 

to do. The kernel separates itself from the rest of the executive by implementing operat-

ing system mechanisms and avoiding policy making. It leaves nearly all policy decisions to 

the executive, with the exception of thread scheduling and dispatching, which the kernel 

implements.

Outside the kernel, the executive represents threads and other shareable resources as 

objects. These objects require some policy overhead, such as object handles to manipulate 

them, security checks to protect them, and resource quotas to be deducted when they are 

created. This overhead is eliminated in the kernel, which implements a set of simpler objects, 

called kernel objects, that help the kernel control central processing and support the creation 

of executive objects. Most executive-level objects encapsulate one or more kernel objects, 

incorporating their kernel-defined attributes.
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One set of kernel objects, called control objects, establishes semantics for controlling vari-

ous operating system functions. This set includes the APC object, the deferred procedure call 
(DPC) object, and several objects the I/O manager uses, such as the interrupt object.

Another set of kernel objects, known as dispatcher objects, incorporates synchronization 

capabilities that alter or affect thread scheduling. The dispatcher objects include the ker-

nel thread, mutex (called mutant internally), event, kernel event pair, semaphore, timer, and 

waitable timer. The executive uses kernel functions to create instances of kernel objects, 

to manipulate them, and to construct the more complex objects it provides to user mode. 

Objects are explained in more detail in Chapter 3, and processes and threads are described in 

Chapter 5.

Kernel Processor Control Region and Control Block (KPCR and KPRCB)

The kernel uses a data structure called the processor control region, or KPCR, to store 

 processor-specific data. The KPCR contains basic information such as the processor’s interrupt 

table (IDT), task-state segment (TSS), and global descriptor table (GDT). It also includes the 

interrupt controller state, which it shares with other modules, such as the ACPI driver and the 

HAL. To provide easy access to the KPCR, the kernel stores a pointer to it in the fs register on 

32-bit Windows and in the gs register on an x64 Windows system. On IA64 systems, the KPCR 

is always located at 0xe0000000ffff0000.

The KPCR also contains an embedded data structure called the kernel processor control block 
(KPRCB). Unlike the KPCR, which is documented for third-party drivers and other internal 

Windows kernel components, the KPRCB is a private structure used only by the kernel code 

in Ntoskrnl.exe. It contains scheduling information such as the current, next, and idle threads 

scheduled for execution on the processor, the dispatcher database for the processor (which 

includes the ready queues for each priority level), the DPC queue, CPU vendor and identifier 

information (model, stepping, speed, feature bits), CPU and NUMA topology (node informa-

tion, cores per package, logical processors per core, and so on), cache sizes, time accounting 

information (such as the DPC and interrupt time), and more. The KPRCB also contains all the 

statistics for the processor, such as I/O statistics, cache manager statistics (see Chapter 10 for 

a description of these), DPC statistics, and memory manager statistics (see Chapter 9 for more 

information). Finally, the KPRCB is sometimes used to store cache-aligned, per-processor 

structures to optimize memory access, especially on NUMA systems. For example, the non-

paged and paged-pool system lookaside lists are stored in the KPRCB.
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EXPERIMENT: Viewing the KPCR and KPRCB

You can view the contents of the KPCR and KPRCB by using the !pcr and !prcb kernel 

debugger commands. If you don’t include flags, the debugger will display information 

for CPU 0 by default; otherwise, you can specify a CPU by adding its number after the 

command (for example, !pcr 2). The following example shows what the output of the 

!pcr and !prcb commands looks like. If the system had pending DPCs, those would also 

be shown.

lkd> !pcr 

KPCR for Processor 0 at 81d09800: 

    Major 1 Minor 1 

 NtTib.ExceptionList: 9b31ca3c 

     NtTib.StackBase: 00000000 

    NtTib.StackLimit: 00000000 

  NtTib.SubSystemTib: 80150000 

       NtTib.Version: 1c47209e 

   NtTib.UserPointer: 00000001 

       NtTib.SelfTib: 7ffde000 

 

             SelfPcr: 81d09800 

                Prcb: 81d09920 

                Irql: 00000002 

                 IRR: 00000000 

                 IDR: ffffffff 

       InterruptMode: 00000000 

                 IDT: 82fb8400 

                 GDT: 82fb8000 

                 TSS: 80150000 

 

       CurrentThread: 86d317e8 

          NextThread: 00000000 

          IdleThread: 81d0d640 

 

           DpcQueue:  

 

lkd> !prcb 

PRCB for Processor 0 at 81d09920: 

Current IRQL -- 0 

Threads--  Current 86d317e8 Next 00000000 Idle 81d0d640 

Number 0 SetMember 1 

Interrupt Count -- 294ccce0 

Times -- Dpc    0002a87f Interrupt 00010b87  

         Kernel 026270a1 User      00140e5e

You can use the dt command to directly dump the _KPCR and _KPRCB data structures 

because both debugger commands give you the address of the structure (shown in 

bold for clarity in the previous output). For example, if you wanted to determine the 

speed of the processor, you could look at the MHz field with the following command. 
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lkd> dt _KPRCB 81d09920 MHz 

nt!_KPRCB 

   +0x3c4 MHz : 0xbb4 

lkd> ? bb4 

Evaluate expression: 2996 = 00000bb4

On this machine, the processor was running at about 3GHz.

Hardware Support

The other major job of the kernel is to abstract or isolate the executive and device drivers 

from variations between the hardware architectures supported by Windows. This job includes 

handling variations in functions such as interrupt handling, exception dispatching, and multi-

processor synchronization.

Even for these hardware-related functions, the design of the kernel attempts to maximize 

the amount of common code. The kernel supports a set of interfaces that are portable and 

semantically identical across architectures. Most of the code that implements these portable 

interfaces is also identical across architectures.

Some of these interfaces are implemented differently on different architectures, however, or 

some of the interfaces are partially implemented with architecture-specific code. These archi-

tecturally independent interfaces can be called on any machine, and the semantics of the 

interface will be the same whether or not the code varies by architecture. Some kernel inter-

faces (such as spinlock routines, which are described in Chapter 3) are actually implemented 

in the HAL (described in the next section) because their implementation can vary for systems 

within the same architecture family.

The kernel also contains a small amount of code with x86-specific interfaces needed to 

support old MS-DOS programs. These x86 interfaces aren’t portable in the sense that they 

can’t be called on a machine based on any other architecture; they won’t be present. This 

x86-specific code, for example, supports calls to manipulate global descriptor tables (GDTs) 

and local descriptor tables (LDTs), hardware features of the x86.

Other examples of architecture-specific code in the kernel include the interfaces to provide 

translation buffer and CPU cache support. This support requires different code for the differ-

ent architectures because of the way caches are implemented.

Another example is context switching. Although at a high level the same algorithm is used 

for thread selection and context switching (the context of the previous thread is saved, 
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the context of the new thread is loaded, and the new thread is started), there are architec-

tural differences among the implementations on different processors. Because the context 

is described by the processor state (registers and so on), what is saved and loaded varies 

depending on the architecture.

Hardware Abstraction Layer

As mentioned at the beginning of this chapter, one of the crucial elements of the Windows 

design is its portability across a variety of hardware platforms. The hardware abstraction layer 

(HAL) is a key part of making this portability possible. The HAL is a loadable kernel-mode 

module (Hal.dll) that provides the low-level interface to the hardware platform on which 

Windows is running. It hides hardware-dependent details such as I/O interfaces, interrupt 

controllers, and multiprocessor communication mechanisms—any functions that are both 

architecture-specific and machine-dependent.

So rather than access hardware directly, Windows internal components as well as user-written 

device drivers maintain portability by calling the HAL routines when they need platform-

dependent information. For this reason, the HAL routines are documented in the WDK. To 

find out more about the HAL and its use by device drivers, refer to the WDK.

Although several HALs are included with Windows (as shown in Table 2-5), Windows Vista 

and Windows Server 2008 have the ability to detect at boot-up time which HAL should be 

used, eliminating the problem that existed on earlier versions of Windows when attempting 

to boot a Windows installation on a different kind of system.

TABLE 2-5 List of x86 HALs 

HAL File Name Systems Supported

Halacpi.dll Advanced Configuration and Power Interface (ACPI) PCs. Implies uniprocessor-

only machine, without APIC support (the presence of either one would make 

the system use the HAL below instead).

Halmacpi.dll Advanced Programmable Interrupt Controller (APIC) PCs with an ACPI. The 

existence of an APIC implies SMP support.

Note On x64 machines, there is only one HAL image, called Hal.dll. This results from all x64 

 machines having the same motherboard configuration, since the processors require ACPI 

and APIC support. Therefore, there is no need to support machines without ACPI or with a 

standard PIC.
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EXPERIMENT: Determining Which HAL You’re Running

You can determine which version of the HAL you’re running by using WinDbg and 

opening a local kernel debugging session. Be sure you have the symbols loaded 

(write .reload) and then type lm mv hal. For example, the following output is from a 

system running the ACPI HAL:

lkd> lm vm hal 

start    end        module name 

823a1000 823d5000   hal        (pdb symbols)           

    c:\programming\symbols\halmacpi.pdb\0D335CFD77384CE695E1748F3249184B1\halmacpi.pdb 

    Loaded symbol image file: halmacpi.dll 

    Image path: halmacpi.dll 

    Image name: halmacpi.dll 

    Timestamp:        Sat Dec 23 23:05:34 2006 (458DFC8E) 

    CheckSum:         00035DC3 

    ImageSize:        00034000 

    File version:     6.0.6000.16407 

    Product version:  6.0.6000.16407 

    File flags:       0 (Mask 3F) 

    File OS:          40004 NT Win32 

    File type:        2.0 Dll 

    File date:        00000000.00000000 

    Translations:     0409.04b0 

    CompanyName:      Microsoft Corporation 

    ProductName:      Microsoft® Windows® Operating System 

    InternalName:     halmacpi.dll 

    OriginalFilename: halmacpi.dll 

    ProductVersion:   6.0.6000.16407 

    FileVersion:      6.0.6000.16407 (vista_gdr.061223-1640) 

    FileDescription:  Hardware Abstraction Layer DLL 

    LegalCopyright:   © Microsoft Corporation. All rights reserved.

EXPERIMENT: Viewing NTOSKRNL and HAL Image Dependencies

You can view the relationship of the kernel and HAL images by examining their export 

and import tables using the Dependency Walker tool (Depends.exe), which is contained 

in the Windows SDK. To examine an image in the Dependency Walker, select Open 

from the File menu to open the desired image file.
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Here is a sample of output you can see by viewing the dependencies of Ntoskrnl using 

this tool:

Notice that Ntoskrnl is linked against the HAL, which is in turn linked against Ntoskrnl. 

(They both use functions in each other.) Ntoskrnl is also linked to the following binaries:

Pshed.dll, the Platform-Specific Hardware Error Driver. The PSHED provides an 

abstraction of the hardware error reporting facilities of the underlying plat-

form by hiding the details of a platform’s error handling mechanisms from the 

operating system and exposing a consistent interface to the Windows operat-

ing system.

Bootvid.dll, the Boot Video Driver. Bootvid provides support for the VGA 

commands required to display boot text and the boot logo during startup. On 

x64 kernels, this library is built into the kernel to avoid conflicts with Kernel 

Patch Protection (KPP). (See Chapter 3 for more information on KPP and 

PatchGuard.)

Kdcom.dll, the Kernel Debugger Protocol (KD) Communications Library, 

described earlier.

Ci.dll, the code integrity library, described earlier.

Clfs.sys, the common logging file system driver, used, among other things, by 

the Kernel Transaction Manager (KTM). (See Chapter 3 for more information 

on the KTM.)

For a detailed description of the information displayed by this tool, see the 

Dependency Walker help file (Depends.hlp).
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Device Drivers

Although device drivers are explained in detail in Chapter 7, this section provides a brief 

overview of the types of drivers and explains how to list the drivers installed and loaded on 

your system.

Device drivers are loadable kernel-mode modules (typically ending in .sys) that interface 

between the I/O manager and the relevant hardware. They run in kernel mode in one of 

three contexts:

In the context of the user thread that initiated an I/O function

In the context of a kernel-mode system thread

As a result of an interrupt (and therefore not in the context of any particular process or 

thread—whichever process or thread was current when the interrupt occurred)

As stated in the preceding section, device drivers in Windows don’t manipulate hardware 

directly, but rather they call functions in the HAL to interface with the hardware. Drivers are 

typically written in C (sometimes C++) and therefore, with proper use of HAL routines, can be 

source code portable across the CPU architectures supported by Windows and binary por-

table within an architecture family.

There are several types of device drivers:

Hardware device drivers manipulate hardware (using the HAL) to write output to or 

retrieve input from a physical device or network. There are many types of hardware 

 device drivers, such as bus drivers, human interface drivers, mass storage drivers, and 

so on.

File system drivers are Windows drivers that accept file-oriented I/O requests and trans-

late them into I/O requests bound for a particular device.

File system filter drivers, such as those that perform disk mirroring and encryption, 

 intercept I/Os and perform some added-value processing before passing the I/O to the 

next layer.

Network redirectors and servers are file system drivers that transmit file system I/O 

 requests to a machine on the network and receive such requests, respectively.

Protocol drivers implement a networking protocol such as TCP/IP, NetBEUI, and IPX/SPX.

Kernel streaming filter drivers are chained together to perform signal processing on 

data streams, such as recording or displaying audio and video.
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Because installing a device driver is the only way to add user-written kernel-mode code to 

the system, some programmers have written device drivers simply as a way to access internal 

operating system functions or data structures that are not accessible from user mode (but 

that are documented and supported in the DDK). For example, many of the utilities from 

Sysinternals combine a Windows GUI application and a device driver that is used to gather 

internal system state and call kernel-mode-only accessible functions not accessible from the 

user-mode Windows API.

Windows Driver Model (WDM) 

Windows 2000 added support for Plug and Play, Power Options, and an extension to the 

Windows NT driver model called the Windows Driver Model (WDM). Windows 2000 and 

later can run legacy Windows NT 4 drivers, but because these don’t support Plug and Play 

and Power Options, systems running these drivers will have reduced capabilities in these two 

areas.

From the WDM perspective, there are three kinds of drivers:

A bus driver services a bus controller, adapter, bridge, or any device that has child 

devices. Bus drivers are required drivers, and Microsoft generally provides them; each 

type of bus (such as PCI, PCMCIA, and USB) on a system has one bus driver. Third par-

ties can write bus drivers to provide support for new buses, such as VMEbus, Multibus, 

and Futurebus.

A function driver is the main device driver and provides the operational interface for its 

device. It is a required driver unless the device is used raw (an implementation in which 

I/O is done by the bus driver and any bus filter drivers, such as SCSI PassThru). A func-

tion driver is by definition the driver that knows the most about a particular device, and 

it is usually the only driver that accesses device-specific registers.

A filter driver is used to add functionality to a device (or existing driver) or to modify 

I/O requests or responses from other drivers (and is often used to fix hardware that 

provides incorrect information about its hardware resource requirements). Filter drivers 

are optional and can exist in any number, placed above or below a function driver and 

above a bus driver. Usually, system original equipment manufacturers (OEMs) or inde-

pendent hardware vendors (IHVs) supply filter drivers.

In the WDM driver environment, no single driver controls all aspects of a device: a bus driver 

is concerned with reporting the devices on its bus to the PnP manager, while a function 

driver manipulates the device.
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In most cases, lower-level filter drivers modify the behavior of device hardware. For example, 

if a device reports to its bus driver that it requires 4 I/O ports when it actually requires 16 I/O 

ports, a lower-level, device-specific function filter driver could intercept the list of hardware 

resources reported by the bus driver to the PnP manager and update the count of I/O ports.

Upper-level filter drivers usually provide added-value features for a device. For example, an 

upper-level device filter driver for a keyboard can enforce additional security checks.

Interrupt processing is explained in Chapter 3. Further details about the I/O manager, WDM, 

Plug and Play, and Power Options are included in Chapter 7.

Windows Driver Foundation

The Windows Driver Foundation (WDF) simplifies Windows driver development by provid-

ing two frameworks: the Kernel-Mode Driver Framework (KMDF) and the User-Mode Driver 

Framework (UMDF). Developers can use KMDF to write drivers for Windows 2000 SP4 and 

later, while UMDF supports Windows XP and later.

KMDF provides a simple interface to WDM and hides its complexity from the driver writer 

without modifying the underlying bus/function/filter model. KMDF drivers respond to events 

that they can register and call into the KMDF library to perform work that isn’t specific to 

the hardware they are managing, such as generic power management or synchronization. 

(Previously, each driver had to implement this on its own.) In some cases, more than 200 lines 

of WDM code can be replaced by a single KMDF function call.

UMDF enables certain classes of drivers (mostly USB-based or other high-latency protocol 

buses), such as those for video cameras, MP3 players, cell phones, PDAs, and printers, to be 

implemented as user-mode drivers. UMDF runs each user-mode driver in what is essentially 

a user-mode service, and it uses ALPC to communicate to a kernel-mode wrapper driver that 

provides actual access to hardware. If a UMDF driver crashes, the process dies and usually 

restarts, so the system doesn’t become unstable—the device simply becomes unavailable 

while the service hosting the driver restarts. Finally, UMDF drivers are written in C++ using 

COM-like classes and semantics, further lowering the bar for programmers to write device 

drivers.



 Chapter 2 System Architecture 71

EXPERIMENT: Viewing the Installed Device Drivers

You can list the installed drivers by running Msinfo32. (Click Start, Run, and then type 

Msinfo32.) Under System Summary, expand Software Environment and open System 

Drivers. Here’s an example output of the list of installed drivers:

This window displays the list of device drivers defined in the registry, their type, and 

their state (Running or Stopped). Device drivers and Windows service processes are 

both defined in the same place: HKLM\SYSTEM\CurrentControlSet\Services. However, 

they are distinguished by a type code—for example, type 1 is a kernel-mode device 

driver. (For a complete list of the information stored in the registry for device drivers, 

see Table 4-7.)

Alternatively, you can list the currently loaded device drivers by selecting the System 

process in Process Explorer and opening the DLL view. 
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Peering into Undocumented Interfaces

Examining the names of the exported or global symbols in key system images (such as 

Ntoskrnl.exe, Hal.dll, or Ntdll.dll) can be enlightening—you can get an idea of the kinds 

of things Windows can do versus what happens to be documented and supported 

today. Of course, just because you know the names of these functions doesn’t mean 

that you can or should call them—the interfaces are undocumented and are subject to 

change. We suggest that you look at these functions purely to gain more insight into 

the kinds of internal functions Windows performs, not to bypass supported interfaces.

For example, looking at the list of functions in Ntdll.dll gives you the list of all the sys-

tem services that Windows provides to user-mode subsystem DLLs versus the subset 

that each subsystem exposes. Although many of these functions map clearly to docu-

mented and supported Windows functions, several are not exposed via the Windows 

API. (See the article “Inside the Native API” from Sysinternals.)

Conversely, it’s also interesting to examine the imports of Windows subsystem DLLs 

(such as Kernel32.dll or Advapi32.dll) and which functions they call in Ntdll.

Another interesting image to dump is Ntoskrnl.exe—although many of the exported 

routines that kernel-mode device drivers use are documented in the Windows Driver 

Kit, quite a few are not. You might also find it interesting to take a look at the import 

table for Ntoskrnl and the HAL; this table shows the list of functions in the HAL that 

Ntoskrnl uses and vice versa.

Table 2-6 lists most of the commonly used function name prefixes for the executive 

components. Each of these major executive components also uses a variation of the 

prefix to denote internal functions—either the first letter of the prefix followed by an 

i (for internal) or the full prefix followed by a p (for private). For example, Ki represents 

internal kernel functions, and Psp refers to internal process support functions.

TABLE 2-6 Commonly Used Prefixes

Prefix Component

Alpc Advanced Local Inter-Process Communication

Cc Common Cache

Cm Configuration manager

Dbgk Debugging Framework for User-Mode

Em Errata Manager

Etw Event Tracing for Windows

Ex Executive support routines
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Prefix Component

FsRtl File system driver run-time library

Hal Hardware abstraction layer

Hvl Hypervisor Library

Io I/O manager

Kd Kernel Debugger

Ke Kernel

Lsa Local Security Authority

Mm Memory manager

Nt NT system services (most of which are exported as Windows functions)

Ob Object manager

Pf Prefetcher

Po Power manager

Pp PnP manager

Ps Process support

Rtl Run-time library

Se Security

Tm Transaction Manager

Vf Verifier

Whea Windows Hardware Error Architecture

Wmi Windows Management Instrumentation

Wdi Windows Diagnostic Infrastructure

Zw Mirror entry point for system services (beginning with Nt) that sets previous 

access mode to kernel, which eliminates parameter validation, because Nt sys-

tem services validate parameters only if previous access mode is user

You can decipher the names of these exported functions more easily if you understand 

the naming convention for Windows system routines. The general format is:

<Prefix><Operation><Object>

In this format, Prefix is the internal component that exports the routine, Operation tells 

what is being done to the object or resource, and Object identifies what is being oper-

ated on.

For example, ExAllocatePoolWithTag is the executive support routine to allocate from a 

paged or nonpaged pool. KeInitializeThread is the routine that allocates and sets up a 

kernel thread object.
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System Processes

The following system processes appear on every Windows system. (Two of these—Idle and 

System—are not full processes, as they are not running a user-mode executable.)

Idle process (contains one thread per CPU to account for idle CPU time)

System process (contains the majority of the kernel-mode system threads)

Session manager (Smss.exe)

Local session manager (Lsm.exe)

Windows subsystem (Csrss.exe)

Session 0 initialization (Wininit.exe)

Logon process (Winlogon.exe)

Service control manager (Services.exe) and the child service processes it creates (such as 

the system-supplied generic service-host process, Svchost.exe)

Local security authentication server (Lsass.exe)

To understand the relationship of these processes, it is helpful to view the process “tree”—

that is, the parent/child relationship between processes. Seeing which process created each 

process helps to understand where each process comes from. Figure 2-5 is a screen snapshot 

of the process tree viewed after taking a Process Monitor boot trace. Using Process Monitor 

is the only way to see the real process tree because, as we’ll see later, the session manager 

will spawn copies of itself for each session being created and then terminate them.

FIGURE 2-5 Initial system process tree
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The next sections explain the key system processes shown in Figure 2-5. Although these sec-

tions briefly indicate the order of process startup, Chapter 13 contains a detailed description 

of the steps involved in booting and starting Windows.

Idle Process

The first process listed in Figure 2-5 is the system idle process. As we’ll explain in Chapter 5, 

processes are identified by their image name. However, this process (as well as the pro-

cess named System) isn’t running a real user-mode image (in that there is no “System Idle 

Process.exe” in the \Windows directory). In addition, the name shown for this process differs 

from utility to utility (because of implementation details). Table 2-7 lists several of the names 

given to the Idle process (process ID 0). The Idle process is explained in detail in Chapter 5.

TABLE 2-7 Names for Process ID 0 in Various Utilities

Utility Name for Process ID 0

Task Manager System Idle Process

Process Status (Pstat.exe) Idle Process

Process Explorer (Procexp.exe) System Idle Process

Task List (Tasklist.exe) System Idle Process

Now let’s look at system threads and the purpose of each of the system processes that are 

running real images.

Interrupts and DPCs

The two lines labeled Interrupts and DPCs represent time spent servicing interrupts and 

deferred procedure calls. These mechanisms are explained in Chapter 3. Note that while 

Process Explorer displays these as entries in the process list, they are not processes. They 

are shown because they account for CPU time not charged to any process. (For example, a 

system with heavy interrupt activity will not appear as a process consuming CPU time.) Note 

that Task Manager includes interrupt and DPC time in the system idle time. Thus a system 

with heavy interrupt activity will appear to be idle when using Task Manager.

System Process and System Threads

The System process (process ID 4) is the home for a special kind of thread that runs only 

in kernel mode: a kernel-mode system thread. System threads have all the attributes and 

contexts of regular user-mode threads (such as a hardware context, priority, and so on) but 

are different in that they run only in kernel-mode executing code loaded in system space, 

whether that is in Ntoskrnl.exe or in any other loaded device driver. In addition, system 

threads don’t have a user process address space and hence must allocate any dynamic stor-

age from operating system memory heaps, such as a paged or nonpaged pool.



76 Windows Internals, Fifth Edition

System threads are created by the PsCreateSystemThread function (documented in the WDK), 

which can be called only from kernel mode. Windows as well as various device drivers create 

system threads during system initialization to perform operations that require thread context, 

such as issuing and waiting for I/Os or other objects or polling a device. For example, the 

memory manager uses system threads to implement such functions as writing dirty pages to 

the page file or mapped files, swapping processes in and out of memory, and so forth. The 

kernel creates a system thread called the balance set manager that wakes up once per second 

to possibly initiate various scheduling and memory management–related events. The cache 

manager also uses system threads to implement both read-ahead and write-behind I/Os. The 

file server device driver (Srv2.sys) uses system threads to respond to network I/O requests for 

file data on disk partitions shared to the network. Even the floppy driver has a system thread 

to poll the floppy device. (Polling is more efficient in this case because an interrupt-driven 

floppy driver consumes a large amount of system resources.) Further information on specific 

system threads is included in the chapters in which the component is described.

By default, system threads are owned by the System process, but a device driver can cre-

ate a system thread in any process. For example, the Windows subsystem device driver 

(Win32k.sys) creates a system thread inside the Canonical Display Driver (Cdd.dll) part of the 

Windows subsystem process (Csrss.exe) so that it can easily access data in the user-mode 

address space of that process.

When you’re troubleshooting or going through a system analysis, it’s useful to be able to 

map the execution of individual system threads back to the driver or even to the subroutine 

that contains the code. For example, on a heavily loaded file server, the System process will 

likely be consuming considerable CPU time. But the knowledge that when the System pro-

cess is running that “some system thread” is running isn’t enough to determine which device 

driver or operating system component is running.

So if threads in the System process are running, first determine which ones are running (for 

example, with the Performance tool). Once you find the thread (or threads) that is running, 

look up in which driver the system thread began execution (which at least tells you which 

driver likely created the thread) or examine the call stack (or at least the current address) of 

the thread in question, which would indicate where the thread is currently executing.

Both of these techniques are illustrated in the following experiments.



 Chapter 2 System Architecture 77

EXPERIMENT: Mapping a System Thread to a Device Driver

In this experiment, we’ll see how to map CPU activity in the System process to the 

responsible system thread (and the driver it falls in) generating the activity. This is 

important because when the System process is running, you must go to the thread 

granularity to really understand what’s going on. For this experiment, we will gener-

ate system thread activity by generating file server activity on your machine. (The file 

server driver, Srv2.sys, creates system threads to handle inbound requests for file I/O. 

See Chapter 12 for more information on this component.)

 1. Open a command prompt.

 2. Do a directory listing of your entire C drive using a network path to access your 

C drive. For example, if your computer name is COMPUTER1, type dir \\com-

puter1\c$ /s. (The /s switch lists all subdirectories.)

 3. Run Process Explorer, and double-click on the System process.

 4. Click on the Threads tab.

 5. Sort by the CSwitch Delta (context switch delta) column. You should see one or 

more threads in Srv2.sys running, such as the following:

If you see a system thread running and you are not sure what the driver is, click 

the Module button, which will bring up the file properties. Clicking the Module 

button while highlighting the thread in Srv2.sys previously shown results in the 

following display.
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Session Manager (Smss)

The session manager (%SystemRoot%\Smss.exe) is the first user-mode process created in the 

system. The kernel-mode system thread that performs the final phase of the initialization of 

the executive and kernel creates the actual Smss process.

The session manager is responsible for a number of important steps in starting Windows, 

such as opening additional page files, performing delayed file rename and delete opera-

tions, and creating system environment variables. It also launches the subsystem processes 

(normally just Csrss.exe) and either the Wininit or Winlogon processes, the former of which in 

turn creates the rest of the system processes.

Much of the configuration information in the registry that drives the initialization steps of 

Smss can be found under HKLM\SYSTEM\CurrentControlSet\Control\Session Manager. Some 

of these are explained in Chapter 13 in the section on Smss.

Smss also creates user sessions. When Smss creates the first interactive user session (the 

console session) or when a request to create a session is received, it creates a copy of itself 

inside that session. The copy calls NtSetSystemInformation with a request to set up kernel-

mode session data structures. This in turn calls the internal memory manager function 

MmSessionCreate, which sets up the session virtual address space that will contain the session 
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paged pool and the per-session data structures allocated by the kernel-mode part of the 

Windows subsystem (Win32k.sys) and other session-space device drivers. (See Chapter 9 for 

more details.) Smss then creates an instance of Winlogon and Csrss for the session. For ses-

sion 0, Smss creates Wininit instead.

By having parallel copies of itself during boot-up and Terminal Services session creation, Smss 

can create multiple sessions at the same time (at minimum four concurrent sessions, plus one 

more for each extra CPU beyond one). This ability enhances logon performance on Terminal 

Server systems where multiple users connect at the same time. Once a session finishes ini-

tializing, the copy of Smss terminates. As a result, only the initial Smss.exe process remains 

active.

The main thread in Smss waits forever on the process handles to Csrss and Winlogon. If 

either of these processes terminates unexpectedly, Smss crashes the system (using the crash 

code STATUS_SYSTEM_PROCESS_TERMINATED, or 0xC000021A), because Windows relies on 

their existence. Meanwhile, Smss waits for requests to load subsystems, debug events, and 

requests to create new Terminal Server sessions. (For a description of Terminal Services, see 

the section “Terminal Services and Multiple Sessions” in Chapter 1.)

Winlogon, LogonUI, LSASS, and Userinit

The Windows logon process (%SystemRoot%\Winlogon.exe) handles interactive user logons 

and logoffs. Winlogon is notified of a user logon request when the secure attention sequence 

(SAS) keystroke combination is entered. The default SAS on Windows is the combination 

Ctrl+Alt+Delete. The reason for the SAS is to protect users from password-capture programs 

that simulate the logon process, because this keyboard sequence cannot be intercepted by a 

user-mode application.

The identification and authentication aspects of the logon process are implemented through 

DLLs called credential providers. The standard Windows credential providers implement the 

default Windows authentication interfaces: password and smartcard. However, developers 

can provide their own credential providers to implement other identification and authentica-

tion mechanisms in place of the standard Windows username/password method (such as one 

based on a voice print or a biometric device such as a fingerprint reader). Because Winlogon 

is a critical system process on which the system depends, credential providers and the UI to 

display the logon dialog box run inside a child process of Winlogon called LogonUI. When 

Winlogon detects the SAS, it launches this process, which initializes the credential providers. 

Once the user enters her credentials or dismisses the logon interface, the LogonUI process 

terminates.

In addition, Winlogon can load additional network provider DLLs that need to perform sec-

ondary authentication. This capability allows multiple network providers to gather identifica-

tion and authentication information all at one time during normal logon.
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Once the username and password have been captured, they are sent to the local security 

authentication server process (%SystemRoot%\Lsass.exe, described in Chapter 6) to be 

authenticated. LSASS calls the appropriate authentication package (implemented as a DLL) to 

perform the actual verification, such as checking whether a password matches what is stored 

in the Active Directory or the SAM (the part of the registry that contains the definition of the 

users and groups).

Upon a successful authentication, LSASS calls a function in the security reference monitor 

(for example, NtCreateToken) to generate an access token object that contains the user’s 

security profile. If User Account Control (UAC) is used and the user logging on is a mem-

ber of the administrators group or has administrator privileges, LSASS will create a second, 

restricted version of the token. This access token is then used by Winlogon to create the initial 

process(es) in the user’s session. The initial process(es) are stored in the registry value Userinit 
under the registry key HKLM\SOFTWARE\Microsoft\Windows NT\CurrentVersion\Winlogon. 

(The default is Userinit.exe, but there can be more than one image in the list.)

Userinit performs some initialization of the user environment (such as running the login script 

and applying group policies) and then looks in the registry at the Shell value (under the same 

Winlogon key referred to previously) and creates a process to run the system-defined shell 

(by default, Explorer.exe). Then Userinit exits. This is the reason Explorer.exe is shown with 

no parent—its parent has exited, and as explained in Chapter 1, tlist left-justifies processes 

whose parent isn’t running. (Another way of looking at it is that Explorer is the grandchild of 

Winlogon.)

Winlogon is active not only during user logon and logoff but also whenever it intercepts 

the SAS from the keyboard. For example, when you press Ctrl+Alt+Delete while logged on, 

the Windows Security dialog box comes up, providing the options to log off, start the Task 

Manager, lock the workstation, shut down the system, and so forth. Winlogon is the process 

that handles this interaction.

For a complete description of the steps involved in the logon process, see the section “Smss, 

Csrss, and Wininit” in Chapter 13. For more details on security authentication, see Chapter 6. 

For details on the callable functions that interface with LSASS (the functions that start with 

Lsa), see the documentation in the Windows SDK.

Service Control Manager (SCM)

Recall from earlier in the chapter that “services” on Windows can refer either to a server 

process or to a device driver. This section deals with services that are user-mode processes. 

Services are like UNIX “daemon processes” or VMS “detached processes” in that they can be 

configured to start automatically at system boot time without requiring an interactive logon. 

They can also be started manually (such as by running the Services administrative tool or by 

calling the Windows StartService function). Typically, services do not interact with the logged-

on user, although there are special conditions when this is possible. (See Chapter 4.)
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The service control manager is a special system process running the image %SystemRoot%\

Services.exe that is responsible for starting, stopping, and interacting with service processes. 

Service programs are really just Windows images that call special Windows functions to 

interact with the service control manager to perform such actions as registering the service’s 

successful startup, responding to status requests, or pausing or shutting down the service. 

Services are defined in the registry under HKLM\SYSTEM\CurrentControlSet\Services. 

Keep in mind that services have three names: the process name you see running on the sys-

tem, the internal name in the registry, and the display name shown in the Services adminis-

trative tool. (Not all services have a display name—if a service doesn’t have a display name, 

the internal name is shown.) With Windows, services can also have a description field that 

further details what the service does.

To map a service process to the services contained in that process, use the tlist /s or tasklist 
/svc command. Note that there isn’t always one-to-one mapping between service process 

and running services, however, because some services share a process with other services. In 

the registry, the type code indicates whether the service runs in its own process or shares a 

process with other services in the image.

A number of Windows components are implemented as services, such as the Print Spooler, 

Event Log, Task Scheduler, and various networking components.

EXPERIMENT: Listing Installed Services

To list the installed services, select Administrative Tools from Control Panel, and then 

select Services. You should see output like this:
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To see the detailed properties about a service, right-click on a service and select 

Properties. For example, here are the properties for the Print Spooler service (high-

lighted in the previous screen shot):

Notice that the Path To Executable field identifies the program that contains this ser-

vice. Remember that some services share a process with other services—mapping isn’t 

always one to one.

EXPERIMENT: Viewing Service Details Inside Service Processes

Process Explorer highlights processes hosting one service or more. (You can configure 

this by selecting the Configure Highlighting entry in the Options menu.) If you double-

click on a service-hosting process, you will see a Services tab that lists the services 

inside the process, the name of the registry key that defines the service, the display 

name seen by the administrator, the description text for that service (if present), and 

for Svchost services, the path to the DLL that implements the service. For example, list-

ing the services in a Svchost.exe process on Windows Vista running under the System 

account looks like the following.
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For more details on services, see Chapter 4.

Conclusion

In this chapter, we’ve taken a broad look at the overall system architecture of Windows. 

We’ve examined the key components of Windows and seen how they interrelate. In the next 

chapter, we’ll look in more detail at the core system mechanisms that these components are 

built on, such as the object manager and synchronization.
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Chapter 3

System Mechanisms

The Windows operating system provides several base mechanisms that kernel-mode compo-

nents such as the executive, the kernel, and device drivers use. This chapter explains the fol-

lowing system mechanisms and describes how they are used:

Trap dispatching, including interrupts, deferred procedure calls (DPCs), asynchronous 

procedure calls (APCs), exception dispatching, and system service dispatching

The executive object manager

Synchronization, including spinlocks, kernel dispatcher objects, how waits are imple-

mented, as well as user-mode-specific synchronization primitives that avoid trips to 

kernel mode (unlike typical dispatcher objects)

System worker threads

Miscellaneous mechanisms such as Windows global flags

Advanced local procedure calls (ALPCs)

Kernel Event Tracing

Wow64

User-mode debugging

The image loader

Hypervisor (Hyper-V)

Kernel Transaction Manager (KTM)

Kernel Patch Protection (KPP)

Code integrity

Trap Dispatching

Interrupts and exceptions are operating system conditions that divert the processor to code 

outside the normal flow of control. Either hardware or software can detect them. The term 

trap refers to a processor’s mechanism for capturing an executing thread when an exception 

or an interrupt occurs and transferring control to a fixed location in the operating system. 

In Windows, the processor transfers control to a trap handler, a function specific to a par-

ticular interrupt or exception. Figure 3-1 illustrates some of the conditions that activate trap 

handlers.
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The kernel distinguishes between interrupts and exceptions in the following way. An inter-
rupt is an asynchronous event (one that can occur at any time) that is unrelated to what the 

processor is executing. Interrupts are generated primarily by I/O devices, processor clocks, 

or timers, and they can be enabled (turned on) or disabled (turned off). An exception, in con-

trast, is a synchronous condition that results from the execution of a particular instruction. 

Running a program a second time with the same data under the same conditions can repro-

duce exceptions. Examples of exceptions include memory access violations, certain debugger 

instructions, and divide-by-zero errors. The kernel also regards system service calls as excep-

tions (although technically they’re system traps).

FIGURE 3-1 Trap dispatching

Either hardware or software can generate exceptions and interrupts. For example, a bus error 

exception is caused by a hardware problem, whereas a divide-by-zero exception is the result 

of a software bug. Likewise, an I/O device can generate an interrupt, or the kernel itself can 

issue a software interrupt (such as an APC or DPC, described later in this chapter).

When a hardware exception or interrupt is generated, the processor records enough machine 

state on the kernel stack of the thread that’s interrupted so that it can return to that point 

in the control flow and continue execution as if nothing had happened. If the thread was 

executing in user mode, Windows switches to the thread’s kernel-mode stack. Windows then 

creates a trap frame on the kernel stack of the interrupted thread into which it stores the exe-

cution state of the thread. The trap frame is a subset of a thread’s complete context, and you 

can view its definition by typing dt nt!_ktrap_frame in the kernel debugger. (Thread context 

is described in Chapter 5.) The kernel handles software interrupts either as part of hardware 
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interrupt handling or synchronously when a thread invokes kernel functions related to the 

software interrupt.

In most cases, the kernel installs front-end trap handling functions that perform general 

trap handling tasks before and after transferring control to other functions that field the 

trap. For example, if the condition was a device interrupt, a kernel hardware interrupt trap 

handler transfers control to the interrupt service routine (ISR) that the device driver provided 

for the interrupting device. If the condition was caused by a call to a system service, the 

general system service trap handler transfers control to the specified system service function 

in the executive. The kernel also installs trap handlers for traps that it doesn’t expect to see 

or doesn’t handle. These trap handlers typically execute the system function KeBugCheckEx, 

which halts the computer when the kernel detects problematic or incorrect behavior that, 

if left unchecked, could result in data corruption. (For more information on bug checks, see 

Chapter 14.) The following sections describe interrupt, exception, and system service dis-

patching in greater detail.

Interrupt Dispatching

Hardware-generated interrupts typically originate from I/O devices that must notify the 

processor when they need service. Interrupt-driven devices allow the operating system to 

get the maximum use out of the processor by overlapping central processing with I/O opera-

tions. A thread starts an I/O transfer to or from a device and then can execute other useful 

work while the device completes the transfer. When the device is finished, it interrupts the 

processor for service. Pointing devices, printers, keyboards, disk drives, and network cards are 

generally interrupt driven.

System software can also generate interrupts. For example, the kernel can issue a software 

interrupt to initiate thread dispatching and to asynchronously break into the execution of a 

thread. The kernel can also disable interrupts so that the processor isn’t interrupted, but it 

does so only infrequently—at critical moments while it’s processing an interrupt or dispatch-

ing an exception, for example.

The kernel installs interrupt trap handlers to respond to device interrupts. Interrupt trap 

handlers transfer control either to an external routine (the ISR) that handles the interrupt or 

to an internal kernel routine that responds to the interrupt. Device drivers supply ISRs to ser-

vice device interrupts, and the kernel provides interrupt handling routines for other types of 

interrupts.

In the following subsections, you’ll find out how the hardware notifies the processor of device 

interrupts, the types of interrupts the kernel supports, the way device drivers interact with 

the kernel (as a part of interrupt processing), and the software interrupts the kernel recog-

nizes (plus the kernel objects that are used to implement them).
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Hardware Interrupt Processing

On the hardware platforms supported by Windows, external I/O interrupts come into one of 

the lines on an interrupt controller. The controller in turn interrupts the processor on a single 

line. Once the processor is interrupted, it queries the controller to get the interrupt request 
(IRQ). The interrupt controller translates the IRQ to an interrupt number, uses this number 

as an index into a structure called the interrupt dispatch table (IDT), and transfers control to 

the appropriate interrupt dispatch routine. At system boot time, Windows fills in the IDT with 

pointers to the kernel routines that handle each interrupt and exception.

EXPERIMENT: Viewing the IDT

You can view the contents of the IDT, including information on what trap handlers 

Windows has assigned to interrupts (including exceptions and IRQs), using the !idt ker-

nel debugger command. The !idt command with no flags shows vectors that map to 

addresses in modules other than Ntoskrnl.exe.

The following example shows what the output of the !idt command looks like:

lkd> !idt 

 

Dumping IDT: 

 

37: 823b50e8 hal!PicSpuriousService37 

51: 89714cd0 dxgkrnl!DpiFdoLineInterruptRoutine (KINTERRUPT 89714c80) 

52: 887f52d0 USBPORT!USBPORT_InterruptService (KINTERRUPT 887f5280) 

62: 887f5a50 USBPORT!USBPORT_InterruptService (KINTERRUPT 887f5a00) 

          USBPORT!USBPORT_InterruptService (KINTERRUPT 887f5000) 

72: 861137d0 ataport!IdePortInterrupt (KINTERRUPT 86113780) 

81: 89237050 i8042prt!I8042KeyboardInterruptService (KINTERRUPT 89237000) 

82: 86113a50 ataport!IdePortInterrupt (KINTERRUPT 86113a00) 

91: 892372d0 i8042prt!I8042MouseInterruptService (KINTERRUPT 89237280) 

a2: 89237cd0 sdbus!SdbusInterrupt (KINTERRUPT 89237c80) 

          rimmptsk+0x682E (KINTERRUPT 89237a00) 

          rimsptsk+0x6780 (KINTERRUPT 89237780) 

          rixdptsk+0x6820 (KINTERRUPT 89237500) 

a3: 887f57d0 USBPORT!USBPORT_InterruptService (KINTERRUPT 887f5780) 

          HDAudBus!HdaController::Isr (KINTERRUPT 86113280) 

a8: 86113050 ndis!ndisMiniportMessageIsr (KINTERRUPT 86113000) 

a9: 87d35cd0 ndis!ndisMiniportMessageIsr (KINTERRUPT 87d35c80) 

aa: 87d35a50 ndis!ndisMiniportMessageIsr (KINTERRUPT 87d35a00) 

ab: 87d357d0 ndis!ndisMiniportMessageIsr (KINTERRUPT 87d35780) 

ac: 87d35550 ndis!ndisMiniportMessageIsr (KINTERRUPT 87d35500) 

ad: 87d352d0 ndis!ndisMiniportMessageIsr (KINTERRUPT 87d35280) 

ae: 87d35050 ndis!ndisMiniportMessageIsr (KINTERRUPT 87d35000) 

af: 887f5cd0 ndis!ndisMiniportMessageIsr (KINTERRUPT 887f5c80) 

b0: 86113550 ndis!ndisMiniportMessageIsr (KINTERRUPT 86113500) 

b1: 86113cd0 acpi!ACPIInterruptServiceRoutine (KINTERRUPT 86113c80) 

b3: 887f5550 USBPORT!USBPORT_InterruptService (KINTERRUPT 887f5500) 

c1: 823b53d8 hal!HalpBroadcastCallService 

d1: 823a3c64 hal!HalpHpetClockInterrupt 
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d2: 823a3f08 hal!HalpHpetRolloverInterrupt 

df: 823b51c0 hal!HalpApicRebootService 

e1: 823b5934 hal!HalpIpiHandler 

e3: 823b56d4 hal!HalpLocalApicErrorService 

fd: 823b5edc hal!HalpProfileInterrupt

On the system used to provide the output for this experiment, the keyboard device 

driver’s (I8042prt.sys) keyboard ISR is at interrupt number 0x91.

Windows maps hardware IRQs to interrupt numbers in the IDT, and the system also uses the 

IDT to configure trap handlers for exceptions. For example, the x86 and x64 exception num-

ber for a page fault (an exception that occurs when a thread attempts to access a page of 

virtual memory that isn’t defined or present) is 0xe. Thus, entry 0xe in the IDT points to the 

system’s page fault handler. Although the architectures supported by Windows allow up to 

256 IDT entries, the number of IRQs a particular machine can support is determined by the 

design of the interrupt controller the machine uses.

Each processor has a separate IDT so that different processors can run different ISRs, if 

appropriate. For example, in a multiprocessor system, each processor receives the clock inter-

rupt, but only one processor updates the system clock in response to this interrupt. All the 

processors, however, use the interrupt to measure thread quantum and to initiate reschedul-

ing when a thread’s quantum ends. Similarly, some system configurations might require that 

a particular processor handle certain device interrupts.

x86 Interrupt Controllers

Most x86 systems rely on either the i8259A Programmable Interrupt Controller (PIC) or a vari-

ant of the i82489 Advanced Programmable Interrupt Controller (APIC); the majority of new 

computers include an APIC. The PIC standard originates with the original IBM PC. The i8259A 

PIC works only with uniprocessor systems and only has 8 interrupt lines. However, the IBM 

PC architecture defined the addition of a second PIC, called the slave, whose interrupts are 

multiplexed into one of the master PIC’s interrupt lines. This provides 15 total interrupts (7 on 

the master and 8 on the slave, multiplexed through the master’s eighth interrupt line). APICs 

and Streamlined Advanced Programmable Interrupt Controllers (SAPICs, discussed shortly) 

work with multiprocessor systems and have 256 interrupt lines. Intel and other companies 

have defined the Multiprocessor Specification (MP Specification), a design standard for x86 

multiprocessor systems that centers on the use of APIC. To provide compatibility with unipro-

cessor operating systems and boot code that starts a multiprocessor system in uniprocessor 

mode, APICs support a PIC compatibility mode with 15 interrupts and delivery of interrupts 

to only the primary processor. Figure 3-2 depicts the APIC architecture. The APIC actually 

consists of several components: an I/O APIC that receives interrupts from devices, local APICs 

that receive interrupts from the I/O APIC on the bus and that interrupt the CPU they are 

associated with, and an i8259A-compatible interrupt controller that translates APIC input into 
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PIC-equivalent signals. Because there can be multiple I/O APICs on the system, motherboards 

typically have a piece of core logic that sits between them and the processors. This logic 

is responsible for implementing interrupt routing algorithms that both balance the device 

interrupt load across processors and attempt to take advantage of locality, delivering device 

interrupts to the same processor that has just fielded a previous interrupt of the same type. 

Software programs can reprogram the I/O APICs with a fixed routing algorithm that bypasses 

this piece of chipset logic. Windows does this by programming the APICs in “interrupt one 

processor in the following set” routing mode.

CPU 1

Local
APIC

CPU 0

Local
APIC

i8259A-
equivalent

PIC

I/O
APIC

FIGURE 3-2 x86 APIC architecture 

x64 Interrupt Controllers

Because the x64 architecture is compatible with x86 operating systems, x64 systems must 

provide the same interrupt controllers as does the x86. A significant difference, however, is 

that the x64 versions of Windows will not run on systems that do not have an APIC as they 

use the APIC for interrupt control.

IA64 Interrupt Controllers

The IA64 architecture relies on the Streamlined Advanced Programmable Interrupt Controller 

(SAPIC), which is an evolution of the APIC. Even if load balancing and routing are present in 

the firmware, Windows does not take advantage of it; instead, it statically assigns interrupts 

to processors in a round-robin manner.
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EXPERIMENT: Viewing the PIC and APIC

You can view the configuration of the PIC on a uniprocessor and the APIC on a multi-

processor by using the !pic and !apic kernel debugger commands, respectively. Here’s 

the output of the !pic command on a uniprocessor. (Note that the !pic command 

doesn’t work if your system is using an APIC HAL.)

lkd> !pic  

----- IRQ Number ----- 00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F  

Physically in service:  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  

Physically masked:      .  .  .  Y  .  .  Y  Y  .  .  Y  .  .  Y  .  .  

Physically requested:   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  

Level Triggered:        .  .  .  .  .  Y  .  .  .  Y  .  Y  .  .  .  .

Here’s the output of the !apic command on a system running with the MPS HAL:

lkd> !apic  

Apic @ fffe0000  ID:0 (40010)  LogDesc:01000000  DestFmt:ffffffff  TPR 20  

TimeCnt: 0bebc200clk  SpurVec:3f  FaultVec:e3  error:0  

Ipi Cmd: 0004001f  Vec:1F  FixedDel    Dest=Self      edg  high               

Timer..: 000300fd  Vec:FD  FixedDel    Dest=Self      edg  high       masked  

Linti0.: 0001003f  Vec:3F  FixedDel    Dest=Self      edg  high       masked  

Linti1.: 000184ff  Vec:FF  NMI         Dest=Self      lvl  high       masked  

TMR: 61, 82, 91-92, B1  

IRR:   

ISR: 

The following output is for the !ioapic command, which displays the configuration of 

the I/O APICs, the interrupt controller components connected to devices:

0: kd> !ioapic  

IoApic @ ffd02000  ID:8 (11)  Arb:0  

Inti00.: 000100ff  Vec:FF  FixedDel  PhysDest:00  edg  masked  

Inti01.: 00000962  Vec:62  LowestDl  Lg:03000000  edg  

Inti02.: 000100ff  Vec:FF  FixedDel  PhysDest:00  edg  masked  

Inti03.: 00000971  Vec:71  LowestDl  Lg:03000000  edg  

Inti04.: 000100ff  Vec:FF  FixedDel  PhysDest:00  edg  masked  

Inti05.: 00000961  Vec:61  LowestDl  Lg:03000000  edg  

Inti06.: 00010982  Vec:82  LowestDl  Lg:02000000  edg  masked  

Inti07.: 000100ff  Vec:FF  FixedDel  PhysDest:00  edg  masked  

Inti08.: 000008d1  Vec:D1  FixedDel  Lg:01000000  edg  

Inti09.: 000100ff  Vec:FF  FixedDel  PhysDest:00  edg  masked  

Inti0A.: 000100ff  Vec:FF  FixedDel  PhysDest:00  edg  masked  

Inti0B.: 000100ff  Vec:FF  FixedDel  PhysDest:00  edg  masked  

Inti0C.: 00000972  Vec:72  LowestDl  Lg:03000000  edg  

Inti0D.: 000100ff  Vec:FF  FixedDel  PhysDest:00  edg  masked  

Inti0E.: 00000992  Vec:92  LowestDl  Lg:03000000  edg  

Inti0F.: 000100ff  Vec:FF  FixedDel  PhysDest:00  edg  masked  

Inti10.: 000100ff  Vec:FF  FixedDel  PhysDest:00  edg  masked  

Inti11.: 000100ff  Vec:FF  FixedDel  PhysDest:00  edg  masked  
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Inti12.: 000100ff  Vec:FF  FixedDel  PhysDest:00  edg  masked  

Inti13.: 000100ff  Vec:FF  FixedDel  PhysDest:00  edg  masked  

Inti14.: 0000a9a3  Vec:A3  LowestDl  Lg:03000000  lvl  

Inti15.: 0000a993  Vec:93  LowestDl  Lg:03000000  lvl  

Inti16.: 000100ff  Vec:FF  FixedDel  PhysDest:00  edg  masked  

Inti17.: 000100ff  Vec:FF  FixedDel  PhysDest:00  edg  masked

Software Interrupt Request Levels (IRQLs)

Although interrupt controllers perform a level of interrupt prioritization, Windows imposes its 

own interrupt priority scheme known as interrupt request levels (IRQLs). The kernel represents 

IRQLs internally as a number from 0 through 31 on x86 and from 0 to 15 on x64 and IA64, 

with higher numbers representing higher-priority interrupts. Although the kernel defines 

the standard set of IRQLs for software interrupts, the HAL maps hardware-interrupt numbers 

to the IRQLs. Figure 3-3 shows IRQLs defined for the x86 architecture, and Figure 3-4 shows 

IRQLs for the x64 and IA64 architectures.
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FIGURE 3-3 x86 interrupt request levels (IRQLs)

Interrupts are serviced in priority order, and a higher-priority interrupt preempts the servic-

ing of a lower-priority interrupt. When a high-priority interrupt occurs, the processor saves 

the interrupted thread’s state and invokes the trap dispatchers associated with the inter-

rupt. The trap dispatcher raises the IRQL and calls the interrupt’s service routine. After the 

service routine executes, the interrupt dispatcher lowers the processor’s IRQL to where it 

was before the interrupt occurred and then loads the saved machine state. The interrupted 

thread resumes executing where it left off. When the kernel lowers the IRQL, lower-priority 
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interrupts that were masked might materialize. If this happens, the kernel repeats the process 

to handle the new interrupts.
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FIGURE 3-4 x64 and IA64 interrupt request levels (IRQLs) 

IRQL priority levels have a completely different meaning than thread-scheduling priorities 

(which are described in Chapter 5). A scheduling priority is an attribute of a thread, whereas 

an IRQL is an attribute of an interrupt source, such as a keyboard or a mouse. In addition, 

each processor has an IRQL setting that changes as operating system code executes.

Each processor’s IRQL setting determines which interrupts that processor can receive. IRQLs 

are also used to synchronize access to kernel-mode data structures. (You’ll find out more 

about synchronization later in this chapter.) As a kernel-mode thread runs, it raises or low-

ers the processor’s IRQL either directly by calling KeRaiseIrql and KeLowerIrql or, more com-

monly, indirectly via calls to functions that acquire kernel synchronization objects. As Figure 

3-5 illustrates, interrupts from a source with an IRQL above the current level interrupt the 

processor, whereas interrupts from sources with IRQLs equal to or below the current level are 

masked until an executing thread lowers the IRQL.

Because accessing a PIC is a relatively slow operation, HALs that require accessing the I/O 

bus to change IRQLs, such as for PIC and 32-bit Advanced Configuration and Power Interface 

(ACPI) systems, implement a performance optimization, called lazy IRQL, that avoids PIC 

accesses. When the IRQL is raised, the HAL notes the new IRQL internally instead of changing 

the interrupt mask. If a lower-priority interrupt subsequently occurs, the HAL sets the inter-

rupt mask to the settings appropriate for the first interrupt and postpones the lower-priority 

interrupt until the IRQL is lowered. Thus, if no lower-priority interrupts occur while the IRQL is 

raised, the HAL doesn’t need to modify the PIC.
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FIGURE 3-5 Masking interrupts 

A kernel-mode thread raises and lowers the IRQL of the processor on which it’s running, 

depending on what it’s trying to do. For example, when an interrupt occurs, the trap handler 

(or perhaps the processor) raises the processor’s IRQL to the assigned IRQL of the interrupt 

source. This elevation masks all interrupts at and below that IRQL (on that processor only), 

which ensures that the processor servicing the interrupt isn’t waylaid by an interrupt at the 

same or a lower level. The masked interrupts are either handled by another processor or held 

back until the IRQL drops. Therefore, all components of the system, including the kernel and 

device drivers, attempt to keep the IRQL at passive level (sometimes called low level). They 

do this because device drivers can respond to hardware interrupts in a timelier manner if the 

IRQL isn’t kept unnecessarily elevated for long periods.

Note An exception to the rule that raising the IRQL blocks interrupts of that level and lower 

relates to APC-level interrupts. If a thread raises the IRQL to APC level and then is rescheduled 

because of a dispatch/DPC-level interrupt, the system might deliver an APC level interrupt to the 

newly scheduled thread. Thus, APC level can be considered a thread-local rather than processor-

wide IRQL.
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EXPERIMENT: Viewing the IRQL

You can view a processor’s saved IRQL with the !irql debugger command. The saved 

IRQL represents the IRQL at the time just before the break-in to the debugger, which 

raises the IRQL to a static, meaningless value:

kd> !irql  

Debugger saved IRQL for processor 0x0 -- 0 (LOW_LEVEL)

Note that the IRQL value is saved in two locations. The first, which represents the cur-

rent IRQL, is the processor control region (PCR), while its extension, the processor 

control block (PRCB), contains the saved IRQL in the DebuggerSaveIrql field. The PCR 

and PRCB contain information about the state of each processor in the system, such 

as the current IRQL, a pointer to the hardware IDT, the currently running thread, and 

the next thread selected to run. The kernel and the HAL use this information to per-

form  architecture-specific and machine-specific actions. Portions of the PCR and PRCB 

structures are defined publicly in the Windows Driver Kit (WDK) header file Ntddk.h, so 

examine that file if you want a complete definition of these structures.

You can view the contents of the PCR with the kernel debugger by using the !pcr 
command:

lkd> !pcr 

KPCR for Processor 0 at 820f4700: 

    Major 1 Minor 1 

 NtTib.ExceptionList: 9cee5cc8 

     NtTib.StackBase: 00000000 

    NtTib.StackLimit: 00000000 

  NtTib.SubSystemTib: 801ca000 

       NtTib.Version: 294308d9 

   NtTib.UserPointer: 00000001 

       NtTib.SelfTib: 7ffdf000 

 

             SelfPcr: 820f4700 

                Prcb: 820f4820 

                Irql: 00000004 

                 IRR: 00000000 

                 IDR: ffffffff 

       InterruptMode: 00000000 

                 IDT: 81d7f400 

                 GDT: 81d7f000 

                 TSS: 801ca000 

 

       CurrentThread: 8952d030 

          NextThread: 00000000 

          IdleThread: 820f8300 

 

           DpcQueue:
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Because changing a processor’s IRQL has such a significant effect on system operation, the 

change can be made only in kernel mode—user-mode threads can’t change the processor’s 

IRQL. This means that a processor’s IRQL is always at passive level when it’s executing user-

mode code. Only when the processor is executing kernel-mode code can the IRQL be higher.

Each interrupt level has a specific purpose. For example, the kernel issues an interproces-
sor interrupt (IPI) to request that another processor perform an action, such as dispatching a 

particular thread for execution or updating its translation look-aside buffer (TLB) cache. The 

system clock generates an interrupt at regular intervals, and the kernel responds by updating 

the clock and measuring thread execution time. If a hardware platform supports two clocks, 

the kernel adds another clock interrupt level to measure performance. The HAL provides a 

number of interrupt levels for use by interrupt-driven devices; the exact number varies with 

the processor and system configuration. The kernel uses software interrupts (described later 

in this chapter) to initiate thread scheduling and to asynchronously break into a thread’s 

execution.

Mapping Interrupts to IRQLs IRQL levels aren’t the same as the interrupt requests (IRQs) 

defined by interrupt controllers—the architectures on which Windows runs don’t implement 

the concept of IRQLs in hardware. So how does Windows determine what IRQL to assign to 

an interrupt? The answer lies in the HAL. In Windows, a type of device driver called a bus 
driver determines the presence of devices on its bus (PCI, USB, and so on) and what interrupts 

can be assigned to a device. The bus driver reports this information to the Plug and Play 

manager, which decides, after taking into account the acceptable interrupt assignments for 

all other devices, which interrupt will be assigned to each device. Then it calls a Plug and Play 

interrupt arbiter, which maps interrupts to IRQLs.

The algorithm for assignment differs for the various HALs that Windows includes. On ACPI 

systems (including x86, x64, and IA64), the HAL computes the IRQL for a given interrupt by 

dividing the interrupt vector assigned to the IRQ by 16. As for selecting an interrupt vec-

tor for the IRQ, this depends on the type of interrupt controller present on the system. On 

today’s APIC systems, this number is generated in a round-robin fashion, so there is no com-

putable way to figure out the IRQ based on the interrupt vector or the IRQL. 

Predefined IRQLs Let’s take a closer look at the use of the predefined IRQLs, starting from 

the highest level shown in Figure 3-4:

The kernel uses high level only when it’s halting the system in KeBugCheckEx and mask-

ing out all interrupts.

Power fail level originated in the original Windows NT design documents, which speci-

fied the behavior of system power failure code, but this IRQL has never been used.

Inter-processor interrupt level is used to request another processor to perform an 

action, such as updating the processor’s TLB cache, system shutdown, or system crash.
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Clock level is used for the system’s clock, which the kernel uses to track the time of day 

as well as to measure and allot CPU time to threads.

The system’s real-time clock (or another source, such as the local APIC timer) uses pro-
file level when kernel profiling, a performance measurement mechanism, is enabled. 

When kernel profiling is active, the kernel’s profiling trap handler records the address 

of the code that was executing when the interrupt occurred. A table of address samples 

is constructed over time that tools can extract and analyze. You can obtain Kernrate, a 

kernel profiling tool that you can use to configure and view profiling-generated statis-

tics, from the Windows Driver Kit (WDK). See the Kernrate experiment for more infor-

mation on using this tool.

The device IRQLs are used to prioritize device interrupts. (See the previous section for 

how hardware interrupt levels are mapped to IRQLs.)

The correctible machine check interrupt level is used after a serious but correctible 

(by the operating system) hardware condition or error was reported by the CPU or 

firmware.

DPC/dispatch-level and APC-level interrupts are software interrupts that the kernel 

and device drivers generate. (DPCs and APCs are explained in more detail later in this 

chapter.)

The lowest IRQL, passive level, isn’t really an interrupt level at all; it’s the setting at which 

normal thread execution takes place and all interrupts are allowed to occur.

EXPERIMENT: Using Kernel Profiler (Kernrate) to 

Profile Execution

You can use the Kernel Profiler tool (Kernrate) to enable the system profiling timer, col-

lect samples of the code that is executing when the timer fires, and display a summary 

showing the frequency distribution across image files and functions. It can be used to 

track CPU usage consumed by individual processes and/or time spent in kernel mode 

independent of processes (for example, interrupt service routines). Kernel profiling is 

useful when you want to obtain a breakdown of where the system is spending time.

In its simplest form, Kernrate samples where time has been spent in each kernel module 

(for example, Ntoskrnl, drivers, and so on). For example, after installing the Windows 

Driver Kit, try performing the following steps:

 1. Open a command prompt.

 2. Type cd c:\winddk\6001\tools\other\.

 3. Type dir. (You will see directories for each platform.)

 4. Run the image that matches your platform (with no arguments or switches). For 

example, i386\kernrate.exe is the image for an x86 system.
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 5. While Kernrate is running, go perform some other activity on the system. For 

example, run Windows Media Player and play some music, run a graphics-

 intensive game, or perform network activity such as doing a directory of a remote 

network share.

 6. Press Ctrl+C to stop Kernrate. This causes Kernrate to display the statistics from 

the sampling period.

In the sample output from Kernrate, Windows Media Player was running, playing a 

recorded movie from disk.

C:\Windows\system32>c:\Programming\ddk\tools\other\i386\kernrate.exe 

 /==============================\ 

<         KERNRATE LOG           > 

 \==============================/ 

Date: 2008/03/09   Time: 16:44:24 

Machine Name: ALEX-LAPTOP 

Number of Processors: 2 

PROCESSOR_ARCHITECTURE: x86 

PROCESSOR_LEVEL: 6 

PROCESSOR_REVISION: 0f06 

Physical Memory: 3310 MB 

Pagefile Total: 7285 MB 

Virtual Total: 2047 MB 

PageFile1: \??\C:\pagefile.sys, 4100MB 

OS Version: 6.0 Build 6000 Service-Pack: 0.0 

WinDir: C:\Windows 

 

Kernrate Executable Location: C:\PROGRAMMING\DDK\TOOLS\OTHER\I386 

 

Kernrate User-Specified Command Line: 

c:\Programming\ddk\tools\other\i386\kernrate.exe 

 

 

Kernel Profile (PID = 0): Source= Time, 

Using Kernrate Default Rate of 25000 events/hit 

Starting to collect profile data 

 

***> Press ctrl-c to finish collecting profile data 

===> Finished Collecting Data, Starting to Process Results 

 

------------Overall Summary:-------------- 

 

P0     K 0:00:00.000 ( 0.0%)  U 0:00:00.234 ( 4.7%)  I 0:00:04.789 (95.3%)   

DPC 0:00:00.000 ( 0.0%)  Interrupt 0:00:00.000 ( 0.0%) 

       Interrupts= 9254, Interrupt Rate= 1842/sec. 

 

P1     K 0:00:00.031 ( 0.6%)  U 0:00:00.140 ( 2.8%)  I 0:00:04.851 (96.6%)   

DPC 0:00:00.000 ( 0.0%)  Interrupt 0:00:00.000 ( 0.0%) 

       Interrupts= 7051, Interrupt Rate= 1404/sec. 

 

TOTAL  K 0:00:00.031 ( 0.3%)  U 0:00:00.374 ( 3.7%)  I 0:00:09.640 (96.0%)   

DPC 0:00:00.000 ( 0.0%)  Interrupt 0:00:00.000 ( 0.0%) 

       Total Interrupts= 16305, Total Interrupt Rate= 3246/sec. 
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Total Profile Time = 5023 msec 

 

                                       BytesStart          BytesStop        BytesDiff. 

    Available Physical Memory   ,      1716359168,      1716195328,         -163840 

    Available Pagefile(s)       ,      5973733376,      5972783104,         -950272 

    Available Virtual           ,      2122145792,      2122145792,               0 

    Available Extended Virtual  ,               0,               0,               0 

    Committed Memory Bytes      ,      1665404928,      1666355200,          950272 

    Non Paged Pool Usage Bytes  ,        66211840,        66211840,               0 

    Paged Pool Usage Bytes      ,       189083648,       189087744,            4096 

    Paged Pool Available Bytes  ,       150593536,       150593536,               0 

    Free System PTEs            ,           37322,           37322,               0 

 

                                  Total          Avg. Rate 

    Context Switches     ,        30152,         6003/sec. 

    System Calls         ,       110807,         22059/sec. 

    Page Faults          ,          226,         45/sec. 

    I/O Read Operations  ,          730,         145/sec. 

    I/O Write Operations ,         1038,         207/sec. 

    I/O Other Operations ,          858,         171/sec. 

    I/O Read Bytes       ,      2013850,         2759/ I/O 

    I/O Write Bytes      ,        28212,         27/ I/O 

    I/O Other Bytes      ,        19902,         23/ I/O 

 

----------------------------- 

 

Results for Kernel Mode: 

----------------------------- 

 

OutputResults: KernelModuleCount = 167 

Percentage in the following table is based on the Total Hits for the Kernel 

 

Time   3814 hits, 25000 events per hit -------- 

Module                                 Hits       msec  %Total  Events/Sec 

NTKRNLPA                               3768       5036    98 %    18705321 

NVLDDMKM                                 12       5036     0 %       59571 

HAL                                      12       5036     0 %       59571 

WIN32K                                   10       5037     0 %       49632 

DXGKRNL                                   9       5036     0 %       44678 

NETW4V32                                  2       5036     0 %        9928 

FLTMGR                                    1       5036     0 %        4964 

 

================================= END OF RUN ================================== 

============================== NORMAL END OF RUN ==============================

The overall summary shows that the system spent 0.3 percent of the time in kernel 

mode, 3.7 percent in user mode, 96.0 percent idle, 0.0 percent at DPC level, and 0.0 

percent at interrupt level. The module with the highest hit rate was Ntkrnlpa.exe, the 

kernel for machines with Physical Address Extension (PAE) or NX support. The module 

with the second highest hit rate was nvlddmkm.sys, the driver for the video card on the 

machine used for the test. This makes sense because the major activity going on in the 

system was Windows Media Player sending video I/O to the video driver.
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If you have symbols available, you can zoom in on individual modules and see the time 

spent by function name. For example, profiling the system while rapidly dragging a 

window around the screen resulted in the following (partial) output:

C:\Windows\system32>c:\Programming\ddk\tools\other\i386\kernrate.exe -z ntkrnlpa -z 

win32k 

 /==============================\ 

<         KERNRATE LOG           > 

 \==============================/ 

Date: 2008/03/09   Time: 16:49:56 

  

Time   4191 hits, 25000 events per hit -------- 

Module                                 Hits       msec  %Total  Events/Sec 

NTKRNLPA                               3623       5695    86 %    15904302 

WIN32K                                  303       5696     7 %     1329880 

INTELPPM                                141       5696     3 %      618855 

HAL                                      61       5695     1 %      267778 

CDD                                      30       5696     0 %      131671 

NVLDDMKM                                 13       5696     0 %       57057 

  

----- Zoomed module WIN32K.SYS (Bucket size = 16 bytes, Rounding Down) -------- 

Module                                 Hits       msec  %Total  Events/Sec 

BltLnkReadPat                            34       5696    10 %      149227 

memmove                                  21       5696     6 %       92169 

vSrcTranCopyS8D32                        17       5696     5 %       74613 

memcpy                                   12       5696     3 %       52668 

RGNOBJ::bMerge                           10       5696     3 %       43890 

HANDLELOCK::vLockHandle                   8       5696     2 %       35112 

  

----- Zoomed module NTKRNLPA.EXE (Bucket size = 16 bytes, Rounding Down) -------- 

Module                                 Hits       msec  %Total  Events/Sec 

KiIdleLoop                             3288       5695    87 %    14433713 

READ_REGISTER_USHORT                     95       5695     2 %      417032 

READ_REGISTER_ULONG                      93       5695     2 %      408252 

RtlFillMemoryUlong                       31       5695     0 %      136084 

KiFastCallEntry                          18       5695     0 %       79016

The module with the second hit rate was Win32k.sys, the windowing system driver. 

Also high on the list were the video driver and Cdd.dll, a global video driver used for 

the 3D-accelerated Aero desktop theme. These results make sense because the main 

activity in the system was drawing on the screen. Note that in the zoomed display for 

Win32k.sys, the functions with the highest hits are related to merging, copying, and 

moving bits, the main GDI operations for painting a window dragged on the screen.

One important restriction on code running at DPC/dispatch level or above is that it can’t wait 

for an object if doing so would necessitate the scheduler to select another thread to execute, 

which is an illegal operation because the scheduler synchronizes its data structures at DPC/

dispatch level and cannot therefore be invoked to perform a reschedule. Another restriction 

is that only nonpaged memory can be accessed at IRQL DPC/dispatch level or higher. 
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This rule is actually a side-effect of the first restriction because attempting to access memory 

that isn’t resident results in a page fault. When a page fault occurs, the memory manager 

initiates a disk I/O and then needs to wait for the file system driver to read the page in from 

disk. This wait would in turn require the scheduler to perform a context switch (perhaps to 

the idle thread if no user thread is waiting to run), thus violating the rule that the scheduler 

can’t be invoked (because the IRQL is still DPC/dispatch level or higher at the time of the disk 

read).

If either of these two restrictions is violated, the system crashes with an IRQL_NOT_LESS_OR_

EQUAL or a DRIVER_IRQL_NOT_LESS_OR_EQUAL crash code. (See Chapter 14 for a thorough 

discussion of system crashes.) Violating these restrictions is a common bug in device drivers. 

The Windows Driver Verifier, explained in the section “Driver Verifier” in Chapter 9, has an 

option you can set to assist in finding this particular type of bug.

Interrupt Objects The kernel provides a portable mechanism—a kernel control object 

called an interrupt object—that allows device drivers to register ISRs for their devices. An 

interrupt object contains all the information the kernel needs to associate a device ISR with 

a particular level of interrupt, including the address of the ISR, the IRQL at which the device 

interrupts, and the entry in the kernel’s IDT with which the ISR should be associated. When 

an interrupt object is initialized, a few instructions of assembly language code, called the dis-
patch code, are copied from an interrupt handling template, KiInterruptTemplate, and stored 

in the object. When an interrupt occurs, this code is executed.

This interrupt-object resident code calls the real interrupt dispatcher, which is typically either 

the kernel’s KiInterruptDispatch or KiChainedDispatch routine, passing it a pointer to the 

interrupt object. KiInterruptDispatch is the routine used for interrupt vectors for which only 

one interrupt object is registered, and KiChainedDispatch is for vectors shared among mul-

tiple interrupt objects. The interrupt object contains information this second dispatcher rou-

tine needs to locate and properly call the ISR the device driver provides. 

The interrupt object also stores the IRQL associated with the interrupt so that KiInterrupt-
Dispatch or KiChainedDispatch can raise the IRQL to the correct level before calling the ISR 

and then lower the IRQL after the ISR has returned. This two-step process is required because 

there’s no way to pass a pointer to the interrupt object (or any other argument for that mat-

ter) on the initial dispatch because the initial dispatch is done by hardware. On a multiproces-

sor system, the kernel allocates and initializes an interrupt object for each CPU, enabling the 

local APIC on that CPU to accept the particular interrupt. 

Another kernel interrupt handler is KiFloatingDispatch, which is used for interrupts that 

require saving the floating-point state. Unlike kernel-mode code, which typically is not 

allowed to use floating-point (MMX, SSE, 3DNow!) operations because these registers won’t 

be saved across context switches, ISRs might need to use these registers (such as the video 

card ISR performing a quick drawing operation). When connecting an interrupt, drivers can 

set the FloatingSave argument to TRUE, requesting that the kernel use the floating-point 
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dispatch routine, which will save the floating registers. (However, this will greatly increase 

interrupt latency.) Note that this is supported only on 32-bit systems.

Figure 3-6 shows typical interrupt control flow for interrupts associated with interrupt 

objects.
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FIGURE 3-6 Typical interrupt control flow

EXPERIMENT: Examining Interrupt Internals

Using the kernel debugger, you can view details of an interrupt object, including its 

IRQL, ISR address, and custom interrupt dispatching code. First, execute the !idt com-

mand and locate the entry that includes a reference to I8042KeyboardInterruptService, 

the ISR routine for the PS2 keyboard device:

81: 89237050 i8042prt!I8042KeyboardInterruptService (KINTERRUPT 89237000)

To view the contents of the interrupt object associated with the interrupt, execute dt 
nt!_kinterrupt with the address following KINTERRUPT:

lkd> dt nt!_KINTERRUPT 89237000 

   +0x000 Type             : 22 

   +0x002 Size             : 624 

   +0x004 InterruptListEntry : _LIST_ENTRY [ 0x89237004 - 0x89237004 ] 
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   +0x00c ServiceRoutine   : 0x8f60e15c     unsigned char   

                                     i8042prt!I8042KeyboardInterruptService+0 

   +0x010 MessageServiceRoutine : (null)  

   +0x014 MessageIndex     : 0 

   +0x018 ServiceContext   : 0x87c707a0  

   +0x01c SpinLock         : 0 

   +0x020 TickCount        : 0xffffffff 

   +0x024 ActualLock       : 0x87c70860  -> 0 

   +0x028 DispatchAddress  : 0x82090b40     void  nt!KiInterruptDispatch+0 

   +0x02c Vector           : 0x81 

   +0x030 Irql             : 0x7 '' 

   +0x031 SynchronizeIrql  : 0x8 '' 

   +0x032 FloatingSave     : 0 '' 

   +0x033 Connected        : 0x1 '' 

   +0x034 Number           : 0 '' 

   +0x035 ShareVector      : 0 '' 

   +0x038 Mode             : 1 ( Latched ) 

   +0x03c Polarity         : 0 ( InterruptPolarityUnknown ) 

   +0x040 ServiceCount     : 0 

   +0x044 DispatchCount    : 0xffffffff 

   +0x048 Rsvd1            : 0 

   +0x050 DispatchCode     : [135] 0x56535554

In this example, the IRQL that Windows assigned to the interrupt is 7. Because this 

output is from an APIC system, the only way to verify the IRQ is to open the Device 

Manager (on the Hardware tab in the System item in Control Panel), locate the PS/2 

keyboard device, and view its resource assignments, as shown in the following screen 

shot:
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On an x64 or IA64 system you will see that the IRQ is the interrupt vector number 

(0x81—129 decimal—in this example) divided by 16 minus 1.

The ISR’s address for the interrupt object is stored in the ServiceRoutine field (which is 

what !idt displays in its output), and the interrupt code that actually executes when an 

interrupt occurs is stored in the DispatchCode array at the end of the interrupt object. 

The interrupt code stored there is programmed to build the trap frame on the stack 

and then call the function stored in the DispatchAddress field (KiInterruptDispatch in 

the example), passing it a pointer to the interrupt object.

Windows and Real-Time Processing

Deadline requirements, either hard or soft, characterize real-time environments. Hard 

real-time systems (for example, a nuclear power plant control system) have deadlines 

that the system must meet to avoid catastrophic failures such as loss of equipment or 

life. Soft real-time systems (for example, a car’s fuel-economy optimization system) 

have deadlines that the system can miss, but timeliness is still a desirable trait. In real-

time systems, computers have sensor input devices and control output devices. The 

designer of a real-time computer system must know worst-case delays between the 

time an input device generates an interrupt and the time the device’s driver can con-

trol the output device to respond. This worst-case analysis must take into account the 

delays the operating system introduces as well as the delays the application and device 

drivers impose.

Because Windows doesn’t prioritize device IRQs in any controllable way and user-

level applications execute only when a processor’s IRQL is at passive level, Windows 

isn’t always suitable as a real-time operating system. The system’s devices and device 

drivers—not Windows—ultimately determine the worst-case delay. This factor becomes 

a problem when the real-time system’s designer uses off-the-shelf hardware. The 

designer can have difficulty determining how long every off-the-shelf device’s ISR or 

DPC might take in the worst case. Even after testing, the designer can’t guarantee that 

a special case in a live system won’t cause the system to miss an important deadline. 

Furthermore, the sum of all the delays a system’s DPCs and ISRs can introduce usually 

far exceeds the tolerance of a time-sensitive system.

Although many types of embedded systems (for example, printers and automotive 

computers) have real-time requirements, Windows Embedded Standard doesn’t have 

real-time characteristics. It is simply a version of Windows XP that makes it possible, 

using system-designer technology that Microsoft licensed from VenturCom (formerly 

Ardence and now part of IntervalZero), to produce small-footprint versions of Windows 

XP suitable for running on devices with limited resources. For example, a device that 

has no networking capability would omit all the Windows XP components related to  
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networking, including network management tools and adapter and protocol stack 

device drivers.

Still, there are third-party vendors that supply real-time kernels for Windows. The 

approach these vendors take is to embed their real-time kernel in a custom HAL and 

to have Windows run as a task in the real-time operating system. The task running 

Windows serves as the user interface to the system and has a lower priority than the 

tasks responsible for managing the device. See IntervalZero’s Web site, www.inter-
valzero.com, for an example of a third-party real-time kernel extension for Windows.

Associating an ISR with a particular level of interrupt is called connecting an interrupt 
object, and dissociating an ISR from an IDT entry is called disconnecting an interrupt object. 
These operations, accomplished by calling the kernel functions IoConnectInterrupt and 

IoDisconnectInterrupt, allow a device driver to “turn on” an ISR when the driver is loaded into 

the system and to “turn off” the ISR if the driver is unloaded.

Using the interrupt object to register an ISR prevents device drivers from fiddling directly 

with interrupt hardware (which differs among processor architectures) and from needing to 

know any details about the IDT. This kernel feature aids in creating portable device drivers 

because it eliminates the need to code in assembly language or to reflect processor differ-

ences in device drivers.

Interrupt objects provide other benefits as well. By using the interrupt object, the kernel 

can synchronize the execution of the ISR with other parts of a device driver that might share 

data with the ISR. (See Chapter 7 for more information about how device drivers respond to 

interrupts.)

Furthermore, interrupt objects allow the kernel to easily call more than one ISR for any inter-

rupt level. If multiple device drivers create interrupt objects and connect them to the same 

IDT entry, the interrupt dispatcher calls each routine when an interrupt occurs at the specified 

interrupt line. This capability allows the kernel to easily support “daisy-chain” configurations, 

in which several devices share the same interrupt line. The chain breaks when one of the ISRs 

claims ownership for the interrupt by returning a status to the interrupt dispatcher.

If multiple devices sharing the same interrupt require service at the same time, devices not 

acknowledged by their ISRs will interrupt the system again once the interrupt dispatcher 

has lowered the IRQL. Chaining is permitted only if all the device drivers wanting to use 

the same interrupt indicate to the kernel that they can share the interrupt; if they can’t, the 

Plug and Play manager reorganizes their interrupt assignments to ensure that it honors the 

sharing requirements of each. If the interrupt vector is shared, the interrupt object invokes 

KiChainedDispatch, which will invoke the ISRs of each registered interrupt object in turn until 

one of them claims the interrupt or all have been executed. In the earlier sample !idt output, 

vector 0xa2 is connected to several chained interrupt objects. 



106 Windows Internals, Fifth Edition

Even though connecting and disconnecting interrupts in previous versions of Windows was 

a portable operation that abstracted much of the internal system functionality from the 

developer, it still required a great deal of information from the device driver developer, which 

could result in anything from subtle bugs to hardware damage should these parameters be 

input improperly. As part of the many enhancements to the interrupt mechanisms in the 

kernel and HAL, Windows Vista introduced a new API, IoConnectInterruptEx, that added sup-

port for more advanced types of interrupts (called message-based interrupts) and enhanced 

the current support for standard interrupts (also called line-based interrupts). The new 

IoConnectInterruptEx API also takes fewer parameters than its predecessor. Notably missing 

are the vector (interrupt number), IRQL, affinity, and edge versus level-trigged parameters.

Software Interrupts

Although hardware generates most interrupts, the Windows kernel also generates software 

interrupts for a variety of tasks, including these:

Initiating thread dispatching

Non-time-critical interrupt processing

Handling timer expiration

Asynchronously executing a procedure in the context of a particular thread

Supporting asynchronous I/O operations

These tasks are described in the following subsections.

Dispatch or Deferred Procedure Call (DPC) Interrupts When a thread can no longer 

continue executing, perhaps because it has terminated or because it voluntarily enters a 

wait state, the kernel calls the dispatcher directly to effect an immediate context switch. 

Sometimes, however, the kernel detects that rescheduling should occur when it is deep 

within many layers of code. In this situation, the kernel requests dispatching but defers its 

occurrence until it completes its current activity. Using a DPC software interrupt is a conve-

nient way to achieve this delay.

The kernel always raises the processor’s IRQL to DPC/dispatch level or above when it needs 

to synchronize access to shared kernel structures. This disables additional software interrupts 

and thread dispatching. When the kernel detects that dispatching should occur, it requests 

a DPC/dispatch-level interrupt; but because the IRQL is at or above that level, the processor 

holds the interrupt in check. When the kernel completes its current activity, it sees that it’s 

going to lower the IRQL below DPC/dispatch level and checks to see whether any dispatch 

interrupts are pending. If there are, the IRQL drops to DPC/dispatch level and the dispatch 

interrupts are processed. Activating the thread dispatcher by using a software interrupt is a 

way to defer dispatching until conditions are right. However, Windows uses software inter-

rupts to defer other types of processing as well.
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In addition to thread dispatching, the kernel also processes deferred procedure calls (DPCs) 

at this IRQL. A DPC is a function that performs a system task—a task that is less time-critical 

than the current one. The functions are called deferred because they might not execute 

immediately.

DPCs provide the operating system with the capability to generate an interrupt and execute 

a system function in kernel mode. The kernel uses DPCs to process timer expiration (and 

release threads waiting for the timers) and to reschedule the processor after a thread’s quan-

tum expires. Device drivers use DPCs to complete I/O requests. To provide timely service for 

hardware interrupts, Windows—with the cooperation of device drivers—attempts to keep 

the IRQL below device IRQL levels. One way that this goal is achieved is for device driver 

ISRs to perform the minimal work necessary to acknowledge their device, save volatile inter-

rupt state, and defer data transfer or other less time-critical interrupt processing activity for 

execution in a DPC at DPC/dispatch IRQL. (See Chapter 7 for more information on DPCs and 

the I/O system.)

A DPC is represented by a DPC object, a kernel control object that is not visible to user-mode 

programs but is visible to device drivers and other system code. The most important piece of 

information the DPC object contains is the address of the system function that the kernel will 

call when it processes the DPC interrupt. DPC routines that are waiting to execute are stored 

in kernel-managed queues, one per processor, called DPC queues. To request a DPC, system 

code calls the kernel to initialize a DPC object and then places it in a DPC queue.

By default, the kernel places DPC objects at the end of the DPC queue of the processor on 

which the DPC was requested (typically the processor on which the ISR executed). A device 

driver can override this behavior, however, by specifying a DPC priority (low, medium, or 

high, where medium is the default) and by targeting the DPC at a particular processor. A DPC 

aimed at a specific CPU is known as a targeted DPC. If the DPC has a low or medium priority, 

the kernel places the DPC object at the end of the queue; if the DPC has a high priority, the 

kernel inserts the DPC object at the front of the queue.

When the processor’s IRQL is about to drop from an IRQL of DPC/dispatch level or higher 

to a lower IRQL (APC or passive level), the kernel processes DPCs. Windows ensures that the 

IRQL remains at DPC/dispatch level and pulls DPC objects off the current processor’s queue 

until the queue is empty (that is, the kernel “drains” the queue), calling each DPC function in 

turn. Only when the queue is empty will the kernel let the IRQL drop below DPC/dispatch 

level and let regular thread execution continue. DPC processing is depicted in Figure 3-7.

DPC priorities can affect system behavior another way. The kernel usually initiates DPC 

queue draining with a DPC/dispatch-level interrupt. The kernel generates such an interrupt 

only if the DPC is directed at the processor the ISR is requested on and the DPC has a high 

or medium priority. If the DPC has a low priority, the kernel requests the interrupt only if 

the number of outstanding DPC requests for the processor rises above a threshold or if the 

 number of DPCs requested on the processor within a time window is low.
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The dispatcher executes each DPC routine
in the DPC queue, emptying the queue as
it proceeds. If required, the dispatcher also
reschedules the processor.
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DPC/dispatch level, a DPC
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FIGURE 3-7 Delivering a DPC

If a DPC is targeted at a CPU different from the one on which the ISR is running and the 

DPC’s priority is high, the kernel immediately signals the target CPU (by sending it a dispatch 

IPI) to drain its DPC queue. If the priority is medium or low, the number of DPCs queued on 

the target processor must exceed a threshold for the kernel to trigger a DPC/dispatch inter-

rupt. The system idle thread also drains the DPC queue for the processor it runs on. Although 

DPC targeting and priority levels are flexible, device drivers rarely need to change the default 

behavior of their DPC objects. Table 3-1 summarizes the situations that initiate DPC queue 

draining.

TABLE 3-1 DPC Interrupt Generation Rules

DPC Priority DPC Targeted at ISR’s Processor DPC Targeted at Another Processor

Low DPC queue length exceeds maximum 

DPC queue length or DPC request rate 

is less than minimum DPC request rate

DPC queue length exceeds maximum 

DPC queue length or system is idle

Medium Always DPC queue length exceeds maximum 

DPC queue length or system is idle

High Always Always

Because user-mode threads execute at low IRQL, the chances are good that a DPC will inter-

rupt the execution of an ordinary user’s thread. DPC routines execute without regard to 

what thread is running, meaning that when a DPC routine runs, it can’t assume what process 

address space is currently mapped. DPC routines can call kernel functions, but they can’t call 

system services, generate page faults, or create or wait for dispatcher objects (explained later 

in this chapter). They can, however, access nonpaged system memory addresses, because sys-

tem address space is always mapped regardless of what the current process is.
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DPCs are provided primarily for device drivers, but the kernel uses them too. The kernel most 

frequently uses a DPC to handle quantum expiration. At every tick of the system clock, an 

interrupt occurs at clock IRQL. The clock interrupt handler (running at clock IRQL) updates the 

system time and then decrements a counter that tracks how long the current thread has run. 

When the counter reaches 0, the thread’s time quantum has expired and the kernel might 

need to reschedule the processor, a lower-priority task that should be done at DPC/dispatch 

IRQL. The clock interrupt handler queues a DPC to initiate thread dispatching and then fin-

ishes its work and lowers the processor’s IRQL. Because the DPC interrupt has a lower priority 

than do device interrupts, any pending device interrupts that surface before the clock inter-

rupt completes are handled before the DPC interrupt occurs.

EXPERIMENT: Listing System Timers

You can use the kernel debugger to dump all the current registered timers on the sys-

tem, as well as information on the DPC associated with each timer (if any). See the out-

put below for a sample:

lkd> !timer 

Dump system timers 

 

Interrupt time: 437df8b4 00000330 [ 5/19/2008 15:56:27.044] 

 

List Timer    Interrupt Low/High     Fire Time              DPC/thread 

  1 886dd6f0   45b1ecca 00000330 [ 5/19/2008 15:56:30.739]  srv+1005  

  7 884966a8   0ebf5dcb 00001387 [ 6/08/2008 10:58:03.373]  thread 88496620  

 11 8553b8f8   4f4db783 00000330 [ 5/19/2008 15:56:46.860]  thread 8553b870  

    85404be0   4f4db783 00000330 [ 5/19/2008 15:56:46.860]  thread 85404b58  

 16 89a1c0a8   a62084ac 00000331 [ 5/19/2008 16:06:22.022]  thread 89a1c020  

 18 8ab02198   ec7a2c4c 00000330 [ 5/19/2008 16:01:10.554]  thread 8ab02110  

 19 8564aa20   45dae868 00000330 [ 5/19/2008 15:56:31.008]  thread 8564a998  

 20 86314738   4a9ffc6a 00000330 [ 5/19/2008 15:56:39.010]  thread 863146b0  

    88c21320   4aa0719b 00000330 [ 5/19/2008 15:56:39.013]  thread 88c21298  

 21 88985e00   4f655e8c 00000330 [ 5/19/2008 15:56:47.015]  thread 88985d78  

 22 88d00748   542b35e0 00000330 [ 5/19/2008 15:56:55.022]  thread 88d006c0  

    899764c0   542b35e0 00000330 [ 5/19/2008 15:56:55.022]  thread 89976438  

    861f8b70   542b35e0 00000330 [ 5/19/2008 15:56:55.022]  thread 861f8ae8  

    861e71d8   542b5cf0 00000330 [ 5/19/2008 15:56:55.023]  thread 861e7150  

 26 8870ee00   45ec1074 00000330 [ 5/19/2008 15:56:31.120]  thread 8870ed78  

 29 8846e348   4f7a35a4 00000330 [ 5/19/2008 15:56:47.152]  thread 8846e2c0  

    86b8f110   543d1b8c 00000330 [ 5/19/2008 15:56:55.140]  ndis!NdisCancelTimer- 

                                                            Object+aa  

 38 88a56610   460a2035 00000330 [ 5/19/2008 15:56:31.317]  afd!AfdTimeoutPoll 

In this example, there are three driver-associated timers, due to expire shortly, asso-

ciated with the Srv.sys, Ndis.sys, and Afd.sys drivers (all related to networking). 

Additionally, there are a dozen or so timers that don’t have any DPC associated with 

them—this likely indicates user-mode or kernel-mode timers that are used for wait dis-

patching. You can use !thread on the thread pointers to verify this.
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Because DPCs execute regardless of whichever thread is currently running on the system 

(much like interrupts), they are a primary cause for perceived system unresponsiveness of 

client systems or workstation workloads because even the highest-priority thread will be 

interrupted by a pending DPC. Some DPCs run long enough that users may perceive video or 

sound lagging, and even abnormal mouse or keyboard latencies, so for the benefit of drivers 

with long-running DPCs, Windows supports threaded DPCs.

Threaded DPCs, as their name implies, function by executing the DPC routine at passive level 

on a real-time priority (priority 31) thread. This allows the DPC to preempt most user-mode 

threads (because most application threads don’t run at real-time priority ranges), but allows 

other interrupts, non-threaded DPCs, APCs, and higher-priority threads to preempt the 

routine. 

The threaded DPC mechanism is enabled by default, but you can disable it by editing 

the HKEY_LOCAL_MACHINE\System\CurrentControlSet\Control\SessionManager\Kernel\

ThreadDpcEnable value and setting it to 0. Because threaded DPCs can be disabled, driver 

developers who make use of threaded DPCs must write their routines following the same 

rules as for non-threaded DPC routines and cannot access paged memory, perform dispatcher 

waits, or make assumptions about the IRQL level at which they are executing. In addition, they 

must not use the KeAcquire/ReleaseSpinLockAtDpcLevel APIs because the functions assume the 

CPU is at dispatch level. Instead, threaded DPCs must use KeAcquire/ReleaseSpinLockForDpc, 

which performs the appropriate action after checking the current IRQL.

EXPERIMENT: Monitoring Interrupt and DPC Activity

You can use Process Explorer to monitor interrupt and DPC activity by adding the 

Context Switch Delta column and watching the Interrupt and DPC processes. (See the 

following screen shot.) These are not real processes, but they are shown as processes 

for convenience and therefore do not incur context switches. Process Explorer’s context 

switch count for these pseudo processes reflects the number of occurrences of each 

within the previous refresh interval. You can stimulate interrupt and DPC activity by 

moving the mouse quickly around the screen.

You can also trace the execution of specific interrupt service routines and deferred pro-

cedure calls with the built-in event tracing support (described later in this chapter).

 1. Start capturing events by typing the following command:

tracelog –start –f kernel.etl –dpcisr –UsePerfCounter –b 64 
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 2. Stop capturing events by typing:

tracelog –stop

 3. Generate reports for the event capture by typing:

tracerpt kernel.etl –report report.html –f html

This will generate a Web page called report.html 

 4. Open report.html and expand the DPC/ISR subsection. Expand the DPC/ISR 

Breakdown area, and you will see summaries of the time spent in ISRs and DPCs 

by each driver. For example:

Running an ln command in the kernel debugger on the address of each event record 

shows the name of the function that executed the DPC or ISR:

lkd> ln 0x806321C7 

(806321c7)   ndis!ndisInterruptDpc

lkd> ln 0x820AED3F 

(820aed3f)   nt!IopTimerDispatch

lkd> ln 0x82051312 

(82051312)   nt!PpmPerfIdleDpc

The first is a DPC queued by a network card NDIS miniport driver. The second is a DPC 

for a generic I/O timer expiration. The third address is the address of a DPC for an idle 

performance operation. For more information, see www.microsoft.com/whdc/driver/
perform/mmdrv.mspx.
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Asynchronous Procedure Call (APC) Interrupts Asynchronous procedure calls (APCs) pro-

vide a way for user programs and system code to execute in the context of a particular user 

thread (and hence a particular process address space). Because APCs are queued to execute 

in the context of a particular thread and run at an IRQL less than DPC/dispatch level, they 

don’t operate under the same restrictions as a DPC. An APC routine can acquire resources 

(objects), wait for object handles, incur page faults, and call system services.

APCs are described by a kernel control object, called an APC object. APCs waiting to execute 

reside in a kernel-managed APC queue. Unlike the DPC queue, which is systemwide, the APC 

queue is thread-specific—each thread has its own APC queue. When asked to queue an APC, 

the kernel inserts it into the queue belonging to the thread that will execute the APC routine. 

The kernel, in turn, requests a software interrupt at APC level, and when the thread eventu-

ally begins running, it executes the APC.

There are two kinds of APCs: kernel mode and user mode. Kernel-mode APCs don’t require 

“permission” from a target thread to run in that thread’s context, while user-mode APCs do. 

Kernel-mode APCs interrupt a thread and execute a procedure without the thread’s interven-

tion or consent. There are also two types of kernel-mode APCs: normal and special. Special 

APCs execute at APC level and allow the APC routine to modify some of the APC parameters. 

Normal APCs execute at passive level and receive the modified parameters from the special 

APC routine (or the original parameters if they weren’t modified).

Both normal and special APCs can be disabled by raising the IRQL to APC level or by call-

ing KeEnterGuardedRegion. KeEnterGuardedRegion disables APC delivery by setting the 

SpecialApcDisable field in the calling thread’s KTHREAD structure (described further in 

Chapter 5). A thread can disable normal APCs only by calling KeEnterCriticalRegion, which 

sets the KernelApcDisable field in the thread’s KTHREAD structure. Table 3-2 summarizes APC 

insertion and delivery behavior for each type of APC.

The executive uses kernel-mode APCs to perform operating system work that must be 

completed within the address space (in the context) of a particular thread. It can use special 

kernel-mode APCs to direct a thread to stop executing an interruptible system service, for 

example, or to record the results of an asynchronous I/O operation in a thread’s address 

space. Environment subsystems use special kernel-mode APCs to make a thread suspend or 

terminate itself or to get or set its user-mode execution context. The POSIX subsystem uses 

kernel-mode APCs to emulate the delivery of POSIX signals to POSIX processes.

Another important use of kernel-mode APCs is related to thread suspension and termination. 

Because these operations can be initiated from arbitrary threads and be directed to other 

arbitrary threads, the kernel uses an APC to query the thread context as well as to terminate 

the thread. Device drivers will often block APCs or enter a critical or guarded region to pre-

vent these operations from occurring while they are holding a lock; otherwise, the lock may 

never be released, and the system would hang.
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TABLE 3-2 APC Insertion and Delivery

APC Type Insertion Behavior Delivery Behavior

Special (kernel) Inserted at the tail of the 

kernel-mode APC list.

Delivered at APC level as soon as IRQL drops 

and the thread is not in a guarded region. Given 

pointers to arguments specified when inserting 

the APC.

Normal (kernel) Inserted right after the last 

special APC (at the head of all 

other normal APCs).

Delivered at PASSIVE_LEVEL after the associated 

special APC was executed. Given arguments 

returned by the associated special APC (may be 

the original arguments used during insertion or 

new ones).

Normal (user) Inserted at the tail of the 

user-mode APC list.

Delivered at PASSIVE_LEVEL as soon as IRQL 

drops, the thread is not in a critical (or guarded) 

region, and the thread is in an alerted state. 

Given arguments returned by the associated 

special APC (may be the original arguments used 

during insertion or new ones).

Normal (user) 

Thread Exit 

(PsExitSpecialApc) 

Inserted at the head of the 

user-mode APC list.

Delivered at PASSIVE_LEVEL on return to user 

mode, if the thread is doing an alerted user-

mode wait. Given arguments returned by the 

thread termination special APC.

Device drivers also use kernel-mode APCs. For example, if an I/O operation is initiated and 

a thread goes into a wait state, another thread in another process can be scheduled to run. 

When the device finishes transferring data, the I/O system must somehow get back into the 

context of the thread that initiated the I/O so that it can copy the results of the I/O opera-

tion to the buffer in the address space of the process containing that thread. The I/O sys-

tem uses a special kernel-mode APC to perform this action, unless the application used the 

SetFileIoOverlappedRange API or I/O completion ports, in which case the buffer will either be 

global in memory or only copied after the thread pulls a completion item from the port. (The 

use of APCs in the I/O system is discussed in more detail in Chapter 7.)

Several Windows APIs, such as ReadFileEx, WriteFileEx, and QueueUserAPC, use user-mode 

APCs. For example, the ReadFileEx and WriteFileEx functions allow the caller to specify a 

completion routine to be called when the I/O operation finishes. The I/O completion is 

implemented by queuing an APC to the thread that issued the I/O. However, the callback to 

the completion routine doesn’t necessarily take place when the APC is queued because user-

mode APCs are delivered to a thread only when it’s in an alertable wait state. A thread can 

enter a wait state either by waiting for an object handle and specifying that its wait is alert-

able (with the Windows WaitForMultipleObjectsEx function) or by testing directly whether it 

has a pending APC (using SleepEx). In both cases, if a user-mode APC is pending, the kernel 

interrupts (alerts) the thread, transfers control to the APC routine, and resumes the thread’s 

execution when the APC routine completes. Unlike kernel-mode APCs, which can execute at 

APC level, user-mode APCs execute at passive level.
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APC delivery can reorder the wait queues—the lists of which threads are waiting for what, 

and in what order they are waiting. (Wait resolution is described in the section “Low-IRQL 

Synchronization” later in this chapter.) If the thread is in a wait state when an APC is deliv-

ered, after the APC routine completes, the wait is reissued or reexecuted. If the wait still 

isn’t resolved, the thread returns to the wait state, but now it will be at the end of the list 

of objects it’s waiting for. For example, because APCs are used to suspend a thread from 

execution, if the thread is waiting for any objects, its wait will be removed until the thread 

is resumed, after which that thread will be at the end of the list of threads waiting to access 

the objects it was waiting for. A thread performing an alertable kernel-mode wait will also be 

woken up during thread termination, allowing such a thread to check whether it woke up as a 

result of termination or a different reason.

Exception Dispatching

In contrast to interrupts, which can occur at any time, exceptions are conditions that result 

directly from the execution of the program that is running. Windows uses a facility known 

as structured exception handling, which allows applications to gain control when excep-

tions occur. The application can then fix the condition and return to the place the exception 

occurred, unwind the stack (thus terminating execution of the subroutine that raised the 

exception), or declare back to the system that the exception isn’t recognized and the system 

should continue searching for an exception handler that might process the exception. This 

section assumes you’re familiar with the basic concepts behind Windows structured exception 

handling—if you’re not, you should read the overview in the Windows API reference docu-

mentation in the Windows SDK or Chapters 23 through 25 in Jeffrey Richter’s book Windows 
via C/C++ (Microsoft Press, 2007) before proceeding. Keep in mind that although exception 

handling is made accessible through language extensions (for example, the __try construct 

in Microsoft Visual C++), it is a system mechanism and hence isn’t language-specific. Other 

examples of consumers of Windows exception handling include C++ and Java exceptions.

On the x86 and x64 processors, all exceptions have predefined interrupt numbers that 

directly correspond to the entry in the IDT that points to the trap handler for a particular 

exception. Table 3-3 shows x86-defined exceptions and their assigned interrupt numbers. 

Because the first entries of the IDT are used for exceptions, hardware interrupts are assigned 

entries later in the table, as mentioned earlier.

All exceptions, except those simple enough to be resolved by the trap handler, are ser-

viced by a kernel module called the exception dispatcher. The exception dispatcher’s job is 

to find an exception handler that can “dispose of” the exception. Examples of architecture-

independent exceptions that the kernel defines include memory access violations, integer 

divide-by-zero, integer overflow, floating-point exceptions, and debugger breakpoints. For 

a complete list of architecture-independent exceptions, consult the Windows SDK reference 

documentation.
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TABLE 3-3 x86 Exceptions and Their Interrupt Numbers

Interrupt Number Exception

0 Divide Error

1 Debug (Single Step)

2 Non-Maskable Interrupt (NMI)

3 Breakpoint

4 Overflow

5 Bounds Check

6 Invalid Opcode

7 NPX Not Available

8 Double Fault

9 NPX Segment Overrun

10 Invalid Task State Segment (TSS)

11 Segment Not Present

12 Stack Fault

13 General Protection

14 Page Fault

15 Intel Reserved

16 Floating Point

17 Alignment Check

18 Machine Check

19 SIMD Floating Point

The kernel traps and handles some of these exceptions transparently to user programs. For 

example, encountering a breakpoint while executing a program being debugged generates 

an exception, which the kernel handles by calling the debugger. The kernel handles certain 

other exceptions by returning an unsuccessful status code to the caller.

A few exceptions are allowed to filter back, untouched, to user mode. For example, certain 

types of memory access violations or an arithmetic overflow generate an exception that the 

operating system doesn’t handle. 32-bit applications can establish frame-based exception 
handlers to deal with these exceptions. The term frame-based refers to an exception han-

dler’s association with a particular procedure activation. When a procedure is invoked, a stack 
frame representing that activation of the procedure is pushed onto the stack. A stack frame 

can have one or more exception handlers associated with it, each of which protects a par-

ticular block of code in the source program. When an exception occurs, the kernel searches 

for an exception handler associated with the current stack frame. If none exists, the kernel 

searches for an exception handler associated with the previous stack frame, and so on, until 

it finds a frame-based exception handler. If no exception handler is found, the kernel calls its 

own default exception handlers. 
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For 64-bit applications, structured exception handling does not use frame-based handlers. 

Instead, a table of handlers for each function is built into the image during compilation. The 

kernel looks for handlers associated with each function and generally follows the same algo-

rithm we’ve described for 32-bit code.

Structured exception handling is heavily used within the kernel itself so that it can safely ver-

ify whether pointers from user mode can be safely accessed for read or write access. Drivers 

can make use of this same technique when dealing with pointers sent during I/O control 

codes (IOCTLs). Another mechanism of exception handling is called vectored exception han-
dling. This method can only be used by user-mode applications. You can find more informa-

tion about it in the Windows SDK or the MSDN Library.

When an exception occurs, whether it is explicitly raised by software or implicitly raised by 

hardware, a chain of events begins in the kernel. The CPU hardware transfers control to the 

kernel trap handler, which creates a trap frame (as it does when an interrupt occurs). The 

trap frame allows the system to resume where it left off if the exception is resolved. The trap 

handler also creates an exception record that contains the reason for the exception and other 

pertinent information.

If the exception occurred in kernel mode, the exception dispatcher simply calls a routine to 

locate a frame-based exception handler that will handle the exception. Because unhandled 

kernel-mode exceptions are considered fatal operating system errors, you can assume that 

the dispatcher always finds an exception handler. Some traps, however, do not lead into 

an exception handler because the kernel always assumes such errors to be fatal—these are 

errors that could have been caused only by severe bugs in the internal kernel code or by 

major inconsistencies in driver code (that could have only occurred through deliberate low-

level system modifications that drivers should not be responsible for). Such fatal errors will 

result in a bug check with the UNEXPECTED_KERNEL_MODE_TRAP code.

If the exception occurred in user mode, the exception dispatcher does something more elab-

orate. As you’ll see in Chapter 5, the Windows subsystem has a debugger port (this is actually 

a debugger object, which will be discussed later) and an exception port to receive notification 

of user-mode exceptions in Windows processes. (In this case, by “port” we mean an LPC port 

object, which will be discussed later in this chapter.) The kernel uses these ports in its default 

exception handling, as illustrated in Figure 3-8.

Debugger breakpoints are common sources of exceptions. Therefore, the first action the 

exception dispatcher takes is to see whether the process that incurred the exception has an 

associated debugger process. If it does, the exception dispatcher sends a debugger object 

message to the debug object associated with the process (which internally the system refers 

to as a port for compatibility with programs that might rely on behavior in Windows 2000, 

which used an LPC port instead of a debug object).
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FIGURE 3-8 Dispatching an exception

If the process has no debugger process attached, or if the debugger doesn’t handle the 

exception, the exception dispatcher switches into user mode, copies the trap frame to the 

user stack formatted as a CONTEXT data structure (documented in the Windows SDK), and 

calls a routine to find a structured or vectored exception handler. If none is found, or if none 

handles the exception, the exception dispatcher switches back into kernel mode and calls the 

debugger again to allow the user to do more debugging. (This is called the second-chance 

notification.)

If the debugger isn’t running and no user-mode exception handlers are found, the kernel 

sends a message to the exception port associated with the thread’s process. This exception 

port, if one exists, was registered by the environment subsystem that controls this thread. 

The exception port gives the environment subsystem, which presumably is listening at the 

port, the opportunity to translate the exception into an environment-specific signal or excep-

tion. Csrss (Client/Server Run-Time Subsystem) uses this signal for Windows Error Reporting 

(WER)—which will be discussed shortly—and when POSIX gets a message from the kernel 

that one of its threads generated an exception, the POSIX subsystem sends a POSIX-style sig-

nal to the thread that caused the exception. However, if the kernel progresses this far in pro-

cessing the exception and the subsystem doesn’t handle the exception, the kernel executes 

a default exception handler that simply terminates the process whose thread caused the 

exception.

Unhandled Exceptions

All Windows threads have an exception handler that processes unhandled exceptions. This 

exception handler is declared in the internal Windows start-of-thread function. The start-

of-thread function runs when a user creates a process or any additional threads. It calls the 
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environment-supplied thread start routine specified in the initial thread context structure, 

which in turn calls the user-supplied thread start routine specified in the CreateThread call.

EXPERIMENT: Viewing the Real User Start Address for 

Windows Threads

The fact that each Windows thread begins execution in a system-supplied function 

(and not the user-supplied function) explains why the start address for thread 0 is the 

same for every Windows process in the system (and why the start addresses for second-

ary threads are also the same). To see the user-supplied function address, use Process 

Explorer or the kernel debugger.

Because most threads in Windows processes start at one of the system-supplied wrap-

per functions, Process Explorer, when displaying the start address of threads in a pro-

cess, skips the initial call frame that represents the wrapper function and instead shows 

the second frame on the stack. For example, notice the thread start address of a pro-

cess running Notepad.exe:

Process Explorer does display the complete call hierarchy when it displays the call stack. 

Notice the following results when the Stack button is clicked:
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Line 18 in the preceding screen shot is the first frame on the stack—the start of the 

internal thread wrapper. The second frame (line 17) is the environment subsystem’s 

thread wrapper, in this case kernel32, because we are dealing with a Windows subsys-

tem application. The third frame (line 16) is the main entry point into Notepad.exe.

The generic code for the internal thread start functions is shown here:

VOID RtlUserThreadStart(VOID){  

 

    LPVOID lpStartAddr = (R/E)AX; // Located in the initial thread context structure 

    LPVOID lpvThreadParm = (R/E)BX; // Located in the initial thread context structure 

    LPVOID lpWin32StartAddr;

    lpWin32StartAddr = Kernel32ThreadInitThunkFunction ? Kernel32ThreadInitThunkFunction : 

lpStartAddr; 

    __try {  

  

        DWORD dwThreadExitCode = lpWin32StartAddr(lpvThreadParm);  

        RtlExitUserThread(dwThreadExitCode);  

  

    } __except(RtlUnhandledExceptionFilter(  

            GetExceptionInformation())) {  

  

        RtlExitUserProcess(GetExceptionCode());  

    }  

} 

void Win32StartOfProcess(  

    LPTHREAD_START_ROUTINE lpStartAddr,  

    LPVOID lpvThreadParm){  

  

    lpStartAddr(lpvThreadParm);  

}
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Notice that the Windows unhandled exception filter is called if the thread has an excep-

tion that it doesn’t handle. The purpose of this function is to provide the system-defined 

behavior for what to do when an exception is not handled, which is based on the contents 

of the HKLM\SOFTWARE\Microsoft\Windows NT\CurrentVersion\AeDebug registry key and 

on whether the process is on the exclusion list. There are two important values: Auto and 

Debugger. Auto tells the unhandled exception filter whether to automatically run the debug-

ger or ask the user what to do. Installing development tools, such as Microsoft Visual Studio, 

will change this value to 0. The Debugger value is a string that points to the path of the 

debugger executable to run in the case of an unhandled exception.

Windows Error Reporting

Windows Error Reporting (WER) is a sophisticated mechanism that automates the submission 

of both user-mode process crashes as well as kernel-mode system crashes. (For a description 

of how this applies to system crashes, see Chapter 14.)

Windows Error Reporting can be configured by going to Control Panel, choosing Problem 

Reports And Solutions, and then Change Settings. (See Figure 3-9.) Alternatively, you can 

launch the Wercon.exe application from a command prompt or by using Start, Run.

FIGURE 3-9 Problem Reports And Solutions configuration dialog box



 Chapter 3 System Mechanisms 121

When an unhandled exception is caught by the unhandled exception filter (described in the 

previous section), it builds context information (such as the current value of the registers and 

stack) and opens an LPC port connection to the WER service. This service will begin to ana-

lyze the crashed program’s state and perform the appropriate actions to notify the user. In 

most cases, this means launching the WerFault.exe program, which executes with the current 

user’s credentials and displays a message box informing the user of the crash, as shown in 

Figure 3-10. (The figure shows the Accvio.exe program, downloadable from the book home 

page on Windows Sysinternals, www.microsoft.com/technet/sysinternals.) On systems where 

a debugger is installed, an additional option to debug the process will be shown. When you 

click the Debug button, the debugger (registered in the Debugger string described earlier in 

the AeDebug key) will be launched so it can attach to the crashing process. 

FIGURE 3-10 Windows Error Reporting dialog box

On default configured systems, an error report (a minidump and an XML file with various 

details, such as the DLL version numbers loaded in the process) is sent to Microsoft’s online 

crash analysis server. Eventually, as the service is notified of a solution for a problem, it will 

display a tooltip to the user informing her of steps that should be taken to solve the problem. 

An entry will also be displayed in the Problem Reports And Solutions configuration dialog 

box. By clicking on the tooltip, or the link under the configuration dialog box, WER displays a 

solution pane, as shown in Figure 3-11.

In environments where systems are not connected to the Internet or where the administrator 

wants to control which error reports are submitted to Microsoft, the destination for the error 

report can be configured to be an internal file server. Microsoft provides to qualified custom-

ers a tool set, called Microsoft Systems Center 2007, that understands the directory structure 

created by Windows Error Reporting and provides the administrator with the option to take 

selective error reports and submit them to Microsoft.
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FIGURE 3-11 The Windows Error Reporting solution pane

Until Windows Vista, all the operations we’ve described had to occur within the crashing 

thread’s context; that is to say, as part of the unhandled exception filter that was initially set 

up. In certain types of crashes, these complex operations became impossible for a badly 

damaged thread to perform, so the unhandled exception filter itself crashed. This “silent 

process death” was not logged anywhere, which made it hard to debug and also resulted in 

invisible crashes in cases where no user was present on the machine. (This also meant that 

services or applications could crash on servers without any trace.) Windows Vista and later 

versions improved the WER mechanism by performing this work externally from the crashed 

thread, if the unhandled exception filter itself crashes.

WER contains many customizable settings that can be configured by the user through the 

Group Policy editor or by manually making changes to the registry. Table 3-4 lists the WER 

registry configuration options, their use, and possible values. These values are located under 

the HKLM\SOFTWARE\Microsoft\Windows\Windows Error Reporting subkey for com-

puter configuration and in the equivalent path under HKEY_CURRENT_USER for per-user 

configuration.
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TABLE 3-4 WER Registry Settings

Setting Meaning Values

ConfigureArchive Contents of archived data 1 for parameters, 2 for all data

Consent\DefaultConsent What kind of data should require 

consent

1 for any data, 2 for parameters 

only, 3 for parameters and safe 

data, 4 for all data.

Consent\

DefaultOverrideBehavior

Whether the DefaultConsent 

overrides WER plug-in consent 

values

1 to enable override

Consent\PluginName Consent value for a specific WER 

plug-in

Same as DefaultConsent

CorporateWERDirectory Directory for a corporate WER 

store

String containing the path

CorporateWERPort-

Number

Port to use for a corporate WER 

store

Port number

CorporateWERServer Name to use for a corporate WER 

store

String containing the name

CorporateWERUse-

Authentication

Use Windows Integrated 

Authentication for corporate WER 

store

1 to enable built-in 

authentication

CorporateWERUseSSL Use SSL for corporate WER store 1 to enable SSL

DebugApplications\

ExeName
List of applications that require the 

user to choose between Debug 

and Continue

String containing the application 

list

DisableArchive Whether the archive is enabled 1 to disable archive

Disabled Whether WER is disabled 1 to disable WER

DisableQueue Determines whether reports are to 

be queued

1 to disable queue

DontShowUI Disables or enables the WER UI 1 to disable UI

DontSendAdditionalData Prevents additional crash data from 

being sent

1 not to send

ExcludedApplications\

AppName
List of applications excluded from 

WER

String containing the application 

list

ForceQueue Whether reports should be sent to 

the user queue

1 to send reports to the queue

LocalDumps\Dump-

Folder

Path at which to store the dump 

files

String containing the path

LocalDumps\DumpCount Maximum number of dump files in 

the path

Count

LocalDumps\DumpType Type of dump to generate during 

a crash

0 for a custom dump, 1 for a 

minidump, 2 for a full dump
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Setting Meaning Values

LocalDumps\

CustomDumpFlags

For custom dumps, specifies 

custom options

Values defined in MINIDUMP_

TYPE (see Chapter 13 for more 

information)

LoggingDisabled Enables or disables logging 1 to disable logging

MaxArchiveCount Maximum size of the archive (in 

files)

Value between 1–5000

MaxQueueCount Maximum size of the queue Value between 1–500

QueuePesterInterval Days between requests to have the 

user check for solutions

Number of days

Note The values listed under LocalDumps can also be configured per application by adding the 

application name in the subkey path between LocalDumps and the relevant value. However, they 

cannot be configured per user; they exist only in the HKLM path.

As discussed, the WER service uses an ALPC port for communicating with crashed processes. 

This mechanism has been extended to function as well over the standard exception port 

mechanism that has always been present in the Windows exception dispatching design. As 

a result, all Windows processes now have an error port that is actually an ALPC port object 

registered by the WER service. The kernel, which is first notified of an exception, will use this 

port to send a message to the WER service, which will then analyze the crashing process. This 

means that even in severe cases of thread state damage, WER will still be able to receive noti-

fications and launch WerFault.exe to display a user interface instead of having to do this work 

within the crashing thread itself. Additionally, WER will be able to generate a crash dump for 

the process, and a message will be written to the Event Log. This solves all the problems of 

silent process death: users are notified, debugging can occur, and service administrators can 

see the crash event. The next experiment will demonstrate this improved behavior.

EXPERIMENT: Silent Process Exception Termination

One typical crash that the error reporting mechanism prior to Windows Vista could not 

handle was stack trashing. This means that the stack of the crashed thread was dam-

aged, perhaps even deallocated, so that even calling a new function (which puts the 

return address as well as arguments on the stack) would generate another, subsequent 

crash, prompting the kernel to terminate the process. You can see this behavior on a 

system running Windows Vista or later by temporarily turning off the WER service and 

then enabling it again. Follow these steps:

 1. Open the Services.msc Microsoft Management Console (MMC) snap-in.

 2. Double-click on Windows Error Reporting, and then click the Stop button under 

the Service status label.
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 3. Launch the Stacktrash.exe application (downloadable from the book home page 

on Sysinternals).

 4. Click the Trash Stack button. You should see the process disappear without a 

trace.

 5. Now click the Start button in the Windows Error Reporting service configuration 

dialog box again, and then launch Stacktrash.exe one more time. You should see 

the WER dialog box displayed along with a pop-up balloon near the system tray 

notifying you that the application encountered an error.

System Service Dispatching

As Figure 3-1 illustrated, the kernel’s trap handlers dispatch interrupts, exceptions, and sys-

tem service calls. In the preceding sections, you’ve seen how interrupt and exception han-

dling work; in this section, you’ll learn about system services. A system service dispatch is 

triggered as a result of executing an instruction assigned to system service dispatching. The 

instruction that Windows uses for system service dispatching depends on the processor on 

which it’s executing.

32-Bit System Service Dispatching

On x86 processors prior to the Pentium II, Windows uses the int 0x2e instruction (46 decimal), 

which results in a trap. Windows fills in entry 46 in the IDT to point to the system service 

dispatcher. (Refer to Table 3-1.) The trap causes the executing thread to transition into kernel 

mode and enter the system service dispatcher. A numeric argument passed in the EAX pro-

cessor register indicates the system service number being requested. The EDX register points 

to the list of parameters the caller passes to the system service. To return to user mode, the 

system service dispatcher uses the iretd (interrupt return instruction).

On x86 Pentium II processors and higher, Windows uses the special sysenter instruction, 

which Intel defined specifically for fast system service dispatches. To support the instruction, 

Windows stores at boot time the address of the kernel’s system service dispatcher routine in 

a machine specific register (MSR) associated with the instruction. The execution of the instruc-

tion causes the change to kernel mode and execution of the system service dispatcher. The 

system service number is passed in the EAX processor register and the EDX register points 

to the list of caller arguments. To return to user mode, the system service dispatcher usually 

executes the sysexit instruction. (In some cases, like when the single-step flag is enabled on 

the processor, the system service dispatcher uses the iretd instead because stepping over a 

sysexit instruction with the kernel debugger would result in an undefined system state lead-

ing to a crash.)
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Note Because certain older applications may have been hardcoded to use the int 0x2e instruc-

tion to manually perform a system call (an unsupported operation), Windows keeps this mecha-

nism usable even on systems that support the sysenter instruction by still having the handler 

registered.

EXPERIMENT: Locating the System Service Dispatcher

As mentioned, system calls occur through an interrupt, which means that the handler 

needs to be registered in the IDT or through a special sysenter instruction that uses an 

MSR to store the handler address at boot time. Here’s how you can locate the appropri-

ate routine for either method:

 1. To see the handler for the interrupt 2E version of the system call dispatcher, type 

!idt 2e in the kernel debugger:

lkd> !idt 2e 

 

Dumping IDT: 

 

2e: 8208c8ee nt!KiSystemService

 2. To see the handler for the sysenter version, use the rdmsr debugger command to 

read from the MSR register 0x176, which stores the handler:

lkd> rdmsr 176 

msr[176] = 00000000`8208c9c0 

lkd> ln 00000000`8208c9c0 

(8208c9c0)   nt!KiFastCallEntry

 3. You can disassemble the KiSystemService routine with the u command. You’ll 

eventually notice the following instructions:

nt!KiSystemService+0x7b: 

8208c969 897d04          mov     dword ptr [ebp+4],edi 

8208c96c fb              sti 

8208c96d e9dd000000      jmp     nt!KiFastCallEntry+0x8f (8208ca4f)

Because the actual system call dispatching operations are common regardless of the 

mechanism used to reach the handler, the older interrupt-based handler simply calls 

into the middle of the newer sysenter-based handler to perform the same generic 

tasks. The only parts of the handlers that are different are related to the generation of 

the trap frame and the setup of certain registers.

On K6 and higher 32-bit AMD processors, Windows uses the special syscall instruction, 

which functions similarly to the x86 sysenter instruction, with Windows configuring a syscall-
 associated processor register with the address of the kernel’s system service dispatcher. The 

system call number is passed in the EAX register, and the stack stores the caller arguments. 

After completing the dispatch, the kernel executes the sysret instruction.
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At boot time, Windows detects the type of processor on which it’s executing and sets up 

the appropriate system call code to use by storing a pointer to the correct code in the 

SharedUserData structure. The system service code for NtReadFile in user mode looks like 

this:

0:000> u NtReadFile 

ntdll!ZwReadFile: 

77020074 b802010000      mov     eax,102h 

77020079 ba0003fe7f      mov     edx,offset SharedUserData!SystemCallStub (7ffe0300) 

7702007e ff12            call    dword ptr [edx] 

77020080 c22400          ret     24h 

77020083 90              nop

The system service number is 0x102 (258 in decimal) and the call instruction executes the 

 system service dispatch code set up by the kernel, whose pointer is at address 0x7ffe0300. 

(This corresponds to the SystemCallStub member of the KUSER_SHARED_DATA structure, 

which starts at 0x7FFE0000.) Because the following output was taken from an Intel Core 2 

Duo, it contains a pointer to sysenter:

0:000> dd SharedUserData!SystemCallStub l 1 

7ffe0300  77020f30 

0:000> u 77020f30 

ntdll!KiFastSystemCall: 

77020f30 8bd4            mov     edx,esp 

77020f32 0f34            sysenter

64-Bit System Service Dispatching

On the x64 architecture, Windows uses the syscall instruction, which functions like the AMD 

K6’s syscall instruction, for system service dispatching, passing the system call number in the 

EAX register, the first four parameters in registers, and any parameters beyond those four on 

the stack:

ntdll!NtReadFile:  

00000000`77f9fc60 4c8bd1           mov     r10,rcx  

00000000`77f9fc63 b810200000       mov     eax,0x102  

00000000`77f9fc68 0f05             syscall  

00000000`77f9fc6a c3               ret

On the IA64 architecture, Windows uses the epc (Enter Privileged Mode) instruction. The first 

eight system call arguments are passed in registers, and the rest are passed on the stack.

Kernel-Mode System Service Dispatching

As Figure 3-12 illustrates, the kernel uses the system call number to locate the system service 

information in the system service dispatch table. This table is similar to the interrupt dispatch 

table described earlier in the chapter except that each entry contains a pointer to a system 

service rather than to an interrupt handling routine.
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Note System service numbers can change between service packs—Microsoft occasionally adds 

or removes system services, and the system service numbers are generated automatically as part 

of a kernel compile.

System service
dispatch table

Kernel mode

User mode

FIGURE 3-12 System service exceptions

The system service dispatcher, KiSystemService, copies the caller’s arguments from the 

thread’s user-mode stack to its kernel-mode stack (so that the user can’t change the argu-

ments as the kernel is accessing them), and then executes the system service. If the argu-

ments passed to a system service point to buffers in user space, these buffers must be 

probed for accessibility before kernel-mode code can copy data to or from them. This prob-

ing is performed only if the previous mode of the thread is set to user mode. The previous 
mode is a value (kernel or user) that the kernel saves in the thread whenever it executes a trap 

handler and identifies the privilege level of the incoming exception, trap, or system call. As an 

optimization, if a system call comes from a driver or the kernel itself, the probing and captur-

ing of parameters is skipped, and all parameters are assumed to be pointing to valid kernel-

mode buffers (also, access to kernel-mode data is allowed).

Because kernel-mode code can also make system calls, let’s look at the way these are done. 

Because the code for each system call is in kernel mode, and the caller is already in kernel 

mode, you can see that there shouldn’t be a need for an interrupt or sysenter operation: the 

CPU is already at the right privilege level, and drivers, as well as the kernel, should only be 

able to directly call the function required. In the executive’s case, this is actually what hap-

pens: the kernel has access to all its own routines and can simply call them just like standard 

routines. Externally, however, drivers can only access these system calls if they have been 

exported just like other standard kernel-mode APIs. In fact, quite a few of the system calls 
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are exported. Drivers, however, are not supposed to access system calls this way. Instead, 

drivers must use the Zw versions of these call—that is, instead of NtCreateFile, they must use 

ZwCreateFile. These Zw versions must also be manually exported by the kernel, and only a 

handful are, but they are fully documented and supported.

The Zw versions are officially available only for drivers because of the previous mode concept 

discussed earlier. Because this value is only updated each time the kernel builds a trap frame, 

its value won’t actually change across a simple API call—no trap frame is being generated. By 

calling a function such as NtCreateFile directly, the kernel preserves the previous mode value 

that indicates that it is user-mode, detects that the address passed is a kernel-mode address, 

and fails the call, correctly asserting that user-mode applications should not pass kernel-

mode pointers. However, this is not actually what happens, so how can the kernel be aware 

of the correct previous mode? The answer lies in the Zw calls.

These exported APIs are not actually simple aliases or wrappers around the Nt versions. 

Instead, they are “trampolines” to the appropriate Nt system call, which use the same system 

call dispatching mechanism. Instead of generating an interrupt or a sysenter, which would 

be slow and/or unsupported, they build a fake interrupt stack (the stack that the CPU would 

generate after an interrupt) and call the KiSystemService routine directly, essentially emulat-

ing the CPU interrupt. The handler will execute the same operations as if this call came from 

user mode, except it will detect the actual privilege level this call came from and set the pre-
vious mode to kernel. Now NtCreateEvent sees that the call came from the kernel and does 

not fail anymore. Here’s what the kernel-mode trampolines look like:

lkd> u nt!ZwReadFile 

nt!ZwReadFile: 

8207f118 b802010000      mov     eax,102h 

8207f11d 8d542404        lea     edx,[esp+4] 

8207f121 9c              pushfd 

8207f122 6a08            push    8 

8207f124 e8c5d70000      call    nt!KiSystemService (8208c8ee) 

8207f129 c22400          ret     24h

As you’ll see in Chapter 5, each thread has a pointer to its system service table (on 32-bit and 

IA64 versions of Windows only; otherwise, the table address is hard-coded). Windows has 

two built-in system service tables, and third-party drivers cannot extend the tables to add 

their own service calls. The system service dispatcher determines which table contains the 

requested service by interpreting a 2-bit field in the 32-bit system service number as a table 

index. The low 12 bits of the system service number serve as the index into the table speci-

fied by the table index. The fields are shown in Figure 3-13.
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Table Index

Index into table System service number

31 13 11 0

0

1

0

1

Native API

Unused

Native API

Win32k.sys API

KeServiceDescriptorTable KeServiceDescriptorTableShadow

FIGURE 3-13 System service number to system service translation 

Service Descriptor Tables

A primary default array table, KeServiceDescriptorTable, defines the core executive system 

services implemented in Ntosrknl.exe. The other table array, KeServiceDescriptorTableShadow, 

includes the Windows USER and GDI services implemented in the kernel-mode part of the 

Windows subsystem, Win32k.sys. The first time a Windows thread calls a Windows USER or 

GDI service, the address of the thread’s system service table is changed to point to a table 

that includes the Windows USER and GDI services. The KeAddSystemServiceTable function 

allows Win32k.sys to add a system service table. 

The system service dispatch instructions for Windows executive services exist in the system 

library Ntdll.dll. Subsystem DLLs call functions in Ntdll to implement their documented func-

tions. The exception is Windows USER and GDI functions, in which the system service dis-

patch instructions are implemented directly in User32.dll and Gdi32.dll—there is no Ntdll.dll 

involved. These two cases are shown in Figure 3-14.

As shown in Figure 3-14, the Windows WriteFile function in Kernel32.dll calls the NtWriteFile 

function in Ntdll.dll, which in turn executes the appropriate instruction to cause a system 

service trap, passing the system service number representing NtWriteFile. The system service 

dispatcher (function KiSystemService in Ntoskrnl.exe) then calls the real NtWriteFile to process 

the I/O request. For Windows USER and GDI functions, the system service dispatch calls func-

tions in the loadable kernel-mode part of the Windows subsystem, Win32k.sys.
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Windows kernel APIs
Windows USER and

GDI APIs

Windows
application

WriteFile in
Kernel32.dll

NtWriteFile in
Ntdll.dll

Windows-
specific

Used by all
subsystems

Gdi32.dll
or User32.dll

Application

Windows-
specific

KiSystemService
in Ntoskrnl.exe

NtWriteFile in
Ntoskrnl.exe

Service entry point
in Win32k.sys

KiSystemService in
Ntoskrnl.exe

Software interruptSoftware interrupt

User mode

Kernel mode

Call USER or
GDI service(...)

SYSENTER
Return to caller

Call Windows
routine

Dismiss interrupt

Do the operation
Return to caller

Call WriteFile(...)

Call NtWriteFile
Return to caller

SYSENTER
Return to caller

Call NtWriteFile
Dismiss interrupt

Do the operation
Return to caller

FIGURE 3-14 System service dispatching 

EXPERIMENT: Mapping System Call Numbers to Functions

You can duplicate the same lookup performed by the kernel when dealing with a sys-

tem call ID to figure out which function is responsible for handling it. 

 1. The KeServiceDescriptorTable and KeServiceDescriptorTableShadow tables both 

point to the same array of pointers for kernel system calls, called KiServiceTable. 

You can use the kernel debugger command dds to dump the data along with 

symbolic information. The debugger will attempt to match each pointer with a 

symbol. Here’s a partial output:

lkd> dds KiServiceTable 

820807d0  821be2e5 nt!NtAcceptConnectPort 

820807d4  820659a6 nt!NtAccessCheck 

820807d8  8224a953 nt!NtAccessCheckAndAuditAlarm 
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820807dc  820659dd nt!NtAccessCheckByType 

820807e0  8224a992 nt!NtAccessCheckByTypeAndAuditAlarm 

820807e4  82065a18 nt!NtAccessCheckByTypeResultList 

820807e8  8224a9db nt!NtAccessCheckByTypeResultListAndAuditAlarm 

820807ec  8224aa24 nt!NtAccessCheckByTypeResultListAndAuditAlarmByHandle 

820807f0  822892af nt!NtAddAtom

 2. Instead of dumping the entire table, you can also look up a specific number. 

Because each system call number is an index into the table, and because each 

element is 4 bytes, you can use the following calculation: Handler = KiServiceTable 
+ Number * 4. Let’s use the number 0x102, obtained during our description of the 

NtReadFile stub code in Ntdll.dll.

lkd> ln poi(KiServiceTable + 102 * 4) 

(82193023)   nt!NtReadFile

 3. Because drivers, including kernel-mode rootkits, are able to patch this table on 

32-bit versions of Windows, which is something the operating system does not 

support, you can use dds to dump the entire table and look for any values out-

side the range of valid kernel addresses (dds will also make this clear by not being 

able to look up a symbol for the function). Sixty-four bit Windows organizes the 

system call table differently and uses relative pointers (an offset) to system calls 

instead of the absolute addresses used by 32-bit Windows. Because code on 

64-bit Windows is guaranteed to be aligned on a 16-byte boundary, only the 

top 28 bits are used to describe the offset, since the bottom 4 bits are always 0. 

Windows takes advantage of this fact by using the bottom 4 bits to pack informa-

tion on the number of arguments that each system call takes (based on the data 

stored in KiArgumentTable). The base of the pointer is the KiServiceTable itself, so 

you’ll have to dump the data in its raw format with the dd command. Here’s an 

example of output from a 64-bit system:

lkd> dd KiServiceTable 

fffff800`0105efc0  003021e0 0021efc0 fffc7b80 00202755

Each offset can be mapped to each function with the ln command, by stripping 

off the bottom 4 bits (used as described above) and adding the remaining value 

to the base of KiServiceTable itself, as shown here: 

lkd> ln KiServiceTable+(003021e0 & -16) 

(fffff800`013611a0)   nt!NtMapUserPhysicalPagesScatter
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EXPERIMENT: Viewing System Service Activity

You can monitor system service activity by watching the System Calls/Sec performance 

counter in the System object. Run the Reliability and Performance Monitor, and in chart 

view, click the Add button to add a counter to the chart. Select the System object, 

select the System Calls/Sec counter, and then click the Add button to add the counter 

to the chart.

Object Manager

As mentioned in Chapter 2, Windows implements an object model to provide consistent 

and secure access to the various internal services implemented in the executive. This section 

describes the Windows object manager, the executive component responsible for creating, 

deleting, protecting, and tracking objects. The object manager centralizes resource con-

trol operations that otherwise would be scattered throughout the operating system. It was 

designed to meet the goals listed on the next page.

EXPERIMENT: Exploring the Object Manager

Throughout this section, you’ll find experiments that show you how to peer into the 

object manager database. These experiments use the following tools, which you should 

become familiar with if you aren’t already:

WinObj (available from Sysinternals) displays the internal object manager’s 

namespace and information about objects (such as the reference count, the 

number of open handles, security descriptors, and so forth).

Process Explorer and Handle from Sysinternals (introduced in Chapter 1) dis-

play the open handles for a process.

The Openfiles /query command displays the open file handles for a process, 

but it requires a global flag to be set in order to operate.

The kernel debugger !handle command displays the open handles for a 

process.

WinObj from Sysinternals provides a way to traverse the namespace that the object 

manager maintains. (As we’ll explain later, not all objects have names.) Run WinObj and 

examine the layout, shown next.
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As noted previously, the Windows Openfiles /query command requires that a Windows 

global flag called maintain objects list be enabled. (See the “Windows Global Flags” 

 section later in this chapter for more details about global flags.) If you type Openfiles 

/Local, it will tell you whether the flag is enabled. You can enable it with the Openfiles 
/Local ON command. In either case, you must reboot the system for the setting to take 

effect. Neither Process Explorer nor Handle from Sysinternals require object tracking to 

be turned on because they use a device driver to obtain the information.

The object manager was designed to meet the following goals:

Provide a common, uniform mechanism for using system resources

Isolate object protection to one location in the operating system so that C2 security 

compliance can be achieved

Provide a mechanism to charge processes for their use of objects so that limits can be 

placed on the usage of system resources

Establish an object-naming scheme that can readily incorporate existing objects, such 

as the devices, files, and directories of a file system, or other independent collections of 

objects

Support the requirements of various operating system environments, such as the abil-

ity of a process to inherit resources from a parent process (needed by Windows and 

POSIX) and the ability to create case-sensitive file names (needed by POSIX)
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Establish uniform rules for object retention (that is, for keeping an object available until 

all processes have finished using it)

Provide the ability to isolate objects for a specific session to allow for both local and 

global objects in the namespace

Internally, Windows has three kinds of objects: executive objects, kernel objects, and GDI/User 
objects. Executive objects are objects implemented by various components of the executive 

(such as the process manager, memory manager, I/O subsystem, and so on). Kernel objects 

are a more primitive set of objects implemented by the Windows kernel. These objects are 

not visible to user-mode code but are created and used only within the executive. Kernel 

objects provide fundamental capabilities, such as synchronization, on which executive objects 

are built. Thus, many executive objects contain (encapsulate) one or more kernel objects, as 

shown in Figure 3-15. 

FIGURE 3-15 Executive objects that contain kernel objects

Note: GDI/User objects, on the other hand, belong to the Windows subsystem (Win32k.sys) and 

do not interact with the kernel. For this reason, they are outside the scope of this book, but you 

can get more information on them from the Windows SDK, the MSDN Library, or from the book 

Windows Graphics Programming: Win32 GDI and DirectDraw, by Feng Yuan (Prentice Hall, 2000).

Details about the structure of kernel objects and how they are used to implement synchroni-

zation are given later in this chapter. In the remainder of this section, we’ll focus on how the 

object manager works and on the structure of executive objects, handles, and handle tables. 

Here we’ll just briefly describe how objects are involved in implementing Windows security 

access checking; we’ll cover this topic thoroughly in Chapter 6.
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Executive Objects

Each Windows environment subsystem projects to its applications a different image of the 

operating system. The executive objects and object services are primitives that the environ-

ment subsystems use to construct their own versions of objects and other resources.

Executive objects are typically created either by an environment subsystem on behalf of a 

user application or by various components of the operating system as part of their normal 

operation. For example, to create a file, a Windows application calls the Windows CreateFile 

function, implemented in the Windows subsystem DLL Kernel32.dll. After some validation 

and initialization, CreateFile in turn calls the native Windows service NtCreateFile to create an 

executive file object.

The set of objects an environment subsystem supplies to its applications might be larger or 

smaller than the set the executive provides. The Windows subsystem uses executive objects 

to export its own set of objects, many of which correspond directly to executive objects. For 

example, the Windows mutexes and semaphores are directly based on executive objects 

(which are in turn based on corresponding kernel objects). In addition, the Windows subsys-

tem supplies named pipes and mailslots, resources that are based on executive file objects. 

Some subsystems, such as POSIX, don’t support objects as objects at all. The POSIX subsys-

tem uses executive objects and services as the basis for presenting POSIX-style processes, 

pipes, and other resources to its applications.

Table 3-5 lists the primary objects the executive provides and briefly describes what they 

represent. You can find further details on executive objects in the chapters that describe 

the related executive components (or in the case of executive objects directly exported to 

Windows, in the Windows API reference documentation).

Note The executive implements a total of 37 object types. Many of these objects are for use 

only by the executive component that defines them and are not directly accessible by Windows 

APIs. Examples of these objects include Driver, Device, and EventPair.

TABLE 3-5 Executive Objects Exposed to the Windows API

Object Type Represents

Process The virtual address space and control information necessary for the 

execution of a set of thread objects.

Thread An executable entity within a process.

Job A collection of processes manageable as a single entity through the job.

Section A region of shared memory (known as a file mapping object in Windows).

File An instance of an opened file or an I/O device.
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Object Type Represents

Token The security profile (security ID, user rights, and so on) of a process or a 

thread.

Event An object with a persistent state (signaled or not signaled) that can be 

used for synchronization or notification.

Semaphore A counter that provides a resource gate by allowing some maximum 

number of threads to access the resources protected by the semaphore.

Mutex A synchronization mechanism used to serialize access to a resource.

Timer A mechanism to notify a thread when a fixed period of time elapses.

IoCompletion A method for threads to enqueue and dequeue notifications of the 

completion of I/O operations (known as an I/O completion port in the 

Windows API).

Key A mechanism to refer to data in the registry. Although keys appear in 

the object manager namespace, they are managed by the configuration 

manager, in a way similar to that in which file objects are managed by file 

system drivers. Zero or more key values are associated with a key object; 

key values contain data about the key.

Directory A virtual directory in the object manager’s namespace responsible for 

containing other objects or object directories.

TpWorkerFactory A collection of threads assigned to perform a specific set of tasks. The 

kernel can manage the number of work items that will be performed on 

the queue, how many threads should be responsible for the work, and 

dynamic creation and termination of worker threads, respecting certain 

limits the caller can set. Windows Vista and later expose the worker 

factory object through thread pools.

TmRm (Resource 

Manager), TmTx 

(Transaction), TmTm 

(Transaction Manager), 

TmEn (Enlistment)

Objects used by the Kernel Transaction Manager (KTM) for various 

transactions and/or enlistments as part of a resource manager or 

transaction manager. Objects can be created through the new Create-
TransactionManager, CreateResourceManager, CreateTransaction, and 

CreateEnlistment APIs.

WindowStation An object that contains a clipboard, a set of global atoms, and a group of 

Desktop objects.

Desktop An object contained within a window station. A desktop has a logical 

display surface and contains windows, menus, and hooks.

Note As Windows NT was originally supposed to support the OS/2 operating system, the mutex 

had to be compatible with the existing design of OS/2 mutual-exclusion objects, a design that 

required that a thread be able to abandon the object, leaving it inaccessible. Because this behav-

ior was considered unusual for such an object, another kernel object—the mutant—was created. 
Eventually, OS/2 support was dropped, and the object became used by the Windows 32 subsys-

tem under the name mutex (but it is still called mutant internally).
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Object Structure

As shown in Figure 3-16, each object has an object header and an object body. The object 

manager controls the object headers, and the owning executive components control the 

object bodies of the object types they create. Each object header also points to a special 

object, called the type object, that contains information common to each instance of the 

object. Additionally, up to four optional subheaders exist: the name information header, 

the quota information header, the handle information header, and the creator information 

header.

Object name
Object directory
Security descriptor
Quota charges
Open handle count
Open handles list
Object type
Reference count

Object
header

Object
body Object-specific data

Process
1

Process
2

Process
3

Type name
Pool type
Default quota charges
Access types
Generic access rights mapping
Synchronizable? (Y/N)
Methods:

Open, close, delete,
parse, security,
query name

Type object

Object name

Security descriptor

Open handles list

Quota charges

Object directory

FIGURE 3-16 Structure of an object 

Object Headers and Bodies

The object manager uses the data stored in an object’s header to manage objects with-

out regard to their type. Table 3-6 briefly describes the object header fields, and Table 3-7 

describes the fields found in the optional object subheaders.
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TABLE 3-6 Object Header Fields

Field Purpose

Handle count Maintains a count of the number of currently opened handles to the 

object.

Pointer count Maintains a count of the number of references to the object (including one 

reference for each handle). Kernel-mode components can reference an 

object by pointer without using a handle.

Security descriptor Determines who can use the object and what they can do with it. Note that 

unnamed objects by definition cannot have security.

Object type Points to a type object that contains attributes common to objects of this 

type.

Subheader offsets Negative offsets to the optional subheader structures described in Table 

3-7, except for the creator information subheader, which, if present, always 

precedes the object header.

Flags Characteristics and object attributes for the object. See Table 3-9 for a list 

of all the object flags.

In addition to the object header, which contains information that applies to any kind of 

object, the subheaders contain optional information regarding specific aspects of the object. 

Note that these structures are located at a variable offset from the top of the object header, 

the value of which is stored in the object header itself (except, as mentioned above, for cre-

ator information). If any of these offsets is 0, the object manager assumes that no subheader 

is associated with that offset. In the case of creator information, a value in the object header 

flags determines whether the subheader is present. (See Table 3-9 for information about 

these flags.)

TABLE 3-7 Optional Object Subheaders

Name Purpose Location

Name 

information

Contains the object name, responsible for making an 

object visible to other processes for sharing, and a pointer 

to the object directory, which provides the hierarchical 

structure in which the object names are stored

Object header—

NameInfoOffset

Quota 

information

Lists the resource charges levied against a process when it 

opens a handle to the object

Object header—

QuotaInfoOffset

Handle 

information

Contains a database of entries (or just a single entry) for a 

process that has an open handle to the object (along with 

a per-process handle count)

Object header—

HandleInfoOffset

Creator 

information

Links the object into a list for all the objects of the same 

type, and records the process that created the object, 

along with a back trace

Object header— 

size of creator 

information structure
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Note The quota information subheader might also contain a pointer to the exclusive process 
that allows access to this object if the object was created with the exclusive object flag. Also, this 

subheader does not necessarily contain information on quotas being levied against the process. 

More information on exclusive objects follows later in the chapter.

Each of these subheaders is optional and is present only under certain conditions, either dur-

ing system boot up or at object creation time. Table 3-8 describes each of these conditions.

TABLE 3-8 Conditions Required for Presence of Object Subheaders

Name Condition

Name information The object must have been created with a name.

Quota information The object must have different memory usage values than the default values 

configured during the creation of the object type (more on object types later), 

or must have a security descriptor larger than 2 KB and not be the initial 

system process, or must have been created with the exclusive object flag. (See 

Table 3-9 for object flags.)

Handle information The object type must have enabled the maintain handle count flag. File 

objects, WindowStation objects, and Desktop objects have this flag set in their 

object type structure.

Creator information The object type must have enabled the maintain type list flag. LPC port 

objects and Driver objects (only if Driver Verifier is enabled) have this flag set. 

However, enabling the maintain object type list global flag (discussed earlier) 

will enable this for all objects. Type objects also have the flag set, for a reason 

we’ll describe shortly.

Finally, a number of attributes and/or flags determine the behavior of the object during 

creation time or during certain operations. These flags are received by the object manager 

whenever any new object is being created, in a structure called the object attributes. This 

structure defines the object name, the root object directory where it should be inserted, the 

security descriptor for the object, and the object attribute flags. Table 3-9 lists the various 

flags that can be associated with an object.

Note When an object is being created through an API in the Windows subsystem (such as 

CreateEvent or CreateFile), the caller does not specify any object attributes—the subsystem DLL 

will perform the work behind the scenes. For this reason, all named objects created through 

Win32 will go in the BaseNamedObjects directory because this is the root object directory 

that Kernel32.dll specifies as part of the object attributes structure. More information on 

BaseNamedObjects and how it relates to the per-session namespace will follow later in this 

chapter.
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TABLE 3-9 Object Flags

Attributes Flag Header Flag Purpose

OBJ_INHERIT Saved in the handle table entry Determines whether the handle 

to the object will be inherited by 

child processes, and whether a 

process can use DuplicateHandle 

to make a copy

OBJ_PERMANENT OB_FLAG_PERMANENT_OBJECT Defines object retention behavior 

related to reference counts, 

described later

OBJ_EXCLUSIVE OB_FLAG_EXCLUSIVE_OBJECT Specifies that the object can 

only be used by the process that 

created it

OBJ_CASE_INSENSITIVE Stored in the handle table entry Specifies that lookups for this 

object in the namespace should 

be case insensitive. May be 

overridden by the case insensitive 

flag in the object type

OBJ_OPENIF Not stored, used at run time Specifies that a create operation 

for this object name should result 

in an open, if the object exists, 

instead of a failure

OBJ_OPENLINK Not stored, used at run time Specifies that the object manager 

should open a handle to the 

symbolic link, not the target

OBJ_KERNEL_HANDLE OB_FLAG_KERNEL_OBJECT Specifies that the handle to this 

object should be a kernel handle 

(more on this later)

OBJ_FORCE_ACCESS_CHECK Not stored, used at run time Specifies that even if the object is 

being opened from kernel mode, 

full access checks should be 

performed

OBJ_KERNEL_EXCLUSIVE Stored in the object name 

subheader as QueryReferences
Disables any user-mode process 

from opening a handle to the 

object; used to protect the 

/Device/PhysicalMemory section 

object

N/A OB_FLAG_CREATOR_INFO Specifies that there is an object 

creator information subheader on 

top of the object header

N/A OF_FLAG_DEFAULT_SECURITY_

QUOTA

Specifies that the object’s security 

descriptor is using the default 

2-KB quota
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Attributes Flag Header Flag Purpose

N/A OB_FLAG_SINGLE_HANDLE_

ENTRY

Specifies that the handle 

information subheader contains 

only a single entry and not a 

database

N/A OB_FLAG_NEW_OBJECT Specifies that the object has been 

created but not yet inserted into 

the object namespace yet

N/A OB_FLAG_DEFER_DELETE Specifies that the object is being 

deleted through the deferred 
deletion worker thread

In addition to an object header, each object has an object body whose format and contents 

are unique to its object type; all objects of the same type share the same object body for-

mat. By creating an object type and supplying services for it, an executive component can 

control the manipulation of data in all object bodies of that type. Because the object header 

has a static and well-known size, the object manager can easily look up the object header 

for an object simply by subtracting the size of the header from the pointer of the object. As 

explained earlier, to access the subheaders, the object manager subtracts yet another value 

from the pointer of the object header.

Because of the standardized object header and subheader structures, the object manager is 

able to provide a small set of generic services that can operate on the attributes stored in any 

object header and can be used on objects of any type (although some generic services don’t 

make sense for certain objects). These generic services, some of which the Windows subsys-

tem makes available to Windows applications, are listed in Table 3-10.

Although these generic object services are supported for all object types, each object has its 

own create, open, and query services. For example, the I/O system implements a create file 

service for its file objects, and the process manager implements a create process service for 

its process objects. 

Although a single create object service could have been implemented, such a routine would 

have been quite complicated, because the set of parameters required to initialize a file 

object, for example, differs markedly from that required to initialize a process object. Also, 

the object manager would have incurred additional processing overhead each time a thread 

called an object service to determine the type of object the handle referred to and to call the 

appropriate version of the service.

TABLE 3-10 Generic Object Services

Service Purpose

Close Closes a handle to an object

Duplicate Shares an object by duplicating a handle and giving it to another process

Query object Gets information about an object’s standard attributes
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Service Purpose

Query security Gets an object’s security descriptor

Set security Changes the protection on an object

Wait for a single object Synchronizes a thread’s execution with one object

Wait for multiple 

objects

Synchronizes a thread’s execution with multiple objects

Type Objects

Object headers contain data that is common to all objects but that can take on different val-

ues for each instance of an object. For example, each object has a unique name and can have 

a unique security descriptor. However, objects also contain some data that remains constant 

for all objects of a particular type. For example, you can select from a set of access rights 

specific to a type of object when you open a handle to objects of that type. The executive 

supplies terminate and suspend access (among others) for thread objects and read, write, 

append, and delete access (among others) for file objects. Another example of an object-

type-specific attribute is synchronization, which is described shortly.

To conserve memory, the object manager stores these static, object-type-specific attri-

butes once when creating a new object type. It uses an object of its own, a type object, to 

record this data. As Figure 3-17 illustrates, if the object-tracking debug flag (described in the 

“Windows Global Flags” section later in this chapter) is set, a type object also links together 

all objects of the same type (in this case the process type), allowing the object manager to 

find and enumerate them, if necessary. This functionality takes advantage of the creator 

information subheader discussed previously.

FIGURE 3-17 Process objects and the process type object
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EXPERIMENT: Viewing Object Headers and Type Objects

You can see the list of type objects declared to the object manager with the WinObj 

tool from Sysinternals. After running WinObj, open the \ObjectTypes directory, as 

shown here:

You can look at the process object type data structure in the kernel debugger by first 

identifying a process object with the !process command:

lkd> !process 0 0 

**** NT ACTIVE PROCESS DUMP **** 

PROCESS 860f1ab0  SessionId: none  Cid: 0004    Peb: 00000000  ParentCid: 0000 

    DirBase: 00122000  ObjectTable: 83000118  HandleCount: 484. 

    Image: System

Then execute the !object command with the process object address as the argument:

lkd> !object 860f1ab0   

Object: 860f1ab0  Type: (860f1ed0) Process 

    ObjectHeader: 860f1a98 (old version) 

    HandleCount: 4  PointerCount: 139

Notice that the object header starts 0x18 (24 decimal) bytes prior to the start of the 

object body—the size of the object header itself. You can view the object header with 

this command:
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lkd> dt nt!_OBJECT_HEADER 860f1a98  

   +0x000 PointerCount     : 139 

   +0x004 HandleCount      : 4 

   +0x004 NextToFree       : 0x00000004  

   +0x008 Type             : 0x860f1ed0 _OBJECT_TYPE 

   +0x00c NameInfoOffset   : 0 '' 

   +0x00d HandleInfoOffset : 0 '' 

   +0x00e QuotaInfoOffset  : 0 '' 

   +0x00f Flags            : 0x22 '"' 

   +0x010 ObjectCreateInfo : 0x82109380 _OBJECT_CREATE_INFORMATION 

   +0x010 QuotaBlockCharged : 0x82109380  

   +0x014 SecurityDescriptor : 0x83003482  

   +0x018 Body             : _QUAD

Now look at the object type data structure by obtaining its address from the Type field 

of the object header data structure:

lkd> dt nt!_OBJECT_TYPE 0x860f1ed0  

   +0x000 Mutex            : _ERESOURCE 

   +0x038 TypeList         : _LIST_ENTRY [ 0x860f1f08 - 0x860f1f08 ] 

   +0x040 Name             : _UNICODE_STRING "Process" 

   +0x048 DefaultObject    : (null)  

   +0x04c Index            : 6 

   +0x050 TotalNumberOfObjects : 0x4f 

   +0x054 TotalNumberOfHandles : 0x12d 

   +0x058 HighWaterNumberOfObjects : 0x52 

   +0x05c HighWaterNumberOfHandles : 0x141 

   +0x060 TypeInfo         : _OBJECT_TYPE_INITIALIZER 

   +0x0ac Key              : 0x636f7250 

   +0x0b0 ObjectLocks      : [32] _EX_PUSH_LOCK

The output shows that the object type structure includes the name of the object type, 

tracks the total number of active objects of that type, and tracks the peak number 

of handles and objects of that type. The TypeInfo field stores the pointer to the data 

structure that stores attributes common to all objects of the object type as well as 

pointers to the object type’s methods:

lkd> dt nt!_OBJECT_TYPE_INITIALIZER 0x860f1ed0+60 

   +0x000 Length           : 0x4c 

   +0x002 ObjectTypeFlags  : 0xa '' 

   +0x002 CaseInsensitive  : 0y0 

   +0x002 UnnamedObjectsOnly : 0y1 

   +0x002 UseDefaultObject : 0y0 

   +0x002 SecurityRequired : 0y1 

   +0x002 MaintainHandleCount : 0y0 

   +0x002 MaintainTypeList : 0y0 

   +0x004 ObjectTypeCode   : 0 

   +0x008 InvalidAttributes : 0 

   +0x00c GenericMapping   : _GENERIC_MAPPING 

   +0x01c ValidAccessMask  : 0x1fffff 

   +0x020 PoolType         : 0 ( NonPagedPool ) 

   +0x024 DefaultPagedPoolCharge : 0x1000 

   +0x028 DefaultNonPagedPoolCharge : 0x2a0 
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   +0x02c DumpProcedure    : (null)  

   +0x030 OpenProcedure    : 0x822137d3     long  nt!PspProcessOpen+0 

   +0x034 CloseProcedure   : 0x8221c3d4     void  nt!PspProcessClose+0 

   +0x038 DeleteProcedure  : 0x8221c1e2     void  nt!PspProcessDelete+0 

   +0x03c ParseProcedure   : (null)  

   +0x040 SecurityProcedure : 0x822502bb     long  nt!SeDefaultObjectMethod+0 

   +0x044 QueryNameProcedure : (null)  

   +0x048 OkayToCloseProcedure : (null)

Type objects can’t be manipulated from user mode because the object manager supplies no 

services for them. However, some of the attributes they define are visible through certain 

native services and through Windows API routines. The information stored in the type initial-

izers is described in Table 3-11.

TABLE 3-11 Type Initializer Fields

Attribute Purpose

Type name The name for objects of this type (“process,” “event,” “port,” and so on).

Pool type Indicates whether objects of this type should be allocated from paged or 

nonpaged memory.

Default quota charges Default paged and nonpaged pool values to charge to process quotas.

Valid access mask The types of access a thread can request when opening a handle to an 

object of this type (“read,” “write,” “terminate,” “suspend,” and so on).

Generic access rights 

mapping

A mapping between the four generic access rights (read, write, execute, 

and all) to the type-specific access rights.

Flags Indicate whether objects must never have names (such as process 

objects), whether they require a security descriptor, and whether a handle 

database (handle information subheader) and/or a type-list linkage 

(creator information subheader) should be maintained. The use default 
object flag also defines the behavior for the default object field below.

Invalid attributes Specifies object attribute flags (shown earlier in Table 3-9) that are invalid 

for this object type.

Default object Specifies the internal object manager event that should be used during 

waits for this object, if the object type creator requested one. Note that 

for File objects, the object manager hardcodes the default object to an 

internal member inside the FILE_OBJECT structure called Event.

Methods One or more routines that the object manager calls automatically at 

certain points in an object’s lifetime.

Synchronization, one of the attributes visible to Windows applications, refers to a thread’s 

ability to synchronize its execution by waiting for an object to change from one state to 

another. A thread can synchronize with executive job, process, thread, file, event, semaphore, 
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mutex, and timer objects. Other executive objects don’t support synchronization. An object’s 

ability to support synchronization is based on three possibilities:

The executive object contains an embedded dispatcher object, a kernel object that is 

covered in the section “Low-IRQL Synchronization” later in this chapter.

The creator of the object type requested a default object, and the object manager pro-

vided one.

The object type is a file and the object manager manually hardcoded a value inside the 

object body (described in Table 3-11).

Object Methods

The last attribute in Table 3-11, methods, comprises a set of internal routines that are similar 

to C++ constructors and destructors—that is, routines that are automatically called when 

an object is created or destroyed. The object manager extends this idea by calling an object 

method in other situations as well, such as when someone opens or closes a handle to an 

object or when someone attempts to change the protection on an object. Some object types 

specify methods, whereas others don’t, depending on how the object type is to be used.

When an executive component creates a new object type, it can register one or more 

methods with the object manager. Thereafter, the object manager calls the methods at 

well-defined points in the lifetime of objects of that type, usually when an object is created, 

deleted, or modified in some way. The methods that the object manager supports are listed 

in Table 3-12.

The reason for these object methods is to address the fact that, as we’ve seen, certain 

object operations are generic (close, duplicate, security, and so on). Fully generalizing these 

generic routines would have required the designers of the object manager to anticipate all 

object types. However, the routines to create an object type are exported by the kernel, 

enabling third-party components to create their own object types. Although this function-

ality is not documented for driver developers, it is internally used by Win32k.sys to define 

WindowStation and Desktop objects. Through object method extensibility, Win32k.sys 

defines its routines for handling operations such as create and query. 

One exception to this rule is the security routine, which does, unless otherwise instructed, 

default to SeDefaultObjectMethod. This routine does not need to know the internal structure 

of the object because it only deals with the security descriptor for the object, and we’ve seen 

that the pointer to the security descriptor is stored in the generic object header, not inside 

the object body. However, if an object does require its own additional security checks, it can 

define a custom security routine. The other reason for having a generic security method is 

to avoid complexity, because most objects rely on the security reference monitor to manage 

their security.
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TABLE 3-12 Object Methods

Method When Method Is Called

Open When an object handle is opened

Close When an object handle is closed

Delete Before the object manager deletes an object

Query name When a thread requests the name of an object, such as a file, that exists in a 

secondary object namespace

Parse When the object manager is searching for an object name that exists in a 

secondary object namespace

Dump Not used

Okay to close When the object manager is instructed to close a handle

Security When a process reads or changes the protection of an object, such as a file, that 

exists in a secondary object namespace

The object manager calls the open method whenever it creates a handle to an object, which 

it does when an object is created or opened. The WindowStation and Desktop objects pro-

vide an open method; for example, the WindowStation object type requires an open method 

so that Win32k.sys can share a piece of memory with the process that serves as a desktop-

related memory pool.

An example of the use of a close method occurs in the I/O system. The I/O manager registers 

a close method for the file object type, and the object manager calls the close method each 

time it closes a file object handle. This close method checks whether the process that is clos-

ing the file handle owns any outstanding locks on the file and, if so, removes them. Checking 

for file locks isn’t something the object manager itself could or should do.

The object manager calls a delete method, if one is registered, before it deletes a temporary 

object from memory. The memory manager, for example, registers a delete method for the 

section object type that frees the physical pages being used by the section. It also verifies 

that any internal data structures the memory manager has allocated for a section are deleted 

before the section object is deleted. Once again, the object manager can’t do this work 

because it knows nothing about the internal workings of the memory manager. Delete meth-

ods for other types of objects perform similar functions.

The parse method (and similarly, the query name method) allows the object manager to 

relinquish control of finding an object to a secondary object manager if it finds an object that 

exists outside the object manager namespace. When the object manager looks up an object 

name, it suspends its search when it encounters an object in the path that has an associated 

parse method. The object manager calls the parse method, passing to it the remainder of the 

object name it is looking for. There are two namespaces in Windows in addition to the object 

manager’s: the registry namespace, which the configuration manager implements, and the 

file system namespace, which the I/O manager implements with the aid of file system drivers. 
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(See Chapter 4 for more information on the configuration manager and Chapter 7 for more 

about the I/O manager and file system drivers.)

For example, when a process opens a handle to the object named \Device\Floppy0\docs\

resume.doc, the object manager traverses its name tree until it reaches the device object 

named Floppy0. It sees that a parse method is associated with this object, and it calls the 

method, passing to it the rest of the object name it was searching for—in this case, the string 

\docs\resume.doc. The parse method for device objects is an I/O routine because the I/O 

manager defines the device object type and registers a parse method for it. The I/O man-

ager’s parse routine takes the name string and passes it to the appropriate file system, which 

finds the file on the disk and opens it.

The security method, which the I/O system also uses, is similar to the parse method. It is 

called whenever a thread tries to query or change the security information protecting a file. 

This information is different for files than for other objects because security information is 

stored in the file itself rather than in memory. The I/O system, therefore, must be called to 

find the security information and read or change it.

Finally, the okay-to-close method is used as an additional layer of protection around the 

malicious—or incorrect—closing of handles being used for system purposes. For example, 

each process has a handle to the Desktop object(s) on which its thread or threads have win-

dows visible. Under the standard security model, it would be possible for those threads to 

close their handles to their desktops because the process has full control of its own objects. 

In this scenario, the threads would end up without a desktop associated with them—a viola-

tion of the windowing model. Win32k.sys registers an okay-to-close routine for the Desktop 

and WindowStation objects to prevent this behavior.

Object Handles and the Process Handle Table

When a process creates or opens an object by name, it receives a handle that repre-

sents its access to the object. Referring to an object by its handle is faster than using its 

name because the object manager can skip the name lookup and find the object directly. 

Processes can also acquire handles to objects by inheriting handles at process creation time 

(if the creator specifies the inherit handle flag on the CreateProcess call and the handle was 

marked as inheritable, either at the time it was created or afterward by using the Windows 

SetHandleInformation function) or by receiving a duplicated handle from another process. 

(See the Windows DuplicateHandle function.)

All user-mode processes must own a handle to an object before their threads can use the 

object. Using handles to manipulate system resources isn’t a new idea. C and Pascal (an older 

programming language similar to Delphi) run-time libraries, for example, return handles to 

opened files. Handles serve as indirect pointers to system resources; this indirection keeps 

application programs from fiddling directly with system data structures.
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Note Executive components and device drivers can access objects directly because they are 

running in kernel mode and therefore have access to the object structures in system memory. 

However, they must declare their usage of the object by incrementing the reference count 

so that the object won’t be deallocated while it’s still being used. (See the section “Object 

Retention” later in this chapter for more details.) To successfully make use of this object, how-

ever, device drivers need to know the internal structure definition of the object, and this is not 

provided for most objects. Instead, device drivers are encouraged to use the appropriate kernel 

APIs to modify or read information from the object. For example, although device drivers can get 

a pointer to the Process object (EPROCESS), the structure is opaque, and Ps* APIs must be used. 

For other objects, the type itself is opaque (such as most executive objects that wrap a dispatcher 

object—for example, events or mutexes). For these objects, drivers must use the same system 

calls that user-mode applications end up calling (such as ZwCreateEvent) and use handles instead 

of object pointers.

Object handles provide additional benefits. First, except for what they refer to, there is no 

difference between a file handle, an event handle, and a process handle. This similarity pro-

vides a consistent interface to reference objects, regardless of their type. Second, the object 

manager has the exclusive right to create handles and to locate an object that a handle refers 

to. This means that the object manager can scrutinize every user-mode action that affects an 

object to see whether the security profile of the caller allows the operation requested on the 

object in question.

EXPERIMENT: Viewing Open Handles

Run Process Explorer, and make sure the lower pane is enabled and configured to show 

open handles. (Click on View, Lower Pane View, and then Handles). Then open a com-

mand prompt and view the handle table for the new Cmd.exe process. You should see 

an open file handle to the current directory. For example, assuming the current direc-

tory is C:\, Process Explorer shows the following:



 Chapter 3 System Mechanisms 151

If you then change the current directory with the cd command, you will see in Process 

Explorer that the handle to the previous current directory is closed and a new handle 

is opened to the new current directory. The previous handle is highlighted briefly in 

red, and the new handle is highlighted in green. The duration of the highlight can be 

adjusted by clicking Options and then Difference Highlight Duration.

Process Explorer’s differences highlighting feature makes it easy to see changes in the 

handle table. For example, if a process is leaking handles, viewing the handle table with 

Process Explorer can quickly show what handle or handles are being opened but not 

closed. This information can help the programmer find the handle leak.

You can also display the open handle table by using the command-line Handle tool 

from Sysinternals. For example, note the following partial output of Handle examining 

the file object handles located in the handle table for a Cmd.exe process before and 

after changing the directory. By default, Handle will filter out nonfile handles unless 

the –a switch is used, which displays all the handles in the process, similar to Process 

Explorer.

C:\>handle -p cmd.exe 

 

Handle v3.3 

Copyright (C) 1997-2007 Mark Russinovich 

Sysinternals - www.sysinternals.com 

 

------------------------------------------------------------------------------ 

cmd.exe pid: 5124 Alex-Laptop\Alex Ionescu 

   3C: File  (R-D)   C:\Windows\System32\en-US\cmd.exe.mui 

   44: File  (RW-)   C:\ 

 

C:\>cd windows 

 

C:\Windows>handle -p cmd.exe 

 

Handle v3.3 

Copyright (C) 1997-2007 Mark Russinovich 

Sysinternals - www.sysinternals.com 

 

------------------------------------------------------------------------------ 

cmd.exe pid: 5124 Alex-Laptop\Alex Ionescu 

   3C: File  (R-D)   C:\Windows\System32\en-US\cmd.exe.mui 

   40: File  (RW-)   C:\Windows

An object handle is an index into a process-specific handle table, pointed to by the executive 

process (EPROCESS) block (described in Chapter 5). The first handle index is 4, the second 

8, and so on. A process’s handle table contains pointers to all the objects that the process 

has opened a handle to. Handle tables are implemented as a three-level scheme, similar 

to the way that the x86 memory management unit implements virtual-to-physical address 
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translation, giving a maximum of more than 16,000,000 handles per process. (See Chapter 9 

for details about memory management in x86 systems.)

Only the lowest-level handle table is allocated on process creation—the other levels are cre-

ated as needed. The subhandle table consists of as many entries as will fit in a page minus 

one entry that is used for handle auditing. For example, for x86 systems a page is 4096 bytes, 

divided by the size of a handle table entry (8 bytes), which is 512, minus 1, which is a total of 

511 entries in the lowest-level handle table. The mid-level handle table contains a full page of 

pointers to subhandle tables, so the number of subhandle tables depends on the size of the 

page and the size of a pointer for the platform. Figure 3-18 describes the handle table layout 

on Windows.

Process

Handle
table

Top-level

pointers

Middle-level

pointers

Subhandle

table

FIGURE 3-18 Windows process handle table architecture 

EXPERIMENT: Creating the Maximum Number of Handles

The test program Testlimit from Sysinternals has an option to open handles to an object 

until it cannot open any more handles. You can use this to see how many handles can 

be created in a single process on your system. Because handle tables are allocated from 

paged pool, you might run out of paged pool before you hit the maximum number of 

handles that can be created in a single process. To see how many handles you can cre-

ate on your system, follow these steps:

 1. Download the Testlimit .zip file from www.microsoft.com/technet/ sysinternals, and 

unzip it into a directory.
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 2. Run Process Explorer, and then click View and then System Information. Notice 

the current and maximum size of paged pool. (To display the maximum pool size 

values, Process Explorer must be configured properly to access the symbols for 

the kernel image, Ntoskrnl.exe.) Leave this system information display running so 

that you can see pool utilization when you run the Testlimit program.

 3. Open a command prompt.

 4. Run the Testlimit program with the -h switch (do this by typing testlimit –h). 

When Testlimit fails to open a new handle, it will display the total number of 

handles it was able to create. If the number is less than approximately 16 million, 

you are probably running out of paged pool before hitting the theoretical per-

process handle limit.

 5. Close the Command Prompt window; doing this will kill the Testlimit process, thus 

closing all the open handles.

As shown in Figure 3-19, on x86 systems, each handle entry consists of a structure with two 

32-bit members: a pointer to the object (with flags), and the granted access mask. On 64-bit 

systems, a handle table entry is 12 bytes long: a 64-bit pointer to the object header and a 

32-bit access mask. (Access masks are described in Chapter 6.)

Audit on close

Lock

Inheritable

IAPointer to object header

Access mask

32 bits

Protect from close

P

FIGURE 3-19 Structure of a handle table entry

The first flag is a lock bit, indicating whether the entry is currently in use. The second flag is 

the inheritance designation—that is, it indicates whether processes created by this process 

will get a copy of this handle in their handle tables. As already noted, handle inheritance can 

be specified on handle creation or later with the SetHandleInformation function. (This flag 

can also be specified with the Windows SetHandleInformation function.) The third flag indi-

cates whether closing the object should generate an audit message. (This flag isn’t exposed 

to Windows—the object manager uses it internally.) Finally, the protect from close bit, stored 

in an unused portion of the access mask, indicates whether the caller is allowed to close this 

handle. (This flag can be set with the NtSetInformationObject system call.)
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System components and device drivers often need to open handles to objects that user-

mode applications shouldn’t have access to. This is done by creating handles in the kernel 
handle table (referenced internally with the name ObpKernelHandleTable). The handles in this 

table are accessible only from kernel mode and in any process context. This means that a 

kernel-mode function can reference the handle in any process context with no performance 

impact. The object manager recognizes references to handles from the kernel handle table 

when the high bit of the handle is set—that is, when references to kernel-handle-table han-

dles have values greater than 0x80000000. The kernel handle table also serves as the handle 

table for the System process.

EXPERIMENT: Viewing the Handle Table with the 

Kernel Debugger

The !handle command in the kernel debugger takes three arguments:

!handle <handle index> <flags> <processid>

The handle index identifies the handle entry in the handle table. (Zero means display 

all handles.) The first handle is index 4, the second 8, and so on. For example, typing 

!handle 4 will show the first handle for the current process.

The flags you can specify are a bitmask, where bit 0 means display only the information 

in the handle entry, bit 1 means display free handles (not just used handles), and bit 2 

means display information about the object that the handle refers to. The following 

command displays full details about the handle table for process ID 0x408:

lkd> !handle 0 7 acc 

processor number 0, process 00000acc 

Searching for Process with Cid == acc 

PROCESS 89e1ead8  SessionId: 1  Cid: 0acc    Peb: 7ffd3000  ParentCid: 0a28 

    DirBase: b25c8740  ObjectTable: f1a76c78  HandleCount: 246. 

    Image: windbg.exe 

 

Handle table at f0aaa000 with 246 Entries in use 

0000: free handle, Entry address f0aaa000, Next Entry fffffffe 

0004: Object: 95d02d70  GrantedAccess: 00000003 Entry: f0aaa008 

Object: 95d02d70  Type: (860f5d60) Directory 

    ObjectHeader: 95d02d58 (old version) 

        HandleCount: 74  PointerCount: 103 

        Directory Object: 83007470  Name: KnownDlls 

 

0008: Object: 89e1a468  GrantedAccess: 00100020 Entry: f0aaa010 

Object: 89e1a468  Type: (8613f040) File 

    ObjectHeader: 89e1a450 (old version) 

        HandleCount: 1  PointerCount: 1 

        Directory Object: 00000000  Name: \Program Files\Debugging Tools for Windows 

{HarddiskVolume3}
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EXPERIMENT: Searching for Open Files with the Kernel Debugger

Although you can use Process Explorer as well as the OpenFiles.exe utility to search for 

open file handles, these tools are not available when looking at a crash dump or ana-

lyzing a system remotely. You can instead use the !devhandles command to search for 

handles opened to files on a specific volume. (See Chapter 7 for more information on 

devices, files, and volumes.)

 1. First you need to pick the drive letter you are interested in and obtain the pointer 

to its Device object. You can use the !object command as shown here:

lkd> !object \GLOBAL??\C: 

Object: 8d274e68  Type: (84d10bc0) SymbolicLink 

    ObjectHeader: 8d274e50 (old version) 

    HandleCount: 0  PointerCount: 1 

    Directory Object: 8b6053b8  Name: C: 

    Target String is '\Device\HarddiskVolume3' 

    Drive Letter Index is 3 (C:)

 2. Next use the !devobj command to get the Device object of the target volume 

name: 

lkd> !devobj \Device\HarddiskVolume3 

Device object (86623e10) is for:

 3. Now you can use the pointer of the Device object with the !devhandles command. 

Each object shown points to a file:

lkd> !devhandles 86623e10 

 

Checking handle table for process 0x84d0da90 

Handle table at 890d6000 with 545 Entries in use 

PROCESS 84d0da90  SessionId: none  Cid: 0004    Peb: 00000000  ParentCid: 0000 

    DirBase: 00122000  ObjectTable: 8b602008  HandleCount: 545. 

    Image: System 

 

0084: Object: 8684c4b8  GrantedAccess: 0012019f 

 

PROCESS 84d0da90  SessionId: none  Cid: 0004    Peb: 00000000  ParentCid: 0000 

    DirBase: 00122000  ObjectTable: 8b602008  HandleCount: 545. 

    Image: System 

 

0088: Object: 8684c348  GrantedAccess: 0012019f 

 

PROCESS 84d0da90  SessionId: none  Cid: 0004    Peb: 00000000  ParentCid: 0000 

    DirBase: 00122000  ObjectTable: 8b602008  HandleCount: 545. 

    Image: System
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 4. Finally, you can repeat the !object command on these objects to figure out to 

which file they refer:

lkd> !object 8684c4b8   

Object: 8684c4b8  Type: (84d5a040) File 

    ObjectHeader: 8684c4a0 (old version) 

    HandleCount: 1  PointerCount: 2 

    Directory Object: 00000000  Name: 

\$Extend\$RmMetadata\$TxfLog\$TxfLogContainer00000000000000000004 

{HarddiskVolume3}

Because handle leaks can be dangerous to the system by leaking kernel pool memory and 

eventually causing systemwide memory starvation—and can also break applications in subtle 

ways—Windows includes a couple of debugging mechanisms that can be enabled to moni-

tor, analyze, and debug issues with handles. Additionally, the Debugging Tools for Windows 

come with two extensions that tap into these mechanisms and provide easy graphical analy-

sis. Table 3-13 illustrates them:

TABLE 3-13 Debugging Mechanisms for Object Handles

Mechanism Enabled By Kernel Debugger Extension

Handle Tracing 

Database

Kernel Stack Trace systemwide and/or 

per-process with the User Stack Trace 

option checked with Gflags.exe.

!htrace <handle value> <process ID>

Object Reference 

Tracing

Per-process-name(s), or per-object-

type-pool-tag(s), with Gflags.exe, 

under Object Reference Tracing.

!obtrace <object pointer>

Enabling the handle tracing database is useful when attempting to understand the use of 

each handle within an application or the system context. The !htrace debugger extension can 

display the stack trace captured at the time a specified handle was opened. After you dis-

cover a handle leak, the stack trace can pinpoint the code that is creating the handle, and it 

can be analyzed for a missing call to a function such as CloseHandle.

The object reference tracing !obtrace extension monitors even more by showing the stack 

trace for each new handle created as well as each time a handle is referenced by the kernel 

(and also opened, duplicated, or inherited) and dereferenced. By analyzing these patterns, 

misuse of an object at the system level can be more easily debugged. Additionally, these 

reference traces provide a way to understand the behavior of the system when dealing with 

certain objects. Tracing processes, for example, will display references from all the drivers on 

the system that have registered callback notifications (such as Process Monitor) and helps 

detect rogue or buggy third-party drivers that may be referencing handles in kernel mode 

but never dereferencing them.



 Chapter 3 System Mechanisms 157

Note When enabling object reference tracing for a specific object type, you can obtain the 

name of its pool tag by looking at the key member of the OBJECT_TYPE structure when using 

the dt command. Each object type on the system has a global variable that references this struc-

ture—for example, PsProcessType. Alternatively, you can use the !object command, which displays 

the pointer to this structure.

Object Security

When you open a file, you must specify whether you intend to read or to write. If you try 

to write to a file that is opened for read access, you get an error. Likewise, in the execu-

tive, when a process creates an object or opens a handle to an existing object, the process 

must specify a set of desired access rights—that is, what it wants to do with the object. It can 

request either a set of standard access rights (such as read, write, and execute) that apply to 

all object types or specific access rights that vary depending on the object type. For example, 

the process can request delete access or append access to a file object. Similarly, it might 

require the ability to suspend or terminate a thread object.

When a process opens a handle to an object, the object manager calls the security refer-
ence monitor, the kernel-mode portion of the security system, sending it the process’s set of 

desired access rights. The security reference monitor checks whether the object’s security 

descriptor permits the type of access the process is requesting. If it does, the reference moni-

tor returns a set of granted access rights that the process is allowed, and the object manager 

stores them in the object handle it creates. How the security system determines who gets 

access to which objects is explored in Chapter 6.

Thereafter, whenever the process’s threads use the handle, the object manager can quickly 

check whether the set of granted access rights stored in the handle corresponds to the usage 

implied by the object service the threads have called. For example, if the caller asked for read 

access to a section object but then calls a service to write to it, the service fails.

EXPERIMENT: Looking at Object Security

You can look at the various permissions on an object by using either Process Explorer, 

WinObj, or AccessCheck, all tools from Sysinternals. Let’s look at different ways you can 

display the access control list (ACL) for an object.

 1. You can use WinObj to navigate to any object on the system, including object 

directories, right-click on the object, and select Properties. For example, select the 

BaseNamedObjects directory, select Properties, and click on the Security tab. You 

should see a dialog box similar to the one shown next.
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By examining the settings in the dialog box, you can see that the Everyone group 

doesn’t have delete access to the directory, for example, but the SYSTEM account 

does (because this is where session 0 services with SYSTEM privileges will store 

their objects). Note that even though Everyone has the Add Object permission, 

a special privilege is required to be able to insert objects in this directory when 

running in another session.

 2. Instead of using WinObj, you can view the handle table of a process using Process 

Explorer, as shown in the experiment “Viewing Open Handles” earlier in the chap-

ter. Look at the handle table for the Explorer.exe process. You should notice a 

Directory object handle to the \Sessions\n\BaseNamedObjects directory. (We’ll 

describe the per-session namespace shortly.) You can double-click on the object 

handle and then click on the Security tab and see a similar dialog box (with more 

users and rights granted). Unfortunately, Process Explorer cannot decode the spe-

cific object directory access rights, so all you’ll see are generic rights.

 3. Finally, you can use AccessCheck to query the security information of any 

object by using the –o switch as shown in the following output. Note that using 

AccessCheck will also show you the integrity level of the object. (See Chapter 6 for 

more information on integrity levels and the security reference monitor.)

C:\Windows>accesschk -o \Sessions\1\BaseNamedObjects 

 

AccessChk v4.02 - Check access of files, keys, objects, processes or services 

Copyright (C) 2006-2007 Mark Russinovich 

Sysinternals - www.sysinternals.com 
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\Sessions\1\BaseNamedObjects 

  Type: Directory 

  Low Mandatory Level [No-Write-Up] 

  RW NT AUTHORITY\SYSTEM 

  RW Alex-Laptop\Alex Ionescu 

  RW BUILTIN\Administrators 

  R  Everyone 

     NT AUTHORITY\RESTRICTED

Windows also supports Ex (Extended) versions of the APIs—CreateEventEx, CreateMutexEx, 
CreateSemaphoreEx—that add another argument for specifying the access mask. This makes 

it possible for applications to properly use discretionary access control lists (DACLs) to secure 

their objects without breaking their ability to use the create object APIs to open a handle to 

them. You might be wondering why a client application would not simply use OpenEvent, 
which does support a desired access argument. Using the open object APIs leads to an 

inherent race condition when dealing with a failure in the open call—that is to say, when 

the client application has attempted to open the event before it has been created. In most 

applications of this kind, the open API would be followed by a create API in the failure case. 

Unfortunately, there is no guaranteed way to make this create operation atomic—in other 

words, to only occur once. Indeed, it would be possible for multiple threads and/or processes 

to have executed the create API concurrently and all attempt to create the event at the same 

time. This race condition and the extra complexity required to try and handle it makes using 

the open object APIs an inappropriate solution to the problem, which is why the Ex APIs 

should be used instead.

Object Retention

There are two types of objects: temporary and permanent. Most objects are temporary—

that is, they remain while they are in use and are freed when they are no longer needed. 

Permanent objects remain until they are explicitly freed. Because most objects are temporary, 

the rest of this section describes how the object manager implements object retention—

that is, retaining temporary objects only as long as they are in use and then deleting them. 

Because all user-mode processes that access an object must first open a handle to it, the 

object manager can easily track how many of these processes, and even which ones, are 

using an object. Tracking these handles represents one part in implementing retention. The 

object manager implements object retention in two phases. The first phase is called name 
retention, and it is controlled by the number of open handles to an object that exist. Every 

time a process opens a handle to an object, the object manager increments the open handle 

counter in the object’s header. As processes finish using the object and close their handles to 

it, the object manager decrements the open handle counter. When the counter drops to 0, 

the object manager deletes the object’s name from its global namespace. This deletion pre-

vents new processes from opening a handle to the object.
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The second phase of object retention is to stop retaining the objects themselves (that is, to 

delete them) when they are no longer in use. Because operating system code usually accesses 

objects by using pointers instead of handles, the object manager must also record how many 

object pointers it has dispensed to operating system processes. It increments a reference 
count for an object each time it gives out a pointer to the object; when kernel-mode compo-

nents finish using the pointer, they call the object manager to decrement the object’s refer-

ence count. The system also increments the reference count when it increments the handle 

count, and likewise decrements the reference count when the handle count decrements, 

because a handle is also a reference to the object that must be tracked. (For further details on 

object retention, see the WDK documentation on the functions ObReferenceObjectByPointer 
and ObDereferenceObject.)

Figure 3-20 illustrates two event objects that are in use. Process A has the first event open. 

Process B has both events open. In addition, the first event is being referenced by some 

 kernel-mode structure; thus, the reference count is 3. So even if Processes A and B closed 

their handles to the first event object, it would continue to exist because its reference count 

is 1. However, when Process B closes its handle to the second event object, the object would 

be deallocated.

So even after an object’s open handle counter reaches 0, the object’s reference count might 

remain positive, indicating that the operating system is still using the object. Ultimately, 

when the reference count drops to 0, the object manager deletes the object from memory. 

This deletion has to respect certain rules and also requires cooperation from the caller in 

certain cases. For example, because objects can be present both in paged or nonpaged pool 

memory (depending on the settings located in their object type), if a dereference occurs at 

an IRQL level of dispatch or higher, and this dereference causes the pointer count to drop to 

0, the system would crash if it attempted to immediately free the memory of a paged-pool 

object. (Recall that such access is illegal because the page fault will never be serviced.) In this 

scenario, the object manager will perform a deferred delete operation, queuing the opera-

tion on a worker thread running at passive level (IRQL 0). We’ll describe more about system 

worker threads later in this chapter. 

Another scenario that requires deferred deletion is when dealing with Kernel Transaction 

Manager (KTM) objects. In some scenarios, certain drivers may hold a lock related 

to this object, and attempting to delete the object will result in the system attempt-

ing to acquire this lock. However, the driver may never get the chance to release its 

lock, causing a deadlock. When dealing with KTM objects, driver developers must use 

ObDereferenceObjectDeferDelete to force deferred deletion regardless of IRQL level. Finally, 

the I/O manager will also use this mechanism as an optimization so that certain I/Os can 

complete more quickly, instead of waiting for the object manager to delete the object.
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FIGURE 3-20 Handles and reference counts

Because of the way object retention works, an application can ensure that an object and its 

name remain in memory simply by keeping a handle open to the object. Programmers who 

write applications that contain two or more cooperating processes need not be concerned 

that one process might delete an object before the other process has finished using it. In 

addition, closing an application’s object handles won’t cause an object to be deleted if the 

operating system is still using it. For example, one process might create a second process to 

execute a program in the background; it then immediately closes its handle to the process. 

Because the operating system needs the second process to run the program, it maintains a 

reference to its process object. Only when the background program finishes executing does 

the object manager decrement the second process’s reference count and then delete it.

Resource Accounting

Resource accounting, like object retention, is closely related to the use of object handles. A 

positive open handle count indicates that some process is using that resource. It also indi-

cates that some process is being charged for the memory the object occupies. When an 

object’s handle count and reference count drop to 0, the process that was using the object 

should no longer be charged for it.
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Many operating systems use a quota system to limit processes’ access to system resources. 

However, the types of quotas imposed on processes are sometimes diverse and complicated, 

and the code to track the quotas is spread throughout the operating system. For example, 

in some operating systems, an I/O component might record and limit the number of files a 

process can open, whereas a memory component might impose a limit on the amount of 

memory a process’s threads can allocate. A process component might limit users to some 

maximum number of new processes they can create or a maximum number of threads within 

a process. Each of these limits is tracked and enforced in different parts of the operating 

system.

In contrast, the Windows object manager provides a central facility for resource accounting. 

Each object header contains an attribute called quota charges that records how much the 

object manager subtracts from a process’s allotted paged and/or nonpaged pool quota when 

a thread in the process opens a handle to the object.

Each process on Windows points to a quota structure that records the limits and cur-

rent values for nonpaged pool, paged pool, and page file usage. These quotas default to 

0 (no limit) but can be specified by modifying registry values. (See NonPagedPoolQuota, 

PagedPoolQuota, and PagingFileQuota under HKLM\SYSTEM\CurrentControlSet\Session 

Manager\Memory Management.) Note that all the processes in an interactive session share 

the same quota block (and there’s no documented way to create processes with their own 

quota blocks).

Object Names

An important consideration in creating a multitude of objects is the need to devise a success-

ful system for keeping track of them. The object manager requires the following information 

to help you do so:

A way to distinguish one object from another

A method for finding and retrieving a particular object

The first requirement is served by allowing names to be assigned to objects. This is an exten-

sion of what most operating systems provide—the ability to name selected resources, files, 

pipes, or a block of shared memory, for example. The executive, in contrast, allows any 

resource represented by an object to have a name. The second requirement, finding and 

retrieving an object, is also satisfied by object names. If the object manager stores objects by 

name, it can find an object by looking up its name.

Object names also satisfy a third requirement, which is to allow processes to share objects. 

The executive’s object namespace is a global one, visible to all processes in the system. One 

process can create an object and place its name in the global namespace, and a second pro-

cess can open a handle to the object by specifying the object’s name. If an object isn’t meant 

to be shared in this way, its creator doesn’t need to give it a name.
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To increase efficiency, the object manager doesn’t look up an object’s name each time some-

one uses the object. Instead, it looks up a name under only two circumstances. The first is 

when a process creates a named object: the object manager looks up the name to verify that 

it doesn’t already exist before storing the new name in the global namespace. The second is 

when a process opens a handle to a named object: the object manager looks up the name, 

finds the object, and then returns an object handle to the caller; thereafter, the caller uses the 

handle to refer to the object. When looking up a name, the object manager allows the caller 

to select either a case-sensitive or a case-insensitive search, a feature that supports POSIX 

and other environments that use case-sensitive file names.

Where the names of objects are stored depends on the object type. Table 3-14 lists the stan-

dard object directories found on all Windows systems and what types of objects have their 

names stored there. Of the directories listed, only \BaseNamedObjects and \Global?? are 

visible to user programs (see the “Session Namespace” section later in this chapter for more 

information).

TABLE 3-14 Standard Object Directories

Directory Types of Object Names Stored

\GLOBAL?? MS-DOS device names (The \Sessions\0\DosDevices\<LUID>\

Global directories are symbolic links to this directory.)

\ArcNames Symbolic links mapping ARC-style paths to NT-style paths.

\BaseNamedObjects Mutexes, events, semaphores, waitable timers, and section objects 

for Session 0 (services).

\Callback Callback objects

\Device Device objects

\Driver Driver objects

\FileSystem File system driver objects and file system recognizer device objects

\KnownDlls Section names and path for known DLLs (DLLs mapped by the 

system at startup time)

\Nls Section names for mapped national language support tables

\ObjectTypes ames of types of objects

\RPC Control Port objects used by remote procedure calls (RPCs)

\Security ALPC ports used by names of objects specific to the security 

subsystem

\Sessions Per-session namespace directory (see the next subsection)

\UMDFCommunicationPorts ALPC ports used by the User-Mode Driver Framework (UMDF)

\Windows Windows subsystem ports and window stations

Because the base kernel objects such as mutexes, events, semaphores, waitable timers, and 

sections have their names stored in a single object directory, no two of these objects can 

have the same name, even if they are of a different type. This restriction emphasizes the need 
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to choose names carefully so that they don’t collide with other names. For example, prefix 

names with a GUID and/or combine the name with the user’s security identifier (SID).

Object names are global to a single computer (or to all processors on a multiprocessor com-

puter), but they’re not visible across a network. However, the object manager’s parse method 

makes it possible to access named objects that exist on other computers. For example, the 

I/O manager, which supplies file object services, extends the functions of the object man-

ager to remote files. When asked to open a remote file object, the object manager calls a 

parse method, which allows the I/O manager to intercept the request and deliver it to a net-

work redirector, a driver that accesses files across the network. Server code on the remote 

Windows system calls the object manager and the I/O manager on that system to find the 

file object and return the information back across the network.

Object Directories The object directory object is the object manager’s means for support-

ing this hierarchical naming structure. This object is analogous to a file system directory and 

contains the names of other objects, possibly even other object directories. The object direc-

tory object maintains enough information to translate these object names into pointers to 

the objects themselves. The object manager uses the pointers to construct the object handles 

that it returns to user-mode callers. Both kernel-mode code (including executive components 

and device drivers) and user-mode code (such as subsystems) can create object directories 

in which to store objects. For example, the I/O manager creates an object directory named 

\Device, which contains the names of objects representing I/O devices.

One security consideration to keep in mind when dealing with named objects is the possibil-

ity of object name squatting. Although object names in different sessions are protected from 

each other, there’s no standard protection inside the current session namespace that can be 

set with the standard Windows API. This makes it possible for an unprivileged application 

running in the same session as a privileged application to access its objects, as described ear-

lier in the object security subsection. Unfortunately, even if the object creator used a proper 

DACL to secure the object, this doesn’t help against the squatting attack, in which the unpriv-

ileged application creates the object before the privileged application, thus denying access to 

the legitimate application.

The concept of a private namespace was introduced in Windows Vista to alleviate this issue. 

It allows user-mode applications to create object directories through the CreatePrivate-
Namespace API and associate these directories with boundary descriptors, which are special 

data structures protecting the directories. These descriptors contain SIDs describing which 

security principals are allowed access to the object directory. In this manner, a privileged 

application can be sure that unprivileged applications will not be able to conduct a denial of 

service attack against its objects (this doesn’t stop a privileged application from doing the 

same, however, but this point is moot). 
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EXPERIMENT: Looking at the Base Named Objects

You can see the list of base objects that have names with the WinObj tool from 

Sysinternals. Run Winobj.exe. and click on \BaseNamedObjects, as shown here:

The named objects are shown on the right. The icons indicate the object type.

Mutexes are indicated with a stop sign.

Sections (Windows file mapping objects) are shown as memory chips.

Events are shown as exclamation points.

Semaphores are indicated with an icon that resembles a traffic signal.

Symbolic links have icons that are curved arrows.

Folders indicate object directories.

Gears indicate other objects, such as ALPC ports.
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EXPERIMENT: Tampering with Single Instancing

Applications such as Windows Media Player and those in Microsoft Office are common 

examples of single instancing enforcement through named objects. Notice that when 

launching the Wmplayer.exe executable, Windows Media Player appears only once—

every other launch simply results in the window coming back into focus. We can tam-

per with the handle list by using Process Explorer to turn the computer into a media 

mixer! Here’s how:

 1. Launch Windows Media Player and Process Explorer, and then view the handle 

table (by clicking View, Lower Pane View, and then Handles). You should see a 

handle containing CheckForOtherInstanceMutex.

 2. Right-click on the handle, and select Close Handle. Confirm the action when 

asked.

 3. Now run Windows Media Player again. Notice that this time a second process is 

created.

 4. Go ahead and play a different song in each instance. You can also use the Sound 

Mixer in the system tray (click on the Volume icon) to select which of the two pro-

cesses will have greater volume, effectively creating a mixing environment.

Instead of closing a handle to a named object, an application could have run on its 

own before Windows Media Player and created an object with the same name. In this 

scenario, Windows Media Player would never run, fooled into believing it was already 

running on the system.

Symbolic Links In certain file systems (on NTFS and some UNIX systems, for example), a 

symbolic link lets a user create a file name or a directory name that, when used, is translated 

by the operating system into a different file or directory name. Using a symbolic link is a sim-

ple method for allowing users to indirectly share a file or the contents of a directory, creating 

a cross-link between different directories in the ordinarily hierarchical directory structure.
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The object manager implements an object called a symbolic link object, which performs a 

similar function for object names in its object namespace. A symbolic link can occur any-

where within an object name string. When a caller refers to a symbolic link object’s name, 

the object manager traverses its object namespace until it reaches the symbolic link object. It 

looks inside the symbolic link and finds a string that it substitutes for the symbolic link name. 

It then restarts its name lookup.

One place in which the executive uses symbolic link objects is in translating MS-DOS-style 

device names into Windows internal device names. In Windows, a user refers to hard disk 

drives using the names C:, D:, and so on and serial ports as COM1, COM2, and so on. The 

Windows subsystem makes these symbolic link objects protected, global data by placing 

them in the object manager namespace under the \Global?? directory.

Session Namespace

Services have access to the global namespace, a namespace that serves as the first instance 

of the namespace. Additional sessions (including a console user) are given a session-private 

view of the namespace known as a local namespace. The parts of the namespace that are 

localized for each session include \DosDevices, \Windows, and \BaseNamedObjects. Making 

separate copies of the same parts of the namespace is known as instancing the namespace. 

Instancing \DosDevices makes it possible for each user to have different network drive let-

ters and Windows objects such as serial ports. On Windows, the global \DosDevices directory 

is named \Global?? and is the directory to which \DosDevices points, and local \DosDevices 

directories are identified by the logon session ID.

The \Windows directory is where Win32k.sys creates the interactive window station, 

\WinSta0. A Terminal Services environment can support multiple interactive users, but each 

user needs an individual version of WinSta0 to preserve the illusion that he or she is accessing 

the predefined interactive window station in Windows. Finally, applications and the system 

create shared objects in \BaseNamedObjects, including events, mutexes, and memory sec-

tions. If two users are running an application that creates a named object, each user session 

must have a private version of the object so that the two instances of the application don’t 

interfere with one another by accessing the same object.

The object manager implements a local namespace by creating the private versions of the 

three directories mentioned under a directory associated with the user’s session under 

\Sessions\n (where n is the session identifier). When a Windows application in remote ses-

sion two creates a named event, for example, the object manager transparently redirects the 

object’s name from \BaseNamedObjects to \Sessions\2\BaseNamedObjects.
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All object manager functions related to namespace management are aware of the instanced 

directories and participate in providing the illusion that nonconsole sessions use the 

same namespace as the console session. Windows subsystem DLLs prefix names passed 

by Windows applications that reference objects in \DosDevices with \?? (for example, 

C:\Windows becomes \??\C:\Windows). When the object manager sees the special \?? prefix, 

the steps it takes depends on the version of Windows, but it always relies on a field named 

DeviceMap in the executive process object (EPROCESS, which is described further in Chapter 

5) that points to a data structure shared by other processes in the same session. 

The DosDevicesDirectory field of the DeviceMap structure points at the object manager 

directory that represents the process’s local \DosDevices. When the object manager sees a 

reference to \??, it locates the process’s local \DosDevices by using the DosDevicesDirectory 

field of the DeviceMap. If the object manager doesn’t find the object in that directory, it 

checks the DeviceMap field of the directory object, and if it’s valid it looks for the object in 

the directory pointed to by the GlobalDosDevicesDirectory field of the DeviceMap structure, 

which is always \Global??.

Under certain circumstances, applications that are Terminal Services–aware need to access 

objects in the console session even if the application is running in a remote session. The 

application might want to do this to synchronize with instances of itself running in other 

remote sessions or with the console session. For these cases, the object manager provides 

the special override “\Global” that an application can prefix to any object name to access 

the global namespace. For example, an application in session two opening an object named 

\Global\ApplicationInitialized is directed to \BaseNamedObjects\ApplicationInitialized 

instead of \Sessions\2\BaseNamedObjects\ApplicationInitialized.

An application that wants to access an object in the global \DosDevices directory does not 

need to use the \Global prefix as long as the object doesn’t exist in its local \DosDevices 

directory. This is because the object manager will automatically look in the global directory 

for the object if it doesn’t find it in the local directory. Session directories are isolated from 

each other, and administrative privileges are required to create a global object (except for 

section objects). A special privilege named create global object is verified before allowing 

such operations.

EXPERIMENT: Viewing Namespace Instancing

You can see the separation between the session 0 namespace and other session 

namespaces as soon as you log in. The reason you can is that the first console user is 

logged in to session 1 (while services run in session 0). Run Winobj.exe, and click on the 

\Sessions directory. You’ll see a subdirectory with a numeric name for each active ses-

sion. If you open one of these directories, you’ll see subdirectories named \DosDevices, 

\Windows, and \BaseNamedObjects, which are the local namespace subdirectories of 

the session. The following screen shot shows a local namespace:
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Next run Process Explorer and select a process in your session (such as Explorer.exe), 

and then view the handle table (by clicking View, Lower Pane View, and then 

Handles). You should see a handle to \Windows\WindowStations\WinSta0 underneath 

\Sessions\n, where n is the session ID. 
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Object Filtering

Windows includes a filtering model in the object manager, similar to the file system mini-

filter model described in Chapter 7. One of the primary benefits of this filtering model is the 

ability to use the altitude concept that these existing filtering technologies use, which means 

that multiple drivers can filter object manager events at appropriate locations in the filter-

ing stack. Additionally, drivers are permitted to intercept calls such as NtOpenThread and 

NtOpenProcess and even to modify the access masks being requested from the process man-

ager. This allows protection against certain operations on an open handle—however, an open 

operation cannot be entirely blocked because doing so would too closely resemble a mali-

cious operation (processes that could never be managed).

Furthermore, drivers are able to take advantage of both pre and post callbacks, allowing 

them to prepare for a certain operation before it occurs, as well as to react or finalize infor-

mation after the operation has occurred. These callbacks can be specified for each operation 

(currently, only open, create, and duplicate are supported) and be specific for each object 

type (currently, only process and thread objects are supported). For each callback, drivers can 

specify their own internal context value, which can be returned across all calls to the driver 

or across a pre/post pair. These callbacks can be registered with the ObRegisterCallback API 

and unregistered with the ObUnregisterCallback API—it is the responsibility of the driver to 

ensure deregistration happens.

Use of the APIs is restricted to images that have certain characteristics:

The image must be signed, even on 32-bit computers, according to the same rules set 

forth in the Kernel Mode Code Signing (KMCS) policy. (Code integrity will be discussed 

later in this chapter.) The image must be compiled with the /integritycheck linker flag, 

which sets the IMAGE_DLLCHARACTERISTICS_FORCE_INTEGRITY value in the PE header. 

This instructs the memory manager to check the signature of the image regardless of 

any other defaults that may not normally result in a check.

The image must be signed with a catalog containing cryptographic per-page hashes of 

the executable code. This allows the system to detect changes to the image after it has 

been loaded in memory.

Synchronization

The concept of mutual exclusion is a crucial one in operating systems development. It refers 

to the guarantee that one, and only one, thread can access a particular resource at a time. 

Mutual exclusion is necessary when a resource doesn’t lend itself to shared access or when 

sharing would result in an unpredictable outcome. For example, if two threads copy a file to 

a printer port at the same time, their output could be interspersed. Similarly, if one thread 

reads a memory location while another one writes to it, the first thread will receive unpre-

dictable data. In general, writable resources can’t be shared without restrictions, whereas 
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resources that aren’t subject to modification can be shared. Figure 3-21 illustrates what hap-

pens when two threads running on different processors both write data to a circular queue.

Get queue tail
Insert data at current location

Increment tail pointer

Processor A Processor B

Get queue tail

Insert data at current location /*ERROR*/
Increment tail pointer

FIGURE 3-21 Incorrect sharing of memory

Because the second thread obtained the value of the queue tail pointer before the first 

thread had finished updating it, the second thread inserted its data into the same location 

that the first thread had used, overwriting data and leaving one queue location empty. Even 

though Figure 3-21 illustrates what could happen on a multiprocessor system, the same error 

could occur on a single-processor system if the operating system were to perform a context 

switch to the second thread before the first thread updated the queue tail pointer.

Sections of code that access a nonshareable resource are called critical sections. To ensure 

correct code, only one thread at a time can execute in a critical section. While one thread is 

writing to a file, updating a database, or modifying a shared variable, no other thread can be 

allowed to access the same resource. The pseudocode shown in Figure 3-21 is a critical sec-

tion that incorrectly accesses a shared data structure without mutual exclusion.

The issue of mutual exclusion, although important for all operating systems, is especially 

important (and intricate) for a tightly coupled, symmetric multiprocessing (SMP) operating sys-

tem such as Windows, in which the same system code runs simultaneously on more than one 

processor, sharing certain data structures stored in global memory. In Windows, it is the ker-

nel’s job to provide mechanisms that system code can use to prevent two threads from mod-

ifying the same structure at the same time. The kernel provides mutual-exclusion primitives 

that it and the rest of the executive use to synchronize their access to global data structures.

Because the scheduler synchronizes access to its data structures at DPC/dispatch level IRQL, 

the kernel and executive cannot rely on synchronization mechanisms that would result in a 

page fault or reschedule operation to synchronize access to data structures when the IRQL 

is DPC/dispatch level or higher (levels known as an elevated or high IRQL). In the following 

sections, you’ll find out how the kernel and executive use mutual exclusion to protect their 
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global data structures when the IRQL is high and what mutual-exclusion and synchronization 

mechanisms the kernel and executive use when the IRQL is low (below DPC/dispatch level).

High-IRQL Synchronization

At various stages during its execution, the kernel must guarantee that one, and only one, 

processor at a time is executing within a critical section. Kernel critical sections are the code 

segments that modify a global data structure such as the kernel’s dispatcher database or its 

DPC queue. The operating system can’t function correctly unless the kernel can guarantee 

that threads access these data structures in a mutually exclusive manner.

The biggest area of concern is interrupts. For example, the kernel might be updating a global 

data structure when an interrupt occurs whose interrupt-handling routine also modifies the 

structure. Simple single-processor operating systems sometimes prevent such a scenario by 

disabling all interrupts each time they access global data, but the Windows kernel has a more 

sophisticated solution. Before using a global resource, the kernel temporarily masks those 

interrupts whose interrupt handlers also use the resource. It does so by raising the proces-

sor’s IRQL to the highest level used by any potential interrupt source that accesses the global 

data. For example, an interrupt at DPC/dispatch level causes the dispatcher, which uses the 

dispatcher database, to run. Therefore, any other part of the kernel that uses the dispatcher 

database raises the IRQL to DPC/dispatch level, masking DPC/dispatch-level interrupts before 

using the dispatcher database.

This strategy is fine for a single-processor system, but it’s inadequate for a multiprocessor 

configuration. Raising the IRQL on one processor doesn’t prevent an interrupt from occurring 

on another processor. The kernel also needs to guarantee mutually exclusive access across 

several processors.

Interlocked Operations

The simplest form of synchronization mechanisms rely on hardware support for 

 multiprocessor-safe manipulation of integer values and for performing comparisons. They 

include functions such as InterlockedIncrement, InterlockedDecrement, InterlockedExchange, 

and InterlockedCompareExchange. The InterlockedDecrement function, for example, uses the 

x86 lock instruction prefix (for example, lock xadd) to lock the multiprocessor bus during the 

subtraction operation so that another processor that’s also modifying the memory location 

being decremented won’t be able to modify it between the decrementing processor’s read 

of the original value and its write of the decremented value. This form of basic synchroniza-

tion is used by the kernel and drivers. In today’s Microsoft compiler suite, these functions 

are called intrinsic because the code for them is generated in inline assembler, directly dur-

ing the compilation phase, instead of going through a function call. (It’s likely that pushing 
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the parameters onto the stack, calling the function, copying the parameters into registers, 

and then popping the parameters off the stack and returning to the caller would be a more 

expensive operation than the actual work the function is supposed to do in the first place.)

Spinlocks

The mechanism the kernel uses to achieve multiprocessor mutual exclusion is called a spin-
lock. A spinlock is a locking primitive associated with a global data structure such as the DPC 

queue shown in Figure 3-22.

DPC DPC
Begin
 Add DPC from queue
End

Release DPC queue spinlockRelease DPC queue spinlock

Begin
 Remove DPC from queue
End DPC queue

Critical section

Do 
 Try to acquire
 DPC queue
 spinlock
Until SUCCESS

Do
 Try to acquire
 DPC queue
 spinlock
Until SUCCESS

Processor A Processor B

Spinlock

FIGURE 3-22 Using a spinlock

Before entering either critical section shown in Figure 3-22, the kernel must acquire the 

spinlock associated with the protected DPC queue. If the spinlock isn’t free, the kernel keeps 

trying to acquire the lock until it succeeds. The spinlock gets its name from the fact that the 

kernel (and thus, the processor) waits, “spinning,” until it gets the lock.

Spinlocks, like the data structures they protect, reside in nonpaged memory mapped into 

the system address space. The code to acquire and release a spinlock is written in assembly 

language for speed and to exploit whatever locking mechanism the underlying processor 

architecture provides. On many architectures, spinlocks are implemented with a hardware-

supported test-and-set operation, which tests the value of a lock variable and acquires the 

lock in one atomic instruction. Testing and acquiring the lock in one instruction prevents a 

second thread from grabbing the lock between the time the first thread tests the variable 

and the time it acquires the lock. Additionally, the lock instruction mentioned earlier can also 

be used on the test-and-set operation, resulting in the combined lock bts assembly opera-

tion, which also locks the multiprocessor bus; otherwise, it would be possible for more than 

one processor to atomically perform the operation (without the lock, the operation is only 

guaranteed to be atomic on the current processor).
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All kernel-mode spinlocks in Windows have an associated IRQL that is always DPC/dispatch 

level or higher. Thus, when a thread is trying to acquire a spinlock, all other activity at the 

spinlock’s IRQL or lower ceases on that processor. Because thread dispatching happens at 

DPC/dispatch level, a thread that holds a spinlock is never preempted because the IRQL 

masks the dispatching mechanisms. This masking allows code executing in a critical section 

protected by a spinlock to continue executing so that it will release the lock quickly. The ker-

nel uses spinlocks with great care, minimizing the number of instructions it executes while it 

holds a spinlock. Any processor that attempts to acquire the spinlock will essentially be busy, 

waiting indefinitely, consuming power (a busy wait results in 100% CPU usage) and perform-

ing no actual work.

On newer (Pentium 4 and later) processors, a special pause assembly instruction can be 

inserted in busy wait loops. This instruction offers a hint to the processor that the loop 

instructions it is processing are part of a spinlock (or a similar construct) acquisition loop. The 

instruction provides three benefits: 

It significantly reduces power usage by delaying the core ever so slightly instead of 

continuously looping.

On HyperThreaded cores, it allows the CPU to realize that the “work” being done by the 

spinning logical core is not terribly important and awards more CPU time to the second 

logical core instead.

Because a busy wait loop results in a storm of read requests coming to the bus from 

the waiting thread (which may be generated out-of-order), the CPU will attempt to 

correct for violations of memory order as soon as it detects a write (that is, when the 

owning thread releases the lock). Thus, as soon as the spinlock is released, the CPU will 

reorder any pending memory read operations to ensure proper ordering. This reorder-

ing results in a large penalty in system performance and can be avoided with the pause 

instruction.

The kernel makes spinlocks available to other parts of the executive through a set of kernel 

functions, including KeAcquireSpinLock and KeReleaseSpinLock. Device drivers, for exam-

ple, require spinlocks to guarantee that device registers and other global data structures 

are accessed by only one part of a device driver (and from only one processor) at a time. 

Spinlocks are not for use by user programs—user programs should use the objects described 

in the next section. Device drivers also need to protect access to their own data structures 

from interrupts associated with themselves. Because the spinlock APIs typically only raise the 

IRQL to DPC/dispatch level, this isn’t enough to protect against interrupts. For this reason, the 

kernel also exports the KeAcquireInterruptSpinLock and KeReleaseInterruptSpinLock APIs that 

take as a parameter the KINTERRUPT object discussed at the beginning of this chapter. The 
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system will look inside the interrupt object for the associated DIRQL with the interrupt and 

raise the IRQL to the appropriate level to ensure correct access to structures shared with the 

ISR. Devices can use the KeSynchronizeExecution API to synchronize an entire function with an 

ISR, instead of just a critical section. In all cases, the code protected by an interrupt spinlock 

must execute extremely quickly—any delay causes higher than normal interrupt latency and 

will have significant negative performance effects.

Kernel spinlocks carry with them restrictions for code that uses them. Because spinlocks 

always have an IRQL of DPC/dispatch level or higher, as explained earlier, code holding a 

spinlock will crash the system if it attempts to make the scheduler perform a dispatch opera-

tion or if it causes a page fault.

Queued Spinlocks

To increase the scalability of spinlocks, a special type of spinlock, called a queued spinlock, is 
used in most circumstances instead of a standard spinlock. A queued spinlock works like this: 

When a processor wants to acquire a queued spinlock that is currently held, it places its iden-

tifier in a queue associated with the spinlock. When the processor that’s holding the spinlock 

releases it, it hands the lock over to the first processor identified in the queue. In the mean-

time, a processor waiting for a busy spinlock checks the status not of the spinlock itself but of 

a per-processor flag that the processor ahead of it in the queue sets to indicate that the wait-

ing processor’s turn has arrived.

The fact that queued spinlocks result in spinning on per-processor flags rather than global 

spinlocks has two effects. The first is that the multiprocessor’s bus isn’t as heavily trafficked by 

interprocessor synchronization. The second is that instead of a random processor in a waiting 

group acquiring a spinlock, the queued spinlock enforces first-in, first-out (FIFO) ordering to 

the lock. FIFO ordering means more consistent performance across processors accessing the 

same locks.

Windows defines a number of global queued spinlocks by storing pointers to them in an 

array contained in each processor’s processor region control block (PRCB). A global spinlock 

can be acquired by calling KeAcquireQueuedSpinLock with the index into the PRCB array at 

which the pointer to the spinlock is stored. The number of global spinlocks has grown in each 

release of the operating system, and the table of index definitions for them is published in 

the WDK header file Ntddk.h. Note, however, that acquiring one of these queued spinlocks 

from a device driver is an unsupported and heavily frowned upon operation. These locks are 

reserved for the kernel’s own internal use.
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EXPERIMENT: Viewing Global Queued Spinlocks

You can view the state of the global queued spinlocks (the ones pointed to by the 

queued spinlock array in each processor’s PCR) by using the !qlocks kernel debugger 

command. In the following example, the page frame number (PFN) database queued 

spinlock is held by processor 1, and the other queued spinlocks are not acquired. (The 

PFN database is described in Chapter 9.)

lkd> !qlocks 

Key: O = Owner, 1-n = Wait order, blank = not owned/waiting, C = Corrupt 

 

                       Processor Number 

    Lock Name         0  1 

 

KE   - Dispatcher          

MM   - Expansion           

MM   - PFN               O 

MM   - System Space        

CC   - Vacb                

CC   - Master             

Instack Queued Spinlocks

Driver developers who recognized the significant improvement in the queued spin-

lock mechanism (over standard spinlocks) might have been disappointed to know that 

these locks were not available to third-party developers. Device drivers can now use 

dynamically allocated queued spinlocks with the KeAcquireInStackQueuedSpinLock and 

KeReleaseInStackQueuedSpinLock functions. Several components—including the cache man-

ager, executive pool manager, and NTFS—take advantage of these types of locks (when a 

global static queued spinlock would simply be too wasteful), and the functions are docu-

mented in the WDK for use by third-party driver writers.

KeAcquireInStackQueuedSpinLock takes a pointer to a spinlock data structure and a spinlock 

queue handle. The spinlock handle is actually a data structure in which the kernel stores 

information about the lock’s status, including the lock’s ownership and the queue of pro-

cessors that might be waiting for the lock to become available. For this reason, the handle 

shouldn’t be a global variable. It is usually a stack variable, guaranteeing locality to the caller 

thread, and is responsible for the InStack part of the spinlock and API name.

Executive Interlocked Operations

The kernel supplies a number of simple synchronization functions constructed on spinlocks 

for more advanced operations, such as adding and removing entries from singly and dou-

bly linked lists. Examples include ExInterlockedPopEntryList and ExInterlockedPushEntryList 
for singly linked lists, and ExInterlockedInsertHeadList and ExInterlockedRemoveHeadList for 
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doubly linked lists. All these functions require a standard spinlock as a parameter and are 

used throughout the kernel and device drivers. 

Instead of relying on the standard APIs to acquire and release the spinlock parameter, these 

functions place the code required inline and also use a different ordering scheme. Whereas 

the Ke spinlock APIs will first test and set the bit to see whether the lock is released and then 

atomically do a locked test-and-set operation to actually make the acquisition, these routines 

will disable interrupts on the processor and immediately attempt an atomic test-and-set. If 

the initial attempt fails, interrupts are enabled again, and the standard busy waiting algo-

rithm continues until the test-and-set operation returns 0—in which case the whole func-

tion is restarted again. Because of these subtle differences, a spinlock used for the executive 

interlocked functions must not be used with the standard kernel APIs discussed previously. 

Naturally, noninterlocked list operations must not be mixed with interlocked operations.

Note Certain of the executive interlocked operations actually silently ignore the spinlock when 

possible. For example, the ExInterlockedIncrementLong or ExInterlockedCompareExchange APIs 

actually use the same lock prefix used by the standard interlocked functions and the intrinsic 

functions. These functions were useful on older systems (or non-x86 systems) where the lock 
operation was not suitable or available. For this reason, these calls are now deprecated in favor of 

the intrinsic functions.

Low-IRQL Synchronization

Executive software outside the kernel also needs to synchronize access to global data struc-

tures in a multiprocessor environment. For example, the memory manager has only one 

page frame database, which it accesses as a global data structure, and device drivers need 

to ensure that they can gain exclusive access to their devices. By calling kernel functions, the 

executive can create a spinlock, acquire it, and release it.

Spinlocks only partially fill the executive’s needs for synchronization mechanisms, however. 

Because waiting for a spinlock literally stalls a processor, spinlocks can be used only under the 

following strictly limited circumstances:

The protected resource must be accessed quickly and without complicated interactions 

with other code.

The critical section code can’t be paged out of memory, can’t make references to page-

able data, can’t call external procedures (including system services), and can’t generate 

interrupts or exceptions.

These restrictions are confining and can’t be met under all circumstances. Furthermore, the 

executive needs to perform other types of synchronization in addition to mutual exclusion, 

and it must also provide synchronization mechanisms to user mode.
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There are several additional synchronization mechanisms for use when spinlocks are not 

suitable:

Kernel dispatcher objects

Fast mutexes and guarded mutexes

Executive resources

Pushlocks

Additionally, user-mode code, which also executes at low IRQL, must be able to have its own 

locking primitives. Windows supports various user-mode specific primitives:

Condition variables (CondVars)

Slim reader-writer locks (SRWs)

Run once initialization (InitOnce)

Critical sections

We’ll take a look at the user-mode primitives and their underlying kernel-mode support later; 

for now we’ll focus on kernel-mode objects. Table 3-15 serves as a reference that compares 

and contrasts the capabilities of these mechanisms and their interaction with kernel-mode 

APC delivery.

TABLE 3-15 Kernel Synchronization Mechanisms

 

 

 

Exposed 

for Use 

by Device 

Drivers

Disables 

Normal 

Kernel-Mode 

APCs

Disables 

Special 

Kernel-

Mode APCs

Supports 

Recursive 

Acquisition

Supports 

Shared and 

Exclusive 

Acquisition

Kernel dispatcher 

mutexes 

Yes Yes No Yes No

Kernel dispatcher 

semaphores or 

events

Yes No No No No

Fast mutexes Yes Yes Yes No No

Guarded mutexes Yes Yes Yes No No

Pushlocks No No No No Yes

Executive resources Yes No No Yes Yes

Kernel Dispatcher Objects

The kernel furnishes additional synchronization mechanisms to the executive in the form 

of kernel objects, known collectively as dispatcher objects. The user-visible synchronization 

objects acquire their synchronization capabilities from these kernel dispatcher objects. Each 

user-visible object that supports synchronization encapsulates at least one kernel dispatcher 
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object. The executive’s synchronization semantics are visible to Windows programmers 

through the WaitForSingleObject and WaitForMultipleObjects functions, which the Windows 

subsystem implements by calling analogous system services that the object manager sup-

plies. A thread in a Windows application can synchronize with a Windows process, thread, 

event, semaphore, mutex, waitable timer, I/O completion port, or file object.

One other type of executive synchronization object worth noting is called an executive 
resource. Executive resources provide exclusive access (like a mutex) as well as shared read 

access (multiple readers sharing read-only access to a structure). However, they’re available 

only to kernel-mode code and thus are not accessible from the Windows API. Executive 

resources are not dispatcher objects but data structures, allocated directly from nonpaged 

pool, that have their own specialized services to initialize, lock, release, query, and wait for 

them. The remaining subsections describe the implementation details of waiting for dis-

patcher objects.

Waiting for Dispatcher Objects A thread can synchronize with a dispatcher object by wait-

ing for the object’s handle. Doing so causes the kernel to put the thread in a wait state. 

At any given moment, a synchronization object is in one of two states: signaled state or non-
signaled state. A thread can’t resume its execution until its wait is satisfied. This change occurs 

when the dispatcher object whose handle the thread is waiting for also undergoes a state 

change, from the nonsignaled state to the signaled state (when a thread sets an event object, 

for example). To synchronize with an object, a thread calls one of the wait system services 

that the object manager supplies, passing a handle to the object it wants to synchronize 

with. The thread can wait for one or several objects and can also specify that its wait should 

be canceled if it hasn’t ended within a certain amount of time. Whenever the kernel sets an 

object to the signaled state, the kernel’s KiWaitTest function (or sometimes, specialized inline 

code) checks to see whether any threads are waiting for the object and not also waiting for 

other objects to become signaled. If there are, the kernel releases one or more of the threads 

from their waiting state so that they can continue executing.

The following example of setting an event illustrates how synchronization interacts with 

thread dispatching:

A user-mode thread waits for an event object’s handle.

The kernel changes the thread’s scheduling state to waiting and then adds the thread 

to a list of threads waiting for the event.

Another thread sets the event.

The kernel marches down the list of threads waiting for the event. If a thread’s condi-

tions for waiting are satisfied (see the following note), the kernel takes the thread out of 

the waiting state. If it is a variable-priority thread, the kernel might also boost its execu-

tion priority. (For details on thread scheduling, see Chapter 5.)
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Note Some threads might be waiting for more than one object, so they continue waiting, unless 

they specified a WaitAny wait, which will wake them up as soon as one object (instead of all) is 

signaled.

What Signals an Object? The signaled state is defined differently for different objects. A 

thread object is in the nonsignaled state during its lifetime and is set to the signaled state 

by the kernel when the thread terminates. Similarly, the kernel sets a process object to the 

signaled state when the process’s last thread terminates. In contrast, the timer object, like 

an alarm, is set to “go off” at a certain time. When its time expires, the kernel sets the timer 

object to the signaled state.

When choosing a synchronization mechanism, a program must take into account the rules 

governing the behavior of different synchronization objects. Whether a thread’s wait ends 

when an object is set to the signaled state varies with the type of object the thread is waiting 

for, as Table 3-16 illustrates.

TABLE 3-16 Definitions of the Signaled State

Object Type Set to Signaled State When Effect on Waiting Threads

Process Last thread terminates All released

Thread Thread terminates All released

File I/O operation completes All released

Debug object Debug message is queued to 

the object

All released

Event (notification type) Thread sets the event All released

Event (synchronization type) Thread sets the event One thread released; event object 

reset

Gate Thread signals the gate First waiting thread released

Keyed event Thread sets event with a key Thread waiting for key and which 

is of same process as signaler is 

released

Semaphore Semaphore count drops by 1 One thread released

Timer (notification type) Set time arrives or time 

interval expires

All released

Timer (synchronization type) Set time arrives or time 

interval expires

One thread released

Mutex Thread releases the mutex One thread released

Queue Item is placed on queue One thread released

When an object is set to the signaled state, waiting threads are generally released from their 

wait states immediately. Some of the kernel dispatcher objects and the system events that 

induce their state changes are shown in Figure 3-23.
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Dispatcher object
System events and

resulting state change
Effect of signaled state

on waiting threads

Kernel resumes one
waiting thread.

Resumed thread
acquires the mutex.

Owning thread
releases the mutex.

Kernel resumes one
waiting thread.

Resumed thread
acquires the mutex.

Owning thread or other
thread releases the mutex.

Kernel resumes one
or more waiting threads.

A thread acquires the semaphore.
More resources are not available.

One thread releases the
semaphore, freeing a resource.

Kernel resumes one
or more waiting threads.

Kernel resumes one
or more threads.

A thread sets the event.

Kernel resumes waiting
dedicated thread.

Kernel resumes the
other dedicated thread.

Dedicated thread sets
one event in the event pair.

Kernel resumes all
waiting threads.

A thread reinitializes
the thread object.

Thread terminates.

Kernel resumes all
waiting threads.

Mutex (kernel-
mode use only)

Mutex (exported to
user mode)

Semaphore

Event

Event pair

Thread

Timer

A thread (re)initializes
the timer.

Timer expires.

FIGURE 3-23 Selected kernel dispatcher objects 
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For example, a notification event object (called a manual reset event in the Windows API) is 

used to announce the occurrence of some event. When the event object is set to the signaled 

state, all threads waiting for the event are released. The exception is any thread that is wait-

ing for more than one object at a time; such a thread might be required to continue waiting 

until additional objects reach the signaled state.

In contrast to an event object, a mutex object has ownership associated with it (unless it was 

acquired during a DPC). It is used to gain mutually exclusive access to a resource, and only 

one thread at a time can hold the mutex. When the mutex object becomes free, the ker-

nel sets it to the signaled state and then selects one waiting thread to execute. The thread 

selected by the kernel acquires the mutex object, and all other threads continue waiting.

This brief discussion wasn’t meant to enumerate all the reasons and applications for using 

the various executive objects but rather to list their basic functionality and synchronization 

behavior. For information on how to put these objects to use in Windows programs, see 

the Windows reference documentation on synchronization objects or Jeffrey Richter’s book 

Windows via C/C++.

Data Structures Two data structures are key to tracking who is waiting for what: dispatcher 
headers and wait blocks. Both these structures are publicly defined in the WDK include file 

Ntddk.h. The definitions are reproduced here for convenience:

typedef struct _DISPATCHER_HEADER { 

    union { 

        struct { 

            UCHAR Type; 

            union { 

                UCHAR Abandoned; 

                UCHAR Absolute; 

                UCHAR NpxIrql; 

                BOOLEAN Signalling; 

            } DUMMYUNIONNAME; 

 

            union { 

                UCHAR Size; 

                UCHAR Hand; 

            } DUMMYUNIONNAME2; 

 

            union { 

                UCHAR Inserted; 

                BOOLEAN DebugActive; 

                BOOLEAN DpcActive; 

            } DUMMYUNIONNAME3; 

        } DUMMYSTRUCTNAME; 

 

        volatile LONG Lock; 

    } DUMMYUNIONNAME; 

 

    LONG SignalState; 

    LIST_ENTRY WaitListHead; 

} DISPATCHER_HEADER; 
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typedef struct _KWAIT_BLOCK { 

    LIST_ENTRY WaitListEntry; 

    struct _KTHREAD *Thread; 

    PVOID Object; 

    struct _KWAIT_BLOCK *NextWaitBlock; 

    USHORT WaitKey; 

    UCHAR WaitType; 

    UCHAR SpareByte; 

#if defined(_AMD64_) 

    LONG SpareLong; 

#endif 

} KWAIT_BLOCK, *PKWAIT_BLOCK, *PRKWAIT_BLOCK;

The dispatcher header is a packed structure because it needs to hold lots of information in 

a fixed-size structure. One of the main tricks is to define mutually exclusive flags at the same 

memory location (offset) in the structure. By using the Type field, the kernel knows which 

of these fields actually applies. For example, a mutex can be abandoned, but a timer can be 

absolute or relative. Similarly, a timer can be inserted into the timer list, but the debug active 

field only makes sense for processes. On the other hand, the dispatcher header does contain 

information generic for any dispatcher object: the object type, signaled state, and a list of the 

threads waiting for that object. 

Note The debug active flag used to determine whether a process is currently being debugged is 

actually a bit mask that specifies which debug registers on the CPU are in use. Because the valid 

debug registers are DR0–3, DR6, and DR7, the bit positions for DR4 and 5 are overloaded with 

other meanings. For example, the kernel uses the fifth bit (0x20—DR4) to disable CPU cycle time 

accounting for the process. (CPU cycle time accounting is described in Chapter 5.)

The wait block represents a thread waiting for an object. Each thread that is in a wait state 

has a list of the wait blocks that represent the objects the thread is waiting for. Each dis-

patcher object has a list of the wait blocks that represent which threads are waiting for the 

object. This list is kept so that when a dispatcher object is signaled, the kernel can quickly 

determine who is waiting for that object. The wait block has a pointer to the object being 

waited for, a pointer to the thread waiting for the object, and a pointer to the next wait block 

(if the thread is waiting for more than one object). It also records the type of wait (any or 

all) as well as the position of that entry in the array of handles passed by the thread on the 

WaitForMultipleObjects call (position 0 if the thread was waiting for only one object).

Figure 3-24 shows the relationship of dispatcher objects to wait blocks to threads. In this 

example, thread 1 is waiting for object B, and thread 2 is waiting for objects A and B. If object 

A is signaled, the kernel will see that because thread 2 is also waiting for another object, 

thread 2 can’t be readied for execution. On the other hand, if object B is signaled, the kernel 

can ready thread 1 for execution right away because it isn’t waiting for any other objects.
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Object-type-
specific data

Wait list head

State

Object-type-
specific data

Wait list head

State

Size Type

Size Type

Key Type

Key Type Key Type

Object B

Object A

Wait blocks

List entry

Thread 1 wait block

Next link

Thread

Object

List entry

Next link

Thread

Object

List entry

Next link

Thread

Object

Dispatcher objects

Wait block list

Thread 2

Wait block list

Thread 1

Thread 2 wait block

Thread objects

Thread 2 wait block

FIGURE 3-24 Wait data structures

EXPERIMENT: Looking at Wait Queues

You can see the list of objects a thread is waiting for with the kernel debugger’s !thread 

command. For example, the following excerpt from the output of a !process command 

shows that the thread is waiting for an event object:

kd> !process  

§  

        THREAD 8952d030  Cid 0acc.050c  Teb: 7ffdf000 Win32Thread: fe82c4c0 WAIT: 

(WrUserRequest) UserMode Non-Alertable 

            89dd01c8  SynchronizationEvent

You can use the dt command to interpret the dispatcher header of the object like this:

lkd> dt nt!_DISPATCHER_HEADER 89dd01c8   

   +0x000 Type             : 0x1 '' 

   +0x001 Abandoned        : 0 '' 
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   +0x001 Absolute         : 0 '' 

   +0x001 NpxIrql          : 0 '' 

   +0x001 Signalling       : 0 '' 

   +0x002 Size             : 0x4 '' 

   +0x002 Hand             : 0x4 '' 

   +0x003 Inserted         : 0x89 '' 

   +0x003 DebugActive      : 0x89 '' 

   +0x003 DpcActive        : 0x89 '' 

   +0x000 Lock             : -1996226559 

   +0x004 SignalState      : 0 

   +0x008 WaitListHead     : _LIST_ENTRY [ 0x89dd01d0 - 0x89dd01d0 ]

Note that you should ignore the 0x89 value: none of the Inserted, DebugActive, or 

DpcActive fields apply to event objects, so the kernel has simply not bothered to ini-

tialize those fields to 0 as an optimization. As a result, they contain whatever value was 

previously stored. (We can assume a pointer was there previously because 0x89 seems 

to be the beginning of the address of the dispatcher header.) Table 3-17 lists the dis-

patcher header flags and the objects to which they apply.

TABLE 3-17 Usage and Meaning of the Dispatcher Header Flags

Flag Applies To Meaning

Abandoned Mutexes The thread holding the mutex was terminated

Absolute Timers The expiration time is absolute, not relative

NpxIrql Threads The IRQL at which the FPU registers were saved

Signaling Gates A priority boost should be applied to the woken thread 

when the gate is signaled

Size All objects Size of the object divided by 4

Hand Timers Index into the timer handle table

Inserted Timers Set if the timer was inserted into the timer handle table

DebugActive Processes Specifies if the process is being debugged 

DpcActive Mutexes The mutex was acquired during a DPC

Lock Gates and 

Queues

Used for locking an object without acquiring the 

dispatcher lock; actually corresponds to bit 7 (0x80) of the 

Type field

Apart from these flags, the Type field contains the identifier for the object. This identi-

fier corresponds to a number in the KOBJECTS enumeration, which you can dump with 

the debugger:

lkd> dt nt!_KOBJECTS 

   EventNotificationObject = 0 

   EventSynchronizationObject = 1 

   MutantObject = 2 

   ProcessObject = 3 

   QueueObject = 4 

   SemaphoreObject = 5 
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   ThreadObject = 6 

   GateObject = 7 

   TimerNotificationObject = 8 

   TimerSynchronizationObject = 9 

   Spare2Object = 10 

   Spare3Object = 11 

   Spare4Object = 12 

   Spare5Object = 13 

   Spare6Object = 14 

   Spare7Object = 15 

   Spare8Object = 16 

   Spare9Object = 17 

   ApcObject = 18 

   DpcObject = 19 

   DeviceQueueObject = 20 

   EventPairObject = 21 

   InterruptObject = 22 

   ProfileObject = 23 

   ThreadedDpcObject = 24 

   MaximumKernelObject = 25

The wait list head pointers are identical, so there are no waiting threads waiting on this 

object. Dumping a wait block for an object that is part of a multiple wait from a thread, 

or that multiple threads are waiting on, could yield the following:

lkd> dt nt!_KWAIT_BLOCK 0x879796c8  

   +0x000 WaitListEntry    : _LIST_ENTRY [ 0x89d65d80 - 0x89d65d80 ] 

   +0x008 Thread           : 0x87979610 _KTHREAD 

   +0x00c Object           : 0x89d65d78  

   +0x010 NextWaitBlock    : 0x879796e0 _KWAIT_BLOCK 

   +0x014 WaitKey          : 0 

   +0x016 WaitType         : 0x1 '' 

   +0x017 SpareByte        : 0x1 ''

If the wait list had more than one entry, you could execute the same command on the 

second pointer value in the WaitListEntry field of each wait block (by executing !thread 

on the thread pointer in the wait block) to traverse the list and see what other threads 

are waiting for the object. This would indicate more than one thread waiting on this 

object. On the other hand, when dealing with an object that’s part of a collection of 

objects being waited on by a single thread, you will have to parse the NextWaitBlock 

field instead.

Keyed Events

A synchronization object called a keyed event bears special mention because of the role it 

plays in user-mode-exclusive synchronization primitives. Keyed events were originally imple-

mented to help processes deal with low-memory situations when using critical sections, a 

user-mode synchronization object we’ll see more about shortly. A keyed event, which is not 
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documented, allows a thread to specify a “key” for which it waits, where the thread wakes 

when another thread of the same process signals the event with the same key.

If there is contention, EnterCriticalSection dynamically allocates an event object, and the 

thread wanting to acquire the critical section waits for the thread that owns the critical sec-

tion to signal it in LeaveCriticalSection. Unfortunately, this introduces a new problem. Before 

keyed events were implemented, it was possible for the system to be critically out of memory 

and for critical section acquisition to fail because the system was unable to allocate the event 

object required. The low-memory condition itself may have been caused by the applica-

tion trying to acquire the critical section, so the system would deadlock in this situation. Low 

memory isn’t the only scenario that could have caused this to fail: a less likely scenario is 

handle exhaustion. If the process had reached its 16 million handle limit, the new handle for 

the event object could fail.

The failure caused by low-memory conditions would typically be an exception from the 

code responsible for acquiring the critical section. Unfortunately, the result would also 

be a damaged critical section, which made the situation hard to debug, and the object 

useless for a reacquisition attempt. Attempting a LeaveCriticalSection would attempt 

another event object allocation, further generating exceptions and corrupting the struc-

ture. An initial “solution” to the problem was introduced through a magic value to the 

InitializeCriticalSectionAndSpinCount API. By making the spin count have its high bit set 

(ORing with the 0x80000000 value), this preallocated the event, which avoided the issue but 

reverted back to the scalability problems of Windows NT 4.

Having allocated a global standard event object would not have fixed the issue, because 

standard event primitives can only be used for a single object. Each critical section in the 

process would still require its own event object, so the same problem would resurface. The 

implementation of keyed events allows multiple critical sections (waiters) to use the same 

global (per-process) keyed event handle. This allows the critical section functions to operate 

properly even when memory is temporarily low.

When a thread signals a keyed event or performs a wait on it, it uses a unique identifier called 

a key, which identifies the instance of the keyed event (an association of the keyed event to a 

single critical section). When the owner thread releases the keyed event by signaling it, only 

a single thread waiting on the key is woken up (the same behavior as synchronization events 
in contrast to notification events). Additionally, only the waiters in the current process are 

awakened, so the key is even isolated across processes, meaning that there is actually only a 

single keyed event object for the entire system. When a critical section uses the keyed event, 

EnterCriticalSection sets the key as the address of the critical section and performs a wait.

Returning to critical sections, the use of keyed events was improved even further with the 

release of Windows Vista. When EnterCriticalSection calls NtWaitForKeyedEvent to perform a 

wait on the keyed event, it can now specify a handle of NULL for the keyed event, telling the 

kernel that it was unable to create a keyed event. The kernel recognizes this behavior and 
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uses a global keyed event named ExpCritSecOutOfMemoryEvent. The primary benefit is that 

processes don’t need to waste a handle for a named keyed event anymore because the ker-

nel keeps track of the object and its references.

However, keyed events are more than just fallback objects for low-memory conditions. When 

multiple waiters are waiting on the same key and need to be woken up, the key is actually 

signaled multiple times, which requires the object to keep a list of all the waiters so that it can 

perform a “wake” operation on each of them (recall that waking a keyed event is the same as 

waking a synchronization event). However, it’s possible for a thread to signal a keyed event 

without any threads on the waiter list. In this scenario, the setting thread will actually perform 

a wait of its own! Without this fallback, it would be possible for a setter thread to signal the 

keyed event during the time that the user-mode code saw the keyed event as unsignaled 

and attempt a wait. The wait might have come after the setting thread signaled the keyed 

event, resulting in a missed pulse, so the waiting thread would deadlock. By forcing the set-

ting thread to wait in this scenario, it will only actually signal the keyed event when someone 

is looking (waiting).

Note When the keyed event wait code itself needs to perform a wait, it uses a built-in sema-

phore located in the kernel-mode thread object (ETHREAD) called KeyedWaitSemaphore. (This 

semaphore actually shares its location with the ALPC wait semaphore.) See Chapter 5 for more 

information on thread objects.

Keyed events, however, do not replace standard event objects in the critical section imple-

mentation. The initial reason, during the Windows XP timeframe, was that keyed events 

do not offer scalable performance in heavy-usage scenarios. Recall that all the algorithms 

described were only meant to be used in critical, low-memory scenarios, when performance 

and scalability aren’t all that important. To replace the standard event object would place 

strain on keyed events that they weren’t implemented to handle. The primary performance 

bottleneck was that keyed events maintained the list of waiters described in a doubly linked 

list. This kind of list has poor traversal speed, meaning the time required to loop through the 

list. In this case, this time depended on the number of waiter threads. Because the object is 

global, it would be possible for dozens of threads to be on the list, requiring long traversal 

times every single time a key was set or waited on.

Note The head of the list is kept in the keyed event object, while the threads are actually linked 

through the KeyedWaitChain field (which is actually shared with the thread’s exit time, stored 

as a LARGE_INTEGER, the same size as a doubly linked list) in the kernel-mode thread object 

(ETHREAD). See Chapter 5 for more information on this object.
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Windows improves keyed event performance by using a hash table instead of a linked list to 

hold the waiter threads. This optimization allows Windows to include three new lightweight 

user-mode synchronization primitives (to be discussed shortly) that all depend on the keyed 

event. Critical sections, however, still continue to use event objects, primarily for application 

compatibility and debugging, because the event object and internals are well-known and 

documented, while keyed events are opaque and not exposed to the Win32 API.

Fast Mutexes and Guarded Mutexes

Fast mutexes, which are also known as executive mutexes, usually offer better performance 

than mutex objects because, although they are built on dispatcher event objects, they per-

form a wait through the dispatcher only if the fast mutex is contended, unlike a standard 

mutex, which will always attempt the acquisition through the dispatcher. This gives the fast 

mutex especially good performance in a multiprocessor environment. Fast mutexes are used 

widely in device drivers.

However, fast mutexes are suitable only when normal kernel-mode APC (described earlier 

in this chapter) delivery can be disabled. The executive defines two functions for acquiring 

them: ExAcquireFastMutex and ExAcquireFastMutexUnsafe. The former function blocks all 

APC delivery by raising the IRQL of the processor to APC level. The latter expects to be called 

with normal kernel-mode APC delivery disabled, which can be done by raising the IRQL to 

APC level. Another limitation of fast mutexes is that they can’t be acquired recursively, like 

mutex objects can.

Guarded mutexes are essentially the same as fast mutexes (although they use a  different 

synchronization object, the KGATE, internally). They are acquired with the KeAcquireGuarded-
Mutex and KeAcquireGuardedMutexUnsafe functions, but instead of disabling APCs 

by raising the IRQL to APC level, they disable all kernel-mode APC delivery by calling 

KeEnterGuardedRegion. Recall that a guarded region, unlike a critical region, disables both 

special and normal kernel-mode APCs, hence allowing the guarded mutex to avoid raising 

the IRQL.

Three implementation changes made the guarded mutex faster than a fast mutex:

By avoiding raising the IRQL, the kernel can avoid talking to the local APIC of every 

processor on the bus, which is a significant operation on heavy SMP systems. On uni-

processor systems this isn’t a problem because of lazy IRQL evaluation, but lowering 

the IRQL may still require accessing the PIC.

The gate primitive is an optimized version of the event. By not having both synchro-

nization and notification versions, and by being the exclusive object that a thread can 

wait on, the code for acquiring and releasing a gate is heavily optimized. Gates even 

have their own dispatcher lock instead of acquiring the entire dispatcher database.
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In the noncontended case, acquisition and release of a guarded mutex works on a sin-

gle bit, with an atomic bit test-and-reset operation instead of the more complex integer 

operations fast mutexes perform.

Note The code for a fast mutex is also optimized to account for almost all these optimizations—

it uses the same atomic lock operation, and the event object is actually a gate object (although 

by dumping the type in the kernel debugger, you would still see an event object structure; this 

is actually a compatibility lie). However, fast mutexes still raise the IRQL instead of using guarded 

regions.

Because the flag responsible for special kernel APC delivery disabling (and the guarded 

region functionality) was not added until Windows Server 2003, most drivers do not yet 

take advantage of guarded mutexes. Doing so would raise compatibility issues with earlier 

versions of Windows, which require a recompiled driver making use only of fast mutexes. 

Internally, however, the Windows kernel has replaced almost all uses of fast mutexes with 

guarded mutexes, as the two have identical semantics and can be easily interchanged.

Another problem related to the guarded mutex was the kernel function KeAreApcsDisabled. 

Prior to Windows Server 2003, this function indicated whether normal APCs were disabled by 

checking if the code was running inside a critical section. In Windows Server 2003, this func-

tion was changed to indicate whether the code was in a critical, or guarded, region, changing 

the functionality to also return TRUE if special kernel APCs are also disabled.

Because there are certain operations that drivers should not perform when special ker-

nel APCs are disabled, it makes sense to call KeGetCurrentIrql to check whether the IRQL 

is APC level or not, which is the only way special kernel APCs could have been disabled. 

However, because the memory manager makes use of guarded mutexes instead, this 

check fails because guarded mutexes do not raise IRQL. Drivers should therefore call 

KeAreAllApcsDisabled for this purpose. This function checks whether special kernel APCs are 

disabled and/or whether the IRQL is APC level—the sure-fire way to detect both guarded 

mutexes and fast mutexes. 

Executive Resources

Executive resources are a synchronization mechanism that supports shared and exclusive 

access, and, like fast mutexes, they require that normal kernel-mode APC delivery be disabled 

before they are acquired. They are also built on dispatcher objects that are only used when 

there is contention. Executive resources are used throughout the system, especially in file-

system drivers.
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Threads waiting to acquire a resource for shared access wait for a semaphore associated with 

the resource, and threads waiting to acquire a resource for exclusive access wait for an event. 

A semaphore with unlimited count is used for shared waiters because they can all be woken 

and granted access to the resource when an exclusive holder releases the resource simply by 

signaling the semaphore. When a thread waits for exclusive access of a resource that is cur-

rently owned, it waits on a synchronization event object because only one of the waiters will 

wake when the event is signaled.

Because of the flexibility that shared and exclusive access offers, there are a number 

of functions for acquiring resources: ExAcquireResourceSharedLite, ExAcquireResource-
ExclusiveLite, ExAcquireSharedStarveExclusive, ExAcquireWaitForExclusive, and 

ExTryToAcquireResourceExclusiveLite. These functions are documented in the WDK.

EXPERIMENT: Listing Acquired Executive Resources

The kernel debugger !locks command searches paged pool for executive resource 

objects and dumps their state. By default, the command lists only executive resources 

that are currently owned, but the –d option will list all executive resources. Here is par-

tial output of the command:

lkd> !locks  

**** DUMP OF ALL RESOURCE OBJECTS ****  

KD: Scanning for held locks.  

  

Resource @ 0x89929320    Exclusively owned 

    Contention Count = 3911396 

     Threads: 8952d030-01<*> 

 

KD: Scanning for held locks.......................................  

  

Resource @ 0x89da1a68    Shared 1 owning threads  

     Threads: 8a4cb533-01<*> *** Actual Thread 8a4cb530

Note that the contention count, which is extracted from the resource structure, records 

the number of times threads have tried to acquire the resource and had to wait 

because it was already owned.

You can examine the details of a specific resource object, including the thread that 

owns the resource and any threads that are waiting for the resource, by specifying the 

–v switch and the address of the resource:

lkd> !locks -v 0x89929320     

  

Resource @ 0x89929320    Exclusively owned 

    Contention Count = 3913573 

     Threads: 8952d030-01<*>  
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     THREAD 8952d030  Cid 0acc.050c  Teb: 7ffdf000 Win32Thread: fe82c4c0 RUNNING on 

processor 0 

     Not impersonating 

     DeviceMap                 9aa0bdb8 

     Owning Process            89e1ead8       Image:         windbg.exe 

     Wait Start TickCount      24620588       Ticks: 12 (0:00:00:00.187) 

     Context Switch Count      772193              

     UserTime                  00:00:02.293 

     KernelTime                00:00:09.828 

     Win32 Start Address windbg (0x006e63b8) 

     Stack Init a7eba000 Current a7eb9c10 Base a7eba000 Limit a7eb7000 Call 0 

     Priority 10 BasePriority 8 PriorityDecrement 0 IoPriority 2 PagePriority 5 

Unable to get context for thread running on processor 1, HRESULT 0x80004001 

1 total locks, 1 locks currently held

Pushlocks

Pushlocks are another optimized synchronization mechanism built on gate objects, and, like 

guarded mutexes, they wait for a gate object only when there’s contention on the lock. They 

offer advantages over the guarded mutex in that they can be acquired in shared or exclusive 

mode. However, their main advantage is their size: a resource object is 56 bytes, but a push-

lock is pointer-size. Unfortunately, they are not documented in the WDK and are therefore 

reserved for use by the operating system (although the APIs are exported, so internal drivers 

do use them).

There are two types of pushlocks: normal and cache-aware. Normal pushlocks require only 

the size of a pointer in storage (4 bytes on 32-bit systems, and 8 bytes on 64-bit systems). 

When a thread acquires a normal pushlock, the pushlock code marks the pushlock as owned 

if it is not currently owned. If the pushlock is owned exclusively or the thread wants to 

acquire the thread exclusively and the pushlock is owned on a shared basis, the thread allo-

cates a wait block on the thread’s stack, initializes a gate object in the wait block, and adds 

the wait block to the wait list associated with the pushlock. When a thread releases a push-

lock, the thread wakes a waiter, if any are present, by signaling the event in the waiter’s wait 

block.

Because a pushlock is only pointer-sized, it actually contains a variety of bits to describe its 

state. The meaning of those bits changes as the pushlock changes from being contended to 

noncontended. In its initial state, the pushlock contains the following structure:

1 lock bit, set to 1 if the lock is acquired

1 waiting bit, set to 1 if the lock is contended and someone is waiting on it

1 waking bit, set to 1 if the lock is being granted to a thread and the waiter’s list needs 

to be optimized
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1 multiple shared bit, set to 1 if the pushlock is shared and currently acquired by more 

than one thread

28 share count bits, containing the number of threads that have acquired the pushlock

As discussed previously, when a thread acquires a pushlock exclusively while the pushlock 

is already acquired by either multiple readers or a writer, the kernel will allocate a pushlock 

wait block. The structure of the pushlock value itself changes. The 28 share count bits now 

become the pointer to the wait block. Because this wait block is allocated on the stack and 

the header files contain a special alignment directive to force it to be 16-byte aligned, the 

bottom 4 bits of any pushlock wait-block structure will be all zeros. Therefore, those bits are 

ignored for the purposes of pointer dereferencing, and instead, the 4 bits shown earlier are 

combined with the pointer value. Because this alignment removes the share count bits, the 

share count is now stored in the wait block instead.

A cache-aware pushlock adds layers to the normal (basic) pushlock by allocating a pushlock 

for each processor in the system and associating it with the cache-aware pushlock. When 

a thread wants to acquire a cache-aware pushlock for shared access, it simply acquires the 

pushlock allocated for its current processor in shared mode; to acquire a cache-aware push-

lock exclusively, the thread acquires the pushlock for each processor in exclusive mode.

Other than a much smaller memory footprint, one of the large advantages that pushlocks 

have over executive resources is that in the noncontended case they do not require lengthy 

accounting and integer operations to perform acquisition or release. By being as small as a 

pointer, the kernel can use atomic CPU instructions to perform these tasks (lock cmpxchg is 

used, which atomically compares and exchanges the old lock with a new lock). If the atomic 

compare and exchange fails, the lock contains values the caller did not expect (callers usu-

ally expect the lock to be unused or acquired as shared), and a call is then made to the more 

complex contended version. To push performance even further, the kernel exposes the push-

lock functionality as inline functions, meaning that no function calls are ever generated dur-

ing noncontended acquisition—the assembly code is directly in each function. This increases 

code size slightly, but it avoids the slowness of a function call. Finally, pushlocks use several 

algorithmic tricks to avoid lock convoys (a situation that can occur when multiple threads of 

the same priority are all waiting on a lock and no actual work gets done), and they are also 

self-optimizing: the list of threads waiting on a pushlock will be periodically rearranged to 

provide fairer behavior when the pushlock is released.

Areas in which pushlocks are used include the object manager, where they protect global 

object manager data structures and object security descriptors, and the memory manager, 

where they protect Address Windowing Extension (AWE) data structures. 
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Deadlock Detection with Driver Verifier

A deadlock is a synchronization issue resulting from two threads or processors holding 

resources that the other wants and neither yielding what it has. This situation might 

result in system or process hangs. Driver Verifier, described in Chapter 7 and Chapter 

9, has an option to check for deadlocks involving spinlocks, fast mutexes, and mutexes. 

For information on when to enable Driver Verifier to help resolve system hangs, see 

Chapter 14.

Critical Sections

Critical sections are one of the main synchronization primitives that Windows provides to 

user-mode applications on top of the kernel-based synchronization primitives. Critical sec-

tions and the other user-mode primitives we’ll see later have one major advantage over their 

kernel counterparts, which is saving a round-trip to kernel mode in cases in which the lock is 

noncontended (which is typically 99% of the time or more). Contended cases will still require 

calling the kernel, however, because it is the only piece of the system that is able to perform 

the complex waking and dispatching logic required to make these objects work. 

Critical sections are able to remain in user mode by using a local bit to provide the main 

exclusive locking logic, much like a spinlock. If the bit is 0, the critical section can be acquired, 

and the owner sets the bit to 1. This operation doesn’t require calling the kernel but uses the 

interlocked CPU operations discussed earlier. Releasing the critical section behaves similarly, 

with bit state changing from 1 to 0 with an interlocked operation. On the other hand, as you 

can probably guess, when the bit is already 1 and another caller attempts to acquire the criti-

cal section, the kernel must be called to put the thread in a wait state.

Critical sections also provide more fine-grained locking mechanisms than kernel primitives. 

A critical section can be acquired for shared or for exclusive mode, allowing it to function as 

a multiple-reader (shared), single-writer (exclusive) lock for data structures such as databases. 

When a critical section is acquired in shared mode and other threads attempt to acquire the 

same critical section, no trip to the kernel is required because none of the threads will be 

waiting. Only when a thread attempts to acquire the critical section for exclusive access, or 

the critical section is already locked by an exclusive owner, will this be required.

To make use of the same dispatching and synchronization mechanism we’ve seen in the 

kernel, critical sections actually make use of existing kernel primitives. A critical section data 

structure actually contains a kernel mutex as well as a kernel semaphore object. When the 

critical section is acquired exclusively by more than one thread, the mutex is used because it 

permits only one owner. When the critical section is acquired in shared mode by more than 

one thread, a semaphore is used because it allows multiple owner counts. This level of detail 
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is typically hidden from the programmer, and these internal objects should never be used 

directly.

Finally, because critical sections are actually not full-blown kernel objects, they do have cer-

tain limitations. The primary one is that you cannot obtain a kernel handle to a critical sec-

tion, and as such, no security, naming, or other object manager functionality can be applied 

to a critical section. Two processes cannot use the same critical section to coordinate their 

operations, nor can duplication or inheritance be used.

Condition Variables

Condition variables provide a Windows native implementation for synchronizing a set of 

threads that are waiting on a specific result to a conditional test. While this operation was 

possible with other user-mode synchronization methods, there was no atomic mechanism to 

check the result of the conditional test and to begin waiting on a change in the result. This 

required that additional synchronization be used around such pieces of code.

A user-mode thread initializes a condition variable by calling InitializeConditionVariable 

to set up the initial state. When it wants to initiate a wait on the variable, it can call 

SleepConditionVariableCS, which uses a critical section (that the thread must have initialized) 

to wait for changes to the variable. The setting thread must use WakeConditionVariable (or 

WakeAllConditionVariable) after it has modified the variable (there is no automatic detec-

tion mechanism). This call will release the critical section of either one or all waiting threads, 

depending on which function was used.

Before condition variables, it was common to use either a notification event or a synchroniza-
tion event (recall that these are referred to as auto-reset or manual-reset in the Windows API) 

to signal the change to a variable such as the state of a worker queue. Waiting for a change 

required a critical section to be acquired and then released, followed by a wait on an event. 

After the wait, the critical section would have to be re-acquired. During this series of acquisi-

tions and releases, the thread may have switched contexts, causing problems if one of the 

threads called PulseEvent (a similar problem to the one that keyed events solve by forcing a 

wait for the setting thread if there is no waiter). With condition variables, acquisition of the 

critical section can be maintained by the application while SleepConditionVariableCS is called 

and be released only after the actual work is done. This makes writing work-queue code (and 

similar implementations) much simpler and predictable. 

Internally, conditional variables can be thought of as a port of the existing pushlock algo-

rithms present in kernel mode, with the additional complexity of acquiring and releasing crit-

ical sections in the SleepConditionVariableCS API. Conditional variables are pointer-size ( just 

like pushlocks), avoid using the dispatcher (which requires a ring transition to kernel mode in 

this scenario, making the advantage even more noticeable), automatically optimize the wait 

list during wait operations, and protect against lock convoys. Additionally, condition variables 
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make full use of keyed events instead of the regular event object that developers would have 

used on their own, which makes even contended cases more optimized.

Slim Reader Writer Locks

Although condition variables are a synchronization mechanism, they are not fully primitive 

locking objects. As we’ve seen, they still depend on the critical section lock, whose acquisi-

tion and release uses standard dispatcher event objects, so trips through kernel mode can 

still happen and callers still require the initialization of the large critical section object. If 

condition variables share a lot of similarities with pushlocks, slim reader writer (SRW) locks are 

nearly identical. They are also pointer-size, use atomic operations for acquisition and release, 

rearrange their waiter lists, protect against lock convoys, and can be acquired both in shared 

and exclusive mode. Some differences from pushlocks, however, include the fact that SRW 

locks cannot be “upgraded” or converted from shared to exclusive or vice versa. Additionally, 

they cannot be recursively acquired. Finally, SRW locks are exclusive to user-mode code, while 

pushlocks are exclusive to kernel-mode code, and the two cannot be shared or exposed from 

one layer to the other.

Not only can SRW locks entirely replace critical sections in application code, but they also 

offer multiple-reader, single-writer functionality. SRW locks must first be initialized with 

InitializeSRWLock, after which they can be acquired or released in either exclusive or shared 

mode with the appropriate APIs: AcquireSRWLockExclusive, ReleaseSRWLockExclusive, 
AcquireSRWLockShared, and ReleaseSRWLockShared. 

Note Unlike most other Windows APIs, the SRW locking functions do not return with a value— 

instead they generate exceptions if the lock could not be acquired. This makes it obvious that 

an acquisition has failed so that code that assumes success will terminate instead of potentially 

proceeding to corrupt user data. 

The Windows SRW locks do not prefer readers or writers, meaning that the performance for 

either case should be the same. This makes them great replacements for critical sections, 

which are writer-only or exclusive synchronization mechanisms. If SRW locks were optimized 

for readers, they would be poor exclusive-only locks, but this isn’t the case. As a result, the 

design of the condition variable mechanism introduced earlier also allows for the use of SRW 

locks instead of critical sections, through the SleepConditionVariableSRW API. Finally, SRW 

locks also use keyed events instead of standard event objects, so the combination of condi-

tion variables and SRW locks results in scalable, pointer-size synchronization mechanisms 

with very few trips to kernel mode—except in contended cases, which are optimized to take 

less time and memory to wake and set because of the use of keyed events.
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Run Once Initialization

The ability to guarantee the atomic execution of a piece of code responsible for performing 

some sort of initialization task—such as allocating memory, initializing certain variables, or 

even creating objects on demand—is a typical problem in multithreaded programming. In a 

piece of code that can be called simultaneously by multiple threads (a good example is the 

DllMain routine, which initializes DLLs) there are several ways of attempting to ensure the 

correct, atomic, and unique execution of initialization tasks.

In this scenario, Windows implements init once, or one-time initialization (also called run 
once initialization internally). This mechanism allows for both synchronous (meaning that the 

other threads must wait for initialization to complete) execution of a certain piece of code, as 

well as asynchronous (meaning that the other threads can attempt to do their own initializa-

tion and race) execution. We’ll look at the logic behind asynchronous execution later after 

explaining the synchronous mechanism.

In the synchronous case, the developer writes the piece of code that would normally have 

executed after double-checking the global variable in a dedicated function. Any information 

that this routine needs can be passed through the parameter variable that the init-once rou-

tine accepts. Any output information is returned through the context variable (the status of 

the initialization itself is returned as a Boolean). All the developer has to do to ensure proper 

execution is call InitOnceExecuteOnce with the parameter, context, and run-once function 

pointer after initializing an InitOnce object with InitOnceInitialize API. The system will take 

care of the rest.

For applications that want to use the asynchronous model instead, the threads call 

InitOnceBeginInitialize and receive a pending status and the context described earlier. If the 

pending status is FALSE, initialization has already taken place, and the thread uses the context 

value for the result. (It’s also possible for the function itself to return FALSE, meaning that 

initialization failed.) However, if the pending status comes back as TRUE, the thread should 

now race to be the first to create the object. The code that will follow will perform whatever 

initialization tasks are required, such as creating some sort of object or allocating memory. 

When this work is done, the thread calls InitOnceComplete with the result of the work as the 

context and receives a status. If the status is TRUE, the thread won the race, and the object 

it created or allocated should be the global object. The thread can now save this object or 

return it to a caller, depending on the usage.

In a more complex scenario when the status is FALSE, this means that the thread lost the 

race. The thread must now undo all the work it did, such as deleting the object or freeing the 

memory, and then call InitOnceBeginInitialize again. However, instead of requesting to start a 

race as it did initially, it uses the INIT_ONCE_CHECK_ONLY flag, knowing that it has lost, and 

requests the winner’s context instead (for example, the object or memory that had to be cre-

ated or allocated). This returns another status, which can be TRUE, meaning that the context 

is valid and should be used or returned to the caller, or FALSE, meaning that initialization 
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failed and nobody has actually been able to perform the work (such as in the case of a low-

memory condition, perhaps).

In both cases, the mechanism for run once initialization is similar to the mechanism for condi-

tion variables and slim reader writer locks. The init once structure is pointer-size, and inline 

assembly versions of the SRW acquisition/release code are used for the noncontended case, 

while keyed events are used when contention has occurred (which happens when the mecha-

nism is used in synchronous mode) and the other threads must wait for initialization. In the 

asynchronous case, the locks are used in shared mode, so multiple threads can perform ini-

tialization at the same time.

System Worker Threads

During system initialization, Windows creates several threads in the System process, called 

system worker threads, which exist solely to perform work on behalf of other threads. In 

many cases, threads executing at DPC/dispatch level need to execute functions that can be 

performed only at a lower IRQL. For example, a DPC routine, which executes in an arbitrary 

thread context (because DPC execution can usurp any thread in the system) at DPC/dispatch 

level IRQL, might need to access paged pool or wait for a dispatcher object used to synchro-

nize execution with an application thread. Because a DPC routine can’t lower the IRQL, it 

must pass such processing to a thread that executes at an IRQL below DPC/dispatch level.

Some device drivers and executive components create their own threads dedicated to pro-

cessing work at passive level; however, most use system worker threads instead, which avoids 

the unnecessary scheduling and memory overhead associated with having additional threads 

in the system. An executive component requests a system worker thread’s services by call-

ing the executive functions ExQueueWorkItem or IoQueueWorkItem. Device drivers should 

only use the latter (because this associates the work item with a Device object, allowing for 

greater accountability and the handling of scenarios in which a driver unloads while its work 

item is active). These functions place a work item on a queue dispatcher object where the 

threads look for work. (Queue dispatcher objects are described in more detail in the section 

“I/O Completion Ports” in Chapter 7.) 

The IoQueueWorkItemEx, IoSizeofWorkItem, IoInitializeWorkItem, and IoUninitializeWorkItem 

APIs act similarly, but they create an association with a driver’s Driver object or one of its 

Device objects. 

Work items include a pointer to a routine and a parameter that the thread passes to the rou-

tine when it processes the work item. The device driver or executive component that requires 

passive-level execution implements the routine. For example, a DPC routine that must wait 

for a dispatcher object can initialize a work item that points to the routine in the driver that 
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waits for the dispatcher object, and perhaps points to a pointer to the object. At some stage, 

a system worker thread will remove the work item from its queue and execute the driver’s 

routine. When the driver’s routine finishes, the system worker thread checks to see whether 

there are more work items to process. If there aren’t any more, the system worker thread 

blocks until a work item is placed on the queue. The DPC routine might or might not have 

finished executing when the system worker thread processes its work item. 

There are three types of system worker threads:

Delayed worker threads execute at priority 12, process work items that aren’t consid-

ered time-critical, and can have their stack paged out to a paging file while they wait 

for work items. The object manager uses a delayed work item to perform deferred 

object deletion, which deletes kernel objects after they have been scheduled for 

freeing.

Critical worker threads execute at priority 13, process time-critical work items, and on 

Windows Server systems have their stacks present in physical memory at all times.

A single hypercritical worker thread executes at priority 15 and also keeps its stack in 

memory. The process manager uses the hypercritical work item to execute the thread 

“reaper” function that frees terminated threads.

The number of delayed and critical worker threads created by the executive’s ExpWorker-
Initialization function, which is called early in the boot process, depends on the amount 

of memory present on the system and whether the system is a server. Table 3-18 shows 

the initial number of threads created on default configurations. You can specify that 

ExpInitializeWorker create up to 16 additional delayed and 16 additional critical worker 

threads with the AdditionalDelayedWorkerThreads and AdditionalCriticalWorkerThreads 

values under the registry key HKLM\SYSTEM\CurrentControlSet\Control\Session Manager\

Executive.

TABLE 3-18 Initial Number of System Worker Threads

Work Queue Type Default Number of Threads

Delayed 7

Critical 5

Hypercritical 1

The executive tries to match the number of critical worker threads with changing workloads 

as the system executes. Once every second, the executive function ExpWorkerThreadBalance-
Manager determines whether it should create a new critical worker thread. The critical worker 

threads that are created by ExpWorkerThreadBalanceManager are called dynamic worker 
threads, and all the following conditions must be satisfied before such a thread is created:

Work items exist in the critical work queue.
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The number of inactive critical worker threads (ones that are either blocked waiting for 

work items or that have blocked on dispatcher objects while executing a work routine) 

must be less than the number of processors on the system.

There are fewer than 16 dynamic worker threads.

Dynamic worker threads exit after 10 minutes of inactivity. Thus, when the workload dictates, 

the executive can create up to 16 dynamic worker threads.

EXPERIMENT: Listing System Worker Threads

You can use the !exqueue kernel debugger command to see a listing of system worker 

threads classified by their type:

lkd> !exqueue 

Dumping ExWorkerQueue: 820FDE40 

 

**** Critical WorkQueue( current = 0 maximum = 2 ) 

THREAD 861160b8  Cid 0004.001c  Teb: 00000000 Win32Thread: 00000000 WAIT 

THREAD 8613b020  Cid 0004.0020  Teb: 00000000 Win32Thread: 00000000 WAIT 

THREAD 8613bd78  Cid 0004.0024  Teb: 00000000 Win32Thread: 00000000 WAIT 

THREAD 8613bad0  Cid 0004.0028  Teb: 00000000 Win32Thread: 00000000 WAIT 

THREAD 8613b828  Cid 0004.002c  Teb: 00000000 Win32Thread: 00000000 WAIT 

 

**** Delayed WorkQueue( current = 0 maximum = 2 ) 

THREAD 8613b580  Cid 0004.0030  Teb: 00000000 Win32Thread: 00000000 WAIT 

THREAD 8613b2d8  Cid 0004.0034  Teb: 00000000 Win32Thread: 00000000 WAIT 

THREAD 8613c020  Cid 0004.0038  Teb: 00000000 Win32Thread: 00000000 WAIT 

THREAD 8613cd78  Cid 0004.003c  Teb: 00000000 Win32Thread: 00000000 WAIT 

THREAD 8613cad0  Cid 0004.0040  Teb: 00000000 Win32Thread: 00000000 WAIT 

THREAD 8613c828  Cid 0004.0044  Teb: 00000000 Win32Thread: 00000000 WAIT 

THREAD 8613c580  Cid 0004.0048  Teb: 00000000 Win32Thread: 00000000 WAIT 

 

**** HyperCritical WorkQueue( current = 0 maximum = 2 ) 

THREAD 8613c2d8  Cid 0004.004c  Teb: 00000000 Win32Thread: 00000000 WAIT

Windows Global Flags

Windows has a set of flags stored in a systemwide global variable named NtGlobalFlag that 

enable various internal debugging, tracing, and validation support in the operating sys-

tem. The system variable NtGlobalFlag is initialized from the registry key HKLM\SYSTEM\

CurrentControlSet\Control\Session Manager in the value GlobalFlag at system boot time. By 

default, this registry value is 0, so it’s likely that on your systems, you’re not using any global 

flags. In addition, each image has a set of global flags that also turn on internal tracing and 

validation code (although the bit layout of these flags is entirely different from the system-

wide global flags). 
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Fortunately, the Windows SDK and the debugging tools contain a utility named Gflags.exe 

that allows you to view and change the system global flags (either in the registry or in the 

running system) as well as image global flags. Gflags has both a command-line and a GUI 

interface. To see the command-line flags, type gflags /?. If you run the utility without any 

switches, the dialog box shown in Figure 3-25 is displayed.

FIGURE 3-25 Setting system debugging options with Gflags

You can configure a variable’s settings in the registry on the System Registry page or the cur-

rent value of a variable in system memory on the Kernel Flags page. You must click the Apply 

button to make the changes. (You’ll exit if you click the OK button.) 

The Image File page requires you to fill in the file name of an executable image. Use this 

option to change a set of global flags that apply to an individual image (rather than to the 

whole system). In Figure 3-26, notice that the flags are different from the operating system 

ones shown in Figure 3-25.



202 Windows Internals, Fifth Edition

FIGURE 3-26 Setting image global flags with Gflags

EXPERIMENT: Viewing and Setting NtGlobalFlag

You can use the !gflag kernel debugger command to view and set the state of the 

NtGlobalFlag kernel variable. The !gflag command lists all the flags that are enabled. 

You can use !gflag -? to get the entire list of supported global flags.

lkd> !gflag 

Current NtGlobalFlag contents: 0x00004400 

    ptg - Enable pool tagging 

    otl - Maintain a list of objects for each type

Advanced Local Procedure Calls (ALPCs)

An advanced local procedure call (ALPC) is an interprocess communication facility for high-

speed message passing. It is not directly available through the Windows API; it is an internal 

mechanism available only to Windows operating system components. Here are some exam-

ples of where ALPCs are used:

Windows applications that use remote procedure calls (RPCs), a documented API, indi-

rectly use ALPCs when they specify local-RPC, a form of RPC used to communicate 

between processes on the same system.
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A few Windows APIs result in sending messages to the Windows subsystem process.

Winlogon uses ALPCs to communicate with the local security authentication server pro-

cess, LSASS.

The security reference monitor (an executive component explained in Chapter 6) uses 

ALPCs to communicate with the LSASS process.

Note Before ALPCs were introduced in Windows Vista, the kernel supported an IPC  mechanism 

called simply LPC (local procedure call). LPC’s scalability limitations and inherent deadlock 

 scenarios made them a poor choice for the implementation of the User-Mode Driver Framework 

(UMDF), which requires high-speed, scalable communication with UMDF components in the 

executive to perform hardware operations. Supporting UMDF was one of the many reasons the 

ALPC mechanism was written to supplant LPC. (For more information on UMDF, see Chapter 7.)

EXPERIMENT: Viewing ALPC Port Objects

You can see named ALPC port objects with the WinObj tool from Sysinternals. Run 

Winobj.exe and select the root directory. A gear icon identifies the port objects, as 

shown here:
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To see the ALPC port objects used by RPC, select the \RPC Control directory, as 

shown here:

Typically, ALPCs are used between a server process and one or more client processes of 

that server. An ALPC connection can be established between two user-mode processes or 

between a kernel-mode component and a user-mode process. For example, as noted in 

Chapter 2, Windows processes send occasional messages to the Windows subsystem by using 

ALPCs. Also, some system processes use ALPCs to communicate, such as Winlogon and Lsass. 

An example of a kernel-mode component using an ALPC to talk to a user process is the com-

munication between the security reference monitor and the Lsass process.

ALPCs support the following three methods of exchanging messages:

A message that is shorter than 256 bytes can be sent by calling the ALPC with a buf-

fer containing the message. This message is then copied from the address space of the 

sending process into system address space, and from there to the address space of the 

receiving process.

If a client and a server want to exchange more than 256 bytes of data, they can choose 

to use a shared section to which both are mapped. The sender places message data 
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in the shared section and then sends a small message to the receiver with pointers to 

where the data is to be found in the shared section.

When a server wants to read or write larger amounts of data than will fit in a shared 

section, data can be directly read from or written to a client’s address space. 

An ALPC exports a single executive object called the port object to maintain the state needed 

for communication. Although an ALPC uses a single ALPC port object, it has several kinds of 

ports:

Server connection port A named port that is a server connection request point. 

Clients can connect to the server by connecting to this port.

Server communication port An unnamed port a server uses to communicate with a 

particular client. The server has one such port per active client.

Client communication port An unnamed port a particular client thread uses to com-

municate with a particular server.

ALPCs are typically used as follows: A server creates a named server connection port object. 

A client makes a connect request to this port. If the request is granted, two new unnamed 

ports, a client communication port and a server communication port, are created. The 

 client gets a handle to the client communication port, and the server gets a handle to the 

server communication port. The client and the server will then use these new ports for their 

communication.

ALPC supports several features and behaviors that offer communication abilities for pro-

cesses. For example, applications can create their own sections to associate with an ALPC port 

and manage (create and delete) views of the section. As mentioned earlier, when a server 

wants to read or write larger amounts of data than will fit in a shared section, data can be 

directly read from or written to a client’s address space. The ALPC component supplies two 

functions that a server can use to accomplish this. A message sent by the first function is used 

to synchronize the message passing. Another option is to create a message zone, a locked-

down buffer in system memory that will never be paged out and allows messages to be 

copied back and forth without attaching to the correct process, which is useful when using 

the I/O completion port feature described later. Yet a third capability in terms of memory 

requirements is to request the kernel to reserve ALPC resources so that messages can still be 

delivered during low-memory situations (such messages may be critical to solving or notify-

ing the kernel about the situation in the first place). 

From a throughput and performance point of view, ALPC ports can be configured to per-

form work over an I/O completion port instead of the typical request/reply synchronous 

wait mechanism that LPCs use. This allows for large-scale communication to occur, and the 

ALPC port object will automatically balance the number of messages and threads for high-

speed communication. Additionally, ALPC messages can be batched together so that multiple 

replies and requests can be sent, minimizing trips from user to kernel mode and vice versa. 
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Finally, apart from limits on message data and header size, applications can also set band-

width limits and maximum section, view, and pool usage.

The ALPC mechanism is also secured. ALPC objects are managed by the same object man-

ager interfaces that manage object security, and secure ports can be created, allowing only 

a specific SID to use them. Applications can also easily get a handle to the sender thread 

(and process) of an ALPC message to perform actions such as impersonation. Furthermore, 

applications have fine control over the security context associated with an ALPC port—for 

example, they can set and query per-message SID information, as well as test for changes in 

the security context of a token associated with the ALPC message. 

ALPC messages can be fully logged and traced to any thread participating in ALPC commu-

nications. Additionally, new Event Tracing for Windows (ETW) messages and logging can be 

enabled for IT administrators and troubleshooters to monitor ALPC messages.

A completed connection between a client and a server is shown in Figure 3-27.
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FIGURE 3-27 Use of ALPC ports
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Kernel Event Tracing

Various components of the Windows kernel and several core device drivers are instrumented 

to record trace data of their operations for use in system troubleshooting. They rely on a 

common infrastructure in the kernel that provides trace data to the user-mode Event Tracing 

for Windows (ETW) facility. An application that uses ETW falls into one or more of three 

categories:

Controller A controller starts and stops logging sessions and manages buffer pools.

Provider A provider defines GUIDs (globally unique identifiers) for the event classes it 

can produce traces for and registers them with ETW. The provider accepts commands 

from a controller for starting and stopping traces of the event classes for which it’s 

responsible.

Consumer A consumer selects one or more trace sessions for which it wants to read 

trace data. They can receive the events in buffers in real-time or in log files.

Windows Server systems include several built-in providers in user mode, including ones for 

Active Directory, Kerberos, and Netlogon. ETW defines a logging session with the name NT 

Kernel Logger (also known as the kernel logger) for use by the kernel and core drivers. The 

provider for the NT Kernel Logger is implemented by the ETW code in Ntoskrnl.exe and by 

the core drivers sending traces.

When a controller in user mode enables the kernel logger, the ETW library, which is imple-

mented in \Windows\System32\Ntdll.dll, calls the NtTraceControl system call, telling the ETW 

code in the kernel which event classes the controller wants to start tracing. If file logging is 

configured (as opposed to in-memory logging to a buffer), the kernel creates a system thread 

in the system process that creates a log file. When the kernel receives trace events from the 

enabled trace sources, it records them to a buffer. If it was started, the file logging thread 

wakes up once per second to dump the contents of the buffers to the log file.

Trace records generated for the kernel logger have a standard ETW trace event header, which 

records time stamp, process, and thread IDs, as well as information on what class of event the 

record corresponds to. Event classes can provide additional data specific to their events. For 

example, disk event class trace records indicate the operation type (read or write), disk num-

ber at which the operation is directed, and sector offset and length of the operation.

The trace classes that can be enabled for the kernel logger and the component that gener-

ates each class include:

Disk I/O Disk class driver

File I/O File system drivers

File I/O Completion File system drivers
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Hardware Configuration Plug and Play manager (See Chapter 7 for information on 

the Plug and Play manager.)

Image Load/Unload The system image loader in the kernel

Page Faults Memory manager (See Chapter 9 for more information on page faults.)

Hard Page Faults Memory manager

Process Create/Delete Process manager (See Chapter 5 for more information on the 

process manager.)

Thread Create/Delete Process manager

Registry Activity Configuration manager (See “The Registry” section in Chapter 4 for 

more information on the configuration manager.)

Network TCP/IP  TCP/IP driver

Process Counters Process manager

Context Switches Kernel dispatcher

Deferred Procedure Calls Kernel dispatcher

Interrupts Kernel dispatcher

System Calls Kernel dispatcher

Sample Based Profiling Kernel dispatcher and HAL

Driver Delays I/O manager

ALPC Advanced local procedure call

You can find more information on ETW and the kernel logger, including sample code for 

controllers and consumers, in the Windows SDK.

EXPERIMENT: Tracing TCP/IP Activity with the Kernel Logger

To enable the kernel logger and have it generate a log file of TCP/IP activity, follow 

these steps:

 1. Run the Reliability and Performance Monitor, and click on Data Collector Sets, 

User Defined.

 2. Right-click on User Defined, choose New, and select Data Collector Set.

 3. When prompted, enter a name for the data collector set (for example, experi-

ment), and choose Create Manually (Advanced).
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 4. In the dialog box that opens, select Create Data Logs, check Event Trace Data, and 

then click Next. In the Providers area, click Add, and locate Windows Kernel Trace. 

In the Properties list, select Keywords(Any), and then click Edit. 

 5. From this list, check only Net for Network TCP/IP, and then click OK.
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 6. Select a location to save the files. By default, this location is C:\Perflogs\experi-

ment\, if this is how you named the data collector set. Click Next, and in the Run 

As edit box, enter the Administrator account name and set the password to match 

it. Click Finish. You should now see a window similar to the one shown here:

 7. Right-click on “experiment” (or whatever name you gave your data collector set), 

and then click Start. Now generate some network activity by opening a browser 

and visiting a Web site.

 8. Right-click on the data collector set node again, and then click Stop.

 9. Open a command prompt, and change to the C:\Perflogs\experiment\00001 

directory (or the directory into which you specified that the trace log file be 

stored).

 10. Run tracerpt and pass it the name of the trace log file:

tracerpt DataCollector01.etl –o dumpfile.csv –of CSV

 11. Open dumpfile.csv in Microsoft Excel or in a text editor. You should see TCP and/

or UDP trace records like the following: 

TcpIp  SendIPV4  0xFFFFFFFF 1.28663E+17 0 0 1992 1388  157.54.86.28  172.31.234.35 80 49414 646659 646661

UdpIp  RecvIPV4  0xFFFFFFFF 1.28663E+17 0 0 4 50  172.31.239.255  172.31.233.110 137 137 0  0x0

UdpIp  RecvIPV4  0xFFFFFFFF 1.28663E+17 0 0 4 50  172.31.239.255  172.31.234.162 137 137 0  0x0

TcpIp  RecvIPV4  0xFFFFFFFF 1.28663E+17 0 0 1992 1425  157.54.86.28  172.31.234.35 80 49414 0  0x0

TcpIp  RecvIPV4  0xFFFFFFFF 1.28663E+17 0 0 1992 1380  157.54.86.28  172.31.234.35 80 49414 0  0x0

TcpIp  RecvIPV4  0xFFFFFFFF 1.28663E+17 0 0 1992 45  157.54.86.28  172.31.234.35 80 49414 0  0x0

TcpIp  RecvIPV4  0xFFFFFFFF 1.28663E+17 0 0 1992 1415  157.54.86.28  172.31.234.35 80 49414 0  0x0

TcpIp  RecvIPV4  0xFFFFFFFF 1.28663E+17 0 0 1992 740  157.54.86.28  172.31.234.35 80 49414 0  0x0
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Wow64

Wow64 (Win32 emulation on 64-bit Windows) refers to the software that permits the execu-

tion of 32-bit x86 applications on 64-bit Windows. It is implemented as a set of user-mode 

DLLs:

Wow64.dll: Manages process and thread creation, and hooks exception dispatching and 

base system calls exported by Ntoskrnl.exe. It also implements file system redirection 

and registry redirection and reflection.

Wow64Cpu.dll: Manages the 32-bit CPU context of each running thread inside Wow64 

and provides processor architecture-specific support for switching CPU mode from 

32-bit to 64-bit and vice versa.

Wow64Win.dll: Intercepts the GUI system calls exported by Win32k.sys.

IA32Exec.bin and Wowia32x.dll on IA64 systems: Contain the IA-32 software emulator 

and its interface library. Because Itanium processors cannot natively execute x86 32-bit 

instructions, software emulation is required through the use of these two additional 

components.

The relationship of these DLLs is shown in Figure 3-28.

32-bit EXE, DLLs

32-bit Ntdll.dll

Wow64cpu.dll

Wow64.dll Wow64win.dll

64-bit Ntdll.dll

Ntoskrnl.exe Win32k.sys

User32.dllGdi32.dll

FIGURE 3-28 Wow64 architecture 

Wow64 Process Address Space Layout

Wow64 processes may run with 2 GB or 4 GB of virtual space. If the image header has the 

large address aware flag set, then the memory manager will reserve the user-mode address 

space above the 4 GB boundary through the end of the user-mode boundary. If the image 

is not marked large address space aware, the memory manager will reserve the user-mode 

address space above 2 GB. (For more information on large address space support, see the 

section “x86 User Address Space Layouts” in Chapter 9.)
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System Calls

Wow64 hooks all the code paths where 32-bit code would transition to the native 64-bit 

system or when the native system needs to call into 32-bit user-mode code. During process 

creation, the process manager maps into the process address space the native 64-bit Ntdll.dll, 

as well as the 32-bit Ntdll.dll for Wow64 processes. When the loader initialization is called, it 

calls the Wow64 initialization code inside Wow64.dll. Wow64 then sets up the startup context 

inside Ntdll, switches the CPU mode to 32-bits, and starts executing the 32-bit loader. From 

this point onward, execution continues as if the process is running on a native 32-bit system.

Special 32-bit versions of Ntdll.dll, User32.dll, and Gdi32.dll are located in the \Windows\

Syswow64 folder. These call into Wow64 rather than issuing the native 32-bit system call 

instruction. Wow64 transitions to native 64-bit mode, captures the parameters associated 

with the system call (converting 32-bit pointers to 64-bit pointers), and issues the corre-

sponding native 64-bit system call. When the native system call returns, Wow64 converts any 

output parameters if necessary from 64-bit to 32-bit formats before returning to 32-bit mode.

Exception Dispatching

Wow64 hooks exception dispatching through Ntdll’s KiUserExceptionDispatcher. Whenever 

the 64-bit kernel is about to dispatch an exception to a Wow64 process, Wow64 captures the 

native exception and context record in user mode and then prepares a 32-bit exception and 

context record and dispatches it the same way the native 32-bit kernel would do.

User Callbacks

Wow64 intercepts all callbacks from the kernel into user mode. Wow64 treats such calls as 

system calls; however, the data conversion is done in the reverse order: input parameters are 

converted from 64 bits to 32 bits and output parameters are converted when the callback 

returns from 32 bits to 64 bits.

File System Redirection

To maintain application compatibility and to reduce the effort of porting applications from 

Win32 to 64-bit Windows, system directory names were kept the same. Therefore, the 

\Windows\System32 folder contains native 64-bit images. Wow64, as it hooks all the sys-

tem calls, translates all the path-related APIs and replaces the path name of the \Windows\

System32 folder with \Windows\Syswow64. Wow64 also redirects \Windows\LastGood 

to \Windows\LastGood\syswow64 and \Windows\Regedit.exe to \Windows\syswow64\

Regedit.exe. Through the use of system environment variables, the %PROGRAMFILES% 

 variable is also set to \Program Files (x86) for 32-bit applications, while it is set to the normal 

\Program Files folder for 64-bit applications.
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Note Because certain 32-bit applications may indeed be aware and able to deal with 64-bit 

images, a virtual directory, \Windows\Sysnative, allows any I/Os originating from a 32-bit applica-

tion to this directory to be exempted from file redirection. This directory doesn’t actually exist—

it is a virtual path that allows access to the real System32 directory, even from an application 

running under Wow64.

There are a few subdirectories of \Windows\System32 that, for compatibility reasons, are 

exempted from being redirected such that accesses to them made by 32-bit applications 

actually access the real one. These directories include:

%windir%\system32\drivers\etc

%windir%\system32\spool

%windir%\system32\catroot and %windir%\system32\catroot2

%windir%\system32\logfiles

Finally, Wow64 provides a mechanism to control the file system redirection built into 

Wow64 on a per-thread basis through the Wow64DisableWow64FsRedirection and 

Wow64RevertWow64FsRedirection functions.

Registry Redirection and Reflection

Applications and components store their configuration data in the registry. Components usu-

ally write their configuration data in the registry when they are registered during installation. 

If the same component is installed and registered both as a 32-bit binary and a 64-bit binary, 

then the last component being registered will override the registration of the previous com-

ponent as they both write to the same location in the registry.

To help solve this problem transparently without introducing any code changes to 32-bit 

components, the registry is split into two portions: Native and Wow64. By default, 32-bit 

components access the 32-bit view, and 64-bit components access the 64-bit view. This 

provides a safe execution environment for 32-bit and 64-bit components and separates the 

32-bit application state from the 64-bit one if it exists.

To implement this, Wow64 intercepts all the system calls that open registry keys and 

 retranslates the key path to point it to the Wow64 view of the registry. Wow64 splits the reg-

istry at these points:

HKLM\SOFTWARE

HKEY_CLASSES_ROOT



214 Windows Internals, Fifth Edition

Under each of these keys, Wow64 creates a key called Wow6432Node. Under this key is 

stored 32-bit configuration information. All other portions of the registry are shared between 

32-bit and 64-bit applications (for example, HKLM\SYSTEM).

For applications that need to explicitly specify a registry key for a certain view, the following 

flags on the RegOpenKeyEx, RegCreateKeyEx, and RegDeleteKeyEx functions permit this:

KEY_WOW64_64KEY – explicitly opens a 64-bit key from either a 32-bit or 64-bit 

application

KEY_WOW64_32KEY – explicitly opens a 32-bit key from either a 32-bit or 64-bit 

application

To enable interoperability through 32-bit and 64-bit COM components, Wow64 mirrors cer-

tain portions of the registry when updated in one view to the other. It does this by intercept-

ing updates to any of the reflected keys and mirroring the changes intelligently to the other 

view of the registry. The list of reflected keys is:

HKEY_LOCAL_MACHINE\SOFTWARE\Classes (except the Installer subkey)

HKEY_LOCAL_MACHINE\SOFTWARE\Ole

HKEY_LOCAL_MACHINE\SOFTWARE\Rpc

HKEY_LOCAL_MACHINE\SOFTWARE\COM3

HKEY_LOCAL_MACHINE\SOFTWARE\EventSystem

Reflection of HKLM\SOFTWARE\Classes\CLSID is intelligent; only LocalServer32 CLSIDs are 

reflected because they run out of process, thus they can be COM-activated by 32-bit or 

64-bit applications. However, InProcServer32 CLSIDs are not reflected because 32-bit COM 

DLLs can’t be loaded in a 64-bit process, and likewise 64-bit COM DLLs can’t be loaded in a 

32-bit process.

When reflecting a key/value, the registry reflector marks the key so that it understands that 

it has been created by the reflector. This is to help the deletion case when deleting a key that 

has been reflected; thus the reflector will be able to tell if it needs to delete the reflected key 

if it has been written by the reflector.

I/O Control Requests

Besides normal read and write operations, applications can communicate with some device 

drivers through device I/O control functions using the Windows DeviceIoControlFile API. 

The application may specify an input and/or output buffer along with the call. If the buffer 

contains pointer-dependent data, and the process sending the control request is a Wow64 

process, then the view of the input and/or output structure is different between the 32-bit 

application and the 64-bit driver, since pointers are 4 bytes for 32-bit applications and 8 
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bytes for 64-bit applications. In this case, the kernel driver is expected to convert the associ-

ated pointer-dependent structures. Drivers can call the IoIs32bitProcess function to detect if 

an I/O request originated from a Wow64 process or not.

16-Bit Installer Applications

Wow64 doesn’t support running 16-bit applications. However, since many application install-

ers are 16-bit programs, Wow64 has special case code to make references to certain well-

known 16-bit installers work. These installers include:

Microsoft ACME Setup version: 2.6, 3.0, 3.01, and 3.1.

InstallShield version 5.x (where x is any minor version number).

Whenever a 16-bit process is about to be created using the CreateProcess() API, Ntvdm64.dll 

is loaded and control is transferred to it to inspect whether the 16-bit executable is one of 

the supported installers. If it is, another CreateProcess is issued to launch a 32-bit version of 

the installer with the same command-line arguments.

Printing

32-bit printer drivers cannot be used on 64-bit Windows. Print drivers must be ported to 

native 64-bit versions. However, since printer drivers run in the user-mode address space of 

the requesting process, and since only native 64-bit printer drivers are supported on 64-bit 

Windows, a special mechanism is needed to support printing from 32-bit processes. This 

is done by redirecting all printing functions to Splwow64.exe, the Wow64 RPC print server. 

Since Splwow64 is a 64-bit process, it can load 64-bit printer drivers.

Restrictions

Wow64 does not support the execution of 16-bit applications (this is supported on 32-bit 

versions of Windows) or the loading of 32-bit kernel-mode device drivers (they must be 

ported to native 64-bits). Wow64 processes can only load 32-bit DLLs and can’t load native 

64-bit DLLs. Likewise, native 64-bit processes can’t load 32-bit DLLs. The one exception is the 

ability to load resource-only DLLs cross-architecture, which is allowed because those DLLs 

only contain resource data, not code.

In addition to the above, due to page size differences, Wow64 on IA64 systems does not sup-

port the ReadFileScatter, WriteFileGather, GetWriteWatch, or AWE functions. Also, hardware 

acceleration through DirectX is not available (software emulation is provided for Wow64 

processes).
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User-Mode Debugging

Support for user-mode debugging is split into three different modules. The first one is 

located in the executive itself and has the prefix dbgk, which stands for debugging framework. 

It provides the necessary internal functions for registering and listening for debug events, 

managing the debug object, and packaging the information for consumption by its user-

mode counterpart. The user-mode component that talks directly to dbgk is located in the 

native system library, Ntdll.dll, under a set of APIs that begin with the prefix DbgUi. These 

APIs are responsible for wrapping the underlying debug object implementation (which is 

opaque) and allow all subsystem applications to use debugging by wrapping their own APIs 

around the DbgUi implementation. Finally, the third component in user-mode debugging 

belongs to the subsystem DLLs. It is the exposed, documented API (located in Kernel32.dll for 

the Windows subsystem) that each subsystem supports for performing debugging of other 

applications. 

Kernel Support

The kernel supports user-mode debugging through an object mentioned earlier, the debug 
object. It provides a series of system calls, most of which map directly to the Windows debug-

ging API, typically accessed through the DbgUi layer first. The debug object itself is a simple 

construct, composed of a series of flags that determine state, an event to notify any waiters 

that debugger events are present, a doubly linked list of debug events waiting to be pro-

cessed, and a fast mutex used for locking the object. This is all the information that the kernel 

requires for successfully receiving and sending debugger events, and each debugged process 

has a debug port member in its structure pointing to this debug object.

Once a process has an associated debug port, a couple of different events can cause a debug 

event to be inserted into the list of events. Table 3-19 describes these events.

TABLE 3-19 Kernel Mode Debugging Events

Event Identifier Meaning Triggered By

DbgKmExceptionApi An exception has occurred KiDispatchException during an exception 

that occurred in user mode

DbgKmCreateThreadApi A new thread has been 

created

Startup of a user-mode thread

DbgKmCreateProcessApi A new process has been 

created

Startup of a user-mode thread that is 

the first thread in the process

DbgKmExitThreadApi A thread has exited Death of a user-mode thread

DbgKmExitProcessApi A process has exited Death of a user-mode thread that was 

the last thread in the process

DbgKmLoadDllApi A DLL was loaded NtMapViewOfSection when the section 

is an image file (could be an EXE as well)
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Event Identifier Meaning Triggered By

DbgKmUnloadDllApi A DLL was unloaded NtUnmapViewOfSection when the 

section is an image file (could be an EXE 

as well)

DbgKmErrorReportApi An exception needs to be 

forwarded to Windows Error 

Reporting (WER) 

KiDispatchException during an exception 

that occurred in user mode, after the 

debugger was unable to handle it

Apart from the causes mentioned in the table, there are a couple of special triggering cases 

outside the regular scenarios that occur at the time a debugger object first becomes associ-

ated with a process. The first create process and create thread messages will be manually sent 

when the debugger is attached, first for the process itself and its main thread, followed by 

create thread messages for all the other threads in the process. Finally, load dll events for the 

executable being debugged (Ntdll.dll) and then all the current DLLs loaded in the debugged 

process will be sent.

Once a debugger object has been associated with a process, all the threads in the process 

are suspended. At this point, it is the debugger’s responsibility to start requesting that 

debug events be sent through. Debuggers request that debug events be sent back to user 

mode by performing a wait on the debug object. This call will loop the list of debug events. 

As each request is removed from the list, its contents are converted from the internal dbgk 

structure to the native structure that the next layer up understands. As we’ll see, this struc-

ture is different from the Win32 structure as well, and another layer of conversion has to 

occur. Even after all pending debug messages have been processed by the debugger, the 

kernel will not automatically resume the process. It is the debugger’s responsibility to call the 

ContinueDebugEvent function to resume execution.

Apart from some more complex handling of certain multithreading issues, the basic model 

for the framework is a simple matter of producers—code in the kernel that generates the 

debug events in the previous table—and consumers—the debugger waiting on these events 

and acknowledging their receipt.

Native Support

Although the basic protocol for user-mode debugging is quite simple, it’s not directly usable 

by Windows applications—instead, it’s wrapped by the DbgUi functions in Ntdll.dll. This 

abstraction is required to allow native applications, as well as different subsystems, to use 

these routines (because code inside Ntdll.dll has no dependencies). The functions that this 

component provides are mostly analogous to the Windows API functions and related system 

calls. Internally the code also provides the functionality required to create a debug object 

associated with the thread. The handle to a debug object that is created is never exposed. 

It is saved instead in the thread environment block (TEB) of the debugger’s thread that is 
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 performing the attachment. (For more information on the TEB, see Chapter 5.) This value is 

saved in DbgSsReserved[1].

When a debugger attaches to a process, it expects the process to be broken into—that is to 

say, an int 3 (breakpoint) operation should have happened, generated by a thread injected 

into the process; otherwise, the debugger would never actually be able to take control of the 

process and would merely see debug events flying by. Ntdll.dll is responsible for creating and 

injecting that thread into the target process. 

Finally, Ntdll.dll also provides APIs to convert the native structure for debug events into the 

structure that the Windows API understands.

EXPERIMENT: Viewing Debugger Objects

Although we’ve been using WinDbg to do kernel-mode debugging, you can also use 

it to debug user-mode programs. Go ahead and try starting Notepad.exe with the 

debugger attached using these steps:

 1. Run WinDbg, and then click File, Open Executable.

 2. Navigate to the \Windows\System32\ directory, and choose Notepad.exe.

 3. We’re not going to do any debugging, so simply ignore whatever might come up. 

You can type g in the command window to instruct WinDbg to continue execut-

ing Notepad.

Now run Process Explorer, and be sure the lower pane is enabled and configured to 

show open handles. (Click on View, Lower Pane View, and then Handles.) We also want 

to look at unnamed handles, so click on View, Show Unnamed Handles And Mappings.

Now click on the Windbg.exe process, and look at its handle table. You should see an 

open, unnamed handle to a debug object. (You can organize the table by Type to find 

this entry more readily.) You should see information something like the following:
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You can try right-clicking on the handle and closing it. Notepad should disappear, and 

the following message should appear in WinDbg:

ERROR: WaitForEvent failed, NTSTATUS 0xC0000354 

This usually indicates that the debuggee has been 

killed out from underneath the debugger. 

You can use .tlist to see if the debuggee still exists. 

WaitForEvent failed

In fact, if you look at the description for the NTSTATUS code given, you will find the 

text: “An attempt to do an operation on a debug port failed because the port is in the 

process of being deleted,” which is exactly what we’ve done by closing the handle.

As you can see, the native DbgUi interface doesn’t do much work to support the frame-

work except for this abstraction. In fact, the most complicated task it does is the conversion 

between native and Win32 debugger structures. This involves several additional changes to 

the structures.

Windows Subsystem Support

The final component responsible for allowing debuggers such as Microsoft Visual Studio 

or WinDbg to debug user-mode applications is in Kernel32.dll. It provides the documented 

Windows APIs enumerated at the beginning of our discussion. Apart from this trivial conver-

sion of one function name to another, there is one important management job that this side 

of the debugging infrastructure is responsible for: managing the duplicated file and thread 

handles.

Recall that each time a load DLL event is sent, a handle to the image file is duplicated by the 

kernel and handed off in the event structure, as is the case with the handle to the process 

executable during the create process event. During each wait call, Kernel32.dll checks whether 

this is an event that results in new duplicated process and/or thread handles from the kernel 

(the two create events). If so, it allocates a structure in which it stores the process ID, thread 

ID, and the thread and/or process handle associated with the event. This structure is linked 

into the first DbgSsReserved array index in the TEB, where we mentioned the debug object 

handle is stored. Likewise, Kernel32.dll will also check for exit events. When it detects such an 

event, it will “mark” the handles in the data structure.

Once the debugger is finished using the handles and performs the continue call, Kernel32.dll 

will parse these structures, look for any handles whose threads have exited, and close the 

handles for the debugger. Otherwise, those threads and processes would actually never exit, 

because there would always be open handles to them as long as the debugger was running.
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Image Loader

When a process is started on the system, the kernel creates a process object to represent it 

(see Chapter 5 for more information on processes) and performs various kernel-related ini-

tialization tasks. However, these tasks do not result in the execution of the application but 

merely in the preparation of its context and environment. In fact, unlike drivers, which are 

kernel-mode code, applications execute in user mode, so most of the actual initialization 

work is done outside the kernel. This work is performed by the image loader, also internally 

referred as Ldr.

The image loader lives in the user-mode system DLL Ntdll.dll and not in the kernel library. 

Therefore, it behaves just like standard code that is part of a DLL, and it is subject to the same 

restrictions in terms of memory access and security rights. What makes this code special is 

the guaranty that it will always be present in the running process (Ntdll.dll is always loaded) 

and that it is the first piece of code to run in user mode as part of a new application. (When 

the system builds the initial context, the program counter, or instruction pointer, is set to an 

initialization function inside Ntdll.dll. See Chapter 5 for more information.)

Because the loader runs before the actual application code, it is usually invisible to users and 

developers. Additionally, although the loader’s initialization tasks are hidden, a program typi-

cally does interact with its interfaces during the run time of a program—for example, when-

ever loading or unloading a DLL or querying the base address of one. Some of the main tasks 

the loader is responsible for include:

Initializing the user-mode state for the application, such as creating the initial heap and 

setting up the thread local storage (TLS) and fiber local storage (FLS) slots

Parsing the import table (IAT) of the application to look for all DLLs that it requires (and 

then recursively parsing the IAT of each DLL), followed by parsing the export table of 

the DLLs to make sure the function is actually present (Special forwarder entries can also 

redirect an export to yet another DLL.)

Loading and unloading DLLs at run time, as well as on demand, and maintaining a list 

of all loaded modules (the module database)

Allowing for run-time patching (called hotpatching) support, explained later in the 

chapter

Handling manifest files

Reading the application compatibility database for any shims, and loading the shim 

engine DLL if required

As you can see, most of these tasks are critical to enabling an application to actually run its 

code; otherwise, everything from calling external functions to using the heap would imme-

diately fail. After the process has been created, the loader will call a special native API to 

continue execution based on a context frame located on the stack. This context frame, built 
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by the kernel, will contain the actual entry point of the application. Therefore, because the 

loader doesn’t use a standard call or jump into the running application, you will never see the 

loader initialization functions as part of the call tree in a stack trace for a thread.

EXPERIMENT: Watching the Image Loader

In this experiment, we’re going to use global flags to enable a debugging feature 

called loader snaps. This will allow us to see debug output from the image loader while 

debugging application startup. 

 1. From the directory where you’ve installed WinDbg, launch the Gflags.exe applica-

tion, and then click on the Image File tab.

 2. In the Image field, type Notepad.exe, and then press the Tab key. This should 

enable the check boxes. Check the Show Loader Snaps option, and then click OK 

to dismiss the dialog box.

 3. Now follow the steps in the experiment “Viewing Debugger Options” to start 

debugging the Notepad.exe application.

 4. You should now see a couple of screens of debug information similar to that 

shown here:

0924:0248 @ 116983652 - LdrpInitializeProcess - INFO: Initializing process 0x924 

0924:0248 @ 116983652 - LdrpInitializeProcess - INFO: Beginning execution of  

          notepad.exe (C:\Windows\notepad.exe) 

0924:0248 @ 116983652 - LdrpLoadDll - INFO: Loading DLL "kernel32.dll" from path  

          "C:\Windows;C:\Windows\system32;C:\Windows\system;C:\Windows; 

0924:0248 @ 116983652 - LdrpMapDll - INFO: Mapped DLL "kernel32.dll" at address  

           76BD000 

0924:0248 @ 116983652 - LdrGetProcedureAddressEx - INFO: Locating procedure  

          "BaseThreadInitThunk" by name 

0924:0248 @ 116983652 - LdrpRunInitializeRoutines - INFO: Calling init routine  

          76C14592 for DLL "C:\Windows\system32\kernel32.dll" 

0924:0248 @ 116983652 - LdrGetProcedureAddressEx - INFO: Locating procedure  

          "BaseQueryModuleData" by name

 5. Eventually, the debugger will break somewhere inside the loader code, at a spe-

cial place where the image loader checks whether a debugger is attached and 

fires a breakpoint. If you press the G key to continue execution, you will see even 

more messages from the loader, and Notepad will appear.

 6. Try interacting with Notepad and see how certain operations will invoke the 

loader. A good experiment is to try opening the Save/Open dialog. This will dem-

onstrate that the loader not only runs at startup, but continuously responds to 

user requests that can cause delayed loads of other modules (which can then be 

unloaded after use).
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Early Process Initialization

Because the loader is present in Ntdll.dll, which is a native DLL that’s not attached to any sub-

system, all applications on a Windows machine will be subject to the same loader behavior 

(with some minor differences). In Chapter 5, we’ll look in detail at the steps that lead to the 

creation of a process in kernel mode, as well as some of the work performed by the Windows 

function CreateProcess. Here, however, we will cover the work that takes place in user mode, 

independent of any subsystem, as soon as the first user-mode instruction starts execution. 

Here are some of the main steps performed by the loader when a process starts up. The 

loader will:

 1. Build the image path name for the application and query the Image File Execution 

Options key for the application.

 2. Look inside the executable’s header to see whether it is a .NET application (specified by 

the presence of a .NET-specific image directory).

 3. Initialize the National Language Support (NLS for internationalization) tables for the 

process.

 4. Load any configuration options specified in the configuration directory of the image 

executable’s header. This image directory contains settings for the behavior of the 

executable, which a developer can define when compiling the application.

 5.  Set the affinity mask if one was specified in the image header.

 6.  Set up support for fiber local storage (FLS) and thread local storage (TLS).

 7. Initialize the heap manager for the current process and create the first process heap.

 8.  Allocate an SxS (Side-by-Side Assembly)/Fusion activation context for the process. This 

allows the system to use the appropriate DLL version file, instead of defaulting to the 

DLL that shipped with the operating system. (See Chapter 5 for more information.)

 9.  Open the \KnownDlls object directory and build the known DLL path.

 10. Figure out the current directory and the default path (used when loading images).

 11. Build the first loader data table entries for the application executable and Ntdll.dll, and 

insert them into the module database.

At this point, the image loader is ready to start parsing the import table of the executable 

belonging to the application and start loading any DLLs that were dynamically linked dur-

ing the compilation of the application. Because each imported DLL can also have its own 

import table, this operation will continue recursively until all DLLs have been satisfied and all 

functions to be imported have been found. As each DLL is loaded, the loader will keep state 

information for it and build the module database.
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Loaded Module Database

Just as the kernel maintains a list of all kernel-mode drivers that have been loaded, the loader 

also maintains a list of all modules (DLLs as well as the primary executable) that have been 

loaded by a process. This information is stored in a per-process structure called the Process 

Environment Block, or PEB (see Chapter 5 for a full description of the PEB), namely in a sub-

structure identified by Ldr and called PEB_LDR_DATA. In the structure, the loader maintains 

three doubly linked lists, all containing the same information but ordered differently (either 

by load order, memory location, or initialization order). These lists contain structures called 

loader data table entries (LDR_DATA_TABLE_ENTRY) that store information about each mod-

ule. Table 3-20 lists the various pieces of information the loader maintains in an entry.

TABLE 3-20 Fields in a Loader Data Table Entry

Field Meaning

BaseDllName Name of the module itself, without the full path

DllBase Holds the base address at which the module was loaded

EntryPoint Contains the initial routine of the module (such as DllMain)

EntryPointActivationContext Contains the SxS/Fusion activation context when calling initializers

Flags Loader state flags for this module (see Table 3-21 for a description of 

the flags)

ForwarderLinks Linked list of modules that were loaded as a result of export table 

forwarders from the module

FullDllName Fully qualified path name of the module

HashLinks Linked list used during process startup and shutdown for quicker 

lookups

List Entry Links Links this entry into each of the three ordered lists part of the loader 

database

LoadCount Reference count for the module (that is, how many times it has been 

loaded)

PatchInformation Information relevant during a hotpatch operation on this module

ServiceTagLinks Linked list of services (see Chapter 4 for more information) 

referencing this module

SizeOfImage Size of the module in memory

StaticLinks Linked list of modules loaded as a result of static references from this 

one

TimeDateStamp Time stamp written by the linker when the module was linked, which 

the loader obtains from the module’s image PE header

TlsIndex Thread local storage slot associated with this module

One way to look at a process’s loader database is to use WinDbg and its formatted output of 

the PEB. The next experiment shows you how to do this and how to look at the LDR_DATA_

TABLE_ENTRY structures on your own.
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EXPERIMENT: Dumping the Loaded Modules Database

Before starting the experiment, perform the same steps as in the previous two experi-

ments to launch Notepad.exe with WinDbg as the debugger. When you get to the first 

prompt (where you’ve been instructed to type g until now), follow these instructions: 

 1. You can look at the PEB of the current process with the !peb command. For now, 

we’re only interested in the Ldr data that will be displayed. (See Chapter 5 for 

details about other information stored in the PEB.)

0:001> !peb 

PEB at 7ffde000 

    InheritedAddressSpace:    No 

    ReadImageFileExecOptions: No 

    BeingDebugged:            Yes 

    ImageBaseAddress:         00d80000 

    Ldr                       76fd4cc0 

    Ldr.Initialized:          Yes 

    Ldr.InInitializationOrderModuleList: 001c1d78 . 001d9830 

    Ldr.InLoadOrderModuleList:           001c1cf8 . 001d9820 

    Ldr.InMemoryOrderModuleList:         001c1d00 . 001d9828 

            Base TimeStamp                     Module 

          d80000 47918ea2 Jan 19 00:46:10 2008 C:\Windows\notepad.exe 

        76f10000 4791a7a6 Jan 19 02:32:54 2008 C:\Windows\system32\ntdll.dll 

        76bd0000 4791a76d Jan 19 02:31:57 2008 C:\Windows\system32\kernel32.dll 

        76b00000 4791a64b Jan 19 02:27:07 2008 C:\Windows\system32\ADVAPI32.dll 

        75950000 4791a751 Jan 19 02:31:29 2008 C:\Windows\system32\RPCRT4.dll

 2. The address shown on the Ldr line is a pointer to the PEB_LDR_DATA structure 

described earlier. Notice that WinDbg shows you the address of the three lists and 

dumps the initialization order list for you, displaying the full path, time stamp, 

and base address of each module. 

 3. You can also analyze each module entry on its own by going through the mod-

ule list and then dumping the data at each address, formatted as a LDR_DATA_

TABLE_ENTRY structure. Instead of doing this for each entry, however, WinDbg 

can do most of the work by using the !list extension and the following syntax: 

!list –t ntdll!_LIST_ENTRY.Flink –x "dt ntdll!_LDR_DATA_TABLE_ENTRY 

@$extret\" 001c1cf8

Note that the last number is variable: it depends on whatever is shown on your 

machine under Ldr.InLoadOrderModuleList.
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 4. You should then see the actual entries for each module:

0:001> !list -t ntdll!_LIST_ENTRY.Flink -x "dt ntdll!_LDR_DATA_TABLE_ENTRY 

@$extret\" 001c1cf8  

   +0x000 InLoadOrderLinks : _LIST_ENTRY [ 0x1c1d68 - 0x76fd4ccc ] 

   +0x008 InMemoryOrderLinks : _LIST_ENTRY [ 0x1c1d70 - 0x76fd4cd4 ] 

   +0x010 InInitializationOrderLinks : _LIST_ENTRY [ 0x0 - 0x0 ] 

   +0x018 DllBase          : 0x00d80000  

   +0x01c EntryPoint       : 0x00d831ed  

   +0x020 SizeOfImage      : 0x28000 

   +0x024 FullDllName      : _UNICODE_STRING "C:\Windows\notepad.exe" 

   +0x02c BaseDllName      : _UNICODE_STRING "notepad.exe" 

   +0x034 Flags            : 0x4010

Looking at the list in this raw format gives you some extra insight into the loader’s 

internals, such as the flags field, which contains state information that !peb on its own 

would not show you. See Table 3-21 for their meaning.

TABLE 3-21  Loader Data Table Entry Flags

Flag Meaning

LDRP_STATIC_LINK (0x2) This module is referenced by an import table and 

is required

LDRP_IMAGE_DLL (0x4) The module is an image DLL (and not a data DLL 

or executable)

LDRP_LOAD_IN_PROGRESS (0x1000) This module is currently being loaded

LDRP_UNLOAD_IN_PROGRESS (0x2000) This module is currently being unloaded

LDRP_ENTRY_PROCESSED (0x4000) The loader has finished processing this module

LDRP_DONT_CALL_FOR_THREADS (0x40000) Do not send DLL_THREAD_ATTACH/DETACH 

notifications to this DLL

LDRP_PROCESS_ATTACH_CALLED (0x80000) This DLL has been sent the DLL_PROCESS_

ATTACH notification

LDRP_IMAGE_NOT_AT_BASE (0x200000) This image was relocated from its original base 

address

LDRP_COR_IMAGE (0x400000) This module is a .NET application

LDRP_COR_OWNS_UNMAP (0x800000) This module should be unmapped by the .NET 

runtime

LDRP_REDIRECTED (0x10000000) The manifest file specified a redirected file for 

this DLL

LDRP_COMPAT_DATABASE_PROCESSED 

(0x80000000)

The shim engine has processed this DLL
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Import Parsing

Now that we’ve explained the way the loader keeps track of all the modules loaded for a 

process, we can continue analyzing the startup initialization tasks performed by the loader. 

During this step, the loader will:

 1. Load each DLL referenced in the import table of the process’s executable image.

 2.  Check whether the DLL has already been loaded by checking the module database. If it 

doesn’t find it in the list, the loader will open the DLL and map it into memory.

 3.  During the mapping operation, the loader will first look at the various paths where it 

should attempt to find this DLL, as well as whether this DLL is a “known DLL,” mean-

ing that the system has already loaded it at startup and provided a global memory 

mapped file for accessing it. Certain deviations from the standard lookup algorithm can 

also occur, either through the use of a .local file (which forces the loader to use DLLs in 

the local path) or through a manifest file, which can specify a redirected DLL to use to 

guarantee a specific version.

 4. After the DLL has been found on disk and mapped, the loader checks whether the 

kernel has loaded it somewhere else—this is called relocation. If the loader detects relo-

cation, it will parse the relocation information in the DLL and perform the operations 

required. If no relocation information is present, DLL loading will fail.

 5. The loader will then create a loader data table entry for this DLL and insert it into the 

database.

 6. After a DLL has been mapped, the process is repeated for this DLL to parse its import 

table and all its dependencies.

 7. After each DLL is loaded, the loader parses the IAT to look for specific functions that 

are being imported. Usually this is done by name, but it can also be done by ordinal (an 

index number). For each name, the loader parses the export table of the imported DLL 

and tries to locate a match. If no match is found, the operation is aborted.

 8. The import table of an image can also be bound. This means that at link time, the 

developers already assigned static addresses pointing to imported functions in exter-

nal DLLs. This removes the need to do the lookup for each name, but it assumes that 

the DLLs the application will use will always be located at the same address. Because 

Windows uses address space randomization (see Chapter 9 for more information on 

Address Space Load Randomization, or ASLR), this is usually not the case for system 

applications and libraries.

 9. The export table of an imported DLL can use a forwarder entry, meaning that the actual 

function is implemented in another DLL. Essentially this must be treated like an import 

or dependency, so after parsing the export table, each DLL referenced by a forwarder is 

also loaded and goes back to step 1.
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After all imported DLLs (and their own dependencies, or imports) have been loaded, all the 

required imported functions have been looked up and found, and all forwarders also loaded 

and processed, the step is complete: all dependencies that were defined at compile time 

by the application and its various DLLs have now been fulfilled. During execution, delayed 

dependencies (called delay load), as well as run-time operations (such as calling LoadLibrary) 

can call into the loader and essentially repeat the same tasks. Note, however, that a failure in 

these steps will result in an error launching the application if they are done during process 

startup. For example, attempting to run an application that requires a function that isn’t pres-

ent in the current version of the operating system can result in a message similar to the one 

in Figure 3-29.

FIGURE 3-29 Dialog box shown when a required (imported) function is not present in a DLL

Post Import Process Initialization

After the required dependencies have been loaded, there are several initialization tasks that 

must be performed to fully finalize launching the application. In this step, the loader will:

 1. Check if the application itself requires relocation and process the relocation entries 

for the application. If the application cannot be relocated, or does not have relocation 

information, the loading will fail.

 2. Check if the application makes use of TLS and look in the application executable for the 

TLS entries it needs to allocate and configure.

 3. At this point, the initial debugger breakpoint will be hit when using a debugger such 

as WinDbg. This is where you had to type “go” to continue execution in the earlier 

experiments.

 4. Make sure that the application will be able to run properly if the system is a multipro-

cessor system.

 5. Set up the default data execution prevention (DEP) options. (See Chapter 9 for more 

information on DEP.)

 6. Check whether this application requires any application compatibility work, and load 

the shim engine if required.
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 7. Detect if this application is protected by SecuROM, SafeDisc, and other kinds of wrap-

per or protection utilities that could have issues with DEP (and reconfigure DEP settings 

in those cases).

 8. Run the initializers for all the loaded modules.

Running the initializers is the last main step in the loader’s work. This is the step that will call 

the DllMain routine for each DLL (allowing each DLL to perform its own initialization work, 

which may even include loading new DLLs at run time) as well as process the TLS initializers 

of each DLL. This is one of the last steps in which loading an application can fail. If all the 

loaded DLLs do not return a successful return code after finishing their DllMain routines, the 

loader will abort starting the application. As a very last step, the loader will call the TLS initial-

izer of the actual application.

As you can see, before a single line of code from the application’s main entry point executes, 

there are possibly thousands of lines of code being executed by the loader, followed by every 

single DLL that has been imported. The Windows kernel has been improved to decrease 

startup time, most recently with the introduction of SuperFetch, which directly affects the 

time it takes to load all the DLLs during startup. (For more information on SuperFetch, see 

Chapter 9.)

Hypervisor (Hyper-V)

One of the key technologies in the software industry, used by system administrators, devel-

opers, and testers alike, is called virtualization, and it refers to the ability to run multiple 

operating systems simultaneously. One operating system, in which the virtualization software 

is executing, is called the host, while the other operating systems are running as guests inside 

the virtualization software. The usage scenarios for this model cover everything from being 

able to test an application on different platforms to having fully virtual servers all actually 

running as part of the same machine and managed through one central point.

Until recently, all the virtualization was done by the software itself, sometimes assisted 

by hardware-level virtualization technology (called host-based virtualization). Thanks to 

hardware virtualization, the CPU can do most of the notifications required for trapping 

instructions and virtualizing access to memory. These notifications, as well as the various con-

figuration steps required for allowing guest operating systems to run concurrently, must be 

handled by a piece of infrastructure compatible with the CPU’s virtualization support. Instead 

of relying on a piece of separate software running inside a host operating system to perform 

these tasks, a thin piece of low-level system software, which uses strictly hardware-assisted 

virtualization support, can be used—a hypervisor. Figure 3-30 shows a simple architectural 

overview of these two kinds of systems.
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FIGURE 3-30 Two architectures for virtualization

With Hyper-V, Windows Server 2008 computers can install support for hypervisor-based vir-

tualization as a special role (as long as an edition with Hyper-V support is licensed). Because 

the hypervisor is part of the operating system, managing the guests inside it, as well as inter-

acting with them, is fully integrated in the operating system through standard management 

mechanisms such as WMI and services (see Chapter 4 for more information on these topics), 

and there are no complex third-party tools involved that require training or servicing. 

Finally, apart from having a hypervisor that allows running other guests managed by a 

Windows Server host, both client and server editions of Windows also ship with enlighten-
ments, which are special optimizations in the kernel and possibly device drivers that detect 

that the code is being run as a guest under a hypervisor and perform certain tasks dif-

ferently, or more efficiently, considering this environment. We will look at some of these 

improvements later; for now, we’ll take a look at the basic architecture of the Windows virtu-

alization stack, shown in Figure 3-31.
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FIGURE 3-31 Windows Hyper-V architectural stack
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Partitions

One of the key architectural components behind the Windows hypervisor is the concept of 

a partition. A partition essentially references an instance of an operating system installation, 

which could refer either to what’s traditionally called the host or to the guest. Under the 

Windows hypervisor model, these two terms are not used; instead, we talk of either a root 
partition or a child partition, respectively. Consequently, at a minimum, a Hyper-V system will 

have a root partition, which is recommended to contain a Windows Server Core installation, 

as well as the virtualization stack and its associated components. Although this installation 

type is recommended because it allows minimizing patches and reducing security surface 

area, resulting in increased availability of the server, a full installation is also supported. Each 

operating system running within the virtualized environment will represent a child partition, 

which may contain certain additional tools that optimize access to the hardware or allow 

management of the operating system.

Root Partition

One of the main goals behind the design of the Windows hypervisor was to have it as small 

and modular as possible, much like a microkernel, instead of providing a full, monolithic 

module. This means that most of the virtualization work is actually done by a separate vir-

tualization stack and that there are also no hypervisor drivers. In lieu of these, the hypervisor 

uses the existing Windows driver architecture and talks to actual Windows device drivers. 

This architecture results in several components that provide and manage this behavior, which 

are collectively called the hypervisor stack.

Logically, it is the root partition that is responsible for providing the hypervisor, as well as the 

entire hypervisor stack. Because these are Microsoft components, only a Windows machine 

can be a root partition, naturally. A root partition should have almost no resource usage for 

itself because its role is to run other operating systems. The main components that the root 

partition provides are shown in Figure 3-32.
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FIGURE 3-32 Components of a root partition

Root Partition Operating System

The Windows installation (typically the minimal footprint server installation, called Windows 

Server Core, to minimize resource usage) is responsible for providing the hypervisor and 

the device drivers for the hardware on the system (which the hypervisor will need to access), 

as well as for running the hypervisor stack. It is also the management point for all the child 

partitions.

VM Service and Worker Processes

The virtual machine service is responsible for providing the WMI interface to the hypervisor, 

which allows managing the child partitions through a Microsoft Management Console (MMC) 

plug-in. It is also responsible for communicating requests to applications that need to com-

municate to the hypervisor or to child partitions. It controls settings such as which devices 

are visible to child partitions, how the memory and processor allocation for each partition is 

defined, and more. 

The worker processes, on the other hand, perform various virtualization work that a typical 

monolithic hypervisor would perform (similar as well to the work of a software-based virtual-

ization solution). This means managing the state machine for a given child partition (to allow 

support for features such as snapshots and state transitions), responding to various notifica-

tions coming in from the hypervisor, performing the emulation of certain devices exposed to 

child partitions, and collaborating with the VM service and configuration component. 
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On a system with child partitions performing lots of I/O or privileged operations, you would 

expect most of the CPU usage to be visible in the root partition: you can identify them by the 

name Vmwp.exe (one for each child partition). The worker process also includes components 

responsible for remote management of the virtualization stack, as well as an RDP component 

that allows using the remote desktop client to connect to any child partition and remotely 

view its user interface and interact with it.

Virtualization Service Providers

Virtualization service providers (VSPs) are responsible for the high-speed emulation of certain 

devices visible to child partitions (the exact difference between VSP-emulated devices and 

user-mode–process-emulated devices will be explained later), and unlike the VM service and 

processes, VSPs can also run in kernel mode as drivers. More detail on VSPs will follow in the 

section that describes device architecture in the virtualization stack.

VM Infrastructure Driver and Hypervisor API Library

Because the hypervisor cannot be directly accessed by user-mode applications, such as the 

VM service that is responsible for management, the virtualization stack must actually talk to 

a driver in kernel mode that is responsible for relaying the requests to the hypervisor. This is 

the job of the VM infrastructure driver (VID). The VID also provides support for certain low-

memory memory devices, such as MMIO and ROM emulation.

A library located in kernel mode provides the actual interface to the hypervisor (called hyper-
calls). Messages can also come from child partitions (which will perform their own hypercalls), 

because there is only one hypervisor for the whole system and it can listen to messages com-

ing from any partition. You can find this functionality in the Winhv.sys device driver.

Hypervisor

At the bottom of the architecture is the hypervisor itself, which registers itself with the pro-

cessor at system boot-up time and provides its services for the stack to use (through the 

use of the hypercall interface). This early initialization is performed by the hvboot.sys driver, 

which is configured to start early on during a system boot. Because Intel and AMD proces-

sors have slightly differing implementations of hardware-assisted virtualization, there are 

actually two different hypervisors—the correct one is selected at boot-up time by querying 

the processor through CPUID instructions. On Intel systems, the Hvix64.exe binary is loaded, 

while on AMD systems, the Hvax64.exe image is used.

Child Partitions

The child partition, as discussed earlier, is an instance of any operating system running paral-

lel to the root partition. (Because you can save or pause the state of any child, it might not 
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necessarily be running, but there will be a worker process for it.) Unlike the root partition, 

which has full access to the APIC, I/O ports, and physical memory, child partitions are limited 

for security and management reasons to their own view of address space (the Guest Virtual 

Address Space, or GVA, which is managed by the hypervisor), and have no direct access to 

hardware. In terms of hypervisor access, it is also limited mainly to notifications and state 

changes. For example, a child partition doesn’t have control over other partitions (and can’t 

create new ones).

Child partitions have many fewer virtualization components than a root partition, because 

they are not responsible for running the virtualization stack—only for communicating with it. 

Also, these components can also be considered optional because they enhance performance 

of the environment but are not critical to its use. Figure 3-33 shows the components present 

in a typical Windows child partition.
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Guest applications

Kernel mode

Windows
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Virtualization

service

clients

(VSCs)
Enlightenments

FIGURE 3-33 Components in a child partition

Virtualization Service Clients

Virtualization service clients (VSCs) are the child partition analogues of VSPs. Like VSPs, VSCs 

are used for device emulation, which is a topic of later discussion.

Enlightenments

Enlightenments are one of the key performance optimizations that Windows virtualization 

takes advantage of. They are direct modifications to the standard Windows kernel code that 

can detect that this operating system is running in a child partition and perform work dif-

ferently. Usually, these optimizations are highly hardware-specific and result in a hypercall to 

notify the hypervisor. An example is notifying the hypervisor of a long busy-wait spin loop. 

The hypervisor can keep some state stale in this scenario instead of keeping track of the state 
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at every single loop instruction. Entering and exiting an interrupt state can also be coordi-

nated with the hypervisor, as well as access to the APIC, which can be enlightened to avoid 

trapping the real access and then virtualizing it.

Another example has to do with memory management, specifically TLB flushing and chang-

ing address space. (See Chapter 9 for more information on these concepts.) Usually, the oper-

ating system will execute a CPU instruction to flush this information, which affects the entire 

processor. However, because a child partition could be sharing a CPU with many other child 

partitions, such an operation would also flush this information for those operating systems, 

resulting in noticeable performance degradation. If Windows is running under a hypervi-

sor, it will instead issue a hypercall to have the hypervisor flush only the specific information 

belonging to the child partition.

Hardware Emulation and Support

A virtualization solution must also provide optimized access to devices. Unfortunately, most 

devices aren’t made to accept multiple requests coming in from different operating systems. 

The hypervisor steps in by providing the same level of synchronization where possible and 

by emulating certain devices when real access to hardware cannot be permitted. In addition 

to devices, memory and processors must also be virtualized. Table 3-22 describes the three 

types of hardware that the hypervisor must manage. 

TABLE 3-22 Virtualized Hardware

Component Managed By Usage

Processor Hypervisor built-in scheduler 

and related microkernel 

components.

Manage usage of hardware’s processing power, 

share multiple processors across multiple child 

partitions, manage and switch processor states 

(such as registers).

Memory Hypervisor built-in memory 

manager and related 

microkernel components.

Manage usage of hardware’s RAM usage and 

availability. Protect memory from child partitions 

and root partition. Provide a contiguous view of 

physical memory starting at address 0.

Devices VM worker processes— 

hypervisor only responsible 

for interception and 

notification.

Provide hardware multiplexing so that multiple 

child partitions can access the same device on 

the physical machine. Optimize access to physical 

devices to be as fast as possible.

Instead of exposing actual hardware to child partitions, the hypervisor exposes virtual devices  

(called VDevs). VDevs are packaged as COM components that run inside a VM worker pro-

cess, and they are the central manageable object behind the device. (Usually, VDevs expose 

a WMI interface.) The Windows virtualization stack provides support for two kinds of virtual 

devices: emulated devices and synthetic devices (also called enlightened I/O). The former 

provide support for various devices that the operating systems on the child partition would 

expect to find, while the latter requires specific support from the guest operating system. On 
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the other hand, synthetic devices provide a significant performance benefit by reducing CPU 

overhead.

Emulated Devices

Emulated devices work by presenting the child partition with a set of I/O ports, memory 

ranges, and interrupts that are being controlled and monitored by the hypervisor. When 

access to these resources is detected, the VM worker process eventually gets notified through 

the virtualization stack (shown earlier in Figure 3-31). The process will then emulate whatever 

action is expected from the device and complete the request, going back through the hyper-

visor and then to the child partition. From this topological view alone, one can see that there 

is a definite loss in performance, without even considering that the software emulation of a 

hardware device is usually slow.

The need for emulated devices comes from the fact that the hypervisor needs to sup-

port nonhypervisor-aware operating systems, as well as the early installation steps of even 

Windows itself. During the boot process, the installer can’t simply load all the child partition’s 

required components (such as VSCs) to use synthetic devices, so a Windows installation will 

always use emulated devices (which is why installation will seem very slow, but once installed 

the operating system will run quite close to native speed). Emulated devices are also used for 

hardware that doesn’t require high-speed emulation and for which software emulation may 

even be faster. This includes items such as COM (serial) ports, parallel ports, or the mother-

board itself. 

Note Hyper-V emulates an Intel i440BX motherboard, an S3 Trio video card, and an Intel 

21140 NIC.

Synthetic Devices

Although emulated devices work adequately for 10-Mbit network connections, low-

 resolution VGA displays, and 16-bit sound cards, the operating systems and hardware that 

child partitions will usually require in today’s usage scenarios require a lot more processing 

power, such as support for 1000-Mbit GbE connections; full-color, high-resolution 3D sup-

port; and high-speed access to storage devices. To support this kind of virtualized hardware 

access at an acceptable CPU usage level and virtualized throughput, the virtualization stack 

uses a variety of components to optimize device I/Os to their fullest (similar to kernel enlight-

enments). Three components are part of this support, and they all belong to what’s pre-

sented to the user as integration components or ICs. They include:

Virtualization service providers

Virtualization service clients/consumers

VMBus
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Figure 3-34 shows a diagram of how an enlightened, or synthetic storage I/O, is handled by 

the virtualization stack.

User mode
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FIGURE 3-34 I/O handling paths in Hyper-V

As shown in Figure 3-32, VSPs run in the root partition, where they are associated with a 

specific device that they are responsible for enlightening. (We’ll use that as a term instead of 

emulating when referring to synthetic devices.) VSCs reside in the child partition and are also 

associated with a specific device. Note, however, that the term provider can refer to multiple 

components spread across the device stack. For example, a VSP can either be:

A user-mode service

A user-mode COM component

A kernel-mode driver

In all three cases, the VSP will be associated with the actual virtual device inside the VM 

worker process. VSCs, on the other hand, are almost always designed to be drivers sitting 

at the lowest level of the device stack (see Chapter 7 for more information on device stacks) 
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and intercept I/Os to a device and redirect them through a more optimized path. The main 

optimization that is performed by this model is to avoid actual hardware access and use 

VMBus instead. Under this model, the hypervisor is unaware of the I/O, and the VSP redirects 

it directly to the root partition’s kernel storage stack, avoiding a trip to user mode as well. 

Other VSPs can perform work directly on the device, by talking to the actual hardware and 

bypassing any driver that may have been loaded on the root partition. Another option is to 

have a user-mode VSP, which can make sense when dealing with lower-bandwidth devices.

As described earlier, VMBus is the name of the bus transport used to optimize device access 

by implementing a communications protocol using hypervisor services. VMBus is a bus driver 

present on both the root partition and the child partitions responsible for the Plug and Play 

enumeration of synthetic devices in a child. It also contains the optimized cross-partition 

messaging protocol that uses a transport method that is appropriate for the data size. One 

of these methods is to provide a shared ring buffer between each partition—essentially an 

area of memory on which a certain amount of data is loaded on one side and unloaded on 

the other side. No memory needs to be allocated or freed because the buffer is continuously 

reused and simply “rotated.” Eventually, it may become full with requests, which would mean 

that newer I/Os would overwrite older I/Os. In this uncommon scenario, VMBus will simply 

delay newer requests until older ones complete. The other messaging transport is direct child 

memory mapping to the parent address space for large enough transfers.

Virtual Processors

Just as the hypervisor doesn’t allow direct access to hardware (or to memory, as we’ll see 

later, child partitions don’t really see the actual processors on the machine but have a virtual-

ized view of CPUs as well. On the root machine, the administrator and the operating system 

deal with logical processors, which are the actual processors on which threads can run (for 

example, a dual quad-core machine has eight logical processors), and assign these proces-

sors to various child partitions. For example, one child partition could be assigned logical 

processors 1, 2, 3, and 4, while the second child partition might be assigned processors 4, 6, 

7, and 8. Note that the second child partition will never have access to processor 5 and that 

processor 4 will be shared across multiple partitions. These operations are all made possible 

through the use of virtual processors, or VPs. 

Because processors can be shared across multiple child partitions, the hypervisor includes 

its own scheduler that distributes the workload of the various partitions across each proces-

sor. Additionally, the hypervisor maintains the register state for each virtual processor and 

to an appropriate “processor switch” when the same logical processor is now being used 

by another child partition. The root partition has the ability to access all these contexts and 

modify them as required, an essential part of the virtualization stack that must respond to 

certain instructions and perform actions.
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The hypervisor is also directly responsible for virtualizing processor APICs and providing a 

simpler, less featured virtual APIC, including support for the timer that’s found on most APICs 

(however, at a slower rate). Because not all operating systems support APICs, the hypervisor 

also allows for the injection of interrupts through a hypercall, which permits the virtualization 

stack to emulate a standard i8059 PIC.

Finally, because Windows supports dynamic processor addition, it’s possible for an adminis-

trator to add new processors to a child partition at run time to increase the responsiveness of 

the guest operating systems if it’s under heavy load.

Memory Virtualization

The final piece of hardware that must be abstracted away from child partitions is memory, 

not only for the normal behavior of the guest operating systems, but also for security and 

stability. Improperly managing the child partitions’ access to memory could result in privacy 

disclosures and data corruption, as well as possible malicious attacks by “escaping” the child 

partition and attacking the root (which would then allow attacks on the other children). Apart 

from this aspect, there is also the matter of the guest operating system’s view of physical 

address space. Almost all operating systems expect memory to begin at address 0 and be 

somewhat contiguous, so simply assigning chunks of physical memory to each child partition 

wouldn’t work even if enough memory was available on the system.

To solve this problem, the hypervisor implements an address space called the guest physical 
address space (GPA space). The GPA starts at address 0, which satisfies the needs of operat-

ing systems inside child partitions. However, the GPA is not a simple mapping to a chunk of 

physical memory because of the second problem (the lack of contiguous memory). As such, 

GPAs can point to any location in the machine’s physical memory (which is called the system 
physical address space, or SPA space), and there must be a translation system to go from 

one address type to another. This translation system is maintained by the hypervisor and is 

nearly identical to the way virtual memory is mapped to physical memory on x86 and x86-

64 processors. (See Chapter 9 for more information on the memory manager and address 

translation.)

As for actual virtual addresses in the child partition (which are called guest virtual address 
space—GVA space), these continue to be managed by the operating system without any 

change in behavior. What the operating system believes are real physical addresses in its own 

page tables will actually be SPAs. Figure 3-35 shows an overview of the mapping between 

each level.
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FIGURE 3-35 Guest virtual and physical address translation

This means that when a guest operating system boots up and creates the page tables to 

map virtual to physical memory, the hypervisor intercepts SPAs and keeps its own copy of 

the page tables. Conceptually, whenever a piece of code accesses a virtual address inside a 

guest operating system, the hypervisor does the initial page table translation to go from the 

guest virtual address to the GPA and then maps that GPA to the respective SPA. In reality, this 

operation is optimized through the use of shadow page tables (SPTs), which the hypervisor 

maintains to have direct GVA to SPA translations and simply loads when appropriate so that 

the guest accesses the SPA directly. 

Intercepts

We’ve talked about the various ways in which access to hardware, processors, and memory 

is virtualized by the hypervisor and sometimes handed off to a VM worker process, but we 

haven’t yet talked about the mechanism that allows this to happen—intercepts. Intercepts are 

configurable “hooks” that a root partition can install and configure in order to respond to. 

These can include:

I/O intercepts, useful for device emulation

MSR intercepts, useful for APIC emulation and profiling

Access to GPAs, useful for device emulation, monitoring, and profiling (Additionally, the 

intercept can be fine-tuned to a specific access, such as read, write, or execute.)

Exception intercepts such as page faults, useful for maintaining machine state and 

memory emulation (for example, maintaining copy-on-write)

Once the hypervisor detects an event for which an intercept has been registered, it sends an 

intercept message through the virtualization stack and puts the VP in a suspended state. The 

virtualization stack (usually the worker process) must then handle the event and resume the 

VP (typically with a modified register state that reflects the work performed to handle the 

intercept).
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Kernel Transaction Manager

One of the more tedious aspects of software development is handling error conditions. This 

is especially true if, in the course of performing a high-level operation, an application has 

completed one or more subtasks that result in changes to the file system or registry. For 

example, an application’s software updating service might make several registry updates, 

replace one of the application’s executables, and then be denied access when it attempts 

to update a second executable. If the service doesn’t want to leave the application in the 

resulting inconsistent state, it must track all the changes it makes and be prepared to undo 

them. Testing the error-recovery code is difficult, and consequently often skipped, so errors 

in the recovery code can negate the effort.

Applications can, with very little effort, gain automatic error-recovery capabilities by using a 

kernel mechanism called the Kernel Transaction Manager (KMT), which provides the facilities 

required to perform such transactions and enables services such as the distributed transac-
tion coordinator (DTC) in user mode to take advantage of them. Any developer who uses the 

appropriate APIs can take advantage of these services as well.

KTM does more than solve large-scale issues such as the one presented. Even on single-user 

home computers, installing a service patch or performing a system restore are large opera-

tions that involve both files and registry keys. Unplug an older Windows computer during 

such an operation, and the chances for a successful boot are very slim. Even though the NT 

File System (NTFS) has always had a log file permitting the file system to guarantee atomic 

operations (see Chapter 11 for more information on NTFS), this only means that whichever 

file was being written to during the process will get fully written or fully deleted—it does not 

guarantee the entire update or restore operation. Likewise, the registry has had numerous 

improvements over the years to deal with corruption (see Chapter 4 for more information on 

the registry), but the fixes apply only at the key/value level. 

As the heart of transaction support, KTM allows transactional resource managers such as 

NTFS and the registry to coordinate their updates for a specific set of changes made by an 

application. NTFS uses an extension to support transactions, called TxF. The registry uses 

a similar extension, called TxR. These kernel-mode resource managers work with KTM to 

coordinate the transaction state, just as user-mode resource managers use DTC to coordinate 

transaction state across multiple user-mode resource managers. Third parties can also use 

KTM to implement their own resource managers.

TxF and TxR both define a new set of file system and registry APIs that are similar to existing 

ones, except that they include a transaction parameter. If an application wants to create a 

file within a transaction, it first uses KTM to create the transaction, and then it passes the 

resulting transaction handle to the new file creation API. Although we’ll look at the registry 

and NTFS implementations of KTM later, these are not its only possible uses. In fact, it pro-

vides three system objects that allow a variety of different operations to be supported. These 

are listed in Table 3-23.
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TABLE 3-23 KTM Objects

Object Meaning Usage

Transaction Collection of data operations to 

be performed. Provides atomic, 

consistent, isolated, and durable 

operations.

Can be associated to registry and file I/O in 

order to make those operations part of the 

same larger operation. 

Enlistment Association between a resource 

manager and a transaction.

Register with a transaction in order to 

receive notifications on it. The enlistment 

can specify which notifications should be 

generated.

Resource Manager 

(RM)

Container for the transactions 

and the data on which they 

operate.

Provides an interface for clients to read 

and write the data, typically on a database.

Transaction Manager 

(TM)

Container of all transactions 

that are part of the associated 

resource managers. An instance 

of a log, it knows about all 

transaction states but not their 

data.

Provides an infrastructure through 

which clients and resource managers 

can communicate, and provides and 

coordinates recovery operations after a 

crash. Clients use the TM for transactions, 

RMs use the TM for enlistments.

EXPERIMENT: Listing Transaction Managers

Windows ships with a built-in tool called Ktmutil.exe that allows you to see ongoing 

transactions as well as registered transaction managers on the system (and force the 

outcome of ongoing transactions). In this experiment, we will use it to display the trans-

action managers typically seen on a Windows machine.

Start an elevated command prompt and type:

Ktmutil.exe list tms

Here’s an example of output on a typical Windows Vista system:

C:\Windows\system32>ktmutil list tms 

TmGuid                                 TmLogPath 

-------------------------------------- ------------------------------------------------ 

{0f69445a-6a70-11db-8eb3-806e6f6e6963} \SystemRoot\System32\Config\TxR\{250834B7-750C- 

                                       494d-BDC3-DA86B6E2101B}.TM 

{0f694463-6a70-11db-8eb3-985e31beb686} \Device\HarddiskVolume3\Windows\ 

                                       ServiceProfiles\NetworkService\ntuser.dat 

                                       {0f694461-6a70-11db-8eb3-985e31beb686}.TM 

{0f694467-6a70-11db-8eb3-985e31beb686} \Device\HarddiskVolume3\Windows\ServiceProfiles\ 

                                       LocalService\ntuser.dat{0f694465-6a70-11db-8eb3- 

                                       985e31beb686}.TM 

{7697f183-6b73-11dc-9bbd-00197edc55d8} \Device\HarddiskVolume3\Users\Bob\ntuser.dat 

                                       {0f69446d-6a70-11db-8eb3-985e31beb686}.TM 

{7697f187-6b73-11dc-9bbd-00197edc55d8} \Device\HarddiskVolume3\Users\Bob\AppData\Local\ 

                                       Microsoft\Windows\UsrClass.dat{7697f185-6b73- 

                                       11dc-9bbd-00197edc55d8}.TM 
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{cf7234df-39e3-11dc-bdce-00188bdd5f49} \Device\HarddiskVolume2\$Extend\$RmMetadata\ 

                                       $TxfLog\$TxfLog::KtmLog 

{cf7234e6-39e3-11dc-bdce-00188bdd5f49} \Device\HarddiskVolume3\$Extend\$RmMetadata\ 

                                       $TxfLog\$TxfLog::KtmLog

Hotpatch Support

Rebooting a machine to apply the latest patches can mean significant downtime for a server, 

which is why Windows supports a run-time method of patching, called a hot patch (or simply 

hotpatch), in contrast to a cold patch, which requires a reboot. Hotpatching doesn’t simply 

allow files to be overwritten during execution; instead it includes a complex series of opera-

tions that can be requested (and combined). These operations are listed in Table 3-24.

TABLE 3-24 Hotpatch Operations

Operation Meaning Usage

Rename Image Replacing a DLL that is on the 

disk, and currently used by 

other applications, or replacing 

a driver that is on the disk and 

is currently loaded by the kernel

When an entire library in user mode 

needs to be replaced, the kernel can 

detect which processes and services are 

referencing it, unload them, and then 

update the DLL and restart the programs 

and services (this is done through the 

restart manager). When an entire driver 

needs to be replaced, the kernel can 

unload the driver (the driver requires 

an unload routine), update it, and then 

reload it.

Object Swap Atomically renaming an 

object in the object directory 

namespace

When a file (typically a known DLL) needs 

to be renamed atomically and behind 

the back of any applications that may 

be using it (so that they can start using 

the new file immediately, using the old 

handle).

Patch Function Code Replacing the code of one or 

more functions inside an image 

file with another version

If a DLL or driver can’t be replaced or 

renamed during run time, functions in 

the image can be directly patched. A 

hotpatch DLL that contains the newer 

code is jumped to whenever an older 

function is called.

Refresh System DLL Reload the memory mapped 

section object for Ntdll.dll

The system native library, Ntdll.dll, is 

only loaded once during boot-up and 

then simply duplicated into the address 

space of every new process. If it has been 

hotpatched, the system must refresh this 

section to load the newer version.
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Although hotpatches utilize internal kernel mechanisms, their actual implementation is no 

different from coldpatches. The patch is delivered through Windows Update, typically as an 

executable file containing a program called Update.exe that will perform the extraction of 

the patch and the update process. For hotpatches, however, an additional hotpatch file, con-

taining the .hp extension, will be present. This file contains a special PE header called .HOT1. 

This header will contain a data structure describing the various patch descriptors present 

inside the file. Each of these descriptors identifies the offset in the original file that needs to 

be patched, a validation mechanism (which can include a simple comparison of the old data, 

a checksum, or a hash), and the new data to be patched. The kernel will parse these descrip-

tors and apply the appropriate modifications. In the case of a protected process (see Chapter 

5 for more information on processes) and other digitally signed images, the hotpatch must 

also be digitally signed, in order to prevent “fake” patches from being performed to sensitive 

files or processes.

Note Because the hotpatch file also includes the original data, the hotpatching mechanism can 

also be used to uninstall a patch at run time.

Compile-time hotpatching support works by adding 7 dummy bytes to the beginning of 

each function—4 are considered part of the end of the previous function, and 2 are part of 

the function prolog; that is, the function’s beginning. Here’s an example of a function that was 

built with hotpatching information:

lkd> u NtCreateFile - 5 

nt!FsRtlTeardownPerFileContexts+0x169: 

82227ea5 90              nop 

82227ea6 90              nop 

82227ea7 90              nop 

82227ea8 90              nop 

82227ea9 90              nop 

nt!NtCreateFile: 

82227eaa 8bff            mov     edi,edi

Notice that the five nop instructions don’t actually do anything, while the mov edi, edi at the 

beginning of the NtCreateFile function are also essentially meaningless—no actual state-

changing operation takes place. Because 7 bytes are available, the NtCreateFile prologue can 

be transformed into a short jump to the buffer of five instructions available, which are then 

converted to a near jump instruction to the patched routine. Here’s NtCreateFile after having 

been hotpatched:

lkd> u NtCreateFile - 5 

nt!FsRtlTeardownPerFileContexts+0x169: 

82227ea5 e93d020010      jmp     nt_patch!NtCreateFile (922280e7) 

nt!NtCreateFile: 

82227ea5 ebfc            jmp     nt!FsRtlTeardownPerFileContexts+0x169 (82227ea5)
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This method allows only the addition of 2 bytes to each function by jumping into the previ-

ous function’s alignment padding that it would most likely have at its end anyway. 

There are some limitations to the hotpatching functionality:

Patches that third-party applications such as security software might block or that 

might be incompatible with the operation of third-party applications

Patches that modify a file’s export table or import table

Patches that change data structures, fix infinite loops, or contain inline assembly code

Kernel Patch Protection

Some 32-bit device drivers modify the behavior of Windows in unsupported ways. For exam-

ple, they patch the system call table to intercept system calls or patch the kernel image in 

memory to add functionality to specific internal functions.

To prevent these kinds of changes, Windows implements Kernel Patch Protection (KPP), also 

referred to as PatchGuard. KPP’s job on the system is similar to what its name implies—it 

attempts to deter common techniques for patching the system, or hooking it. Table 3-25 lists 

which components or structures are protected and for what purpose.

TABLE 3-25 Components Protected by KPP

Component Legitimate Usage Potential Malicious Usage

Ntoskrnl.exe, Hal.dll, Ci.dll, 

Kdcom.dll, Pshed.dll, 

Clfs.sys, Ndis.sys, Tcpip.sys

Kernel, HAL, and their 

dependencies. Lower layer of 

network stack.

Patching code in the kernel and/or 

HAL to subvert normal operation and 

behavior. Patching Ndis.sys to silently 

add backdoors on open ports.

Global Descriptor Table 

(GDT)

CPU hardware protection for 

the implementation of ring 

privilege levels (Ring 0 vs. 

Ring 3).

Ability to set up a “callgate,” a CPU 

mechanism through which user (Ring 

3) code could perform operations 

with kernel privileges (Ring 0).

Interrupt Descriptor Table 

(IDT)

Table read by the CPU to deliver 

interrupt vectors to the correct 

handling routine.

Malicious drivers could intercept file 

I/Os directly at the interrupt level, 

or hook page faults to hide contents 

of memory. Rootkits could hook the 

INT2E handler to hook all system 

calls from a single point.

System Service Descriptor 

Table (SSDT)

Table containing the array of 

pointers for each system call 

handler.

Rootkits could modify the output or 

input of calls from user mode and 

hide processes, files, or registry keys.

Processor Machine State 

Registers (MSRs)

LSTAR MSR is used to set the 

handler of the SYSENTER and/or 

SYSCALL instructions used for 

system calls.

LSTAR could be overwritten by a 

malicious driver to provide a single 

hook for all system calls performed 

on the system.
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Component Legitimate Usage Potential Malicious Usage

KdpStub, KiDebugRoutine, 
KdpTrap function pointers

Used for run-time configuration 

of where exceptions should be 

delivered, based on whether 

a kernel debugger is remotely 

connected to the machine.

Value of the pointers could be 

overwritten by a malicious rootkit 

to take control of the system at 

predetermined times and perform 

invisible background tasks.

PsInvertedFunctionTable Cache of exception directories 

used on x64, allowing quick 

mapping between code where 

an exception happened and its 

handler.

Could be used to take control of 

the system during the exception 

handling of unrelated system code, 

including KPP’s own exception 

code responsible for detecting 

modifications in the first place.

Kernel stacks Store function arguments, the 

call stack (where a function 

should return), and variables.

A driver could allocate memory 

on the side, set it as a kernel stack 

for a thread, and then manipulate 

its contents to redirect calls and 

parameters.

Object types Definitions for the various 

objects (such as processes and 

files) that the system supports 

through the object manager.

Could be used as part of a technique 

called DKOM (Direct Kernel Object 

Modification) to modify system 

behavior, for example by hooking 

the object callbacks that each object 

type has registered.

Other Code related to bug-checking 

the system during a KPP 

violation, executing the DPCs 

and timers associated with KPP, 

and more. 

By modifying certain parts of the 

system used by KPP, malicious drivers 

could attempt to silence, ignore, or 

otherwise cripple KPP. 

Note Because certain 64-bit Intel processors implement a slightly different feature set of the 

x64 architecture, the kernel needs to perform run-time code patching to work around the lack 

of a prefetch instruction. KPP can deter kernel patching even on these processors, by exempting 

those specific patches from detection. Additionally, because of hypervisor (Hyper-V) enlighten-

ments (more information on the hypervisor is provided earlier in this chapter), certain functions 

in the kernel are patched at boot time, such as the swap context routine. These patches are 

also allowed by very explicit checks to make sure they are known patches to the hypervisor-

 enlightened versions.

When KPP detects a change in any of the structures mentioned (as well as 

some other internal consistency checks), it crashes the system with code 

0x109—CRITICAL_STRUCTURE_CORRUPTION.
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For third-party developers who used techniques that KPP deters, the following supported 

techniques can be used:

File system minifilters (see Chapter 7 for more information on these) to hook all file 

operations, including loading image files and DLLs, that can be intercepted to purge 

malicious code on-the-fly or block reading of known bad executables.

Registry filter notifications (see Chapter 4 for more information on these notifications) 

to hook all registry operations. Security software can block modification of critical parts 

of the registry, as well as heuristically determine malicious software by registry access 

patterns or known bad registry keys.

Process notifications (see Chapter 5 for more information on these notifications). 

Security software can monitor the execution and termination of all processes and 

threads on the system, as well as DLLs being loaded or unloaded. With the enhanced 

notifications added in Windows Vista SP1 and Windows Server 2008, they also have the 

ability to block process launch.

Object manager filtering (explained in the object manager section earlier). Security 

software can remove certain access rights being granted to processes and/or threads to 

defend their own utilities against certain operations.

Code Integrity

Code integrity is a Windows mechanism that authenticates the integrity and source of 

executable images (such as applications, DLLs, or drivers) by validating a digital certificate 

contained within the image’s resources. This mechanism works in conjunction with system 

policies, defining how signing should be enforced. One of these policies is the Kernel Mode 
Code Signing (KMCS) policy, which requires that kernel-mode code be signed with a valid 

Authenticode certificate rooted by one of several recognized code signing authorities, such 

as Verisign or Thawte. 

To address backward compatibility concerns, the KMCS policy is only fully enforced on 64-bit 

machines, as those drivers have to be recompiled recently in order to run on that Windows 

architecture. This in turn implies that a company or individual is still responsible for maintain-

ing the driver and is able to sign it. On 32-bit machines, however, many older devices ship 

with outdated drivers, possibly from out-of-business companies, so signing those drivers 

would sometimes be unfeasible. Figure 3-36 shows the warning displayed on 64-bit Windows 

machines that attempt to load an unsigned driver.
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Note Windows also has a second driver signing policy, part of the Plug and Play manager. This 

policy is applied solely to Plug and Play drivers, and unlike the kernel-mode code signing policy, 

it can be configured to allow unsigned Plug and Play drivers (but not on 64-bit systems, where 

the KMCS policy takes precedence). See Chapter 7 for more information on the Plug and Play 

manager.

FIGURE 3-36 Warning when attempting to install an unsigned 64-bit driver

Note that even on 32-bit machines, code integrity will generate a warning when such a driver 

is loaded, which can be viewed in the Event Log.

Note Protected Media Path applications can also query the kernel for its integrity state, which 

includes information on whether or not unsigned 32-bit drivers are loaded on the system. In such 

scenarios, they are allowed to disable protected, high-definition media playback as a method to 

ensure the security and reliability of the encrypted stream.

The code integrity mechanism doesn’t stop at driver load time, however. Stronger measures 

also exist to authenticate per-page image contents for executable pages. This requires using 

a special flag while signing the driver binary and will generate a catalog with the crypto-

graphic hash of every executable page on which the driver will reside. (Pages are a unit of 

protection on the CPU; for more information, see Chapter 9.) This method allows for detec-

tion of modification of an existing driver, which may either happen at run time by another 

driver or through a page file or hibernation file attack (in which the contents of memory are 

edited on the disk and then reloaded into memory). Generating such per-page hashes is also 

a requirement for the new filtering model, as well as Protected Media Path components.
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Conclusion

In this chapter, we’ve examined the key base system mechanisms on which the Windows 

executive is built. In the next chapter, we’ll look at three important mechanisms involved 

with the management infrastructure of Windows: the registry, services, and Windows 

Management Instrumentation (WMI).
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Chapter 4

Management Mechanisms

This chapter describes four fundamental mechanisms in the Windows operating system that 

are critical to its management and configuration:

The registry

Services

Windows Management Instrumentation

Windows Diagnostics Infrastructure

The Registry

The registry plays a key role in the configuration and control of Windows systems. It is the 

repository for both systemwide and per-user settings. Although most people think of the 

registry as static data stored on the hard disk, as you’ll see in this section, the registry is also a 

window into various in-memory structures maintained by the Windows executive and kernel.

We’ll start by providing you with an overview of the registry structure, a discussion of the 

data types it supports, and a brief tour of the key information Windows maintains in the 

registry. Then we’ll look inside the internals of the configuration manager, the executive com-

ponent responsible for implementing the registry database. Among the topics we’ll cover are 

the internal on-disk structure of the registry, how Windows retrieves configuration informa-

tion when an application requests it, and what measures are employed to protect this critical 

system database.

Viewing and Changing the Registry

In general, you should never have to edit the registry directly: application and system set-

tings stored in the registry that might require manual changes should have a correspond-

ing user interface to control their modification. However, as you’ve already seen a number 

of times in this book, some advanced and debug settings have no editing user interface. 

Therefore, both graphical user interface (GUI) and command-line tools are included with 

Windows to enable you to view and modify the registry.

Windows comes with one main GUI tool for editing the registry—Regedit.exe—and a num-

ber of command-line registry tools. Reg.exe, for instance, has the ability to import, export, 

back up, and restore keys, as well as to compare, modify, and delete keys and values. 
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 Regini.exe, on the other hand, allows you to import registry data based on text files that con-

tain ASCII or Unicode configuration data.

Registry Usage

There are four principal times that configuration data is read:

During the initial boot process, the boot loader reads the list of boot device drivers to 

load into memory before initializing the kernel.

During the kernel boot process, the kernel reads settings that specify which device driv-

ers to load and how various subsystems—such as the memory manager and process 

manager—configure themselves and tune system behavior.

During logon, Explorer and other Windows components read per-user preferences 

from the registry, including network drive-letter mappings, desktop wallpaper, screen 

saver, menu behavior, and icon placement.

During their startup, applications read systemwide settings, such as a list of optionally 

installed components and licensing data, as well as per-user settings that might include 

menu and toolbar placement and a list of most-recently accessed documents.

However, the registry can be read at other times as well, such as in response to a modifica-

tion of a registry value or key. Some applications monitor their configuration settings in the 

registry and read updated settings when they see a change. In general, however, on an idle 

system there should be no registry activity.

The registry is commonly modified in the following cases:

Although not a modification, the registry’s initial structure and many default settings 

are defined by a prototype version of the registry that ships on the Windows setup 

media that is copied onto a new installation.

Application setup utilities create default application settings and settings that reflect 

installation configuration choices.

During the installation of a device driver, the Plug and Play system creates settings in 

the registry that tell the I/O manager how to start the driver and creates other set-

tings that configure the driver’s operation. (See Chapter 7 for more information on how 

device drivers are installed.)

When you change application or system settings through user interfaces, the changes 

are often stored in the registry.

Note Sadly, some applications poll the registry looking for changes when they should be using 

the registry’s RegNotifyChangeKey function, which puts a thread to sleep until a change occurs to 

the area of the registry in which they’re interested.
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Registry Data Types

The registry is a database whose structure is similar to that of a disk volume. The registry 

contains keys, which are similar to a disk’s directories, and values, which are comparable to 

files on a disk. A key is a container that can consist of other keys (subkeys) or values. Values, 

on the other hand, store data. Top-level keys are root keys. Throughout this section, we’ll use 

the words subkey and key interchangeably.

Both keys and values borrow their naming convention from the file system. Thus, you can 

uniquely identify a value with the name mark, which is stored in a key called trade, with 

the name trade\mark. One exception to this naming scheme is each key’s unnamed value. 

Regedit displays the unnamed value as (Default).

Values store different kinds of data and can be one of the 14 types listed in Table 4-1. The 

majority of registry values are REG_DWORD, REG_BINARY, or REG_SZ. Values of type REG_

DWORD can store numbers or Booleans (on/off values); REG_BINARY values can store num-

bers larger than 32 bits or raw data such as encrypted passwords; REG_SZ values store strings 

(Unicode, of course) that can represent elements such as names, file names, paths, and types.

TABLE 4-1 Registry Value Types

Value Type Description

REG_NONE No value type.

REG_SZ Fixed-length Unicode string.

REG_EXPAND_SZ Variable-length Unicode string that can have 

embedded environment variables.

REG_BINARY Arbitrary-length binary data.

REG_DWORD 32-bit number.

REG_DWORD_LITTLE_ENDIAN 32-bit number, with low byte first. This is equivalent 

to REG_DWORD.

REG_DWORD_BIG_ENDIAN 32-bit number, with high byte first.

REG_LINK Unicode symbolic link.

REG_MULTI_SZ Array of Unicode NULL-terminated strings.

REG_RESOURCE_LIST Hardware resource description.

REG_FULL_RESOURCE_DESCRIPTOR Hardware resource description.

REG_RESOURCE_REQUIREMENTS_LIST Resource requirements.

REG_QWORD  64-bit number.

REG_QWORD_LITTLE_ENDIAN 64-bit number, with low byte first. This is equivalent 

to REG_QWORD.

The REG_LINK type is particularly interesting because it lets a key transparently point to another 

key or value. When you traverse the registry through a link, the path searching continues at the 

target of the link. For example, if \Root1\Link has a REG_LINK value of \Root2\RegKey, and 

RegKey contains the value RegValue, two paths identify RegValue: \Root1\Link\RegValue 
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and \Root2\RegKey\RegValue. As explained in the next section, Windows prominently uses 

 registry links: three of the six registry root keys are links to subkeys within the three nonlink 

root keys.

Registry Logical Structure

You can chart the organization of the registry via the data stored within it. There are six root 

keys (and you can’t add new root keys or delete existing ones) that store information, as 

shown in Table 4-2.

TABLE 4-2 The Six Root Keys

Root Key Description

HKEY_CURRENT_USER Stores data associated with the currently logged-on user

HKEY_USERS Stores information about all the accounts on the machine

HKEY_CLASSES_ROOT Stores file association and Component Object Model (COM) 

object registration information

HKEY_LOCAL_MACHINE Stores system-related information

HKEY_PERFORMANCE_DATA Stores performance information

HKEY_CURRENT_CONFIG Stores some information about the current hardware profile

Why do root-key names begin with an H? Because the root-key names represent Windows 

handles (H) to keys (KEY). As mentioned in Chapter 1, HKLM is an abbreviation used for 

HKEY_LOCAL_MACHINE. Table 4-3 lists all the root keys and their abbreviations. The follow-

ing sections explain in detail the contents and purpose of each of these six root keys.

TABLE 4-3 Registry Root Keys

Root Key Abbreviation Description Link

HKEY_CURRENT_USER HKCU Points to the user 

profile of the currently 

logged-on user

Subkey under HKEY_USERS 

corresponding to currently 

logged-on user

HKEY_USERS HKU Contains subkeys for all 

loaded user profiles

Not a link

HKEY_CLASSES_ROOT HKCR Contains file association 

and COM registration 

information

Not a direct link; rather, 

a merged view of HKLM\

SOFTWARE\Classes and 

HKEY_USERS\<SID>\Classes

HKEY_LOCAL_MACHINE HKLM Placeholder—contains 

other keys

Not a link

HKEY_CURRENT_CONFIG HKCC Current hardware 

profile

HKLM\SYSTEM\

CurrentControlSet\

Hardware Profiles\Current

HKEY_PERFORMANCE_

DATA

HKPD Performance counters Not a link



 Chapter 4 Management Mechanisms 253

HKEY_CURRENT_USER

The HKCU root key contains data regarding the preferences and software configuration of 

the locally logged-on user. It points to the currently logged-on user’s user profile, located on 

the hard disk at \Users\<username>\Ntuser.dat. (See the section “Registry Internals” later in 

this chapter to find out how root keys are mapped to files on the hard disk.) Whenever a user 

profile is loaded (such as at logon time or when a service process runs under the context of 

a specific user name), HKCU is created to map to the user’s key under HKEY_USERS. Table 4-4 

lists some of the subkeys under HKCU.

TABLE 4-4 HKEY_CURRENT_USER Subkeys

Subkey Description

AppEvents Sound/event associations

Console Command window settings (for example, width, height, and 

colors)

Control Panel Screen saver, desktop scheme, keyboard, and mouse settings, as 

well as accessibility and regional settings

Environment Environment variable definitions

EUDC Information on end-user defined characters

Identities Windows Mail account information

Keyboard Layout Keyboard layout setting (for example, U.S. or U.K.)

Network Network drive mappings and settings

Printers Printer connection settings

Session Information Number of taskbar-visible programs running in the current session

Software User-specific software preferences

UNICODE Program Groups User-specific Start menu group definitions

Volatile Environment Volatile environment variable definitions

HKEY_USERS

HKU contains a subkey for each loaded user profile and user class registration database 

on the system. It also contains a subkey named HKU\.DEFAULT that is linked to the profile 

for the system (which is used by processes running under the local system account and is 

described in more detail in the section “Services” later in this chapter). This is the profile used 

by Winlogon, for example, so that changes to the desktop background settings in that profile 

will be implemented on the logon screen. When a user logs on to a system for the first time 

and her account does not depend on a roaming domain profile (that is, the user’s profile is 

obtained from a central network location at the direction of a domain controller), the system 

creates a profile for her account that’s based on the profile stored in %SystemDrive%\Users\

Default.
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The location under which the system stores profiles is defined by the registry value HKLM\

Software\Microsoft\Windows NT\CurrentVersion\ProfileList\ProfilesDirectory, which is by 

default set to %SystemDrive%\Users. The ProfileList key also stores the list of profiles present 

on a system. Information for each profile resides under a subkey that has a name reflecting 

the security identifier (SID) of the account to which the profile corresponds. (See Chapter 6 

for more information on SIDs.) Data stored in a profile’s key includes the time of the last load 

of the profile in the ProfileLoadTimeLow and ProfileLoadTimeHigh values, the binary repre-

sentation of the account SID in the Sid value, and the path to the profile’s on-disk hive (which 

is described later in this chapter in the “Hives” section) in the ProfileImagePath directory. 

Windows shows the list of profiles stored on a system in the User Profiles management dialog 

box, shown in Figure 4-1, which you access by clicking Settings in the User Profiles section of 

the Advanced Tab in the System Control Panel applet.

FIGURE 4-1 The User Profiles management dialog box

EXPERIMENT: Watching Profile Loading and Unloading

You can see a profile load into the registry and then unload by using the Runas com-

mand to launch a process in an account that’s not currently logged on to the machine. 

While the new process is running, run Regedit and note the loaded profile key under 

HKEY_USERS. After terminating the process, perform a refresh in Regedit by pressing 

the F5 key and the profile should no longer be present.
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HKEY_CLASSES_ROOT

HKCR consists of three types of information: file extension associations, COM class registra-

tions, and the virtualized registry root for User Account Control (UAC). (See Chapter 6 for 

more information on UAC.) A key exists for every registered file name extension. Most keys 

contain a REG_SZ value that points to another key in HKCR containing the association infor-

mation for the class of files that extension represents.

For example, HKCR\.xls would point to information on Microsoft Office Excel files in a key 

such as HKCU\Excel.Sheet.8. Other keys contain configuration details for COM objects regis-

tered on the system. The UAC virtualized registry is located in the VirtualStore key, which is 

not related to the other kinds of data stored in HKCR.

The data under HKEY_CLASSES_ROOT comes from two sources:

The per-user class registration data in HKCU\SOFTWARE\Classes (mapped to the file on 

hard disk \Users\<username>\AppData\Local\Microsoft\Windows\Usrclass.dat)

Systemwide class registration data in HKLM\SOFTWARE\Classes

The reason that there is a separation of per-user registration data from systemwide reg-

istration data is so that roaming profiles can contain these customizations. It also closes a 

security hole: a nonprivileged user cannot change or delete keys in the systemwide version 

HKEY_CLASSES_ROOT, and thus cannot affect the operation of applications on the system. 

Nonprivileged users and applications can read systemwide data and can add new keys and 

values to systemwide data (which are mirrored in their per-user data), but they can modify 

existing keys and values in their private data only.

HKEY_LOCAL_MACHINE

HKLM is the root key that contains all the systemwide configuration subkeys: BCD, 

COMPONENTS, HARDWARE, SAM, SECURITY, SOFTWARE, and SYSTEM.

The HKLM\BCD subkey contains the Boot Configuration Database (BCD) information loaded 

as a registry hive. This database replaces the Boot.ini file that was used before Windows Vista 

and adds greater flexibility and isolation of per-installation boot configuration data. (For 

more information on the BCD, see Chapter 13.)

Each entry in the BCD, such as a Windows installation or the command-line settings for the 

installation, is stored in the Objects subkey, either as an object referenced by a GUID (in the 

case of a boot entry) or as a numeric subkey called an element. Most of these raw elements 

are documented in the BCD reference in the MSDN Library and define various command-line 

settings or boot parameters. The value associated with each element subkey corresponds to 

the value for its respective command-line flag or boot parameter.
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The BCDEdit command-line utility allows you to modify the BCD using symbolic names for 

the elements and objects. It also provides extensive help for all the boot options available; 

unfortunately, it only works locally. Because the registry can be opened remotely as well as 

imported from a hive file, you can modify or read the BCD of a remote computer by using 

the Registry Editor. The following experiment shows you how to enable kernel debugging by 

using the Registry Editor.

EXPERIMENT: Offline or Remote BCD Editing

In this experiment, you will enable debugging through editing the BCD inside the 

 registry. For the purposes of this example, you’ll be editing the local copy of the BCD, 

but the point of this technique is that it can be used on any BCD hive. Follow these 

steps to add the /DEBUG command-line flag:

 1. Open the Registry Editor, and then navigate to the HKLM\BCD00000000 key. 

Expand every subkey so that the numerical identifiers of each “Elements” key are 

fully visible.
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 2. Identify the boot entry for your Windows installation by locating Description ele-

ments, which have an ID of 0x12000004. In the Element value of those subkeys, 

you should find one called Windows Vista or Windows Server 2008. If you have 

more than one Windows installation on your machine, you need to check the 

0x22000002 subkey, which contains the path, such as \Windows.

 3. Now that you’ve found the correct GUID for your Windows installation, create a 

new subkey under the Elements subkey for that GUID and call it 0x260000a0. If 

this subkey already exists, simply navigate to it.

 4. If you had to create the subkey, now create a binary value called Element inside it.

 5. Edit the value and set it to 01. This will enable kernel-mode debugging. Here’s 

what these changes should look like:

Note The 0x12000004 ID corresponds to BcdLibraryString_ApplicationPath, while the 

0x22000002 ID corresponds to BcdOSLoaderString_SystemRoot. Finally, the ID we added, 

0x260000a0, corresponds to BcdOSLoaderBoolean_KernelDebuggerEnabled. These values are 

documented in the BCD reference in MSDN Library.

The HKLM\COMPONENTS subkey contains information pertinent to the Component 

Based Servicing (CBS) stack. This stack contains various files and resources that are part 

of a Windows installation image (used by the Automated Installation Kit or the OEM 

Preinstallation Kit) or an active installation. The CBS APIs that exist for servicing purposes 
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use the information located in this key to identify installed components and their configura-

tion information. This information is used whenever components are installed, updated, or 

removed either individually (called units) or in groups (called packages).

The HKLM\HARDWARE subkey maintains descriptions of the system’s hardware and all hard-

ware device-to-driver mappings. The Device Manager tool (which is available by running 

System from Control Panel and then clicking Device Manager) lets you view registry hard-

ware information that it obtains by simply reading values out of the HARDWARE key.

EXPERIMENT: Fun with the Hardware Key

You can fool your coworkers or friends into thinking that you have the latest and great-

est processor by modifying the value of the ProcessorNameString value under HKLM\

HARDWARE\DESCRIPTION\System\CentralProcessor\0. The System item in Control 

Panel displays the ProcessorNameString value on the main page. Changes you make to 

other values in that key, such as the ~MHz value, do not have any effect on what the 

System item displays, however, because the system caches many of the values for use 

by functions that applications use to query the system’s processor capabilities.

HKLM\SAM holds local account and group information, such as user passwords, group defi-

nitions, and domain associations. Windows Server systems that are operating as domain 

controllers store domain accounts and groups in Active Directory, a database that stores 

domainwide settings and information. (Active Directory isn’t described in this book.) By 

default, the security descriptor on the SAM key is configured so that even the administrator 

account doesn’t have access.

HKLM\SECURITY stores systemwide security policies and user-rights assignments. HKLM\SAM 

is linked into the SECURITY subkey under HKLM\SECURITY\SAM. By default, you can’t view 

the contents of HKLM\SECURITY or HKLM\SAM\SAM because the security settings of those 

keys allow access only by the System account. (System accounts are discussed in greater 

detail later in this chapter.) You can change the security descriptor to allow read access to 

administrators, or you can use PsExec to run Regedit in the local system account if you want 

to peer inside. However, that glimpse won’t be very revealing because the data is undocu-

mented and the passwords are encrypted with one-way mapping—that is, you can’t deter-

mine a password from its encrypted form.

HKLM\SOFTWARE is where Windows stores systemwide configuration information not 

needed to boot the system. Also, third-party applications store their systemwide settings 

here, such as paths to application files and directories and licensing and expiration date 

information.
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HKLM\SYSTEM contains the systemwide configuration information needed to boot the 

system, such as which device drivers to load and which services to start. Because this infor-

mation is critical to starting the system, Windows also maintains a copy of part of this infor-

mation, called the last known good control set, under this key. The maintenance of a copy 

allows an administrator to select a previously working control set in the case that configura-

tion changes made to the current control set prevent the system from booting. For details on 

when Windows declares the current control set “good,” see the section “Accepting the Boot 

and Last Known Good” later in this chapter.

HKEY_CURRENT_CONFIG

HKEY_CURRENT_CONFIG is just a link to the current hardware profile, stored under HKLM\

SYSTEM\CurrentControlSet\Hardware Profiles\Current. Hardware profiles allow an administra-

tor to configure variations to the base system driver settings. Although the underlying pro-

file might change from boot to boot, applications can always reference the currently active 

profile through this key. Hardware profile management is managed through the Hardware 

Profiles dialog box that you access by clicking Settings in the Hardware Profiles section on 

the Hardware page of the Control Panel’s System item. During the boot process, Winload will 

prompt you to specify which profile it should use if there is more than one.

HKEY_PERFORMANCE_DATA

The registry is the mechanism to access performance counter values on Windows, whether 

those are from operating system components or server applications. One of the side benefits 

of providing access to the performance counters via the registry is that remote performance 

monitoring works “for free” because the registry is easily accessible remotely through the 

normal registry APIs.

You can access the registry performance counter information directly by opening a special 

key named HKEY_PERFORMANCE_DATA and querying values beneath it. You won’t find this 

key by looking in the Registry Editor; this key is available only programmatically through the 

Windows registry functions, such as RegQueryValueEx. Performance information isn’t actually 

stored in the registry; the registry functions use this key to locate the information from per-

formance data providers.

You can also access performance counter information by using the Performance Data Helper 

(PDH) functions available through the Performance Data Helper API (Pdh.dll). Figure 4-2 

shows the components involved in accessing performance counter information.
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FIGURE 4-2 Registry performance counter architecture

Transactional Registry (TxR)

Before Windows Vista, there was no easy, guaranteed way to perform transactional opera-

tions on the registry, and it was even harder to link those operations with other, nonregistry 

operations, such as file operations. Thanks to the Kernel Transaction Manager (KTM; for more 

information see the section about the KTM in Chapter 3), developers now have access to a 

straightforward API that allows them to implement robust error-recovery capabilities when 

performing registry operations.

Three APIs support transactional modification of the registry: RegCreateKeyTransacted, 
RegOpenKeyTransacted, and RegDeleteKeyTransacted. These new routines take the same 

parameters as their nontransacted analogues, except that a new transaction handle 

parameter is added. A developer supplies this handle after calling the KTM function 

CreateTransaction.

After a transacted create or open operation, all subsequent registry operations, such as creat-

ing, deleting, or modifying values inside the key, will also be transacted. However, operations 

on the subkeys of a transacted key will not be automatically transacted, which is why the 

third API, RegDeleteKeyTransacted exists. It allows the transacted deletion of subkeys, which 

RegDeleteKeyEx would not normally do.

Data for these transacted operations is written to log files using the common logging file 

system (CLFS) services, similar to other KTM operations. Until the transaction itself is commit-

ted or rolled back (both of which might happen programmatically or as a result of a power 

failure or system crash, depending on the state of the transaction), the keys, values, and other 
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registry modifications performed with the transaction handle will not be visible to external 

applications through the nontransacted APIs. Also, transactions are isolated from each other; 

modifications made inside one transaction will not be visible from inside other transactions 

or outside the transaction until the transaction is committed.

Note  A nontransactional writer will abort a transaction in case of conflict—for example, if a 

value was created inside a transaction and later, while the transaction is still active, a nontransac-

tional writer tries to create a value under the same key. The nontransactional operation will suc-

ceed and all operations in the conflicting transaction will be aborted.

The isolation level (the “I” in ACID) implemented by TxR resource managers is read-commit, 

which means that changes become available to other readers (transacted or not) immediately 

after being committed. This mechanism is important for people who are familiar with trans-

actions in databases, where the isolation level is predictable-reads (or cursor-stability, as it is 

called in database literature). With a predictable-reads isolation level, after you read a value 

inside a transaction, subsequent reads will give you back the same data. Read-commit does 

not make this guarantee. One of the consequences is that registry transactions can’t be used 

for “atomic” increment/decrement operations on a registry value.

To make permanent changes to the registry, the application that has been using the trans-

action handle must call the KTM function CommitTransaction. (If the application decides to 

undo the changes, such as during a failure path, it can call the RollbackTransaction API.) The 

changes will then be visible through the regular registry APIs as well.

Note If a transaction handle created with CreateTransaction is closed before the transaction is 

committed (and there are no other handles open to that transaction), the system will roll back 

that transaction.

Apart from using the CLFS support provided by the KTM, TxR also stores its own internal log 

files in the %SystemRoot%\System32\Config\Txr folder on the system volume; these files have 

a .regtrans-ms extension and are hidden by default. Even if there are no third-party applica-

tions installed, it is likely that your system will contain files in this directory because Windows 

Update and Component Based Servicing take advantage of TxR to atomically write data to 

the registry to avoid system failure or inconsistent component data in the case of an incom-

plete update. In fact, if you take a look at some of the transaction files, you should be able to 

see the key names on which the transaction was being performed.

There is a global registry resource manager (RM) that services all the hives that are mounted 

at boot time. For every hive that is mounted explicitly, an RM is created. For applications that 

use registry transactions, the creation of an RM is transparent because KTM ensures that all 

RMs taking part in the same transaction are coordinated in the two-phase commit/abort 

protocol. For the global registry RM, the CLFS log files are stored, as mentioned earlier, inside 
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System32\Config\Txr. For other hives, they are stored alongside the hive (in same directory). 

They are hidden and follow the same naming convention, ending in .regtrans-ms. The log file 

names are prefixed with the name of the hive to which they correspond.

Monitoring Registry Activity

Because the system and applications depend so heavily on configuration settings to guide 

their behavior, system and application failures can result from changing registry data or 

security. When the system or an application fails to read settings that it assumes it will always 

be able to access, it may not function properly, display error messages that hide the root 

cause, or even crash. It’s virtually impossible to know what registry keys or values are mis-

configured without understanding how the system or the application that’s failing is access-

ing the registry. In such situations, the Process Monitor utility from Windows Sysinternals 

(www.microsoft.com/technet/sysinternals) might provide the answer.

Process Monitor lets you monitor registry activity as it occurs. For each registry access, 

Process Monitor shows you the process that performed the access; the time, type, and result 

of the access; and the stack of the thread at the moment of the access. This information is 

useful for seeing how applications and the system rely on the registry, discovering where 

applications and the system store configuration settings, and troubleshooting problems 

related to applications having missing registry keys or values. Process Monitor includes 

advanced filtering and highlighting so that you can zoom in on activity related to specific 

keys or values or to the activity of particular processes.

Process Monitor Internals

Process Monitor relies on a device driver that it extracts from its executable image at run 

time and then starts. Its first execution requires that the account running it have the Load 

Driver privilege as well as the Debug privilege; subsequent executions in the same boot ses-

sion require only the Debug privilege because once loaded, the driver remains resident.

EXPERIMENT: Viewing Registry Activity on an Idle System

Because the registry implements the RegNotifyChangeKey function that applications 

can use to request notification of registry changes without polling for them, when you 

launch Process Monitor on a system that’s idle you should not see repetitive accesses to 

the same registry keys or values. Any such activity identifies a poorly written application 

that unnecessarily negatively affects a system’s overall performance.

Run Process Monitor, and after several seconds examine the output log to see whether 

you can spot polling behavior. Right-click on an output line associated with polling, and 

then choose Process Properties from the context menu to view details about the pro-

cess performing the activity.
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EXPERIMENT: Using Process Monitor to Locate Application 

Registry Settings

In some troubleshooting scenarios, you might need to determine where in the reg-

istry the system or an application stores particular settings. This experiment has you 

use Process Monitor to discover the location of Notepad’s settings. Notepad, like most 

Windows applications, saves user preferences—such as word-wrap mode, font and font 

size, and window position—across executions. By having Process Monitor watching 

when Notepad reads or writes its settings, you can identify the registry key in which the 

settings are stored. Here are the steps for doing this:

 1. Have Notepad save a setting that you can easily search for in a Process Monitor 

trace. You can do this by running Notepad, setting the font to Times New Roman, 

and then exiting Notepad.

 2. Run Process Monitor. Open the filter dialog box, and the Process Name filter, 

and enter notepad.exe as the string to match. This step specifies that Process 

Monitor will log only activity by the notepad.exe process.

 3. Run Notepad again, and after it has launched stop Process Monitor’s event cap-

ture by toggling Capture Events on the Process Monitor File menu.

 4. Scroll to the top line of the resultant log and select it.

 5. Press Ctrl+F to open a Find dialog box, and search for times new. Process 

Monitor should highlight a line like the one shown in the following screen that 

represents Notepad reading the font value from the registry. Other operations in 

the immediate vicinity should relate to other Notepad settings.

 6. Finally, double-click the highlighted line. Process Monitor will execute Regedit 

(if it’s not already running) and cause it to navigate to and select the Notepad- 

referenced registry value.
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Process Monitor Troubleshooting Techniques

Two basic Process Monitor troubleshooting techniques are effective for discovering the cause 

of registry-related application or system problems:

Look at the last thing in the Process Monitor trace that the application did before it 

failed. This action might point to the problem.

Compare a Process Monitor trace of the failing application with a trace from a working 

system.

To follow the first approach, run Process Monitor and then run the application. At the point 

the failure occurs, go back to Process Monitor and stop the logging (by pressing Ctrl+E). Then 

go to the end of the log and find the last operations performed by the application before it 

failed (or crashed, hung, or whatever). Starting with the last line, work your way backward, 

examining the files, registry keys, or both that were referenced—often this will help pinpoint 

the problem.

Use the second approach when the application fails on one system but works on another. 

Capture a Process Monitor trace of the application on the working and failing systems, and 

save the output to a log file. Then open the good and bad log files with Microsoft Excel 

(accepting the defaults in the Import wizard), and delete the first three columns. (If you don’t 

delete the first three columns, the comparison will show every line as different because the 

first three columns contain information that is different from run to run, such as the time and 

the process ID.) Finally, compare the resulting log files. (You can do this by using WinDiff, 

which is included in the Windows SDK).

Entries in a Process Monitor trace that have values of NAME NOT FOUND or ACCESS DENIED 

in the Result column are ones that you should investigate. NAME NOT FOUND is reported 

when an application attempts to read from a registry key or value that doesn’t exist. In many 

cases, a missing key or value is innocuous because a process that fails to read a setting from 

the registry simply falls back on default values. In some cases, however, applications expect 

to find values for which there is no default and will fail if they are missing.

Access-denied errors are a common source of registry-related application failures and 

occur when an application doesn’t have permission to access a key the way that it wants. 

Applications that do not validate registry operation results or perform proper error recovery 

will fail.

A common result string that might appear suspicious is BUFFER OVERFLOW. It does not 

indicate a buffer-overflow exploit in the application that receives it. Instead, it’s used by the 

configuration manager to inform an application that the buffer it specified to store a regis-

try value is too small to hold the value. Application developers often take advantage of this 

behavior to determine how large a buffer to allocate to store a value. They first perform a 

registry query with a 0-length buffer that returns a buffer-overflow error and the length of 
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the data it attempted to read. The application then allocates a buffer of the indicated size 

and rereads the value. You should therefore see operations that return BUFFER OVERFLOW 

repeat with a successful result.

In one example of Process Monitor being used to troubleshoot a real problem, it saved a 

user from doing a complete reinstall of his Windows system. The symptom was that Internet 

Explorer would hang on startup if the user did not first manually dial the Internet connection. 

This Internet connection was set as the default connection for the system, so starting Internet 

Explorer should have caused an automatic dial-up to the Internet (because Internet Explorer 

was set to display a default home page upon startup).

An examination of a Process Monitor log of Internet Explorer startup activity, going back-

ward from the point in the log where Internet Explorer hung, showed a query to a key under 

HKCU\Software\Microsoft\RAS Phonebook. The user reported that he had previously unin-

stalled the dialer program associated with the key and manually created the dial-up con-

nection. Because the dial-up connection name did not match that of the uninstalled dialer 

program, it appeared that the key had not been deleted by the dialer’s uninstall program 

and that it was causing Internet Explorer to hang. After the key was deleted, Internet Explorer 

functioned as expected.

Logging Activity in Unprivileged Accounts or During Logon/Logoff

A common application-failure scenario is that an application works when run in an account 

that has Administrative group membership but not when run in the account of an unprivi-

leged user. As described earlier, executing Process Monitor requires security privileges that 

are not normally assigned to standard user accounts, but you can capture a trace of applica-

tions executing in the logon session of an unprivileged user by using the Runas command to 

execute Process Monitor in an administrative account.

If a registry problem relates to account logon or logoff, you’ll also have to take special steps 

to be able to use Process Monitor to capture a trace of those phases of a logon session. 

Applications that are run in the local system account are not terminated when a user logs 

off, and you can take advantage of that fact to have Process Monitor run through a logoff 

and subsequent logon. You can launch Process Monitor in the local system account either by 

using the At command that’s built into Windows and specifying the /interactive flag, or by 

using the Sysinternals PsExec utility, like this:

psexec –i 0 –s –d c:\procmon.exe

The –i switch directs PsExec to have Process Monitor’s window appear on the interactive 

console, the –s switch has PsExec run Process Monitor in the local system account, and the 

–d switch has PsExec launch Process Monitor and exit without waiting for Process Monitor to 

terminate. When you execute this command, the instance of Process Monitor that executes 
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will survive logoff and reappear on the desktop when you log back on, having captured the 

registry activity of both actions.

Another way to monitor registry activity during the logon, logoff, boot, or shutdown pro-

cess is to use the Process Monitor log boot feature, which you can enable by selecting Log 

Boot on the Options menu. The next time you boot the system, the Process Monitor device 

driver logs registry activity from early in the boot to %SystemRoot%\Procmon.pml. It will 

continue logging to that file until disk space runs out, the system shuts down, or you run 

Process Monitor. A log file storing a registry trace of startup, logon, logoff, and shutdown on 

a Windows system will typically be between 50 and 150 MB in size.

Registry Internals

In this section, you’ll find out how the configuration manager—the executive subsystem that 

implements the registry—organizes the registry’s on-disk files. We’ll examine how the con-

figuration manager manages the registry as applications and other operating system compo-

nents read and change registry keys and values. We’ll also discuss the mechanisms by which 

the configuration manager tries to ensure that the registry is always in a recoverable state, 

even if the system crashes while the registry is being modified.

Hives

On disk, the registry isn’t simply one large file but rather a set of discrete files called hives. 
Each hive contains a registry tree, which has a key that serves as the root or starting point of 

the tree. Subkeys and their values reside beneath the root. You might think that the root keys 

displayed by the Registry Editor correlate to the root keys in the hives, but such is not the 

case. Table 4-5 lists registry hives and their on-disk file names. The path names of all hives 

except for user profiles are coded into the configuration manager. As the configuration man-

ager loads hives, including system profiles, it notes each hive’s path in the values under the 

HKLM\SYSTEM\CurrentControlSet\Control\Hivelist subkey, removing the path if the hive is 

unloaded. It creates the root keys, linking these hives together to build the registry structure 

you’re familiar with and that the Registry Editor displays.

You’ll notice that some of the hives listed in Table 4-5 are volatile and don’t have associated 

files. The system creates and manages these hives entirely in memory; the hives are therefore 

temporary. The system creates volatile hives every time it boots. An example of a volatile 

hive is the HKLM\HARDWARE hive, which stores information about physical devices and the 

devices’ assigned resources. Resource assignment and hardware detection occur every time 

the system boots, so not storing this data on disk is logical.
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TABLE 4-5 On-Disk Files Corresponding to Paths in the Registry

Hive Registry Path Hive File Path

HKEY_LOCAL_MACHINE\BCD00000000 \Boot\BCD

HKEY_LOCAL_MACHINE\COMPONENTS %SystemRoot%\System32\Config\Components

HKEY_LOCAL_MACHINE\SYSTEM %SystemRoot%\System32\Config\System

HKEY_LOCAL_MACHINE\SAM %SystemRoot%\System32\Config\Sam

HKEY_LOCAL_MACHINE\SECURITY %SystemRoot%\System32\Config\Security

HKEY_LOCAL_MACHINE\SOFTWARE %SystemRoot%\System32\Config\Software

HKEY_LOCAL_MACHINE\HARDWARE Volatile hive

HKEY_USERS\<SID of local service account> %SystemRoot%\ServiceProfiles\LocalService\

Ntuser.dat

HKEY_USERS\<SID of network service 

account>

%SystemRoot%\ServiceProfiles\NetworkService\

NtUser.dat

HKEY_USERS\<SID of username> \Users\<username>\Ntuser.dat

HKEY_USERS\<SID of username>_Classes \Users\<username>\AppData\Local\Microsoft\

Windows\Usrclass.dat

HKEY_USERS\.DEFAULT %SystemRoot%\System32\Config\Default

EXPERIMENT: Manually Loading and Unloading Hives

Regedit has the ability to load hives that you can access through its File menu. This 

capability can be useful in troubleshooting scenarios where you want to view or edit 

a hive from an unbootable system or a backup medium. In this experiment, you’ll use 

Regedit to load a version of the HKLM\SYSTEM hive that Windows Setup creates during 

the install process.

 1. Hives can be loaded only underneath HKLM or HKU, so open Regedit, select 

HKLM, and choose Load Hive from the Regedit File menu.

 2. Navigate to the %SystemRoot%\System32\Config directory in the Load Hive dia-

log box, select System.sav, and open it. When prompted, enter Test as the name 

of the key under which it will load.

 3. Open the newly created HKLM\Test key, and explore the contents of the hive.

 4. Open HKLM\SYSTEM\CurrentControlSet\Control\Hivelist, and locate the entry 

\Registry\Machine\Test, which demonstrates how the configuration manager lists 

loaded hives in the Hivelist key.

 5. Select HKLM\Test, and then choose Unload Hive from the Regedit File menu to 

unload the hive.
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Hive Size Limits

In some cases, hive sizes are limited. For example, Windows places a limit on the size of the 

HKLM\SYSTEM hive. It does so because Winload reads the entire HKLM\SYSTEM hive into 

physical memory near the start of the boot process when virtual memory paging is not 

enabled. Winload also loads Ntoskrnl and boot device drivers into physical memory, so it 

must constrain the amount of physical memory assigned to HKLM\SYSTEM. (See Chapter 13 

for more information on the role Winload plays during the startup process.) On 32-bit sys-

tems, Winload allows the hive to be as large as 400 MB or one-half the amount of physical 

memory on the system, whichever is lower. On x64 systems, the lower bound is 1.5 GB. On 

Itanium systems, it is 32 MB.

To avoid using too much virtual memory for registry hives at one time, especially in the case 

of a Terminal Server, which must have the per-user registry settings of dozens of users avail-

able for reading and writing, the configuration manager on 32-bit versions of Windows does 

not use paged pool and instead relies on the memory manager’s memory-mapping func-

tions to map into system memory only the portions of registry hives that it’s accessing at any 

given point in time. This allows the total size of loaded hives not to constrain the scalability 

of Terminal Services. Because 64-bit systems have ample virtual address space, and because 

of the additional bookkeeping that memory-mapping requires, 64-bit Windows uses paged 

pool instead.

A special type of key known as a symbolic link makes it possible for the configuration man-

ager to link keys to organize the registry. A symbolic link is a key that redirects the configu-

ration manager to another key. Thus, the key HKLM\SAM is a symbolic link to the key at 

the root of the SAM hive. Symbolic links are created by specifying the REG_CREATE_LINK 

parameter to RegCreateKey or RegCreateKeyEx. Internally, the configuration manager will cre-

ate a REG_LINK value called SymbolicLinkValue, which will contain the path to the target key. 

Because this value is a REG_LINK instead of a REG_SZ, it will not be visible with Regedit—it is, 

however, part of the on-disk registry hive.

EXPERIMENT: Looking at Hive Handles

The configuration manager opens hives by using the kernel handle table (described in 

Chapter 3) so that it can access hives from any process context. Using the kernel handle 

table is an efficient alternative to approaches that involve using drivers or executive 

components to access from the System process only handles that must be protected 

from user processes. You can use Process Explorer to see the hive handles, which will 

be displayed as being opened in the System process. Select the System process, and 

then select Handles from the Lower Pane View menu entry on the View menu. Sort by 

handle type, and scroll until you see the hive files, as shown in the following screen.
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Hive Structure

The configuration manager logically divides a hive into allocation units called blocks in much 

the same way that a file system divides a disk into clusters. By definition, the registry block 

size is 4096 bytes (4 KB). When new data expands a hive, the hive always expands in block-

granular increments. The first block of a hive is the base block.

The base block includes global information about the hive, including a signature—regf—that 

identifies the file as a hive, updated sequence numbers, a time stamp that shows the last time 

a write operation was initiated on the hive, information on registry repair or recovery per-

formed by Winload, the hive format version number, a checksum, and the hive file’s internal 

file name (for example, \Device\HarddiskVolume1\WINDOWS\SYSTEM32\CONFIG\SAM). We’ll 

clarify the significance of the updated sequence numbers and time stamp when we describe 

how data is written to a hive file.

The hive format version number specifies the data format within the hive. The configura-

tion manager uses hive format version 1.3 (this version improved searching by caching the 

first four characters of the name inside the cell index structure for quick lookups) for all hives 

except for System and Software for roaming profile compatibility with Windows 2000. For 

System and Software hives, it uses version 1.5 because of the later format’s optimizations for 

large values (values larger than 1 MB are supported) and searching (instead of caching the 

first four characters of a name, a hash of the entire name is used to reduce collisions).

Windows organizes the registry data that a hive stores in containers called cells. A cell can 

hold a key, a value, a security descriptor, a list of subkeys, or a list of key values. A field at the 
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beginning of a cell’s data describes the data’s type. Table 4-6 describes each cell data type 

in detail. A cell’s header is a field that specifies the cell’s size. When a cell joins a hive and the 

hive must expand to contain the cell, the system creates an allocation unit called a bin.

A bin is the size of the new cell rounded up to the next block or page boundary, whichever is 

higher. The system considers any space between the end of the cell and the end of the bin to 

be free space that it can allocate to other cells. Bins also have headers that contain a signa-

ture, hbin, and a field that records the offset into the hive file of the bin and the bin’s size.

TABLE 4-6 Cell Data Types

Data Type Description

Key cell A cell that contains a registry key, also called a key node. A key cell 

contains a signature (kn for a key, kl for a link node), the time stamp 

of the most recent update to the key, the cell index of the key’s parent 

key cell, the cell index of the subkey-list cell that identifies the key’s 

subkeys, a cell index for the key’s security descriptor cell, a cell index 

for a string key that specifies the class name of the key, and the name 

of the key (for example, CurrentControlSet). It also saves cached 

information such as the number of subkeys under the key, as well as 

the size of the largest key name, value name, value data, and class 

name of the subkeys under this key.

Value cell A cell that contains information about a key’s value. This cell includes 

a signature (kv), the value’s type (for example, REG_ DWORD or REG_

BINARY), and the value’s name (for example, Boot-Execute). A value 

cell also contains the cell index of the cell that contains the value’s 

data.

Subkey-list cell A cell composed of a list of cell indexes for key cells that are all 

subkeys of a common parent key.

Value-list cell A cell composed of a list of cell indexes for value cells that are all 

values of a common parent key.

Security-descriptor cell A cell that contains a security descriptor. Security-descriptor cells 

include a signature (ks) at the head of the cell and a reference 

count that records the number of key nodes that share the security 

descriptor. Multiple key cells can share security-descriptor cells.

By using bins, instead of cells, to track active parts of the registry, Windows minimizes some 

management chores. For example, the system usually allocates and deallocates bins less 

frequently than it does cells, which lets the configuration manager manage memory more 

efficiently. When the configuration manager reads a registry hive into memory, it reads the 

whole hive, including empty bins, but it can choose to discard them later. When the system 

adds and deletes cells in a hive, the hive can contain empty bins interspersed with active 

bins. This situation is similar to disk fragmentation, which occurs when the system creates and 

deletes files on the disk. When a bin becomes empty, the configuration manager joins to the 

empty bin any adjacent empty bins to form as large a contiguous empty bin as possible. The 

configuration manager also joins adjacent deleted cells to form larger free cells. (The con-

figuration manager shrinks a hive only when bins at the end of the hive become free. You can 
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compact the registry by backing it up and restoring it using the Windows RegSaveKey and 

RegReplaceKey functions, which are used by the Windows Backup utility.)

The links that create the structure of a hive are called cell indexes. A cell index is the offset 

of a cell into the hive file minus the size of the base block. Thus, a cell index is like a pointer 

from one cell to another cell that the configuration manager interprets relative to the start of 

a hive. For example, as you saw in Table 4-6, a cell that describes a key contains a field speci-

fying the cell index of its parent key; a cell index for a subkey specifies the cell that describes 

the subkeys that are subordinate to the specified subkey. A subkey-list cell contains a list of 

cell indexes that refer to the subkey’s key cells. Therefore, if you want to locate, for example, 

the key cell of subkey A, whose parent is key B, you must first locate the cell containing key 

B’s subkey list using the subkey-list cell index in key B’s cell. Then you locate each of key B’s 

subkey cells by using the list of cell indexes in the subkey-list cell. For each subkey cell, you 

check to see whether the subkey’s name, which a key cell stores, matches the one you want 

to locate, in this case, subkey A.

The distinction between cells, bins, and blocks can be confusing, so let’s look at an example 

of a simple registry hive layout to help clarify the differences. The sample registry hive file 

in Figure 4-3 contains a base block and two bins. The first bin is empty, and the second bin 

contains several cells. Logically, the hive has only two keys: the root key Root, and a subkey 

of Root, Sub Key. Root has two values, Val 1 and Val 2. A subkey-list cell locates the root key’s 

subkey, and a value-list cell locates the root key’s values. The free spaces in the second bin 

are empty cells. Figure 4-3 doesn’t show the security cells for the two keys, which would be 

present in a hive.

FIGURE 4-3 Internal structure of a registry hive

Figure 4-4 shows an example of the Disk Probe utility (Dskprobe.exe) examining the first bin 

in a SYSTEM hive. Notice the bin’s signature, hbin, at the top right side of the image. Look 

beneath the bin signature and you’ll see the signature nk. This signature is the signature of a 

key cell (kn). The signature displays backward because of the way x86 computers store data. 

The cell is the SYSTEM hive’s root cell, which the configuration manager has named internally 

CMI-CreateHive{C619BFE8-791A-4B77-922B-F114AB570920}, as specified by the name that 

follows the nk signature.
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Bin signature

Key cell signature

Name

FIGURE 4-4 Binary contents of first bin in the SYSTEM hive

To optimize searches for both values and subkeys, the configuration manager sorts subkey-

list cells alphabetically. The configuration manager can then perform a binary search when it 

looks for a subkey within a list of subkeys. The configuration manager examines the subkey 

in the middle of the list, and if the name of the subkey the configuration manager is looking 

for is alphabetically before the name of the middle subkey, the configuration manager knows 

that the subkey is in the first half of the subkey list; otherwise, the subkey is in the second half 

of the subkey list. This splitting process continues until the configuration manager locates 

the subkey or finds no match. Value-list cells aren’t sorted, however, so new values are always 

added to the end of the list.

Cell Maps

The configuration manager doesn’t access a hive’s image on disk every time a registry access 

occurs. Instead, the configuration manager maps portions of a hive into memory as it needs 

to access them. It uses the cache manager’s file mapping functions to map 16-KB views into 

the hive files. (See Chapter 10 for more information on the cache manager.) To prevent hive 

mapping from consuming all the cache manager’s address range, the configuration manager 

tries to keep no more than 256 views of a hive mapped at any given point in time by unmap-

ping least-recently-used (LRU) views when it reaches that limit. The configuration manager 

still uses the paged pool to store various data structures (including the LRU list of views).

Note The configuration manager will store a block in the paged pool instead of mapping it if 

the block exceeds 256 KB in size.
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If hives never grew, the configuration manager could perform all its registry management on 

the in-memory version of a hive as if the hive were a file. Given a cell index, the configuration 

manager could calculate the location in memory of a cell simply by adding the cell index, 

which is a hive file offset, to the base of the in-memory hive image. Early in the system boot, 

this process is exactly what Winload does with the SYSTEM hive: Winload reads the entire 

SYSTEM hive into memory as a read-only hive and adds the cell indexes to the base of the in-

memory hive image to locate cells. Unfortunately, hives grow as they take on new keys and 

values, which means the system must allocate paged pool memory to store the new bins that 

contain added keys and values. Thus, the paged pool that keeps the registry data in memory 

isn’t necessarily contiguous.

EXPERIMENT: Viewing Hive Paged Pool Usage

There are no administrative-level tools that show you the amount of paged pool that 

registry hives, including user profiles, are consuming on Windows. However, the !reg 
dumppool kernel debugger command shows you not only how many pages of the 

paged pool each loaded hive consumes but also how many of the pages store volatile 

and nonvolatile data. The command prints the total hive memory usage at the end of 

the output. (The command shows only the last 32 characters of a hive’s name.)

kd> !reg dumppool  

  

dumping hive at e20d66a8 (a\Microsoft\Windows\UsrClass.dat)  

  Stable Length = 1000  

  1/1 pages present  

  Volatile Length = 0  

  

dumping hive at e215ee88 (ettings\Administrator\ntuser.dat)  

  Stable Length = f2000  

  242/242 pages present  

  Volatile Length = 2000  

  2/2 pages present  

  

dumping hive at e13fa188 (\SystemRoot\System32\Config\SAM)  

  Stable Length = 5000  

  5/5 pages present  

  Volatile Length = 0  

  

...
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EXPERIMENT: Viewing Hive Memory Usage

You can view statistics on hive memory usage, including its stable (on-disk) size and 

nonvolatile size, the number of active views, and the number of views that are locked 

into memory, using the !reg hivelist command (note that the line output wraps):

--------------------------------------------------------------------------------------

----------------------- 

| HiveAddr |Stable Length|Stable Map|Volatile Length|Volatile Map|MappedViews|PinnedVi

ews|U(Cnt)| BaseBlock | FileName  

--------------------------------------------------------------------------------------

-----------------------  

| 9b106a30 |      24000  | 9b106aa8 |          0    |  00000000  |       10  |        

0  |     0| 9b19d000  | files\NetworkService\ntuser.dat 

| 9b1d3008 |      23000  | 9b1d3080 |          0    |  00000000  |        9  |        

0  |     0| 9b1d2000  | rofiles\LocalService\ntuser.dat 

| 9c1a8008 |     374000  | 9c0b3000 |       2000    |  9c1a81bc  |      174  |        

0  |     0| 9c080000  | :\Users\Abby\ntuser.dat 

| 9cfdba30 |     219000  | 9ce77000 |       1000    |  9cfdbbe4  |      103  |        

0  |     0| 9c0f8000  | \Microsoft\Windows\UsrClass.dat 

...

In the preceding output, the Abby account’s profile hive (the full path of which, 

\Users\Abby\ntuser.dat, is truncated in the output) has 174 mapped views and is 

approximately 3.45 MB in size (0x374000 in decimal). The !reg viewlist command will 

dump the mapped views of the hive you specify. Here’s the output of that command 

when executed for the UsrClass.dat hive that was printed as the last hive of the !reg 
hivelist command’s output:

lkd> !reg viewlist 9cfdba30  

 

   0  Pinned Views ; PinViewListHead = 9cfdbd5c 9cfdbd5c 

 

 103  Mapped Views ; LRUViewListHead = 91d3e058 91d3bd60 

--------------------------------------------------------------------------------------

------------------------ 

| ViewAddr |FileOffset|   Size   |ViewAddress|   Bcb    |    LRUViewList     |    

PinViewList     | UseCount | 

--------------------------------------------------------------------------------------

------------------------ 

| 91d3e058 |     1000 |     3000 | 9de81000  | 8611dd11 | 975c6870  9cfdbd54 | 

91d3e060  91d3e060 |        0 | 

 

| 975c6870 |   138000 |     4000 | 9dfb8000  | 8611dd91 | 96756278  91d3e058 | 

975c6878  975c6878 |        0 |

The output shows the addresses of the two views that the hivelist command reported 

for the hive in the ViewAddress column. Using the debugger’s db command to dump 

the contents of memory at the address of the first view reveals that it maps a base 

block of the hive, recognizable with its hbin signature.
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lkd> db 9de81000   

9de81000  68 62 69 6e 00 00 00 00-00 10 00 00 00 00 00 00  hbin............ 

9de81010  00 00 00 00 56 b1 b8 fe-2b 61 c8 01 00 00 00 00  ....V...+a...... 

9de81020  78 ff ff ff 6e 6b 2c 00-10 63 0b c6 89 58 c8 01  x...nk,..c...X.. 

9de81030  00 00 00 00 e0 06 00 00-56 00 00 00 00 00 00 00  ........V....... 

9de81040  a0 af 01 00 ff ff ff ff-00 00 00 00 ff ff ff ff  ................ 

9de81050  28 01 00 00 ff ff ff ff-4c 00 00 00 00 00 00 00  (.......L....... 

9de81060  00 00 00 00 00 00 00 00-00 00 00 00 36 00 00 00  ............6... 

9de81070  53 2d 31 2d 35 2d 32 31-2d 34 30 34 37 36 30 39  S-1-5-21-4047609

To deal with noncontiguous memory addresses referencing hive data in memory, the con-

figuration manager adopts a strategy similar to what the Windows memory manager uses to 

map virtual memory addresses to physical memory addresses. The configuration manager 

employs a two-level scheme, which Figure 4-5 illustrates, that takes as input a cell index (that 

is, a hive file offset) and returns as output both the address in memory of the block the cell 

index resides in and the address in memory of the block the cell resides in. Remember that 

a bin can contain one or more blocks and that hives grow in bins, so Windows always rep-

resents a bin with a contiguous region of memory. Therefore, all blocks within a bin occur 

within the same cache manager view.

Cell index

Directory index Table index Byte offset

Hive’s cell map
directory

Target block
Cell map table

32 0

1023

0

0

Hive cell map directory pointer

511

Cell

FIGURE 4-5 Structure of a cell index

To implement the mapping, the configuration manager divides a cell index logically into 

fields, in the same way that the memory manager divides a virtual address into fields. 

Windows interprets a cell index’s first field as an index into a hive’s cell map directory. The 

cell map directory contains 1024 entries, each of which refers to a cell map table that con-

tains 512 map entries. An entry in this cell map table is specified by the second field in the 
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cell index. That entry locates the bin and block memory addresses of the cell. Not all bins are 

necessarily mapped into memory, and if a cell lookup yields an address of 0, the configura-

tion manager maps the bin into memory, unmapping another on the mapping LRU list it 

maintains, if necessary.

In the final step of the translation process, the configuration manager interprets the last field 

of the cell index as an offset into the identified block to precisely locate a cell in memory. 

When a hive initializes, the configuration manager dynamically creates the mapping tables, 

designating a map entry for each block in the hive, and it adds and deletes tables from the 

cell directory as the changing size of the hive requires.

The Registry Namespace and Operation

The configuration manager defines a key object object type to integrate the registry’s 

namespace with the kernel’s general namespace. The configuration manager inserts a 

key object named Registry into the root of the Windows namespace, which serves as the 

entry point to the registry. Regedit shows key names in the form HKEY_LOCAL_MACHINE\

SYSTEM\CurrentControlSet, but the Windows subsystem translates such names into their 

object namespace form (for example, \Registry\Machine\System\CurrentControlSet). When 

the Windows object manager parses this name, it encounters the key object by the name of 

Registry first and hands the rest of the name to the configuration manager. The configura-

tion manager takes over the name parsing, looking through its internal hive tree to find the 

desired key or value. Before we describe the flow of control for a typical registry operation, 

we need to discuss key objects and key control blocks. Whenever an application opens or cre-

ates a registry key, the object manager gives a handle with which to reference the key to the 

application. The handle corresponds to a key object that the configuration manager allocates 

with the help of the object manager. By using the object manager’s object support, the con-

figuration manager takes advantage of the security and reference-counting functionality that 

the object manager provides.

For each open registry key, the configuration manager also allocates a key control block. A 

key control block stores the name of the key, includes the cell index of the key node that the 

control block refers to, and contains a flag that notes whether the configuration manager 

needs to delete the key cell that the key control block refers to when the last handle for the 

key closes. Windows places all key control blocks into a hash table to enable quick searches 

for existing key control blocks by name. A key object points to its corresponding key control 

block, so if two applications open the same registry key, each will receive a key object, and 

both key objects will point to a common key control block.
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When an application opens an existing registry key, the flow of control starts with the appli-

cation specifying the name of the key in a registry API that invokes the object manager’s 

name-parsing routine. The object manager, upon encountering the configuration manager’s 

registry key object in the namespace, hands the path name to the configuration manager. 

The configuration manager performs a lookup on the key control block hash table. If the 

related key control block is found there, there’s no need for any further work; otherwise, 

the lookup provides the configuration manager with the closest key control block to the 

searched key, and the lookup continues by using the in-memory hive data structures to 

search through keys and subkeys to find the specified key. If the configuration manager finds 

the key cell, the configuration manager searches the key control block tree to determine 

whether the key is open (by the same or another application). The search routine is opti-

mized to always start from the closest ancestor with a key control block already opened. For 

example, if an application opens \Registry\Machine\Key1\Subkey2, and \Registry\Machine is 

already opened, the parse routine uses the key control block of \Registry\Machine as a start-

ing point. If the key is open, the configuration manager increments the existing key control 

block’s reference count. If the key isn’t open, the configuration manager allocates a new key 

control block and inserts it into the tree. Then the configuration manager allocates a key 

object, points the key object at the key control block, and returns control to the object man-

ager, which returns a handle to the application.

When an application creates a new registry key, the configuration manager first finds the key 

cell for the new key’s parent. The configuration manager then searches the list of free cells 

for the hive in which the new key will reside to determine whether cells exist that are large 

enough to hold the new key cell. If there aren’t any free cells large enough, the configura-

tion manager allocates a new bin and uses it for the cell, placing any space at the end of the 

bin on the free cell list. The new key cell fills with pertinent information—including the key’s 

name—and the configuration manager adds the key cell to the subkey list of the parent key’s 

subkey-list cell. Finally, the system stores the cell index of the parent cell in the new subkey’s 

key cell.

The configuration manager uses a key control block’s reference count to determine when to 

delete the key control block. When all the handles that refer to a key in a key control block 

close, the reference count becomes 0, which denotes that the key control block is no longer 

necessary. If an application that calls an API to delete the key sets the delete flag, the con-

figuration manager can delete the associated key from the key’s hive because it knows that 

no application is keeping the key open.
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EXPERIMENT: Viewing Key Control Blocks

You can use the kernel debugger to list all the key control blocks allocated on a system 

with the command !reg openkeys. Alternatively, if you want to view the key control 

block for a particular open key, use !reg findkcb:

kd> !reg findkcb \registry\machine\software\microsoft  

  

Found KCB = e1034d40 :: \REGISTRY\MACHINE\SOFTWARE\MICROSOFT

You can then examine a reported key control block with the !reg kcb command:

kd> !reg kcb e1034d40  

  

Key              : \REGISTRY\MACHINE\SOFTWARE\MICROSOFT  

RefCount         : 1f  

Flags            : CompressedName, Stable  

ExtFlags         :  

Parent           : 0xe1997368  

KeyHive          : 0xe1c8a768  

KeyCell          : 0x64e598 [cell index]  

TotalLevels      : 4  

DelayedCloseIndex: 2048  

MaxNameLen       : 0x3c  

MaxValueNameLen  : 0x0  

MaxValueDataLen  : 0x0  

LastWriteTime    : 0x 1c42501:0x7eb6d470  

KeyBodyListHead  : 0xe1034d70 0xe1034d70  

SubKeyCount      : 137  

ValueCache.Count : 0  

KCBLock          : 0xe1034d40  

KeyLock          : 0xe1034d40

The Flags field indicates that the name is stored in compressed form, and the 

SubKeyCount field shows that the key has 137 subkeys.

Stable Storage

To make sure that a nonvolatile registry hive (one with an on-disk file) is always in a recover-

able state, the configuration manager uses log hives. Each nonvolatile hive has an associated 

log hive, which is a hidden file with the same base name as the hive and a logN extension. 

To ensure forward progress, the configuration manger uses a dual-logging scheme. There 

are potentially two log files: .log1 and .log2. If, for any reason, .log1 was written but a failure 

occurred while writing dirty data to the primary log file, the next time a flush happens, a 

switch to .log2 will occur with the cumulative dirty data. If that fails as well, the cumulative 

dirty data (the data in .log1 and the data that was dirtied in between) is saved in .log2. As a 

consequence, .log1 will be used again next time around, until a successful write operation is 

done to the primary log file. If no failure occurs, only .log1 is used.
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For example, if you look in your %SystemRoot%\System32\Config directory (and you have 

the Show Hidden Files And Folders folder option selected), you’ll see System.log1, Sam.log1, 

and other .log1 and .log2 files. When a hive initializes, the configuration manager allocates 

a bit array in which each bit represents a 512-byte portion, or sector, of the hive. This array is 

called the dirty sector array because an on bit in the array means that the system has modi-

fied the corresponding sector in the hive in memory and must write the sector back to the 

hive file. (An off bit means that the corresponding sector is up to date with the in-memory 

hive’s contents.)

When the creation of a new key or value or the modification of an existing key or value takes 

place, the configuration manager notes the sectors of the hive that change in the hive’s dirty 

sector array. Then the configuration manager schedules a lazy write operation, or a hive sync. 

The hive lazy writer system thread wakes up 5 seconds after the request to synchronize the 

hive and writes dirty hive sectors for all hives from memory to the hive files on disk. Thus, 

the system flushes, at the same time, all the registry modifications that take place between 

the time a hive sync is requested and the time the hive sync occurs. When a hive sync takes 

place, the next hive sync will occur no sooner than 5 seconds later.

Note The RegFlushKey API’s name implies that the function only flushes modified data for a 

specified key to disk, but it actually triggers a full registry flush, which has a major performance 

impact on the system. For that reason and the fact that the registry automatically makes sure 

that modified data is in stable storage within seconds, application programmers should avoid 

using it.

If the lazy writer simply wrote all a hive’s dirty sectors to the hive file and the system crashed 

in mid-operation, the hive file would be in an inconsistent (corrupted) and unrecoverable 

state. To prevent such an occurrence, the lazy writer first dumps the hive’s dirty sector array 

and all the dirty sectors to the hive’s log file, increasing the log file’s size if necessary. The lazy 

writer then updates a sequence number in the hive’s base block and writes the dirty sectors 

to the hive. When the lazy writer is finished, it updates a second sequence number in the 

base block. Thus, if the system crashes during the write operations to the hive, at the next 

reboot the configuration manager will notice that the two sequence numbers in the hive’s 

base block don’t match. The configuration manager can update the hive with the dirty sec-

tors in the hive’s log file to roll the hive forward. The hive is then up to date and consistent.

The Windows Boot Loader also contains some code related to registry reliability. For 

example, it can parse the System.log file before the kernel is loaded and do repairs to fix 

consistency. Additionally, in certain cases of hive corruption (such as if a base block, bin, or 

cell contains data that fails consistency checks) the configuration manager can reinitialize 

corrupted data structures, possibly deleting subkeys in the process, and continue normal 

operation. If it has to resort to self-healing operation, it pops up a system error dialog box 

notifying the user.
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Note When you look at the hidden files on %SystemRoot%\System32\Config, you’ll also see a 

file named System.sav. System.sav is the version of the SYSTEM hive that served as the initial copy 

of the System hive and is what Windows Setup copied from the install media.

Registry Filtering

The configuration manager in the Windows kernel implements a powerful model of registry 

filtering, which allows for monitoring of registry activity by tools such as Process Monitor. 

When a driver uses the callback mechanism, it registers a callback function with the configu-

ration manager. The configuration manager executes the driver’s callback function before 

and after the execution of registry system services so that the driver has full visibility and 

control over registry accesses. Antivirus products that scan registry data for viruses or pre-

vent unauthorized processes from modifying the registry are other users of the callback 

mechanism.

Registry callbacks are also associated with the concept of altitudes. Altitudes are a way for 

different vendors to register a “height” on the registry filtering stack so that the order in 

which the system calls each callback routine can be deterministic and correct. This avoids a 

scenario in which an antivirus product would be scanning encrypted keys before an encryp-

tion product would run its own callback to decrypt them. With the Windows registry callback 

model, both types of tools are assigned a base altitude corresponding to the type of filtering 

they are doing—in this case, encryption versus scanning. Secondly, companies that create 

these types of tools must register with Microsoft so that within their own group, they will not 

collide with similar and/or competing products. The most up-to-date version of this list can 

be downloaded from http://download.microsoft.com/download/9/c/5/9c5b2167-8017-4bae-
9fde-d599bac8184a/Alloc-Alt.xls.

The filtering model also includes the ability to either completely take over the processing of 

the registry operation (bypassing the configuration manager and preventing it from handling 

the request) or redirect the operation to a different operation (such as Wow64’s registry redi-

rection). Additionally, it is also possible to modify the output parameters as well as the return 

value of a registry operation.

Finally, drivers can assign and tag per-key or per-operation driver-defined information for 

their own purposes. A driver can create and assign this context data during a create or open 

operation, which the configuration manager will remember and return during each subse-

quent operation on the key.

Registry Optimizations

The configuration manager makes a few noteworthy performance optimizations. First, vir-

tually every registry key has a security descriptor that protects access to the key. Storing a 
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unique security-descriptor copy for every key in a hive would be highly inefficient, however, 

because the same security settings often apply to entire subtrees of the registry. When the 

system applies security to a key, the configuration manager checks a pool of the unique secu-

rity descriptors used within the same hive as the key to which new security is being applied, 

and it shares any existing descriptor for the key, ensuring that there is at most one copy of 

every unique security descriptor in a hive.

The configuration manager also optimizes the way it stores key and value names in a hive. 

Although the registry is fully Unicode-capable and specifies all names using the Unicode con-

vention, if a name contains only ASCII characters, the configuration manager stores the name 

in ASCII form in the hive. When the configuration manager reads the name (such as when 

performing name lookups), it converts the name into Unicode form in memory. Storing the 

name in ASCII form can significantly reduce the size of a hive.

To minimize memory usage, key control blocks don’t store full key registry path names. 

Instead, they reference only a key’s name. For example, a key control block that refers to 

\Registry\System\Control would refer to the name Control rather than to the full path. A fur-

ther memory optimization is that the configuration manager uses key name control blocks to 

store key names, and all key control blocks for keys with the same name share the same key 

name control block. To optimize performance, the configuration manager stores the key con-

trol block names in a hash table for quick lookups.

To provide fast access to key control blocks, the configuration manager stores frequently 

accessed key control blocks in the cache table, which is configured as a hash table. When the 

configuration manager needs to look up a key control block, it first checks the cache table. 

Finally, the configuration manager has another cache, the delayed close table, that stores key 

control blocks that applications close so that an application can quickly reopen a key it has 

recently closed. The configuration manager removes the oldest key control blocks from the 

delayed close table as it adds the most recently closed blocks to the table.

Services

Almost every operating system has a mechanism to start processes at system startup time 

that provide services not tied to an interactive user. In Windows, such processes are called 

services or Windows services, because they rely on the Windows API to interact with the sys-

tem. Services are similar to UNIX daemon processes and often implement the server side of 

client/server applications. An example of a Windows service might be a Web server, because 

it must be running regardless of whether anyone is logged on to the computer and it must 

start running when the system starts so that an administrator doesn’t have to remember, or 

even be present, to start it.
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Windows services consist of three components: a service application, a service control pro-

gram (SCP), and the service control manager (SCM). First, we’ll describe service applications, 

service accounts, and the operations of the SCM. Then we’ll explain how auto-start services 

are started during the system boot. We’ll also cover the steps the SCM takes when a service 

fails during its startup and the way the SCM shuts down services.

Service Applications

Service applications, such as Web servers, consist of at least one executable that runs as a 

Windows service. A user wanting to start, stop, or configure a service uses an SCP. Although 

Windows supplies built-in SCPs that provide general start, stop, pause, and continue func-

tionality, some service applications include their own SCP that allows administrators to spec-

ify configuration settings particular to the service they manage.

Service applications are simply Windows executables (GUI or console) with additional code 

to receive commands from the SCM as well as to communicate the application’s status back 

to the SCM. Because most services don’t have a user interface, they are built as console 

programs.

When you install an application that includes a service, the application’s setup program 

must register the service with the system. To register the service, the setup program calls the 

Windows CreateService function, a services-related function implemented in Advapi32.dll 

(%SystemRoot%\System32\Advapi32.dll). Advapi32, the “Advanced API” DLL, implements all 

the client-side SCM APIs.

When a setup program registers a service by calling CreateService, a message is sent to the 

SCM on the machine where the service will reside. The SCM then creates a registry key for 

the service under HKLM\SYSTEM\CurrentControlSet\Services. The Services key is the non-

volatile representation of the SCM’s database. The individual keys for each service define the 

path of the executable image that contains the service as well as parameters and configura-

tion options.

After creating a service, an installation or management application can start the service via 

the StartService function. Because some service-based applications also must initialize during 

the boot process to function, it’s not unusual for a setup program to register a service as an 

auto-start service, ask the user to reboot the system to complete an installation, and let the 

SCM start the service as the system boots.

When a program calls CreateService, it must specify a number of parameters describing the 

service’s characteristics. The characteristics include the service’s type (whether it’s a service 

that runs in its own process rather than a service that shares a process with other services), 

the location of the service’s executable image file, an optional display name, an optional 
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account name and password used to start the service in a particular account’s security con-

text, a start type that indicates whether the service starts automatically when the system 

boots or manually under the direction of an SCP, an error code that indicates how the system 

should react if the service detects an error when starting, and, if the service starts automati-

cally, optional information that specifies when the service starts relative to other services.

The SCM stores each characteristic as a value in the service’s registry key. Figure 4-6 shows an 

example of a service registry key.

FIGURE 4-6 Example of a service registry key

Table 4-7 lists all the service characteristics, many of which also apply to device drivers. (Not 

every characteristic applies to every type of service or device driver.) If a service needs to 

store configuration information that is private to the service, the convention is to create a 

subkey named Parameters under its service key and then store the configuration information 

in values under that subkey. The service then can retrieve the values by using standard regis-

try functions.

Note The SCM does not access a service’s Parameters subkey until the service is deleted, at 

which time the SCM deletes the service’s entire key, including subkeys like Parameters.
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TABLE 4-7 Service and Driver Registry Parameters

Value Setting Value Name Value Setting Description

Start SERVICE_BOOT_START (0) Winload preloads the driver so that 

it is in memory during the boot. 

These drivers are initialized just 

prior to SERVICE_ SYSTEM_START 

drivers.

SERVICE_SYSTEM_START (1) The driver loads and initializes 

during kernel initialization after 

SERVICE_ BOOT_START drivers have 

initialized.

SERVICE_AUTO_START (2) The SCM starts the driver or service 

after the SCM process, Services.exe, 

starts.

SERVICE_DEMAND_START (3) The SCM starts the driver or service 

on demand.

SERVICE_DISABLED (4) The driver or service doesn’t load 

or initialize.

ErrorControl SERVICE_ERROR_IGNORE (0) Any error the driver or service 

returns is ignored and no warning 

is logged or displayed.

SERVICE_ERROR_NORMAL (1) If the driver or service reports an 

error, an event log message is 

written.

SERVICE_ERROR_SEVERE (2) If the driver or service returns an 

error and last known good isn’t 

being used, reboot into last known 

good; otherwise, continue the boot.

SERVICE_ERROR_CRITICAL (3) If the driver or service returns an 

error and last known good isn’t 

being used, reboot into last known 

good; otherwise, stop the boot with 

a blue screen crash.

Type SERVICE_KERNEL_DRIVER (1) Device driver.

SERVICE_FILE_SYSTEM_DRIVER (2) Kernel-mode file system driver.

SERVICE_ADAPTER (4) Obsolete.

SERVICE_RECOGNIZER_DRIVER (8) File system recognizer driver.

SERVICE_WIN32_OWN_PROCESS (16) The service runs in a process that 

hosts only one service.

SERVICE_WIN32_SHARE_PROCESS 

(32)

The service runs in a process that 

hosts multiple services.
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Value Setting Value Name Value Setting Description

SERVICE_INTERACTIVE_PROCESS 

(256)

The service is allowed to display 

windows on the console and 

receive user input, but only on 

the console session (0) to prevent 

interacting with user/console 

applications on other sessions.

Group Group name The driver or service initializes 

when its group is initialized.

Tag Tag number The specified location in a group 

initialization order. This parameter 

doesn’t apply to services.

ImagePath Path to service or driver executable 

file

If ImagePath isn’t specified, the 

I/O manager looks for drivers in 

%SystemRoot%\System32\Drivers. 

Required for Windows services.

DependOnGroup Group name The driver or service won’t load 

unless a driver or service from the 

specified group loads.

DependOnService Service name The service won’t load until after 

the specified service loads. This 

parameter doesn’t apply to device 

drivers other than those with a start 

type of SERVICE_AUTO_START or 

SERVICE_DEMAND_START.

ObjectName Usually LocalSystem, but can be an 

account name, such as .\Administrator

Specifies the account in which the 

service will run. If ObjectName 

isn’t specified, LocalSystem is the 

account used. This parameter 

doesn’t apply to device drivers.

DisplayName Name of service The service application shows 

services by this name. If no name is 

specified, the name of the service’s 

registry key becomes its name.

Description Description of service Up to 32767-byte description of the 

service.

FailureActions Description of actions the SCM 

should take when service process 

exits unexpectedly

Failure actions include restarting 

the service process, rebooting the 

system, and running a specified 

program. This value doesn’t apply 

to drivers.

FailureCommand Program command line The SCM reads this value only 

if FailureActions specifies that a 

program should execute upon 

service failure. This value doesn’t 

apply to drivers.
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Value Setting Value Name Value Setting Description

DelayedAutoStart 0 or 1 (TRUE or FALSE) Tells the SCM to start this service 

after a certain delay has passed 

since the SCM was starting. This 

reduces the number of services 

starting simultaneously during 

startup.

PreshutdownTimeout Timeout in milliseconds This value allows services to 

override the default preshutdown 

notification timeout of 180 

seconds. After this timeout, the 

SCM will perform shutdown actions 

on the service.

ServiceSidType SERVICE_SID_TYPE_NONE (0) Backward compatibility setting.

SERVICE_SID_TYPE_UNRESTRICTED (1) The SCM will add the service SID 

as a group owner to the service 

process’s token when it is created. 

SERVICE_SID_TYPE_RESTRICTED (3) Same as above, but the SCM will 

also add the service SID to the 

restricted SID list of the service 

process, along with the world, 

logon, and write-restricted SIDs.

RequiredPrivileges List of privileges This value contains the list of 

privileges that the service requires 

to function. The SCM will compute 

their union when creating the token 

for the shared process related to 

this service, if any.

Security Security descriptor This value contains the optional 

security descriptor that defines 

who has what access to the service 

object created internally by the 

SCM. If this value is omitted, the 

SCM applies a default security 

descriptor.

Notice that Type values include three that apply to device drivers: device driver, file system 

driver, and file system recognizer. These are used by Windows device drivers, which also 

store their parameters as registry data in the Services registry key. The SCM is responsible for 

starting drivers with a Start value of SERVICE_AUTO_START or SERVICE_DEMAND_START, so 

it’s natural for the SCM database to include drivers. Services use the other types, SERVICE_

WIN32_OWN_PROCESS and SERVICE_WIN32_SHARE_PROCESS, which are mutually exclusive. 
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An executable that hosts more than one service specifies the SERVICE_WIN32_SHARE_

PROCESS type.

An advantage to having a process run more than one service is that the system resources 

that would otherwise be required to run them in distinct processes are saved. A potential 

disadvantage is that if one of the services of a collection running in the same process causes 

an error that terminates the process, all the services of that process terminate. Also, another 

limitation is that all the services must run under the same account (however, if a service takes 

advantage of service security hardening mechanisms added in Windows Vista and Windows 

Server 2008, it can limit some of its exposure to malicious attacks).

When the SCM starts a service process, the process immediately invokes the StartService-
CtrlDispatcher function. StartServiceCtrlDispatcher accepts a list of entry points into services, 

one entry point for each service in the process. Each entry point is identified by the name of 

the service the entry point corresponds to. After making a named pipe communications con-

nection to the SCM, StartServiceCtrlDispatcher sits in a loop (or for better performance, regis-

ters a notification) waiting for commands to come through the pipe from the SCM. The SCM 

sends a service-start command each time it starts a service the process owns. For each start 

command it receives, the StartServiceCtrlDispatcher function creates a thread, called a service 

thread, to invoke the starting service’s entry point and implement the command loop for the 

service. StartServiceCtrlDispatcher waits indefinitely for commands from the SCM and returns 

control to the process’s main function only when all the process’s services have stopped, 

allowing the service process to clean up resources before exiting.

A service entry point’s first action is to call the RegisterServiceCtrlHandler function. This func-

tion receives and stores a pointer to a function, called the control handler, which the service 

implements to handle various commands it receives from the SCM. RegisterServiceCtrlHandler 
doesn’t communicate with the SCM, but it stores the function in local process memory for 

the StartServiceCtrlDispatcher function. The service entry point continues initializing the ser-

vice, which can include allocating memory, creating communications end points, and reading 

private configuration data from the registry. A convention most services follow is to store 

their parameters under a subkey of their service registry key, named Parameters.

While the entry point is initializing the service, it might periodically send status messages, 

using the SetServiceStatus function, to the SCM indicating how the service’s startup is pro-

gressing. After the entry point finishes initialization, a service thread usually sits in a loop 

waiting for requests from client applications. For example, a Web server would initialize a TCP 

listen socket and wait for inbound HTTP connection requests.

A service process’s main thread, which executes in the StartServiceCtrlDispatcher function, 

receives SCM commands directed at services in the process and invokes the target service’s 

control handler function (stored by RegisterServiceCtrlHandler). SCM commands include stop, 
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pause, resume, interrogate, and shutdown or application-defined commands. Figure 4-7 

shows the internal organization of a service process. Pictured are the two threads that make 

up a process hosting one service: the main thread and the service thread.

Main thread Service thread

2

3

3

1

4

FIGURE 4-7 Inside a service process

Service Accounts

The security context of a service is an important consideration for service developers as 

well as for system administrators because it dictates what resources the process can access. 

Unless a service installation program or administrator specifies otherwise, most services run 

in the security context of the local system account (displayed sometimes as SYSTEM and other 

times as LocalSystem). Two other built-in accounts are the network service and local service 

accounts. These accounts have fewer capabilities than the local system account from a secu-

rity standpoint, and any built-in Windows service that does not require the power of the local 

system account runs in the appropriate alternate service account. The following subsections 

describe the special characteristics of these accounts.

The Local System Account

The local system account is the same account in which core Windows user-mode operat-

ing system components run, including the Session Manager (%SystemRoot%\System32\

Smss.exe), the Windows subsystem process (Csrss.exe), the Local Security Authority process 

(%SystemRoot%\System32\Lsass.exe), and the Logon process (%SystemRoot%\System32\

Winlogon.exe). For more information on these latter two processes, see Chapter 6.
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From a security perspective, the local system account is extremely powerful—more power-

ful than any local or domain account when it comes to security ability on a local system. This 

account has the following characteristics:

It is a member of the local administrators group. Table 4-8 shows the groups to which 

the local system account belongs. (See Chapter 6 for information on how group mem-

bership is used in object access checks.)

It has the right to enable virtually every privilege (even privileges not normally granted 

to the local administrator account, such as creating security tokens). See Table 4-9 for 

the list of privileges assigned to the local system account. (Chapter 6 describes the use 

of each privilege.)

Most files and registry keys grant full access to the local system account. (Even if they 

don’t grant full access, a process running under the local system account can exercise 

the take-ownership privilege to gain access.)

Processes running under the local system account run with the default user profile 

(HKU\.DEFAULT). Therefore, they can’t access configuration information stored in the 

user profiles of other accounts.

When a system is a member of a Windows domain, the local system account includes 

the machine security identifier (SID) for the computer on which a service process is 

running. Therefore, a service running in the local system account will be automatically 

authenticated on other machines in the same forest by using its computer account. 

(A forest is a grouping of domains.)

Unless the machine account is specifically granted access to resources (such as network 

shares, named pipes, and so on), a process can access network resources that allow null 

sessions—that is, connections that require no credentials. You can specify the shares 

and pipes on a particular computer that permit null sessions in the NullSessionPipes 

and NullSessionShares registry values under HKLM\SYSTEM\CurrentControlSet\

Services\lanmanserver\parameters.

TABLE 4-8 Service Account Group Membership

Local System Network Service Local Service 

Everyone

Authenticated Users

Administrators

Everyone

Authenticated Users

Users

Local

Network Service

Service

Everyone

Authenticated Users

Users

Local

Local Service

Service
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TABLE 4-9 Service Account Privileges

Local System Network Service Local Service 

SeAssignPrimaryToken 

Privilege

SeAuditPrivilege

SeBackupPrivilege

SeChangeNotifyPrivilege

SeCreateGlobalPrivilege

SeCreatePagefilePrivilege

SeCreatePermanentPrivilege

SeCreateTokenPrivilege

SeDebugPrivilege

SeImpersonatePrivilege

SeIncreaseBasePriorityPrivilege

SeIncreaseQuotaPrivilege

SeLoadDriverPrivilege

SeLockMemoryPrivilege

SeManageVolumePrivilege

SeProfileSingleProcessPrivilege

SeRestorePrivilege

SeSecurityPrivilege

SeShutdownPrivilege

SeSystemEnvironmentPrivilege

SeSystemTimePrivilege

SeTakeOwnershipPrivilege

SeTcbPrivilege

SeUndockPrivilege (client only)

SeAssignPrimaryToken 

Privilege

SeAuditPrivilege

SeChangeNotifyPrivilege

SeCreateGlobalPrivilege

SeImpersonatePrivilege

SeIncreaseQuotaPrivilege

SeShutdownPrivilege

SeUndockPrivilege (client only)

Privileges assigned to the 

Everyone, Authenticated  

Users, and Users groups

SeAssignPrimaryTokenPrivilege

SeAuditPrivilege

SeChangeNotifyPrivilege

SeCreateGlobalPrivilege

SeImpersonatePrivilege

SeIncreaseQuotaPrivilege

SeShutdownPrivilege

SeUndockPrivilege (client only)

Privileges assigned to the 

Everyone, Authenticated Users, 

and Users groups

The Network Service Account

The network service account is intended for use by services that want to authenticate to 

other machines on the network using the computer account, as does the local system 

account, but do not have the need for membership in the Administrators group or the use 

of many of the privileges assigned to the local system account. Because the network ser-

vice account does not belong to the Administrators group, services running in the network 

service account by default have access to far fewer registry keys and file system folders and 

files than the services running in the local system account. Further, the assignment of few 

privileges limits the scope of a compromised network service process. For example, a pro-

cess running in the network service account cannot load a device driver or open arbitrary 

processes.
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Another difference between the network service and local system accounts is that processes 

running in the network service account use the network service account’s profile. The registry 

component of the network service profile loads under HKU\S-1-5-20, and the files and direc-

tories that make up the component reside in %SystemRoot%\ServiceProfiles\NetworkService.

A service that runs in the network service account is the DNS client, which is responsible for 

resolving DNS names and for locating domain controllers.

The Local Service Account

The local service account is virtually identical to the network service account with the impor-

tant difference that it can access only network resources that allow anonymous access. 

Table 4-9 shows that the network service account has the same privileges as the local ser-

vice account, and Table 4-8 shows that it belongs to the same groups with the exception 

that it belongs to the Network Service group instead of the Local Service group. The pro-

file used by processes running in the local service loads into HKU\S-1-5-19 and is stored in 

%SystemRoot%\ServiceProfiles\LocalService.

Examples of services that run in the local service account include the Remote Registry 

Service, which allows remote access to the local system’s registry, and the LmHosts service, 

which performs NetBIOS name resolution.

Running Services in Alternate Accounts

Because of the restrictions just outlined, some services need to run with the security cre-

dentials of a user account. You can configure a service to run in an alternate account when 

the service is created or by specifying an account and password that the service should run 

under with the Windows Services MMC snap-in. In the Services snap-in, right-click on a ser-

vice and select Properties, click the Log On tab, and select the This Account option, as shown 

in Figure 4-8.

Running with Least Privilege

Prior to Windows Vista and Windows Server 2008, services were subject to an all-or-nothing 

model, meaning that all privileges available to the account the service process was running 

under would be available to a service running in the process that might require only a subset 

of those privileges. To better conform to the principle of least privilege, in which Windows 

assigns services only the privileges they require, in Windows Vista and Windows Server 2008 

developers can specify the privileges their service requires, and the SCM creates a security 

token that contains only those privileges.
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FIGURE 4-8 Service account settings

Note The privileges a service specifies must be a subset of those that are available to the service 

account in which it runs

Service developers use the ChangeServiceConfig2 API to indicate the list of privileges they 

desire. The API saves that information in the registry under the Parameters key for the ser-

vice. When the service starts, the SCM reads the key and adds those privileges to the token of 

the process in which the service is running.

If there is a RequiredPrivileges value and the service is stand-alone (running as a dedicated 

process), the SCM will create a token containing only the privileges that the service needs. 

For services running as part of a multiservice service process (as are most services that are 

part of Windows) and specifying required privileges, the SCM will compute the union of 

those privileges and combine them for the service-hosting process’s token. In other words, 

only the privileges not specified by any of the services that are part of that service group will 

be removed. In the case in which the registry value does not exist, the SCM has no choice but 

to assume that the service is either incompatible with least privileges or requires all privileges 

in order to function. In this case, the full token is created, containing all privileges, and no 

additional security is offered by this model. To strip almost all privileges, services can specify 

only the “Change Notify” privilege.
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EXPERIMENT: Viewing Privileges Required by Services

You can look at the privileges a service requires with the Service Control utility, Sc.exe, 

and the qprivs option. Additionally, Process Explorer can show you information about 

the security token of any service process on the system, so you can compare the infor-

mation returned by Sc.exe with the privileges part of the token. The following steps 

show you how to do this for some of the best locked-down services on the system.

 1. Use Sc.exe to take a look at the required privileges specified by Dhcp by typing 

into a command prompt:

sc qprivs dhcp

You should see two privileges being requested: the SeCreateGlobalPrivilege and 

the SeChangeNotifyPrivilege.

 2. Run Process Explorer and take a look at the process list.

You should see a couple of Svchost.exe processes that are hosting the services on 

your machine. Process Explorer highlights these in pink.

 3. Now locate the service hosting process in which the Dhcp service is run-

ning. It should be running alongside other services that are part of the 

LocalServiceNetworkRestricted service group, such as the Audiosrv service and 

Eventlog service. You can do this by hovering the mouse over each Svchost pro-

cess and reading the tooltip, which contains the names of the services running 

inside the service host.

 4. Once you’ve found the process, double-click to open the Properties dialog box 

and select the Security tab.
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Note that although the service is running as part of the local service account, the list 

of privileges Windows assigned to it is much shorter than the list available to the local 

service account shown in Table 4-9.

Because for a service-hosting process, the privileges part of the token is the union of 

the privileges requested by all the services running inside it, this must mean that ser-

vices such as Audiosrv and Eventlog have not requested privileges other than the ones 

shown by Process Explorer. You can verify this by running the Sc.exe tool on those 

other services as well.

Service Isolation

Although restricting the privileges that a service has access to helps lessen the ability of a 

compromised service process to compromise other processes, it does nothing to isolate the 

service from resources that the account in which it is running has access to under normal 

conditions. As mentioned earlier, the local system account has complete access to critical sys-

tem files, registry keys, and other securable objects on the system because the access control 

lists (ACLs) grant permissions to that account.

At times, access to some of these resources is indeed critical to a service’s operation, while 

other objects should be secured from the service. Previously, to avoid running in the local 

system account to obtain access to required resources, a service would be run under a stan-

dard user account and ACLs would be added on the system objects, which greatly increased 

the risk of malicious code attacking the system. Another solution was to create dedicated 
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service accounts and set specific ACLs for each account (associated to a service), but this 

approach easily became an administrative hassle.

Windows now combines these two approaches into a much more manageable solution: it 

allows services to run in a nonprivileged account but still have access to specific privileged 

resources without lowering the security of those objects. In a manner similar to the second 

pre–Windows Vista solution, the ACLs on an object can now set permissions directly for a 

service, but not by requiring a dedicated account. Instead, the SCM generates a service SID 

to represent a service, and this SID can be used to set permissions on resources such as reg-

istry keys and files. Service SIDs are implemented in the group SIDs part of the token for any 

process hosting a service. They are generated by the SCM during system startup for each ser-

vice that has requested one via the ChangeServiceConfig2 API. In the case of service-hosting 

processes (a process that contains more than one service), the process’s token will contain 

the service SIDs of all services that are part of the service group associated with the process, 

including services that are not started because there is no way to add new SIDs after a token 

has been created.

The usefulness of having a SID for each service extends beyond the mere ability to add ACL 

entries and permissions for various objects on the system as a way to have fine-grained con-

trol over their access. Our discussion initially covered the case in which certain objects on 

the system, accessible by a given account, must be protected from a service running within 

that same account. As we’ve described to this point, service SIDs only prevent that problem 

by requiring that Deny entries associated with the service SID be placed on every object that 

needs to be secured, a clearly unmanageable approach.

To avoid requiring Deny access control entries (ACEs) as a way to prevent services from hav-

ing access to resources that the user account in which they run does have access, there are 

two types of service SIDs: the restricted service SID (SERVICE_SID_TYPE_RESTRICTED) and the 

unrestricted service SID (SERVICE_SID_TYPE_UNRESTRICTED), the latter being the default and 

the case we’ve looked at until now.

Unrestricted service SIDs are created as enabled-by-default, group owner SIDs, and the pro-

cess token is also given a new ACE providing full permission to the service logon SID, which 

allows the service to continue communicating with the SCM. (A primary use of this would be 

to enable or disable service SIDs inside the process during service startup or shutdown.)

A restricted service SID, on the other hand, turns the service-hosting process’s token into a 

write-restricted token (see Chapter 6 for more information on tokens), which means that only 

objects granting explicit write access to the service SID will be writable by the service, regard-

less of the account it’s running as. Because of this, all services running inside that process 

(part of the same service group) must have the restricted SID type; otherwise, services with 

the restricted SID type will fail to start. Once the token becomes write-restricted, three more 

SIDs are added for compatibility reasons:

The world SID is added to allow write access to objects that are normally accessible by 

anyone anyway, most importantly certain DLLs in the load path.
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The service logon SID is added to allow the service to communicate with the SCM.

The write-restricted SID is added to allow objects to explicitly allow any write-restricted 

service write access to them. For example, Event Tracing for Windows (ETW) uses this 

SID on its objects to allow any write-restricted service to generate events.

Figure 4-9 shows an example of a service-hosting process containing services that have been 

marked as having restricted service SIDs. For example, the Base Filtering Engine (BFE), which 

is responsible for applying Windows Firewall filtering rules, is part of this service because 

these rules are stored in registry keys that must be protected from malicious write access 

should a service be compromised (this could allow a service exploit to disable the outgoing 

traffic firewall rules, enabling bidirectional communication with an attacker, for example).

FIGURE 4-9 Service with restricted service SIDs

By blocking write access to objects that would otherwise be writable by the service (through 

inheriting the permissions of the account it is running as), restricted service SIDs solve the 

other side of the problem we initially presented because users do not need to do anything to 

prevent a service running in a privileged account from having write access to critical system 

files, registry keys, or other objects, limiting the attack exposure of any such service that may 

have been compromised.

Windows also allows for firewall rules that reference service SIDs linked to one of the three 

behaviors described in Table 4-10.
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TABLE 4-10 Network Restriction Rules

Scenario Example Restrictions

Network access blocked The shell hardware detection service 

(ShellHWDetection).

All network communications 

are blocked (both incoming and 

outgoing).

Network access 

statically port-restricted

The RPC service (Rpcss) operates on 

port 135 (TCP and UDP).

Network communications are 

restricted to specific TCP or UDP 

ports.

Network access 

dynamically port-

restricted

The DNS service (Dns) listens on 

variable ports (UDP).

Network communications are 

restricted to configurable TCP or 

UDP ports.

Interactive Services and Session 0 Isolation

One restriction for services running under the local system, local service, and network service 

accounts that has always been present in Windows is that these services could not (without 

using a special flag on the MessageBox function, discussed in a moment) display dialog boxes 

or windows on the interactive user’s desktop. This limitation wasn’t the direct result of run-

ning under these accounts but rather a consequence of the way the Windows subsystem 

assigns service processes to window stations. In Windows Vista, this restriction has been fur-

ther enhanced by the use of sessions, in a model called Session 0 Isolation, a result of which is 

that services can no longer directly interact with a user’s desktop.

The Windows subsystem associates every Windows process with a window station. A window 

station contains desktops, and desktops contain windows. Only one window station can be 

visible on a console and receive user mouse and keyboard input. In a Terminal Services envi-

ronment, one window station per session is visible, but services all run as part of the console 

session. Windows names the visible window station WinSta0, and all interactive processes 

access WinSta0.

Unless otherwise directed, the Windows subsystem associates services running in the local 

system account with a nonvisible window station named Service-0x0-3e7$ that all noninter-

active services share. The number in the name, 3e7, represents the logon session identifier 

that the Local Security Authority process (LSASS) assigns to the logon session the SCM uses 

for noninteractive services running in the local system account.

Services configured to run under a user account (that is, not the local system account) are run 

in a different nonvisible window station named with the LSASS logon identifier assigned for 

the service’s logon session. Figure 4-10 shows a sample display from the Sysinternals WinObj 

tool, viewing the object manager directory in which Windows places window station objects. 

Visible are the interactive window station (WinSta0) and the noninteractive system service 

window station (Service-0x0-3e7$).
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FIGURE 4-10 List of window stations

Regardless of whether services are running in a user account, the local system account, or the 

local or network service accounts, services that aren’t running on the visible window station 

can’t receive input from a user or display windows on the console. In fact, if a service were to 

pop up a normal dialog box on the window station, the service would appear hung because 

no user would be able to see the dialog box, which of course would prevent the user from 

providing keyboard or mouse input to dismiss it and allow the service to continue executing.

Note In the past, it was possible to use the special MB_SERVICE_NOTIFICATION or MB_

DEFAULT_DESKTOP_ONLY flags with the MessageBox API to display messages on the interac-

tive window station even if the service was marked as noninteractive. As of Windows Vista and 

Windows Server 2008, any service using this flag will receive an immediate IDOK return value, 

and the message box will never be displayed.

In rare cases, a service can have a valid reason to interact with the user via dialog boxes 

or windows. To configure a service with the right to interact with the user, the SERVICE_ 

INTERACTIVE_PROCESS modifier must be present in the service’s registry key’s Type param-

eter. (Note that services configured to run under a user account can’t be marked as interac-

tive.) When the SCM starts a service marked as interactive, it launches the service’s process in 

the local system account’s security context but connects the service with WinSta0 instead of 

the noninteractive service window station.
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On versions of Windows prior to Windows Vista, this connection to WinSta0 allowed the 

service to display dialog boxes and windows on the console and allowed those windows to 

respond to user input because the processes used by the console user run in session 0 and 

therefore share the window station with the interactive services. However, in Windows Vista 

and Windows Server 2008, only processes owned by the system and Windows services run in 

session 0; all other logon sessions, including those of console users, run in different sessions. 

Any window displayed by processes in session 0 is therefore not visible to the user.

This change was made to prevent “shatter attacks,” whereby a less privileged application 

sends window messages to a window visible on the same window station to exploit a bug 

in a more privileged process that owns the window, which permits it to execute code in the 

more privileged process.

To remain compatible with services that depend on user input, Windows includes a service 

that notifies users when a service has displayed a window. The Interactive Services Detection 

(UI0Detect) service looks for visible windows on the main desktop of the WinSta0 window 

station of session 0 and displays a notification dialog box on the console user’s desktop, 

allowing the user to switch to session 0 and view the service’s UI (this is akin to connecting to 

a local Terminal Services session or switching users).

Note  The Interactive Services Detection mechanism is purely for application compatibility, and 

developers are strongly recommended to move away from interactive services and use a second-

ary, nonprivileged helper application to communicate visually with the user. Local RPC or COM 

can be used between this helper application and the service for configuration purposes after UI 

input has been received.

The dialog box, an example of which is shown in Figure 4-11, includes the process name, the 

time when the UI message was displayed, and the title of the window being displayed. Once 

the user connects to session 0, a similar dialog box provides a portal back to the user’s ses-

sion. In the figure, the service displaying a window is Microsoft Paint, which was explicitly 

started by the Sysinternals PsExec utility with options that caused PsExec to run Paint in ses-

sion 0. You can try this yourself with the following command:

psexec –s –i 0 –d mspaint.exe

This tells PsExec to run Microsoft Paint as a system process (–s) running on session 0 (–i 0), 

and to return immediately instead of waiting for the process to finish (–d).
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FIGURE 4-11 The Interactive Services Detection service at work

If you click Show Me The Message, you can switch to the console for session 0 (and switch 

back again with a similar window on the console).

The Service Control Manager

The SCM’s executable file is %SystemRoot%\System32\Services.exe, and like most service 

processes, it runs as a Windows console program. The Wininit process starts the SCM early 

during the system boot. (Refer to Chapter 13 for details on the boot process.) The SCM’s 

startup function, SvcCtrlMain, orchestrates the launching of services that are configured for 

automatic startup.

SvcCtrlMain first creates a synchronization event named SvcctrlStartEvent_A3752DX that 

it initializes as nonsignaled. Only after the SCM completes steps necessary to prepare it to 

receive commands from SCPs does the SCM set the event to a signaled state. The function 

that an SCP uses to establish a dialog with the SCM is OpenSCManager. OpenSCManager 
prevents an SCP from trying to contact the SCM before the SCM has initialized by waiting for 

SvcctrlStartEvent_A3752DX to become signaled.

Next, SvcCtrlMain gets down to business and calls ScGenerateServiceDB, the function that 

builds the SCM’s internal service database. ScGenerateServiceDB reads and stores the con-

tents of HKLM\SYSTEM\CurrentControlSet\Control\ServiceGroupOrder\List, a REG_MULTI_SZ 

value that lists the names and order of the defined service groups. A service’s registry key 

contains an optional Group value if that service or device driver needs to control its startup 

ordering with respect to services from other groups. For example, the Windows network-

ing stack is built from the bottom up, so networking services must specify Group values that 
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place them later in the startup sequence than networking device drivers. The SCM internally 

creates a group list that preserves the ordering of the groups it reads from the registry. 

Groups include (but are not limited to) NDIS, TDI, Primary Disk, Keyboard Port, and Keyboard 

Class. Add-on and third-party applications can even define their own groups and add them 

to the list. Microsoft Transaction Server, for example, adds a group named MS Transactions.

ScGenerateServiceDB then scans the contents of HKLM\SYSTEM\CurrentControlSet\Services, 

creating an entry in the service database for each key it encounters. A database entry 

includes all the service-related parameters defined for a service as well as fields that track the 

service’s status. The SCM adds entries for device drivers as well as for services because the 

SCM starts services and drivers marked as auto-start and detects startup failures for drivers 

marked boot-start and system-start. It also provides a means for applications to query the 

status of drivers. The I/O manager loads drivers marked boot-start and system-start before 

any user-mode processes execute, and therefore any drivers having these start types load 

before the SCM starts.

ScGenerateServiceDB reads a service’s Group value to determine its membership in a group 

and associates this value with the group’s entry in the group list created earlier. The function 

also reads and records in the database the service’s group and service dependencies by que-

rying its DependOnGroup and DependOnService registry values. Figure 4-12 shows how the 

SCM organizes the service entry and group order lists. Notice that the service list is alphabet-

ically sorted. The reason this list is sorted alphabetically is that the SCM creates the list from 

the Services registry key, and Windows stores registry keys alphabetically.

Service database

…

Group order list

Service entry list

… …

FIGURE 4-12 Organization of a service database

During service startup, the SCM will call on LSASS (for example, to log on a service in a non-

local system account), so the SCM waits for LSASS to signal the LSA_RPC_SERVER_ACTIVE 

synchronization event, which it does when it finishes initializing. Wininit also starts the 
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LSASS process, so the initialization of LSASS is concurrent with that of the SCM, and the 

order in which LSASS and the SCM complete initialization can vary. Then SvcCtrlMain calls 

ScGetBootAndSystemDriverState to scan the service database looking for boot-start and 

system-start device driver entries.

ScGetBootAndSystemDriverState determines whether or not a driver successfully started by 

looking up its name in the object manager namespace directory named \Driver. When a 

device driver successfully loads, the I/O manager inserts the driver’s object in the namespace 

under this directory, so if its name isn’t present, it hasn’t loaded. Figure 4-13 shows WinObj 

displaying the contents of the Driver directory. SvcCtrlMain notes the names of drivers that 

haven’t started and that are part of the current profile in a list named ScFailedDrivers.

Before starting the auto-start services, the SCM performs a few more steps. It creates its 

remote procedure call (RPC) named pipe, which is named \Pipe\Ntsvcs, and then RPC 

launches a thread to listen on the pipe for incoming messages from SCPs. The SCM then 

signals its initialization-complete event, SvcctrlStartEvent_A3752DX. Registering a console 

application shutdown event handler and registering with the Windows subsystem process via 

RegisterServiceProcess prepares the SCM for system shutdown.

FIGURE 4-13 List of driver objects
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Network Drive Letters

In addition to its role as an interface to services, the SCM has another totally un related 

responsibility: it notifies GUI applications in a system whenever the system creates or 

deletes a network drive-letter connection. The SCM waits for the Multiple Provider 

Router (MPR) to signal a named event, \BaseNamedObjects\ScNetDrvMsg, which 

MPR signals whenever an application assigns a drive letter to a remote network 

share or deletes a remote-share drive-letter assignment. (See Chapter 12 for more 

information on MPR.) When MPR signals the event, the SCM calls the GetDriveType 

Windows function to query the list of connected network drive letters. If the list 

changes across the event signal, the SCM sends a Windows broadcast message of 

type WM_DEVICECHANGE. The SCM uses either DBT_ DEVICEREMOVECOMPLETE or 

DBT_DEVICEARRIVAL as the message’s subtype. This message is primarily intended for 

Windows Explorer so that it can update any open Computer windows to show the pres-

ence or absence of a network drive letter.

Service Startup

SvcCtrlMain invokes the SCM function ScAutoStartServices to start all services that have a 

Start value designating auto-start (except delayed auto-start services). ScAutoStartServices 
also starts auto-start device drivers. To avoid confusion, you should assume that the 

term services means services and drivers unless indicated otherwise. The algorithm in 

ScAutoStartServices for starting services in the correct order proceeds in phases, whereby 

a phase corresponds to a group and phases proceed in the sequence defined by the group 

ordering stored in the HKLM\SYSTEM\CurrentControlSet\Control\ServiceGroupOrder\List 

registry value. The List value, shown in Figure 4-14, includes the names of groups in the order 

that the SCM should start them. Thus, assigning a service to a group has no effect other than 

to fine-tune its startup with respect to other services belonging to different groups.

FIGURE 4-14 ServiceGroupOrder registry key
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When a phase starts, ScAutoStartServices marks all the service entries belonging to the 

phase’s group for startup. Then ScAutoStartServices loops through the marked services see-

ing whether it can start each one. Part of this check includes seeing whether the service is 

marked as delayed auto-start, which causes the SCM to start it at a later stage. (Delayed 

auto-start services must also be ungrouped.) Another part of the check it makes consists of 

determining whether the service has a dependency on another group, as specified by the 

existence of the DependOnGroup value in the service’s registry key. If a dependency exists, 

the group on which the service is dependent must have already initialized, and at least one 

service of that group must have successfully started. If the service depends on a group that 

starts later than the service’s group in the group startup sequence, the SCM notes a “circular 

dependency” error for the service. If ScAutoStartServices is considering a Windows service 

or an auto-start device driver, it next checks to see whether the service depends on one or 

more other services, and if so, if those services have already started. Service dependencies 

are indicated with the DependOnService registry value in a service’s registry key. If a service 

depends on other services that belong to groups that come later in the ServiceGroupOrder\

List, the SCM also generates a “circular dependency” error and doesn’t start the service. If the 

service depends on any services from the same group that haven’t yet started, the service is 

skipped.

When the dependencies of a service have been satisfied, ScAutoStartServices makes a final 

check to see whether the service is part of the current boot configuration before starting the 

service. When the system is booted in safe mode, the SCM ensures that the service is either 

identified by name or by group in the appropriate safe boot registry key. There are two safe 

boot keys, Minimal and Network, under HKLM\SYSTEM\CurrentControlSet\Control\SafeBoot, 

and the one that the SCM checks depends on what safe mode the user booted. If the user 

chose Safe Mode or Safe Mode With Command Prompt at the special boot menu (which 

you can access by pressing F8 when prompted in the boot process), the SCM references the 

Minimal key; if the user chose Safe Mode With Networking, the SCM refers to Network. The 

existence of a string value named Option under the SafeBoot key indicates not only that 

the system booted in safe mode but also the type of safe mode the user selected. For more 

information about safe boots, see the section “Safe Mode” in Chapter 13.

Once the SCM decides to start a service, it calls ScStartService, which takes different steps for 

services than for device drivers. When ScStartService starts a Windows service, it first deter-

mines the name of the file that runs the service’s process by reading the ImagePath value 

from the service’s registry key. It then examines the service’s Type value, and if that value is 

SERVICE_WINDOWS_SHARE_PROCESS (0x20), the SCM ensures that the process the service 

runs in, if already started, is logged on using the same account as specified for the service 

being started (this is to ensure that the service is not configured with the wrong account, 

such as a LocalService account, but with an image path pointing to a running Svchost, such 

as netsvcs, which runs as LocalSystem). A service’s ObjectName registry value stores the user 

account in which the service should run. A service with no ObjectName or an ObjectName of 

LocalSystem runs in the local system account.
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The SCM verifies that the service’s process hasn’t already been started in a different account 

by checking to see whether the service’s ImagePath value has an entry in an internal 

SCM database called the image database. If the image database doesn’t have an entry for 

the ImagePath value, the SCM creates one. When the SCM creates a new entry, it stores 

the logon account name used for the service and the data from the service’s ImagePath 

value. The SCM requires services to have an ImagePath value. If a service doesn’t have an 

ImagePath value, the SCM reports an error stating that it couldn’t find the service’s path 

and isn’t able to start the service. If the SCM locates an existing image database entry with 

matching ImagePath data, the SCM ensures that the user account information for the service 

it’s starting is the same as the information stored in the database entry—a process can be 

logged on as only one account, so the SCM reports an error when a service specifies a differ-

ent account name than another service that has already started in the same process.

The SCM calls ScLogonAndStartImage to log on a service if the service’s configuration speci-

fies and to start the service’s process. The SCM logs on services that don’t run in the System 

account by calling the LSASS function LogonUserEx. LogonUserEx normally requires a pass-

word, but the SCM indicates to LSASS that the password is stored as a service’s LSASS “secret” 

under the key HKLM\SECURITY\Policy\Secrets in the registry. (Keep in mind that the contents 

of SECURITY aren’t typically visible because its default security settings permit access only 

from the System account.) When the SCM calls LogonUserEx, it specifies a service logon as 

the logon type, so LSASS looks up the password in the Secrets subkey that has a name in the 

form _SC_<service name>.

The SCM directs LSASS to store a logon password as a secret using the LsaStorePrivateData 

function when an SCP configures a service’s logon information. When a logon is successful, 

LogonUserEx returns a handle to an access token to the caller. Windows uses access tokens 

to represent a user’s security context, and the SCM later associates the access token with the 

process that implements the service.

After a successful logon, the SCM loads the account’s profile information, if it’s not already 

loaded, by calling the UserEnv DLL’s (%SystemRoot%\System32\Userenv.dll) LoadUserProfile 

function. The value HKLM\SOFTWARE\Microsoft\Windows NT\CurrentVersion\Profile-

List\<user profile key>\ProfileImagePath contains the location on disk of a registry hive 

that LoadUserProfile loads into the registry, making the information in the hive the HKEY_

CURRENT_USER key for the service.

An interactive service must open the WinSta0 window station, but before ScLogonAndStart-
Image allows an interactive service to access WinSta0 it checks to see whether the value 

HKLM\SYSTEM\CurrentControlSet\Control\Windows\NoInteractiveServices is set. Adminis-

trators set this value to prevent services marked as interactive from displaying windows on 

the console. This option is desirable in unattended server environments in which no user is 

present to respond to the Session 0 UI Discovery notification from interactive services.
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As its next step, ScLogonAndStartImage proceeds to launch the service’s process, if the pro-

cess hasn’t already been started (for another service, for example). The SCM starts the process 

in a suspended state with the CreateProcessAsUser Windows function. The SCM next creates 

a named pipe through which it communicates with the service process, and it assigns the 

pipe the name \Pipe\Net\NtControlPipeX, where X is a number that increments each time 

the SCM creates a pipe. The SCM resumes the service process via the ResumeThread func-

tion and waits for the service to connect to its SCM pipe. If it exists, the registry value HKLM\

SYSTEM\CurrentControlSet\Control\ServicesPipeTimeout determines the length of time that 

the SCM waits for a service to call StartServiceCtrlDispatcher and connect before it gives up, 

terminates the process, and concludes that the service failed to start. If ServicesPipeTimeout 

doesn’t exist, the SCM uses a default timeout of 30 seconds. The SCM uses the same timeout 

value for all its service communications.

When a service connects to the SCM through the pipe, the SCM sends the service a start 

command. If the service fails to respond positively to the start command within the timeout 

period, the SCM gives up and moves on to start the next service. When a service doesn’t 

respond to a start request, the SCM doesn’t terminate the process, as it does when a service 

doesn’t call StartServiceCtrlDispatcher within the timeout; instead, it notes an error in the sys-

tem Event Log that indicates the service failed to start in a timely manner.

If the service the SCM starts with a call to ScStartService has a Type registry value of SERVICE_

KERNEL_DRIVER or SERVICE_FILE_SYSTEM_DRIVER, the service is really a device driver, and 

so ScStartService calls ScLoadDeviceDriver to load the driver. ScLoadDeviceDriver enables 

the load driver security privilege for the SCM process and then invokes the kernel service 

NtLoadDriver, passing in the data in the ImagePath value of the driver’s registry key. Unlike 

services, drivers don’t need to specify an ImagePath value, and if the value is absent, the 

SCM builds an image path by appending the driver’s name to the string %SystemRoot%\

System32\Drivers\.

ScAutoStartServices continues looping through the services belonging to a group until all the 

services have either started or generated dependency errors. This looping is the SCM’s way of 

automatically ordering services within a group according to their DependOnService depen-

dencies. The SCM will start the services that other services depend on in earlier loops, skip-

ping the dependent services until subsequent loops. Note that the SCM ignores Tag values 

for Windows services, which you might come across in subkeys under the HKLM\SYSTEM\

CurrentControlSet\Services key; the I/O manager honors Tag values to order device driver 

startup within a group for boot-start and system-start drivers. Once the SCM completes 

phases for all the groups listed in the ServiceGroupOrder\List value, it performs a phase for 

services belonging to groups not listed in the value and then executes a final phase for ser-

vices without a group.

After handling auto-start services, the SCM calls ScInitDelayStart, which queues a delayed 

work item associated with a worker thread responsible for processing all the services that 
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ScAutoStartServices skipped because they were marked delayed auto-start. This worker 

thread will execute after the delay. The default delay is 120 seconds, but it can be overridden 

by the AutoStartDelay value in HKLM\SYSTEM\CurrentControlSet\Control. The SCM performs 

the same actions as those used during startup of nondelayed auto-start services.

Delayed Auto-Start Services

Delayed auto-start services were added in Windows Vista and Windows Server 2008 

to cope with the growing number of services that are being started when a user logs 

on, bogging down the boot-up process and increasing the time before a user is able to 

get responsiveness from the desktop. The design of auto-start services was primarily 

intended for services required early in the boot process because other services depend 

on them, a good example being the RPC service, on which all other services depend. 

The other use was to allow unattended startup of a service, such as the Windows 

Update service. Because many auto-start services fall in this second category, marking 

them as delayed auto-start allows critical services to start faster and for the user’s desk-

top to be ready sooner when a user logs on immediately after booting. Configuring a 

service for delayed auto-start requires calling the ChangeServiceConfig2 API. You can 

check the state of the flag for a service by using the qc bits option instead.

Note If a nondelayed auto-start service has a delayed auto-start service as one of its dependen-

cies, the delayed auto-start flag will be ignored and the service will be started immediately in 

order to satisfy the dependency.

When it’s finished starting all auto-start services and drivers, as well as setting up the delayed 

auto-start work item, the SCM signals the event \BaseNamedObjects\SC_AutoStartComplete. 

This event is used by the Windows Setup program to gauge startup progress during 

installation.

Startup Errors

If a driver or a service reports an error in response to the SCM’s startup command, the 

ErrorControl value of the service’s registry key determines how the SCM reacts. If the 

ErrorControl value is SERVICE_ERROR_IGNORE (0) or the ErrorControl value isn’t specified, the 

SCM simply ignores the error and continues processing service startups. If the ErrorControl 

value is SERVICE_ERROR_NORMAL (1), the SCM writes an event to the system Event Log 

that says, “The <service name> service failed to start due to the following error:”. The SCM 

includes the textual representation of the Windows error code that the service returned to 

the SCM as the reason for the startup failure in the Event Log record. Figure 4-15 shows the 

Event Log entry that reports a service startup error.
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FIGURE 4-15 Service startup failure Event Log entry

If a service with an ErrorControl value of SERVICE_ERROR_SEVERE (2) or SERVICE_ERROR_

CRITICAL (3) reports a startup error, the SCM logs a record to the Event Log and then calls 

the internal function ScRevertToLastKnownGood. This function switches the system’s registry 

configuration to a version, named last known good, with which the system last booted suc-

cessfully. Then it restarts the system using the NtShutdownSystem system service, which is 

implemented in the executive. If the system is already booting with the last known good con-

figuration, the system just reboots.

Accepting the Boot and Last Known Good

Besides starting services, the system charges the SCM with determining when the sys-

tem’s registry configuration, HKLM\SYSTEM\CurrentControlSet, should be saved as the last 

known good control set. The CurrentControlSet key contains the Services key as a subkey, so 

CurrentControlSet includes the registry representation of the SCM database. It also contains 

the Control key, which stores many kernel-mode and user-mode subsystem configuration 

settings. By default, a successful boot consists of a successful startup of auto-start services 

and a successful user logon. A boot fails if the system halts because a device driver crashes 

the system during the boot or if an auto-start service with an ErrorControl value of SERVICE_

ERROR_SEVERE or SERVICE_ERROR_CRITICAL reports a startup error.

The SCM obviously knows when it has completed a successful startup of the auto-start ser-

vices, but Winlogon (%SystemRoot%\System32\Winlogon.exe) must notify it when there is 
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a successful logon. Winlogon invokes the NotifyBootConfigStatus function when a user logs 

on, and NotifyBootConfigStatus sends a message to the SCM. Following the successful start of 

the auto-start services or the receipt of the message from NotifyBootConfigStatus (whichever 

comes last), the SCM calls the system function NtInitializeRegistry to save the current registry 

startup configuration.

Third-party software developers can supersede Winlogon’s definition of a successful logon 

with their own definition. For example, a system running Microsoft SQL Server might not 

consider a boot successful until after SQL Server is able to accept and process transactions. 

Developers impose their definition of a successful boot by writing a boot-verification pro-

gram and installing the program by pointing to its location on disk with the value stored 

in the registry key HKLM\SYSTEM\CurrentControlSet\Control\BootVerificationProgram. 

In addition, a boot-verification program’s installation must disable Winlogon’s call to 

NotifyBootConfigStatus by setting HKLM\SOFTWARE\Microsoft\Windows NT\CurrentVersion\

Winlogon\ReportBootOk to 0. When a boot-verification program is installed, the 

SCM launches it after finishing auto-start services and waits for the program’s call to 

NotifyBootConfigStatus before saving the last known good control set.

Windows maintains several copies of CurrentControlSet, and CurrentControlSet is really a 

symbolic registry link that points to one of the copies. The control sets have names in the 

form HKLM\SYSTEM\ControlSetnnn, where nnn is a number such as 001 or 002. The HKLM\

SYSTEM\Select key contains values that identify the role of each control set. For example, if 

CurrentControlSet points to ControlSet001, the Current value under Select has a value of 1. 

The LastKnownGood value under Select contains the number of the last known good control 

set, which is the control set last used to boot successfully. Another value that might be on 

your system under the Select key is Failed, which points to the last control set for which the 

boot was deemed unsuccessful and aborted in favor of an attempt at booting with the last 

known good control set. Figure 4-16 displays a system’s control sets and Select values.

NtInitializeRegistry takes the contents of the last known good control set and synchronizes 

it with that of the CurrentControlSet key’s tree. If this was the system’s first successful boot, 

the last known good won’t exist and the system will create a new control set for it. If the 

last known good tree exists, the system simply updates it with differences between it and 

CurrentControlSet.

Last known good is helpful in situations in which a change to CurrentControlSet, such as the 

modification of a system performance-tuning value under HKLM\SYSTEM\Control or the 

addition of a service or device driver, causes the subsequent boot to fail. Users can press F8 

early in the boot process to bring up a menu that lets them direct the boot to use the last 

known good control set, rolling the system’s registry configuration back to the way it was the 

last time the system booted successfully. Chapter 13 describes in more detail the use of last 

known good and other recovery mechanisms for troubleshooting system startup problems.
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FIGURE 4-16 Control set selection key

Service Failures

A service can have optional FailureActions and FailureCommand values in its registry key 

that the SCM records during the service’s startup. The SCM registers with the system so that 

the system signals the SCM when a service process exits. When a service process terminates 

unexpectedly, the SCM determines which services ran in the process and takes the recovery 

steps specified by their failure-related registry values.

Additionally, as of Windows Vista and Windows Server 2008, services are no longer limited 

to requesting failure actions during crashes or unexpected service termination, since other 

problems, such as a memory leak, could also result in service failure.

If a service enters the SERVICE_STOPPED state and the error code returned to the SCM is 

not ERROR_SUCCESS, the SCM will check whether the service has the FailureActionsOn-

NonCrashFailures flag set and perform the same recovery as if the service had crashed. To 

use this functionality, the service must be configured via the ChangeServiceConfig2 API or 

the system administrator can use the Sc.exe utility with the Failureflag parameter to set 

FailureActionsOnNonCrashFailures to 1. The default value being 0, the SCM will continue to 

honor the same behavior as on earlier versions of Windows for all other services.

Actions that a service can configure for the SCM include restarting the service, running a 

program, and rebooting the computer. Furthermore, a service can specify the failure actions 
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that take place the first time the service process fails, the second time, and subsequent times, 

and it can indicate a delay period that the SCM waits before restarting the service if the ser-

vice asks to be restarted. The service failure action of the IIS Admin Service results in the SCM 

running the IISReset application, which performs cleanup work and then restarts the service. 

You can easily manage the recovery actions for a service with the Recovery tab of the ser-

vice’s Properties dialog box in the Services MMC snap-in, as shown in Figure 4-17.

FIGURE 4-17 Service recovery options

Service Shutdown

When Winlogon calls the Windows ExitWindowsEx function, ExitWindowsEx sends a mes-

sage to Csrss, the Windows subsystem process, to invoke Csrss’s shutdown routine. Csrss 

loops through the active processes and notifies them that the system is shutting down. For 

every system process except the SCM, Csrss waits up to the number of seconds specified by 

HKU\.DEFAULT\Control Panel\Desktop\WaitToKillAppTimeout (which defaults to 20 seconds) 

for the process to exit before moving on to the next process. When Csrss encounters the 

SCM process, it also notifies it that the system is shutting down but employs a timeout spe-

cific to the SCM. Csrss recognizes the SCM using the process ID Csrss saved when the SCM 

registered with Csrss using the RegisterServicesProcess function during system initialization. 

The SCM’s timeout differs from that of other processes because Csrss knows that the SCM 

communicates with services that need to perform cleanup when they shut down, and so an 

administrator might need to tune only the SCM’s timeout. The SCM’s timeout value resides in 

the HKLM\SYSTEM\CurrentControlSet\Control\WaitToKillServiceTimeout registry value, and it 

defaults to 20 seconds.
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The SCM’s shutdown handler is responsible for sending shutdown notifications to all the 

services that requested shutdown notification when they initialized with the SCM. The SCM 

function ScShutdownAllServices loops through the SCM services database searching for ser-

vices desiring shutdown notification and sends each one a shutdown command. For each 

service to which it sends a shutdown command, the SCM records the value of the service’s 

wait hint, a value that a service also specifies when it registers with the SCM. The SCM keeps 

track of the largest wait hint it receives. After sending the shutdown messages, the SCM waits 

either until one of the services it notified of shutdown exits or until the time specified by the 

largest wait hint passes.

If the wait hint expires without a service exiting, the SCM determines whether one or more of 

the services it was waiting on to exit have sent a message to the SCM telling the SCM that the 

service is progressing in its shutdown process. If at least one service made progress, the SCM 

waits again for the duration of the wait hint. The SCM continues executing this wait loop until 

either all the services have exited or none of the services upon which it’s waiting has notified 

it of progress within the wait hint timeout period.

While the SCM is busy telling services to shut down and waiting for them to exit, Csrss waits 

for the SCM to exit. On versions of Windows prior to Windows Vista, if Csrss’s wait ended 

without the SCM having exited (the WaitToKillServiceTimeout time expired), Csrss would 

kill the SCM and continue the shutdown process. Thus, services that failed to shut down in 

a timely manner were killed. This logic let the system shut down in the face of services that 

would never complete a shutdown as a result of flawed design, but it meant that services that 

required more than 20 seconds would not complete their shutdown operations.

Additionally, because the shutdown order is not deterministic, services that might have 

depended on other services to shut down first (called shutdown dependencies) had no way to 

report this to the SCM and may have never had the chance to clean up either.

To address these needs, Windows now implements preshutdown notifications and shutdown 

ordering to combat the problems caused by these two scenarios. Preshutdown notifica-

tions are sent, using the same mechanism as shutdown notifications, to services that have 

requested preshutdown notification via the SetServiceStatus API, and the SCM will wait for 

them to be acknowledged.

The idea behind these notifications is to flag services that may take a long time to clean 

up (such as database server services) and give them more time to complete their work. The 

SCM will send a progress query request and wait 3 minutes for a service to respond to this 

notification. If the service does not respond within this time, it will be killed during the shut-

down procedure; otherwise, it can keep running as long as it needs as long as it continues to 

respond to the SCM.
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Services that participate in the preshutdown can also specify a shutdown order with respect 

to other preshutdown services. Services that depend on other services to shut down first 

(for example, the Group Policy service needs to wait for Windows Update to finish) can 

specify their shutdown dependencies in the HKLM\SYSTEM\CurrentControlSet\Control\

PreshutdownOrder registry value.

Shared Service Processes

Running every service in its own process instead of having services share a process whenever 

possible wastes system resources. However, sharing processes means that if any of the ser-

vices in the process has a bug that causes the process to exit, all the services in that process 

terminate.

Of the Windows built-in services, some run in their own process and some share a process 

with other services. For example, the LSASS process contains security-related services—such 

as the Security Accounts Manager (SamSs) service, the Net Logon (Netlogon) service, and the 

Crypto Next Generation (CNG) Key Isolation (KeyIso) service.

There is also a “generic” process named Service Host (SvcHost—%SystemRoot%\System32\

Svchost.exe) to contain multiple services. Multiple instances of SvcHost can be running in dif-

ferent processes. Services that run in SvcHost processes include Telephony (TapiSrv), Remote 

Procedure Call (RpcSs), and Remote Access Connection Manager (RasMan). Windows imple-

ments services that run in SvcHost as DLLs and includes an ImagePath definition of the form 

“%SystemRoot%\System32\svchost.exe –k netsvcs” in the service’s registry key. The service’s 

registry key must also have a registry value named ServiceDll under a Parameters subkey that 

points to the service’s DLL file.

All services that share a common SvcHost process specify the same parameter (“–k netsvcs” 

in the example in the preceding paragraph) so that they have a single entry in the SCM’s 

image database. When the SCM encounters the first service that has a SvcHost ImagePath 

with a particular parameter during service startup, it creates a new image database entry and 

launches a SvcHost process with the parameter. The new SvcHost process takes the param-

eter and looks for a value having the same name as the parameter under HKLM\SOFTWARE\

Microsoft\Windows NT\CurrentVersion\Svchost. SvcHost reads the contents of the value, 

interpreting it as a list of service names, and notifies the SCM that it’s hosting those services 

when SvcHost registers with the SCM.

When the SCM encounters a SvcHost service (by checking the service type value) during 

service startup with an ImagePath matching an entry it already has in the image database, it 

doesn’t launch a second process but instead just sends a start command for the service to the 

SvcHost it already started for that ImagePath value. The existing SvcHost process reads the 

ServiceDll parameter in the service’s registry key and loads the DLL into its process to start 

the service.
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Table 4-11 lists all the default service groupings on Windows Vista and Windows Server 2008 

and some of the services that are registered for each of them.

TABLE 4-11 Major Service Groupings

Service Group Services Notes

LocalService Windows Time, COM+ 

Event System, Remote 

Registry, UPnP and SSDP, 

Workstation, WebClient

Services that run in the local 

service account and make use 

of the network on various ports 

or have no network usage at all 

(and hence no restrictions).

LocalServiceRestricted Remote API Manager, 

Windows CE 

Communications Service 

(ActiveSync)

Services that run in the local 

service account and make use 

of the network on a fixed set of 

ports. Services run with a write-

restricted token.

LocalServiceNetworkRestricted DHCP, Event Logger, 

Windows Audio, Peer to 

Peer Services

Services that run in the local 

service account and make use 

of the network on a fixed set of 

ports.

LocalServiceNoNetwork Media Center Edition 

Service, Base Filtering 

Engine, Performance 

Logging and Alerts

Services that run in the local 

service account but make no use 

of the network at all. Services 

run with a write-restricted token.

LocalSystemNetworkRestricted HID Access, User-Mode 

Driver Framework Service, 

Superfetch, Program 

Compatibility Service, WDI 

System Host Service

Services that run in the local 

system account and make use 

of the network on a fixed set of 

ports.

NetworkService Cryptographic Services, 

Terminal Services, KTM 

over DTC, DNS Client, 

Telephony

Services that run in the network 

service account and make use 

of the network on various ports 

(or have no enforced network 

restrictions).

NetworkServiceRestricted None by default Services that run in the network 

service account and make use 

of the network on a fixed set of 

ports. Services run with a write-

restricted token.

NetworkServiceNetworkRestricted IPSec Policy Agent Services that run in the network 

service account and make use 

of the network on a fixed set of 

ports.
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EXPERIMENT: Viewing Services Running Inside Processes

The Process Explorer utility shows detailed information about the services running 

within processes. Run Process Explorer and view the Services tab in the Process Proper-

ties dialog box for the following processes: Services.exe, Lsass.exe, and Svchost.exe. 

Several instances of SvcHost will be running on your system, and you can see the 

account in which each is running by adding the Username column to the Process 

Explorer display or by looking at the Username field on the Image tab of a process’s 

Process Properties dialog box. The following screen shows the list of services running 

within a SvcHost executing in the local service account:

The information displayed includes the service’s name, display name, and description, if 

it has one, which Process Explorer shows beneath the service list when you select a ser-

vice. Additionally, the path of the DLL containing the service is shown. This information 

is useful for mapping thread start addresses (shown on the Threads tab) to their respec-

tive services, which may help in cases of service-related problems such as troubleshoot-

ing high CPU usage.

You can also use the tlist.exe tool from the Debugging Tools for Windows or Tasklist, 

which ships with Windows, to view the list of services running within processes from a 

command prompt. The syntax to see services with Tlist is:

tlist /s
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The syntax for tasklist is:

tasklist /svc

Note that these utilities do not show service display names or descriptions, only service 

names.

Service Tags

One of the disadvantages of using service-hosting processes is that accounting for CPU 

time and usage, as well as for the usage of resources, by a specific service is much harder 

because each service is sharing the memory address space, handle table, and per-process 

CPU accounting numbers with the other services that are part of the same service group. 

Although there is always a thread inside the service-hosting process that belongs to a certain 

service, this association may not always be easy to make. For example, the service may be 

using worker threads to perform its operation, or perhaps the start address and stack of the 

thread do not reveal the service’s DLL name, making it hard to figure out what kind of work a 

thread may exactly be doing and to which service it may belong.

Windows Vista and Windows Server 2008 introduce a service attribute called the service 
tag, which the SCM generates by calling ScGenerateServiceTag when a service is created or 

when the service database is generated during system boot. The attribute is simply an index 

identifying the service. The service tag is stored in the SubProcessTag field of the thread envi-

ronment block (TEB) of each thread (see Chapter 5 for more information on the TEB) and is 

propagated across all threads that a main service thread creates (except threads created indi-

rectly by thread pool APIs).

Although the service tag is kept internal to the SCM, several Windows utilities, like 

Netstat.exe (a utility that you can use for displaying which programs have opened which 

ports on the network), use undocumented APIs to query service tags and map them to ser-

vice names. Because the TCP/IP stack saves the service tag of the threads that create TCP/IP 

end points, when you run Netstat with the –b parameter, Netstat can report the service 

name for end points created by services. Another tool you can use to look at service tags 

is ScTagQuery from Winsider Seminars & Solutions Inc. (www.winsiderss.com/tools/sctag-
 query.html). It can query the SCM for the mappings of every service tag and display them 

either systemwide or per-process. It can also show you to which services all the threads inside 

a service-hosting process belong (this is conditional on those threads having a proper service 

tag associated with them). This way, if you have a runaway service consuming lots of CPU 

time, you can identify the culprit service in case the thread start address or stack does not 

have an obvious service DLL associated with it.
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Service Control Programs

Service control programs are standard Windows applications that use SCM service man-

agement functions, including CreateService, OpenService, StartService, ControlService, 

QueryServiceStatus, and DeleteService. To use the SCM functions, an SCP must first open a 

communications channel to the SCM by calling the OpenSCManager function. At the time of 

the open call, the SCP must specify what types of actions it wants to perform. For example, 

if an SCP simply wants to enumerate and display the services present in the SCM’s database, 

it requests enumerate-service access in its call to OpenSCManager. During its initialization, 

the SCM creates an internal object that represents the SCM database and uses the Windows 

security functions to protect the object with a security descriptor that specifies what accounts 

can open the object with what access permissions. For example, the security descriptor indi-

cates that the Authenticated Users group can open the SCM object with enumerate-service 

access. However, only administrators can open the object with the access required to create 

or delete a service.

As it does for the SCM database, the SCM implements security for services themselves. When 

an SCP creates a service by using the CreateService function, it specifies a security descriptor 

that the SCM associates internally with the service’s entry in the service database. The SCM 

stores the security descriptor in the service’s registry key as the Security value, and it reads 

that value when it scans the registry’s Services key during initialization so that the security 

settings persist across reboots. In the same way that an SCP must specify what types of 

access it wants to the SCM database in its call to OpenSCManager, an SCP must tell the SCM 

what access it wants to a service in a call to OpenService. Accesses that an SCP can request 

include the ability to query a service’s status and to configure, stop, and start a service.

The SCP you’re probably most familiar with is the Services MMC snap-in that’s included in 

Windows, which resides in %SystemRoot%\System32\Filemgmt.dll. Windows also includes 

Sc.exe (Service Controller tool), a command-line service control program that we’ve men-

tioned multiple times.

SCPs sometimes layer service policy on top of what the SCM implements. A good example 

is the timeout that the Services MMC snap-in implements when a service is started manu-

ally. The snap-in presents a progress bar that represents the progress of a service’s startup. 

Services indirectly interact with SCPs by setting their configuration status to reflect their 

progress as they respond to SCM commands such as the start command. SCPs query the 

status with the QueryServiceStatus function. They can tell when a service actively updates the 

status versus when a service appears to be hung, and the SCM can take appropriate actions 

in notifying a user about what the service is doing.
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Windows Management Instrumentation

Windows Management Instrumentation (WMI) is an implementation of Web-Based 

Enterprise Management (WBEM), a standard that the Distributed Management Task Force 

(DMTF—an industry consortium) defines. The WBEM standard encompasses the design of 

an extensible enterprise data-collection and data-management facility that has the flexibil-

ity and extensibility required to manage local and remote systems that comprise arbitrary 

components.

WMI Architecture

WMI consists of four main components, as shown in Figure 4-18: management applications, 

WMI infrastructure, providers, and managed objects. Management applications are Windows 

applications that access and display or process data that the applications obtain about man-

aged objects. A simple example of a management application is a performance tool replace-

ment that relies on WMI rather than the Performance API to obtain performance information. 

A more complex example is an enterprise-management tool that lets administrators perform 

automated inventories of the software and hardware configuration of every computer in 

their enterprise.

FIGURE 4-18 WMI architecture

Developers typically must target management applications to collect data from and man-

age specific objects. An object might represent one component, such as a network adapter 
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device, or a collection of components, such as a computer (the computer object might con-

tain the network adapter object). Providers need to define and export the representation of 

the objects that management applications are interested in. For example, the vendor of a 

network adapter might want to add adapter-specific properties to the network adapter WMI 

support that Windows includes, querying and setting the adapter’s state and behavior as the 

management applications direct. In some cases (for example, for device drivers), Microsoft 

supplies a provider that has its own API to help developers leverage the provider’s imple-

mentation for their own managed objects with minimal coding effort.

The WMI infrastructure, the heart of which is the Common Information Model (CIM) Object 

Manager (CIMOM), is the glue that binds management applications and providers. (CIM is 

described later in this chapter.) The infrastructure also serves as the object-class store and, in 

many cases, as the storage manager for persistent object properties. WMI implements the 

store, or repository, as an on-disk database named the CIMOM Object Repository. As part of 

its infrastructure, WMI supports several APIs through which management applications access 

object data and providers supply data and class definitions.

Windows programs use the WMI COM API, the primary management API, to directly inter-

act with WMI. Other APIs layer on top of the COM API and include an Open Database 

Connectivity (ODBC) adapter for the Microsoft Access database application. A database 

developer uses the WMI ODBC adapter to embed references to object data in the devel-

oper’s database. Then the developer can easily generate reports with database queries that 

contain WMI-based data. WMI ActiveX controls support another layered API. Web devel-

opers use the ActiveX controls to construct Web-based interfaces to WMI data. Another 

management API is the WMI scripting API, for use in script-based applications and Microsoft 

Visual Basic programs. WMI scripting support exists for all Microsoft programming language 

technologies.

As they are for management applications, WMI COM interfaces constitute the primary API for 

providers. However, unlike management applications, which are COM clients, providers are 

COM or Distributed COM (DCOM) servers (that is, the providers implement COM objects that 

WMI interacts with). Possible embodiments of a WMI provider include DLLs that load into 

WMI’s manager process or stand-alone Windows applications or Windows services. Microsoft 

includes a number of built-in providers that present data from well-known sources, such as 

the Performance API, the registry, the Event Manager, Active Directory, SNMP, and Windows 

Driver Model (WDM) device drivers. The WMI SDK lets developers develop third-party WMI 

providers.

Providers

At the core of WBEM is the DMTF-designed CIM specification. The CIM specifies how man-

agement systems represent, from a systems management perspective, anything from a 

computer to an application or device on a computer. Provider developers use the CIM to 
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represent the components that make up the parts of an application for which the developers 

want to enable management. Developers use the Managed Object Format (MOF) language 

to implement a CIM representation.

In addition to defining classes that represent objects, a provider must interface WMI to the 

objects. WMI classifies providers according to the interface features the providers supply. 

Table 4-12 lists WMI provider classifications. Note that a provider can implement one or 

more features; therefore, a provider can be, for example, both a class and an event provider. 

To clarify the feature definitions in Table 4-12, let’s look at a provider that implements sev-

eral of those features. The Event Log provider supports several objects, including an Event 

Log Computer, an Event Log Record, and an Event Log File. The Event Log is an Instance 

provider because it can define multiple instances for several of its classes. One class for 

which the Event Log provider defines multiple instances is the Event Log File class (Win32_

NTEventlogFile); the Event Log provider defines an instance of this class for each of the sys-

tem’s event logs (that is, System Event Log, Application Event Log, and Security Event Log).

TABLE 4-12 Provider Classifications

Classification Description

Class Can supply, modify, delete, and enumerate a provider-specific class. Can also 

support query processing. Active Directory is a rare example of a service that 

is a class provider.

Instance Can supply, modify, delete, and enumerate instances of system and provider-

specific classes. An instance represents a managed object. Can also support 

query processing.

Property Can supply and modify individual object property values.

Method Supplies methods for a provider-specific class.

Event Generates event notifications.

Event consumer Maps a physical consumer to a logical consumer to support event 

notification.

The Event Log provider defines the instance data and lets management applications enumer-

ate the records. To let management applications use WMI to back up and restore the Event 

Log files, the Event Log provider implements backup and restore methods for Event Log File 

objects. Doing so makes the Event Log provider a Method provider. Finally, a management 

application can register to receive notification whenever a new record writes to one of the 

Event Logs. Thus, the Event Log provider serves as an Event provider when it uses WMI event 

notification to tell WMI that Event Log records have arrived.

The Common Information Model and the Managed Object 
Format Language

The CIM follows in the steps of object-oriented languages such as C++ and Java, in which 

a modeler designs representations as classes. Working with classes lets developers use the 
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powerful modeling techniques of inheritance and composition. Subclasses can inherit the 

attributes of a parent class, and they can add their own characteristics and override the char-

acteristics they inherit from the parent class. A class that inherits properties from another 

class derives from that class. Classes also compose: a developer can build a class that includes 

other classes.

The DMTF provides multiple classes as part of the WBEM standard. These classes are CIM’s 

basic language and represent objects that apply to all areas of management. The classes 

are part of the CIM core model. An example of a core class is CIM_ManagedSystemElement. 

This class contains a few basic properties that identify physical components such as hard-

ware devices and logical components such as processes and files. The properties include 

a caption, description, installation date, and status. Thus, the CIM_LogicalElement and 

CIM_PhysicalElement classes inherit the attributes of the CIM_ManagedSystemElement class. 

These two classes are also part of the CIM core model. The WBEM standard calls these classes 

abstract classes because they exist solely as classes that other classes inherit (that is, no object 

instances of an abstract class exist). You can therefore think of abstract classes as templates 

that define properties for use in other classes.

A second category of classes represents objects that are specific to management areas but 

independent of a particular implementation. These classes constitute the common model and 

are considered an extension of the core model. An example of a common-model class is the 

CIM_FileSystem class, which inherits the attributes of CIM_LogicalElement. Because virtually 

every operating system—including Windows, Linux, and other varieties of UNIX—rely on file-

system-based structured storage, the CIM_FileSystem class is an appropriate constituent of 

the common model.

The final class category, the extended model, comprises technology-specific additions to the 

common model. Windows defines a large set of these classes to represent objects specific 

to the Windows environment. Because all operating systems store data in files, the CIM 

common model includes the CIM_LogicalFile class. The CIM_DataFile class inherits the CIM_

LogicalFile class, and Windows adds the Win32_PageFile and Win32_ShortcutFile file classes 

for those Windows file types.

The Event Log provider makes extensive use of inheritance. Figure 4-19 shows a view of the 

WMI CIM Studio, a class browser that ships with the WMI Administrative Tools that you can 

obtain from the Microsoft download center at the Microsoft Web site. You can see where 

the Event Log provider relies on inheritance in the provider’s Win32_NTEventlogFile class, 

which derives from CIM_DataFile. Event Log files are data files that have additional Event 

Log–specific attributes such as a log file name (LogfileName) and a count of the num-

ber of records that the file contains (NumberOfRecords). The tree that the class browser 

shows reveals that Win32_NTEventlogFile is based on several levels of inheritance, in which 

CIM_DataFile derives from CIM_LogicalFile, which derives from CIM_LogicalElement, and 

CIM_LogicalElement derives from CIM_ManagedSystemElement.
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FIGURE 4-19 WMI CIM Studio

As stated earlier, WMI provider developers write their classes in the MOF language. The fol-

lowing output shows the definition of the Event Log provider’s Win32_NTEventlogFile, which 

is selected in Figure 4-19. Notice the correlation between the properties that the right panel 

in Figure 4-19 lists and those properties’ definitions in the MOF file below. CIM Studio uses 

yellow arrows to tag those properties that a class inherits. Thus, you don’t see those proper-

ties specified in Win32_NTEventlogFile’s definition.

dynamic: ToInstance, provider("MS_NT_EVENTLOG_PROVIDER"), Locale(1033), UUID("{8502C57B-

5FBB-11D2-AAC1-006008C78BC7}")]  

class Win32_NTEventlogFile : CIM_DataFile  

{  

[read] string LogfileName;  
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[read, write] uint32 MaxFileSize;  

[read] uint32 NumberOfRecords;  

[read, volatile, ValueMap{"0", "1..365", "4294967295"}] string OverWritePolicy;  

[read, write, Units("Days"), Range("0-365 | 4294967295")] uint32 OverwriteOutDated;  

[read] string Sources[];  

[implemented, Privileges{"SeSecurityPrivilege", 

"SeBackupPrivilege"}] uint32 ClearEventlog([in] string ArchiveFileName);  

[implemented, Privileges{"SeSecurityPrivilege", 

"SeBackupPrivilege"}] uint32 BackupEventlog([in] string ArchiveFileName);  

};

One term worth reviewing is dynamic, which is a descriptive designator for the Win32_

NTEventlogFile class that the MOF file in the preceding output shows. Dynamic means that 

the WMI infrastructure asks the WMI provider for the values of properties associated with 

an object of that class whenever a management application queries the object’s properties. 

A static class is one in the WMI repository; the WMI infrastructure refers to the repository to 

obtain the values instead of asking a provider for the values. Because updating the repository 

is a relatively expensive operation, dynamic providers are more efficient for objects that have 

properties that change frequently.

EXPERIMENT: Viewing the MOF Definitions of WMI Classes

You can view the MOF definition for any WMI class by using the WbemTest tool that 

comes with Windows. In this experiment, we’ll look at the MOF definition for the 

Win32_NTEventLogFile class:

 1. Run Wbemtest from the Start menu’s Run dialog box.

 2. Click the Connect button, change the Namespace to root\cimv2, and connect.

 3. Select Enum Classes, select the Recursive option button, and then click OK.

 4. Find Win32_NTEventLogFile in the list of classes, and then double-click it to see 

its class properties.

 5. Click the Show MOF button to open a window that displays the MOF text.

After constructing classes in MOF, WMI developers can supply the class definitions to WMI 

in several ways. WDM provider developers compile a MOF file into a binary MOF (BMF) 

file—a more compact binary representation than a MOF file—and give the BMF files to the 

WDM infrastructure. Another way is for the provider to compile the MOF and use WMI COM 

APIs to give the definitions to the WMI infrastructure. Finally, a provider can use the MOF 

Compiler (Mofcomp.exe) tool to give the WMI infrastructure a classes-compiled representa-

tion directly.
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The WMI Namespace

Classes define the properties of objects, and objects are class instances on a system. WMI 

uses a namespace that contains several subnamespaces that WMI arranges hierarchically to 

organize objects. A management application must connect to a namespace before the appli-

cation can access objects within the namespace.

WMI names the namespace root directory root. All WMI installations have four pre-

defined namespaces that reside beneath root: CIMV2, Default, Security, and WMI. Some of 

these namespaces have other namespaces within them. For example, CIMV2 includes the 

Applications and ms_409 namespaces as subnamespaces. Providers sometimes define their 

own namespaces; you can see the WMI namespace (which the Windows device driver WMI 

provider defines) beneath root in Windows.

EXPERIMENT: Viewing WMI Namespaces

You can see what namespaces are defined on a system with WMI CIM Studio. WMI CIM 

Studio presents a connection dialog box when you run it that includes a namespace 

browsing button to the right of the namespace edit box. Opening the browser and 

selecting a namespace has WMI CIM Studio connect to that namespace. Windows Vista 

defines over a dozen namespaces beneath root, some of which are visible here:

Unlike a file system namespace, which comprises a hierarchy of directories and files, a WMI 

namespace is only one level deep. Instead of using names as a file system does, WMI uses 

object properties that it defines as keys to identify the objects. Management applications 

specify class names with key names to locate specific objects within a namespace. Thus, each 

instance of a class must be uniquely identifiable by its key values. For example, the Event 

Log provider uses the Win32_NTLogEvent class to represent records in an Event Log. This 

class has two keys: Logfile, a string; and RecordNumber, an unsigned integer. A manage-

ment application that queries WMI for instances of Event Log records obtains them from the 
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provider key pairs that identify records. The application refers to a record using the syntax 

that you see in this sample object path name:

\\DARYL\root\CIMV2:Win32_NTLogEvent.Logfile="Application",  

                                         RecordNumber="1"

The first component in the name (\\DARYL) identifies the computer on which the object is 

located, and the second component (\root\CIMV2) is the namespace in which the object 

resides. The class name follows the colon, and key names and their associated values follow 

the period. A comma separates the key values.

WMI provides interfaces that let applications enumerate all the objects in a particular class or 

to make queries that return instances of a class that match a query criterion.

Class Association

Many object types are related to one another in some way. For example, a computer object 

has a processor, software, an operating system, active processes, and so on. WMI lets provid-

ers construct an association class to represent a logical connection between two different 

classes. Association classes associate one class with another, so the classes have only two 

properties: a class name and the Ref modifier. The following output shows an association 

in which the Event Log provider’s MOF file associates the Win32_NTLogEvent class with the 

Win32_ComputerSystem class. Given an object, a management application can query associ-

ated objects. In this way, a provider defines a hierarchy of objects.

[dynamic: ToInstance, provider("MS_NT_EVENTLOG_PROVIDER"): ToInstance, EnumPrivileges{"Se 

SecurityPrivilege"}: ToSubClass, Locale(1033): ToInstance, UUID("{8502C57F-5FBB-11D2-AAC1-

006008C78BC7}"): ToInstance, Association: DisableOverride ToInstance ToSubClass]  

class Win32_NTLogEventComputer  

{  

    [key, read: ToSubClass] Win32_ComputerSystem ref Computer;  

    [key, read: ToSubClass] Win32_NTLogEvent ref Record;  

};

Figure 4-20 shows the WMI Object Browser (another tool that the WMI Administrative 

Tools includes) displaying the contents of the CIMV2 namespace. Windows system com-

ponents typically place their objects within the CIMV2 namespace. The Object Browser 

first locates the Win32_ComputerSystem object instance ALEX-LAPTOP, which is the object 

that represents the computer. Then the Object Browser obtains the objects associated with 

Win32_ComputerSystem and displays them beneath ALEX-LAPTOP. The Object Browser user 

interface displays association objects with a double-arrow folder icon. The associated class 

type’s objects display beneath the folder.

You can see in the Object Browser that the Event Log provider’s association class Win32_

NTLogEventComputer is beneath ALEX-LAPTOP and that numerous instances of the 
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Win32_NTLogEvent class exist. Refer to the preceding output to verify that the MOF file 

defines the Win32_NTLogEventComputer class to associate the Win32_ComputerSystem class 

with the Win32_NTLogEvent class. Selecting an instance of Win32_NTLogEvent in the Object 

Browser reveals that class’s properties under the Properties tab in the right-hand pane. 

Microsoft intended the Object Browser to help WMI developers examine their objects, but a 

management application would perform the same operations and display properties or col-

lected information more intelligibly.

FIGURE 4-20 WMI Object Browser

EXPERIMENT: Using WMI Scripts to Manage Systems

A powerful aspect of WMI is its support for scripting languages. Microsoft has gener-

ated hundreds of scripts that perform common administrative tasks for managing user 

accounts, files, the registry, processes, and hardware devices. The Microsoft TechNet 

Scripting Center Web site serves as the central location for Microsoft scripts. Using a 

script from the scripting center is as easy as copying its text from your Internet browser, 

storing it in a file with a .vbs extension, and running it with the command cscript 

script.vbs, where “script” is the name you gave the script. Cscript is the command-line 

interface to Windows Script Host (WSH).

Here’s a sample TechNet script that registers to receive events when Win32_Process 

object instances are created, which occurs whenever a process starts, and prints a line 

with the name of the process that the object represents:
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strComputer = "."  

Set objWMIService = GetObject("winmgmts:" _  

    & "{impersonationLevel=impersonate}!\\" & strComputer & "\root\cimv2")  

Set colMonitoredProcesses = objWMIService. _          

    ExecNotificationQuery("select * from __instancecreationevent " _   

        & " within 1 where TargetInstance isa 'Win32_Process'")  

i = 0  

Do While i = 0  

    Set objLatestProcess = colMonitoredProcesses.NextEvent  

    Wscript.Echo objLatestProcess.TargetInstance.Name  

Loop

The line that invokes ExecNotificationQuery does so with a parameter that includes a 

“select” statement, which highlights WMI’s support for a read-only subset of the ANSI 

standard Structured Query Language (SQL), known as WQL, to provide a flexible way 

for WMI consumers to specify the information that they want to extract from WMI pro-

viders. Running the sample script with Cscript and then starting Notepad results in the 

following output:

C:\>cscript monproc.vbs  

Microsoft (R) Windows Script Host Version 5.7 

Copyright (C) Microsoft Corporation. All rights reserved.  

  

NOTEPAD.EXE

WMI Implementation

The WMI service runs in a shared Svchost process that executes in the local system account. 

It loads providers into the Wmiprvse.exe provider-hosting process, which launches as a child 

of the RPC service process. WMI executes Wmiprvse in the local system, local service, or 

network service accounts, depending on the value of the HostingModel property of the WMI 

Win32Provider object instance that represents the provider implementation. A Wmiprvse 

process exits after the provider is removed from the cache, one minute following the last 

provider request it receives.

EXPERIMENT: Viewing Wmiprvse Creation

You can see Wmiprvse being created by running Process Explorer and executing Wmic. 

A Wmiprvse process will appear beneath the Svchost process that hosts the RPC ser-

vice. If Process Explorer job highlighting is enabled, it will appear with the job highlight 

color because, to prevent a runaway provider from consuming all virtual memory 

resources on a system, Wmiprvse executes in a job object that limits the number of 

child processes it can create and the amount of virtual memory each process and all the 

processes of the job can allocate. (See Chapter 5 for more information on job objects.)
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Most WMI components reside by default in %SystemRoot%\System32 and %SystemRoot%\

System32\Wbem, including Windows MOF files, built-in provider DLLs, and management 

application WMI DLLs. Look in the %SystemRoot%\System32\Wbem directory, and you’ll find 

Ntevt.mof, the Event Log provider MOF file. You’ll also find Ntevt.dll, the Event Log provider’s 

DLL, which the WMI service uses.

Directories beneath %SystemRoot%\System32\Wbem store the repository, log files, and 

third-party MOF files. WMI implements the repository—named the CIMOM repository—

using a proprietary version of the Microsoft JET database engine. The database file, by 

default, resides in %SystemRoot%\System32\Wbem\Repository\.

WMI honors numerous registry settings that the service’s HKLM\SOFTWARE\Microsoft\

WBEM\CIMOM registry key stores, such as thresholds and maximum values for certain 

parameters.

Device drivers use special interfaces to provide data to and accept commands—called the 

WMI System Control commands—from WMI. These interfaces are part of the WDM, which is 

explained in Chapter 7. Because the interfaces are cross-platform, they fall under the \root\

WMI namespace.

WMIC

Windows also includes Wmic.exe, a utility that allows you to interact with WMI from a 

WMI-aware command-line shell. All WMI objects and their properties, including their 

methods, are accessible through the shell, which makes WMIC an advanced systems 

management console.
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WMI Security

WMI implements security at the namespace level. If a management application success-

fully connects to a namespace, the application can view and access the properties of all the 

objects in that namespace. An administrator can use the WMI Control application to control 

which users can access a namespace. To start the WMI Control application, from the Start 

menu, select Control Panel. From there, select System And Maintenance, Administrative 

Tools, Computer Management. Next, open the Services And Applications branch. Right-click 

WMI Control, and select Properties to launch the WMI Control Properties dialog box, which 

Figure 4-21 shows. To configure security for namespaces, click the Security tab, select the 

namespace, and click Security. The other tabs in the WMI Control Properties dialog box let 

you modify the performance and backup settings that the registry stores.

FIGURE 4-21 WMI security properties

Windows Diagnostic Infrastructure

The Windows Diagnostic Infrastructure (WDI) helps to detect, diagnose, and resolve common 

problem scenarios with minimal user intervention. Windows components implement triggers 

that cause WDI to launch scenario-specific troubleshooting modules to detect the occurrence 

of a problem scenario. A trigger can indicate that the system is approaching or has reached a 

problematic state. Once a troubleshooting module has identified a root cause, it can invoke 

a problem resolver to address it. A resolution may be as simple as changing a registry setting 

or interacting with the user to perform recovery steps or configuration changes. Ultimately, 
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WDI’s main role is to provide a unified framework for Windows components to perform the 

tasks involved in automated problem detection, diagnosis, and resolution.

WDI Instrumentation

Windows or application components must add instrumentation to notify WDI when a prob-

lem scenario is occurring. Components can wait for the results of diagnosis synchronously or 

can continue operating and let diagnosis proceed asynchronously. WDI implements two dif-

ferent types of instrumentation APIs to support these models.

Event-based diagnosis, which can be used for minimally invasive diagnostics instrumen-

tation, can be added to a component without requiring any changes to its implementa-

tion. WDI supports two kinds of event-based diagnosis: simple scenarios and start-stop 

scenarios. In a simple scenario, a single point in code is responsible for the failure and 

an event is raised to trigger diagnostics. In a start-stop scenario, an entire code path 

is deemed risky and is instrumented for diagnosis. One event is raised at the begin-

ning of the scenario to a real-time Event Tracing for Windows (ETW) session named 

the DiagLog. At the same time, a kernel facility called the Scenario Event Mapper (SEM) 

enables a collection of additional ETW traces to the WDI context loggers. A second 

event is raised to signal the end of the diagnostic scenario, at which time the SEM dis-

ables the verbose tracing. This “just-in-time tracing” mechanism keeps the performance 

overhead of detailed tracing low while maintaining enough contextual information for 

WDI to find the root cause without a reproduction of the problem, if a failure should 

occur.

On-demand diagnosis, which allows applications to request diagnosis on their own, 

interact with the diagnostic, receive notifications when the diagnostic has completed, 

and modify its behavior based on the results of the diagnosis. On-demand instrumen-

tation is particularly useful when diagnosis needs to be performed in a privileged secu-

rity context. WDI facilitates the transfer of context across trust and process boundaries 

and also supports impersonation of the caller when necessary.

Diagnostic Policy Service

The Diagnostic Policy Service (DPS, %SystemRoot%\System32\Dps.dll) implements most of 

the WDI scenario back end. DPS is a multithreaded service (running in a Svchost) that accepts 

on-demand scenario requests and also monitors and watches for diagnostic events delivered 

via DiagLog. (See Figure 4-22, which shows the relationship of DPS to the other key WDI 

components.) In response to these requests, DPS launches the appropriate troubleshoot-

ing module, which encodes domain-specific knowledge, such as how to find the root cause 

of a network problem. In addition, DPS makes all the contextual information related to the 
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scenario available to the modules in the form of captured traces. Troubleshooting modules 

perform automated analysis of the data and can request DPS to launch a secondary module 

called a resolver, which is responsible for fixing the problem, silently if possible.

User modeInstrumented
component

Kernel mode

Diagnostic Policy Service

Troubleshooting
module

Contact
sessions

Diagnostic
session 

(DiagLog)

Scenario 
Event

Mapper

On-demand request

ETW instrumentation

FIGURE 4-22 Windows Diagnostic Infrastructure architecture

DPS controls and enforces Group Policy settings for diagnostic scenarios. You can use the 

Group Policy Editor (%SystemRoot%\System32\Gpedit.msc) to configure the settings for the 

diagnostics and automatic recovery options. You can access these settings from Computer 

Configuration, Administrative Templates, System, Troubleshooting And Diagnostics, shown in 

Figure 4-23.

FIGURE 4-23 Configuring Diagnostic Policy Service settings
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Diagnostic Functionality

Windows implements several built-in diagnostic scenarios and utilities. Some examples 

include:

Disk diagnostics, which include the presence of Self-Monitoring Analysis and Reporting 

Technology (SMART) code inside the storage class driver (%SystemRoot%\System32\

Driver\Classspnp.sys) to monitor disk health. WDI notifies and guides the user through 

data backup after an impending disk failure is detected. In addition, Windows monitors 

application crashes caused by disk corruptions in critical system files. The diagnostic 

utilizes the Windows File Protection mechanism to automatically restore such damaged 

system files from a backup cache when possible. For more information on Windows 

storage management, see Chapter 8.

Network diagnostics and troubleshooting extends WDI to handle different classes of 

networking related problems, such as file sharing, Internet access, wireless networks, 

third-party firewalls, and general network connectivity. For more information on net-

working, see Chapter 12.

Resource exhaustion prevention, which includes Windows memory leak diagnosis and 

Windows resource exhaustion detection and resolution. These diagnostics can detect 

when the commit limit is approaching its maximum and alert the user of the situation, 

including the top memory and resource consumers. The user can then choose to termi-

nate these applications to attempt to free some resources. For more information on the 

commit limit and virtual memory, see Chapter 9.

Windows memory diagnostic tool, which can be manually executed by the user from 

the Boot Manager on startup or automatically recommended by Windows Error 

Reporting (WER) after a system crash that was analyzed as potentially the result of 

faulty RAM. For more information on the boot process, see Chapter 13.

Windows startup repair tool, which attempts to automatically fix certain classes of 

errors commonly responsible for users being unable to boot the system, such as incor-

rect BCD settings, damaged disk structures such as the MBR or boot sector, and faulty 

drivers. When system boot is unsuccessful, the Boot Manager automatically launches 

the startup repair tool, if it is installed, which also includes manual recovery options 

and access to a command prompt. For more information on the startup repair tool, see 

Chapter 13.

Windows performance diagnostics, which include Windows boot performance diag-

nostics, Windows shutdown performance diagnostics, Windows standby/resume per-

formance diagnostics, and Windows system responsiveness performance diagnostics. 

Based on certain timing thresholds and internal behavioral expectations of these 

mechanisms, Windows can detect problems caused by slow performance and log them 

to the Event Log, which in turn is used by WDI to provide resolutions and walkthroughs 

for the user to attempt to fix the problem.
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Program Compatibility Assistant (PCA), which enables legacy applications to execute 

on Windows Vista despite compatibility problems. PCA detects application installation 

failures caused by a mismatch during version checks and run-time failures caused by 

deprecated binaries and User Account Control (UAC) settings. PCA attempts to recover 

from these failures by applying the appropriate compatibility setting for the applica-

tion, which takes effect during the next run. In addition, PCA maintains a database of 

programs with known compatibility issues and informs the users about potential prob-

lems at program startup.

Conclusion

So far, we’ve examined the overall structure of Windows, the core system mechanisms on 

which the structure is built, and core management mechanisms. With this foundation laid, 

we’re ready to explore the individual executive components in more detail, starting with pro-

cesses and threads.
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Chapter 5

Processes, Threads, and Jobs

In this chapter, we’ll explain the data structures and algorithms that deal with processes, 

threads, and jobs in the Windows operating system. The first section focuses on the internal 

structures that make up a process. The second section outlines the steps involved in creat-

ing a process (and its initial thread). The internals of threads and thread scheduling are then 

described. The chapter concludes with a description of the job object.

Where relevant performance counters or kernel variables exist, they are mentioned. Although 

this book isn’t a Windows programming book, the pertinent process, thread, and job 

Windows functions are listed so that you can pursue additional information on their use.

Because processes and threads touch so many components in Windows, a number of terms 

and data structures (such as working sets, objects and handles, system memory heaps, and 

so on) are referred to in this chapter but are explained in detail elsewhere in the book. To 

fully understand this chapter, you need to be familiar with the terms and concepts explained 

in Chapters 1 and 2, such as the difference between a process and a thread, the Windows 

virtual address space layout, and the difference between user mode and kernel mode.

Process Internals

This section describes the key Windows process data structures. Also listed are key kernel 

variables, performance counters, and functions and tools that relate to processes.

Data Structures

Each Windows process is represented by an executive process (EPROCESS) block. Besides 

containing many attributes relating to a process, an EPROCESS block contains and points to a 

number of other related data structures. For example, each process has one or more threads 

represented by executive thread (ETHREAD) blocks. (Thread data structures are explained in 

the section “Thread Internals” later in this chapter.) The EPROCESS block and its related data 

structures exist in system address space, with the exception of the process environment block 

(PEB), which exists in the process address space (because it contains information that needs 

to be accessed by user-mode code).

In addition to the EPROCESS block and the PEB, the Windows subsystem process (Csrss) 

maintains a parallel structure for each process that is executing a Windows program. Finally, 



336 Windows Internals, Fifth Edition

the kernel-mode part of the Windows subsystem (Win32k.sys) will also maintain a per-pro-

cess data structure that is created the first time a thread calls a Windows USER or GDI func-

tion that is implemented in kernel mode.

Figure 5-1 is a simplified diagram of the process and thread data structures. Each data struc-

ture shown in the figure is described in detail in this chapter.

Thread
environment

block

Process
environment

block

Process
block

Windows process block

Handle table

Thread
block

System address space

Process address space

FIGURE 5-1 Data structures associated with processes and threads

First let’s focus on the process block. (We’ll get to the thread block in the section “Thread 

Internals” later in the chapter.) Figure 5-2 shows the key fields in an EPROCESS block.
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Kernel process block (or PCB)

Process ID

Parent process ID

Exit status

Create and exit times

Active process link

Primary access token

EPROCESS

Handle table

Quota block

Memory management information

Exception port

Debugger port

Device map

Process environment block

Image filename

Image base address

Process priority class

Job object

Windows process block

FIGURE 5-2 Structure of an executive process block

EXPERIMENT: Displaying the Format of an EPROCESS Block

For a list of the fields that make up an EPROCESS block and their offsets in hexadecimal, 

type dt _eprocess in the kernel debugger. (See Chapter 1 for more information on the 

kernel debugger and how to perform kernel debugging on the local system.) The out-

put (truncated for the sake of space) on a 32-bit system looks like this:

lkd> dt _eprocess  

nt!_EPROCESS 

   +0x000 Pcb              : _KPROCESS 

   +0x080 ProcessLock      : _EX_PUSH_LOCK 

   +0x088 CreateTime       : _LARGE_INTEGER 

   +0x090 ExitTime         : _LARGE_INTEGER 

   +0x098 RundownProtect   : _EX_RUNDOWN_REF 

   +0x09c UniqueProcessId  : Ptr32 Void 

   +0x0a0 ActiveProcessLinks : _LIST_ENTRY 

   +0x0a8 QuotaUsage       : [3] Uint4B 

   +0x0b4 QuotaPeak        : [3] Uint4B 

   +0x0c0 CommitCharge     : Uint4B 

   +0x0c4 PeakVirtualSize  : Uint4B 

   +0x0c8 VirtualSize      : Uint4B 

   +0x0cc SessionProcessLinks : _LIST_ENTRY 

   +0x0d4 DebugPort        : Ptr32 Void 

   +0x0d8 ExceptionPortData : Ptr32 Void 
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   +0x0d8 ExceptionPortValue : Uint4B 

   +0x0d8 ExceptionPortState : Pos 0, 3 Bits 

   +0x0dc ObjectTable      : Ptr32 _HANDLE_TABLE 

   +0x0e0 Token            : _EX_FAST_REF 

   +0x0e4 WorkingSetPage   : Uint4B 

   +0x0e8 AddressCreationLock : _EX_PUSH_LOCK 

   +0x0ec RotateInProgress : Ptr32 _ETHREAD 

   +0x0f0 ForkInProgress   : Ptr32 _ETHREAD 

   +0x0f4 HardwareTrigger  : Uint4B 

   +0x0f8 PhysicalVadRoot  : Ptr32 _MM_AVL_TABLE 

   +0x0fc CloneRoot        : Ptr32 Void 

   +0x100 NumberOfPrivatePages : Uint4B 

   +0x104 NumberOfLockedPages : Uint4B 

   +0x108 Win32Process     : Ptr32 Void 

   +0x10c Job              : Ptr32 _EJOB 

   +0x110 SectionObject    : Ptr32 Void 

   +0x114 SectionBaseAddress : Ptr32 Void 

   +0x118 QuotaBlock       : Ptr32 _EPROCESS_QUOTA_BLOCK

Note that the first field (Pcb) is actually a substructure, the kernel process block 

(KPROCESS), which is where scheduling-related information is stored. To display the for-

mat of the kernel process block, type dt _kprocess:

lkd> dt _kprocess  

nt!_KPROCESS  

   +0x000 Header           : _DISPATCHER_HEADER 

   +0x010 ProfileListHead  : _LIST_ENTRY 

   +0x018 DirectoryTableBase : Uint4B 

   +0x01c Unused0          : Uint4B 

   +0x020 LdtDescriptor    : _KGDTENTRY 

   +0x028 Int21Descriptor  : _KIDTENTRY 

   +0x030 IopmOffset       : Uint2B 

   +0x032 Iopl             : UChar 

   +0x033 Unused           : UChar 

   +0x034 ActiveProcessors : Uint4B 

   +0x038 KernelTime       : Uint4B 

   +0x03c UserTime         : Uint4B 

   +0x040 ReadyListHead    : _LIST_ENTRY 

   +0x048 SwapListEntry    : _SINGLE_LIST_ENTRY 

   +0x04c VdmTrapcHandler  : Ptr32 Void 

   +0x050 ThreadListHead   : _LIST_ENTRY 

   +0x058 ProcessLock      : Uint4B 

   +0x05c Affinity         : Uint4B 

   +0x060 AutoAlignment    : Pos 0, 1 Bit 

   +0x060 DisableBoost     : Pos 1, 1 Bit 

   +0x060 DisableQuantum   : Pos 2, 1 Bit 

   +0x060 ReservedFlags    : Pos 3, 29 Bits 

   +0x060 ProcessFlags     : Int4B 

   +0x064 BasePriority     : Char 

   +0x065 QuantumReset     : Char 

   +0x066 State            : UChar 

   +0x067 ThreadSeed       : UChar 

   +0x068 PowerState       : UChar 

   +0x069 IdealNode        : UChar 
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   +0x06a Visited          : UChar 

   +0x06b Flags            : _KEXECUTE_OPTIONS 

   +0x06b ExecuteOptions   : UChar 

   +0x06c StackCount       : Uint4B 

   +0x070 ProcessListEntry : _LIST_ENTRY 

   +0x078 CycleTime        : Uint8B

An alternative way to see the KPROCESS (and other substructures in the EPROCESS) is to 

use the recursion (–r) switch of the dt command. For example, typing dt _eprocess –r1 

will recurse and display all substructures one level deep.

The dt command shows the format of a process block, not its contents. To show an 

instance of an actual process, you can specify the address of an EPROCESS structure as 

an argument to the dt command. You can get the address of all the EPROCESS blocks 

in the system by using the !process 0 0 command. An annotated example of the output 

from this command is included later in this chapter.

Table 5-1 explains some of the fields in the preceding experiment in more detail and includes 

references to other places in the book where you can find more information about them. As 

we’ve said before and will no doubt say again, processes and threads are such integral parts 

of Windows that it’s impossible to talk about them without referring to many other parts of 

the system. To keep the length of this chapter manageable, however, we’ve covered those 

related subjects (such as memory management, security, objects, and handles) elsewhere.

TABLE 5-1 Contents of the EPROCESS Block

Element Purpose Additional Reference

Kernel process (KPROCESS) 

block

Common dispatcher object header, 

pointer to the process page directory, 

list of kernel thread (KTHREAD) blocks 

belonging to the process, default base 

priority, affinity mask, and total kernel 

and user time and CPU clock cycles for 

the threads in the process.

Thread scheduling 

(Chapter 5)

Process identification Unique process ID, creating process ID, 

name of image being run, window sta-

tion process is running on.

Quota block Limits on processor usage, nonpaged 

pool, paged pool, and page file usage 

plus current and peak process non-

paged and paged pool usage. (Note: 

Several processes can share this struc-

ture: all the system processes in session 

0 point to a single systemwide quota 

block; all other processes in interactive 

sessions share a single quota block.)
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Element Purpose Additional Reference

Virtual address descriptors 

(VADs) 

Series of data structures that describes 

the status of the portions of the address 

space that exist in the process.

Virtual address descrip-

tors (Chapter 9)

Working set information Pointer to working set list (MMWSL 

structure); current, peak, minimum, and 

maximum working set size; last trim 

time; page fault count; memory priority; 

outswap flags; page fault history.

Working sets 

(Chapter 9)

Virtual memory information Current and peak virtual size, page file 

usage, hardware page table entry for 

process page directory.

Chapter 9

Exception legacy local proce-

dure call (LPC) port

Interprocess communication channel 

to which the process manager sends 

a message when one of the process’s 

threads causes an exception.

Exception dispatching 

(Chapter 3)

Debugging object Executive object through which the 

user-mode debugging infrastructure 

sends notifications when one of the 

process’s threads causes a debug event.

User-mode debugging 

(Chapter 3) 

Access token (TOKEN) Executive object describing the security 

profile of this process.

Chapter 6

Handle table Address of per-process handle table. Object handles and the 

process handle table 

(Chapter 3)

Device map Address of object directory to resolve 

device name references in (supports 

multiple users).

Object names 

(Chapter 3)

Process environment block 

(PEB) 

Image information (base address, ver-

sion numbers, module list), process 

heap information, and thread-local stor-

age utilization. (Note: The pointers to 

the process heaps start at the first byte 

after the PEB.) 

Chapter 5

Windows subsystem process 

block (W32PROCESS) 

Process details needed by the kernel-

mode component of the Windows 

subsystem.

The kernel process (KPROCESS) block, which is part of the EPROCESS block, and the process 

environment block (PEB), which is pointed to by the EPROCESS block, contain additional 

details about the process object. The KPROCESS block (which is sometimes called the PCB or 

process control block) is illustrated in Figure 5-3. It contains the basic information that the 

Windows kernel needs to schedule the threads inside a process. (Page directories are covered 

in Chapter 9, and kernel thread blocks are described in more detail later in this chapter.)
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The PEB, which lives in the user process address space, contains information needed by the 

image loader, the heap manager, and other Windows system DLLs that need to access it from 

user mode. (The EPROCESS and KPROCESS blocks are accessible only from kernel mode.) The 

basic structure of the PEB is illustrated in Figure 5-4 and is explained in more detail later in 

this chapter.

Dispatcher header

Kernel time

Process spinlock

Processor affinity

Resident kernel stack count

Process base priority

Default thread quantum

Process state

Thread seed

Disable boost flag

User time

Inswap/Outswap list entry

Process page directory

KTHREAD

FIGURE 5-3 Structure of the executive process block

Image base address

Module list

Thread-local storage data

Code page data

Critical section timeout

Number of heaps

Heap size information

GDI shared handle table

Image version information

Image process affinity mask

Process heap

Operating system version number information

FIGURE 5-4 Fields of the process environment block
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EXPERIMENT: Examining the PEB

You can dump the PEB structure with the !peb command in the kernel debugger. To get 

the address of the PEB, use the !process command as follows:

lkd> !process  

PROCESS 8575f030  SessionId: 1  Cid: 08d0    Peb: 7ffd9000  ParentCid: 0360  

    DirBase: 1a81b000  ObjectTable: e12bd418  HandleCount:  66.  

    Image: windbg.exe

Then specify that address to the !peb command as follows:

lkd> !peb 7ffd9000 

PEB at 7ffd9000 

    InheritedAddressSpace:    No 

    ReadImageFileExecOptions: No 

    BeingDebugged:            No 

    ImageBaseAddress:         002a0000 

    Ldr                       77895d00 

    Ldr.Initialized:          Yes 

    Ldr.InInitializationOrderModuleList: 00151c38 . 00191558 

    Ldr.InLoadOrderModuleList:           00151bb8 . 00191548 

    Ldr.InMemoryOrderModuleList:         00151bc0 . 00191550 

            Base TimeStamp                     Module 

          2a0000 4678a41e Jun 19 23:50:54 2007 C:\Program Files\Debugging Tools for  

              Windows\windbg.exe 

        777d0000 4549bdc9 Nov 02 05:43:37 2006 C:\Windows\system32\Ntdll.dll 

        764c0000 4549bd80 Nov 02 05:42:24 2006 C:\Windows\system32\kernel32.dll 

    SubSystemData:     00000000 

    ProcessHeap:       00150000 

    ProcessParameters: 001512e0 

    WindowTitle:  'C:\Users\Alex Ionescu\Desktop\WinDbg.lnk' 

    ImageFile:    'C:\Program Files\Debugging Tools for Windows\windbg.exe' 

    CommandLine:  '"C:\Program Files\Debugging Tools for Windows\windbg.exe" ' 

    DllPath:      'C:\Program Files\Debugging Tools for Windows;C:\Windows\ 

        system32;C:\Windows\system;C:\Windows;.;C:\Windows\system32;C:\Windows; 

        C:\Windows\System32\Wbem;C:\Program Files\Common Files\Roxio Shared\ 

        DLLShared\;C:\Program Files\Common Files\Roxio Shared\DLLShared\;C:\Program  

        Files\Common Files\Roxio Shared\9.0\DLLShared\;c:\sysint;C:\Program Files\ 

        QuickTime\QTSystem\' 

    Environment:  001850a8 

        ALLUSERSPROFILE=C:\ProgramData 

        APPDATA=C:\Users\Alex Ionescu\AppData\Roaming 

    .  

    .  

    .

Kernel Variables

A few key kernel global variables that relate to processes are listed in Table 5-2. These vari-

ables are referred to later in the chapter, when the steps in creating a process are described.
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TABLE 5-2 Process-Related Kernel Variables

Element Purpose Additional Reference

PsActiveProcessHead Doubly linked list List head of process blocks

PsIdleProcess Pointer to EPROCESS Idle process block

PsInitialSystemProcess Pointer to EPROCESS Pointer to the process block 

of the initial system process 

that contains the system 

threads

PspCreateProcessNotifyRoutine Array of executive call-

back objects

Array of callback objects 

describing the routines to be 

called on process creation 

and deletion (maximum of 

eight)

PspCreateProcessNotifyRoutineCount 32-bit integer Count of registered process 

notification routines

PspCreateProcessNotifyRoutineCountEx 32-bit integer Count of registered ex-

tended process notification 

routines

PspLoadImageNotifyRoutine Array of executive call-

back objects

Array of callback objects 

describing the routines to be 

called on image load (maxi-

mum of eight)

PspLoadImageNotifyRoutineCount 32-bit integer Count of registered image-

load notification routines

PspNotifyEnableMask 32-bit integer Mask for quickly checking 

whether any extended or 

standard notification rou-

tines are enabled

PspCidTable Pointer to HANDLE_

TABLE

Handle table for process and 

thread client IDs

Performance Counters

Windows maintains a number of counters with which you can track the processes running 

on your system; you can retrieve these counters programmatically or view them with the 

Performance tool. Table 5-3 lists the performance counters relevant to processes.

TABLE 5-3 Process-Related Performance Counters

Object: Counter Function

Process: % Privileged Time Describes the percentage of time that the threads in the process 

have run in kernel mode during a specified interval.

Process: % Processor Time Describes the percentage of CPU time that the threads in the 

process have used during a specified interval. This count is the 

sum of % Privileged Time and % User Time.
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Object: Counter Function

Process: % User Time Describes the percentage of time that the threads in the process 

have run in user mode during a specified interval.

Process: Elapsed Time Describes the total elapsed time in seconds since this process 

was created.

Process: ID Process Returns the process ID. This ID applies only while the process ex-

ists because process IDs are reused.

Process: Creating Process ID Returns the process ID of the creating process. This value isn’t 

updated if the creating process exits.

Process: Thread Count Returns the number of threads in the process.

Process: Handle Count Returns the number of handles open in the process.

Relevant Functions

For reference purposes, some of the Windows functions that apply to processes are 

described in Table 5-4. For further information, consult the Windows API documentation in 

the MSDN Library.

TABLE 5-4 Process-Related Functions

Function Description

CreateProcess Creates a new process and thread using the caller’s security 

identification

CreateProcessAsUser Creates a new process and thread with the specified alternate 

security token

CreateProcessWithLogonW Creates a new process and thread to run under the credentials 

of the specified username and password

CreateProcessWithTokenW Creates a new process and thread with the specified alternate 

security token, with additional options such as allowing the user 

profile to be loaded

OpenProcess Returns a handle to the specified process object

ExitProcess Ends a process, and notifies all attached DLLs

TerminateProcess Ends a process without notifying the DLLs

FlushInstructionCache Empties the specified process’s instruction cache

FlushProcessWriteBuffers Empties the specified process’s write queue

GetProcessTimes Obtains a process’s timing information, describing how much 

time the threads inside the process spent in user and kernel 

mode

QueryProcessCycleTimeCounter Obtains a process’s CPU timing information, describing how 

many clock cycles the threads inside the process have spent in 

total

Query/
SetProcessAffinityUpdateMode

Defines whether the process’s affinity is automatically updated if 

new processors are added to the running system
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Function Description

Get/SetProcessDEPPolicy Returns or sets the DEP (Data Execution Protection) policy for 

the process

GetExitCodeProcess Returns the exit code for a process, indicating how and why the 

process shut down

GetCommandLine Returns a pointer to the command-line string passed to the cur-

rent process

QueryFullProcessImageName Returns the full name of the executable image associated with 

the process

GetCurrentProcess Returns a pseudo handle for the current process

GetCurrentProcessId Returns the ID of the current process

GetProcessVersion Returns the major and minor versions of the Windows version 

on which the specified process expects to run

GetStartupInfo Returns the contents of the STARTUPINFO structure specified 

during CreateProcess

GetEnvironmentStrings Returns the address of the environment block

Get/SetEnvironmentVariable Returns or sets a specific environment variable

Get/
SetProcessShutdownParameters

Defines the shutdown priority and number of retries for the cur-

rent process

SetProcessDPIAware Specifies whether the process is aware of dots per inch (DPI) 

settings

GetGuiResources Returns a count of User and GDI handles

EXPERIMENT: Using the Kernel Debugger !process Command

The kernel debugger !process command displays a subset of the information in an 

EPROCESS block. This output is arranged in two parts for each process. First you see 

the information about the process, as shown here (when you don’t specify a process 

address or ID, !process lists information for the active process on the current CPU):

lkd> !process  

PROCESS 85857160  SessionId: 1  Cid: 0bcc    Peb: 7ffd9000  ParentCid: 090c 

    DirBase: b45b0820  ObjectTable: b94ffda0  HandleCount:  99. 

    Image: windbg.exe 

    VadRoot 85a1c8e8 Vads 97 Clone 0 Private 5919. Modified 153. Locked 1. 

    DeviceMap 9d32ee50 

    Token                             ebaa1938 

    ElapsedTime                       00:48:44.125 

    UserTime                          00:00:00.000 

    KernelTime                        00:00:00.000 

    QuotaPoolUsage[PagedPool]         166784 

    QuotaPoolUsage[NonPagedPool]      4776 

    Working Set Sizes (now,min,max)  (8938, 50, 345) (35752KB, 200KB, 1380KB) 

    PeakWorkingSetSize                8938 

    VirtualSize                       106 Mb 

    PeakVirtualSize                   108 Mb 
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    PageFaultCount                    37066 

    MemoryPriority                    BACKGROUND 

    BasePriority                      8 

    CommitCharge                      6242

After the basic process output comes a list of the threads in the process. That output is 

explained in the “Experiment: Using the Kernel Debugger !thread Command” section 

later in the chapter. Other commands that display process information include !handle, 

which dumps the process handle table (which is described in more detail in the section 

“Object Handles and the Process Handle Table” in Chapter 3). Process and thread secu-

rity structures are described in Chapter 6.

Protected Processes

In the Windows security model, any process running with a token containing the debug 

privilege (such as an administrator’s account) can request any access right that it desires to 

any other process running on the machine—for example, it can read and write arbitrary 

process memory, inject code, suspend and resume threads, and query information on other 

processes. Tools like Process Explorer and Task Manager need and request these access rights 

to provide their functionality to users.

This logical behavior (which helps ensure that administrators will always have full control of 

the running code on the system) clashes with the system behavior for digital rights man-

agement requirements imposed by the media industry on computer operating systems 

that need to support playback of advanced, high-quality digital content such as BluRay and 

HD-DVD media. To support reliable and protected playback of such content, Windows uses 

protected processes. These processes exist alongside normal Windows processes, but they 

add significant constraints to the access rights that other processes on the system (even when 

running with administrative privileges) can request.

Protected processes can be created by any application; however, the operating system will 

only allow a process to be protected if the image file has been digitally signed with a spe-

cial Windows Media Certificate. The Protected Media Path (PMP) in Windows Vista makes 

use of protected processes to provide protection for high-value media, and developers of 

applications such as DVD players can make use of protected processes by using the Media 

Foundation API. 

The Audio Device Graph process (Audiodg.exe) is a protected process, since protected 

music content may be decoded through it. Similarly, the Windows Error Reporting (WER; 
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see Chapter 3 for more information) client process (Werfault.exe) can also run protected 

because it needs to have access to protected processes in case one of them crashes. Finally, 

the System process itself is protected because some of the decryption information is gener-

ated by the Ksecdd.sys driver and stored in its user-mode memory. The System process is 

also protected to protect the integrity of all kernel handles (since the System process’s handle 

table contains all the kernel handles on the system).

At the kernel level, support for protected processes is twofold: first, the bulk of process cre-

ation occurs in kernel mode to avoid injection attacks. (The flow for both protected and stan-

dard process creation is described in detail in the next section.) Second, protected processes 

have a special bit set in their EPROCESS structure that modifies the behavior of security-

related routines in the process manager to deny certain access rights that would normally be 

granted to administrators. Table 5-5 indicates access rights that are limited or denied.

TABLE 5-5 Process Access Rights Denied for Protected Processes

Object: Access Mask Function

Standard: READ_CONTROL Prevents the protected process’s access control list 

(ACL) from being read.

Standard: WRITE_DAC, WRITE_OWNER Prevents access to the protected process’s access 

control list or modifying its owner (which would grant 

the former).

Process: PROCESS_ALL_ACCESS Prevents full access to the protected process.

Process: PROCESS_CREATE_PROCESS Prevents creation of a child process of a protected 

 process.

Process: PROCESS_CREATE_THREAD Prevents creation of a thread inside a protected 

process.

Process: PROCESS_DUP_HANDLE Prevents duplication of a handle owned by the 

protected process.

Process: PROCESS_QUERY_INFORMATION Prevents querying all information on a protected 

process. However, a new access right was added, 

PROCESS_QUERY_LIMITED_INFORMATION, that grants 

limited access to information on the process.

Process: PROCESS_SET_QUOTA Prevents setting memory or processor-usage limits on a 

protected process.

Process: PROCESS_SET_INFORMATION Prevents modification of process settings for a 

protected process.

Process: PROCESS_VM_OPERATION, 

PROCESS_VM_READ, PROCESS_VM_WRITE

Prevents accessing the memory of a protected process.

Certain access rights are also disabled for threads running inside protected processes; we will 

look at those access rights later in this chapter in the section “Thread Internals.”

Because Process Explorer uses standard user-mode Windows APIs to query information on 

process internals, it is unable to perform certain operations on such processes. On the other 
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hand, a tool like WinDbg in kernel debugging mode, which uses kernel-mode infrastructure 

to obtain this information, will be able to display complete information. See the experiment 

in the thread internals section on how Process Explorer behaves when confronted with a pro-

tected process such as Audiodg.exe.

Note  As mentioned in Chapter 1, to perform local kernel debugging you must boot in 

debugging mode (enabled by using “bcdedit /debug on” or by using the Msconfig advanced 

boot options). This protects against debugger-based attacks on protected processes and the 

Protected Media Path (PMP). When booted in debugging mode, high-definition content play-

back will not work; for example, attempting to play MPEG2 media such as a DVD will result in an 

access violation inside the media player (this is by design).

Limiting these access rights reliably allows the kernel to sandbox a protected process from 

user-mode access. On the other hand, because a protected process is indicated by a flag in 

the EPROCESS block, an administrator can still load a kernel-mode driver that disables this 

bit. However, this would be a violation of the PMP model and considered malicious, and 

such a driver would likely eventually be blocked from loading on a 64-bit system because 

the  kernel-mode code-signing policy prohibits the digital signing of malicious code. Even 

on 32-bit systems, the driver has to be recognized by PMP policy or else the playback will 

be halted. This policy is implemented by Microsoft and not by any kernel detection. This 

block would require manual action from Microsoft to identify the signature as malicious and 

update the kernel.

Flow of CreateProcess

So far in this chapter, you’ve seen the structures that are part of a process and the API func-

tions with which you (and the operating system) can manipulate processes. You’ve also found 

out how you can use tools to view how processes interact with your system. But how did 

those processes come into being, and how do they exit once they’ve fulfilled their purpose? 

In the following sections, you’ll discover how a Windows process comes to life.

A Windows subsystem process is created when an application calls one of the process cre-

ation functions, such as CreateProcess, CreateProcessAsUser, CreateProcessWithTokenW, or 

CreateProcessWithLogonW. Creating a Windows process consists of several stages carried out 

in three parts of the operating system: the Windows client-side library Kernel32.dll (in the 

case of the CreateProcessAsUser, CreateProcessWithTokenW, and CreateProcessWithLogonW 

routines, part of the work is first done in Advapi32.dll), the Windows executive, and the 

Windows subsystem process (Csrss). 
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Because of the multiple environment subsystem architecture of Windows, creating an execu-

tive process object (which other subsystems can use) is separated from the work involved in 

creating a Windows subsystem process. So, although the following description of the flow 

of the Windows CreateProcess function is complicated, keep in mind that part of the work 

is specific to the semantics added by the Windows subsystem as opposed to the core work 

needed to create an executive process object.

The following list summarizes the main stages of creating a process with the Windows 

CreateProcess function. The operations performed in each stage are described in detail in the 

subsequent sections. Some of these operations may be performed by CreateProcess itself (or 

other helper routines in user mode), while others will be performed by NtCreateUserProcess 
or one of its helper routines in kernel mode. In our detailed analysis to follow, we will differ-

entiate between the two at each step required.

Note Many steps of CreateProcess are related to the setup of the process virtual address space 

and therefore refer to many memory management terms and structures that are defined in 

Chapter 9.

 1. Validate parameters; convert Windows subsystem flags and options to their native 

counterparts; parse, validate, and convert the attribute list to its native counterpart.

 2. Open the image file (.exe) to be executed inside the process.

 3. Create the Windows executive process object.

 4. Create the initial thread (stack, context, and Windows executive thread object).

 5. Perform post-creation, Windows-subsystem-specific process initialization.

 6. Start execution of the initial thread (unless the CREATE_ SUSPENDED flag was specified).

 7. In the context of the new process and thread, complete the initialization of the address 

space (such as load required DLLs) and begin execution of the program.

Figure 5-5 shows an overview of the stages Windows follows to create a process.
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FIGURE 5-5 The main stages of process creation

Stage 1: Converting and Validating Parameters and Flags

Before opening the executable image to run, CreateProcess performs the following steps:

In CreateProcess, the priority class for the new process is specified as independent bits 

in the CreationFlags parameter. Thus, you can specify more than one priority class for 

a single CreateProcess call. Windows resolves the question of which priority class to 

assign to the process by choosing the lowest-priority class set.

If no priority class is specified for the new process, the priority class defaults to Normal 

unless the priority class of the process that created it is Idle or Below Normal, in which 

case the priority class of the new process will have the same priority as the creating 

class.



 Chapter 5 Processes, Threads, and Jobs 351

If a Real-time priority class is specified for the new process and the process’s caller 

doesn’t have the Increase Scheduling Priority privilege, the High priority class is used 

instead. In other words, CreateProcess doesn’t fail just because the caller has insufficient 

privileges to create the process in the Real-time priority class; the new process just 

won’t have as high a priority as Real-time.

All windows are associated with desktops, the graphical representation of a workspace. 

If no desktop is specified in CreateProcess, the process is associated with the caller’s 

current desktop.

If the process is part of a job object, but the creation flags requested a separate virtual 

DOS machine (VDM), the flag is ignored.

If the caller is sending a handle to a monitor as an output handle instead of a console 

handle, standard handle flags are ignored.

If the creation flags specify that the process will be debugged, Kernel32 initiates a con-

nection to the native debugging code in Ntdll.dll by calling DbgUiConnectToDbg and 

gets a handle to the debug object from the thread environment block (TEB) once the 

function returns.

Kernel32.dll sets the default hard error mode if the creation flags specified one.

The user-specified attribute list is converted from Windows subsystem format to native 

format, and internal attributes are added to it.

Note The attribute list passed on a CreateProcess call permits passing back to the caller infor-

mation beyond a simple status code, such as the TEB address of the initial thread or information 

on the image section. This is necessary for protected processes since the parent cannot query 

this information after the child is created.

Once these steps are completed, CreateProcess will perform the initial call to NtCreateUser-
Process to attempt creation of the process. Because Kernel32.dll has no idea at this point 

whether the application image name is a real Windows application, or if it might be a POSIX, 

16-bit, or DOS application, the call may fail, at which point CreateProcess will look at the 

error reason and attempt to correct the situation.

Stage 2: Opening the Image to Be Executed

As illustrated in Figure 5-6, the first stage in NtCreateUserProcess is to find the appropriate 

Windows image that will run the executable file specified by the caller and to create a sec-

tion object to later map it into the address space of the new process. If the call failed for 

any reason, it will return to CreateProcess with a failure state (see Table 5-6) that will cause 

CreateProcess to attempt execution again.

If the executable file specified is a Windows .exe, NtCreateUserProcess will try to open the file 

and create a section object for it. The object isn’t mapped into memory yet, but it is opened. 
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Just because a section object has been successfully created doesn’t mean that the file is a 

valid Windows image, however; it could be a DLL or a POSIX executable. If the file is a POSIX 

executable, the image to be run changes to Posix.exe, and CreateProcess restarts from the 

beginning of Stage 1. If the file is a DLL, CreateProcess fails.

Now that NtCreateUserProcess has found a valid Windows executable image, as part of the 

process creation code described in Stage 3 it looks in the registry under HKLM\SOFTWARE\

Microsoft\Windows NT\CurrentVersion\Image File Execution Options to see whether a sub-

key with the file name and extension of the executable image (but without the directory 

and path information—for example, Image.exe) exists there. If it does, PspAllocateProcess 
looks for a value named Debugger for that key. If this value is present, the image to be run 

becomes the string in that value and CreateProcess restarts at Stage 1.

Tip You can take advantage of this process creation behavior and debug the startup code of 

Windows services processes before they start rather than attach the debugger after starting a 

service, which doesn’t allow you to debug the startup code.

On the other hand, if the image is not a Windows .exe (for example, if it’s an MS-DOS, Win16, 

or a POSIX application), CreateProcess goes through a series of steps to find a Windows sup-
port image to run it. This process is necessary because non-Windows applications aren’t run 

directly—Windows instead uses one of a few special support images that in turn are respon-

sible for actually running the non-Windows program. For example, if you attempt to run a 

POSIX application, CreateProcess identifies it as such and changes the image to be run to the 

Windows executable file Posix.exe. If you attempt to run an MS-DOS or a Win16 executable, 

the image to be run becomes the Windows executable Ntvdm.exe. In short, you can’t directly 

create a process that is not a Windows process. If Windows can’t find a way to resolve the 

activated image as a Windows process (as shown in Table 5-6), CreateProcess fails.

FIGURE 5-6 Choosing a Windows image to activate
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TABLE 5-6 Decision Tree for Stage 1 of CreateProcess

If the Image . . . Create State Code

This Image  

Will Run . . .

. . . and This  

Will Happen

Is a POSIX executable file PsCreateSuccess Posix.exe CreateProcess 
restarts Stage 1.

Is an MS-DOS application 

with an .exe, a .com, or a 

.pif extension

PsCreateFailOnSectionCreate Ntvdm.exe CreateProcess 
restarts Stage 1.

Is a Win16 application PsCreateFailOnSectionCreate Ntvdm.exe CreateProcess 
restarts Stage 1.

Is a Win64 application on 

a 32-bit system (or a PPC, 

MIPS, or Alpha Binary)

PsCreateFailMachineMismatch N/A CreateProcess will 

fail.

Has a Debugger key with 

another image name

PsCreateFailExeName Name specified 

in the Debugger 

key

CreateProcess 
restarts Stage 1.

Is an invalid or damaged 

Windows EXE

PsCreateFailExeFormat N/A CreateProcess will 

fail.

Cannot be opened PsCreateFailOnFileOpen N/A CreateProcess will 

fail.

Is a command procedure 

(application with a .bat or 

a .cmd extension)

PsCreateFailOnSectionCreate Cmd.exe CreateProcess 
restarts Stage 1.

Specifically, the decision tree that CreateProcess goes through to run an image is as follows:

If the image is an MS-DOS application with an .exe, a .com, or a .pif extension, a mes-

sage is sent to the Windows subsystem to check whether an MS-DOS support process 

(Ntvdm.exe, specified in the registry value HKLM\SYSTEM\CurrentControlSet\Control\

WOW\cmdline) has already been created for this session. If a support process has been 

created, it is used to run the MS-DOS application. (The Windows subsystem sends 

the message to the VDM [Virtual DOS Machine] process to run the new image.) Then 

CreateProcess returns. If a support process hasn’t been created, the image to be run 

changes to Ntvdm.exe and CreateProcess restarts at Stage 1.

If the file to run has a .bat or a .cmd extension, the image to be run becomes Cmd.exe, 

the Windows command prompt, and CreateProcess restarts at Stage 1. (The name of 

the batch file is passed as the first parameter to Cmd.exe.)

If the image is a Win16 (Windows 3.1) executable, CreateProcess must decide whether 

a new VDM process must be created to run it or whether it should use the default 

sessionwide shared VDM process (which might not yet have been created). The 

CreateProcess flags CREATE_SEPARATE_WOW_VDM and CREATE_SHARED_WOW_VDM 

control this decision. If these flags aren’t specified, the registry value HKLM\SYSTEM\

CurrentControlSet\Control\WOW\DefaultSeparateVDM dictates the default behavior. 
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If the application is to be run in a separate VDM, the image to be run changes to 

the value of HKLM\SYSTEM\CurrentControlSet\Control\WOW\wowcmdline and 

CreateProcess restarts at Stage 1. Otherwise, the Windows subsystem sends a mes-

sage to see whether the shared VDM process exists and can be used. (If the VDM 

process is running on a different desktop or isn’t running under the same security as 

the caller, it can’t be used and a new VDM process must be created.) If a shared VDM 

process can be used, the Windows subsystem sends a message to it to run the new 

image and CreateProcess returns. If the VDM process hasn’t yet been created (or if it 

exists but can’t be used), the image to be run changes to the VDM support image and 

CreateProcess restarts at Stage 1.

Stage 3: Creating the Windows Executive Process Object 
(PspAllocateProcess)
At this point, NtCreateUserProcess has opened a valid Windows executable file and cre-

ated a section object to map it into the new process address space. Next it creates a 

Windows executive process object to run the image by calling the internal system function 

PspAllocateProcess. Creating the executive process object (which is done by the creating 

thread) involves the following substages:

Setting up the EPROCESS block

Creating the initial process address space

Initializing the kernel process block (KPROCESS)

Setting up the PEB

Concluding the setup of the process address space (which includes initializing the work-

ing set list and virtual address space descriptors and mapping the image into address 

space)

Note The only time there won’t be a parent process is during system initialization. After that 

point, a parent process is always required to provide a security context for the new process.

Stage 3A: Setting Up the EPROCESS Block

This substage involves the following steps:

 1. Allocate and initialize the Windows EPROCESS block.

 2. Inherit the Windows device namespace (including the definition of drive letters, COM 

ports, and so on).
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 3. Inherit the process affinity mask and page priority from the parent process. If there is 

no parent process, the default page priority (5) is used, and an affinity mask of all pro-

cessors (KeActiveProcessors) is used.

 4. Set the new process’s quota block to the address of its parent process’s quota block, 

and increment the reference count for the parent’s quota block. If the process was cre-

ated through CreateProcessAsUser, this step won’t occur.

 5. The process minimum and maximum working set size are set to the values of Psp-
MinimumWorkingSet and PspMaximumWorkingSet, respectively. These values can be 

overridden if performance options were specified in the PerfOptions key part of Image 

File Execution Options, in which case the maximum working set is taken from there.

 6. Store the parent process’s process ID in the InheritedFromUniqueProcessId field in the 

new process object.

 7. Attach the process to the session of the parent process.

 8. Initialize the KPROCESS part of the process object. (See Stage 3C.)

 9. Create the process’s primary access token (a duplicate of its parent’s primary token). 

New processes inherit the security profile of their parents. If the CreateProcessAsUser 
function is being used to specify a different access token for the new process, the token 

is then changed appropriately.

 10. The process handle table is initialized. If the inherit handles flag is set for the parent 

process, any inheritable handles are copied from the parent’s object handle table into 

the new process. (For more information about object handle tables, see Chapter 3.) A 

process attribute can also be used to specify only a subset of handles, which is useful 

when you are using CreateProcessAsUser to restrict which objects should be inherited 

by the child process.

 11. If performance options were specified through the PerfOptions key, these are now 

applied. The PerfOptions key includes overrides for the working set limit, I/O priority, 

page priority, and CPU priority class of the process.

 12. The process priority class and quantum are computed and set.

 13. Set the new process’s exit status to STATUS_PENDING.

Stage 3B: Creating the Initial Process Address Space

The initial process address space consists of the following pages:

Page directory (and it’s possible there’ll be more than one for systems with page tables 

more than two levels, such as x86 systems in PAE mode or 64-bit systems)

Hyperspace page

Working set list



356 Windows Internals, Fifth Edition

To create these three pages, the following steps are taken:

 1. Page table entries are created in the appropriate page tables to map the initial pages.

 2. The number of pages is deducted from the kernel variable MmTotalCommittedPages 
and added to MmProcessCommit.

 3. The systemwide default process minimum working set size (PsMinimumWorkingSet) is 
deducted from MmResidentAvailablePages.

 4. The page table pages for the nonpaged portion of system space and the system cache 

are mapped into the process.

Stage 3C: Creating the Kernel Process Block

The next stage of PspAllocateProcess is the initialization of the KPROCESS block. This work is 

performed by KeInitializeProcess, which contains:

A pointer to a list of kernel threads. (The kernel has no knowledge of handles, so it 

bypasses the object table.)

A pointer to the process’s page table directory (which is used to keep track of the pro-

cess’s virtual address space).

The total time the process’s threads have executed.

The number of clock cycles the process’s threads have consumed.

The process’s default base-scheduling priority (which starts as Normal, or 8, unless the 

parent process was set to Idle or Below Normal, in which case the setting is inherited).

The default processor affinity for the threads in the process.

The process swapping state (resident, out-swapped, or in transition).

The NUMA ideal node (initially set to 0).

The thread seed, based on the ideal processor that the kernel has chosen for this pro-

cess (which is based on the previously created process’s ideal processor, effectively ran-

domizing this in a round-robin manner). Creating a new process will update the seed 

in KeNodeBlock (the initial NUMA node block) so that the next new process will get a 

different ideal processor seed.

The initial value (or reset value) of the process default quantum (which is described 

in more detail in the “Thread Scheduling” section later in the chapter), which is hard-

coded to 6 until it is initialized later (by PspComputeQuantumAndPriority).

Note The default initial quantum differs between Windows client and server systems. For more 

information on thread quantums, turn to their discussion in the section “Thread Scheduling.”
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Stage 3D: Concluding the Setup of the Process Address Space

Setting up the address space for a new process is somewhat complicated, so let’s look at 

what’s involved one step at a time. To get the most out of this section, you should have 

some familiarity with the internals of the Windows memory manager, which are described in 

Chapter 9.

The virtual memory manager sets the value of the process’s last trim time to the current 

time. The working set manager (which runs in the context of the balance set manager 

system thread) uses this value to determine when to initiate working set trimming.

The memory manager initializes the process’s working set list—page faults can now be 

taken.

The section (created when the image file was opened) is now mapped into the new 

process’s address space, and the process section base address is set to the base address 

of the image.

Ntdll.dll is mapped into the process.

Note POSIX processes clone the address space of their parents, so they don’t have to go 

through these steps to create a new address space. In the case of POSIX applications, the new 

process’s section base address is set to that of its parent process and the parent’s PEB is cloned 

for the new process.

Stage 3E: Setting Up the PEB

NtCreateUserProcess calls MmCreatePeb, which first maps the systemwide national language 

support (NLS) tables into the process’s address space. It next calls MiCreatePebOrTeb to 

allocate a page for the PEB and then initializes a number of fields, which are described in 

Table 5-7.

TABLE 5-7 Initial Values of the Fields of the PEB

Field Initial Value

ImageBaseAddress Base address of section

NumberOfProcessors KeNumberProcessors kernel variable

NtGlobalFlag NtGlobalFlag kernel variable

CriticalSectionTimeout MmCriticalSectionTimeout kernel variable

HeapSegmentReserve MmHeapSegmentReserve kernel variable

HeapSegmentCommit MmHeapSegmentCommit kernel variable

HeapDeCommitTotalFreeThreshold MmHeapDeCommitTotalFreeThreshold kernel variable

HeapDeCommitFreeBlockThreshold MmHeapDeCommitFreeBlockThreshold kernel variable

NumberOfHeaps 0
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Field Initial Value

MaximumNumberOfHeaps (Size of a page – size of a PEB) / 4

ProcessHeaps First byte after PEB

MinimumStackCommit MmMinimumStackCommitInBytes kernel variable

ImageProcessAffi nityMask KeActiveProcessors or 1 << 

MmRotatingUniprocessorNumber kernel variable (for 

uniprocessor-only images)

SessionId Result of MmGetSessionId

ImageSubSystem OptionalHeader.Subsystem

ImageSubSystemMajorVersion OptionalHeader.MajorSubsystemVersion

ImageSubSystemMinorVersion OptionalHeader.MinorSubsystemVersion

OSMajorVersion NtMajorVersion kernel variable

OSMinorVersion NtMinorVersion kernel variable

OSBuildNumber NtBuildNumber kernel variable & 0x3FFF, combined with 

CmNtCSDVersion for service packs

OSPlatformId 2

 However, if the image fi le specifi es explicit Windows version or affi nity values, this informa-

tion replaces the initial values shown in Table 5-7. The mapping from image information 

fi elds to PEB fi elds is described in Table 5-8. 

 TABLE 5-8 Windows Replacements for Initial PEB Values 

Field Name Value Taken from Image Header

 OSMajorVersion OptionalHeader.Win32VersionValue & 0xFF

 OSMinorVersion (OptionalHeader.Win32VersionValue >> 8) & 0xFF

 OSBuildNumber (OptionalHeader.Win32VersionValue >> 16) & 0x3FFF, combined with 

ImageLoadConfi gDirectory.CSDVersion

 OSPlatformId (OptionalHeader.Win32VersionValue >> 30) ^ 0x2

 ImageProcessAffi nityMask ImageLoadConfi gDirectory.ProcessAffi nityMask

 If the image header characteristics IMAGE_FILE_UP_SYSTEM_ONLY fl ag is set (indicating that 

the image can run only on a uniprocessor system), a single CPU is chosen for all the threads 

in this new process to run on. The selection process is performed by simply cycling through 

the available processors—each time this type of image is run, the next processor is used. In 

this way, these types of images are spread evenly across the processors. 

If the image specifi es an explicit processor affi nity mask (for example, a fi eld in the confi gura-

tion header), this value is copied to the PEB and later set as the default process affi nity mask .

Field Name Value Taken from Image Header
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Stage 3F: Completing the Setup of the Executive Process Object 
(PspInsertProcess)
Before the handle to the new process can be returned, a few final setup steps must be com-

pleted, which are performed by PspInsertProcess and its helper functions:

 1. If systemwide auditing of processes is enabled (either as a result of local policy settings 

or group policy settings from a domain controller), the process’s creation is written to 

the Security event log.

 2. If the parent process was contained in a job, the job is recovered from the job level set 

of the parent and then bound to the session of the newly created process. Finally, the 

new process is added to the job.

 3. PspInsertProcess inserts the new process block at the end of the Windows list of active 

processes (PsActiveProcessHead).

 4. The process debug port of the parent process is copied to the new child process, unless 

the NoDebugInherit flag is set (which can be requested when creating the process). If a 

debug port was specified, it is attached to the new process at this time.

 5. Finally, PspInsertProcess notifies any registered callback routines, creates a handle for 

the new process by calling ObOpenObjectByPointer, and then returns this handle to the 

caller.

Stage 4: Creating the Initial Thread and Its Stack and Context

At this point, the Windows executive process object is completely set up. It still has no 

thread, however, so it can’t do anything yet. It’s now time to start that work. Normally, the 

PspCreateThread routine is responsible for all aspects of thread creation and is called by 

NtCreateThread when a new thread is being created. However, because the initial thread 

is created internally by the kernel without user-mode input, the two helper routines that 

PspCreateThread relies on are used instead: PspAllocateThread and PspInsertThread. 

PspAllocateThread handles the actual creation and initialization of the executive thread object 

itself, while PspInsertThread handles the creation of the thread handle and security attributes 

and the call to KeStartThread to turn the executive object into a schedulable thread on the 

system. However, the thread won’t do anything yet—it is created in a suspended state and 

isn’t resumed until the process is completely initialized (as described in Stage 5). 

Note  The thread parameter (which can’t be specified in CreateProcess but can be specified in 

CreateThread) is the address of the PEB. This parameter will be used by the initialization code 

that runs in the context of this new thread (as described in Stage 6).
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PspAllocateThread performs the following steps:

 1. An executive thread block (ETHREAD) is created and initialized.

 2. Before the thread can execute, it needs a stack and a context in which to run, so these 

are set up. The stack size for the initial thread is taken from the image—there’s no way 

to specify another size.

 3. The thread environment block (TEB) is allocated for the new thread.

 4. The user-mode thread start address is stored in the ETHREAD. This is the system-

supplied thread startup function in Ntdll.dll (RtlUserThreadStart). The user’s specified 

Windows start address is stored in the ETHREAD block in a different location so that 

debugging tools such as Process Explorer can query the information.

 5. KeInitThread is called to set up the KTHREAD block. The thread’s initial and current 

base priorities are set to the process’s base priority, and its affinity and quantum are 

set to that of the process. This function also sets the initial thread ideal processor. 

(See the section “Ideal and Last Processor” for a description of how this is chosen.) 

KeInitThread next allocates a kernel stack for the thread and initializes the machine-

dependent hardware context for the thread, including the context, trap, and exception 

frames. The thread’s context is set up so that the thread will start in kernel mode in 

KiThreadStartup. Finally, KeInitThread sets the thread’s state to Initialized and returns to 

PspAllocateThread.

Once that work is finished, NtCreateUserProcess will call PspInsertThread to perform the fol-

lowing steps:

 1. A thread ID is generated for the new thread.

 2. The thread count in the process object is incremented, and the thread is added into the 

process thread list.

 3. The thread is put into a suspended state.

 4. The object is inserted and any registered thread callbacks are called.

 5. The handle is created with ObOpenObjectByName.

 6. The thread is readied for execution by calling KeStartThread.

Stage 5: Performing Windows Subsystem–Specific 
Post-Initialization

Once NtCreateUserProcess returns with a success code, all the necessary executive process 

and thread objects have been created. Kernel32.dll will now perform various operations 

related to Windows subsystem–specific operations to finish initializing the process. 
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First of all, various checks are made for whether Windows should allow the executable to 

run. These checks includes validating the image version in the header and checking whether 

Windows application certification has blocked the process (through a group policy). On 

 specialized editions of Windows Server 2008, such as Windows Web Server 2008 and 

Windows HPC Server 2008, additional checks are made to see if the application imports any 

disallowed APIs.

If software restriction policies dictate, a restricted token is created for the new process. 

Afterward, the application compatibility database is queried to see if an entry exists in either 

the registry or system application database for the process. Compatibility shims will not be 

applied at this point—the information will be stored in the PEB once the initial thread starts 

executing (Stage 6).

At this point, Kernel32.dll sends a message to the Windows subsystem so that it can set up 

SxS information (see the end of this section for more information on side-by-side assemblies) 

such as manifest files, DLL redirection paths, and out-of-process execution for the new pro-

cess. It also initializes the Windows subsystem structures for the process and initial thread. 

The message includes the following information:

Process and thread handles

Entries in the creation flags

ID of the process’s creator

Flag indicating whether the process belongs to a Windows application (so that Csrss 

can determine whether or not to show the startup cursor)

UI language Information

DLL redirection and .local flags

Manifest file information

The Windows subsystem performs the following steps when it receives this message:

 1. CsrCreateProcess duplicates a handle for the process and thread. In this step, the usage 

count of the process and the thread is incremented from 1 (which was set at creation 

time) to 2.

 2. If a process priority class isn’t specified, CsrCreateProcess sets it according to the algo-

rithm described earlier in this section.

 3. The Csrss process block is allocated.

 4. The new process’s exception port is set to be the general function port for the 

Windows subsystem so that the Windows subsystem will receive a message when a 

second chance exception occurs in the process. (For further information on exception 

handling, see Chapter 3.)
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 5. The Csrss thread block is allocated and initialized.

 6. CsrCreateThread inserts the thread in the list of threads for the process.

 7. The count of processes in this session is incremented.

 8. The process shutdown level is set to 0x280 (the default process shutdown level—

see SetProcessShutdownParameters in the MSDN Library documentation for more 

information).

 9. The new process block is inserted into the list of Windows subsystem-wide processes.

 10. The per-process data structure used by the kernel-mode part of the Windows subsys-

tem (W32PROCESS structure) is allocated and initialized.

 11. The application start cursor is displayed. This cursor is the familiar rolling doughnut 

shape—the way that Windows says to the user, “I’m starting something, but you can 

use the cursor in the meantime.” If the process doesn’t make a GUI call after 2 seconds, 

the cursor reverts to the standard pointer. If the process does make a GUI call in the 

allotted time, CsrCreateProcess waits 5 seconds for the application to show a window. 

After that time, CsrCreateProcess will reset the cursor again.

After Csrss has performed these steps, CreateProcess checks whether the process was run 

elevated (which means it was executed through ShellExecute and elevated by the AppInfo 

service after the consent dialog box was shown to the user). This includes checking whether 

the process was a setup program. If it was, the process’s token is opened, and the virtualiza-

tion flag is turned on so that the application is virtualized. (See the information on UAC and 

virtualization in Chapter 6.) If the application contained elevation shims or had a requested 

elevation level in its manifest, the process is destroyed and an elevation request is sent to the 

AppInfo service. (See Chapter 6 for more information on elevation.)

Note that most of these checks are not performed for protected processes; because these 

processes must have been designed for Windows Vista or later, there’s no reason why they 

should require elevation, virtualization, or application compatibility checks and process-

ing. Additionally, allowing mechanisms such as the shim engine to use its usual hooking and 

memory patching techniques on a protected process would result in a security hole if some-

one could figure how to insert arbitrary shims that modify the behavior of the protected 

process.

Stage 6: Starting Execution of the Initial Thread

At this point, the process environment has been determined, resources for its threads to use 

have been allocated, the process has a thread, and the Windows subsystem knows about the 

new process. Unless the caller specified the CREATE_ SUSPENDED flag, the initial thread is 

now resumed so that it can start running and perform the remainder of the process initializa-

tion work that occurs in the context of the new process (Stage 7).
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Stage 7: Performing Process Initialization in the Context of 
the New Process

The new thread begins life running the kernel-mode thread startup routine KiThreadStartup. 

KiThreadStartup lowers the thread’s IRQL level from DPC/dispatch level to APC level and then 

calls the system initial thread routine, PspUserThreadStartup. The user-specified thread start 

address is passed as a parameter to this routine.

First, this function sets the Locale ID and the ideal processor in the TEB, based on the infor-

mation present in kernel-mode data structures, and then it checks if thread creation actually 

failed. Next it calls DbgkCreateThread, which checks if image notifications were sent for the 

new process. If they weren’t, and notifications are enabled, an image notification is sent first 

for the process and then for the image load of Ntdll.dll. Note that this is done in this stage 

rather than when the images were first mapped, because the process ID (which is required 

for the callouts) is not yet allocated at that time.

Once those checks are completed, another check is performed to see whether the process 

is a debuggee. If it is, then PspUserThreadStartup checks if the debugger notifications have 

already been sent for this process. If not, then a create process message is sent through the 

debug object (if one is present) so that the process startup debug event (CREATE_PROCESS_

DEBUG_INFO) can be sent to the appropriate debugger process. This is followed by a similar 

thread startup debug event and by another debug event for the image load of Ntdll.dll. 

DbgkCreateThread then waits for the Windows subsystem to get the reply from the debug-

ger (via the ContinueDebugEvent function). 

Now that the debugger has been notified, PspUserThreadStartup looks at the result of the 

initial check on the thread’s life. If it was killed on startup, the thread is terminated. This check 

is done after the debugger and image notifications to be sure that the kernel-mode and 

user-mode debuggers don’t miss information on the thread, even if the thread never got a 

chance to run.

Otherwise, the routine checks whether application prefetching is enabled on the system and, 

if so, calls the prefetcher (and Superfetch) to process the prefetch instruction file (if it exists) 

and prefetch pages referenced during the first 10 seconds the last time the process ran. (For 

details on the prefetcher and Superfetch, see Chapter 9.)

PspUserThreadStartup then checks if the systemwide cookie in the SharedUserData structure 

has been set up yet. If it hasn’t, it generates it based on a hash of system information such as 

the number of interrupts processed, DPC deliveries, and page faults. This systemwide cookie 

is used in the internal decoding and encoding of pointers, such as in the heap manager 

(for more information on heap manager security, see Chapter 9), to protect against certain 

classes of exploitation.
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Finally, PspUserThreadStartup sets up the initial thunk context to run the image loader initial-

ization routine (LdrInitializeThunk in Ntdll.dll), as well as the systemwide thread startup stub 

(RtlUserThreadStart in Ntdll.dll). These steps are done by editing the context of the thread 

in place and then issuing an exit from system service operation, which will load the specially 

crafted user context. The LdrInitializeThunk routine initializes the loader, heap manager, NLS 

tables, thread-local storage (TLS) and fiber-local storage (FLS) array, and critical section struc-

tures. It then loads any required DLLs and calls the DLL entry points with the DLL_PROCESS_ 

ATTACH function code. (See the sidebar “Side-by-Side Assemblies” for a description of a 

mechanism Windows uses to address DLL versioning problems.)

Once the function returns, NtContinue will restore the new user context and return back to 

user mode—thread execution now truly starts.

RtlUserThreadStart will use the address of the actual image entry point and the start param-

eter and call the application. These two parameters have also already been pushed onto the 

stack by the kernel. This complicated series of events has two purposes. First of all, it allows 

the image loader inside Ntdll.dll to set up the process internally and behind the scenes so 

that other user-mode code can run properly (otherwise, it would have no heap, no thread 

local storage, and so on). 

Second, having all threads begin in a common routine allows them to be wrapped in excep-

tion handling, so that when they crash, Ntdll.dll is aware of that and can call the unhandled 

exception filter inside Kernel32.dll. It is also able to coordinate thread exit on return from the 

thread’s start routine and to perform various cleanup work. Application developers can also 

call SetUnhandledExceptionFilter to add their own unhandled exception handling code.

Side-by-Side Assemblies

In order to isolate DLLs distributed with applications from DLLs that ship with the oper-

ating system, Windows allows applications to use private copies of these core DLLs. To 

use a private copy of a DLL instead of the one in the system directory, an application’s 

installation must include a file named Application.exe.local (where Application is the 

name of the application’s executable), which directs the loader to first look for DLLs in 

that directory. Note that any DLLs that are loaded from the list of KnownDLLs (DLLs 

that are permanently mapped into memory) or that are loaded by those DLLs cannot 

be redirected using this mechanism.

To further address application and DLL compatibility while allowing sharing, Windows 

implements the concept of shared assemblies. An assembly consists of a group of 

resources, including DLLs, and an XML manifest file that describes the assembly and its 

contents. An application references an assembly through the existence of its own XML 

manifest. The manifest can be a file in the application’s installation directory that has 
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the same name as the application with “.manifest” appended (for example, applica-

tion.exe.manifest), or it can be linked into the application as a resource. The manifest 

describes the application and its dependence on assemblies.

There are two types of assemblies: private and shared. The difference between the 

two is that shared assemblies are digitally signed so that corruption or modification 

of their contents can be detected. In addition, shared assemblies are stored under the 

\Windows\Winsxs directory, whereas private assemblies are stored in an application’s 

installation directory. Thus, shared assemblies also have an associated catalog file (.cat) 

that contains its digital signature information. Shared assemblies can be “side-by-side” 

assemblies because multiple versions of a DLL can reside on a system simultaneously, 

with applications dependent on a particular version of a DLL always using that particu-

lar version.

An assembly’s manifest file typically has a name that includes the name of the assem-

bly, version information, some text that represents a unique signature, and the exten-

sion “.manifest”. The manifests are stored in \Windows\Winsxs\Manifests, and the rest 

of the assembly’s resources are stored in subdirectories of \Windows\Winsxs that have 

the same name as the corresponding manifest files, with the exception of the trailing 

.manifest extension.

An example of a shared assembly is version 6 of the Windows common controls DLL, 

comctl32.dll. Its manifest file is named \Windows\Winsxs\Manifests\x86_Microsoft.Win-

dows.Common-Controls_6595b64144ccf1df_6.0.0.0_x-ww_1382d70a.manifest. It has an 

associated catalog file (which is the same name with the .cat extension) and a subdirec-

tory of Winsxs that includes comctl32.dll.

Version 6 of Comctl32.dll added integration with Windows themes, and because 

applications not written with theme support in mind might not appear correctly with 

the new DLL, it’s available only to applications that explicitly reference the shared 

assembly containing it—the version of Comctl32.dll installed in \Windows\System32 is 

an instance of version 5.x, which is not theme aware. When an application loads, the 

loader looks for the application’s manifest, and if one exists, loads the DLLs from the 

assemblies specified. DLLs not included in assemblies referenced in the manifest are 

loaded in the traditional way. Legacy applications, therefore, link against the version in 

\Windows\System32, whereas theme-aware applications can specify the new version in 

their manifest.

A final advantage that shared assemblies have is that a publisher can issue a publisher 

configuration, which can redirect all applications that use a particular assembly to use 

an updated version. Publishers would do this if they were preserving backward com-

patibility while addressing bugs. Ultimately, however, because of the flexibility inherent 

in the assembly model, an application could decide to override the new setting and 

continue to use an older version.
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EXPERIMENT: Tracing Process Startup

Now that we’ve looked in detail at how a process starts up and the different operations 

required to begin executing an application, we’re going to use Process Monitor to take 

a look at some of the file I/O and registry keys that are accessed during this process. 

Although this experiment will not provide a complete picture of all the internal steps 

we’ve described, you’ll be able to see several parts of the system in action, notably 

Prefetch and Superfetch, image file execution options and other compatibility checks, 

and the image loader’s DLL mapping.

We’re going to be looking at a very simple executable—Notepad.exe—and we will be 

launching it from a Command Prompt window (Cmd.exe). It’s important that we look 

both at the operations inside Cmd.exe and those inside Notepad.exe. Recall that a lot of 

the user-mode work is performed by CreateProcess, which is called by the parent pro-

cess before the kernel has created a new process object.

To set things up correctly, add two filters to Process Monitor: one for Cmd.exe, and one 

for Notepad.exe—these are the only two processes we want to include. It will be helpful 

to be sure that you don’t have any currently running instances of these two processes so 

that you know you’re looking at the right events. The filter window should look like this:

Next, make sure that event logging is currently disabled (clear File, Capture Events), and 

then start up the command prompt. Enable event logging (using the File menu again, 

or simply press CTRL+E or click the magnifying glass icon on the toolbar) and then 

enter Notepad.exe and press Enter. On a typical Windows Vista system, you should 

see anywhere between 500 and 1500 events appear. Go ahead and hide the Sequence 

and Time Of Day columns so that we can focus our attention on the columns of inter-

est. Your window should look similar to the one shown next.
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Just as described in Stage 1 of the CreateProcess flow, one of the first things to notice 

is that just before the process is started and the first thread is created, Cmd.exe does a 

registry read at HKLM\SOFTWARE\Microsoft\Windows NT\CurrentVersion\Image File 

Execution Options. Because there were no image execution options associated with 

Notepad.exe, the process was created as is.

As with this and any other event in Process Monitor’s log, you have the ability to see 

whether each part of the process creation flow was performed in user mode or kernel 

mode, and by which routines, by looking at the stack of the event. To do this, double-

click on the RegOpenKey event mentioned and switch to the Stack tab. The following 

screen shows the standard stack on a 32-bit Windows Vista machine.
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This stack shows that we have already reached the part of process creation per-

formed in kernel mode (through NtCreateUserProcess) and that the helper routine 

PspAllocateProcess is responsible for this check.

Going down the list of events after the thread and process have been created, you will 

notice three groups of events. The first is a simple check for application compatibility 

flags, which will let the user-mode process creation code know if checks inside the 

application compatibility database are required through the shim engine.

This check is followed by multiple reads to Side-By-Side, Manifest, and MUI/Language 

keys, which are part of the assembly framework mentioned earlier. Finally, you may see 

file I/O to one or more .sdb files, which are the application compatibility databases on 

the system. This I/O is where additional checks are done to see if the shim engine needs 

to be invoked for this application. Since Notepad is a well behaved Microsoft program, 

it doesn’t require any shims.

The following screen shows the next series of events, which happen inside the Notepad 

process itself. These are actions initiated by the user-mode thread startup wrapper 

in kernel mode, which performs the actions described earlier. The first two are the 

Notepad.exe and Ntdll.dll image load debug notification messages, which can only be 

generated now that code is running inside Notepad’s process context and not the con-

text for the command prompt. 
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Next, the prefetcher kicks in, looking for a prefetch database file that has already been 

generated for Notepad. (For more information on the prefetcher, see Chapter 9). On a 

system where Notepad has already been run at least once, this database will exist, and 

the prefetcher will begin executing the commands specified inside it. If this is the case, 

scrolling down you will see multiple DLLs being read and queried. Unlike typical DLL 

loading, which is done by the user-mode image loader by looking at the import tables 

or when an application manually loads a DLL, these events are being generated by the 

prefetcher, which is already aware of the libraries that Notepad will require. Typical 

image loading of the DLLs required happens next, and you will see events similar to the 

ones shown here.

These events are now being generated from code running inside user mode, which 

was called once the kernel-mode wrapper function finished its work. Therefore, these 

are the first events coming from LdrpInitializeProcess, which we mentioned is the inter-

nal system wrapper function for any new process, before the start address wrapper is 

called. You can confirm this on your own by looking at the stack of these events; for 

example, the kernel32.dll image load event, which is shown in the next screen.
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Further events are generated by this routine and its associated helper functions until 

you finally reach events generated by the WinMain function inside Notepad, which is 

where code under the developer’s control is now being executed. Describing in detail 

all the events and user-mode components that come into play during process execu-

tion would fill up this entire chapter, so exploration of any further events is left as an 

exercise for the reader.

Thread Internals

Now that we’ve dissected processes, let’s turn our attention to the structure of a thread. 

Unless explicitly stated otherwise, you can assume that anything in this section applies to 

both user-mode threads and kernel-mode system threads (which are described in Chapter 2).

Data Structures

At the operating-system level, a Windows thread is represented by an executive thread 

(ETHREAD) block, which is illustrated in Figure 5-7. The ETHREAD block and the structures 

it points to exist in the system address space, with the exception of the thread environment 

block (TEB), which exists in the process address space (again, because user-mode compo-

nents need to have access to it).



 Chapter 5 Processes, Threads, and Jobs 371

In addition, the Windows subsystem process (Csrss) also maintains a parallel structure for 

each thread created in a Windows subsystem application. Also, for threads that have called 

a Windows subsystem USER or GDI function, the kernel-mode portion of the Windows sub-

system (Win32k.sys) maintains a per-thread data structure (called the W32THREAD structure) 

that the ETHREAD block points to.

KTHREAD

Create and exit times

Process ID

Thread start address

Impersonation information

Timer information

Access token

EPROCESS

TEB

Pending I/O requests

ALPC message information

FIGURE 5-7 Structure of the executive thread block

Most of the fields illustrated in Figure 5-7 are self-explanatory. The first field is the kernel 

thread (KTHREAD) block. Following that are the thread identification information, the process 

identification information (including a pointer to the owning process so that its environment 

information can be accessed), security information in the form of a pointer to the access 

token and impersonation information, and finally, fields relating to ALPC messages and 

pending I/O requests. As you can see in Table 5-9, some of these key fields are covered in 

more detail elsewhere in this book. For more details on the internal structure of an ETHREAD 

block, you can use the kernel debugger dt command to display the format of the structure.

TABLE 5-9 Key Contents of the Executive Thread Block

Field Name Value Taken from Image Header Additional Information

KTHREAD See Table 5-10.

Thread time Thread create and exit time information.

Process identification Process ID and pointer to EPROCESS block 

of the process that the thread belongs to.

Start address Address of thread start routine.

Impersonation 

information

Access token and impersonation level (if 

the thread is impersonating a client).

Chapter 6

ALPC information Message ID that the thread is waiting for 

and address of message. 

Advanced local procedure 

calls (ALPC) (Chapter 3)

I/O information List of pending I/O request packets (IRPs). I/O system (Chapter 7)
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Let’s take a closer look at two of the key thread data structures referred to in the preceding 

text: the KTHREAD block and the TEB. The KTHREAD block (also called the TCB, or thread 

control block) contains the information that the Windows kernel needs to access to perform 

thread scheduling and synchronization on behalf of running threads. Its layout is illustrated 

in Figure 5-8.

Dispatcher header

Total user time

Total kernel time

Thread-scheduling information

Trap frame

Synchronization information

Timer block and wait block

List of objects thread is waiting on

Thread-local storage array

Kernel stack information

System service table

List of pending APCs

TEB

FIGURE 5-8 Structure of the kernel thread block

The key fields of the KTHREAD block are described briefly in Table 5-10.

TABLE 5-10 Key Contents of the KTHREAD Block

Element Description Additional Reference

Dispatcher header Because the thread is an object that can 

be waited on, it starts with a standard 

kernel dispatcher object header.

Kernel dispatcher objects  

(Chapter 3)

Execution time Total user and kernel CPU time.

Cycle time Total CPU cycle time. Thread scheduling

Pointer to kernel stack 

information

Base and upper address of the kernel 

stack.

Memory management 

(Chapter 9)

Pointer to system service 

table

Each thread starts out with this field ser-

vice table pointing to the main system 

service table (KeServiceDescriptorTable). 

When a thread first calls a Windows 

GUI service, its system service table is 

changed to one that includes the GDI 

and USER services in Win32k.sys.

System service 

dispatching (Chapter 3)
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Element Description Additional Reference

Scheduling information Base and current priority, quantum tar-

get, quantum reset, affinity mask, ideal 

processor, deferred processor, next pro-

cessor, scheduling state, freeze count, 

suspend count, adjust increment and 

adjust reason.

Thread scheduling 

Wait blocks The thread block contains four built-in 

wait blocks so that wait blocks don’t 

have to be allocated and initialized each 

time the thread waits for something. 

(One wait block is dedicated to timers.)

Synchronization  

(Chapter 3)

Wait information List of objects the thread is waiting for, 

wait reason, IRQL at the time of wait, 

result of the wait, and time at which the 

thread entered the wait state.

Synchronization  

(Chapter 3)

Mutant list List of mutant objects the thread owns. Synchronization  

(Chapter 3)

APC queues List of pending user-mode and kernel-

mode APCs, alerted flag, and flags to 

disable APCs.

Asynchronous procedure 

call (APC) interrupts 

(Chapter 3)

Timer block Built-in timer block (also a correspond-

ing wait block).

Suspend APC and 

semaphore

Built-in APC and semaphore used when 

suspending and resuming a thread.

Synchronization  

(Chapter 3)

Queue Pointer to queue object that the thread 

is associated with.

Synchronization  

(Chapter 3)

Gate Pointer to gate object that the thread is 

waiting on.

Synchronization  

(Chapter 3)

Pointer to TEB Thread ID, TLS and FLS information, 

PEB pointer, and Winsock, RPC, 

GDI, OpenGL, and other user-mode 

information.
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EXPERIMENT: Displaying ETHREAD and KTHREAD Structures

The ETHREAD and KTHREAD structures can be displayed with the dt command in the 

kernel debugger. The following output shows the format of an ETHREAD on a 32-bit 

system:

lkd> dt nt!_ethread  

nt!_ETHREAD  

   +0x000 Tcb              : _KTHREAD 

   +0x1e0 CreateTime       : _LARGE_INTEGER 

   +0x1e8 ExitTime         : _LARGE_INTEGER 

   +0x1e8 KeyedWaitChain   : _LIST_ENTRY 

   +0x1f0 ExitStatus       : Int4B 

   +0x1f0 OfsChain         : Ptr32 Void 

   +0x1f4 PostBlockList    : _LIST_ENTRY 

   +0x1f4 ForwardLinkShadow : Ptr32 Void 

   +0x1f8 StartAddress     : Ptr32 Void 

   +0x1fc TerminationPort  : Ptr32 _TERMINATION_PORT 

   +0x1fc ReaperLink       : Ptr32 _ETHREAD 

   +0x1fc KeyedWaitValue   : Ptr32 Void 

   +0x1fc Win32StartParameter : Ptr32 Void 

   +0x200 ActiveTimerListLock : Uint4B 

   +0x204 ActiveTimerListHead : _LIST_ENTRY 

   +0x20c Cid              : _CLIENT_ID 

   +0x214 KeyedWaitSemaphore : _KSEMAPHORE 

   +0x214 AlpcWaitSemaphore : _KSEMAPHORE 

   +0x228 ClientSecurity   : _PS_CLIENT_SECURITY_CONTEXT 

   +0x22c IrpList          : _LIST_ENTRY 

   +0x234 TopLevelIrp      : Uint4B 

   +0x238 DeviceToVerify   : Ptr32 _DEVICE_OBJECT 

   +0x23c RateControlApc   : Ptr32 _PSP_RATE_APC 

   +0x240 Win32StartAddress : Ptr32 Void 

   +0x244 SparePtr0        : Ptr32 Void 

   +0x248 ThreadListEntry  : _LIST_ENTRY 

   +0x250 RundownProtect   : _EX_RUNDOWN_REF 

   +0x254 ThreadLock       : _EX_PUSH_LOCK 

   +0x258 ReadClusterSize  : Uint4B 

   +0x25c MmLockOrdering   : Int4B 

   +0x260 CrossThreadFlags : Uint4B 

   +0x260 Terminated       : Pos 0, 1 Bit 

   +0x260 ThreadInserted   : Pos 1, 1 Bit 

   +0x260 HideFromDebugger : Pos 2, 1 Bit 

   +0x260 ActiveImpersonationInfo : Pos 3, 1 Bit 

   +0x260 SystemThread     : Pos 4, 1 Bit 

   +0x260 HardErrorsAreDisabled : Pos 5, 1 Bit 

   +0x260 BreakOnTermination : Pos 6, 1 Bit 

   +0x260 SkipCreationMsg  : Pos 7, 1 Bit 

   +0x260 SkipTerminationMsg : Pos 8, 1 Bit 

   +0x260 CopyTokenOnOpen  : Pos 9, 1 Bit 

   +0x260 ThreadIoPriority : Pos 10, 3 Bits 

   +0x260 ThreadPagePriority : Pos 13, 3 Bits 

   +0x260 RundownFail      : Pos 16, 1 Bit 

   +0x264 SameThreadPassiveFlags : Uint4B 

   +0x264 ActiveExWorker   : Pos 0, 1 Bit 

   +0x264 ExWorkerCanWaitUser : Pos 1, 1 Bit 
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   +0x264 MemoryMaker      : Pos 2, 1 Bit 

   +0x264 ClonedThread     : Pos 3, 1 Bit 

   +0x264 KeyedEventInUse  : Pos 4, 1 Bit 

   +0x264 RateApcState     : Pos 5, 2 Bits 

   +0x264 SelfTerminate    : Pos 7, 1 Bit 

   +0x268 SameThreadApcFlags : Uint4B 

   +0x268 Spare            : Pos 0, 1 Bit 

   +0x268 StartAddressInvalid : Pos 1, 1 Bit 

   +0x268 EtwPageFaultCalloutActive : Pos 2, 1 Bit 

   +0x268 OwnsProcessWorkingSetExclusive : Pos 3, 1 Bit 

   +0x268 OwnsProcessWorkingSetShared : Pos 4, 1 Bit 

   +0x268 OwnsSystemWorkingSetExclusive : Pos 5, 1 Bit 

   +0x268 OwnsSystemWorkingSetShared : Pos 6, 1 Bit 

   +0x268 OwnsSessionWorkingSetExclusive : Pos 7, 1 Bit 

   +0x269 OwnsSessionWorkingSetShared : Pos 0, 1 Bit 

   +0x269 OwnsProcessAddressSpaceExclusive : Pos 1, 1 Bit 

   +0x269 OwnsProcessAddressSpaceShared : Pos 2, 1 Bit 

   +0x269 SuppressSymbolLoad : Pos 3, 1 Bit 

   +0x269 Prefetching      : Pos 4, 1 Bit 

   +0x269 OwnsDynamicMemoryShared : Pos 5, 1 Bit 

   +0x269 OwnsChangeControlAreaExclusive : Pos 6, 1 Bit 

   +0x269 OwnsChangeControlAreaShared : Pos 7, 1 Bit 

   +0x26a PriorityRegionActive : Pos 0, 4 Bits 

   +0x26c CacheManagerActive : UChar 

   +0x26d DisablePageFaultClustering : UChar 

   +0x26e ActiveFaultCount : UChar 

   +0x270 AlpcMessageId    : Uint4B 

   +0x274 AlpcMessage      : Ptr32 Void 

   +0x274 AlpcReceiveAttributeSet : Uint4B 

   +0x278 AlpcWaitListEntry : _LIST_ENTRY 

   +0x280 CacheManagerCount : Uint4B

The KTHREAD can be displayed with a similar command:

lkd> dt nt!_kthread  

nt!_KTHREAD  

   +0x000 Header           : _DISPATCHER_HEADER 

   +0x010 CycleTime        : Uint8B 

   +0x018 HighCycleTime    : Uint4B 

   +0x020 QuantumTarget    : Uint8B 

   +0x028 InitialStack     : Ptr32 Void 

   +0x02c StackLimit       : Ptr32 Void 

   +0x030 KernelStack      : Ptr32 Void 

   +0x034 ThreadLock       : Uint4B 

   +0x038 ApcState         : _KAPC_STATE 

   +0x038 ApcStateFill     : [23] UChar 

   +0x04f Priority         : Char 

   +0x050 NextProcessor    : Uint2B 

   +0x052 DeferredProcessor : Uint2B 

   +0x054 ApcQueueLock     : Uint4B 

   +0x058 ContextSwitches  : Uint4B 

   +0x05c State            : UChar 

   +0x05d NpxState         : UChar 

   +0x05e WaitIrql         : UChar 

   +0x05f WaitMode         : Char 

   +0x060 WaitStatus       : Int4B
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EXPERIMENT: Using the Kernel Debugger !thread Command

The kernel debugger !thread command dumps a subset of the information in the 

thread data structures. Some key elements of the information the kernel debugger 

displays can’t be displayed by any utility: internal structure addresses; priority details; 

stack information; the pending I/O request list; and, for threads in a wait state, the list 

of objects the thread is waiting for.

To display thread information, use either the !process command (which displays all the 

thread blocks after displaying the process block) or the !thread command to dump a 

specific thread. The output of the thread information, along with some annotations of 

key fields, is shown here:

THREAD 83160f0 Cid:  9f.3d Teb:  7ffdc000

Win32Thread:  e153d2c8

WAIT:  (WrUserRequest)  UserMode Non-Alertable

808e9d60 SynchronizationEvent

Not imersonating

Owning Process 81b44880

Wait Time (seconds)

Context Switch Count 

UserTime 

KernelTime 

Start Address kernal32!BaseProcessStart (0x77e8f268) 

Win32 Start Address 0x020d9d98 

Stack Init f7818000 Current f7817bb0 Base f7818000 Limit f7812000 Call 0 

Priority 14 BasePriority 9 PriorityDecrement 6 DecrementCount 13

953945

2697 LargeStack

0:00:00.0289 

0:00:04.0644

ChildEBP RetAddr         Args to Child

F7817bb0 8008f430 00000001 00000000 00000000 ntoskrnl!KiSwapThreadExit 

F7817c50 de0119ec 00000001 00000000 00000000 ntoskrnl!KeWaitForSingleObject+0x2a0

F7817cc0 de0123f4 00000001 00000000 00000000 win32k!xxxSleepThread+0x23c 

F7817d10 de01f2f0 00000001 00000000 00000000 win32k!xxxInternalGetMessage+0x504 

F7817d80 800bab58 00000001 00000000 00000000 win32k!NtUserGetMessage+0x58 

F7817df0 77d887d0 00000001 00000000 00000000 ntoskrnl!KiSystemServiceEndAddress+0x4 

0012fef0 00000000 00000001 00000000 00000000 user32!GetMessageW+0x30

Address of
ETHREAD Thread ID

Address of thread 
environment block

Priority 
information

Address of user thread function

Actual thread 
start address

Thread state

Objects being waited on

Address of EPROCESS for owning process

Stack dump

Kernal stack not resident.
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EXPERIMENT: Viewing Thread Information

The following output is the detailed display of a process produced by using the Tlist 

utility in the Debugging Tools for Windows. Notice that the thread list shows the 

“Win32StartAddr.” This is the address passed to the CreateThread function by the appli-

cation. All the other utilities, except Process Explorer, that show the thread start address 

show the actual start address (a function in Ntdll.dll), not the application-specified start 

address.

C:\> tlist winword  

2400 WINWORD.EXE       WinInt5E_Chapter06.doc [Compatibility Mode] - Microsoft Word 

   CWD:     C:\Users\Alex Ionescu\Documents\ 

   CmdLine: "C:\Program Files\Microsoft Office\Office12\WINWORD.EXE" /n /dde 

   VirtualSize:   310656 KB   PeakVirtualSize:   343552 KB 

   WorkingSetSize: 91548 KB   PeakWorkingSetSize:100788 KB 

   NumberOfThreads: 6 

   2456 Win32StartAddr:0x2f7f10cc LastErr:0x00000000 State:Waiting 

   1452 Win32StartAddr:0x6882f519 LastErr:0x00000000 State:Waiting 

   2464 Win32StartAddr:0x6b603850 LastErr:0x00000000 State:Waiting 

   3036 Win32StartAddr:0x690dc17f LastErr:0x00000002 State:Waiting 

   3932 Win32StartAddr:0x775cac65 LastErr:0x00000102 State:Waiting 

   3140 Win32StartAddr:0x687d6ffd LastErr:0x000003f0 State:Waiting 

 12.0.4518.1014 shp  0x2F7F0000  C:\Program Files\Microsoft Office\Office12\ 

     WINWORD.EXE 

 6.0.6000.16386 shp  0x777D0000  C:\Windows\system32\Ntdll.dll 

 6.0.6000.16386 shp  0x764C0000  C:\Windows\system32\kernel32.dll  

         §          list of DLLs loaded in process

The TEB, illustrated in Figure 5-9, is the only data structure explained in this section that 

exists in the process address space (as opposed to the system space).

The TEB stores context information for the image loader and various Windows DLLs. Because 

these components run in user mode, they need a data structure writable from user mode. 

That’s why this structure exists in the process address space instead of in the system space, 

where it would be writable only from kernel mode. You can find the address of the TEB with 

the kernel debugger !thread command.
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Exception list

Stack base

Stack limit

Thread ID

Active RPC handle

 value

Current locale

User32 client information

Subsystem thread information block (TIB)

Fiber information

Winsock data

Count of owned critical sections

OpenGL information

TLS array

GDI32 information

PEB

FIGURE 5-9 Fields of the thread environment block

EXPERIMENT: Examining the TEB

You can dump the TEB structure with the !teb command in the kernel debugger. The 

output looks like this:

kd> !teb  

TEB at 7ffde000 

    ExceptionList:        019e8e44 

    StackBase:            019f0000 

    StackLimit:           019db000 

    SubSystemTib:         00000000 

    FiberData:            00001e00 

    ArbitraryUserPointer: 00000000 

    Self:                 7ffde000 

    EnvironmentPointer:   00000000 

    ClientId:             00000bcc . 00000864 

    RpcHandle:            00000000 

    Tls Storage:          7ffde02c 

    PEB Address:          7ffd9000 

    LastErrorValue:       0 

    LastStatusValue:      c0000139 

    Count Owned Locks:    0 

    HardErrorMode:        0
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Kernel Variables

As with processes, a number of Windows kernel variables control how threads run. Table 5-11 

shows the kernel-mode kernel variables that relate to threads.

TABLE 5-11 Thread-Related Kernel Variables

Variable Type Description

PspCreateThreadNotifyRoutine Array of executive 

callback objects

Array of callback objects describing 

the routines to be called on thread 

creation and deletion (maximum of 64)

PspCreateThreadNotifyRoutineCount 32-bit integer Count of registered thread-

 notification routines

Performance Counters

Most of the key information in the thread data structures is exported as performance coun-

ters, which are listed in Table 5-12. You can extract much information about the internals of a 

thread just by using the Reliability and Performance Monitor in Windows.

TABLE 5-12 Thread-Related Performance Counters

Object: Counter Function

Process: Priority Base Returns the current base priority of the process. This is the start-

ing priority for threads created within this process.

Thread: % Privileged Time Describes the percentage of time that the thread has run in kernel 

mode during a specified interval.

Thread: % Processor Time Describes the percentage of CPU time that the thread has used 

during a specified interval. This count is the sum of % Privileged 

Time and % User Time.

Thread: % User Time Describes the percentage of time that the thread has run in user 

mode during a specified interval.

Thread: Context Switches/Sec Returns the number of context switches per second that the sys-

tem is executing. 

Thread: Elapsed Time Returns the amount of CPU time (in seconds) that the thread has 

consumed.

Thread: ID Process Returns the process ID of the thread’s process.

Thread: ID Thread Returns the thread’s thread ID. This ID is valid only during the 

thread’s lifetime because thread IDs are reused.

Thread: Priority Base Returns the thread’s current base priority. This number might be 

different from the thread’s starting base priority.

Thread: Priority Current Returns the thread’s current dynamic priority.

Thread: Start Address Returns the thread’s starting virtual address (Note: This address 

will be the same for most threads.)
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Object: Counter Function

Thread: Thread State Returns a value from 0 through 7 relating to the current state of 

the thread.

Thread: Thread Wait Reason Returns a value from 0 through 19 relating to the reason why the 

thread is in a wait state.

Relevant Functions

Table 5-13 shows the Windows functions for creating and manipulating threads. This table 

doesn’t include functions that have to do with thread scheduling and priorities—those are 

included in the section “Thread Scheduling” later in this chapter.

TABLE 5-13 Windows Thread Functions

Function Description

CreateThread Creates a new thread

CreateRemoteThread Creates a thread in another process

OpenThread Opens an existing thread

ExitThread Ends execution of a thread normally

TerminateThread Terminates a thread

IsThreadAFiber Returns whether the current thread is a fiber

GetExitCodeThread Gets another thread’s exit code

GetThreadTimes Returns timing information for a thread

QueryThreadCycleTime Returns CPU clock cycle information for a thread

GetCurrentThread Returns a pseudo handle for the current thread

GetCurrentProcessId Returns the thread ID of the current thread

GetThreadId Returns the thread ID of the specified thread

Get/SetThreadContext Returns or changes a thread’s CPU registers

GetThreadSelectorEntry Returns another thread’s descriptor table entry 

(applies only to x86 systems)

Birth of a Thread

A thread’s life cycle starts when a program creates a new thread. The request filters down to 

the Windows executive, where the process manager allocates space for a thread object and 

calls the kernel to initialize the kernel thread block. The steps in the following list are taken 

inside the Windows CreateThread function in Kernel32.dll to create a Windows thread.

 1. CreateThread converts the Windows API parameters to native flags and builds a native 

structure describing object parameters (OBJECT_ATTRIBUTES). See Chapter 3 for more 

information.
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 2. CreateThread builds an attribute list with two entries: client ID and TEB address. This 

allows CreateThread to receive those values once the thread has been created. (For 

more information on attribute lists, see the section “Flow of CreateProcess” earlier in 

this chapter.)

 3. NtCreateThreadEx is called to create the user-mode context and probe and capture 

the attribute list. It then calls PspCreateThread to create a suspended executive thread 

object. For a description of the steps performed by this function, see the descriptions of 

Stage 3 and Stage 5 in the section “Flow of CreateProcess.”

 4. CreateThread allocates an activation stack for the thread used by side-by-side assembly 

support. It then queries the activation stack to see if it requires activation, and does so 

if needed. The activation stack pointer is saved in the new thread’s TEB.

 5. CreateThread notifies the Windows subsystem about the new thread, and the subsys-

tem does some setup work for the new thread.

 6. The thread handle and the thread ID (generated during step 3) are returned to the 

caller.

 7. Unless the caller created the thread with the CREATE_SUSPENDED flag set, the thread 

is now resumed so that it can be scheduled for execution. When the thread starts run-

ning, it executes the steps described in the earlier section “Stage 7: Performing Process 

Initialization in the Context of the New Process” before calling the actual user’s speci-

fied start address.

Examining Thread Activity

Examining thread activity is especially important if you are trying to determine why a process 

that is hosting multiple services is running (such as Svchost.exe, Dllhost.exe, or Lsass.exe) or 

why a process is hung.

There are several tools that expose various elements of the state of Windows threads: 

WinDbg (in user-process attach and kernel debugging mode), the Reliability and Perfor-

mance Monitor, and Process Explorer. (The tools that show thread-scheduling information 

are listed in the section “Thread Scheduling.”) 

To view the threads in a process with Process Explorer, select a process and open the process 

properties (double-click on the process or click on the Process, Properties menu item). Then 

click on the Threads tab. This tab shows a list of the threads in the process and three columns 

of information. For each thread it shows the percentage of CPU consumed (based on the 

refresh interval configured), the number of context switches to the thread, and the thread 

start address. You can sort by any of these three columns.
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New threads that are created are highlighted in green, and threads that exit are highlighted 

in red. (The highlight duration can be configured with the Options, Configure Highlighting 

menu item.) This might be helpful to discover unnecessary thread creation occurring in a 

process. (In general, threads should be created at process startup, not every time a request is 

processed inside a process.)

As you select each thread in the list, Process Explorer displays the thread ID, start time, state, 

CPU time counters, number of context switches, and the base and current priority. There is a 

Kill button, which will terminate an individual thread, but this should be used with extreme 

care.

The best way to measure actual CPU activity with Process Explorer is to add the clock cycle 

delta column, which uses the clock cycle counter designed for thread run-time account-

ing (as described later in this chapter). Because many threads run for such a short amount 

of time that they are seldom (if ever) the currently running thread when the clock interval 

timer interrupt occurs, they are not charged for much of their CPU time. The total number of 

clock cycles represents the actual number of processor cycles that each thread in the process 

accrued. It is independent of the clock interval timer’s resolution because the count is main-

tained internally by the processor at each cycle and updated by Windows at each interrupt 

entry (a final accumulation is done before a context switch).

The thread start address is displayed in the form “module!function”, where module is the 

name of the .exe or .dll. The function name relies on access to symbol files for the module. 

(See “Experiment: Viewing Process Details with Process Explorer” in Chapter 1.) If you are 

unsure what the module is, click the Module button. This opens an Explorer file properties 

window for the module containing the thread’s start address (for example, the .exe or .dll).

Note For threads created by the Windows CreateThread function, Process Explorer displays 

the function passed to CreateThread, not the actual thread start function. That is because all 

Windows threads start at a common thread startup wrapper function (RtlUserThreadStart in 

Ntdll.dll). If Process Explorer showed the actual start address, most threads in processes would 

appear to have started at the same address, which would not be helpful in trying to understand 

what code the thread was executing. However, if Process Explorer can’t query the user-defined 

startup address (such as in the case of a protected process), it will show the wrapper function, so 

you will see all threads starting at RtlUserThreadStart.

However, the thread start address displayed might not be enough information to pinpoint 

what the thread is doing and which component within the process is responsible for the CPU 

consumed by the thread. This is especially true if the thread start address is a generic startup 

function (for example, if the function name does not indicate what the thread is actually 

doing). In this case, examining the thread stack might answer the question. To view the stack 

for a thread, double-click on the thread of interest (or select it and click the Stack button). 
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Process Explorer displays the thread’s stack (both user and kernel, if the thread was in kernel 

mode).

Note While the user-mode debuggers (WinDbg, Ntsd, and Cdb) permit you to attach to a 

process and display the user stack for a thread, Process Explorer shows both the user and kernel 

stack in one easy click of a button. You can also examine user and kernel thread stacks using 

WinDbg in local kernel debugging mode.

Viewing the thread stack can also help you determine why a process is hung. As an example, 

on one system, Microsoft Office PowerPoint was hanging for one minute on startup. To 

determine why it was hung, after starting PowerPoint, Process Explorer was used to examine 

the thread stack of the one thread in the process. The result is shown in Figure 5-10.

FIGURE 5-10 Hung thread stack in PowerPoint

This thread stack shows that PowerPoint (line 10) called a function in Mso.dll (the central 

Microsoft Office DLL), which called the OpenPrinterW function in Winspool.drv (a DLL used to 

connect to printers). Winspool.drv then dispatched to a function OpenPrinterRPC, which then 

called a function in the RPC runtime DLL, indicating it was sending the request to a remote 

printer. So, without having to understand the internals of PowerPoint, the module and func-

tion names displayed on the thread stack indicate that the thread was waiting to connect to a 

network printer. On this particular system, there was a network printer that was not respond-

ing, which explained the delay starting PowerPoint. (Microsoft Office applications connect to 

all configured printers at process startup.) The connection to that printer was deleted from 

the user’s system, and the problem went away.

Finally, when looking at 32-bit applications running on 64-bit systems as a Wow64 process 

(see Chapter 3 for more information on Wow64), Process Explorer shows both the 32-bit and 

64-bit stack for threads. Because at the time of the system call proper, the thread has been 

switched to a 64-bit stack and context, simply looking at the thread’s 64-bit stack would 

reveal only half the story—the 64-bit part of the thread, with Wow64’s thunking code. So, 

when examining Wow64 processes, be sure to take into account both the 32-bit and 64-bit 

stacks. An example of a Wow64 thread inside Microsoft Office Word 2007 is shown in Figure 

5-11. The stack frames highlighted in the box are the 32-bit stack frames from the 32-bit 

stack.
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FIGURE 5-11 Example Wow64 stack

Limitations on Protected Process Threads

As we discussed in the process internals section, protected processes have several limitations 

in terms of which access rights will be granted, even to the users with the highest privileges 

on the system. These limitations also apply to threads inside such a process. This ensures 

that the actual code running inside the protected process cannot be hijacked or otherwise 

affected through standard Windows functions, which require the access rights in Table 5-14.

TABLE 5-14 Thread Access Rights Denied for Threads Inside a Protected Process

Object: Access Mask Function

Thread: THREAD_ALL_ACCESS Disables full access to a thread inside a protected 

process.

Thread: THREAD_DIRECT_IMPERSONATION Disables impersonating a thread inside a protected 

process.

Thread: THREAD_GET_CONTEXT, THREAD_

SET_CONTEXT

Disables accessing and/or modifying the CPU context 

(registers and stack) of a thread inside a protected 

process.

Thread: THREAD_QUERY_INFORMATION Disables querying all information on a thread inside 

a protected process. However, a new access right was 

added, THREAD_QUERY_LIMITED_INFORMATION, 

that grants limited access to information on the 

thread.
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Object: Access Mask Function

Thread: THREAD_SET_INFORMATION Disables setting all information on a thread inside a 

protected process. However, a new access right was 

added, THREAD_SET_LIMITED_INFORMATION, that 

grants limited access to modifying information on 

the thread.

Thread: THREAD_SET_THREAD_TOKEN Disables setting an impersonation token for a thread 

inside a protected process.

Thread: THREAD_TERMINATE Disables terminating a thread inside a protected 

process. Note that terminating all threads atomically 

through process termination is allowed.

EXPERIMENT: Viewing Protected Process Thread Information

In the previous section, we took a look at how Process Explorer can be helpful in exam-

ining thread activity to determine the cause of potential system or application issues. 

This time, we’ll use Process Explorer to look at a protected process and see how the dif-

ferent access rights being denied affect its ability and usefulness on such a process.

Find the Audiodg.exe service inside the process list. This is a process responsible for 

much of the core work behind the user-mode audio stack in Windows Vista, and it 

requires protection to ensure that high-definition decrypted audio content does not 

leak out to untrusted sources. Bring up the process properties view and take a look 

at the Image tab. Notice how the numbers for WS Private, WS Shareable, and WS 

Shared are 0, although the total Working Set is still displayed. This is an example of 

the THREAD_QUERY_INFORMATION versus THREAD_QUERY_LIMITED_INFORMATION 

rights.

More importantly, take a look at the Threads tab. As you can see here, Process Explorer 

is unable to show the Win32 thread start address and instead displays the standard 

thread start wrapper inside Ntdll.dll. If you try clicking on the Stack button, you’ll get an 

error, because Process Explorer needs to read the virtual memory inside the protected 

process, which it can’t do. 
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Finally, note that although the Base and Dynamic priorities are shown, the I/O and 

Memory priorities are not, another example of the limited versus full query information 

access right. As you try to kill a thread inside Audiodg.exe, notice yet another access 

denied error: recall the lack of THREAD_TERMINATE access shown earlier in Table 5-14.

Worker Factories (Thread Pools)

Worker factories refer to the internal mechanism used to implement user-mode thread pools. 

Prior to Windows Vista, the thread pool routines were completely implemented in user mode 

inside the Ntdll.dll library, and the Windows API provided various routines to call into the rel-

evant routines, which provided waitable timers, wait callbacks, and automatic thread creation 

and deletion depending on the amount of work being done.

Note Information on the new thread pool API is available on MSDN at http://msdn2.micro-
soft.com/en-us/library/ms686760.aspx. It includes information on the APIs introduced and 

the APIs retired, as well as important differences in certain details of the way the two APIs are 

implemented.
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In Windows Vista, the thread pool implementation in user mode was completely re-archi-

tected, and part of the management functionality has been moved to kernel mode in order 

to improve efficiency and performance and minimize complexity. The original thread pool 

implementation required the user-mode code inside Ntdll.dll to remain aware of how many 

threads were currently active as worker threads, and to enlarge this number in periods of 

high demand. 

Because querying the information necessary to make this decision, as well as the work to cre-

ate the threads, took place in user mode, several system calls were required that could have 

been avoided if these operations were performed in kernel mode. Moving this code into 

kernel mode means fewer transitions between user and kernel mode, and it allows Ntdll.dll 

to manage the thread pool itself and not the system mechanisms behind it. It also provides 

other benefits, such as the ability to remotely create a thread pool in a process other than the 

calling process (although possible in user mode, it would be very complex given the necessity 

of using APIs to access the remote process’s address space).

The functionality in Windows Vista is introduced by a new object manager type called 

TpWorkerFactory, as well as four new native system calls for managing the factory and 

its workers—NtCreateWorkerFactory, NtWorkerFactoryWorkerReady, NtReleaseWorker-
Fac tory Worker, NtShutdownWorkerFactory—two new query/set native calls (NtQuery-
Infor ma tion WorkerFactory and NtSetInformationWorkerFactory), and a new wait call, 

NtWaitFor WorkViaWorkerFactory. 

Just like other native system calls, these calls provide user mode with a handle to the 

TpWorker Factory object, which contains information such as the name and object attributes, 

the desired access mask, and a security descriptor. Unlike other system calls wrapped by 

the Windows API, however, thread pool management is handled by Ntdll.dll’s native code, 

which means that developers work with an opaque descriptor (a TP_WORK pointer) owned by 

Ntdll.dll, in which the actual handle is stored.

As its name suggests, the worker factory implementation is responsible for allocating worker 

threads (and calling the given user-mode worker thread entry point), maintaining a minimum 

and maximum thread count (allowing for either permanent worker pools or totally dynamic 

pools), as well as other accounting information. This enables operations such as shutting 

down the thread pool to be performed with a single call to the kernel, because the kernel 

has been the only component responsible for thread creation and termination. 

Because the kernel dynamically creates new threads as requested, this also increases the scal-

ability of applications using the new thread pool implementation. Developers have always 

been able to take advantage of as many threads as possible (based on the number of proces-

sors on the system) through the old implementation, but through support for dynamic pro-

cessors in Windows Vista (see the section on this topic later in this chapter), it’s now possible 

for applications using thread pools to automatically take advantage of new processors added 

at run time.
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It’s important to note that the new worker factory support is merely a wrapper to manage 

mundane tasks that would otherwise have to be performed in user mode (at a loss of per-

formance). Many of the improvements in the new thread pool code are the result of changes 

in the Ntdll.dll side of this architecture. Also, it is not the worker factory code that provides 

the scalability, wait internals, and efficiency of work processing. Instead, it is a much older 

component of Windows that we have already discussed—I/O completion ports, or more cor-

rectly, kernel queues (KQUEUE; see Chapter 7 for more information).

In fact, when creating a worker factory, an I/O completion port must have already been cre-

ated by user mode, and the handle needs to be passed on. It is through this I/O completion 

port that the user-mode implementation will queue work and also wait for work—but by 

calling the worker factory system calls instead of the I/O completion port APIs. Internally, 

however, the “release” worker factory call (which queues work) is a wrapper around 

IoSetIoCompletion, which increases pending work, while the “wait” call is a wrapper around 

IoRemoveIoCompletion. Both these routines call into the kernel queue implementation.

Therefore, the job of the worker factory code is to manage either a persistent, static, or 

dynamic thread pool; wrap the I/O completion port model into interfaces that try to prevent 

stalled worker queues by automatically creating dynamic threads; and to simplify global 

cleanup and termination operations during a factory shutdown request (as well as to easily 

block new requests against the factory in such a scenario).

Unfortunately, the data structures used by the worker factory implementation are not in the 

public symbols, but it is still possible to look at some worker pools, as we’ll show in the next 

experiment.

EXPERIMENT: Looking at Thread Pools

Because of the more efficient and simpler thread pool implementation in Windows 

Vista, many core system components and applications were updated to make use of it. 

One of the ways to identify which processes are using a worker factory is to look at the 

handle list in Process Explorer. Follow these steps to look at some details behind them:

 1. Run Process Explorer and select Show Unnamed Handles And Mappings from 

the View menu. Unfortunately, worker factories aren’t named by Ntdll.dll, so you 

need to take this step in order to see the handles.

 2. Select Lsm.exe from the list of processes, and look at the handle table. Make sure 

that the lower pane is shown (View, Show Lower Pane) and is displaying handle 

table mode (View, Lower Pane View, Handles).

 3. Right-click on the lower pane columns, and then click on Select Columns. Make 

sure that the Type column is selected to be shown. 
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 4. Now scroll down the handles, looking at the Type column, until you find a handle 

of type TpWorkerFactory. You should see something like this: 

Notice how the TpWorkerFactory handle is immediately preceded by an 

IoCompletion handle. As was described previously, this occurs because before cre-

ating a worker factory, a handle to an I/O completion port on which work will be 

sent must be created.

 5. Now double-click Lsm.exe in the list of processes, and go to the Threads tab. You 

should see something similar to the image here:
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On this system (with two processors), the worker factory has created six worker 

threads at the request of Lsm.exe (processes can define a minimum and maxi-

mum number of threads) and based on its usage and the count of processors on 

the machine. These threads are identified as TppWorkerThread, which is Ntdll.dll’s 

worker entry point when calling the worker factory system calls. 

 6. Ntdll.dll is responsible for its own internal accounting inside the worker thread 

wrapper (TppWorkerThread) before calling the worker callback that the applica-

tion has registered. By looking at the Wait reason in the State information for 

each thread, you can get a rough idea of what each worker thread may be doing. 

Double-click on one of the threads inside an LPC wait to look at its stack. Here’s 

an example:

This specific worker thread is being used by Lsm.exe for LPC communication. 

Because the local session manager needs to communicate with other compo-

nents such as Smss and Csrss through LPC, it makes sense that it would want a 

number of its threads to be busy replying and waiting for LPC messages (the 

more threads doing this, the less stalling on the LPC pipeline).

If you look at other worker threads, you’ll see some are waiting for objects such as 

events. A process can have multiple thread pools, and each thread pool can have a 

variety of threads doing completely unrelated tasks. It’s up to the developer to assign 

work and to call the thread pool APIs to register this work through Ntdll.dll.
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Thread Scheduling

This section describes the Windows scheduling policies and algorithms. The first subsection 

provides a condensed description of how scheduling works on Windows and a definition 

of key terms. Then Windows priority levels are described from both the Windows API and 

the Windows kernel points of view. After a review of the relevant Windows functions and 

Windows utilities and tools that relate to scheduling, the detailed data structures and algo-

rithms that make up the Windows scheduling system are presented, with uniprocessor sys-

tems examined first and then multiprocessor systems.

Overview of Windows Scheduling

Windows implements a priority-driven, preemptive scheduling system—the highest-priority 

runnable (ready) thread always runs, with the caveat that the thread chosen to run might be 

limited by the processors on which the thread is allowed to run, a phenomenon called pro-
cessor affinity. By default, threads can run on any available processor, but you can alter pro-

cessor affinity by using one of the Windows scheduling functions listed in Table 5-15 (shown 

later in the chapter) or by setting an affinity mask in the image header.

EXPERIMENT: Viewing Ready Threads

You can view the list of ready threads with the kernel debugger !ready command. This 

command displays the thread or list of threads that are ready to run at each priority 

level. In the following example, generated on a 32-bit machine with a dual-core proces-

sor, five threads are ready to run at priority 8 on the first processor, and three threads 

at priority 10, two threads at priority 9, and six threads at priority 8 are ready to run on 

the second processor. Determining which of these threads get to run on their respec-

tive processor is a complex result at the end of several algorithms that the scheduler 

uses. We will cover this topic later in this section.

kd> !ready 

Processor 0: Ready Threads at priority 8 

    THREAD 857d9030  Cid 0ec8.0e30  Teb: 7ffdd000 Win32Thread: 00000000 READY 

    THREAD 855c8300  Cid 0ec8.0eb0  Teb: 7ff9c000 Win32Thread: 00000000 READY 

    THREAD 8576c030  Cid 0ec8.0c9c  Teb: 7ffa8000 Win32Thread: 00000000 READY 

    THREAD 85a8a7f0  Cid 0ec8.0d3c  Teb: 7ff97000 Win32Thread: 00000000 READY 

    THREAD 87d34488  Cid 0c48.04a0  Teb: 7ffde000 Win32Thread: 00000000 READY 

Processor 1: Ready Threads at priority 10 

    THREAD 857c0030  Cid 04c8.0378  Teb: 7ffdf000 Win32Thread: fef7f8c0 READY 

    THREAD 856cc8e8  Cid 0e84.0a70  Teb: 7ffdb000 Win32Thread: f98fb4c0 READY 

    THREAD 85c41c68  Cid 0e84.00ac  Teb: 7ffde000 Win32Thread: ff460668 READY 

Processor 1: Ready Threads at priority 9 

    THREAD 87fc86f0  Cid 0ec8.04c0  Teb: 7ffd3000 Win32Thread: 00000000 READY 

    THREAD 88696700  Cid 0ec8.0ce8  Teb: 7ffa0000 Win32Thread: 00000000 READY 
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Processor 1: Ready Threads at priority 8 

    THREAD 856e5520  Cid 0ec8.0228  Teb: 7ff98000 Win32Thread: 00000000 READY 

    THREAD 85609d78  Cid 0ec8.09b0  Teb: 7ffd9000 Win32Thread: 00000000 READY 

    THREAD 85fdeb78  Cid 0ec8.0218  Teb: 7ff72000 Win32Thread: 00000000 READY 

    THREAD 86086278  Cid 0ec8.0cc8  Teb: 7ff8d000 Win32Thread: 00000000 READY 

    THREAD 8816f7f0  Cid 0ec8.0b60  Teb: 7ffd5000 Win32Thread: 00000000 READY 

    THREAD 87710d78  Cid 0004.01b4  Teb: 00000000 Win32Thread: 00000000 READY

When a thread is selected to run, it runs for an amount of time called a quantum. A quantum 

is the length of time a thread is allowed to run before another thread at the same priority 

level (or higher, which can occur on a multiprocessor system) is given a turn to run. Quantum 

values can vary from system to system and process to process for any of three reasons: sys-

tem configuration settings (long or short quantums), foreground/background status of the 

process, or use of the job object to alter the quantum. (Quantums are described in more 

detail in the “Quantum” section later in the chapter.) A thread might not get to complete 

its quantum, however. Because Windows implements a preemptive scheduler, if another 

thread with a higher priority becomes ready to run, the currently running thread might be 

preempted before finishing its time slice. In fact, a thread can be selected to run next and be 

preempted before even beginning its quantum!

The Windows scheduling code is implemented in the kernel. There’s no single “scheduler” 

module or routine, however—the code is spread throughout the kernel in which scheduling-

related events occur. The routines that perform these duties are collectively called the ker-

nel’s dispatcher. The following events might require thread dispatching:

A thread becomes ready to execute—for example, a thread has been newly created or 

has just been released from the wait state.

A thread leaves the running state because its time quantum ends, it terminates, it yields 

execution, or it enters a wait state.

A thread’s priority changes, either because of a system service call or because Windows 

itself changes the priority value.

A thread’s processor affinity changes so that it will no longer run on the processor on 

which it was running.

At each of these junctions, Windows must determine which thread should run next. When 

Windows selects a new thread to run, it performs a context switch to it. A context switch is 

the procedure of saving the volatile machine state associated with a running thread, loading 

another thread’s volatile state, and starting the new thread’s execution.

As already noted, Windows schedules at the thread granularity. This approach makes sense 

when you consider that processes don’t run but only provide resources and a context in 
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which their threads run. Because scheduling decisions are made strictly on a thread basis, no 

consideration is given to what process the thread belongs to. For example, if process A has 10 

runnable threads, process B has 2 runnable threads, and all 12 threads are at the same prior-

ity, each thread would theoretically receive one-twelfth of the CPU time—Windows wouldn’t 

give 50 percent of the CPU to process A and 50 percent to process B.

Priority Levels

To understand the thread-scheduling algorithms, you must first understand the priority lev-

els that Windows uses. As illustrated in Figure 5-12, internally Windows uses 32 priority levels, 

ranging from 0 through 31. These values divide up as follows:

Sixteen real-time levels (16 through 31)

Fifteen variable levels (1 through 15)

One system level (0), reserved for the zero page thread

FIGURE 5-12 Thread priority levels

Thread priority levels are assigned from two different perspectives: those of the Windows API 

and those of the Windows kernel. The Windows API first organizes processes by the priority 

class to which they are assigned at creation (Real-time, High, Above Normal, Normal, Below 

Normal, and Idle) and then by the relative priority of the individual threads within those pro-

cesses (Time-critical, Highest, Above-normal, Normal, Below-normal, Lowest, and Idle).

In the Windows API, each thread has a base priority that is a function of its process priority 

class and its relative thread priority. The mapping from Windows priority to internal Windows 

numeric priority is shown in Figure 5-13.
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FIGURE 5-13 Mapping of Windows kernel priorities to the Windows API

Whereas a process has only a single base priority value, each thread has two priority values: 

current and base. Scheduling decisions are made based on the current priority. As explained 

in the following section on priority boosting, the system under certain circumstances 

increases the priority of threads in the dynamic range (1 through 15) for brief periods. 

Windows never adjusts the priority of threads in the real-time range (16 through 31), so they 

always have the same base and current priority.

A thread’s initial base priority is inherited from the process base priority. A process, by 

default, inherits its base priority from the process that created it. This behavior can be over-

ridden on the CreateProcess function or by using the command-line start command. A pro-

cess priority can also be changed after being created by using the SetPriorityClass function or 
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various tools that expose that function, such as Task Manager and Process Explorer (by right-

clicking on the process and choosing a new priority class). For example, you can lower the 

priority of a CPU-intensive process so that it does not interfere with normal system activities. 

Changing the priority of a process changes the thread priorities up or down, but their relative 

settings remain the same. It usually doesn’t make sense, however, to change individual thread 

priorities within a process, because unless you wrote the program or have the source code, 

you don’t really know what the individual threads are doing, and changing their relative 

importance might cause the program not to behave in the intended fashion.

Normally, the process base priority (and therefore the starting thread base priority) will 

default to the value at the middle of each process priority range (24, 13, 10, 8, 6, or 4). 

However, some Windows system processes (such as the Session Manager, service controller, 

and local security authentication server) have a base process priority slightly higher than the 

default for the Normal class (8). This higher default value ensures that the threads in these 

processes will all start at a higher priority than the default value of 8. These system processes 

use an internal system call (NtSetInformationProcess) to set their process base priority to a 

numeric value other than the normal default starting base priority.

Windows Scheduling APIs

The Windows API functions that relate to thread scheduling are listed in Table 5-15. (For 

more information, see the Windows API reference documentation.)

TABLE 5-15 Scheduling-Related APIs and Their Functions

API Function

Suspend/ResumeThread Suspends or resumes a paused thread from execution.

Get/SetPriorityClass Returns or sets a process’s priority class (base priority).

Get/SetThreadPriority Returns or sets a thread’s priority (relative to its process base 

priority).

Get/SetProcessAffinityMask Returns or sets a process’s affinity mask.

SetThreadAffinityMask Sets a thread’s affinity mask (must be a subset of the process’s 

affinity mask) for a particular set of processors, restricting it to 

running on those processors.

SetInformationJobObject Sets attributes for a job; some of the attributes affect schedul-

ing, such as affinity and priority. (See the “Job Objects” section 

later in the chapter for a description of the job object.)

GetLogicalProcessorInformation Returns details about processor hardware configuration (for 

hyperthreaded and NUMA systems).

Get/SetThreadPriorityBoost Returns or sets the ability for Windows to boost the priority of 

a thread temporarily. (This ability applies only to threads in the 

dynamic range.)

SetThreadIdealProcessor Establishes a preferred processor for a particular thread, but 

doesn’t restrict the thread to that processor.
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API Function

Get/SetProcessPriorityBoost Returns or sets the default priority boost control state of the 

current process. (This function is used to set the thread priority 

boost control state when a thread is created.)

WaitForSingle/MultipleObject(s) Puts the current thread into a wait state until the specified 

object(s) is/are satisfied, or until the specified time interval (fig-

ured in milliseconds [msec]) expires, if given.

SwitchToThread Yields execution to another thread (at priority 1 or higher) that 

is ready to run on the current processor.

Sleep Puts the current thread into a wait state for a specified time in-

terval (figured in milliseconds [msec]). A zero value relinquishes 

the rest of the thread’s quantum.

SleepEx Causes the current thread to go into a wait state until either an 

I/O completion callback is completed, an APC is queued to the 

thread, or the specified time interval ends.

Relevant Tools

You can change (and view) the base process priority with Task Manager and Process Explorer. 

You can kill individual threads in a process with Process Explorer (which should be done, of 

course, with extreme care).

You can view individual thread priorities with the Reliability and Performance Monitor, 

Process Explorer, or WinDbg. While it might be useful to increase or lower the priority of a 

process, it typically does not make sense to adjust individual thread priorities within a pro-

cess because only a person who thoroughly understands the program (in other words, typi-

cally only the developer himself) would understand the relative importance of the threads 

within the process.

The only way to specify a starting priority class for a process is with the start command in the 

Windows command prompt. If you want to have a program start every time with a specific 

priority, you can define a shortcut to use the start command by beginning the command 

with cmd /c. This runs the command prompt, executes the command on the command line, 

and terminates the command prompt. For example, to run Notepad in the low-process prior-

ity, the shortcut would be cmd /c start /low Notepad.exe.
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EXPERIMENT: Examining and Specifying Process and 

Thread Priorities

Try the following experiment:

 1. From an elevated command prompt, type start /realtime notepad. Notepad 

should open.

 2. Run Process Explorer and select Notepad.exe from the list of processes. Double-

click on Notepad.exe to show the process properties window, and then click on 

the Threads tab, as shown here. Notice that the dynamic priority of the thread in 

Notepad is 24. This matches the real-time value shown in this image:

 3. Task Manager can show you similar information. Press Ctrl+Shift+Esc to start Task 

Manager, and go to the Processes tab. Right-click on the Notepad.exe process, 

and select the Set Priority option. You can see that Notepad’s process priority 

class is Realtime, as shown in the following dialog box.
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Windows System Resource Manager

Windows Server 2008 Enterprise Edition and Windows Server 2008 Datacenter Edition 

include an optionally installable component called Windows System Resource Manager 

(WSRM). It permits the administrator to configure policies that specify CPU utilization, 

affinity settings, and memory limits (both physical and virtual) for processes. In addi-

tion, WSRM can generate resource utilization reports that can be used for accounting 

and verification of service-level agreements with users.

Policies can be applied for specific applications (by matching the name of the image 

with or without specific command-line arguments), users, or groups. The policies can 

be scheduled to take effect at certain periods or can be enabled all the time.

After you have set a resource-allocation policy to manage specific processes, the WSRM 

service monitors CPU consumption of managed processes and adjusts process base 

priorities when those processes do not meet their target CPU allocations.
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The physical memory limitation uses the function SetProcessWorkingSetSizeEx to set a 

hard-working set maximum. The virtual memory limit is implemented by the service 

checking the private virtual memory consumed by the processes. (See Chapter 9 for an 

explanation of these memory limits.) If this limit is exceeded, WSRM can be configured 

to either kill the processes or write an entry to the Event Log. This behavior could be 

used to detect a process with a memory leak before it consumes all the available com-

mitted virtual memory on the system. Note that WSRM memory limits do not apply to 

Address Windowing Extensions (AWE) memory, large page memory, or kernel memory 

(nonpaged or paged pool).

Real-Time Priorities

You can raise or lower thread priorities within the dynamic range in any application; how-

ever, you must have the increase scheduling priority privilege to enter the real-time range. Be 

aware that many important Windows kernel-mode system threads run in the real-time prior-

ity range, so if threads spend excessive time running in this range, they might block critical 

system functions (such as in the memory manager, cache manager, or other device drivers).

Note As illustrated in the following figure showing the x86 interrupt request levels (IRQLs), 

although Windows has a set of priorities called real-time, they are not real-time in the common 

definition of the term. This is because Windows doesn’t provide true real-time operating system 

facilities, such as guaranteed interrupt latency or a way for threads to obtain a guaranteed execu-

tion time. For more information, see the sidebar “Windows and Real-Time Processing” in Chapter 

3 as well as the MSDN Library article “Real-Time Systems and Microsoft Windows NT.”

Interrupt Levels vs. Priority Levels

As illustrated in the following figure of the interrupt request levels (IRQLs) for a 32-bit 

system, threads normally run at IRQL 0 or 1. (For a description of how Windows uses 

interrupt levels, see Chapter 3.) User-mode code always runs at IRQL 0. Because of this, 

no user-mode thread, regardless of its priority, blocks hardware interrupts (although 

high-priority real-time threads can block the execution of important system threads). 

Only kernel-mode APCs execute at IRQL 1 because they interrupt the execution of a 

thread. (For more information on APCs, see Chapter 3.) Threads running in kernel mode 

can raise IRQL to higher levels, though—for example, while executing a system call that 

involves thread dispatching.
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Thread States

Before you can comprehend the thread-scheduling algorithms, you need to understand the 

various execution states that a thread can be in. Figure 5-14 illustrates the state transitions 

for threads. (The numeric values shown represent the value of the thread state performance 

counter.) More details on what happens at each transition are included later in this section.

The thread states are as follows:

Ready A thread in the ready state is waiting to execute. When looking for a thread to 

execute, the dispatcher considers only the pool of threads in the ready state.

Deferred ready This state is used for threads that have been selected to run on a spe-

cific processor but have not yet been scheduled. This state exists so that the kernel can 

minimize the amount of time the systemwide lock on the scheduling database is held.

Standby A thread in the standby state has been selected to run next on a particular 

processor. When the correct conditions exist, the dispatcher performs a context switch 

to this thread. Only one thread can be in the standby state for each processor on the 

system. Note that a thread can be preempted out of the standby state before it ever 

executes (if, for example, a higher priority thread becomes runnable before the standby 

thread begins execution).

Running Once the dispatcher performs a context switch to a thread, the thread enters 

the running state and executes. The thread’s execution continues until its quantum ends 

(and another thread at the same priority is ready to run), it is preempted by a higher 

priority thread, it terminates, it yields execution, or it voluntarily enters the wait state.
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Waiting A thread can enter the wait state in several ways: a thread can voluntarily 

wait for an object to synchronize its execution, the operating system can wait on the 

thread’s behalf (such as to resolve a paging I/O), or an environment subsystem can 

direct the thread to suspend itself. When the thread’s wait ends, depending on the pri-

ority, the thread either begins running immediately or is moved back to the ready state.

Gate Waiting When a thread does a wait on a gate dispatcher object (see Chapter 

3 for more information on gates), it enters the gate waiting state instead of the wait-

ing state. This difference is important when breaking a thread’s wait as the result of 

an APC. Because gates don’t use the dispatcher lock, but a per-object lock, the kernel 

needs to perform some unique locking operations when breaking the wait of a thread 

waiting on a gate and a way to differentiate this from a normal wait.

Transition A thread enters the transition state if it is ready for execution but its kernel 

stack is paged out of memory. Once its kernel stack is brought back into memory, the 

thread enters the ready state.

Terminated When a thread finishes executing, it enters the terminated state. Once 

the thread is terminated, the executive thread block (the data structure in nonpaged 

pool that describes the thread) might or might not be deallocated. (The object man-

ager sets policy regarding when to delete the object.)

Initialized This state is used internally while a thread is being created.

Ready (1)

Deferred
ready (7) Running (2)

voluntary
switch

preemption,
quantum end

Init (0)

Terminate (4)Transition (6)

Standby (3)preempt

Waiting (5) or
Gate waiting (8)

FIGURE 5-14 Thread states and transitions
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EXPERIMENT: Thread-Scheduling State Changes

You can watch thread-scheduling state changes with the Performance tool in Windows. 

This utility can be useful when you’re debugging a multithreaded application and 

you’re unsure about the state of the threads running in the process. To watch thread-

scheduling state changes by using the Performance tool, follow these steps:

 1. Run Notepad (Notepad.exe).

 2. Start the Performance tool by selecting Programs from the Start menu and then 

selecting Reliability and Performance Monitor from the Administrative Tools 

menu. Click on the Performance Monitor entry under Monitoring Tools.

 3. Select chart view if you’re in some other view.

 4. Right-click on the graph, and choose Properties.

 5. Click the Graph tab, and change the chart vertical scale maximum to 7. (As you’ll 

see from the explanation text for the performance counter, thread states are 

numbered from 0 through 7.) Click OK.

 6. Click the Add button on the toolbar to bring up the Add Counters dialog box.

 7. Select the Thread performance object, and then select the Thread State counter. 

Select the Show Description check box to see the definition of the values:

 8. In the Instances box, select <All instances> and click Search. Scroll down until you 

see the Notepad process (notepad/0); select it, and click the Add button.

 9. Scroll back up in the Instances box to the Mmc process (the Microsoft 

Management Console process running the System Monitor), select all the threads 

(mmc/0, mmc/1, and so on), and add them to the chart by clicking the Add but-

ton. Before you click Add, you should see something like the following dialog box.
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 10. Now close the Add Counters dialog box by clicking OK

 11. You should see the state of the Notepad thread (the very top line in the following 

figure) as a 5, which, as shown in the explanation text you saw under step 7, rep-

resents the waiting state (because the thread is waiting for GUI input):
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 12. Notice that one thread in the Mmc process (running the Performance tool snap-

in) is in the running state (number 2). This is the thread that’s querying the thread 

states, so it’s always displayed in the running state.

 13. You’ll never see Notepad in the running state (unless you’re on a multiprocessor 

system) because Mmc is always in the running state when it gathers the state of 

the threads you’re monitoring.

Dispatcher Database

To make thread-scheduling decisions, the kernel maintains a set of data structures known 

collectively as the dispatcher database, illustrated in Figure 5-15. The dispatcher database 

keeps track of which threads are waiting to execute and which processors are executing 

which threads.

To improve scalability, including thread-dispatching concurrency, Windows multiprocessor 

systems have per-processor dispatcher ready queues, as illustrated in Figure 5-15. In this way 

each CPU can check its own ready queues for the next thread to run without having to lock 

the systemwide ready queues. (Versions of Windows before Windows Server 2003 used a 

global database).

The per-processor ready queues, as well as the per-processor ready summary, are part of the 

processor control block (PRCB) structure. (To see the fields in the PRCB, type dt nt!_prcb in 

the kernel debugger.) The names of each component that we will talk about (in italics) are 

field members of the PRCB structure.

The dispatcher ready queues (DispatcherReadyListHead) contain the threads that are in the 

ready state, waiting to be scheduled for execution. There is one queue for each of the 32 pri-

ority levels. To speed up the selection of which thread to run or preempt, Windows maintains 

a 32-bit bit mask called the ready summary (ReadySummary). Each bit set indicates one or 

more threads in the ready queue for that priority level. (Bit 0 represents priority 0, and so on.) 

Instead of scanning each ready list to see whether it is empty or not (which would make 

scheduling decisions dependent on the number of different priority threads), a single bit scan 

is performed as a native processor command to find the highest bit set. Regardless of the 

number of threads in the ready queue, this operation takes a constant amount of time, which 

is why you may sometimes see the Windows scheduling algorithm referred to as an O(1), or 

constant time, algorithm.
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FIGURE 5-15 Windows multiprocessor dispatcher database

Table 5-16 lists the KPRCB fields involved in thread scheduling.

TABLE 5-16 Thread-Scheduling KPRCB Fields

KPRCB Field Type Description

ReadySummary Bitmask (32 bits) Bitmask of priority levels that have 

one or more ready threads

DeferredReadyListHead Singly linked list Single list head for the deferred 

ready queue

DispatcherReadyListHead Array of 32 list entries List heads for the 32 ready queues

The dispatcher database is synchronized by raising IRQL to SYNCH_LEVEL (which is defined 

as level 2). (For an explanation of interrupt priority levels, see the “Trap Dispatching” sec-

tion in Chapter 3.) Raising IRQL in this way prevents other threads from interrupting thread 

dispatching on the processor because threads normally run at IRQL 0 or 1. However, on 

a multiprocessor system, more is required than just raising IRQL because other proces-

sors can simultaneously raise to the same IRQL and attempt to operate on the dispatcher 

database. How Windows synchronizes access to the dispatcher database is explained in the 

“Multiprocessor Systems” section later in the chapter.
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Quantum

As mentioned earlier in the chapter, a quantum is the amount of time a thread gets to run 

before Windows checks to see whether another thread at the same priority is waiting to run. 

If a thread completes its quantum and there are no other threads at its priority, Windows 

permits the thread to run for another quantum.

On Windows Vista, threads run by default for 2 clock intervals; on Windows Server systems, 

by default, a thread runs for 12 clock intervals. (We’ll explain how you can change these val-

ues later.) The rationale for the longer default value on server systems is to minimize context 

switching. By having a longer quantum, server applications that wake up as the result of a cli-

ent request have a better chance of completing the request and going back into a wait state 

before their quantum ends.

The length of the clock interval varies according to the hardware platform. The frequency 

of the clock interrupts is up to the HAL, not the kernel. For example, the clock interval 

for most x86 uniprocessors is about 10 milliseconds, and for most x86 and x64 multi-

processors it is about 15 milliseconds. This clock interval is stored in the kernel variable 

KeMaximumIncrement as hundreds of nanoseconds.

Because of changes in thread run-time accounting in Windows Vista (briefly mentioned ear-

lier in the thread activity experiment), although threads still run in units of clock intervals, the 

system does not use the count of clock ticks as the deciding factor for how long a thread has 

run and whether its quantum has expired. Instead, when the system starts up, a calculation 

is made whose result is the number of clock cycles that each quantum is equivalent to (this 

value is stored in the kernel variable KiCyclesPerClockQuantum). This calculation is made by 

multiplying the processor speed in Hz (CPU clock cycles per second) with the number of sec-

onds it takes for one clock tick to fire (based on the KeMaximumIncrement value described 

above).

The end result of this new accounting method is that, as of Windows Vista, threads do not 

actually run for a quantum number based on clock ticks; they instead run for a quantum 
target, which represents an estimate of what the number of CPU clock cycles the thread has 

consumed should be when its turn would be given up. This target should be equal to an 

equivalent number of clock interval timer ticks because, as we’ve just seen, the calculation of 

clock cycles per quantum is based on the clock interval timer frequency, which you can check 

using the following experiment. On the other hand, because interrupt cycles are not charged 

to the thread, the actual clock time may be longer.
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EXPERIMENT: Determining the Clock Interval Frequency

The Windows GetSystemTimeAdjustment function returns the clock interval. To deter-

mine the clock interval, download and run the Clockres program from Windows 

Sysinternals (www.microsoft.com/technet/sysinternals). Here’s the output from a dual-

core 32-bit Windows Vista system:

C:\>clockres 

 

ClockRes - View the system clock resolution 

By Mark Russinovich 

SysInternals - www.sysinternals.com 

 

The system clock interval is 15.600100 ms

Quantum Accounting

Each process has a quantum reset value in the kernel process block. This value is used when 

creating new threads inside the process and is duplicated in the kernel thread block, which 

is then used when giving a thread a new quantum target. The quantum reset value is stored 

in terms of actual quantum units (we’ll discuss what these mean soon), which are then multi-

plied by the number of clock cycles per quantum, resulting in the quantum target.

As a thread runs, CPU clock cycles are charged at different events (context switches, inter-

rupts, and certain scheduling decisions). If at a clock interval timer interrupt, the number of 

CPU clock cycles charged has reached (or passed) the quantum target, then quantum end 

processing is triggered. If there is another thread at the same priority waiting to run, a con-

text switch occurs to the next thread in the ready queue. 

Internally, a quantum unit is represented as one third of a clock tick (so one clock tick equals 

three quantums). This means that on Windows Vista systems, threads, by default, have a 

quantum reset value of 6 (2 * 3), and that Windows Server 2008 systems have a quantum 

reset value of 36 (12 * 3). For this reason, the KiCyclesPerClockQuantum value is divided 

by three at the end of the calculation previously described, since the original value would 

describe only CPU clock cycles per clock interval timer tick.

The reason a quantum was stored internally as a fraction of a clock tick rather than as 

an entire tick was to allow for partial quantum decay on wait completion on versions of 

Windows prior to Windows Vista. Prior versions used the clock interval timer for quantum 

expiration. If this adjustment were not made, it would have been possible for threads never 

to have their quantums reduced. For example, if a thread ran, entered a wait state, ran again, 

and entered another wait state but was never the currently running thread when the clock 

interval timer fired, it would never have its quantum charged for the time it was running. 

Because threads now have CPU clock cycles charged instead of quantums, and because this 

no longer depends on the clock interval timer, these adjustments are not required.
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EXPERIMENT: Determining the Clock Cycles per Quantum

Windows doesn’t expose the number of clock cycles per quantum through any func-

tion, but with the calculation and description we’ve given, you should be able to 

determine this on your own using the following steps and a kernel debugger such as 

WinDbg in local debugging mode.

 1. Obtain your processor frequency as Windows has detected it. You can use the 

value stored in the PRCB’s MHz field, which can be displayed with the !cpuinfo 

command. Here is a sample output of a dual-core Intel system running at 2829 

MHz.

lkd> !cpuinfo 

CP  F/M/S Manufacturer  MHz PRCB Signature    MSR 8B Signature Features 

 0  6,15,6 GenuineIntel 2829 000000c700000000 >000000c700000000<a00f3fff 

 1  6,15,6 GenuineIntel 2829 000000c700000000                   a00f3fff 

                      Cached Update Signature 000000c700000000 

                     Initial Update Signature 000000c700000000

 2. Convert the number to Hertz (Hz). This is the number of CPU clock cycles that 

occur each second on your system. In this case, 2,829,000,000 cycles per second.

 3. Obtain the clock interval on your system by using clockres. This measures how 

long it takes before the clock fires. On the sample system used here, this interval 

was 15.600100 ms.

 4. Convert this number to the number of times the clock interval timer fires each 

second. One second is 1000 ms, so divide the number derived in step 3 by 1000. 

In this case, the timer fires every 0.0156001 second.

 5.  Multiply this count by the number of cycles each second that you obtained in 

step 2. In our case, 44,132,682.9 cycles have elapsed after each clock interval.

 6.  Remember that each quantum unit is one-third of a clock interval, so divide the 

number of cycles by three. In our example, this gives us 14,710,894, or 0xE0786E 

in hexidecimal. This is the number of clock cycles each quantum unit should take 

on a system running at 2829 MHz with a clock interval of around 15 ms.

 7.  To verify your calculation, dump the value of KiCyclesPerClockQuantum on your 

system—it should match.

lkd> dd nt!KiCyclesPerClockQuantum l1 

81d31ae8  00e0786e

Controlling the Quantum

You can change the thread quantum for all processes, but you can choose only one of two 

settings: short (2 clock ticks, the default for client machines) or long (12 clock ticks, the 

default for server systems).
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Note By using the job object on a system running with long quantums, you can select other 

quantum values for the processes in the job. For more information on the job object, see the “Job 

Objects” section later in the chapter.

To change this setting, right-click on your computer name’s icon on the desktop, choose 

Properties, click the Advanced System Settings label, select the Advanced tab, click the 

Settings button in the Performance section, and finally click the Advanced tab. The dialog 

box displayed is shown in Figure 5-16.

FIGURE 5-16 Quantum configuration in the Performance Options dialog box

The Programs setting designates the use of short, variable quantums—the default for 

Windows Vista. If you install Terminal Services on Windows Server 2008 systems and con-

figure the server as an application server, this setting is selected so that the users on the 

terminal server will have the same quantum settings that would normally be set on a desktop 

or client system. You might also select this manually if you were running Windows Server as 

your desktop operating system.

The Background Services option designates the use of long, fixed quantums—the default for 

Windows Server 2008 systems. The only reason you might select this option on a workstation 

system is if you were using the workstation as a server system.
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One additional difference between the Programs and Background Services settings is the 

effect they have on the quantum of the threads in the foreground process. This is explained 

in the next section.

Quantum Boosting

When a window is brought into the foreground on a client system, all the threads in the pro-

cess containing the thread that owns the foreground window have their quantums tripled. 

Thus, threads in the foreground process run with a quantum of 6 clock ticks, whereas threads 

in other processes have the default client quantum of 2 clock ticks. In this way, when you 

switch away from a CPU-intensive process, the new foreground process will get proportion-

ally more of the CPU, because when its threads run they will have a longer turn than back-

ground threads (again, assuming the thread priorities are the same in both the foreground 

and background processes).

Note that this adjustment of quantums applies only to processes with a priority higher than 

Idle on systems configured to Programs in the Performance Options settings described in the 

previous section. Thread quantums are not changed for the foreground process on systems 

configured to Background Services (the default on Windows Server 2008 systems).

Quantum Settings Registry Value

The user interface to control quantum settings described earlier modifies the registry value 

HKLM\SYSTEM\CurrentControlSet\Control\PriorityControl\Win32PrioritySeparation. In addi-

tion to specifying the relative length of thread quantums (short or long), this registry value 

also defines whether or not threads in the foreground process should have their quantums 

boosted (and if so, the amount of the boost). This value consists of 6 bits divided into the 

three 2-bit fields shown in Figure 5-17.

FIGURE 5-17 Fields of the Win32PrioritySeparation registry value

The fields shown in Figure 5-17 can be defined as follows:

Short vs. Long A setting of 1 specifies long, and 2 specifies short. A setting of 0 or 

3 indicates that the default will be used (short for Windows Vista, long for Windows 

Server 2008 systems).

Variable vs. Fixed A setting of 1 means to vary the quantum for the foreground pro-

cess, and 2 means that quantum values don’t change for foreground processes. A set-

ting of 0 or 3 means that the default (which is variable for Windows Vista and fixed for 

Windows Server 2008 systems) will be used.
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Foreground Quantum Boost This field (stored in the kernel variable 

PsPrioritySeperation) must have a value of 0, 1, or 2. (A setting of 3 is invalid 

and treated as 2.) It is used as an index into a three-element byte array named 

PspForegroundQuantum to obtain the quantum for the threads in the foreground pro-

cess. The quantum for threads in background processes is taken from the first entry in 

this quantum table. Table 5-17 shows the possible settings for PspForegroundQuantum.

TABLE 5-17 Quantum Values

Short Long

Variable  6 12 18 12 24 36

Fixed 18 18 18 36 36 36

Note that when you’re using the Performance Options dialog box described earlier, you can 

choose from only two combinations: short quantums with foreground quantums tripled, or 

long quantums with no quantum changes for foreground threads. However, you can select 

other combinations by modifying the Win32PrioritySeparation registry value directly.

EXPERIMENT: Effects of Changing the Quantum Configuration

Using a local debugger (Kd or WinDbg), you can see how the two quantum configura-

tion settings, Programs and Background Services, affect the PsPrioritySeperation and 

PspForegroundQuantum tables, as well as modify the QuantumReset value of threads 

on the system. Take the following steps:

 1. Open the System utility in Control Panel (or right-click on your computer name’s 

icon on the desktop, and choose Properties). Click the Advanced System Settings 

label, select the Advanced tab, click the Settings button in the Performance sec-

tion, and finally click the Advanced tab. Select the Programs option and click 

Apply. Keep this window open for the duration of the experiment.

 2. Dump the values of PsPrioritySeperation (this is a deliberate misspelling inside the 

Windows kernel, not an error in this book) and PspForegroundQuantum, as shown 

here. The values shown are what you should see on a Windows Vista system after 

making the change in step 1. Notice how the variable, short quantum table is 

being used, and that a priority boost of 2 will apply to foreground applications.

lkd> dd PsPrioritySeperation l1 

81d3101c  00000002 

lkd> db PspForegroundQuantum l3 

81d0946c  06 0c 12                                         ...
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 3. Now take a look at the QuantumReset value of any process on the system. As 

described earlier, this is the default, full quantum of each thread on the system 

when it is replenished. This value is cached into each thread of the process, 

but the KPROCESS structure is easier to look at. Notice in this case it is 6, since 

WinDbg, like most other applications, gets the quantum set in the first entry of 

the PspForegroundQuantum table.

lkd> .process 

Implicit process is now 85b32d90 

lkd> dt _KPROCESS 85b32d90 

nt!_KPROCESS 

   +0x000 Header           : _DISPATCHER_HEADER 

   +0x010 ProfileListHead  : _LIST_ENTRY [ 0x85b32da0 - 0x85b32da0 ] 

   +0x018 DirectoryTableBase : 0xb45b0880 

   +0x01c Unused0          : 0 

   +0x020 LdtDescriptor    : _KGDTENTRY 

   +0x028 Int21Descriptor  : _KIDTENTRY 

   +0x030 IopmOffset       : 0x20ac 

   +0x032 Iopl             : 0 '' 

   +0x033 Unused           : 0 '' 

   +0x034 ActiveProcessors : 1 

   +0x038 KernelTime       : 0 

   +0x03c UserTime         : 0 

   +0x040 ReadyListHead    : _LIST_ENTRY [ 0x85b32dd0 - 0x85b32dd0 ] 

   +0x048 SwapListEntry    : _SINGLE_LIST_ENTRY 

   +0x04c VdmTrapcHandler  : (null)  

   +0x050 ThreadListHead   : _LIST_ENTRY [ 0x861e7e0c - 0x8620637c ] 

   +0x058 ProcessLock      : 0 

   +0x05c Affinity         : 3 

   +0x060 AutoAlignment    : 0y0 

   +0x060 DisableBoost     : 0y0 

   +0x060 DisableQuantum   : 0y0 

   +0x060 ReservedFlags    : 0y00000000000000000000000000000 (0) 

   +0x060 ProcessFlags     : 0 

   +0x064 BasePriority     : 8 '' 

   +0x065 QuantumReset     : 6 ''

 4. Now change the Performance option to Background Services in the dialog box 

you opened in step 1.

 5. Repeat the commands shown in steps 2 and 3. You should see the values change 

in a manner consistent with our discussion in this section:

lkd> dd PsPrioritySeperation L1 

81d3101c  00000000 

lkd> db PspForegroundQuantum l 3 

81d0946c  24 24 24                                         $$$ 

lkd> dt _KPROCESS 85b32d90 

nt!_KPROCESS 

   +0x000 Header           : _DISPATCHER_HEADER 

   +0x010 ProfileListHead  : _LIST_ENTRY [ 0x85b32da0 - 0x85b32da0 ] 

   +0x018 DirectoryTableBase : 0xb45b0880 

   +0x01c Unused0          : 0 
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   +0x020 LdtDescriptor    : _KGDTENTRY 

   +0x028 Int21Descriptor  : _KIDTENTRY 

   +0x030 IopmOffset       : 0x20ac 

   +0x032 Iopl             : 0 '' 

   +0x033 Unused           : 0 '' 

   +0x034 ActiveProcessors : 1 

   +0x038 KernelTime       : 0 

   +0x03c UserTime         : 0 

   +0x040 ReadyListHead    : _LIST_ENTRY [ 0x85b32dd0 - 0x85b32dd0 ] 

   +0x048 SwapListEntry    : _SINGLE_LIST_ENTRY 

   +0x04c VdmTrapcHandler  : (null)  

   +0x050 ThreadListHead   : _LIST_ENTRY [ 0x861e7e0c - 0x860c14f4 ] 

   +0x058 ProcessLock      : 0 

   +0x05c Affinity         : 3 

   +0x060 AutoAlignment    : 0y0 

   +0x060 DisableBoost     : 0y0 

   +0x060 DisableQuantum   : 0y0 

   +0x060 ReservedFlags    : 0y00000000000000000000000000000 (0) 

   +0x060 ProcessFlags     : 0 

   +0x064 BasePriority     : 8 '' 

   +0x065 QuantumReset     : 36 '$'

Scheduling Scenarios

Windows bases the question of “Who gets the CPU?” on thread priority; but how does this 

approach work in practice? The following sections illustrate just how priority-driven preemp-

tive multitasking works on the thread level.

Voluntary Switch

First a thread might voluntarily relinquish use of the processor by entering a wait state on 

some object (such as an event, a mutex, a semaphore, an I/O completion port, a process, a 

thread, a window message, and so on) by calling one of the Windows wait functions (such 

as WaitForSingleObject or WaitForMultipleObjects). Waiting for objects is described in more 

detail in Chapter 3.

Figure 5-18 illustrates a thread entering a wait state and Windows selecting a new thread 

to run.

In Figure 5-18, the top block (thread) is voluntarily relinquishing the processor so that the 

next thread in the ready queue can run (as represented by the halo it has when in the 

Running column). Although it might appear from this figure that the relinquishing thread’s 

priority is being reduced, it’s not—it’s just being moved to the wait queue of the objects the 

thread is waiting for. 
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FIGURE 5-18 Voluntary switching

Preemption

In this scheduling scenario, a lower-priority thread is preempted when a higher-priority 

thread becomes ready to run. This situation might occur for a couple of reasons:

A higher-priority thread’s wait completes. (The event that the other thread was waiting 

for has occurred.)

A thread priority is increased or decreased.

In either of these cases, Windows must determine whether the currently running thread 

should still continue to run or whether it should be preempted to allow a higher-priority 

thread to run.

Note Threads running in user mode can preempt threads running in kernel mode—the mode in 

which the thread is running doesn’t matter. The thread priority is the determining factor.

When a thread is preempted, it is put at the head of the ready queue for the priority it was 

running at. Figure 5-19 illustrates this situation.

In Figure 5-19, a thread with priority 18 emerges from a wait state and repossesses the CPU, 

causing the thread that had been running (at priority 16) to be bumped to the head of the 

ready queue. Notice that the bumped thread isn’t going to the end of the queue but to the 

beginning; when the preempting thread has finished running, the bumped thread can com-

plete its quantum.
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FIGURE 5-19 Preemptive thread scheduling

Quantum End

When the running thread exhausts its CPU quantum, Windows must determine whether the 

thread’s priority should be decremented and then whether another thread should be sched-

uled on the processor.

If the thread priority is reduced, Windows looks for a more appropriate thread to schedule. 

(For example, a more appropriate thread would be a thread in a ready queue with a higher 

priority than the new priority for the currently running thread.) If the thread priority isn’t 

reduced and there are other threads in the ready queue at the same priority level, Windows 

selects the next thread in the ready queue at that same priority level and moves the previ-

ously running thread to the tail of that queue (giving it a new quantum value and changing 

its state from running to ready). This case is illustrated in Figure 5-20. If no other thread of 

the same priority is ready to run, the thread gets to run for another quantum.

FIGURE 5-20 Quantum end thread scheduling
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As we’ve seen, instead of simply relying on a clock interval timer–based quantum to schedule 

threads, Windows uses an accurate CPU clock cycle count to maintain quantum targets. One 

factor we haven’t yet mentioned is that Windows also uses this count to determine whether 

quantum end is currently appropriate for the thread—something that may have happened 

previously and is important to discuss.

Under the scheduling model prior to Windows Vista, which relied only on the clock interval 

timer, the following situation could occur:

Threads A and B become ready to run during the middle of an interval (scheduling 

code runs not just at each clock interval, so this is often the case).

Thread A starts running but is interrupted for a while. The time spent handling the 

interrupt is charged to the thread.

Interrupt processing finishes, thread A starts running again, but it quickly hits the next 

clock interval. The scheduler can only assume that thread A had been running all this 

time and now switches to thread B.

Thread B starts running and has a chance to run for a full clock interval (barring pre-

emption or interrupt handling).

In this scenario, thread A was unfairly penalized in two different ways. First of all, the time 

that it had to spend handling a device interrupt was accounted to its own CPU time, even 

though the thread had probably nothing to do with the interrupt. (Recall that interrupts 

are handled in the context of whichever thread had been running at the time.) It was also 

unfairly penalized for the time the system was idling inside that clock interval before it was 

scheduled.

Figure 5-21 represents this scenario.

Threads A and B
become ready to run

Interval 2Interval 1

Thread A

Idle Thread B

Interrupt

FIGURE 5-21 Unfair time slicing in previous versions of Windows

Because Windows keeps an accurate count of the exact number of CPU clock cycles spent 

doing work that the thread was scheduled to do (which means excluding interrupts), and 

because it keeps a quantum target of clock cycles that should have been spent by the thread 

at the end of its quantum, both of the unfair decisions that would have been made against 

thread A will not happen in Windows.
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Instead, the following situation will occur:

Threads A and B become ready to run during the middle of an interval.

Thread A starts running but is interrupted for a while. The CPU clock cycles spent han-

dling the interrupt are not charged to the thread.

Interrupt processing finishes, thread A starts running again, but it quickly hits the 

next clock interval. The scheduler looks at the number of CPU clock cycles that have 

been charged to the thread and compares them to the expected CPU clock cycles that 

should have been charged at quantum end. 

Because the former number is much smaller than it should be, the scheduler assumes 

that thread A started running in the middle of a clock interval and may have addition-

ally been interrupted.

Thread A gets its quantum increased by another clock interval, and the quantum target 

is recalculated. Thread A now has its chance to run for a full clock interval.

At the next clock interval, thread A has finished its quantum, and thread B now gets a 

chance to run.

Figure 5-22 represents this scenario.

Threads A and B
become ready to run

Interval 2Interval 1 Interval 3

Interrupt

Idle Thread A Thread B

FIGURE 5-22 Fair time slicing in current versions of Windows

Termination

When a thread finishes running (either because it returned from its main routine, called 

ExitThread, or was killed with TerminateThread), it moves from the running state to the termi-

nated state. If there are no handles open on the thread object, the thread is removed from 

the process thread list and the associated data structures are deallocated and released.
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Context Switching

A thread’s context and the procedure for context switching vary depending on the proces-

sor’s architecture. A typical context switch requires saving and reloading the following data:

Instruction pointer

Kernel stack pointer

A pointer to the address space in which the thread runs (the process’s page table 

directory)

The kernel saves this information from the old thread by pushing it onto the current (old 

thread’s) kernel-mode stack, updating the stack pointer, and saving the stack pointer in the 

old thread’s KTHREAD block. The kernel stack pointer is then set to the new thread’s kernel 

stack, and the new thread’s context is loaded. If the new thread is in a different process, 

it loads the address of its page table directory into a special processor register so that its 

address space is available. (See the description of address translation in Chapter 9.) If a kernel 

APC that needs to be delivered is pending, an interrupt at IRQL 1 is requested. Otherwise, 

control passes to the new thread’s restored instruction pointer and the new thread resumes 

execution.

Idle Thread

When no runnable thread exists on a CPU, Windows dispatches the per-CPU idle thread. Each 

CPU is allotted one idle thread because on a multiprocessor system one CPU can be execut-

ing a thread while other CPUs might have no threads to execute.

Various Windows process viewer utilities report the idle process using different names. 

Task Manager and Process Explorer call it “System Idle Process,” while Tlist calls it “System 

Process.” If you look at the EPROCESS structure’s ImageFileName member, you’ll see the 

internal name for the process is “Idle.” Windows reports the priority of the idle thread as 0 

(15 on x64 systems). In reality, however, the idle threads don’t have a priority level because 

they run only when there are no real threads to run—they are not scheduled and never part 

of any ready queues. (Remember, only one thread per Windows system is actually running at 

priority 0—the zero page thread, explained in Chapter 9.)

Apart from priority, there are many other fields in the idle process or its threads that may be 

reported as 0. This occurs because the idle process is not an actual full-blown object man-

ager process object, and neither are its idle threads. Instead, the initial idle thread and idle 

process objects are statically allocated and used to bootstrap the system before the process 

manager initializes. Subsequent idle thread structures are allocated dynamically as additional 

processors are brought online. Once process management initializes, it uses the special vari-

able PsIdleProcess to refer to the idle process.
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Apart from some critical fields provided so that these threads and their process can have a 

PID and name, everything else is ignored, which means that query APIs may simply return 

zeroed data.

The idle loop runs at DPC/dispatch level, polling for work to do, such as delivering deferred 

procedure calls (DPCs) or looking for threads to dispatch to. Although some details of the 

flow vary between architectures, the basic flow of control of the idle thread is as follows:

 1. Enables and disables interrupts (allowing any pending interrupts to be delivered).

 2. Checks whether any DPCs (described in Chapter 3) are pending on the processor. 

If DPCs are pending, clears the pending software interrupt and delivers them. (This 

will also perform timer expiration, as well as deferred ready processing. The latter is 

explained in the upcoming multiprocessor scheduling section.)

 3. Checks whether a thread has been selected to run next on the processor, and if so, dis-

patches that thread.

 4. Calls the registered power management processor idle routine (in case any power 

management functions need to be performed), which is either in the processor power 

driver (such as intelppm.sys) or in the HAL if such a driver is unavailable.

 5. On debug systems, checks if there is a kernel debugger trying to break into the system 

and gives it access.

 6. If requested, checks for threads waiting to run on other processors and schedules them 

locally. (This operation is also explained in the upcoming multiprocessor scheduling 

section.)

Priority Boosts

In six cases, the Windows scheduler can boost (increase) the current priority value of threads:

On completion of I/O operations

After waiting for executive events or semaphores

When a thread has been waiting on an executive resource for too long

After threads in the foreground process complete a wait operation

When GUI threads wake up because of windowing activity

When a thread that’s ready to run hasn’t been running for some time (CPU starvation)

The intent of these adjustments is to improve overall system throughput and responsiveness 

as well as resolve potentially unfair scheduling scenarios. Like any scheduling algorithms, 

however, these adjustments aren’t perfect, and they might not benefit all applications.
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Note Windows never boosts the priority of threads in the real-time range (16 through 31). 

Therefore, scheduling is always predictable with respect to other threads in the real-time range. 

Windows assumes that if you’re using the real-time thread priorities, you know what you’re 

doing.

Windows Vista adds one more scenario in which a priority boost can occur, multimedia play-

back. Unlike the other priority boosts, which are applied directly by kernel code, multimedia 

playback boosts are managed by a user-mode service called the MultiMedia Class Scheduler 

Service (MMCSS). (Although the boosts are still done in kernel mode, the request to boost 

the threads is managed by this user-mode service.) We’ll first cover the typical kernel-

 managed priority boosts and then talk about MMCSS and the kind of boosting it performs.

Priority Boosting after I/O Completion

Windows gives temporary priority boosts upon completion of certain I/O operations so 

that threads that were waiting for an I/O will have more of a chance to run right away and 

process whatever was being waited for. Recall that 1 quantum unit is deducted from the 

thread’s remaining quantum when it wakes up so that I/O bound threads aren’t unfairly 

favored. Although you’ll find recommended boost values in the Windows Driver Kit (WDK) 

header files (by searching for “#define IO” in Wdm.h or Ntddk.h), the actual value for the 

boost is up to the device driver. (These values are listed in Table 5-18.) It is the device driver 

that specifies the boost when it completes an I/O request on its call to the kernel function 

IoCompleteRequest. In Table 5-18, notice that I/O requests to devices that warrant better 

responsiveness have higher boost values.

TABLE 5-18 Recommended Boost Values

Device Boost

Disk, CD-ROM, parallel, video 1

Network, mailslot, named pipe, serial 2

Keyboard, mouse 6

Sound 8

The boost is always applied to a thread’s current priority, not its base priority. As illustrated 

in Figure 5-23, after the boost is applied, the thread gets to run for one quantum at the 

elevated priority level. After the thread has completed its quantum, it decays one priority 

level and then runs another quantum. This cycle continues until the thread’s priority level 

has decayed back to its base priority. A thread with a higher priority can still preempt the 

boosted thread, but the interrupted thread gets to finish its time slice at the boosted priority 

level before it decays to the next lower priority.
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FIGURE 5-23 Priority boosting and decay

As noted earlier, these boosts apply only to threads in the dynamic priority range (0 through 

15). No matter how large the boost is, the thread will never be boosted beyond level 15 into 

the real-time priority range. In other words, a priority 14 thread that receives a boost of 5 will 

go up to priority 15. A priority 15 thread that receives a boost will remain at priority 15.

Boosts After Waiting for Events and Semaphores

When a thread that was waiting for an executive event or a semaphore object has its wait 

satisfied (because of a call to the function SetEvent, PulseEvent, or ReleaseSemaphore), it 

receives a boost of 1. (See the value for EVENT_ INCREMENT and SEMAPHORE_INCREMENT 

in the WDK header files.) Threads that wait for events and semaphores warrant a boost for 

the same reason that threads that wait for I/O operations do—threads that block on events 

are requesting CPU cycles less frequently than CPU-bound threads. This adjustment helps 

balance the scales.

This boost operates the same as the boost that occurs after I/O completion, as described in 

the previous section:

The boost is always applied to the base priority (not the current priority).

The priority will never be boosted above 15.

The thread gets to run at the elevated priority for its remaining quantum (as described 

earlier, quantums are reduced by 1 when threads exit a wait) before decaying one pri-

ority level at a time until it reaches its original base priority.

A special boost is applied to threads that are awoken as a result of setting an event with 

the special functions NtSetEventBoostPriority (used in Ntdll.dll for critical sections) and 

KeSetEventBoostPriority (used for executive resources) or if a signaling gate is used (such as 

with pushlocks). If a thread waiting for an event is woken up as a result of the special event 
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boost function and its priority is 13 or below, it will have its priority boosted to be the setting 

thread’s priority plus one. If its quantum is less than 4 quantum units, it is set to 4 quantum 

units. This boost is removed at quantum end.

Boosts During Waiting on Executive Resources

When a thread attempts to acquire an executive resource (ERESOURCE; see Chapter 3 for 

more information on kernel synchronization objects) that is already owned exclusively by 

another thread, it must enter a wait state until the other thread has released the resource. To 

avoid deadlocks, the executive performs this wait in intervals of five seconds instead of doing 

an infinite wait on the resource. 

At the end of these five seconds, if the resource is still owned, the executive will attempt 

to prevent CPU starvation by acquiring the dispatcher lock, boosting the owning thread or 

threads, and performing another wait. Because the dispatcher lock is held and the thread’s 

WaitNext flag is set to TRUE, this ensures a consistent state during the boosting process until 

the next wait is done.

This boost operates in the following manner:

The boost is always applied to the base priority (not the current priority) of the owner 

thread.

The boost raises priority to 14.

The boost is only applied if the owner thread has a lower priority than the waiting 

thread, and only if the owner thread’s priority isn’t already 14.

The quantum of the thread is reset so that the thread gets to run at the elevated prior-

ity for a full quantum, instead of only the quantum it had left. Just like other boosts, at 

each quantum end, the priority boost will slowly decrease by one level.

Because executive resources can be either shared or exclusive, the kernel will first boost the 

exclusive owner and then check for shared owners and boost all of them. When the waiting 

thread enters the wait state again, the hope is that the scheduler will schedule one of the 

owner threads, which will have enough time to complete its work and release the resource. 

It’s important to note that this boosting mechanism is used only if the resource doesn’t have 

the Disable Boost flag set, which developers can choose to set if the priority inversion mech-

anism described here works well with their usage of the resource. 

Additionally, this mechanism isn’t perfect. For example, if the resource has multiple shared 

owners, the executive will boost all those threads to priority 14, resulting in a sudden surge 

of high-priority threads on the system, all with full quantums. Although the exclusive thread 

will run first (since it was the first to be boosted and therefore first on the ready list), the 

other shared owners will run next, since the waiting thread’s priority was not boosted. Only 

until after all the shared owners have gotten a chance to run and their priority decreased 
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below the waiting thread will the waiting thread finally get its chance to acquire the resource. 

Because shared owners can promote or convert their ownership from shared to exclusive 

as soon as the exclusive owner releases the resource, it’s possible for this mechanism not to 

work as intended.

Priority Boosts for Foreground Threads After Waits

Whenever a thread in the foreground process completes a wait operation on a kernel object, 

the kernel function KiUnwaitThread boosts its current (not base) priority by the current 

value of PsPrioritySeperation. (The windowing system is responsible for determining which 

process is considered to be in the foreground.) As described in the section on quantum con-

trols, PsPrioritySeperation reflects the quantum-table index used to select quantums for the 

threads of foreground applications. However, in this case, it is being used as a priority boost 

value.

The reason for this boost is to improve the responsiveness of interactive applications—by 

giving the foreground application a small boost when it completes a wait, it has a better 

chance of running right away, especially when other processes at the same base priority 

might be running in the background.

Unlike other types of boosting, this boost applies to all Windows systems, and you 

can’t disable this boost, even if you’ve disabled priority boosting using the Windows 

SetThreadPriorityBoost function.

EXPERIMENT: Watching Foreground Priority Boosts and Decays

Using the CPU Stress tool, you can watch priority boosts in action. Take the following 

steps:

 1. Open the System utility in Control Panel (or right-click on your computer name’s 

icon on the desktop, and choose Properties). Click the Advanced System Settings 

label, select the Advanced tab, click the Settings button in the Performance sec-

tion, and finally click the Advanced tab. Select the Programs option. This causes 

PsPrioritySeperation to get a value of 2.

 2. Run Cpustres.exe, and change the activity of thread 1 from Low to Busy.

 3. Start the Performance tool by selecting Programs from the Start menu and then 

selecting Reliability And Performance Monitor from the Administrative Tools 

menu. Click on the Performance Monitor entry under Monitoring Tools.

 4. Click the Add Counter toolbar button (or press Ctrl+I) to bring up the Add 

Counters dialog box.

 5. Select the Thread object, and then select the % Processor Time counter.
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 6. In the Instances box, select <All instances> and click Search. Scroll down until you 

see the CPUSTRES process. Select the second thread (thread 1). (The first thread is 

the GUI thread.) You should see something like this:

 7. Click the Add button, and then click OK.

 8. Select Properties from the Action menu. Change the Vertical Scale Maximum to 

16 and set the interval to Sample Every N Seconds in the Graph Elements area.
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 9. Now bring the CPUSTRES process to the foreground. You should see the priority 

of the CPUSTRES thread being boosted by 2 and then decaying back to the base 

priority as follows:

 10. The reason CPUSTRES receives a boost of 2 periodically is because the thread 

you’re monitoring is sleeping about 25 percent of the time and then waking 

up (this is the Busy Activity level). The boost is applied when the thread wakes 

up. If you set the Activity level to Maximum, you won’t see any boosts because 

Maximum in CPUSTRES puts the thread into an infinite loop. Therefore, the thread 

doesn’t invoke any wait functions and as a result doesn’t receive any boosts.

 11. When you’ve finished, exit Reliability and Performance Monitor and CPU Stress.

Priority Boosts After GUI Threads Wake Up

Threads that own windows receive an additional boost of 2 when they wake up because 

of windowing activity such as the arrival of window messages. The windowing system 

(Win32k.sys) applies this boost when it calls KeSetEvent to set an event used to wake up a 

GUI thread. The reason for this boost is similar to the previous one—to favor interactive 

applications.
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EXPERIMENT: Watching Priority Boosts on GUI Threads

You can also see the windowing system apply its boost of 2 for GUI threads that wake 

up to process window messages by monitoring the current priority of a GUI application 

and moving the mouse across the window. Just follow these steps:

 1. Open the System utility in Control Panel (or right-click on your computer name’s 

icon on the desktop, and choose Properties). Click the Advanced System Settings 

label, select the Advanced tab, click the Settings button in the Performance 

section, and finally click the Advanced tab. Be sure that the Programs option is 

selected. This causes PsPrioritySeperation to get a value of 2.

 2. Run Notepad from the Start menu by selecting Programs/Accessories/Notepad.

 3. Start the Performance tool by selecting Programs from the Start menu and then 

selecting Reliability And Performance Monitor from the Administrative Tools 

menu. Click on the Performance Monitor entry under Monitoring Tools.

 4. Click the Add Counter toolbar button (or press Ctrl+I) to bring up the Add 

Counters dialog box.

 5. Select the Thread object, and then select the % Processor Time counter.

 6. In the Instances box, select <All instances>, and then click Search. Scroll down 

until you see Notepad thread 0. Click it, click the Add button, and then click OK.

 7. As in the previous experiment, select Properties from the Action menu. Change 

the Vertical Scale Maximum to 16, set the interval to Sample Every N Seconds in 

the Graph Elements area, and click OK.

 8. You should see the priority of thread 0 in Notepad at 8, 9, or 10. Because 

Notepad entered a wait state shortly after it received the boost of 2 that threads 

in the foreground process receive, it might not yet have decayed from 10 to 9 

and then to 8.

 9. With Reliability and Performance Monitor in the foreground, move the mouse 

across the Notepad window. (Make both windows visible on the desktop.) You’ll 

see that the priority sometimes remains at 10 and sometimes at 9, for the reasons 

just explained. (The reason you won’t likely catch Notepad at 8 is that it runs so 

little after receiving the GUI thread boost of 2 that it never experiences more than 

one priority level of decay before waking up again because of additional window-

ing activity and receiving the boost of 2 again.)

 10. Now bring Notepad to the foreground. You should see the priority rise to 12 

and remain there (or drop to 11, because it might experience the normal priority 

decay that occurs for boosted threads on the quantum end) because the thread is 

receiving two boosts: the boost of 2 applied to GUI threads when they wake up  



 Chapter 5 Processes, Threads, and Jobs 427

to process windowing input and an additional boost of 2 because Notepad is in 

the foreground.

 11. If you then move the mouse over Notepad (while it’s still in the foreground), 

you might see the priority drop to 11 (or maybe even 10) as it experiences the 

priority decay that normally occurs on boosted threads as they complete their 

turn. However, the boost of 2 that is applied because it’s the foreground process 

remains as long as Notepad remains in the foreground.

 12. When you’ve finished, exit Reliability and Performance Monitor and Notepad.

Priority Boosts for CPU Starvation

Imagine the following situation: you have a priority 7 thread that’s running, preventing a pri-

ority 4 thread from ever receiving CPU time; however, a priority 11 thread is waiting for some 

resource that the priority 4 thread has locked. But because the priority 7 thread in the middle 

is eating up all the CPU time, the priority 4 thread will never run long enough to finish what-

ever it’s doing and release the resource blocking the priority 11 thread. What does Windows 

do to address this situation? 

We have previously seen how the executive code responsible for executive resources man-

ages this scenario by boosting the owner threads so that they can have a chance to run and 

release the resource. However, executive resources are only one of the many synchronization 

constructs available to developers, and the boosting technique will not apply to any other 

primitive. Therefore, Windows also includes a generic CPU starvation relief mechanism as 

part of a thread called the balance set manager (a system thread that exists primarily to per-

form memory management functions and is described in more detail in Chapter 9).

Once per second, this thread scans the ready queues for any threads that have been in the 

ready state (that is, haven’t run) for approximately 4 seconds. If it finds such a thread, the bal-

ance set manager boosts the thread’s priority to 15 and sets the quantum target to an equiv-

alent CPU clock cycle count of 4 quantum units. Once the quantum is expired, the thread’s 

priority decays immediately to its original base priority. If the thread wasn’t finished and a 

higher priority thread is ready to run, the decayed thread will return to the ready queue, 

where it again becomes eligible for another boost if it remains there for another 4 seconds.

The balance set manager doesn’t actually scan all ready threads every time it runs. To mini-

mize the CPU time it uses, it scans only 16 ready threads; if there are more threads at that 

priority level, it remembers where it left off and picks up again on the next pass. Also, it will 

boost only 10 threads per pass—if it finds 10 threads meriting this particular boost (which 

would indicate an unusually busy system), it stops the scan at that point and picks up again 

on the next pass.
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Note We mentioned earlier that scheduling decisions in Windows are not affected by the num-

ber of threads, and that they are made in constant time, or O(1). Because the balance set man-

ager does need to scan ready queues manually, this operation does depend on the number of 

threads on the system, and more threads will require more scanning time. However, the balance 

set manager is not considered part of the scheduler or its algorithms and is simply an extended 

mechanism to increase reliability. Additionally, because of the cap on threads and queues to 

scan, the performance impact is minimized and predictable in a worst-case scenario.

Will this algorithm always solve the priority inversion issue? No—it’s not perfect by any 

means. But over time, CPU-starved threads should get enough CPU time to finish whatever 

processing they were doing and reenter a wait state.

EXPERIMENT: Watching Priority Boosts for CPU Starvation

Using the CPU Stress tool, you can watch priority boosts in action. In this experiment, 

we’ll see CPU usage change when a thread’s priority is boosted. Take the following steps:

 1. Run Cpustres.exe. Change the activity level of the active thread (by default, 

Thread 1) from Low to Maximum. Change the thread priority from Normal to 

Below Normal. The screen should look like this:

 2. Start the Performance tool by selecting Programs from the Start menu and then 

selecting Reliability And Performance Monitor from the Administrative Tools 

menu. Click on the Performance Monitor entry under Monitoring Tools.

 3. Click the Add Counter toolbar button (or press Ctrl+I) to bring up the Add 

Counters dialog box.
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 4. Select the Thread object, and then select the % Processor Time counter.

 5. In the Instances box, select <All instances>, and then click Search. Scroll down 

until you see the CPUSTRES process. Select the second thread (thread 1). (The first 

thread is the GUI thread.) You should see something like this:

 

 6. Click the Add button, and then click OK.

 7. Raise the priority of Performance Monitor to real time by running Task Manager, 

clicking the Processes tab, and selecting the Mmc.exe process. Right-click the pro-

cess, select Set Priority, and then select Realtime. (If you receive a Task Manager 

Warning message box warning you of system instability, click the Yes button.) If you 

have a multiprocessor system, you will also need to change the affinity of the pro-

cess: right-click and select Set Affinity. Then clear all other CPUs except for CPU 0.

 8. Run another copy of CPU Stress. In this copy, change the activity level of Thread 1 

from Low to Maximum.

 9. Now switch back to Performance Monitor. You should see CPU activity every 6 or 

so seconds because the thread is boosted to priority 15. You can force updates to 

occur more frequently than every second by pausing the display with Ctrl+F, and 

then pressing Ctrl+U, which forces a manual update of the counters. Keep Ctrl+U 

pressed for continual refreshes.

When you’ve finished, exit Performance Monitor and the two copies of CPU Stress.
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EXPERIMENT: “Listening” to Priority Boosting

To “hear” the effect of priority boosting for CPU starvation, perform the following steps 

on a system with a sound card:

 1. Because of MMCSS’s priority boosts (which we will describe in the next subsec-

tion), you will need to stop the MultiMedia Class Scheduler Service by open-

ing the Services management interface (Start, Programs, Administrative Tools, 

Services).

 2. Run Windows Media Player (or some other audio playback program), and begin 

playing some audio content.

 3. Run Cpustres, and set the activity level of Thread 1 to Maximum.

 4. Raise the priority of Thread 1 from Normal to Time Critical.

 5. You should hear the music playback stop as the compute-bound thread begins 

consuming all available CPU time.

 6. Every so often, you should hear bits of sound as the starved thread in the audio 

playback process gets boosted to 15 and runs enough to send more data to the 

sound card.

 7. Stop Cpustres and Windows Media Player, and start the MMCSS service again.

Priority Boosts for MultiMedia Applications and Games (MMCSS)

As we’ve just seen in the last experiment, although Windows’s CPU starvation priority boosts 

may be enough to get a thread out of an abnormally long wait state or potential deadlock, 

they simply cannot deal with the resource requirements imposed by a CPU-intensive applica-

tion such as Windows Media Player or a 3D computer game.

Skipping and other audio glitches have been a common source of irritation among Windows 

users in the past, and the user-mode audio stack in Windows Vista would have only made 

the situation worse since it offers even more chances for preemption. To address this, 

Windows Vista incorporates a new service (called MMCSS, described earlier in this chapter) 

whose purpose is to ensure “glitch-free” multimedia playback for applications that register 

with it.

MMCSS works by defining several tasks, including:

Audio

Capture

Distribution

Games
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Playback

Pro Audio

Window Manager

Note You can find the settings for MMCSS, including a lists of tasks (which can be modi-

fied by OEMs to include other specific tasks as appropriate) in the registry keys under HKLM\

SOFTWARE\Microsoft\Windows NT\CurrentVersion\Multimedia\SystemProfile. Additionally, the 

SystemResponsiveness value allows you to fine-tune how much CPU usage MMCSS guarantees to 

low-priority threads.

In turn, each of these tasks includes information about the various properties that differenti-

ate them. The most important one for scheduling is called the Scheduling Category, which 

is the primary factor determining the priority of threads registered with MMCSS. Table 5-19 

shows the various scheduling categories.

TABLE 5-19 Scheduling Categories

Category Priority Description

High 23-26 Pro Audio threads running at a higher priority than any other thread on 

the system except for critical system threads.

Medium 16-22 Threads part of a foreground application such as Windows Media Player.

Low 8-15 All other threads not part of the previous categories.

Exhausted 1-7 Threads that have exhausted their share of the CPU and will only continue 

running if no other higher priority threads are ready to run.

The main mechanism behind MMCSS boosts the priority of threads inside a registered pro-

cess to the priority level matching their scheduling category and relative priority within this 

category for a guaranteed period of time. It then lowers those threads to the Exhausted cat-

egory so that other, nonmultimedia threads on the system can also get a chance to execute. 

By default, multimedia threads will get 80 percent of the CPU time available, while other 

threads will receive 20 percent (based on a sample of 10 ms; in other words, 8 ms and 2 ms). 

MMCSS itself runs at priority 27, since it needs to preempt any Pro Audio threads in order to 

lower their priority to the Exhausted category.

It is important to emphasize that the kernel still does the actual boosting of the values inside 

the KTHREAD (MMCSS simply makes the same kind of system call any other application 

would do), and the scheduler is still in control of these threads. It is simply their high prior-

ity that makes them run almost uninterrupted on a machine, since they are in the real-time 

range and well above threads that most user applications would be running in.

As was discussed earlier, changing the relative thread priorities within a process does not 

usually make sense, and no tool allows this because only developers understand the impor-

tance of the various threads in their programs. 
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On the other hand, because applications must manually register with MMCSS and provide 

it with information about what kind of thread this is, MMCSS does have the necessary data 

to change these relative thread priorities (and developers are well aware that this will be 

happening).

EXPERIMENT: “Listening” to MMCSS Priority Boosting

We are now going to perform the same experiment as the prior one but without dis-

abling the MMCSS service. In addition, we’ll take a look at the Performance tool to 

check the priority of the Windows Media Player threads.

 1. Run Windows Media Player (other playback programs may not yet take advan-

tage of the API calls required to register with MMCSS) and begin playing some 

audio content.

 2. If you have a multiprocessor machine, be sure to set the affinity of the 

Wmplayer.exe process so that it only runs on one CPU (since we’ll be using only 

one CPUSTRES worker thread).

 3. Start the Performance tool by selecting Programs from the Start menu and then 

selecting Reliability And Performance Monitor from the Administrative Tools 

menu. Click on the Performance Monitor entry under Monitoring Tools.

 4. Click the Add Counter toolbar button (or press Ctrl+I) to bring up the Add 

Counters dialog box.

 5. Select the Thread object, and then select the % Processor Time counter.

 6. In the Instances box, select <All instances>, and then click Search. Scroll down 

until you see Wmplayer, and then select all its threads. Click the Add button, and 

then click OK.

 7. As in the previous experiment, select Properties from the Action menu. Change 

the Vertical Scale Maximum to 31, set the interval to Sample Every N Seconds in 

the Graph Elements area, and click OK.

You should see one or more priority 21 threads inside Wmplayer, which will be 

constantly running unless there is a higher-priority thread requiring the CPU after 

they are dropped to the Exhausted category.

 8. Run Cpustres, and set the activity level of Thread 1 to Maximum.

 9. Raise the priority of Thread 1 from Normal to Time Critical.

 10. You should notice the system slowing down considerably, but the music playback 

will continue. Every so often, you’ll be able to get back some responsiveness from 

the rest of the system. Use this time to stop Cpustres.
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 11. If the Performance tool was unable to capture data during the time Cpustres ran, 

run it again, but use Highest instead of Time Critical. This change will slow down 

the system less, but it still requires boosting from MMCSS, and, because once the 

multimedia thread is put in the Exhausted category, there will always be a higher 

priority thread requesting the CPU (CPUSTRES), you should notice Wmplayer’s 

priority 21 thread drop every so often, as shown here.

MMCSS’s functionality does not stop at simple priority boosting, however. Because of the 

nature of network drivers on Windows and the NDIS stack, DPCs are quite common mecha-

nisms for delaying work after an interrupt has been received from the network card. Because 

DPCs run at an IRQL level higher than user-mode code (see Chapter 3 for more information 

on DPCs and IRQLs), long-running network card driver code could still interrupt media play-

back during network transfers, or when playing a game for example.

Therefore, MMCSS also sends a special command to the network stack, telling it to throttle 

network packets during the duration of the media playback. This throttling is designed to 

maximize playback performance, at the cost of some small loss in network throughput (which 

would not be noticeable for network operations usually performed during playback, such as 

playing an online game). The exact mechanisms behind it do not belong to any area of the 

scheduler, so we will leave them out of this description.
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Note The original implementation of the network throttling code had some design issues caus-

ing significant network throughput loss on machines with 1000 Mbit network adapters, especially 

if multiple adapters were present on the system (a common feature of midrange motherboards). 

This issue was analyzed by the MMCSS and networking teams at Microsoft and later fixed.

Multiprocessor Systems

On a uniprocessor system, scheduling is relatively simple: the highest-priority thread that 

wants to run is always running. On a multiprocessor system, it is more complex, as Windows 

attempts to schedule threads on the most optimal processor for the thread, taking into 

account the thread’s preferred and previous processors, as well as the configuration of the 

multiprocessor system. Therefore, while Windows attempts to schedule the highest-priority 

runnable threads on all available CPUs, it only guarantees to be running the (single) highest-

priority thread somewhere.

Before we describe the specific algorithms used to choose which threads run where and 

when, let’s examine the additional information Windows maintains to track thread and pro-

cessor state on multiprocessor systems and the two different types of multiprocessor systems 

supported by Windows (hyperthreaded, multicore, and NUMA).

Multiprocessor Considerations in the Dispatcher Database

In addition to the ready queues and the ready summary, Windows maintains two bit-

masks that track the state of the processors on the system. (How these bitmasks are used 

is explained in the upcoming section “Multiprocessor Thread-Scheduling Algorithms”.) 

Following are the two bitmasks that Windows maintains:

The active processor mask (KeActiveProcessors), which has a bit set for each usable pro-

cessor on the system (This might be less than the number of actual processors if the 

licensing limits of the version of Windows running supports less than the number of 

available physical processors.)

The idle summary (KiIdleSummary), in which each set bit represents an idle processor

Whereas on uniprocessor systems, the dispatcher database is locked by raising IRQL to both 

DPC/dispatch level and Synch level, on multiprocessor systems more is required, because 

each processor could, at the same time, raise IRQL and attempt to operate on the dispatcher 

database. (This is true for any systemwide structure accessed from high IRQL.) (See Chapter 3 

for a general description of kernel synchronization and spinlocks.) 

Because on a multiprocessor system one processor might need to modify another proces-

sor’s per-CPU scheduling data structures (such as inserting a thread that would like to run 

on a certain processor), these structures are synchronized by using a new per-PRCB queued 
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spinlock, which is held at IRQL SYNCH_LEVEL. (See Table 5-20 for the various values of 

SYNCH_LEVEL.) Thus, thread selection can occur while locking only an individual processor’s 

PRCB, in contrast to doing this on Windows XP, where the systemwide dispatcher spinlock 

had to be held.

TABLE 5-20 IRQL SYNCH_LEVEL on Multiprocessor Systems

CPU Type IRQL

Systems running on x86 27

Systems running on x64 12

Systems running on IA64 12

There is also a per-CPU list of threads in the deferred ready state. These represent threads 

that are ready to run but have not yet been readied for execution; the actual ready opera-

tion has been deferred to a more appropriate time. Because each processor manipulates only 

its own per-processor deferred ready list, this list is not synchronized by the PRCB spinlock. 

The deferred ready thread list is processed before exiting the thread dispatcher, before per-

forming a context switch, and after processing a DPC. Threads on the deferred ready list are 

either dispatched immediately or are moved to the per-processor ready queue for their pri-

ority level.

Note that the systemwide dispatcher spinlock still exists and is used, but it is held only for 

the time needed to modify systemwide state that might affect which thread runs next. For 

example, changes to synchronization objects (mutexes, events, and semaphores) and their 

wait queues require holding the dispatcher lock to prevent more than one processor from 

changing the state of such objects (and the consequential action of possibly readying threads 

for execution). Other examples include changing the priority of a thread, timer expiration, 

and swapping of thread kernel stacks.

Thread context switching is also synchronized by using a finer-grained per-thread spinlock, 

whereas in Windows XP context switching was synchronized by holding a systemwide con-

text swap spinlock.

Hyperthreaded and Multicore Systems

As described in the “Symmetric Multiprocessing” section in Chapter 2, Windows supports 

hyperthreaded and multicore multiprocessor systems in two primary ways:

 1. Logical processors as well as per-package cores do not count against physical processor 

licensing limits. For example, Windows Vista Home Basic, which has a licensed proces-

sor limit of 1, will use all four cores on a single processor system.

 2. When choosing a processor for a thread, if there is a physical processor with all logi-

cal processors idle, a logical processor from that physical processor will be selected, as 

opposed to choosing an idle logical processor on a physical processor that has another 

logical processor running a thread.
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EXPERIMENT: Viewing Hyperthreading Information

You can examine the information Windows maintains for hyperthreaded processors 

using the !smt command in the kernel debugger. The following output is from a dual- 

processor hyperthreaded Xeon system (four logical processors):

lkd> !smt  

SMT Summary:  

------------  

   KeActiveProcessors: ****---------------------------- (0000000f)  

        KiIdleSummary: -***---------------------------- (0000000e)  

No PRCB     Set Master SMT Set                                     #LP IAID  

 0 ffdff120 Master     *-*----------------------------- (00000005)   2  00  

 1 f771f120 Master     -*-*---------------------------- (0000000a)   2  06  

 2 f7727120 ffdff120   *-*----------------------------- (00000005)   2  01  

 3 f772f120 f771f120   -*-*---------------------------- (0000000a)   2  07  

  

   Number of licensed physical processors: 2

Logical processors 0 and 1 are on separate physical processors (as indicated by the 

term “Master”).

NUMA Systems

Another type of multiprocessor system supported by Windows is one with a nonuniform 

memory access (NUMA) architecture. In a NUMA system, processors are grouped together in 

smaller units called nodes. Each node has its own processors and memory and is connected 

to the larger system through a cache-coherent interconnect bus. These systems are called 

“nonuniform” because each node has its own local high-speed memory. While any processor 

in any node can access all of memory, node-local memory is much faster to access.

The kernel maintains information about each node in a NUMA system in a data structure 

called KNODE. The kernel variable KeNodeBlock is an array of pointers to the KNODE struc-

tures for each node. The format of the KNODE structure can be shown using the dt com-

mand in the kernel debugger, as shown here:

lkd> dt nt!_knode  

nt!_KNODE  

   +0x000 PagedPoolSListHead : _SLIST_HEADER 

   +0x008 NonPagedPoolSListHead : [3] _SLIST_HEADER 

   +0x020 PfnDereferenceSListHead : _SLIST_HEADER 

   +0x028 ProcessorMask    : Uint4B 

   +0x02c Color            : UChar 

   +0x02d Seed             : UChar 

   +0x02e NodeNumber       : UChar 

   +0x02f Flags            : _flags 

   +0x030 MmShiftedColor   : Uint4B 

   +0x034 FreeCount        : [2] Uint4B 

   +0x03c PfnDeferredList  : Ptr32 _SINGLE_LIST_ENTRY 

   +0x040 CachedKernelStacks : _CACHED_KSTACK_LIST
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EXPERIMENT: Viewing NUMA Information

You can examine the information Windows maintains for each node in a NUMA system 

using the !numa command in the kernel debugger. The following partial output is from 

a 32-processor NUMA system by NEC with 4 processors per node:

21: kd> !numa  

NUMA Summary:  

------------  

Number of NUMA nodes : 8  

Number of Processors : 32  

MmAvailablePages     : 0x00F70D2C  

KeActiveProcessors   : ********************************-------------------------------- 

                       (00000000ffffffff)  

 

NODE 0 (E00000008428AE00):  

    ProcessorMask    : ****------------------------------------------------------------ 

    Color            : 0x00000000  

    MmShiftedColor   : 0x00000000  

    Seed             : 0x00000000  

    Zeroed Page Count: 0x00000000001CF330  

    Free Page Count  : 0x0000000000000000  

 

NODE 1 (E00001597A9A2200):  

    ProcessorMask    : ----****-------------------------------------------------------- 

    Color            : 0x00000001  

    MmShiftedColor   : 0x00000040  

    Seed             : 0x00000006  

    Zeroed Page Count: 0x00000000001F77A0  

    Free Page Count  : 0x0000000000000004

The following partial output is from a 64-processor NUMA system from Hewlett- 

Packard with 4 processors per node:

26: kd> !numa  

NUMA Summary:  

------------  

Number of NUMA nodes : 16  

Number of Processors : 64  

MmAvailablePages     : 0x03F55E67 

KeActiveProcessors   : **************************************************************** 

                       (ffffffffffffffff)  

   

NODE 0 (E000000084261900):  

    ProcessorMask    : ****------------------------------------------------------------ 

    Color            : 0x00000000  

    MmShiftedColor   : 0x00000000  

    Seed             : 0x00000001  

    Zeroed Page Count: 0x00000000003F4430  

    Free Page Count  : 0x0000000000000000  
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NODE 1 (E0000145FF992200):  

    ProcessorMask    : ----****-------------------------------------------------------- 

    Color            : 0x00000001  

    MmShiftedColor   : 0x00000040  

    Seed             : 0x00000007  

    Zeroed Page Count: 0x00000000003ED59A  

    Free Page Count  : 0x0000000000000000

Applications that want to gain the most performance out of NUMA systems can set the affin-

ity mask to restrict a process to the processors in a specific node. This information can be 

obtained using the functions listed in Table 5-21. Functions that can alter thread affinity are 

listed in Table 5-13.

TABLE 5-21 NUMA-Related Functions

Function Description

GetNumaHighestNodeNumber Retrieves the node that currently has the highest number.

GetNumaNodeProcessorMask Retrieves the processor mask for the specified node.

GetNumaProximityNode Returns the NUMA node number for the given proximity ID.

GetNumaProcessorNode Retrieves the node number for the specified processor.

How the scheduling algorithms take into account NUMA systems will be covered in the 

upcoming section “Multiprocessor Thread-Scheduling Algorithms” (and the optimizations in 

the memory manager to take advantage of node-local memory are covered in Chapter 9).

Affinity

Each thread has an affinity mask that specifies the processors on which the thread is allowed 

to run. The thread affinity mask is inherited from the process affinity mask. By default, all 

processes (and therefore all threads) begin with an affinity mask that is equal to the set of 

active processors on the system—in other words, the system is free to schedule all threads 

on any available processor.

However, to optimize throughput and/or partition workloads to a specific set of processors, 

applications can choose to change the affinity mask for a thread. This can be done at several 

levels:

Calling the SetThreadAffinityMask function to set the affinity for an individual thread

Calling the SetProcessAffinityMask function to set the affinity for all the threads in a 

process. Task Manager and Process Explorer provide a GUI to this function if you right-

click a process and choose Set Affinity. The Psexec tool (from Sysinternals) provides a 

command-line interface to this function. (See the –a switch.)
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By making a process a member of a job that has a jobwide affinity mask set using the 

SetInformationJobObject function (Jobs are described in the upcoming “Job Objects” 

section.)

By specifying an affinity mask in the image header when compiling the application 

(For more information on the detailed format of Windows images, search for “Portable 

Executable and Common Object File Format Specification” on www.microsoft.com.)

You can also set the “uniprocessor” flag for an image (at compile time). If this flag is set, 

the system chooses a single processor at process creation time and assigns that as the pro-

cess affinity mask, starting with the first processor and then going round-robin across all 

the processors. For example, on a dual-processor system, the first time you run an image 

marked as uniprocessor, it is assigned to CPU 0; the second time, CPU 1; the third time, CPU 

0; the fourth time, CPU 1; and so on. This flag can be useful as a temporary workaround for 

programs that have multithreaded synchronization bugs that, as a result of race conditions, 

surface on multiprocessor systems but that don’t occur on uniprocessor systems. (This has 

actually saved the authors of this book on two different occasions.)

EXPERIMENT: Viewing and Changing Process Affinity

In this experiment, you will modify the affinity settings for a process and see that pro-

cess affinity is inherited by new processes:

 1. Run the command prompt (Cmd.exe).

 2. Run Task Manager or Process Explorer, and find the Cmd.exe process in the pro-

cess list.

 3. Right-click the process, and select Affinity. A list of processors should be dis-

played. For example, on a dual-processor system you will see this:

 4. Select a subset of the available processors on the system, and click OK. The pro-

cess’s threads are now restricted to run on the processors you just selected.

 5. Now run Notepad.exe from the command prompt (by typing Notepad.exe).

 6. Go back to Task Manager or Process Explorer and find the new Notepad process. 

Right-click it, and choose Affinity. You should see the same list of processors you 

chose for the command prompt process. This is because processes inherit their 

affinity settings from their parent.
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Windows won’t move a running thread that could run on a different processor from one CPU 

to a second processor to permit a thread with an affinity for the first processor to run on 

the first processor. For example, consider this scenario: CPU 0 is running a priority 8 thread 

that can run on any processor, and CPU 1 is running a priority 4 thread that can run on any 

processor. A priority 6 thread that can run on only CPU 0 becomes ready. What happens? 

Windows won’t move the priority 8 thread from CPU 0 to CPU 1 (preempting the priority 4 

thread) so that the priority 6 thread can run; the priority 6 thread has to wait.

Therefore, changing the affinity mask for a process or a thread can result in threads getting 

less CPU time than they normally would, as Windows is restricted from running the thread 

on certain processors. Therefore, setting affinity should be done with extreme care—in most 

cases, it is optimal to let Windows decide which threads run where.

Ideal and Last Processor

Each thread has two CPU numbers stored in the kernel thread block:

Ideal processor, or the preferred processor that this thread should run on

Last processor, or the processor on which the thread last ran

The ideal processor for a thread is chosen when a thread is created using a seed in the pro-

cess block. The seed is incremented each time a thread is created so that the ideal processor 

for each new thread in the process will rotate through the available processors on the system. 

For example, the first thread in the first process on the system is assigned an ideal processor 

of 0. The second thread in that process is assigned an ideal processor of 1. However, the next 

process in the system has its first thread’s ideal processor set to 1, the second to 2, and so on. 

In that way, the threads within each process are spread evenly across the processors.

Note that this assumes the threads within a process are doing an equal amount of work. This 

is typically not the case in a multithreaded process, which normally has one or more house-

keeping threads and then a number of worker threads. Therefore, a multithreaded applica-

tion that wants to take full advantage of the platform might find it advantageous to specify 

the ideal processor numbers for its threads by using the SetThreadIdealProcessor function.

On hyperthreaded systems, the next ideal processor is the first logical processor on the next 

physical processor. For example, on a dual-processor hyperthreaded system with four logi-

cal processors, if the ideal processor for the first thread is assigned to logical processor 0, the 

second thread would be assigned to logical processor 2, the third thread to logical proces-

sor 1, the fourth thread to logical process 3, and so forth. In this way, the threads are spread 

evenly across the physical processors.

On NUMA systems, when a process is created, an ideal node for the process is selected. The 

first process is assigned to node 0, the second process to node 1, and so on. Then, the ideal 

processors for the threads in the process are chosen from the process’s ideal node. The ideal 
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processor for the first thread in a process is assigned to the first processor in the node. As 

additional threads are created in processes with the same ideal node, the next processor is 

used for the next thread’s ideal processor, and so on.

Dynamic Processor Addition and Replacement

As we’ve seen, developers can fine-tune which threads are allowed to (and in the case of 

the ideal processor, should) run on which processor. This works fine on systems that have a 

constant number of processors during their run time (for example, desktop machines require 

shutting down the computer to make any sort of hardware changes to the processor or their 

count).

Today’s server systems, however, cannot afford the downtime that CPU replacement or addi-

tion normally requires. In fact, one of the times when adding a CPU is required for a server 

is at times of high load that is above what the machine can support at its current level of 

performance. Having to shut down the server during a period of peak usage would defeat 

the purpose. To meet this requirement, the latest generation of server motherboards and 

systems support the addition of processors (as well as their replacement) while the machine 

is still running. The ACPI BIOS and related hardware on the machine have been specifically 

built to allow and be aware of this need, but operating system participation is required for 

full support.

Dynamic processor support is provided through the HAL, which will notify the kernel of a 

new processor on the system through the function KeStartDynamicProcessor. This routine 

does similar work to that performed when the system detects more than one processor at 

startup and needs to initialize the structures related to them. When a dynamic processor 

is added, a variety of system components perform some additional work. For example, the 

memory manager allocates new pages and memory structures optimized for the CPU. It 

also initializes a new DPC kernel stack while the kernel initializes the Global Descriptor Table 

(GDT), the Interrupt Descriptor Table ( IDT), the processor control region (PCR), the processor 

control block (PRCB), and other related structures for the processor.

Other executive parts of the kernel are also called, mostly to initialize the per-processor 

lookaside lists for the processor that was added. For example, the I/O manager, the executive 

lookaside list code, the cache manager, and the object manager all use per-processor look-

aside lists for their frequently allocated structures.

Finally, the kernel initializes threaded DPC support for the processor and adjusts exported 

kernel variables to report the new processor. Different memory manager masks and pro-

cess seeds based on processor counts are also updated, and processor features need to be 

updated for the new processor to match the rest of the system (for example, enabling virtu-

alization support on the newly added processor). The initialization sequence completes with 

the notification to the Windows Hardware Error Architecture (WHEA) component that a new 

processor is online.
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The HAL is also involved in this process. It is called once to start the dynamic processor after 

the kernel is aware of it, and it is called again after the kernel has finished initialization of 

the processor. However, these notifications and callbacks only make the kernel aware and 

respond to processor changes. Although an additional processor increases the throughput of 

the kernel, it does nothing to help drivers.

To handle drivers, the system has a new default executive callback, the processor add call-

back, that drivers can register with for notifications. Similar to the callbacks that notify drivers 

of power state or system time changes, this callback allows driver code to, for example, cre-

ate a new worker thread if desirable so that it can handle more work at the same time.

Once drivers are notified, the final kernel component called is the Plug and Play manager, 

which adds the processor to the system’s device node and rebalances interrupts so that 

the new processor can handle interrupts that were already registered for other processors. 

Unfortunately, until now, CPU-hungry applications have still been left out of this process, but 

Windows Server 2008 and Windows Vista Service Pack 1 have improved the process to allow 

applications to be able to take advantage of newer processors as well.

However, a sudden change of affinity can have potentially breaking changes for a running 

application (especially when going from a single-processor to a multiprocessor environment) 

through the appearance of potential race conditions or simply misdistribution of work (since 

the process might have calculated the perfect ratios at startup, based on the number of CPUs 

it was aware of). As a result, applications do not take advantage of a dynamically added pro-

cessor by default—they must request it.

The Windows APIs SetProcessAffinityUpdateMode and QueryProcessAffinityMode (which use 

the undocumented NtSet/QueryInformationProcess system call) tell the process manager that 

these applications should have their affinity updated (by setting the AffinityUpdateEnable 

flag in EPROCESS), or that they do not want to deal with affinity updates (by setting the 

AffinityPermanent flag in EPROCESS). Once an application has told the system that its affinity 

is permanent, it cannot later change its mind and request affinity updates, so this is a one-

time change.

As part of KeStartDynamicProcessor, a new step has been added after interrupts are 

rebalanced, which is to call the process manager to perform affinity updates through 

PsUpdateActiveProcessAffinity. Some Windows core processes and services already have 

affinity updates enabled, while third-party software will need to be recompiled to take 

advantage of the new API call. The System process, Svchost processes, and Smss are all com-

patible with dynamic processor addition.

Multiprocessor Thread-Scheduling Algorithms

Now that we’ve described the types of multiprocessor systems supported by Windows as 

well as the thread affinity and ideal processor settings, we’re ready to examine how this 
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information is used to determine which threads run where. There are two basic decisions to 

describe:

Choosing a processor for a thread that wants to run

Choosing a thread on a processor that needs something to do

Choosing a Processor for a Thread When There Are Idle Processors

When a thread becomes ready to run, Windows first tries to schedule the thread to run on an 

idle processor. If there is a choice of idle processors, preference is given first to the thread’s 

ideal processor, then to the thread’s previous processor, and then to the currently executing 

processor (that is, the CPU on which the scheduling code is running). 

To select the best idle processor, Windows starts with the set of idle processors that the 

thread’s affinity mask permits it to run on. If the system is NUMA and there are idle CPUs in 

the node containing the thread’s ideal processor, the list of idle processors is reduced to that 

set. If this eliminates all idle processors, the reduction is not done. Next, if the system is run-

ning hyperthreaded processors and there is a physical processor with all logical processors 

idle, the list of idle processors is reduced to that set. If that results in an empty set of proces-

sors, the reduction is not done.

If the current processor (the processor trying to determine what to do with the thread that 

wants to run) is in the remaining idle processor set, the thread is scheduled on it. If the cur-

rent processor is not in the remaining set of idle processors, it is a hyperthreaded system, 

and there is an idle logical processor on the physical processor containing the ideal processor 

for the thread, the idle processors are reduced to that set. If not, the system checks whether 

there are any idle logical processors on the physical processor containing the thread’s previ-

ous processor. If that set is nonzero, the idle processors are reduced to that list. Finally, the 

lowest numbered CPU in the remaining set is selected as the processor to run the thread on.

Once a processor has been selected for the thread to run on, that thread is put in the 

standby state and the idle processor’s PRCB is updated to point to this thread. When the idle 

loop on that processor runs, it will see that a thread has been selected to run and will dis-

patch that thread.

Choosing a Processor for a Thread When There Are No Idle Processors

If there are no idle processors when a thread wants to run, Windows compares the priority of 

the thread running (or the one in the standby state) on the thread’s ideal processor to deter-

mine whether it should preempt that thread. 

If the thread’s ideal processor already has a thread selected to run next (waiting in the 

standby state to be scheduled) and that thread’s priority is less than the priority of the thread 

being readied for execution, the new thread preempts that first thread out of the standby 
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state and becomes the next thread for that CPU. If there is already a thread running on that 

CPU, Windows checks whether the priority of the currently running thread is less than the 

thread being readied for execution. If so, the currently running thread is marked to be pre-

empted and Windows queues an interprocessor interrupt to the target processor to preempt 

the currently running thread in favor of this new thread.

Note Windows doesn’t look at the priority of the current and next threads on all the CPUs—just 

on the one CPU selected as just described. If no thread can be preempted on that one CPU, the 

new thread is put in the ready queue for its priority level, where it awaits its turn to get sched-

uled. Therefore, Windows does not guarantee to be running all the highest-priority threads, but 

it will always run the highest-priority thread.

If the ready thread cannot be run right away, it is moved into the ready state where it awaits 

its turn to run. Note that threads are always put on their ideal processor’s per-processor 

ready queues.

Selecting a Thread to Run on a Specific CPU

Because each processor has its own list of threads waiting to run on that processor, when a 

thread finishes running, the processor can simply check its per-processor ready queue for the 

next thread to run. If the per-processor ready queues are empty, the idle thread for that pro-

cessor is scheduled. The idle thread then begins scanning other processor’s ready queues for 

threads it can run. Note that on NUMA systems, the idle thread first looks at processors on 

its node before looking at other nodes’ processors.

CPU Rate Limits

As part of the new hard quota management system added in Windows Vista (which builds on 

previous quota support present since the first version of Windows NT, but adds hard limits 

instead of soft hints), support for limiting CPU usage was added to the system in three differ-

ent ways: per-session, per-user, or per-system. Unfortunately, information on enabling these 

new limits has not yet been documented, and no tool that is part of the operating system 

allows you to set these limits: you must modify the registry settings manually. Because all the 

quotas—save one—are memory quotas, we will cover those in Chapter 9, which deals with 

the memory manager, and focus our attention on the CPU rate limit.

The new quota system can be accessed through the registry key HKLM\SYSTEM\Current-

ControlSet\Control\Session Manager\QuotaSystem, as well as through the standard NtSet-
InformationProcess system call. CPU rate limits can therefore be set in one of three ways:

By creating a new value called CpuRateLimit and entering the rate information.
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By creating a new key with the security ID (SID) of the account you want to limit, and 

creating a CpuRateLimit value inside that key.

By calling NtSetInformationProcess and giving it the process handle of the process to 

limit and the CPU rate limiting information.

In all three cases, the CPU rate limit data is not a straightforward value; it is based on a com-

pressed bitfield, documented in the WDK as part of the RATE_QUOTA_LIMIT structure. The 

bottom four bits define the rate phase, which can be expressed either as one, two, or three 

seconds—this value defines how often the rate limiting should be applied and is called the 

PS_RATE_PHASE. The rest of the bits are used for the actual rate, as a value representing a 

percentage of maximum CPU usage. Because any number from 0 to 100 can be represented 

with only 7 bits, the rest of the bits are unused. Therefore, a rate limit of 40 percent every 2 

seconds would be defined by the value 0x282, or 101000 0010 in binary.

The process manager, which is responsible for enforcing the CPU rate limit, uses a variety of 

system mechanisms to do its job. First of all, rate limiting is able to reliably work because of 

the CPU cycle count improvements discussed earlier, which allow the process manager to 

accurately determine how much CPU time a process has taken and know whether the limit 

should be enforced. It then uses a combination of DPC and APC routines to throttle down 

DPC and APC CPU usage, which are outside the direct control of user-mode developers but 

still result in CPU usage in the system (in the case of a systemwide CPU rate limit).

Finally, the main mechanism through which rate limiting works is by creating an artificial wait 

on a kernel gate object (making the thread uniquely bound to this object and putting it in a 

wait state, which does not consume CPU cycles). This mechanism operates through the nor-

mal routine of an APC object queued to the thread or threads inside the process currently 

responsible for the work. The gate is signaled by an internal worker thread inside the process 

manager responsible for replenishment of the CPU usage, which is queued by a DPC respon-

sible for replenishing systemwide CPU usage requests.

Job Objects

A job object is a nameable, securable, shareable kernel object that allows control of one or 

more processes as a group. A job object’s basic function is to allow groups of processes to be 

managed and manipulated as a unit. A process can be a member of only one job object. By 

default, its association with the job object can’t be broken and all processes created by the 

process and its descendents are associated with the same job object as well. The job object 

also records basic accounting information for all processes associated with the job and for 

all processes that were associated with the job but have since terminated. Table 5-22 lists the 

Windows functions to create and manipulate job objects.
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TABLE 5-22 Windows API Functions for Jobs

Function Description

CreateJobObject Creates a job object (with an optional name)

OpenJobObject Opens an existing job object by name

AssignProcessToJobObject Adds a process to a job

TerminateJobObject Terminates all processes in a job

SetInformationJobObject Sets limits

QueryInformationJobObject Retrieves information about the job, such as CPU time, page fault 

count, number of processes, list of process IDs, quotas or limits, and 

security limits

The following are some of the CPU-related and memory-related limits you can specify for 

a job:

Maximum number of active processes Limits the number of concurrently existing 

processes in the job.

Jobwide user-mode CPU time limit Limits the maximum amount of user-mode CPU 

time that the processes in the job can consume (including processes that have run 

and exited). Once this limit is reached, by default all the processes in the job will be 

terminated with an error code and no new processes can be created in the job (unless 

the limit is reset). The job object is signaled, so any threads waiting for the job will be 

released. You can change this default behavior with a call to EndOfJobTimeAction.

Per-process user-mode CPU time limit Allows each process in the job to accumulate 

only a fixed maximum amount of user-mode CPU time. When the maximum is reached, 

the process terminates (with no chance to clean up).

Job scheduling class Sets the length of the time slice (or quantum) for threads in 

processes in the job. This setting applies only to systems running with long, fixed quan-

tums (the default for Windows Server systems). The value of the job-scheduling class 

determines the quantum as shown here:

Scheduling Class Quantum Units

0 6

1 12

2 18

3 24

4 30

5 36

6 42

7 48

8 54

9 Infinite if real-time; 60 otherwise
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Job processor affinity Sets the processor affinity mask for each process in the job. 

(Individual threads can alter their affinity to any subset of the job affinity, but processes 

can’t alter their process affinity setting.)

Job process priority class Sets the priority class for each process in the job. Threads 

can’t increase their priority relative to the class (as they normally can). Attempts to 

increase thread priority are ignored. (No error is returned on calls to SetThreadPriority, 

but the increase doesn’t occur.)

Default working set minimum and maximum Defines the specified working set 

minimum and maximum for each process in the job. (This setting isn’t jobwide—each 

process has its own working set with the same minimum and maximum values.)

Process and job committed virtual memory limit Defines the maximum amount of 

virtual address space that can be committed by either a single process or the entire job.

Jobs can also be set to queue an entry to an I/O completion port object, which other threads 

might be waiting for, with the Windows GetQueuedCompletionStatus function.

You can also place security limits on processes in a job. You can set a job so that each process 

runs under the same jobwide access token. You can then create a job to restrict processes 

from impersonating or creating processes that have access tokens that contain the local 

administrator’s group. In addition, you can apply security filters so that when threads in pro-

cesses contained in a job impersonate client threads, certain privileges and security IDs (SIDs) 

can be eliminated from the impersonation token.

Finally, you can also place user-interface limits on processes in a job. Such limits include 

being able to restrict processes from opening handles to windows owned by threads outside 

the job, reading and/or writing to the clipboard, and changing the many user-interface sys-

tem parameters via the Windows SystemParametersInfo function.

EXPERIMENT: Viewing the Job Object

You can view named job objects with the Performance tool. (See the Job Object and 

Job Object Details performance objects.) You can view unnamed jobs with the kernel 

debugger !job or dt nt!_ejob commands.

To see whether a process is associated with a job, you can use the kernel debugger 

!process command or Process Explorer. Follow these steps to create and view an 

unnamed job object:

 1. From the command prompt, use the runas command to create a process running 

the command prompt (Cmd.exe). For example, type runas /user:<domain>\ 

< username> cmd. You’ll be prompted for your password. Enter your password, 

and a Command Prompt window will appear. The Windows service that executes 

runas commands creates an unnamed job to contain all processes (so that it can 

terminate these processes at logoff time).
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 2. From the command prompt, run Notepad.exe.

 3. Then run Process Explorer and notice that the Cmd.exe and Notepad.exe pro-

cesses are highlighted as part of a job. (You can configure the colors used to 

highlight processes that are members of a job by clicking Options, Configure 

Highlighting.) Here is a screen shot showing these two processes:

 4. Double-click either the Cmd.exe or Notepad.exe process to bring up the process 

properties. You will see a Job tab in the process properties dialog box.

 5. Click the Job tab to view the details about the job. In this case, there are no quo-

tas associated with the job, but there are two member processes:
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 6. Now run the kernel debugger on the live system, display the process list with 

!process, and find the recently created process running Cmd.exe. Then display the 

process block by using !process <process ID>, find the address of the job object, 

and finally display the job object with the !job command. Here’s some partial 

debugger output of these commands on a live system:

lkd> !process 0 0  

**** NT ACTIVE PROCESS DUMP ****  

    .  

    .  

PROCESS 8567b758  SessionId: 0  Cid: 0fc4    Peb: 7ffdf000  ParentCid: 00b0  

    DirBase: 1b3fb000  ObjectTable: e18dd7d0  HandleCount:  19.  

    Image: Cmd.exe  

  

PROCESS 856561a0  SessionId: 0  Cid: 0d70    Peb: 7ffdf000  ParentCid: 0fc4  

    DirBase: 2e341000  ObjectTable: e19437c8  HandleCount:  16.  

    Image: Notepad.exe  

  

lkd> !process 0fc4  

Searching for Process with Cid == fc4  

PROCESS 8567b758  SessionId: 0  Cid: 0fc4    Peb: 7ffdf000  ParentCid: 00b0  

    DirBase: 1b3fb000  ObjectTable: e18dd7d0  HandleCount:  19.  

    Image: Cmd.exe  

    BasePriority                      8  

    .  

    .  

    Job                               85557988  

  

lkd> !job 85557988  

Job at 85557988  

  TotalPageFaultCount      0  

  TotalProcesses           2  

  ActiveProcesses          2  

  TotalTerminatedProcesses 0  

  LimitFlags               0  

  MinimumWorkingSetSize    0  

  MaximumWorkingSetSize    0  

  ActiveProcessLimit       0  

  PriorityClass            0  

  UIRestrictionsClass      0  

  SecurityLimitFlags       0  

  Token                    00000000

 7. Finally, use the dt command to display the job object and notice the additional 

fields shown about the job:

lkd> dt nt!_ejob 85557988  

nt!_EJOB  

   +0x000 Event            : _KEVENT 

   +0x010 JobLinks         : _LIST_ENTRY [ 0x81d09478 - 0x87f55030 ] 

   +0x018 ProcessListHead  : _LIST_ENTRY [ 0x87a08dd4 - 0x8679284c ] 

   +0x020 JobLock          : _ERESOURCE 

   +0x058 TotalUserTime    : _LARGE_INTEGER 0x0 
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   +0x060 TotalKernelTime  : _LARGE_INTEGER 0x0 

   +0x068 ThisPeriodTotalUserTime : _LARGE_INTEGER 0x0 

   +0x070 ThisPeriodTotalKernelTime : _LARGE_INTEGER 0x0 

   +0x078 TotalPageFaultCount : 0 

   +0x07c TotalProcesses   : 2 

   +0x080 ActiveProcesses  : 2 

   +0x084 TotalTerminatedProcesses : 0 

   +0x088 PerProcessUserTimeLimit : _LARGE_INTEGER 0x0 

   +0x090 PerJobUserTimeLimit : _LARGE_INTEGER 0x0 

   +0x098 LimitFlags       : 0 

   +0x09c MinimumWorkingSetSize : 0 

   +0x0a0 MaximumWorkingSetSize : 0 

   +0x0a4 ActiveProcessLimit : 0 

   +0x0a8 Affinity         : 0 

   +0x0ac PriorityClass    : 0 '' 

   +0x0b0 AccessState      : (null)  

   +0x0b4 UIRestrictionsClass : 0 

   +0x0b8 EndOfJobTimeAction : 0 

   +0x0bc CompletionPort   : 0x87e3d2e8  

   +0x0c0 CompletionKey    : 0x07a89508  

   +0x0c4 SessionId        : 1 

   +0x0c8 SchedulingClass  : 5 

   +0x0d0 ReadOperationCount : 0 

   +0x0d8 WriteOperationCount : 0 

   +0x0e0 OtherOperationCount : 0 

   +0x0e8 ReadTransferCount : 0 

   +0x0f0 WriteTransferCount : 0 

   +0x0f8 OtherTransferCount : 0 

   +0x100 ProcessMemoryLimit : 0 

   +0x104 JobMemoryLimit   : 0 

   +0x108 PeakProcessMemoryUsed : 0x19e 

   +0x10c PeakJobMemoryUsed : 0x2ed 

   +0x110 CurrentJobMemoryUsed : 0x2ed 

   +0x114 MemoryLimitsLock : _EX_PUSH_LOCK 

   +0x118 JobSetLinks      : _LIST_ENTRY [ 0x8575cff0 - 0x8575cff0 ] 

   +0x120 MemberLevel      : 0 

   +0x124 JobFlags         : 0

Conclusion

In this chapter, we’ve examined the structure of processes and threads and jobs, seen how 

they are created, and looked at how Windows decides which threads should run and for 

how long.

In the next chapter we’ll look at a part of the system that’s received more attention in the last 

few years than ever before, Windows security.
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Chapter 6

Security

Preventing unauthorized access to sensitive data is essential in any environment in which 

multiple users have access to the same physical or network resources. An operating system, 

as well as individual users, must be able to protect files, memory, and configuration settings 

from unwanted viewing and modification. Operating system security includes obvious mech-

anisms such as accounts, passwords, and file protection. It also includes less obvious mecha-

nisms, such as protecting the operating system from corruption, preventing less privileged 

users from performing actions (rebooting the computer, for example), and not allowing user 

programs to adversely affect the programs of other users or the operating system.

In this chapter, we explain how every aspect of the design and implementation of Windows 

was influenced in some way by the stringent requirements of providing robust security.

Security Ratings

Having software, including operating systems, rated against well-defined standards helps the 

government, corporations, and home users protect proprietary and personal data stored in 

computer systems. The current security rating standard used by the United States and many 

other countries is the Common Criteria (CC). To understand the security capabilities designed 

into Windows, however, it’s useful to know the history of the security ratings system that 

influenced the design of Windows, the Trusted Computer System Evaluation Criteria (TCSEC).

Trusted Computer System Evaluation Criteria

The National Computer Security Center (NCSC, at www.radium.ncsc.mil/tpep/) was estab-

lished in 1981 as part of the U.S. Department of Defense’s (DoD) National Security Agency 

(NSA). One goal of the NCSC was to create a range of security ratings, listed in Table 6-1, 

to be used to indicate the degree of protection commercial operating systems, network 

 components, and trusted applications offer. These security ratings, which can be found at 

www.radium.ncsc.mil/tpep/library/rainbow/5200.28-STD.html, were defined in 1983 and are 

commonly referred to as “the Orange Book.”

The TCSEC standard consists of “levels of trust” ratings, where higher levels build on lower 

levels by adding more rigorous protection and validation requirements. No operating system 

meets the A1, or “Verified Design,” rating. Although a few operating systems have earned 

one of the B-level ratings, C2 is considered sufficient and the highest rating practical for a 

general-purpose operating system.
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TABLE 6-1 TCSEC Rating Levels

Rating Description

A1 Verified Design

B3 Security Domains

B2 Structured Protection

B1 Labeled Security Protection

C2 Controlled Access Protection 

C1 Discretionary Access Protection (obsolete)

D Minimal Protection

In July 1995, Windows NT 3.5 (Workstation and Server) with Service Pack 3 was the first ver-

sion of Windows NT to earn the C2 rating. In March 1999, Windows NT 4 with Service Pack 

3 achieved an E3 rating from the U.K. government’s Information Technology Security (ITSEC) 

organization, a rating equivalent to a U.S. C2 rating. In November 1999, Windows NT 4 with 

Service Pack 6a earned a C2 rating in both stand-alone and networked configurations.

The following were the key requirements for a C2 security rating, and they are still consid-

ered the core requirements for any secure operating system:

A secure logon facility, which requires that users can be uniquely identified and that 

they must be granted access to the computer only after they have been authenticated 

in some way.

Discretionary access control, which allows the owner of a resource to determine who 

can access the resource and what they can do with it. The owner grants rights that per-

mit various kinds of access to a user or to a group of users.

Security auditing, which affords the ability to detect and record security-related events 

or any attempts to create, access, or delete system resources. Logon identifiers record 

the identities of all users, making it easy to trace anyone who performs an unauthor-

ized action.

Object reuse protection, which prevents users from seeing data that another user 

has deleted or from accessing memory that another user previously used and then 

released. For example, in some operating systems, it’s possible to create a new file of 

a certain length and then examine the contents of the file to see data that happens to 

have occupied the location on the disk where the file is allocated. This data might be 

sensitive information that was stored in another user’s file but had been deleted. Object 

reuse protection prevents this potential security hole by initializing all objects, including 

files and memory, before they are allocated to a user.
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Windows also meets two requirements of B-level security:

Trusted path functionality, which prevents Trojan horse programs from being able to 

intercept users’ names and passwords as they try to log on. The trusted path function-

ality in Windows comes in the form of its Ctrl+Alt+Delete logon-attention sequence, 

which cannot be intercepted by nonprivileged applications. This sequence of key-

strokes, which is also known as the secure attention sequence (SAS), always pops up a 

logon dialog box, so would-be Trojan horses can easily be recognized. A Trojan horse 

presenting a fake logon dialog box will be bypassed when the SAS is entered.

Trusted facility management, which requires support for separate account roles for 

administrative functions. For example, separate accounts are provided for administra-

tion (Administrators), user accounts charged with backing up the computer, and stan-

dard users.

Windows meets all of these requirements through its security subsystem and related 

components.

The Common Criteria

In January 1996, the United States, United Kingdom, Germany, France, Canada, and the 

Netherlands released the jointly developed Common Criteria for Information Technology 

Security Evaluation (CCITSE) security evaluation specification. CCITSE, which is usually referred 

to as the Common Criteria (CC), is the recognized multinational standard for product security 

evaluation. The CC home page is at www.niap-ccevs.org/cc-scheme/.

The CC is more flexible than the TCSEC trust ratings and has a structure closer to the ITSEC 

standard than to the TCSEC standard. The CC includes the concept of a Protection Profile (PP), 

used to collect security requirements into easily specified and compared sets, and the con-

cept of a Security Target (ST), which contains a set of security requirements that can be made 

by reference to a PP.

Windows Server 2003 SP1 was evaluated as meeting the requirements of the Controlled 

Access PP, which is the equivalent of TCSEC C2 rating, and additional CC functional and 

 assurance requirements in September of 2006. Details of its conformance can be found at 

www.niap-ccevs.org/cc-scheme/vpl; specifically, the additional requirements satisfied by 

Windows Server 2003 SP1 can be found in the certified Windows Server 2003/XP Common 

Criteria Security Target at www.niap-ccevs.org/cc-scheme/st/st_vid10151-st.pdf.
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Security System Components

These are the core components and databases that implement Windows security:

Security reference monitor (SRM) A component in the Windows executive 

(%SystemRoot%\System32\Ntoskrnl.exe) that is responsible for defining the access 

token data structure to represent a security context, performing security access checks 

on objects, manipulating privileges (user rights), and generating any resulting security 

audit messages.

Local Security Authority subsystem (Lsass) A user-mode process running the image 

%SystemRoot%\System32\Lsass.exe that is responsible for the local system security 

policy (such as which users are allowed to log on to the machine, password policies, 

privileges granted to users and groups, and the system security auditing settings), 

user authentication, and sending security audit messages to the Event Log. The Local 

Security Authority service (Lsasrv—%SystemRoot%\System32\Lsasrv.dll), a library that 

Lsass loads, implements most of this functionality.

Lsass policy database A database that contains the local system security policy set-

tings. This database is stored in the registry under HKLM\SECURITY. It includes such 

information as what domains are entrusted to authenticate logon attempts, who has 

permission to access the system and how (interactive, network, and service logons), 

who is assigned which privileges, and what kind of security auditing is to be performed. 

The Lsass policy database also stores “secrets” that include logon information used for 

cached domain logons and Windows service user-account logons. (See Chapter 4 for 

more information on Windows services.)

Security Accounts Manager (SAM) service A set of subroutines responsible for 

managing the database that contains the user names and groups defined on the 

local machine. The SAM service, which is implemented as %SystemRoot%\System32\

Samsrv.dll, runs in the Lsass process.

SAM database A database that on systems not functioning as domain controllers 

contains the defined local users and groups, along with their passwords and other 

attributes. On domain controllers, the SAM stores the system’s administrator recov-

ery account definition and password. This database is stored in the registry under 

HKLM\SAM.

Active Directory A directory service that contains a database that stores information 

about objects in a domain. A domain is a collection of computers and their associated 

security groups that are managed as a single entity. Active Directory stores information 
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about the objects in the domain, including users, groups, and computers. Password 

information and privileges for domain users and groups are stored in Active Directory, 

which is replicated across the computers that are designated as domain controllers of 

the domain. The Active Directory server, implemented as %SystemRoot%\System32\

Ntdsa.dll, runs in the Lsass process. For more information on Active Directory, see 

Chapter 12.

Authentication packages These include dynamic-link libraries (DLLs) that run both 

in the context of the Lsass process and client processes and that implement Windows 

authentication policy. An authentication DLL is responsible for checking whether a 

given user name and password match, and if so, returning to the Lsass information 

detailing the user’s security identity, which Lsass uses to generate a token.

Interactive logon manager (Winlogon) A user-mode process running %System-

Root%\System32\Winlogon.exe that is responsible for responding to the SAS and for 

managing interactive logon sessions. Winlogon creates a user’s first process when the 

user logs on, for example.

Logon user interface (LogonUI) A user-mode process that presents users with the 

user interface they can use to authenticate themselves on the system. Uses credential 

providers to query user credentials through various methods.

Credential providers (CPs) In-process COM objects that run in the LogonUI process 

(started on demand by Winlogon when the SAS is performed) and used to obtain a 

user’s name and password, smartcard PIN, or biometric data (such as a fingerprint). The 

standard CPs are %SystemRoot%\System32\authui.dll and %SystemRoot%\System32\

SmartcardCredentialProvider.dll

Network logon service (Netlogon) A Windows service (%SystemRoot%\System32\

Netlogon.dll) that sets up the secure channel to a domain controller, over which 

security requests—such as an interactive logon (if the domain controller is running 

Windows NT 4) or LAN Manager and NT LAN Manager (v1 and v2) authentication 

validation—are sent.

Kernel Security Device Driver (KSecDD) A kernel-mode library of functions that 

implement the local procedure call (LPC) interfaces that other kernel-mode security 

components, including the Encrypting File System (EFS), use to communicate with Lsass 

in user mode. KSecDD is located in %SystemRoot%\System32\Drivers\Ksecdd.sys.

Figure 6-1 shows the relationships among some of these components and the databases they 

manage.
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FIGURE 6-1 Windows security components

EXPERIMENT: Looking Inside HKLM\SAM and HKLM\Security

The security descriptors associated with the SAM and Security keys in the registry 

prevent access by any account other than the local system account. One way to gain 

access to these keys for exploration is to reset their security, but that can weaken the 

system’s security. Another way is to execute Regedit.exe while running as the local sys-

tem account, and PsExec from Windows Sysinternals (www.microsoft.com/technet/sys-
internals) supports an option that enables you to launch processes in the local system 

account. Run Regedit using the PsExec command, shown below, to gain access to the 

SAM and Security databases without disturbing their security settings:

C:\>psexec –s –i –d c:\windows\regedit.exe
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The SRM, which runs in kernel mode, and Lsass, which runs in user mode, communicate using 

the ALPC facility described in Chapter 3. During system initialization, the SRM creates a port, 

named SeRmCommandPort, to which Lsass connects. When the Lsass process starts, it cre-

ates an ALPC port named SeLsaCommandPort. The SRM connects to this port, resulting in 

the creation of private communication ports. The SRM creates a shared memory section for 

messages longer than 256 bytes, passing a handle in the connect call. Once the SRM and 

Lsass connect to each other during system initialization, they no longer listen on their respec-

tive connect ports. Therefore, a later user process has no way to connect successfully to 

either of these ports for malicious purposes—the connect request will never complete.

Figure 6-2 shows the communication paths as they exist after system initialization.
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Protecting Objects

Object protection and access logging is the essence of discretionary access control and 

auditing. The objects that can be protected on Windows include files, devices, mailslots, 

pipes (named and anonymous), jobs, processes, threads, events, keyed events, event pairs, 

mutexes, semaphores, shared memory sections, I/O completion ports, LPC ports, waitable 

timers, access tokens, volumes, window stations, desktops, network shares, services, registry 

keys, printers, and Active Directory objects.

Because system resources that are exported to user mode (and hence require security valida-

tion) are implemented as objects in kernel mode, the Windows object manager plays a key 

role in enforcing object security. (For more information on the object manager, see Chapter 

3.) To control who can manipulate an object, the security system must first be sure of each 

user’s identity. This need to guarantee the user’s identity is the reason that Windows requires 

authenticated logon before accessing any system resources. When a process requests a han-

dle to an object, the object manager and the security system use the caller’s security identi-

fication to determine whether the caller should be assigned a handle that grants the process 

access to the object it desires.

As discussed later in this chapter, a thread can assume a different security context than that 

of its process. This mechanism is called impersonation, and when a thread is impersonat-

ing, security validation mechanisms use the thread’s security context instead of that of the 

thread’s process. When a thread isn’t impersonating, security validation falls back on using 

the security context of the thread’s owning process. It’s important to keep in mind that all the 

threads in a process share the same handle table, so when a thread opens an object—even if 

it’s impersonating—all the threads of the process have access to the object.
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Sometimes, validating the identity of a user isn’t enough for the system to grant access to a 

resource that should be accessible by the account. Logically, one can think of a clear distinc-

tion between a service running the Alice account, and an unknown application that Alice 

downloaded while browsing the Internet. Windows achieves this kind of intrauser isolation 

with the Windows integrity mechanism, which implements integrity levels. The Windows 

integrity mechanism is used by User Account Control (UAC) elevations, Protected Mode 

Internet Explorer (PMIE), and User Interface Privilege Isolation (UIPI).

Access Checks

The Windows security model requires that a thread specify up front, at the time that it opens 

an object, what types of actions it wants to perform on the object. The object manager calls 

the SRM to perform access checks based on a thread’s desired access, and if the access is 

granted, a handle is assigned to the thread’s process with which the thread (or other threads 

in the process) can perform further operations on the object. As explained in Chapter 3, the 

object manager records the access permissions granted for a handle in the process’s handle 

table.

One event that causes the object manager to perform security access validation is when 

a process opens an existing object using a name. When an object is opened by name, the 

object manager performs a lookup of the specified object in the object manager namespace. 

If the object isn’t located in a secondary namespace, such as the configuration manager’s 

registry namespace or a file system driver’s file system namespace, the object manager 

calls the internal function ObpCreateHandle once it locates the object. As its name implies, 

ObpCreateHandle creates an entry in the process’s handle table that becomes associ-

ated with the object. ObpCreateHandle first calls ObpIncrementHandleCount to see if the 

thread has permission to access the object, and if the thread does, ObpCreateHandle calls 

the executive function ExCreateHandle to create the entry in the process handle table. 

ObpIncrementHandleCount calls ObCheckObjectAccess to carry out the security access check.

ObpIncrementHandleCount passes ObCheckObjectAccess the security credentials of the 

thread opening the object, the types of access to the object that the thread is requesting 

(read, write, delete, and so forth), and a pointer to the object. ObCheckObjectAccess first 

locks the object’s security descriptor and the security context of the thread. The object secu-

rity lock prevents another thread in the system from changing the object’s security while 

the access check is in progress. The lock on the thread’s security context prevents another 

thread of that process or a different process from altering the security identity of the thread 

while security validation is in progress. ObCheckObjectAccess then calls the object’s secu-

rity method to obtain the security settings of the object. (See Chapter 3 for a description 

of object methods.) The call to the security method might invoke a function in a different 

executive component. However, many executive objects rely on the system’s default security 

management support.
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When an executive component defining an object doesn’t want to override the SRM’s default 

security policy, it marks the object type as having default security. Whenever the SRM calls 

an object’s security method, it first checks to see whether the object has default security. 

An object with default security stores its security information in its header, and its security 

method is SeDefaultObjectMethod. An object that doesn’t rely on default security must man-

age its own security information and supply a specific security method. Objects that rely on 

default security include mutexes, events, and semaphores. A file object is an example of an 

object that overrides default security. The I/O manager, which defines the file object type, has 

the file system driver on which a file resides manage (or choose not to implement) the secu-

rity for its files. Thus, when the system queries the security on a file object that represents 

a file on an NTFS volume, the I/O manager file object security method retrieves the file’s 

security using the NTFS file system driver. Note, however, that ObCheckObjectAccess isn’t 

executed when files are opened, because they reside in secondary namespaces; the system 

invokes a file object’s security method only when a thread explicitly queries or sets the secu-

rity on a file (with the Windows SetFileSecurity or GetFileSecurity functions, for example).

After obtaining an object’s security information, ObCheckObjectAccess invokes the SRM 

function SeAccessCheck. SeAccessCheck is one of the functions at the heart of the Windows 

security model. Among the input parameters SeAccessCheck accepts are the object’s security 

information, the security identity of the thread as captured by ObCheckObjectAccess, and 

the access that the thread is requesting. SeAccessCheck returns True or False, depending on 

whether the thread is granted the access it requested to the object.

Another event that causes the object manager to execute access validation is when a pro-

cess references an object using an existing handle. Such references often occur indirectly, as 

when a process calls on a Windows API to manipulate an object and passes an object handle. 

For example, a thread opening a file can request read permission to a file. If the thread has 

permission to access the object in this way, as dictated by its security context and the secu-

rity settings of the file, the object manager creates a handle—representing the file—in the 

handle table of the thread’s process. The accesses the process is granted through the handle 

are stored with the handle by the object manager.

Subsequently, the thread could attempt to write to the file using the WriteFile Windows 

function, passing the file’s handle as a parameter. The system service NtWriteFile, which 

WriteFile calls via Ntdll.dll, uses the object manager function ObReferenceObjectByHandle 

to obtain a pointer to the file object from the handle. ObReferenceObjectByHandle accepts 

the access that the caller wants from the object as a parameter. After finding the handle 

entry in the process’s handle table, ObReferenceObjectByHandle compares the access 

being requested with the access granted at the time the file was opened. In this example, 

ObReferenceObjectByHandle will indicate that the write operation should fail because the 

caller didn’t obtain write access when the file was opened.
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The Windows security functions also enable Windows applications to define their own pri-

vate objects and to call on the services of the SRM to enforce the Windows security model 

on those objects. Many kernel-mode functions that the object manager and other executive 

components use to protect their own objects are exported as Windows user-mode APIs. The 

user-mode equivalent of SeAccessCheck is AccessCheck, for example. Windows applications 

can therefore leverage the flexibility of the security model and transparently integrate with 

the authentication and administrative interfaces that are present in Windows.

The essence of the SRM’s security model is an equation that takes three inputs: the security 

identity of a thread, the access that the thread wants to an object, and the security settings of 

the object. The output is either “yes” or “no” and indicates whether or not the security model 

grants the thread the access it desires. The following sections describe the inputs in more 

detail and then document the model’s access validation algorithm.

Security Identifiers (SIDs)

Instead of using names (which might or might not be unique) to identify entities that per-

form actions in a system, Windows uses security identifiers (SIDs). Users have SIDs, and so 

do local and domain groups, local computers, domains, and domain members. A SID is a 

variable-length numeric value that consists of a SID structure revision number, a 48-bit iden-

tifier authority value, and a variable number of 32-bit subauthority or relative identifier (RID) 

values. The authority value identifies the agent that issued the SID, and this agent is typically 

a Windows local system or a domain. Subauthority values identify trustees relative to the 

issuing authority, and RIDs are simply a way for Windows to create unique SIDs based on a 

common-base SID. Because SIDs are long and Windows takes care to generate truly random 

values within each SID, it is virtually impossible for Windows to issue the same SID twice on 

machines or domains anywhere in the world.

When displayed textually, each SID carries an S prefix, and its various components are sepa-

rated with hyphens:

S-1-5-21-1463437245-1224812800-863842198-1128

In this SID, the revision number is 1, the identifier authority value is 5 (the Windows security 

authority), and four subauthority values plus one RID (1128) make up the remainder of the 

SID. This SID is a domain SID, but a local computer on the domain would have a SID with the 

same revision number, identifier authority value, and number of subauthority values.

When you install Windows, the Windows Setup program issues the computer a SID. Windows 

assigns SIDs to local accounts on the computer. Each local-account SID is based on the source 

computer’s SID and has a RID at the end. RIDs for user accounts and groups start at 1000 and 

increase in increments of 1 for each new user or group. Similarly, Dcpromo.exe, the utility 

used to create a new Windows domain, reuses the computer SID of the computer being pro-

moted to domain controller as the domain SID, and it re-creates a new SID for the computer 
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if it is ever demoted. Windows issues to new domain accounts SIDS that are based on the 

domain SID and have an appended RID (again starting at 1000 and increasing in increments 

of 1 for each new user or group). A RID of 1028 indicates that the SID is the twenty-ninth SID 

the domain issued.

Windows issues SIDS that consist of a computer or domain SID with a predefined RID to 

many predefined accounts and groups. For example, the RID for the administrator account is 

500, and the RID for the guest account is 501. A computer’s local administrator account, for 

example, has the computer SID as its base with the RID of 500 appended to it:

S-1-5-21-13124455-12541255-61235125-500

Windows also defines a number of built-in local and domain SIDs to represent groups. 

For example, a SID that identifies any and every account (except anonymous users) is the 

Everyone SID: S-1-1-0. Another example of a group that a SID can represent is the network 

group, which is the group that represents users who have logged on to a machine from the 

network. The network-group SID is S-1-5-2. Table 6-2, reproduced here from the Windows 

SDK documentation, shows some basic well-known SIDs, their numeric values, and their use.

Finally, Winlogon creates a unique logon SID for each interactive logon session. A typical use 

of a logon SID is in an access control entry (ACE) that allows access for the duration of a cli-

ent’s logon session. For example, a Windows service can use the LogonUser function to start 

a new logon session. The LogonUser function returns an access token from which the service 

can extract the logon SID. The service can then use the SID in an ACE that allows the client’s 

logon session to access the interactive window station and desktop. The SID for a logon ses-

sion is S-1-5-5-0, and the RID is randomly generated.

TABLE 6-2 Well-Known SIDs

SID Group Use

S-1-0-0 Nobody Used when the SID is unknown.

S-1-1-0 Everyone A group that includes all users except anonymous users.

S-1-2-0 Local Users who log on to terminals locally (physically) con-

nected to the system.

S-1-3-0 Creator Owner ID A security identifier to be replaced by the security identi-

fier of the user who created a new object. This SID is used 

in inheritable ACEs.

S-1-3-1 Creator Group ID Identifies a security identifier to be replaced by the prima-

ry-group SID of the user who created a new object. Use 

this SID in inheritable ACEs.

S-1-9-0 Resource Manager Used by third-party applications performing their own 

security on internal data (such as Microsoft Exchange). 
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EXPERIMENT: Using PsGetSid and Process Explorer to View SIDs

You can easily see the SID representation for any account you’re using by running the 

PsGetSid utility from Sysinternals.

PsGetSid’s options allow you to translate machine and user account names to their cor-

responding SIDs and vice versa.

If you run PsGetSid with no options, it prints the SID assigned to the local computer. 

By using the fact that the Administrator’s account always has a RID of 500, you can 

determine the name assigned to the account (in cases where a system administra-

tor has renamed the account for security reasons) simply by passing the machine SID 

appended with -500 as PsGetSid’s command-line argument.

To obtain the SID of a domain account, enter the user name with the domain as a 

prefix:

c:\>psgetsid redmond\daryl

You can determine the SID of a domain by specifying the domain’s name as the argu-

ment to PsGetSid:

c:\>psgetsid Redmond

Finally, by examining the RID of your own account, you know at least a number of secu-

rity accounts, equal to the number resulting from subtracting 999 from your RID, have 

been created in your domain or on your local machine (depending on whether you are 

using a domain or local machine account). You can determine what accounts have been 

assigned RIDs by passing a SID with the RID you want to query to PsGetSid. If PsGetSid 

reports that no mapping between the SID and an account name was possible and the 

RID is lower than that of your account, you know that the account assigned the RID has 

been deleted.

For example, to find out the name of the account assigned the twenty-eighth RID, pass 

the domain SID appended with -1027 to PsGetSid:

c:\>psgetsid S-1-5-21-1787744166-3910675280-2727264193-1027  

Account for S-1-5-21-1787744166-3910675280-2727264193-1027:  

User: redmond\daryl

Process Explorer can also show you information on account and group SIDs on your 

system through its Security tab. This tab shows you information such as who owns this 

process and which groups the account is a member of. To view this information, simply  

double-click on any process (for example, Explorer.exe) in the Process list, and then click 

on the Security tab. You should see something similar to the following.
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The information displayed in the User field contains the friendly name of the account 

owning this process, while the SID field contains the actual SID value. The Group list 

includes information on all the groups that this account is a member of. (Groups are 

described later in this chapter.)

Integrity Levels

As mentioned earlier, integrity levels can override discretionary access to differentiate a pro-

cess and objects running as and owned by the same user, offering the ability to isolate code 

and data within a user account. The mechanism of mandatory integrity control allows the 

SRM to have more detailed information about the nature of the caller by associating it with 

an integrity level. It also provides information on the trust required to access the object by 

defining an integrity level for it. These integrity levels are specified by a SID, as described in 

Table 6-3.

TABLE 6-3 Integrity Level SIDs

SID Name (Level) Use

S-1-16-0x0 Untrusted (0) Used by processes started by the Anonymous group. Blocks most 

write access.

S-1-16-0x1000 Low (1) Used by Protected Mode Internet Explorer; blocks write access to 

most objects (such as files and registry keys) on the system.

S-1-16-0x2000 Medium (2) Used by normal applications being launched while UAC is 

 enabled.
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SID Name (Level) Use

S-1-16-0x3000 High (3) Used by administrative applications launched through elevation 

when UAC is enabled, or normal applications if UAC is disabled 

and the user is an administrator

S-1-16-0x4000 System (4) Used by services and other system-level applications (such as 

Wininit, Winlogon, Smss, etc.)

EXPERIMENT: Looking at the Integrity Level of Processes

You can use Process Explorer from Sysinternals to quickly display the integrity level for 

the processes on your system. The following steps demonstrate this functionality.

 1. Launch Internet Explorer in Protected Mode.

 2. Open an elevated Command Prompt window.

 3. Open Microsoft Paint normally (without elevating it).

 4. Now open Process Explorer, right-click on any of the columns in the Process list, 

and then click Select Columns. You should see a dialog box similar to the one 

shown here.

 5. Select the Integrity Level check box and close the dialog box.

 6. Process Explorer will now show you the integrity level of the processes on your 

system. You should see the Protected Mode Internet Explorer process at Low, 

Microsoft Paint at Medium, and the elevated command prompt at High. Also  
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note that the services and system processes are running at an even higher integ-

rity level, System.

Every process has an integrity level that is represented in the process’s token and propagated 

according to the following rules:

A process inherits the integrity level of its parent (which means an elevated command 

prompt will spawn other elevated processes).

If the file object for the executable image to which the child process belongs has an 

integrity level and the parent process’s integrity level is medium or higher, the child 

process will inherit the lower of the two.

A parent process can also create a child process with an explicit integrity level (for 

example, when launching Protected Mode Internet Explorer from an elevated com-

mand prompt).

EXPERIMENT: Understanding Protected Mode Internet Explorer

As mentioned earlier, one of the users of the Windows integrity mechanism is Internet 

Explorer’s Protected Mode, also called Protected Mode Internet Explorer (PMIE). This 

feature was added in Internet Explorer 7 to take advantage of the Windows integ-

rity levels. This experiment will show you how PMIE utilizes integrity levels to provide 

a safer Internet experience. To do this, we’ll use Process Monitor to trace Internet 

Explorer’s behavior.
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 1. Make sure that you haven’t disabled UAC and PMIE on your systems (they are 

both on by default), and close any running instances of Internet Explorer.

 2. Run Process Monitor, and select Filter, Filter to display the filtering dialog box. 

Add an include filter for the process name Iexplore.exe, as shown next:

 3. Run Process Explorer, and repeat the previous experiment to display the Integrity 

Level column.

 4. Now launch Internet Explorer. You should see a flurry of events appear in the 

Process Monitor window and a quick succession of events in Process Explorer, 

showing some processes starting and some exiting.

 5. Once Internet Explorer is running, Process Explorer will show you two new pro-

cesses: Iexplore.exe, running at low integrity level, and Ieuser.exe, running at 

medium integrity level. Part of the added protection offered by PMIE is that 

Iexplore.exe runs at low integrity, so this confirms the behavior.

 6. You can get more information about the behavior that just occurred by looking 

at the processes that started and exited based on the Iexplore.exe filter you set 

up. Reduce the number of Process Monitor events displayed by excluding regis-

try and file events (click the respective icons in the toolbar). You can reduce the 

number of events even more by right-clicking on the operations Thread Start and 

Load Image and then selecting Exclude from the pop-up menu that appears. You 

should be left with the events shown next.
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 7. Notice what actually occurred: a first instance of Iexplore.exe (PID 748) was 

started, which created the Ieuser.exe process and a second Iexplore.exe process 

(PID 1492). Then, the first Iexplore.exe instance exited, leaving the child process 

behind. You can use the Process Tree functionality in Process Monitor to see these 

events in a more obvious manner. Click on Tools, and then click Process Tree and 

scroll down to the first Iexplore.exe entry. You should see a tree similar to the 

following:

 8. You can get more information on the behavior that just occurred by double-

clicking on the first and second Iexplore.exe Process Start events. Shown next is 

the information for the first process:
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 9. Note that the integrity level for this process is actually medium, not low, as we 

would expect. However, if you repeat step 8 on the second instance of Internet 

Explorer, you’ll notice that the integrity level is indeed low. Finally, if you check 

the Ieuser.exe process, you’ll also notice a medium integrity level. This explains 

why the initial process is actually running at medium. A low integrity level pro-

cess cannot create a medium integrity level process, so for Ieuser.exe to run at 

medium, it must be launched from a medium or higher process.

 10. Now let’s examine Ieuser.exe. Double-click on the Process Create event respon-

sible for creating the process, and take a look at the stack by clicking on the Stack 

tab. You should see a trace similar to the one shown next.
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Note the functions named LaunchLoRIEModeIE and CreateBrokerProcess. The sec-

ond function is actually responsible for creating the Ieuser.exe process, which is 

indeed called the IE broker process. This process is used to allow operations such 

as user-initiated file downloads to be saved to any directory the user has access 

to. As we’ll see, because a process at low integrity level cannot write to files and 

directories with a higher integrity level, it would not be possible for users to save 

their downloads if there weren’t a broker process at medium integrity level (or 

higher) to handle this operation.

 11. Finally, you can take a look at the stack trace behind the creation of the second 

Iexplore.exe instance running at low integrity level. You’ll see the same function, 

Launch LoRIEModeIE, involved in the operation, which calls CreateIEIn Protected-
Mode and CreateMICIEProcess (where MIC stands for Mandatory Integrity 

Control). The function LaunchProtectedModeIEWithToken calls the Windows API 

function CreateProcessAsUser to perform the creation at low integrity level. The 

following screen shows this sequence of events in the stack trace of the Process 

Create event:
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Table 6-3 lists the integrity level associated with processes, but how about objects? Objects 

also have an integrity level stored as part of their security descriptor, in a structure that is 

called the mandatory label.

To support migrating from previous versions of Windows (whose registry keys and files would 

not include integrity level information), as well as to make it simpler for application develop-

ers, all objects have an implicit integrity level in order to avoid having to manually specify 

one. This implicit integrity level is the medium level, meaning that the mandatory policy 

(described shortly) on the object will be performed on tokens accessing this object with an 

integrity level lower than medium.

When a process creates an object without specifying an integrity level, the system checks the 

integrity level in the token. For tokens with a level medium or higher, the implicit integrity 

level of the object remains medium. However, when a token contains an integrity level lower 

than medium, the object is created with an explicit integrity level that matches the level in the 

token.

The reason that objects that are created by high or system integrity level processes have 

a medium integrity level themselves is so that users can disable and enable UAC: if object 
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integrity levels always inherited their creator’s integrity level, the applications of an admin-

istrator who disables UAC and subsequently reenables it would potentially fail because they 

would not be able to modify any registry settings or files that they created when running at 

the high integrity level. Objects can also have an explicit integrity level that is set by the sys-

tem or by the creator of the object. For example, the following objects are given an explicit 

integrity level by the kernel when it creates them:

Processes

Threads

Tokens

Jobs

The reason for assigning an integrity level to these objects is to prevent a process for the 

same user, but one running at a lower integrity level, from accessing these objects and modi-

fying their content or behavior (for example, DLL injection or code modification).

EXPERIMENT: Looking at the Integrity Level of Objects

You can use the Accesschk tool from Sysinternals to display the integrity level of objects 

on the system, such as files, processes, and registry keys. Here’s an experiment showing 

the purpose of the LocalLow directory in Windows.

 1. Browse to C:\Users\UserName\ in a command prompt.

 2. Try running Accesschk on the AppData folder.

 3. Note the differences between Local and LocalLow in your output, similar to the 

one shown here:

C:\Users\Abby\AppData\Local 

  Medium Mandatory Level (Default) [No-Write-Up] 

  RW Local Abby-PC\Abby 

  RW NT AUTHORITY\SYSTEM 

  RW BUILTIN\Administrators 

C:\Users\Abby\AppData\LocalLow 

  Low Mandatory Level [No-Write-Up] 

  RW Local Abby-PC\Abby 

  RW NT AUTHORITY\SYSTEM 

  RW BUILTIN\Administrators 

C:\Users\Abby\AppData\Roaming 

  Medium Mandatory Level (Default) [No-Write-Up] 

  RW Local Abby-PC\Abby 

  RW NT AUTHORITY\SYSTEM 

  RW BUILTIN\Administrators

 4. Notice that the LocalLow directory has an integrity level that is set to Low, while 

the Local and Roaming directories have an integrity level of Medium (Default). 

The default means the system is using an implicit integrity level.
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 5. You can pass the –e flag to Accesschk so that it only displays explicit integrity 

levels. If you run the tool on the AppData folder again, you’ll notice only the 

LocalLow information is displayed.

The –o (Object), –k (Key), and –p (Process) flags allow you to specify something 

other than a file or directory.

Apart from an integrity level, objects also have a mandatory policy, which defines the actual 

level of protection that’s applied based on the integrity level check. Three types are possible, 

shown in Table 6-4. The integrity level and the mandatory policy are stored together in the 

same ACE.

TABLE 6-4 Object Mandatory Policies

Policy Present on, by Default Description

No-Write-Up Implicit on all objects Used to restrict write access coming from a lower 

integrity level process to the object.

No-Read-Up Only on process objects Used to restrict read access coming from a lower 

integrity level process to the object. Specific use on 

process objects protects against information leak-

age by blocking address space reads from an exter-

nal process.

No-Execute-Up Only on binaries imple-

menting COM classes

Used to restrict execute access coming from a lower 

integrity level process to the object. Specific use on 

COM classes is to restrict launch activation permis-

sions on a COM class.

Tokens

The SRM uses an object called a token (or access token) to identify the security context of a 

process or thread. A security context consists of information that describes the privileges, 

accounts, and groups associated with the process or thread. Tokens also include information 

such as the session ID, the integrity level, and UAC virtualization state. (We’ll describe UAC’s 

virtualization mechanism later in this chapter.)

During the logon process (described at the end of this chapter), Lsass creates an initial token 

to represent the user logging on. It then determines whether the user logging on is a mem-

ber of a powerful group or possesses a powerful privilege. Windows Vista considers a user an 

administrator if the user is a member of any of the administrator-type groups listed here:

Built-In Administrators

Certificate Administrators

Domain Administrators
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Enterprise Administrators

Policy Administrators

Schema Administrators

Domain Controllers

Enterprise Read-Only Domain Controllers

Read-Only Domain Controllers

Account Operators

Backup Operators

Cryptographic Operators

Network Configuration Operators

Print Operators

System Operators

RAS Servers

Power Users

Pre-Windows 2000 Compatible Access

Many of the groups listed are used only on domain-joined systems and don’t give users local 

administrative rights directly. Instead they allow users to modify domainwide settings. If 

one or more of these groups are present, Lsass creates a restricted token for the user (called 

the filtered admin token), and creates a logon session for both. The standard user token is 

attached to the initial process(es) that Winlogon starts (by default, Userinit.exe).

Note If UAC has been disabled, administrators run with a token that includes their administrator 

group memberships and privileges.

Because child processes by default inherit a copy of the token of their creators, all processes 

in the user’s session run under the same token. You can also generate a token by using the 

Windows LogonUser function. You can then use this token to create a process that runs 

within the security context of the user logged on through the LogonUser function by passing 

the token to the Windows CreateProcessAsUser function. The CreateProcessWithLogon func-

tion also creates a token by creating a new logon session with an initial process, which is how 

the Runas command launches processes under alternative tokens.

Tokens vary in size because different user accounts have different sets of privileges and 

associated group accounts. However, all tokens contain the same information, shown in 

Figure 6-3.
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Token source

Impersonation type

Token ID

Authentication ID

Modified ID

Expiration time

Default primary group

Default DACL

User account SID

Group 1 SID

Group n SID

Restricted SID 1

Restricted SID n

Privilege 1

Privilege n

Session ID

Flags

Logon session

Mandatory policy

FIGURE 6-3 Access tokens

The security mechanisms in Windows use two components to determine what objects can 

be accessed and what secure operations can be performed. One component comprises the 

token’s user account SID and group SID fields. The SRM uses SIDs to determine whether a 

process or thread can obtain requested access to a securable object, such as an NTFS file.

The group SIDs in a token indicate which groups a user’s account is a member of. For exam-

ple, a server application can disable specific groups to restrict a token’s credentials when the 

server application is performing actions a client requests. Disabling a group produces nearly 

the same effect as if the group wasn’t present in the token (it results in a deny-only group, 

described later). (Disabled SIDs are used as part of security access checks, described later in 

the chapter.) Group SIDs can also include a special SID that contains the integrity level of the 
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process or thread. The SRM uses another field in the token, which describes the mandatory 
integrity policy, to perform the mandatory integrity check described later in the chapter.

The second component in a token that determines what the token’s thread or process can 

do is the privilege array. A token’s privilege array is a list of rights associated with the token. 

An example privilege is the right for the process or thread associated with the token to shut 

down the computer. Privileges are described in more detail later in this chapter.

A token’s default primary group field and default discretionary access control list (DACL) 

field are security attributes that Windows applies to objects that a process or thread creates 

when it uses the token. By including security information in tokens, Windows makes it con-

venient for a process or thread to create objects with standard security attributes, because 

the process or thread doesn’t need to request discrete security information for every object it 

creates.

Each token’s type distinguishes a primary token (a token that identifies the security context 

of a process) from an impersonation token (a type of token that threads use to temporar-

ily adopt a different security context, usually of another user). Impersonation tokens carry 

an impersonation level that signifies what type of impersonation is active in the token. 

(Impersonation is described later in this chapter.)

A token also includes the mandatory policy for the process or thread, which defines how MIC 

will behave when processing this token. There are two policies:

TOKEN_MANDATORY_NO_WRITE_UP, which is enabled by default, sets the No-Write-Up 

policy on this token, specifying that the process or thread will not be able to access 

objects with a higher integrity level for write access.

TOKEN_MANDATORY_NEW_PROCESS_MIN, which is also enabled by default, specifies 

that the SRM should look at the integrity level of the executable image when launching 

a child process and compute the minimum integrity level of the parent process and the 

file object’s integrity level as the child’s integrity level.

Token flags include parameters that determine the behavior of certain UAC and UIPI mecha-

nisms, such as virtualization and user interface access, that will be described later in this 

chapter.

The remainder of the fields in a token serve informational purposes. The token source field 

contains a short textual description of the entity that created the token. Programs that want 

to know where a token originated use the token source to distinguish among sources such 

as the Windows Session Manager, a network file server, or the remote procedure call (RPC) 

server. The token identifier is a locally unique identifier (LUID) that the SRM assigns to the 

token when it creates the token. The Windows executive maintains the executive LUID, a 

counter it uses to assign a unique numeric identifier to each token.
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The token authentication ID is another kind of LUID. A token’s creator assigns the token’s 

authentication ID when calling the LsaLogonUser function. If the creator doesn’t specify a 

LUID, Lsass obtains the LUID from the executive LUID. Lsass copies the authentication ID for 

all tokens descended from an initial logon token. A program can obtain a token’s authentica-

tion ID to see whether the token belongs to the same logon session as other tokens the pro-

gram has examined.

The executive LUID refreshes the modified ID every time a token’s characteristics are modi-

fied. An application can test the modified ID to discover changes in a security context since 

the context’s last use.

Tokens contain an expiration time field that can be used by applications performing their 

own security to reject a token after a specified amount of time. However, Windows does not 

make use of this field internally.

Note To guarantee system security, the fields in a token are immutable (because they are 

located in kernel memory). Except for fields that can be modified through a specific system call 

designed to modify certain token attributes (assuming the caller has the appropriate access 

rights to the token object), data such as the privileges and SIDs in a token can never be modified.

EXPERIMENT: Viewing Access Tokens

The kernel debugger dt _TOKEN command displays the format of an internal token 

object. Although this structure differs from the user-mode token structure returned by 

Windows API security functions, the fields are similar. For further information on tokens, 

see the description in the Windows SDK documentation.

The following output is from the kernel debugger’s dt nt!_TOKEN command:

kd> dt nt!_TOKEN  

   +0x000 TokenSource      : _TOKEN_SOURCE 

   +0x010 TokenId          : _LUID 

   +0x018 AuthenticationId : _LUID 

   +0x020 ParentTokenId    : _LUID 

   +0x028 ExpirationTime   : _LARGE_INTEGER 

   +0x030 TokenLock        : Ptr32 _ERESOURCE 

   +0x034 ModifiedId       : _LUID 

   +0x040 Privileges       : _SEP_TOKEN_PRIVILEGES 

   +0x058 AuditPolicy      : _SEP_AUDIT_POLICY 

   +0x074 SessionId        : Uint4B 

   +0x078 UserAndGroupCount : Uint4B 

   +0x07c RestrictedSidCount : Uint4B 

   +0x080 VariableLength   : Uint4B 

   +0x084 DynamicCharged   : Uint4B 

   +0x088 DynamicAvailable : Uint4B 

   +0x08c DefaultOwnerIndex : Uint4B 

   +0x090 UserAndGroups    : Ptr32 _SID_AND_ATTRIBUTES 
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   +0x094 RestrictedSids   : Ptr32 _SID_AND_ATTRIBUTES 

   +0x098 PrimaryGroup     : Ptr32 Void 

   +0x09c DynamicPart      : Ptr32 Uint4B 

   +0x0a0 DefaultDacl      : Ptr32 _ACL 

   +0x0a4 TokenType        : _TOKEN_TYPE 

   +0x0a8 ImpersonationLevel : _SECURITY_IMPERSONATION_LEVEL 

   +0x0ac TokenFlags       : Uint4B 

   +0x0b0 TokenInUse       : UChar 

   +0x0b4 IntegrityLevelIndex : Uint4B 

   +0x0b8 MandatoryPolicy  : Uint4B 

   +0x0bc ProxyData        : Ptr32 _SECURITY_TOKEN_PROXY_DATA 

   +0x0c0 AuditData        : Ptr32 _SECURITY_TOKEN_AUDIT_DATA 

   +0x0c4 LogonSession     : Ptr32 _SEP_LOGON_SESSION_REFERENCES 

   +0x0c8 OriginatingLogonSession : _LUID 

   +0x0d0 SidHash          : _SID_AND_ATTRIBUTES_HASH 

   +0x158 RestrictedSidHash : _SID_AND_ATTRIBUTES_HASH 

   +0x1e0 VariablePart     : Uint4B

You can examine the token for a process with the !token command. You’ll find the 

address of the token in the output of the !process command, as shown here:

lkd> !process d6c 1 

Searching for Process with Cid == d6c 

PROCESS 85450508  SessionId: 1  Cid: 0d6c    Peb: 7ffda000  ParentCid: 0ecc 

    DirBase: cc9525e0  ObjectTable: afd75518  HandleCount:  18. 

    Image: cmd.exe 

    VadRoot 85328e78 Vads 24 Clone 0 Private 148. Modified 0. Locked 0. 

    DeviceMap a0688138 

    Token                             afd48470 

    ElapsedTime                       01:10:14.379 

    UserTime                          00:00:00.000 

    KernelTime                        00:00:00.000 

    QuotaPoolUsage[PagedPool]         42864 

    QuotaPoolUsage[NonPagedPool]      1152 

    Working Set Sizes (now,min,max)  (566, 50, 345) (2264KB, 200KB, 1380KB) 

    PeakWorkingSetSize                582 

    VirtualSize                       22 Mb 

    PeakVirtualSize                   25 Mb 

    PageFaultCount                    680 

    MemoryPriority                    BACKGROUND 

    BasePriority                      8 

    CommitCharge                      437 

  

lkd> !token afd48470 

_TOKEN afd48470 

TS Session ID: 0x1 

User: S-1-5-21-2778343003-3541292008-524615573-500 (User: ALEX-LAPTOP\Administrator) 

Groups:  

 00 S-1-5-21-2778343003-3541292008-524615573-513 (Group: ALEX-LAPTOP\None) 

    Attributes - Mandatory Default Enabled  

 01 S-1-1-0 (Well Known Group: localhost\Everyone) 

    Attributes - Mandatory Default Enabled  

 02 S-1-5-21-2778343003-3541292008-524615573-1000 (Alias: ALEX-LAPTOP\Debugger Users) 

    Attributes - Mandatory Default Enabled  
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 03 S-1-5-32-544 (Alias: BUILTIN\Administrators) 

    Attributes - Mandatory Default Enabled Owner  

 04 S-1-5-32-545 (Alias: BUILTIN\Users) 

    Attributes - Mandatory Default Enabled  

 05 S-1-5-4 (Well Known Group: NT AUTHORITY\INTERACTIVE) 

    Attributes - Mandatory Default Enabled  

 06 S-1-5-11 (Well Known Group: NT AUTHORITY\Authenticated Users) 

    Attributes - Mandatory Default Enabled  

 07 S-1-5-15 (Well Known Group: NT AUTHORITY\This Organization) 

    Attributes - Mandatory Default Enabled  

 08 S-1-5-5-0-89263 (no name mapped) 

    Attributes - Mandatory Default Enabled LogonId  

 09 S-1-2-0 (Well Known Group: localhost\LOCAL) 

    Attributes - Mandatory Default Enabled  

 10 S-1-5-64-10 (Well Known Group: NT AUTHORITY\NTLM Authentication) 

    Attributes - Mandatory Default Enabled  

 11 S-1-16-12288 Unrecognized SID 

    Attributes - GroupIntegrity GroupIntegrityEnabled  

Primary Group: S-1-5-21-2778343003-3541292008-524615573-513 (Group: ALEX-LAPTOP\None) 

Privs:  

 05 0x000000005 SeIncreaseQuotaPrivilege          Attributes -  

 08 0x000000008 SeSecurityPrivilege               Attributes -  

 09 0x000000009 SeTakeOwnershipPrivilege          Attributes -  

 10 0x00000000a SeLoadDriverPrivilege             Attributes -  

 11 0x00000000b SeSystemProfilePrivilege          Attributes -  

 12 0x00000000c SeSystemtimePrivilege             Attributes -  

 13 0x00000000d SeProfileSingleProcessPrivilege   Attributes -  

 14 0x00000000e SeIncreaseBasePriorityPrivilege   Attributes -  

 15 0x00000000f SeCreatePagefilePrivilege         Attributes -  

 17 0x000000011 SeBackupPrivilege                 Attributes -  

 18 0x000000012 SeRestorePrivilege                Attributes -  

 19 0x000000013 SeShutdownPrivilege               Attributes -  

 20 0x000000014 SeDebugPrivilege                  Attributes -  

 22 0x000000016 SeSystemEnvironmentPrivilege      Attributes -  

 23 0x000000017 SeChangeNotifyPrivilege           Attributes - Enabled Default  

 24 0x000000018 SeRemoteShutdownPrivilege         Attributes -  

 25 0x000000019 SeUndockPrivilege                 Attributes -  

 28 0x00000001c SeManageVolumePrivilege           Attributes -  

 29 0x00000001d SeImpersonatePrivilege            Attributes - Enabled Default  

 30 0x00000001e SeCreateGlobalPrivilege           Attributes - Enabled Default  

 33 0x000000021 SeIncreaseWorkingSetPrivilege     Attributes -  

 34 0x000000022 SeTimeZonePrivilege               Attributes -  

 35 0x000000023 SeCreateSymbolicLinkPrivilege     Attributes -  

Authentication ID:         (0,be1a2) 

Impersonation Level:       Identification 

TokenType:                 Primary 

Source: User32             TokenFlags: 0x0 ( Token in use ) 

Token ID: 711076           ParentToken ID: 0 

Modified ID:               (0, 711081) 

RestrictedSidCount: 0      RestrictedSids: 00000000 

OriginatingLogonSession: 3e7

You can indirectly view token contents with Process Explorer’s Security tab in its pro-

cess Properties dialog box. The dialog box shows the groups and privileges included in 

the token of the process you examine.
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EXPERIMENT: Launching a Program at Low Integrity Level

When you elevate a program, either by using the Run As Administrator option or 

because the program is requesting it, the program is explicitly launched at high integ-

rity level; however, it is also possible to launch a program (other than PMIE) at low 

integrity level by using Psexec from Sysinternals.

 1. Launch Notepad at low integrity level by using the following command:

c:\psexec –l notepad.exe

 2. Try opening a file in the %SystemRoot%\System32 directory. Notice that you can 

browse the directory and open any file contained within it.

 3. Now create a new file, write some text, and try saving it in the %SystemRoot%\

System32 directory. Notepad should present a message box indicating a lack of 

permissions and recommend saving the file in the Documents folder.

 4. Accept Notepad’s suggestion. You will get the same message box again, and 

repeatedly for each attempt.

 5. Now try saving the file in the LocalLow directory of your user profile, shown in 

the previous experiment.

In the previous experiment, saving a file in the LocalLow directory worked because 

Notepad was running with low integrity level, and only the LocalLow directory also 

had low integrity level. All the other locations where you tried to write the file had an 

implicit medium integrity level. (You can verify this with Accesschk.) However, read-

ing from the %SystemRoot%\System32 directory, as well as opening files within it, did 

work, even though the directory and its file also have an implicit medium integrity 

level.

Impersonation

Impersonation is a powerful feature Windows uses frequently in its security model. Windows 

also uses impersonation in its client/server programming model. For example, a server appli-

cation can export resources such as files, printers, or databases. Clients wanting to access a 

resource send a request to the server. When the server receives the request, it must ensure 
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that the client has permission to perform the desired operations on the resource. For exam-

ple, if a user on a remote machine tries to delete a file on an NTFS share, the server exporting 

the share must determine whether the user is allowed to delete the file. The obvious way to 

determine whether a user has permission is for the server to query the user’s account and 

group SIDs and scan the security attributes on the file. This approach is tedious to program, 

prone to errors, and wouldn’t permit new security features to be supported transparently. 

Thus, Windows provides impersonation services to simplify the server’s job.

Impersonation lets a server notify the SRM that the server is temporarily adopting the secu-

rity profile of a client making a resource request. The server can then access resources on 

behalf of the client, and the SRM carries out the access validations. Usually, a server has 

access to more resources than a client does and loses some of its security credentials during 

impersonation. However, the reverse can be true: the server can gain security credentials dur-

ing impersonation.

A server impersonates a client only within the thread that makes the impersonation request. 

Thread-control data structures contain an optional entry for an impersonation token. 

However, a thread’s primary token, which represents the thread’s real security credentials, is 

always accessible in the process’s control structure.

Windows makes impersonation available through several mechanisms. If a server com-

municates with a client through a named pipe, the server can use the ImpersonateNamed-
PipeClient Windows API function to tell the SRM that it wants to impersonate the user 

on the other end of the pipe. If the server is communicating with the client through 

Dynamic Data Exchange (DDE) or an RPC, it can make similar impersonation requests 

using DdeImpersonateClient and RpcImpersonateClient. A thread can create an imperson-

ation token that’s simply a copy of its process token with the ImpersonateSelf function. The 

thread can then alter its impersonation token, to disable SIDs or privileges, for example. 

Finally, a Security Support Provider Interface (SSPI) package can impersonate its clients with 

ImpersonateSecurityContext. SSPIs implement a network authentication protocol such as LAN 

Manager version 2 or Kerberos.

After the server thread finishes its task, it reverts to its primary security context. These forms 

of impersonation are convenient for carrying out specific actions at the request of a client 

and for ensuring that object accesses are audited correctly. (For example, the audit that is 

generated gives the identity of the impersonated client rather than that of the server pro-

cess.) The disadvantage to these forms of impersonation is that they can’t execute an entire 

program in the context of a client. In addition, an impersonation token can’t access files or 

printers on network shares unless it is a delegation-level impersonation (described shortly) 

and has sufficient credentials to authenticate to the remote machine, or the file or printer 

share supports null sessions. (A null session is one that results from an anonymous logon.)

If an entire application must execute in a client’s security context or must access network 

resources without using impersonation, the client must be logged on to the system. The 
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LogonUser Windows API function enables this action. LogonUser takes an account name, a 

password, a domain or computer name, a logon type (such as interactive, batch, or service), 

and a logon provider as input, and it returns a primary token. A server thread can adopt the 

token as an impersonation token, or the server can start a program that has the client’s cre-

dentials as its primary token. From a security standpoint, a process created using the token 

returned from an interactive logon via LogonUser, such as with the CreateProcessAsUser API, 

looks like a program a user starts by logging on to the machine interactively. The disadvan-

tage to this approach is that a server must obtain the user’s account name and password. If 

the server transmits this information across the network, the server must encrypt it securely 

so that a malicious user snooping network traffic can’t capture it.

To prevent the misuse of impersonation, Windows doesn’t let servers perform impersonation 

without a client’s consent. A client process can limit the level of impersonation that a server 

process can perform by specifying a security quality of service (SQOS) when connecting to 

the server. A process can specify SECURITY_ANONYMOUS, SECURITY_IDENTIFICATION, 

SECURITY_IMPERSONATION, and SECURITY_DELEGATION as flags for the Windows CreateFile 

function. Each level lets a server perform different types of operations with respect to the 

client’s security context:

SecurityAnonymous is the most restrictive level of impersonation—the server can’t 

impersonate or identify the client.

SecurityIdentification level lets the server obtain the identity (the SIDs) of the client and 

the client’s privileges, but the server can’t impersonate the client.

SecurityImpersonation level lets the server identify and impersonate the client on the 

local system.

SecurityDelegation is the most permissive level of impersonation. It lets the server 

impersonate the client on local and remote systems.

If the client doesn’t set an impersonation level, Windows chooses the SecurityImpersonation 

level by default. The CreateFile function also accepts SECURITY_EFFECTIVE_ONLY and 

SECURITY_CONTEXT_TRACKING as modifiers for the impersonation setting:

SECURITY_EFFECTIVE_ONLY prevents a server from enabling or disabling a client’s privi-

leges or groups while the server is impersonating.

SECURITY_CONTEXT_TRACKING specifies that any changes a client makes to its security 

context are reflected in a server that is impersonating it. If this option isn’t specified, 

the server adopts the context of the client at the time of the impersonation and doesn’t 

receive any changes. This option is honored only when the client and server processes 

are on the same system.

To prevent spoofing scenarios in which a low integrity process could create a user interface 

that captured user credentials and then used LogonUser to obtain that user’s token, a special 

integrity policy applies to impersonation scenarios: a thread cannot impersonate a token of 
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higher integrity than its own. For example, a low integrity application cannot spoof a dialog 

box that queries administrative credentials and then attempt to launch a process at a higher 

privilege level. The integrity mechanism policy for impersonation access tokens is that the 

integrity level of the access token that is returned by LsaLogonUser must be no higher than 

the integrity level of the calling process.

Restricted Tokens

A restricted token is created from a primary or impersonation token using the Create-
RestrictedToken function. The restricted token is a copy of the token it’s derived from, with 

the following possible modifications:

Privileges can be removed from the token’s privilege array.

SIDs in the token can be marked as deny-only. These SIDs remove access to any 

resources for which the SID’s access is denied by using a matching access-denied ACE 

that would otherwise be overridden by an ACE granting access to a group containing 

the SID earlier in the security descriptor.

SIDs in the token can be marked as restricted. These SIDs are subject to a second pass 

of the access check algorithm, which will parse only the restricted SIDs in the token. The 

results of both the first pass and the second pass must grant access to the resource or 

no access is granted to the object.

Restricted tokens are useful when an application wants to impersonate a client at a reduced 

security level, primarily for safety reasons when running untrusted code. For example, the 

restricted token can have the shutdown-system privilege removed from it to prevent code 

executed in the restricted token’s security context from rebooting the system.

Filtered Admin Token

As we saw earlier, restricted tokens are also used by UAC to create the filtered admin token 

that all user applications will inherit. A filtered admin token has the following characteristics:

The integrity level is set to medium.

The administrator and administrator-like SIDs mentioned previously are marked as 

deny-only to prevent a security hole if the group was removed altogether. For example, 

if a file had an access control list (ACL) that denied the Administrators group all access 

but granted some access to another group the user belongs to, the user would be 

granted access if the Administrators group was absent from the token, which would 

give the standard user version of the user’s identity more access than the user’s admin-

istrator identity.

All privileges are stripped except Change Notify, Shutdown, Undock, Increase Working 

Set, and Time Zone.
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EXPERIMENT: Looking at Filtered Admin Tokens

You can make Explorer launch a process with either the standard user token or the 

administrator token by following these steps on a Windows machine with UAC enabled:

 1. Log on to an account that’s a member of the Administrators group.

 2. Click Start, Programs, Accessories, Command Prompt, right-click on the shortcut, 

and then select Run As Administrator. You will see a command prompt with the 

word Administrator in the title bar.

 3. Now repeat the process, but simply click on the shortcut—this will launch a sec-

ond command prompt without administrative privileges.

 4. Run Process Explorer, and view the Security tab in the Properties dialog boxes for 

the two command prompt processes you launched. Note that the standard user 

token contains a deny-only SID and a Medium Mandatory Label, and that it has 

only a couple of privileges. The properties on the right in the following screen 

shot are from a command prompt running with an administrator token, and the 

properties on the left are from one running with the filtered administrative token:

Security Descriptors and Access Control

Tokens, which identify a user’s credentials, are only part of the object security equation. 

Another part of the equation is the security information associated with an object, which 
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specifies who can perform what actions on the object. The data structure for this information 

is called a security descriptor. A security descriptor consists of the following attributes:

Revision number The version of the SRM security model used to create the 

descriptor.

Flags Optional modifiers that define the behavior or characteristics of the descriptor. 

These flags are listed in Table 6-5.

Owner SID The owner’s security ID.

Group SID The security ID of the primary group for the object (used only by POSIX).

Discretionary access control list (DACL) Specifies who has what access to the object.

System access control list (SACL) Specifies which operations by which users should 

be logged in the security audit log and the explicit integrity level of an object.

TABLE 6-5 Security Descriptor Flags

Flag Meaning

SE_OWNER_DEFAULTED Indicates a security descriptor with a default owner security iden-

tifier (SID). Use this bit to find all the objects that have default 

owner permissions set.

SE_GROUP_DEFAULTED Indicates a security descriptor with a default group SID. Use this 

bit to find all the objects that have default group permissions set.

SE_DACL_PRESENT Indicates a security descriptor that has a DACL. If this flag is not 

set, or if this flag is set and the DACL is NULL, the security de-

scriptor allows full access to everyone.

SE_DACL_DEFAULTED Indicates a security descriptor with a default DACL. For example, 

if an object creator does not specify a DACL, the object receives 

the default DACL from the access token of the creator. This flag 

can affect how the system treats the DACL, with respect to access 

control entry (ACE) inheritance. The system ignores this flag if 

the SE_DACL_PRESENT flag is not set.

SE_SACL_PRESENT Indicates a security descriptor that has a system access control 

list (SACL).

SE_SACL_DEFAULTED Indicates a security descriptor with a default SACL. For example, 

if an object creator does not specify an SACL, the object receives 

the default SACL from the access token of the creator. This flag 

can affect how the system treats the SACL with respect to ACE 

inheritance. The system ignores this flag if the SE_SACL_PRESENT 

flag is not set.

SE_DACL_UNTRUSTED Indicates that the ACL pointed to by the DACL of the security 

descriptor was provided by an untrusted source. If this flag is set 

and a compound ACE is encountered, the system will substitute 

known valid SIDs for the server SIDs in the ACEs.
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Flag Meaning

SE_SERVER_SECURITY Requests that the provider for the object protected by the 

security descriptor should be a server ACL based on the input 

ACL, regardless of its source (explicit or defaulting). This is done 

by replacing all the GRANT ACEs with compound ACEs granting 

the current server access. This flag is only meaningful if the 

subject is impersonating.

SE_DACL_AUTO_INHERIT_REQ Requests that the provider for the object protected by the 

security descriptor automatically propagate the DACL to existing 

child objects. If the provider supports automatic inheritance, 

the DACL is propagated to any existing child objects, and the 

SE_DACL_AUTO_INHERITED bit in the security descriptor of the 

parent and child objects is set.

SE_SACL_AUTO_INHERIT_REQ Requests that the provider for the object protected by the 

security descriptor automatically propagate the SACL to existing 

child objects. If the provider supports automatic inheritance, 

the SACL is propagated to any existing child objects, and the 

SE_SACL_AUTO_INHERITED bit in the security descriptors of the 

parent object and child objects is set.

SE_DACL_AUTO_INHERITED Indicates a security descriptor in which the DACL is set up to sup-

port automatic propagation of inheritable ACEs to existing child 

objects. The system sets this bit when it performs the automatic 

inheritance algorithm for the object and its existing child objects. 

SE_SACL_AUTO_INHERITED Indicates a security descriptor in which the SACL is set up to sup-

port automatic propagation of inheritable ACEs to existing child 

objects. The system sets this bit when it performs the automatic 

inheritance algorithm for the object and its existing child objects. 

SE_DACL_PROTECTED Prevents the DACL of a security descriptor from being modified 

by inheritable ACEs.

SE_SACL_PROTECTED Prevents the SACL of a security descriptor from being modified 

by inheritable ACEs.

SE_RM_CONTROL_VALID Indicates that the resource control manager bits in the security 

descriptor are valid. The resource control manager bits are 8 bits 

in the security descriptor structure that contains information 

specific to the resource manager accessing the structure.

SE_SELF_RELATIVE Indicates a security descriptor in self-relative format, with all the 

security information in a contiguous block of memory. If this flag 

is not set, the security descriptor is in absolute format.

An access control list (ACL) is made up of a header and zero or more access control entry 

(ACE) structures. There are two types of ACLs: DACLs and SACLs. In a DACL, each ACE con-

tains a SID and an access mask (and a set of flags, explained shortly). Eight types of ACEs can 

appear in a DACL: access allowed, access denied, allowed-object, denied-object, allowed-

callback, denied-callback, allowed-object-callback, and denied-object-callback. As you would 

expect, the access-allowed ACE grants access to a user, and the access-denied ACE denies the 
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access rights specified in the access mask. The callback ACEs are used by applications that 

make use of the AuthZ API (described later) to register a callback that AuthZ will call when it 

performs an access check involving this ACE.

The difference between allowed-object and access allowed, and between denied-object and 

access denied, is that the object types are used only within Active Directory. ACEs of these 

types have a GUID (globally unique identifier) field that indicates that the ACE applies only 

to particular objects or subobjects (those that have GUID identifiers). In addition, another 

optional GUID indicates what type of child object will inherit the ACE when a child is created 

within an Active Directory container that has the ACE applied to it. (A GUID is a 128-bit iden-

tifier guaranteed to be universally unique.)

The accumulation of access rights granted by individual ACEs forms the set of access rights 

granted by an ACL. If no DACL is present (a null DACL) in a security descriptor, everyone has 

full access to the object. If the DACL is empty (that is, it has 0 ACEs), no user has access to the 

object.

The ACEs used in DACLs also have a set of flags that control and specify characteristics of the 

ACE related to inheritance. Some object namespaces have containers and objects. A container 

can hold other container objects and leaf objects, which are its child objects. Examples of 

containers are directories in the file system namespace and keys in the registry namespace. 

Certain flags in an ACE control how the ACE propagates to child objects of the container 

associated with the ACE. Table 6-6, reproduced in part from the Windows SDK, lists the 

inheritance rules for ACE flags.

TABLE 6-6 Inheritance Rules for ACE Flags

Flag Inheritance Rule

CONTAINER_INHERIT_ACE Child objects that are containers, such as directories, inherit 

the ACE as an effective ACE. The inherited ACE is inheritable 

unless the NO_PROPAGATE_INHERIT_ACE bit flag is also set.

INHERIT_ONLY_ACE This flag indicates an inherit-only ACE that doesn’t control 

access to the object it’s attached to. If this flag is not set, the 

ACE controls access to the object to which it is attached.

INHERITED_ACE This flag indicates that the ACE was inherited. The system 

sets this bit when it propagates an inheritable ACE to a child 

object.

NO_PROPAGATE_INHERIT_ACE If the ACE is inherited by a child object, the system clears the 

OBJECT_INHERIT_ACE and CONTAINER_INHERIT_ACE flags in 

the inherited ACE. This action prevents the ACE from being 

inherited by subsequent generations of objects.

OBJECT_INHERIT_ACE Noncontainer child objects inherit the ACE as an effective 

ACE. For child objects that are containers, the ACE is inherited 

as an inherit-only ACE unless the NO_PROPAGATE_INHERIT_

ACE bit flag is also set.
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A SACL contains two types of ACEs, system audit ACEs and system audit-object ACEs. These 

ACEs specify which operations performed on the object by specific users or groups should be 

audited. Audit information is stored in the system Audit Log. Both successful and unsuccess-

ful attempts can be audited. Like their DACL object-specific ACE cousins, system audit-object 

ACEs specify a GUID indicating the types of objects or subobjects that the ACE applies to and 

an optional GUID that controls propagation of the ACE to particular child object types. If a 

SACL is null, no auditing takes place on the object. (Security auditing is described later in this 

chapter.) The inheritance flags that apply to DACL ACEs also apply to system audit and sys-

tem audit-object ACEs.

Figure 6-4 is a simplified picture of a file object and its DACL.

File
object

Security 
descriptor

Allow
USER1

Read data

Allow
TEAM1

Read data
Write data

Allow 
Everyone 

File execute

ACE ACE ACE

DACL

FIGURE 6-4 Discretionary access control list (DACL)

As shown in Figure 6-4, the first ACE allows USER1 to query the file. The second ACE allows 

members of the group TEAM1 to have read and write access to the file, and the third ACE 

grants all other users (Everyone) execute access.

EXPERIMENT: Viewing a Security Descriptor

Most executive subsystems rely on the object manager’s default security functionality 

to manage security descriptors for their objects. The object manager’s default secu-

rity functions use the security descriptor pointer to store security descriptors for such 

objects. For example, the process manager uses default security, so the object manager 

stores process and thread security descriptors in the object headers of process and 

thread objects, respectively. The security descriptor pointer of events, mutexes, and 

semaphores also store their security descriptors. You can use live kernel debugging to 

view the security descriptors of these objects once you locate their object header, as 

outlined in the following steps. (Note that both Process Explorer and Accesschk can 

also show security descriptors for processes.)

 1. Start the kernel debugger.

 2. Type !process 0 0 explorer.exe to obtain process information about Explorer:

lkd> !process 0 0 explorer.exe 

PROCESS 84fce020  SessionId: 1  Cid: 0804    Peb: 7ffd3000  ParentCid: 05ec 

    DirBase: 1f14f420  ObjectTable: 90369388  HandleCount: 428. 

    Image: explorer.exe
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 3. Type !object with the address following the word PROCESS in the output of the 

previous command as the argument to show the object data structure:

lkd> !object 84fce020   

Object: 84fce020  Type: (83dd3bc0) Process 

    ObjectHeader: 84fce008 (old version) 

    HandleCount: 5  PointerCount: 185

 4. Type dt _OBJECT_HEADER and the address of the object header field from the 

previous command’s output to show the object header data structure, including 

the security descriptor pointer value:

lkd> dt _object_header 84fce008 

nt!_OBJECT_HEADER 

   +0x000 PointerCount     : 187 

   +0x004 HandleCount      : 5 

   +0x004 NextToFree       : 0x00000005  

   +0x008 Type             : 0x83dd3bc0 _OBJECT_TYPE 

   +0x00c NameInfoOffset   : 0 '' 

   +0x00d HandleInfoOffset : 0 '' 

   +0x00e QuotaInfoOffset  : 0 '' 

   +0x00f Flags            : 0x20 ' ' 

   +0x010 ObjectCreateInfo : 0x84c91b78 _OBJECT_CREATE_INFORMATION 

   +0x010 QuotaBlockCharged : 0x84c91b78  

   +0x014 SecurityDescriptor : 0x9036770a  

   +0x018 Body             : _QUAD

 5. Security descriptor pointers in the object header use the low three bits as flags, 

so type the following command to dump the security descriptor by entering 

the address displayed in the object header structure, but with the low three bits 

removed:

lkd> !sd 0x9036770a  & -8 

->Revision: 0x1 

->Sbz1    : 0x0 

->Control : 0x8814 

            SE_DACL_PRESENT 

            SE_SACL_PRESENT 

            SE_SACL_AUTO_INHERITED 

            SE_SELF_RELATIVE 

->Owner   : S-1-5-32-544 

->Group   : S-1-5-21-529698691-1302229678-416145009-513 

->Dacl    :  

->Dacl    : ->AclRevision: 0x2 

->Dacl    : ->Sbz1       : 0x0 

->Dacl    : ->AclSize    : 0x50 

->Dacl    : ->AceCount   : 0x3 

->Dacl    : ->Sbz2       : 0x0 

->Dacl    : ->Ace[0]: ->AceType: ACCESS_ALLOWED_ACE_TYPE 

->Dacl    : ->Ace[0]: ->AceFlags: 0x0 

->Dacl    : ->Ace[0]: ->AceSize: 0x18 

->Dacl    : ->Ace[0]: ->Mask : 0x001fffff 

->Dacl    : ->Ace[0]: ->SID: S-1-5-32-544 
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->Dacl    : ->Ace[1]: ->AceType: ACCESS_ALLOWED_ACE_TYPE 

->Dacl    : ->Ace[1]: ->AceFlags: 0x0 

->Dacl    : ->Ace[1]: ->AceSize: 0x14 

->Dacl    : ->Ace[1]: ->Mask : 0x001fffff 

->Dacl    : ->Ace[1]: ->SID: S-1-5-18 

 

->Dacl    : ->Ace[2]: ->AceType: ACCESS_ALLOWED_ACE_TYPE 

->Dacl    : ->Ace[2]: ->AceFlags: 0x0 

->Dacl    : ->Ace[2]: ->AceSize: 0x1c 

->Dacl    : ->Ace[2]: ->Mask : 0x00121411 

->Dacl    : ->Ace[2]: ->SID: S-1-5-5-0-97946 

 

->Sacl    :  

->Sacl    : ->AclRevision: 0x2 

->Sacl    : ->Sbz1       : 0x0 

->Sacl    : ->AclSize    : 0x1c 

->Sacl    : ->AceCount   : 0x1 

->Sacl    : ->Sbz2       : 0x0 

->Sacl    : ->Ace[0]: ->AceType: SYSTEM_MANDATORY_LABEL_ACE_TYPE 

->Sacl    : ->Ace[0]: ->AceFlags: 0x0 

->Sacl    : ->Ace[0]: ->AceSize: 0x14 

->Sacl    : ->Ace[0]: ->Mask : 0x00000003 

->Sacl    : ->Ace[0]: ->SID: S-1-16-12288

The security descriptor contains three access-allowed ACEs: one for the Administrators 

group (S-1-5-32-544), one for the System account (S-1-5-18), and the last for the Logon 

SID (S-1-5-5-0-97946). The system access control list has one entry (S-1-16-12288) 

labeling the process as high integrity level. (This example output was taken from a 

Windows Server 2008 system logged on to the Administrator account, which is why 

Explorer is running at high instead of medium.)

ACL Assignment

To determine which DACL to assign to a new object, the security system uses the first appli-

cable rule of the following four assignment rules:

 1. If a caller explicitly provides a security descriptor when creating the object, the secu-

rity system applies it to the object. If the object has a name and resides in a container 

object (for example, a named event object in the \BaseNamedObjects object manager 

namespace directory), the system merges any inheritable ACEs (ACEs that might propa-

gate from the object’s container) into the DACL unless the security descriptor has the 

SE_DACL_PROTECTED flag set, which prevents inheritance.

 2. If a caller doesn’t supply a security descriptor and the object has a name, the security 

system looks at the security descriptor in the container in which the new object name 

is stored. Some of the object directory’s ACEs might be marked as inheritable, mean-

ing that they should be applied to new objects created in the object directory. If any of 
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these inheritable ACEs are present, the security system forms them into an ACL, which it 

attaches to the new object. (Separate flags indicate ACEs that should be inherited only 

by container objects rather than by objects that aren’t containers.)

 3. If no security descriptor is specified and the object doesn’t inherit any ACEs, the secu-

rity system retrieves the default DACL from the caller’s access token and applies it to 

the new object. Several subsystems on Windows have hard-coded DACLs that they 

assign on object creation (for example, services, LSA, and SAM objects).

 4. If there is no specified descriptor, no inherited ACEs, and no default DACL, the sys-

tem creates the object with no DACL, which allows everyone (all users and groups) full 

access to the object. This rule is the same as the third rule in which a token contains a 

null default DACL.

The rules the system uses when assigning a SACL to a new object are similar to those used 

for DACL assignment, with some exceptions. The first is that inherited system audit ACEs 

don’t propagate to objects with security descriptors marked with the SE_SACL_PROTECTED 

flag (similar to the SE_DACL_PROTECTED flag, which protects DACLs). Second, if there are no 

specified security audit ACEs and there is no inherited SACL, no SACL is applied to the object. 

This behavior is different from that used to apply default DACLs because tokens don’t have a 

default SACL.

When a new security descriptor containing inheritable ACEs is applied to a container, the 

system automatically propagates the inheritable ACEs to the security descriptors of child 

objects. (Note that a security descriptor’s DACL doesn’t accept inherited DACL ACEs if its 

SE_DACL_PROTECTED flag is enabled, and its SACL doesn’t inherit SACL ACEs if the descriptor 

has the SE_SACL_PROTECTED flag set.) The order in which inheritable ACEs are merged with 

an existing child object’s security descriptor is such that any ACEs that were explicitly applied 

to the ACL are kept ahead of ACEs that the object inherits. The system uses the following 

rules for propagating inheritable ACEs:

If a child object with no DACL inherits an ACE, the result is a child object with a DACL 

containing only the inherited ACE.

If a child object with an empty DACL inherits an ACE, the result is a child object with a 

DACL containing only the inherited ACE.

For objects in Active Directory only, if an inheritable ACE is removed from a parent 

object, automatic inheritance removes any copies of the ACE inherited by child objects.

For objects in Active Directory only, if automatic inheritance results in the removal of 

all ACEs from a child object’s DACL, the child object has an empty DACL rather than no 

DACL.

As you’ll soon discover, the order of ACEs in an ACL is an important aspect of the Windows 

security model.
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Note Inheritance is generally not directly supported by the object stores such as file systems, 

the registry, or Active Directory. Windows APIs that support inheritance, including SetSecurityInfo 

and SetNamedSecurityInfo, do so by invoking appropriate functions within the security inheri-

tance support DLL (%SystemRoot%\System32\Ntmarta.dll) that know how to traverse those 

object stores.

Determining Access

Two methods are used for determining access to an object:

The mandatory integrity check, which determines whether the integrity level of the 

caller is high enough to access the resource, based on the resource’s own integrity level 

and its mandatory policy.

The discretionary access check, which determines the access that a specific user account 

has to an object.

When a process tries to open an object, the integrity check takes place before the standard 

Windows DACL check in the kernel’s SeAccessCheck function because it is faster to execute 

and can quickly eliminate the need to perform the full discretionary access check. Given the 

default integrity policies, a process can only open an object for write access if its integrity 

level is equal to or higher than the object’s integrity level and the DACL also grants the pro-

cess the accesses it desires. For example, a low integrity level process cannot open a medium 

integrity level process for write access, even if the DACL grants the process write access.

With the default integrity policy, processes can open any object—with the exception of pro-

cess, thread, and token objects—for read access as long as the object’s DACL grants them 

read access. That means a process running at low integrity level can open any files accessible 

to the user account in which it’s running. Protected Mode Internet Explorer uses integrity lev-

els to help prevent malware that infects it from modifying user account settings, but it does 

not stop malware from reading the user’s documents.

Recall that process and thread objects are exceptions because their integrity policy also 

includes No-Read-Up. That means a process’s integrity level must be equal to or higher 

than the integrity level of the process or thread it wants to open, and the DACL must grant 

it the accesses it wants for an open to succeed. Assuming the DACLs allow the desired 

access, Figure 6-5 shows the types of access that the processes running at medium or low 

have to other processes and objects.
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FIGURE 6-5 Access to processes versus objects for medium and low integrity level processes

User Interface Privilege Isolation (UIPI)

The Windows messaging subsystem also honors integrity levels to implement UIPI. The 

subsystem does this by preventing a process from sending window messages to the 

windows owned by a process having a higher integrity level, with the following infor-

mational messages being exceptions:

WM_NULL

WM_MOVE

WM_SIZE

WM_GETTEXT

WM_GETTEXTLENGTH

WM_GETHOTKEY

WM_GETICON

WM_RENDERFORMAT

WM_DRAWCLIPBOARD

WM_CHANGECBCHAIN

WM_THEMECHANGED
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This use of integrity levels prevents standard user processes from driving input into the 

windows of elevated processes or from performing a shatter attack (such as sending 

the process malformed messages that trigger internal buffer overflows, which can lead 

to the execution of code at the elevated process’s privileges). UIPI also blocks window 

hooks from affecting the windows of higher integrity level processes so that a standard 

user process can’t log the keystrokes the user types into an administrative application, 

for example. Journal hooks are also blocked in the same way to prevent lower integrity 

level processes from monitoring the behavior of higher integrity level processes.

Processes can choose to allow additional messages to pass the guard by calling the 

ChangeWindowMessageFilter API. This function is typically used to add messages 

required by custom controls to communicate outside native common controls in 

Windows. Because this function is per-process, however, and not per-thread, it is pos-

sible for two custom controls inside the same process to be using the same internal 

window messages, which could lead to one control’s potentially malicious window mes-

sage to be allowed through, simply because it happens to be a query-only message for 

the other custom control.

Because accessibility applications such as the On-Screen Keyboard (Osk.exe) are subject 

to UIPI’s restrictions (which would require the accessibility application to be executed 

for each kind of visible integrity level process on the desktop), these processes can 

enable UI Access. This flag can be present in the manifest file of the image and will 

run the process at a slightly higher integrity level than medium (between 0x2000 and 

0x3000) if launched from a standard user account, or at high integrity level if launched 

from an administrator account. Note that in the second case, an elevation request 

won’t actually be displayed. For a process to set this flag, its image must also be signed 

and in one of several secure locations, including %SystemRoot% and %ProgramFiles%.

Note Threads created by Csrss (which is responsible for console windows and, by extension, all 

command-line applications) always run with a UIPI integrity level of medium, regardless of how 

the actual command-line process was started. This means that it is possible to drive input to 

these kinds of applications from a low integrity level regardless of UIPI.

After the integrity check is complete, and assuming the mandatory policy allows access to 

the object based on the caller’s integrity, one of two algorithms is used for the discretionary 

check to an object, which will determine the final outcome of the access check:

One to determine the maximum access allowed to the object, a form of which is 

exported to user mode with the Windows GetEffectiveRightsFromAcl function. This is 

also used when a program specifies a desired access of MAXIMUM_ALLOWED, which is 

what the legacy APIs that don’t have a desired access parameter use.
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One to determine whether a specific desired access is allowed, which can be done with 

the Windows AccessCheck function or the AccessCheckByType function.

The first algorithm examines the entries in the DACL as follows:

 1. If the object has no DACL (a null DACL), the object has no protection and the security 

system grants all access.

 2. If the caller has the take-ownership privilege, the security system grants write-owner 

access before examining the DACL. (Take-ownership privilege and write-owner access 

are explained in a moment.)

 3. If the caller is the owner of the object, the system looks for an OWNER_RIGHTS SID 

and uses that SID as the SID for the next steps. Otherwise, read-control and write-DACL 

access rights are granted.

 4. For each access-denied ACE that contains a SID that matches one in the caller’s access 

token, the ACE’s access mask is removed from the granted-access mask.

 5. For each access-allowed ACE that contains a SID that matches one in the caller’s access 

token, the ACE’s access mask is added to the granted-access mask being computed, 

unless that access has already been denied.

When all the entries in the DACL have been examined, the computed granted-access mask is 

returned to the caller as the maximum allowed access to the object. This mask represents the 

total set of access types that the caller will be able to successfully request when opening the 

object.

The preceding description applies only to the kernel-mode form of the algorithm. The 

Windows version implemented by GetEffectiveRightsFromAcl differs in that it doesn’t perform 

step 2, and it considers a single user or group SID rather than an access token.

Owner Rights

Because owners of an object can normally override the security of an object by always 

being granted read-control and write-DACL rights, a specialized method of controlling 

this behavior is exposed by Windows: the Owner Rights SID.

The Owner Rights SID exists for two main reasons: improving service hardening in the 

operating system, and allowing more flexibility for specific usage scenarios. For exam-

ple, suppose an administrator wants to allow users to create files and folders but not 

to modify the ACLs on those objects. (Users could inadvertently or maliciously grant 

access to those files or folders to unwanted accounts.) By using an inheritable Owner 

Rights SID, the users can be prevented from editing or even viewing the ACL on the 

objects they create. A second usage scenario relates to group changes. Suppose an  
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employee has been part of some confidential or sensitive group, has created several 

files while a member of that group, and has now been removed from the group for 

business reasons. Since that employee is still a user, he could continue accessing the 

sensitive files.

As mentioned, Windows also uses the Owner Rights SID to improve service hardening. 

Whenever a service creates an object at run time, the Owner SID associated with that 

object is the account the service is running in (such as local system or local service) and 

not the actual service SID. This means that any other service in the same account would 

have access to the object by being an owner. The Owner Rights SID prevents that 

unwanted behavior.

The second algorithm is used to determine whether a specific access request can be granted, 

based on the caller’s access token. Each open function in the Windows API that deals with 

securable objects has a parameter that specifies the desired access mask, which is the last 

component of the security equation. To determine whether the caller has access, the follow-

ing steps are performed:

 1. If the object has no DACL (a null DACL), the object has no protection and the security 

system grants the desired access.

 2. If the caller has the take-ownership privilege, the security system grants write-owner 

access if requested and then examines the DACL. However, if write-owner access was 

the only access requested by a caller with take-ownership privilege, the security system 

grants that access and never examines the DACL.

 3. If the caller is the owner of the object, the system looks for an OWNER_RIGHTS SID 

and uses that SID as the SID for the next steps. Otherwise, read-control and write-DACL 

access rights are granted. If these rights were the only access rights that the caller 

requested, access is granted without examining the DACL

 4. Each ACE in the DACL is examined from first to last. An ACE is processed if one of the 

following conditions is satisfied:

 a. The ACE is an access-deny ACE, and the SID in the ACE matches an enabled SID 

(SIDs can be enabled or disabled) or a deny-only SID in the caller’s access token.

 b. The ACE is an access-allowed ACE, and the SID in the ACE matches an enabled SID 

in the caller’s token that isn’t of type deny-only.

 c. It is the second pass through the descriptor for restricted-SID checks, and the SID 

in the ACE matches a restricted SID in the caller’s access token.

 d. The ACE isn’t marked as inherit-only.
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 5. If it is an access-allowed ACE, the rights in the access mask in the ACE that were 

requested are granted; if all the requested access rights have been granted, the access 

check succeeds. If it is an access-denied ACE and any of the requested access rights are 

in the denied-access rights, access is denied to the object.

 6. If the end of the DACL is reached and some of the requested access rights still haven’t 

been granted, access is denied.

 7. If all accesses are granted but the caller’s access token has at least one restricted SID, 

the system rescans the DACL’s ACEs looking for ACEs with access-mask matches for the 

accesses the user is requesting and a match of the ACE’s SID with any of the caller’s 

restricted SIDs. Only if both scans of the DACL grant the requested access rights is the 

user granted access to the object.

The behavior of both access-validation algorithms depends on the relative ordering of allow 

and deny ACEs. Consider an object with only two ACEs, where one ACE specifies that a cer-

tain user is allowed full access to an object and the other ACE denies the user access. If the 

allow ACE precedes the deny ACE, the user can obtain full access to the object, but if the 

order is reversed, the user cannot gain any access to the object.

Several Windows functions, such as SetSecurityInfo and SetNamedSecurityInfo, apply ACEs 

in the preferred order of explicit deny ACEs preceding explicit allow ACEs. Note that the 

security editor dialog boxes with which you edit permissions on NTFS files and registry keys, 

for example, use these functions. SetSecurityInfo and SetNamedSecurityInfo also apply ACE 

inheritance rules to the security descriptor on which they are applied.

Figure 6-6 shows an example access validation demonstrating the importance of ACE order-

ing. In the example, access is denied a user wanting to open a file even though an ACE in the 

object’s DACL grants the access because the ACE denying the user access (by virtue of the 

user’s membership in the Writers group) precedes the ACE granting access.

As we stated earlier, because it wouldn’t be efficient for the security system to process the 

DACL every time a process uses a handle, the SRM makes this access check only when a 

handle is opened, not each time the handle is used. Thus, once a process successfully opens 

a handle, the security system can’t revoke the access rights that have been granted, even if 

the object’s DACL changes. Also keep in mind that because kernel-mode code uses pointers 

rather than handles to access objects, the access check isn’t performed when the operating 

system uses objects. In other words, the Windows executive “trusts” itself in a security sense.

The fact that an object’s owner is always granted write-DACL access to an object means that 

users can never be prevented from accessing the objects they own. If, for some reason, an 

object had an empty DACL (no access), the owner would still be able to open the object with 

write-DACL access and then apply a new DACL with the desired access permissions.
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FIGURE 6-6 Access validation example

A Warning Regarding the GUI Security Editors

When you use the GUI permissions editors to modify security settings on a file, a reg-

istry, or an Active Directory object, or on another securable object, the main security 

dialog box shows you a potentially misleading view of the security that’s applied to 

the object. If you allow Full Control to the Everyone group and deny the Administrator 

group Full Control, the list might lead you to believe that the Everyone group access-

allowed ACE precedes the Administrator deny ACE because that’s the order in which 

they appear. However, as we’ve said, the editors place deny ACEs before allow ACEs 

when they apply the ACL to the object.
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The Permissions tab of the Advanced Security Settings dialog box shows the order of 

ACEs in the DACL. However, even this dialog box can be confusing because a complex 

DACL can have deny ACEs for various accesses followed by allow ACEs for other access 

types.
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The only definitive way to know what accesses a particular user or group will have to an 

object (other than having that user or a member of the group try to access the object) 

is to use the Effective Permissions tab of the dialog box that is displayed when you click 

the Advanced button in the Properties dialog box. Enter the name of the user or group 

you want to check, and the dialog box shows you what permissions they are allowed 

for the object.

The AuthZ API

The AuthZ Windows API implements the same security model as the security refer-

ence monitor, but it implements the model totally in user mode in the %SystemRoot%\

System32\Authz.dll library. This gives applications that want to protect their own 

private objects, such as database tables, the ability to leverage the Windows security 

model without incurring the cost of user-mode to kernel-mode transitions that they 

would make if they relied on the security reference monitor.

The AuthZ API uses standard security descriptor data structures, SIDs, and privileges. 

Instead of using tokens to represent clients, AuthZ uses the AUTHZ_CLIENT_CONTEXT. 

AuthZ includes user-mode equivalents of all access-check and Windows security 

functions—for example, AuthzAccessCheck is the AuthZ version of the AccessCheck 

Windows API that uses the SeAccessCheck security reference monitor function.
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Another advantage available to applications that use AuthZ is that they can direct 

AuthZ to cache the results of security checks to improve subsequent checks that use 

the same client context and security descriptor.

AuthZ is fully documented in the Windows SDK.

Account Rights and Privileges

Many operations performed by processes as they execute cannot be authorized through 

object access protection because they do not involve interaction with a particular object. 

For example, the ability to bypass security checks when opening files for backup is an attri-

bute of an account, not of a particular object. Windows uses both privileges and account 

rights to allow a system administrator to control what accounts can perform security-related 

operations.

A privilege is the right of an account to perform a particular system-related operation, such 

as shutting down the computer or changing the system time. An account right grants or 

denies the account to which it’s assigned the ability to perform a particular type of logon, 

such as a local logon or interactive logon, to a computer.

A system administrator assigns privileges to groups and accounts using tools such as the 

Active Directory Users and Groups MMC snap-in for domain accounts or the Local Security 

Policy Editor. You access the Local Security Policy Editor in the Administrative Tools folder 

of the Control Panel or the Start menu (if you’ve configured your Start menu to contain an 

Administrative Tools link). Figure 6-7 shows User Rights Assignment configuration in the Local 

Security Policy Editor, which displays the complete list of privileges and account rights avail-

able on Windows. Note that the tool makes no distinction between privileges and account 

rights. However, you can differentiate between them because any user right that contains the 

words log on is an account privilege.
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FIGURE 6-7 Local Security Policy Editor user rights assignment

Account Rights

Account rights are not enforced by the security reference monitor, nor are they stored in 

tokens. The function responsible for logon is LsaLogonUser. Winlogon, for example, calls 

the LogonUser API when a user logs on interactively to a computer, and LogonUser calls 

LsaLogonUser. The function takes a parameter that indicates the type of logon being per-

formed, which includes interactive, network, batch, service, Terminal Server client, and 

unlock.

In response to logon requests, the Local Security Authority (LSA) retrieves account rights 

assigned to a user from the LSA policy database at the time that a user attempts to log on 

to the system. LSA checks the logon type against the account rights assigned to the user 
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account logging on and denies the logon if the account does not have the right that permits 

the logon type or it has the right that denies the logon type. Table 6-7 lists the user rights 

defined by Windows.

Windows applications can add and remove user rights from an account by using the 

LsaAddAccountRights and LsaRemoveAccountRights functions, and they can determine what 

rights are assigned to an account with LsaEnumerateAccountRights.

TABLE 6-7 Account Rights

User Right Role

Deny logon locally, 

Allow logon locally

Used for interactive logons that originate on the local 

machine

Deny logon over the network, 

Allow logon over the network

Used for logons that originate from a remote machine

Deny logon through Terminal Services, 

Allow logon through Terminal Services

Used for logons through a Terminal Server client

Deny logon as a service, 

Allow logon as a service

Used by the service control manager when starting a 

service in a particular user account

Deny logon as a batch job, 

Allow logon as a batch job

Used when performing a logon of type batch

Privileges

The number of privileges defined by the operating system has grown over time. Unlike user 

rights, which are enforced in one place by the LSA, different privileges are defined by dif-

ferent components and enforced by those components. For example, the debug privilege, 

which allows a process to bypass security checks when opening a handle to another process 

with the OpenProcess Windows API, is checked for by the process manager. Table 6-8 is a full 

list of privileges, and it describes how and when system components check for them.

When a component wants to check a token to see whether a privilege is present, it uses 

the PrivilegeCheck or LsaEnumerateAccountRights APIs if running in user mode and 

SeSinglePrivilegeCheck or SePrivilegeCheck if running in kernel mode. The privilege-related 

APIs are not account-right aware, but the account-right APIs are privilege-aware.

Unlike account rights, privileges can be enabled and disabled. For a privilege check to suc-

ceed, the privilege must be in the specified token and it must be enabled. The idea behind 

this scheme is that privileges should be enabled only when their use is required so that a pro-

cess cannot inadvertently perform a privileged security operation.
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EXPERIMENT: Seeing a Privilege Get Enabled

By following these steps, you can see that the Date and Time Control Panel applet 

enables the SeTimeZonePrivilege privilege in response to you using its interface to 

change the time zone of the computer.

 1. Run Process Explorer, and set the refresh rate to Paused.

 2. Open the Date and Time item by right-clicking on the clock in the system tray 

region of the taskbar, and then select Adjust Date/Time. A new Rundll32 process 

will appear with a green highlight.

 3. Hover the mouse over the Rundll32 process and verify that the target contains 

the text “Time Date Control Panel Applet” as well as a path to Timedate.cpl. The 

presence of this argument tells Rundll32, which is a Control Panel DLL hosting 

process, to load the DLL that implements the user interface that enables you to 

change the time and date.

 4. View the Security tab of the process Properties dialog box for your Rundll32 pro-

cess. You should see that the SeTimeZonePrivilege privilege is disabled, which is 

indicated by its flag and the fact that it’s shown in gray.

 5. Now click the Change Time Zone button in the Control Panel item, close the 

process Properties dialog box, and then open it again. On the Security tab, you 

should now see that the SeTimeZonePrivilege privilege is enabled.
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TABLE 6-8 Privileges

Privilege User Right Privilege Usage

SeAssignPrimaryTokenPrivilege Replace a pro-

cess-level token

Checked for by various components, such 

as NtSetInformationJob, that set a process’s 

token.

SeAuditPrivilege Generate security 

audits

Required to generate events for the 

Security event log with the ReportEvent 
API.

SeBackupPrivilege Backup files and 

directories

Causes NTFS to grant the following access 

to any file or directory, regardless of the 

security descriptor that’s present:

READ_CONTROL

ACCESS_SYSTEM_SECURITY

FILE_GENERIC_READ

FILE_TRAVERSE

Note that when opening a file for backup, 

the caller must specify the FILE_FLAG_

BACKUP_SEMANTICS flag.

Also allows corresponding access to regis-

try keys when using RegSaveKey.



506 Windows Internals, Fifth Edition

Privilege User Right Privilege Usage

SeChangeNotifyPrivilege Bypass traverse 

checking

Used by NTFS to avoid checking permis-

sions on intermediate directories of a 

multilevel directory lookup. Also used by 

file systems when applications register for 

notification of changes to the file system 

structure.

SeCreateGlobalPrivilege Create global 

objects

Required for a process to create section 

and symbolic link objects in the directories 

of the object manager namespace that are 

assigned to a different session than the 

caller.

SeCreatePagefilePrivilege Create a pagefile Checked for by NtCreatePagingFile, which 

is the function used to create a new pag-

ing file.

SeCreatePermanentPrivilege Create 

permanent 

shared objects

Checked for by the object manager when 

creating a permanent object (one that 

doesn’t get deallocated when there are no 

more references to it).

SeCreateSymbolicLinkPrivilege Create symbolic 

links

Checked for by NTFS when creating sym-

bolic links on the file system with the 

CreateSymbolicLink API.

SeCreateTokenPrivilege Create a token 

object

NtCreateToken, the function that creates a 

token object, checks for this privilege.

SeDebugPrivilege Debug programs If the caller has this privilege enabled, 

the process manager allows access to any 

process or thread using NtOpenProcess or 

NtOpenThread, regardless of the process’ 

or thread’s security descriptor (except for 

protected processes).

SeEnableDelegationPrivilege Enable computer 

and user accounts 

to be trusted for 

delegation

Used by Active Directory services to del-

egate authenticated credentials.

SeImpersonatePrivilege Impersonate a  

client after 

authentication

The process manager checks for this when 

a thread wants to use a token for imper-

sonation and the token represents a differ-

ent user than that of the thread’s process 

token.

SeIncreaseBasePriorityPrivilege Increase 

scheduling 

priority

Checked for by the process manager and is 

required to raise the priority of a process.

SeIncreaseQuotaPrivilege Adjust memory 

quotas for a 

process

Enforced when changing a process’s work-

ing set thresholds, a process’ paged and 

nonpaged pool quotas, and a process’s 

CPU rate quota.
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Privilege User Right Privilege Usage

SeIncreaseWorkingSetPrivilege Increase a pro-

cess working set

Required to call SetProcessWorkingSetSize 

to increase the minimum working set. This 

indirectly allows the process to lock up to 

the minimum working set of memory using 

VirtualLock.

SeLoadDriverPrivilege Load and unload 

device drivers

Checked for by the NtLoadDriver and 

NtUnloadDriver driver functions.

SeLockMemoryPrivilege Lock pages in 

memory

Checked for by NtLockVirtualMemory, the 

kernel implementation of VirtualLock.

SeMachineAccountPrivilege Add workstations  

to the domain

Checked for by the Security Accounts 

Manager on a domain controller when cre-

ating a machine account in a domain.

SeManageVolumePrivilege Perform volume 

maintenance 

tasks

Enforced by file system drivers during a 

volume open operation, which is required 

to perform disk checking and defragment-

ing activities.

SeProfileSingleProcessPrivilege Profile single 

process

Checked by Superfetch and the 

prefetcher when requesting information 

for an individual process through the 

NtQuerySystemInformation API.

SeRelabelPrivilege Modify an object 

label

Checked for by the SRM when raising 

the integrity level of an object owned by 

another user, or when attempting to raise 

the integrity level of an object higher than 

that of the caller’s token.

SeRemoteShutdownPrivilege Force shutdown 

from a remote 

system

Winlogon checks that remote callers of the 

InitiateSystemShutdown function have this 

privilege.

SeRestorePrivilege Restore files and 

directories

This privilege causes NTFS to grant the 

following access to any file or directory, 

regardless of the security descriptor that’s 

present: 

WRITE_DAC  

WRITE_OWNER  

ACCESS_SYSTEM_SECURITY  

FILE_GENERIC_WRITE  

FILE_ADD_FILE  

FILE_ADD_SUBDIRECTORY  

DELETE  

Note that when opening a file for restore, 

the caller must specify the FILE_FLAG_

BACKUP_SEMANTICS flag.

Allows corresponding access to registry 

keys when using RegSaveKey.

SeSecurityPrivilege Manage auditing 

and security log

Required to access the SACL of a security 

descriptor, read and clear the security 

event log.
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Privilege User Right Privilege Usage

SeShutdownPrivilege Shut down the 

system

This privilege is checked for by 

NtShutdownSystem and NtRaiseHardError, 
which presents a system error dialog box 

on the interactive console.

SeSyncAgentPrivilege Synchronize 

directory service 

data

Required to use the LDAP directory syn-

chronization services and allows the holder 

to read all objects and properties in the 

directory, regardless of the protection on 

the objects and properties.

SeSystemEnvironmentPrivilege Modify firmware 

environment 

variables

Required by NtSetSystemEnvironmentValue 

and NtQuerySystemEnvironmentValue to 

modify and read firmware environment 

variables using the HAL.

SeSystemProfilePrivilege Profile system 

performance

Checked for by NtCreateProfile, the func-

tion used to perform profiling of the sys-

tem. This is used by the Kernprof tool, for 

example.

SeSystemtimePrivilege Change the 

system time

Required to change the time or date.

SeTakeOwnership Take ownership 

of files and other 

objects

Required to take ownership of an object 

without being granted discretionary access. 

SeTcbPrivilege Act as part of the 

operating system

Checked for by the security reference 

monitor when the session ID is set in a 

token, by the Plug and Play manager for 

Plug and Play event creation and man-

agement, BroadcastSystemMessageEx 

when called with BSM_ALLDESKTOPS, 

LsaRegisterLogonProcess, and when 

specifying an application as a VDM with 

NtSetInformationProcess.

SeTimeZonePrivilege Change the time 

zone

Required to change the time zone.

SeTrustedCredManAccessPrivilege Access credential 

manager as a 

trusted caller

Checked by the credential manager to 

verify that it should trust the caller with 

credential information that can be queried 

in plain text. Is only granted to Winlogon 

by default.

SeUndockPrivilege Remove comput-

er from a docking 

station

Checked for by the user-mode Plug and 

Play manager when either a computer 

undock is initiated or a device eject request 

is made.

SeUnsolicitedInputPrivilege Receive unsolic-

ited data from a 

terminal device

This privilege isn’t currently used by 

Windows.
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EXPERIMENT: The Bypass Traverse Checking Privilege

If you are a systems administrator, you must be aware of the Bypass Traverse Checking 

privilege (internally called SeNotifyPrivilege) and its implications. This experiment dem-

onstrates that not understanding its behavior can lead to improperly applied security.

 1. Create a folder and, within that folder, a new text file with some sample text.

 2. Navigate in Explorer to the new file, and go to the Security tab of its Properties 

dialog box. Click the Advanced button, and clear the check box that controls 

inheritance. Select Copy when you are prompted as to whether you want to 

remove or copy inherited permissions.

 3. Next, modify the security of the new folder so that your account does not have 

any access to the folder. Do this by selecting your account and selecting all the 

Deny boxes in the permissions list.

 4. Run Notepad, and browse using the File, Open dialog box to the new directory. 

You should be denied access to the directory.

 5. In the File Name field of the Open dialog box, type the full path of the new file. 

The file should open.

If your account does not have the Bypass Traverse Checking privilege, NTFS performs 

an access check on each directory of the path to a file when you try to open a file, 

which results in you being denied access to the file in this example.

Super Privileges

Several privileges are so powerful that a user to which they are assigned is effectively a 

“super user” who has full control over a computer. These privileges can be used in an infinite 

number of ways to gain unauthorized access to otherwise off-limit resources and to perform 

unauthorized operations. However, we’ll focus on using the privilege to execute code that 

grants the user privileges not assigned to the user, with the knowledge that this capability 

can be leveraged to perform any operation on the local machine that the user desires. This 

section lists the privileges and discusses the ways that they can be exploited. Other privileges, 

such as Lock Pages In Physical Memory, can be exploited for denial of service attacks on a 

system, but these are not discussed. Note that on systems with UAC enabled, these privi-

leges will only be granted to applications running at high integrity level or higher, even if the 

account possesses them.

Debug programs A user with this privilege can open any process on the system with-

out regard to the security descriptor present on the process. The user could implement 

a program that opens the Lsass process, for example, copy executable code into its 
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address space, and then inject a thread with the CreateRemoteThread Windows API to 

execute the injected code in a more-privileged security context. The code could grant 

the user additional privileges and group memberships.

Take ownership This privilege allows a holder to take ownership of any securable 

object by writing his own SID into the owner field of the object’s security descriptor. 

Recall that an owner is always granted permission to read and modify the DACL of the 

security descriptor, so a process with this privilege could modify the DACL to grant 

itself full access to the object and then close and reopen the object with full access. 

This would allow the owner to see sensitive data and to even replace system files that 

execute as part of normal system operation, such as Lsass, with his own programs that 

grant a user elevated privileges.

Restore files and directories A user assigned this privilege can replace any file on 

the system with her own. She could exploit this power by replacing system files as 

described in the preceding paragraph.

Load and unload device drivers A malicious user could use this privilege to load a 

device driver into the system. Device drivers are considered trusted parts of the operat-

ing system that can execute within it with System account credentials, so a driver could 

launch privileged programs that assign the user other rights.

Create a token object This privilege can be used in the obvious way to generate 

tokens that represent arbitrary user accounts with arbitrary group membership and 

privilege assignment.

Act as part of operating system LsaRegisterLogonProcess, the function a process 

calls to establish a trusted connection to Lsass, checks for this privilege. A malicious 

user with this privilege can establish a trusted-Lsass connection and then execute 

LsaLogonUser, a function used to create new logon sessions. LsaLogonUser requires a 

valid user name and password and accepts an optional list of SIDs that it adds to the 

initial token created for a new logon session. The user could therefore use her own user 

name and password to create a new logon session that includes the SIDs of more privi-

leged groups or users in the resulting token.

Note that the use of elevated privilege does not extend past the machine boundary to the 

network, because any interaction with another computer requires authentication with a 

domain controller and validation of domain passwords. Domain passwords are not stored 

on a computer either in plain text or encrypted form, so they are not accessible to malicious 

code.
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Security Auditing

The object manager can generate audit events as a result of an access check, and Windows 

functions available to user applications can generate them directly. Kernel-mode code 

is always allowed to generate an audit event. Two privileges, SeSecurityPrivilege and 

SeAuditPrivilege, relate to auditing. A process must have the SeSecurityPrivilege privilege to 

manage the security Event Log and to view or set an object’s SACL. Processes that call audit 

system services, however, must have the SeAuditPrivilege privilege to successfully generate 

an audit record.

The audit policy of the local system controls the decision to audit a particular type of security 

event. The audit policy, also called the local security policy, is one part of the security policy 

Lsass maintains on the local system, and it is configured with the Local Security Policy Editor 

shown in Figure 6-8.

FIGURE 6-8 Local Security Policy Editor audit policy configuration

Lsass sends messages to the SRM to inform it of the auditing policy at system initialization 

time and when the policy changes. Lsass is responsible for receiving audit records generated 

based on the audit events from the SRM, editing the records, and sending them to the Event 

Logger. Lsass (instead of the SRM) sends these records because it adds pertinent details, such 

as the information needed to more completely identify the process that is being audited.

The SRM sends audit records via its ALPC connection to Lsass. The Event Logger then writes 

the audit record to the security Event Log. In addition to audit records the SRM passes, both 

Lsass and the SAM generate audit records that Lsass sends directly to the Event Logger, and 

the AuthZ API allows for applications to generate application-defined audits. Figure 6-9 

depicts this overall flow.
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FIGURE 6-9 Flow of security audit records

Audit records are put on a queue to be sent to the LSA as they are received—they are not 

submitted in batches. The audit records are moved from the SRM to the security subsystem 

in one of two ways. If the audit record is small (less than the maximum ALPC message size), it 

is sent as an ALPC message. The audit records are copied from the address space of the SRM 

to the address space of the Lsass process. If the audit record is large, the SRM uses shared 

memory to make the message available to Lsass and simply passes a pointer in an ALPC 

message.

Figure 6-10 brings together the concepts covered so far in this chapter by illustrating the 

basic process and thread security structures. In the figure, notice that the process object and 

the thread objects have ACLs, as do the access-token objects themselves. Also in this figure, 

thread 2 and thread 3 each have an impersonation token, whereas thread 1 defaults to the 

process access token.
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FIGURE 6-10 Process and thread security structures

Logon

Interactive logon (as opposed to network logon) occurs through the interaction of the logon 

process (Winlogon), the logon user interface process (LogonUI) and its credential providers, 

Lsass, one or more authentication packages, and the SAM or Active Directory. Authentication 
packages are DLLs that perform authentication checks. Kerberos is the Windows authenti-

cation package for interactive logon to a domain, and MSV1_0 is the Windows authen-

tication package for interactive logon to a local computer, for domain logons to trusted 

pre– Windows 2000 domains, and for times when no domain controller is accessible.

Winlogon is a trusted process responsible for managing security-related user interactions. 

It coordinates logon, starts the user’s first process at logon, handles logoff, and manages 

various other operations relevant to security, including launching LogonUI for entering 

passwords at logon, changing passwords, and locking and unlocking the workstation. The 

Winlogon process must ensure that operations relevant to security aren’t visible to any other 

active processes. For example, Winlogon guarantees that an untrusted process can’t get con-

trol of the desktop during one of these operations and thus gain access to the password.
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Winlogon relies on the credential providers installed on the system to obtain a user’s 

account name or password. Credential providers are COM objects located inside DLLs. The 

default providers are %SystemRoot%\System32\authui.dll and %SystemRoot%\System32\

SmartcardCredentialProvider.dll, which support both password and smartcard PIN authen-

tication. Allowing other credential providers to be installed allows Windows to use different 

user-identification mechanisms. For example, a third party might supply a credential provider 

that uses a thumbprint recognition device to identify users and extract their passwords from 

an encrypted database.

To protect Winlogon’s address space from bugs in credential providers that might cause the 

Winlogon process to crash (which, in turn, will result in a system crash, as Winlogon is consid-

ered a critical system process), a separate process, LogonUI.exe, is used to actually load the 

credential providers and display the Windows logon interface to users. This process is started 

on demand whenever Winlogon needs to present a user interface to the user, and it exits 

after the action has finished. It also allows Winlogon to simply restart a new LogonUI process 

should it crash for any reason.

Winlogon is the only process that intercepts logon requests from the keyboard, which are 

sent through an RPC message from Win32k.sys. Winlogon immediately launches the LogonUI 

application to display the user interface for logon. After obtaining a user name and password 

from credential providers, Winlogon calls Lsass to authenticate the user attempting to log 

on. If the user is authenticated, the logon process activates a logon shell on behalf of that 

user. The interaction between the components involved in logon is illustrated in Figure 6-11.
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FIGURE 6-11 Components involved in logon



 Chapter 6 Security 515

In addition to supporting alternative credential providers, LogonUI can load additional net-

work provider DLLs that need to perform secondary authentication. This capability allows 

multiple network providers to gather identification and authentication information all at one 

time during normal logon. A user logging on to a Windows system might simultaneously 

be authenticated on a UNIX server. That user would then be able to access resources of the 

UNIX server from the Windows machine without requiring additional authentication. Such a 

capability is known as one form of single sign-on.

Winlogon Initialization

During system initialization, before any user applications are active, Winlogon performs the 

following steps to ensure that it controls the workstation once the system is ready for user 

interaction:

 1. Creates and opens an interactive window station (for example, \Sessions\1\Windows\

WindowStations\WinSta0 in the object manager namespace) to represent the key-

board, mouse, and monitor. Winlogon creates a security descriptor for the station that 

has one and only one ACE containing only the System SID. This unique security descrip-

tor ensures that no other process can access the workstation unless explicitly allowed 

by Winlogon.

 2. Creates and opens two desktops: an application desktop (\Sessions\1\Windows\

WinSta0\Default, also known as the interactive desktop) and a Winlogon desktop 

(\Sessions\1\Windows\WinSta0\Winlogon, also known as the secure desktop). The secu-

rity on the Winlogon desktop is created so that only Winlogon can access that desk-

top. The other desktop allows both Winlogon and users to access it. This arrangement 

means that any time the Winlogon desktop is active, no other process has access to any 

active code or data associated with the desktop. Windows uses this feature to protect 

the secure operations that involve passwords and locking and unlocking the desktop.

 3. Before anyone logs on to a computer, the visible desktop is Winlogon’s. After a user 

logs on, pressing Ctrl+Alt+Delete switches the desktop from Default to Winlogon and 

launches LogonUI. (This explains why all the windows on your interactive desktop seem 

to disappear when you press Ctrl+Alt+Delete and then return when you dismiss the 

Windows Security dialog box.) Thus, the SAS always brings up a secure desktop con-

trolled by Winlogon.

 4. Establishes an ALPC connection with Lsass’s LsaAuthenticationPort. This connection will 

be used for exchanging information during logon, logoff, and password operations and 

is made by calling LsaRegisterLogonProcess.

 5. It initializes and registers a window class data structure that associates a Winlogon pro-

cedure with the window it subsequently creates.

 6. It registers the Winlogon RPC message server, which listens for SAS notifications from 

Win32k. This measure prevents Trojan horse programs from gaining control of the 

screen when the SAS is entered.
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 7. It registers the window so that the procedure associated with this window gets called if 

a user logs off or if the screen saver times out. The Windows subsystem checks to verify 

that the process requesting notification is the Winlogon process.

Note The Wininit process performs steps similar to steps 1 and 2 to allow legacy interactive 

services running on session 0 to display windows, but it does not perform any other steps since 

session 0 is not available for user logon. (See Chapter 3 for more information on Wininit and ses-

sion isolation.)

How SAS Is Implemented

The SAS is secure because no application can intercept the Ctrl+Alt+Delete keystroke 

combination or prevent Winlogon from receiving it. Win32k.sys reserves the Ctrl+Alt+ 

Delete key combination so that whenever the Windows input system (implemented 

in the raw input thread in Win32k) sees the combination, it sends an RPC message to 

Winlogon’s message server, which listens for such notifications. The keystrokes that 

map to a registered hot key are otherwise not sent to any process other than the one 

that registered it, and only the thread that registered a hot key can unregister it, so a 

Trojan horse application cannot deregister Winlogon’s ownership of the SAS.

A Windows function, SetWindowsHook, enables an application to install a hook pro-

cedure that’s invoked every time a keystroke is pressed, even before hot keys are pro-

cessed, and it allows the hook to squash keystrokes. However, the Windows hot key 

processing code contains a special case for Ctrl+Alt+Delete that disables hooks so that 

the keystroke sequence can’t be intercepted. In addition, if the interactive desktop is 

locked, only hot keys owned by Winlogon are processed.

Once the Winlogon desktop is created during initialization, it becomes the active desktop. 

When the Winlogon desktop is active, it is always locked. Winlogon unlocks its desktop only 

to switch to the application desktop or the screen-saver desktop. (Only the Winlogon process 

can lock or unlock a desktop.)

User Logon Steps

Logon begins when a user presses the SAS (Ctrl+Alt+Delete). After the SAS is pressed, 

Winlogon starts LogonUI, which calls the credential providers to obtain a user name and 

password. Winlogon also creates a unique local logon SID for this user that it assigns to this 

instance of the desktop (keyboard, screen, and mouse). Winlogon passes this SID to Lsass as 

part of the LsaLogonUser call. If the user is successfully logged on, this SID will be included in 

the logon process token—a step that protects access to the desktop. For example, another 
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logon to the same account but on a different system will be unable to write to the first 

machine’s desktop because this second logon won’t be in the first logon’s desktop token.

When the user name and password have been entered, Winlogon retrieves a handle to a 

package by calling the Lsass function LsaLookupAuthenticationPackage. Authentication pack-

ages are listed in the registry under HKLM\SYSTEM\CurrentControlSet\Control\Lsa. Winlogon 

passes logon information to the authentication package via LsaLogonUser. Once a package 

authenticates a user, Winlogon continues the logon process for that user. If none of the 

authentication packages indicates a successful logon, the logon process is aborted.

Windows uses two standard authentication packages for interactive logons: Kerberos and 

MSV1_0. The default authentication package on a stand-alone Windows system is MSV1_0 

(%SystemRoot%\System32\Msv1_0.dll), an authentication package that implements LAN 

Manager 2 protocol. Lsass also uses MSV1_0 on domain-member computers to authenti-

cate to pre–Windows 2000 domains and computers that can’t locate a domain controller 

for authentication. (Laptop computers that are disconnected from the network fall into 

this latter category.) The Kerberos authentication package, %SystemRoot%\System32\

Kerberos.dll, is used on computers that are members of Windows domains. The Windows 

Kerberos package, with the cooperation of Kerberos services running on a domain control-

ler, supports the Kerberos protocol. This protocol is based on Internet RFC 1510. (Visit the 

Internet Engineering Task Force [IETF] Web site, www.ietf.org, for detailed information on the 

Kerberos standard.)

The MSV1_0 authentication package takes the user name and a hashed version of the 

password and sends a request to the local SAM to retrieve the account information, which 

includes the password, the groups to which the user belongs, and any account restrictions. 

MSV1_0 first checks the account restrictions, such as hours or type of accesses allowed. If 

the user can’t log on because of the restrictions in the SAM database, the logon call fails and 

MSV1_0 returns a failure status to the LSA.

MSV1_0 then compares the hashed password and user name to that stored by the SAM. In 

the case of a cached domain logon, MSV1_0 accesses the cached information by using Lsass 

functions that store and retrieve “secrets” from the LSA database (the SECURITY hive of the 

registry). If the information matches, MSV1_0 generates an LUID for the logon session and 

creates the logon session by calling Lsass, associating this unique identifier with the session 

and passing the information needed to ultimately create an access token for the user. (Recall 

that an access token includes the user’s SID, group SIDs, and assigned privileges.)

Note MSV1_0 does not cache a user’s entire password hash in the registry because that would 

enable someone with physical access to the system to easily compromise a user’s domain 

account and gain access to encrypted files and to network resources the user is authorized to 

access. Instead, it caches half of the hash. The cached half-hash is sufficient to verify that a user’s 

password is correct, but it isn’t sufficient to gain access to EFS keys and to authenticate as the 

user on a domain because these actions require the full hash.
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If MSV1_0 needs to authenticate using a remote system, as when a user logs on to a trusted 

pre–Windows 2000 domain, MSV1_0 uses the Netlogon service to communicate with an 

instance of Netlogon on the remote system. Netlogon on the remote system interacts with 

the MSV1_0 authentication package on that system, passing back authentication results to 

the system on which the logon is being performed.

The basic control flow for Kerberos authentication is the same as the flow for MSV1_0. 

However, in most cases, domain logons are performed from member workstations or serv-

ers (rather than on a domain controller), so the authentication package must communicate 

across the network as part of the authentication process. The package does so by commu-

nicating via the Kerberos TCP/IP port (port 88) with the Kerberos service on a domain con-

troller. The Kerberos Key Distribution Center service (%SystemRoot%\System32\Kdcsvc.dll), 

which implements the Kerberos authentication protocol, runs in the Lsass process on domain 

controllers.

After validating hashed user name and password information with Active Directory’s user 

account objects (using the Active Directory server %SystemRoot%\System32\Ntdsa.dll), 

Kdcsvc returns domain credentials to Lsass, which returns the result of the authentication and 

the user’s domain logon credentials (if the logon was successful) across the network to the 

system where the logon is taking place.

Note This description of Kerberos authentication is highly simplified, but it highlights the roles 

of the various components involved. Although the Kerberos authentication protocol plays a key 

role in distributed domain security in Windows, its details are outside the scope of this book.

After a logon has been authenticated, Lsass looks in the local policy database for the user’s 

allowed access, including interactive, network, batch, or service process. If the requested 

logon doesn’t match the allowed access, the logon attempt will be terminated. Lsass 

deletes the newly created logon session by cleaning up any of its data structures and then 

returns failure to Winlogon, which in turn displays an appropriate message to the user. If 

the requested access is allowed, Lsass adds the appropriate additional security IDs (such as 

Everyone, Interactive, and the like). It then checks its policy database for any granted privi-

leges for all the IDs for this user and adds these privileges to the user’s access token.

When Lsass has accumulated all the necessary information, it calls the executive to create 

the access token. The executive creates a primary access token for an interactive or service 

logon and an impersonation token for a network logon. After the access token is successfully 

created, Lsass duplicates the token, creating a handle that can be passed to Winlogon, and 

closes its own handle. If necessary, the logon operation is audited. At this point, Lsass returns 

success to Winlogon along with a handle to the access token, the LUID for the logon session, 

and the profile information, if any, that the authentication package returned.
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EXPERIMENT: Listing Active Logon Sessions

As long as at least one token exists with a given logon session LUID, Windows considers 

the logon session to be active. You can use the LogonSessions tool from Sysinternals, 

which uses the LsaEnumerateLogonSessions function (documented in the Windows SDK) 

to list the active logon sessions:

C:\>logonsessions  

Logonsesions v1.1 

Copyright (C) 2004 Bryce Cogswell and Mark Russinovich 

Sysinternals - wwww.sysinternals.com 

 

 

[0] Logon session 00000000:000003e7: 

    User name:    WORKGROUP\ALEX-LAPTOP$ 

    Auth package: NTLM 

    Logon type:   (none) 

    Session:      0 

    Sid:          S-1-5-18 

    Logon time:   7/19/2008 10:26:56 PM 

    Logon server: 

    DNS Domain: 

    UPN: 

 

[1] Logon session 00000000:0000dcbd: 

    User name: 

    Auth package: NTLM 

    Logon type:   (none) 

    Session:      0 

    Sid:          (none) 

    Logon time:   7/19/2008 10:26:57 PM 

    Logon server: 

    DNS Domain: 

    UPN: 

 

[2] Logon session 00000000:000003e5: 

    User name:    NT AUTHORITY\LOCAL SERVICE 

    Auth package: Negotiate 

    Logon type:   Service 

    Session:      0 

    Sid:          S-1-5-19 

    Logon time:   7/19/2008 10:27:01 PM 

    Logon server: 

    DNS Domain: 

    UPN:  

 

[3] Logon session 00000000:00015cd5: 

    User name:    ALEX-LAPTOP\Administrator 

    Auth package: NTLM 

    Logon type:   Interactive 

    Session:      1 

    Sid:          S-1-5-21-2778343003-3541292008-524615573-500 

    Logon time:   7/19/2008 10:27:05 PM 

    Logon server: ALEX-LAPTOP 
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    DNS Domain: 

    UPN:

Information reported for a session includes the SID and name of the user associated 

with the session, as well as the session’s authentication package and logon time. Note 

that the Negotiate authentication package, seen in logon session 2 in the preceding 

output, will attempt to authenticate via Kerberos or NTLM, depending on which is most 

appropriate for the authentication request.

The LUID for a session is displayed on the “Logon Session” line of each session block, 

and using the Handle utility also from Sysinternals, you can find the tokens that repre-

sent a particular logon session. For example, to find the tokens for logon session 3 in 

the example output just shown, you could enter this command:

C:\>handle -a 3bc39  

  winlogon.exe       pid: 580     1FC: \BaseNamedObjects\0000000000015cd5_

WlballoonKerberosNotificationEventName 

winlogon.exe       pid: 580     22C: ALEX-LAPTOP\Administrator:15cd5 

lsass.exe          pid: 628     6A0: ALEX-LAPTOP\Administrator:15cd5 

lsm.exe            pid: 636     288: ALEX-LAPTOP\Administrator:15cd5

Winlogon then looks in the registry at the value HKLM\SOFTWARE\Microsoft\Windows 

NT\Current Version\Winlogon\Userinit and creates a process to run whatever the value of 

that string is. (This value can be several .exes separated by commas). The default value is 

Userinit.exe, which loads the user profile and then creates a process to run whatever the 

value of HKCU\SOFTWARE\Microsoft\Windows NT\Current Version\Winlogon\Shell is, if 

that value exists. That value does not exist by default. If it doesn’t exist, Userinit.exe does the 

same for HKLM\SOFTWARE\Microsoft\Windows NT\Current Version\Winlogon\Shell, which 

defaults to Explorer.exe. Userinit then exits (which is why Explorer.exe shows up as having no 

parent when examined in Process Explorer). For more information on the steps followed dur-

ing the user logon process, see Chapter 13.

User Account Control

UAC is meant to enable users to run with standard user rights, as opposed to administra-

tive rights. Without administrative rights, users cannot accidentally (or deliberately) modify 

system settings, malware can’t normally alter system security settings or disable antivirus 

software, and users can’t compromise the sensitive information of other users on shared 

computers. Running with standard user rights can thus mitigate the impact of malware and 

protect sensitive data on shared computers.

UAC had to address several problems to make it practical for a user to run with a stan-

dard user account. First, because the Windows usage model has been one of assumed 
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administrative rights, software developers assumed their programs could access and modify 

any file, registry key, or operating system setting. The second problem UAC had to address 

was that users sometimes need administrative rights to perform such operations as installing 

software, changing the system time, and opening ports in the firewall.

The UAC solution to these problems is to run most applications with standard user rights, 

obviate the need for administrative rights all the time, and encourage software developers 

to create applications that run with standard user rights. UAC accomplishes these aims by 

requiring administrative rights less frequently, enabling legacy applications to run with stan-

dard user rights, making it convenient for standard users to access administrative rights when 

they need them, and enabling even administrative users to run as if they were standard users.

UAC also allows certain tasks that were previously considered reserved for administrators 

to be performed by standard users, enhancing the usability of the standard user account. 

For example, changing the time zone (used only for displaying the time to users) is con-

sidered a different action than changing the system’s actual time (used for security, such as 

on Kerberos authentication). While the privilege to change the system time is assigned only 

to the Administrators group, the privilege to change the time zone is also assigned to the 

Users group. Standard users can also configure WEP settings when they connect to wire-

less networks, create VPN connections, change power management settings, and install 

critical Windows updates. In addition, Group Policy settings exist that can enable standard 

users to install printer and other device drivers approved by IT administrators and to install 

ActiveX controls from administrator-approved sites.

Virtualization

While some software legitimately requires administrative rights, many programs needlessly 

store user data in system-global locations. When an application executes, it can be run-

ning in different user accounts, and it should therefore store user-specific data in the per-

user %AppData% directory and save per-user settings in the user’s registry profile under 

HKEY_CURRENT_USER\ Software. Standard user accounts don’t have write access to the 

%ProgramFiles% directory or HKEY_LOCAL_MACHINE\Software, but because most Windows 

systems are single-user and most users have been administrators until UAC was imple-

mented, applications that incorrectly saved user data and settings to these locations worked 

anyway.

Windows enables these legacy applications to run in standard user accounts through the 

help of file system and registry namespace virtualization. When an application modifies a 

system-global location in the file system or registry and that operation fails because access is 

denied, Windows redirects the operation to a per-user area; when the application reads from 

a system-global location, Windows first checks for data in the per-user area and, if none is 

found, permits the read attempt from the global location.
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Windows will always enable this type of virtualization unless:

The application is 64-bit. As virtualization is purely an application-compatibility tech-

nology meant to help legacy applications, it is enabled only for 32-bit applications. The 

world of 64-bit applications is relatively new and should follow the development guide-

lines for creating standard user compatible applications.

The application is already running with administrative rights. In this case, there is no 

need for any virtualization.

The operation came from a kernel-mode caller.

The operation is being performed while the caller is impersonating. For example, any 

operations not originating from a process classified as legacy according to this defin-

ition, including network file sharing accesses, are not virtualized.

The executable image for the process has a UAC-compatible manifest (specifying a 

requestedExecutionLevel setting).

The administrator does not have write access to the file or registry key. This exception 

exists to enforce backward compatibility, as the legacy application would have failed 

before UAC was implemented even if the application was run with administrative rights.

You can see the virtualization status (as discussed previously, the process’s virtualization 

status is stored as a flag in its token) of a process by adding the Virtualization column to 

Task Manager’s Processes page, as shown in Figure 6-12. Most Windows components, 

including the Desktop Window Manager (Dwm.exe), the Client Server Run-Time Subsystem 

(Csrss.exe), and Explorer, have virtualization disabled because they have a UAC-compatible 

manifest or are running with administrative rights and so do not allow virtualization. Internet 

Explorer (Iexplore.exe) has virtualization enabled because it can host multiple ActiveX con-

trols and scripts and must assume that they were not written to operate correctly with stan-

dard user rights.

In addition to file system and registry virtualization, some applications require additional help 

to run correctly with standard user rights. For example, an application that tests the account 

in which it’s running for membership in the Administrators group might otherwise work, but 

it won’t run if it’s not in that group. Windows defines a number of application-compatibility 

shims to enable such applications to work anyway. The shims most commonly applied to leg-

acy applications for operation with standard user rights are shown in Table 6-9. Note that, if 

required, virtualization can be completely disabled for a system using a local security policy 

setting.
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FIGURE 6-12 Using Task Manager to view virtualization status

TABLE 6-9 UAC Virtualization Shims

Flag Meaning 

ElevateCreateProcess Changes CreateProcess to handle ERROR_ELEVATION_REQUIRED 

errors by calling the application information service to prompt for 

elevation.

ForceAdminAccess Spoofs queries of Administrator group membership.

VirtualizeDeleteFile Spoofs successful deletion of global files and directories.

LocalMappedObject Forces global section objects into the user’s namespace.

VirtualizeHKCRLite, 

VirtualizeRegisterTypeLib

Redirects global registration of COM objects to a per-user location.

File Virtualization

The file system locations that are virtualized for legacy processes are %ProgramFiles%, 

%ProgramData%, and %SystemRoot%, excluding some specific subdirectories. However, 

any file with an executable extension, including .exe, .bat, .scr, .vbs, and others, is excluded 

from virtualization. This means that programs that update themselves from a standard user 

account fail instead of creating private versions of their executables that aren’t visible to an 

administrator running a global updater.
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Note To add additional extensions to the exception list, enter them in the HKEY_LOCAL_

MACHINE\System\CurrentControlSet\Services\Luafv\Parameters\ExcludedExtensionsAdd registry 

key and reboot. Use a multi-string type to delimit multiple extensions, and do not include a lead-

ing dot in the extension name.

Modifications to virtualized directories by legacy processes are redirected to the user’s virtual 

root directory, %LocalAppData%\VirtualStore. The Local component of the path highlights 

the fact that virtualized files don’t roam with the rest of the profile when the account has a 

roaming profile. If you navigate in Explorer to a directory containing virtualized files, Explorer 

displays a button labeled Compatibility Files in its toolbar, as shown in Figure 6-13. Clicking 

the button takes you to the corresponding VirtualStore subdirectory to show you the virtual-

ized files.

FIGURE 6-13 Virtualized files are displayed here.

The UAC File Virtualization Filter Driver (%SystemRoot%\System32\Drivers\Luafv.sys) imple-

ments file system virtualization. Because this is a file system filter driver, it sees all file system 

operations, but it only implements functionality for operations from legacy processes. As 

shown in Figure 6-14, the filter driver changes the target file path for a legacy process that 

creates a file in a system-global location but does not for a nonvirtualized process with stan-

dard user rights. Default permissions on the \Windows directory deny access to the applica-

tion written with UAC support, but the legacy process acts as though the operation succeeds, 

when it really created the file in a location fully accessible by the user.
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User mode
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FIGURE 6-14 UAC File Virtualization Filter Driver operation

EXPERIMENT: File Virtualization Behavior

In this experiment, we will enable and disable virtualization on the command prompt 

and see several behaviors to demonstrate UAC file virtualization.

 1. Open a nonelevated command prompt (you must have UAC enabled for this to 

work), and enable virtualization for it. You can change the virtualization status of 

a process by selecting Virtualization from the shortcut menu that appears when 

you right-click the process in Task Manager.

 2.  Navigate to the C:\Windows directory, and use the following command to write a 

file:

echo hello-1 > test.txt

 3.  Now list the contents of the directory:

dir test.txt

You’ll see that the file appears.

 4.  Now disable virtualization by using Task Manager, and then list the directory as in 

step 3. Notice that the file is gone. However, a directory listing of the VirtualStore 

directory will reveal the file:

dir %LOCALAPPDATA%\VirtualStore\Windows\test.txt
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 5.  To take a look at a more complex scenario, create a new Command Prompt 

window, but elevate it this time, and then repeat steps 2 and 3 using the string 

“hello-2”.

 6.  Take a look at the text inside these files by using the following command in both 

command prompts:

echo test.txt

The following two screenshots show the expected output.

 7.  Finally, from your elevated command prompt, delete the test.txt file:

del test.txt

 8.  Repeat step 6 of the experiment. Notice that the elevated command prompt can-

not find the file anymore, while the standard user command prompt shows the 

old contents of the file again. This demonstrates the failover mechanism described 

earlier—read operations will look in the per-user virtual store location first, but if 

the file doesn’t exist, read access to the system location will be granted.

Registry Virtualization

Registry virtualization is implemented slightly differently from file system virtualization. 

Virtualized registry keys include most of the HKEY_LOCAL_MACHINE\Software branch, but 

there are numerous exceptions, such as the following:

HKLM\Software\Microsoft\Windows
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HKLM\Software\Microsoft\Windows NT

HKLM\Software\Classes

Only keys that are commonly modified by legacy applications, but which don’t introduce 

compatibility or interoperability problems, are virtualized. Windows redirects modifica-

tions of virtualized keys by a legacy application to a user’s registry virtual root at HKEY_ 

CURRENT_USER\Software\Classes\VirtualStore. The key is located in the user’s Classes hive, 

%LocalAppData%\Microsoft\Windows\UsrClass.dat, which, like any other virtualized file data, 

does not roam with a roaming user profile. Instead of maintaining a fixed list of virtualized 

locations as Windows does for the file system, the virtualization status of a key is stored as a 

combination of flags, shown in Table 6-10.

TABLE 6-10 Registry Virtualization Flags

Flag Meaning 

REG_KEY_DONT_VIRTUALIZE Specifies whether virtualization is enabled for this key. If the flag is 

set, virtualization is disabled.

REG_KEY_DONT_SILENT_FAIL If the REG_KEY_DONT_VIRTUALIZE flag is set (virtualization is dis-

abled), this key specifies that a legacy application that would be 

denied access performing an operation on the key is instead grant-

ed MAXIMUM_ALLOWED rights to the key (any access the account 

is granted), instead of the rights the application requested. If this 

flag is set, it implicitly disables virtualization as well.

REG_KEY_RECURSE_FLAG Determines whether the virtualization flags will propagate to the 

child keys (subkeys) of this key.

You can use the Reg.exe utility included in Windows, with the flags option, to display the 

current virtualization state for a key or to set it. In Figure 6-15, note that the HKLM\Software 

key is fully virtualized, but the Windows subkey (and all its children) have only silent failure 

enabled.

FIGURE 6-15 UAC registry virtualization flags on the Software and Windows keys
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Unlike file virtualization, which uses a filter driver, registry virtualization is implemented in the 

configuration manager. (See Chapter 4 for more information on the registry and the config-

uration manager.) As with file system virtualization, a legacy process creating a subkey of a 

virtualized key is redirected to the user’s registry virtual root, but a UAC-compatible process 

is denied access by default permissions. This is shown in Figure 6-16.

User mode

Kernel mode

HKLM\Software\App

Virtualized

process

Ntoskrnl.exe

Registry

Non-virtualized

process

Access denied

HKCU\Software\Classes\VirtualStore\
Machine\Software\App

FIGURE 6-16 UAC registry virtualization operation

Elevation

Even if users run only programs that are compatible with standard user rights, some oper-

ations still require administrative rights. The vast majority of software installations require 

administrative rights to create directories and registry keys in system-global locations or to 

install services or device drivers. Modifying system-global Windows and application settings 

also requires administrative rights, as does the Windows Vista parental controls feature. It 

would be possible to perform most of these operations by switching to a dedicated adminis-

trator account, but the inconvenience of doing so would likely result in most users remaining 

in the administrator account to perform their daily tasks.

It’s important to be aware that UAC elevations are conveniences and not security boundaries. 

A security boundary requires that security policy dictate what can pass through the bound-

ary. User accounts are an example of a security boundary in Windows, because one user can’t 

access the data belonging to another user without having that user’s permission.

Because elevations aren’t security boundaries, there’s no guarantee that malware running on 

a system with standard user rights can’t compromise an elevated process to gain administra-

tive rights. For example, elevation dialog boxes only identify the executable that will be ele-

vated; they say nothing about what it will do when it executes.



 Chapter 6 Security 529

Running with Administrator Rights

Windows includes enhanced “run as” functionality so that standard users can conveniently 

launch processes with administrative rights. This functionality required giving applications a 

way to identify operations for which the system can obtain administrative rights on behalf of 

the application, as necessary. (More on this topic shortly.)

To enable users acting as system administrators to run with standard user rights but not have 

to enter user names and passwords every time they want to access administrative rights, 

Windows makes use of a mechanism called Admin Approval Mode (AAM). This feature cre-

ates two identities for the user at logon: one with standard user rights and another with 

administrative rights. Since every user on a Windows system is either a standard user or act-

ing for the most part as a standard user in AAM, developers must assume that all Windows 

users are standard users, which will result in more programs working with standard user 

rights without virtualization or shims.

Granting administrative rights to a process is called elevation. When elevation is performed 

by a standard user account (or by a user who is part of an administrative group but not the 

actual Administrators group), it’s referred to as an over-the-shoulder (OTS) elevation because 

it requires the entry of credentials for an account that’s a member of the Administrators 

group, something that’s usually completed by a user typing over the shoulder of a standard 

user. An elevation performed by an AAM user is called a consent elevation because the user 

simply has to approve the assignment of his administrative rights.

Stand-alone systems, which are typically home computers, and domain-joined systems treat 

AAM access by remote users differently because domain-connected computers can use 

domain administrative groups in their resource permissions. When a user accesses a stand-

alone computer’s file share, Windows requests the remote user’s standard user identity, but 

on domain-joined systems, Windows honors all the user’s domain group memberships by 

requesting the user’s administrative identity.

Executing an image that requests administrative rights causes the application information 

service (AIS, contained in %SystemRoot%\System32\Appinfo.dll), which runs inside a service 

host process (%SystemRoot%\System32\Svchost.exe), to launch Consent.exe (%SystemRoot%\

System32\Consent.exe). Consent captures a bitmap of the screen, applies a fade effect to it, 

switches to a desktop that’s only accessible to the local system account, paints the bitmap 

as the background, and displays an elevation dialog box that contains information about 

the executable. Displaying this dialog box on a separate desktop prevents any application 

present in the user’s account from modifying the appearance of the dialog box.

If an image is a Windows component digitally signed by Microsoft and the image is in the 

Windows system directory, the dialog box displays a blue stripe across the top, as shown 

at the top of Figure 6-17. The gray stripe (the dialog box in the middle of the figure) is for 

images that are digitally signed by someone other than Microsoft, and the orange stripe 
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(bottom dialog box) is for unsigned images. The elevation dialog box shows the image’s icon, 

description, and publisher for digitally signed images, but it shows only a generic icon, the 

file name, and Unidentified Publisher for unsigned images. This difference makes it harder for 

malware to mimic the appearance of legitimate software. The Details button at the bottom 

of the dialog box expands it to show the command line that will be passed to the executable 

if it launches.

FIGURE 6-17 UAC elevation dialog boxes based on image signature

The AAM consent dialog box, shown in Figure 6-18, is similar, but instead of prompting for 

administrator credentials, this dialog box provides Continue and Cancel buttons.

FIGURE 6-18 AAM consent dialog box
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If a user declines an elevation, Windows returns an access-denied error to the process that 

initiated the launch. When a user agrees to an elevation by either entering administrator 

credentials or clicking Continue, AIS calls CreateProcessAsUser to launch the process with the 

appropriate administrative identity. Although AIS is technically the parent of the elevated 

process, AIS uses new support in the CreateProcessAsUser API that sets the process’s parent 

process ID to that of the process that originally launched it. (See Chapter 5 for more informa-

tion on processes and this mechanism.) That’s why elevated processes don’t appear as chil-

dren of the AIS service-hosting process in tools such as Process Explorer that show process 

trees. Figure 6-19 shows the operations involved in launching an elevated process from a 

standard user account.

AppInfo service Consent.exe

Admin.exe

Explorer

Standard user

Local system

Administrator

ShellExecute 
(Admin.exe)

Re
pa

re
nt

ed

CreateProcessAsUser 
(Admin.exe)

FIGURE 6-19 Launching an administrative application as a standard user

Requesting Administrative Rights

There are a number of ways the system and applications identify a need for administrative 

rights. One that shows up in the Explorer user interface is the Run As Administrator con-

text menu command and shortcut option. These items also include a colored shield icon 

that should be placed on any button or menu item that will result in an elevation of rights 

when it is selected. Choosing the Run As Administrator command causes Explorer to call the 

ShellExecute API with the “runas” verb.
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The vast majority of installation programs require administrative rights, so the image loader, 

which initiates the launch of an executable, includes installer detection code to identify likely 

legacy installers. Some of the heuristics it uses are as simple as detecting internal version 

information or whether the image has the words setup, install, or update in its file name. 

More sophisticated means of detection involve scanning for byte sequences in the execut-

able that are common to third-party installation wrapper utilities. The image loader also calls 

the application compatibility library to see if the target executable requires administrator 

rights. The library looks in the application compatibility database to see whether the execut-

able has the RequireAdministrator or RunAsInvoker compatibility flags associated with it.

The most common way for an executable to request administrative rights is for it to include 

a requestedElevationLevel tag in its application manifest file. The element’s level attribute can 

have one of the three values shown in Table 6-11.

TABLE 6-11 Requested Elevation Levels

Elevation Level Meaning Usage

As Invoker No need for administrative rights; 

never ask for elevation.

Typical user applications that don’t need 

administrative privileges, for example 

Notepad.

Highest 

Available

Request approval for highest rights 

available. If the user is logged on as 

a standard user, the process will be 

launched as invoker; otherwise, an 

AAM elevation prompt will appear, 

and the process will run with full 

 administrative rights.

Applications that can function without full 

administrative rights but expect users to 

want full access if it’s easily accessible. For 

example, the Registry Editor, Microsoft 

Management Console, and the Event 

Viewer use this level,

Require 

Administrator

Always request administrative 

rights—an OTS elevation dialog box 

prompt will be shown for standard 

users; otherwise, AAM.

Applications that require administrative 

rights to work, such as the Firewall Settings 

editor, which affects systemwide security.

The presence of the trustInfo element in a manifest (which you can see in the excerpted string 

dump of FirewallSettings.exe below), denotes an executable that was written with support for 

UAC and the requestedElevationLevel element nests within it. The uiAccess attribute is where 

accessibility applications can use the UIPI bypass functionality mentioned earlier.

C:\>strings c:\Windows\System32\FirewallSettings.exe 

... 

<trustInfo  

 xmlns="urn:schema-microsoft-com:asm.v3"> 

 <security> 

  <requestedPrivileges> 

   <requestedExecutionLevel 

    Level="requireAdministrator" 

    uiAccess="false"/> 

  </requestedPrivileges> 

 </security> 

</trustInfo>
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An easier way to determine the values specified by an executable is to view its manifest with 

the Sysinternals Sigcheck utility, like this:

sigcheck –m <executable>

EXPERIMENT: Using Application Compatibility Flags

In this experiment, we will use an application compatibility flag to run the Registry 

Editor as a standard user process. This will bypass the RequireAdministrator manifest 

flag and force virtualization on Regedit.exe, allowing you to make changes to the virtu-

alized registry directly.

 1. Navigate to your %SystemRoot%\System32 directory, and copy the Regedt32.exe 

file to another path on your system (such as C:\ or your Desktop folder).

 2.  Go to the HKLM\Software\Microsoft\Windows NT\CurrentVersion\

AppCompatFlags\Layers registry key, and create a new string value whose name 

is the path where you copied Regedt32.exe, such as c:\regedt32.exe

 3.  Set the value of this key to RUNASINVOKER.

 4.  Now start Regedt32.exe from its location (be sure to close any running cop-

ies of the Registry Editor first). You will not see the typical AAM dialog box, and 

Regedit.exe will now run with standard user rights. You will also be subject to the 

virtualized view of the registry, meaning you can now see what legacy applica-

tions see when accessing the registry.

Software Restriction Policies

Windows also contains a user-mode mechanism called Software Restriction Policies that 

enables administrators to control what images and scripts execute on their systems. The 

Software Restriction Policies node of the Local Security Policy Editor, shown in Figure 6-20, 

serves as the management interface for a machine’s code execution policies, although per-

user policies are also possible using domain group policies.

Several global policy settings appear beneath the Software Restriction Policies node.

The Enforcement policy configures whether restriction policies apply to libraries, such as 

DLLs, and whether policies apply to users only or to administrators as well.

The Designated File Types policy records the extensions for files that are considered 

executable code.

Trusted Publishers control who can select which certificate publishers are trusted.
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FIGURE 6-20 Software Restriction Policy configuration

When configuring a policy for a particular script or image, an administrator can direct the 

system to recognize it using its path, its hash, its Internet Zone (as defined by Internet 

Explorer), or its cryptographic certificate, and she can specify whether it is associated with the 

Disallowed or Unrestricted security policy.

Enforcement of Software Restriction Policies takes place within various components where 

files are treated as containing executable code. Some of these components are listed here:

The user-mode Windows CreateProcess function in %SystemRoot%\System32\

Kernel32.dll enforces it for executable images.

The DLL loading code of Ntdll (%SystemRoot%\System32\Ntdll.dll) enforces it for DLLs.

The Windows command prompt (%SystemRoot%\System32\Cmd.exe) enforces it for 

batch file execution.

Windows Scripting Host components that start scripts—%SystemRoot%\System32\

Cscript.exe (for command-line scripts), %SystemRoot%\System32\Wscript.exe (for UI 

scripts), and %SystemRoot%\System32\Scrobj.dll (for script objects)—enforce it for 

script execution.

Each of these components determines whether the restriction policies are enabled by read-

ing the registry value HKEY_LOCAL_MACHINE\Software\Microsoft\Policies\Windows\Safer\

CodeIdentifiers\TransparentEnabled, which if set to 1 indicates that policies are in effect. 

Then it determines whether the code it’s about to execute matches one of the rules speci-

fied in a subkey of the CodeIdentifiers key and, if so, whether or not the execution should be 

allowed. If there is no match, the default policy, as specified in the DefaultLevel value of the 

CodeIdentifiers key, determines whether the execution is allowed.

Software Restriction Policies are a powerful tool for preventing the unauthorized access 

of code and scripts, but only if properly applied. Unless the default policy is set to disallow 
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execution, a user can make minor changes to an image that’s been marked as disallowed so 

that he can bypass the rule and execute it. For example, a user can change an innocuous byte 

of a process image so that a hash rule fails to recognize it, or copy a file to a different loca-

tion to avoid a path-based rule.

EXPERIMENT: Watching Software Restriction Policy Enforcement

You can indirectly see Software Restriction Policies being enforced by watching 

accesses to the registry when you attempt to execute an image that you’ve disallowed.

 1. Run secpol.msc to open the Local Security Policy Editor, and navigate to the 

Software Restriction Policies node.

 2. Choose Create New Policies from the context menu if no policies are defined.

 3. Create a path-based disallow restriction policy for %SystemRoot%\System32\

Notepad.exe.

 4. Run Process Monitor, and set an include filter for Safer. (See Chapter 4 for a 

description of Process Monitor.)

 5. Open a command prompt, and run Notepad from the prompt.

Your attempt to run Notepad should result in a message telling you that you can-

not execute the specified program, and Process Monitor should show the command 

prompt (cmd.exe) querying the local machine restriction policies.

Conclusion

Windows provides an extensive array of security functions that meet the key requirements 

of both government agencies and commercial installations. In this chapter, we’ve taken a 

brief tour of the internal components that are the basis of these security features. In the next 

chapter, we’ll look at the I/O system.
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Chapter 7

I/O System

The Windows I/O system consists of several executive components that together manage 

hardware devices and provide interfaces to hardware devices for applications and the sys-

tem. In this chapter, we’ll first list the design goals of the I/O system, which have influenced 

its implementation. We’ll then cover the components that make up the I/O system, including 

the I/O manager, Plug and Play (PnP) manager, and power manager. Then we’ll examine the 

structure and components of the I/O system and the various types of device drivers. We’ll 

look at the key data structures that describe devices, device drivers, and I/O requests, after 

which we’ll describe the steps necessary to complete I/O requests as they move through the 

system. Finally, we’ll present the way device detection, driver installation, and power man-

agement work.

I/O System Components

The design goals for the Windows I/O system are to provide an abstraction of devices, 

both hardware (physical) and software (virtual or logical), to applications with the following 

features:

Uniform security and naming across devices to protect shareable resources. (See 

Chapter 6 for a description of the Windows security model.)

High-performance asynchronous packet-based I/O to allow for the implementation of 

scalable applications.

Services that allow drivers to be written in a high-level language and easily ported 

between different machine architectures.

Layering and extensibility to allow for the addition of drivers that transparently modify 

the behavior of other drivers or devices, without requiring any changes to the driver 

whose behavior or device is modified.

Dynamic loading and unloading of device drivers so that drivers can be loaded 

 on-demand and not consume system resources when unneeded.

Support for Plug and Play, where the system locates and installs drivers for newly 

detected hardware, assigns them hardware resources they require, and also allows 

applications to discover and activate device interfaces.

Support for power management so that the system or individual devices can enter low 

power states.
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Support for multiple installable file systems, including FAT, the CD-ROM file sys-

tem (CDFS), the Universal Disk Format (UDF) file system, and the Windows file sys-

tem (NTFS). (See Chapter 11 for more specific information on file system types and 

architecture.)

Windows Management Instrumentation (WMI) support and diagnosability so that driv-

ers can be managed and monitored through WMI applications and scripts. (WMI is 

described in Chapter 4.)

To implement these features the Windows I/O system consists of several executive compo-

nents as well as device drivers, which are shown in Figure 7-1.

The I/O manager is the heart of the I/O system. It connects applications and system 

components to virtual, logical, and physical devices, and it defines the infrastructure 

that supports device drivers.

A device driver typically provides an I/O interface for a particular type of device. Device 

drivers receive commands routed to them by the I/O manager that are directed at 

devices they manage, and they inform the I/O manager when those commands com-

plete. Device drivers often use the I/O manager to forward I/O commands to other 

device drivers that share in the implementation of a device’s interface or control.

The PnP manager works closely with the I/O manager and a type of device driver 

called a bus driver to guide the allocation of hardware resources as well as to detect 

and respond to the arrival and removal of hardware devices. The PnP manager and bus 

drivers are responsible for loading a device’s driver when the device is detected. When 

a device is added to a system that doesn’t have an appropriate device driver, the execu-

tive Plug and Play component calls on the device installation services of a user-mode 

PnP manager.

The power manager also works closely with the I/O manager to guide the system, as 

well as individual device drivers, through power-state transitions.

Windows Management Instrumentation support routines, called the Windows Driver 

Model (WDM) WMI provider, allow device drivers to indirectly act as providers, using 

the WDM WMI provider as an intermediary to communicate with the WMI service in 

user mode. (For more information on WMI, see the section “Windows Management 

Instrumentation” in Chapter 4.)

The registry serves as a database that stores a description of basic hardware devices 

attached to the system as well as driver initialization and configuration settings. (See 

the section “The Registry” in Chapter 4 for more information.)

INF files, which are designated by the .inf extension, are driver installation files. INF files 

are the link between a particular hardware device and the driver that assumes primary 

control of the device. They are made up of scriptlike instructions describing the device 

they correspond to, the source and target locations of driver files, required driver-
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installation registry modifications, and driver dependency information. Digital signa-

tures that Windows uses to verify that a driver file has passed testing by the Microsoft 

Windows Hardware Quality Labs (WHQL) are stored in .cat files.

The hardware abstraction layer (HAL) insulates drivers from the specifics of the proces-

sor and interrupt controller by providing APIs that hide differences between platforms. 

In essence, the HAL is the bus driver for all the devices on the computer’s motherboard 

that aren’t controlled by other drivers.

Windows
services

Applications

WMI
service

User-mode
PnP manager

.inf files,
.cat files,
registry

I/O
manager

Power
manager

PnP
manager

WDM WMI
routines

HAL

Setup
components

FIGURE 7-1 I/O system components

The I/O Manager

The I/O manager is the core of the I/O system because it defines the orderly framework, or 

model, within which I/O requests are delivered to device drivers. The I/O system is packet 
driven. Most I/O requests are represented by an I/O request packet (IRP), which travels from 

one I/O system component to another. (As you’ll discover in the section “Fast I/O,” fast I/O is 

the exception; it doesn’t use IRPs.) The design allows an individual application thread to man-

age multiple I/O requests concurrently. An IRP is a data structure that contains information 

completely describing an I/O request. (You’ll find more information about IRPs in the section 

“I/O Request Packets.”)
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The I/O manager creates an IRP that represents an I/O operation, passing a pointer to the 

IRP to the correct driver and disposing of the packet when the I/O operation is complete. In 

contrast, a driver receives an IRP, performs the operation the IRP specifies, and passes the IRP 

back to the I/O manager, either for completion or to be passed on to another driver for fur-

ther processing.

In addition to creating and disposing of IRPs, the I/O manager supplies code that is common 

to different drivers and that the drivers call to carry out their I/O processing. By consolidat-

ing common tasks in the I/O manager, individual drivers become simpler and more compact. 

For example, the I/O manager provides a function that allows one driver to call other drivers. 

It also manages buffers for I/O requests, provides timeout support for drivers, and records 

which installable file systems are loaded into the operating system. There are close to a hun-

dred different routines in the I/O manager that can be called by device drivers.

The I/O manager also provides flexible I/O services that allow environment subsystems, such 

as Windows and POSIX, to implement their respective I/O functions. These services include 

sophisticated services for asynchronous I/O that allow developers to build scalable high-

performance server applications.

The uniform, modular interface that drivers present allows the I/O manager to call any driver 

without requiring any special knowledge of its structure or internal details. The operat-

ing system treats all I/O requests as if they were directed at a file; the driver converts the 

requests from requests made to a virtual file to hardware-specific requests. Drivers can also 

call each other (using the I/O manager) to achieve layered, independent processing of an I/O 

request.

Besides providing the normal open, close, read, and write functions, the Windows I/O sys-

tem provides several advanced features, such as asynchronous, direct, buffered, and scatter/

gather I/O, which are described in the “Types of I/O” section later in this chapter.

Typical I/O Processing

Most I/O operations don’t involve all the components of the I/O system. A typical I/O request 

starts with an application executing an I/O-related function (for example, reading data from 

a device) that is processed by the I/O manager, one or more device drivers, and the HAL.

As just mentioned, in Windows, threads perform I/O on virtual files. The operating system 

abstracts all I/O requests as operations on a virtual file, hiding the fact that the target of an 

I/O operation might not be a file-structured device. This abstraction generalizes an appli-

cation’s interface to devices. A virtual file refers to any source or destination for I/O that is 

treated as if it were a file (such as files, directories, pipes, and mailslots). All data that is read 

or written is regarded as a simple stream of bytes directed to these virtual files. User-mode 

applications (whether Windows or POSIX) call documented functions, which in turn call inter-

nal I/O system functions to read from a file, write to a file, and perform other operations. The 
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I/O manager dynamically directs these virtual file requests to the appropriate device driver. 

Figure 7-2 illustrates the basic structure of a typical I/O request flow.

User-mode API

I/O system services API
(Ntxxx)

I/O manager (Ioxxx)

Kernel-mode
device drivers

HAL I/O access routines

Driver
support
routines

(Io, Ex, Ke,
Mm, Hal,

FsRtl,
and so on)

I/O ports and registers

FIGURE 7-2 The flow of a typical I/O request

In the following sections, we’ll be looking at these components more closely, covering the 

various types of device drivers, how they are structured, how they load and initialize, and 

how they process I/O requests. Then we’ll cover the operation and roles of the PnP manager 

and the power manager.

Device Drivers

To integrate with the I/O manager and other I/O system components, a device driver must 

conform to implementation guidelines specific to the type of device it manages and the 

role it plays in managing the device. In this section, we’ll look at the types of device drivers 

Windows supports as well as the internal structure of a device driver.

Types of Device Drivers

Windows supports a wide range of device driver types and programming environments. 

Even within a type of device driver, programming environments can differ, depending on the 

specific type of device for which a driver is intended. The broadest classification of a driver 



542 Windows Internals, Fifth Edition

is whether it is a user-mode or kernel-mode driver. Windows supports several types of user-

mode drivers:

Virtual device drivers (VDDs) are used to emulate 16-bit MS-DOS applications. They 

trap what an MS-DOS application thinks are references to I/O ports and translate them 

into native Windows I/O functions, which are then passed to the actual device driver. 

Because Windows is a fully protected operating system, user-mode MS-DOS applica-

tions can’t access hardware directly and thus must go through a real kernel-mode 

device driver. Because 64-bit editions of Windows do not support 16-bit applications 

anymore, these types of drivers are not present on that architecture.

Windows subsystem printer drivers translate device-independent graphics requests to 

printer-specific commands. These commands are then typically forwarded to a kernel-

mode port driver such as the parallel port driver (Parport.sys) or the universal serial bus 

(USB) printer port driver (Usbprint.sys).

User-Mode Driver Framework (UMDF) drivers are hardware device drivers that run 

in user mode. They communicate to the kernel-mode UMDF support library through 

ALPC. See the “User-Mode Driver Framework (UMDF)” section later in this chapter for 

more information.

In this chapter, the focus is on kernel-mode device drivers. There are many types of kernel-

mode drivers, which can be divided into the following basic categories:

File system drivers accept I/O requests to files and satisfy the requests by issuing their 

own, more explicit, requests to mass storage or network device drivers.

Plug and Play drivers work with hardware and integrate with the Windows power man-

ager and PnP manager. They include drivers for mass storage devices, video adapters, 

input devices, and network adapters.

Non–Plug and Play drivers, which also include kernel extensions, are drivers or mod-

ules that extend the functionality of the system. They do not integrate with the PnP or 

power managers because they typically do not manage an actual piece of hardware. 

Examples include network API and protocol drivers. Process Monitor’s driver, described 

in Chapter 4, is also an example.

Within the category of kernel-mode drivers are further classifications based on the driver 

model that the driver adheres to and its role in servicing device requests.

WDM Drivers

WDM drivers are device drivers that adhere to the Windows Driver Model (WDM). WDM 

includes support for Windows power management, Plug and Play, and WMI, and most Plug 

and Play drivers adhere to WDM. There are three types of WDM drivers:

Bus drivers manage a logical or physical bus. Examples of buses include PCMCIA, PCI, 

USB, IEEE 1394, and ISA. A bus driver is responsible for detecting and informing the PnP 
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manager of devices attached to the bus it controls as well as managing the power set-

ting of the bus.

Function drivers manage a particular type of device. Bus drivers present devices to 

function drivers via the PnP manager. The function driver is the driver that exports the 

operational interface of the device to the operating system. In general, it’s the driver 

with the most knowledge about the operation of the device.

Filter drivers logically layer above or below function drivers, augmenting or chang-

ing the behavior of a device or another driver. For example, a keyboard capture utility 

could be implemented with a keyboard filter driver that layers above the keyboard 

function driver.

In WDM, no one driver is responsible for controlling all aspects of a particular device. The 

bus driver is responsible for detecting bus membership changes (device addition or removal), 

assisting the PnP manager in enumerating the devices on the bus, accessing bus-specific con-

figuration registers, and, in some cases, controlling power to devices on the bus. The function 

driver is generally the only driver that accesses the device’s hardware.

Layered Drivers

Support for an individual piece of hardware is often divided among several drivers, each 

providing a part of the functionality required to make the device work properly. In addi-

tion to WDM bus drivers, function drivers, and filter drivers, hardware support might be split 

between the following components:

Class drivers implement the I/O processing for a particular class of devices, such as disk, 

tape, or CD-ROM, where the hardware interfaces have been standardized, so one driver 

can serve devices from a wide variety of manufacturers.

Port drivers implement the processing of an I/O request specific to a type of I/O port, 

such as SCSI, and are implemented as kernel-mode libraries of functions rather than 

actual device drivers. Port drivers are always written by Microsoft because the inter-

faces to write for are not documented.

Miniport drivers map a generic I/O request to a type of port into an adapter type, such 

as a specific SCSI adapter. Miniport drivers are actual device drivers that import the 

functions supplied by a port driver. Miniport drivers are written by third parties, and 

they provide the interface for the port driver.

An example will help demonstrate how device drivers work. A file system driver accepts a 

request to write data to a certain location within a particular file. It translates the request into 

a request to write a certain number of bytes to the disk at a particular “logical” location. It 

then passes this request (via the I/O manager) to a simple disk driver. The disk driver, in turn, 

translates the request into a physical location on the disk and communicates with the disk to 

write the data. This layering is illustrated in Figure 7-3.
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FIGURE 7-3 Layering of a file system driver and a disk driver

This figure illustrates the division of labor between two layered drivers. The I/O manager 

receives a write request that is relative to the beginning of a particular file. The I/O man-

ager passes the request to the file system driver, which translates the write operation from 

a file-relative operation to a starting location (a sector boundary on the disk) and a number 

of bytes to read. The file system driver calls the I/O manager to pass the request to the disk 

driver, which translates the request to a physical disk location and transfers the data.

Because all drivers—both device drivers and file system drivers—present the same frame-

work to the operating system, another driver can easily be inserted into the hierarchy with-

out altering the existing drivers or the I/O system. For example, several disks can be made to 

seem like a very large single disk by adding a driver. This logical, volume manager driver is 

located between the file system and the disk drivers, as shown in Figure 7-4. Volume man-

ager drivers are described in more detail in Chapter 8.
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FIGURE 7-4 Adding a layered driver
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EXPERIMENT: Viewing the Loaded Driver List

You can see a list of registered drivers by executing the Msinfo32.exe utility from the 

Run dialog box of the Start menu. Select the System Drivers entry under Software 

Environment to see the list of drivers configured on the system. Those that are loaded 

have the text “Yes” in the Started column, as shown here:

You can also view the list of loaded kernel-mode drivers with Process Explorer from 

Windows Sysinternals (www.microsoft.com/technet/sysinternals.) Run Process Explorer, 

select the System process, and select DLLs from the Lower Pane menu entry in the 

View menu. Process Explorer lists the loaded drivers, their names, version information 

(including company and description), and load address (assuming you have configured 

Process Explorer to display the corresponding columns):
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Finally, if you’re looking at a crash dump (or live system) with the kernel debugger, you 

can get a similar display with the kernel debugger lm kv command:

lkd> lm kv  

start    end        module name 

82007000 823c0000   nt         (pdb symbols)       

c:\programming\symbols\ntkrpamp.pdb\37D328E3BAE5460F8E662756ED80951D2\ntkrpamp.pdb 

    Loaded symbol image file: ntkrpamp.exe 

    Image path: ntkrpamp.exe 

    Image name: ntkrpamp.exe 

    Timestamp:        Fri Jan 18 21:30:58 2008 (47918B12) 

    CheckSum:         00372038 

    ImageSize:        003B9000 

    File version:     6.0.6001.18000 

    Product version:  6.0.6001.18000 

    File flags:       0 (Mask 3F) 

    File OS:          40004 NT Win32 

    File type:        1.0 App 

    File date:        00000000.00000000 

    Translations:     0409.04b0 

    CompanyName:      Microsoft Corporation 

    ProductName:      Microsoft® Windows® Operating System 

    InternalName:     ntkrpamp.exe 

    OriginalFilename: ntkrpamp.exe 

    ProductVersion:   6.0.6001.18000 

    FileVersion:      6.0.6001.18000 (longhorn_rtm.080118-1840) 

    FileDescription:  NT Kernel & System 

    LegalCopyright:   © Microsoft Corporation. All rights reserved. 

823c0000 823f3000   hal        (deferred)              

    Image path: halmacpi.dll 

    Image name: halmacpi.dll 

    Timestamp:        Fri Jan 18 21:27:20 2008 (47918A38) 

    CheckSum:         0003859F 

    ImageSize:        00033000 

    Translations:     0000.04b0 0000.04e0 0409.04b0 0409.04e0 

82600000 82671000   ksecdd     (deferred)              

    Image path: \SystemRoot\System32\Drivers\ksecdd.sys 

    Image name: ksecdd.sys 

    Timestamp:        Fri Jan 18 21:41:20 2008 (47918D80) 

    CheckSum:         0006E742 

    ImageSize:        00071000 

    Translations:     0000.04b0 0000.04e0 0409.04b0 0409.04e0

Structure of a Driver

The I/O system drives the execution of device drivers. Device drivers consist of a set of rou-

tines that are called to process the various stages of an I/O request. Figure 7-5 illustrates the 

key driver-function routines.
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FIGURE 7-5 Primary device driver routines

An initialization routine The I/O manager executes a driver’s initialization routine, 

which is typically named DriverEntry, when it loads the driver into the operating system. 

The routine fills in system data structures to register the rest of the driver’s routines 

with the I/O manager and performs any global driver initialization that’s necessary.

An add-device routine A driver that supports Plug and Play implements an add-

device routine. The PnP manager sends a driver notification via this routine whenever 

a device for which the driver is responsible is detected. In this routine, a driver typically 

allocates a device object (described later in this chapter) to represent the device.

A set of dispatch routines Dispatch routines are the main functions that a device 

driver provides. Some examples are open, close, read, and write and any other capa-

bilities the device, file system, or network supports. When called on to perform an 

I/O operation, the I/O manager generates an IRP and calls a driver through one of the 

driver’s dispatch routines.

A start I/O routine A driver can use a start I/O routine to initiate a data transfer to 

or from a device. This routine is defined only in drivers that rely on the I/O manager 

to queue their incoming I/O requests. The I/O manager serializes IRPs for a driver by 

ensuring that the driver processes only one IRP at a time. Most drivers process multiple 

IRPs concurrently, but serialization makes sense for some drivers, such as a keyboard 

driver.

An interrupt service routine (ISR) When a device interrupts, the kernel’s interrupt 

dispatcher transfers control to this routine. In the Windows I/O model, ISRs run at 

device interrupt request level (DIRQL), so they perform as little work as possible to 
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avoid blocking lower-level interrupts unnecessarily. (See Chapter 3 for more informa-

tion on IRQLs.) An ISR usually queues a deferred procedure call (DPC), which runs at 

a lower IRQL (DPC/dispatch level), to execute the remainder of interrupt processing. 

(Only drivers for interrupt-driven devices have ISRs; a file system driver, for example, 

doesn’t have one.)

An interrupt-servicing DPC routine A DPC routine performs most of the work 

involved in handling a device interrupt after the ISR executes. The DPC routine executes 

at a lower IRQL (DPC/dispatch level) than that of the ISR, which runs at device level, to 

avoid blocking other interrupts unnecessarily. A DPC routine initiates I/O completion 

and starts the next queued I/O operation on a device.

Although the following routines aren’t shown in Figure 7-5, they’re found in many types of 

device drivers:

One or more I/O completion routines A layered driver might have I/O comple-

tion routines that will notify it when a lower-level driver finishes processing an IRP. For 

example, the I/O manager calls a file system driver’s I/O completion routine after a 

device driver finishes transferring data to or from a file. The completion routine notifies 

the file system driver about the operation’s success, failure, or cancellation, and it allows 

the file system driver to perform cleanup operations.

A cancel I/O routine If an I/O operation can be canceled, a driver can define one or 

more cancel I/O routines. When the driver receives an IRP for an I/O request that can 

be canceled, it assigns a cancel routine to the IRP. If a thread that issues an I/O request 

exits before the request is completed or cancels the operation (with the CancelIo 

Windows function, for example), the I/O manager executes the IRP’s cancel routine if 

one is assigned to it. A cancel routine is responsible for performing whatever steps are 

necessary to release any resources acquired during the processing that has already 

taken place for the IRP as well as completing the IRP with a canceled status.

Fast dispatch routines Drivers that make use of the cache manager in Windows (see 

Chapter 10 for more information on the cache manager), such as file system drivers, 

typically provide these routines to allow the kernel to bypass typical I/O processing 

when accessing the driver. For example, operations such as reading or writing can be 

quickly performed by accessing the cached data directly, instead of taking the I/O 

manager’s usual path that generates discrete I/O operations. Fast dispatch routines are 

also used as a mechanism for callbacks from the memory manager and cache manager 

to file system drivers. For instance, when creating a section, the memory manager calls 

back into the file system driver to acquire the file exclusively.

An unload routine An unload routine releases any system resources a driver is using 

so that the I/O manager can remove them from memory. Any resources acquired in the 

initialization routine are usually released in the unload routine. A driver can be loaded 
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and unloaded while the system is running if the driver supports it, but the unload rou-

tine will be called only after all file handles to the device are closed.

A system shutdown notification routine This routine allows driver cleanup on system 

shutdown.

Error-logging routines When unexpected errors occur (for example, when a disk 

block goes bad), a driver’s error-logging routines note the occurrence and notify the 

I/O manager. The I/O manager writes this information to an error log file.

Note Most kernel-mode device drivers are written in C. Some drivers are written in C++, but 

there’s no specific support for C++ in the Windows Driver Kit (WDK). Use of assembly language is 

highly discouraged because of the complexity it introduces and its effect of making a driver dif-

ficult to port between hardware architectures such as the x86, x64, and IA64.

Driver Objects and Device Objects

When a thread opens a handle to a file object (described in the “I/O Processing” section later 

in this chapter), the I/O manager must determine from the file object’s name which driver (or 

drivers) it should call to process the request. Furthermore, the I/O manager must be able to 

locate this information the next time a thread uses the same file handle. The following sys-

tem objects fill this need:

A driver object represents an individual driver in the system. The I/O manager obtains 

the address of each of the driver’s dispatch routines (entry points) from the driver 

object.

A device object represents a physical or logical device on the system and describes 

its characteristics, such as the alignment it requires for buffers and the location of its 

device queue to hold incoming IRPs.

The I/O manager creates a driver object when a driver is loaded into the system, and it then 

calls the driver’s initialization routine (for example, DriverEntry), which fills in the object attri-

butes with the driver’s entry points.

After loading, a driver can create device objects to represent devices, or even an interface to 

the driver, at any time by calling IoCreateDevice or IoCreateDeviceSecure. However, most Plug 

and Play drivers create devices with their add-device routine when the PnP manager informs 

them of the presence of a device for them to manage. Non–Plug and Play drivers, on the 

other hand, usually create device objects when the I/O manager invokes their initialization 

routine. The I/O manager unloads a driver when its last device object has been deleted and 

no references to the driver remain.
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When a driver creates a device object, the driver can optionally assign the device a name. 

A name places the device object in the object manager namespace, and a driver can either 

explicitly define a name or let the I/O manager autogenerate one. (The object manager 

namespace is described in Chapter 3.) By convention, device objects are placed in the \Device 

directory in the namespace, which is inaccessible by applications using the Windows API.

Note Some drivers place device objects in directories other than \Device. For example, the IDE 

driver creates the device objects that represent IDE ports and channels in the \Device\Ide direc-

tory. See Chapter 8 for a description of storage architecture, including the way storage drivers 

use device objects.

If a driver needs to make it possible for applications to open the device object, it must create 

a symbolic link in the \Global?? directory to the device object’s name in the \Device direc-

tory. (See Chapter 3 for more information on \??.) Non–Plug and Play and file system drivers 

typically create a symbolic link with a well-known name (for example, \Device\Hardware2). 

Because well-known names don’t work well in an environment in which hardware appears 

and disappears dynamically, PnP drivers expose one or more interfaces by calling the 

IoRegisterDeviceInterface function, specifying a GUID (globally unique identifier) that repre-

sents the type of functionality exposed. GUIDs are 128-bit values that you can generate by 

using a tool called Guidgen that is included with the WDK and the Windows SDK. Given the 

range of values that 128 bits represents, it’s statistically almost certain that each GUID that 

Guidgen creates will be forever and globally unique.

IoRegisterDeviceInterface determines the symbolic link that is associated with a device 

instance; however, a driver must call IoSetDeviceInterfaceState to enable the interface to the 

device before the I/O manager actually creates the link. Drivers usually do this when the PnP 

manager starts the device by sending the driver a start-device command.

An application wanting to open a device object represented with a GUID can call Plug and 

Play setup functions in user space, such as SetupDiEnumDeviceInterfaces, to enumerate the 

interfaces present for a particular GUID and to obtain the names of the symbolic links it can 

use to open the device objects. For each device reported by SetupDiEnumDeviceInterfaces, 
an application executes SetupDiGetDeviceInterfaceDetail to obtain additional informa-

tion about the device, such as its autogenerated name. After obtaining a device’s name 

from SetupDiGetDeviceInterfaceDetail, the application can execute the Windows function 

CreateFile to open the device and obtain a handle.
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EXPERIMENT: Looking at the \Device Directory

You can use the WinObj tool from Sysinternals or the !object kernel debugger com-

mand to view the device names under \Device in the object manager namespace. The 

following screen shot shows an I/O manager–assigned symbolic link that points to a 

device object in \Device with an autogenerated name:

When you run the !object kernel debugger command and specify the \Device directory, 

you should see output similar to the following:

lkd> !object \Device 

Object: 8b611b88  Type: (84d10d40) Directory 

    ObjectHeader: 8b611b70 (old version) 

    HandleCount: 0  PointerCount: 365 

    Directory Object: 8b602470  Name: Device 

 

    Hash Address  Type          Name 

    ---- -------  ----          ---- 

     00  85557a00 Device        KsecDD 

         855589d8 Device        Ndis 

         8b6151b0 SymbolicLink  {941D252A-0BDA-4772-B3CB-30697579BD4A} 

         86859030 Device        0000009b 

         88c92da8 Device        SrvNet 

         886723f0 Device        Beep 

         8b71fb90 SymbolicLink  ScsiPort2 

         84d17a98 Device        00000032 

         84d15f00 Device        00000025 

         84d13030 Device        00000019 

     01  86d44030 Device        NDMP10 

         8d291eb0 SymbolicLink  {E85EEE75-32E3-4A94-8905-52709C2C9BCC} 

         886da3c8 Device        Netbios 

         86862030 Device        0000009c 

         84d177c8 Device        00000033 

         84d15c70 Device        00000026 

     02  86de9030 Device        NDMP11 

         84d19320 Device        00000040 
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         88633ca0 Device        NetBT_Tcpip_{033C65A4-C1D6-4824-B420-DDAEADFF873E} 

         8b7dcdd0 SymbolicLink  Ip 

         84d17500 Device        00000034 

         84d159a8 Device        00000027 

     03  86df3380 Device        NDMP12 

         8515ede0 Device        WMIAdminDevice 

         84d1a030 Device        00000041 

         8862e040 Device        Video0 

         86eaec28 Device        KeyboardClass0 

         84d03b00 Device        KMDF0 

         84d17230 Device        00000035 

         84d156e0 Device        00000028 

     04  86e0d030 Device        NDMP13 

         86e65030 Device        NDMP20 

         85541030 Device        VolMgrControl 

         86e6c358 Device        Tun0 

         84d1ad68 Device        00000042 

         8862ec48 Device        Video1 

         88e15158 Device        0000009f 

         9badd848 SymbolicLink  MailslotRedirector 

         86e1d488 Device        KeyboardClass1 

    §

When you execute !object and specify an object manager directory object, the kernel 

debugger dumps the contents of the directory according to the way the object man-

ager organizes it internally. For fast lookups, a directory stores objects in a hash table 

based on a hash of the object names, so the output shows the objects stored in each 

bucket of the directory’s hash table.

As Figure 7-6 illustrates, a device object points back to its driver object, which is how the 

I/O manager knows which driver routine to call when it receives an I/O request. It uses the 

device object to find the driver object representing the driver that services the device. It then 

indexes into the driver object by using the function code supplied in the original request; 

each function code corresponds to a driver entry point. (The function codes shown in Figure 

7-6 are described in the section “IRP Stack Locations” later in this chapter.)

A driver object often has multiple device objects associated with it. The list of device objects 

represents the physical and logical devices that the driver controls. For example, each parti-

tion of a hard disk has a separate device object that contains partition-specific information. 

However, the same hard disk driver is used to access all partitions. When a driver is unloaded 

from the system, the I/O manager uses the queue of device objects to determine which 

devices will be affected by the removal of the driver.
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FIGURE 7-6 The driver object

EXPERIMENT: Displaying Driver and Device Objects

You can display driver and device objects with the kernel debugger !drvobj and !devobj 
commands, respectively. In the following example, the driver object for the keyboard 

class driver is examined, and its lone device object viewed:

lkd> !drvobj kbdclass  

Driver object (86e379a0) is for: 

 \Driver\kbdclass 

Driver Extension List: (id , addr) 

 

Device Object list: 

86e1d488  86eaec28   

 

lkd> !devobj 86eaec28 

Device object (86eaec28) is for: 

 KeyboardClass0 \Driver\kbdclass DriverObject 86e379a0 

Current Irp 00000000 RefCount 0 Type 0000000b Flags 00002044 

DevExt 86eaece0 DevObjExt 86eaedc0  

ExtensionFlags (0x00000800)   

                             Unknown flags 0x00000800 

AttachedDevice (Upper) 86e15a40 \Driver\ctrl2cap 

AttachedTo (Lower) 86e15020 \Driver\i8042prt 

Device queue is not busy

Notice that the !devobj command also shows you the addresses and names of any 

device objects that the object you’re viewing is layered over (the AttachedTo line) as well 

as the device objects layered on top of the object specified (the AttachedDevice line).
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Using objects to record information about drivers means that the I/O manager doesn’t need 

to know details about individual drivers. The I/O manager merely follows a pointer to locate 

a driver, thereby providing a layer of portability and allowing new drivers to be loaded eas-

ily. Representing devices and drivers with different objects also makes it easy for the I/O 

system to assign drivers to control additional or different devices if the system configuration 

changes.

Opening Devices

File objects are the kernel-mode constructs for handles to files or devices. File objects clearly 

fit the criteria for objects in Windows: they are system resources that two or more user-mode 

processes can share, they can have names, they are protected by object-based security, and 

they support synchronization. Although most shared resources in Windows are memory-

based resources, most of those that the I/O system manages are located on physical devices 

or represent actual physical devices. Despite this difference, shared resources in the I/O sys-

tem, like those in other components of the Windows executive, are manipulated as objects. 

(See Chapter 3 for a description of the object manager and Chapter 6 for information on 

object security.)

File objects provide a memory-based representation of resources that conform to an I/O-

centric interface, in which they can be read from or written to. Table 7-1 lists some of the file 

object’s attributes. For specific field declarations and sizes, see the structure definition for 

FILE_OBJECT in Ntddk.h.

TABLE 7-1 File Object Attributes

Attribute Purpose

File name Identifies the physical file that the file object refers to

Current byte offset Identifies the current location in the file (valid only for synchro-

nous I/O)

Share modes Indicate whether other callers can open the file for read, write, 

or delete operations while the current caller is using it

Open mode flags Indicate whether I/O will be synchronous or asynchronous, 

cached or noncached, sequential or random, and so on

Pointer to device object Indicates the type of device the file resides on

Pointer to the volume parameter 

block (VPB)

Indicates the volume, or partition, that the file resides on

Pointer to section object pointers Indicates a root structure that describes a mapped/cached file. 

This structure also contains the shared cache map, which iden-

tifies which parts of the file are cached (or rather mapped) by 

the cache manager and where they reside in the cache

Pointer to private cache map Used to store per-handle caching information, such as the read 

patterns for this handle or the page priority for the process.
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Attribute Purpose

List of I/O request packets (IRPs) If thread-agnostic I/O is used (to be described later) and the 

file object is associated with a completion port (also described 

later), this is a list of all the I/O operations that are associated 

with this file object

I/O completion context Context information for the current I/O completion port, if one 

is active

File object extension Stores the I/O priority for the file and whether share-access 

checks should be performed on the file object, and contains 

optional file object extensions that store context-specific 

 information

In order to maintain some level of opacity toward non-kernel code that uses the file object, 

as well as to enable extending the file object functionality without enlarging the structure, 

the file object also contains an extension field, which allows for up to six different kinds of 

additional parameters. These are described in Table 7-2.

TABLE 7-2 File Object Extensions

Extension Purpose

Transaction parameters Contains the transaction parameter block, which contains informa-

tion about a transacted file operation. Returned by IoGetTransaction-
ParameterBlock.

Device object hint Identifies the device object of the filter driver with which this file 

should be associated. Set with IoCreateFileEx or IoCreateFileSpecify-
DeviceObjectHint.

I/O status block range Allows applications to lock a user-mode buffer into kernel-mode 

memory to optimize asynchronous I/Os. See the section on I/O 

completion port optimizations later in this chapter. Set with SetFile-
IoOverlappedRange.

Generic Contains filter-driver-specific information, as well as extended create 

parameters (ECP) that were added by the caller. Set with IoCreateFileEx.

Scheduled file I/O Stores a file’s bandwidth reservation information, which is used by the 

storage system to optimize and guarantee throughput for multimedia 

applications. See the section on bandwidth reservation later in this 

chapter. Set with SetFileBandwidthReservation.

Symbolic link Added to the file object upon creation, when a mount point or direc-

tory junction is traversed (or a filter explicitly reparses the path). It 

stores the caller-supplied path, including information about any inter-

mediate junctions, so that if a relative symbolic link is hit, it can walk 

back through the junctions. See Chapter 11 for more information on 

NTFS symbolic links, mount points, and directory junctions.



 Chapter 7 I/O System 557

EXPERIMENT: Viewing the File Object Data Structure

You can view the contents of the kernel-mode file object data structure with the kernel 

debugger’s dt command:

lkd> dt nt!_FILE_OBJECT 

   +0x000 Type             : Int2B 

   +0x002 Size             : Int2B 

   +0x004 DeviceObject     : Ptr32 _DEVICE_OBJECT 

   +0x008 Vpb              : Ptr32 _VPB 

   +0x00c FsContext        : Ptr32 Void 

   +0x010 FsContext2       : Ptr32 Void 

   +0x014 SectionObjectPointer : Ptr32 _SECTION_OBJECT_POINTERS 

   +0x018 PrivateCacheMap  : Ptr32 Void 

   +0x01c FinalStatus      : Int4B 

   +0x020 RelatedFileObject : Ptr32 _FILE_OBJECT 

   +0x024 LockOperation    : UChar 

   +0x025 DeletePending    : UChar 

   +0x026 ReadAccess       : UChar 

   +0x027 WriteAccess      : UChar 

   +0x028 DeleteAccess     : UChar 

   +0x029 SharedRead       : UChar 

   +0x02a SharedWrite      : UChar 

   +0x02b SharedDelete     : UChar 

   +0x02c Flags            : Uint4B 

   +0x030 FileName         : _UNICODE_STRING 

   +0x038 CurrentByteOffset : _LARGE_INTEGER 

   +0x040 Waiters          : Uint4B 

   +0x044 Busy             : Uint4B 

   +0x048 LastLock         : Ptr32 Void 

   +0x04c Lock             : _KEVENT 

   +0x05c Event            : _KEVENT 

   +0x06c CompletionContext : Ptr32 _IO_COMPLETION_CONTEXT 

   +0x070 IrpListLock      : Uint4B 

   +0x074 IrpList          : _LIST_ENTRY 

   +0x07c FileObjectExtension : Ptr32 Void

When a caller opens a file or a simple device, the I/O manager returns a handle to a file 

object. Figure 7-7 illustrates what occurs when a file is opened.

In this example, (1) a C program calls the run-time library function fopen, which in turn 

(2) calls the Windows CreateFile function. The Windows subsystem DLL (in this case, 

Kernel32.dll) then (3) calls the native NtCreateFile function in Ntdll.dll. The routine in Ntdll.dll 

contains the appropriate instruction to cause a transition into kernel mode to the system ser-

vice dispatcher, which then (4) calls the real NtCreateFile routine in Ntoskrnl.exe. (See Chapter 

3 for more information about system service dispatching.) Finally, this routine wraps the 

parameters and flags in such a way that the I/O manager function IoCreateFile can actually 

perform the operation.
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FIGURE 7-7 Opening a file object

Note File objects represent open instances of files, not files themselves. Unlike UNIX systems, 

which use vnodes, Windows does not define the representation of a file; Windows system drivers 

define their own representations.

Like other executive objects, files are protected by a security descriptor that contains an 

access-control list (ACL). The I/O manager consults the security subsystem to determine 

whether a file’s ACL allows the process to access the file in the way its thread is requesting. If 

it does, (5, 6) the object manager grants the access and associates the granted access rights 

with the file handle that it returns. If this thread or another thread in the process needs to 

perform additional operations not specified in the original request, the thread must open the 

same file again with a different request to get another handle, which prompts another secu-

rity check. (See Chapter 6 for more information about object protection.)



 Chapter 7 I/O System 559

EXPERIMENT: Viewing Device Handles

Any process that has an open handle to a device will have a file object in its handle 

table corresponding to the open instance. You can view these handles with Process 

Explorer by selecting a process, checking Show Lower Pane in the View menu and 

Handles in the Lower Pane View submenu of the View menu. Sort by the Type column 

and scroll to where you see the handles that represent file objects, which are labeled 

as File:

In this example the Csrss process has a handle open to a device created by the kernel 

security device driver (Ksecdd.sys). You can look at the specific file object in the kernel 

debugger by first identifying the address of the object. The following command reports 

information on the highlighted handle (handle value 0xF8) in the preceding screen 

shot, which is in the Csrss.exe process that has a process ID of 504 (0x1f8):

lkd> !handle f8 f 1f8 

processor number 0, process 000001f8 

Searching for Process with Cid == 1f8 

PROCESS 88a4a4f0  SessionId: 0  Cid: 01f8    Peb: 7ffdf000  ParentCid: 01ec 

    DirBase: cc530060  ObjectTable: 915f8418  HandleCount: 403. 

    Image: csrss.exe 

 

Handle table at 98177000 with 403 Entries in use 

00f8: Object: 88b99930  GrantedAccess: 193b0022 (Protected) Entry: 915fd1f0 
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Object: 88b99930  Type: (8515a040) File 

    ObjectHeader: 88b99918 (old version) 

    HandleCount: 1  PointerCount: 1

Because the object is a file object, you can get information about it with the !fileobj 
command:

lkd> !fileobj 88b99930   

 

Device Object: 0x85557a00   \Driver\KSecDD 

Vpb is NULL 

Event signalled 

 

Flags:  0x40002 

    Synchronous IO 

    Handle Created 

 

CurrentByteOffset: 0

Because a file object is a memory-based representation of a shareable resource and not the 

resource itself, it’s different from other executive objects. A file object contains only data that 

is unique to an object handle, whereas the file itself contains the data or text to be shared. 

Each time a thread opens a file, a new file object is created with a new set of handle-specific 

attributes. For example, the current byte offset attribute refers to the location in the file at 

which the next read or write operation using that handle will occur. Each handle to a file has 

a private byte offset even though the underlying file is shared. A file object is also unique to 

a process, except when a process duplicates a file handle to another process (by using the 

Windows DuplicateHandle function) or when a child process inherits a file handle from a par-

ent process. In these situations, the two processes have separate handles that refer to the 

same file object.

Although a file handle might be unique to a process, the underlying physical resource is not. 

Therefore, as with any shared resource, threads must synchronize their access to shareable 

files, file directories, and devices. If a thread is writing to a file, for example, it should specify 

exclusive write access when opening the file to prevent other threads from writing to the file 

at the same time. Alternatively, by using the Windows LockFile function, the thread could lock 

a portion of the file while writing to it.
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When a file is opened, the file name includes the name of the device object on which the 

file resides. For example, the name \Device\HarddiskVolume1\Myfile.dat refers to the file 

Myfile.dat on the C: volume. The substring \Device\HarddiskVolume1 is the name of the 

internal Windows device object representing that volume. When opening Myfile.dat, the I/O 

manager creates a file object and stores a pointer to the Floppy0 device object in the file 

object and then returns a file handle to the caller. Thereafter, when the caller uses the file 

handle, the I/O manager can find the HarddiskVolume1 device object directly. Keep in mind 

that internal Windows device names can’t be used in Windows applications—instead, the 

device name must appear in a special directory in the object manager’s namespace, which is 

\Global??. This directory contains symbolic links to the real, internal Windows device names. 

Device drivers are responsible for creating links in this directory so that their devices will be 

accessible to Windows applications. You can examine or even change these links program-

matically with the Windows QueryDosDevice and DefineDosDevice functions.

EXPERIMENT: Viewing Windows Device Name to Windows 

Device Name Mappings

You can examine the symbolic links that define the Windows device namespace with 

the WinObj utility from Sysinternals. Run WinObj, and click on the \Global?? directory, 

as shown here:
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Notice the symbolic links on the right. Try double-clicking on the device C:. You should 

see something like this:

C: is a symbolic link to the internal device named \Device\HarddiskVolume3, or the first 

volume on the first hard drive in the system. The COM1 entry in WinObj is a symbolic 

link to \Device\Serial0, and so forth. Try creating your own links with the subst com-

mand at a command prompt.

I/O Processing

Now that we’ve covered the structure and types of drivers and the data structures that sup-

port them, let’s look at how I/O requests flow through the system. I/O requests pass through 

several predictable stages of processing. The stages vary depending on whether the request 

is destined for a device operated by a single-layered driver or for a device reached through a 

multilayered driver. Processing varies further depending on whether the caller specified syn-

chronous or asynchronous I/O, so we’ll begin our discussion of I/O types with these two and 

then move on to others.
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Types of I/O

Applications have several options for the I/O requests they issue. For example, they can 

specify synchronous or asynchronous I/O, I/O that maps a device’s data into the application’s 

address space for access via application virtual memory rather than I/O APIs, and I/O that 

transfers data between a device and noncontiguous application buffers in a single request. 

Furthermore, the I/O manager gives the drivers the choice of implementing a shortcut I/O 

interface that can often mitigate IRP allocation for I/O processing. In this section, we’ll explain 

each of these I/O variations.

Synchronous and Asynchronous I/O

Most I/O operations that applications issue are synchronous; that is, the application thread 

waits while the device performs the data transfer and returns a status code when the I/O 

is complete. The program can then continue and access the transferred data immediately. 

When used in their simplest form, the Windows ReadFile and WriteFile functions are executed 

synchronously. They complete an I/O operation before returning control to the caller.

Asynchronous I/O allows an application to issue an I/O request and then continue executing 

while the device transfers the data. This type of I/O can improve an application’s throughput 

because it allows the application thread to continue with other work while an I/O operation 

is in progress. To use asynchronous I/O, you must specify the FILE_FLAG_OVERLAPPED flag 

when you call the Windows CreateFile function. Of course, after issuing an asynchronous I/O 

operation, the thread must be careful not to access any data from the I/O operation until 

the device driver has finished the data transfer. The thread must synchronize its execution 

with the completion of the I/O request by monitoring a handle of a synchronization object 

(whether that’s an event object, an I/O completion port, or the file object itself) that will be 

signaled when the I/O is complete.

Regardless of the type of I/O request, internally I/O operations issued to a driver on behalf of 

the application are performed asynchronously; that is, once an I/O request has been initiated, 

the device driver returns to the I/O system. Whether or not the I/O system returns immedi-

ately to the caller depends on whether the file was opened for synchronous or asynchronous 

I/O. Figure 7-8 illustrates the flow of control when a read operation is initiated. Notice that 

if a wait is done, which depends on the overlapped flag in the file object, it is done in kernel 

mode by the NtReadFile function.

You can test the status of a pending asynchronous I/O with the Windows HasOverlappedIo-
Completed function. If you’re using I/O completion ports (described in the “I/O Completion 

Ports” section later in this chapter), you can use the GetQueuedCompletionStatus function.
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FIGURE 7-8 Control flow for an I/O operation

Fast I/O

Fast I/O is a special mechanism that allows the I/O system to bypass generating an IRP and 

instead go directly to the file system driver stack to complete an I/O request. (Fast I/O is 

described in detail in Chapters 10 and 11.) A driver registers its fast I/O entry points by enter-

ing them in a structure pointed to by the PFAST_IO_DISPATCH pointer in its driver object.
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EXPERIMENT: Looking at a Driver’s Registered Fast I/O Routines

The !drvobj kernel debugger command can list the fast I/O routines that a driver reg-

isters in its driver object. However, typically only file system drivers have any use for 

fast I/O routines. The following output shows the fast I/O table for the NTFS file system 

driver object:

lkd> !drvobj \FileSystem\Ntfs 2 

Driver object (849f27c0) is for: 

 \FileSystem\Ntfs 

DriverEntry:   82af3b75    Ntfs!GsDriverEntry 

DriverStartIo: 00000000     

DriverUnload:  00000000     

AddDevice:     00000000     

 

Dispatch routines: 

[00] IRP_MJ_CREATE                      82a9200a    Ntfs!NtfsFsdCreate  

  

  

Fast I/O routines: 

FastIoCheckIfPossible                   82a7f87b    Ntfs!NtfsFastIoCheckIfPossible 

FastIoRead                              82a7ec38    Ntfs!NtfsCopyReadA 

FastIoWrite                             82a7ff53    Ntfs!NtfsCopyWriteA 

FastIoQueryBasicInfo                    82a86c3a    Ntfs!NtfsFastQueryBasicInfo 

FastIoQueryStandardInfo                 82a86aa6    Ntfs!NtfsFastQueryStdInfo 

FastIoLock                              82a79f41    Ntfs!NtfsFastLock 

FastIoUnlockSingle                      82a79d75    Ntfs!NtfsFastUnlockSingle 

FastIoUnlockAll                         82acb7b3    Ntfs!NtfsFastUnlockAll 

FastIoUnlockAllByKey                    82acb958    Ntfs!NtfsFastUnlockAllByKey 

ReleaseFileForNtCreateSection           82a1c904    Ntfs!NtfsReleaseForCreateSection 

FastIoQueryNetworkOpenInfo              82a78d84    Ntfs!NtfsFastQueryNetworkOpenInfo 

AcquireForModWrite                      82a0a892    Ntfs!NtfsAcquireFileForModWrite 

MdlRead                                 82acb0d8    Ntfs!NtfsMdlReadA 

MdlReadComplete                         81c5aad6    nt!FsRtlMdlReadCompleteDev 

PrepareMdlWrite                         82acb31f    Ntfs!NtfsPrepareMdlWriteA 

MdlWriteComplete                        81dffa72    nt!FsRtlMdlWriteCompleteDev 

FastIoQueryOpen                         82a72d03    Ntfs!NtfsNetworkOpenCreate 

AcquireForCcFlush                       82a18b35    Ntfs!NtfsAcquireFileForCcFlush 

ReleaseForCcFlush                       82a18a9c    Ntfs!NtfsReleaseFileForCcFlush

The output shows that NTFS has registered its NtfsCopyReadA routine as the fast I/O 

table’s FastIoRead entry. As the name of this fast I/O entry implies, the I/O manager 

calls this function when issuing a read I/O request if the file is cached. If the call doesn’t 

succeed, the standard IRP path is selected.

Mapped File I/O and File Caching

Mapped file I/O is an important feature of the I/O system, one that the I/O system and 

the memory manager produce jointly. (See Chapter 9 for details on how mapped files are 

implemented.) Mapped file I/O refers to the ability to view a file residing on disk as part of 
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a process’s virtual memory. A program can access the file as a large array without buffering 

data or performing disk I/O. The program accesses memory, and the memory manager uses 

its paging mechanism to load the correct page from the disk file. If the application writes to 

its virtual address space, the memory manager writes the changes back to the file as part of 

normal paging.

Mapped file I/O is available in user mode through the Windows CreateFileMapping and 

MapViewOfFile functions. Within the operating system, mapped file I/O is used for important 

operations such as file caching and image activation (loading and running executable pro-

grams). The other major consumer of mapped file I/O is the cache manager. File systems use 

the cache manager to map file data in virtual memory to provide better response time for 

I/O-bound programs. As the caller uses the file, the memory manager brings accessed pages 

into memory. Whereas most caching systems allocate a fixed number of bytes for caching 

files in memory, the Windows cache grows or shrinks depending on how much memory is 

available. This size variability is possible because the cache manager relies on the memory 

manager to automatically expand (or shrink) the size of the cache, using the normal work-

ing set mechanisms explained in Chapter 9. By taking advantage of the memory manager’s 

paging system, the cache manager avoids duplicating the work that the memory manager 

already performs. (The workings of the cache manager are explained in detail in Chapter 10.)

Scatter/Gather I/O

Windows also supports a special kind of high-performance I/O that is called scatter/gather, 
available via the Windows ReadFileScatter and WriteFileGather functions. These functions 

allow an application to issue a single read or write from more than one buffer in virtual 

memory to a contiguous area of a file on disk instead of issuing a separate I/O request for 

each buffer. To use scatter/gather I/O, the file must be opened for noncached I/O, the user 

buffers being used have to be page-aligned, and the I/Os must be asynchronous (over-

lapped). Furthermore, if the I/O is directed at a mass storage device, the I/O must be aligned 

on a device sector boundary and have a length that is a multiple of the sector size.

I/O Request Packets

The I/O request packet (IRP) is where the I/O system stores information it needs to process 

an I/O request. When a thread calls an I/O service, the I/O manager constructs an IRP to 

represent the operation as it progresses through the I/O system. If possible, the I/O manager 

allocates IRPs from one of two per-processor IRP nonpaged look-aside lists: the small-IRP 

look-aside list stores IRPs with one stack location (IRP stack locations are described shortly), 

and the large-IRP look-aside list contains IRPs with multiple stack locations. These lists are 

backed by global look-aside lists as well, allowing efficient cross-CPU IRP flow. By default, 

the system stores IRPs with 10 stack locations on the large-IRP look-aside list, but once per 

minute the system adjusts the number of stack locations allocated between the default and 

a maximum of 20, based on how many stack locations have been required. If an IRP requires 
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more stack locations than are contained in the IRPs on the large-IRP look-aside list, the I/O 

manager allocates IRPs from nonpaged pool. After allocating and initializing an IRP, the I/O 

manager stores a pointer to the caller’s file object in the IRP.

Note If defined, the DWORD registry value HKLM\System\CurrentControlSet\Session Manager\

I/O System\LargIrpStackLocations specifies how many stack locations are contained in IRPs 

stored on the large-IRP look-aside list.

Figure 7-9 shows a sample I/O request that demonstrates the relationship between an IRP 

and the file, device, and driver objects described in the preceding sections. Although this 

example shows an I/O request to a single-layered device driver, most I/O operations aren’t 

this direct; they involve one or more layered drivers. (This case will be shown later in this 

section.)

Environment
subsystem or
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1
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User mode

An application writes a
file to the printer, passing
a handle to the file object.

2 The I/O manager creates an
IRP and initializes the first
stack location.

3 The I/O manager uses the
driver object to locate the
WRITE dispatch routine and
calls it, passing the IRP.

I/O system services

I/O manager
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parameters

IRP header

File
object

Device
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Dispatch
routine(s)

Start I/O ISR
DPC

routine

Device driver

FIGURE 7-9 Data structures involved in a single-layered driver I/O request
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IRP Stack Locations

An IRP consists of two parts: a fixed header (often referred to as the IRP’s body) and one or 

more stack locations. The fixed portion contains information such as the type and size of the 

request, whether the request is synchronous or asynchronous, a pointer to a buffer for buff-

ered I/O, and state information that changes as the request progresses. An IRP stack location 

contains a function code (consisting of a major code and a minor code), function-specific 

parameters, and a pointer to the caller’s file object. The major function code identifies which 

of a driver’s dispatch routines the I/O manager invokes when passing an IRP to a driver. An 

optional minor function code sometimes serves as a modifier of the major function code. 

Power and Plug and Play commands always have minor function codes.

Most drivers specify dispatch routines to handle only a subset of possible major function 

codes, including create (open), read, write, device I/O control, power, Plug and Play, System 

(for WMI commands), and close. (See the following experiment for a complete listing of 

major function codes.) File system drivers are an example of a driver type that often fills in 

most or all of its dispatch entry points with functions. The I/O manager sets any dispatch 

entry points that a driver doesn’t fill to point to its own IopInvalidDeviceRequest, which 

returns an error code to the caller indicating that the function specified for the device is 

invalid.

EXPERIMENT: Looking at Driver Dispatch Routines

You can obtain a listing of the functions a driver has defined for its dispatch routines by 

entering a 7 after the driver object’s name (or address) in the !drvobj kernel debugger 

command. The following output shows that drivers support 28 IRP types.

lkd> !drvobj Kbdclass 7 

Driver object (84b706b8) is for: 

 \Driver\kbdclass 

Driver Extension List: (id , addr) 

 

Device Object list: 

84abfd68  84baf030  84b84880   

 

DriverEntry:   8ed1c802    kbdclass!GsDriverEntry 

DriverStartIo: 00000000     

DriverUnload:  00000000     

AddDevice:     8ed1b7a0    kbdclass!KeyboardAddDevice 

 

Dispatch routines: 

[00] IRP_MJ_CREATE                     8ed168f4    kbdclass!KeyboardClassCreate 

[01] IRP_MJ_CREATE_NAMED_PIPE          81c63fef    nt!IopInvalidDeviceRequest 

[02] IRP_MJ_CLOSE                      8ed16b00    kbdclass!KeyboardClassClose 

[03] IRP_MJ_READ                       8ed175bc    kbdclass!KeyboardClassRead 

[04] IRP_MJ_WRITE                      81c63fef    nt!IopInvalidDeviceRequest 

[05] IRP_MJ_QUERY_INFORMATION          81c63fef    nt!IopInvalidDeviceRequest 

[06] IRP_MJ_SET_INFORMATION            81c63fef    nt!IopInvalidDeviceRequest 

[07] IRP_MJ_QUERY_EA                   81c63fef    nt!IopInvalidDeviceRequest 

[08] IRP_MJ_SET_EA                     81c63fef    nt!IopInvalidDeviceRequest 
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[09] IRP_MJ_FLUSH_BUFFERS              8ed1689a    kbdclass!KeyboardClassFlush 

[0a] IRP_MJ_QUERY_VOLUME_INFORMATION   81c63fef    nt!IopInvalidDeviceRequest 

[0b] IRP_MJ_SET_VOLUME_INFORMATION     81c63fef    nt!IopInvalidDeviceRequest 

[0c] IRP_MJ_DIRECTORY_CONTROL          81c63fef    nt!IopInvalidDeviceRequest 

[0d] IRP_MJ_FILE_SYSTEM_CONTROL        81c63fef    nt!IopInvalidDeviceRequest 

[0e] IRP_MJ_DEVICE_CONTROL             8ed1a7f8    kbdclass!KeyboardClassDeviceControl 

[0f] IRP_MJ_INTERNAL_DEVICE_CONTROL    8ed1a006    kbdclass!KeyboardClassPassThrough 

[10] IRP_MJ_SHUTDOWN                   81c63fef    nt!IopInvalidDeviceRequest 

[11] IRP_MJ_LOCK_CONTROL               81c63fef    nt!IopInvalidDeviceRequest 

[12] IRP_MJ_CLEANUP                    8ed16162    kbdclass!KeyboardClassCleanup 

[13] IRP_MJ_CREATE_MAILSLOT            81c63fef    nt!IopInvalidDeviceRequest 

[14] IRP_MJ_QUERY_SECURITY             81c63fef    nt!IopInvalidDeviceRequest 

[15] IRP_MJ_SET_SECURITY               81c63fef    nt!IopInvalidDeviceRequest 

[16] IRP_MJ_POWER                      8ed1aeac    kbdclass!KeyboardClassPower 

[17] IRP_MJ_SYSTEM_CONTROL             8ed1a688    kbdclass!KeyboardClassSystemControl 

[18] IRP_MJ_DEVICE_CHANGE              81c63fef    nt!IopInvalidDeviceRequest 

[19] IRP_MJ_QUERY_QUOTA                81c63fef    nt!IopInvalidDeviceRequest 

[1a] IRP_MJ_SET_QUOTA                  81c63fef    nt!IopInvalidDeviceRequest 

[1b] IRP_MJ_PNP                        8ed1710e    kbdclass!KeyboardPnP

While active, each IRP is usually stored in an IRP list associated with the thread that requested 

the I/O. This arrangement allows the I/O system to find and cancel any outstanding IRPs if a 

thread terminates or is terminated with outstanding I/O requests.

EXPERIMENT: Looking at a Thread’s Outstanding IRPs

When you use the !thread command, it prints any IRPs associated with the thread. Run 

the kernel debugger with live debugging, and locate the service control manager pro-

cess (Services.exe) in the output generated by the !process command:

lkd> !process 0 0  

**** NT ACTIVE PROCESS DUMP ****  

... 

PROCESS 8623b840  SessionId: 0  Cid: 0270    Peb: 7ffd6000  ParentCid: 0210 

    DirBase: ce21e080  ObjectTable: 964c06a0  HandleCount: 198. 

    Image: services.exe  

...

Then dump the threads for the process by executing the !process command on the pro-

cess object. You should see many threads, with most of them having IRPs reported in 

the IRP List area of the thread information (note that the debugger will show only the 

first 17 IRPs for a thread that has more than 17 outstanding I/O requests):

lkd> !process 8623b840   

PROCESS 8623b840  SessionId: 0  Cid: 0270    Peb: 7ffd6000  ParentCid: 0210 

    DirBase: ce21e080  ObjectTable: 964c06a0  HandleCount: 198. 

    Image: services.exe 

    VadRoot 862b1358 Vads 71 Clone 0 Private 466. Modified 14. Locked 2. 

    DeviceMap 8b0087d8 
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...  

     THREAD 86a1d248  Cid 0270.053c  Teb: 7ffdc000 Win32Thread: 00000000 WAIT: 

(UserRequest) UserMode Alertable 

            86a40ca0  NotificationEvent 

            86a40490  NotificationEvent 

        IRP List: 

            86a81190: (0006,0094) Flags: 00060900  Mdl: 00000000  

...

Choose an IRP, and examine it with the !irp command:

lkd> !irp 86a81190 

Irp is active with 1 stacks 1 is current (= 0x86a81200) 

 No Mdl: No System Buffer: Thread 86a1d248:  Irp stack trace.   

     cmd  flg cl Device   File     Completion-Context 

>[  3, 0]   0  1 86156328 86a4e7a0 00000000-00000000    pending 

           \FileSystem\Npfs 

            Args: 00000800 00000000 00000000 00000000

This IRP has a major function of 3, which corresponds to IRP_MJ_READ. It has one stack 

location and is targeted at a device owned by the Npfs driver (the Named Pipe File 

System driver). (Npfs is described in Chapter 12.)

IRP Buffer Management

When an application or a device driver indirectly creates an IRP by using the NtReadFile, 

NtWriteFile, or NtDeviceIoControlFile system services (or the Windows API functions corre-

sponding to these services, which are ReadFile, WriteFile, and DeviceIoControl), the I/O man-

ager determines whether it needs to participate in the management of the caller’s input or 

output buffers. The I/O manager performs three types of buffer management:

Buffered I/O The I/O manager allocates a buffer in nonpaged pool of equal size to 

the caller’s buffer. For write operations, the I/O manager copies the caller’s buffer data 

into the allocated buffer when creating the IRP. For read operations, the I/O manager 

copies data from the allocated buffer to the user’s buffer when the IRP completes and 

then frees the allocated buffer.

Direct I/O When the I/O manager creates the IRP, it locks the user’s buffer into mem-

ory (makes it nonpaged). When the I/O manager has finished using the IRP, it unlocks 

the buffer. The I/O manager stores a description of the memory in the form of a mem-
ory descriptor list (MDL). An MDL specifies the physical memory occupied by a buffer. 

(See the WDK for more information on MDLs.) Devices that perform direct memory 

access (DMA) require only physical descriptions of buffers, so an MDL is sufficient 

for the operation of such devices. (Devices that support DMA transfer data directly 

between the device and the computer’s memory, without using the CPU.) If a driver 



 Chapter 7 I/O System 571

must access the contents of a buffer, however, it can map the buffer into the system’s 

address space.

Neither I/O The I/O manager doesn’t perform any buffer management. Instead, 

buffer management is left to the discretion of the device driver, which can choose to 

manually perform the steps the I/O manager performs with the other buffer manage-

ment types.

For each type of buffer management, the I/O manager places applicable references in the 

IRP to the locations of the input and output buffers. The type of buffer management the I/O 

manager performs depends on the type of buffer management a driver requests for each 

type of operation. A driver registers the type of buffer management it desires for read and 

write operations in the device object that represents the device. Device I/O control opera-

tions (those performed by NtDeviceIoControlFile) are specified with driver-defined I/O control 

codes, and a control code includes a description of the buffer management the I/O manager 

should use when issuing IRPs that contain that code.

Drivers commonly use buffered I/O when callers transfer requests smaller than one page 

(4 KB on x86 processors) and use direct I/O for larger requests. A page is approximately the 

buffer size at which the trade-off between the copy operation of buffered I/O matches the 

overhead of the memory lock performed by direct I/O. File system drivers commonly use 

neither I/O because no buffer management overhead is incurred when data can be copied 

from the file system cache into the caller’s original buffer. The reason that most drivers don’t 

use neither I/O is that a pointer to a caller’s buffer is valid only while a thread of the caller’s 

process is executing. If a driver must transfer data from or to a device in an ISR or a DPC rou-

tine, it must ensure that the caller’s data is accessible from any process context, which means 

that the buffer must have a system virtual address.

Drivers that use neither I/O to access buffers that might be located in user space must take 

special care to ensure that buffer addresses are both valid and do not reference kernel-

mode memory. Failure to do so could result in crashes or in security vulnerabilities, where 

applications have access to kernel-mode memory or can inject code into the kernel. The 

ProbeForRead and ProbeForWrite functions that the kernel makes available to drivers verify 

that a buffer resides entirely in the user-mode portion of the address space. To avoid a crash 

from referencing an invalid user-mode address, drivers can access user-mode buffers from 

within exception-handling code (called try/except blocks) that catch any invalid memory 

faults and translate them into error codes to return to the application. Additionally, driv-

ers should also capture all input data into a kernel buffer instead of relying on user-mode 

addresses, since the caller could always modify the data behind the driver’s back, even if the 

memory address itself is still valid.
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I/O Request to a Single-Layered Driver

This section traces a synchronous I/O request to a single-layered kernel-mode device driver. 

Handling a synchronous I/O to a single-layered driver consists of seven steps:

 1. The I/O request passes through a subsystem DLL.

 2. The subsystem DLL calls the I/O manager’s NtWriteFile service.

 3. The I/O manager allocates an IRP describing the request and sends it to the driver (a 

device driver in this case) by calling its own IoCallDriver function.

 4. The driver transfers the data in the IRP to the device and starts the I/O operation.

 5. The device signals I/O completion by interrupting the CPU.

 6. The device driver services the interrupt.

 7. The driver calls the I/O manager’s IoCompleteRequest function to inform it that it has 

finished processing the IRP’s request, and the I/O manager completes the I/O request.

These seven steps are illustrated in Figure 7-10.
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it to device driver
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FIGURE 7-10 Issuing and completing a synchronous I/O request
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Now that we’ve seen how an I/O is initiated, let’s take a closer look at interrupt processing 

and I/O completion.

Servicing an Interrupt

After an I/O device completes a data transfer, it interrupts for service and the Windows 

kernel, I/O manager, and device driver are called into action. Figure 7-11 illustrates the first 

phase of the process. (Chapter 3 describes the interrupt dispatching mechanism, including 

DPCs. We’ve included a brief recap here because DPCs are key to I/O processing.)

DPC

DPCDPC

Dispatch
routine(s)

Start I/O ISR
DPC

routine(s)

The ISR stops the device
interrupt and queues a DPC.

Device driver

The kernel’s interrupt
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to the device’s service routine.

2

3

1 The device
interrupts for
service.

DPC queue

High

Device IRQL

DPC/dispatch

APC

Passive

IRQL

FIGURE 7-11 Servicing a device interrupt (phase 1)

When a device interrupt occurs, the processor transfers control to the kernel trap han-

dler, which indexes into its interrupt dispatch table to locate the ISR for the device. ISRs in 

Windows typically handle device interrupts in two steps. When an ISR is first invoked, it usu-

ally remains at device IRQL only long enough to capture the device status and then stop the 

device’s interrupt. It then queues a DPC and exits, dismissing the interrupt. Later, when the 
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DPC routine is called, the device finishes processing the interrupt. When that’s done, the 

device calls the I/O manager to complete the I/O and dispose of the IRP. It might also start 

the next I/O request that is waiting in the device queue.

The advantage of using a DPC to perform most of the device servicing is that any blocked 

interrupt whose priority lies between the device IRQL and the DPC/dispatch IRQL is allowed 

to occur before the lower-priority DPC processing occurs. Intermediate-level interrupts are 

thus serviced more promptly than they otherwise would be. This second phase of an I/O (the 

DPC processing) is illustrated in Figure 7-12.
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FIGURE 7-12 Servicing a device interrupt (phase 2)
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Completing an I/O Request

After a device driver’s DPC routine has executed, some work still remains before the I/O 

request can be considered finished. This third stage of I/O processing is called I/O completion 

and is initiated when a driver calls IoCompleteRequest to inform the I/O manager that it has 

completed processing the request specified in the IRP (and the stack location that it owns). 

The steps I/O completion entails vary with different I/O operations. For example, all the I/O 

services record the outcome of the operation in an I/O status block, a data structure the 

caller supplies. Similarly, some services that perform buffered I/O require the I/O system to 

return data to the calling thread.

In both cases, the I/O system must copy some data that is stored in system memory into the 

caller’s virtual address space. If the IRP completed synchronously, the caller’s address space 

is current and directly accessible, but if the IRP completed asynchronously, the I/O manager 

must delay IRP completion until it can access the caller’s address space. To gain access to 

the caller’s virtual address space, the I/O manager must transfer the data “in the context of 

the caller’s thread”—that is, while the caller’s thread is executing (which means that caller’s 

process is the current process and has its address space active on the processor). It does so 

by queuing a kernel-mode asynchronous procedure call (APC) to the thread. This process is 

illustrated in Figure 7-13.
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FIGURE 7-13 Completing an I/O request (phase 1)



576 Windows Internals, Fifth Edition

As explained in Chapter 3, APCs execute in the context of a particular thread, whereas a DPC 

executes in arbitrary thread context, meaning that the DPC routine can’t touch the user-

mode process address space. Remember too that DPCs have a higher software interrupt pri-

ority than APCs.

The next time that thread begins to execute at low IRQL (below DISPATCH_LEVEL), the pend-

ing APC is delivered. The kernel transfers control to the I/O manager’s APC routine, which 

copies the data (if any) and the return status into the original caller’s address space, frees 

the IRP representing the I/O operation, and either sets the caller’s file handle (and any caller-

 supplied event) to the signaled state for synchronous I/O, or queues an entry to the caller’s 

I/O completion port. The I/O is now considered complete. The original caller or any other 

threads that are waiting on the file (or other object) handle are released from their waiting 

state and readied for execution. Figure 7-14 illustrates the second stage of I/O completion.
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FIGURE 7-14 Completing an I/O request (phase 2)
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A final note about I/O completion: the asynchronous I/O functions ReadFileEx and WriteFileEx 

allow a caller to supply a user-mode APC as a parameter. If the caller does so, the I/O man-

ager queues this APC to the caller’s thread APC queue as the last step of I/O completion. This 

feature allows a caller to specify a subroutine to be called when an I/O request is completed 

or canceled. User-mode APC completion routines execute in the context of the requesting 

thread and are delivered only when the thread enters an alertable wait state (such as calling 

the Windows SleepEx, WaitForSingleObjectEx, or WaitForMultipleObjectsEx function).

Synchronization

Drivers must synchronize their access to global driver data and hardware registers for two 

reasons:

The execution of a driver can be preempted by higher-priority threads and time-slice 

(or quantum) expiration or can be interrupted by interrupts.

On multiprocessor systems, Windows can run driver code simultaneously on more than 

one processor.

Without synchronization, corruption could occur—for example, because device driver code 

running at a passive IRQL when a caller initiates an I/O operation can be interrupted by a 

device interrupt, causing the device driver’s ISR to execute while its own device driver is 

already running. If the device driver was modifying data that its ISR also modifies, such as 

device registers, heap storage, or static data, the data can become corrupted when the ISR 

executes. Figure 7-15 illustrates this problem.

2

3

1

FIGURE 7-15 Concurrent access to shared data by a device driver dispatch routine and ISR
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To avoid this situation, a device driver written for Windows must synchronize its access to any 

data that the device driver shares with its ISR. Before attempting to update shared data, the 

device driver must lock out all other threads (or CPUs, in the case of a multiprocessor system) 

to prevent them from updating the same data structure.

The Windows kernel provides a special synchronization routine called KeSynchronize-
Execution that device drivers call when they access data that their ISRs also access. This 

kernel synchronization routine keeps the ISR from executing while the shared data is being 

accessed. A driver can also use KeAcquireInterruptSpinLock to access an interrupt object’s 

spinlock directly, although it’s generally faster to rely on KeSynchronizeExecution for synchro-

nization with an ISR.

By now, you should realize that although ISRs require special attention, any data that a 

device driver uses is subject to being accessed by the same device driver running on another 

processor. Therefore, it’s critical for device driver code to synchronize its use of any global or 

shared data (or any accesses to the physical device itself). If the ISR uses that data, the device 

driver must use KeSynchronizeExecution; otherwise, the device driver can use standard kernel 

spinlocks.

I/O Requests to Layered Drivers

The preceding section showed how an I/O request to a simple device controlled by a single 

device driver is handled. I/O processing for file-based devices or for requests to other layered 

drivers happens in much the same way. The major difference is, obviously, that one or more 

additional layers of processing are added to the model.

Figure 7-16 shows how an asynchronous I/O request travels through layered drivers. It uses as 

an example a disk controlled by a file system.

Once again, the I/O manager receives the request and creates an I/O request packet to 

represent it. This time, however, it delivers the packet to a file system driver. The file system 

driver exercises great control over the I/O operation at that point. Depending on the type 

of request the caller made, the file system can send the same IRP to the disk driver or it can 

generate additional IRPs and send them separately to the disk driver.
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EXPERIMENT: Viewing a Device Stack

The kernel debugger command !devstack shows you the device stack of layered device 

objects associated with a specified device object. This example shows the device stack 

associated with a device object, \device\keyboardclass0, which is owned by the key-

board class driver:

lkd> !devstack keyboardclass0 

  !DevObj           !DrvObj            !DevExt           ObjectName 

  fffffa800a5e2040  \Driver\Ctrl2cap   fffffa800a5e2190   

> fffffa800a612ce0  \Driver\kbdclass   fffffa800a612e30  KeyboardClass0 

  fffffa800a612040  \Driver\i8042prt   fffffa800a612190   

  fffffa80076e0a00  \Driver\ACPI       fffffa80076f3a90  0000005c 

!DevNode fffffa800770f750 : 

  DeviceInst is "ACPI\PNP0303\4&b0a2531&0" 

  ServiceName is "i8042prt"

The output highlights the entry associated with KeyboardClass0 with the “>“ prefix. The 

entries above that line are drivers layered above the keyboard class driver, and those 

below are layered beneath it. In general, IRPs flow from the top of the stack to the 

bottom.

The file system is most likely to reuse an IRP if the request it receives translates into a single 

straightforward request to a device. For example, if an application issues a read request for 

the first 512 bytes in a file stored on a volume, the NTFS file system would simply call the 

volume manager driver, asking it to read one sector from the volume, beginning at the file’s 

starting location.

To accommodate its reuse by multiple drivers in a request to layered drivers, an IRP contains 

a series of IRP stack locations (not to be confused with the stack used by threads to store 

function parameters and return addresses). These data areas, one for every driver that will be 

called, contain the information that each driver needs to execute its part of the request—for 

example, function code, parameters, and driver context information. As Figure 7-16 illus-

trates, additional stack locations are filled in as the IRP passes from one driver to the next. 

You can think of an IRP as being similar to a stack in the way data is added to it and removed 

from it during its lifetime. However, an IRP isn’t associated with any particular process, and 

its allocated size doesn’t grow or shrink. The I/O manager allocates an IRP from one of its IRP 

look-aside lists or nonpaged system memory at the beginning of the I/O operation.



580 Windows Internals, Fifth Edition

I/O manager creates IRP, fills
in first stack location, and
calls a file system driver.

Environment
subsystem

or DLL

User mode

Kernel mode

Send IRP data to disk driver
(or queue IRP) and return

File
system
driver

Volume
manager

Return I/O pending status5

Return I/O pending status6

4

File system driver fills in a
second IRP stack location and
calls the volume manager.

3

2

Return I/O pending status7Call I/O service1

Services

I/O manager

IRP
Current

IRP

Current

FIGURE 7-16 Queuing an asynchronous request to layered drivers
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EXPERIMENT: Examining IRPs

In this experiment, you’ll find an uncompleted IRP on the system, and you’ll determine 

the IRP type, the device at which it’s directed, the driver that manages the device, the 

thread that issued the IRP, and what process the thread belongs to.

At any point in time, there are at least a few uncompleted IRPs on a system. This is 

because there are many devices to which applications can issue IRPs that a driver will 

only complete when a particular event occurs, such as data becoming available. One 

example is a blocking read from a network endpoint. You can see the outstanding IRPs 

on a system with the !irpfind kernel debugger command:

lkd> !irpfind 

 

Scanning large pool allocation table for Tag: Irp? (86c16000 : 86d16000) 

Searching NonPaged pool (80000000 : ffc00000) for Tag: Irp? 

 

  Irp    [ Thread ] irpStack: (Mj,Mn)   DevObj  [Driver]         MDL Process 

862d2380 [8666dc68] irpStack: ( c, 2)  84a6f020 [ \FileSystem\Ntfs] 

862d2bb0 [864e3d78] irpStack: ( e,20)  86171348 [ \Driver\AFD] 0x864dbd90 

862d4518 [865f7600] irpStack: ( d, 0)  86156328 [ \FileSystem\Npfs] 

862d4688 [867133f0] irpStack: ( 3, 0)  86156328 [ \FileSystem\Npfs] 

862dd008 [00000000] Irp is complete (CurrentLocation 4 > StackCount 3) 0x00420000 

862dee28 [864fc030] irpStack: ( 3, 0)  84baf030 [ \Driver\kbdclass]

The entry in bold in the output describes an IRP that is directed at the Kbdclass driver, 

so it is likely that the IRP was issued by the Windows subsystem raw input thread that 

reads keyboard input. Examining the IRP with the !irp command reveals the following:

lkd> !irp 862dee28  

Irp is active with 3 stacks 3 is current (= 0x862deee0) 

 No Mdl: System buffer=864f5108: Thread 864fc030:  Irp stack trace.   

     cmd  flg cl Device   File     Completion-Context 

 [  0, 0]   0  0 00000000 00000000 00000000-00000000     

 

            Args: 00000000 00000000 00000000 00000000 

 [  0, 0]   0  0 00000000 00000000 00000000-00000000     

 

            Args: 00000000 00000000 00000000 00000000 

>[  3, 0]   0  1 84baf030 864f52f8 00000000-00000000    pending 

           \Driver\kbdclass 

            Args: 00000078 00000000 00000000 00000000

The active stack location is at the bottom. (The debugger shows the active location 

with a “>“ prefix.) It has a major function of 3, which corresponds to IRP_MJ_READ.
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The next step is to see what device object the IRP is targeting by executing the !devobj 
command on the device object address in the active stack location.

lkd> !devobj 84baf030  

Device object (84baf030) is for: 

 KeyboardClass1 \Driver\kbdclass DriverObject 84b706b8 

Current Irp 00000000 RefCount 0 Type 0000000b Flags 00002044 

Dacl 8b0538b8 DevExt 84baf0e8 DevObjExt 84baf1c8  

ExtensionFlags (0x00000800)   

                             Unknown flags 0x00000800 

AttachedTo (Lower) 84badaa0 \Driver\TermDD 

Device queue is not busy.

The device at which the IRP is targeted is KeyboardClass1. The presence of a device 

object owned by the Termdd driver attached beneath it reveals that it is the device that 

represents keyboard input from a Terminal Server client, not the physical keyboard.

We can see details about the thread and process that issued the IRP by using the 

!thread and !process commands:

lkd> !thread 864fc030 

THREAD 864fc030  Cid 01d4.0234  Teb: 7ffd9000 Win32Thread: ffac4008 WAIT: 

(WrUserRequest) KernelMode Alertable 

    8623c620  SynchronizationEvent 

    864fc3a8  NotificationTimer 

    864fc378  SynchronizationTimer 

    864fc360  SynchronizationEvent 

IRP List: 

    86af0e28: (0006,01d8) Flags: 00060970  Mdl: 00000000 

    86503958: (0006,0268) Flags: 00060970  Mdl: 00000000 

    862dee28: (0006,01d8) Flags: 00060970  Mdl: 00000000 

Not impersonating 

DeviceMap                 8b0087d8 

Owning Process            0       Image:         <Unknown> 

Attached Process          864d2d90       Image:         csrss.exe 

Wait Start TickCount      171909         Ticks: 29 (0:00:00:00.452) 

Context Switch Count      121222              

UserTime                  00:00:00.000 

KernelTime                00:00:00.717 

Win32 Start Address 0x764d9a30 

Stack Init 96f46000 Current 96f45c28 Base 96f46000 Limit 96f43000 Call 0 

Priority 15 BasePriority 13 PriorityDecrement 0 IoPriority 2 PagePriority 5  

  

lkd> !process 864d2d90 

PROCESS 864d2d90  SessionId: 1  Cid: 0208    Peb: 7ffdf000  ParentCid: 0200 

    DirBase: ce21e0a0  ObjectTable: 964a6e68  HandleCount: 284. 

    Image: csrss.exe
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Locating the thread in Process Explorer by opening the Properties dialog box for 

Csrss.exe and going to the Threads tab confirms, through the names of the functions 

on its stack, the role of the thread as a raw input thread for the Windows subsystem:

After the disk driver finishes a data transfer, the disk interrupts and the I/O completes, as 

shown in Figure 7-17.
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FIGURE 7-17 Completing a layered I/O request

As an alternative to reusing a single IRP, a file system can establish a group of associated IRPs 

that work in parallel on a single I/O request. For example, if the data to be read from a file is 

dispersed across the disk, the file system driver might create several IRPs, each of which reads 

some portion of the request from a different sector. This queuing is illustrated in Figure 7-18.
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FIGURE 7-18 Queuing associated IRPs

The file system driver delivers the associated IRPs to the volume manager, which in turn 

sends them to the disk device driver, which queues them to the disk device. They are pro-

cessed one at a time, and the file system driver keeps track of the returned data. When all the 

associated IRPs complete, the I/O system completes the original IRP and returns to the caller, 

as shown in Figure 7-19.
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FIGURE 7-19 Completing associated IRPs

Note All Windows file system drivers that manage disk-based file systems are part of a stack of 

drivers that is at least three layers deep: the file system driver sits at the top, a volume manager 

in the middle, and a disk driver at the bottom. In addition, any number of filter drivers can be 

interspersed above and below these drivers. For clarity, the preceding example of layered I/O 

requests includes only a file system driver and the volume manager driver. See Chapter 8, on 

storage management, for more information.
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Thread Agnostic I/O

In the I/O models described thus far, IRPs are queued to the thread that initiated the I/O and 

are completed by the I/O manager issuing an APC to that thread so that process or thread-

specific context is accessible by completion processing. Thread-specific I/O processing is usu-

ally sufficient for the performance and scalability needs of most applications, but Windows 

also includes support for thread agnostic I/O via two mechanisms:

I/O completion ports, which are described at length later in this chapter

Locking the user buffer into memory and mapping it into the system address space

With I/O completion ports, the application decides when it wants to check for the comple-

tion of I/O, so the thread that happens to have issued an I/O request is not necessarily rel-

evant because any other thread can perform the completion request. As such, instead of 

completing the IRP inside the specific thread’s context, it can be completed in the context of 

any thread that has access to the completion port.

Likewise, with a locked and kernel-mapped version of the user buffer, there’s no need to 

be in the same memory address space as the issuing thread because the kernel can access 

the memory from arbitrary contexts. Applications can enable this mechanism by using 

SetFileIoOverlappedRange.

With both completion port I/O and I/O on file buffers set by SetFileIoOverlappedRange, the 

I/O manager associates the IRPs with the file object to which they have been issued instead 

of the issuing thread. The !fileobj extension in WinDbg will show an IRP list for file objects 

that are used with these mechanisms.

In the next sections, we’ll see how thread agnostic I/O increases the reliability and perfor-

mance of applications on Windows.

I/O Cancellation

While there are many ways in which IRP processing occurs and various methods to complete 

an I/O request, a great many I/O processing operations actually end in cancellation rather 

than completion. For example, a device may require removal while IRPs are still active, or the 

user might cancel a long-running operation to a device, for example a network operation. 

Another situation requiring I/O cancellation support is thread and process termination. When 

a thread exits, the I/Os associated with the thread must be cancelled, since the I/O operation 

is no longer relevant.

The Windows I/O manager, working with drivers, must deal with these requests efficiently 

and reliably in order to provide a smooth user experience. Drivers manage this need by 

registering a cancel routine for their cancellable I/O operations, which is invoked by the I/O 

manager to cancel an I/O operation. When drivers fail to play their role in these scenarios, 
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users may experience unkillable processes, which have disappeared visually but linger and 

still appear in Task Manager or Process Explorer. (See Chapter 5 for more information on pro-

cesses and threads.)

User-Initiated I/O Cancellation

Most software uses one thread to handle user interface (UI) input and one or more threads 

to perform work, including I/O. In some cases, when a user wants to abort an operation 

he initiated in the UI, an application might need to cancel outstanding I/O operations. 

Operations that complete quickly might not require cancellation, but for operations that 

take arbitrary amounts of time—like large data transfers or network operations— Windows 

provides support for cancelling both synchronous operations and asynchronous opera-

tions. A thread can cancel its own outstanding asynchronous I/Os by calling CancelIo. It can 

cancel all asynchronous I/Os issued to a specific file handle, regardless of by which thread, 

with CancelIoEx. CancelIoEx also works on operations associated with I/O completion ports 

through the thread-agnostic support in Windows that was mentioned earlier because the I/O 

system keeps track of a completion port’s outstanding I/Os by linking them with the comple-

tion port.

For cancelling synchronous I/Os, a thread can call CancelSynchronousIo. CancelSynchronousIo 

enables even create (open) operations to be cancelled when supported by a device driver, 

and several drivers in Windows support this functionality, including the drivers that manage 

network file systems (for example, MUP, DFS, and SMB), which can cancel open operations to 

network paths. Figures 7-20 and 7-21 show synchronous and asynchronous I/O cancellation.

CreateFile() CancelSynchronousIo)
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Driver Cancel
routine

Application

Status -> app T2 passes T1’s handle
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immediately

I/O manager tries to
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STATUS_CANCELLED

Thread 1 (T1) waits for
I/O to complete

Another process thread
(T2) requests cancellation

Synchronous I/O Cancellation

FIGURE 7-20 Synchronous I/O cancellation
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FIGURE 7-21 Asynchronous I/O cancellation

I/O Cancellation for Thread Termination

The other scenario in which I/Os must be cancelled is when a thread exits, either directly or 

as the result of its process terminating (which causes the threads of the process to terminate). 

Because every thread has a list of IRPs associated with it, the I/O manager can enumerate this 

list, look for cancellable IRPs, and cancel them. Unlike CancelIoEx, which does not wait for 

an IRP to be cancelled before returning, the process manager will not allow thread termina-

tion to proceed until all I/Os have been cancelled. As a result, if a driver fails to cancel an IRP, 

the process and thread object will remain allocated until the system shuts down. Figure 7-22 

illustrates the process termination scenario.
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FIGURE 7-22 Cancellation during process termination

Note  Only IRPs for which a driver sets a cancel routine are cancellable. The process manager 

waits until all I/Os associated with a thread are either cancelled or completed before deleting the 

thread.

EXPERIMENT: Debugging an Unkillable Process

In this experiment, we’ll use Notmyfault from Sysinternals (we’ll cover Notmyfault heav-

ily in the “Crash Dump Analysis” section in Chapter 14) to force the unkillable process 

problem to exhibit itself by causing the Myfault.sys driver (which Notmyfault.exe uses) 

to indefinitely hold an IRP without having registered a cancel routine for it.

To start, run Notmyfault.exe, select Hang IRP from the list of options, and then click Do 

Bug. The dialog box should look like the following when properly configured:
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You shouldn’t see anything happen, and you should be able to click the Exit but-

ton to quit the application. However, you should still see the Notmyfault process in 

Task Manager or Process Explorer. Attempts to terminate the process will fail because 

Windows will wait forever for the IRP to complete given that Myfault doesn’t register a 

cancel routine.

To debug an issue such as this, you can use WinDbg to look at what the thread is 

currently doing (or you could use Process Explorer’s Stack view on the Threads tab). 

Open a local kernel debugger session, and start by listing the information about the 

Notmyfault.exe process with the !process command:

lkd> !process 0 7 notmyfault.exe 

PROCESS 86843ab0  SessionId: 1  Cid: 0594    Peb: 7ffd8000  ParentCid: 05c8 

    DirBase: ce21f380  ObjectTable: 9cfb5070  HandleCount:  33. 

    Image: NotMyfault.exe 

    VadRoot 86658138 Vads 44 Clone 0 Private 210. Modified 5. Locked 0. 

    DeviceMap 987545a8  

...  

     THREAD 868139b8  Cid 0594.0230  Teb: 7ffde000 Win32Thread: 00000000 WAIT: 

(Executive) KernelMode Non-Alertable 

           86797c64  NotificationEvent 

       IRP List: 

           86a51228: (0006,0094) Flags: 00060000  Mdl: 00000000 

       ChildEBP RetAddr  Args to Child               

       88ae4b78 81cf23bf 868139b8 86813a40 00000000 nt!KiSwapContext+0x26  

       88ae4bbc 81c8fcf8 868139b8 86797c08 86797c64 nt!KiSwapThread+0x44f 

       88ae4c14 81e8a356 86797c64 00000000 00000000 nt!KeWaitForSingleObject+0x492 

       88ae4c40 81e875a3 86a51228 86797c08 86a51228 nt!IopCancelAlertedRequest+0x6d 

       88ae4c64 81e87cba 00000103 86797c08 00000000 nt!IopSynchronousServiceTail+0x267 

       88ae4d00 81e7198e 86727920 86a51228 00000000 nt!IopXxxControlFile+0x6b7 

       88ae4d34 81c92a7a 0000007c 00000000 00000000 nt!NtDeviceIoControlFile+0x2a 

       88ae4d34 77139a94 0000007c 00000000 00000000 nt!KiFastCallEntry+0x12a 

       01d5fecc 00000000 00000000 00000000 00000000 ntdll!KiFastSystemCallRet 

...
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From the stack trace, you can see that the thread that initiated the I/O realized that 

the IRP had been cancelled (IopSynchronousServiceTail called IopCancelAlertedRequest) 
and is now waiting for the cancellation or completion. The next step is to use the same 

debugger extension used in the previous experiments, !irp, and attempt to analyze the 

problem. Copy the IRP pointer, and examine it with the !irp command:

lkd> !irp 86a51228 

Irp is active with 1 stacks 1 is current (= 0x86a51298) 

 No Mdl: No System Buffer: Thread 868139b8:  Irp stack trace.   

     cmd  flg cl Device   File     Completion-Context 

>[  e, 0]   5  0 86727920 86797c08 00000000-00000000     

           \Driver\MYFAULT 

            Args: 00000000 00000000 83360020 00000000

From this output, it is obvious who the culprit driver is: \Driver\MYFAULT, or 

Myfault.sys. The name of the driver emphasizes that the only way this situation can 

happen is through a driver problem and not a buggy application. Unfortunately, now 

that you know which driver caused this issue, there isn’t much you can do—a system 

reboot is necessary because Windows can never safely assume it is okay to ignore the 

fact that cancellation hasn’t occurred yet. The IRP could return at any time and cause 

corruption of system memory. If you encounter this situation in practice, you should 

check for a newer version of the driver, which might include a fix for the bug.

I/O Completion Ports

Writing a high-performance server application requires implementing an efficient thread-

ing model. Having either too few or too many server threads to process client requests can 

lead to performance problems. For example, if a server creates a single thread to handle 

all requests, clients can become starved because the server will be tied up processing one 

request at a time. A single thread could simultaneously process multiple requests, switching 

from one to another as I/O operations are started, but this architecture introduces signifi-

cant complexity and can’t take advantage of multiprocessor systems. At the other extreme, a 

server could create a big pool of threads so that virtually every client request is processed by 

a dedicated thread. This scenario usually leads to thread-thrashing, in which lots of threads 

wake up, perform some CPU processing, block while waiting for I/O, and then, after request 

processing is completed, block again waiting for a new request. If nothing else, having too 

many threads results in excessive context switching, caused by the scheduler having to divide 

processor time among multiple active threads.

The goal of a server is to incur as few context switches as possible by having its threads 

avoid unnecessary blocking, while at the same time maximizing parallelism by using mul-

tiple threads. The ideal is for there to be a thread actively servicing a client request on every 

processor and for those threads not to block when they complete a request if additional 
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requests are waiting. For this optimal process to work correctly, however, the application 

must have a way to activate another thread when a thread processing a client request blocks 

on I/O (such as when it reads from a file as part of the processing).

The IoCompletion Object

Applications use the IoCompletion executive object, which is exported to Windows as a 

completion port, as the focal point for the completion of I/O associated with multiple file 

handles. Once a file is associated with a completion port, any asynchronous I/O operations 

that complete on the file result in a completion packet being queued to the completion port. 

A thread can wait for any outstanding I/Os to complete on multiple files simply by waiting for 

a completion packet to be queued to the completion port. The Windows API provides similar 

functionality with the WaitForMultipleObjects API function, but the advantage that comple-

tion ports have is that concurrency, or the number of threads that an application has actively 

servicing client requests, is controlled with the aid of the system.

When an application creates a completion port, it specifies a concurrency value. This value 

indicates the maximum number of threads associated with the port that should be running at 

any given time. As stated earlier, the ideal is to have one thread active at any given time for 

every processor in the system. Windows uses the concurrency value associated with a port to 

control how many threads an application has active. If the number of active threads associ-

ated with a port equals the concurrency value, a thread that is waiting on the completion 

port won’t be allowed to run. Instead, it is expected that one of the active threads will finish 

processing its current request and check to see whether another packet is waiting at the port. 

If one is, the thread simply grabs the packet and goes off to process it. When this happens, 

there is no context switch, and the CPUs are utilized nearly to their full capacity.

Using Completion Ports

Figure 7-23 shows a high-level illustration of completion port operation. A completion port is 

created with a call to the Windows API function CreateIoCompletionPort. Threads that block 

on a completion port become associated with the port and are awakened in last in, first out 

(LIFO) order so that the thread that blocked most recently is the one that is given the next 

packet. Threads that block for long periods of time can have their stacks swapped out to 

disk, so if there are more threads associated with a port than there is work to process, the 

in-memory footprints of threads blocked the longest are minimized.
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FIGURE 7-23 I/O completion port operation

A server application will usually receive client requests via network endpoints that are rep-

resented as file handles. Examples include Windows Sockets 2 (Winsock2) sockets or named 

pipes. As the server creates its communications endpoints, it associates them with a comple-

tion port and its threads wait for incoming requests by calling GetQueuedCompletionStatus 
on the port. When a thread is given a packet from the completion port, it will go off and start 

processing the request, becoming an active thread. A thread will block many times during its 

processing, such as when it needs to read or write data to a file on disk or when it synchro-

nizes with other threads. Windows detects this activity and recognizes that the completion 

port has one less active thread. Therefore, when a thread becomes inactive because it blocks, 

a thread waiting on the completion port will be awakened if there is a packet in the queue.

An important mechanism that affects performance is called lock contention, which is the 

amount of time a thread spends waiting for a lock instead of doing real work. One of the 

most critical locks in the Windows kernel is the dispatcher lock (see Chapter 5 for more infor-

mation on the dispatching mechanisms), and any time thread state is modified, especially 

in situations related to waiting and waking, the dispatcher lock is usually acquired, blocking 

other processors from doing similar actions.

The I/O completion port mechanism minimizes contention on the dispatcher lock by avoid-

ing its acquisition when possible. For example, this mechanism does not acquire the lock 

when a completion is queued to a port and no threads are waiting on that port, when a 

thread calls GetQueuedCompletionStatus and there are items in the queue, or when a thread 

calls GetQueuedCompletionStatus with a zero timeout. In all three of these cases, no thread 

wait or wake-up is necessary, and hence none acquire the dispatcher lock.
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Microsoft’s guidelines are to set the concurrency value roughly equal to the number of 

processors in a system. Keep in mind that it’s possible for the number of active threads for 

a completion port to exceed the concurrency limit. Consider a case in which the limit is 

specified as 1. A client request comes in, and a thread is dispatched to process the request, 

becoming active. A second request arrives, but a second thread waiting on the port isn’t 

allowed to proceed because the concurrency limit has been reached. Then the first thread 

blocks waiting for a file I/O, so it becomes inactive. The second thread is then released, and 

while it’s still active, the first thread’s file I/O is completed, making it active again. At that 

point—and until one of the threads blocks—the concurrency value is 2, which is higher than 

the limit of 1. Most of the time, the active count will remain at or just above the concurrency 

limit.

The completion port API also makes it possible for a server application to queue privately 

defined completion packets to a completion port by using the PostQueuedCompletionStatus 
function. A server typically uses this function to inform its threads of external events, such as 

the need to shut down gracefully.

Applications can use thread agnostic I/O, described earlier, with I/O completion ports to 

avoid associating threads with their own I/Os and associating them with a completion port 

object instead. In addition to the other scalability benefits of I/O completion ports, their use 

can minimize context switches. Standard I/O completions must be executed by the thread 

that initiated the I/O, but when an I/O associated with an I/O completion port completes, the 

I/O manager uses any waiting thread to perform the completion operation.

I/O Completion Port Operation

Windows applications create completion ports by calling the Windows API CreateIo-
Completion Port and specifying a NULL completion port handle. This results in the execution 

of the NtCreateIoCompletion system service. The executive’s IoCompletion object is based on 

the kernel synchronization object called a queue. Thus, the system service creates a comple-

tion port object and initializes a queue object in the port’s allocated memory. (A pointer 

to the port also points to the queue object because the queue is at the start of the port 

memory.) A queue object has a concurrency value that is specified when a thread initializes it, 

and in this case the value that is used is the one that was passed to CreateIoCompletionPort. 
KeInitializeQueue is the function that NtCreateIoCompletion calls to initialize a port’s queue 

object.

When an application calls CreateIoCompletionPort to associate a file handle with a port, the 

NtSetInformationFile system service is executed with the file handle as the primary param-

eter. The information class that is set is FileCompletionInformation, and the completion port’s 

handle and the CompletionKey parameter from CreateIoCompletionPort are the data values. 

NtSetInformationFile dereferences the file handle to obtain the file object and allocates a 

completion context data structure.
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Finally, NtSetInformationFile sets the CompletionContext field in the file object to point at the 

context structure. When an asynchronous I/O operation completes on a file object, the I/O 

manager checks to see whether the CompletionContext field in the file object is non-NULL. If 

it is, the I/O manager allocates a completion packet and queues it to the completion port by 

calling KeInsertQueue with the port as the queue on which to insert the packet. (Remember 

that the completion port object and queue object have the same address.)

When a server thread invokes GetQueuedCompletionStatus, the system service NtRemoveIo-
Completion is executed. After validating parameters and translating the completion port 

handle to a pointer to the port, NtRemoveIoCompletion calls IoRemoveIoCompletion, 

which eventually calls KeRemoveQueueEx. For high-performance scenarios, it’s possible 

that multiple I/Os may have been completed, and although the thread will not block, it 

will still call into the kernel each time to get one item. The GetQueuedCompletionStatus or 

GetQueuedCompletionStatusEx API allows applications to retrieve more than one I/O comple-

tion status at the same time, reducing the number of user-to-kernel roundtrips and maintain-

ing peak efficiency. Internally, this is implemented through the NtRemoveIoCompletionEx 
function, which calls IoRemoveIoCompletion with a count of queued items, which is passed on 

to KeRemoveQueueEx.

As you can see, KeRemoveQueueEx and KeInsertQueue are the engines behind completion 

ports. They are the functions that determine whether a thread waiting for an I/O comple-

tion packet should be activated. Internally, a queue object maintains a count of the current 

number of active threads and the maximum number of active threads. If the current number 

equals or exceeds the maximum when a thread calls KeRemoveQueueEx, the thread will be 

put (in LIFO order) onto a list of threads waiting for a turn to process a completion packet. 

The list of threads hangs off the queue object. A thread’s control block data structure has 

a pointer in it that references the queue object of a queue that it’s associated with; if the 

pointer is NULL, the thread isn’t associated with a queue.

An improvement to the mechanism, which also improves the performance of other inter-

nal mechanisms that use I/O completion ports (such as the worker thread pool mechanism, 

described in Chapter 3), is the optimization of the KQUEUE dispatcher object, which we’ve 

mentioned in Chapter 3. Although we described how all dispatcher objects rely on the dis-

patcher lock during wait and unwait operations (or, in the case of kernel queues, remove and 

insert operations), the dispatcher header structure has a Lock member that can be used for 

an object-specific lock.

The KQUEUE implementation makes use of this member and implements a local, per-object 

spinlock instead of using the global dispatcher lock whenever possible. Therefore, the 

KeInsertQueue and KeRemoveQueueEx APIs actually first call the KiAttemptFastQueueInsert 
and KiAttemptFastQueueRemove internal functions and fall back to the dispatcher-lock-

based code if the fast operations cannot be used or fail. Because the fast routines don’t use 
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the global lock, the overall throughput of the system is improved—other dispatcher and 

scheduler operations can happen while I/O completion ports are being used by applications.

Windows keeps track of threads that become inactive because they block on some-

thing other than the completion port by relying on the queue pointer in a thread’s 

control block. The scheduler routines that possibly result in a thread blocking (such as 

KeWaitForSingleObject, KeDelayExecutionThread, and so on) check the thread’s queue pointer. 

If the pointer isn’t NULL, the functions call KiActivateWaiterQueue, a queue-related function 
that decrements the count of active threads associated with the queue. If the resultant num-

ber is less than the maximum and at least one completion packet is in the queue, the thread 

at the front of the queue’s thread list is awakened and given the oldest packet. Conversely, 

whenever a thread that is associated with a queue wakes up after blocking, the scheduler 

executes the function KiUnwaitThread, which increments the queue’s active count.

Finally, the PostQueuedCompletionStatus Windows API function results in the execution of 

the NtSetIoCompletion system service. This function simply inserts the specified packet onto 

the completion port’s queue by using KeInsertQueue.

Figure 7-24 shows an example of a completion port object in operation. Even though two 

threads are ready to process completion packets, the concurrency value of 1 allows only one 

thread associated with the completion port to be active, and so the two threads are blocked 

on the completion port.

Waiting threads
Thread object Thread object

Queue

Active thread

Thread object

Completion
packet

Completion
packet

File object

Concurrency: 1

FIGURE 7-24 I/O completion port operation

Finally, the exact notification model of the I/O completion port can be fine-tuned through 

the SetFileCompletionNotificationModes API, which allows application developers to take 

advantage of additional, specific improvements that usually require code changes but can 

offer even more throughput. Three notification mode optimizations are supported, which are 

listed in Table 7-3. Note that these modes are per file handle and permanent.
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TABLE 7-3 I/O Completion Port Notification Modes

Notification Mode Meaning

Skip completion port on success If the following three conditions are true, the I/O manager 

does not queue a completion entry to the port when it would 

ordinarily do so. First, a completion port must be associated 

with the file handle; second, the file must be opened for asyn-

chronous I/O; third, the request must return success immedi-

ately without returning ERROR_PENDING.

Skip set event on handle The I/O manager does not set the event for the file object if 

a request returns with a success code or the error returned 

is ERROR_PENDING and the function that is called is not a 

synchronous function. If an explicit event is provided for the 

request, it is still signaled.

Skip set user event on fast I/O The I/O manager does not set the explicit event provided for 

the request if a request takes the fast I/O path and returns 

with a success code or the error returned is ERROR_PENDING 

and the function that is called is not a synchronous function.

I/O Prioritization

Without I/O priority, background activities like search indexing, virus scanning, and disk 

defragmenting can severely impact the responsiveness of foreground operations. A user 

launching an application or opening a document while another process is performing disk 

I/O, for example, experiences delays as the foreground task waits for disk access. The same 

interference also affects the streaming playback of multimedia content like music from a 

hard disk.

Windows includes two types of I/O prioritization to help foreground I/O operations get pref-

erence: priority on individual I/O operations and I/O bandwidth reservations.

I/O Priorities

The Windows I/O manager internally includes support for five I/O priorities, as shown in 

Table 7-4, but only three of the priorities are used. (Future versions of Windows may support 

High and Low.)

TABLE 7-4 I/O Priorities

I/O Priority Usage

Critical Memory manager

High Not used

Normal Normal application I/O

Low Not used

Very Low Scheduled tasks, Superfetch, defragmenting, content indexing, 

background activities
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I/O has a default priority of Normal and the memory manager uses Critical when it wants to 

write dirty memory data out to disk under low-memory situations to make room in RAM for 

other data and code. The Windows Task Scheduler sets the I/O priority for tasks that have the 

default task priority to Very Low. The priority specified by applications written for Windows 

Vista that perform background processing is Very Low. All of the Windows Vista background 

operations, including Windows Defender scanning and desktop search indexing, use Very 

Low I/O priority.

Internally, these five I/O priorities are divided into two I/O prioritization modes, called strat-
egies. These are the hierarchy prioritization and the idle prioritization strategies. Hierarchy 

prioritization deals with all the I/O priorities except Very Low. It implements the following 

strategy:

All critical-priority I/O must be processed before any high-priority I/O.

All high-priority I/O must be processed before any normal-priority I/O.

All normal-priority I/O must be processed before any low-priority I/O.

All low-priority I/O is processed after all higher priority I/O.

As each application generates I/Os, IRPs are put on different I/O queues based on their prior-

ity, and the hierarchy strategy decides the ordering of the operations.

The idle prioritization strategy, on the other hand, uses a separate queue for Very Low prior-

ity I/O. Because the system processes all hierarchy prioritized I/O before idle I/O, it’s possible 

for the I/Os in this queue to be starved, as long as there’s even a single Very Low priority I/O 

on the system in the hierarchy priority strategy queue.

To avoid this situation, as well as to control backoff (the sending rate of I/O transfers), the 

idle strategy uses a timer to monitor the queue and guarantee that at least one I/O is pro-

cessed per unit of time (typically half a second). Data written using Very Low I/O also causes 

the cache manager to write modifications to disk immediately instead of doing it later and 

to bypass its read-ahead logic for read operations that would otherwise preemptively read 

from the file being accessed. The prioritization strategy also waits for 50 milliseconds after 

the completion of the last non-idle I/O in order to issue the next idle I/O. Otherwise, idle I/Os 

would occur in the middle of nonidle streams, causing costly seeks.

Combining these strategies into a virtual global I/O queue for demonstration purposes, a 

snapshot of this queue might look similar to Figure 7-25. Note that within each queue, the 

ordering is first-in, first-out (FIFO). The order in the figure is shown only as an example.
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I/O Queue

Hierarchy

Critical    High                      Normal                        Low                      Very Low

Idle

MM Prefetch Defrag Indexer AntivirusWindows Media Player Word

FIGURE 7-25 Sample entries in a global I/O queue

User-mode applications can set I/O priority on three different objects. SetPriorityClass 
and SetThreadPriority set the priority for all the I/Os that either the entire process 

or specific threads will generate (the priority is stored in the IRP of each request). 

SetFileInformationByHandle can set the priority for a specific file object (the priority is 

stored in the file object). Drivers can also set I/O priority directly on an IRP by using the 

IoSetIoPriorityHint API.

Note The I/O priority field in the IRP and/or file object is a hint. There is no guarantee that the 

I/O priority will be respected or even supported by the different drivers that are part of the stor-

age stack.

The two prioritization strategies are implemented by two different types of drivers. The 

hierarchy strategy is implemented by the storage port drivers, which are responsible for all 

I/Os on a specific port, such as ATA, SCSI, or USB. As of Windows Vista and Windows Server 

2008, only the ATA port driver (%SystemRoot%\System32\Ataport.sys) and USB port driver 

(%SystemRoot%\System32\Usbstor.sys) implement this strategy, while the SCSI and stor-

age port drivers (%SystemRoot%\System32\Scsiport.sys and %SystemRoot%\System32\

Storport.sys) do not.

Note All port drivers check specifically for Critical priority I/Os and move them ahead of their 

queues, even if they do not support the full hierarchy mechanism. This mechanism is in place to 

support critical memory manager paging I/Os to ensure system reliability.

This means that consumer mass storage devices such as IDE or SATA hard drives and USB 

flash disks will take advantage of I/O prioritization, while devices based on SCSI, Fibre 

Channel, and iSCSI will not.

On the other hand, it is the system storage class device driver (%SystemRoot%\System32\

Classpnp.sys) that enforces the idle strategy, so it automatically applies to I/Os directed at all 

storage devices, including SCSI drives. This separation ensures that idle I/Os will be subject to 

back-off algorithms to ensure a reliable system during operation under high idle I/O usage 

and so that applications that use them can make forward progress. Placing support for this 
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strategy in the Microsoft-provided class driver avoids performance problems that would have 

been caused by lack of support for it in legacy third-party port drivers.

Figure 7-26 displays a simplified view of the storage stack and where each strategy is imple-

mented. See Chapter 8 for more information on the storage stack.

User mode
Application

File system

Volume/partition

Device class

Command port

Storage

Idle I/O priority queue

Hierarchy priority queue
I/O bandwidth reservation

Kernel mode

FIGURE 7-26 Implementation of I/O prioritization across the storage stack

The following experiment will show you an example of Very Low I/O priority and how you 

can use Process Monitor to look at I/O priorities on different requests.

EXPERIMENT: Very Low vs. Normal I/O Throughput

You can use the IO Priority sample application (included in the book’s utilities) to look 

at the throughput difference between two threads with different I/O priorities. Launch 

IoPriority.exe, make sure Thread 1 is checked to use Low priority, and then click the 

Start IO button. You should notice a significant difference in speed between the two 

threads, as shown in the following screen.

You should also notice that Thread 1’s throughput remains fairly constant, around 2 

KB/s. This can easily be explained by the fact that IO Priority performs its I/Os at 2 KB/s, 

which means that the idle prioritization strategy is kicking in and guaranteeing at least 

one I/O each half-second. Otherwise, Thread 2 would starve any I/O that Thread 1 is 

attempting to make.
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Note that if both threads run at low priority and the system is relatively idle, their 

throughput will be roughly equal to the throughput of a single normal I/O priority in 

the example. This is because low priority I/Os are not artificially throttled or otherwise 

hindered if there isn’t any competition from higher priority I/O.

You can also use Process Monitor to trace IO Priority’s I/Os and look at their I/O priority 

hint. Launch Process Monitor, configure a filter for IoPriority.exe, and repeat the experi-

ment. In this application, Thread 1 writes to File_1, and Thread 2 writes to File_2. Scroll 

down until you see a write to File_1, and you should see output similar to that shown 

here.

You can see that I/Os directed at File_1 have a priority of Very Low. By looking at the 

Time Of Day column, you’ll also notice that the I/Os are spaced 0.5 second from each 

other—another sign of the idle strategy in action.

Finally, by using Process Explorer, you can identify Thread 1 in the IoPriority process 

by looking at the I/O priority for each of its threads on the Threads tab of its process 

Properties dialog box. You can also see that the priority for the thread is lower than the 

default of 8 (normal), which indicates that the thread is probably running in background 
priority mode. The following screen shows what you should expect to see.
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Note that if IO Priority sets the priority on File_1 instead of on the issuing thread, both 

threads would look the same. Only Process Monitor could show you the difference in 

I/O priorities.

Bandwidth Reservation (Scheduled File I/O)

Windows bandwidth reservation support is useful for applications that desire consistent I/O 

throughput. Using the SetFileIoBandwidthReservation call, a media player application asks 

the I/O system to guarantee it the ability to read data from a device at a specified rate. If the 

device can deliver data at the requested rate and existing reservations allow it, the I/O sys-

tem gives the application guidance as to how fast it should issue I/Os and how large the I/Os 

should be.

The I/O system won’t service other I/Os unless it can satisfy the requirements of applications 

that have made reservations on the target storage device. Figure 7-27 shows a conceptual 

timeline of I/Os issued on the same file. The shaded regions are the only ones that will be 

available to other applications. If I/O bandwidth is already taken, new I/Os will have to wait 

until the next cycle.
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FIGURE 7-27 Effect of I/O requests during bandwidth reservation

Like the hierarchy prioritization strategy, bandwidth reservation is implemented at the 

port driver level, which means it is available only for IDE, SATA, or USB-based mass-storage 

devices.

Driver Verifier

Driver Verifier is a mechanism that can be used to help find and isolate commonly found 

bugs in device drivers or other kernel-mode system code. Microsoft uses Driver Verifier to 

check its own device drivers as well as all device drivers that vendors submit for Hardware 

Compatibility List (HCL) testing. Doing so ensures that the drivers on the HCL are compatible 

with Windows and free from common driver errors. (Although not described in this book, 

there is also a corresponding Application Verifier tool that has resulted in quality improve-

ments for user-mode code in Windows.)

Also, although Driver Verifier serves primarily as a tool to help device driver developers dis-

cover bugs in their code, it is also a powerful tool for systems administrators experiencing 

crashes. Chapter 14 describes its role in crash analysis troubleshooting.

Driver Verifier consists of support in several system components: the memory manager, I/O 

manager, and the HAL all have driver verification options that can be enabled. These options 

are configured using the Driver Verifier Manager (%SystemRoot%\Verifier.exe). When you 

run Driver Verifier with no command-line arguments, it presents a wizard-style interface, as 

shown in Figure 7-28.

You can also enable and disable Driver Verifier, as well as display current settings, by using its 

command-line interface. From a command prompt, type verifier /? to see the switches.

Even when you don’t select any options, Driver Verifier monitors drivers selected for verifica-

tion, looking for a number of illegal operations, including calling kernel-memory pool func-

tions at invalid IRQL, double-freeing memory, and requesting a zero-size memory allocation.

What follows is a description of the I/O-related verification options (shown in Figure 7-29). 

The options related to memory management are described in Chapter 9, along with how the 

memory manager redirects a driver’s operating system calls to special verifier versions.
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FIGURE 7-28 Driver Verifier Manager

FIGURE 7-29 Driver Verifier I/O-related options
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These options have the following effects:

I/O Verification When this option is selected, the I/O manager allocates IRPs for 

verified drivers from a special pool and their usage is tracked. In addition, the Verifier 

crashes the system when an IRP is completed that contains an invalid status and when 

an invalid device object is passed to the I/O manager.

Enhanced I/O Verification This option monitors all IRPs to ensure that drivers mark 

them correctly when completing them asynchronously, that they manage device stack 

locations correctly, and that they delete device objects only once. In addition, the 

Verifier randomly stresses drivers by sending them fake power management and WMI 

IRPs, changing the order that devices are enumerated, and adjusting the status of PnP 

and power IRPs when they complete to test for drivers that return incorrect status from 

their dispatch routines.

DMA Checking This is a hardware-supported mechanism that allows devices to 

transfer data to or from physical memory without involving the CPU. The I/O manager 

provides a number of functions that drivers use to schedule and control direct memory 

access (DMA) operations, and this option enables checks for correct use of the func-

tions and for the buffers that the I/O manager supplies for DMA operations.

Force Pending I/O Requests For many devices, asynchronous I/Os complete immedi-

ately, so drivers may not be coded to properly handle the occasional asynchronous I/O. 

When this option is enabled, the I/O manager will randomly return STATUS_PENDING 

in response to a driver’s calls to IoCallDriver, which simulates the asynchronous comple-

tion of an I/O.

IRP Logging This option monitors a driver’s use of IRPs and makes a record of IRP 

usage, which is stored as WMI information. You can then use the Dc2wmiparser.exe 

utility in the WDK to convert these WMI records to a text file. Note that only 20 IRPs 

for each device will be recorded—each subsequent IRP will overwrite the least recently 

added entry. After a reboot, this information is discarded, so Dc2wmiparser.exe should 

be run if the contents of the trace are to be analyzed later.

Disk Integrity Checking When you enable this option, the Verifier monitors disk read 

and write operations and checksums the associated data. When disk reads complete, it 

checks to see whether it has a previously stored checksum and crashes the system if the 

new and old checksum don’t match, because that would indicate corruption of the disk 

at the hardware level.

Kernel-Mode Driver Framework (KMDF)

We’ve already discussed some details about the Windows Driver Foundation (WDF) in 

Chapter 2. In this section, we’ll take a deeper look at the components and functionality 

provided by the kernel-mode part of the framework, KMDF. Note that this section will only 
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briefly touch on some of the core architecture of KMDF. For a much more complete overview 

on the subject, please refer to Developing Drivers with Windows Driver Foundation by Penny 

Orwick and Guy Smith (Microsoft Press, 2007).

Structure and Operation of a KMDF Driver

First, let’s take a look at which kinds of drivers or devices are supported by KMDF. In general, 

any WDM-conformant driver should be supported by KMDF, as long as it performs stan-

dard I/O processing and IRP manipulation. KMDF is not suitable for drivers that don’t use 

the Windows kernel API directly but instead perform library calls into existing port and class 

drivers. These types of drivers cannot use KMDF because they only provide callbacks for the 

actual WDM drivers that do the I/O processing. Additionally, if a driver provides its own dis-

patch functions instead of relying on a port or class driver, IEEE 1394 and ISA, PCI, PCMCIA, 

and SD Client (for Secure Digital storage devices) drivers can also make use of KMDF.

Although KMDF is a different driver model than WDM, the basic driver structure shown ear-

lier also generally applies to KMDF drivers. At their core, KMDF drivers must have the follow-

ing functions:

An initialization routine Just like any other driver, a KMDF driver has a DriverEntry 

function that initializes the driver. KMDF drivers will initiate the framework at this point 

and perform any configuration and initialization steps that are part of the driver or part 

of describing the driver to the framework. For non–Plug and Play drivers, this is where 

the first device object should be created.

An add-device routine KMDF driver operation is based on events and callbacks 

(described shortly), and the EvtDriverDeviceAdd callback is the single most important 

one for PnP devices because it receives notifications that the PnP manager in the kernel 

has enumerated one of the driver’s devices.

One or more EvtIo* routines Just like a WDM driver’s dispatch routines, these call-

back routines handle specific types of I/O requests from a particular device queue. A 

driver typically creates one or more queues in which KMDF places I/O requests for the 

driver’s devices. These queues can be configured by request type and dispatching type.

The simplest KMDF driver might need to have only an initialization and add-device routine 

because the framework will provide the default, generic functionality that’s required for 

most types of I/O processing, including power and Plug and Play events. In the KMDF model, 

events refer to run-time states to which a driver can respond or during which a driver can 

participate. These events are not related to the synchronization primitives (synchronization is 

discussed in Chapter 3), but are internal to the framework.

For events that are critical to a driver’s operation, or which need specialized processing, the 

driver registers a given callback routine to handle this event. In other cases, a driver can 
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allow KMDF to perform a default, generic action instead. For example, during an eject event 

(EvtDeviceEject), a driver can choose to support ejection and supply a callback or to fall back 

to the default KMDF code that will tell the user that the device is not ejectable. Not all events 

have a default behavior, however, and callbacks must be provided by the driver. One notable 

example is the EvtDriverDeviceAdd event that is at the core of any Plug and Play driver.

EXPERIMENT: Displaying KMDF Drivers

The Wdfkd.dll extension that ships with the Debugging Tools for Windows package 

provides many commands that can be used to debug and analyze KMDF drivers and 

devices (instead of using the built-in WDM-style debugging extension that may not 

offer the same kind of WDF-specific information). You can display installed KMDF driv-

ers with the !wdfkd.wdfldr debugger command. In the following example, the output 

from a Windows Vista SP1 computer is shown, displaying the built-in drivers that are 

typically installed.

lkd> !wdfkd.wdfldr 

 LoadedModuleList      0x805ce18c 

---------------------------------- 

LIBRARY_MODULE  8472f448 

  Version       v1.7 build(6001) 

  Service       \Registry\Machine\System\CurrentControlSet\Services\Wdf01000 

  ImageName     Wdf01000.sys 

  ImageAddress  0x80778000 

  ImageSize     0x7c000 

  Associated Clients: 6 

 

  ImageName      Version    WdfGlobals FxGlobals  ImageAddress ImageSize 

  peauth.sys     v0.0(0000) 0x867c00c0 0x867c0008 0x9b0d1000   0x000de000 

  monitor.sys    v0.0(0000) 0x8656d9d8 0x8656d920 0x8f527000   0x0000f000 

  umbus.sys      v0.0(0000) 0x84bfd4d0 0x84bfd418 0x829d9000   0x0000d000 

  HDAudBus.sys   v0.0(0000) 0x84b5d918 0x84b5d860 0x82be2000   0x00012000 

  intelppm.sys   v0.0(0000) 0x84ac9ee8 0x84ac9e30 0x82bc6000   0x0000f000 

  msisadrv.sys   v0.0(0000) 0x848da858 0x848da7a0 0x82253000   0x00008000 

---------------------------------- 

Total: 1 library loaded

KMDF Data Model

The KMDF data model is object-based, much like the model for the kernel, but it does 

not make use of the object manager. Instead, KMDF manages its own objects internally, 

exposing them as handles to drivers and keeping the actual data structures opaque. For 

each object type, the framework provides routines to perform operations on the object, 

such as WdfDeviceCreate, which creates a device. Additionally, objects can have spe-

cific data fields or members that can be accessed by Get/Set (used for modifications 
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that should never fail) or Assign/Retrieve APIs (used for modifications that can fail). For 

example, the WdfInterruptGetInfo function returns information on a given interrupt object 

(WDFINTERRUPT).

Also unlike the implementation of kernel objects, which all refer to distinct and isolated 

object types, KMDF objects are all part of a hierarchy—most object types are bound to a 

parent. The root object is the WDFDRIVER structure, which describes the actual driver. The 

structure and meaning is analogous to the DRIVER_OBJECT structure provided by the I/O 

manager and all other KMDF structures are children of it. The next most important object is 

WDFDEVICE, which refers to a given instance of a detected device on the system, which must 

have been created with WdfDeviceCreate. Again, this is analogous to the DEVICE_OBJECT 

structure that’s used in the WDM model and by the I/O manager. Table 7-5 lists the object 

types supported by KMDF

TABLE 7-5 KMDF Object Types

Object Type Description

Child List WDFCHILDLIST List of child WDFDEVICE objects associ-

ated with the device.

Collection WDFCOLLECTION List of objects of a similar type, such as 

a group of WDFDEVICE objects being 

filtered.

Device WDFDEVICE Instance of a device.

DMA Common Buffer WDFCOMMONBUFFER Piece of memory that a device and driver 

can access for direct memory access 

(DMA).

DMA Enabler WDFDMAENABLER Enables DMA on a given channel for a 

driver.

DMA Transaction WDFDMATRANSACTION Instance of a DMA transaction.

Deferred Procedure Call WDFDPC Instance of a DPC object (see Chapter 3 

for more information on DPCs).

Driver WDFDRIVER Root object for the driver; represents the 

driver, its parameters, and its callbacks, 

among other items.

File WDFFILEOBJECT Instance of a file object that can be used 

as a channel for communication between 

an application and the driver.

Generic Object WDFOBJECT Allows driver-defined custom data to be 

wrapped inside the framework’s object 

data model as an object.

I/O Queue WDFQUEUE Represents a given I/O queue.

I/O Request WDFREQUEST Represents a given request on a 

WDFQUEUE.

I/O Target WDFIOTARGET Represents the device stack being tar-

geted by a given WDFREQUEST.
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Object Type Description

Interrupt WDFINTERRUPT Instance of an interrupt that the driver 

must handle.

Look-Aside List WDFLOOKASIDE Describes an executive look-aside list.

Memory WDFMEMORY Describes a piece of paged or nonpaged 

pool.

Registry Key WDFKEY Describes a registry key.

Resource List WDFCMRESLIST Identifies the resources assigned to a 

WDFDEVICE.

Resource Range List WDFIORESLIST Identifies a given possible resource range 

for a WDFDEVICE.

Resource Requirements 

List

WDFIORESREQLIST Contains an array of WDFIORESLIST 

objects describing all possible resource 

ranges for a WDFDEVICE.

String WDFSTRING Describes a Unicode string structure.

Spinlock WDFSPINLOCK Describe a spinlock (see Chapter 3 for 

more information).

Timer WDFTIMER Describes an executive timer (see Chapter 

3 for more information).

USB Device WDFUSBDEVICE Identifies the one instance of a USB 

 device.

USB Interface WDFUSBINTERFACE Identifies one interface on the given 

WDFUSBDEVICE.

USB Pipe WDFUSBPIPE Identifies a bulk or interrupt pipe for a 

given WDFUSBINTERFACE.

Wait Lock WDFWAITLOCK Represents a kernel dispatcher event 

object.

WMI Instance WDFWMIINSTANCE Represents a WMI data block for a given 

WDFWMIPROVIDER.

WMI Provider WDFWMIPROVIDER Describes the WMI schema for all the 

WDFWMIINSTANCE objects supported 

by the driver.

Work Item WDFWORKITEM Describes an executive work item.

For each of these objects, other KMDF objects can be attached as children—some objects 

have only one or two valid parents, while other objects can be attached to any parent. 

For example, a WDFINTERRUPT object must be associated with a given WDFDEVICE, but a 

WDFSPINLOCK or WDFSTRING can have any object as a parent, allowing fine-grained control 

over their validity and usage and reducing global state variables. Figure 7-30 shows the entire 

KMDF object hierarchy.
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FIGURE 7-30 KMDF object hierarchy

Note that the associations mentioned earlier and shown in the figure are not necessarily 

immediate. The parent must simply be on the hierarchy chain, meaning one of the ancestor 

nodes must be of this type. This relationship is useful to realize because object hierarchies 

not only affect the objects’ locality but also their lifetime. Each time a child object is cre-

ated, a reference count is added to it by its link to its parent. Therefore, when a parent object 

is destroyed, all the child objects are also destroyed, which is why associating objects such 

as WDFSTRING or WDFMEMORY with a given object, instead of the default WDFDRIVER 

object, can automatically free up memory and state information when the parent object is 

destroyed.

Closely related to the concept hierarchy is KMDF’s notion of object context. Because KMDF 

objects are opaque, as discussed, and are associated with a parent object for locality, it 

becomes important to allow drivers to attach their own data to an object in order to track 

certain specific information outside the framework’s capabilities or support.

Object contexts allow all KMDF objects to contain such information, and they additionally 

allow multiple object context areas, which permit multiple layers of code inside the same 

driver to interact with the same object in different ways. In the WDM model, the device 
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extension data structure allows such information to be associated with a given device, but 

with KMDF even a spinlock or string can contain context areas. This extensibility allows 

each library or layer of code responsible for processing an I/O to interact independently of 

other code, based on the context area that it works with, and allows a mechanism similar to 

inheritance.

Finally, KMDF objects are also associated with a set of attributes that are shown in Table 7-6. 

These attributes are usually configured to their defaults, but the values can be overridden by 

the driver when creating the object by specifying a WDF_OBJECT_ATTRIBUTES structure (sim-

ilar to the object manager’s OBJECT_ATTRIBUTES structure when creating a kernel object).

TABLE 7-6 KMDF Object Attributes

Attribute Description

ContextSizeOverride Size of the object context area.

ContextTypeInfo Type of the object context area.

EvtCleanupCallback Callback to notify the driver of the object’s cleanup before deletion (refer-

ences may still exist).

EvtDestroyCallback Callback to notify the driver of the object’s imminent deletion (references 

will be 0).

ExecutionLevel Describes the maximum IRQL at which the callbacks may be invoked by 

KMDF.

ParentObject Identifies the parent of this object.

Size Size of the object.

SynchronizationScope Specifies whether callbacks should be synchronized with the parent, a 

queue or device, or nothing.

KMDF I/O Model

The KMDF I/O model follows the WDM mechanisms discussed earlier in the chapter. In fact, 

one can even think of the framework itself as a WDM driver, since it uses kernel APIs and 

WDM behavior to abstract KMDF and make it functional. Under KMDF, the framework driver 

sets its own WDM-style IRP dispatch routines and takes control over all IRPs sent to the 

driver. After being handled by one of three KMDF I/O handlers (which we’ll describe shortly), 

it then packages these requests in the appropriate KMDF objects, inserts them in the appro-

priate queues if required, and performs driver callback if the driver is interested in those 

events. Figure 7-31 describes the flow of I/O in the framework.

Based on the IRP processing discussed for WDM drivers earlier, KMDF performs one of the 

following three actions:

Sends the IRP to the I/O handler, which processes standard device operations
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Sends the IRP to the PnP and power handler that processes these kinds of events and 

notifies other drivers if the state has changed

Sends the IRP to the WMI handler, which handles tracing and logging.

I/O request
handler

IRPs

WMI request
handler

Plug and Play/
power request

handler

I/O target

Dispatcher

Driver
callbacks

Driver
callbacks

Driver
callbacks

Nonpower-
managed

I/O queues

Power-
managed

I/O queues

FIGURE 7-31 KMDF I/O flow and IRP processing

These components will then notify the driver of any events it registered for, potentially for-

ward the request to another handler for further processing, and then complete the request 

based on an internal handler action or as the result of a driver call. If KMDF has finished pro-

cessing the IRP but the request itself has still not been fully processed, KMDF will take one of 

the following two actions:

For bus drivers and function drivers, complete the IRP with 

STATUS_INVALID_DEVICE_REQUEST

For filter drivers, forward the request to the next lower driver

I/O processing by KMDF is based on the mechanism of queues (WDFQUEUE, not the KQUEUE 

object discussed in Chapter 3). KMDF queues are highly scalable containers of I/O requests 

(packaged as WDFREQUEST objects) and provide a rich feature set beyond merely sorting 
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the pending I/Os for a given device. For example, queues also track currently active requests 

and support I/O cancellation, I/O concurrency (the ability to perform and complete more 

than one I/O request at a time), and I/O synchronization (as noted in the list of object attri-

butes in Table 7-6). A typical KMDF driver creates at least one queue (if not more) and associ-

ates one or more events with each queue, as well as some of the following options:

The callbacks registered with the events associated with this queue

The power management state for the queue. KMDF supports both power-managed 

and nonpower-managed queues. For the former, the I/O handler will handle waking up 

the device when required (and when possible), arm the idle timer when the device has 

no I/Os queued up, and call the driver’s I/O cancellation routines when the system is 

switching away from a working state.

The dispatch method for the queue. KMDF can deliver I/Os from a queue either in a 

sequential, parallel, or manual mode. Sequential I/Os are delivered one at a time (KMDF 

waits for the driver to complete the previous request), while parallel I/Os are delivered 

to the driver as soon as possible. In manual mode, the driver must manually retrieve 

I/Os from the queue.

Whether or not the queue can accept zero-length buffers, such as incoming requests 

that don’t actually contain any data.

Note The dispatch method affects solely the number of requests that are allowed to be active 

inside a driver’s queue at one time. It does not determine whether the event callbacks themselves 

will be called concurrently or serially. That behavior is determined through the synchronization 

scope object attribute described earlier. Therefore, it is possible for a parallel queue to have con-

currency disabled but still have multiple incoming requests.

Based on the mechanism of queues, the KMDF I/O handler can perform several possible 

tasks upon receiving either a create, close, cleanup, write, read, or device control (IOCTL) 

request:

For create requests, the driver can request to be immediately notified through 

EvtDeviceFileCreate, or it can create a nonmanual queue to receive create requests. It 

must then register an EvtIoDefault callback to receive the notifications. Finally, if none 

of these methods are used, KMDF will simply complete the request with a success code, 

meaning that by default, applications will be able to open handles to KMDF drivers that 

don’t supply their own code.

For cleanup and close requests, the driver will be immediately notified through 

EvtFileCleanup and EvtFileClose callbacks, if registered. Otherwise, the framework will 

simply complete with a success code.

Finally, Figure 7-32 illustrates the flow of an I/O request to a KMDF driver for the most 

common driver operations (read, write, and I/O control codes).
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FIGURE 7-32 Handling read, write, and IOCTL I/O requests by KMDF
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User-Mode Driver Framework (UMDF)

Although this chapter focuses on kernel-mode drivers, Windows includes a growing number 

of drivers that actually run in user mode, as previously described, using the User-Mode Driver 

Framework (UMDF) that is part of the WDF. Before finishing our discussion on drivers, we’ll 

take a quick look at the architecture of UMDF and what it offers. Once again, for a much 

more complete overview on the subject, please refer to Developing Drivers with Windows 
Driver Foundation by Penny Orwick and Guy Smith.

UMDF is designed specifically to support what are called protocol device classes, which refers 

to devices that all use the same standardized, generic protocol and offer specialized func-

tionality on top of it. These protocols currently include IEEE 1394 (FireWire), USB, Bluetooth, 

and TCP/IP. Any device running on top of these buses (or connected to a network) is a 

potential candidate for UMDF—examples include portable music players, PDAs, cell phones, 

cameras and webcams, and so on. Two other large users of UMDF are SideShow-compatible 

devices (auxiliary displays) and the Windows Portable Device (WPD) Framework, which sup-

ports USB removable storage (USB bulk transfer devices). Finally, as with KMDF, it’s possible 

to implement software-only drivers, such as for a virtual device, in UMDF.

To make porting code easier from kernel mode to user mode, and to keep a consistent archi-

tecture, UMDF uses the same conceptual driver programming model as KMDF, but it uses 

different components, interfaces, and data structures. For example, KMDF includes objects 

unique to kernel mode, while UMDF includes some objects unique to user mode. Objects 

and functionality that can’t be accessed through UMDF include direct handling of interrupts, 

DMA, nonpaged pool, and strict timing requirements. Furthermore, a UMDF driver can’t be 

on any kernel driver stack or be a client of another driver or the kernel itself.

Unlike KMDF drivers, which run as driver objects representing a .sys image file, UMDF drivers 

run in a driver host process, similar to a service-hosting process. The host process contains the 

driver itself (which is implemented as an in-process COM component), the user-mode driver 

framework (implemented as a DLL containing COM-like components for each UMDF object), 

and a run-time environment (responsible for I/O dispatching, driver loading, device stack 

management, communication with the kernel, and a thread pool).

Just like in the kernel, each UMDF driver runs as part of a stack, which can contain multiple 

drivers that are responsible for managing a device. Naturally, since user-mode code can’t 

access the kernel address space, UMDF also includes some components that allow this access 

to occur through a specialized interface to the kernel. This is implemented by a kernel-mode 

side of UMDF that uses ALPC (see Chapter 3 for more information on advanced local proce-

dure call) to talk to the run-time environment in the user-mode driver host processes. Figure 

7-33 displays the architecture of the UMDF driver model.
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FIGURE 7-33  UMDF architecture

Figure 7-33 shows two different device stacks that manage two different hardware devices, 

each with a UMDF driver running inside its own driver host process. From the diagram, you 

can see that the following components take part in the architecture:

Applications Applications are the clients of the drivers. These are standard Windows 

applications that use the same APIs to perform I/Os as they would with a KMDF-

managed or a WDM-managed device. Applications don’t know that they’re talking to a 

UMDF-based device, and the calls are still sent to the kernel’s I/O manager.

Windows kernel (I/O manager) Based on the application I/O APIs, the I/O manager 

builds the IRPs for the operations, just like for any other standard device.

Reflector The reflector is what makes UMDF “tick.” It is a standard WDM filter driver 

that sits at the top of the device stack of each device that is being managed by a UMDF 

driver. The reflector is responsible for managing the communication between the ker-

nel and the user-mode driver host process. IRPs related to power management, Plug 

and Play, and standard I/O are redirected to the host process through ALPC. This lets 

the UMDF driver respond to the I/Os and perform work, as well as be involved in the 

Plug and Play model, by providing enumeration, installation, and management of its 

devices. The reflector is also responsible for keeping an eye on the driver host pro-

cesses by making sure that they remain responsive to requests within an adequate time 

to prevent drivers and applications from hanging.
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Driver manager The driver manager is responsible for starting and quitting the 

driver host processes, based on which UMDF-managed devices are present, and also 

for managing information on them. It is also responsible for responding to messages 

coming from the reflector and applying them to the appropriate host process (such as 

reacting to device installation). The driver manager runs as a standard Windows service 

and is configured for automatic startup as soon as the first UMDF driver for a device 

is installed. Only one instance of the driver manager runs for all driver host processes, 

and it must always be running to allow UMDF drivers to work.

Host process The host process provides the address space and run-time environ-

ment for the actual driver. Although it runs in the local service account, it is not actu-

ally a Windows service and is not managed by the SCM—only by the driver manager. 

The host process is also responsible for providing the user-mode device stack for the 

actual hardware, which is visible to all applications on the system. In the current UMDF 

release, each device instance has its own device stack, which runs in a separate host 

process. In the future, multiple instances may share the same host process. Host pro-

cesses are child processes of the driver manager.

Kernel-mode drivers If specific kernel support for a device that is managed by a 

UMDF driver is needed, it is also possible to write a companion kernel-mode driver that 

fills that role. In this way, it is possible for a device to be managed both by a UMDF and 

a KMDF (or WDM) driver.

You can easily see UMDF in action on your system by inserting any USB flash drive with some 

content on it. Run Process Explorer, and you should see a WUDFHost.exe process that corre-

sponds to a driver host process. Switch to DLL view and scroll down until you see DLLs similar 

to the ones shown in Figure 7-34.

FIGURE 7-34 DLL in UMDF host process



 Chapter 7 I/O System 619

You can identify three main components, which match the architectural overview described 

earlier:

WUDFx.dll, the framework itself

WUDFPlatform.dll, the run-time environment

WpdFs.dll, the COM component representing the WPD driver, exposing contents of 

USB storage devices to Windows shell and media applications

The Plug and Play (PnP) Manager

The PnP manager is the primary component involved in supporting the ability of Windows 

to recognize and adapt to changing hardware configurations. A user doesn’t need to under-

stand the intricacies of hardware or manual configuration to install and remove devices. For 

example, it’s the PnP manager that enables a running Windows laptop that is placed on a 

docking station to automatically detect additional devices located in the docking station and 

make them available to the user.

Plug and Play support requires cooperation at the hardware, device driver, and operating 

system levels. Industry standards for the enumeration and identification of devices attached 

to buses are the foundation of Windows Plug and Play support. For example, the USB stan-

dard defines the way that devices on a USB bus identify themselves. With this foundation in 

place, Windows Plug and Play support provides the following capabilities:

The PnP manager automatically recognizes installed devices, a process that includes 

enumerating devices attached to the system during a boot and detecting the addition 

and removal of devices as the system executes.

Hardware resource allocation is a role the PnP manager fills by gathering the hardware 

resource requirements (interrupts, I/O memory, I/O registers, or bus-specific resources) 

of the devices attached to a system and, in a process called resource arbitration, opti-

mally assigning resources so that each device meets the requirements necessary for 

its operation. Because hardware devices can be added to the system after boot-time 

resource assignment, the PnP manager must also be able to reassign resources to 

accommodate the needs of dynamically added devices.

Loading appropriate drivers is another responsibility of the PnP manager. The PnP 

manager determines, based on the identification of a device, whether a driver capable 

of managing the device is installed on the system, and if one is, instructs the I/O man-

ager to load it. If a suitable driver isn’t installed, the kernel-mode PnP manager com-

municates with the user-mode PnP manager to install the device, possibly requesting 

the user’s assistance in locating a suitable set of drivers.
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The PnP manager also implements application and driver mechanisms for the detection 

of hardware configuration changes. Applications or drivers sometimes require a specific 

hardware device to function, so Windows includes a means for them to request notifi-

cation of the presence, addition, or removal of devices.

It also provides a place for storage device state, and it participates in system setup, 

upgrade, migration, and offline image management.

In addition, it supports network connected devices, such as network projects and 

printers, by allowing specialized bus drivers to detect the network as a bus and create 

device nodes for the devices running on it.

Level of Plug and Play Support

Windows aims to provide full support for Plug and Play, but the level of support possible 

depends on the attached devices and installed drivers. If a single device or driver doesn’t 

support Plug and Play, the extent of Plug and Play support for the system can be compro-

mised. In addition, a driver that doesn’t support Plug and Play might prevent other devices 

from being usable by the system. Table 7-7 shows the outcome of various combinations of 

devices and drivers that can and can’t support Plug and Play.

TABLE 7-7 Device and Driver Plug and Play Capability

Type of Driver

Type of Device Plug and Play Non–Plug and Play

Plug and Play Full Plug and Play No Plug and Play

Non–Plug and Play Possible partial Plug and Play No Plug and Play

A device that isn’t Plug and Play–compatible is one that doesn’t support automatic detec-

tion, such as a legacy ISA sound card. Because the operating system doesn’t know where the 

hardware physically lies, certain operations—such as laptop undocking, sleep, and hiberna-

tion—are disallowed. However, if a Plug and Play driver is manually installed for the device, 

the driver can at least implement PnP manager–directed resource assignment for the device.

Drivers that aren’t Plug and Play–compatible include legacy drivers, such as those that ran 

on Windows NT 4. Although these drivers might continue to function on later versions of 

Windows, the PnP manager can’t reconfigure the resources assigned to such devices in 

the event that resource reallocation is necessary to accommodate the needs of a dynami-

cally added device. For example, a device might be able to use I/O memory ranges A and 

B, and during the boot the PnP manager assigns it range A. If a device that can use only 

A is attached to the system later, the PnP manager can’t direct the first device’s driver to 

reconfigure itself to use range B. This prevents the second device from obtaining required 

resources, which results in the device being unavailable for use by the system. Legacy drivers 
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also impair a machine’s ability to sleep or hibernate. (See the section “The Power Manager” 

for more details.)

Driver Support for Plug and Play

To support Plug and Play, a driver must implement a Plug and Play dispatch routine, a power 

management dispatch routine (described in the section “The Power Manager” later in this 

chapter), and an add-device routine. Bus drivers must support different types of Plug and 

Play requests than function or filter drivers do, however. For example, when the PnP man-

ager is guiding device enumeration during the system boot (described in detail later in this 

chapter), it asks bus drivers for a description of the devices that they find on their respec-

tive buses. The description includes data that uniquely identifies each device as well as the 

resource requirements of the devices. The PnP manager takes this information and loads any 

function or filter drivers that have been installed for the detected devices. It then calls the 

add-device routine of each driver for every installed device the drivers are responsible for.

Function and filter drivers prepare to begin managing their devices in their add-device 

routines, but they don’t actually communicate with the device hardware. Instead, they wait 

for the PnP manager to send a start-device command for the device to their Plug and Play 

dispatch routine. Prior to sending the start-device command the PnP manager performs 

resource arbitration to decide what resources to assign the device. The start-device com-

mand includes the resource assignment that the PnP manager determines during resource 

arbitration. When a driver receives a start-device command, it can configure its device to use 

the specified resources. If an application tries to open a device that hasn’t finished starting, it 

receives an error indicating that the device does not exist.

After a device has started, the PnP manager can send the driver additional Plug and Play 

commands, including ones related to a device’s removal from the system or to resource 

reassignment. For example, when the user invokes the remove/eject device utility, shown 

in Figure 7-35 (accessible by right-clicking on the PC card icon in the taskbar and selecting 

Safely Remove Hardware), to tell Windows to eject a USB flash drive, the PnP manager sends 

a query-remove notification to any applications that have registered for Plug and Play notifi-

cations for the device. Applications typically register for notification on their handles, which 

they close during a query-remove notification. If no applications veto the query-remove 

request, the PnP manager sends a query-remove command to the driver that owns the device 

being ejected. At that point, the driver has a chance to deny the removal or to ensure that 

any pending I/O operations involving the device have completed and to begin rejecting 

further I/O requests aimed at the device. If the driver agrees to the remove request and no 

open handles to the device remain, the PnP manager next sends a remove command to the 

driver to request that the driver discontinue accessing the device and release any resources 

the driver has allocated on behalf of the device.
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FIGURE 7-35 Remove/eject utility

When the PnP manager needs to reassign a device’s resources, it first asks the driver whether 

it can temporarily suspend further activity on the device by sending the driver a query-stop 

command. The driver either agrees to the request, if doing so wouldn’t cause data loss or 

corruption, or denies the request. As with a query-remove command, if the driver agrees 

to the request, the driver completes pending I/O operations and won’t initiate further I/O 

requests for the device that can’t be aborted and subsequently restarted. The driver typically 

queues new I/O requests so that the resource reshuffling is transparent to applications cur-

rently accessing the device. The PnP manager then sends the driver a stop command. At that 

point, the PnP manager can direct the driver to assign different resources to the device and 

once again send the driver a start-device command for the device.

The various Plug and Play commands essentially guide a device through an assortment of 

operational states, forming a well-defined state-transition table, which is shown in simpli-

fied form in Figure 7-36. (Several possible transitions and Plug and Play commands have 

been omitted for clarity. Also, the state diagram depicted is that implemented by function 

drivers. Bus drivers implement a more complex state diagram.) A state shown in the figure 

that we haven’t discussed is the one that results from the PnP manager’s surprise-remove 

command. This command results when either a user removes a device without warning, as 

when the user ejects a PCMCIA card without using the remove/eject utility, or the device fails. 

The surprise-remove command tells the driver to immediately cease all interaction with the 

device because the device is no longer attached to the system and to cancel any pending I/O 

requests.
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FIGURE 7-36 Device Plug and Play state transitions

Driver Loading, Initialization, and Installation

Driver loading and initialization on Windows consists of two types of loading: explicit load-

ing and enumeration-based loading. Explicit loading is guided by the HKLM\SYSTEM\

CurrentControlSet\Services branch of the registry, as described in the section “Service 

Applications” in Chapter 4. Enumeration-based loading results when the PnP manager 

dynamically loads drivers for the devices that a bus driver reports during bus enumeration.

The Start Value

In Chapter 4, we explained that every driver and Windows service has a registry key under 

the Services branch of the current control set. The key includes values that specify the type 

of the image (for example, Windows service, driver, and file system), the path to the driver 

or service’s image file, and values that control the driver or service’s load ordering. There are 

two main differences between explicit device driver loading and Windows service loading:

Only device drivers can specify Start values of boot-start (0) or system-start (1).

Device drivers can use the Group and Tag values to control the order of loading 

within a phase of the boot, but unlike services, they can’t specify DependOnGroup or 

DependOnService values.

Chapter 13 describes the phases of the boot process and explains that a driver Start value 

of 0 means that the operating system loader loads the driver. A Start value of 1 means that 

the I/O manager loads the driver after the executive subsystems have finished initializing. 
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The I/O manager calls driver initialization routines in the order that the drivers load within a 

boot phase. Like Windows services, drivers use the Group value in their registry key to specify 

which group they belong to; the registry value HKLM\SYSTEM\CurrentControlSet\Control\

ServiceGroupOrder\List determines the order that groups are loaded within a boot phase.

A driver can further refine its load order by including a Tag value to control its order within 

a group. The I/O manager sorts the drivers within each group according to the Tag values 

defined in the drivers’ registry keys. Drivers without a tag go to the end of the list in their 

group. You might assume that the I/O manager initializes drivers with lower-number tags 

before it initializes drivers with higher-number tags, but such isn’t necessarily the case. The 

registry key HKLM\SYSTEM\CurrentControlSet\Control\GroupOrderList defines tag prece-

dence within a group; with this key, Microsoft and device driver developers can take liberties 

with redefining the integer number system.

Here are the guidelines by which drivers set their Start value:

Non–Plug and Play drivers set their Start value to reflect the boot phase they want to 

load in.

Drivers, including both Plug and Play and non–Plug and Play drivers, that must be 

loaded by the boot loader during the system boot specify a Start value of boot-start 

(0). Examples include system bus drivers and the boot file system driver.

A driver that isn’t required for booting the system and that detects a device that a sys-

tem bus driver can’t enumerate specifies a Start value of system-start (1). An example 

is the serial port driver, which informs the PnP manager of the presence of standard PC 

serial ports that were detected by Setup and recorded in the registry.

A non–Plug and Play driver or file system driver that doesn’t have to be present when 

the system boots specifies a Start value of auto-start (2). An example is the Multiple 

Universal Naming Convention (UNC) Provider (MUP) driver, which provides support for 

UNC-based path names to remote resources (for example, \\REMOTE COMPUTERNAME\

SHARE).

Plug and Play drivers that aren’t required to boot the system specify a Start value of 

demand-start (3). Examples include network adapter drivers.

The only purpose that the Start values for Plug and Play drivers and drivers for enumerable 

devices have is to ensure that the operating system loader loads the driver—if the driver is 

required for the system to boot successfully. Beyond that, the PnP manager’s device enumer-

ation process, described next, determines the load order for Plug and Play drivers.

Device Enumeration

The PnP manager begins device enumeration with a virtual bus driver called Root, which rep-

resents the entire computer system and acts as the bus driver for non–Plug and Play drivers 
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and for the HAL. The HAL acts as a bus driver that enumerates devices directly attached to 

the motherboard as well as system components such as batteries. Instead of actually enu-

merating, the HAL relies on the hardware description the Setup process recorded in the 

registry to detect the primary bus (a PCI bus in most cases) and devices such as batteries 

and fans.

The primary bus driver enumerates the devices on its bus, possibly finding other buses, for 

which the PnP manager initializes drivers. Those drivers in turn can detect other devices, 

including other subsidiary buses. This recursive process of enumeration, driver loading (if the 

driver isn’t already loaded), and further enumeration proceeds until all the devices on the 

system have been detected and configured.

As the bus drivers report detected devices to the PnP manager, the PnP manager creates an 

internal tree called the device tree that represents the relationships between devices. Nodes 

in the tree are called devnodes, and a devnode contains information about the device objects 

that represent the device as well as other Plug and Play–related information stored in the 

devnode by the PnP manager. Figure 7-37 shows an example of a simplified device tree. This 

system is ACPI-compliant, so an ACPI-compliant HAL serves as the primary bus enumerator. A 

PCI bus serves as the system’s primary bus, which USB, ISA, and SCSI buses are connected to.

Joystick Camera
External

Plug and Play
modem

USB hub
Plug and Play

ISA sound
card

Serial port Keyboard Mouse Disk

USB
controller

PCI to ISA
bridge

SCSI adapter

ACPI fan PCI bus ACPI battery

ACPI

Root device

FIGURE 7-37 Example device tree



626 Windows Internals, Fifth Edition

The Device Manager utility, which is accessible from the Computer Management snap-in in 

the Programs/Administrative Tools folder of the Start menu (and also from the Hardware tab 

of the System utility in Control Panel), shows a simple list of devices present on a system in its 

default configuration. You can also select the Devices By Connection option from the Device 

Manager’s View menu to see the devices as they relate to the device tree. Figure 7-38 shows 

an example of the Device Manager’s Devices By Connection view.

FIGURE 7-38 Device Manager showing the device tree

Taking device enumeration into account, the load and initialization order of drivers is as 

follows:

 1. The I/O manager invokes the driver entry routine of each boot-start driver. If a boot 

driver has child devices, the I/O manager enumerates those devices, reporting their 

presence to the PnP manager. The child devices are configured and started if their driv-

ers are boot-start drivers. If a device has a driver that isn’t a boot-start driver, the PnP 

manager creates a devnode for the device but doesn’t start it or load its driver.

 2. After the boot-start drivers are initialized, the PnP manager walks the device tree, load-

ing the drivers for devnodes that weren’t loaded in step 1 and starting their devices. As 

each device starts, the PnP manager enumerates its child devices, if it has any, starting 

those devices’ drivers and performing enumeration of their children as required. The 
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PnP manager loads the drivers for detected devices in this step regardless of the driver’s 
Start value. (The one exception is if the Start value is set to disabled.) At the end of this 

step, all Plug and Play devices have their drivers loaded and are started, except devices 

that aren’t enumerable and the children of those devices.

 3. The PnP manager loads any drivers with a Start value of system-start that aren’t yet 

loaded. Those drivers detect and report their nonenumerable devices. The PnP man-

ager loads drivers for those devices until all enumerated devices are configured and 

started.

 4. The service control manager loads drivers marked as auto-start.

The device tree serves to guide both the PnP manager and the power manager as they issue 

Plug and Play and power IRPs to devices. In general, IRPs flow from the top of a devnode to 

the bottom, and in some cases a driver in one devnode creates new IRPs to send to other 

devnodes, always moving toward the root. The flow of Plug and Play and power IRPs is fur-

ther described later in this chapter.

EXPERIMENT: Dumping the Device Tree

A more detailed way to view the device tree than using Device Manager is to use the 

!devnode kernel debugger command. Specifying 0 1 as command options dumps the 

internal device tree devnode structures, indenting entries to show their hierarchical 

relationships, as shown here:

lkd> !devnode 0 1 

Dumping IopRootDeviceNode (= 0x85161a98) 

DevNode 0x85161a98 for PDO 0x84d10390 

  InstancePath is "HTREE\ROOT\0" 

  State = DeviceNodeStarted (0x308) 

  Previous State = DeviceNodeEnumerateCompletion (0x30d) 

  DevNode 0x8515bea8 for PDO 0x8515b030 

  DevNode 0x8515c698 for PDO 0x8515c820 

    InstancePath is "Root\ACPI_HAL\0000" 

    State = DeviceNodeStarted (0x308) 

    Previous State = DeviceNodeEnumerateCompletion (0x30d) 

    DevNode 0x84d1c5b0 for PDO 0x84d1c738 

      InstancePath is "ACPI_HAL\PNP0C08\0" 

      ServiceName is "ACPI" 

      State = DeviceNodeStarted (0x308) 

      Previous State = DeviceNodeEnumerateCompletion (0x30d) 

      DevNode 0x85ebf1b0 for PDO 0x85ec0210 

        InstancePath is "ACPI\GenuineIntel_-_x86_Family_6_Model_15\_0" 

        ServiceName is “intelppm” 

        State = DeviceNodeStarted (0x308) 

        Previous State = DeviceNodeEnumerateCompletion (0x30d) 

      DevNode 0x85ed6970 for PDO 0x8515e618 

        InstancePath is "ACPI\GenuineIntel_-_x86_Family_6_Model_15\_1" 

        ServiceName is "intelppm" 

        State = DeviceNodeStarted (0x308) 

        Previous State = DeviceNodeEnumerateCompletion (0x30d) 
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      DevNode 0x85ed75c8 for PDO 0x85ed79e8 

        InstancePath is "ACPI\ThermalZone\THM_" 

        State = DeviceNodeStarted (0x308) 

        Previous State = DeviceNodeEnumerateCompletion (0x30d) 

      DevNode 0x85ed6cd8 for PDO 0x85ed6858 

        InstancePath is "ACPI\pnp0c14\0" 

        ServiceName is "WmiAcpi" 

        State = DeviceNodeStarted (0x308) 

        Previous State = DeviceNodeEnumerateCompletion (0x30d) 

      DevNode 0x85ed7008 for PDO 0x85ed6730 

        InstancePath is "ACPI\ACPI0003\2&daba3ff&2" 

        ServiceName is "CmBatt" 

        State = DeviceNodeStarted (0x308) 

        Previous State = DeviceNodeEnumerateCompletion (0x30d) 

      DevNode 0x85ed7e60 for PDO 0x84d2e030 

        InstancePath is "ACPI\PNP0C0A\1" 

        ServiceName is "CmBatt"  

§

Information shown for each devnode includes the InstancePath, which is the name of 

the device’s enumeration registry key stored under HKLM\SYSTEM\CurrentControlSet\

Enum, and the ServiceName, which corresponds to the device’s driver registry key 

under HKLM\SYSTEM\CurrentControlSet\Services. To see the resources, such as inter-

rupts, ports, and memory, assigned to each devnode, specify 0 3 as the command 

options for the !devnode command.

A record of all the devices detected since the system was installed is recorded under 

the HKLM\SYSTEM\CurrentControlSet\Enum registry key. Subkeys are in the form 

<Enumerator>\<Device ID>\<Instance ID>, where the enumerator is a bus driver, the device 

ID is a unique identifier for a type of device, and the instance ID uniquely identifies different 

instances of the same hardware.

Devnodes

Figure 7-39 shows that a devnode is made up of at least two, and sometimes more, device 

objects:

A physical device object (PDO) that the PnP manager instructs a bus driver to create 

when the bus driver reports the presence of a device on its bus during enumeration. 

The PDO represents the physical interface to the device.

One or more optional filter device objects (FiDOs) that layer between the PDO and the 

FDO (described next), and that are created by bus filter drivers.
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One or more optional FiDOs that layer between the PDO and the FDO (and that layer 

above any FiDOs created by bus filter drivers) that are created by lower-level filter 

drivers.

A functional device object (FDO) that is created by the driver, which is called a function 

driver, that the PnP manager loads to manage a detected device. An FDO represents 

the logical interface to a device. A function driver can also act as a bus driver if devices 

are attached to the device represented by the FDO. The function driver often creates 

an interface (described earlier) to the FDO’s corresponding PDO so that applications 

and other drivers can open the device and interact with it. Sometimes function drivers 

are divided into a separate class/port driver and miniport driver that work together to 

manage I/O for the FDO.

One or more optional FiDOs that layer above the FDO and that are created by upper-

level filter drivers.

Filter device object
(FiDO)

Filter device object
(FiDO)

Filter device object
(FiDO)

Upper-level
filter driver

Function
driver

Lower-level
filter driver

Bus
filter driver

Bus
driver

IRP

Devnode

FIGURE 7-39 Devnode internals

Devnodes are built from the bottom up and rely on the I/O manager’s layering functional-

ity, so IRPs flow from the top of a devnode toward the bottom. However, any level in the 

devnode can choose to complete an IRP. For example, the function driver can handle a read 

request without passing the IRP to the bus driver. Only when the function driver requires the 

help of a bus driver to perform bus-specific processing does the IRP flow all the way to the 

bottom and then into the devnode containing the bus driver.
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Devnode Driver Loading

So far, we’ve avoided answering two important questions: “How does the PnP manager 

determine what function driver to load for a particular device?” and “How do filter driv-

ers register their presence so that they are loaded at appropriate times in the creation of a 

devnode?”

The answer to both these questions lies in the registry. When a bus driver performs device 

enumeration, it reports device identifiers for the devices it detects back to the PnP manager. 

The identifiers are bus-specific; for a USB bus, an identifier consists of a vendor ID (VID) for 

the hardware vendor that made the device and a product ID (PID) that the vendor assigned 

to the device. (See the WDK for more information on device ID formats.) Together these IDs 

form what Plug and Play calls a device ID. The PnP manager also queries the bus driver for an 

instance ID to help it distinguish different instances of the same hardware. The instance ID 

can describe either a bus-relative location (for example, the USB port) or a globally unique 

descriptor (for example, a serial number).

The device ID and instance ID are combined to form a device instance ID (DIID), which the 

PnP manager uses to locate the device’s key in the enumeration branch of the registry 

(HKLM\SYSTEM\CurrentControlSet\Enum). Figure 7-40 presents an example of a keyboard’s 

enumeration subkey. The device’s key contains descriptive data and includes values named 

Service and ClassGUID (which are obtained from a driver’s INF file) that help the PnP man-

ager locate the device’s drivers.

FIGURE 7-40 Keyboard enumeration key



 Chapter 7 I/O System 631

EXPERIMENT: Viewing Detailed Devnode Information in 

Device Manager

The Device Manager applet that you can access from the Hardware tab of the System 

Control Panel application can show detailed information about a device node by using 

a tab called Details. The tab allows you to view an assortment of fields, including the 

devnode’s device instance ID, hardware ID, service name, filters, and power capabilities.

The following screen shows the selection combo box of the Details tab expanded to 

reveal the types of information you can access:

Using the ClassGUID value, the PnP manager locates the device’s class key under HKLM\

SYSTEM\CurrentControlSet\Control\Class. The keyboard class key is shown in Figure 7-41. The 

enumeration key and class key supply the PnP manager the information it needs to load the 

drivers necessary for the device’s devnode. Drivers are loaded in the following order:

 1. Any lower-level filter drivers specified in the LowerFilters value of the device’s enumera-

tion key.

 2. Any lower-level filter drivers specified in the LowerFilters value of the device’s class key.

 3. The function driver specified by the Service value in the device’s enumeration key. 

This value is interpreted as the driver’s key under HKLM\SYSTEM\CurrentControlSet\

Services.
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 4. Any upper-level filter drivers specified in the UpperFilters value of the device’s enumer-

ation key.

 5. Any upper-level filter drivers specified in the UpperFilters value of the device’s class key.

In all cases, drivers are referenced by the name of their key under HKLM\SYSTEM\

CurrentControlSet\Services.

FIGURE 7-41 Keyboard class key

Note The WDK refers to a device’s enumeration key as its hardware key and to the class key as 

the software key.

The keyboard device shown in Figure 7-40 and Figure 7-41 has no lower-level filter drivers. 

The function driver is the i8042prt driver, and there are two upper-level filter drivers specified 

in the keyboard’s class key: kbdclass and vmkbd2.

Driver Installation

If the PnP manager encounters a device for which no driver is installed, it relies on the 

user-mode PnP manager to guide the installation process. If the device is detected during 

the system boot, a devnode is defined for the device but the loading process is postponed 

until the user-mode PnP manager starts. (The user-mode PnP manager is implemented in 

\%SystemRoot%\System32\Umpnpmgr.dll and runs as a service in the Services.exe process.)
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The components involved in a driver’s installation are shown in Figure 7-42. Shaded objects 

in the figure correspond to components generally supplied by the system, whereas objects 

that aren’t shaded are included in a driver’s installation files. First, a bus driver informs the 

PnP manager of a device it enumerates using a DIID (1). The PnP manager checks the registry 

for the presence of a corresponding function driver, and when it doesn’t find one, it informs 

the user-mode PnP manager (2) of the new device by its DIID. The user-mode PnP man-

ager first tries to perform an automatic install without user intervention. If the installation 

process involves the posting of dialog boxes that require user interaction and the currently 

logged-on user has administrator privileges, (3) the user-mode PnP manager launches the 

Rundll32.exe application (the same application that hosts Control Panel utilities) to execute 

the Hardware Installation Wizard (\Windows\System32\Newdev.dll). If the currently logged-

on user doesn’t have administrator privileges (or if no user is logged on) and the installation 

of the device requires user interaction, the user-mode PnP manager defers the installation 

until a privileged user logs on. The Hardware Installation Wizard uses Setup and CfgMgr 

(configuration manager) API functions to locate INF files that correspond to drivers that 

are compatible with the detected device. This process might involve having the user insert 

installation media containing a vendor’s INF files, or the wizard might locate a suitable INF 

file in the driver store (\Windows\System32\DriverStore) that contains drivers that ship with 

Windows. Installation is performed in two steps. In the first, the third-party driver developer 

imports the driver package into the driver store, and in the second step, the system per-

forms the actual installation, which is always done through the %SystemRoot%\System32\

Drvinst.exe process.

2

3

1

4

5

FIGURE 7-42 Driver installation components
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To find drivers for the new device, the installation process gets a list of hardware IDs and 

compatible IDs from the bus driver. These IDs describe all the various ways the hardware 

might be identified in a driver installation file (.inf). The lists are ordered so that the most 

specific description of the hardware is listed first. If matches are found in multiple INFs, more 

precise matches are preferred over less precise matches, digitally signed INFs are preferred 

over unsigned ones, and newer signed INFs are preferred over older signed ones. If a match 

is found based on a compatible ID, the Hardware Installation Wizard can choose to prompt 

for media in case a more up-to-date driver came with the hardware.

The INF file locates the function driver’s files and contains commands that fill in the driver’s 

enumeration and class keys, and the INF file might direct the Hardware Installation Wizard 

to (4) launch class or device co-installer DLLs that perform class or device-specific installation 

steps, such as displaying configuration dialog boxes that let the user specify settings for a 

device.

EXPERIMENT: Looking at a Driver’s INF File

When a driver or other software that has an INF file is installed, the system copies its 

INF file to the \Windows\Inf directory. One file that will always be there is Keyboard.inf 

because it’s the INF file for the keyboard class driver. View its contents by opening it in 

Notepad and you should see something like this:

; Copyright (c) 1993-1996, Microsoft Corporation  

  

[version]  

signature="$Windows NT$"  

Class=Keyboard  

ClassGUID={4D36E96B-E325-11CE-BFC1-08002BE10318}  

Provider=%MS%  

LayoutFile=layout.inf  

DriverVer=07/01/2001,5.1.2600.1106  

  

[ClassInstall32.NT]  

AddReg=keyboard_class_addreg  

...

If you search the file for “.sys”, you’ll come across the entry that directs the user-mode 

PnP manager to install the i8042prt.sys and kbdclass.sys drivers:

...  

[STANDARD_CopyFiles]  

i8042prt.sys  

kbdclass.sys  

...

Before actually installing a driver, the user-mode PnP manager checks the system’s driver-

signing policy. If the settings specify that the system should block or warn of the installation 

of unsigned drivers, the user-mode PnP manager checks the driver’s INF file for an entry 
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that locates a catalog (a file that ends with the .cat extension) containing the driver’s digital 

signature.

Microsoft’s WHQL tests the drivers included with Windows and those submitted by hardware 

vendors. When a driver passes the WHQL tests, it is “signed” by Microsoft. This means that 

WHQL obtains a hash, or unique value representing the driver’s files, including its image file, 

and then cryptographically signs it with Microsoft’s private driver-signing key. The signed 

hash is stored in a catalog file and included on the Windows installation media or returned to 

the vendor that submitted the driver for inclusion with its driver.

EXPERIMENT: Viewing Catalog Files

When you install a component such as a driver that includes a catalog file, Windows 

copies the catalog file to a directory under \Windows\System32\Catroot. Navigate to 

that directory in Explorer and you find the subdirectory that contains .cat files. Nt5.cat 

and Nt5inf.cat store the signatures for Windows system files, for example.

If you open one of the catalog files, a dialog box appears with two pages. The page 

labeled General shows information about the signature on the catalog file, and the 

Security Catalog page has the hashes of the components that are signed with the cata-

log file. This screen shot of a catalog file for NVIDIA video drivers shows the hash for 

the video adapter’s kernel miniport driver. Other hashes in the catalog are associated 

with the various support DLLs that ship with the driver.
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As it is installing a driver, the user-mode PnP manager extracts the driver’s signature from its 

catalog file, decrypts the signature using the public half of Microsoft’s driver-signing private/

public key pair, and compares the resulting hash with a hash of the driver file it’s about to 

install. If the hashes match, the driver is verified as having passed WHQL testing. If a driver 

fails the signature verification, the user-mode PnP manager acts according to the settings of 

the system driver-signing policy, either failing the installation attempt, warning the user that 

the driver is unsigned, or silently installing the driver.

Note Drivers installed using setup programs that manually configure the registry and copy 

driver files to a system and driver files that are dynamically loaded by applications aren’t checked 

for signatures by the PnP manager’s signing policy. Instead, they are checked by the Kernel Mode 

Code Signing policy described in Chapter 3. Only drivers installed using INF files are validated 

against the PnP manager’s driver-signing policy.

After a driver is installed, the kernel-mode PnP manager (step 5 in Figure 7-42) starts the 

driver and calls its add-device routine to inform the driver of the presence of the device it 

was loaded for. The construction of the devnode then continues as described earlier.

Note The user-mode PnP manager also checks to see whether the driver it’s about to install is 

on the protected driver list maintained by Windows Update and, if so, blocks the installation with 

a warning to the user. Drivers that are known to have incompatibilities or bugs are added to the 

list and blocked from installation.

The Power Manager

Just as Windows Plug and Play features require support from a system’s hardware, its power-

management capabilities require hardware that complies with the Advanced Configuration 

and Power Interface (ACPI) specification (available at www.teleport.com/~acpi/spec.htm).

The ACPI standard defines various power levels for a system and for devices. The six sys-

tem power states are described in Table 7-8. They are referred to as S0 (fully on or working) 

through S5 (fully off ). Each state has the following characteristics:

Power consumption The amount of power the computer consumes

Software resumption The software state from which the computer resumes when 

moving to a “more on” state

Hardware latency The length of time it takes to return the computer to the fully on 

state
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TABLE 7-8 System Power-State Definitions

State Power Consumption Software Resumption Hardware Latency

S0 (fully on) Maximum Not applicable None

S1 (sleeping) Less than S0, more than 

S2

System resumes where it 

left off (returns to S0)

Less than 2 

seconds

S2 (sleeping) Less than S1, more than 

S3

System resumes where it 

left off (returns to S0)

2 or more seconds

S3 (sleeping) Less than S2; processor 

is off

System resumes where it 

left off (returns to S0)

Same as S2

S4 (hibernating) Trickle current to power 

button and wake circuitry

System restarts from saved 

hibernate file and resumes 

where it left off prior to 

hibernation (returns to S0)

Long and 

undefined

S5 (fully off) Trickle current to power 

button

System boot Long and 

undefined

States S1 through S4 are sleeping states, in which the computer appears to be off because 

of reduced power consumption. However, the computer retains enough information, either 

in memory or on disk, to move to S0. For states S1 through S3, enough power is required to 

preserve the contents of the computer’s memory so that when the transition is made to S0 

(when the user or a device wakes up the computer), the power manager continues executing 

where it left off before the suspend.

When the system moves to S4, the power manager saves the compressed contents of mem-

ory to a hibernation file named Hiberfil.sys, which is large enough to hold the uncompressed 

contents of memory, in the root directory of the system volume. (Compression is used to 

minimize disk I/O and to improve hibernation and resume-from-hibernation performance.) 

After it finishes saving memory, the power manager shuts off the computer. When a user 

subsequently turns on the computer, a normal boot process occurs, except that Bootmgr 

checks for and detects a valid memory image stored in the hibernation file. If the hibernation 

file contains saved system state, Bootmgr launches Winresume, which reads the contents of 

the file into memory, and then resumes execution at the point in memory that is recorded in 

the hibernation file.

On systems with hybrid sleep enabled (by default, only desktop computers), a user request 

to put the computer to sleep will actually be a combination of both the S3 state and the S4 

state: while the computer is put to sleep, an emergency hibernation file will also be written to 

disk. Unlike typical hibernation files, which contain almost all active memory, the emergency 

hibernation file includes only data that could not be paged in at a later time, making the sus-

pend operation faster than a typical hibernation (because less data is written to disk). Drivers 

will then be notified that an S4 transition is occurring, allowing them to configure themselves 

and save state just as if an actual hibernation request had been initiated. After this point, the 

system is put in the normal sleep state just like during a standard sleep transition. However, if 
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the power goes out, the system is now essentially in an S4 state—the user can power on the 

machine, and Windows will resume from the emergency hibernation file.

The computer never directly transitions between states S1 and S4; instead, it must move to 

state S0 first. As illustrated in Figure 7-43, when the system is moving from any of states S1 

through S5 to state S0, it’s said to be waking, and when it’s transitioning from state S0 to any 

of states S1 through S5, it’s said to be sleeping.

FIGURE 7-43 System power-state transitions

Although the system can be in one of six power states, ACPI defines devices as being in one 

of four power states, D0 through D3. State D0 is fully on, and state D3 is fully off. The ACPI 

standard leaves it to individual drivers and devices to define the meanings of states D1 and 

D2, except that state D1 must consume an amount of power less than or equal to that con-

sumed in state D0, and when the device is in state D2, it must consume power less than or 

equal to that consumed in D1. Microsoft, in conjunction with the major hardware OEMs, 

has defined a series of power management reference specifications that specify the device 

power states that are required for all devices in a particular class (for the major device classes: 

display, network, SCSI, and so on). For some devices, there’s no intermediate power state 

between fully on and fully off, which results in these states being undefined.

Power Manager Operation

Power management policy in Windows is split between the power manager and the indi-

vidual device drivers. The power manager is the owner of the system power policy. This own-

ership means that the power manager decides which system power state is appropriate at 

any given point, and when a sleep, hibernation, or shutdown is required, the power manager 

instructs the power-capable devices in the system to perform appropriate system power-

state transitions. The power manager decides when a system power-state transition is neces-

sary by considering a number of factors:

System activity level

System battery level
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Shutdown, hibernate, or sleep requests from applications

User actions, such as pressing the power button

Control Panel power settings

When the PnP manager performs device enumeration, part of the information it receives 

about a device is its power-management capabilities. A driver reports whether or not its 

devices support device states D1 and D2 and, optionally, the latencies, or times required, 

to move from states D1 through D3 to D0. To help the power manager determine when to 

make system power-state transitions, bus drivers also return a table that implements a map-

ping between each of the system power states (S0 through S5) and the device power states 

that a device supports.

The table lists the lowest possible device power state for each system state and directly 

reflects the state of various power planes when the machine sleeps or hibernates. For exam-

ple, a bus that supports all four device power states might return the mapping table shown 

in Table 7-9. Most device drivers turn their devices completely off (D3) when leaving S0 to 

minimize power consumption when the machine isn’t in use. Some devices, however, such 

as network adapter cards, support the ability to wake up the system from a sleeping state. 

This ability, along with the lowest device power state in which the capability is present, is also 

reported during device enumeration.

TABLE 7-9 Example System-to-Device Power Mappings

System Power State Device Power State

S0 (fully on) D0 (fully on)

S1 (sleeping) D1

S2 (sleeping) D2

S3 (sleeping) D2

S4 (hibernating) D3 (fully off)

S5 (fully off) D3 (fully off)

Driver Power Operation

When the power manager decides to make a transition between system power states, it 

sends power commands to a driver’s power dispatch routine. More than one driver can be 

responsible for managing a device, but only one of the drivers is designated as the device 

power-policy owner. This driver determines, based on the system state, a device’s power 

state. For example, if the system transitions between state S0 and S1, a driver might decide to 

move a device’s power state from D0 to D1.

Instead of directly informing the other drivers that share the management of the device of its 

decision, the device power-policy owner asks the power manager, via the PoRequestPowerIrp 

function, to tell the other drivers by issuing a device power command to their power dispatch 
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routines. This behavior allows the power manager to control the number of power com-

mands that are active on a system at any given time. For example, some devices in the sys-

tem might require a significant amount of current to power up. The power manager ensures 

that such devices aren’t powered up simultaneously.

EXPERIMENT: Viewing a Driver’s Power Mappings

You can see a driver’s system power state to driver power state mappings with Device 

Manager. Open the Properties dialog box for a device, and choose the Power Data 

entry in the drop-down list of the Details tab to see the mappings.

The dialog box also displays the current power state of the device, the device-specific 

power capabilities that it provides, and the power states from which it is able to wake 

the system.

Many power commands have corresponding query commands. For example, when 

the system is moving to a sleep state, the power manager will first ask the devices 

on the system whether the transition is acceptable. A device that is busy performing 

time- critical operations or interacting with device hardware might reject the command, 

which results in the system maintaining its current system power-state setting.
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EXPERIMENT: Viewing the System Power Capabilities and Policy

You can view a computer’s system power capabilities by using the !pocaps kernel 

debugger command. Here’s the output of the command when run on an ACPI-

compliant laptop running Windows Vista:

lkd> !pocaps 

PopCapabilities @ 0x82114d80 

  Misc Supported Features:  PwrButton SlpButton Lid S3 S4 S5 HiberFile FullWake  

                            VideoDim 

  Processor Features:       Thermal 

  Disk Features:            SpinDown 

  Battery Features:         BatteriesPresent 

    Battery 0 - Capacity:        0  Granularity:        0 

    Battery 1 - Capacity:        0  Granularity:        0 

    Battery 2 - Capacity:        0  Granularity:        0 

  Wake Caps 

    Ac OnLine Wake:         Sx 

    Soft Lid Wake:          Sx 

    RTC Wake:               S4 

    Min Device Wake:        Sx 

    Default Wake:           Sx

The Misc Supported Features line reports that, in addition to S0 (fully on), the system 

supports system power states S1, S3, S4, and S5 (it doesn’t implement S2) and has a 

valid hibernation file to which it can save system memory when it hibernates (state S4).

The Power Options page, shown here (available by selecting Power Options in Control 

Panel), lets you configure various aspects of the system’s power policy. The exact prop-

erties you can configure depend on the system’s power capabilities, which we just 

examined.
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By changing any of the preconfigured plan settings, you can set the idle detection 

 timeouts that control when the system turns off the monitor, spins down hard disks, 

goes to standby mode (moves to system power state S1), and hibernates (moves the 

system to power state S4). In addition, selecting the Change Advanced Power Settings 

option lets you specify the power-related behavior of the system when you press the 

power or sleep buttons or close a laptop’s lid.

The settings you configure in Power Options directly affect values in the system’s power 

policy, which you can display with the !popolicy debugger command. Here’s the output 

of the command on the same system:

lkd> !popolicy 

SYSTEM_POWER_POLICY (R.1) @ 0x82107994 

  PowerButton:         Sleep  Flags: 00000000   Event: 00000000   

  SleepButton:         Sleep  Flags: 00000000   Event: 00000000   

  LidClose:            Sleep  Flags: 00000000   Event: 00000000   

  Idle:                Sleep  Flags: 00000000   Event: 00000000   

  OverThrottled:        None  Flags: 00000000   Event: 00000000   

  IdleTimeout:           384  IdleSensitivity:        90% 

  MinSleep:               S3  MaxSleep:               S3 

  LidOpenWake:            S0  FastSleep:              S0 

  WinLogonFlags:           1  S4Timeout:            fd20 

  VideoTimeout:          300  VideoDim:                0 
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  SpinTimeout:           258  OptForPower:             0 

  FanTolerance:            0% ForcedThrottle:          0% 

 

  SpinTimeout:           258  OptForPower:             0 

  MinThrottle:             0% DyanmicThrottle:      None

The first lines of the display correspond to the button behaviors specified on the 

Advanced Settings tab of Power Options, and on this system both the power and the 

sleep buttons put the computer in a sleep state, just as closing the lid does.

The timeout values shown at the end of the output are expressed in seconds and dis-

played in hexadecimal notation. The values reported here directly correspond to the 

settings you can see configured on the Power Options page. (The laptop is on battery.) 

For example, the video timeout is 300, meaning the monitor turns off after 300 sec-

onds, or 5 minutes, and the hard disk spin-down timeout is 0x258, which corresponds 

to 600 seconds, or 10 minutes.

Driver and Application Control of Device Power

Besides responding to power manager commands related to system power-state transitions, 

a driver can unilaterally control the device power state of its devices. In some cases, a driver 

might want to reduce the power consumption of a device it controls when the device is left 

inactive for a period of time. Examples include monitors that support a dimmed mode and 

disks that support spin-down. A driver can either detect an idle device itself or use facilities 

provided by the power manager. If the device uses the power manager, it registers the device 

with the power manager by calling the PoRegisterDeviceForIdleDetection function.

This function informs the power manager of the timeout values to use to detect a device as 

idle and of the device power state that the power manager should apply when it detects the 

device as being idle. The driver specifies two timeouts: one to use when the user has config-

ured the computer to conserve energy and the other to use when the user has configured 

the computer for optimum performance. After calling PoRegisterDeviceForIdleDetection, the 

driver must inform the power manager, by calling the PoSetDeviceBusy function, whenever 

the device is active.

Although a device has control over its own power state, it does not have the ability to manip-

ulate the system power state or to prevent system power transitions from occurring. For 

example, if a badly designed driver doesn’t support any low-power states, it can choose to 

remain on or turn itself completely off without hindering the system’s overall ability to enter 

a low-power state—this is because the power manager only notifies the driver of a transition 

and doesn’t ask for consent.
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Although drivers and the kernel are chiefly responsible for power management, applica-

tions are also allowed to provide their input. User-mode processes can register for a variety 

of power notifications, such as when the battery is low or critically low, when the laptop has 

switched from DC (battery) to AC (adapter/charger) power, or when the system is initiating 

a power transition. Just like drivers, however, applications cannot veto these operations, and 

they can have up to two seconds to clean up any state necessary before a sleep transition.

Conclusion

The I/O system defines the model of I/O processing on Windows and performs functions 

that are common to or required by more than one driver. Its chief responsibility is to create 

IRPs representing I/O requests and to shepherd the packets through various drivers, return-

ing results to the caller when an I/O is complete. The I/O manager locates various drivers 

and devices by using I/O system objects, including driver and device objects. Internally, the 

Windows I/O system operates asynchronously to achieve high performance and provides 

both synchronous and asynchronous I/O capabilities to user-mode applications.

Device drivers include not only traditional hardware device drivers but also file system, net-

work, and layered filter drivers. All drivers have a common structure and communicate with 

one another and the I/O manager by using common mechanisms. The I/O system interfaces 

allow drivers to be written in a high-level language to lessen development time and to 

enhance their portability. Because drivers present a common structure to the operating sys-

tem, they can be layered one on top of another to achieve modularity and reduce duplica-

tion between drivers. Also, all Windows device drivers should be designed to work correctly 

on multiprocessor systems.

Finally, the role of the PnP manager is to work with device drivers to dynamically detect 

hardware devices and to build an internal device tree that guides hardware device enumera-

tion and driver installation. The power manager works with device drivers to move devices 

into low-power states when applicable to conserve energy and prolong battery life.

Four more upcoming chapters in the book will cover additional topics related to the I/O sys-

tem: storage management, file systems (including details on the NTFS file system), the cache 

manager, and networking.
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Chapter 8

Storage Management

Storage management defines the way that an operating system interfaces with nonvolatile 
storage devices and media. The term storage encompasses many different devices, including 
tape drives, optical media, USB flash drives, floppy disks, hard disks, network storage such 
as iSCSI, and storage area networks (SANs). Windows provides specialized support for each 
of these classes of storage media. Because our focus in this book is on the kernel compo-
nents of Windows, in this chapter we’ll concentrate on just the fundamentals of the hard-disk 
storage subsystem in Windows, which includes support for external disks and flash drives. 
Significant portions of the support Windows provides for removable media and remote stor-
age (offline archiving) are implemented in user mode.

In this chapter, we’ll examine how kernel-mode device drivers interface file system drivers to 
disk media, discuss how disks are partitioned, describe the way volume managers abstract 
and manage volumes, and present the implementation of multipartition disk-management 
features in Windows, including replicating and dividing file system data across physical disks 
for reliability and for performance enhancement. We’ll also describe how file system drivers 
mount volumes they are responsible for managing, and we’ll conclude by discussing drive 
encryption technology in Windows and support for automatic backups and recovery.

Storage Terminology

To fully understand the rest of this chapter, you need to be familiar with some basic 
terminology:

Disks are physical storage devices such as a hard disk, a 3.5-inch floppy disk, or a 
CD-ROM.

A disk is divided into sectors, which are addressable blocks of fixed size. Sector sizes are 
determined by hardware. Most hard disk sectors are 512 bytes, and CD-ROM sectors 
are typically 2048 bytes.

Partitions are collections of contiguous sectors on a disk. A partition table or other disk-
management database stores a partition’s starting sector, size, and other characteristics 
and is located on the same disk as the partition.

Simple volumes are objects that represent sectors from a single partition that file sys-
tem drivers manage as a single unit.

Multipartition volumes are objects that represent sectors from multiple partitions and 
that file system drivers manage as a single unit. Multipartition volumes offer perfor-
mance, reliability, and sizing features that simple volumes do not.
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Disk Drivers

The device drivers involved in managing a particular storage device are collectively known 
as a storage stack. Figure 8-1 shows each type of driver that might be present in a stack and 
includes a brief description of its purpose. This chapter describes the behavior of device driv-
ers below the file system layer in the stack. (The file system driver operation is described in 
Chapter 11.)

Application

Sends I/O request to FSI/O Subsystem

Imposes file structure on raw volumesFile system

Manages software snapshotsVolume snapshot

Presents volumes (C:, D:) to users;
supports basic and dynamic disks (RAID)

Volume manager

Manages disk partitionsPartition manager

Manages a specific device type, such
as disks, tapesClass

Miniport: Vendor supplied; functionally 
linked to specific port driver; manages
hardware specific details

Disk subsystem

Port Miniport

Port: Manages a specific
transport (Storport for

 RAID, FC, SCSI, etc.)

FIGURE 8-1 Windows storage stack

Winload

As you saw in Chapter 4, Winload is the Windows operating system file that conducts the first 
portion of the Windows boot process. Although Winload isn’t technically part of the storage 
stack, it is involved with storage management because it includes support for accessing disk 
devices before the Windows I/O system is operational. Winload resides on the boot volume; 
the boot-sector code on the system volume executes Bootmgr. Bootmgr reads the BCD from 
the system volume or EFI firmware and presents the computer’s boot choices to the user. 
Bootmgr translates the name of the BCD boot entry that a user selects to the appropriate 
boot partition and then runs Winload to load the Windows system files (starting with the 
registry, Ntoskrnl.exe and its dependencies, and the boot drivers) into memory to continue 
the boot process. In all cases, Winload uses the computer firmware to read the disk contain-
ing the system volume.
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Disk Class, Port, and Miniport Drivers

During initialization, the Windows I/O manager starts the disk storage drivers. Storage drivers 
in Windows follow a class/port/miniport architecture, in which Microsoft supplies a storage 
class driver that implements functionality common to all storage devices and a storage port 
driver that implements functionality common to a particular bus—such as a Small Computer 
System Interface (SCSI) bus or an Integrated Device Electronics (IDE) system—and OEMs sup-
ply miniport drivers that plug into the port driver to interface Windows to a particular con-
troller implementation.

In the disk storage driver architecture, only class drivers conform to the standard Windows 
device driver interfaces. Miniport drivers use a port driver interface instead of the device 
driver interface, and the port driver simply implements a collection of device driver  support 
routines that interface miniport drivers to Windows. This approach simplifies the role of 
miniport driver developers and, because Microsoft supplies operating system–specific port 
drivers, allows driver developers to focus on hardware-specific driver logic. Windows includes 
Disk (\Windows\System32\Drivers\Disk.sys), a class driver that implements functionality com-
mon to disks. Windows also provides a handful of disk port drivers. For example, Scsiport.sys 
is the legacy port driver for disks on SCSI buses, and Ataport.sys is a port driver for IDE-
based systems. Most newer drivers use the Storport.sys port driver as a replacement for 
Scsiport.sys. Storport.sys is designed to realize the high performance capabilities of hardware 
RAID and Fibre Channel adapters. The Storport model is similar to Scsiport, making it easy for 
vendors to migrate existing Scsiport miniport drivers to Storport. Miniport drivers that devel-
opers write to use Storport take advantage of several of Storport’s performance enhancing 
features, including support for the parallel execution of I/O initiation and completion on 
multiprocessor systems, more controllable I/O request-queue architecture, and execution of 
more code at lower IRQL to minimize the duration of hardware interrupt masking. Storport 
also includes support for dynamic redirection of interrupts and DPCs to the best (most local) 
NUMA node on systems that support it.

Both the Scsiport.sys and Ataport.sys drivers implement a version of the disk scheduling 
algorithm known as C-LOOK. The drivers place disk I/O requests in lists sorted by the first 
sector (also known as the logical block address, or LBA) at which an I/O request is directed. 
They use the KeInsertByKeyDeviceQueue and KeRemoveByKeyDeviceQueue functions (docu-
mented in the Windows Driver Kit) representing I/O requests as items and using a request’s 
starting sector as the key required by the functions. When servicing requests, the drivers 
proceed through the list from lowest sector to highest. When they reach the end of the list 
the drivers start back at the beginning, since new requests might have been inserted in the 
meantime. If disk requests are spread throughout a disk this approach results in the disk head 
continuously moving from near the outermost cylinders of the disk toward the innermost 
cylinders. Storport.sys does not implement disk scheduling because it is commonly used for 
managing I/Os directed at storage arrays where there is no clearly defined notion of a disk 
start and end.
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Windows ships with several miniport drivers, including one—Aha154x.sys—for Adaptec’s 
1540 family of SCSI controllers. On systems that have at least one ATAPI-based IDE device, 
Atapi.sys, Pciidex.sys, and Pciide.sys together provide miniport functionality. Most Windows 
installations include one or more of the drivers mentioned.

iSCSI Drivers

The development of iSCSI as a disk transport protocol integrates the SCSI protocol with 
TCP/IP networking so that computers can communicate with block-storage devices, includ-
ing disks, over IP networks. Storage area networking (SAN) is usually architected on Fibre 
Channel networking, but administrators can leverage iSCSI to create relatively inexpensive 
SANs from networking technology such as Gigabit Ethernet to provide scalability, disaster 
protection, efficient backup, and data protection. Windows support for iSCSI comes in the 
form of the Microsoft iSCSI Software Initiator, which can be installed as a feature on Windows 
Vista Enterprise and Windows Vista Ultimate, as well as on Windows Server 2008.

The Microsoft iSCSI Software Initiator includes several components:

Initiator This optional component, which consists of the Storport port driver and the 
iSCSI miniport driver (\Windows\System32\Drivers\Msiscsi.sys), uses the TCP/IP driver to 
implement software iSCSI over standard Ethernet adapters and TCP/IP offloaded net-
work adapters.

Initiator service This service, implemented in \Windows\System32\Iscsiexe.exe, man-
ages the discovery and security of all iSCSI initiators as well as session initiation and ter-
mination. iSCSI device discovery functionality is implemented in \Windows\System32\
Iscsium.dll and conforms to the Internet Storage Name Service (iSNS) protocol.

Management applications These include Iscsicli.exe, a command-line tool for man-
aging iSCSI device connections and security, and the corresponding Control Panel 
application.

Some vendors produce iSCSI adapters that offload the iSCSI protocol to hardware. The 
Initiator service works with these adapters, which must support iSNS, so that all iSCSI devices, 
including those discovered by the Initiator service and those discovered by iSCSI hardware, 
are recognized and managed through standard Windows interfaces.

Multipath I/O (MPIO) Drivers

Most disk devices have one path—or series of adapters, cables, and switches—between them 
and a computer. Servers requiring high levels of availability use multipathing solutions, where 
more than one set of connection hardware exists between the computer and a disk so that 
if a path fails the system can still access the disk via an alternate path. Without support from 
the operating system or disk drivers, however, a disk with two paths, for example, appears as 
two different disks. Windows includes multipath I/O support to manage multipath disks as 
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a single disk. This support relies on built-in or third-party drivers called device-specific mod-
ules (DSMs) to manage details of the path management—for example, load balancing poli-
cies that choose which path to use for routing requests and error detection mechanisms to 
inform Windows when a path fails. MPIO support is available for Windows Server 2008 in the 
form of the Microsoft MPIO Driver Development Kit, which hardware and software vendors 
can license.

In a Windows MPIO storage stack, shown in Figure 8-2, the disk driver includes functionality 
for MPIO devices. Disk.sys is responsible for claiming ownership of device objects represent-
ing multipath disks—so that it can ensure that only one device object is created to represent 
those disks—and for locating the appropriate DSM to manage the paths to the device. The 
Multipath Bus Driver (\Windows\System32\Drivers\Mpio.sys) manages connections between 
the computer and the device, including power management for the device. Disk.sys informs 
Mpio.sys of the presence of the devices for it to manage. Finally, the port driver for a mul-
tipath disk is also MPIO-aware in order to manage information passed up the device stack. 
There are therefore a total of three disk device stacks, two representing the physical paths 
(children of the adapter device stacks) and one representing the disk (child of the MPIO 
adapter device stack). When the latter receives a request, it uses the DSM to determine which 
path to forward that request to. The DSM makes the selection based on policy, and the 
request is sent to the corresponding disk device stack, which in turn forwards it to the device 
via the corresponding adapter.

EXPERIMENT: Watching Physical Disk I/O

Diskmon from Windows Sysinternals (www.microsoft.com/technet/sysinternals) uses the 
disk class driver’s Event Tracing for Windows (or ETW, which is described in Chapter 3) 
instrumentation to monitor I/O activity to physical disks and display it in a window. 
Diskmon updates once a second with new data. For each operation, Diskmon shows the 
time, duration, target disk number, type and offset, and length, as you can see in the 
screen shown here.
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MPIO (FDO)

Pnp (PDO)

Virtual adapter
device stack

Disk (FDO)

Port driver
(PDO)

Disk device stack

Disk (FDO)

Port driver
(PDO)

Disk device stack

Port driver
(FDO)

PCI (PDO)

Adapter 
device stack

Port driver
(FDO)

PCI (PDO)

Adapter 
device stack

FDO = Functional device object
PDO = Physical device object

Note:

Disk (FDO)

Disk device stack

MPIO (PDO) DSM

Adapter 1 Adapter 2

Disk

FIGURE 8-2 Windows MPIO storage stack

Disk Device Objects

The Windows disk class driver creates device objects that represent disks. Device objects that 
represent disks have names of the form \Device\HarddiskX\DRX; the number that identifies 
the disk replaces both Xs. To maintain compatibility with applications that use older naming 
conventions, the disk class driver creates symbolic links with Windows NT 4–formatted names 
that refer to the device objects the driver created. For example, the volume manager driver 
creates the link \Device\Harddisk0\Partition0 to refer to \Device\Harddisk0\DR0, and \Device\
Harddisk0\Partition1 to refer to the first partition device object of the first disk. For backward 
compatibility with applications that expect legacy names, the disk class driver also creates 
the same symbolic links in Windows that represent physical drives that it would have created 
on Windows NT 4 systems. Thus, for example, the link \GLOBAL??\PhysicalDrive0 references 
\Device\Harddisk0\DR0. Figure 8-3 shows the WinObj utility from Sysinternals displaying the 
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contents of a Harddisk directory for a basic disk. You can see the physical disk and partition 
device objects in the pane at the right.

FIGURE 8-3 WinObj showing a Harddisk directory of a basic disk

As you saw in Chapter 3, the Windows API is unaware of the Windows object manager 
namespace. Windows reserves two groups of namespace subdirectories to use, one of which 
is the \Global?? subdirectory. (The other group is the collection of per-session \BaseNamed-
Objects subdirectories, which are covered in Chapter 3.) In this subdirectory, Windows makes 
available device objects that Windows applications interact with—including COM and parallel 
ports—as well as disks. Because disk objects actually reside in other subdirectories, Windows 
uses symbolic links to connect names under \Global?? with objects located elsewhere in 
the namespace. For each physical disk on a system, the I/O manager creates a \Global??\
PhysicalDriveX link that points to \Device\HarddiskX\DRX. (Numbers, starting from 0, replace 
X.) Windows applications that directly interact with the sectors on a disk open the disk by 
calling the Windows CreateFile function and specifying the name \\.\PhysicalDriveX (in which 
X is the disk number) as a parameter. The Windows application layer converts the name to 
\Global??\PhysicalDriveX before handing the name to the Windows object manager.

Partition Manager

The partition manager, \Windows\System32\Drivers\Partmgr.sys, is responsible for dis-
covering, creating, deleting, and managing partitions. To become aware of partitions, the 
partition manager acts as the function driver for disk device objects created by disk class 
drivers. The partition manager uses the I/O manager’s IoReadPartitionTableEx function to 
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identify partitions and create device objects that represent them. As miniport drivers pres-
ent the disks that they identify early in the boot process to the disk class driver, the disk 
class driver invokes the IoReadPartitionTableEx function for each disk. This function invokes 
sector-level disk I/O that the class, port, and miniport drivers provide to read a disk’s MBR 
or GPT (described later in this chapter) and construct an internal representation of the disk’s 
partitioning. The partition manager driver creates device objects to represent each primary 
partition (including logical drives within extended partitions) that the driver obtains from 
IoRead PartitionTableEx. These names have the form \Device\HarddiskVolumeY, where Y rep-
resents the partition number.

When a partition is added, a private IOCTL command is sent to each registered volume 
manager, asking the volume manager if it owns that partition. If so, the partition manager 
remembers the specific volume manager that claimed that partition, and from this point on it 
notifies that driver when the partition is either deleted or modified. Volume manager device 
drivers receive the notification of partitions for disks that they manage and define volume 
objects when they account for all the partitions that make up the volumes.

The partition manager is also responsible for ensuring that all disks and partitions have a 
unique ID (signature for MBR and GUIDs for GPT). If it encounters two disks with the same 
ID, it tries to determine (by writing to one disk and reading from the other) whether they are 
two different disks or the same disk being viewed via two different paths (this can happen if 
the MPIO software isn’t present or isn’t working correctly). If the two disks are different, the 
partition manager changes the ID of one of them; if they are two paths to the same disk, the 
partition manager hides all the partitions on one of the disks from the volume managers to 
prevent the partitions from being mounted twice.

By managing disk attributes that are persisted in the registry (such as read-only and offline), 
the partition manager can perform actions such as hiding partitions from the volume manag-
ers, which inhibits the volumes from manifesting on the system. Clustering and Hyper-V use 
these attributes. The partition manager also redirects write operations that are sent directly 
to the disk but fall within a partition space to the corresponding volume manager. The vol-
ume manager determines whether to allow the write operation based on whether the vol-
ume is dismounted or not.

Volume Management

Windows has the concept of basic and dynamic disks. Windows calls disks that rely exclusively 
on the MBR-style or GPT partitioning scheme basic disks. Dynamic disks implement a more 
flexible partitioning scheme than that of basic disks. The fundamental difference between 
basic and dynamic disks is that dynamic disks support the creation of new multipartition 
volumes. Recall from the list of terms earlier in the chapter that multipartition volumes pro-
vide performance, sizing, and reliability features not supported by simple volumes. Windows 
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manages all disks as basic disks unless you manually create dynamic disks or convert existing 
basic disks (with enough free space) to dynamic disks. Microsoft recommends that you use 
basic disks unless you require the multipartition functionality of dynamic disks.

Note Windows does not support multipartition volumes on basic disks. For a number of rea-
sons, including the fact that laptops usually have only one disk and laptop disks typically don’t 
move easily between computers, Windows uses only basic disks on laptops. In addition, only 
fixed disks can be dynamic, and disks located on IEEE 1394 or USB buses or on shared cluster 
server disks are always basic disks (or fixed dynamic disks).

Basic Disks

This section describes the two types of partitioning, MBR-style and GPT, that Windows uses 
to define volumes on basic disks, and the volume manager driver that presents the volumes 
to file system drivers. Windows silently defaults to defining all disks as basic disks.

MBR-Style Partitioning

The standard BIOS implementations that BIOS-based (non-EFI) x86 hardware uses dictate one 
requirement of the partitioning format in Windows—that the first sector of the primary disk 
contains the Master Boot Record (MBR). When a BIOS-based x86 system boots, the comput-
er’s BIOS reads the MBR and treats part of the MBR’s contents as executable code. The BIOS 
invokes the MBR code to initiate an operating system boot process after the BIOS performs 
preliminary configuration of the computer’s hardware. In Microsoft operating systems such 
as Windows, the MBR also contains a partition table. A partition table consists of four entries 
that define the locations of as many as four primary partitions on a disk. The partition table 
also records a partition’s type. Numerous predefined partition types exist, and a partition’s 
type specifies which file system the partition includes. For example, partition types exist for 
FAT32 and NTFS.

A special partition type, an extended partition, contains another MBR with its own partition 
table. The equivalent of a primary partition in an extended partition is called a logical drive. 
By using extended partitions, Microsoft’s operating systems overcome the apparent limit of 
four partitions per disk. In general, the recursion that extended partitions permit can con-
tinue indefinitely, which means that no upper limit exists to the number of possible partitions 
on a disk. The Windows boot process makes evident the distinction between primary and 
logical drives. The system must mark one primary partition of the primary disk as active. The 
Windows code in the MBR loads the code stored in the first sector of the active partition (the 
system volume) into memory and then transfers control to that code. Because of the role in 
the boot process played by this first sector in the primary partition, Windows designates the 
first sector of any partition as the boot sector. As you will see in Chapter 13, every partition 
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formatted with a file system has a boot sector that stores information about the structure of 
the file system on that partition.

GUID Partition Table Partitioning

As part of an initiative to provide a standardized and extensible firmware platform for oper-
ating systems to use during their boot process, Intel has designed the Extensible Firmware 
Interface (EFI) specification. EFI includes a mini–operating system environment implemented 
in firmware (typically ROM) that operating systems use early in the system boot process to 
load system diagnostics and their boot code. EFI defines a partitioning scheme, called the 
GUID (globally unique identifier) Partition Table (GPT) that addresses some of the shortcom-
ings of MBR-style partitioning. For example, the sector addresses that the GPT structures 
use are 64 bits wide instead of 32 bits. A 32-bit sector address is sufficient to access only 2 
terabytes (TB) of storage, while a GPT allows the addressing of disk sizes into the foreseeable 
future. Other advantages of the GPT scheme include the fact that it uses cyclic redundancy 
checksums (CRC) to ensure the integrity of the partition table, and it maintains a backup copy 
of the partition table. GPT takes its name from the fact that in addition to storing a 36-byte 
Unicode partition name for each partition, it assigns each partition a GUID.

Figure 8-4 shows a sample GPT partition layout. Like for MBR-style partitioning, the first 
sector of a GPT disk is an MBR that serves to protect the GPT partitioning in case the disk is 
accessed from a non-GPT aware operating system. However, the second and last sectors of 
the disk store the GPT headers with the actual partition table following the second sector 
and preceding the last sector. With its extensible list of partitions, GPT partitioning doesn’t 
require nested partitions, as MBR partitions do.

M
BR

Partition
table header

0 1 ... n Partition
table header0 1 ... n

Partition 1

Start
partition

End
partition Last usable block

LBAnLBA1
Start

partition
End

partition

First usable block

LBA0

Primary partition table Backup partition table

Note: LBA = Logical block address

FIGURE 8-4 Example GPT partition layout
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Note Because Windows doesn’t support the creation of multipartition volumes on basic disks, 
a new basic disk partition is the equivalent of a volume. For this reason, the Disk Management 
MMC snap-in uses the term partition when you create a volume on a basic disk.

Basic Disk Volume Manager

The volume manager driver (\Windows\System32\Drivers\Volmgr.sys) creates disk device 
objects that represent volumes on basic disks and plays an integral role in managing all basic 
disk volumes, including simple volumes. For each volume, the volume manager creates a 
device object of the form \Device\HarddiskVolumeX, in which X is a number (starting from 1) 
that identifies the volume.

The volume manager is actually a bus driver because it’s responsible for enumerating basic 
disks to detect the presence of basic volumes and report them to the Windows Plug and Play 
(PnP) manager. To implement this enumeration, the volume manager leverages the PnP man-
ager, with the aid of the partition manager (Partmgr.sys) driver to determine what basic disk 
partitions exist. The partition manager registers with the PnP manager so that Windows can 
inform the partition manager whenever the disk class driver creates a partition device object. 
The partition manager informs the volume manager about new partition objects through a 
private interface and creates filter device objects that the partition manager then attaches 
to the partition objects. The existence of the filter objects prompts Windows to inform the 
partition manager whenever a partition device object is deleted so that the partition man-
ager can update the volume manager. The disk class driver deletes a partition device object 
when a partition in the Disk Management MMC snap-in is deleted. As the volume manager 
becomes aware of partitions, it uses the basic disk configuration information to determine 
the correspondence of partitions to volumes and creates a volume device object when it has 
been informed of the presence of all the partitions in a volume’s description.

Windows volume drive-letter assignment, a process described shortly, creates drive-letter 
symbolic links under the \Global?? object manager directory that point to the volume device 
objects that the volume manager creates. When the system or an application accesses a vol-
ume for the first time, Windows performs a mount operation that gives file system drivers the 
opportunity to recognize and claim ownership for volumes formatted with a file system type 
they manage. (Mount operations are described in the section “Volume Mounting” later in this 
chapter.)
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Dynamic Disks

As we’ve stated, dynamic disks are the disk format in Windows necessary for creating mul-
tipartition volumes such as mirrors, striped arrays, and RAID-5 arrays (described later in the 
chapter). Dynamic disks are partitioned using Logical Disk Manager (LDM) partitioning. LDM 
is part of the Virtual Disk Service (VDS) subsystem in Windows, which consists of user-mode 
and device driver components and oversees dynamic disks. A major difference between 
LDM’s partitioning and MBR-style and GPT partitioning is that LDM maintains one unified 
database that stores partitioning information for all the dynamic disks on a system—includ-
ing multipartition-volume configuration.

The LDM Database

The LDM database resides in a 1-MB reserved space at the end of each dynamic disk. The 
need for this space is the reason Windows requires free space at the end of a basic disk 
before you can convert it to a dynamic disk. The LDM database consists of four regions, 
which Figure 8-5 shows: a header sector that LDM calls the Private Header, a table of con-
tents area, a database records area, and a transactional log area. (The fifth region shown 
in Figure 8-5 is simply a copy of the Private Header.) The Private Header sector resides 
1 MB before the end of a dynamic disk and anchors the database. As you spend time with 
Windows, you’ll quickly notice that it uses GUIDs to identify just about everything, and disks 
are no exception. A GUID (globally unique identifier) is a 128-bit value that various compo-
nents in Windows use to uniquely identify objects. LDM assigns each dynamic disk a GUID, 
and the Private Header sector notes the GUID of the dynamic disk on which it resides—hence 
the Private Header’s designation as information that is private to the disk. The Private Header 
also stores the name of the disk group, which is the name of the computer concatenated with 
Dg0 (for example, Daryl-Dg0 if the computer’s name is Daryl), and a pointer to the beginning 
of the database table of contents. For reliability, LDM keeps a copy of the Private Header in 
the disk’s last sector.

The database table of contents is 16 sectors in size and contains information regarding the 
database’s layout. LDM begins the database record area immediately following the table of 
contents with a sector that serves as the database record header. This sector stores informa-
tion about the database record area, including the number of records it contains, the name 
and GUID of the disk group the database relates to, and a sequence number identifier that 
LDM uses for the next entry it creates in the database. Sectors following the database record 
header contain 128-byte fixed-size records that store entries that describe the disk group’s 
partitions and volumes.

A database entry can be one of four types: partition, disk, component, and volume. LDM uses 
the database entry types to identify three levels that describe volumes. LDM connects entries 
with internal object identifiers. At the lowest level, partition entries describe soft partitions, 
which are contiguous regions on a disk; identifiers stored in a partition entry link the entry 
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to a component and disk entry. A disk entry represents a dynamic disk that is part of the disk 
group and includes the disk’s GUID. A component entry serves as a connector between one or 
more partition entries and the volume entry each partition is associated with. A volume entry 
stores the GUID of the volume, the volume’s total size and state, and a drive-letter hint. Disk 
entries that are larger than a database record span multiple records; partition, component, 
and volume entries rarely span multiple records.

Transactional 
log

Table of
contents

Database
records

Private Header Database
record header

Private Header
mirror

1 MB

FIGURE 8-5 LDM database layout

LDM requires three entries to describe a simple volume: a partition, component, and volume 
entry. The following listing shows the contents of a simple LDM database that defines one 
200-MB volume that consists of one partition:

Disk Entry      Volume Entry    Component Entry    Partition Entry  

Name: Disk1     Name: Volume1   Name: Volume1-01   Name: Disk1-01  

GUID: XXX-XX... ID: 0x408       ID: 0x409          ID: 0x407  

Disk ID: 0x404  State: ACTIVE   Parent ID: 0x408   Parent ID: 0x409  

                Size: 200MB                        Disk ID: 0x404  

                GUID: XXX-XX...                    Start: 300MB  

                Drive Hint: H:                     Size: 200MB

The partition entry describes the area on a disk that the system assigned to the volume, the 
component entry connects the partition entry with the volume entry, and the volume entry 
contains the GUID that Windows uses internally to identify the volume. Multipartition vol-
umes require more than three entries. For example, a striped volume (which is described later 
in the chapter) consists of at least two partition entries, a component entry, and a volume 
entry. The only volume type that has more than one component entry is a mirror; mirrors 
have two component entries, each of which represents one-half of the mirror. LDM uses two 
component entries for mirrors so that when you break a mirror, LDM can split it at the com-
ponent level, creating two volumes with one component entry each.

The final area of the LDM database is the transactional log area, which consists of a few 
sectors for storing backup database information as the information is modified. This setup 
safeguards the database in case of a crash or power failure because LDM can use the log to 
return the database to a consistent state.
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EXPERIMENT: Using LDMDump to View the LDM Database

You can use LDMDump from Sysinternals to view detailed information about the con-
tents of the LDM database. LDMDump takes a disk number as a command-line argu-
ment, and its output is usually more than a few screens in size, so you should pipe its 
output to a file for viewing in a text editor—for example, ldmdump /d0 > disk.txt. The 
following example shows excerpts of LDMDump output. The LDM database header dis-
plays first, followed by the LDM database records that describe a 12-GB disk with three 
4-GB dynamic volumes. The volume’s database entry is listed as Volume1. At the end of 
the output, LDMDump lists the soft partitions and definitions of volumes it locates in 
the database.

C:\>ldmdump /d0  

Logical Disk Manager Configuration Dump v1.03  

Copyright (C) 2000-2002 Mark Russinovich  

  

PRIVATE HEAD:  

Signature          : PRIVHEAD 

Version            : 2.12 

Disk Id            : b5f4a801-758d-11dd-b7f0-000c297f0108 

Host Id            : 1b77da20-c717-11d0-a5be-00a0c91db73c 

Disk Group Id      : b5f4a7fd-758d-11dd-b7f0-000c297f0108 

Disk Group Name    : WIN-SL5V78KD01W-Dg0 

Logical disk start : 3F 

Logical disk size  : 7FF7C1 (4094 MB) 

Configuration start: 7FF800 

Configuration size : 800 (1 MB) 

Number of TOCs     : 2 

TOC size           : 7FD (1022 KB) 

Number of Configs  : 1 

Config size        : 5C9 (740 KB) 

Number of Logs     : 1 

Log size           : E0 (112 KB)  

  

TOC 1: 

Signature          : TOCBLOCK 

Sequence           : 0x1 

Config bitmap start: 0x11 

Config bitmap size : 0x5C9 

Log bitmap start   : 0x5DA 

Log bitmap size    : 0xE0  

...  

VBLK DATABASE:  

0x000004: [000001] <DiskGroup> 

         Name        : WIN-SL5V78KD01W-Dg0 

         Object Id   : 0x0001 

         GUID        : b5f4a7fd-758d-11dd-b7f0-000c297f010 

0x000006: [000003] <Disk> 

         Name        : Disk1 

         Object Id   : 0x0002 

         Disk Id     : b5f4a7fe-758d-11dd-b7f0-000c297f010 
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0x000007: [000005] <Disk> 

         Name        : Disk2 

         Object Id   : 0x0003 

         Disk Id     : b5f4a801-758d-11dd-b7f0-000c297f010 

 

0x000008: [000007] <Disk> 

         Name        : Disk3 

         Object Id   : 0x0004 

         Disk Id     : b5f4a804-758d-11dd-b7f0-000c297f010 

 

0x000009: [000009] <Component> 

         Name        : Volume1-01 

         Object Id   : 0x0006 

         Parent Id   : 0x0005 

 

0x00000A: [00000A] <Partition> 

         Name        : Disk1-01 

         Object Id   : 0x0007 

         Parent Id   : 0x3157 

         Disk Id     : 0x0000 

         Start       : 0x7C100 

         Size        : 0x0 (0 MB) 

         Volume Off  : 0x3 (0 MB) 

 

0x00000B: [00000B] <Partition> 

         Name        : Disk2-01 

         Object Id   : 0x0008 

         Parent Id   : 0x3157 

         Disk Id     : 0x0000 

         Start       : 0x7C100 

         Size        : 0x0 (0 MB) 

         Volume Off  : 0x7FE80003 (1047808 MB) 

 

0x00000C: [00000C] <Partition> 

         Name        : Disk3-01 

         Object Id   : 0x0009 

         Parent Id   : 0x3157 

         Disk Id     : 0x0000 

         Start       : 0x7C100 

         Size        : 0x0 (0 MB) 

         Volume Off  : 0xFFD00003 (2095616 MB) 

 

0x00000D: [00000F] <Volume> 

         Name        : Volume1 

         Object Id   : 0x0005 

         Volume state: ACTIVE 

         Size        : 0x017FB800 (12279 MB) 

         GUID        : b5f4a806-758d-11dd-b7f0-c297f0108 

         Drive Hint  : E:
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LDM and GPT or MBR-Style Partitioning

When you install Windows on a computer, one of the first things it requires you to do is to 
create a partition on the system’s primary physical disk. Windows defines the system vol-
ume on this partition to store the files that it invokes early in the boot process. In addition, 
Windows Setup requires you to create a partition that serves as the home for the boot vol-
ume, onto which the setup program installs the Windows system files and creates the sys-
tem directory (\Windows). The system and boot volumes can be the same volume, in which 
case you don’t have to create a new partition for the boot volume. The nomenclature that 
Microsoft defines for system and boot volumes is somewhat confusing. The system volume 
is where Windows places boot files, including the boot loader (Winload) and Boot Manager 
(Bootmgr), and the boot volume is where Windows stores operating system files such as 
Ntoskrnl.exe, the core kernel file.

Although the partitioning data of a dynamic disk resides in the LDM database, LDM imple-
ments MBR-style partitioning or GPT partitioning so that the Windows boot code can find 
the system and boot volumes when the volumes are on dynamic disks. (Winload and the 
IA64 firmware, for example, know nothing about LDM partitioning.) If a disk contains the 
system or boot volumes, partitions in the MBR or GPT describe the location of those vol-
umes. Otherwise, one partition encompasses the entire usable area of the disk. LDM marks 
this partition as type “LDM”. The region encompassed by this place-holding MBR-style or 
GPT partition is where LDM creates partitions that the LDM database organizes. On MBR-
partitioned disks the LDM database resides in hidden sectors at the end of the disk, and on 
GPT-partitioned disks there exists an LDM metadata partition that encompasses the LDM 
database near the beginning of the disk.

Another reason LDM creates an MBR or a GPT is so that legacy disk-management utilities, 
including those that run under Windows and under other operating systems in dual-boot 
environments, don’t mistakenly believe a dynamic disk is unpartitioned.

Because LDM partitions aren’t described in the MBR or GPT of a disk, they are called soft 
partitions; MBR-style and GPT partitions are called hard partitions. Figure 8-6 illustrates this 
dynamic disk layout on an MBR-style partitioned disk.

Master Boot Record
LDM partition area

1 MB

LDM database

FIGURE 8-6 Internal dynamic disk organization
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Dynamic Disk Volume Manager

The Disk Management MMC snap-in DLL (DMDiskManager, located in \Windows\System32\
Dmdskmgr.dll), shown in Figure 8-7, is used to create and change the contents of the LDM 
database. When you launch the Disk Management MMC snap-in, DMDiskManager loads into 
memory and reads the LDM database from each disk and returns the information it obtains 
to the user. If it detects a database from another computer’s disk group, it notes that the vol-
umes on the disk are foreign and lets you import them into the current computer’s database 
if you want to use them. As you change the configuration of dynamic disks, DMDiskManager 
updates its in-memory copy of the database. When DMDiskManager commits changes, it 
passes the updated database to the VolMgrX driver (%SystemRoot%\System32\Drivers\Vol-
mgrx.sys). VolMgrX is a kernel-mode DLL that provides dynamic disk functionality for VolMgr, 
so it controls access to the on-disk database and creates device objects that represent the 
volumes on dynamic disks. When you exit Disk Management, DMDiskManager stops.

FIGURE 8-7 Disk Management MMC snap-in

Multipartition Volume Management

VolMgr is responsible for presenting volumes that file system drivers manage and for map-
ping I/O directed at volumes to the underlying partitions that they’re part of. For simple 
volumes, this process is straightforward: the volume manager ensures that volume-relative 
offsets are translated to disk-relative offsets by adding the volume-relative offset to the vol-
ume’s starting disk offset.

Multipartition volumes are more complex because the partitions that make up a volume can 
be located on discontiguous partitions or even on different disks. Some types of multiparti-
tion volumes use data redundancy, so they require more involved volume-to-disk–offset 
translation. Thus, VolMgr uses VolMgrX to process all I/O requests aimed at the multipartition 
volumes they manage by determining which partitions the I/O ultimately affects.
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The following types of multipartition volumes are available in Windows:

Spanned volumes

Mirrored volumes

Striped volumes

RAID-5 volumes

After describing multipartition-volume partition configuration and logical operation for each 
of the multipartition-volume types, we’ll cover the way that the VolMgr driver handles IRPs 
that a file system driver sends to multipartition volumes. The term volume manager is used to 
represent VolMgr and the VolMgrX extension DLL throughout the explanation of multiparti-
tion volumes.

Spanned Volumes

A spanned volume is a single logical volume composed of a maximum of 32 free partitions 
on one or more disks. The Disk Management MMC snap-in combines the partitions into a 
spanned volume, which can then be formatted for any of the Windows-supported file sys-
tems. Figure 8-8 shows a 100-MB spanned volume identified by drive letter D that has been 
created from the last third of the first disk and the first third of the second. Spanned volumes 
were called volume sets in Windows NT 4.

NTFS 
Volume 2

NTFS 
Volume 1

NTFS 
Volume 3

NTFS 
Volume 2

C:
(100 MB)

E:
(100 MB)

FIGURE 8-8 Spanned volume

A spanned volume is useful for consolidating small areas of free disk space into one larger 
volume or for creating a single large volume out of two or more small disks. If the spanned 
volume has been formatted for NTFS, it can be extended to include additional free areas 
or additional disks without affecting the data already stored on the volume. This extensibil-
ity is one of the biggest benefits of describing all data on an NTFS volume as a file. NTFS 
can dynamically increase the size of a logical volume because the bitmap that records the 
allocation status of the volume is just another file—the bitmap file. The bitmap file can be 
extended to include any space added to the volume. Dynamically extending a FAT volume, 
on the other hand, would require the FAT itself to be extended, which would dislocate every-
thing else on the disk.
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A volume manager hides the physical configuration of disks from the file systems installed on 
Windows. NTFS, for example, views volume D: in Figure 8-8 as an ordinary 100-MB volume. 
NTFS consults its bitmap to determine what space in the volume is free for allocation. It then 
calls the volume manager to read or write data beginning at a particular byte offset on the 
volume. The volume manager views the physical sectors in the spanned volume as numbered 
sequentially from the first free area on the first disk to the last free area on the last disk. It 
determines which physical sector on which disk corresponds to the supplied byte offset.

Striped Volumes

A striped volume is a series of up to 32 partitions, one partition per disk, that gets combined 
into a single logical volume. Striped volumes are also known as RAID level 0 (RAID-0) vol-
umes. Figure 8-9 shows a striped volume consisting of three partitions, one on each of three 
disks. (A partition in a striped volume need not span an entire disk; the only restriction is that 
the partitions on each disk be the same size.)

FIGURE 8-9 Striped volume

To a file system, this striped volume appears to be a single 450-MB volume, but a volume 
manager optimizes data storage and retrieval times on the striped volume by distributing the 
volume’s data among the physical disks. The volume manager accesses the physical sectors 
of the disks as if they were numbered sequentially in stripes across the disks, as illustrated in 
Figure 8-10.
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      24 25 26 27 ... 

FIGURE 8-10 Logical numbering of physical sectors on a striped volume

Because each stripe unit is a relatively narrow 64 KB (a value chosen to prevent small indi-
vidual reads and writes from accessing two disks), the data tends to be distributed evenly 
among the disks. Striping thus increases the probability that multiple pending read and 
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write operations will be bound for different disks. And because data on all three disks can 
be accessed simultaneously, latency time for disk I/O is often reduced, particularly on heavily 
loaded systems.

Spanned volumes make managing disk volumes more convenient, and striped volumes 
spread the I/O load over multiple disks. These two volume-management features don’t pro-
vide the ability to recover data if a disk fails, however. For data recovery, a volume manager 
implements two redundant storage schemes: mirrored volumes and RAID-5 volumes. These 
features are created with the Windows Disk Management administrative tool.

Mirrored Volumes

In a mirrored volume, the contents of a partition on one disk are duplicated in an equal-
sized partition on another disk. Mirrored volumes are sometimes referred to as RAID level 1 
(RAID-1). A mirrored volume is shown in Figure 8-11.

FIGURE 8-11 Mirrored volume

When a program writes to drive C:, the volume manager writes the same data to the same 
location on the mirror partition. If the first disk or any of the data on its C: partition becomes 
unreadable because of a hardware or software failure, the volume manager automatically 
accesses the data from the mirror partition. A mirror volume can be formatted for any of the 
Windows-supported file systems. The file system drivers remain independent and are not 
affected by the volume manager’s mirroring activity.

Mirrored volumes can aid in read I/O throughput on heavily loaded systems. When I/O activ-
ity is high, the volume manager balances its read operations between the primary partition 
and the mirror partition (accounting for the number of unfinished I/O requests pending from 
each disk). Two read operations can proceed simultaneously and thus theoretically finish in 
half the time. When a file is modified, both partitions of the mirror set must be written, but 
disk writes are performed in parallel, so the performance of user-mode programs is generally 
not affected by the extra disk update.
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Mirrored volumes are the only multipartition volume type supported for system and boot 
volumes. The reason for this is that the Windows boot code, including the MBR code and 
Winload, don’t have the sophistication required to understand multipartition volumes—
mirrored volumes are the exception because the boot code treats them as simple volumes, 
reading from the half of the mirror marked as the boot or system drive in the MBR-style par-
tition table. Because the boot code doesn’t modify the disk, it can safely ignore the other half 
of the mirror.

EXPERIMENT: Watching Mirrored Volume I/O Operations

Using the Reliability and Performance Monitor, you can verify that write operations 
directed at mirrored volumes copy to both disks that make up the mirror and that read 
operations, if relatively infrequent, occur primarily from one half of the volume. This 
experiment requires three hard disks. If you don’t have three disks, you can skip the 
experiment setup instructions and view the Performance tool screen shot in this experi-
ment that demonstrates the experiment’s results.

Use the Disk Management MMC snap-in to create a mirrored volume. To do this, per-
form the following steps:

 1. Run Disk Management by starting Computer Management, expanding the 
Storage tree, and clicking Disk Management (or by inserting Disk Management as 
a snap-in in an MMC console).

 2. Right-click on an unallocated space of a drive, and then click New Simple Volume.

 3. Follow the instructions in the New Simple Volume Wizard to create a simple vol-
ume. (Make sure there’s enough room on another disk for a volume of the same 
size as the one you’re creating.)

 4. Right-click on the new volume, and then click Add Mirror on the context menu.

Once you have a mirrored volume, run the Performance tool and add counters for 
the PhysicalDisk performance object for both disk instances that contain a partition 
belonging to the mirror. Select the Disk Writes/sec counters for each instance. Select 
a large directory from the third disk (the one that isn’t part of the mirrored volume), 
and copy it to the mirrored volume. The Performance tool output window should look 
something like the one on the following page as the copy operation progresses.
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The top two lines, which overlap throughout the timeline, are the Disk Writes/sec 
counters for each disk. The screen shot reveals that the volume manager (in this case 
VolMgr) is writing the copied file data to both halves of the volume. This read behavior 
occurs because the number of outstanding I/O operations during the copy didn’t war-
rant that the volume manager perform more aggressive read-operation load balancing.

RAID-5 Volumes

A RAID-5 volume is a fault tolerant variant of a regular striped volume. RAID-5 volumes 
implement RAID level 5. They are also known as striped volumes with rotated parity because 
they are based on the striping approach taken by striped volumes. Fault tolerance is achieved 
by reserving the equivalent of one disk for storing parity for each stripe. Figure 8-12 is a 
visual representation of a RAID-5 volume.

In Figure 8-12, the parity for stripe 1 is stored on disk 1. It contains a byte-for-byte logical 
sum (XOR) of the first stripe units on disks 2 and 3. The parity for stripe 2 is stored on disk 
2, and the parity for stripe 3 is stored on disk 3. Rotating the parity across the disks in this 
way is an I/O optimization technique. Each time data is written to a disk, the parity bytes 
corresponding to the modified bytes must be recalculated and rewritten. If the parity were 
always written to the same disk, that disk would be busy continually and could become an 
I/O bottleneck.
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FIGURE 8-12 RAID-5 volume

Recovering a failed disk in a RAID-5 volume relies on a simple arithmetic principle: in an 
equation with n variables, if you know the value of n – 1 of the variables, you can determine 
the value of the missing variable by subtraction. For example, in the equation x + y = z, 
where z represents the parity stripe unit, the volume manager computes z – y to determine 
the contents of x; to find y, it computes z – x. The volume manager uses similar logic to 
recover lost data. If a disk in a RAID-5 volume fails or if data on one disk becomes unread-
able, the volume manager reconstructs the missing data by using the XOR operation (bitwise 
logical addition).

If disk 1 in Figure 8-12 fails, the contents of its stripe units 2 and 5 are calculated by XORing 
the corresponding stripe units of disk 3 with the parity stripe units on disk 2. The contents of 
stripes 3 and 6 on disk 1 are similarly determined by XORing the corresponding stripe units 
of disk 2 with the parity stripe units on disk 3. At least three disks (or rather, three same-sized 
partitions on three disks) are required to create a RAID-5 volume.

The Volume Namespace

The volume namespace mechanism handles the assignment of drive letters to device objects 
that represent actual volumes, which lets Windows applications access these drives through 
familiar means, and also provides mount and dismount functionality.

The Mount Manager

The Mount Manager device driver (Mountmgr.sys) assigns drive letters for dynamic disk 
volumes and basic disk volumes created after Windows is installed, CD-ROMs, floppies, 
and removable devices. Windows stores all drive-letter assignments under HKLM\SYSTEM\
MountedDevices. If you look in the registry under that key, you’ll see values with names 
such as \??\Volume{X} (where X is a GUID) and values such as \DosDevices\C:. Every volume 
has a volume name entry, but a volume doesn’t necessarily have an assigned drive letter. 
Figure 8-13 shows the contents of an example Mount Manager registry key. Note that the 
MountedDevices key, like the Disk key in Windows NT 4, isn’t included in a control set and so 



668 Windows Internals, Fifth Edition

isn’t protected by the last known good boot option. (See the section “Accepting the Boot and 
Last Known Good” in Chapter 13 for more information on control sets and the last known 
good boot option.)

The data that the registry stores in values for basic disk volume drive letters and volume 
names is the Windows NT 4–style disk signature and the starting offset of the first parti-
tion associated with the volume. The data that the registry stores in values for dynamic disk 
volumes includes the volume’s VolMgr-internal GUID. When the Mount Manager initializes 
during the boot process, it registers with the Windows Plug and Play subsystem so that 
it receives notification whenever a device identifies itself as a volume. When the Mount 
Manager receives such a notification, it determines the new volume’s GUID or disk signature 
and uses the GUID or signature as a guide to look in its internal database, which reflects the 
contents of the MountedDevices registry key. The Mount Manager then determines whether 
its internal database contains the drive-letter assignment. If the volume has no entry in the 
database, the Mount Manager asks VolMgr for a suggested drive-letter assignment and 
stores that in the database. VolMgr doesn’t return suggestions for simple volumes, but it 
looks at the drive-letter hint in the volume’s database entry for dynamic volumes.

FIGURE 8-13 Mounted devices listed in the Mount Manager’s registry key

If no suggested drive-letter assignment exists for the volume, the Mount Manager uses the 
first unassigned drive letter (if one exists), defines a new assignment, creates a symbolic link 
for the assignment (for example, \Global??\D:), and updates the MountedDevices registry key. 
If there are no available drive letters, no drive-letter assignment is made. At the same time, 
the Mount Manager creates a volume symbolic link (that is, \Global??\Volume{X}) that defines 
a new volume GUID if the volume doesn’t already have one. This GUID is different from the 
volume GUIDs that VolMgr uses internally.
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Mount Points

Mount points let you link volumes through directories on NTFS volumes, which makes 
volumes with no drive-letter assignment accessible. For example, an NTFS directory that 
you’ve named C:\Projects could mount another volume (NTFS or FAT) that contains your 
project directories and files. If your project volume had a file you named \CurrentProject\
Description.txt, you could access the file through the path C:\Projects\CurrentProject\
Description.txt. What makes mount points possible is reparse point technology. (Reparse 
points are discussed in more detail in Chapter 11.)

A reparse point is a block of arbitrary data with some fixed header data that Windows asso-
ciates with an NTFS file or directory. An application or the system defines the format and 
behavior of a reparse point, including the value of the unique reparse point tag that identi-
fies reparse points belonging to the application or system and specifies the size and meaning 
of the data portion of a reparse point. (The data portion can be as large as 16 KB.) Reparse 
points store their unique tag in a fixed segment. Any application that implements a reparse 
point must supply a file system filter driver to watch for reparse-related return codes for file 
operations that execute on NTFS volumes, and the driver must take appropriate action when 
it detects the codes. NTFS returns a reparse status code whenever it processes a file opera-
tion and encounters a file or directory with an associated reparse point.

The Windows NTFS file system driver, the I/O manager, and the object manager all partly 
implement reparse point functionality. The object manager initiates pathname parsing oper-
ations by using the I/O manager to interface with file system drivers. Therefore, the object 
manager must retry operations for which the I/O manager returns a reparse status code. The 
I/O manager implements pathname modification that mount points and other reparse points 
might require, and the NTFS file system driver must associate and identify reparse point data 
with files and directories. You can therefore think of the I/O manager as the reparse point file 
system filter driver for many Microsoft-defined reparse points.

One common use of reparse points is the symbolic link functionality offered on Windows 
by NTFS (see Chapter 11 for more information on NTFS symbolic links). If the I/O manager 
receives a reparse status code from NTFS and the file or directory for which NTFS returned 
the code isn’t associated with one of a handful of built-in Windows reparse points, no filter 
driver claimed the reparse point. The I/O manager then returns an error to the object man-
ager that propagates as a “file cannot be accessed by the system” error to the application 
making the file or directory access.

Mount points are reparse points that store a volume name (\Global??\Volume{X}) as the 
reparse data. When you use the Disk Management MMC snap-in to assign or remove path 
assignments for volumes, you’re creating mount points. You can also create and display 
mount points by using the built-in command-line tool Mountvol.exe (\Windows\System32\
Mountvol.exe).
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The Mount Manager maintains the Mount Manager remote database on every NTFS volume 
in which the Mount Manager records any mount points defined for that volume. The data-
base file resides in the directory System Volume Information on the NTFS volume. Mount 
points move when a disk moves from one system to another and in dual-boot environ-
ments—that is, when booting between multiple Windows installations—because of the exis-
tence of the Mount Manager remote database. NTFS also keeps track of reparse points in the 
NTFS metadata file \$Extend\$Reparse. (NTFS doesn’t make any of its metadata files available 
for viewing by applications.) NTFS stores reparse point information in the metadata file so 
that Windows can, for example, easily enumerate the mount points (which are reparse points) 
defined for a volume when a Windows application, such as Disk Management, requests 
mount-point definitions.

Volume Mounting

Because Windows assigns a drive letter to a volume doesn’t mean that the volume contains 
data that has been organized in a file system format that Windows recognizes. The volume-
recognition process consists of a file system claiming ownership for a partition; the process 
takes place the first time the kernel, a device driver, or an application accesses a file or direc-
tory on a volume. After a file system driver signals its responsibility for a partition, the I/O 
manager directs all IRPs aimed at the volume to the owning driver. Mount operations in 
Windows consist of three components: file system driver registration, volume parameter 
blocks (VPBs), and mount requests.

Note The partition manager honors the system SAN policy, which can be set with the Windows 
DiskPart utility, that specifies whether it should surface disks for visibility to the volume manager. 
The default policy in Windows Server 2008 Enterprise and Datacenter editions is to not make 
SAN disks visible, which prevents the system from aggressively mounting their volumes.

The I/O manager oversees the mount process and is aware of available file system driv-
ers because all file system drivers register with the I/O manager when they initialize. The 
I/O manager provides the IoRegisterFileSystem function to local disk (rather than network) 
file system drivers for this registration. When a file system driver registers, the I/O manager 
stores a reference to the driver in a list that the I/O manager uses during mount operations.

Every device object contains a VPB data structure, but the I/O manager treats VPBs as mean-
ingful only for volume device objects. A VPB serves as the link between a volume device 
object and the device object that a file system driver creates to represent a mounted file 
system instance for that volume. If a VPB’s file system reference is empty, no file system has 
mounted the volume. The I/O manager checks a volume device object’s VPB whenever an 
open API that specifies a file name or a directory name on a volume device object executes.
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For example, if the Mount Manager assigns drive letter D to the second volume on a sys-
tem, it creates a \Global??\D: symbolic link that resolves to the device object \Device\
HarddiskVolume2. A Windows application that attempts to open the \Temp\Test.txt file on 
the D: drive specifies the name D:\Temp\Test.txt, which the Windows subsystem converts 
to \Global??\D:\Temp\Test.txt before invoking NtCreateFile, the kernel’s file-open routine. 
NtCreateFile uses the object manager to parse the name, and the object manager encounters 
the \Device\HarddiskVolume2 device object with the path \Temp\Test.txt still unresolved. At 
that point, the I/O manager checks to see whether \Device\HarddiskVolume2’s VPB refer-
ences a file system. If it doesn’t, the I/O manager asks each registered file system driver via 
a mount request whether the driver recognizes the format of the volume in question as the 
driver’s own.

EXPERIMENT: Looking at VPBs

You can look at the contents of a VPB by using the !vpb kernel debugger command. 
Because the VPB is pointed to by the device object for a volume, you must first locate 
a volume device object. To do this, you must dump a volume manager’s driver object, 
locate a device object that represents a volume, and display the device object, which 
reveals its Vpb field.

lkd> !drvobj volmgr 

Driver object (84905030) is for: 

 \Driver\volmgr 

Driver Extension List: (id , addr) 

 

Device Object list: 

84a64780  849d5b28  84a64518  84a64030 

84905e00

The !drvobj command lists the addresses of the device objects a driver owns. In this 
example, there are five device objects. One of them represents the programmatic inter-
face to the device driver, and the rest are volume device objects. Because the objects 
are listed in reverse order from the way that they were created and the driver creates 
the device driver interface object first, you know the first device object listed is that of 
a volume. Now execute the !devobj kernel debugger command on the volume device 
object address:

lkd> !devobj 84a64780   

Device object (84a64780) is for: 

 HarddiskVolume4 \Driver\volmgr DriverObject 84905030 

Current Irp 00000000 RefCount 0 Type 00000007 Flags 00001050 

Vpb 84a64228 Dacl 8b1a8674 DevExt 84a64838 DevObjExt 84a64930 Dope 849fd838 DevNode  

    849d5938  

ExtensionFlags (0x00000800)   

                             Unknown flags 0x00000800 

AttachedDevice (Upper) 84a66020 \Driver\volsnap 

Device queue is not busy
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The !devobj command shows the Vpb field for the volume device object. (The device 
object shown is named HarddiskVolume4.) Now you’re ready to execute the !vpb 
command:

lkd> !vpb 84a64228  

Vpb at 0x84a64228 

Flags: 0x1 mounted  

DeviceObject: 0x84a6b020 

RealDevice:   0x849d5b28 

RefCount: 4311 

Volume Label:   OS

The command reveals that the volume device object is mounted by a file system driver 
that has assigned the volume the name OS. The RealDevice field in the VPB points back 
to the volume device object, and the DeviceObject field points to the mounted file sys-
tem device object. You can use !devobj on this address to get more information on the 
mounted file system, as seen in the output below, which shows that NTFS has mounted 
the volume:

lkd> !devobj 0x84a6b020 

Device object (84a6b020) is for: 

  \FileSystem\Ntfs DriverObject 84a02ad0 

Current Irp 00000000 RefCount 0 Type 00000008 Flags 00040000 

DevExt 84a6b0d8 DevObjExt 84a6bc00  

ExtensionFlags (0x00000800)   

                             Unknown flags 0x00000800 

AttachedDevice (Upper) 84a63ac0 \FileSystem\FltMgr 

Device queue is not busy

The convention followed by file system drivers for recognizing volumes mounted with their 
format is to examine the volume’s boot record, which is stored in the first sector of the vol-
ume. Boot records for Microsoft file systems contain a field that stores a file system format 
type. File system drivers usually examine this field, and if it indicates a format they manage, 
they look at other information stored in the boot record. This information usually includes a 
file system name field and enough data for the file system driver to locate critical metadata 
files on the volume. NTFS, for example, will recognize a volume only if the Type field is NTFS, 
the Name field is “NTFS,” and the critical metadata files described by the boot record are 
consistent.

If a file system driver signals affirmatively, the I/O manager fills in the VPB and passes the 
open request with the remaining path (that is, \Temp\Test.txt) to the file system driver. The file 
system driver completes the request by using its file system format to interpret the data that 
the volume stores. After a mount fills in a volume device object’s VPB, the I/O manager hands 
subsequent open requests aimed at the volume to the mounted file system driver. If no file 
system driver claims a volume, Raw—a file system driver built into Ntoskrnl.exe—claims the 
volume and fails all requests to open files on that partition. Figure 8-14 shows a simplified 
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example (that is, the figure omits the file system driver’s interactions with the Windows cache 
and memory managers) of the path that I/O directed at a mounted volume follows.

NTFS file system driverNTFS file system
device object

\Device\HarddiskVolume2
Disk class driver

Disk port driver
Disk miniport driver

2

3

1

4

5

Application directs file-level (e.g., D:\temp\test.txt)
I/O request at drive letter corresponding to partition
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Application I/O request

I/O manager
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mounted file
system device
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VPB file

system

reference

I/O manager
routes I/O request
to file system driver
that owns the file
system device
object. File system performs sector-level

volume I/O to service I/O request.

I/O manager
routes sector-level
I/O to disk class
driver.

FIGURE 8-14 Mounted volume I/O flow

Instead of having every file system driver loaded, regardless of whether they have any vol-
umes to manage, Windows tries to minimize memory usage by using a surrogate driver 
named File System Recognizer (\Windows\System32\Drivers\Fs_rec.sys) to perform prelimi-
nary file system recognition. File System Recognizer knows enough about each file system 
format that Windows supports to be able to examine a boot record and determine whether 
it’s associated with a Windows file system driver. When the system boots, File System 
Recognizer registers as a file system driver, and when the I/O manager calls it during a file 
system mount operation for a new volume, File System Recognizer loads the appropriate 
file system driver if the boot record corresponds to one that isn’t loaded. After loading a file 
system driver, File System Recognizer forwards the mount IRP to the driver and lets the file 
system driver claim ownership of the volume.

Aside from the boot volume, which a driver mounts while the kernel is initializing, file system 
drivers mount most volumes when the Chkdsk file system consistency-checking application 
runs during a boot sequence. The boot-time version of Chkdsk is a native application (as 
opposed to a Windows application) named Autochk.exe (\Windows\System32\Autochk.exe), 
and the Session Manager (\Windows\System32\Smss.exe) runs it because it is specified as 
a boot-run program in the HKLM\SYSTEM\CurrentControlSet\Control\Session Manager\
BootExecute value. Chkdsk accesses each drive letter to see whether the volume associated 
with the letter requires a consistency check.



674 Windows Internals, Fifth Edition

One place in which mounting can occur more than once for the same disk is with remov-
able media. Windows file system drivers respond to media changes by querying the disk’s 
volume identifier. If they see the volume identifier change, the driver dismounts the disk and 
attempts to remount it.

Volume I/O Operations

File system drivers manage data stored on volumes but rely on volume managers to inter-
act with storage drivers to transfer data to and from the disk or disks on which a volume 
resides. File system drivers obtain references to a volume manager’s volume objects through 
the mount process and then send the volume manager requests via the volume objects. 
Applications can also send the volume manager requests, bypassing file system drivers, when 
they want to directly manipulate a volume’s data. File-undelete programs are an example of 
applications that do this.

Whenever a file system driver or application sends an I/O request to a device object that rep-
resents a volume, the Windows I/O manager routes the request (which comes in an IRP—a 
self-contained package) to the volume manager that created the target device object. Thus, 
if an application wants to read the boot sector of the second volume on the system (which is 
a simple volume in this example), it opens the device object \Device\HarddiskVolume2 and 
then sends the object a request to read 512 bytes starting at offset zero on the device. The 
I/O manager sends the application’s request in the form of an IRP to the volume manager 
that owns the device object, notifying it that the IRP is directed at the HarddiskVolume2 
device.

Because volumes are logical conveniences that Windows uses to represent contiguous areas 
on one or more physical disks, the volume manager must translate offsets that are relative 
to a volume to offsets that are relative to the beginning of a disk. If volume 2 consists of 
one partition that begins 4096 sectors into the disk, the partition manager would adjust the 
IRP’s parameters to designate an offset with that value before passing the request to the disk 
class driver. The disk class driver uses a miniport driver to carry out physical disk I/O and read 
requested data into an application buffer designated in the IRP.

Some examples of a volume manager’s operations will help clarify its role when it handles 
requests aimed at multipartition volumes. If a striped volume consists of two partitions, parti-
tion 1 and partition 2, the VolMgr device object intercepts file system disk I/O aimed at the 
device object for the volume, and the VolMgr driver adjusts the request before passing it to 
the disk class driver. The adjustment that VolMgr makes configures the request to refer to the 
correct offset of the request’s target stripe on either partition 1 or partition 2. If the I/O spans 
both partitions of the volume, VolMgr must issue two subsidiary I/O requests, one aimed at 
each disk. This is shown in Figure 8-15.
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FIGURE 8-15 VolMgr I/O operations

In the case of writes to a mirrored volume, VolMgr splits each request so that each half of the 
mirror receives the write operation. For mirrored reads, VolMgr performs a read from half of 
a mirror, relying on the other half when a read operation fails.

Virtual Disk Service

A company that makes storage products such as RAID adapters, hard disks, or storage arrays 
has to implement custom applications for installing and managing their devices. The use of 
different management applications for different storage devices has obvious drawbacks from 
the perspective of system administration. These drawbacks include learning multiple inter-
faces and the inability to use standard Windows storage management tools to manage third-
party storage devices.

Windows includes the Virtual Disk Service (or VDS, located at \Windows\System32\Vds.exe), 
which provides a unified high-level storage interface so that administrators can manage stor-
age devices from different vendors using the same user interfaces. VDS is shown in Figure 
8-16. VDS exports a COM-based API that allows applications to create and format disks and 
to view and manage hardware RAID adapters. For example, a utility can use the VDS API to 
query the list of physical disks that map to a RAID logical unit number (LUN). Windows disk 
management utilities, including the Disk Management MMC snap-in and the DiskPart and 
DiskRAID command-line tools, use VDS APIs.
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FIGURE 8-16 VDS service architecture

VDS supplies two interfaces, one for software providers and one for hardware providers:

Software providers implement interfaces to high-level storage abstractions such as 
disks, disk partitions, and volumes. Examples of operations supported by these inter-
faces include creating, extending, and deleting volumes; adding or breaking mirrors; 
and formatting and assigning drive letters. VDS looks for registered software provid-
ers in HKLM\SYSTEM\CurrentControlSet\Services\Vds\SoftwareProviders. Windows 
includes the VDS Dynamic Disk Provider (\Windows\System32\Vdsdyn.dll) for interfac-
ing to dynamic disks and the VDS Basic Provider (\Windows\System32\Vdsbas.dll) for 
interfacing to basic disks.

Hardware vendors implement VDS hardware providers as DLLs that register under 
HKLM\SYSTEM\CurrentControlSet\Services\Vds\HardwareProviders and that translate 
device-independent VDS commands into commands for their hardware. The hardware 
provider allows for management of a storage subsystem such as a hardware RAID array 
or an adapter card, and supported operations include creating, extending, deleting, 
masking, and unmasking LUNs.

When an application initiates a connection to the VDS API and the VDS service isn’t 
started, the Svchost process hosting the RPC service starts the VDS loader process 
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(\Windows\System32\Vdsldr.exe), which starts the VDS service process and then exits. When 
the last connection to the VDS API closes, the VDS service process exits.

BitLocker Drive Encryption

An operating system can enforce its security policies only while it’s active, so you have to 
take additional measures to protect data when the physical security of a system can be 
compromised and the data accessed from outside the operating system. Hardware-based 
mechanisms such as BIOS passwords and encryption are two technologies commonly used 
to prevent unauthorized access, especially on laptops, which are the computers most likely to 
be lost or stolen.

While Windows supports the Encrypting File System (EFS), you can’t use EFS to protect access 
to sensitive areas of the system, such as the registry hive files. For example, if Group Policy 
allows you to log on to your laptop even when you’re not connected to a domain, then your 
domain credential verifiers are cached in the registry, so an attacker could use tools to obtain 
your domain account password hash and use that to try to obtain your password with a 
password cracker. The password would provide access to your account and EFS files (assum-
ing you didn’t store the EFS key on a smart card). To make it easy to encrypt the entire boot 
volume, including all its system files and data, Windows includes a full-volume encryption 
feature called Windows BitLocker Drive Encryption.

BitLocker helps prevent unauthorized access to data on lost or stolen computers by combin-
ing two major data-protection procedures:

Encrypting the entire Windows operating system volume on the hard disk.

Verifying the integrity of early boot components and boot configuration data.

The most secure implementation of BitLocker leverages the enhanced security capabilities 
of a Trusted Platform Module (TPM) version 1.2. The TPM is a hardware component installed 
in many newer computers by computer manufacturers. It works with BitLocker to help pro-
tect user data and to ensure that a computer running Windows has not been tampered with 
while the system was offline. On computers that do not have a TPM version 1.2, BitLocker can 
still encrypt the Windows operating system volume. However, this implementation requires 
the user to insert a USB startup key to start the computer or resume from hibernation, and it 
does not provide the full offline and preboot protection that a TPM-enabled system does.

BitLocker Architecture

BitLocker’s architecture provides functionality and management mechanisms both in kernel 
mode and user mode. At a high level, the main components of BitLocker are:

The Trusted Platform Module driver (%SystemRoot%\System32\Drivers\Tpm.sys), a 
kernel-mode driver that accesses the TPM chip.
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The TPM Base Services, which include a user-mode service that provides user-mode 
access to the TPM (%SystemRoot%\System32\tbssvc.dll), a WMI provider, and an MMC 
snap-in for configuration (%SystemRoot%\System32\Tpm.msc).

The BitLocker-related code in the Boot Manager (Bootmgr) that authenticates access to 
the disk, handles boot-related unlocking, and allows recovery.

The BitLocker filter driver (%SystemRoot%\System32\Drivers\Fvevol.sys), a kernel-mode 
filter driver that performs on-the-fly encryption and decryption of the volume.

The BitLocker WMI provider and management script, which allow configuration and 
scripting of the BitLocker interface.

In the next sections, we’ll take a look at these various components and the services they pro-
vide. Figure 8-17 provides an overview of the BitLocker architecture.
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Encryption Keys

BitLocker encrypts the contents of the volume using a full volume encryption key (FVEK) 
and cryptography that uses the AES128-CBC (by default) or AES256-CBC algorithm, with a 
Microsoft-specific extension called a diffuser. In turn, the FVEK is encrypted with a volume 
master key (VMK) and stored in a special metadata region of the volume. Securing the vol-
ume master key is an indirect way of protecting data on the volume: the addition of the vol-
ume master key allows the system to be rekeyed easily when keys upstream in the trust chain 
are lost or compromised. This ability to rekey the system saves the expense of decrypting and 
encrypting the entire volume again.

When you configure BitLocker, you have a number of options for how the VMK will be pro-
tected, depending on the system’s hardware capabilities. If the system has a TPM, you can 
either encrypt the VMK with the TPM, have the system encrypt the VMK using a key stored 
in the TPM and one stored on a USB flash device, encrypt the VMK using a TPM-stored key 
and a PIN you enter when the system boots, or a combination of both a PIN and a USB flash 
device. For systems that don’t have a compatible TPM, BitLocker offers the option of encrypt-
ing the VMK using a key stored on an external USB flash device.

In any case you’ll need an unencrypted 1.5 GB NTFS system volume, the volume where the 
Boot Manager and BCD are stored, because the MBR and boot-sector code are legacy code, 
run in 16-bit real mode (as previously discussed), and do not have the ability to perform any 
on-the-fly decryption of the same volume they’re running on. This means that these compo-
nents must remain on an unencrypted volume so that the BIOS can access them and they can 
run and locate Bootmgr.

Figure 8-18 and Table 8-1 summarize the various ways in which the VMK can be generated.

TABLE 8-1 VMK Sources

Source Identifies Security User Impact

TPM only What it is Protects against software 
attacks, but vulnerable to 
hardware attacks.

None

TPM + PIN What it is + What you know Adds protection against most 
hardware attacks as well.

User must enter 
PIN each boot

TPM + USB 
key

What it is + What you have Fully protects against hard-
ware attacks, but vulnerable 
to stolen USB key.

User must insert 
USB key each boot

TPM + USB 
key + PIN

What it is + What you have 
+ What you know

Maximum level of protection. User must enter 
PIN and insert USB 
key each boot

USB key only What you have Minimum level of protection 
for systems without TPM, but 
vulnerable to stolen key.

User must insert 
USB key each boot
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FIGURE 8-18 BitLocker key generation

Finally, BitLocker also provides a simple encryption-based authentication scheme to ensure 
the integrity of the drive contents. Although AES encryption is currently considered uncrack-
able through brute-force attacks and is one of the most widely used algorithms in the indus-
try today, it doesn’t provide a way to ensure that modified encrypted data can’t in some way 
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be modified such that it is translated back to plaintext data that an attacker could make use 
of. For example, by precise manipulation of the encrypted data, a hacker might be able to 
cause a certain logon function to behave differently and allow all logons.

To protect the system against this type of attack, BitLocker includes a diffuser algorithm 
called Elephant. The job of the diffuser is to make sure that even a single bit change in the 
ciphertext (encrypted data) will result in a totally random plaintext data output, ensuring that 
the modified executable code will most likely arbitrarily crash instead of performing a specific 
malicious function. Additionally, when combined with code integrity (see Chapter 3 for more 
information on code integrity), the diffuser will also cause core system files to fail their signa-
ture checks, rendering the system unbootable.

Trusted Platform Module (TPM)

A TPM is a tamper-resistant processor mounted on a motherboard that provides various 
cryptographic services such as key and random number generation and sealed storage. 
Support for TPM in Windows reaches beyond supporting BitLocker, however. Through the 
TPM Base Services (TBS), other applications on the system can also take advantage of com-
patible hardware TPM chips and use WMI to administer and script access to the TPM. For 
example, Windows uses a TPM as an additional seed into random number generation, which 
enhances the overall security of all applications on the system that depend on strong security 
or hashing algorithms (including mechanisms such as logons).

Although your computer may have a TPM, that does not necessarily mean that Windows will 
be able to support it. There are two requirements for Windows TPM support:

The computer must have a TPM version 1.2 or higher

The computer must have a Trusted Computing Group (TCG)-compliant BIOS. The BIOS 
establishes a chain of trust for the preboot environment and must include support for 
TCG-specific Static Root of Trust Measurement (SRTM).

The easiest way to determine whether your machine contains a compatible TPM is to run the 
TPM MMC snap-in (%SystemRoot%\System32\Tpm.msc). If Windows detects a compatible 
TPM, you should see a window similar to the one shown in Figure 8-19. Otherwise, an error 
message will appear.

As stated earlier, BitLocker can be configured to use the TPM to perform system integrity 
checks on critical early boot components. At a high level, the TPM collects and stores mea-
surements from multiple early boot components and boot configuration data to create a sys-
tem identifier (much like a fingerprint) for that computer. It stores each part of this fingerprint 
as a hash in a platform configuration register (PCR). BitLocker uses the hash of these functions 
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to seal the VMK, which is the key that BitLocker uses to protect other keys, including the 
FVEKs used to encrypt volumes.

FIGURE 8-19 The TPM MMC snap-in before initializing the TPM.

If the early boot components are changed or tampered with, such as by changing the BIOS 
or MBR, or moving the hard disk to a different computer, the TPM prevents BitLocker from 
unsealing the VMK, and Windows enters a key recovery mode (described later in the chapter). 
If the PCR values match those used to seal the key, however, it unseals the key, and BitLocker 
can decrypt the keys used to protect volumes. Once the keys are unsealed, Windows starts 
and system protection becomes the responsibility of the user and the operating system.

A platform validation profile supported by TPMs consists of 24 PCRs that can be extended to 
contain additional information and only reset after a TPM reset (implying a machine reboot). 
Each PCR is associated with components that run when an operating system starts, as shown 
in Table 8-2.

BitLocker uses registers 0, 4, 8, 9, 10, and 11 to seal the VMK. This secures the encryption 
key against changes to the Core Root of Trust of Measurement (CRTM), BIOS, and platform 
extensions; Master Boot Record (MBR) code; the NTFS boot sector; the NTFS boot block; the 
Boot Manager; and the BitLocker Access Control.
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TABLE 8-2 Platform Configuration Registers

Index Meaning

0 Core Root of Trust of Measurement (CRTM), BIOS, and platform extensions

1 Platform and motherboard configuration and data

2 Option ROM code

3 Option ROM configuration and data

4 Master Boot Record (MBR) code

5 Master Boot Record (MBR) partition table

6 State transition and wake events

7 Computer manufacturer-specific

8 NTFS boot sector

9 NTFS boot block

10 Boot Manager

11 BitLocker Access Control

12 Defined for use by the static operating system

13 Defined for use by the static operating system

14 Defined for use by the static operating system

15 Defined for use by the static operating system

16 Used for debugging

17 Dynamic CRTM

18 Platform defined

19 Used by a trusted operating system

20 Used by a trusted operating system

21 Used by a trusted operating system

22 Used by a trusted operating system

23 Application support

BitLocker Boot Process

The actual measurements stored in the TPM PCRs are generated by the TPM itself, the TPM 
BIOS, and Windows. When the system boots, the TPM does a self-test, following which the 
CRTM in the BIOS measures its own hashing and PCR loading code and writes the hash to the 
first PCR of the TPM. It then hashes the BIOS and stores that measurement in the first PCR as 
well. The BIOS in turn hashes the next component in the boot sequence, the MBR of the boot 
drive, and this process continues until the operating system loader is measured. Each subse-
quent piece of code that runs is responsible for measuring the code that it loads and for stor-
ing the measurement in the appropriate register in the TPM.
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Finally, when the user selects which operating system to boot, the Boot Manager (Bootmgr) 
reads the encrypted VMK from the volume and asks the TPM to unseal it. As described previ-
ously, only if all the measurements are the same as when the VMK was sealed, including the 
optional PIN, will the TPM successfully decrypt the VMK. This process not only guarantees 
that the machine and system files are identical to the applications or operating systems that 
are allowed to read the drive, but also verifies the uniqueness of the operating system instal-
lation. For example, even another identical Windows operating system installed on the same 
machine will not get access to the drive because Bootmgr takes an active role in protecting 
the VMK from being passed to an operating system to which it doesn’t belong (by generat-
ing a MAC hash of several system configuration options).

You can think of this scheme as a verification chain, where each component in the boot 
sequence describes the next component to the TPM. Only if all the descriptions match the 
original ones given to it will the TPM divulge its secret. BitLocker therefore protects the 
encrypted data even when the disk is removed and placed in another system, the system is 
booted using a different operating system, or the unencrypted files on the boot volume are 
compromised. Figure 8-20 shows the various steps of the preboot process up until Winload 
begins loading the operating system.

Pre-OS

Start OS

BIOS

MBR

Boot sector

OS loader

Static OS All boot blobs
unlocked

Volume blob of
target OS unlocked

TPM Init

Boot Manager

Boot block

FIGURE 8-20 BitLocker preboot process

BitLocker Key Recovery

For recovery purposes, BitLocker uses a recovery key (stored on a USB device) or a recov-
ery password (numerical password), as shown in Figure 8-18. You create the recovery key 
or recovery password during BitLocker initialization. A copy of the VMK is encrypted with a 
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256-bit AES-CCM key that can be computed with the recovery password and a salt stored in 
the metadata block. The password is a 48-digit number, eight groups of 6 digits, with three 
properties for checksumming:

Each group of 6 digits must be divisible by 11. This check can be used to identify 
groups mistyped by the user.

Each group of 6 digits must be less than 2**16 * 11. Each group contains 16 bits of key 
information. The eight groups, therefore, hold 128 bits of key.

The sixth digit in each group is a checksum digit.

Inserting the recovery key or typing the recovery password enables an authorized user 
to regain access to the encrypted volume in the event of an attempted security breach or 
system failure. Figure 8-21 displays the prompt requesting the user to type the recovery 
password.

FIGURE 8-21 BitLocker recovery screen

The recovery key or password is also used in cases in which parts of the system have 
changed, resulting in different measurements. One common example of this is when a user 
has modified the BCD, such as by adding the debug option. Upon reboot, Bootmgr will 
detect the change and ask the user to validate it by inputting the recovery key. For this rea-
son, it is extremely important not to lose this key, because it isn’t only used for recovery but 
for validating system changes. Another application of the recovery key is for foreign volumes. 
Foreign volumes are operating system volumes that were BitLocker-enabled on another 
computer and have been transferred to a different Windows computer. An administrator can 
unlock these volumes by entering the recovery password.
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Full Volume Encryption Driver

Unlike EFS, which is implemented by the NTFS file system driver and operates at the file 
level, BitLocker encrypts at the volume level using the full volume encryption (FVE) driver 
(%SystemRoot%\System32\Drivers\Fvevol.sys), as shown in Figure 8-22.

User mode

Kernel mode

Application

NTFS

FVE filter driver

Volume manager

Disk driver

System volume

FIGURE 8-22 BitLocker filter driver implementation

FVE is a filter driver, so it automatically sees all the I/O requests that NTFS sends to the vol-
ume, encrypting blocks as they’re written and decrypting them as they’re read using the 
FVEK assigned to the volume when it’s initially configured to use BitLocker. Because the 
encryption and decryption happen beneath NTFS in the I/O system, the volume appears 
to NTFS as if it’s unencrypted, and NTFS does not even need to be aware that BitLocker is 
enabled. If you attempt to read data from the volume from outside Windows, however, it 
appears to be random data.

BitLocker also uses an extra measure to make plain-text attacks in which an attacker knows 
the contents of a sector and uses that information to try and derive the key used to encrypt 
it more difficult. By combining the FVEK with the sector number to create the key used to 
encrypt a particular sector, and passing the encrypted data through the Elephant diffuser, 
BitLocker ensures that every sector is encrypted with a slightly different key, resulting in dif-
ferent encrypted data for different sectors even if their contents are identical.
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BitLocker Management

BitLocker provides three different kinds of administrative interfaces, each suited to a par-
ticular role or task. It provides a WMI interface (and works with the TBS WMI interface) for 
programmatic access to the BitLocker functionality, a set of Group Policies that allow admin-
istrators to define the behavior across the network or a series of machines, and integration 
with Active Directory.

Developers and system administrators with scripting familiarity can access the Win32_Tpm 
and Win32_EncryptableVolume interfaces to protect keys, define authentication methods, 
define which PCR registers are used as part of the BitLocker profile, and manually initi-
ate encryption or decryption of an entire volume. The manage-bde.wsf script, located in 
%SystemRoot%\System32, uses these interfaces to allow command-line management of the 
BitLocker service.

On systems that are joined to a domain, the key for each machine can automatically be 
backed up as part of a key escrow service, allowing IT administrators to easily recover and 
gain access to machines that are part of the corporate network. Additionally, various Group 
Policies related to BitLocker can be configured. You can access these by using the Local 
Group Policy Editor, under the Computer Configuration, Administrative Templates, Windows 
Components, BitLocker Drive Encryption entry. For example, Figure 8-23 displays the option 
for enabling the Active Directory key backup functionality.

FIGURE 8-23 BitLocker Group Policy settings

If a TPM chip is present on the system, additional options (such as TPM Key Backup) can be 
accessed from the Trusted Platform Module Services entry under Windows Components.
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Volume Shadow Copy Service

The Volume Shadow Copy Service (VSS) is a built-in Windows mechanism that enables the 
creation of consistent, point-in-time copies of data, known as shadow copies or snapshots. 
VSS coordinates with applications, file-system services, backup applications, fast-recovery 
solutions, and storage hardware to produce consistent shadow copies.

Shadow Copies

Shadow copies are created through one of two mechanisms—clone and copy-on-write. The 
VSS provider (described in more detail later) determines the method to use. (Providers can 
implement the snapshot as they see fit. For example, certain hardware providers will take a 
hybrid approach: clone first, and then copy-on-write.)

Clone Shadow Copies

A clone shadow copy, also called a split mirror, is a full duplicate of the original data on a vol-
ume, created either by software or hardware mirroring. Software or hardware keeps a clone 
synchronized with the master copy until the mirror connection is broken in order to create 
a shadow copy. At that moment, the live volume (also called the original volume) and the 
shadow volume become independent. The live volume is writable and still accepts changes, 
but the shadow volume is read-only and stores contents of the live volume at the time it was 
created.

Copy-on-Write Shadow Copies

A copy-on-write shadow copy, also called a differential copy, is a differential, rather than a 
full, duplicate of the original data. Similar to a clone copy, differential copies can be created 
by software or hardware mechanisms. Whenever a change is made to the live data, the block 
of data being modified is copied to a “differences area” associated with the shadow copy 
before the change is written to the live data block. Overlaying the modified data on the live 
data creates a view of the live data at the point in time when the shadow copy was created.

Note  The in-box VSS provider that ships with Windows only supports copy-on-write shadow 
copies.

VSS Architecture

VSS (%SystemRoot%\System32\Vssvc.exe) coordinates VSS writers, VSS providers, and VSS 
requestors. A VSS writer is a software component that enables shadow-copy-aware appli-
cations, such as Microsoft SQL Server, Microsoft Exchange Server, and Active Directory, to 
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receive freeze and thaw notifications to ensure that backup copies of their data files are 
internally consistent. Implementing a VSS provider allows an ISV or IHV with unique stor-
age schemes to integrate with the shadow copy service. For instance, an IHV with mirrored 
storage devices might define a shadow copy as the frozen half of a split mirrored volume. 
VSS requestors are the applications that request the creation of volume shadow copies and 
include backup utilities and the Windows System Restore feature. Figure 8-24 shows the rela-
tionship between the VSS shadow copy service, writers, providers, and requestors.

Volumes

System
provider

Software
provider

Hardware
provider

Writers Volume Shadow Copy Service Requestor

FIGURE 8-24 VSS architecture

VSS Operation

Regardless of the specific purpose for the copy and the application making use of VSS, 
shadow copy creation follows the same steps, shown in Figure 8-25. First, a requestor sends 
a command to VSS to enumerate writers, gather metadata, and prepare for the copy (1). VSS 
asks each writer to return information on its restore capabilities and an XML description of its 
backup components (2). Next, each writer prepares for the copy in its own appropriate way, 
which might include completing outstanding transactions and flushing caches. A prepare 
command is sent to all involved providers as well (3).

At this point, VSS initiates the commit phase of the copy (4). VSS instructs each writer to 
quiesce its data and temporarily freeze all write I/O requests (read requests are still passed 
through). VSS then flushes volume file system buffers and requests that the volume file 
system drivers freeze their I/O by sending them the IOCTL_VOLSNAP_FLUSH_AND_HOLD_
WRITES device I/O control command, ensuring that all the file system metadata is written 
out to disk consistently (5). Once the system is in this state, VSS sends a command telling 
the provider to perform the actual copy creation (6). VSS allows up to 10 seconds for the 
creation, after which it aborts the operation if it is not already completed in this interval. 
After the provider has created the shadow copy, VSS asks the file systems to thaw, or resume 
write I/O operations, by sending them the IOCTL_VOLSNAP_RELEASE_WRITES command, 
and it releases the writers from their temporary freeze. All queued write I/O operations then 
proceed (7).
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VSS next queries the writers to confirm that I/O operations were successfully held during the 
creation to ensure that the created shadow copy is consistent. If the shadow copy is incon-
sistent as the result of file system damage, the shadow copy is deleted by VSS. In other cases 
of writer failure, VSS simply notifies the requestor. At this point, the requestor can retry the 
procedure from (1), or wait for user action. If the copy was created consistently, VSS tells the 
requestor the location of the copy.

An optional final step is to make the snapshot device(s) writable, such that interested writers 
such as TxF can perform additional recovery actions on the snapshot device itself. After this 
recovery step, the snapshot is sealed read-only and handed out to the requestor.

Note  VSS also allows the surfacing of shadow copy devices on a different server—called trans-
portable shadow copies.

Software
provider

Hardware
provider

WritersVolume Shadow
Copy Service

Requestor
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1
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6 3

FIGURE 8-25 VSS shadow copy creation

Shadow Copy Provider

The Shadow Copy Provider (\%SystemRoot%\System32\Drivers\Swprov.dll)  implements 
 software-based differential copies with the aid of the Volume Shadow Copy Driver 
(Volsnap—\%SystemRoot\System32\Drivers\Volsnap.sys). Volsnap is a storage filter driver 
that resides between file system drivers and volume manager drivers (the drivers that present 
views of the sectors that represent a volume) so that the I/O system forwards it I/O opera-
tions directed at a volume.

When asked by VSS to create a shadow copy, Volsnap queues I/O operations directed at 
the target volume and creates a differential file in the volume’s System Volume Information 
directory to store volume data that subsequently changes. Volsnap also creates a virtual 
volume through which applications can access the shadow copy. For example, if a volume’s 
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name in the object manager namespace is \Device\HarddiskVolume1, the shadow volume 
would have a name like \Device\HarddiskVolumeShadowCopyN, where N is a unique ID.

Whenever Volsnap sees a write operation directed at a live volume, it reads a copy of the sec-
tors that will be overwritten into a paging file—a backed memory section that’s associated 
with the corresponding shadow copy. It services read operations directed at the shadow copy 
of modified sectors from this memory section, and it services reads to nonmodified areas 
by reading from the live volume. Because the backup utility won’t save the paging file or the 
contents of the system-managed System Volume Information directory located on every vol-
ume (which includes shadow copy differential files), Volsnap uses the defragmentation API to 
determine the location of these files and directories and does not record changes to them.

Figure 8-26 demonstrates the behavior of applications accessing a volume and a backup 
application accessing the volume’s shadow volume copy. When an application writes to a sec-
tor after the snapshot time, the Volsnap driver makes a backup copy, like it has for sectors a, 
b, and c of volume C: in the figure. Subsequently, when an application reads from sector c, 
Volsnap directs the read to volume C:, but when a backup application reads from sector c, 
Volsnap reads the sector from the snapshot. When a read occurs for any unmodified sector, 
such as d, Volsnap routes the read to volume C:.

Note Volsnap avoids copy-on-write operations for the paging file, hibernation file, and the 
difference data stored in the System Volume Information folder. All other files will get copy-on-
write protection.

Shadow
volume

C:
C:

Backup application Application

File system driver

Volsnap.sys

a b c

a d b c...

Backup read of sector 

Application read of sector 

Snapshot

C:

FIGURE 8-26 Volsnap operation
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EXPERIMENT: Looking at Microsoft Shadow Copy Provider Filter 

Device Objects

You can see the Microsoft Shadow Copy Provider driver’s device objects attached to 
each volume device on a Windows system in a kernel debugger. Every system has at 
least one volume, and the following command displays the device object of the first 
volume on a system:

lkd> !devobj \device\harddiskvolume1 

Device object (84a64030) is for: 

 HarddiskVolume1 \Driver\volmgr DriverObject 84905030 

Current Irp 00000000 RefCount 0 Type 00000007 Flags 00001050 

Vpb 84a40818 Dacl 8b1a8674 DevExt 84a640e8 DevObjExt 84a641e0 Dope 84a02be0 DevNode  

    84a64390  

ExtensionFlags (0x00000800)  

                             Unknown flags 0x00000800 

AttachedDevice (Upper) 84a656c0 \Driver\volsnap 

Device queue is not busy.

The AttachedDevice field in the output for the !devobj command displays the address 
of any device object, and the name of the owning driver, attached to (filtering) the 
device object being examined. For volume device objects, you should see a device 
object belonging to the Volsnap driver, as in the example output.

Uses in Windows

Several features in Windows make use of VSS, including Backup, System Restore, Previous 
Versions, and Shadow Copies for Shared Folders. We’ll look at some of these uses and 
describe why VSS is needed and which VSS functionality is applicable to the applications.

Backup

A limitation of many backup utilities relates to open files. If an application has a file open for 
exclusive access, a backup utility can’t gain access to the file’s contents. Even if the backup 
utility can access an open file, the utility runs the risk of creating an inconsistent backup. 
Consider an application that updates a file at its beginning and then at its end. A backup 
utility saving the file during this operation might record an image of the file that reflects the 
start of the file before the application’s modification and the end after the modification. If 
the file is later restored the application might deem the entire file corrupt because it might 
be prepared to handle the case where the beginning has been modified and not the end, 
but not vice versa. These two problems illustrate why most backup utilities skip open files 
altogether.
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EXPERIMENT: Viewing Shadow Volume Device Objects

You can see the existence of shadow volume device objects in the object manager 
name space by running the Windows backup application (under System Tools in the 
Accessories folder of the Start menu) and selecting enough backup data to cause the 
backup process to take long enough for you to run WinObj and see the objects in the 
\Device subdirectory, as shown here.

Instead of opening files to back up on the live volume, the backup utility opens them on the 
shadow volume. A shadow volume represents a point-in-time view of a volume, so by relying 
on the shadow copy facility, the backup utility overcomes both the backup problems related 
to open files.

Previous Versions and System Restore

The Windows Previous Versions feature also integrates support for automatically creating 
volume snapshots, typically one per day, that you can access through Explorer (by opening a 
Properties dialog box) using the same interface used by Shadow Copies for Shared Folders. 
This enables you to view, restore, or copy old versions of files and directories that you might 
have accidentally modified or deleted.
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Windows also takes advantage of volume snapshots to unify user and system data-protection 
mechanisms and avoid saving redundant backup data. When an application installation or 
configuration change causes incorrect or undesirable behaviors, you can use System Restore 
to restore system files and data to their state as it existed when a restore point was created. 
When you use the System Restore user interface in Windows Vista to go back to a restore 
point, you’re actually copying earlier versions of modified system files from the snapshot 
associated with the restore point to the live volume.

EXPERIMENT: Navigating Through Previous Versions

As you saw earlier, each time Windows creates a new system restore point, this results 
in a shadow copy being taken for that volume. You can navigate through time and see 
older copies of each drive being shadowed with Windows Explorer. To see a list of all 
previous versions of an entire volume, right-click on a partition, such as C:, and select 
Restore Previous Versions. You will see a dialog box similar to the one shown here.

Pick any of the versions shown, and then click the Open button. This opens a new 
Explorer window displaying that volume at the point in time when the snapshot was 
taken. The path shown will include \\localhost\C$\@GMT-<date>-<time>, which is how 
Explorer virtualizes the different shadow copies taken. (C$ is the local hidden default 
share that Windows networking uses; for more information, see Chapter 12.)
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Internally, each volume shadow copy shown isn’t a complete copy of the drive, so it doesn’t 
duplicate the entire contents twice, which would double disk space requirements for every 
single copy. Previous Versions uses the copy-on-write mechanism described earlier to create 
shadow copies. For example, if the only file that changed between time A and time B, when 
a volume shadow copy was taken, is New.txt, the shadow copy will contain only New.txt. This 
allows VSS to be used in client scenarios with minimal visible impact on the user, since entire 
drive contents are not duplicated and size constraints remain small.

Although shadow copies for previous versions are taken daily (or whenever a Windows 
Update or software installation is performed, for example), you can manually request a copy 
to be taken. This can be useful if, for example, you’re about to make major changes to the 
system or have just copied a set of files you want to save immediately for the purpose of 
creating a previous version. You can access these settings by right-clicking Computer on 
the Start Menu or desktop, selecting Properties, and then clicking System Protection. You 
can also open Control Panel, click System And Maintenance, and then click System. The dia-
log box shown in Figure 8-27 allows you to select the volumes on which to enable System 
Restore (which also affects previous versions) and to create an immediate restore point and 
name it.

FIGURE 8-27 System Restore and Previous Versions configuration



696 Windows Internals, Fifth Edition

EXPERIMENT: Mapping Volume Shadow Device Objects

Although you can browse previous versions by using Explorer, this doesn’t give you 
a permanent interface through which you can access that view of the drive in an 
 application-independent, persistent way. You can use the Vssadmin utility (%System-
Root%\System32\Vssadmin.exe) included with Windows to view all the shadow copies 
taken, and you can then take advantage of symbolic links to map a copy. This experi-
ment will show you how.

 1. List all shadow copies available on the system by using the list shadows command:

vssadmin list shadows

You’ll see output that resembles the following. Each entry is either a previous ver-
sion copy or a shared folder with shadow copies enabled.

vssadmin 1.1 - Volume Shadow Copy Service administrative command-line tool 

(C) Copyright 2001-2005 Microsoft Corp. 

 

Contents of shadow copy set ID: {dfe617b7-ef2b-4280-9f4e-ddf94c2ccfac} 

   Contained 1 shadow copies at creation time: 8/27/2008 1:59:58 PM 

      Shadow Copy ID: {f455a794-6b0c-49e4-9ae5-e54647fd1f31} 

         Original Volume: (C:)\\?\Volume{f5f9d9c3-7466-11dd-9ba5-806e6f6e6963}\ 

         Shadow Copy Volume: \\?\GLOBALROOT\Device\HarddiskVolumeShadowCopy1 

         Originating Machine: WIN-SL5V78KD01W 

         Service Machine: WIN-SL5V78KD01W 

         Provider: 'Microsoft Software Shadow Copy provider 1.0' 

         Type: ClientAccessibleWriters 

         Attributes: Persistent, Client-accessible, No auto release,  

             Differential, Auto recovered 

 

Contents of shadow copy set ID: {02dad996-e7b0-4d2d-9fb9-7e692be8fe3c} 

   Contained 1 shadow copies at creation time: 8/29/2008 1:51:14 AM 

      Shadow Copy ID: {79c9ee14-ca1f-4e46-b3f0-0dc98f8eb0d4} 

         Original Volume: (C:)\\?\Volume{f5f9d9c3-7466-11dd-9ba5-806e6f6e6963}\ 

         Shadow Copy Volume: \\?\GLOBALROOT\Device\HarddiskVolumeShadowCopy2. 

...

Note that each shadow copy set ID displayed in this output matches the C$ entries 
shown by Explorer in the previous experiment, and the tool also displays the 
shadow copy volume, which corresponds to the shadow copy device objects that 
you can see with WinObj.

 2. You can now use the Mklink.exe utility to create a directory symbolic link (for 
more information on symbolic links, see Chapter 11), which will let you map a 
shadow copy into an actual location. Use the /d flag to create a directory link, and 
specify a folder on your drive to map to the given volume device object. Make 
sure to append the path with a backslash (\) as shown here:

mklink /d c:\old \\?\GLOBALROOT\Device\HarddiskVolumeShadowCopy2\
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 3. Finally, with the Subst.exe utility, you can map the c:\old directory to a real vol-
ume using the command shown here:

Subst g: c:\old

You can now access the old contents of your drive from any application by using 
the c:\old path, or from any command-prompt utility by using the g:\ path—for 
example, try dir g: to list the contents of your drive.

Shadow Copies for Shared Folders

Windows also takes advantage of Volume Shadow Copy to provide a feature that lets stan-
dard users access backup versions of volumes on file servers so that they can recover old 
versions of files and folders that they might have deleted or changed. The feature alleviates 
the burden on systems administrators who would otherwise have to load backup media and 
access previous versions on behalf of these users.

The Properties dialog box for a volume includes a tab named Shadow Copies, shown in 
Figure 8-28. An administrator can enable scheduled snapshots of volumes using this tab, as 
shown in the following screen. Administrators can also limit the amount of space consumed 
by snapshots so that the system deletes old snapshots to honor space constraints.

FIGURE 8-28 Shadow Copies for Shared Folders
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When a client Windows system (running Windows Vista Business, Enterprise, or Ultimate) 
maps a share from a folder on a volume for which snapshots exist, the Previous Versions tab 
appears in the Properties dialog box for folders and files on the share, just like for local fold-
ers. The Previous Versions tab shows a list of snapshots that exist on the server, instead of 
the client, allowing the user to view or copy a file or folder’s data as it existed in a previous 
snapshot.

Conclusion

In this chapter, we’ve reviewed the on-disk organization, components, and operation of 
Windows disk storage management. In Chapter 10, we delve into the cache manager, an 
executive component integral to the operation of file system drivers that mount the volume 
types presented in this chapter. However, next, we’ll take a close look at an integral compo-
nent of the Windows kernel: the memory manager.
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Chapter 9

Memory Management

In this chapter, you’ll learn how Windows implements virtual memory and how it manages 

the subset of virtual memory kept in physical memory. We’ll also describe the internal struc-

ture and components that make up the memory manager, including key data structures and 

algorithms. Before examining these mechanisms, we’ll review the basic services provided by 

the memory manager and key concepts such as reserved memory versus committed mem-

ory and shared memory.

Introduction to the Memory Manager

By default, the virtual size of a process on 32-bit Windows is 2 GB. If the image is marked 

specifically as large address space aware, and the system is booted with a special option 

(described later in this chapter), a 32-bit process can grow to be 3 GB on 32-bit Windows 

and to 4 GB on 64-bit Windows. The process virtual address space size on 64-bit Windows 

is 7,152 GB on IA64 systems and 8,192 GB on x64 systems. (This value could be increased in 

future releases.)

As you saw in Chapter 2 (specifically in Table 2-3), the maximum amount of physical memory 

currently supported by Windows ranges from 2 GB to 2,048 GB, depending on which version 

and edition of Windows you are running. Because the virtual address space might be larger 

or smaller than the physical memory on the machine, the memory manager has two primary 

tasks:

Translating, or mapping, a process’s virtual address space into physical memory so 

that when a thread running in the context of that process reads or writes to the virtual 

address space, the correct physical address is referenced. (The subset of a process’s vir-

tual address space that is physically resident is called the working set. Working sets are 

described in more detail later in this chapter.)

Paging some of the contents of memory to disk when it becomes overcommitted—that 

is, when running threads or system code try to use more physical memory than is cur-

rently available—and bringing the contents back into physical memory when needed.

In addition to providing virtual memory management, the memory manager provides a 

core set of services on which the various Windows environment subsystems are built. These 

services include memory mapped files (internally called section objects), copy-on-write 

memory, and support for applications using large, sparse address spaces. In addition, the 

memory manager provides a way for a process to allocate and use larger amounts of physical 



700 Windows Internals, Fifth Edition

memory than can be mapped into the process virtual address space (for example, on 32-bit 

systems with more than 4 GB of physical memory). This is explained in the section “Address 

Windowing Extensions” later in this chapter.

Memory Manager Components

The memory manager is part of the Windows executive and therefore exists in the file 

Ntoskrnl.exe. No parts of the memory manager exist in the HAL. The memory manager con-

sists of the following components:

A set of executive system services for allocating, deallocating, and managing virtual 

memory, most of which are exposed through the Windows API or kernel-mode device 

driver interfaces

A translation-not-valid and access fault trap handler for resolving hardware-detected 

memory management exceptions and making virtual pages resident on behalf of a 

process

Several key components that run in the context of six different kernel-mode system 

threads:

The working set manager (priority 16), which the balance set manager (a system 

thread that the kernel creates) calls once per second as well as when free memory 

falls below a certain threshold, drives the overall memory management policies, 

such as working set trimming, aging, and modified page writing.

The process/stack swapper (priority 23) performs both process and kernel thread 

stack inswapping and outswapping. The balance set manager and the thread-

scheduling code in the kernel awaken this thread when an inswap or outswap 

operation needs to take place.

The modified page writer (priority 17) writes dirty pages on the modified list back 

to the appropriate paging files. This thread is awakened when the size of the 

modified list needs to be reduced. 

The mapped page writer (priority 17) writes dirty pages in mapped files to disk 

(or remote storage). It is awakened when the size of the modified list needs to 

be reduced or if pages for mapped files have been on the modified list for more 

than 5 minutes. This second modified page writer thread is necessary because it 

can generate page faults that result in requests for free pages. If there were no 

free pages and there was only one modified page writer thread, the system could 

deadlock waiting for free pages.
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The dereference segment thread (priority 18) is responsible for cache reduction 

as well as for page file growth and shrinkage. (For example, if there is no virtual 

address space for paged pool growth, this thread trims the page cache so that 

the paged pool used to anchor it can be freed for reuse.)

The zero page thread (priority 0) zeroes out pages on the free list so that a cache 

of zero pages is available to satisfy future demand-zero page faults. (Memory 

zeroing in some cases is done by a faster function called MiZeroInParallel. See the 

note in the section “Page List Dynamics.”)

Each of these components is covered in more detail later in the chapter.

Internal Synchronization

Like all other components of the Windows executive, the memory manager is fully  reentrant 

and supports simultaneous execution on multiprocessor systems—that is, it allows two 

threads to acquire resources in such a way that they don’t corrupt each other’s data. To 

accomplish the goal of being fully reentrant, the memory manager uses several different 

internal synchronization mechanisms to control access to its own internal data structures, 

such as spinlocks. (Synchronization objects are discussed in Chapter 3.)

Systemwide resources to which the memory manager must synchronize access include the 

page frame number (PFN) database (controlled by a spinlock), section objects and the system 

working set (controlled by pushlocks), and page file creation (controlled by a guarded mutex). 

Per-process memory management data structures that require synchronization include the 

working set lock (held while changes are being made to the working set list) and the address 

space lock (held whenever the address space is being changed). Both these locks are imple-

mented using pushlocks.

Examining Memory Usage

The Memory and Process performance counter objects provide access to most of the details 

about system and process memory utilization. Throughout the chapter, we’ll include refer-

ences to specific performance counters that contain information related to the component 

being described. We’ve included relevant examples and experiments throughout the chapter. 

One word of caution, however: different utilities use varying and sometimes inconsistent or 

confusing names when displaying memory information. The following experiment illustrates 

this point. (We’ll explain the terms used in this example in subsequent sections.)
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EXPERIMENT: Viewing System Memory Information

The Performance tab in the Windows Task Manager, shown in the following screen 

shot, displays basic system memory information. This information is a subset of the 

detailed memory information available through the performance counters.

The following table shows the meaning of the memory-related values.

Task Manager Value Definition

Memory bar histogram Physical memory usable by Windows (not available 

as a performance counter; represents RAM usable 

by the operating system, and does not include BIOS 

shadow pages, device memory, and so on). Measured 

in available bytes.

Physical Memory (MB): Total Physical memory usable by Windows

Physical Memory (MB): Cached Cache bytes + modified page list bytes + standby 

cache core bytes + standby cache normal priority 

bytes + standby cache reserve bytes

Physical Memory (MB): Free Free and zero page list bytes

Kernel Memory (MB): Total Pool paged bytes + pool nonpaged bytes

Kernel Memory (MB): Paged Pool paged bytes

Kernel Memory (MB): Nonpaged Pool nonpaged bytes

System: Page File (two numbers 

shown)

Committed bytes / commit limit



 Chapter 9 Memory Management 703

To see the specific usage of paged and nonpaged pool, use the Poolmon utility, 

described in the “Monitoring Pool Usage” section.

Finally, the !vm command in the kernel debugger shows the basic memory manage-

ment information available through the memory-related performance counters. This 

command can be useful if you’re looking at a crash dump or hung system. Here’s an 

example of its output from a 512-MB Windows Server 2008 system:

lkd> !vm 

 

*** Virtual Memory Usage *** 

 Physical Memory:      130772 (    523088 Kb) 

 Page File: \??\C:\pagefile.sys 

   Current:   1048576 Kb  Free Space:   1039500 Kb 

   Minimum:   1048576 Kb  Maximum:      4194304 Kb 

 Available Pages:       47079 (    188316 Kb) 

 ResAvail Pages:       111511 (    446044 Kb) 

 Locked IO Pages:           0 (         0 Kb) 

 Free System PTEs:     433746 (   1734984 Kb) 

 Modified Pages:         2808 (     11232 Kb) 

 Modified PF Pages:      2801 (     11204 Kb) 

 NonPagedPool Usage:     5301 (     21204 Kb) 

 NonPagedPool Max:      94847 (    379388 Kb) 

 PagedPool 0 Usage:      4340 (     17360 Kb) 

 PagedPool 1 Usage:      3129 (     12516 Kb) 

 PagedPool 2 Usage:       402 (      1608 Kb) 

 PagedPool 3 Usage:       349 (      1396 Kb) 

 PagedPool 4 Usage:       420 (      1680 Kb) 

 PagedPool Usage:        8640 (     34560 Kb) 

 PagedPool Maximum:    523264 (   2093056 Kb) 

 Shared Commit:          7231 (     28924 Kb) 

 Special Pool:              0 (         0 Kb) 

 Shared Process:         1767 (      7068 Kb) 

 PagedPool Commit:       8635 (     34540 Kb) 

 Driver Commit:          2246 (      8984 Kb) 

 Committed pages:       73000 (    292000 Kb) 

 Commit limit:         386472 (   1545888 Kb) 

 

Total Private:         44889 (    179556 Kb) 

         0400 svchost.exe       5436 (     21744 Kb) 

         0980 explorer.exe      4123 (     16492 Kb) 

         0a7c windbg.exe        3713 (     14852 Kb)            
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Services the Memory Manager Provides

The memory manager provides a set of system services to allocate and free virtual memory, 

share memory between processes, map files into memory, flush virtual pages to disk, retrieve 

information about a range of virtual pages, change the protection of virtual pages, and lock 

the virtual pages into memory.

Like other Windows executive services, the memory management services allow their caller 

to supply a process handle indicating the particular process whose virtual memory is to be 

manipulated. The caller can thus manipulate either its own memory or (with the proper per-

missions) the memory of another process. For example, if a process creates a child process, by 

default it has the right to manipulate the child process’s virtual memory. Thereafter, the par-

ent process can allocate, deallocate, read, and write memory on behalf of the child process 

by calling virtual memory services and passing a handle to the child process as an argument. 

This feature is used by subsystems to manage the memory of their client processes, and it is 

also key for implementing debuggers because debuggers must be able to read and write to 

the memory of the process being debugged.

Most of these services are exposed through the Windows API. The Windows API has 

three groups of functions for managing memory in applications: page granularity vir-

tual memory functions (Virtualxxx), memory-mapped file functions (CreateFileMapping, 

CreateFileMappingNuma, MapViewOfFile, MapViewOfFileEx, and MapViewOfFileExNuma), 

and heap functions (Heapxxx and the older interfaces Localxxx and Globalxxx, which inter-

nally make use of the Heapxxx APIs). (We’ll describe the heap manager later in this chapter.)

The memory manager also provides a number of services (such as allocating and deallocat-

ing physical memory and locking pages in physical memory for direct memory access [DMA] 

transfers) to other kernel-mode components inside the executive as well as to device driv-

ers. These functions begin with the prefix Mm. In addition, though not strictly part of the 

memory manager, some executive support routines that begin with Ex are used to allocate 

and deallocate from the system heaps (paged and nonpaged pool) as well as to manipulate 

look-aside lists. We’ll touch on these topics later in this chapter in the section “Kernel-Mode 

Heaps (System Memory Pools).”

Although we’ll be referring to Windows functions and kernel-mode memory management 

and memory allocation routines provided for device drivers, we won’t cover the interface 

and programming details but rather the internal operations of these functions. Refer to the 

Windows Software Development Kit (SDK) and Windows Driver Kit (WDK) documentation on 

MSDN for a complete description of the available functions and their interfaces.
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Large and Small Pages

The virtual address space is divided into units called pages. That is because the hardware 

memory management unit translates virtual to physical addresses at the granularity of a 

page. Hence, a page is the smallest unit of protection at the hardware level. (The various 

page protection options are described in the section “Protecting Memory” later in the chap-

ter.) There are two page sizes: small and large. The actual sizes vary based on hardware archi-

tecture, and they are listed in Table 9-1.

TABLE 9-1 Page Sizes

Architecture Small Page Size Large Page Size

x86 4 KB 4 MB (2 MB on PAE systems)

x64 4 KB 2 MB

IA64 8 KB 16 MB

Note IA64 processors support a variety of dynamically configurable page sizes, from 4 KB up to 

256 MB. Windows uses 8 KB and 16 MB for small and large pages, respectively, as a result of per-

formance tests that confirmed these values as optimal. Additionally, recent x64 processors sup-

port a size of 1 GB for large pages, but Windows does not currently use this feature.

The advantage of large pages is speed of address translation for references to other data 

within the large page. This advantage exists because the first reference to any byte within a 

large page will cause the hardware’s translation look-aside buffer (or TLB, which is described 

in the section “Translation Look-Aside Buffer”) to have in its cache the information necessary 

to translate references to any other byte within the large page. If small pages are used, more 

TLB entries are needed for the same range of virtual addresses, thus increasing recycling of 

entries as new virtual addresses require translation. This, in turn, means having to go back to 

the page table structures when references are made to virtual addresses outside the scope of 

a small page whose translation has been cached. The TLB is a very small cache, and thus large 

pages make better use of this limited resource.

To take advantage of large pages on systems with more than 255 MB of RAM, Windows 

maps with large pages the core operating system images (Ntoskrnl.exe and Hal.dll) as well as 

core operating system data (such as the initial part of nonpaged pool and the data structures 

that describe the state of each physical memory page). Windows also automatically maps I/O 

space requests (calls by device drivers to MmMapIoSpace) with large pages if the request is 

of satisfactory large page length and alignment. In addition, Windows allows applications to 

map their images, private memory, and page-file-backed sections with large pages. (See the 

MEM_LARGE_PAGE flag on the VirtualAlloc, VirtualAllocEx, and VirtualAllocExNuma func-

tions.) You can also specify other device drivers to be mapped with large pages by adding 
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a multistring registry value to HKLM\SYSTEM\CurrentControlSet\Control\Session Manager\

Memory Management\LargePageDrivers and specifying the names of the drivers as sepa-

rately null- terminated strings.

One side-effect of large pages is that because each large page must be mapped with a single 

protection (because hardware memory protection is on a per-page basis), if a large page 

contains both read-only code and read/write data, the page must be marked as read/write, 

which means that the code will be writable. This means device drivers or other kernel-mode 

code could, as a result of a bug, modify what is supposed to be read-only operating system 

or driver code without causing a memory access violation. However, if small pages are used 

to map the kernel, the read-only portions of Ntoskrnl.exe and Hal.dll will be mapped as read-

only pages. Although this reduces efficiency of address translation, if a device driver (or other 

kernel-mode code) attempts to modify a read-only part of the operating system, the system 

will crash immediately, with the finger pointing at the offending instruction, as opposed to 

allowing the corruption to occur and the system crashing later (in a harder-to-diagnose way) 

when some other component trips over that corrupted data. If you suspect you are experi-

encing kernel code corruptions, enable Driver Verifier (described later in this chapter), which 

will disable the use of large pages.

Reserving and Committing Pages

Pages in a process virtual address space are free, reserved, or committed. Applications can 

first reserve address space and then commit pages in that address space. Or they can reserve 

and commit in the same function call. These services are exposed through the Windows 

VirtualAlloc, VirtualAllocEx, and VirtualAllocExNuma functions.

Reserved address space is simply a way for a thread to reserve a range of virtual addresses 

for future use. Attempting to access reserved memory results in an access violation because 

the page isn’t mapped to any storage that can resolve the reference.

Committed pages are pages that, when accessed, ultimately translate to valid pages in physi-

cal memory. Committed pages are either private and not shareable or mapped to a view of a 

section (which might or might not be mapped by other processes). Sections are described in 

two upcoming sections, “Shared Memory and Mapped Files” and “Section Objects.”

If the pages are private to the process and have never been accessed before, they are created 

at the time of first access as zero-initialized pages (or demand zero). Private committed pages 

can later be automatically written to the paging file by the operating system if memory 

demands dictate. Committed pages that are private are inaccessible to any other process 

unless they’re accessed using cross-process memory functions, such as ReadProcessMemory 

or WriteProcessMemory. If committed pages are mapped to a portion of a mapped file, they 

might need to be brought in from disk when accessed unless they’ve already been read ear-

lier, either by the process accessing the page or by another process that had the same file 
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mapped and had previously accessed the page, or if they’ve been prefetched by the system. 

(See the section “Shared Memory and Mapped Files” later in this chapter.)

Pages are written to disk through normal modified page writing as pages are moved from 

the process working set to the modified list and ultimately to disk (or remote storage). 

(Working sets and the modified list are explained later in this chapter.) Mapped file pages can 

also be written back to disk as a result of an explicit call to FlushViewOfFile or by the mapped 

page writer as memory demands dictate.

You can decommit pages and/or release address space with the VirtualFree or VirtualFreeEx 

function. The difference between decommittal and release is similar to the difference 

between reservation and committal—decommitted memory is still reserved, but released 

memory is neither committed nor reserved. (It’s freed.)

Using the two-step process of reserving and committing memory can reduce memory usage 

by deferring committing pages until needed but keeping the convenience of virtual contigu-

ity. Reserving memory is a relatively fast and inexpensive operation under Windows because 

it doesn’t consume any committed pages (a precious system resource) or process page file 

quota (a limit on the number of committed pages a process can consume—not necessarily 

page file space). All that needs to be updated or constructed is the relatively small internal 

data structures that represent the state of the process address space. (We’ll explain these data 

structures, called virtual address descriptors, or VADs, later in the chapter.)

Reserving and then committing memory is useful for applications that need a potentially 

large virtually contiguous memory buffer; rather than committing pages for the entire 

region, the address space can be reserved and then committed later when needed. A use 

of this technique in the operating system is the user-mode stack for each thread. When a 

thread is created, a stack is reserved. (1 MB is the default; you can override this size with the 

CreateThread and CreateRemoteThread function calls or change it on an imagewide basis by 

using the /STACK linker flag.) By default, the initial page in the stack is committed and the 

next page is marked as a guard page (which isn’t committed) that traps references beyond 

the end of the committed portion of the stack and expands it.

Locking Memory

In general, it’s better to let the memory manager decide which pages remain in physical 

memory. However, there might be special circumstances where it might be necessary for an 

application or device driver to lock pages in physical memory. Pages can be locked in mem-

ory in two ways:

Windows applications can call the VirtualLock function to lock pages in their process 

working set. The number of pages a process can lock can’t exceed its minimum work-

ing set size minus eight pages. Therefore, if a process needs to lock more pages, it 
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can increase its working set minimum with the SetProcessWorkingSetSizeEx function 

(referred to in the section “Working Set Management”).

Device drivers can call the kernel-mode functions MmProbeAndLockPages, MmLock-
PagableCodeSection, MmLockPagableDataSection, or MmLockPagableSectionByHandle. 

Pages locked using this mechanism remain in memory until explicitly unlocked. No 

quota is imposed on the number of pages a driver can lock in memory because (for 

the last three APIs) the resident available page charge is obtained when the driver first 

loads to ensure that it can never cause a system crash due to overlocking. For the first 

API, charges must be obtained or the API will return a failure status.

Allocation Granularity

Windows aligns each region of reserved process address space to begin on an integral 

boundary defined by the value of the system allocation granularity, which can be retrieved 

from the Windows GetSystemInfo or GetNativeSystemInfo function. This value is 64 KB, a 

granularity that is used by the memory manager to efficiently allocate metadata (for exam-

ple, VADs, bitmaps, and so on) to support various process operations. In addition, if support 

were added for future processors with larger page sizes (for example, up to 64 KB) or virtu-

ally indexed caches that require systemwide physical-to-virtual page alignment, the risk of 

requiring changes to applications that made assumptions about allocation alignment would 

be reduced. 

Note Windows kernel-mode code isn’t subject to the same restrictions; it can reserve memory 

on a single-page granularity (although this is not exposed to device drivers for the reasons 

detailed earlier). This level of granularity is primarily used to pack TEB allocations more densely, 

and because this mechanism is internal only, this code can easily be changed if a future plat-

form requires different values. Also, for the purposes of supporting 16-bit and MS-DOS appli-

cations on x86 systems only, the memory manager provides the MEM_DOS_LIM flag to the 

MapViewOfFileEx API, which is used to force the use of single-page granularity.

Finally, when a region of address space is reserved, Windows ensures that the size and base 

of the region is a multiple of the system page size, whatever that might be. For example, 

because x86 systems use 4-KB pages, if you tried to reserve a region of memory 18 KB in 

size, the actual amount reserved on an x86 system would be 20 KB. If you specified a base 

address of 3 KB for an 18-KB region, the actual amount reserved would be 24 KB. Note 

that the internal memory manager structure describing the allocation (this structure will be 

described later) would then also be rounded to 64-KB alignment/length, thus making the 

remainder of it inaccessible.
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Shared Memory and Mapped Files

As is true with most modern operating systems, Windows provides a mechanism to share 

memory among processes and the operating system. Shared memory can be defined as 

memory that is visible to more than one process or that is present in more than one process 

virtual address space. For example, if two processes use the same DLL, it would make sense 

to load the referenced code pages for that DLL into physical memory only once and share 

those pages between all processes that map the DLL, as illustrated in Figure 9-1.

Process 1

virtual memory

Physical

memory

Process 2

virtual memory

DLL code

FIGURE 9-1 Sharing memory between processes

Each process would still maintain its private memory areas in which to store private data, but 

the program instructions and unmodified data pages could be shared without harm. As we’ll 

explain later, this kind of sharing happens automatically because the code pages in execut-

able images are mapped as execute-only and writable pages are mapped as copy-on-write. 

(See the section “Copy-on-Write” for more information.)

The underlying primitives in the memory manager used to implement shared memory are 

called section objects, which are called file mapping objects in the Windows API. The inter-

nal structure and implementation of section objects are described in the section “Section 

Objects” later in this chapter.

This fundamental primitive in the memory manager is used to map virtual addresses, 

whether in main memory, in the page file, or in some other file that an application wants to 

access as if it were in memory. A section can be opened by one process or by many; in other 

words, section objects don’t necessarily equate to shared memory.
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A section object can be connected to an open file on disk (called a mapped file) or to com-

mitted memory (to provide shared memory). Sections mapped to committed memory are 

called page-file-backed sections because the pages are written to the paging file if memory 

demands dictate. (Because Windows can run with no paging file, page-file-backed sections 

might in fact be “backed” only by physical memory.) As with any other empty page that is 

made visible to user mode (such as private committed pages), shared committed pages are 

always zero-filled when they are first accessed to ensure that no sensitive data is ever leaked.

To create a section object, call the Windows CreateFileMapping or CreateFileMappingNuma 
function, specifying the file handle to map it to (or INVALID_HANDLE_VALUE for a page-file-

backed section) and optionally a name and security descriptor. If the section has a name, 

other processes can open it with OpenFileMapping. Or you can grant access to section 

objects through handle inheritance (by specifying that the handle be inheritable when open-

ing or creating the handle) or handle duplication (by using DuplicateHandle). Device drivers 

can also manipulate section objects with the ZwOpenSection, ZwMapViewOfSection, and 

ZwUnmapViewOfSection functions.

A section object can refer to files that are much larger than can fit in the address space of a 

process. (If the paging file backs a section object, sufficient space must exist in the paging 

file and/or RAM to contain it.) To access a very large section object, a process can map only 

the portion of the section object that it requires (called a view of the section) by calling the 

MapViewOfFile, MapViewOfFileEx, or MapViewOfFileExNuma function and then specifying 

the range to map. Mapping views permits processes to conserve address space because only 

the views of the section object needed at the time must be mapped into memory.

Windows applications can use mapped files to conveniently perform I/O to files by simply 

making them appear in their address space. User applications aren’t the only consumers of 

section objects: the image loader uses section objects to map executable images, DLLs, and 

device drivers into memory, and the cache manager uses them to access data in cached 

files. (For information on how the cache manager integrates with the memory manager, see 

Chapter 10.) How shared memory sections are implemented, both in terms of address trans-

lation and the internal data structures, is explained later in this chapter.
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EXPERIMENT: Viewing Memory Mapped Files

You can list the memory mapped files in a process by using Process Explorer from 

Windows Sysinternals (www.microsoft.com/technet/sysinternals). To view the memory 

mapped files by using Process Explorer, configure the lower pane to show the DLL view. 

(Click on View, Lower Pane View, DLLs.) Note that this is more than just a list of DLLs—it 

represents all memory mapped files in the process address space. Some of these are 

DLLs, one is the image file (EXE) being run, and additional entries might represent 

memory mapped data files. For example, the following display from Process Explorer 

shows a Microsoft Word process that has memory mapped the Word document being 

edited into its address space:

You can also search for memory mapped files by clicking on Find, DLL. This can be use-

ful when trying to determine which process(es) are using a DLL that you are trying to 

replace.

Protecting Memory

As explained in Chapter 1, Windows provides memory protection so that no user process can 

inadvertently or deliberately corrupt the address space of another process or the operating 

system itself. Windows provides this protection in four primary ways.

First, all systemwide data structures and memory pools used by kernel-mode system com-

ponents can be accessed only while in kernel mode—user-mode threads can’t access these 

pages. If they attempt to do so, the hardware generates a fault, which in turn the memory 

manager reports to the thread as an access violation.
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Second, each process has a separate, private address space, protected from being accessed 

by any thread belonging to another process. The only exceptions are if the process 

decides to share pages with other processes or if another process has virtual memory 

read or write access to the process object and thus can use the ReadProcessMemory or 

WriteProcessMemory function. Each time a thread references an address, the virtual mem-

ory hardware, in concert with the memory manager, intervenes and translates the virtual 

address into a physical one. By controlling how virtual addresses are translated, Windows can 

ensure that threads running in one process don’t inappropriately access a page belonging to 

another process.

Third, in addition to the implicit protection virtual-to-physical address translation offers, all 

processors supported by Windows provide some form of hardware-controlled memory pro-

tection (such as read/write, read-only, and so on); the exact details of such protection vary 

according to the processor. For example, code pages in the address space of a process are 

marked read-only and are thus protected from modification by user threads.

Table 9-2 lists the memory protection options defined in the Windows API. (See the 

VirtualProtect, VirtualProtectEx, VirtualQuery, and VirtualQueryEx functions.)

TABLE 9-2 Memory Protection Options Defined in the Windows API

Attribute Description

PAGE_NOACCESS Any attempt to read from, write to, or execute code in this region 

causes an access violation.

PAGE_READONLY Any attempt to write to (and on processors with no execute 

support, execute code in) memory causes an access violation, but 

reads are permitted.

PAGE_READWRITE The page is readable and writable but not executable.

PAGE_EXECUTE Any attempt to write to code in memory in this region causes 

an access violation, but execution (and read operations on all 

existing processors) is permitted.

PAGE_EXECUTE_READ* Any attempt to write to code in memory in this region causes an 

access violation, but executes and reads are permitted.

PAGE_EXECUTE_READWRITE* The page is readable, writable, and executable—no action will 

cause an access violation.

PAGE_WRITECOPY Any attempt to write to memory in this region causes the system 

to give the process a private copy of the page. On processors 

with no execute support, attempts to execute code in memory in 

this region cause an access violation.

PAGE_EXECUTE_WRITECOPY Any attempt to write to memory in this region causes the system 

to give the process a private copy of the page. Reading and 

executing code in this region is permitted. (No copy is made in 

this case.)
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Attribute Description

PAGE_GUARD Any attempt to read from or write to a guard page raises an 

EXCEPTION_GUARD_PAGE exception and turns off the guard 

page status. Guard pages thus act as a one-shot alarm. Note that 

this flag can be specified with any of the page protections listed 

in this table except PAGE_NOACCESS.

PAGE_NOCACHE Use physical memory that is not cached. This is not recom-

mended for general usage. It is useful for device drivers—for 

example, mapping a video frame buffer with no caching.

PAGE_WRITECOMBINE Enables write-combined memory accesses. When enabled, 

the processor does not cache memory writes (this can cause 

significant memory traffic), but it does try to aggregate write 

requests to optimize performance. For example, if multiple writes 

are made to the same address, only the most recent write might 

occur. This is not typically used for general applications, but it is 

useful for device drivers—for example, mapping a video frame 

buffer as write combined.

* No execute protection is supported on processors that have the necessary hardware support (for example, all x64 
and IA64 processors) but not in older x86 processors.

And finally, shared memory section objects have standard Windows access control lists (ACLs) 

that are checked when processes attempt to open them, thus limiting access of shared mem-

ory to those processes with the proper rights. Security also comes into play when a thread 

creates a section to contain a mapped file. To create the section, the thread must have at 

least read access to the underlying file object or the operation will fail.

Once a thread has successfully opened a handle to a section, its actions are still subject to the 

memory manager and the hardware-based page protections described earlier. A thread can 

change the page-level protection on virtual pages in a section if the change doesn’t violate 

the permissions in the ACL for that section object. For example, the memory manager allows 

a thread to change the pages of a read-only section to have copy-on-write access but not 

to have read/write access. The copy-on-write access is permitted because it has no effect on 

other processes sharing the data.

No Execute Page Protection

No execute page protection (also referred to as data execution prevention, or DEP) causes 

an attempt to transfer control to an instruction in a page marked as “no execute” to gener-

ate an access fault. This can prevent certain types of malware from exploiting bugs in the 

system through the execution of code placed in a data page such as the stack. DEP can also 

catch poorly written programs that don’t correctly set permissions on pages from which 

they intend to execute code. If an attempt is made in kernel mode to execute code in a page 

marked as no execute, the system will crash with the ATTEMPTED_EXECUTE_OF_NOEXECUTE_

MEMORY bugcheck code. (See Chapter 14 for an explanation of these codes.) If this occurs in 
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user mode, a STATUS_ACCESS_VIOLATION (0xc0000005) exception is delivered to the thread 

attempting the illegal reference. If a process allocates memory that needs to be executable, 

it must explicitly mark such pages by specifying the PAGE_EXECUTE, PAGE_EXECUTE_READ, 

PAGE_EXECUTE_READWRITE, or PAGE_EXECUTE_WRITECOPY flags on the page granularity 

memory allocation functions.

On 32-bit x86 systems, the flag in the page table entry to mark a page as nonexecutable is 

available only when the processor is running in Physical Address Extension (PAE) mode. (See 

the section “Physical Address Extension (PAE)” later in this chapter.) Thus, support for hard-

ware DEP on 32-bit systems requires loading the PAE kernel (\%SystemRoot%\System32\

Ntkrnlpa.exe), even if that system does not require extended physical addressing (for exam-

ple, physical addresses greater than 4 GB). The operating system loader does this automati-

cally unless explicitly configured not to by setting the BCD option pae to ForceDisable.

On 64-bit versions of Windows, execution protection is always applied to all 64-bit processes 

and device drivers and can be disabled only by setting the nx BCD option to AlwaysOff. 
Execution protection for 32-bit programs depends on system configuration settings, 

described shortly. On 64-bit Windows, execution protection is applied to thread stacks (both 

user and kernel mode), user-mode pages not specifically marked as executable, kernel paged 

pool, and kernel session pool (for a description of kernel memory pools, see the section 

“Kernel-Mode Heaps (System Memory Pools).” However, on 32-bit Windows, execution pro-

tection is applied only to thread stacks and user-mode pages, not to paged pool and session 

pool. 

The application of execution protection for 32-bit processes depends on the value of the BCD 

nx option. The settings can be changed by going to the Data Execution Prevention tab under 

Computer, Properties, Advanced System Settings, Performance Settings. (See Figure 9-2.) 

When you configure no execute protection in the Performance Options dialog box, the BCD 

nx option is set to the appropriate value. Table 9-3 lists the variations of the values and how 

they correspond to the DEP settings tab. Thirty-two-bit applications that are excluded from 

execution protection are listed as registry values under the key HKLM\SOFTWARE\Microsoft\

Windows NT\CurrentVersion\AppCompatFlags\Layers, with the value name being the full 

path of the executable and the data set to “DisableNXShowUI”.

On Windows Vista (both 64-bit and 32-bit versions) execution protection for 32-bit processes 

is configured by default to apply only to core Windows operating system executables (the 

nx BCD option is set to OptIn) so as not to break 32-bit applications that might rely on being 

able to execute code in pages not specifically marked as executable, such as self-extracting 

or packed applications. On Windows Server 2008 systems, execution protection for 32-bit 

applications is configured by default to apply to all 32-bit programs (the nx BCD option is set 

to OptOut). 
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FIGURE 9-2 Data Execution Prevention tab settings

Note To obtain a complete list of which programs are protected, install the Windows Applica-

tion Compatibility Toolkit (downloadable from www.microsoft.com) and run the Compatibility 

Administrator Tool. Click System Database, Applications, and then Windows Components. The 

pane at the right shows the list of protected executables.

TABLE 9-3 BCD nx Values

Value Option on DEP Settings Tab Meaning

OptIn Turn on DEP for necessary 

Windows programs and 

services only.

Enables DEP for core Windows system images. 

Enables 32-bit processes to dynamically configure 

DEP for their lifetime.

OptOut Turn on DEP for all programs 

and services except those that 

I select.

Enables DEP for all executables except those 

specified. Enables 32-bit processes to dynamically 

configure DEP for their lifetime. Enables system 

compatibility fixes for DEP.

AlwaysOn No dialog box option for this 

setting

Enables DEP for all components with no ability 

to exclude certain applications. Disables dynamic 

configuration for 32-bit processes, and disables 

system compatibility fixes.

AlwaysOff No dialog box option for this 

setting

Disables DEP (not recommended). Disables dynamic 

configuration for 32-bit processes.
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Even if you force DEP to be enabled, there are still other methods through which applica-

tions can disable DEP or their own images. For example, regardless of the execution protec-

tion options that are enabled, the image loader (see Chapter 3 for more information about 

the image loader) will verify the signature of the executable against known copy-protection 

mechanisms (such as SafeDisc and SecuROM) and disable execution protection to provide 

compatibility with older copy-protected software such as computer games.

Additionally, to provide compatibility with older versions of the Active Template Library (ATL) 

framework (version 7.1 or earlier), the Windows kernel provides an ATL thunk emulation 

environment. This environment detects ATL thunk code sequences that have caused the DEP 

exception and emulates the expected operation. Application developers can request that ATL 

thunk emulation not be applied by using the latest Microsoft C++ compiler and specifying 

the /NXCOMPAT flag (which sets the IMAGE_DLLCHARACTERISTICS_NX_COMPAT flag in the 

PE header), which tells the system that the executable fully supports DEP. Note that ATL thunk 

emulation is permanently disabled if the AlwaysOn value is set.

Finally, if the system is in OptIn or OptOut mode and executing a 32-bit process, the 

SetProcessDEPPolicy function allows a process to dynamically disable DEP or to permanently 

enable it. (Once enabled through this API, DEP cannot be disabled programmatically for 

the lifetime of the process.) This function can also be used to dynamically disable ATL thunk 

emulation in case the image wasn’t compiled with the /NXCOMPAT flag. On 64-bit processes 

or systems booted with AlwaysOff or AlwaysOn, the function always returns a failure. The 

GetProcessDEPPolicy function returns the 32-bit per-process DEP policy (it fails on 64-bit sys-

tems, where the policy is always the same—enabled), while the GetSystemDEPPolicy can be 

used to return a value corresponding to the policies in Table 9-3.

EXPERIMENT: Looking at DEP Protection on Processes

Process Explorer can show you the current DEP status for all the processes on your sys-

tem, including whether the process is opted-in or benefiting from permanent protec-

tion. To look at the DEP status for processes, right-click any column in the process tree, 

choose Select Columns, and then select DEP Status on the Process Image tab. Three 

values are possible:

DEP (permanent) This means that the process has DEP enabled because it is 

a “necessary Windows program or service.” 

DEP This means that the process opted-in to DEP, either as part of a system-

wide policy to opt-in all 32-bit processes or because of an API call such as 

SetProcessDEPPolicy.

Nothing If the column displays no information for this process, DEP is dis-

abled, either because of a systemwide policy or an explicit API call or shim.
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The following Process Explorer window shows an example of a system on which DEP is 

enabled for all programs and services.

Software Data Execution Prevention

For older processors that do not support hardware no execute protection, Windows sup-

ports limited software data execution prevention (DEP). One aspect of software DEP reduces 

exploits of the exception handling mechanism in Windows. (See Chapter 3 for a description 

of structured exception handling.) If the program’s image files are built with safe structured 

exception handling (a feature in the Microsoft Visual C++ compiler that is enabled with the 

 /SAFESEH flag), before an exception is dispatched, the system verifies that the exception han-

dler is registered in the function table (built by the compiler) located within the image file. 

If the program’s image files are not built with safe structured exception handling, software 

DEP ensures that before an exception is dispatched, the exception handler is located within a 

memory region marked as executable.

Two other methods for software DEP that the system implements are stack cookies and 

pointer encoding. The first relies on the compiler to insert special code at the beginning and 

end of each potentially exploitable function. The code saves a special numerical value (the 

cookie) on the stack on entry and validates the cookie’s value before returning to the caller 

saved on the stack (which would have now been corrupted to point to a piece of malicious 

code). If the cookie value is mismatched, the application is terminated and not allowed to 

continue executing. The cookie value is computed for each boot when executing the first 

user-mode thread, and it is saved in the KUSER_SHARED_DATA structure. The image loader 

reads this value and initializes it when a process starts executing in user mode. (See Chapter 3 

for more information on the shared data section and the image loader.)

The cookie value that is calculated is also saved for use with the EncodeSystemPointer and 

DecodeSystemPointer APIs, which implement pointer encoding. When an application or a 

DLL has static pointers that are dynamically called, it runs the risk of having malicious code 
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overwrite the pointer values with code that the malware controls. By encoding all pointers 

with the cookie value and then decoding them, when malicious code sets a nonencoded 

pointer, the application will still attempt to decode the pointer, resulting in a corrupted value 

and causing the program to crash. The EncodePointer and DecodePointer APIs provide simi-

lar protection but with a per-process cookie (created on demand) instead of a per-system 

cookie.

Note The system cookie is a combination of the system time at generation, the stack value of 

the saved system time, the number of page faults, and the current interrupt time.

Copy-on-Write

Copy-on-write page protection is an optimization the memory manager uses to conserve 

physical memory. When a process maps a copy-on-write view of a section object that con-

tains read/write pages, instead of making a process private copy at the time the view is 

mapped, the memory manager defers making a copy of the pages until the page is written 

to. For example, as shown in Figure 9-3, two processes are sharing three pages, each marked 

copy-on-write, but neither of the two processes has attempted to modify any data on the 

pages.

Page 1

Page 2

Page 3

Physical memory

Original data

Process
address
space

Original data

Process
address
space

FIGURE 9-3 The “before” of copy-on-write

If a thread in either process writes to a page, a memory management fault is generated. 

The memory manager sees that the write is to a copy-on-write page, so instead of report-

ing the fault as an access violation, it allocates a new read/write page in physical memory, 

copies the contents of the original page to the new page, updates the corresponding page-

mapping information (explained later in this chapter) in this process to point to the new 

location, and dismisses the exception, thus causing the instruction that generated the fault 

to be  reexecuted. This time, the write operation succeeds, but as shown in Figure 9-4, the 

newly copied page is now private to the process that did the writing and isn’t visible to the 

other process still sharing the copy-on-write page. Each new process that writes to that same 

shared page will also get its own private copy.
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Page 1
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FIGURE 9-4 The “after” of copy-on-write

One application of copy-on-write is to implement breakpoint support in debuggers. For 

example, by default, code pages start out as execute-only. If a programmer sets a break-

point while debugging a program, however, the debugger must add a breakpoint instruction 

to the code. It does this by first changing the protection on the page to PAGE_EXECUTE_

READWRITE and then changing the instruction stream. Because the code page is part of a 

mapped section, the memory manager creates a private copy for the process with the break-

point set, while other processes continue using the unmodified code page.

Copy-on-write is one example of an evaluation technique known as lazy evaluation that the 

memory manager uses as often as possible. Lazy-evaluation algorithms avoid performing an 

expensive operation until absolutely required—if the operation is never required, no time is 

wasted on it.

To examine the rate of copy-on-write faults, see the performance counter Memory: Write 

Copies/sec.

Address Windowing Extensions

Although the 32-bit version of Windows can support up to 128 GB of physical memory (as 

shown in Table 2-3), each 32-bit user process has by default only a 2-GB virtual address space. 

(This can be configured up to 3 GB when using the increaseuserva BCD option, described in 

the upcoming section “x86 User Address Space Layouts.”) For 32-bit processes that require 

more fine-grained, high-performance control over their physical pages than MapViewOfFile 

can provide, Windows provides a set of functions called Address Windowing Extensions (AWE) 

that can be used to allocate and access more physical memory than can be represented in a 

32-bit process’s limited address space. For example, on a 32-bit Windows Server 2008 system 

with 8 GB of physical memory, a database server application could use AWE to allocate and 

use perhaps 6 GB of memory as a database cache. An allocation like this can also be done 

by memory mapping the file and then mapping views as needed, at the expense of 64-KB 

granularity (instead of 4-KB) and without requiring a special privilege.
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Allocating and using memory via the AWE functions is done in three steps:

 1. Allocating the physical memory to be used

 2. Creating a region of virtual address space to act as a window to map views of the physi-

cal memory

 3. Mapping views of the physical memory into the window

To allocate physical memory, an application can call the Windows functions AllocateUser-
PhysicalPages or AllocateUserPhysicalPagesNuma. (These functions require the Lock 

pages in memory user right.) The application then uses the Windows VirtualAlloc or 

VirtualAllocExNuma function with the MEM_PHYSICAL flag to create a window in the private 

portion of the process’s address space that can then be mapped to any portion of the physi-

cal memory previously allocated. The AWE-allocated memory can then be used with nearly 

all the Windows APIs. (For example, the Microsoft DirectX functions can’t use AWE memory.)

For example, if an application creates a 256-MB window in its address space and allocates 4 

GB of physical memory (on a system with more than 4 GB of physical memory), the applica-

tion can use the MapUserPhysicalPages or MapUserPhysicalPagesScatter Windows function 

to access any portion of the physical memory by mapping the memory into the 256-MB 

window. The size of the application’s virtual address space window determines the amount of 

physical memory that the application can access with a given mapping. Figure 9-5 shows an 

AWE window in a server application address space mapped to a portion of physical memory 

previously allocated by AllocateUserPhysicalPages or AllocateUserPhysicalPagesNuma.

FIGURE 9-5 Using AWE to map physical memory
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The AWE functions exist on all editions of Windows and are usable regardless of how much 

physical memory a system has. However, AWE is most useful on systems with more than 2 GB 

of physical memory because it provides a way for a 32-bit process to control physical page 

usage when dealing with more than 2 GB of memory. Another use is for security purposes: 

because AWE memory is never paged out, the data in AWE memory can never have a copy in 

the paging file that someone could examine by rebooting into an alternate operating system. 

(VirtualLock provides the same guarantee for pages in general.)

Finally, there are some restrictions on memory allocated and mapped by the AWE functions:

Pages can’t be shared between processes.

The same physical page can’t be mapped to more than one virtual address in the same 

process.

Page protection is limited to read/write, read-only, and no access.

For a description of the page table data structures used to map memory on systems with 

more than 4 GB of physical memory, see the section “Physical Address Extension (PAE).”

Kernel-Mode Heaps (System Memory Pools)

At system initialization, the memory manager creates two types of dynamically sized memory 

pools that the kernel-mode components use to allocate system memory:

Nonpaged pool Consists of ranges of system virtual addresses that are guaranteed 

to reside in physical memory at all times and thus can be accessed at any time (from 

any IRQL level and from any process context) without incurring a page fault. One of the 

reasons nonpaged pool is required is because of the rule described in Chapter 2: page 

faults can’t be satisfied at DPC/dispatch level or above.

Paged pool A region of virtual memory in system space that can be paged into and 

out of the system. Device drivers that don’t need to access the memory from DPC/ 

dispatch level or above can use paged pool. It is accessible from any process context.

Both memory pools are located in the system part of the address space and are mapped in 

the virtual address space of every process. The executive provides routines to allocate and 

deallocate from these pools; for information on these routines, see the functions that start 

with ExAllocatePool in the WDK documentation.

Systems start with four paged pools (combined to make the overall system paged pool) and 

one nonpaged pool; more are created, up to a maximum of 64, depending on the number 

of NUMA nodes on the system. Having more than one paged pool reduces the frequency 

of system code blocking on simultaneous calls to pool routines. Additionally, the different 

pools created are mapped across different virtual address ranges that correspond to different 
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NUMA nodes on the system. (The different data structures, such as the large page look-aside 

lists, to describe pool allocations are also mapped across different NUMA nodes. More infor-

mation on NUMA optimizations will follow later.)

Nonpaged pool starts at an initial size based on the amount of physical memory on the 

system and then grows as needed. For nonpaged pool, the initial size is 3 percent of system 

RAM, if this is less than 40 MB, in which case the system will instead use 40 MB as long as 

10 percent of RAM results in more than 40 MB; otherwise 10 percent of RAM is chosen as a 

minimum.

Pool Sizes

Windows dynamically chooses the maximum size of the pools and allows a given pool to 

grow from its initial size to the maximums shown in Table 9-4.

TABLE 9-4 Maximum Pool Sizes

Pool Type Maximum on 32-Bit Systems Maximum on 64-Bit Systems

Nonpaged 75% of physical memory or 2 GB, whichever 

is smaller

75% of physical memory or 128 GB, 

whichever is smaller

Paged 2 GB 128 GB

Four of these computed sizes are stored in kernel variables, three of which are exposed as 

performance counters, and one is computed only as a performance counter value. These 

variables and counters are listed in Table 9-5.

TABLE 9-5 System Pool Size Variables and Performance Counters

Kernel Variable

Performance 

Counter Description

MmSizeOfNonPagedPoolInBytes Memory: Pool  

Nonpaged Bytes

Size of the initial nonpaged 

pool. This can be reduced 

automatically by the system if 

memory demands dictate.

MmMaximumNonPagedPoolInBytes Not available Maximum size of nonpaged pool

Not available Memory: Pool Paged 

Bytes

Current total virtual size of paged 

pool

MmPagedPoolPage (number of pages) Memory: Pool Paged 

Resident Bytes

Current physical (resident) size of 

paged pool

MmSizeOfPagedPoolInBytes Not available Maximum (virtual) size of paged 

pool
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EXPERIMENT: Determining the Maximum Pool Sizes

You can obtain the pool maximums by using either Process Explorer or live kernel 

debugging (explained in Chapter 1). To view pool maximums with Process Explorer, click 

on View, System Information. The pool maximums are displayed in the Kernel Memory 

section as shown here:

Note that for Process Explorer to retrieve this information, it must have access to the 

symbols for the kernel running on your system. (For a description of how to configure 

Process Explorer to use symbols, see the experiment “Viewing Process Details with 

Process Explorer” in Chapter 1.)

To view the same information by using the kernel debugger, you can use the !vm com-

mand as shown here:

lkd> !vm 

 

*** Virtual Memory Usage *** 

 Physical Memory:      851388 (   3405552 Kb) 

 Page File: \??\C:\pagefile.sys 

   Current:   4194304 Kb  Free Space:   4109736 Kb 

   Minimum:   4194304 Kb  Maximum:      4194304 Kb 

 Available Pages:      517820 (   2071280 Kb) 

 ResAvail Pages:       780018 (   3120072 Kb) 

 Locked IO Pages:           0 (         0 Kb) 
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 Free System PTEs:     279002 (   1116008 Kb) 

 Modified Pages:        26121 (    104484 Kb) 

 Modified PF Pages:     26107 (    104428 Kb) 

 NonPagedPool Usage:    10652 (     42608 Kb) 

 NonPagedPool Max:     523064 (   2092256 Kb) 

 PagedPool 0 Usage:      9040 (     36160 Kb) 

 PagedPool 1 Usage:      4007 (     16028 Kb) 

 PagedPool 2 Usage:      1255 (      5020 Kb) 

 PagedPool 3 Usage:       946 (      3784 Kb) 

 PagedPool 4 Usage:       666 (      2664 Kb) 

 PagedPool Usage:       15914 (     63656 Kb) 

 PagedPool Maximum:    523264 (   2093056 Kb)

On this 4-GB system, nonpaged and paged pool were far from their maximums. You 

can also examine the values of the kernel variables listed in Table 9-6:

lkd> ? poi(MmMaximumNonPagedPoolInBytes) 

Evaluate expression: 2142470144 = 7fb38000  

 

lkd> ? poi(MmSizeOfPagedPoolInBytes) 

Evaluate expression: 2143289344 = 7fc00000

From this example, you can see that the maximum size of both nonpaged and paged 

pool is 2 GB, typical values on 32-bit systems with large amounts of RAM. On the sys-

tem used for this example, current nonpaged pool usage was 40 MB and paged pool 

usage was 60 MB, so both pools were far from full.

Monitoring Pool Usage

The Memory performance counter object has separate counters for the size of nonpaged 

pool and paged pool (both virtual and physical). In addition, the Poolmon utility (in the WDK) 

allows you to monitor the detailed usage of nonpaged and paged pool. 

When you run Poolmon, you should see a display like the one shown in Figure 9-6.

The highlighted lines you might see represent changes to the display. (You can disable the 

highlighting feature by typing a slash (/) while running Poolmon. Type / again to reenable 

highlighting.) Type ? while Poolmon is running to bring up its help screen. You can configure 

which pools you want to monitor (paged, nonpaged, or both) and the sort order. Also, the 

command-line options are shown, which allow you to monitor specific tags (or every tag but 

one tag). For example, the command poolmon –iCM will monitor only CM tags (allocations 

from the configuration manager, which manages the registry). The columns have the mean-

ings shown in Table 9-6.
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FIGURE 9-6 Poolmon output

TABLE 9-6 Poolmon Columns

Column Explanation

Tag Four-byte tag given to the pool allocation

Type Pool type (paged or nonpaged pool)

Allocs Count of all allocations (The number in parentheses shows the difference in the Allocs 

column since the last update.)

Frees Count of all Frees (The number in parentheses shows the difference in the Frees 

column since the last update.)

Diff Count of Allocs minus Frees

Bytes Total bytes consumed by this tag (The number in parentheses shows the difference in 

the Bytes column since the last update.)

Per Alloc Size in bytes of a single instance of this tag

In this example, CM25-tagged allocations are taking up the most space in paged pool, and 

Cont-tagged allocations (contiguous physical memory allocations) are taking up the most 

space in nonpaged pool.

For a description of the meaning of the pool tags used by Windows, see the file \Program 

Files\Debugging Tools for Windows\Triage\Pooltag.txt. (This file is installed as part of the 

Debugging Tools for Windows, described in Chapter 1.) Because third-party device driver 

pool tags are not listed in this file, you can use the –c switch on the 32-bit version of 

Poolmon that comes with the WDK to generate a local pool tag file (Localtag.txt). This file will 

contain pool tags used by drivers found on your system, including third-party drivers. (Note 

that if a device driver binary has been deleted after it was loaded, its pool tags will not be 

recognized.)
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Alternatively, you can search the device drivers on your system for a pool tag by using the 

Strings.exe tool from Sysinternals. For example, the command

strings %SYSTEMROOT%\system32\drivers\*.sys | findstr /i "abcd"

will display drivers that contain the string “abcd”. Note that device drivers do not necessarily 

have to be located in %SystemRoot%\System32\Drivers—they can be in any folder. To list the 

full path of all loaded drivers, open the Run dialog box from the Start menu, and then type 

Msinfo32. Click Software Environment, and then click System Drivers. As already noted, if a 

device driver has been loaded and then deleted from the system, it will not be listed here.

An alternative to view pool usage by device driver is to enable the pool tracking feature of 

Driver Verifier, explained later in this chapter. While this makes the mapping from pool tag to 

device driver unnecessary, it does require a reboot (to enable Driver Verifier on the desired 

drivers). After rebooting with pool tracking enabled, you can either run the graphical Driver 

Verifier Manager (%SystemRoot%\System32\Verifier.exe) or use the Verifier /Log command to 

send the pool usage information to a file.

Finally, if you are looking at a crash dump, you can view pool usage with the kernel debugger 

!poolused command. The command !poolused 2 shows nonpaged pool usage sorted by pool 

tag using the most amount of pool. The command !poolused 4 lists paged pool usage, again 

sorted by pool tag using the most amount of pool. The following example shows the partial 

output from these two commands:

lkd> !poolused 2 

   Sorting by  NonPaged Pool Consumed 

  Pool Used: 

            NonPaged            Paged 

 Tag    Allocs     Used    Allocs     Used 

 Cont     1669 15801344         0        0    Contiguous physical memory allocations for  

                                              device drivers  

 Int2      414  5760072         0        0    UNKNOWN pooltag 'Int2', please update  

                                              pooltag.txt 

 LSwi        1  2623568         0        0    initial work context  

 EtwB      117  2327832        10   409600    Etw Buffer , Binary: nt!etw 

 Pool        5  1171880         0        0    Pool tables, etc. 

 

lkd> !poolused 4 

   Sorting by  Paged Pool Consumed 

  Pool Used: 

            NonPaged            Paged 

 Tag    Allocs     Used    Allocs     Used 

 CM25        0        0      3921 16777216    Internal Configuration manager allocations ,  

                                              Binary: nt!cm 

 MmRe        0        0       720 13508136    UNKNOWN pooltag 'MmRe', please update  

                                              pooltag.txt 

 MmSt        0        0      5369 10827440    Mm section object prototype ptes ,  

                                              Binary: nt!mm 

 Ntff        9     2232      4210  3738480    FCB_DATA , Binary: ntfs.sys 

 AlMs        0        0       212  2450448    ALPC message , Binary: nt!alpc 

 ViMm      469   440584       608  1468888    Video memory manager , Binary: dxgkrnl.sys
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EXPERIMENT: Troubleshooting a Pool Leak

In this experiment, you will fix a real paged pool leak on your system so that you can 

put to use the techniques described in the previous section to track down the leak. 

The leak will be generated by the NotMyFault tool from Sysinternals. When you run 

NotMyFault.exe, it loads the device driver Myfault.sys and presents the following 

dialog box:

 1. Click the Leak Paged button. This causes NotMyFault to begin sending requests 

to the Myfault device driver to allocate paged pool. (Do not click the Do Bug 

button or you will experience a system crash; this button is used in Chapter 14 to 

demonstrate various types of crashes.) NotMyFault will continue sending requests 

until you click the Stop Paged button. Note that paged pool is not normally 

released even when you close a program that has caused it to occur (by interact-

ing with a buggy device driver); the pool is permanently leaked until you reboot 

the system. However, to make testing easier, the Myfault device driver detects 

that the process was closed and frees its allocations.

 2. While the pool is leaking, first open Task Manager and click on the Performance 

tab. You should notice Kernel Memory (MB): Paged climbing. You can also check 

this with Process Explorer’s System Information display. (Click on View and then 

System Information.)
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 3. To determine the pool tag that is leaking, run Poolmon and press the B key to 

sort by the number of bytes. Press P twice so that Poolmon is showing only 

paged pool. You should notice the pool tag “Leak” climbing to the top of the 

list. (Poolmon shows changes to pool allocations by highlighting the lines that 

change.)

 4. Now press the Stop Paged button so that you don’t exhaust paged pool on your 

system.

 5. Using the technique described in the previous section, run Strings (from 

Sysinternals) to look for driver binaries that contain the pool tag “Leak”:

Strings %SystemRoot%\system32\drivers\*.sys  |  findstr Leak

This should display a match on the file Myfault.sys, thus confirming it as the driver 

using the “Leak” pool tag.

Look-Aside Lists

Windows also provides a fast memory allocation mechanism called look-aside lists. The basic 

difference between pools and look-aside lists is that while general pool allocations can vary 

in size, a look-aside list contains only fixed-sized blocks. Although the general pools are more 

flexible in terms of what they can supply, look-aside lists are faster because they don’t use 

any spinlocks.

Executive components and device drivers can create look-aside lists that match the size 

of frequently allocated data structures by using the ExInitializeNPagedLookasideList and 

ExInitializePagedLookasideList functions (documented in the WDK). To minimize the overhead 

of multiprocessor synchronization, several executive subsystems (such as the I/O manager, 

cache manager, and object manager) create separate look-aside lists for each processor for 

their frequently accessed data structures. The executive also creates a general per-processor 

paged and nonpaged look-aside list for small allocations (256 bytes or less).

If a look-aside list is empty (as it is when it’s first created), the system must allocate from 

paged or nonpaged pool. But if it contains a freed block, the allocation can be satisfied very 

quickly. (The list grows as blocks are returned to it.) The pool allocation routines automati-

cally tune the number of freed buffers that look-aside lists store according to how often a 

device driver or executive subsystem allocates from the list—the more frequent the alloca-

tions, the more blocks are stored on a list. Look-aside lists are automatically reduced in size if 

they aren’t being allocated from. (This check happens once per second when the balance set 

manager system thread wakes up and calls the function ExAdjustLookasideDepth.)
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EXPERIMENT: Viewing the System Look-Aside Lists

You can display the contents and sizes of the various system look-aside lists with the 

kernel debugger !lookaside command. The following excerpt is from the output of this 

command:

lkd> !lookaside  

  

 

Lookaside "nt!IopSmallIrpLookasideList" @ 81f47c00 "Irps" 

    Type     =     0000 NonPagedPool 

    Current Depth  =        3   Max Depth  =        4 

    Size           =      148   Max Alloc  =      592 

    AllocateMisses =      930   FreeMisses =      780 

    TotalAllocates =    13748   TotalFrees =    13601 

    Hit Rate       =       93%  Hit Rate   =       94% 

 

Lookaside "nt!IopLargeIrpLookasideList" @ 81f47c80 "Irpl" 

    Type     =     0000 NonPagedPool 

    Current Depth  =        4   Max Depth  =        4 

    Size           =      472   Max Alloc  =     1888 

    AllocateMisses =    16555   FreeMisses =    15636 

    TotalAllocates =    59287   TotalFrees =    58372 

    Hit Rate       =       72%  Hit Rate   =       73% 

 

Lookaside "nt!IopMdlLookasideList" @ 81f47b80 "Mdl " 

    Type     =     0000 NonPagedPool 

    Current Depth  =        4   Max Depth  =        4 

    Size           =       96   Max Alloc  =      384 

    AllocateMisses =    16287   FreeMisses =    15474 

    TotalAllocates =    72835   TotalFrees =    72026 

    Hit Rate       =       77%  Hit Rate   =       78% 

§  

 

Total NonPaged currently allocated for above lists =        0 

Total NonPaged potential for above lists           =     3280 

Total Paged currently allocated for above lists    =      744 

Total Paged potential for above lists              =     1536

Heap Manager

Most applications allocate smaller blocks than the 64-KB minimum allocation  granularity 

possible using page granularity functions such as VirtualAlloc and VirtualAllocExNuma. 

Allocating such a large area for relatively small allocations is not optimal from a memory 

usage and performance standpoint. To address this need, Windows provides a component 

called the heap manager, which manages allocations inside larger memory areas reserved 

using the page granularity memory allocation functions. The allocation granularity in the 

heap manager is relatively small: 8 bytes on 32-bit systems, and 16 bytes on 64-bit systems. 
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The heap manager has been designed to optimize memory usage and performance in the 

case of these smaller allocations.

The heap manager exists in two places: Ntdll.dll and Ntoskrnl.exe. The subsystem APIs (such 

as the Windows heap APIs) call the functions in Ntdll, and various executive components 

and device drivers call the functions in Ntoskrnl. Its native interfaces (prefixed with Rtl) are 

available only for use in internal Windows components or kernel-mode device drivers. The 

documented Windows API interfaces to the heap (prefixed with Heap) are forwarders to the 

native functions in Ntdll.dll. In addition, legacy APIs (prefixed with either Local or Global) are 

provided to support older Windows applications, which also internally call the heap manager, 

using some of its specialized interfaces to support legacy behavior. The C runtime (CRT) also 

uses the heap manager when using functions such as malloc and free. The most common 

Windows heap functions are:

HeapCreate or HeapDestroy Creates or deletes, respectively, a heap. The initial 

reserved and committed size can be specified at creation.

HeapAlloc Allocates a heap block.

HeapFree Frees a block previously allocated with HeapAlloc.

HeapReAlloc Changes the size of an existing allocation (grows or shrinks an existing 

block).

HeapLock or HeapUnlock Controls mutual exclusion to the heap operations.

HeapWalk Enumerates the entries and regions in a heap.

Types of Heaps

Each process has at least one heap: the default process heap. The default heap is created 

at process startup and is never deleted during the process’s lifetime. It defaults to 1 MB in 

size, but it can be made bigger by specifying a starting size in the image file by using the 

/HEAP linker flag. This size is just the initial reserve, however—it will expand automatically as 

needed. (You can also specify the initial committed size in the image file.)

The default heap can be explicitly used by a program or implicitly used by some Windows 

internal functions. An application can query the default process heap by making a call to the 

Windows function GetProcessHeap. Processes can also create additional private heaps with 

the HeapCreate function. When a process no longer needs a private heap, it can recover the 

virtual address space by calling HeapDestroy. An array with all heaps is maintained in each 

process, and a thread can query them with the Windows function GetProcessHeaps.

A heap can manage allocations either in large memory regions reserved from the memory 

manager via VirtualAlloc or from memory mapped file objects mapped in the process 

address space. The latter approach is rarely used in practice, but it’s suitable for scenarios 

where the content of the blocks needs to be shared between two processes or between a 
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kernel-mode and a user-mode component. The Win32 GUI subsystem driver (Win32k.sys) 

uses such a heap for sharing GDI and User objects with user mode. If a heap is built on top of 

a memory mapped file region, certain constraints apply with respect to the component that 

can call heap functions. First, the internal heap structures use pointers, and therefore do not 

allow relocation to different addresses. Second, the synchronization across multiple processes 

or between a kernel component and a user process is not supported by the heap functions. 

Also, in the case of a shared heap between user mode and kernel mode, the user-mode map-

ping should be read-only to prevent user-mode code from corrupting the heap’s internal 

structures, which would result in a system crash. The kernel-mode driver is also responsible 

for not putting any sensitive data in a shared heap to avoid leaking it to user mode.

Heap Manager Structure

As shown in Figure 9-7, the heap manager is structured in two layers: an optional front-end 

layer and the core heap. The core heap handles the basic functionality and is mostly com-

mon across the user-mode and kernel-mode heap implementations. The core functionality 

includes the management of blocks inside segments, the management of the segments, poli-

cies for extending the heap, committing and decommitting memory, and management of 

the large blocks.

For user-mode heaps only, an optional front-end heap layer can exist on top of the existing 

core functionality. The only front-end supported on Windows is the Low Fragmentation Heap 

(LFH). Only one front-end layer can be used for one heap at one time.

Windows heap APIs 
(HeapAlloc, HeapFree, LocalAlloc, GlobalAlloc etc.)

Application

Front-end heap layer 
(optional)

Core heap layer

 Memory manager

Heap manager

FIGURE 9-7 Heap manager layers
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Heap Synchronization

The heap manager supports concurrent access from multiple threads by default. However, if 

a process is single threaded or uses an external mechanism for synchronization, it can tell the 

heap manager to avoid the overhead of synchronization by specifying HEAP_NO_SERIALIZE 

either at heap creation or on a per-allocation basis.

A process can also lock the entire heap and prevent other threads from performing heap 

operations for operations that would require consistent states across multiple heap calls. 

For instance, enumerating the heap blocks in a heap with the Windows function HeapWalk 

requires locking the heap if multiple threads can perform heap operations simultaneously.

If heap synchronization is enabled, there is one lock per heap that protects all internal heap 

structures. In heavily multithreaded applications (especially when running on multiproces-

sor systems), the heap lock might become a significant contention point. In that case, per-

formance might be improved by enabling the front-end heap, described in an upcoming 

section.

The Low Fragmentation Heap

Many applications running in Windows have relatively small heap memory usage (usually less 

than 1 MB). For this class of applications, the heap manager’s best-fit policy helps keep a low 

memory footprint for each process. However, this strategy does not scale for large processes 

and multiprocessor machines. In these cases, memory available for heap usage might be 

reduced as a result of heap fragmentation. Performance can suffer in scenarios where only 

certain sizes are often used concurrently from different threads scheduled to run on differ-

ent processors. This happens because several processors need to modify the same memory 

location (for example, the head of the look-aside list for that particular size) at the same time, 

thus causing significant contention for the corresponding cache line.

The LFH avoids fragmentation by managing allocated blocks in predetermined different 

block-size ranges called buckets. When a process allocates memory from the heap, the LFH 

chooses the bucket that maps to the smallest block large enough to hold the required size. 

(The smallest block is 8 bytes.) The first bucket is used for allocations between 1 and 8 bytes, 

the second for allocations between 9 and 16 bytes, and so on, until the thirty-second bucket, 

which is used for allocations between 249 and 256 bytes, followed by the thirty-third bucket, 

which is used for allocations between 257 and 272 bytes, and so on. Finally, the one hundred 

twenty-eighth bucket, which is the last, is used for allocations between 15,873 and 16,384 

bytes. Table 9-7 summarizes the different buckets, their granularity, and the range of sizes 

that they map to.



 Chapter 9 Memory Management 733

TABLE 9-7 Buckets

Buckets Granularity Range

1–32 8 1—256

33–48 16 257–512

49–64 32 513–1,024

65–80 64 1,025–2,048

81–96 128 2,049–4,096

97–112 256 4,097–8,194

113–128 512 8,195–16,384

The LFH addresses these issues by using the core heap manager and look-aside lists. The 

Windows heap manager implements an automatic tuning algorithm that can enable the LFH 

by default under certain conditions, such as lock contention or the presence of popular size 

allocations that have shown better performance with the LFH enabled. For large heaps, a sig-

nificant percentage of allocations is frequently grouped in a relatively small number of buck-

ets of certain sizes. The allocation strategy used by LFH is to optimize the usage for these 

patterns by efficiently handling same-size blocks.

To address scalability, the LFH expands the frequently accessed internal structures to a num-

ber of slots that is two times larger than the current number of processors on the machine. 

The assignment of threads to these slots is done by an LFH component called the affinity 
manager. Initially, the LFH starts using the first slot for heap allocations; however, if a con-

tention is detected when accessing some internal data, the LFH switches the current thread 

to use a different slot. Further contentions will spread threads on more slots. These slots 

are controlled for each size bucket to improve locality and minimize the overall memory 

consumption.

Even if the LFH is enabled as a front-end heap, the less frequent allocation sizes may still 

continue to use the core heap functions to allocate memory, while the most popular allo-

cation classes will be performed from the LFH. The LFH can also be disabled by using the 

HeapSetInformation API with the HeapCompatibilityInformation class.

Heap Security Features

As the heap manager has evolved, it has taken an increased role in early detection of heap 

usage errors and in mitigating effects of potential heap-based exploits. These measures 

exist to lessen the security effect of potential vulnerabilities in applications. The metadata 

used by the heap for internal management is packed with a high degree of randomiza-

tion to make it difficult for an attempted exploit to patch the internal structures to prevent 

crashes or conceal the attack attempt. These blocks are also subject to an integrity check 

mechanism on the header to detect simple corruptions such as buffer overruns. Finally, the 

heap also uses a small degree of randomization of the base address (or handle). By using the 

HeapSetInformation API with the HeapEnableTerminationOnCorruption class, processes can 
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opt in for an automatic termination in case of detected inconsistencies to avoid executing 

unknown code.

As an effect of block metadata randomization, using the debugger to dump a block header is 

not that useful anymore. For example, the size of the block and whether it is busy or not are 

not easy to spot from a regular dump. The same applies to LFH blocks that have a different 

type of metadata stored in the header, partially randomized as well. To dump these details, 

the !heap –i command in the debugger does all the work to retrieve the metadata fields 

from a block, flagging checksum or free list inconsistencies as well if they exist. The com-

mand works for both the LFH and regular heap blocks. The total size of the blocks, the user 

requested size, the segment owning the block, as well as the header partial checksum are 

available in the output, as shown in the following sample. Because the randomization algo-

rithm uses the heap granularity, the !heap –i command should be used only in the proper 

context of the heap containing the block. In the example, the heap handle is 0x001a0000. If 

the current heap context was different, the decoding of the header would be incorrect. To set 

the proper context, the same !heap –i command with the heap handle as an argument needs 

to be executed first.

0:000> !heap -i 001a0000 

Heap context set to the heap 0x001a0000 

0:000> !heap -i 1e2570 

Detailed information for block entry 001e2570 

Assumed heap       : 0x001a0000 (Use !heap -i NewHeapHandle to change) 

Header content     : 0x1570F4EC 0x0C0015BE (decoded : 0x07010006 0x0C00000D) 

Owning segment     : 0x001a0000 (offset 0) 

Block flags        : 0x1 (busy ) 

Total block size   : 0x6 units (0x30 bytes) 

Requested size     : 0x24 bytes (unused 0xc bytes) 

Previous block size: 0xd units (0x68 bytes) 

Block CRC          : OK - 0x7 

Previous block     : 0x001e2508 

Next block         : 0x001e25a0

Heap Debugging Features

The heap manager leverages the 8 bytes used to store internal metadata as a consistency 

checkpoint, which makes potential heap usage errors more obvious, and also includes several 

features to help detect bugs by using the following heap functions:

Enable tail checking The end of each block carries a signature that is checked when 

the block is released. If a buffer overrun destroyed the signature entirely or partially, 

the heap will report this error.

Enable free checking A free block is filled with a pattern that is checked at various 

points when the heap manager needs to access the block (such as at removal from 

the free list to allocate the block). If the process continued to write to the block after 

freeing it, the heap manager will detect changes in the pattern and the error will be 

reported.
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Parameter checking This function consists of extensive checking of the parameters 

passed to the heap functions.

Heap validation The entire heap is validated at each heap call.

Heap tagging and stack traces support This function supports specifying tags for 

allocation and/or captures user-mode stack traces for the heap calls to help narrow the 

possible causes of a heap error.

The first three options are enabled by default if the loader detects that a process is started 

under the control of a debugger. (A debugger can override this behavior and turn off these 

features.) The heap debugging features can be specified for an executable image by set-

ting various debugging flags in the image header using the Gflags tool. (See the section 

“Windows Global Flags” in Chapter 3.) Or, heap debugging options can be enabled using 

the !heap command in the standard Windows debuggers. (See the debugger help for more 

information.)

Enabling heap debugging options affects all heaps in the process. Also, if any of the heap 

debugging options are enabled, the LFH will be disabled automatically and the core heap will 

be used (with the required debugging options enabled). The LFH is also not used for heaps 

that are not expandable (because of the extra overhead added to the existing heap struc-

tures) or for heaps that do not allow serialization.

Pageheap

Because the tail and free checking options described in the preceding sections might be 

discovering corruptions that occurred well before the problem was detected, an additional 

heap debugging capability, called pageheap, is provided that directs all or part of the heap 

calls to a different heap manager. Pageheap is enabled using the Gflags tool (which is part 

of the Debugging Tools for Windows). When enabled, the heap manager places allocations 

at the end of pages so that if a buffer overrun occurs, it will cause an access violation, mak-

ing it easier to detect the offending code. Optionally, pageheap allows placing the blocks at 

the beginning of the pages to detect buffer underrun problems. (This is a rare occurrence.) 

The pageheap also can protect freed pages against any access to detect references to heap 

blocks after they have been freed.

Note that using the pageheap can result in running out of address space because of the sig-

nificant overhead added for small allocations. Also, performance can suffer as a result of the 

increase of references to demand zero pages, loss of locality, and additional overhead caused 

by frequent calls to validate heap structures. A process can reduce the impact by specifying 

that the pageheap be used only for blocks of certain sizes, address ranges, and/or originat-

ing DLLs.

For more information on pageheap, see the Debugging Tools for Windows Help file.
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Virtual Address Space Layouts

This section describes the components in the user and system address space, followed by the 

specific layouts on 32-bit and 64-bit systems. This information helps you to understand the 

limits on process and system virtual memory on both platforms.

Three main types of data are mapped into the virtual address space in Windows: per-process 

private code and data, sessionwide code and data, and systemwide code and data.

As explained in Chapter 1, each process has a private address space that cannot be accessed 

by other processes (unless they have permission to open the process for read or write access). 

Threads within the process can never access virtual addresses outside this private address 

space, unless they map to shared memory sections and/or use the cross-process memory 

functions that allow access to another process’s address space. The information that describes 

the process virtual address space, called page tables, is described in the section on address 

translation. Page tables are marked as kernel-mode-only accessible pages so that user 

threads in a process cannot modify their own address space layout.

Session space contains information global to each session. (For a description of sessions, see 

Chapter 2.) A session consists of the processes and other system objects (such as the window 

station, desktops, and windows) that represent a single user’s logon session. Each session 

has a session-specific paged pool area used by the kernel-mode portion of the Windows 

subsystem (Win32k.sys) to allocate session-private GUI data structures. In addition, each 

session has its own copy of the Windows subsystem process (Csrss.exe) and logon process 

(Winlogon.exe). The session manager process (Smss.exe) is responsible for creating new 

sessions, which includes loading a session-private copy of Win32k.sys, creating the session-

private object manager namespace, and creating the session-specific instances of the Csrss 

and Winlogon processes. To virtualize sessions, all sessionwide data structures are mapped 

into a region of system space called session space. When a process is created, this range of 

addresses is mapped to the pages associated with the session that the process belongs to. 

Finally, system space contains global operating system code and data structures visible by 

kernel-mode code regardless of which process is currently executing. System space consists 

of the following components:

System code Contains the operating system image, HAL, and device drivers used to 

boot the system.

System mapped views Used to map Win32k.sys, the loadable kernel-mode part of 

the Windows subsystem, as well as kernel-mode graphics drivers it uses. (See Chapter 2 

for more information on Win32k.sys.)
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Hyperspace A special region used to map the process working set list, invalidat-

ing page table entries in other page tables (such as when a page is removed from the 

standby list), and process creation to set up a new process’s address space.

System working set list The working set list data structures that describe the system 

working set.

System cache Virtual address space used to map files open in the system cache. (See 

Chapter 10 for detailed information about the cache manager.)

Paged pool Pageable system memory heap.

System page table entries (PTEs) Pool of system PTEs used to map system pages 

such as I/O space, kernel stacks, and memory descriptor lists. You can see how many 

system PTEs are available by examining the value of the Memory: Free System Page 

Table Entries counter in the Reliability and Performance Monitor.

Nonpaged pool Nonpageable system memory heap.

Crash dump information Reserved to record information about the state of a system 

crash.

HAL usage System memory reserved for HAL-specific structures.

Note Internally, the system working set is called the system cache working set. This term is mis-

leading, however, because the system working set includes not only the system cache but also 

the paged pool, pageable system code and data, and pageable driver code and data.

Now that we’ve described the basic components of the virtual address space in Windows, 

let’s examine the specific layout on the x86, IA64, and x64 platforms.

x86 Address Space Layouts

By default, each user process on 32-bit versions of Windows has a 2-GB private address 

space; the operating system takes the remaining 2 GB. However, the system can be config-

ured with the increaseuserva BCD boot option to permit user address spaces up to 3 GB. Two 

possible address space layouts are shown in Figure 9-8.

The ability for a 32-bit process to grow beyond 2 GB was added to accommodate the need 

for 32-bit applications to keep more data in memory than could be done with a 2-GB address 

space. Of course, 64-bit systems provide a much larger address space.
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Application code

Global variables

Per-thread stacks

DLL code

3-GB user space

Kernel and executive

HAL

Boot drivers

1-GB system space

Process page tables

System cache

Paged pool

Nonpaged pool

BFFFFFFF

C0000000

FFFFFFFF
FFC00000

C0000000

C0800000 (x86)
C0C00000 (x86 pae)

80000000

7FFFEFFF

00000000

7FFFF000
64-KB no access area

C0400000 (x86)
C0800000 (x86 pae) Hyperspace

00000000

FFFFFFFF

Reserved for

HAL usage

FIGURE 9-8 x86 virtual address space layouts

For a process to grow beyond 2 GB of address space, the image file must have the 

IMAGE_FILE_LARGE_ADDRESS_AWARE flag set in the image header. Otherwise, Windows 

reserves the additional address space for that process so that the application won’t see vir-

tual addresses greater than 0x7FFFFFFF. Access to the additional virtual memory is opt-in 

because some applications have assumed that they’d be given at most 2 GB of the address 

space. Since the high bit of a pointer referencing an address below 2 GB is always zero, 

these applications would use the high bit in their pointers as a flag for their own data, clear-

ing it, of course, before referencing the data. If they ran with a 3-GB address space, they 

would inadvertently truncate pointers that have values greater than 2 GB, causing program 
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errors, including possible data corruption. You set this flag by specifying the linker flag 

/LARGEADDRESSAWARE when building the executable. This flag has no effect when running 

the application on a system with a 2-GB user address space.

Several system images are marked as large address space aware so that they can take advan-

tage of systems running with large process address spaces. These include:

Lsass.exe The Local Security Authority Subsystem

Inetinfo.exe Internet Information Server

Chkdsk.exe The Check Disk utility

Smss.exe The Session Manager

Dllhst3g.exe A special version of Dllhost.exe (for COM+ applications)

Dispdiag.exe The display diagnostic dump utility

Esentutl.exe The Active Directory Database Utility tool

EXPERIMENT: Checking If an Application Is Large Address Aware

You can use the Dumpbin utility from the Windows SDK to check other executables to 

see if they support large address spaces. Use the /HEADERS flag to display the results. 

Here’s a sample output of Dumpbin on the Session Manager:

c:\>dumpbin /headers c:\Windows\system32\smss.exe | more 

Microsoft (R) COFF/PE Dumper Version 9.00.21022.08 

Copyright (C) Microsoft Corporation.  All rights reserved. 

 

Dump of file c:\Windows\system32\smss.exe 

PE signature found 

 

File Type: EXECUTABLE IMAGE 

 

FILE HEADER VALUES 

             14C machine (x86) 

               4 number of sections 

        47918AFD time date stamp Sat Jan 19 00:30:37 2008 

               0 file pointer to symbol table 

               0 number of symbols 

              E0 size of optional header 

             122 characteristics 

                   Executable 

                   Application can handle large (>2GB) addresses 

                   32 bit word machine

Finally, because memory allocations using VirtualAlloc, VirtualAllocEx, and VirtualAllocEx-
Numa start with low virtual addresses and grow higher by default, unless a process allocates 

a lot of virtual memory or it has a very fragmented virtual address space, it will never get 
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back very high virtual addresses. Therefore, for testing purposes, you can force memory 

allocations to start from high addresses by using the MEM_TOP_DOWN flag or by adding a 

DWORD registry value, HKLM\SYSTEM\CurrentControlSet\Control\Session Manager\Memory 

Management\AllocationPreference, and setting it to 0x100000.

Figure 9-9 shows two screen shots of the TestLimit utility (shown in previous experiments) 

leaking memory on a 32-bit Windows machine booted with and without the increaseuserva 
option set to 3 GB. Note that in the second screen shot, TestLimit was able to leak almost 

3 GB, as expected.

FIGURE 9-9 TestLimit leaking memory on a 32-bit Windows computer, with and without increaseuserva set 
to 3 GB

x86 System Address Space Layout

Although 32-bit versions of Windows implement a dynamic system address space layout by 

using a virtual address allocator (we’ll describe this functionality later in this section), there 

are still specifically reserved areas, as shown in Figure 9-8. Figure 9-10 shows the different 

system structures in memory, but their size is not proportional because it is not fixed.

x86 Session Space

For systems with multiple sessions, the code and data unique to each session is mapped into 

system address space but shared by the processes in that session. Figure 9-11 shows the gen-

eral layout of session space.
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80000000 NTLDR loads the kernel, HAL, and
boot drivers here. The kernel

then relocates the drivers to the
system PTE area.

Additional system PTEs, system
cache, or special pool

System mapped views

Session space

Page tables

Hyperspace and process
 working set lists 

System cache structures

System cache

Start of paged system area

Crash dump driver area

FFFFFFFF
Reserved for HAL usage

System PTE area

Nonpaged system area

FIGURE 9-10 x86 kernel address space layout

Win32k.sys & 
video drivers

MM_SESSION_SPACE 
& session WSLs

Mapped views for this session

Paged pool for this session

FIGURE 9-11 x86 session space layout (not proportional)
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The sizes of the components of session space, just like the rest of kernel system address 

space, is dynamically configured and resized by the memory manager on demand.

EXPERIMENT: Viewing Sessions

You can display which processes are members of which sessions by examining the 

session ID. This can be viewed with Task Manager, Process Explorer, or the kernel 

debugger. Using the kernel debugger, you can list the active sessions with the !session 

command as follows:

lkd> !session 

Sessions on machine: 2 

Valid Sessions: 0 1 

Current Session 1

Then you can set the active session using the !session –s command and display the 

address of the session data structures and the processes in that session with the 

 !sprocess command:

lkd> !session -s 1 

Sessions on machine: 2 

Implicit process is now 8631dd90 

Using session 1 

lkd> !sprocess 

Dumping Session 1 

 

_MM_SESSION_SPACE 975c6000 

_MMSESSION        975c6d00 

PROCESS 8631dd90  SessionId: 1  Cid: 0244    Peb: 7ffdf000  ParentCid: 023c 

    DirBase: ce2aa0a0  ObjectTable: 97a0c208  HandleCount: 563. 

    Image: csrss.exe 

 

PROCESS 8633d4e0  SessionId: 1  Cid: 0288    Peb: 7ffd5000  ParentCid: 023c 

    DirBase: ce2aa040  ObjectTable: 97a5f380  HandleCount: 131. 

    Image: winlogon.exe

To view the details of the session, dump the MM_SESSION_SPACE structure using the dt 
command, as follows:

lkd> dt nt!_MM_SESSION_SPACE 975c6000 

   +0x000 ReferenceCount   : 25 

   +0x004 u                : <unnamed-tag> 

   +0x008 SessionId        : 1 

   +0x00c ProcessReferenceToSession : 30 

   +0x010 ProcessList      : _LIST_ENTRY [ 0x8631de5c - 0x86dea0ec ] 

   +0x018 LastProcessSwappedOutTime : _LARGE_INTEGER 0x0 

   +0x020 SessionPageDirectoryIndex : 0xc1b09 

   +0x024 NonPagablePages  : 0x42 

   +0x028 CommittedPages   : 0x13fa 

   +0x02c PagedPoolStart   : 0x80000000  

   +0x030 PagedPoolEnd     : 0xffbfffff  
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   +0x034 SessionObject    : 0x84adfb80  

   +0x038 SessionObjectHandle : 0x8000049c  

   +0x03c ResidentProcessCount : 17 

   +0x040 ImageLoadingCount : 0 

   +0x044 SessionPoolAllocationFailures : [4] 0 

   +0x054 ImageList        : _LIST_ENTRY [ 0x863192e8 - 0x88a763c0 ] 

   +0x05c LocaleId         : 0x409 

   +0x060 AttachCount      : 0 

   +0x064 AttachGate       : _KGATE 

   +0x074 WsListEntry      : _LIST_ENTRY [ 0x81f49008 - 0x8ca69074 ] 

   +0x080 Lookaside        : [25] _GENERAL_LOOKASIDE 

   +0xd00 Session          : _MMSESSION 

   +0xd38 PagedPoolInfo    : _MM_PAGED_POOL_INFO 

   +0xd70 Vm               : _MMSUPPORT 

   +0xdb8 Wsle             : 0x80e30058 _MMWSLE 

   +0xdbc DriverUnload     : 0x81720c71     void  +ffffffff81720c71 

   +0xdc0 PagedPool        : _POOL_DESCRIPTOR 

   +0x1df4 PageTables       : 0x8631a000 _MMPTE 

   +0x1df8 SpecialPool      : _MI_SPECIAL_POOL 

   +0x1e20 SessionPteLock   : _KGUARDED_MUTEX 

   +0x1e40 PoolBigEntriesInUse : 639 

   +0x1e44 PagedPoolPdeCount : 0x10 

   +0x1e48 SpecialPoolPdeCount : 0 

   +0x1e4c DynamicSessionPdeCount : 0 

   +0x1e50 SystemPteInfo    : _MI_SYSTEM_PTE_TYPE 

   +0x1e7c PoolTrackTableExpansion : (null)  

   +0x1e80 PoolTrackTableExpansionSize : 0 

   +0x1e84 PoolTrackBigPages : 0x8a037000  

   +0x1e88 PoolTrackBigPagesSize : 0x800 

   +0x1e8c SessionPoolPdes  : _RTL_BITMAP

EXPERIMENT: Viewing Session Space Utilization

You can view session space memory utilization with the !vm 4 command in the kernel 

debugger. For example, the following output was taken from a 32-bit Windows Vista 

system with two active sessions:

lkd> !vm 4  

.  

.  

Terminal Server Memory Usage By Session: 

 

 Session ID 0 @ 8ca69000: 

 Paged Pool Usage:        5316K 

 Commit Usage:            7504K 

 

 Session ID 1 @ 975c6000: 

 Paged Pool Usage:       19152K 

 Commit Usage:           21524K
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System Page Table Entries

System page table entries (PTEs) are used to dynamically map system pages such as I/O 

space, kernel stacks, and the mapping for memory descriptor lists. System PTEs aren’t an 

infinite resource. On 32-bit Windows, the number of available system PTEs is such that the 

system can theoretically describe 2 GB of contiguous system virtual address space. On 64-bit 

Windows, system PTEs can describe up to 128 GB of contiguous virtual address space.

EXPERIMENT: Viewing System PTE Information

You can see how many system PTEs are available by examining the value of the 

Memory: Free System Page Table Entries counter in the Reliability and Performance 

Monitor or by using the !sysptes or !vm command in the debugger. You can also dump 

the _MI_SYSTEM_PTE_TYPE structure associated with the MiSystemPteInfo global vari-

able. This will also show you how many PTE allocation failures occurred on the system—

a high count indicates a problem and possibly a system PTE leak.

lkd> !sysptes 

 

System PTE Information 

  Total System Ptes 46576 

    starting PTE: c0400000 

 

  free blocks: 461   total free: 4196    largest free block: 129 

 

lkd> ? nt!MiSystemPteInfo 

Evaluate expression: -2114679136 = 81f48ea0 

lkd> dt _MI_SYSTEM_PTE_TYPE 81f48ea0 

nt!_MI_SYSTEM_PTE_TYPE 

   +0x000 Bitmap           : _RTL_BITMAP 

   +0x008 Hint             : 0x31a62 

   +0x00c BasePte          : 0xc0400000 _MMPTE 

   +0x010 FailureCount     : 0x81f48ec4  -> 3 

   +0x014 Vm               : 0x81f4e7e0 _MMSUPPORT 

   +0x018 TotalSystemPtes  : 12784 

   +0x01c TotalFreeSystemPtes : 4234 

   +0x020 CachedPteCount   : 497 

   +0x024 PteFailures      : 3 

   +0x028 GlobalMutex      : (null)
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If you are seeing lots of system PTE failures, you can enable system PTE tracking by 

creating a new DWORD value in the HKLM\SYSTEM\CurrentControlSet\Control\Session 

Manager\Memory Management key called TrackPtes and setting its value to 1. You can 

then use !syspte 4 to show a list of allocators, as shown here:

lkd>!sysptes 4 

0x1ca2 System PTEs allocated to mapping locked pages 

 

VA       MDL     PageCount  Caller/CallersCaller 

ecbfdee8 f0ed0958        2 netbt!DispatchIoctls+0x56a/netbt!NbtDispatchDevCtrl+0xcd 

f0a8d050 f0ed0510        1 netbt!DispatchIoctls+0x64e/netbt!NbtDispatchDevCtrl+0xcd 

ecef5000        1       20 nt!MiFindContiguousMemory+0x63 

ed447000        0        2 Ntfs!NtfsInitializeVcb+0x30e/Ntfs!NtfsInitializeDevice+0x95 

ee1ce000        0        2 Ntfs!NtfsInitializeVcb+0x30e/Ntfs!NtfsInitializeDevice+0x95 

ed9c4000        1       ca nt!MiFindContiguousMemory+0x63 

eda8e000        1       ca nt!MiFindContiguousMemory+0x63 

efb23d68 f8067888        2 mrxsmb!BowserMapUsersBuffer+0x28 

efac5af4 f8b15b98        2 ndisuio!NdisuioRead+0x54/nt!NtReadFile+0x566 

f0ac688c f848ff88        1 ndisuio!NdisuioRead+0x54/nt!NtReadFile+0x566 

efac7b7c f82fc2a8        2 ndisuio!NdisuioRead+0x54/nt!NtReadFile+0x566 

ee4d1000        1       38 nt!MiFindContiguousMemory+0x63 

efa4f000        0        2 Ntfs!NtfsInitializeVcb+0x30e/Ntfs!NtfsInitializeDevice+0x95 

efa53000        0        2 Ntfs!NtfsInitializeVcb+0x30e/Ntfs!NtfsInitializeDevice+0x95 

eea89000        0        1 TDI!DllInitialize+0x4f/nt!MiResolveImageReferences+0x4bc 

ee798000        1       20 VIDEOPRT!pVideoPortGetDeviceBase+0x1f1 

f0676000        1       10 hal!HalpGrowMapBuffers+0x134/hal!HalpAllocateAdapterEx+0x1ff 

f0b75000        1        1 cpqasm2+0x2af67/cpqasm2+0x7847 

f0afa000        1        1 cpqasm2+0x2af67/cpqasm2+0x6d82

64-Bit Address Space Layouts

The theoretical 64-bit virtual address space is 16 exabytes (18,446,744,073,709,551,616 bytes, 

or approximately 17.2 billion GB). Unlike on x86 systems, where the default address space is 

divided in two parts (half for a process and half for the system), the 64-bit address is divided 

into a number of different size regions whose components match conceptually the portions 

of user, system, and session space. The various sizes of these regions, listed in Table 9-8, rep-

resent current implementation limits that could easily be extended in future releases. Clearly, 

64 bits provides a tremendous leap in terms of address space sizes.
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TABLE 9-8 64-Bit Address Space Sizes

Region IA64 x64

Process Address Space 7,152 GB 8,192 GB

System PTE Space 128 GB 128 GB

System Cache 1 TB 1 TB

Paged Pool 128 GB 128 GB

Nonpaged Pool 75% of physical memory 75% of physical memory

Also, on 64-bit Windows, another useful feature of having an image that is large address 

space aware is that while running on 64-bit Windows (under Wow64), such an image will 

actually receive all 4 GB of user address space available—after all, if the image can support 

3-GB pointers, 4-GB pointers should not be any different, because unlike the switch from 

2 GB to 3 GB, there are no additional bits involved. Figure 9-12 shows TestLimit, running as 

a 32-bit application, reserving address space on a 64-bit Windows machine, followed by the 

64-bit version of TestLimit leaking memory on the same machine.

FIGURE 9-12 32-bit and 64-bit TestLimit reserving address space on a 64-bit Windows computer

The detailed IA64 and x64 address space layouts vary slightly. The IA64 address space layout 

is shown in Figure 9-13, and the x64 address space layout is shown in Figure 9-14.
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..

0000000000000000

000006FBFFFEFFFF

User mode addresses: 0TB – 7GB

000006FBFFFF0000
64KB no access region

000006FC00000000
Alternate 4KB-page mappings

for x86 process emulation. Spans
8MB to allow for 4GB VA space.

000006FC00800000

000006FFFFFFFFFF

Hyperspace: working set lists
and per process memory

management structures mapped
in this 16GB region.

0000070000000000

000007FFFFFFFFFF

Page table self-mapping structures

1FFFFF0000000000
8GB leaf-level page table map

for user space
1FFFFF01FFFFFFFF

1FFFFFFFFFF00000 8KB parent directory (1st level)

1FFFFFFFC0000000

1FFFFFFFC07FFFFF

8MB page directory (2nd level)
table map for user space

..

..
2000000000000000

Win32k.sys
Session data structures.
This is an 8TB region.

3FFFFF0000000000

3FFFFF01FFFFFFFF

8GB leaf-level page table map
for session space

3FFFFFFFFFF00000
8KB parent directory (1st level)

8000000000000000
Physically addressable memory

for 50 bits of address space
mapped with VHPT 8KB pages

8004000000000000

E000000080000000 The HAL, kernel, initial drivers,
NLS data, and registry load in 
this region, which physically 

addresses memory

Kernel mode access only

9FFFFF0000000000 VHPT 64KB page for KSEG3 space
(not used)

3FFFFFFFC0000000

3FFFFFFFC07FFFFF

8MB page directory (2nd level)
table map for session space

..

..

E0000000FF002000

E0000000FFFFFFFF

Reserved for the HAL

E000000200000000

E000000600000000

The system cache working set 
information resides in this 

16GB region.

E000002600000000

Start of paged system area.
Kernel mode access only.

128GB.

E000012600000000

MM_SYSTEM_SPACE_START 
for a length of 

MI_DYNAMIC_KERNEL_VA_BYTES
is managed by the 

MISystemVaBitMap. This is 
typically 1TB and is used 

for the system cache, system 
PTEs, and special pool.

Initial and expansion nonpaged
pool. Kernel mode access only.

Up to 128GB.

8GB leaf-level page table map
for kernel space

FFFFFF0000000000

FFFFFF01FFFFFFFF

FFFFFFFFC0000000

FFFFFFFFC07FFFFF

8MB page directory (2nd level)
table map for kernel space

FFFFFFFFFFF00000 8KB parent directory (1st level)

Shared system pageE0000000FFFE0000

..

Note: MM_SYSTEM_SPACE_START was
deliberately assigned far apart from the top
of virtual memory so a machine with a large
number of bits of physical addressing that
has RAM present at the very top can fit (i.e.,
a PFN database virtual span of ~6TB is 
required for 50-bit physical addressing using
an 8KB page size with 8-byte PTEs).

..

..
PFN database

Note: There is actually no gap between
MM_SYSTEM_SPACE_END and the PTE_KBASE 
because only the low 43 bits of the VA 
are decoded.

..

..

E000070000000000

E000000000000000

FIGURE 9-13 IA64 address space layout
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Start of system space

0000000000000000
User mode addresses: 8TB minus 64KB

000007FFFFFF0000

000007FFFFFEFFFF

000007FFFFFFFFFF
64KB no access region

FFFFF68000000000
512GB four-level page table map

FFFFF70000000000 Hyperspace: working set lists and per 
process memory management struc-
tures mapped in this 512GB region

FFFFF80000000000
Mappings initialized by the loader. 

This is a 512GB region.
FFFFF88000000000 Start of paged system area.

Kernel mode access only. 128GB.

FFFFF78000000000 Shared system page
FFFFF78000001000

The system cache working set
information resides in this

512GB – 4K region

FFFF080000000000

FFFFF98000000000

Win32k.sys. Session data structures.
This is a 512GB region.

PFN database

MM_SYSTEM_SPACE_START for a length 
of MI_DYNAMIC_KERNEL_VA_BYTES is 
managed by the MiSystemVaBitMap. 

This is typically 1TB and is used for the 
system cache, system PTEs, 

and special pool.
FFFFFA8000000000

FFFFFFFF00C00000

Initial and expansion nonpaged pool.
Kernel mode access only.

Up to 128GB.

FFFFFFFFFFFFFFFF

Minimum 4MB reserved for the HAL.
Loader/HAL can consume additional
virtual accesss memory by leaving it

mapped at kernel bootup.

..

Note: A large VA range is deliberately reserved here to 
support machines with a large number of bits of physical 
addressing with RAM present at the very top (i.e., a PFN 
database virtual span of ~6TB is required for 49-bit 
physical addressing using a 4KB page size with 8 byte PTEs).

Note: The ranges below are sign-extended for >43 bits 
and therefore can be used with interlocked slists. 
The system address space above is NOT...

..

..

..

..

FFFFF90000000000

FIGURE 9-14 x64 address space layout
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64-Bit Virtual Addressing Limitations

As discussed previously, 64 bits of virtual address space allow for a possible maximum of 

16 exabytes (EB) of virtual memory, a notable improvement over the 4 GB offered by 32-bit 

addressing. With such a copious amount of memory, it is obvious that today’s computers, as 

well as tomorrow’s foreseeable machines (at least in the consumer market), are not even close 

to requiring support for that much memory. 

For these reasons, as well as to simplify current chip architecture, the x64 systems that 

AMD and Intel support on today’s x64 processors support only 48 bits of virtual address 

space, requiring the other 16 bits to be set to the same value as the “valid,” or “imple-

mented,” bits, resulting in canonical addresses. The bottom half of the address space starts 

at 0x0000000000000000, with only 12 of those zeroes being part of an actual address 

(resulting in an end at 0x00007FFFFFFFFFFF). The top half of the address space starts 

at 0xFFFF800000000000, ending at 0xFFFFFFFFFFFFFFFF. As newer processors sup-

port more of the addressing bits, the lower half of memory will expand upward, toward 

0x7FFFFFFFFFFFFFFF, while the upper half of memory will expand downward, toward 

0x8000000000000000 (a similar split to today’s memory space but with 32 more bits). 

In Windows, a number of mechanisms have made, and continue to make, assumptions about 

usable bits in the address space: pushlocks, fast references, Patchguard DPC contexts, and 

singly linked lists are common examples of data structures that use bits within a pointer for 

nonaddressing purposes. Singly linked lists, combined with the lack of a CPU instruction in 

the original x64 CPUs required to “port” the data structure to 64-bit Windows, have caused 

an interesting memory addressing limit on 64-bit Windows.

Here is the SLIST_HEADER, the data structure Windows uses to represent an entry inside a list:

typedef union _SLIST_HEADER { 

    ULONGLONG Alignment; 

    struct { 

        SLIST_ENTRY Next; 

        USHORT Depth; 

        USHORT Sequence; 

    } DUMMYSTRUCTNAME; 

} SLIST_HEADER, *PSLIST_HEADER;

Note that this is an 8-byte structure, guaranteed to be aligned as such, composed of three 

elements: the pointer to the next entry (32 bits, or 4 bytes) and depth and sequence num-

bers, each 16 bits (or 2 bytes). To create lock-free push and pop operations, the implementa-

tion makes use of an instruction present on Pentium processors or higher—CMPXCHG8B 

(Compare and Exchange 8 bytes), which allows the atomic modification of 8 bytes of data. By 

using this native CPU instruction, which also supports the LOCK prefix (guaranteeing atomic-

ity on a multiprocessor system), the need for a spinlock to combine two 32-bit accesses is 

eliminated, and all operations on the list become lock free (increasing speed and scalability).
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On 64-bit computers, addresses are 64 bits, so the pointer to the next entry should logi-

cally be 64 bits. If the depth and sequence numbers remain within the same parameters, the 

system must provide a way to modify at minimum 64+32 bits of data—or better yet, 128 

bits, in order to increase the entropy of the depth and sequence numbers. However, the first 

x64 processors did not implement the essential CMPXCHG16B instruction to allow this. The 

implementation, therefore, was written to pack as much information as possible into only 64 

bits, which was the most that could be modified atomically at once. The 64-bit SLIST_HEADER 

thus looks like this:

struct {  // 8-byte header 

        ULONGLONG Depth:16; 

        ULONGLONG Sequence:9; 

        ULONGLONG NextEntry:39; 

} Header8;

The first change is the reduction of the space for the sequence number to 9 bits instead of 

16 bits, reducing the maximum sequence number the list can achieve. This leaves only 39 

bits for the pointer, still far from 64 bits. However, by forcing the structure to be 16-byte 

aligned when allocated, 4 more bits can be used because the bottom bits can now always be 

assumed to be 0. This gives 43 bits for addresses, but there is one more assumption that can 

be made. Because the implementation of linked lists is used either in kernel mode or user 

mode but cannot be used across address spaces, the top bit can be ignored, just as on 32-bit 

machines. The code will assume the address to be kernel mode if called in kernel mode and 

vice versa. This allows us to address up to 44 bits of memory in the NextEntry pointer and is 

the defining constraint of the addressing limit in Windows.

Forty-four bits is a much better number than 32. It allows 16 TB of virtual memory to be 

described and thus splits Windows into two even chunks of 8 TB for user-mode and kernel-

mode memory. Nevertheless, this is still 16 times smaller than the CPU’s own limit (48 bits is 

256 TB), and even farther still from the maximum that 64 bits can describe. So, with scalability 

in mind, some other bits do exist in the SLIST_HEADER that define the type of header being 

dealt with. This means that when the day comes when all x64 CPUs support 128-bit Compare 

and Exchange, Windows can easily take advantage of it (and to do so before then would 

mean distributing two different kernel images). Here’s a look at the full 8-byte header:

 struct {  // 8-byte header 

        ULONGLONG Depth:16; 

        ULONGLONG Sequence:9; 

        ULONGLONG NextEntry:39; 

        ULONGLONG HeaderType:1; // 0: 8-byte; 1: 16-byte 

        ULONGLONG Init:1;       // 0: uninitialized; 1: initialized 

        ULONGLONG Reserved:59; 

        ULONGLONG Region:3; 

 } Header8;
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Note how the HeaderType bit is overlaid with the Depth bits and allows the implementation 

to deal with 16-byte headers whenever support becomes available. For the sake of complete-

ness, here is the definition of the 16-byte header:

 struct {  // 16-byte header 

        ULONGLONG Depth:16; 

        ULONGLONG Sequence:48; 

        ULONGLONG HeaderType:1; // 0: 8-byte; 1: 16-byte 

        ULONGLONG Init:1;       // 0: uninitialized; 1: initialized 

        ULONGLONG Reserved:2; 

        ULONGLONG NextEntry:60; // last 4 bits are always 0’s 

 } Header16;

Notice how the NextEntry pointer has now become 60 bits, and because the structure is still 

16-byte aligned, with the 4 free bits, leads to the full 64 bits being addressable.

Dynamic System Virtual Address Space Management

Thirty-two-bit versions of Windows manage the system address space through an internal 

kernel virtual allocator mechanism that we’ll describe in this section. Currently, 64-bit ver-

sions of Windows have no need to use the allocator for virtual address space management 

(and thus bypass the cost), because each region is statically defined as shown in Table 9-8 

earlier.

When the system initializes, the MiInitializeDynamicVa function sets up the basic dynamic 

ranges (the ranges currently supported are described in Table 9-9) and sets the avail-

able virtual address to all available kernel space. It then initializes the address space 

ranges for boot loader images, process space (hyperspace), and the HAL through the 

MiIntializeSystemVaRange function, which is used to set hard-coded address ranges. Later, 

when nonpaged pool is initialized, this function is used again to reserve the virtual address 

ranges for it. Finally, whenever a driver loads, the address range is relabeled to a driver image 

range (instead of a boot loaded range).

After this point, the rest of the system virtual address space can be dynamically requested 

and released through MiObtainSystemVa (and its analogous MiObtainSessionVa) and 

MiReturnSystemVa. Operations such as expanding the system cache, the system PTEs, non-

paged pool, paged pool, and/or special pool; mapping memory with large pages; creating 

the PFN database; and creating a new session all result in dynamic virtual address allocations 

for a specific range.
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TABLE 9-9 System Virtual Address Types

Region Description Limitable

MiVaSessionSpace (0x1) Addresses for session space Yes

MiVaProcessSpace (0x2) Addresses for process address space No

MiVaBootLoaded (0x3) Addresses for images loaded by the boot loader No

MiVaPfnDatabase (0x4) Addresses for the PFN database No

MiVaNonPagedPool (0x5) Addresses for the nonpaged pool Yes

MiVaPagedPool (0x6) Addresses for the paged pool Yes

MiVaSpecialPool (0x7) Addresses for the special pool No

MiVaSystemCache (0x8) Addresses for the system cache Yes

MiVaSystemPtes (0x9) Addresses for system PTEs Yes

MiVaHal (0xA) Addresses for the HAL No

MiVaSessionGlobalSpace (0xB) Addresses for session global space No

MiVaDriverImages (0xC) Addresses for loaded driver images No

Although the ability to dynamically reserve virtual address space on demand allows better 

management of virtual memory, it would be useless without the ability to free this memory. 

As such, when paged pool or the system cache can be shrunk, or when special pool and 

large page mappings are freed, the associated virtual address is freed. (Another case is 

when the boot registry is released.) This allows dynamic management of memory depend-

ing on each component’s use. Additionally, components can reclaim memory through 

MiReclaimSystemVa, which requests virtual addresses associated with the system cache to be 

flushed out (through the dereference segment thread) if available virtual address space has 

dropped below 128 MB. (Reclaiming can also be satisfied if initial nonpaged pool has been 

freed.)
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EXPERIMENT: Determining the Virtual Address Type 

for an Address

Each time the kernel virtual address space allocator obtains virtual memory ranges for 

use by a certain type of virtual address, it updates the MiSystemVaType array, which 

contains the virtual address type for the newly allocated range. 

By taking any given kernel address and calculating its PDE index from the beginning of 

system space, you can dump the appropriate byte field in this array to obtain the vir-

tual address type. For example, the following commands will display the virtual address 

types for Win32k.sys, the process object for WinDbg, the handle table for WinDbg, the 

kernel, a file system cache segment, and hyperspace:

lkd> ?? nt!_MI_SYSTEM_VA_TYPE (((char*)@@(nt!MiSystemVaType))[@@((win32k  - 

poi(nt!MmSystemRangeStart))/(1000*1000/@@(sizeof(nt!MMPTE)) ))]) 

_MI_SYSTEM_VA_TYPE MiVaSessionGlobalSpace (11) 

lkd> ?? nt!_MI_SYSTEM_VA_TYPE (((char*)@@(nt!MiSystemVaType))[@@((864753b0    - 

poi(nt!MmSystemRangeStart))/(1000*1000/@@(sizeof(nt!MMPTE)) ))]) 

_MI_SYSTEM_VA_TYPE MiVaNonPagedPool (5) 

lkd> ?? nt!_MI_SYSTEM_VA_TYPE (((char*)@@(nt!MiSystemVaType))[@@((8b2001d0  - 

poi(nt!MmSystemRangeStart))/(1000*1000/@@(sizeof(nt!MMPTE)) ))]) 

_MI_SYSTEM_VA_TYPE MiVaPagedPool (6) 

lkd> ?? nt!_MI_SYSTEM_VA_TYPE (((char*)@@(nt!MiSystemVaType))[@@((nt - 

poi(nt!MmSystemRangeStart))/(1000*1000/@@(sizeof(nt!MMPTE)) ))]) 

_MI_SYSTEM_VA_TYPE MiVaBootLoaded (3) 

lkd> ?? nt!_MI_SYSTEM_VA_TYPE (((char*)@@(nt!MiSystemVaType))[@@((0xb3c80000  - 

poi(nt!MmSystemRangeStart))/(1000*1000/@@(sizeof(nt!MMPTE)) ))]) 

_MI_SYSTEM_VA_TYPE MiVaSystemCache (8) 

lkd> ?? nt!_MI_SYSTEM_VA_TYPE (((char*)@@(nt!MiSystemVaType))[@@((c0400000 - 

poi(nt!MmSystemRangeStart))/(1000*1000/@@(sizeof(nt!MMPTE)) ))]) 

 

_MI_SYSTEM_VA_TYPE MiVaProcessSpace (2)

In addition to better proportioning and better management of virtual addresses dedicated 

to different kernel memory consumers, the dynamic virtual address allocator also has advan-

tages when it comes to memory footprint reduction. Instead of having to manually preallo-

cate static page table entries and page tables, paging-related structures are allocated on 

demand. On both 32-bit and 64-bit systems, this reduces boot-time memory usage because 

unused addresses won’t have their page tables allocated. It also means that on 64-bit sys-

tems, the large address space regions that are reserved don’t need to have their page tables 

mapped in memory, which allows them to have arbitrarily large limits, especially on systems 

that have little physical RAM to back the resulting paging structures.
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EXPERIMENT: Querying System Virtual Address Usage

You can look at the current usage and peak usage of each system virtual address 

type by using the kernel debugger. For each system virtual address type described 

in Table 9-9, the MiSystemVaTypeCount, MiSystemVaTypeCountFailures, and 

MiSystemVaTypeCountPeak arrays in the kernel contain the sizes, count failures, and 

peak sizes for each type. Here’s how you can dump the usage for the system, followed 

by the peak usage (you can use a similar technique for the failure counts):

lkd> dd /c 1 MiSystemVaTypeCount l c 

81f4f880  00000000 

81f4f884  00000028 

81f4f888  00000008 

81f4f88c  0000000c 

81f4f890  0000000b 

81f4f894  0000001a 

81f4f898  0000002f 

81f4f89c  00000000 

81f4f8a0  000001b6 

81f4f8a4  00000030 

81f4f8a8  00000002 

81f4f8ac  00000006 

lkd> dd /c 1 MiSystemVaTypeCountPeak  l c 

81f4f840  00000000 

81f4f844  00000038 

81f4f848  00000000 

81f4f84c  00000000 

81f4f850  0000003d 

81f4f854  0000001e 

81f4f858  00000032 

81f4f85c  00000000 

81f4f860  00000238 

81f4f864  00000031 

81f4f868  00000000 

81f4f86c  00000006

Although theoretically, the different virtual address ranges assigned to components can 

grow arbitrarily in size as long as enough system virtual address space is available, the kernel 

allocator implements the ability to set limits on each virtual address type for the purposes of 

both reliability and stability. Although no limits are imposed by default, system administra-

tors can use the registry to modify these limits for the virtual address types that are currently 

marked as limitable (see Table 9-9).

If the current request during the MiObtainSystemVa call exceeds the available limit, a failure 

is marked (see the previous experiment) and a reclaim operation is requested regardless 

of available memory. This should help alleviate memory load and might allow the virtual 

address allocation to work during the next attempt. (Recall, however, that reclaiming affects 

only system cache and nonpaged pool).
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EXPERIMENT: Setting System Virtual Address Limits

The MiSystemVaTypeCountLimit array contains limitations for system virtual address 

usage that can be set for each type. Currently, the memory manager allows only certain 

virtual address types to be limited, and it provides the ability to use an undocumented 

system call to set limits for the system dynamically during run time. (These limits can also 

be set through the registry, as described at http://msdn.microsoft.com/en-us/library/
bb870880(VS.85).aspx. These limits can be set for those types marked in Table 9-9.

You can use the MemLimit utility from Winsider Seminars & Solutions (www.winsiderss.
com/tools/memlimit.html) to query and set the different limits for these types, and also 

to see the current and peak virtual address space usage. Here’s how you can query the 

current limits with the –q flag:

C:\ >memlimit.exe -q 

 

MemLimit v1.00 - Query and set hard limits on system VA space consumption 

Copyright (C) 2008 Alex Ionescu 

www.alex-ionescu.com 

 

System Va Consumption: 

 

Type                    Current            Peak            Limit 

Non Paged Pool           102400 KB            0 KB            0 KB 

Paged Pool                59392 KB        83968 KB            0 KB 

System Cache             534528 KB       536576 KB            0 KB 

System PTEs               73728 KB        75776 KB            0 KB 

Session Space             75776 KB        90112 KB            0 KB

As an experiment, use the following command to set a limit of 100 MB for paged pool: 

memlimit.exe -p 100M

And now try running the testlimit –h experiment from Chapter 3 again, which 

attempted to create 16 million handles. Instead of reaching the 16 million handle count, 

the process will fail, because the system will have run out of address space available for 

paged pool allocations.

Finally, as of Windows Vista and Windows Server 2008, the system virtual address space limits 

apply only to 32-bit systems, where 1 to 2 GB of kernel address space can lead to exhaustion. 

Sixty-four-bit systems have 8 TB of kernel address space, so limiting virtual address space 

usage is currently not a concern.



756 Windows Internals, Fifth Edition

System Virtual Address Space Quotas

The system virtual address space limits described in the previous section allow for limiting 

systemwide virtual address space usage of certain kernel components, but they work only 

on 32-bit systems when applied to the system as a whole. To address more specific quota 

requirements that system administrators might have, the memory manager also collaborates 

with the process manager to enforce either systemwide or user-specific quotas for each 

process. 

The PagedPoolQuota, NonPagedPoolQuota, PagingFileQuota, and WorkingSetPagesQuota 

values in the HKLM\SYSTEM\CurrentControlSet\Control\Session Manager\Memory 

Management key can be configured to specify how much memory of each type a given pro-

cess can use. This information is read at initialization, and the default system quota block is 

generated and then assigned to all system processes (user processes will get a copy of the 

default system quota block unless per-user quotas have been configured as explained next).

To enable per-user quotas, subkeys under the registry key HKLM\SYSTEM\CurrentControl-

Set\Session Manager\Quota System can be created, each one representing a given user SID. 

The values mentioned previously can then be created under this specific SID subkey, enforc-

ing the limits only for the processes created by that user. Table 9-10 shows how to configure 

these values, which can be configured at run time or not, and which privileges are required.

TABLE 9-10 Process Quota Types

Value Name Description Value Type Dynamic Privilege

PagedPoolQuota Maximum size of 

paged pool that can 

be allocated by this 

process

Size in MB Only for 

processes 

running with 

the system 

token

SeIncreaseQuota-

Privilege

NonPagedPoolQuota Maximum size of 

nonpaged pool that 

can be allocated by 

this process

Size in MB Only for 

processes 

running with 

the system 

token

SeIncreaseQuota-

Privilege

PagingFileQuota Maximum number of 

pages that a process 

can have backed by 

the page file

Pages Only for 

processes 

running with 

the system 

token

SeIncreaseQuota-

Privilege

WorkingSetPages-

Quota

Maximum number 

of pages that a 

process can have in 

its working set (in 

physical memory)

Pages Yes SeIncreaseBase-

PriorityPrivilege 

unless  operation is 

a purge  request
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User Address Space Layout

Just as address space in the kernel is dynamic, the user address space in Windows Vista and 

later versions is also built dynamically—the addresses of the thread stacks, process heaps, 

and loaded images (such as DLLs and an application’s executable) are dynamically computed 

(if the application and its images support it) through a mechanism known as Address Space 

Layout Randomization, or ASLR.

At the operating system level, user address space is divided into a few well-defined regions of 

memory, shown in Figure 9-15. The executable and DLLs themselves are present as memory 

mapped image files, followed by the heap(s) of the process and the stack(s) of its thread(s). 

Apart from these regions (and some reserved system structures such as the TEBs and PEB), 

all other memory allocations are run-time dependent and generated. ASLR is involved with 

the location of all these regions and, combined with DEP, provides a mechanism for making 

remote exploitation of a system through memory manipulation harder to achieve—by hav-

ing code and data at dynamic locations, an attacker cannot typically hardcode a meaningful 

offset.

Thread stack

Dynamic-base DLLs

Executable Randomly chosen
executable load address

Process heapUser

address

space

Kernel

address

space

Randomly chosen
image load address

Thread stack

Thread stack

FIGURE 9-15 User address space layout with ASLR enabled
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EXPERIMENT: Analyzing User Virtual Address Space

The Vmmap utility from Sysinternals can show you a detailed view of the virtual mem-

ory being utilized by any process on your machine, divided into categories for each 

type of allocation, summarized as follows:

Image Displays memory allocations used to map the process and its depen-

dencies (such as dynamic libraries) and any other memory mapped image files

Private Displays memory allocations marked as private, such as internal data 

structures, other than the stack and heap

Shareable Displays memory allocations marked as shareable, typically includ-

ing shared memory (but not memory mapped files, which are either Image or 

Mapped File)

Mapped File Displays memory allocations for memory mapped data files 

Heap Displays memory allocated for the heap(s) that this process owns

Stack Displays memory allocated for the stack of each thread in this process

System Displays kernel memory allocated for the process (such as the process 

object)

The following screen shot shows a typical view of Explorer as seen through Vmmap.
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Depending on the type of memory allocation, Vmmap can show additional informa-

tion, such as file names (for mapped files), heap IDs (for heap allocations), and thread 

IDs (for stack allocations). Furthermore, each allocation’s cost is shown both in commit-

ted memory and working set memory. The size and protection of each allocation is also 

displayed.

ASLR begins at the image level, with the executable for the process and its dependent 

DLLs. Any image file that has specified ASLR support in its PE header (IMAGE_DLL_

CHARACTERISTICS_DYNAMIC_BASE), typically specified by using the /DYNAMICBASE linker 

flag in Microsoft Visual Studio, and contains a relocation section will be processed by ASLR. 

When such an image is found, the system selects an image offset valid globally for the cur-

rent boot. This offset is selected from a bucket of 256 values, all of which are 64-KB aligned.

Note You can control ASLR behavior by creating a key called MoveImages under HKLM\

SYSTEM\CurrentControlSet\Session Manager\Memory Management. Setting this value to 0 will 

disable ASLR, while a value of 0xFFFFFFFF (–1) will enable ASLR regardless of the IMAGE_DLL_

CHARACTERISTICS_DYNAMIC_BASE flag. (Images must still be relocatable, however.)

Image Randomization

For executables, the load offset is calculated by computing a delta value each time an exe-

cutable is loaded. This value is a pseudo-random 8-bit number from 0x10000 to 0xFE0000, 

calculated by taking the current processor’s time stamp counter (TSC), shifting it by four 

places, and then performing a division modulo 254 and adding 1. This number is then mul-

tiplied by the allocation granularity of 64 KB discussed earlier. By adding 1, the memory 

manager ensures that the value can never be 0, so executables will never load at the address 

in the PE header if ASLR is being used. This delta is then added to the executable’s preferred 

load address, creating one of 256 possible locations within 16 MB of the image address in the 

PE header.

For DLLs, computing the load offset begins with a per-boot, systemwide value called the 

image bias, which is computed by MiInitializeRelocations and stored in MiImageBias. This 

value corresponds to the time stamp counter (TSC) of the current CPU when this function was 

called during the boot cycle, shifted and masked into an 8-bit value, which provides 256 pos-

sible values. Unlike executables, this value is computed only once per boot and shared across 

the system to allow DLLs to remain shared in physical memory and relocated only once. 

Otherwise, if every DLL was loaded at a different location inside different processes, each DLL 

would have a private copy loaded in physical memory.
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Once the offset is computed, the memory manager initializes a bitmap called the 

MiImageBitMap. This bitmap is used to represent ranges from 0x50000000 to 0x78000000 

(stored in MiImageBitMapHighVa), and each bit represents one unit of allocation (64 KB, as 

mentioned earlier). Whenever the memory manager loads a DLL, the appropriate bit is set 

to mark its location in the system; when the same DLL is loaded again, the memory manager 

shares its section object with the already relocated information.

As each DLL is loaded, the system scans the bitmap from top to bottom for free bits. The 

MiImageBias value computed earlier is used as a start index from the top to randomize the 

load across different boots as suggested. Because the bitmap will be entirely empty when 

the first DLL (which is always Ntdll.dll) is loaded, its load address can easily be calculated: 

0x78000000 – MiImageBias * 0x10000. Each subsequent DLL will then load in a 64-KB chunk 

below. Because of this, if the address of Ntdll.dll is known, the addresses of other DLLs could 

easily be computed. To mitigate this possibility, the order in which known DLLs are mapped 

by the Session Manager during initialization is also randomized when Smss loads.

Finally, if no free space is available in the bitmap (which would mean that most of the region 

defined for ASLR is in use, the DLL relocation code defaults back to the executable case, load-

ing the DLL at a 64-KB chunk within 16 MB of its preferred base address.

Stack Randomization

The next step in ASLR is to randomize the location of the initial thread’s stack (and, subse-

quently, of each new thread). This randomization is enabled unless the flag StackRandomiza-
tion Disabled was enabled for the process and consists of first selecting one of 32 possible 

stack locations separated by either 64 KB or 256 KB. This base address is selected by finding 

the first appropriate free memory region and then choosing the xth available region, where x 

is once again generated based on the current processor’s TSC shifted and masked into a 5-bit 

value (which allows for 32 possible locations). 

Once this base address has been selected, a new TSC-derived value is calculated, this one 

9 bits long. The value is then multiplied by 4 to maintain alignment, which means it can 

be as large as 2,048 bytes (half a page). It is added to the base address to obtain the final 

stack base.

Heap Randomization

Finally, ASLR randomizes the location of the initial process heap (and subsequent heaps) 

when created in user mode. The RtlCreateHeap function uses another pseudo-random, 

TSC-derived value to determine the base address of the heap. This value, 5 bits this time, is 

multiplied by 64 KB to generate the final base address, starting at 0, giving a possible range 

of 0x00000000 to 0x001F0000 for the initial heap. Additionally, the range before the heap 

base address is manually deallocated in an attempt to force an access violation if an attack is 

doing a brute-force sweep of the entire possible heap address range.
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EXPERIMENT: Looking at ASLR Protection on Processes

You can use Process Explorer from Sysinternals to look over your processes (and, just as 

important, the DLLs they load) to see if they support ASLR. To look at the ASLR status 

for processes, right-click on any column in the process tree, choose Select Columns, 

and then check ASLR Enabled on the Process Image tab. The following screen shot 

displays an example of a system on which you can notice that ASLR is enabled for all 

in-box Windows programs and services but that some third-party applications and ser-

vices are not yet built with ASLR support.

Address Translation

Now that you’ve seen how Windows structures the virtual address space, let’s look at how it 

maps these address spaces to real physical pages. User applications and system code refer-

ence virtual addresses. This section starts with a detailed description of 32-bit x86 address 

translation and continues with a brief description of the differences on the 64-bit IA64 and 

x64 platforms. In the next section, we’ll describe what happens when such a translation 

doesn’t resolve to a physical memory address (paging) and explain how Windows manages 

physical memory via working sets and the page frame database.
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x86 Virtual Address Translation

Using data structures the memory manager creates and maintains called page tables, the CPU 

translates virtual addresses into physical addresses. Each virtual address is associated with a 

system-space structure called a page table entry (PTE), which contains the physical address 

to which the virtual one is mapped. For example, Figure 9-16 shows how three consecutive 

virtual pages are mapped to three physically discontiguous pages on an x86 system. There 

may not even be any PTEs for regions that have been marked as reserved or committed but 

never accessed, because the page table itself might be allocated only when the first page 

fault occurs.

FIGURE 9-16 Mapping virtual addresses to physical memory (x86)

The dashed line connecting the virtual pages to the PTEs in Figure 9-16 represents the indi-

rect relationship between virtual pages and physical memory.

Note Kernel-mode code (such as device drivers) can reference physical memory addresses by 

mapping them to virtual addresses. For more information, see the memory descriptor list (MDL) 

support routines described in the WDK documentation.
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By default, Windows on an x86 system uses a two-level page table structure to translate vir-

tual to physical addresses. (x86 systems running the PAE kernel use a three-level page table—

this section assumes non-PAE systems.) A 32-bit virtual address mapped by a normal 4-KB 

page is interpreted as three separate components—the page directory index, the page table 

index, and the byte index—that are used as indexes into the structures that describe page 

mappings, as illustrated in Figure 9-17. The page size and the PTE width dictate the width of 

the page directory and page table index fields. For example, on x86 systems, the byte index 

is 12 bits because pages are 4,096 bytes (212 = 4,096).

FIGURE 9-17 Components of a 32-bit virtual address on x86 systems

The page directory index is used to locate the page table in which the virtual address’s PTE is 

located. The page table index is used to locate the PTE, which, as mentioned earlier, contains 

the physical address to which a virtual page maps. The byte index finds the proper address 

within that physical page. Figure 9-18 shows the relationship of these three values and how 

they are used to map a virtual address into a physical address.

KPROCESS

Page directory

index

Page table

index

Byte

index

Physical addressCR3

Page directory
(one per process, 1,024 entries)

Page tables
(up to 512 per process

plus up to 512 systemwide, 
1,024 entries per table)

Physical address
space

Desired byte

Desired page
Index

PFN

PFN

PTE

Index

PDE

Index

FIGURE 9-18 Translating a valid virtual address (x86-specific)
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The following basic steps are involved in translating a virtual address:

 1. The memory management hardware locates the page directory for the current process. 

On each process context switch, the hardware is told the address of a new process page 

directory by the operating system setting a special CPU register (CR3 in Figure 9-18).

 2. The page directory index is used as an index into the page directory to locate the page 

directory entry (PDE) that describes the location of the page table needed to map the 

virtual address. The PDE contains the page frame number (PFN) of the page table (if it 

is resident—page tables can be paged out or not yet created). In both of these cases, 

the page table is first made resident before proceeding. For large pages, the PDE points 

directly to the PFN of the target page, and the rest of the address is treated as the byte 

offset within this frame.

 3. The page table index is used as an index into the page table to locate the PTE that 

describes the physical location of the virtual page in question.

 4. The PTE is used to locate the page. If the page is valid, it contains the PFN of the page 

in physical memory that contains the virtual page. If the PTE indicates that the page 

isn’t valid, the memory management fault handler locates the page and tries to make it 

valid. (See the section on page fault handling.) If the page should not be made valid (for 

example, because of a protection fault), the fault handler generates an access violation 

or a bug check.

 5. When the PTE is pointed to a valid page, the byte index is used to locate the address of 

the desired data within the physical page.

Now that you have the overall picture, let’s look at the detailed structure of page directories, 

page tables, and PTEs.

Page Directories

Each process has a single page directory, a page the memory manager creates to map 

the location of all page tables for that process. The physical address of the process page 

directory is stored in the kernel process (KPROCESS) block, but it is also mapped virtually 

at address 0xC0300000 on x86 systems (0xC0600000 on systems running the PAE kernel 

image). Most code running in kernel mode references virtual addresses, not physical ones. 

(For more detailed information about KPROCESS and other process data structures, refer to 

Chapter 5.)

The CPU knows the location of the page directory page because a special register (CR3 on 

x86 systems) inside the CPU that is loaded by the operating system contains the physical 

address of the page directory. Each time a context switch occurs to a thread that is in a dif-

ferent process than that of the currently executing thread, this register is loaded from the 

KPROCESS block of the target process being switched to by the context-switch routine in the 

kernel. Context switches between threads in the same process don’t result in reloading the 
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physical address of the page directory because all threads within the same process share the 

same process address space.

The page directory is composed of page directory entries (PDEs), each of which is 4 bytes long 

(8 bytes on systems running the PAE kernel image) and describes the state and location of all 

the possible page tables for that process. (If the page table does not yet exist, the VAD tree 

is consulted to determine whether an access should materialize it.) (As described later in the 

chapter, page tables are created on demand, so the page directory for most processes points 

only to a small set of page tables.) The format of a PDE isn’t repeated here because it’s mostly 

the same as a hardware PTE.

On x86 systems running in non-PAE mode, 1,024 page tables are required to describe the full 

4-GB virtual address space. The process page directory that maps these page tables contains 

1,024 PDEs. Therefore, the page directory index needs to be 10 bits wide (210 = 1,024). On 

x86 systems running in PAE mode, there are 512 entries in a page table (because the PTE size 

is 8 bytes and page tables are 4 KB in size). Because there are 4 page directories, the result is 

a maximum of 2,048 page tables.

EXPERIMENT: Examining the Page Directory and PDEs

You can see the physical address of the currently running process’s page directory by 

examining the DirBase field in the !process kernel debugger output:

lkd> !process 

PROCESS 87248070  SessionId: 1  Cid: 088c    Peb: 7ffdf000  ParentCid: 06d0 

    DirBase: ce2a8980  ObjectTable: a72ba408  HandleCount:  95. 

    Image: windbg.exe 

    VadRoot 86ed30a0 Vads 85 Clone 0 Private 3474. Modified 187. Locked 1. 

    DeviceMap 98fd1008 

    Token                             affe1c48 

    ElapsedTime                       00:18:17.182 

    UserTime                          00:00:00.000 

    KernelTime                        00:00:00.000

You can see the page directory’s virtual address by examining the kernel debugger out-

put for the PTE of a particular virtual address, as shown here:

lkd> !pte 50001 

               VA 00050001 

PDE at 00000000C0600000    PTE at 00000000C0000280 

contains 0000000056C74867  contains 80000000C0EBD025 

pfn 56c74      ---DA--UWEV    pfn c0ebd      ----A--UR-V

The PTE part of the kernel debugger output is defined in the section “Page Tables and 

Page Table Entries.”

Because Windows provides a private address space for each process, each process has its 

own set of process page tables to map that process’s private address space. However, the 
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page tables that describe system space are shared among all processes (and session space is 

shared only among processes in a session). To avoid having multiple page tables describing 

the same virtual memory, when a process is created, the page directory entries that describe 

system space are initialized to point to the existing system page tables. If the process is part 

of a session, session space page tables are also shared by pointing the session space page 

directory entries to the existing session page tables.

Page Tables and Page Table Entries

The process page directory entries point to individual page tables. Page tables are composed 

of an array of PTEs. The virtual address’s page table index field (as shown in Figure 9-17) indi-

cates which PTE within the page table maps the data page in question. On x86 systems, the 

page table index is 10 bits wide (9 on PAE), allowing you to reference up to 1,024 4-byte PTEs 

(512 8-byte PTEs on PAE systems). However, because 32-bit Windows provides a 4-GB private 

virtual address space, more than one page table is needed to map the entire address space. 

To calculate the number of page tables required to map the entire 4-GB process virtual 

address space, divide 4 GB by the virtual memory mapped by a single page table. Recall that 

each page table on an x86 system maps 4 MB (2 MB on PAE) of data pages. Thus, 1,024 page 

tables (4 GB/4 MB)—or 2,048 page tables (4 GB/2 MB) for PAE—are required to map the full 

4-GB address space.

You can use the !pte command in the kernel debugger to examine PTEs. (See the experiment 

“Translating Addresses.”) We’ll discuss valid PTEs here and invalid PTEs in a later section. Valid 

PTEs have two main fields: the page frame number (PFN) of the physical page containing the 

data or of the physical address of a page in memory, and some flags that describe the state 

and protection of the page, as shown in Figure 9-19.

Reserved (writable on multi-
processor systems)
Software field (prototype PTE)
Software field (copy-on-write)
Global
Reserved (large page if PDE)
Dirty
Accessed
Cache disabled
Write through
Owner
Write (writable on multi-
processor systems)
Valid

Protection

Page frame number U P Cw Gl L D A Cd Wt O W V

31 01112 10 9 8 7 6 5 4 3 2 1

FIGURE 9-19 Valid x86 hardware PTEs
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As you’ll see later, the bits labeled Reserved in Figure 9-19 are used only when the PTE 

is valid. (The bits are interpreted by software.) Table 9-11 briefly describes the hardware-

defined bits in a valid PTE.

TABLE 9-11 PTE Status and Protection Bits

Name of Bit Meaning

Accessed Page has been read.

Cache disabled Disables caching for that page.

Copy-on-write Page is using copy-on-write (described earlier).

Dirty Page has been written to.

Global Translation applies to all processes. (For example, a translation buffer flush 

won’t affect this PTE.)

Large page Indicates that the PDE maps a 4-MB page (or 2 MB on PAE systems). See the 

section “Large and Small Pages” earlier in the chapter.

Owner Indicates whether user-mode code can access the page or whether the page is 

limited to kernel-mode access.

Prototype The PTE is a prototype PTE, which is used as a template to describe shared 

memory associated with section objects.

Valid Indicates whether the translation maps to a page in physical memory.

Write through Disables caching of writes to this page so that changes are immediately flushed 

to disk.

Write Indicates whether the page is writable. (The Write bit is stored in a reserved bit 

in the PTE.)

On x86 systems, a hardware PTE contains a Dirty bit and an Accessed bit. The Accessed bit is 

clear if a physical page represented by the PTE hasn’t been read or written since the last time 

it was cleared; the processor sets this bit when the page is read or written if and only if the 

bit is clear at the time of access. The memory manager sets the Dirty bit when a page is first 

written, compared to the backing store copy. In addition to those two bits, the x86 memory 

management implementation uses a Write bit to provide page protection. When this bit 

is clear, the page is read-only; when it is set, the page is read/write. If a thread attempts 

to write to a page with the Write bit clear, a memory management exception occurs, and 

the memory manager’s access fault handler (described in the next section) must determine 

whether the thread can write to the page (for example, if the page was really marked copy-

on-write) or whether an access violation should be generated.

The additional Write bit implemented in software (as described above) is used to optimize 

flushing of the PTE cache (called the translation look-aside buffer, described in the next 

section).
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Byte Within Page

Once the memory manager has found the physical page in question, it must find the 

requested data within that page. This is where the byte index field comes in. The byte index 

field tells the CPU which byte of data in the page you want to reference. On x86 systems, the 

byte index is 12 bits wide, allowing you to reference up to 4,096 bytes of data (the size of a 

page). So, adding the byte offset to the physical page number retrieved from the PTE com-

pletes the translation of a virtual address to a physical address.

Translation Look-Aside Buffer

As you’ve learned so far, each hardware address translation requires two lookups: one to 

find the right page table in the page directory and one to find the right entry in the page 

table. Because doing two additional memory lookups for every reference to a virtual address 

would result in unacceptable system performance, all CPUs cache address translations so that 

repeated accesses to the same addresses don’t have to be retranslated. The processor pro-

vides such a cache in the form of an array of associative memory called the translation look-
aside buffer, or TLB. Associative memory, such as the TLB, is a vector whose cells can be read 

simultaneously and compared to a target value. In the case of the TLB, the vector contains 

the virtual-to-physical page mappings of the most recently used pages, as shown in Figure 

9-20, and the type of page protection, size, attributes, and so on applied to each page. Each 

entry in the TLB is like a cache entry whose tag holds portions of the virtual address and 

whose data portion holds a physical page number, protection field, valid bit, and usually a 

dirty bit indicating the condition of the page to which the cached PTE corresponds. If a PTE’s 

global bit is set (used for system space pages that are globally visible to all processes), the TLB 

entry isn’t invalidated on process context switches.

Virtual address TLB

.

.

.

FIGURE 9-20 Accessing the translation look-aside buffer
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Virtual addresses that are used frequently are likely to have entries in the TLB, which pro-

vides extremely fast virtual-to-physical address translation and, therefore, fast memory 

access. If a virtual address isn’t in the TLB, it might still be in memory, but multiple memory 

accesses are needed to find it, which makes the access time slightly slower. If a virtual page 

has been paged out of memory or if the memory manager changes the PTE, the memory 

manager is required to explicitly invalidate the TLB entry. If a process accesses it again, a page 

fault occurs, and the memory manager brings the page back into memory (if needed) and 

re-creates its PTE entry (which then results in an entry for it in the TLB).

Physical Address Extension (PAE)

The Intel x86 Pentium Pro processor introduced a memory-mapping mode called Physical 
Address Extension (PAE). With the proper chipset, the PAE mode allows 32-bit operating 

systems access to up to 64 GB of physical memory on current Intel x86 processors and up 

to 1,024 GB of physical memory when running on x64 processors in legacy mode (although 

Windows currently limits this to 64 GB due to the size of the PFN database required to map 

so much memory). When the processor executes in PAE mode, the memory management 

unit (MMU) divides virtual addresses mapped by normal pages into four fields, as shown in 

Figure 9-21.

CR3
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Page directory
(up to 4 per process,
512 entries per table,

8 bytes wide)

Page tables
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Physical address
space
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Page directory
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Page directory
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KPROCESS

Physical address

Index

Desired
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Index Index Index
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PDE
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PTE
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FIGURE 9-21 Page mappings with PAE

The MMU still implements page directories and page tables, but a third level, the page direc-

tory pointer table, exists above them. PAE mode can address more memory than the stan-

dard translation mode not because of the extra level of translation but because PDEs and 
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PTEs are 64 bits wide rather than 32 bits. A 32-bit system represents physical addresses inter-

nally with 24 bits, which gives the ability to support a maximum of 224+12 bytes, or 64 GB, 

of memory. One way in which 32-bit applications can take advantage of such large memory 

configurations is described in the earlier section “Address Windowing Extensions.” However, 

even if applications are not using such functions, the memory manager will use all available 

physical memory for multiple processes’ working sets, file cache, and trimmed private data 

through the use of the system cache, standby, and modified lists (described in the section 

“Page Frame Number Database”).

As explained in Chapter 2, there is a special version of the 32-bit Windows kernel with sup-

port for PAE called Ntkrnlpa.exe. This PAE kernel is loaded on 32-bit systems that have hard-

ware support for nonexecutable memory (described earlier in the section “No Execute Page 

Protection”) or on systems that have more than 4 GB of RAM on an edition of Windows that 

supports more than 4 GB of RAM (for example, Windows Server 2008 Enterprise Edition). To 

force the loading of this PAE-enabled kernel, you can set the pae BCD option to ForceEnable.

Note that the PAE kernel is present on all 32-bit Windows systems, even systems with small 

memory without hardware no-execute support. The reason for this is to facilitate device 

driver testing. Because the PAE kernel presents 64-bit addresses to device drivers and other 

system code, booting with pae even on a small memory system allows device driver devel-

opers to test parts of their drivers with large addresses. The other relevant BCD option is 

nolowmem, which discards memory below 4 GB (assuming you have at least 5 GB of physical 

memory) and relocates device drivers above this range. This guarantees that drivers will be 

presented with physical addresses greater than 32 bits, which makes any possible driver sign 

extension bugs easier to find.

EXPERIMENT: Translating Addresses

To clarify how address translation works, this experiment shows a real example of 

translating a virtual address on an x86 PAE system (which is typical on today’s proces-

sors, which support hardware no-execute protection, not because PAE itself is actually 

in use), using the available tools in the kernel debugger to examine page directories, 

page tables, and PTEs. In this example, we’ll work with a process that has virtual address 

0x50001 currently mapped to a valid physical address. In later examples, you’ll see how 

to follow address translation for invalid addresses with the kernel debugger.

First let’s convert 0x50001 to binary and break it into the three fields that are used to 

translate an address. In binary, 0x50001 is 101.0000.0000.0000.0001. Breaking it into 

the component fields yields the following:
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To start the translation process, the CPU needs the physical address of the process page 

directory, stored in the CR3 register while a thread in that process is running. You can 

display this address by examining the CR3 register itself or by dumping the KPROCESS 

block for the process in question with the !process command, as shown here:

lkd> !process 

PROCESS 87248070  SessionId: 1  Cid: 088c    Peb: 7ffdf000  ParentCid: 06d0 

    DirBase: ce2a8980  ObjectTable: a72ba408  HandleCount:  95. 

    Image: windbg.exe 

    VadRoot 86ed30a0 Vads 85 Clone 0 Private 3559. Modified 187. Locked 1. 

    DeviceMap 98fd1008 

    Token                             affe1c48

In this case, the page directory is stored at physical address 0xce2a8980. As shown in 

the preceding illustration, the page directory index field in this example is 0. Therefore, 

the PDE is at physical address 0xce2a8980.

The kernel debugger !pte command displays the PDE and PTE that describe a virtual 

address, as shown here:

lkd> !pte 50001 

               VA 00050001 

PDE at 00000000C0600000    PTE at 00000000C0000280 

contains 0000000056C74867  contains 80000000C0EBD025 

pfn 56c74      ---DA--UWEV    pfn c0ebd      ----A--UR-V

In the first column the kernel debugger displays the PDE, and in the second column 

it displays the PTE. Notice that the PDE address is shown as a virtual address, not a 

physical address—as noted earlier, the process page directory starts at virtual address 

0xC0600000 on x86 systems with PAE (in this case, the PAE kernel is loaded because 

the CPU supports no-execute protection). Because we’re looking at the first PDE in the 

page directory, the PDE address is the same as the page directory address.

The PTE is at virtual address 0xC0000280. You can compute this address by multiply-

ing the page table index (0x50 in this example) by the size of a PTE: 0x50 multiplied by 

8 (on a non-PAE system, this would be 4) equals 0x280. Because the memory manager 

maps page tables starting at 0xC0000000, adding 280 yields the virtual address shown 

in the kernel debugger output: 0xC0000280. The page table page is at PFN 0x56c74, 

and the data page is at PFN 0xc0ebd.

The PTE flags are displayed to the right of the PFN number. For example, the PTE that 

describes the page being referenced has flags of --A--UR-V. Here, A stands for accessed 

(the page has been read), U for user-mode page (as opposed to a kernel-mode page), 

R for read-only page (rather than writable), and V for valid. (The PTE represents a valid 

page in physical memory.)



772 Windows Internals, Fifth Edition

IA64 Virtual Address Translation

The virtual address space for IA64 is divided into eight regions by the hardware. Each region 

can have its own set of page tables. Windows uses five of the regions, three of which have 

page tables. Table 9-12 lists the regions and how they are used.

TABLE 9-12 The IA64 Regions

Region Use

0 User code and data

1 Session space code and data 

2 Unused

3 Unused

4 Kseg3, which is a cached 1-to-1 mapping of physical memory. No page tables are 

needed for this region because the necessary TLB inserts are done directly by the 

memory manager.

5 Kseg4, which is a noncached 1-to-1 mapping for physical memory. This is used only in 

a few places for accessing I/O locations such as the I/O port range. There are no page 

tables needed for this region.

6 Unused

7 Kernel code and data

Address translation by 64-bit Windows on the IA64 platform uses a three-level page table 

scheme. Each process has a page directory pointer structure that contains 1,024 pointers to 

page directories. Each page directory contains 1,024 pointers to page tables, which in turn 

point to physical pages. Figure 9-22 shows the format of an IA64 hardware PTE.

FIGURE 9-22 IA64 page table entry
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x64 Virtual Address Translation

64-bit Windows on the x64 architecture uses a four-level page table scheme. Each process 

has a top-level extended page directory (called the page map level 4) that contains 512 

pointers to a third-level structure called a page parent directory. Each page parent directory 

contains 512 pointers to second-level page directories, each of which contain 512 pointers 

to the individual page tables. Finally, the page tables (each of which contain 512 page table 

entries) point to pages in memory. Current implementations of the x64 architecture limit vir-

tual addresses to 48 bits. The components that make up this 48-bit virtual address are shown 

in Figure 9-23. The connections between these structures are shown in Figure 9-24. Finally, 

the format of an x64 hardware page table entry is shown in Figure 9-25.

FIGURE 9-23 x64 virtual address
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FIGURE 9-24 x64 address translation structures
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FIGURE 9-25 x64 hardware page table entry

Page Fault Handling

Earlier, you saw how address translations are resolved when the PTE is valid. When the PTE 

valid bit is clear, this indicates that the desired page is for some reason not (currently) acces-

sible to the process. This section describes the types of invalid PTEs and how references to 

them are resolved.

Note Only the 32-bit x86 PTE formats are detailed in this book. PTEs for 64-bit systems contain 

similar information, but their detailed layout is not presented.

A reference to an invalid page is called a page fault. The kernel trap handler (introduced in 

the section “Trap Dispatching” in Chapter 3) dispatches this kind of fault to the memory man-

ager fault handler (MmAccessFault) to resolve. This routine runs in the context of the thread 

that incurred the fault and is responsible for attempting to resolve the fault (if possible) or 

raise an appropriate exception. These faults can be caused by a variety of conditions, as listed 

in Table 9-13.

TABLE 9-13 Reasons for Access Faults

Reason for Fault Result

Accessing a page that isn’t resident in memory 

but is on disk in a page file or a mapped file

Allocate a physical page, and read the desired page 

from disk and into the relevant working set

Accessing a page that is on the standby or 

modified list

Transition the page to the relevant process, session, 

or system working set

Accessing a page that isn’t committed (for 

example, reserved address space or address 

space that isn’t allocated)

Access violation

Accessing a page from user mode that can be 

accessed only in kernel mode

Access violation
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Reason for Fault Result

Writing to a page that is read-only Access violation

Accessing a demand-zero page Add a zero-filled page to the relevant working set

Writing to a guard page Guard-page violation (if a reference to a user-mode 

stack, perform automatic stack expansion)

Writing to a copy-on-write page Make process-private (or session-private) copy of 

page, and replace original in process or system 

working set

Writing to a page that is valid but hasn’t been 

written to the current backing store copy

Set dirty bit in PTE

Executing code in a page that is marked as no 

execute

Access violation (supported only on hardware 

platforms that support no execute protection)

The following section describes the four basic kinds of invalid PTEs that are processed by the 

access fault handler. Following that is an explanation of a special case of invalid PTEs, proto-

type PTEs, which are used to implement shareable pages.

Invalid PTEs

The following list details the four kinds of invalid PTEs and their structure. Some of the flags 

are the same as those for a hardware PTE as described in Table 9-11.

Page file The desired page resides within a paging file. An in-page operation is initi-

ated, as illustrated in Figure 9-26.

0

31 412 5 091011 1

Page file offset Protection Page frame number

Prototype
Transition

Valid

FIGURE 9-26 An in-page operation

Demand zero The desired page must be satisfied with a page of zeros. The pager 

looks at the zero page list. If the list is empty, the pager takes a page from the free list 

and zeroes it. If the free list is also empty, it takes a page from one of the standby lists 

and zeroes it. The PTE format is the same as the page file PTE shown in the previous 

entry, but the page file number and offset are zeros.

Transition The desired page is in memory on either the standby, modified, or 

 modified-no-write list or not on any list. The page will be removed from the list (if it is 

on one) and added to the working set as shown in Figure 9-27.
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FIGURE 9-27 A transition operation

Unknown The PTE is zero, or the page table doesn’t yet exist. In both cases, this flag 

means that you should examine the virtual address descriptors (VADs) to determine 

whether this virtual address has been committed. If so, page tables are built to rep-

resent the newly committed address space. (See the discussion of VADs later in the 

chapter.)

Prototype PTEs

If a page can be shared between two processes, the memory manager uses a software struc-

ture called prototype page table entries (prototype PTEs) to map these potentially shared 

pages. For page-file-backed sections, an array of prototype PTEs is created when a section 

object is first created; for mapped files, portions of the array are created on demand as each 

view is mapped. These prototype PTEs are part of the segment structure, described at the 

end of this chapter.

When a process first references a page mapped to a view of a section object (recall that the 

VADs are created only when the view is mapped), the memory manager uses the information 

in the prototype PTE to fill in the real PTE used for address translation in the process page 

table. When a shared page is made valid, both the process PTE and the prototype PTE point 

to the physical page containing the data. To track the number of process PTEs that reference 

a valid shared page, a counter in its PFN database entry is incremented. Thus, the memory 

manager can determine when a shared page is no longer referenced by any page table and 

thus can be made invalid and moved to a transition list or written out to disk.

When a shareable page is invalidated, the PTE in the process page table is filled in with a 

 special PTE that points to the prototype PTE entry that describes the page, as shown in 

Fig ure 9-28.
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FIGURE 9-28 Structure of an invalid PTE that points to the prototype PTE

Thus, when the page is later accessed, the memory manager can locate the prototype PTE 

using the information encoded in this PTE, which in turn describes the page being refer-

enced. A shared page can be in one of six different states as described by the prototype PTE 

entry:

Active/valid The page is in physical memory as a result of another process that 

accessed it.

Transition The desired page is in memory on the standby or modified list (or not on 

any list).

Modified-no-write The desired page is in memory and on the modified-no-write list. 

(See Table 9-20.)

Demand zero The desired page should be satisfied with a page of zeros.

Page file The desired page resides within a page file.

Mapped file The desired page resides within a mapped file.

Although the format of these prototype PTE entries is the same as that of the real PTE entries 

described earlier, these prototype PTEs aren’t used for address translation—they are a layer 

between the page table and the page frame number database and never appear directly in 

page tables.

By having all the accessors of a potentially shared page point to a prototype PTE to resolve 

faults, the memory manager can manage shared pages without needing to update the page 

tables of each process sharing the page. For example, a shared code or data page might be 

paged out to disk at some point. When the memory manager retrieves the page from disk, 

it needs only to update the prototype PTE to point to the page’s new physical location—the 

PTEs in each of the processes sharing the page remain the same (with the valid bit clear and 

still pointing to the prototype PTE). Later, as processes reference the page, the real PTE will 

get updated.

Figure 9-29 illustrates two virtual pages in a mapped view. One is valid, and the other is 

invalid. As shown, the first page is valid and is pointed to by the process PTE and the pro-

totype PTE. The second page is in the paging file—the prototype PTE contains its exact 

location. The process PTE (and any other processes with that page mapped) points to this 

prototype PTE.
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FIGURE 9-29 Prototype page table entries

In-Paging I/O

In-paging I/O occurs when a read operation must be issued to a file (paging or mapped) to 

satisfy a page fault. Also, because page tables are pageable, the processing of a page fault 

can incur additional I/O if necessary when the system is loading the page table page that 

contains the PTE or the prototype PTE that describes the original page being referenced.

The in-page I/O operation is synchronous—that is, the thread waits on an event until the I/O 

completes—and isn’t interruptible by asynchronous procedure call (APC) delivery. The pager 

uses a special modifier in the I/O request function to indicate paging I/O. Upon completion 

of paging I/O, the I/O system triggers an event, which wakes up the pager and allows it to 

continue in-page processing.

While the paging I/O operation is in progress, the faulting thread doesn’t own any critical 

memory management synchronization objects. Other threads within the process are allowed 

to issue virtual memory functions and handle page faults while the paging I/O takes place. 

But a number of interesting conditions that the pager must recognize when the I/O com-

pletes are exposed:

Another thread in the same process or a different process could have faulted the same 

page (called a collided page fault and described in the next section).

The page could have been deleted (and remapped) from the virtual address space.

The protection on the page could have changed.

The fault could have been for a prototype PTE, and the page that maps the prototype 

PTE could be out of the working set.
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The pager handles these conditions by saving enough state on the thread’s kernel stack 

before the paging I/O request such that when the request is complete, it can detect these 

conditions and, if necessary, dismiss the page fault without making the page valid. When and 

if the faulting instruction is reissued, the pager is again invoked and the PTE is reevaluated in 

its new state.

Collided Page Faults

The case when another thread in the same process or a different process faults a page that 

is currently being in-paged is known as a collided page fault. The pager detects and handles 

collided page faults optimally because they are common occurrences in multithreaded sys-

tems. If another thread or process faults the same page, the pager detects the collided page 

fault, noticing that the page is in transition and that a read is in progress. (This information 

is in the PFN database entry.) In this case, the pager may issue a wait operation on the event 

specified in the PFN database entry, or it can choose to issue a parallel I/O to protect the file 

systems from deadlocks (the first I/O to complete “wins,” and the others are discarded). This 

event was initialized by the thread that first issued the I/O needed to resolve the fault.

When the I/O operation completes, all threads waiting on the event have their wait satisfied. 

The first thread to acquire the PFN database lock is responsible for performing the in-page 

completion operations. These operations consist of checking I/O status to ensure that the I/O 

operation completed successfully, clearing the read-in-progress bit in the PFN database, and 

updating the PTE.

When subsequent threads acquire the PFN database lock to complete the collided page fault, 

the pager recognizes that the initial updating has been performed because the read-in-

 progress bit is clear and checks the in-page error flag in the PFN database element to ensure 

that the in-page I/O completed successfully. If the in-page error flag is set, the PTE isn’t 

updated and an in-page error exception is raised in the faulting thread.

Clustered Page Faults

The memory manager prefetches large clusters of pages to satisfy page faults and populate 

the system cache. The prefetch operations read data directly into the system’s page cache 

instead of into a working set in virtual memory, so the prefetched data does not consume 

virtual address space, and the size of the fetch operation is not limited to the amount of vir-

tual address space that is available. (Also, no expensive TLB-flushing Inter-Processor Interrupt 

is needed if the page will be repurposed.) The prefetched pages are put on the standby list 

and marked as in transition in the PTE. If a prefetched page is subsequently referenced, the 

memory manager adds it to the working set. However, if it is never referenced, no system 

resources are required to release it. If any pages in the prefetched cluster are already in 

memory, the memory manager does not read them again. Instead, it uses a dummy page to 

represent them so that an efficient single large I/O can still be issued, as Figure 9-30 shows.
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FIGURE 9-30 Usage of dummy page during virtual address to physical address mapping in an MDL

In the figure, the file offsets and virtual addresses that correspond to pages A, Y, Z, and B are 

logically contiguous, although the physical pages themselves are not necessarily contiguous. 

Pages A and B are nonresident, so the memory manager must read them. Pages Y and Z are 

already resident in memory, so it is not necessary to read them. (In fact, they might already 

have been modified since they were last read in from their backing store, in which case it 

would be a serious error to overwrite their contents.) However, reading pages A and B in a 

single operation is more efficient than performing one read for page A and a second read for 

page B. Therefore, the memory manager issues a single read request that comprises all four 

pages (A, Y, Z, and B) from the backing store. Such a read request includes as many pages as 

make sense to read, based on the amount of available memory, the current system usage, 

and so on.

When the memory manager builds the memory descriptor list (MDL) that describes the 

request, it supplies valid pointers to pages A and B. However, the entries for pages Y and Z 

point to a single systemwide dummy page X. The memory manager can fill the dummy page 

X with the potentially stale data from the backing store because it does not make X visible. 

However, if a component accesses the Y and Z offsets in the MDL, it sees the dummy page X 

instead of Y and Z.

The memory manager can represent any number of discarded pages as a single dummy 

page, and that page can be embedded multiple times in the same MDL or even in multiple 

concurrent MDLs that are being used for different drivers. Consequently, the contents of the 

locations that represent the discarded pages can change at any time.

Page Files

Page files are used to store modified pages that are still in use by some process but have 

had to be written to disk (because they were unmapped or memory pressure resulted in 

a trim). Page file space is reserved when the pages are initially committed, but the actual 

optimally clustered page file locations cannot be chosen until pages are written out to disk. 
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The important point is that the system commit limit is charged for private pages as they are 

created. Thus, the Process: Page File Bytes performance counter is actually the total process 

private committed memory, of which none, some, or all may be in the paging file. (In fact, it’s 

the same as the Process: Private Bytes performance counter.)

The memory manager keeps track of private committed memory usage on a global basis, 

termed commitment, and on a per-process basis as page file quota. (Again, this memory 

usage doesn’t represent page file usage—it represents private committed memory usage.) 

Commitment and page file quota are charged whenever virtual addresses that require new 

private physical pages are committed. Once the global commit limit has been reached (physi-

cal memory and the page files are full), allocating virtual memory will fail until processes free 

committed memory (for example, when a process exits or calls VirtualFree).

When the system boots, the Session Manager process (described in Chapter 13) reads the 

list of page files to open by examining the registry value HKLM\SYSTEM\CurrentControlSet\ 

Control\Session Manager\Memory Management\PagingFiles. This multistring registry value 

contains the name, minimum size, and maximum size of each paging file. Windows supports 

up to 16 paging files. On x86 systems running the normal kernel, each page file can be a 

maximum of 4,095 MB. On x86 systems running the PAE kernel and x64 systems, each page 

file can be 16 terabytes (TB) while the maximum is 32 TB on IA64 systems. Once open, the 

page files can’t be deleted while the system is running because the System process (described 

in Chapter 2) maintains an open handle to each page file. The fact that the paging files are 

open explains why the built-in defragmentation tool cannot defragment the paging file while 

the system is up. To defragment your paging file, use the freeware Pagedefrag tool from 

Sysinternals. It uses the same approach as other third-party defragmentation tools—it runs 

its defragmentation process early in the boot process before the page files are opened by 

the Session Manager.

Because the page file contains parts of process and kernel virtual memory, for security rea-

sons the system can be configured to clear the page file at system shutdown. To enable this, 

set the registry value HKLM\SYSTEM\CurrentControlSet\Control\Session Manager\Memory 

Management\ClearPageFileAtShutdown to 1. Otherwise, after shutdown, the page file will 

contain whatever data happened to have been paged out while the system was up. This data 

could then be accessed by someone who gained physical access to the machine.

If no paging files are specified, the system virtual memory commit limit is based on available 

memory. If the minimum and maximum paging file sizes are both zero, this indicates a sys-

tem managed paging file, which causes the system to choose the page file size as shown in 

Table 9-14.

TABLE 9-14 Default Page File Sizes

System Memory Size Minimum Page File Size Maximum Page File Size

< 1 GB 1.5 * RAM 3 * RAM

>= 1 GB 1 * RAM 3 * RAM
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EXPERIMENT: Viewing System Page Files

To view the list of page files, look in the registry at HKLM\SYSTEM\CurrentControlSet\

Control\Session Manager\Memory Management\PagingFiles. This entry contains the 

paging file configuration settings modified through the System utility in Control Panel. 

Open the properties window for your computer, click Advanced System Settings, click 

the Settings button in the Performance area, click the Advanced tab, and finally, click 

the Change button in the Virtual Memory section.

To add a new page file, Control Panel uses the (internal only) NtCreatePagingFile system 

service defined in Ntdll.dll. Page files are always created as noncompressed files, even if the 

directory they are in is compressed. To keep new page files from being deleted, a handle is 

duplicated into the System process so that when the creating process closes the handle to 

the new page file, another process can still open the page file.

The performance counters listed in Table 9-15 allow you to examine private committed 

memory usage on a systemwide or per-page-file basis. There’s no way to determine how 

much of a process’s private committed memory is resident and how much is paged out to 

paging files.

TABLE 9-15 Committed Memory and Page File Performance Counters

Performance Counter Description

Memory: Committed Bytes Number of bytes of virtual (not reserved) memory that has been 

committed. This number doesn’t necessarily represent page file 

usage because it includes private committed pages in physical 

memory that have never been paged out. Rather, it represents the 

charged amount that must be backed by page file space and/or RAM.

Memory: Commit Limit Number of bytes of virtual memory that can be committed without 

having to extend the paging files; if the paging files can be extended, 

this limit is soft.

Paging File: % Usage Percentage of the paging file committed.

Paging File: % Usage Peak Highest percentage of the paging file committed.

Note that these counters can assist you in choosing a page file size. Although most users 

do it, basing page file size as a function of RAM makes no sense (except for saving a crash 

dump) because the more memory you have, the less likely you are to need to page data out. 

To determine how much page file space your system really needs based on the mix of appli-

cations that have run since the system booted, examine the peak commit charge in Process 

Explorer’s System Information display. This number represents the peak amount of page file 

space since the system booted that would have been needed if the system had to page out 

the majority of private committed virtual memory (which rarely happens).
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If the page file on your system is too big, the system will not use it any more or less—in other 

words, increasing the size of the page file does not change system performance, it simply 

means the system can have more committed virtual memory. If the page file is too small for 

the mix of applications you are running, you might get the “system running low on virtual 

memory” error message. In this case, first check to see whether a process has a memory leak 

by examining the process private bytes count. If no process appears to have a leak, check the 

system paged pool size—if a device driver is leaking paged pool, this might also explain the 

error. (See the “Troubleshooting a Pool Leak” experiment in the “Kernel-Mode Heaps (System 

Memory Pools)” section for how to troubleshoot a pool leak.)

EXPERIMENT: Viewing Page File Usage with Task Manager

You can also view committed memory usage with Task Manager by clicking its 

Performance tab. You’ll see the following counters related to page files:

Note that the Memory Usage bar is actually the sum of all the process’s private working 

sets and not the system commit total—that number is actually displayed as the Page 

File number in the System area. The first number represents potential page file usage, 

not actual page file usage. It is how much page file space would be used if the majority 

of the private committed virtual memory in the system had to be paged out all at once. 

The second number displayed is the commit limit, which displays the maximum virtual 

memory usage that the system can support before running out of virtual memory (it 

includes virtual memory backed in physical memory as well as by the paging files).



784 Windows Internals, Fifth Edition

Process Explorer’s System Information display shows an additional piece of information 

about system commit usage, namely the percentage of the peak as compared to the 

limit and the current usage as compared to the limit:

Stacks

Whenever a thread runs, it must have access to a temporary storage location in which to 

store function parameters, local variables, and the return address after a function call. This 

part of memory is called a stack. On Windows, the memory manager provides two stacks for 

each thread, the user stack and the kernel stack, as well as per-processor stacks called DPC 
stacks. We have already described how the stack can be used to generate stack traces and 

how exceptions and interrupts store structures on the stack, and we have also talked about 

how system calls, traps, and interrupts cause the thread to switch from a user stack to its ker-

nel stack. Now, we’ll look at some extra services the memory manager provides to efficiently 

use stack space.
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User Stacks

When a thread is created, the memory manager automatically reserves a predetermined 

amount of memory, which by default is 1 MB. This amount can be configured in the call to 

the CreateThread or CreateRemoteThread function or when compiling the application, by 

using the /STACKRESERVE switch in the Microsoft C/C++ compiler, which will store the infor-

mation in the image header. Although 1 MB is reserved, only the first 64 KB (unless the PE 

header of the image specifies otherwise) of the stack will be committed, along with a guard 

page. When a thread’s stack grows large enough to touch the guard page, an exception 

will occur, causing an attempt to allocate another guard. Through this mechanism, a user 

stack doesn’t immediately consume all 1 MB of committed memory but instead grows with 

demand. (However, it will never shrink back.)

EXPERIMENT: Creating the Maximum Number of Threads

With only 2 GB of user address space available to each 32-bit process, the relatively 

large memory that is reserved for each thread’s stack allows for an easy calculation of 

the maximum number of threads that a process can support: a little less than 2,048, 

for a total of nearly 2 GB of memory (unless the increaseuserva BCD option is used and 

the image is large address space aware). By forcing each new thread to use the smallest 

possible stack reservation size, 64 KB, the limit can grow to about 30,400 threads, which 

you can test for yourself by using the TestLimit utility from Sysinternals. Here is some 

sample output:

C:\>testlimit -t 

Testlimit - tests Windows limits 

By Mark Russinovich 

 

Creating threads... 

Created 30399 threads. Lasterror: 8

If you attempt this experiment on a 64-bit Windows installation (with 8 TB of user 

address space available), you would expect to see potentially hundreds of thousands 

of threads created (as long as sufficient memory were available). Interestingly, however, 

TestLimit will actually create fewer threads than on a 32-bit machine, which has to do 

with the fact that Testlimit.exe is a 32-bit application and thus runs under the Wow64 

environment. (See Chapter 3 for more information on Wow64.) Each thread will there-

fore have not only its 32-bit Wow64 stack but also its 64-bit stack, thus consuming 

more than twice the memory, while still keeping only 2 GB of address space. To prop-

erly test the thread-creation limit on 64-bit Windows, use the Testlimit64.exe binary 

instead.

Note that you will need to terminate TestLimit with Process Explorer or Task Manager—

using Ctrl+C to break the application will not function because this operation itself cre-

ates a new thread, which will not be possible once memory is exhausted.
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Kernel Stacks

Although user stack sizes are typically 1 MB, the amount of memory dedicated to the ker-

nel stack is significantly smaller: 12 KB, followed by another guard PTE (for a total of 16 KB 

of virtual address space). Code running in the kernel is expected to have less recursion than 

user code, as well as contain more efficient variable use and keep stack buffer sizes low. 

Additionally, because kernel stacks live in system address space, their memory usage has a 

bigger impact of the system: the 2,048 threads really consumed only 1 GB of pageable virtual 

memory due to their user stacks. On the other hand, they consumed 360 MB of actual physi-

cal memory with their kernel stacks.

Although kernel code is usually not recursive, interactions between graphics system calls 

handled by Win32k.sys and its subsequent callbacks into user mode can cause recursive 

 re-entries in the kernel on the same kernel stack. As such, Windows provides a mechanism 

for dynamically expanding and shrinking the kernel stack from its initial size of 16 KB. As 

each additional graphics call is performed from the same thread, another 16-KB kernel stack 

is allocated (anywhere in system address space; the memory manager provides the ability to 

jump stacks when nearing the guard page). Whenever each call returns to the caller (unwind-

ing), the memory manager frees the additional kernel stack that had been allocated, as 

shown in Figure 9-31. 

This mechanism allows reliable support for recursive system calls, as well as efficient use of 

system address space, and is also provided for use by driver developers when performing 

recursive callouts through the KeExpandKernelStackAndCallout API, as necessary.

Unwind when nested 
callback is complete

16 KB kernel-mode stack

Additional 16 KB stack

Additional 16 KB stack

FIGURE 9-31 Kernel stack jumping
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EXPERIMENT: Viewing Kernel Stack Usage

You can use the MemInfo tool from Winsider Seminars & Solutions to display the physi-

cal memory currently being occupied by kernel stacks. The –u flag displays physical 

memory usage for each component, as shown here:

C:\>MemInfo.exe -u | findstr /i "Kernel Stack" 

        Kernel Stack:    980 (   3920 kb)

Note the kernel stack after repeating the previous TestLimit experiment:

C:\>MemInfo.exe -u | findstr /i "Kernel Stack" 

        Kernel Stack:  92169 ( 368676 kb)

Running TestLimit a couple more times would easily exhaust physical memory on a 

32-bit system, and this limitation results in one of the primary limits on systemwide 

32-bit thread count.

DPC Stack

Finally, Windows keeps a per-processor DPC stack available for use by the system whenever 

DPCs are executing, an approach that isolates the DPC code from the current thread’s kernel 

stack (which is unrelated to the DPC’s actual operation because DPCs run in arbitrary thread 

context). The DPC stack is also configured as the initial stack for handling the SYSENTER or 

SYSCALL instruction during a system call. Because the CPU is responsible for switching the 

stack, it doesn’t know how to access the current thread’s kernel stack, as this is an internal 

Windows implementation detail, so Windows configures the per-processor DPC stack as the 

stack pointer.

Virtual Address Descriptors

The memory manager uses a demand-paging algorithm to know when to load pages into 

memory, waiting until a thread references an address and incurs a page fault before retriev-

ing the page from disk. Like copy-on-write, demand paging is a form of lazy evaluation—

waiting to perform a task until it is required.

The memory manager uses lazy evaluation not only to bring pages into memory but also to 

construct the page tables required to describe new pages. For example, when a thread com-

mits a large region of virtual memory with VirtualAlloc or VirtualAllocExNuma, the memory 

manager could immediately construct the page tables required to access the entire range of 

allocated memory. But what if some of that range is never accessed? Creating page tables 

for the entire range would be a wasted effort. Instead, the memory manager waits to create 

a page table until a thread incurs a page fault, and then it creates a page table for that page. 
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This method significantly improves performance for processes that reserve and/or commit a 

lot of memory but access it sparsely.

With the lazy-evaluation algorithm, allocating even large blocks of memory is a fast opera-

tion. When a thread allocates memory, the memory manager must respond with a range 

of addresses for the thread to use. To do this, the memory manager maintains another set 

of data structures to keep track of which virtual addresses have been reserved in the pro-

cess’s address space and which have not. These data structures are known as virtual address 
descriptors (VADs). 

Process VADs

For each process, the memory manager maintains a set of VADs that describes the status 

of the process’s address space. VADs are structured as a self-balancing AVL tree algorithm 

(named after their inventors, Adelson-Velskii and Landis) that better balances the VAD tree, 

resulting in, on average, fewer comparisons when searching for a VAD corresponding with a 

virtual address. A diagram of a VAD tree is shown in Figure 9-32.

Range: 20000000 through 2000FFFF
Protection: Read/write
Inheritance: Yes

Range: 00002000 through 0000FFFF
Protection: Read-only
Inheritance: No

Range: 4E000000 through 4F000000
Protection: Copy-on-write
Inheritance: Yes

Range: 32000000 through 3300FFFF
Protection: Read-only
Inheritance: No

Range: 7AAA0000 through 7AAA00FF
Protection: Read/write
Inheritance: No

FIGURE 9-32 Virtual address descriptors

When a process reserves address space or maps a view of a section, the memory manager 

creates a VAD to store any information supplied by the allocation request, such as the range 

of addresses being reserved, whether the range will be shared or private, whether a child 

process can inherit the contents of the range, and the page protection applied to pages in 

the range.
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When a thread first accesses an address, the memory manager must create a PTE for the 

page containing the address. To do so, it finds the VAD whose address range contains the 

accessed address and uses the information it finds to fill in the PTE. If the address falls outside 

the range covered by the VAD or in a range of addresses that are reserved but not commit-

ted, the memory manager knows that the thread didn’t allocate the memory before attempt-

ing to use it and therefore generates an access violation.

EXPERIMENT: Viewing Virtual Address Descriptors

You can use the kernel debugger’s !vad command to view the VADs for a given process. 

First find the address of the root of the VAD tree with the !process command. Then 

specify that address to the !vad command, as shown in the following example of the 

VAD tree for a process running Notepad.exe:

lkd> !process 0 1 notepad.exe 

PROCESS 8718ed90  SessionId: 1  Cid: 1ea68    Peb: 7ffdf000  ParentCid: 0680 

    DirBase: ce2aa880  ObjectTable: ee6e01b0  HandleCount:  48. 

    Image: notepad.exe 

    VadRoot 865f10e0 Vads 51 Clone 0 Private 210. Modified 0. Locked 0.  

  

lkd> !vad 865f10e0  

VAD     level      start      end    commit 

8a05bf88 ( 6)         10       1f         0 Mapped       READWRITE  

88390ad8 ( 5)         20       20         1 Private      READWRITE  

87333740 ( 6)         30       33         0 Mapped       READONLY  

86d09d10 ( 4)         40       41         0 Mapped       READONLY  

882b49a0 ( 6)         50       50         1 Private      READWRITE  

877bf260 ( 5)         60       61         0 Mapped       READONLY  

86c0bb10 ( 6)         70       71         0 Mapped       READONLY  

86fd1800 ( 3)         80       81         0 Mapped       READONLY  

8a125d00 ( 5)         90       91         0 Mapped       READONLY  

8636e878 ( 6)         a0       a0         0 Mapped       READWRITE  

871a3998 ( 4)         b0      1af        51 Private      READWRITE  

a20235f0 ( 5)        200      20f         1 Private      READWRITE  

86e7b308 ( 2)        210      24f        19 Private      READWRITE  

877f1618 ( 4)        250      317         0 Mapped       READONLY  

87333380 ( 5)        340      37f        26 Private      READWRITE  

87350cd8 ( 3)        3a0      3af         3 Private      READWRITE  

86c09cc0 ( 5)        3b0      4b2         0 Mapped       READONLY  

86e759d8 ( 4)        510      537         4 Mapped  Exe  EXECUTE_WRITECOPY  

8688c2e8 ( 1)        540      8bf         0 Mapped       READONLY  

867e2a68 ( 4)        8c0     14bf         0 Mapped       READONLY  

8690ad20 ( 5)       14c0     156f         0 Mapped       READONLY  

873851a8 ( 3)       15e0     15ef         8 Private      READWRITE  

86390d20 ( 4)       15f0     196f         0 Mapped       READONLY  

86c6b660 ( 5)       1970     19ef         1 Private      READWRITE  

87873318 ( 2)       1a00     1bff         0 Mapped  LargePagSec READONLY  

88bd9bc0 ( 5)       1c00     1fff         0 Mapped       READONLY  

86d9c558 ( 4)       2000     20ff        12 Private      READWRITE  
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86c7f318 ( 6)       2100     24ff         0 Mapped       READONLY  

88394ab0 ( 5)      73b40    73b81         4 Mapped  Exe  EXECUTE_WRITECOPY  

8690b1b0 ( 3)      74da0    74f3d        15 Mapped  Exe  EXECUTE_WRITECOPY  

88b917e8 ( 5)      75100    7513e         5 Mapped  Exe  EXECUTE_WRITECOPY  

86c180a0 ( 4)      761f0    762b7         3 Mapped  Exe  EXECUTE_WRITECOPY  

86660fd0 ( 5)      763f0    764b2         2 Mapped  Exe  EXECUTE_WRITECOPY  

865f10e0 ( 0)      765a0    76665        16 Mapped  Exe  EXECUTE_WRITECOPY  

86c4a058 ( 4)      76890    76902         5 Mapped  Exe  EXECUTE_WRITECOPY  

b138eb10 ( 5)      769a0    769a8         2 Mapped  Exe  EXECUTE_WRITECOPY  

877debb8 ( 3)      769b0    769fa         3 Mapped  Exe  EXECUTE_WRITECOPY  

8718c0c0 ( 4)      76a00    76b43         8 Mapped  Exe  EXECUTE_WRITECOPY  

88a9ad08 ( 2)      76b50    76b6d         2 Mapped  Exe  EXECUTE_WRITECOPY  

8a112960 ( 5)      76b70    76bec        17 Mapped  Exe  EXECUTE_WRITECOPY  

863b6a58 ( 4)      76bf0    76c7c         4 Mapped  Exe  EXECUTE_WRITECOPY  

863d6400 ( 3)      76c80    76d1c         3 Mapped  Exe  EXECUTE_WRITECOPY  

86bc1d18 ( 5)      76d20    76dfa         4 Mapped  Exe  EXECUTE_WRITECOPY  

8717fd20 ( 4)      76e00    76e57         3 Mapped  Exe  EXECUTE_WRITECOPY  

a2065008 ( 5)      76e60    7796e        25 Mapped  Exe  EXECUTE_WRITECOPY  

8a0216b0 ( 1)      77970    77a96        11 Mapped  Exe  EXECUTE_WRITECOPY  

87079410 ( 4)      77b20    77bc9         8 Mapped  Exe  EXECUTE_WRITECOPY  

87648ba0 ( 3)      7f6f0    7f7ef         0 Mapped       READONLY  

86c5e858 ( 4)      7ffb0    7ffd2         0 Mapped       READONLY  

8707fe88 ( 2)      7ffde    7ffde         1 Private      READWRITE  

86e5e848 ( 3)      7ffdf    7ffdf         1 Private      READWRITE  

 

Total VADs:    51  average level:    5  maximum depth: 6

Rotate VADs

A video card driver must typically copy data from the user-mode graphics application to vari-

ous other system memory, including the video card memory and the AGP port’s memory, 

both of which have different caching attributes as well as addresses. In order to quickly allow 

these different views of memory to be mapped into a process, and to support the different 

cache attributes, the memory manager implements rotate VADs, which allow video drivers 

to transfer data directly by using the GPU and to rotate unneeded memory in and out of 

the process view pages on demand. Figure 9-33 shows an example of how the same virtual 

address can rotate between video RAM and virtual memory.
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Virtual address space
Page table

Video RAM or AGP

User’s data

User’s virtual
address

Entry for user’s
virtual address

Page-file-backed page

User’s data

FIGURE 9-33 Rotate virtual address descriptors

NUMA

Each new release of Windows provides new enhancements to the memory manager to better 

make use of Non Uniform Memory Architecture (NUMA) machines, such as large server sys-

tems (but also Intel i7 and AMD Opteron SMP workstations). The NUMA support in the mem-

ory manager adds intelligent knowledge of node information such as location, topology, and 

access costs to allow applications and drivers to take advantage of NUMA capabilities, while 

abstracting the underlying hardware details.

When the memory manager is initializing, it calls the MiComputeNumaCosts function to per-

form various page and cache operations on different nodes and then computes the time it 

took for those operations to complete. Based on this information, it builds a node graph of 

access costs (the distance between a node and any other node on the system). When the sys-

tem requires pages for a given operation, it consults the graph to choose the most optimal 

node (that is, the closest). If no memory is available on that node, it chooses the next closest 

node, and so on. 

Although the memory manager ensures that, whenever possible, memory allocations 

come from the ideal processor’s node (the ideal node) of the thread making the alloca-

tion, it also provides functions that allow applications to choose their own node, such 

as the VirtualAllocExNuma, CreateFileMappingNuma, MapViewOfFileExNuma, and 

AllocateUserPhysicalPagesNuma APIs. 

The ideal node isn’t used only when applications allocate memory but also during kernel 

operation and page faults. For example, when a thread is running on a nonideal processor 

and takes a page fault, the memory manager won’t use the current node but will instead 
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allocate memory from the thread’s ideal node. Although this might result in slower access 

time while the thread is still running on this CPU, overall memory access will be optimized as 

the thread migrates back to its ideal node. In any case, if the ideal node is out of resources, 

the closest node to the ideal node is chosen and not a random other node. Just like user-

mode applications, however, drivers can specify their own node when using APIs such as 

MmAllocatePagesforMdlEx or MmAllocateContiguousMemorySpecifyCacheNode.

Various memory manager pools and data structures are also optimized to take advantage of 

NUMA nodes. The memory manager tries to evenly use physical memory from all the nodes 

on the system to hold the nonpaged pool. When a nonpaged pool allocation is made, the 

memory manager looks at the ideal node and uses it as an index to choose a virtual memory 

address range inside nonpaged pool that corresponds to physical memory belonging to this 

node. In addition, per-NUMA node pool freelists are created to efficiently leverage these 

types of memory configurations. Apart from nonpaged pool, the system cache and system 

PTEs are also similarly allocated across all nodes, as well as the memory manager’s look-

aside lists.

Finally, when the system needs to zero pages, it does so in parallel across different NUMA 

nodes by creating threads with NUMA affinities that correspond to the nodes in which the 

physical memory is located. The logical prefetcher and SuperFetch (described later) also use 

the ideal node of the target process when prefetching, while soft page faults cause pages to 

migrate to the ideal node of the faulting thread.

Section Objects

As you’ll remember from the section on shared memory earlier in the chapter, the section 
object, which the Windows subsystem calls a file mapping object, represents a block of mem-

ory that two or more processes can share. A section object can be mapped to the paging file 

or to another file on disk.

The executive uses sections to load executable images into memory, and the cache manager 

uses them to access data in a cached file. (See Chapter 10 for more information on how the 

cache manager uses section objects.) You can also use section objects to map a file into a 

process address space. The file can then be accessed as a large array by mapping different 

views of the section object and reading or writing to memory rather than to the file (an activ-

ity called mapped file I/O). When the program accesses an invalid page (one not in physical 

memory), a page fault occurs and the memory manager automatically brings the page into 

memory from the mapped file (or page file). If the application modifies the page, the mem-

ory manager writes the changes back to the file during its normal paging operations (or the 

application can flush a view by using the Windows FlushViewOfFile function).
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Section objects, like other objects, are allocated and deallocated by the object manager. 

The object manager creates and initializes an object header, which it uses to manage the 

objects; the memory manager defines the body of the section object. The memory man-

ager also implements services that user-mode threads can call to retrieve and change the 

attributes stored in the body of section objects. The structure of a section object is shown in 

 Fig ure 9-34.

FIGURE 9-34 A section object

Table 9-16 summarizes the unique attributes stored in section objects.

TABLE 9-16 Section Object Body Attributes

Attribute Purpose

Maximum size The largest size to which the section can grow in bytes; if mapping a file, 

the maximum size is the size of the file.

Page protection Page-based memory protection assigned to all pages in the section 

when it is created.

Paging file/Mapped file Indicates whether the section is created empty (backed by the paging 

file—as explained earlier, page-file-backed sections use page-file 

resources only when the pages need to be written out to disk) or loaded 

with a file (backed by the mapped file).

Based/Not based Indicates whether a section is a based section, which must appear at the 

same virtual address for all processes sharing it, or a nonbased section, 

which can appear at different virtual addresses for different processes.
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EXPERIMENT: Viewing Section Objects

With the Object Viewer (Winobj.exe from Sysinternals), you can see the list of sections 

that have global names. You can list the open handles to section objects with any of the 

tools described in the “Object Manager” section in Chapter 3 that list the open handle 

table. (As explained in Chapter 3, these names are stored in the object manager direc-

tory \Sessions\x\BaseNamedObjects, where x is the appropriate Session directory.

You can use Process Explorer from Sysinternals to view mapped files. Select DLLs from 

the Lower Pane View entry of the View menu. Files marked as “Data” in the Mapping 

column are mapped files (rather than DLLs and other files the image loader loads as 

modules). Here’s an example:

The data structures maintained by the memory manager that describe mapped sections are 

shown in Figure 9-35. These structures ensure that data read from mapped files is consistent, 

regardless of the type of access (open file, mapped file, and so on).

For each open file (represented by a file object), there is a single section object pointers struc-

ture. This structure is the key to maintaining data consistency for all types of file access as 

well as to providing caching for files. The section object pointers structure points to one or 

two control areas. One control area is used to map the file when it is accessed as a data file, 

and one is used to map the file when it is run as an executable image.

A control area in turn points to subsection structures that describe the mapping informa-

tion for each section of the file (read-only, read-write, copy-on-write, and so on). The control 

area also points to a segment structure allocated in paged pool, which in turn points to the 

prototype PTEs used to map to the actual pages mapped by the section object. As described 

earlier in the chapter, process page tables point to these prototype PTEs, which in turn map 

the pages being referenced.
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FIGURE 9-35 Internal section structures

Although Windows ensures that any process that accesses (reads or writes) a file will always 

see the same, consistent data, there is one case in which two copies of pages of a file 

can reside in physical memory (but even in this case, all accessors get the latest copy and 

data consistency is maintained). This duplication can happen when an image file has been 

accessed as a data file (having been read or written) and then run as an executable image (for 

example, when an image is linked and then run—the linker had the file open for data access, 

and then when the image was run, the image loader mapped it as an executable). Internally, 

the following actions occur:

 1. If the executable file was created using the file mapping APIs (or the cache manager), a 

data control area is created to represent the data pages in the image file being read or 

written.

 2. When the image is run and the section object is created to map the image as an 

executable, the memory manager finds that the section object pointers for the image 

file point to a data control area and flushes the section. This step is necessary to ensure 

that any modified pages have been written to disk before accessing the image through 

the image control area.

 3. The memory manager then creates a control area for the image file.

 4. As the image begins execution, its (read-only) pages are faulted in from the image file 

(or copied directly over from the data file if the corresponding data page is resident).
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Because the pages mapped by the data control area might still be resident (on the standby 

list), this is the one case in which two copies of the same data are in two different pages in 

memory. However, this duplication doesn’t result in a data consistency issue because, as 

mentioned, the data control area has already been flushed to disk, so the pages read from 

the image are up to date (and these pages are never written back to disk).

EXPERIMENT: Viewing Control Areas

To find the address of the control area structures for a file, you must first get the 

address of the file object in question. You can obtain this address through the kernel 

debugger by dumping the process handle table with the !handle command and noting 

the object address of a file object. Although the kernel debugger !file command dis-

plays the basic information in a file object, it doesn’t display the pointer to the section 

object pointers structure. Then, using the dt command, format the file object to get the 

address of the section object pointers structure. This structure consists of three point-

ers: a pointer to the data control area, a pointer to the shared cache map (explained in 

Chapter 10), and a pointer to the image control area. From the section object pointers 

structure, you can obtain the address of a control area for the file (if one exists) and 

feed that address into the !ca command.

For example, if you open a PowerPoint file and display the handle table for that process 

using !handle, you will find an open handle to the PowerPoint file as shown below. (For 

information on using !handle, see the “Object Manager” section in Chapter 3.)

lkd> !handle 1 f 86f57d90 File 

.  

.  

0324: Object: 865d2768  GrantedAccess: 00120089 Entry: c848e648 

Object: 865d2768  Type: (8475a2c0) File 

    ObjectHeader: 865d2750 (old version) 

        HandleCount: 1  PointerCount: 1 

        Directory Object: 00000000  Name: \Users\Administrator\Documents\Downloads\

SVR-T331_WH07 (1).pptx {HarddiskVolume3}

Taking the file object address (865d2768 ) and formatting it with dt results in this:

lkd> dt nt!_FILE_OBJECT 865d2768   

   +0x000 Type             : 5 

   +0x002 Size             : 128 

   +0x004 DeviceObject     : 0x84a62320 _DEVICE_OBJECT 

   +0x008 Vpb              : 0x84a60590 _VPB 

   +0x00c FsContext        : 0x8cee4390  

   +0x010 FsContext2       : 0xbf910c80  

   +0x014 SectionObjectPointer : 0x86c45584 _SECTION_OBJECT_POINTERS
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Then taking the address of the section object pointers structure (0x86c45584) and for-

matting it with dt results in this:

lkd> dt 0x86c45584 nt!_SECTION_OBJECT_POINTERS 

   +0x000 DataSectionObject : 0x863d3b00  

   +0x004 SharedCacheMap   : 0x86f10ec0  

   +0x008 ImageSectionObject : (null)

Finally, use !ca to display the control area using the address:

lkd> !ca 0x863d3b00  

 

ControlArea  @ 863d3b00 

  Segment      b1de9d48  Flink      00000000  Blink        8731f80c 

  Section Ref         1  Pfn Ref          48  Mapped Views        2 

  User Ref            0  WaitForDel        0  Flush Count         0 

  File Object  86cf6188  ModWriteCount     0  System Views        2 

  WritableRefs        0   

  Flags (c080) File WasPurged Accessed  

 

      No name for file 

 

Segment @ b1de9d48 

  ControlArea     863d3b00  ExtendInfo    00000000 

  Total Ptes           100 

  Segment Size      100000  Committed            0 

  Flags (c0000) ProtectionMask  

 

Subsection 1 @ 863d3b48 

  ControlArea  863d3b00  Starting Sector        0  Number Of Sectors  100 

  Base Pte     bf85e008  Ptes In Subsect      100  Unused Ptes          0 

  Flags               d  Sector Offset          0  Protection           6 

  Accessed  

  Flink        00000000  Blink           8731f87c  MappedViews          2

Another technique is to display the list of all control areas with the !memusage com-

mand. The following excerpt is from the output of this command:

lkd> !memusage 

 loading PFN database 

loading (100% complete) 

Compiling memory usage data (99% Complete). 

             Zeroed:   2654 ( 10616 kb) 

               Free:    584 (  2336 kb) 

            Standby: 402938 (1611752 kb) 

           Modified:  12732 ( 50928 kb) 

    ModifiedNoWrite:      3 (    12 kb) 

       Active/Valid: 431478 (1725912 kb) 

         Transition:   1186 (  4744 kb) 

                Bad:      0 (     0 kb) 

            Unknown:      0 (     0 kb) 

              TOTAL: 851575 (3406300 kb) 

  Building kernel map 

  Finished building kernel map 

Scanning PFN database - (100% complete)  
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  Usage Summary (in Kb): 

Control Valid Standby Dirty Shared Locked PageTables  name  

86d75f18     0     64     0     0     0     0  mapped_file( netcfgx.dll ) 

8a124ef8     0      4     0     0     0     0    No Name for File 

8747af80     0     52     0     0     0     0  mapped_file( iebrshim.dll ) 

883a2e58    24      8     0     0     0     0  mapped_file( WINWORD.EXE ) 

86d6eae0     0     16     0     0     0     0  mapped_file( oem13.CAT ) 

84b19af8     8      0     0     0     0     0    No Name for File 

b1672ab0     4      0     0     0     0     0    No Name for File 

88319da8     0     20     0     0     0     0  mapped_file( Microsoft-Windows-

MediaPlayer-Package~31bf3856ad364e35~x86~en-US~6.0.6001.18000.cat ) 

8a04db00     0     48     0     0     0     0  mapped_file( eapahost.dll ) 

The Control column points to the control area structure that describes the mapped file. 

You can display control areas, segments, and subsections with the kernel debugger !ca 

command. For example, to dump the control area for the mapped file Winword.exe in 

this example, type the !ca command followed by the Control number, as shown here:

lkd> !ca 883a2e58     

 

ControlArea  @ 883a2e58 

  Segment      ee613998  Flink      00000000  Blink        88a985a4 

  Section Ref         1  Pfn Ref           8  Mapped Views        1 

  User Ref            2  WaitForDel        0  Flush Count         0 

  File Object  88b45180  ModWriteCount     0  System Views     ffff 

  WritableRefs 80000006   

  Flags (40a0) Image File Accessed  

 

      File: \PROGRA~1\MICROS~1\Office12\WINWORD.EXE 

 

Segment @ ee613998 

  ControlArea     883a2e58  BasedAddress  2f510000 

  Total Ptes            57 

  Segment Size       57000  Committed            0 

  Image Commit           1  Image Info    ee613c80 

  ProtoPtes       ee6139c8 

  Flags (20000) ProtectionMask  

 

 

Subsection 1 @ 883a2ea0 

  ControlArea  883a2e58  Starting Sector        0  Number Of Sectors    2 

  Base Pte     ee6139c8  Ptes In Subsect        1  Unused Ptes          0 

  Flags               2  Sector Offset          0  Protection           1 

 

Subsection 2 @ 883a2ec0 

  ControlArea  883a2e58  Starting Sector        2  Number Of Sectors    a 

  Base Pte     ee6139d0  Ptes In Subsect        2  Unused Ptes          0 

  Flags               6  Sector Offset          0  Protection           3 

 

Subsection 3 @ 883a2ee0 

  ControlArea  883a2e58  Starting Sector        c  Number Of Sectors    1 

  Base Pte     ee6139e0  Ptes In Subsect        1  Unused Ptes          0 

  Flags               a  Sector Offset          0  Protection           5 
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Subsection 4 @ 883a2f00 

  ControlArea  883a2e58  Starting Sector        d  Number Of Sectors  28b 

  Base Pte     ee6139e8  Ptes In Subsect       52  Unused Ptes          0 

  Flags               2  Sector Offset          0  Protection           1 

 

Subsection 5 @ 883a2f20 

  ControlArea  883a2e58  Starting Sector      298  Number Of Sectors    1 

  Base Pte     ee613c78  Ptes In Subsect        1  Unused Ptes          0 

  Flags               2  Sector Offset          0  Protection           1

Driver Verifier

As introduced in Chapter 7, Driver Verifier is a mechanism that can be used to help find and 

isolate commonly found bugs in device driver or other kernel-mode system code. This sec-

tion describes the memory management–related verification options Driver Verifier provides 

(the options related to device drivers are described in Chapter 7).

The verification settings are stored in the registry under HKLM\SYSTEM\CurrentControlSet\

Control\Session Manager\Memory Management. The value VerifyDriverLevel contains a 

bitmask that represents the verification types enabled. The VerifyDrivers value contains the 

names of the drivers to validate. (These values won’t exist in the registry until you select driv-

ers to verify in the Driver Verifier Manager.) If you choose to verify all drivers, VerifyDrivers is 

set to an asterisk (*) character. Depending on the settings you have made, you might need to 

reboot the system for the selected verification to occur.

Early in the boot process, the memory manager reads the Driver Verifier registry values to 

determine which drivers to verify and which Driver Verifier options you enabled. (Note that 

if you boot in safe mode, any Driver Verifier settings are ignored.) Subsequently, if you’ve 

selected at least one driver for verification, the kernel checks the name of every device driver 

it loads into memory against the list of drivers you’ve selected for verification. For every 

device driver that appears in both places, the kernel invokes the VfLoadDriver function, which 

calls other internal Vf* functions to replace the driver’s references to a number of kernel 

functions with references to Driver Verifier–equivalent versions of those functions. For exam-

ple, ExAllocatePool is replaced with a call to VerifierAllocatePool. The windowing system driver 

(Win32k.sys) also makes similar changes to use Driver Verifier–equivalent functions.

Now that we’ve reviewed how Driver Verifier is set up, we’ll examine the six memory-related 

verification options that can be applied to device drivers: Special Pool, Pool Tracking, Force 

IRQL Checking, Low Resources Simulation, Miscellaneous Checks, and Automatic Checks

Special Pool The Special Pool option causes the pool allocation routines to bracket pool 

allocations with an invalid page so that references before or after the allocation will result 

in a kernel-mode access violation, thus crashing the system with the finger pointed at the 
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buggy driver. Special pool also causes some additional validation checks to be performed 

when a driver allocates or frees memory.

When special pool is enabled, the pool allocation routines allocate a region of kernel mem-

ory for Driver Verifier to use. Driver Verifier redirects memory allocation requests that drivers 

under verification make to the special pool area rather than to the standard kernel-mode 

memory pools. When a device driver allocates memory from special pool, Driver Verifier 

rounds up the allocation to an even-page boundary. Because Driver Verifier brackets the 

allocated page with invalid pages, if a device driver attempts to read or write past the end of 

the buffer, the driver will access an invalid page, and the memory manager will raise a kernel-

mode access violation.

Figure 9-36 shows an example of the special pool buffer that Driver Verifier allocates to a 

device driver when Driver Verifier checks for overrun errors.

Random signature

Invalid page

Invalid page

Driver buffer

Page 0

Page 2

Page 1

FIGURE 9-36 Layout of special pool allocations

By default, Driver Verifier performs overrun detection. It does this by placing the buffer that 

the device driver uses at the end of the allocated page and fills the beginning of the page 

with a random pattern. Although the Driver Verifier Manager doesn’t let you specify under-

run detection, you can set this type of detection manually by adding the DWORD registry 

value HKLM\SYSTEM\CurrentControlSet\Control\Session Manager\Memory Management\

PoolTagOverruns and setting it to 0 (or by running the Gflags utility and selecting the Verify 

Start option instead of the default option, Verify End). When Windows enforces underrun 

detection, Driver Verifier allocates the driver’s buffer at the beginning of the page rather than 

at the end.

The overrun-detection configuration includes some measure of underrun detection as 

well. When the driver frees its buffer to return the memory to Driver Verifier, Driver Verifier 

ensures that the pattern preceding the buffer hasn’t changed. If the pattern is modified, the 

device driver has underrun the buffer and written to memory outside the buffer.
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Special pool allocations also check to ensure that the processor IRQL at the time of an alloca-

tion and deallocation is legal. This check catches an error that some device drivers make: allo-

cating pageable memory from an IRQL at DPC/dispatch level or above.

You can also configure special pool manually by adding the DWORD registry value HKLM\

SYSTEM\CurrentControlSet\Control\Session Manager\Memory Management\PoolTag, which 

represents the allocation tags the system uses for special pool. Thus, even if Driver Verifier 

isn’t configured to verify a particular device driver, if the tag the driver associates with the 

memory it allocates matches what is specified in the PoolTag registry value, the pool alloca-

tion routines will allocate the memory from special pool. If you set the value of PoolTag to 

0x0000002a or to the wildcard (*), all memory that drivers allocate is from special pool, pro-

vided there’s enough virtual and physical memory. (The drivers will revert to allocating from 

regular pool if there aren’t enough free pages—bounding exists, but each allocation uses two 

pages.)

Pool Tracking If pool tracking is enabled, the memory manager checks at driver unload 

time whether the driver freed all the memory allocations it made. If it didn’t, it crashes the 

system, indicating the buggy driver. Driver Verifier also shows general pool statistics on the 

Driver Verifier Manager’s Pool Tracking tab. You can also use the !verifier kernel debugger 

command. This command shows more information than Driver Verifier and is useful to driver 

writers.

Driver Verifier can also perform locked memory page tracking, which additionally checks for 

pages that have been left locked after an I/O operation and generates the DRIVER_LEFT_

LOCKED_PAGES_IN_PROCESS instead of the PROCESS_HAS_LOCKED_PAGES crash code—the 

former indicates the driver responsible for the error as well as the function responsible for 

the locking of the pages.

Force IRQL Checking One of the most common device driver bugs occurs when a driver 

accesses pageable data or code when the processor on which the device driver is execut-

ing is at an elevated IRQL. As explained in Chapter 3, the memory manager can’t service a 

page fault when the IRQL is DPC/dispatch level or above. The system often doesn’t detect 

instances of a device driver accessing pageable data when the processor is executing at a 

high IRQL level because the pageable data being accessed happens to be physically resident 

at the time. At other times, however, the data might be paged out, which results in a system 

crash with the stop code IRQL_NOT_LESS_OR_EQUAL (that is, the IRQL wasn’t less than or 

equal to the level required for the operation attempted—in this case, accessing pageable 

memory).
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Although testing device drivers for this kind of bug is usually difficult, Driver Verifier makes 

it easy. If you select the Force IRQL Checking option, Driver Verifier forces all kernel-mode 

pageable code and data out of the system working set whenever a device driver under verifi-

cation raises the IRQL. The internal function that does this is MiTrimAllSystemPagableMemory. 

With this setting enabled, whenever a device driver under verification accesses pageable 

memory when the IRQL is elevated, the system instantly detects the violation, and the result-

ing system crash identifies the faulty driver.

Another common driver crash that results from incorrect IRQL usage occurs when synchroni-

zation objects are part of data structures that are paged and then waited on. Synchronization 

objects should never be paged because the dispatcher needs to access them at an ele-

vated IRQL, which would cause a crash. Driver Verifier checks whether any of the follow-

ing structures are present in pageable memory: KTIMER, KMUTEX, KSPIN_LOCK, KEVENT, 

KSEMAPHORE, ERESOURCE, FAST_MUTEX.

Low Resources Simulation Enabling Low Resources Simulation causes Driver Verifier to 

randomly fail memory allocations that verified device drivers perform. In the past, developers 

wrote many device drivers under the assumption that kernel memory would always be avail-

able and that if memory ran out, the device driver didn’t have to worry about it because the 

system would crash anyway. However, because low-memory conditions can occur temporar-

ily, it’s important that device drivers properly handle allocation failures that indicate kernel 

memory is exhausted.

The driver calls that will be injected with random failures include the ExAllocatePool*, 
MmProbe AndLockPages, MmMapLockedPagesSpecifyCache, MmMapIoSpace, MmAllocate-
ContiguousMemory, MmAllocatePagesForMdl, IoAllocateIrp, IoAllocateMdl, IoAllocateWork-
Item, and IoAllocateErrorLogEntry APIs. Additionally, you can specify the probability that 

allocation will fail (6 percent by default), which applications should be subject to the simula-

tion (all are by default), which pool tags should be affected (all are by default), and what delay 

should be used before fault injection starts (the default is 7 minutes after the system boots, 

which is enough time to get past the critical initialization period in which a low-memory con-

dition might prevent a device driver from loading).

After the delay period, Driver Verifier starts randomly failing allocation calls for device drivers 

it is verifying. If a driver doesn’t correctly handle allocation failures, this will likely show up as 

a system crash.

Miscellaneous Checks Some of the checks that Driver Verifier calls “miscellaneous” allow 

Driver Verifier to detect the freeing of certain system structures in the pool that are still 

active. For example, Driver Verifier will check for:

Active work items in freed memory (a driver calls ExFreePool to free a pool block in 

which one or more work items queued with IoQueueWorkItem are present).
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Active resources in freed memory (a driver calls ExFreePool before calling ExDelete-
Resource to destroy an ERESOURCE object).

Active look-aside lists in freed memory (a driver calls ExFreePool before calling 

ExDelete NPagedLookasideList or ExDeletePagedLookasideList to delete the look-aside 

list).

Finally, when verification is enabled, Driver Verifier also performs certain automatic checks 

that cannot be enabled or disabled. These include:

Calling MmProbeAndLockPages or MmProbeAndLockProcessPages on a memory 

descriptor list (MDL) having incorrect flags. For example, it is incorrect to call 

MmProbeAndLockPages for an MDL setup by calling MmBuildMdlForNonPagedPool.

Calling MmMapLockedPages on an MDL having incorrect flags. For example, it is 

incorrect to call MmMapLockedPages for an MDL that is already mapped to a system 

address. Another example of incorrect driver behavior is calling MmMapLockedPages 
for an MDL that was not locked.

Calling MmUnlockPages or MmUnmapLockedPages on a partial MDL (created by using 

IoBuildPartialMdl).

Calling MmUnmapLockedPages on an MDL that is not mapped to a system address.

Driver Verifier is a valuable addition to the arsenal of verification and debugging tools 

available to device driver writers. Many device drivers that first ran with Driver Verifier had 

bugs that Driver Verifier was able to expose. Thus, Driver Verifier has resulted in an overall 

improvement in the quality of all kernel-mode code running in Windows

Page Frame Number Database

In several previous sections, we’ve concentrated on the virtual view of a Windows process—

page tables, PTEs, and VADs. In the remainder of this chapter, we’ll explain how Windows 

manages physical memory, starting with how Windows keeps track of physical memory. 

Whereas working sets describe the resident pages owned by a process or the system, the 

page frame number (PFN) database describes the state of each page in physical memory. The 

page states are listed in Table 9-17.



804 Windows Internals, Fifth Edition

TABLE 9-17 Page States

Status Description

Active (also called Valid) The page is part of a working set (either a process working set or 

the system working set) or it’s not in any working set (for example, 

nonpaged kernel page) and a valid PTE usually points to it.

Transition A temporary state for a page that isn’t owned by a working set and 

isn’t on any paging list. A page is in this state when an I/O to the page 

is in progress. The PTE is encoded so that collided page faults can 

be recognized and handled properly. (Note that this use of the term 

“transition” differs from the use of the word in the section on Invalid 

PTEs; an invalid transition PTE refers to a page on the standby or 

modified list.)

Standby The page previously belonged to a working set but was removed 

(or was prefetched/clustered directly into the standby list). The page 

wasn’t modified since it was last written to disk. The PTE still refers to 

the physical page but is marked invalid and in transition.

Modified The page previously belonged to a working set but was removed. 

However, the page was modified while it was in use and its current 

contents haven’t yet been written to disk or remote storage. The PTE 

still refers to the physical page but is marked invalid and in transition. 

It must be written to the backing store before the physical page can 

be reused.

Modified no-write Same as a modified page, except that the page has been marked so 

that the memory manager’s modified page writer won’t write it to 

disk. The cache manager marks pages as modified no-write at the 

request of file system drivers. For example, NTFS uses this state for 

pages containing file system metadata so that it can first ensure that 

transaction log entries are flushed to disk before the pages they are 

protecting are written to disk. (NTFS transaction logging is explained 

in Chapter 11.)

Free The page is free but has unspecified dirty data in it. (These pages can’t 

be given as a user page to a user process without being initialized with 

zeros, for security reasons.)

Zeroed The page is free and has been initialized with zeros by the zero page 

thread (or was determined to already contain zeros).

Rom The page represents read-only memory

Bad The page has generated parity or other hardware errors and can’t be 

used. This is also used internally by the system for pages that may be 

transitioning from one state to another or are on internal look-aside 

caches.

The PFN database consists of an array of structures that represent each physical page of 

memory on the system. The PFN database and its relationship to page tables are shown in 

Figure 9-37. As this figure shows, valid PTEs usually point to entries in the PFN database, and 

the PFN database entries (for nonprototype PFNs) point back to the page table that is using 

them (if it is being used by a page table). For prototype PFNs, they point back to the proto-

type PTE.
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FIGURE 9-37 Page tables and the page frame number database

Of the page states listed in Table 9-17, six are organized into linked lists so that the memory 

manager can quickly locate pages of a specific type. (Active/valid pages, transition pages, and 

overloaded “bad” pages aren’t in any systemwide page list.) Additionally, the standby state is 

actually associated with eight different lists ordered by priority (we’ll talk about page priority 

in the next section). Figure 9-38 shows an example of how these entries are linked together.
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FIGURE 9-38 Page lists in the PFN database

In the next section, you’ll find out how these linked lists are used to satisfy page faults and 

how pages move to and from the various lists.

EXPERIMENT: Viewing the PFN Database

You can use the MemInfo tool from Winsider Seminars & Solutions to dump the size 

of the various paging lists by using the –s  flag. The following is the output from this 

command:

C:\>MemInfo.exe -s 

 

MemInfo v2.00 - Show PFN database information 

Copyright (C) 2007-2009 Alex Ionescu 

www.alex-ionescu.com 

 

Initializing PFN Database... Done 
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PFN Database List Statistics 

              Zeroed:    487 (   1948 kb) 

                Free:      0 (      0 kb) 

             Standby: 379745 (1518980 kb) 

            Modified:   1052 (   4208 kb) 

     ModifiedNoWrite:      0 (      0 kb) 

        Active/Valid: 142703 ( 570812 kb) 

          Transition:    184 (    736 kb) 

                 Bad:      0 (      0 kb) 

             Unknown:      2 (      8 kb) 

               TOTAL: 524173 (2096692 kb)

Using the kernel debugger !memusage command, you can obtain similar information, 

although this will take considerably longer and will require booting into debugging 

mode.

Page List Dynamics

Figure 9-39 shows a state diagram for page frame transitions. For simplicity, the modified-

no-write list isn’t shown.

Page frames move between the paging lists in the following ways:

When the memory manager needs a zero-initialized page to service a demand-zero 

page fault (a reference to a page that is defined to be all zeros or to a user-mode com-

mitted private page that has never been accessed), it first attempts to get one from 

the zero page list. If the list is empty, it gets one from the free page list and zeroes the 

page. If the free list is empty, it goes to the standby list and zeroes that page.

One reason zero-initialized pages are required is to meet C2 security requirements. C2 

specifies that user-mode processes must be given initialized page frames to prevent 

them from reading a previous process’s memory contents. Therefore, the memory 

manager gives user-mode processes zeroed page frames unless the page is being read 

in from a backing store. If that’s the case, the memory manager prefers to use nonze-

roed page frames, initializing them with the data off the disk or remote storage.
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FIGURE 9-39 State diagram for page frames

The zero page list is populated from the free list by a system thread called the zero 
page thread (thread 0 in the System process). The zero page thread waits on a gate 

object to signal it to go to work. When the free list has eight or more pages, this gate 

is signaled. However, the zero page thread will run only if no other threads are run-

ning, because the zero page thread runs at priority 0 and the lowest priority that a user 

thread can be set to is 1.

Note When memory needs to be zeroed as a result of a physical page allocation by a 

driver that calls MmAllocatePagesForMdl or MmAllocatePagesForMdlEx, by a Windows 

application that calls AllocateUserPhysicalPages or AllocateUserPhysicalPagesNuma, or 

when an application allocates large pages, the memory manager zeroes the memory by 

using a higher performing function called MiZeroInParallel that maps larger regions than 

the zero page thread, which only zeroes a page at a time. In addition, on multiprocessor 

systems, the memory manager creates additional system threads to perform the zeroing in 

parallel (and in a NUMA-optimized fashion on NUMA platforms).
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When the memory manager doesn’t require a zero-initialized page, it goes first to the 

free list. If that’s empty, it goes to the zeroed list. If the zeroed list is empty, it goes to 

the standby lists. Before the memory manager can use a page frame from the standby 

lists, it must first backtrack and remove the reference from the invalid PTE (or prototype 

PTE) that still points to the page frame. Because entries in the PFN database contain 

pointers back to the previous user’s page table (or to a prototype PTE for shared pages), 

the memory manager can quickly find the PTE and make the appropriate change.

When a process has to give up a page out of its working set (either because it refer-

enced a new page and its working set was full or the memory manager trimmed its 

working set), the page goes to the standby lists if the page was clean (not modified) 

or to the modified list if the page was modified while it was resident. When a process 

exits, all the private pages go to the free list. Also, when the last reference to a page-

file-backed section is closed, these pages also go to the free list.

Page Priority

Because every page of memory has a priority in the range 0 to 7, the memory manager 

divides the standby list into eight lists that each store pages of a particular priority. When the 

memory manager wants to take a page from the standby list, it takes pages from low-priority 

lists first, as shown in Figure 9-40. A page’s priority usually reflects the priority of the thread 

that first causes its allocation. (If the page is shared, it reflects the highest memory prior-

ity among the sharing threads.) A thread inherits its page-priority value from the process 

to which it belongs. The memory manager uses low priorities for pages it reads from disk 

speculatively when anticipating a process’s memory accesses.

Pages removed Prioritized 

standby lists

1

0

7

6

5

4

3

2

Pages added

FIGURE 9-40 Prioritized standby lists
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By default, processes have a page-priority value of 5, but functions allow applications and 

the system to change process and thread page-priority values. You can look at the memory 

priority of a thread with Process Explorer (per-page priority can be displayed by looking at 

the PFN entries, as you’ll see in an experiment later in the chapter). Figure 9-41 shows Process 

Explorer’s Threads tab displaying information about Winlogon’s main thread. Although the 

thread priority itself is high, the memory priority is still the standard 5.

FIGURE 9-41 Process Explorer’s Threads tab.

The real power of memory priorities is realized only when the relative priorities of pages are 

understood at a high level, which is the role of SuperFetch, covered at the end of this chapter.

EXPERIMENT: Viewing the Prioritized Standby Lists

You can use the MemInfo tool from Winsider Seminars & Solutions to dump the size of 

each standby paging list by using the –c flag. MemInfo will also display the number of 

repurposed pages for each standby list—this corresponds to the number of pages in 

each list that had to be reused to satisfy a memory allocation, and thus thrown out of 

the standby page lists. The following is the relevant output from this command:

C:\>MemInfo.exe -s 

 

MemInfo v2.00 - Show PFN database information 

Copyright (C) 2007-2009 Alex Ionescu 

www.alex-ionescu.com 
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Initializing PFN Database... Done 

 

Priority               Standby            Repurposed 

0 - Idle          1756 (   7024 KB)     798 (   3192 KB) 

1 - Very Low    236518 ( 946072 KB)       0 (      0 KB) 

2 - Low          37014 ( 148056 KB)       0 (      0 KB) 

3 - Background   64367 ( 257468 KB)       0 (      0 KB) 

4 - Background   15576 (  62304 KB)       0 (      0 KB) 

5 - Normal       14445 (  57780 KB)       0 (      0 KB) 

6 - SuperFetch    3889 (  15556 KB)       0 (      0 KB) 

7 - SuperFetch    6641 (  26564 KB)       0 (      0 KB) 

TOTAL           380206 (1520824 KB)     798 (   3192 KB) 

You can add the –i flag to MemInfo to display the live state of the standby page lists 

and repurpose counts, which is useful for tracking memory usage as well as the follow-

ing experiment. Additionally, the system information panel in Process Explorer (choose 

View, System Information) can also be used to display the live state of the prioritized 

standby lists, as shown in this screen shot:

On the system used in this experiment (see the previous MemInfo output), there is about 

7 MB of cached data at priority 0, and more than 900 MB at priority 1. Your system prob-

ably has some data in those priorities as well. The following shows what happens when 

we use the TestLimit tool from Sysinternals to commit and touch 1 GB of memory. Here is 

the command you use (to leak and touch memory in chunks of 50 MB):

testlimit –d 50
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Here is the output of MemInfo during the leak:

Priority               Standby            Repurposed 

0 - Idle             0 (      0 KB)    2554 (  10216 KB) 

1 - Very Low     92915 ( 371660 KB)  141352 ( 565408 KB) 

2 - Low          35783 ( 143132 KB)       0 (      0 KB) 

3 - Background   50666 ( 202664 KB)       0 (      0 KB) 

4 - Background   15236 (  60944 KB)       0 (      0 KB) 

5 - Normal       34197 ( 136788 KB)       0 (      0 KB) 

6 - SuperFetch    2912 (  11648 KB)       0 (      0 KB) 

7 - SuperFetch    5876 (  23504 KB)       0 (      0 KB) 

TOTAL           237585 ( 950340 KB)  143906 ( 575624 KB)

And here is the output after the leak:

Priority               Standby            Repurposed 

0 - Idle             0 (      0 KB)    2554 (  10216 KB) 

1 - Very Low         5 (     20 KB)  234351 ( 937404 KB) 

2 - Low              0 (      0 KB)   35830 ( 143320 KB) 

3 - Background    9586 (  38344 KB)   41654 ( 166616 KB) 

4 - Background   15371 (  61484 KB)       0 (      0 KB) 

5 - Normal       34208 ( 136832 KB)       0 (      0 KB) 

6 - SuperFetch    2914 (  11656 KB)       0 (      0 KB) 

7 - SuperFetch    5881 (  23524 KB)       0 (      0 KB) 

TOTAL            67965 ( 271860 KB)  314389 (1257556 KB) 

Note how the lower-priority standby page lists were used first (shown by the repur-

posed count) and are now depleted, while the higher lists still contain valuable cached 

data.

Modified Page Writer

The memory manager employs two system threads to write pages back to disk and move 

those pages back to the standby lists (based on their priority). One system thread writes out 

modified pages (MiModifiedPageWriter) to the paging file, and a second one writes modified 

pages to mapped files (MiMappedPageWriter). Two threads are required to avoid creating 

a deadlock, which would occur if the writing of mapped file pages caused a page fault that 

in turn required a free page when no free pages were available (thus requiring the modified 

page writer to create more free pages). By having the modified page writer perform mapped 

file paging I/Os from a second system thread, that thread can wait without blocking regular 

page file I/O.

Both threads run at priority 17, and after initialization they wait for separate objects to trigger 

their operation. The mapped page writer is woken in the following cases:

The MmMappedPageWriterEvent event was signaled by the memory manager’s work-

ing set manager (MmWorkingSetManager), which runs as part of the kernel’s balance 
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set manager (once every second). The working set manager signals this event if the 

number of filesystem-destined pages on the modified page list has reached more than 

800. This event can also be signaled when a request to flush all pages is being pro-

cessed or when the system is attempting to obtain free pages (and more than 16 are 

available on the modified page list).

One of the MiMappedPageListHeadEvent events associated with the 16 mapped page 

lists has been signaled. Each time a mapped page is dirtied, it is inserted into one of 

these 16 mapped page lists based on a bucket number (MiCurrentMappedPageBucket). 
This bucket number is updated by the working set manager whenever the system con-

siders that mapped pages have gotten old enough, which is currently 100 seconds (the 

MiWriteGapCounter variable controls this and is incremented whenever the working set 

manager runs). The reason for these additional events is to reduce data loss in the case 

of a system crash or power failure by eventually writing out modified mapped pages 

even if the modified list hasn’t reached its threshold of 800 pages.

The modified page writer waits on a single gate object (MmModifiedPageWriterGate), which 

can be signaled in the following scenarios:

The working set manager detects that the size of the zeroed and free page lists has 

dropped below 20,000 pages.

A request to flush all pages has been received.

The number of available pages (MmAvailablePages) has dropped below 262,144 

pages during the working set manager’s check, or below 256 pages during a page list 

operation.

Additionally, the modified page writer also waits on an event (MiRescanPageFilesEvent) and 

an internal event in the paging file header (MmPagingFileHeader), which allows the system to 

manually request flushing out data to the paging file when needed.

When invoked, the mapped page writer attempts to write as many pages as possible to disk 

with a single I/O request. It accomplishes this by examining the original PTE field of the PFN 

database elements for pages on the modified page list to locate pages in contiguous loca-

tions on the disk. Once a list is created, the pages are removed from the modified list, an I/O 

request is issued, and, at successful completion of the I/O request, the pages are placed at 

the tail of the standby list corresponding to their priority.

Pages that are in the process of being written can be referenced by another thread. When 

this happens, the reference count and the share count in the PFN entry that represents the 

physical page are incremented to indicate that another process is using the page. When the 

I/O operation completes, the modified page writer notices that the reference count is no lon-

ger 0 and doesn’t place the page on any standby list.
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PFN Data Structures

Although PFN database entries are of fixed length, they can be in several different states, 

depending on the state of the page. Thus, individual fields have different meanings depend-

ing on the state. The states of a PFN entry are shown in Figure 9-42.

PFN for a page in a

working set

PFN for a page on the standby

or the modified list

PFN for a page with

an I/O in progress

PFN for a page belonging

to a kernel stack

Kernel stack owner   Link to next stack PFN

PTE address

Share count

Original PTE contents

Flags Type

Reference count

Priority

Caching attributes

Page colorFlagsPFN of PTE

Event address

PTE address

Share count

Original PTE contents

Flags Type

Reference count

Priority

Caching attributes

Page colorFlagsPFN of PTE

Forward link

PTE address

Backward link

Original PTE contents

Flags Type

Reference count

Priority

Caching attributes

Page colorFlagsPFN of PTE

Working set index

PTE address

Share count

Original PTE contents

Flags Type

Reference count

Priority

Caching attributes

Page colorFlagsPFN of PTE

FIGURE 9-42 States of PFN database entries

Several fields are the same for several PFN types, but others are specific to a given type of 

PFN. The following fields appear in more than one PFN type:

PTE address Virtual address of the PTE that points to this page.

Reference count The number of references to this page. The reference count is incre-

mented when a page is first added to a working set and/or when the page is locked in 

memory for I/O (for example, by a device driver). The reference count is decremented 

when the share count becomes 0 or when pages are unlocked from memory. When the 

share count becomes 0, the page is no longer owned by a working set. Then, if the ref-

erence count is also zero, the PFN database entry that describes the page is updated to 

add the page to the free, standby, or modified list.

Type The type of page represented by this PFN. (Types include active/valid, standby, 

modified, modified-no-write, free, zeroed, bad, and transition.)
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Flags The information contained in the flags field is shown in Table 9-18. 

Priority The priority associated with this PFN, which will determine on which standby 

list it will be placed.

Original PTE contents All PFN database entries contain the original contents of the 

PTE that pointed to the page (which could be a prototype PTE). Saving the contents 

of the PTE allows it to be restored when the physical page is no longer resident. PFN 

entries for AWE allocations are exceptions; they store the AWE reference count in this 

field instead.

PFN of PTE Physical page number of the page table page containing the PTE that 

points to this page.

Color Besides being linked together on a list, PFN database entries use an additional 

field to link physical pages by “color,” their location in the processor CPU memory 

cache. Windows attempts to minimize unnecessary thrashing of CPU memory caches 

by using different physical pages in the CPU cache. It achieves this optimization by 

avoiding using the same cache entry for two different pages wherever possible. For sys-

tems with direct mapped caches, optimally using the hardware’s capabilities can result 

in a significant performance advantage.

Flags A second flags field is used to encode additional information on the PTE. These 

flags are described in Table 9-19.

TABLE 9-18 Flags Within PFN Database Entries

Flag Meaning

Write in progress Indicates that a page write operation is in progress. The first DWORD 

contains the address of the event object that will be signaled when the 

I/O is complete.

Modified state Indicates whether the page was modified. (If the page was modified, its 

contents must be saved to disk before removing it from memory.)

Read in progress Indicates that an in-page operation is in progress for the page. The first 

DWORD contains the address of the event object that will be signaled 

when the I/O is complete.

Rom Indicates that this page comes from the computer’s firmware or another 

piece of read-only memory such as a device register.

In-page error Indicates that an I/O error occurred during the in-page operation on 

this page. (In this case, the first field in the PFN contains the error code.)

Kernel stack Indicates that this page is being used to contain a kernel stack. In this 

case, the PFN entry contains the owner of the stack and the next stack 

PFN for this thread.

Removal requested Indicates that the page is the target of a remove (due to ECC/scrubbing 

or hot memory removal).

Parity error Indicates that the physical page contains parity or error correction 

control errors.
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TABLE 9-19 Secondary Flags Within PFN Database Entries

Flag Meaning

PFN image verified The code signature for this PFN (contained in the cryptographic signa- 

ture catalog for the image being backed by this PFN) has been verified.

AWE allocation This PFN backs an AWE allocation.

Prototype PTE Indicates that the PTE referenced by the PFN entry is a prototype PTE. 

(For example, this page is shareable.)

The remaining fields are specific to the type of PFN. For example, the first PFN in Figure 9-42 

represents a page that is active and part of a working set. The share count field represents 

the number of PTEs that refer to this page. (Pages marked read-only, copy-on-write, or 

shared read/write can be shared by multiple processes.) For page table pages, this field is the 

number of valid and transition PTEs in the page table. As long as the share count is greater 

than 0, the page isn’t eligible for removal from memory.

The working set index field is an index into the process working set list (or the system or ses-

sion working set list, or zero if not in any working set) where the virtual address that maps 

this physical page resides. If the page is a private page, the working set index field refers 

directly to the entry in the working set list because the page is mapped only at a single vir-

tual address. In the case of a shared page, the working set index is a hint that is guaranteed 

to be correct only for the first process that made the page valid. (Other processes will try to 

use the same index where possible.) The process that initially sets this field is guaranteed to 

refer to the proper index and doesn’t need to add a working set list hash entry referenced by 

the virtual address into its working set hash tree. This guarantee reduces the size of the work-

ing set hash tree and makes searches faster for these particular direct entries.

The second PFN in Figure 9-42 is for a page on either the standby or the modified list. In this 

case, the forward and backward link fields link the elements of the list together within the 

list. This linking allows pages to be easily manipulated to satisfy page faults. When a page 

is on one of the lists, the share count is by definition 0 (because no working set is using the 

page) and therefore can be overlaid with the backward link. The reference count is also 0 if 

the page is on one of the lists. If it is nonzero (because an I/O could be in progress for this 

page—for example, when the page is being written to disk), it is first removed from the list.

The third PFN in Figure 9-42 is for a page that belongs to a kernel stack. As mentioned ear-

lier, kernel stacks in Windows are dynamically allocated, expanded, and freed whenever a 

callback to user mode is performed and/or returns, or when a driver performs a callback 

and requests stack expansion. For these PFNs, the memory manager must keep track of the 

thread actually associated with the kernel stack, or if it is free it keeps a link to the next free 

look-aside stack.

The fourth PFN in Figure 9-42 is for a page that has an I/O in progress (for example, a page 

read). While the I/O is in progress, the first field points to an event object that will be signaled 

when the I/O completes. If an in-page error occurs, this field contains the Windows error sta-

tus code representing the I/O error. This PFN type is used to resolve collided page faults.
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EXPERIMENT: Viewing PFN Entries

You can examine individual PFN entries with the kernel debugger !pfn command. 

You first need to supply the PFN as an argument. (For example, !pfn 1 shows the first 

entry, !pfn 2 shows the second, and so on.) In the following example, the PTE for virtual 

address 0x50000 is displayed, followed by the PFN that contains the page directory, 

and then the actual page:

lkd> !pte 50000 

               VA 00050000 

PDE at 00000000C0600000    PTE at 00000000C0000280 

contains 000000002C9F7867  contains 800000002D6C1867 

pfn 2c9f7      ---DA--UWEV    pfn 2d6c1      ---DA--UW-V  

 

lkd> !pfn 2c9f7 

    PFN 0002C9F7 at address 834E1704 

    flink       00000026  blink / share count 00000091  pteaddress C0600000 

    reference count 0001   Cached     color 0   Priority 5 

    restore pte 00000080  containing page        02BAA5  Active     M        

    Modified  

  

lkd> !pfn 2d6c1       

    PFN 0002D6C1 at address 834F7D1C 

    flink       00000791  blink / share count 00000001  pteaddress C0000280 

    reference count 0001   Cached     color 0   Priority 5 

    restore pte 00000080  containing page        02C9F7  Active     M        

    Modified              

You can also use the MemInfo tool to obtain information about a PFN. MemInfo can 

sometimes give you more information than the debugger’s output, and it does not 

require being booted into debugging mode. Here’s MemInfo’s output for those same 

two PFNs:

C:\>meminfo -p 2c9f7 

 

PFN: 2c9f7 

PFN List: Active and Valid 

PFN Type: Page Table 

PFN Priority: 5 

Page Directory: 0x866168C8 

Physical Address: 0x2C9F7000 

 

C:\>meminfo -p 2d6c1 

 

PFN: 2d6c1 

PFN List: Active and Valid 

PFN Type: Process Private 

PFN Priority: 5 

EPROCESS: 0x866168C8 [windbg.exe] 

Physical Address: 0x2D6C1000

MemInfo correctly recognized that the first PFN was a page table and that the second 

PFN belongs to WinDbg, which was the active process when the !pte 50000 command 

was used in the debugger.
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In addition to the PFN database, the system variables in Table 9-20 describe the overall state 

of physical memory.

TABLE 9-20 System Variables That Describe Physical Memory

Variable Description

MmNumberOfPhysicalPages Total number of physical pages available on the system

MmAvailablePages Total number of available pages on the system—the sum of the 

pages on the zeroed, free, and standby lists

MmResidentAvailablePages Total number of physical pages that would be available if every 

process were at its minimum working set size

Physical Memory Limits

Now that you’ve learned how Windows keeps track of physical memory, we’ll describe how 

much of it Windows can actually support. Because most systems access more code and data 

than can fit in physical memory as they run, physical memory is in essence a window into the 

code and data used over time. The amount of memory can therefore affect performance, 

because when data or code that a process or the operating system needs is not present, the 

memory manager must bring it in from disk or remote storage.

Besides affecting performance, the amount of physical memory impacts other resource lim-

its. For example, the amount of nonpaged pool, operating system buffers backed by physical 

memory, is obviously constrained by physical memory. Physical memory also contributes to 

the system virtual memory limit, which is the sum of roughly the size of physical memory 

plus the current configured size of any paging files. Physical memory also can indirectly limit 

the maximum number of processes.

Windows support for physical memory is dictated by hardware limitations, licensing, operat-

ing system data structures, and driver compatibility. Table 9-21 lists the currently supported 

amounts of physical memory across editions of Windows Vista and Windows Server 2008, 

along with the limiting factors.

Although some 64-bit processors can access up to 2 TB of physical memory (and up to 1 TB 

even when running 32-bit operating systems through an extended version of PAE), the maxi-

mum 32-bit limit supported by Windows Server Datacenter and Enterprise is 64 GB. This 

restriction comes from the fact that structures the memory manager uses to track physical 

memory (the PFN database entries seen earlier) would consume too much of the CPU’s 32-bit 

virtual address space on larger systems. Because a PFN entry is 28 bytes, on a 64-GB system 

this requires about 465 MB for the PFN database, which leaves only 1.5 GB for mapping the 

kernel, device drivers, system cache, and other system data structures, making the 64-GB 

restriction a reasonable cutoff. On systems with the increaseuserva BCD option set, the kernel 

might have as little as 1 GB of virtual address space, so allowing the PFN database to con-

sume more than half of available address space would lead to premature exhaustion of other 

resources.
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TABLE 9-21 Physical Memory Support

Version 32-Bit Limit 64-Bit Limit Limiting Factors

Windows Server 

2008 Datacenter and 

Enterprise

64 GB 2 TB on IA64, 

1 TB on x64

Hardware PTE size on 32-bit, PFN 

database size if running 32-bit Windows 

on 64-bit hardware, hardware platform 

support on 64-bit

Windows Server 2008 

Standard and Web 

Server

4 GB 32 GB Licensing

Windows Server 2008 

HPC Edition

N/A 128 GB Licensing

Windows Vista 

Ultimate, Enterprise, 

and Business

4 GB 128 GB Licensing on 64-bit, licensing, hardware 

support, and driver compatibility on 32-bit

Windows Vista Home 

Premium

4 GB 16 GB Licensing on 64-bit, licensing, hardware 

support, and driver compatibility on 32-bit

Windows Vista Home 

Basic

4 GB 8 GB Licensing on 64-bit, licensing, hardware 

support, and driver compatibility on 32-bit

Windows Vista Starter 1 GB N/A Licensing

The memory manager could accommodate more memory by mapping pieces of the PFN 

database into the system address as needed, but that would add complexity and reduce 

performance with the added overhead of mapping, unmapping, and locking operations. It’s 

only recently that systems have become large enough for that to be considered, but because 

the system address space is not a constraint for mapping the entire PFN database on 64-bit 

Windows, support for more memory is left to 64-bit Windows.

The maximum 2-TB limit of 64-bit Windows Server 2008 Datacenter for Itanium doesn’t 

come from any implementation or hardware limitation, but because Microsoft will support 

only configurations it can test. As of the release of Windows Server 2008, the largest Itanium 

system available was 2 TB, so Windows caps its use of physical memory there. On x64 con-

figurations, the 1-TB limit derives from the maximum amount of memory that current x64 

page tables can address.

Windows Client Memory Limits

64-bit Windows client editions support different amounts of memory as a differentiating 

feature, with the low end being 4 GB for Windows Vista Home Basic, increasing to 128 GB for 

the Ultimate, Enterprise, and Business editions. All 32-bit Windows client editions, however, 

support a maximum of 4 GB of physical memory, which is the highest physical address acces-

sible with the standard x86 memory management mode.

Although client SKUs support PAE addressing modes in order to provide hardware no-

execute protection (which would also enable access to more than 4 GB of physical memory), 
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testing revealed that many of the systems would crash, hang, or become unbootable because 

some device drivers, commonly those for video and audio devices found typically on clients 

but not servers, were not programmed to expect physical addresses larger than 4 GB. As a 

result, the drivers truncated such addresses, resulting in memory corruptions and corruption 

side effects. Server systems commonly have more generic devices, with simpler and more 

stable drivers, and therefore had not generally revealed these problems. The problematic 

client driver ecosystem led to the decision for client editions to ignore physical memory that 

resides above 4 GB, even though they can theoretically address it. Driver developers are 

encouraged to test their systems with the nolowmem BCD option, which will force the kernel 

to use physical addresses above 4 GB only, if sufficient memory exists on the system to allow 

it. This will immediately lead to the detection of such issues in faulty drivers.

32-Bit Client Effective Memory Limits 

While 4 GB is the licensed limit for 32-bit client editions, the effective limit is actually lower 

and dependent on the system’s chipset and connected devices. The reason is that the physi-

cal address map includes not only RAM but device memory, and x86 and x64 systems typi-

cally map all device memory below the 4 GB address boundary to remain compatible with 

32-bit operating systems that don’t know how to handle addresses larger than 4 GB. Newer 

chipsets do support PAE-based device remapping, but client editions of Windows do not 

support this feature for the driver compatibility problems explained earlier (otherwise, drivers 

would receive 64-bit pointers to their device memory).

If a system has 4 GB of RAM and devices such as video, audio, and network adapters that 

implement windows into their device memory that sum to 500 MB, 500 MB of the 4 GB of 

RAM will reside above the 4 GB address boundary, as seen in Figure 9-43.

0

RAM

Device memory

Device memory

4 GB

4.5 GB

RAM

RAM

Inaccessible
RAM

FIGURE 9-43 Physical memory layout on a 4-GB system
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The result is that if you have a system with 3 GB or more of memory and you are running 

a 32-bit Windows client, you may not be getting the benefit of all of the RAM. You can see 

how much RAM Windows has detected as being installed in the System Properties dialog 

box, but to see how much memory is actually available to Windows, you need to look at Task 

Manager’s Performance page or the Msinfo32 and Winver utilities. On a 4-GB laptop, when 

booted with 32-bit Windows Vista, the amount of physical memory available is 3.5 GB, as 

seen in the Msinfo32 utility:

Installed Physical Memory (RAM) 4.00 GB 
Total Physical Memory  3.50 GB

You can see the physical memory layout with the MemInfo tool from Winsider Seminars & 

Solutions. Figure 9-44 shows the output of MemInfo when run on the Windows Vista system, 

using the –r switch to dump physical memory ranges:

FIGURE 9-44 Memory ranges on a 32-bit Windows system

Note the gap in the memory address range from page 9F0000 to page 100000, and another 

gap from DFE6D000 to FFFFFFFF (4 GB). When the system is booted with 64-bit Windows 

Vista, on the other hand, all 4 GB show up as available (see Figure 9-45), and you can see how 

Windows uses the remaining 500 MB of RAM that are above the 4-GB boundary.

FIGURE 9-45 Memory ranges on an x64 Windows system

You can use Device Manager on your machine to see what is occupying the various reserved 

memory regions that can’t be used by Windows (and that will show up as holes in MemInfo’s 

output). To check Device Manager, run devmgmt.msc, select Resources By Connection on 

the View menu, and then expand the Memory node. On the laptop computer used for the 

output shown in Figure 9-46, the primary consumer of mapped device memory is, unsurpris-

ingly, the video card, which consumes 256 MB in the range E0000000-EFFFFFFF.
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FIGURE 9-46 Hardware-reserved memory ranges on a 32-bit Windows system

Other miscellaneous devices account for most of the rest, and the PCI bus reserves additional 

ranges for devices as part of the conservative estimation the firmware uses during boot.

The consumption of memory addresses below 4 GB can be drastic on high-end gaming sys-

tems with large video cards. For example, on a test machine with 8 GB of RAM and two 1-GB 

video cards, only 2.2 GB of the memory was accessible by 32-bit Windows. A large memory 

hole from 8FEF0000 to FFFFFFFF is visible in the MemInfo output from the system on which 

64-bit Windows is installed, shown in Figure 9-47.

FIGURE 9-47 Memory ranges on a 64-bit Windows system

Device Manager revealed that 512 MB of the more than 2-GB gap is for the video cards 

(256 MB each) and that the firmware had reserved more either for dynamic mappings or 

because it was conservative in its estimate. Finally, even systems with as little as 2 GB can be 

prevented from having all their memory usable under 32-bit Windows because of chipsets 

that aggressively reserve memory regions for devices. 

Working Sets

Now that we’ve looked at how Windows keeps track of physical memory, and how much 

memory it can support, we’ll explain how Windows keeps a subset of virtual addresses in 

physical memory.

As you’ll recall, the term used to describe a subset of virtual pages resident in physical mem-

ory is called a working set. There are three kinds of working sets:

Process working sets contain the pages referenced by threads within a single process.
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The system working set contains the resident subset of the pageable system code (for 

example, Ntoskrnl.exe and drivers), paged pool, and the system cache.

Each session has a working set that contains the resident subset of the kernel-mode 

session-specific data structures allocated by the kernel-mode part of the Windows 

subsystem (Win32k.sys), session paged pool, session mapped views, and other session-

space device drivers.

Before examining the details of each type of working set, let’s look at the overall policy for 

deciding which pages are brought into physical memory and how long they remain. After 

that, we’ll explore the various types of working sets.

Demand Paging

The Windows memory manager uses a demand-paging algorithm with clustering to load 

pages into memory. When a thread receives a page fault, the memory manager loads into 

memory the faulted page plus a small number of pages preceding and/or following it. This 

strategy attempts to minimize the number of paging I/Os a thread will incur. Because pro-

grams, especially large ones, tend to execute in small regions of their address space at any 

given time, loading clusters of virtual pages reduces the number of disk reads. For page faults 

that reference data pages in images, the cluster size is 3 pages. For all other page faults, the 

cluster size is 7 pages.

However, a demand-paging policy can result in a process incurring many page faults when its 

threads first begin executing or when they resume execution at a later point. To optimize the 

startup of a process (and the system), Windows has an intelligent prefetch engine called the 

logical prefetcher, described in the next section. Further optimization and prefetching is per-

formed by another component called SuperFetch, that we’ll describe later in the chapter.

Logical Prefetcher

During a typical system boot or application startup, the order of faults is such that some 

pages are brought in from one part of a file, then perhaps from a distant part of the same 

file, then from a different file, perhaps from a directory, and then again from the first file. This 

jumping around slows down each access considerably and, thus, analysis shows that disk seek 

times are a dominant factor in slowing boot and application startup times. By prefetching 

batches of pages all at once, a more sensible ordering of access, without excessive backtrack-

ing, can be achieved, thus improving the overall time for system and application startup. The 

pages that are needed can be known in advance because of the high correlation in accesses 

across boots or application starts.

The prefetcher tries to speed the boot process and application startup by monitoring the 

data and code accessed by boot and application startups and using that information at the 
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beginning of a subsequent boot or application startup to read in the code and data. When 

the prefetcher is active, the memory manager notifies the prefetcher code in the kernel of 

page faults, both those that require that data be read from disk (hard faults) and those that 

simply require data already in memory be added to a process’s working set (soft faults). The 

prefetcher monitors the first 10 seconds of application startup. For boot, the prefetcher by 

default traces from system start through the 30 seconds following the start of the user’s shell 

(typically Explorer) or, failing that, up through 60 seconds following Windows service initial-

ization or through 120 seconds, whichever comes first.

The trace assembled in the kernel notes faults taken on the NTFS Master File Table (MFT) 

metadata file (if the application accesses files or directories on NTFS volumes), on referenced 

files, and on referenced directories. With the trace assembled, the kernel prefetcher code 

waits for requests from the prefetcher component of the SuperFetch service (%SystemRoot%\

System32\Sysmain.dll), running in a copy of Svchost. The Supferfetch service is responsible for 

both the logical prefetching component in the kernel and for the SuperFetch component that 

we’ll talk about later. The prefetcher signals the event \KernelObjects\PrefetchTracesReady to 

inform the SuperFetch service that it can now query trace data.

Note You can enable or disable prefetching of the boot or application startups by editing the 

DWORD registry value HKLM\SYSTEM\CurrentControlSet\Control\Session Manager\Memory 

Management\PrefetchParameters\EnablePrefetcher. Set it to 0 to disable prefetching altogether, 

1 to enable prefetching of only applications, 2 for prefetching of boot only, and 3 for both boot 

and applications.

The SuperFetch service (which hosts the logical prefetcher, although it is a completely sepa-

rate component from the actual SuperFetch functionality) performs a call to the internal 

NtQuerySystemInformation system call requesting the trace data. The logical prefetcher post-

processes the trace data, combining it with previously collected data, and writes it to a file 

in the %SystemRoot%\Prefetch folder, which is shown in Figure 9-48. The file’s name is the 

name of the application to which the trace applies followed by a dash and the hexadecimal 

representation of a hash of the file’s path. The file has a .pf extension; an example would be 

NOTEPAD.EXE-AF43252301.PF.

There are two exceptions to the file name rule. The first is for images that host other compo-

nents, including the Microsoft Management Console (%SystemRoot%\System32\Mmc.exe), 

the Service Hosting Process (%SystemRoot%\System32\Svchost.exe), the Run DLL Component 

(%SystemRoot%\System32\Rundll32.exe), and Dllhost (%SystemRoot%\System32\Dllhost.exe). 

Because add-on components are specified on the command line for these applications, 

the prefetcher includes the command line in the generated hash. Thus, invocations of 

these applications with different components on the command line will result in differ-

ent traces. The prefetcher reads the list of executables that it should treat this way from 

the HostingAppList value in its parameters registry key, HKLM\SYSTEM\CurrentControlSet\
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Control\Session Manager\Memory Management\PrefetchParameters, and then allows the 

SuperFetch service to query this list through the NtQuerySystemInformation API.

The other exception to the file name rule is the file that stores the boot’s trace, which is 

always named NTOSBOOT-B00DFAAD.PF. (If read as a word, “boodfaad” sounds similar to 

the English words boot fast.) Only after the prefetcher has finished the boot trace (the time of 

which was defined earlier) does it collect page fault information for specific applications.

FIGURE 9-48 Prefetch folder

EXPERIMENT: Looking Inside a Prefetch File

A prefetch file’s contents serve as a record of files and directories accessed during the 

boot or an application startup, and you can use the Strings utility from Sysinternals to 

see the record. The following command lists all the files and directories referenced dur-

ing the last boot:

C:\Windows\Prefetch>Strings –n 5 ntosboot-boodfaad.pf  

  

Strings v2.4 

Copyright (C) 1999-2007 Mark Russinovich 

Sysinternals - www.sysinternals.com 

 

NTOSBOOT 

\DEVICE\HARDDISKVOLUME1\$MFT 

\DEVICE\HARDDISKVOLUME1\WINDOWS\SYSTEM32\DRIVERS\TUNNEL.SYS 
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\DEVICE\HARDDISKVOLUME1\WINDOWS\SYSTEM32\DRIVERS\TUNMP.SYS 

\DEVICE\HARDDISKVOLUME1\WINDOWS\SYSTEM32\DRIVERS\I8042PRT.SYS 

\DEVICE\HARDDISKVOLUME1\WINDOWS\SYSTEM32\DRIVERS\KBDCLASS.SYS 

\DEVICE\HARDDISKVOLUME1\WINDOWS\SYSTEM32\DRIVERS\VMMOUSE.SYS 

\DEVICE\HARDDISKVOLUME1\WINDOWS\SYSTEM32\DRIVERS\MOUCLASS.SYS 

\DEVICE\HARDDISKVOLUME1\WINDOWS\SYSTEM32\DRIVERS\PARPORT.SYS  

. . .

When the system boots or an application starts, the prefetcher is called to give it an oppor-

tunity to perform prefetching. The prefetcher looks in the prefetch directory to see if a 

trace file exists for the prefetch scenario in question. If it does, the prefetcher calls NTFS to 

prefetch any MFT metadata file references, reads in the contents of each of the directories 

referenced, and finally opens each file referenced. It then calls the memory manager func-

tion MmPrefetchPages to read in any data and code specified in the trace that’s not already 

in memory. The memory manager initiates all the reads asynchronously and then waits for 

them to complete before letting an application’s startup continue.

EXPERIMENT: Watching Prefetch File Reads and Writes

If you capture a trace of application startup with Process Monitor from Sysinternals on 

a client edition of Windows (Windows Server editions disable prefetching by default), 

you can see the prefetcher check for and read the application’s prefetch file (if it exists), 

and roughly 10 seconds after the application started, see the prefetcher write out a 

new copy of the file. Below is a capture of Notepad startup with an Include filter set to 

“prefetch” so that Process Monitor shows only accesses to the %SystemRoot%\Prefetch 

directory:

Lines 1 through 4 show the Notepad prefetch file being read in the context of the 

Notepad process during its startup. Lines 5 through 11, which have time stamps 10 sec-

onds later than the first three lines, show the SuperFetch service, which is running in the 

context of a Svchost process, write out the updated prefetch file.

To minimize seeking even further, every three days or so, during system idle periods, 

the SuperFetch service organizes a list of files and directories in the order that they are 
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referenced during a boot or application start and stores the list in a file named Windows\

Prefetch\Layout.ini, shown in Figure 9-49. This list also includes frequently accessed files 

tracked by SuperFetch.

FIGURE 9-49 Prefetch defragmentation layout file

Then it launches the system defragmenter with a command-line option that tells the defrag-

menter to defragment based on the contents of the file instead of performing a full defrag. 

The defragmenter finds a contiguous area on each volume large enough to hold all the listed 

files and directories that reside on that volume and then moves them in their entirety into the 

area so that they are stored one after the other. Thus, future prefetch operations will even be 

more efficient because all the data read in is now stored physically on the disk in the order it 

will be read. Because the files defragmented for prefetching usually number only in the hun-

dreds, this defragmentation is much faster than full volume defragmentations. (See Chapter 

11 for more information on defragmentation.)

Placement Policy

When a thread receives a page fault, the memory manager must also determine where in 

physical memory to put the virtual page. The set of rules it uses to determine the best posi-

tion is called a placement policy. Windows considers the size of CPU memory caches when 

choosing page frames to minimize unnecessary thrashing of the cache.

If physical memory is full when a page fault occurs, a replacement policy is used to deter-

mine which virtual page must be removed from memory to make room for the new page. 

Common replacement policies include least recently used (LRU) and first in, first out (FIFO). 

The LRU algorithm (also known as the clock algorithm, as implemented in most versions of 

UNIX) requires the virtual memory system to track when a page in memory is used. When a 
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new page frame is required, the page that hasn’t been used for the greatest amount of time 

is removed from the working set. The FIFO algorithm is somewhat simpler; it removes the 

page that has been in physical memory for the greatest amount of time, regardless of how 

often it’s been used.

Replacement policies can be further characterized as either global or local. A global replace-

ment policy allows a page fault to be satisfied by any page frame, whether or not that frame 

is owned by another process. For example, a global replacement policy using the FIFO algo-

rithm would locate the page that has been in memory the longest and would free it to satisfy 

a page fault; a local replacement policy would limit its search for the oldest page to the set of 

pages already owned by the process that incurred the page fault. Global replacement poli-

cies make processes vulnerable to the behavior of other processes—an ill-behaved applica-

tion can undermine the entire operating system by inducing excessive paging activity in all 

processes.

Windows implements a combination of local and global replacement policy. When a working 

set reaches its limit and/or needs to be trimmed because of demands for physical memory, 

the memory manager removes pages from working sets until it has determined there are 

enough free pages.

Working Set Management

Every process starts with a default working set minimum of 50 pages and a working set 

maximum of 345 pages. Although it has little effect, you can change the process working 

set limits with the Windows SetProcessWorkingSetSize function, though you must have the 

“increase scheduling priority” user right to do this. However, unless you have configured the 

process to use hard working set limits, these limits are ignored, in that the memory manager 

will permit a process to grow beyond its maximum if it is paging heavily and there is ample 

memory (and conversely, the memory manager will shrink a process below its working set 

minimum if it is not paging and there is a high demand for physical memory on the system). 

Hard working set limits can be set using the SetProcessWorkingSetSizeEx function along with 

the QUOTA_LIMITS_HARDWS_ENABLE flag, but it is almost always better to let the system 

manage your working set instead of setting your own hard working set minimums. 

The maximum working set size can’t exceed the systemwide maximum calculated at system 

initialization time and stored in the kernel variable MiMaximumWorkingSet, which is a hard 

upper limit based on the working set maximums listed in Table 9-22.

TABLE 9-22 Upper Limit for Working Set Maximums

Windows Version Working Set Maximum

x86 2,047.9 MB

x86 versions of Windows booted with increaseuserva 2,047.9 MB+ user virtual address increase (MB) 

IA64 7,152 GB

x64 8,192 GB
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When a page fault occurs, the process’s working set limits and the amount of free memory 

on the system are examined. If conditions permit, the memory manager allows a process to 

grow to its working set maximum (or beyond if the process does not have a hard working 

set limit and there are enough free pages available). However, if memory is tight, Windows 

replaces rather than adds pages in a working set when a fault occurs.

Although Windows attempts to keep memory available by writing modified pages to disk, 

when modified pages are being generated at a very high rate, more memory is required in 

order to meet memory demands. Therefore, when physical memory runs low, the working 
set manager, a routine that runs in the context of the balance set manager system thread 

(described in the next section), initiates automatic working set trimming to increase the 

amount of free memory available in the system. (With the Windows SetProcess Working Set-
SizeEx function mentioned earlier, you can also initiate working set trimming of your own 

process—for example, after process initialization.)

The working set manager examines available memory and decides which, if any, working 

sets need to be trimmed. If there is ample memory, the working set manager calculates how 

many pages could be removed from working sets if needed. If trimming is needed, it looks 

at working sets that are above their minimum setting. It also dynamically adjusts the rate at 

which it examines working sets as well as arranges the list of processes that are candidates 

to be trimmed into an optimal order. For example, processes with many pages that have not 

been accessed recently are examined first; larger processes that have been idle longer are 

considered before smaller processes that are running more often; the process running the 

foreground application is considered last; and so on.

When it finds processes using more than their minimums, the working set manager looks 

for pages to remove from their working sets, making the pages available for other uses. If 

the amount of free memory is still too low, the working set manager continues removing 

pages from processes’ working sets until it achieves a minimum number of free pages on the 

system.

The working set manager tries to remove pages that haven’t been accessed recently. It does 

this by checking the accessed bit in the hardware PTE to see whether the page has been 

accessed. If the bit is clear, the page is aged, that is, a count is incremented indicating that the 

page hasn’t been referenced since the last working set trim scan. Later, the age of pages is 

used to locate candidate pages to remove from the working set.

If the hardware PTE accessed bit is set, the working set manager clears it and goes on to 

examine the next page in the working set. In this way, if the accessed bit is clear the next time 

the working set manager examines the page, it knows that the page hasn’t been accessed 

since the last time it was examined. This scan for pages to remove continues through the 

working set list until either the number of desired pages has been removed or the scan has 

returned to the starting point. (The next time the working set is trimmed, the scan picks up 

where it left off last.)
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EXPERIMENT: Viewing Process Working Set Sizes

You can use the Performance tool to examine process working set sizes by looking at 

the performance counters shown in the following table.

Counter Description

Process: Working Set Current size of the selected process’s working set in bytes

Process: Working Set Peak Peak size of the selected process’s working set in bytes

Process: Page Faults/sec Number of page faults for the process that occur each second

Several other process viewer utilities (such as Task Manager and Process Explorer) also 

display the process working set size.

You can also get the total of all the process working sets by selecting the _Total pro-

cess in the instance box in the Performance tool. This process isn’t real—it’s simply a 

total of the process-specific counters for all processes currently running on the system. 

The total you see is misleading, however, because the size of each process working set 

includes pages being shared by other processes. Thus, if two or more processes share a 

page, the page is counted in each process’s working set.

EXPERIMENT: Viewing the Working Set List

You can view the individual entries in the working set by using the kernel debugger 

!wsle command. The following example shows a partial output of the working set list of 

WinDbg.

lkd> !wsle 7 

 

Working Set @ c0802000 

    FirstFree     209c  FirstDynamic        6 

    LastEntry     242e  NextSlot            6  LastInitialized     24b9 

    NonDirect        0  HashTable           0  HashTableSize         0 

 

Reading the WSLE data ................................................................ 

 

Virtual Address           Age  Locked  ReferenceCount 

        c0600203          0        1        1 

        c0601203          0        1        1 

        c0602203          0        1        1 

        c0603203          0        1        1 

        c0604213          0        1        1 

        c0802203          0        1        1 

         2865201          0        0        1 

         1a6d201          0        0        1 

          3f4201          0        0        1 

        707ed101          0        0        1 
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         2d27201          0        0        1 

         2d28201          0        0        1 

        772f5101          0        0        1 

         2d2a201          0        0        1 

         2d2b201          0        0        1 

         2d2c201          0        0        1 

        779c3101          0        0        1 

        c0002201          0        0        1 

        7794f101          0        0        1 

        7ffd1109          0        0        1 

        7ffd2109          0        0        1 

        7ffc0009          0        0        1 

        7ffb0009          0        0        1 

        77940101          0        0        1 

        77944101          0        0        1 

          112109          0        0        1 

          320109          0        0        1 

          322109          0        0        1 

        77949101          0        0        1 

          110109          0        0        1 

        77930101          0        0        1 

          111109          0        0        1

Notice that some entries in the working set list are page table pages (the ones with 

addresses greater than 0xC0000000), some are from system DLLs (the ones in the 

0x7nnnnnnn range), and some are from the code of Windbg.exe itself.

Balance Set Manager and Swapper

Working set expansion and trimming take place in the context of a system thread called the 

balance set manager (routine KeBalanceSetManager). The balance set manager is created 

during system initialization. Although the balance set manager is technically part of the ker-

nel, it calls the memory manager’s working set manager (MmWorkingSetManager) to per-

form working set analysis and adjustment.

The balance set manager waits for two different event objects: an event that is signaled when 

a periodic timer set to fire once per second expires and an internal working set manager 

event that the memory manager signals at various points when it determines that working 

sets need to be adjusted. For example, if the system is experiencing a high page fault rate 

or the free list is too small, the memory manager wakes up the balance set manager so that 

it will call the working set manager to begin trimming working sets. When memory is more 

plentiful, the working set manager will permit faulting processes to gradually increase the 

size of their working sets by faulting pages back into memory, but the working sets will grow 

only as needed.
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When the balance set manager wakes up as the result of its 1-second timer expiring, it takes 

the following five steps:

 1. It queues a DPC associated to a 1-second timer. The DPC routine is the KiScanReady-
Queues routine, which looks for threads that might warrant having their priority 

boosted because they are CPU starved. (See the section “Priority Boosts for CPU 

Starvation” in Chapter 5.)

 2. Every fourth time the balance set manager wakes up because its 1-second timer has 

expired, it signals an event that wakes up another system thread called the swapper 

(KiSwapperThread) (routine KeSwapProcessOrStack).

 3. The balance set manager then checks the look-aside lists and adjusts their depths if 

necessary (to improve access time and to reduce pool usage and pool fragmentation).

 4. It adjusts IRP credits to optimize the usage of the per-processor look-aside lists used in 

IRP completion. This allows better scalability when certain processors are under heavy 

I/O load.

 5. It calls the memory manager’s working set manager. (The working set manager has its 

own internal counters that regulate when to perform working set trimming and how 

aggressively to trim.)

The swapper is also awakened by the scheduling code in the kernel if a thread that needs to 

run has its kernel stack swapped out or if the process has been swapped out. The swapper 

looks for threads that have been in a wait state for 15 seconds (or 3 seconds on a system with 

less than 12 MB of RAM). If it finds one, it puts the thread’s kernel stack in transition (moving 

the pages to the modified or standby lists) so as to reclaim its physical memory, operating 

on the principle that if a thread’s been waiting that long, it’s going to be waiting even longer. 

When the last thread in a process has its kernel stack removed from memory, the process is 

marked to be entirely outswapped. That’s why, for example, processes that have been idle for 

a long time (such as Winlogon is after you log on) can have a zero working set size.

System Working Set

Just as processes have working sets, the pageable code and data in the operating system are 

managed by a single system working set. Five different kinds of pages can reside in the sys-

tem working set:

System cache pages

Paged pool

Pageable code and data in Ntoskrnl.exe

Pageable code and data in device drivers

System mapped views
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You can examine the size of the system working set or the size of the five components that 

contribute to it with the performance counters or system variables shown in Table 9-23. Keep 

in mind that the performance counter values are in bytes whereas the system variables are 

measured in terms of pages.

You can also examine the paging activity in the system working set by examining the 

Memory: Cache Faults/sec performance counter, which describes page faults that occur in 

the system working set (both hard and soft).

TABLE 9-23 System Working Set Performance Counters

Performance Counter  

(in Bytes)

System Variable  

(in Pages) Description

Memory: Cache Bytes* MmSystemCache-
 Ws.Working SetSize

Total size of system working set (including 

the cache, paged pool, pageable Ntoskrnl 

and driver code, and system mapped 

views); this is not the size of the system 

cache alone, even though the name 

implies that it is.

Memory: Cache Bytes  

Peak

MmSystemCacheWs.Peak Peak system working set size.

Memory: System Cache 

Resident Bytes

MmSystemCachePage Physical memory consumed by the system 

cache.

Memory: System Code 

Resident Bytes

MmSystemCodePage Physical memory consumed by pageable 

code in Ntoskrnl.exe.

Memory: System Driver 

Resident Bytes

MmSystemDriverPage Physical memory consumed by pageable 

device driver code.

Memory: Pool Paged 

Resident Bytes

MmPagedPoolPage Physical memory consumed by paged 

pool.

* Internally, this working set is called the system cache working set, even though the system cache is just one of five 
different components in it. Thus, several utilities think they are displaying the size of the file cache when they are 
displaying the total size of the system working set.

MmSystemCacheWs.Page Fault Count is the system variable that contains the value for this 

counter.

Memory Notification Events

Windows provides a way for user-mode processes and kernel-mode drivers to be noti-

fied when physical memory, paged pool, nonpaged pool, and commit charge are low and/

or plentiful. This information can be used to determine memory usage as appropriate. For 

example, if available memory is low, the application can reduce memory consumption. If 

available paged pool is high, the driver can allocate more memory. Finally, the memory 

manager also provides an event that permits notification when corrupted pages have been 

detected.



834 Windows Internals, Fifth Edition

User-mode processes can be notified only of low or high memory conditions. An applica-

tion can call the CreateMemoryResourceNotification function, specifying whether low or 

high memory notification is desired. A handle can be provided to any of the wait functions. 

When memory is low (or high), the wait completes, thus notifying the thread of the condi-

tion. Alternatively, the QueryMemoryResourceNotification can be used to query the system 

memory condition at any time.

Drivers, on the other hand, use the specific event name that the memory manager has set up 

in the \KernelObjects directory, since notification is implemented by the memory manager 

signaling one of the globally named event objects it defines, shown in Table 9-24.

TABLE 9-24 Memory Manager Notification Events

Event Name Description

HighCommitCondition This event is set when the commit charge is near the maximum 

commit limit. In other words, memory usage is very high, very 

little space is available in physical memory or paging files, and the 

operating system cannot increase the size of its paging files.

HighMemoryCondition This event is set whenever the amount of free physical memory 

exceeds the defined amount.

HighNonPagedPoolCondition This event is set whenever the amount of nonpaged pool exceeds the 

defined amount.

HighPagedPoolCondition This event is set whenever the amount of paged pool exceeds the 

defined amount.

LowCommitCondition This event is set when the commit charge is low, relative to the current 

commit limit. In other words, memory usage is low and a lot of space 

is available in physical memory or paging files.

LowMemoryCondition This event is set whenever the amount of free physical memory falls 

below the defined amount.

LowNonPagedPoolCondition This event is set whenever the amount of free nonpaged pool falls 

below the defined amount.

LowPagedPoolCondition This event is set whenever the amount of free paged pool falls below 

the defined amount.

MaximumCommitCondition This event is set when the commit charge is near the maximum 

commit limit. In other words, memory usage is very high, very 

little space is available in physical memory or paging files, and the 

operating system cannot increase the size or number of paging files.

MemoryErrors A bad page (non-zeroed zero page) has been detected.

When a given memory condition is detected, the appropriate event is signaled, thus waking 

up any waiting threads.
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Note The high and low memory values can be overridden by adding a DWORD registry value, 

LowMemoryThreshold or HighMemoryThreshold, under HKLM\SYSTEM\CurrentControlSet\

Session Manager\Memory Management that specifies the number of megabytes to use as the 

low or high threshold. The system can also be configured to crash the system when a bad page 

is detected, instead of signaling a memory error event, by setting the PageValidationAction 

DWORD registry value in the same key.

EXPERIMENT: Viewing the Memory Resource Notification Events

To see the memory resource notification events, run Winobj from Sysinternals and click 

on the KernelObjects folder. You will see both the low and high memory condition 

events shown in the right pane:

If you double-click either event, you can see how many handles and/or references have 

been made to the objects.

To see whether any processes in the system have requested memory resource 

notification, search the handle table for references to “LowMemoryCondition” or 

“HighMemoryCondition.” You can do this by using Process Explorer’s Find menu and 

choosing the Handle capability or by using WinDbg. (For a description of the handle 

table, see the section on the “Object Manager” in Chapter 3.)
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Proactive Memory Management (SuperFetch)

Traditional memory management in operating systems has focused on the demand-paging 

model we’ve shown until now, with some advancements in clustering and prefetching so that 

disk I/Os can be optimized at the time of the demand-page fault. Client versions of Windows 

Vista and later releases, however, include a significant improvement in the management of 

physical memory with the implementation of SuperFetch, a memory management scheme 

that enhances the least-recently accessed approach with historical information and proactive 

memory management. 

The standby list management of previous Windows versions has had two limitations. First, 

the prioritization of pages relies only on the recent past behavior of processes and does not 

anticipate their future memory requirements. Second, the data used for prioritization is lim-

ited to the list of pages owned by a process at any given point in time. These shortcomings 

can result in scenarios in which the computer is left unattended for a brief period of time, 

during which a memory-intensive system application runs (doing work such as an antivirus 

scan or a disk defragmentation) and then causes subsequent interactive application use (or 

launch) to be sluggish. The same situation can happen when a user purposely runs a data 

and/or memory intensive application and then returns to use other programs, which appear 

to be significantly less responsive. 

This decline in performance occurs because the memory-intensive application forces the 

code and data that active applications had cached in memory to be overwritten by the 

 memory-intensive activities—applications perform sluggishly as they have to request their 

data and code from disk. Client versions of Windows Vista and later take a big step toward 

resolving these limitations with SuperFetch. 

Components

SuperFetch is composed of several components in the system that work hand in hand to pro-

actively manage memory and limit the impact on user activity when SuperFetch is perform-

ing its work. These components include:

Tracer The tracer mechanisms are part of a kernel component (Pf) that allows 

SuperFetch to query detailed page usage, session, and process information at any time. 

SuperFetch also makes use of the FileInfo driver (%SystemRoot%\System32\Drivers\

Fileinfo.sys) to track file usage.

Trace Collector and Processor This collector works with the tracing components to 

provide a raw log based on the tracing data that has been acquired. This tracing data 

is kept in memory and handed off to the processor. The processor then hands the 
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log entries in the trace to the agents, which maintain history files (described below) in 

memory and persist them to disk when the service stops (such as during a reboot).

Agents SuperFetch keeps file page access information in history files, which keep 

track of virtual offsets. Agents group pages by attributes, such as:

Page access while the user was active

Page access by a foreground process

Hard fault while the user was active

Page access during an application launch

Page access upon the user returning after a long idle period

Scenario manager  This component, also called the context agent, manages the three 

SuperFetch scenario plans: hibernation, standby, and fast-user switching  The kernel-

mode part of the scenario manager provides APIs for initiating and terminating sce-

narios, managing current scenario state, and associating tracing information with these 

scenarios.

Rebalancer  Based on the information provided by the SuperFetch agents, as well as 

the current state of the system (such as the state of the prioritized page lists), the rebal-

ancer, a specialized agent that is located in the SuperFetch user-mode service, queries 

the PFN database and reprioritizes it based on the associated score of each page, thus 

building the prioritized standby lists. The rebalancer can also issue commands to the 

memory manager that modify the working sets of processes on the system, and it is 

the only agent that actually takes action on the system—other agents merely filter 

information for the rebalancer to use in its decisions. Other than reprioritization, the 

rebalancer also initiates prefetching through the prefetcher thread, which makes use of 

FileInfo and kernel services to preload memory with useful pages.

Finally, all these components make use of facilities inside the memory manager that allow 

querying detailed information about the state of each page in the PFN database, the current 

page counts for each page list and prioritized list, and more. Figure 9-50 displays an archi-

tectural diagram of SuperFetch’s multiple components. SuperFetch components also make 

use of prioritized I/O (see Chapter 7 for more information on I/O priority) to minimize user 

impact.
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Tracing and Logging

SuperFetch makes most of its decisions based on information that has been integrated, 

parsed, and post-processed from raw traces and logs, making these two components among 

the most critical. Tracing is similar to ETW in some ways because it makes use of certain trig-

gers in code throughout the system to generate events, but it also works in conjunction 

with facilities already provided by the system, such as power manager notification, process 
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callbacks, and file system filtering. The tracer also makes use of traditional page aging mech-

anisms that exist in the memory manager, as well as newer working set aging and access 

tracking implemented for SuperFetch.

SuperFetch always keeps a trace running and continuously queries trace data from the sys-

tem, which tracks page usage and access through the memory manager’s access bit tracking 

and working set aging. To track file-related information, which is as critical as page usage 

because it allows prioritization of file data in the cache, SuperFetch leverages existing filtering 

functionality with the addition of the FileInfo driver. (See Chapter 7 for more information on 

filter drivers.) This driver sits on the file system device stack and monitors access and changes 

to files at the stream level (for more information on NTFS data streams, see Chapter 11), 

which provides it with fine-grained understanding of file access. The main job of the FileInfo 

driver is to associate streams (identified by a unique key, currently implemented as the 

FsContext field of the respective file object) with file names so that the user-mode SuperFetch 

service can identify the specific file steam and offset with which a page in the standby list 

belonging to a memory mapped section is associated. It also provides the interface for 

prefetching file data transparently, without interfering with locked files and other file system 

state. The rest of the driver ensures that the information stays consistent by tracking dele-

tions, renaming operations, truncations, and the reuse of file keys by implementing sequence 

numbers. 

At any time during tracing, the rebalancer might be invoked to repopulate pages differently. 

These decisions are made by analyzing information such as the distribution of memory within 

working sets, the zero page list, the modified page list and the standby page lists, the num-

ber of faults, the state of PTE access bits, the per-page usage traces, current virtual address 

consumption, and working set size.

A given trace can be either a page access trace, in which the tracer keeps track (by using the 

access bit) of which pages were accessed by the process (both file page and private memory), 

or a name logging trace, which monitors the file-name-to-file-key-mapping updates (which 

allow SuperFetch to map a page associated with a file object) to the actual file on disk.

Although a SuperFetch trace only keeps track of page accesses, the SuperFetch service pro-

cesses this trace in user mode and goes much deeper, adding its own richer information 

such as where the page was loaded from (such as resident memory or a hard page fault), 

whether this was the initial access to that page, and what the rate of page access actually is. 

Additional information, such as the system state, is also kept, as well as information about in 

which recent scenarios each traced page was last referenced. The generated trace informa-

tion is kept in memory through a logger into data structures, which identify, in the case of 

page access traces, a virtual-address-to-working-set pair or, in the case of a name logging 

trace, a file-to-offset pair. SuperFetch can thus keep track of which range of virtual addresses 

for a given process have page-related events and which range of offsets for a given file have 

similar events.
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Scenarios

One aspect of SuperFetch that is distinct from its primary page repriorization and prefetching 

mechanisms (covered in more detail in the next section) is its support for scenarios, which are 

specific actions on the machine for which SuperFetch strives to improve the user experience. 

These scenarios are standby and hibernation as well as fast user switching. Each of these 

scenarios has different goals, but all are centered around the main purpose of minimizing or 

removing hard faults.

For hibernation, the goal is to intelligently decide which pages are saved in the hiberna-

tion file other than the existing working set pages. The goal is to minimize the amount 

of time that it takes for the system to become responsive after a resume.

For standby, the goal is to completely remove hard faults after resume. Because a typi-

cal system can resume in less than 2 seconds, but can take 5 seconds to spin-up the 

hard drive after a long sleep, a single hard fault could cause such a delay in the resume 

cycle. SuperFetch prioritizes pages needed after a standby to remove this chance.

For fast user switching, the goal is to keep an accurate priority and understanding of 

each user’s memory, so that switching to another user will cause the user’s session to 

be immediately usable, and not require a large amount of lag time to allow pages to be 

faulted in.

Scenarios are hardcoded, and SuperFetch manages them through the NtSetSystem-
Information and NtQuerySystemInformation APIs that control system state. For SuperFetch 

purposes, a special information class, SystemSuperFetchInformation, is used to control the 

kernel-mode components and to generate requests such as starting, ending, and querying a 

scenario or associating one or more traces with a scenario. 

Each scenario is defined by a plan file, which contains, at minimum, a list of pages associ-

ated with the scenario. Page priority values are also assigned according to certain rules we’ll 

describe next. When a scenario starts, the scenario manager is responsible for responding to 

the event by generating the list of pages that should be brought into memory and at which 

priority.

Page Priority and Rebalancing

We’ve already seen that the memory manager implements a system of page priorities to 

define from which standby list pages will be repurposed for a given operation and in which 

list a given page will be inserted. This mechanism provides benefits when processes and 

threads can have associated priorities—such that a defragmenter process doesn’t pollute the 

standby page list and/or steal pages from an interactive, foreground process—but its real 

power is unleashed through SuperFetch’s page prioritization schemes and rebalancing, which 

don’t require manual application input or hardcoded knowledge of process importance.



 Chapter 9 Memory Management 841

SuperFetch assigns page priority based on an internal score it keeps for each page, part of 

which is based on frequency-based usage. This usage counts how many times a page was 

used in given relative time intervals, such as an hour, a day, or a week. Time of use is also kept 

track of, which records for how long a given page has not been accessed. Finally, data such as 

where this page comes from (which list) and other access patterns are used to compute this 

final score, which is then translated into a priority number, which can be anywhere from 1 to 

6 (7 is used for another purpose described later). Going down each level, the lower standby 

page list priorities are repurposed first, as shown in the Experiment “Viewing Prioritized 

Standby Lists.” Priority 5 is typically used for normal applications, while priority 1 is meant for 

background applications that third-party developers can mark as such. Finally, priority 6 is 

used to keep a certain number of high-importance pages as far away as possible from repur-

posing. The other priorities are a result of the score associated with each page.

Because SuperFetch “learns” a user’s system, it can start from scratch with no existing histori-

cal data and slowly build up an understanding of the different page usage accesses associ-

ated with the user. However, this would result in a significant learning curve whenever a new 

application, user, or service pack was installed. Instead, by using an internal tool, Microsoft 

has the ability to pretrain SuperFetch to capture SuperFetch data and then turn it into pre-

built traces. Before Windows shipped, the SuperFetch team traced common usages and pat-

terns that all users will probably encounter, such as clicking the Start menu, opening Control 

Panel, or using the File Open/Save dialog box. This trace data was then saved to history files 

(which ship as resources in Sysmain.dll) and is used to prepopulate the special priority 7 list, 

which is where the most critical data is placed and which is very rarely repurposed. Pages at 

priority 7 are file pages kept in memory even after the process has exited and even across 

reboots (by being repopulated at the next boot). Finally, pages with priority 7 are static, in 

that they are never reprioritized, and SuperFetch will never dynamically load pages at priority 

7 other than the static pretrained set.

The prioritized list is loaded into memory (or prepopulated) by the rebalancer, but the actual 

act of rebalancing is actually handled both by SuperFetch and the memory manager. As 

shown earlier, the prioritized standby page list mechanism is internal to the memory man-

ager, and decisions as to which pages to throw out first and which to protect are innate, 

based on the priority number. The rebalancer actually does its job not by manually rebalanc-

ing memory but by reprioritizing it, which will cause the operation of the memory manager 

to perform the needed tasks. The rebalancer is also responsible for reading the actual pages 

from disk, if needed, so that they are present in memory (prefetching). It then assigns the pri-

ority that is mapped by each agent to the score for each page, and the memory manager will 

then ensure that the page is treated according to its importance. 

The rebalancer can also take action without relying on other agents; for example, if it 

notices that the distribution of pages across paging lists is suboptimal or that the number 

of repurposed pages across different priority levels is detrimental. The rebalancer also has 

the ability to cause working set trimming if needed, which might be required for creating an 
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appropriate budget of pages that will be used for SuperFetch prepopulated cache data. The 

rebalancer will typically take low-utility pages—such as those that are already marked as low 

priority, pages that are zeroed, and pages with valid contents but not in any working set and 

have been unused—and build a more useful set of pages in memory, given the budget it has 

allocated itself.

Once the rebalancer has decided which pages to bring into memory and at which prior-

ity level they need to be loaded (as well as which pages can be thrown out), it performs the 

required disk reads to prefetch them. It also works in conjunction with the I/O manager’s pri-

oritization schemes so that the I/Os are performed with very low priority and do not interfere 

with the user. It is important to note that the actual memory consumption used by prefetch-

ing is all backed by standby pages—as described earlier in the discussion of page dynam-

ics, standby memory is available memory because it can be repurposed as free memory for 

another allocator at any time. In other words, if SuperFetch is prefetching the “wrong data,” 

there is no real impact to the user, because that memory can be reused when needed and 

doesn’t actually consume resources.

Finally, the rebalancer also runs periodically to ensure that pages it has marked as high pri-

ority have actually been recently used. Because these pages will rarely (sometimes never) 

be repurposed, it is important not to waste them on data that is rarely accessed but may 

have appeared to be frequently accessed during a certain time period. If such a situation is 

detected, the rebalancer runs again to push those pages down in the priority lists.

In addition to the rebalancer, a special agent called the application launch agent is also 

involved in a different kind of prefetching mechanism, which attempts to predict application 

launches and builds a Markov chain model that describes the probability of certain applica-

tion launches given the existence of other application launches within a time segment. These 

time segments are divided across four different periods—morning, noon, evening, and 

night; roughly 6 hours each—and are also kept track of separately as weekdays or weekends. 

For example, if on Saturday and Sunday evening a user typically launches Outlook (to send 

e-mail) after having launched Word (to write letters), the application launch agent will prob-

ably have prefetched Outlook based on the high probability of it running after Word during 

weekend evenings.

Because systems today have sufficiently large amounts of memory, on average more than 2 

GB (although SuperFetch works well on low-memory systems, too), the actual real amount of 

memory that frequently used processes on a machine need resident for optimal performance 

ends up being a manageable subset of their entire memory footprint, and SuperFetch can 

often fit all the pages required into RAM. When it can’t, technologies such as ReadyBoost and 

ReadyDrive can further avoid disk usage.
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Robust Performance

A final performance enhancing functionality of SuperFetch is called robustness, or robust 
performance. This component, managed by the user-mode SuperFetch service, but ultimately 

implemented in the kernel (Pf routines), watches for specific file I/O access that might harm 

system performance by populating the standby lists with unneeded data. For example, if a 

process were to copy a large file across the file system, the standby list would be populated 

with the file’s contents, even though that file might never be accessed again (or not for a long 

period of time). This would throw out any other data within that priority (and if this was an 

interactive and useful program, chances are its priority would’ve been at least 5).

SuperFetch responds to two specific kinds of I/O access patterns: sequential file access (going 

through all the data in a file) and sequential directory access (going through every file in a 

directory). When SuperFetch detects that a certain amount of data (past an internal thresh-

old) has been populated in the standby list as a result of this kind of access, it applies aggres-

sive deprioritization (robustion) to the pages being used to map this file, within the targeted 

process only (so as not to penalize other applications). These pages, so-called robusted, 

essentially become reprioritized to priority 2. 

Because this component of SuperFetch is reactive and not predictive, it does take some time 

for the robustion to kick in. SuperFetch will therefore keep track of this process for the next 

time it runs. Once SuperFetch has determined that it appears that this process always per-

forms this kind of sequential access, SuperFetch remembers it and robusts the file pages as 

soon as they’re mapped, instead of waiting on the reactive behavior. At this point, the entire 

process is now considered robusted for future file access.

Just by applying this logic, however, SuperFetch could potentially hurt many legitimate appli-

cations or user scenarios that perform sequential access in the future. For example, by using 

the Sysinternals Strings.exe utility, you can look for a string in all executables that are part 

of a directory. If there are many files, SuperFetch would likely perform robustion. Now, next 

time you run Strings with a different search parameter, it would run just as slowly as it did the 

first time, even though you’d expect it to run much faster. To prevent this, SuperFetch keeps a 

list of processes that it watches into the future, as well as an internal hard-coded list of excep-

tions. If a process is detected to later re-access robusted files, robustion is disabled on the 

process in order to restore expected behavior.

The main point to remember when thinking about robustion, and SuperFetch optimizations 

in general, is that SuperFetch constantly monitors usage patterns and updates its under-

standing of the system, so that it can avoid fetching useless data. Although changes in a 

user’s daily activities or application startup behavior might cause SuperFetch to incorrectly 

“pollute” the cache with irrelevant data or to throw out data that SuperFetch might think is 

useless, it will quickly adapt to any pattern changes. If the user’s actions are erratic and ran-

dom, the worst that can happen is that the system behaves in a similar state as if SuperFetch 

was not present at all. If SuperFetch is ever in doubt or cannot track data reliably, it quiets 
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itself and doesn’t make changes to a given process or page, keeping the behavior as it would 

have been on a Windows XP machine, for example.

ReadyBoost

Although RAM today is somewhat easily available and relatively cheap compared to a decade 

ago, it still doesn’t beat the cost of secondary storage such as hard disk drives. Unfortunately, 

hard disks today contain many moving parts, are fragile, and, more importantly, relatively 

slow compared to RAM, especially during seeking, so storing active SuperFetch data on the 

drive would be as bad as paging out a page and hard faulting it inside memory. (Solid state 

disks offset some of these disadvantages, but they are pricier and still slow compared to 

RAM.) On the other hand, portable solid state media such as USB keys, CompactFlash cards, 

and Secure Digital cards provide a useful compromise. They are cheaper than RAM and avail-

able in larger sizes, but they also have seek times much shorter than hard drives because of 

the lack of moving parts.

Random disk I/O is especially expensive because disk head seek times are on the order of 10 

milliseconds—an eternity for today’s 3-GHz processors. Flash memory, however, can service 

random reads up to 10 times faster than a typical hard disk. Windows therefore includes a 

feature called ReadyBoost to take advantage of flash memory storage devices by creating an 

intermediate caching layer on them that logically sits between memory and disks.

ReadyBoost consists of a service (%SystemRoot%\System32\Emdmgmt.dll) that runs in a 

Service Host process and a volume filter driver (%SystemRoot%\System32\Drivers\Ecache.sys). 

(Emd is short for External Memory Device, the working name for ReadyBoost during its 

development.) When you insert a flash device like a USB key into a system, the ReadyBoost 

service looks at the device to determine its performance characteristics and stores the results 

of its test in HKLM\SOFTWARE\Microsoft\Windows NT\CurrentVersion\Emdmgmt, as shown 

in Figure 9-51.

FIGURE 9-51 ReadyBoost device test results in the registry
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If you aren’t already using a device for caching and the new device is between 256 MB and 32 

GB in size, has a transfer rate of 2.5 MB per second or higher for random 4-KB reads, and has 

a transfer rate of 1.75 MB per second or higher for random 512-KB writes, then ReadyBoost 

will ask if you’d like to dedicate up to 4 GB of the storage for disk caching. (Although 

ReadyBoost can use NTFS, it limits the maximum cache size to 4 GB to accommodate FAT32 

limitations.) If you agree, the service creates a caching file named Ready Boost.sfcache in the 

root of the device, which it will use to store cached pages (the initial cache is built by query-

ing SuperFetch’s cache, but later contents are fully managed by ReadyBoost independently).

After the ReadyBoost service initializes caching, the Ecache.sys device driver intercepts all 

reads and writes to local hard disk volumes (C:\, for example) and copies any data being read 

or written into the caching file that the service created, with certain exceptions such as data 

that hasn’t been read in a long while, or data that belongs to Volume Snapshot requests. 

Ecache.sys compresses data and typically achieves a 2:1 compression ratio, so a 4-GB cache 

file will usually contain 8 GB of data. The driver encrypts each block it writes using Advanced 

Encryption Standard (AES) encryption with a randomly generated per-boot session key in 

order to guarantee the privacy of the data in the cache if the device is removed from the 

system.

When ReadyBoost sees random reads that can be satisfied from the cache, it services them 

from there, but because hard disks have better sequential read access than flash memory, it 

lets reads that are part of sequential access patterns go directly to the disk even if the data 

is in the cache. Likewise, when reading the cache, if large I/Os have to be done, the on-disk 

cache will be read insead.

One disadvantage of depending on flash media is that the user can remove it at any time, 

which means the system can never solely store critical data on the media (as we’ve seen, 

writes always go to the secondary storage first). A related technology, ReadyDrive, covered in 

the next section, offers additional benefits and solves this problem.

ReadyDrive

ReadyDrive is a Windows feature that takes advantage of hybrid hard disk drives called 

H-HDDs. An H-HDD is a disk with embedded nonvolatile flash memory (also known as 

NVRAM). Typical H-HDDs include between 50 MB and 512 MB of cache, but the Windows 

cache limit is 2 TB.

Windows uses ATA-8 commands to define the disk data to be held in the flash memory. For 

example, Windows will save boot data to the cache when the system shuts down, allowing for 
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faster restarting. It also stores portions of hibernation file data in the cache when the system 

hibernates so that the subsequent resume is faster. Because the cache is enabled even when 

the disk is spun down, Windows can use the flash memory as a disk-write cache, which avoids 

spinning up the disk when the system is running on battery power. Keeping the disk spindle 

turned off can save much of the power consumed by the disk drive under normal usage.

Another consumer of ReadyDrive is SuperFetch, since it offers the same advantages as 

ReadyBoost with some enhanced functionality, such as not requiring an external flash device 

and having the ability to work persistently. Because the cache is on the actual physical hard 

drive (which typically a user cannot remove while the computer is running), the hard drive 

controller typically doesn’t have to worry about the data disappearing and can avoid making 

writes to the actual disk, using solely the cache.

RAM Optimization Software

While SuperFetch provides valuable and realistic optimization of memory usage for 

the various scenarios it aims to support, many third-party software manufacturers are 

involved in the distribution of so-called “RAM Optimization” software, which aims to 

significantly increase available memory on a user’s system. These memory optimizers 

typically present a user interface that shows a graph labeled “Available Memory,” and 

a line typically shows the amount of memory that the optimizer will try to free when it 

runs. After the optimization job runs, the utility’s available memory counter often goes 

up, sometimes dramatically, implying that the tool is actually freeing up memory for 

application use. RAM optimizers work by allocating and then freeing large amounts of 

virtual memory. The following illustration shows the effect a RAM optimizer has on a 

system:

Before:

Word Explorer File cache Available

During:

Avail. RAM optimizer

Available

After:

Word

File cacheExplorer

Standby
pages

Standby pages
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The Before bar depicts the process and system working sets, the pages in standby lists, 

and free memory before optimization. The During bar shows that the RAM optimizer 

creates a high memory demand, which it does by incurring many page faults in a short 

time. In response, the memory manager increases the RAM optimizer’s working set. 

This working-set expansion occurs at the expense of free memory, followed by standby 

pages and—when available memory becomes low—at the expense of other process 

working sets. The After bar illustrates how, after the RAM optimizer frees its memory, 

the memory manager moves all the pages that were assigned to the RAM optimizer to 

the free page list (which ultimately get zeroed by the zero page thread and moved to 

the zeroed page list), thus contributing to the free memory value. 

Although gaining more free memory might seem like a good thing, it isn’t. As RAM 

optimizers force the available memory counter up, they force other processes’ data and 

code out of memory. If you’re running Microsoft Word, for example, the text of open 

documents and the program code that was part of Word’s working set before the opti-

mization (and was therefore present in physical memory) must be reread from disk as 

you continue to edit your document. Additionally, by depleting the standby lists, valu-

able cached data is lost, including much of SuperFetch’s cache. The performance deg-

radation can be especially severe on servers, where the trimming of the system working 

set causes cached file data in physical memory to be thrown out, causing hard faults 

the next time it is accessed.

Conclusion

In this chapter, we’ve examined how the Windows memory manager implements virtual 

memory management. As with most modern operating systems, each process is given access 

to a private address space, protecting one process’s memory from another’s but allow-

ing processes to share memory efficiently and securely. Advanced capabilities, such as the 

inclusion of mapped files and the ability to sparsely allocate memory, are also available. The 

Windows environment subsystem makes most of the memory manager’s capabilities avail-

able to applications through the Windows API.

The next chapter covers a component tightly integrated with the memory manager, the 

cache manager.
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Chapter 10

Cache Manager

The cache manager is a set of kernel-mode functions and system threads that cooperate with 

the memory manager to provide data caching for all Windows file system drivers (both local 

and network). In this chapter, we’ll explain how the cache manager, including its key inter-

nal data structures and functions, works; how it is sized at system initialization time; how it 

interacts with other elements of the operating system; and how you can observe its activity 

through performance counters. We’ll also describe the five flags on the Windows CreateFile 

function that affect file caching.

Note None of the cache manager’s internal functions are outlined in this chapter beyond the 

depth required to explain how the cache manager works. The programming interfaces to the 

cache manager are documented in the Windows Driver Kit (WDK). For more information about 

the WDK, see www.microsoft.com/whdc/devtools/wdk/default.mspx.

Key Features of the Cache Manager

The cache manager has several key features:

Supports all file system types (both local and network), thus removing the need for 

each file system to implement its own cache management code

Uses the memory manager to control which parts of which files are in physical memory 

(trading off demands for physical memory between user processes and the operating 

system)

Caches data on a virtual block basis (offsets within a file)—in contrast to many caching 

systems, which cache on a logical block basis (offsets within a disk volume)—allowing 

for intelligent read-ahead and high-speed access to the cache without involving 

file system drivers (This method of caching, called fast I/O, is described later in this 

chapter.)

Supports “hints” passed by applications at file open time (such as random versus 

sequential access, temporary file creation, and so on)

Supports recoverable file systems (for example, those that use transaction logging) to 

recover data after a system failure

Although we’ll talk more throughout this chapter about how these features are used in the 

cache manager, in this section we’ll introduce you to the concepts behind these features.
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Single, Centralized System Cache

Some operating systems rely on each individual file system to cache data, a practice that 

results either in duplicated caching and memory management code in the operating system 

or in limitations on the kinds of data that can be cached. In contrast, Windows offers a cen-

tralized caching facility that caches all externally stored data, whether on local hard disks, 

floppy disks, network file servers, or CD-ROMs. Any data can be cached, whether it’s user 

data streams (the contents of a file and the ongoing read and write activity to that file) or file 

system metadata (such as directory and file headers). As you’ll discover in this chapter, the 

method Windows uses to access the cache depends on the type of data being cached.

The Memory Manager

One unusual aspect of the cache manager is that it never knows how much cached data is 

actually in physical memory. This statement might sound strange because the purpose of a 

cache is to keep a subset of frequently accessed data in physical memory as a way to improve 

I/O performance. The reason the cache manager doesn’t know how much data is in physical 

memory is that it accesses data by mapping views of files into system virtual address spaces, 

using standard section objects (file mapping objects in Windows API terminology). (Section 

objects are the basic primitive of the memory manager and are explained in detail in Chapter 

9.) As addresses in these mapped views are accessed, the memory manager pages in blocks 

that aren’t in physical memory. And when memory demands dictate, the memory manager 

pages data out of the cache and back to the files that are open in (mapped into) the cache.

By caching on the basis of a virtual address space using mapped files, the cache manager 

avoids generating read or write I/O request packets (IRPs) to access the data for files it’s cach-

ing. Instead, it simply copies data to or from the virtual addresses where the portion of the 

cached file is mapped and relies on the memory manager to fault in (or out) the data into (or 

out of) memory as needed. This process allows the memory manager to make global trade-

offs on how much memory to give to the system cache versus how much to give to user pro-

cesses. (The cache manager also initiates I/O, such as lazy writing, which is described later in 

this chapter; however, it calls the memory manager to write the pages.) Also, as you’ll learn in 

the next section, this design makes it possible for processes that open cached files to see the 

same data as do processes that are mapping the same files into their user address spaces.

Cache Coherency

One important function of a cache manager is to ensure that any process accessing cached 

data will get the most recent version of that data. A problem can arise when one process 

opens a file (and hence the file is cached) while another process maps the file into its address 

space directly (using the Windows MapViewOfFile function). This potential problem doesn’t 

occur under Windows because both the cache manager and the user applications that map 
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files into their address spaces use the same memory management file mapping services. 

Because the memory manager guarantees that it has only one representation of each unique 

mapped file (regardless of the number of section objects or mapped views), it maps all views 

of a file (even if they overlap) to a single set of pages in physical memory, as shown in Figure 

10-1. (For more information on how the memory manager works with mapped files, see 

Chapter 9.)

System address 
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User address  
space

System address 
space
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space

Control area

4 GB

System 
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2 GB

Mapped file

0

4 GB

System 
cache

2 GB

0

Size

0

FIGURE 10-1 Coherent caching scheme

So, for example, if Process 1 has a view (View 1) of the file mapped into its user address 

space, and Process 2 is accessing the same view via the system cache, Process 2 will see any 

changes that Process 1 makes as they’re made, not as they’re flushed. The memory manager 

won’t flush all user-mapped pages—only those that it knows have been written to (because 

they have the modified bit set). Therefore, any process accessing a file under Windows always 

sees the most up-to-date version of that file, even if some processes have the file open 

through the I/O system and others have the file mapped into their address space using the 

Windows file mapping functions.
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Note Cache coherency in this case refers to coherency between user-mapped data and cached 

I/O and not between noncached and cached hardware access and I/Os, which are almost guaran-

teed to be incoherent. Also, cache coherency is somewhat more difficult for network redirectors 

than for local file systems because network redirectors must implement additional flushing and 

purge operations to ensure cache coherency when accessing network data. See Chapter 11 for a 

description of opportunistic locking, the Windows distributed cache coherency mechanism.

Virtual Block Caching

The Windows cache manager uses a method known as virtual block caching, in which the 

cache manager keeps track of which parts of which files are in the cache. The cache manager 

is able to monitor these file portions by mapping 256-KB views of files into system virtual 

address spaces, using special system cache routines located in the memory manager. This 

approach has the following key benefits:

It opens up the possibility of doing intelligent read-ahead; because the cache tracks 

which parts of which files are in the cache, it can predict where the caller might be 

going next.

It allows the I/O system to bypass going to the file system for requests for data that is 

already in the cache (fast I/O). Because the cache manager knows which parts of which 

files are in the cache, it can return the address of cached data to satisfy an I/O request 

without having to call the file system.

Details of how intelligent read-ahead and fast I/O work are provided later in this chapter.

Stream-Based Caching

The cache manager is also designed to do stream caching, as opposed to file caching. A 

stream is a sequence of bytes within a file. Some file systems, such as NTFS, allow a file to 

contain more than one stream; the cache manager accommodates such file systems by cach-

ing each stream independently. NTFS can exploit this feature by organizing its master file 

table (described in Chapter 11) into streams and by caching these streams as well. In fact, 

although the cache manager might be said to cache files, it actually caches streams (all files 

have at least one stream of data) identified by both a file name and, if more than one stream 

exists in the file, a stream name.

Note Internally, the cache manager is not aware of file or stream names, but uses pointers to 

these objects.
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Recoverable File System Support

Recoverable file systems such as NTFS are designed to reconstruct the disk volume structure 

after a system failure. This capability means that I/O operations in progress at the time of a 

system failure must be either entirely completed or entirely backed out from the disk when 

the system is restarted. Half-completed I/O operations can corrupt a disk volume and even 

render an entire volume inaccessible. To avoid this problem, a recoverable file system main-

tains a log file in which it records every update it intends to make to the file system structure 

(the file system’s metadata) before it writes the change to the volume. If the system fails, 

interrupting volume modifications in progress, the recoverable file system uses information 

stored in the log to reissue the volume updates.

Note The term  metadata applies only to changes in the file system structure: file and directory 

creation, renaming, and deletion.

To guarantee a successful volume recovery, every log file record documenting a volume 

update must be completely written to disk before the update itself is applied to the volume. 

Because disk writes are cached, the cache manager and the file system must coordinate 

metadata updates by ensuring that the log file is flushed ahead of metadata updates. Overall, 

the following actions occur in sequence:

 1. The file system writes a log file record documenting the metadata update it intends to 

make.

 2. The file system calls the cache manager to flush the log file record to disk.

 3. The file system writes the volume update to the cache—that is, it modifies its cached 

metadata.

 4. The cache manager flushes the altered metadata to disk, updating the volume struc-

ture. (Actually, log file records are batched before being flushed to disk, as are volume 

modifications.)

When a file system writes data to the cache, it can supply a logical sequence number (LSN) 

that identifies the record in its log file, which corresponds to the cache update. The cache 

manager keeps track of these numbers, recording the lowest and highest LSNs (representing 

the oldest and newest log file records) associated with each page in the cache. In addition, 

data streams that are protected by transaction log records are marked as “no write” by NTFS 

so that the mapped page writer won’t inadvertently write out these pages before the cor-

responding log records are written. (When the mapped page writer sees a page marked this 

way, it moves the page to a special list that the cache manager then flushes at the appropri-

ate time, such as when lazy writer activity takes place.)
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When it prepares to flush a group of dirty pages to disk, the cache manager determines the 

highest LSN associated with the pages to be flushed and reports that number to the file sys-

tem. The file system can then call the cache manager back, directing it to flush log file data 

up to the point represented by the reported LSN. After the cache manager flushes the log file 

up to that LSN, it flushes the corresponding volume structure updates to disk, thus ensuring 

that it records what it’s going to do before actually doing it. These interactions between the 

file system and the cache manager guarantee the recoverability of the disk volume after a 

system failure.

Cache Virtual Memory Management

Because the Windows system cache manager caches data on a virtual basis, it uses up 

regions of system virtual address space (instead of physical memory) and manages them 

in structures called virtual address control blocks, or VACBs. VACBs define these regions of 

address space into 256-KB slots called views. When the cache manager initializes during the 

bootup process, it allocates an initial array of VACBs to describe cached memory. As caching 

requirements grow and more memory is required, the cache manager allocates more VACB 

arrays, as needed. It can also shrink virtual address space as other demands put pressure on 

the system.

At a file’s first I/O (read or write) operation, the cache manager maps a 256-KB view of the 

256-KB-aligned region of the file that contains the requested data into a free slot in the sys-

tem cache address space. For example, if 10 bytes starting at an offset of 300,000 bytes were 

read into a file, the view that would be mapped would begin at offset 262144 (the second 

256-KB-aligned region of the file) and extend for 256 KB.

The cache manager maps views of files into slots in the cache’s address space on a round-

robin basis, mapping the first requested view into the first 256-KB slot, the second view into 

the second 256-KB slot, and so forth, as shown in Figure 10-2. In this example, File B was 

mapped first, File A second, and File C third, so File B’s mapped chunk occupies the first slot 

in the cache. Notice that only the first 256-KB portion of File B has been mapped, which is 

due to the fact that only part of the file has been accessed and because although File C is 

only 100 KB (and thus smaller than one of the views in the system cache), it requires its own 

256-KB slot in the cache.

The cache manager guarantees that a view is mapped as long as it’s active (although views 

can remain mapped after they become inactive). A view is marked active, however, only 

during a read or write operation to or from the file. Unless a process opens a file by speci-

fying the FILE_FLAG_RANDOM_ACCESS flag in the call to CreateFile, the cache manager 

unmaps inactive views of a file as it maps new views for the file if it detects that the file is 

being accessed sequentially. Pages for unmapped views are sent to the standby or modified 

lists (depending on whether they have been changed), and because the memory manager 
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exports a special interface for the cache manager, the cache manager can direct the pages 

to be placed at the end or front of these lists. Pages that correspond to views of files opened 

with the FILE_FLAG_SEQUENTIAL_SCAN flag are moved to the front of the lists, whereas 

all others are moved to the end. This scheme encourages the reuse of pages belonging to 

sequentially read files and specifically prevents a large file copy operation from affecting 

more than a small part of physical memory. The flag also affects unmapping: the cache man-

ager will aggressively unmap views when this flag is supplied.

System cache

View 

View 0
View 1
View 2
View 3
View 4
View 5
View 6
View 7
View 8

Section 0
Section 1

Section 0
Section 1
Section 2

Section 0

File A (500 KB)

File B (750 KB)

File C (100 KB)

FIGURE 10-2 Files of varying sizes mapped into the system cache

If the cache manager needs to map a view of a file and there are no more free slots in the 

cache, it will unmap the least recently mapped inactive view and use that slot. If no views are 

available, an I/O error is returned, indicating that insufficient system resources are available 

to perform the operation. Given that views are marked active only during a read or write 

operation, however, this scenario is extremely unlikely because thousands of files would have 

to be accessed simultaneously for this situation to occur.

Cache Size

In the following sections, we’ll explain how Windows computes the size of the system cache, 

both virtually and physically. As with most calculations related to memory management, the 

size of the system cache depends on a number of factors.

Cache Virtual Size

On a 32-bit Windows system, the virtual size of the system cache is limited solely by the 

amount of kernel-mode virtual address space and the SystemCacheLimit registry key that 
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can be optionally configured. (See Chapter 9 for more information on limiting the size of 

the kernel virtual address space.) This means that the cache size is capped by the 2-GB sys-

tem address space, but it is typically significantly smaller because the system address space 

is shared with other resources, including system paged table entries (PTEs), nonpaged and 

paged pool, and page tables. The maximum virtual cache size is 1,024 GB (1 TB) on 64-bit 

Windows.

Cache Working Set Size

As mentioned earlier, one of the key differences in the design of the cache manager from 

that of other operating systems is the delegation of physical memory management to the 

global memory manager. Because of this, the existing code that handles working set expan-

sion and trimming, as well as managing the modified and standby lists, is also used to control 

the size of the system cache, dynamically balancing demands for physical memory between 

processes and the operating system.

The system cache doesn’t have its own working set but rather shares a single system set 

that includes cache data, paged pool, pageable Ntoskrnl code, and pageable driver code. 

As explained in the section “System Working Set” in Chapter 9, this single working set is 

called internally the system cache working set even though the system cache is just one of 

the components that contribute to it. For the purposes of this book, we’ll refer to this work-

ing set simply as the system working set. Also explained in Chapter 9 is the fact that if the 

LargeSystemCache registry value is 1, the memory manager favors the system working set 

over that of processes running on the system.

You can examine the physical size of the system cache compared to that of the total system 

working set as well as page fault information on the system working set by examining the 

performance counters or system variables listed in Table 10-1.

TABLE 10-1 System Variables for the Physical Size of the System Cache  

and Page Fault Information

Performance Counter System Variable (in Pages) Description

Memory: System Cache 

Resident Bytes

MmSystemCachePage Physical memory consumed 

by the system cache.

Memory: Cache Bytes MmSystemCacheWs.WorkingSetSize Total size of the system work-

ing set (including the cache, 

paged pool, pageable code, 

and system mapped views). 

This is not the size of the 

cache (as the name implies)!

Memory: Cache Bytes 

Peak

MmSystemCacheWs.PeakWorkingSetSize Peak system working set size.

Memory: Cache Faults/

sec

MmSystemCacheWs.PageFaultCount Page faults in the system 

working set (not just the 

cache).
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EXPERIMENT: Looking at the Cache’s Working Set

The !filecache debugger command dumps information about the physical memory the 

cache is using, the current and peak working set sizes, the number of valid pages asso-

ciated with views, and the names of files mapped into views, where applicable, as you 

can see in the following output. (File system drivers cache metadata, such as directory 

structures and volume bitmaps, by using unnamed file streams.)

lkd> !filecache 

***** Dump file cache****** 

 Reading and sorting VACBs ... 

 Processing 572 active VACBs ... 

File Cache Information 

 Current size 91372 kb 

 Peak size    112580 kb 

 572 Control Areas 

 Loading file cache database (100% of 523264 PTEs) 

 SkippedPageTableReads = 936 

 File cache has 14099 valid pages 

 

 

 Usage Summary (in Kb): 

Control Valid Standby/Dirty Shared Locked FsContext Name 

84445288  5220     16     0     0 8443dd70  $Mft 

84bbcaf8    76      0     0     0 87748b18  $Directory 

850b5158     4      0     0     0 9000e528  $Directory 

8522b008  1136      0     0     0 900b3d80  INDEX.BTR 

84c6b008    60      0     0     0 8d7b5708  $Directory 

8443e2a8  3088   6656     0     0 8443e578  $LogFile 

84c03ae8    68      0     0     0 93fc4548 

Microsoft-Windows-Resource-Exhaustion-Detector%4Operational.evtx 

84453368    28      0     0     0 93f79d08  $Directory 

84a20398    20      0     0     0 93ea18d8  $Directory 

850f4298   288    128     0     0 91dbf0f8 

Microsoft-Windows-RestartManager%4Operational.evtx 

8520f2e0  5792    120     0     0 93e60a08  ntkrpamp.pdb 

850e6bc8     4      0     0     0 85cffd08  $Directory 

8505d910     4      0     0     0 92e560f8  $Directory 

8443d368     4      0     0     0 8443d760  $MftMirr 

84ba59d8   128      0     0     0 8de50d80  NTUSER.DAT 

84446820   512      0     0     0 84446a98  $BitMap 

84447270    12      0     0     0 844475a0  $Mft 

84f36880   128      0     0     0 8de21358  NTUSER.DAT 

8444c440    44      0     0     0 8318be60  $Directory 

8462a8e0 16656      0     0     0 877560f8  COMPONENTS 

84402a00     4      0     0     0 83144d08  $Directory 

...
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Cache Physical Size

While the system working set includes the amount of physical memory that is mapped into 

views in the cache’s virtual address space, it does not necessarily reflect the total amount 

of file data that is cached in physical memory. There can be a discrepancy between the two 

values because additional file data might be in the memory manager’s standby or modified 

page lists.

Recall from Chapter 9 that during the course of working set trimming or page replacement 

the memory manager can move dirty pages from a working set to either the standby list or 

modified page list, depending on whether the page contains data that needs to be written to 

the paging file or another file before the page can be reused. If the memory manager didn’t 

implement these lists, any time a process accessed data previously removed from its working 

set, the memory manager would have to hard-fault it in from disk. Instead, if the accessed 

data is present on either of these lists, the memory manager simply soft-faults the page back 

into the process’s working set. Thus, the lists serve as in-memory caches of data that’s stored 

in the paging file, executable images, or data files. Thus, the total amount of file data cached 

on a system includes not only the system working set but the combined sizes of the standby 

and modified page lists as well.

An example illustrates how the cache manager can cause much more file data than that con-

tainable in the system working set to be cached in physical memory. Consider a system that 

acts as a dedicated file server. A client application accesses file data from across the network, 

while a server, such as the file server driver (\Windows\System32\Drivers\Srv2.sys, described 

in Chapter 13), uses cache manager interfaces to read and write file data on behalf of the 

client. If the client reads through several thousand files of 1 MB each, the cache manager 

will have to start reusing views when it runs out of mapping space (and can’t enlarge the 

VACB mapping area). For each file read thereafter, the cache manager unmaps views and 

remaps them for new files. When the cache manager unmaps a view, the memory manager 

doesn’t discard the file data in the cache’s working set that corresponds to the view, it moves 

the data to the standby list. In the absence of any other demand for physical memory, the 

standby list can consume almost all the physical memory that remains outside the system 

working set. In other words, virtually all the server’s physical memory will be used to cache 

file data, as shown in Figure 10-3.

Standby list
System

working set
assigned to virtual cache

Other

~7 GB960 MB

8 GB physical memory

FIGURE 10-3 Example in which most of physical memory is being used by the file cache
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Because the total amount of file data cached includes the system working set, modified page 

list, and standby list—the sizes of which are all controlled by the memory manager—it is in 

a sense the real cache manager. The cache manager subsystem simply provides convenient 

interfaces for accessing file data through the memory manager. It also plays an important 

role with its read-ahead and write-behind policies in influencing what data the memory 

manager keeps present in physical memory, as well as with managing system virtual address 

views of the space.

To try and accurately reflect the total amount of file data that’s cached on a system, both 

Task Manager and Process Explorer show a value named System Cache in their performance 

view that reflects the combined size of the system working set, standby list, and modified 

page list. Figure 10-4 shows the system information view in Process Explorer and the System 

Cache value in the Physical Memory area in the middle of the figure.

FIGURE 10-4 Process Explorer’s System Information dialog box

Cache Data Structures

The cache manager uses the following data structures to keep track of cached files:

Each 256-KB slot in the system cache is described by a VACB.

Each separately opened cached file has a private cache map, which contains informa-

tion used to control read-ahead (discussed later in the chapter).
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Each cached file has a single shared cache map structure, which points to slots in the 

system cache that contain mapped views of the file.

These structures and their relationships are described in the next sections.

Systemwide Cache Data Structures

As previously described, the cache manager keeps track of the state of the views in the sys-

tem cache by using an array of data structures called virtual address control block (VACB) 

arrays that are stored in nonpaged pool. On a 32-bit system, each VACB is 32 bytes in size 

and a VACB array is 128 KB, resulting in 4,096 VACBs per array. On a 64-bit system, a VACB 

is 64 bytes, resulting in 2,048 VACBs per array. The cache manager allocates the initial VACB 

array during system initialization and links it into the systemwide list of VACB arrays called 

CcVacbArrays. Each VACB represents one 256-KB view in the system cache, as shown in 

Figure 10-5. The structure of a VACB is shown in Figure 10-6.

Additionally, each VACB array is composed of two kinds of VACB: low priority mapping VACBs 

and high priority mapping VACBs. The system allocates 64 initial high priority VACBs for each 

VACB array. High priority VACBs have the distinction of having their views preallocated from 

system address space. When the memory manager has no views to give to the cache man-

ager at the time of mapping some data, and if the mapping request is marked as high prior-

ity, the cache manager will use one of the preallocated views present in a high priority VACB. 

It uses these high priority VACBs, for example, for critical file system metadata as well as for 

purging data from the cache. After high priority VACBs are gone, however, any operation 

requiring a VACB view will fail with insufficient resources. Typically, the mapping priority is 

set to the default of low, but by using the PIN_HIGH_PRIORITY flag when pinning (described 

later) cached data, file systems can request a high priority VACB to be used instead, if one is 

needed.

System VACB array list

VACB n array

VACB 0 array
VACB 1 array
VACB 2 array
VACB 3 array
VACB 4 array
VACB 5 array
VACB 6 array
VACB 7 array

. . .

. . .

. . .

. . .

. . .

. . .

System cache
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View 2
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View 4
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View 6
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. . .

. . .

. . .

. . .

. . .

. . .

FIGURE 10-5 System VACB array
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Virtual address of data in system cache

Pointer to shared cache map

File offset                Active count

Link entry to LRU list head

Pointer to owning VACB array

FIGURE 10-6 VACB structure

As you can see in Figure 10-6, the first field in a VACB is the virtual address of the data in the 

system cache. The second field is a pointer to the shared cache map structure, which identi-

fies which file is cached. The third field identifies the offset within the file at which the view 

begins (always based on 256-KB granularity). Given this granularity, the bottom 16 bits of 

the file offset will always be zero, so those bits are reused to store the number of references 

to the view—that is, how many active reads or writes are accessing the view. The fourth field 

links the VACB into a list of least-recently-used (LRU) VACBs when the cache manager frees 

the VACB; the cache manager first checks this list when allocating a new VACB. Finally, the 

fifth field links this VACB to the VACB array header representing the array in which the VACB 

is stored.

During an I/O operation on a file, the file’s VACB reference count is incremented and then it’s 

decremented when the I/O operation is over. When the reference count is nonzero the VACB 

is active. For access to file system metadata, the active count represents how many file system 

drivers have the pages in that view locked into memory.

EXPERIMENT: Looking at VACBs and VACB Statistics

The cache manager internally keeps track of various values that are useful to develop-

ers and support engineers when debugging crash dumps. All these debugging vari-

ables start with the CcDbg prefix, which makes it easy to see the whole list, thanks to 

the x command:

lkd> x nt!*ccdbg* 

81d7c09c nt!CcDbgNumberOfFailedMappingsDueToVacbSpace = <no type information> 

81d7c0a8 nt!CcDbgNumberOfVacbArraysAllocated = <no type information> 

81d7c08c nt!CcDbgNumberOfFailedBitmapAllocations = <no type information> 

81d7c098 nt!CcDbgNumberOfFailedHighPriorityMappingsDueToMmResources = <no type 

information> 

...

Using these variables and your knowledge of the VACB array header data structures, 

you can use the kernel debugger to list all the VACB array headers. The CcVacbArrays 
variable stores the list head, which you can print with the dl or !list command, and then 

use the debugger’s support for list traversal and type referencing to dump the contents 

of the _VACB_ARRAY_HEADERs on the list:
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lkd> !list "-t _LIST_ENTRY.Flink -e -x \"dt _VACB_ARRAY_HEADER @$extret\" 

poi(CcVacbArrays)" 

dt _VACB_ARRAY_HEADER @$extret  

nt!_VACB_ARRAY_HEADER 

   +0x000 Links            : _LIST_ENTRY [ 0x81d7c0c8 - 0x81d7c0c8 ] 

   +0x008 MappingCount     : 0x810 

   +0x00c Reserved         : 0

The output shows that the system has only one VACB array with 2,064 (0x810) active 

VACBs. 

Finally, the CcNumberOfFreeVacbs variable stores the number of VACBs on the free 

VACB list. Dumping this variable on the system used for the experiment results in 2,032 

(0x7f1):

lkd> dd CcNumberOfFreeVacbs l 1 

81d7c0d8  000007f1

As expected, the sum of the free (2,032) and active VACBs (0x7f1—2,064 decimal) on 

a 32-bit system with one VACB array equals 4,096, the number of VACBs in one VACB 

array. If the system were to run out of free VACBs, the cache manager would try to allo-

cate a new VACB array.

Per-File Cache Data Structures

Each open handle to a file has a corresponding file object. (File objects are explained in detail 

in Chapter 7.) If the file is cached, the file object points to a private cache map structure that 

contains the location of the last two reads so that the cache manager can perform intelligent 

read-ahead (described later in the section “Intelligent Read-Ahead”). In addition, all the pri-

vate cache maps for open instances of a file are linked together.

Each cached file (as opposed to file object) has a shared cache map structure that describes 

the state of the cached file, including its size and its valid data length. (The function of the 

valid data length field is explained in the section “Write-Back Caching and Lazy Writing.”) The 

shared cache map also points to the section object (maintained by the memory manager and 

which describes the file’s mapping into virtual memory), the list of private cache maps associ-

ated with that file, and any VACBs that describe currently mapped views of the file in the sys-

tem cache. (See Chapter 9 for more about section object pointers.) The relationships among 

these per-file cache data structures are illustrated in Figure 10-7.

When asked to read from a particular file, the cache manager must determine the answers to 

two questions:

 1. Is the file in the cache?

 2. If so, which VACB, if any, refers to the requested location?
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In other words, the cache manager must find out whether a view of the file at the desired 

address is mapped into the system cache. If no VACB contains the desired file offset, the 

requested data isn’t currently mapped into the system cache.

Shared cache map

Entry 3

List of private
cache maps
Open count

File size
Valid data length

Entry 0
Entry 1
Entry 2

Section object pointers

File object

File object

Private cache map

Read-ahead information

Pointer to 
additional VACB 

index array

Next private
cache map
for this file

Next shared
cache map

VACB

VACB index
array

VACB index array

FIGURE 10-7 Per-file cache data structures

To keep track of which views for a given file are mapped into the system cache, the cache 

manager maintains an array of pointers to VACBs, which is known as the VACB index array. 

The first entry in the VACB index array refers to the first 256 KB of the file, the second entry 

to the second 256 KB, and so on. The diagram in Figure 10-8 shows four different sections 

from three different files that are currently mapped into the system cache.

When a process accesses a particular file in a given location, the cache manager looks in 

the appropriate entry in the file’s VACB index array to see whether the requested data has 

been mapped into the cache. If the array entry is nonzero (and hence contains a pointer to a 

VACB), the area of the file being referenced is in the cache. The VACB, in turn, points to the 

location in the system cache where the view of the file is mapped. If the entry is zero, the 

cache manager must find a free slot in the system cache (and therefore a free VACB) to map 

the required view.
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FIGURE 10-8 VACB index arrays

As a size optimization, the shared cache map contains a VACB index array that is four entries 

in size. Because each VACB describes 256 KB, the entries in this small, fixed-size index array 

can point to VACB array entries that together describe a file of up to 1 MB. If a file is larger 

than 1 MB, a separate VACB index array is allocated from nonpaged pool, based on the size 

of the file divided by 256 KB and rounded up in the case of a remainder. The shared cache 

map then points to this separate structure.

As a further optimization, the VACB index array allocated from nonpaged pool becomes a 

sparse multilevel index array if the file is larger than 32 MB, where each index array consists 

of 128 entries. You can calculate the number of levels required for a file with the following 

formula:

(Number of bits required to represent file size – 18) / 7

Round the result of the equation up to the next whole number. The value 18 in the equation 

comes from the fact that a VACB represents 256 KB, and 256 KB is 218. The value 7 comes 

from the fact that each level in the array has 128 entries and 27 is 128. Thus, a file that has a 

size that is the maximum that can be described with 63 bits (the largest size the cache man-

ager supports) would require only seven levels. The array is sparse because the only branches 

that the cache manager allocates are ones for which there are active views at the lowest-level 

index array. Figure 10-9 shows an example of a multilevel VACB array for a sparse file that is 

large enough to require three levels.
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FIGURE 10-9 Multilevel VACB arrays

This scheme is required to efficiently handle sparse files that might have extremely large file 

sizes with only a small fraction of valid data because only enough of the array is allocated 

to handle the currently mapped views of a file. For example, a 32-GB sparse file for which 

only 256 KB is mapped into the cache’s virtual address space would require a VACB array 

with three allocated index arrays because only one branch of the array has a mapping and a 

32-GB (235 bytes) file requires a three-level array. If the cache manager didn’t use the multi-

level VACB index array optimization for this file, it would have to allocate a VACB index array 

with 128,000 entries, or the equivalent of 1,000 VACB index arrays.
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EXPERIMENT: Looking at Shared and Private Cache Maps

You can use the kernel debugger’s dt command to look at the shared and private cache 

map data structure definitions and examine the structures on a live system. First, exe-

cute the !filecache command and locate an entry in the VACB output with a file name 

you recognize. In this example, the file is the Debugging Tools for Windows Help file:

8653c828  120  160   0   0 debugger.chw

The first address is that of a control area data structure, which the memory manager 

uses to keep track of an address range. (See Chapter 9 for more information.) The con-

trol area stores the pointer to the file object that corresponds to the view in the cache. 

A file object identifies an instance of an open file. Execute the following command 

using the address of the control area of the entry you identified to see the control area 

structure:

lkd> !ca 8653c828    

  

ControlArea @8653c828  

  Segment:    e1bce428    Flink              0   Blink                 0  

  Section Ref        1    Pfn Ref           46   Mapped Views          4  

  User Ref           0    WaitForDel         0   Flush Count           0  

  File Object 86960228    ModWriteCount      0   System Views          0  

  

  Flags (8008080) File WasPurged Accessed   

  

  File: \Program Files\Debugging Tools for Windows (x86)\debugger.chw

Next look at the file object referenced by the control area with this command:

lkd> dt nt!_FILE_OBJECT 0x86960228 

   +0x000 Type             : 5 

   +0x002 Size             : 128 

   +0x004 DeviceObject     : 0x84a69a18 _DEVICE_OBJECT 

   +0x008 Vpb              : 0x84a63278 _VPB 

   +0x00c FsContext        : 0x9ae3e768  

   +0x010 FsContext2       : 0xad4a0c78  

   +0x014 SectionObjectPointer : 0x86724504 _SECTION_OBJECT_POINTERS 

   +0x018 PrivateCacheMap  : 0x86b48460  

   +0x01c FinalStatus      : 0 

   +0x020 RelatedFileObject : (null)  

   +0x024 LockOperation    : 0 '' 

...

The private cache map is at offset 0x18:

lkd> dt nt!_PRIVATE_CACHE_MAP 0x86b48460  

   +0x000 NodeTypeCode     : 766 

   +0x000 Flags            : _PRIVATE_CACHE_MAP_FLAGS 

   +0x000 UlongFlags       : 0x1402fe 

   +0x004 ReadAheadMask    : 0xffff 

   +0x008 FileObject       : 0x86960228 _FILE_OBJECT 

   +0x010 FileOffset1      : _LARGE_INTEGER 0x146 
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   +0x018 BeyondLastByte1  : _LARGE_INTEGER 0x14a 

   +0x020 FileOffset2      : _LARGE_INTEGER 0x14a 

   +0x028 BeyondLastByte2  : _LARGE_INTEGER 0x156 

   +0x030 ReadAheadOffset  : [2] _LARGE_INTEGER 0x0 

   +0x040 ReadAheadLength  : [2] 0 

   +0x048 ReadAheadSpinLock : 0 

   +0x04c PrivateLinks     : _LIST_ENTRY [ 0x86b48420 - 0x86b48420 ] 

   +0x054 ReadAheadWorkItem : (null)

Finally, you can locate the shared cache map in the SectionObjectPointer field of the 

file object and then view its contents:

lkd> dt nt!_SECTION_OBJECT_POINTERS  0x86724504  

   +0x000 DataSectionObject : 0x867548f0  

   +0x004 SharedCacheMap   : 0x86b48388  

   +0x008 ImageSectionObject : (null) 

 

lkd> dt nt!_SHARED_CACHE_MAP 0x86b48388  

   +0x000 NodeTypeCode     : 767 

   +0x002 NodeByteSize     : 320 

   +0x004 OpenCount        : 1 

   +0x008 FileSize         : _LARGE_INTEGER 0x125726 

   +0x010 BcbList          : _LIST_ENTRY [ 0x86b48398 - 0x86b48398 ] 

   +0x018 SectionSize      : _LARGE_INTEGER 0x140000 

   +0x020 ValidDataLength  : _LARGE_INTEGER 0x125726 

   +0x028 ValidDataGoal    : _LARGE_INTEGER 0x125726 

   +0x030 InitialVacbs     : [4] (null)  

   +0x040 Vacbs            : 0x867de330  -> 0x84738b30 _VACB 

   +0x044 FileObjectFastRef : _EX_FAST_REF 

   +0x048 ActiveVacb       : 0x84738b30 _VACB    

...

Alternatively, you can use the !fileobj command to look up and display much of this 

information automatically. For example, using this command on the same file object 

referenced earlier results in the following output:

lkd> !fileobj 0x86960228 

 

\Program Files\Debugging Tools for Windows (x86)\debugger.chw 

 

Device Object: 0x84a69a18   \Driver\volmgr 

Vpb: 0x84a63278 

Event signalled 

Access: Read SharedRead SharedWrite  

 

Flags:  0xc0042 

 Synchronous IO 

 Cache Supported 

 Handle Created 

 Fast IO Read 

 

FsContext: 0x9ae3e768 FsContext2: 0xad4a0c78 

Private Cache Map: 0x86b48460 

CurrentByteOffset: 156 
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Cache Data: 

  Section Object Pointers: 86724504 

  Shared Cache Map: 86b48388         File Offset: 156 in VACB number 0 

  Vacb: 84738b30 

  Your data is at: b1e00156

File System Interfaces

The first time a file’s data is accessed for a read or write operation, the file system driver is 

responsible for determining whether some part of the file is mapped in the system cache. If 

it’s not, the file system driver must call the CcInitializeCacheMap function to set up the per-

file data structures described in the preceding section.

Once a file is set up for cached access, the file system driver calls one of several functions to 

access the data in the file. There are three primary methods for accessing cached data, each 

intended for a specific situation:

The copy method copies user data between cache buffers in system space and a pro-

cess buffer in user space.

The mapping and pinning method uses virtual addresses to read and write data directly 

from and to cache buffers.

The physical memory access method uses physical addresses to read and write data 

directly from and to cache buffers.

File system drivers must provide two versions of the file read operation—cached and 

noncached—to prevent an infinite loop when the memory manager processes a page fault. 

When the memory manager resolves a page fault by calling the file system to retrieve data 

from the file (via the device driver, of course), it must specify this noncached read operation 

by setting the “no cache” flag in the IRP.

Figure 10-10 illustrates the typical interactions between the cache manager, the memory 

manager, and file system drivers in response to user read or write file I/O. The cache manager 

is invoked by a file system through the copy interfaces (the CcCopyRead and CcCopyWrite 

paths). To process a CcFastCopyRead or CcCopyRead read, for example, the cache manager 

creates a view in the cache to map a portion of the file being read and reads the file data 

into the user buffer by copying from the view. The copy operation generates page faults as it 

accesses each previously invalid page in the view, and in response the memory manager initi-

ates noncached I/O into the file system driver to retrieve the data corresponding to the part 

of the file mapped to the page that faulted.

The next three sections explain these cache access mechanisms, their purpose, and how 

they’re used.
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FIGURE 10-10 File system interaction with cache and memory managers

Copying to and from the Cache

Because the system cache is in system space, it is mapped into the address space of every 

process. As with all system space pages, however, cache pages aren’t accessible from user 

mode because that would be a potential security hole. (For example, a process might not 

have the rights to read a file whose data is currently contained in some part of the system 

cache.) Thus, user application file reads and writes to cached files must be serviced by kernel-

mode routines that copy data between the cache’s buffers in system space and the applica-

tion’s buffers residing in the process address space. The functions that file system drivers can 

use to perform this operation are listed in Table 10-2.

TABLE 10-2 Kernel-Mode Functions for Copying to and from the Cache

Function Description

CcCopyRead Copies a specified byte range from the system cache to a user buffer

CcFastCopyRead Faster variation of CcCopyRead, but limited to 32-bit file offsets and 

 synchronous reads 

CcCopyWrite Copies a specified byte range from a user buffer to the system cache

CcFastCopyWrite Variant of CcCopyWrite, but limited to 32-bit file offsets and synchronous, 

non-write-through writes; used by redirectors

You can examine read activity from the cache via the performance counters or system per-

processor variables stored in the processor’s control block (KPRCB) listed in Table 10-3.
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TABLE 10-3 KPRCB Fields for Examining Read Activity from the Cache

Performance Counter KPRCB Field (Count) Description

Cache: Copy Read Hits % (CcCopyReadWait + 
CcCopyReadNoWait) /  
(CcCopyReadWait +  
(CcCopyReadWaitMiss +  
CcCopyReadNoWait) +  
CcCopyReadNoWaitMiss)

Percentage of copy reads to parts of files 

that were in the cache (A copy read can 

still generate paging I/O—the Memory: 

Cache Faults/sec counter reports page 

fault activity for the system working set 

but includes both hard and soft page 

faults, so the counter still doesn’t indicate 

actual paging I/O caused by cache faults.)

Cache: Copy Reads/sec CcCopyReadWait +  
CcCopyReadNoWait

Total copy reads from the cache

Cache: Sync Copy  

Reads/sec

CcCopyReadWait Synchronous copy reads from the cache

Cache: Async Copy  

Reads/sec

CcCopyReadNoWait Asynchronous copy reads from the cache

Caching with the Mapping and Pinning Interfaces

Just as user applications read and write data in files on a disk, file system drivers need to read 

and write the data that describes the files themselves (the metadata, or volume structure 

data). Because the file system drivers run in kernel mode, however, they could, if the cache 

manager were properly informed, modify data directly in the system cache. To permit this 

optimization, the cache manager provides the functions shown in Table 10-4. These func-

tions permit the file system drivers to find where in virtual memory the file system metadata 

resides, thus allowing direct modification without the use of intermediary buffers.

TABLE 10-4 Functions for Finding Metadata Locations

Function Description

CcMapData Maps the byte range for read access

CcPinRead Maps the byte range for read/write access and pins it

CcPreparePinWrite Maps and pins the byte range for write access (reads are not valid)

CcPinMappedData Pins a previously mapped buffer

CcSetDirtyPinnedData Notifies the cache manager that the data has been modified

CcUnpinData Releases the pages so that they can be removed from memory

If a file system driver needs to read file system metadata in the cache, it calls the cache man-

ager’s mapping interface to obtain the virtual address of the desired data. The cache man-

ager touches all the requested pages to bring them into memory and then returns control to 

the file system driver. The file system driver can then access the data directly.

If the file system driver needs to modify cache pages, it calls the cache manager’s pinning 

services, which keep the pages active in virtual memory so that they cannot be reclaimed. 
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The pages aren’t actually locked into memory (such as when a device driver locks pages for 

direct memory access transfers). Most of the time, a file system driver will mark its metadata 

stream “no write”, which instructs the memory manager’s mapped page writer (explained in 

Chapter 9) to not write the pages to disk until explicitly told to do so. When the file system 

driver unpins (releases) them, the cache manager releases its resources so that it can lazily 

flush any changes to disk and release the cache view that the metadata occupied.

The mapping and pinning interfaces solve one thorny problem of implementing a file system: 

buffer management. Without directly manipulating cached metadata, a file system must 

predict the maximum number of buffers it will need when updating a volume’s structure. By 

allowing the file system to access and update its metadata directly in the cache, the cache 

manager eliminates the need for buffers, simply updating the volume structure in the virtual 

memory the memory manager provides. The only limitation the file system encounters is the 

amount of available memory.

You can examine pinning and mapping activity in the cache via the performance counters or 

per-processor variables stored in the processor’s control block (KPRCB) listed in Table 10-5.

TABLE 10-5 KPRCB Fields for Examining Pinning and Mapping Activity

Performance Counter KPRCB Field (Count) Description

Cache: Data Map Hits % (CcMapDataWait +  
CcMapDataNoWait) /  
(CcMapDataWait +  
CcMapDataNoWait) +  
(CcMapDataWaitMiss +  
CcMapDataNoWaitMiss)

Percentage of data maps to parts of 

files that were in the cache (A copy 

read can still generate paging I/O.)

Cache: Data Maps/sec CcMapDataWait +  
CcMapDataNoWait

Total data maps from the cache

Cache: Sync Data Maps/sec CcMapDataWait Synchronous data maps from the 

cache

Cache: Async Data Maps/sec CcMapDataNoWait Asynchronous data maps from the 

cache

Cache: Data Map Pins/sec CcPinMappedDataCount Number of requests to pin mapped 

data

Cache: Pin Read Hits % (CcPinReadWait +  
CcPinReadNoWait) /  
(CcPinReadWait +  
CcPinReadNoWait) +  
(CcPinReadWaitMiss +  
CcPinReadNoWaitMiss)

Percentage of pinned reads to parts 

of files that were in the cache (A pin 

read can still generate paging I/O.)

Cache: Pin Reads/sec CcPinReadWait +  
CcPinReadNoWait

Total pinned reads from the cache

Cache: Sync Pin Reads/sec CcPinReadWait Synchronous pinned reads from the 

cache

Cache: Async Pin Reads/sec CcPinReadNoWait Asynchronous pinned reads from the 

cache



872 Windows Internals, Fifth Edition

Caching with the Direct Memory Access Interfaces

In addition to the mapping and pinning interfaces used to access metadata directly in the 

cache, the cache manager provides a third interface to cached data: direct memory access 
(DMA). The DMA functions are used to read from or write to cache pages without interven-

ing buffers, such as when a network file system is doing a transfer over the network.

The DMA interface returns to the file system the physical addresses of cached user data 

(rather than the virtual addresses, which the mapping and pinning interfaces return), which 

can then be used to transfer data directly from physical memory to a network device. 

Although small amounts of data (1 KB to 2 KB) can use the usual buffer-based copying inter-

faces, for larger transfers the DMA interface can result in significant performance improve-

ments for a network server processing file requests from remote systems.

To describe these references to physical memory, a memory descriptor list (MDL) is used. 

(MDLs were introduced in Chapter 9.) The four separate functions described in Table 10-6 

create the cache manager’s DMA interface.

TABLE 10-6 Functions That Create the DMA Interface

Function Description

CcMdlRead Returns an MDL describing the specified byte range

CcMdlReadComplete Frees the MDL

CcMdlWrite Returns an MDL describing a specified byte range (possibly containing 

zeros)

CcMdlWriteComplete Frees the MDL, and marks the range as modified

You can examine MDL activity from the cache via the performance counters or per-processor 

variables stored in the processor’s control block (KPRCB) listed in Table 10-7.

TABLE 10-7 KPRCB Fields for Examining MDL Activity from the Cache

Performance Counter KPRCB Field (Count) Description

Cache: MDL Read Hits % (CcMdlReadWait +  
CcMdlReadNoWait) /  
(CcMdlReadWait +  
CcMdlReadNoWait) +  
(CcMdlReadWaitMiss +  
CcMdlReadNoWaitMiss)

Percentage of MDL reads to parts of 

files that were in the cache (References 

to pages satisfied by an MDL read can 

still generate paging I/O.)

Cache: MDL Reads/sec CcMdlReadWait +  
CcMdlReadNoWait

Total MDL reads from the cache

Cache: Sync MDL Reads/sec CcMdlReadWait Synchronous MDL reads from the 

cache

Cache: Async MDL Reads/sec CcMdlReadNoWait Asynchronous MDL reads from the 

cache
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Fast I/O

Whenever possible, reads and writes to cached files are handled by a high-speed mechanism 

named fast I/O. Fast I/O is a means of reading or writing a cached file without going through 

the work of generating an IRP, as described in Chapter 7. With fast I/O, the I/O manager calls 

the file system driver’s fast I/O routine to see whether I/O can be satisfied directly from the 

cache manager without generating an IRP.

Because the cache manager is architected on top of the virtual memory subsystem, file 

system drivers can use the cache manager to access file data simply by copying to or from 

pages mapped to the actual file being referenced without going through the overhead of 

generating an IRP.

Fast I/O doesn’t always occur. For example, the first read or write to a file requires setting 

up the file for caching (mapping the file into the cache and setting up the cache data struc-

tures, as explained earlier in the section “Cache Data Structures”). Also, if the caller specified 

an asynchronous read or write, fast I/O isn’t used because the caller might be stalled during 

paging I/O operations required to satisfy the buffer copy to or from the system cache and 

thus not really providing the requested asynchronous I/O operation. But even on a synchro-

nous I/O, the file system driver might decide that it can’t process the I/O operation by using 

the fast I/O mechanism, say, for example, if the file in question has a locked range of bytes (as 

a result of calls to the Windows LockFile and UnlockFile functions). Because the cache man-

ager doesn’t know what parts of which files are locked, the file system driver must check the 

validity of the read or write, which requires generating an IRP. The decision tree for fast I/O is 

shown in Figure 10-11.

These steps are involved in servicing a read or a write with fast I/O:

 1. A thread performs a read or write operation.

 2. If the file is cached and the I/O is synchronous, the request passes to the fast I/O entry 

point of the file system driver stack. If the file isn’t cached, the file system driver sets up 

the file for caching so that the next time, fast I/O can be used to satisfy a read or write 

request.

 3. If the file system driver’s fast I/O routine determines that fast I/O is possible, it calls the 

cache manager’s read or write routine to access the file data directly in the cache. (If 

fast I/O isn’t possible, the file system driver returns to the I/O system, which then gen-

erates an IRP for the I/O and eventually calls the file system’s regular read routine.)

 4. The cache manager translates the supplied file offset into a virtual address in the cache.

 5. For reads, the cache manager copies the data from the cache into the buffer of the 

process requesting it; for writes, it copies the data from the buffer to the cache.
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 6. One of the following actions occurs:

For reads where FILE_FLAG_RANDOM_ACCESS wasn’t specified when the file was 

opened, the read-ahead information in the caller’s private cache map is updated. 

Read-ahead may also be queued for files for which the FO_RANDOM_ACCESS 

flag is not specified.

For writes, the dirty bit of any modified page in the cache is set so that the lazy 

writer will know to flush it to disk.

For write-through files, any modifications are flushed to disk.

No

Generate IRP

NtReadFile

Synchronize
and cached

data?

Fast I/O
possible?

Is file cached?

Cache manager
copies data to or

from process buffer

Cache manager
initializes cache
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FIGURE 10-11 Fast I/O decision tree

The performance counters or per-processor variables stored in the processor’s control block 

(KPRCB) listed in Table 10-8 can be used to determine the fast I/O activity on the system.
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TABLE 10-8 KPRCB Fields for Determining Fast I/O Activity

Performance Counter KPRCB Field (Count) Description

Cache: Sync Fast Reads/sec CcFastReadWait Synchronous reads that were handled as 

fast I/O requests

Cache: Async Fast Reads/sec CcFastReadNoWait Asynchronous reads that were handled 

as fast I/O requests (These are always 

zero because asynchronous fast reads 

aren’t done in Windows.)

Cache: Fast Read Resource  

Misses/sec

CcFastReadResourceMiss Fast I/O operations that couldn’t be sat-

isfied because of resource conflicts (This 

situation can occur with FAT but not 

with NTFS.)

Cache: Fast Read Not 

Possibles/sec

CcFastReadNotPossible Fast I/O operations that couldn’t be 

satisfied (The file system driver decides; 

for example, files with byte range locks 

can’t use fast I/O.)

Read Ahead and Write Behind

In this section, you’ll see how the cache manager implements reading and writing file data 

on behalf of file system drivers. Keep in mind that the cache manager is involved in file I/O 

only when a file is opened without the FILE_FLAG_NO_BUFFERING flag and then read from 

or written to using the Windows I/O functions (for example, using the Windows ReadFile and 

WriteFile functions). Mapped files don’t go through the cache manager, nor do files opened 

with the FILE_FLAG_NO_BUFFERING flag set.

Note When an application uses the FILE_FLAG_NO_BUFFERING flag to open a file, its file I/O 

must start at device-aligned offsets and be of sizes that are a multiple of the alignment size; its 

input and output buffers must also be device-aligned virtual addresses. For file systems, this usu-

ally corresponds to the sector size (512 bytes on NTFS, typically, and 2,048 bytes on CDFS). One 

of the benefits of the cache manager, apart from the actual caching performance, is the fact that 

it performs intermediate buffering to allow arbitrarily aligned and sized I/O.

Intelligent Read-Ahead

The cache manager uses the principle of spatial locality to perform intelligent read-ahead 

by predicting what data the calling process is likely to read next based on the data that it is 

reading currently. Because the system cache is based on virtual addresses, which are contigu-

ous for a particular file, it doesn’t matter whether they’re juxtaposed in physical memory. 

File read-ahead for logical block caching is more complex and requires tight cooperation 

between file system drivers and the block cache because that cache system is based on the 
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relative positions of the accessed data on the disk, and, of course, files aren’t necessarily 

stored contiguously on disk. You can examine read-ahead activity by using the Cache: Read 

Aheads/sec performance counter or the CcReadAheadIos system variable.

Reading the next block of a file that is being accessed sequentially provides an obvious per-

formance improvement, with the disadvantage that it will cause head seeks. To extend read-

ahead benefits to cases of strided data accesses (both forward and backward through a file), 

the cache manager maintains a history of the last two read requests in the private cache map 

for the file handle being accessed, a method known as asynchronous read-ahead with history. 

If a pattern can be determined from the caller’s apparently random reads, the cache manager 

extrapolates it. For example, if the caller reads page 4000 and then page 3000, the cache 

manager assumes that the next page the caller will require is page 2000 and prereads it.

Note Although a caller must issue a minimum of three read operations to establish a predict-

able sequence, only two are stored in the private cache map.

To make read-ahead even more efficient, the Win32 CreateFile function provides a flag indi-

cating forward sequential file access: FILE_FLAG_SEQUENTIAL_SCAN. If this flag is set, the 

cache manager doesn’t keep a read history for the caller for prediction but instead performs 

sequential read-ahead. However, as the file is read into the cache’s working set, the cache 

manager unmaps views of the file that are no longer active and, if they are unmodified, 

directs the memory manager to place the pages belonging to the unmapped views at the 

front of the standby list so that they will be quickly reused. It also reads ahead two times as 

much data (2 MB instead of 1 MB, for example). As the caller continues reading, the cache 

manager prereads additional blocks of data, always staying about one read (of the size of the 

current read) ahead of the caller.

The cache manager’s read-ahead is asynchronous because it is performed in a thread sepa-

rate from the caller’s thread and proceeds concurrently with the caller’s execution. When 

called to retrieve cached data, the cache manager first accesses the requested virtual page to 

satisfy the request and then queues an additional I/O request to retrieve additional data to 

a system worker thread. The worker thread then executes in the background, reading addi-

tional data in anticipation of the caller’s next read request. The preread pages are faulted into 

memory while the program continues executing so that when the caller requests the data it’s 

already in memory.

For applications that have no predictable read pattern, the FILE_FLAG_RANDOM_ACCESS flag 

can be specified when the CreateFile function is called. This flag instructs the cache manager 

not to attempt to predict where the application is reading next and thus disables read-ahead. 

The flag also stops the cache manager from aggressively unmapping views of the file as the 

file is accessed so as to minimize the mapping/unmapping activity for the file when the appli-

cation revisits portions of the file.
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Write-Back Caching and Lazy Writing

The cache manager implements a write-back cache with lazy write. This means that data 

written to files is first stored in memory in cache pages and then written to disk later. Thus, 

write operations are allowed to accumulate for a short time and are then flushed to disk all at 

once, reducing the overall number of disk I/O operations.

The cache manager must explicitly call the memory manager to flush cache pages because 

otherwise the memory manager writes memory contents to disk only when demand for 

physical memory exceeds supply, as is appropriate for volatile data. Cached file data, how-

ever, represents nonvolatile disk data. If a process modifies cached data, the user expects the 

contents to be reflected on disk in a timely manner.

The decision about how often to flush the cache is an important one. If the cache is flushed 

too frequently, system performance will be slowed by unnecessary I/O. If the cache is flushed 

too rarely, you risk losing modified file data in the cases of a system failure (a loss especially 

irritating to users who know that they asked the application to save the changes) and running 

out of physical memory (because it’s being used by an excess of modified pages).

To balance these concerns, once per second the cache manager’s lazy writer function exe-

cutes on a system worker thread and queues one-eighth of the dirty pages in the system 

cache to be written to disk. If the rate at which dirty pages are being produced is greater 

than the amount the lazy writer had determined it should write, the lazy writer writes an 

additional number of dirty pages that it calculates are necessary to match that rate. System 

worker threads from the systemwide critical worker thread pool actually perform the I/O 

operations.

Note The cache manager provides a means for file system drivers to track when and how much 

data has been written to a file. After the lazy writer flushes dirty pages to the disk, the cache 

manager notifies the file system, instructing it to update its view of the valid data length for 

the file. (The cache manager and file systems separately track the valid data length for a file in 

memory.)

You can examine the activity of the lazy writer by examining the cache performance counters 

or per-processor variables stored in the processor’s control block (KPRCB) listed in Table 10-9.

TABLE 10-9 KPRCB Fields for Examining the Activity of the Lazy Writer

Performance Counter KPRCB Field (Count) Description

Cache: Lazy Write Flushes/sec CcLazyWriteIos Number of lazy writer flushes

Cache: Lazy Write Pages/sec CcLazyWritePages Number of pages written by the lazy 

writer
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EXPERIMENT: Watching the Cache Manager in Action

In this experiment, we’ll use Process Monitor to view the underlying file system activity, 

including cache manager read-ahead and write-behind, when Windows Explorer copies 

a large file (in this example, a CD-ROM image) from one local directory to another. 

First, configure Process Monitor’s filter to include the source and destination file paths, 

the Explorer.exe and System processes, and the ReadFile and WriteFile operations. In 

this example, the c:\source.iso file was copied to c:\programming\source.iso, so the fil-

ter is configured as follows:

You should see a Process Monitor trace like the one shown here after you copy the file:
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The first few entries show the initial I/O processing performed by the copy engine and 

the first cache manager operations. Here are some of the things that you can see:

The initial 1-MB cached read from Explorer at the first entry. The size of this 

read depends on an internal matrix calculation based on the file size and can 

vary from 128 KB to 1 MB. Because this file was large, the copy engine chose 

1 MB.

The 1-MB read is followed by 16 64-KB noncached reads. Noncached reads 

typically indicate activity due to page faults or cache manager access. A closer 

look at the stack trace for these events, which you can see by double-clicking 

an entry and choosing the Stack tab, reveals that indeed the CcCopyRead 

cache manager routine, which is called by the NTFS driver’s read routine, 

causes the memory manager to fault the source data into physical memory:

After these 64-KB page fault I/Os, the cache manager’s read-ahead mechanism 

starts reading the file, which includes the System process’s subsequent non-

cached 2-MB read at the 1-MB offset. Because of the file size and Explorer’s 

read I/O sizes, the cache manager chose 2 MB as the optimal read-ahead size. 

The stack trace for one of the read-ahead operations, shown next, confirms 

that one of the cache manager’s worker threads is performing the read-ahead.
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After this point, Explorer’s 1-MB reads aren’t followed by 64-KB page faults, because 

the read-ahead thread stays ahead of Explorer, prefetching the file data with its 2-MB 

noncached reads. Eventually, after reading about 4 MB of the file, Explorer starts per-

forming writes to the destination file. These are sequential, cached 64-KB writes. After 

about 32 MB of reads, the first WriteFile operation from the System process occurs, 

shown here:
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The write operation’s stack trace, shown here, indicates that the memory manager’s 

mapped page writer thread was actually responsible for the write:

This occurs because for the first couple of megabytes of data, the cache manager 

hadn’t started performing write-behind, so the memory manager’s mapped page 

writer began flushing the modified destination file data (see Chapter 9 for more infor-

mation on the mapped page writer).

To get a clearer view of the cache manager operations, remove Explorer from the 

Process Monitor’s filter so that only the System process operations are visible, as shown 

next.
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With this view, it’s much easier to see the cache manager’s 16-MB write-behind opera-

tions (the maximum write sizes are 1 MB on client versions of Windows and 32 MB on 

server versions; this experiment was performed on a server system). The Time Of Day 

column shows that these operations occur almost exactly 1 second apart. The stack 

trace for one of the write-behind operations, shown here, verifies that a cache manager 

worker thread is performing write-behind:
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As an added experiment, try repeating this process with a remote copy instead (from 

one Windows system to another) and by copying files of varying sizes. You’ll notice 

some different behaviors by the copy engine and the cache manager, both on the 

receiving and sending sides.

Disabling Lazy Writing for a File

If you create a temporary file by specifying the flag FILE_ATTRIBUTE_TEMPORARY in a call 

to the Windows CreateFile function, the lazy writer won’t write dirty pages to the disk unless 

there is a severe shortage of physical memory or the file is explicitly flushed. This character-

istic of the lazy writer improves system performance—the lazy writer doesn’t immediately 

write data to a disk that might ultimately be discarded. Applications usually delete temporary 

files soon after closing them.

Forcing the Cache to Write Through to Disk

Because some applications can’t tolerate even momentary delays between writing a file 

and seeing the updates on disk, the cache manager also supports write-through caching 

on a per–file object basis; changes are written to disk as soon as they’re made. To turn on 

write-through caching, set the FILE_FLAG_WRITE_THROUGH flag in the call to the CreateFile 

function. Alternatively, a thread can explicitly flush an open file, by using the Windows 

FlushFileBuffers function, when it reaches a point at which the data needs to be written to 

disk. You can observe cache flush operations that are the result of write-through I/O requests 

or explicit calls to FlushFileBuffers via the performance counters or per-processor variables 

stored in the processor’s control block (KPRCB) shown in Table 10-10.

TABLE 10-10 KPRCB Fields for Viewing Cache Flush Operations

Performance Counter KPRCB Field (Count) Description

Cache: Data Flushes/sec CcDataFlushes Number of times cache pages were flushed 

explicitly because of write through or  because 

of the lazy writer

Cache: Data Flush Pages/sec CcDataPages Number of pages flushed explicitly because 

of write through or because of the lazy writer

Flushing Mapped Files

If the lazy writer must write data to disk from a view that’s also mapped into another pro-

cess’s address space, the situation becomes a little more complicated, because the cache 

manager will only know about the pages it has modified. (Pages modified by another process 

are known only to that process because the modified bit in the page table entries for modi-

fied pages is kept in the process private page tables.) To address this situation, the memory 
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manager informs the cache manager when a user maps a file. When such a file is flushed in 

the cache (for example, as a result of a call to the Windows FlushFileBuffers function), the 

cache manager writes the dirty pages in the cache and then checks to see whether the file 

is also mapped by another process. When the cache manager sees that the file is, the cache 

manager then flushes the entire view of the section to write out pages that the second pro-

cess might have modified. If a user maps a view of a file that is also open in the cache, when 

the view is unmapped, the modified pages are marked as dirty so that when the lazy writer 

thread later flushes the view, those dirty pages will be written to disk. This procedure works 

as long as the sequence occurs in the following order:

 1. A user unmaps the view.

 2. A process flushes file buffers.

If this sequence isn’t followed, you can’t predict which pages will be written to disk.

EXPERIMENT: Watching Cache Flushes

You can see the cache manager map views into the system cache and flush pages to 

disk by running the Reliability and Performance Monitor and adding the Data Maps/

sec and Lazy Write Flushes/sec counters and then copying a large file from one location 

to another. The generally higher line in the following screen shot shows Data Maps/sec 

and the other shows Lazy Write Flushes/sec.
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Write Throttling

The file system and cache manager must determine whether a cached write request will 

affect system performance and then schedule any delayed writes. First the file system asks 

the cache manager whether a certain number of bytes can be written right now without 

hurting performance by using the CcCanIWrite function and blocking that write if necessary. 

For asynchronous I/O, the file system sets up a callback with the cache manager for automat-

ically writing the bytes when writes are again permitted by calling CcDeferWrite. Otherwise, 

it just blocks and waits on CcCanIWrite to continue. Once it’s notified of an impending 

write operation, the cache manager determines how many dirty pages are in the cache and 

how much physical memory is available. If few physical pages are free, the cache manager 

momentarily blocks the file system thread that’s requesting to write data to the cache. The 

cache manager’s lazy writer flushes some of the dirty pages to disk and then allows the 

blocked file system thread to continue. This write throttling prevents system performance 

from degrading because of a lack of memory when a file system or network server issues a 

large write operation.

Note The effects of write throttling are global to the system because the resource it is based 

on, available physical memory, is global to the system. This means that if heavy write activity to a 

slow device triggers write throttling, writes to other devices will also be throttled.

The dirty page threshold is the number of pages that the system cache will allow to be dirty 

before throttling cached writers. This value is computed at system initialization time and 

depends on the product type (client or server). Two other values are also computed—the top 
dirty page threshold and the bottom dirty page threshold. Depending on memory consump-

tion and the rate at which dirty pages are being processed, the lazy writer calls the internal 

function CcAdjustThrottle, which, on server systems, performs dynamic adjustment of the 

current threshold based on the calculated top and bottom values. This adjustment is made 

to preserve the read cache in cases of a heavy write load that will inevitably overrun the 

cache and become throttled. Table 10-11 lists the algorithms used to calculate the dirty page 

thresholds. 

TABLE 10-11 Algorithms for Calculating the Dirty Page Thresholds

Product 

Type

Dirty Page 

Threshold

Top Dirty Page 

Threshold

Bottom Dirty Page 

Threshold

Client Physical pages / 8 Physical pages / 8 Physical pages / 8

Server Physical pages / 2 Physical pages / 2 Physical pages / 8

Write throttling is also useful for network redirectors transmitting data over slow communi-

cation lines. For example, suppose a local process writes a large amount of data to a remote 

file system over a 9600-baud line. The data isn’t written to the remote disk until the cache 

manager’s lazy writer flushes the cache. If the redirector has accumulated lots of dirty pages 
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that are flushed to disk at once, the recipient could receive a network timeout before the 

data transfer completes. By using the CcSetDirtyPageThreshold function, the cache manager 

allows network redirectors to set a limit on the number of dirty cache pages they can toler-

ate (for each stream), thus preventing this scenario. By limiting the number of dirty pages, the 

redirector ensures that a cache flush operation won’t cause a network timeout.

EXPERIMENT: Viewing the Write-Throttle Parameters

The !defwrites kernel debugger command dumps the values of the kernel vari-

ables the cache manager uses, including the number of dirty pages in the file cache 

(CcTotalDirtyPages), when determining whether it should throttle write operations:

lkd> !defwrites 

*** Cache Write Throttle Analysis *** 

 

 CcTotalDirtyPages:                     7 (      28 Kb) 

 CcDirtyPageThreshold:             425694 ( 1702776 Kb) 

 MmAvailablePages:                 572387 ( 2289548 Kb) 

 MmThrottleTop:                       450 (    1800 Kb) 

 MmThrottleBottom:                     80 (     320 Kb) 

 MmModifiedPageListHead.Total:      10477 (   41908 Kb) 

 

Write throttles not engaged

This output shows that the number of dirty pages is far from the number that triggers 

write throttling (CcDirtyPageThreshold), so the system has not engaged in any write 

throttling.

System Threads

As mentioned earlier, the cache manager performs lazy write and read-ahead I/O opera-

tions by submitting requests to the common critical system worker thread pool. However, it 

does limit the use of these threads to one less than the total number of critical system worker 

threads for small and medium memory systems (two less than the total for large memory 

systems).

Internally, the cache manager organizes its work requests into four lists (though these are 

serviced by the same set of executive worker threads):

The express queue is used for read-ahead operations.

The regular queue is used for lazy write scans (for dirty data to flush), write-behinds, 

and lazy closes.

The fast teardown queue is used when the memory manager is waiting for the data 

section owned by the cache manager to be freed so that the file can be opened with 
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an image section instead, which causes CcWriteBehind to flush the entire file and tear 

down the shared cache map.

The post tick queue is used for the cache manager to internally register for a notifica-

tion after each “tick” of the lazy writer thread—in other words, at the end of each pass.

To keep track of the work items the worker threads need to perform, the cache manager 

creates its own internal per-processor look-aside list, a fixed-length list—one for each pro-

cessor—of worker queue item structures. (Look-aside lists are discussed in Chapter 9.) The 

number of worker queue items depends on system size: 32 for small-memory systems, 64 for 

medium-memory systems, 128 for large-memory client systems, and 256 for large-memory 

server systems. For cross-processor performance, the cache manager also allocates a global 
look-aside list at the same sizes as just described.

Conclusion

The cache manager provides a high-speed, intelligent mechanism for reducing disk I/O and 

increasing overall system throughput. By caching on the basis of virtual blocks, the cache 

manager can perform intelligent read-ahead. By relying on the global memory manager’s 

mapped file primitive to access file data, the cache manager can provide the special fast I/O 

mechanism to reduce the CPU time required for read and write operations and also leave 

all matters related to physical memory management to the single Windows global memory 

manager, thus reducing code duplication and increasing efficiency.
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Chapter 11

File Systems

In this chapter, we present an overview of the file system formats supported by Windows. 

We then describe the types of file system drivers and their basic operation, including how 

they interact with other system components, such as the memory manager and the cache 

manager. Following that is a description of how to use Process Monitor from Windows 

Sysinternals (at www.microsoft.com/technet/sysinternals) to troubleshoot a wide variety of file 

system access problems.

In the balance of the chapter, we first describe the Common Log File System (CLFS), a trans-

actional logging virtual file system implemented on the native Windows file system format, 

NTFS. Then we focus on the on-disk layout of NTFS and its advanced features, such as com-

pression, recoverability, quotas, symbolic links, transactions (which use the services provided 

by CLFS), and encryption.

To fully understand this chapter, you should be familiar with the terminology introduced in 

Chapter 8, including the terms volume and partition. You’ll also need to be acquainted with 

these additional terms:

Sectors are hardware-addressable blocks on a storage medium. Hard disks for x86 

systems almost always define a 512-byte sector size; however, Windows also supports 

large sector disks, which are a new technology that allows access to even larger disks. 

Thus, if the sector size is the standard 512 bytes and the operating system wants to 

modify the 632nd byte on a disk, it must write a 512-byte block of data to the second 

sector on the disk.

File system formats define the way that file data is stored on storage media, and they 

affect a file system’s features. For example, a format that doesn’t allow user permissions 

to be associated with files and directories can’t support security. A file system format 

can also impose limits on the sizes of files and storage devices that the file system sup-

ports. Finally, some file system formats efficiently implement support for either large or 

small files or for large or small disks. NTFS and exFAT are examples of file system for-

mats that offer a different set of features and usage scenarios.

Clusters are the addressable blocks that many file system formats use. Cluster size is 

always a multiple of the sector size, as shown in Figure 11-1. File system formats use 

clusters to manage disk space more efficiently; a cluster size that is larger than the sec-

tor size divides a disk into more manageable blocks. The potential trade-off of a larger 

cluster size is wasted disk space, or internal fragmentation, that results when file sizes 

aren’t perfect multiples of cluster sizes.
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Sector

Cluster (4 sectors)

FIGURE 11-1 Sectors and a cluster on a disk

Metadata is data stored on a volume in support of file system format management. It 

isn’t typically made accessible to applications. Metadata includes the data that defines 

the placement of files and directories on a volume, for example.

Windows File System Formats

Windows includes support for the following file system formats:

CDFS

UDF

FAT12, FAT16, and FAT32

exFAT

NTFS

Each of these formats is best suited for certain environments, as you’ll see in the following 

sections.

CDFS

CDFS (\Windows\System32\Drivers\Cdfs.sys), or CD-ROM file system, is a read-only file 

system driver that supports a superset of the ISO-9660 format as well as a superset of the 

Joliet disk format. While the ISO-9660 format is relatively simple and has limitations such as 

ASCII uppercase names with a maximum length of 32 characters, Joliet is more flexible and 

supports Unicode names of arbitrary length, for example. If structures for both formats are 

present on a disk (to offer maximum compatibility), CDFS uses the Joliet format. CDFS has a 

couple of restrictions:

A maximum file size of 4 GB

A maximum of 65,535 directories
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CDFS is considered a legacy format because the industry has adopted the Universal Disk 

Format (UDF) as the standard for optical media.

UDF

The Windows UDF file system implementation is OSTA (Optical Storage Technology 

Association) UDF-compliant. (UDF is a subset of the ISO-13346 format with extensions for 

formats such as CD-R and DVD-R/RW.) OSTA defined UDF in 1995 as a format to replace the 

ISO-9660 format for magneto-optical storage media, mainly DVD-ROM. UDF is included in 

the DVD specification and is more flexible than CDFS. The UDF file system format has the fol-

lowing traits:

Directory and file names can be 254 ASCII or 127 Unicode characters long.

Files can be sparse. (Sparse files are defined later in the chapter.)

File sizes are specified with 64-bits.

Support for access control lists (ACLs).

Support for alternate data streams.

The UDF driver supports UDF versions up to 2.60. The UDF format was designed with rewrit-

able media in mind. The Windows UDF driver (\Windows\System32\Drivers\Udfs.sys) pro-

vides read-write support for DVD-RAM, CD-R/RW, and DVD+-R/RW drives when using UDF 

2.50 and read-only support when using UDF 2.60. However, Windows does not implement 

support for certain UDF features such as named streams and access control lists.

FAT12, FAT16, and FAT32

Windows supports the FAT file system primarily to enable upgrades from previous versions 

of Windows, for compatibility with other operating systems in multiboot systems, and as a 

format for flash drives or memory cards. The Windows FAT file system driver is implemented 

in \Windows\System32\Drivers\Fastfat.sys.

The name of each FAT format includes a number that indicates the number of bits the format 

uses to identify clusters on a disk. FAT12’s 12-bit cluster identifier limits a partition to storing 

a maximum of 212 (4,096) clusters. Windows uses cluster sizes from 512 bytes to 8 KB in size, 

which limits a FAT12 volume size to 32 MB.

Note All FAT file system types reserve the first two clusters and the last 16 clusters of a volume, 

so the number of usable clusters for a FAT12 volume, for instance, is slightly less than 4,096.
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FAT16, with a 16-bit cluster identifier, can address 216 (65,536) clusters. On Windows, FAT16 

cluster sizes range from 512 bytes (the sector size) to 64 KB, which limits FAT16 volume sizes 

to 4 GB. The cluster size Windows uses depends on the size of a volume. The various sizes are 

listed in Table 11-1. If you format a volume that is less than 16 MB as FAT by using the for-
mat command or the Disk Management snap-in, Windows uses the FAT12 format instead of 

FAT16.

TABLE 11-1 Default FAT16 Cluster Sizes in Windows

Volume Size Default Cluster Size

0–32 MB 512 bytes

32 MB–64 MB 1 KB

64 MB–128 MB 2 KB

128 MB–256 MB 4 KB

256 MB–512 MB 8 KB

512 MB–1,024 MB 16 KB

1,024 MB–2,048 MB 32 KB

2,048 MB–4,096 MB 64 KB

A FAT volume is divided into several regions, which are shown in Figure 11-2. The file alloca-

tion table, which gives the FAT file system format its name, has one entry for each cluster 

on a volume. Because the file allocation table is critical to the successful interpretation of a 

volume’s contents, the FAT format maintains two copies of the table so that if a file system 

driver or consistency-checking program (such as Chkdsk) can’t access one (because of a bad 

disk sector, for example), it can read from the other.

FIGURE 11-2 FAT format organization

Entries in the file allocation table define file-allocation chains (shown in Figure 11-3) for files 

and directories, where the links in the chain are indexes to the next cluster of a file’s data. A 

file’s directory entry stores the starting cluster of the file. The last entry of the file’s alloca-

tion chain is the reserved value of 0xFFFF for FAT16 and 0xFFF for FAT12. The FAT entries for 

unused clusters have a value of 0. You can see in Figure 11-3 that FILE1 is assigned clusters 

2, 3, and 4; FILE2 is fragmented and uses clusters 5, 6, and 8; and FILE3 uses only cluster 7. 

Reading a file from a FAT volume can involve reading large portions of a file allocation table 

to traverse the file’s allocation chains.
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FILE1 0002

0003 0004 0006 0008FFFF FFFF 0000FFFF

FILE2

2 3 4 5 6 7 8 9

0005 FILE3 0007

FIGURE 11-3 Sample FAT file-allocation chains

The root directory of FAT12 and FAT16 volumes is preassigned enough space at the start of a 

volume to store 256 directory entries, which places an upper limit on the number of files and 

directories that can be stored in the root directory. (There’s no preassigned space or size limit 

on FAT32 root directories.) A FAT directory entry is 32 bytes and stores a file’s name, size, 

starting cluster, and time stamp (last-accessed, created, and so on) information. If a file has a 

name that is Unicode or that doesn’t follow the MS-DOS 8.3 naming convention, additional 

directory entries are allocated to store the long file name. The supplementary entries pre-

cede the file’s main entry. Figure 11-4 shows a sample directory entry for a file named “The 

quick brown fox.” The system has created a THEQUI~1.FOX 8.3 representation of the name 

(that is, you don’t see a “.” in the directory entry because it is assumed to come after the 

eighth character) and used two more directory entries to store the Unicode long file name. 

Each row in the figure is made up of 16 bytes.

Second (and last) long entry

Short entry

First long entry

0x42 w n . f o 0x0F 0x00 xCheck
sum

0x0000 0xFFFF 0xFFFF 0xFFFF 0xFFFF 0x0000 0xFFFF 0xFFFF

0x01 T h e q 0x0F 0x00 uCheck
sum

i c k b 0x0000 or

T H E Q U I ˜ 1 F O X 0x20 NT Create time

Create date Last access
date 0x0000 Last modi-

fied time
Last modi-
fied date First cluster File size

FIGURE 11-4 FAT directory entry
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FAT32 uses 32-bit cluster identifiers but reserves the high 4 bits, so in effect it has 28-bit 

cluster identifiers. Because FAT32 cluster sizes can be as large as 32 KB, FAT32 has a theoreti-

cal ability to address 8-terabyte (TB) volumes. Although Windows works with existing FAT32 

volumes of larger sizes (created in other operating systems), it limits new FAT32 volumes to 

a maximum of 32 GB. FAT32’s higher potential cluster numbers let it manage disks more 

efficiently than FAT16; it can handle up to 128-GB volumes with 512-byte clusters. Table 11-2 

shows default cluster sizes for FAT32 volumes.

TABLE 11-2 Default Cluster Sizes for FAT32 Volumes

Partition Size Default Cluster Size

32 MB–8 GB 4 KB

8 GB–16 GB 8 KB

16 GB–32 GB 16 KB

32 GB 32 KB

Besides the higher limit on cluster numbers, other advantages FAT32 has over FAT12 and 

FAT16 include the fact that the FAT32 root directory isn’t stored at a predefined location on 

the volume, the root directory doesn’t have an upper limit on its size, and FAT32 stores a 

second copy of the boot sector for reliability. A limitation FAT32 shares with FAT16 is that the 

maximum file size is 4 GB because directories store file sizes as 32-bit values.

exFAT

Designed by Microsoft, the Extended File Allocation Table file system (exFAT, also called 

FAT64) is an improvement over the traditional FAT file systems and is specifically designed for 

flash drives. The main goal of exFAT is to provide some of the advanced functionality offered 

by NTFS, but without the metadata structure overhead and metadata logging that create 

write patterns not suited for many flash media devices.

As the FAT64 name implies, the file size limit is increased to 264, allowing files up to 16 exa-

bytes. This change is also matched by an increase in the maximum cluster size, which is cur-

rently implemented as 32 MB but can be as large as 2255 sectors. exFAT also adds a bitmap 

that tracks free clusters, which improves the performance of allocation and deletion opera-

tions. Finally, exFAT allows more than 1,000 files in a single directory. These characteristics 

result in increased scalability and support for large disk sizes.

Additionally, exFAT implements certain features previously available only in NTFS, such as 

support for access control lists (ACLs) and transactions (called Transaction-Safe FAT, or TFAT). 

While the Windows Embedded CE implementation of exFAT includes these features, the ver-

sion of exFAT in Windows Vista and Windows Server 2008 does not.

Note ReadyBoost (described in Chapter 9) does not work with exFAT-formatted flash drives.
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NTFS

As we said at the beginning of the chapter, the NTFS file system is the native file system for-

mat of Windows. NTFS uses 64-bit cluster numbers. This capacity gives NTFS the ability to 

address volumes of up to 16 exaclusters; however, Windows limits the size of an NTFS vol-

ume to that addressable with 32-bit clusters, which is slightly less than 256 TB (using 64-KB 

clusters). Table 11-3 shows the default cluster sizes for NTFS volumes. (You can override the 

default when you format an NTFS volume.) NTFS also supports 232–1 files per volume. The 

NTFS format allows for files that are 16 exabytes in size, but the implementation limits the 

maximum file size to 16 TB.

TABLE 11-3 Default Cluster Sizes for NTFS Volumes

Volume Size Default Cluster Size

512 MB or less 512 bytes

512 MB–1,024 MB (1 GB) 1 KB

1,024 MB–2,048 MB (2 GB) 2 KB

Greater than 2,048 MB 4 KB

NTFS includes a number of advanced features, such as file and directory security, alternate 

data streams, disk quotas, sparse files, file compression, symbolic (soft) and hard links, sup-

port for transactional semantics, and encryption. One of its most significant features is recov-
erability. If a system is halted unexpectedly, the metadata of a FAT volume can be left in an 

inconsistent state, leading to the corruption of large amounts of file and directory data. NTFS 

logs changes to metadata in a transactional manner so that file system structures can be 

repaired to a consistent state with no loss of file or directory structure information. (File data 

can be lost, however.) Additionally, the NTFS driver in Windows also implements self-healing, 

a mechanism through which it makes most minor repairs to corruption of file system on-disk 

structures while Windows is running and without requiring a reboot.

We’ll describe NTFS data structures and advanced features in detail later in this chapter.

File System Driver Architecture

File system drivers (FSDs) manage file system formats. Although FSDs run in kernel mode, 

they differ in a number of ways from standard kernel-mode drivers. Perhaps most signifi-

cant, they must register as an FSD with the I/O manager and they interact more exten-

sively with the memory manager. For enhanced performance, file system drivers also 

usually rely on the services of the cache manager. Thus, they use a superset of the exported 

Ntoskrnl.exe functions that standard drivers use. Just as for standard kernel-mode drivers, 

you must have the Windows Driver Kit (WDK) to build file system drivers. (See Chapter 1 and 

www.microsoft.com/whdc/devtoolswdk for more information on the WDK.)
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Windows has two different types of file system drivers:

Local FSDs manage volumes directly connected to the computer.

Network FSDs allow users to access data volumes connected to remote computers.

Local FSDs

Local FSDs include Ntfs.sys, Fastfat.sys, Exfat.sys, Udfs.sys, Cdfs.sys, and the Raw FSD (inte-

grated in Ntoskrnl.exe). Figure 11-5 shows a simplified view of how local FSDs interact 

with the I/O manager and storage device drivers. As we described in the section “Volume 

Mounting” in Chapter 8, a local FSD is responsible for registering with the I/O manager. Once 

the FSD is registered, the I/O manager can call on it to perform volume recognition when 

applications or the system initially access the volumes. Volume recognition involves an exam-

ination of a volume’s boot sector and often, as a consistency check, the file system metadata.

The first sector of every Windows-supported file system format is reserved as the volume’s 

boot sector. A boot sector contains enough information so that a local FSD can both identify 

the volume on which the sector resides as containing a format that the FSD manages and 

locate any other metadata necessary to identify where metadata is stored on the volume.

When a local FSD recognizes a volume, it creates a device object that represents the 

mounted file system format. The I/O manager makes a connection through the volume 

parameter block (VPB) between the volume’s device object (which is created by a storage 

device driver) and the device object that the FSD created. The VPB’s connection results in the 

I/O manager redirecting I/O requests targeted at the volume device object to the FSD device 

object. (See Chapter 8 for more information on VPBs.)

ApplicationApplication

Logical
volume

(partition)

I/O manager

File system driver

Storage device drivers

FIGURE 11-5 Local FSD
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To improve performance, local FSDs usually use the cache manager to cache file system data, 

including metadata. (For more information on the cache manager, see Chapter 10.) They also 

integrate with the memory manager so that mapped files are implemented correctly. For 

example, they must query the memory manager whenever an application attempts to trun-

cate a file in order to verify that no processes have mapped the part of the file beyond the 

truncation point. (See Chapter 9 for more information on the memory manager.) Windows 

doesn’t permit file data that is mapped by an application to be deleted either through trun-

cation or file deletion.

Local FSDs also support file system dismount operations, which permit the system to discon-

nect the FSD from the volume object. A dismount occurs whenever an application requires 

raw access to the on-disk contents of a volume or the media associated with a volume is 

changed. The first time an application accesses the media after a dismount, the I/O manager 

reinitiates a volume mount operation for the media.

Remote FSDs

Remote FSDs consist of two components: a client and a server. A client-side remote FSD 

allows applications to access remote files and directories. The client FSD accepts I/O requests 

from applications and translates them into network file system protocol commands that the 

FSD sends across the network to a server-side component, which is typically a remote FSD. A 

server-side FSD listens for commands coming from a network connection and fulfills them by 

issuing I/O requests to the local FSD that manages the volume on which the file or directory 

that the command is intended for resides.

Windows includes a client-side remote FSD named LANMan Redirector (redirector) and a 

server-side remote FSD named LANMan Server (\%SystemRoot%\System32\Drivers\Srv2.sys). 

The redirector is implemented as a port/miniport driver combination, where the port driver 

(\%SystemRoot%\System32\Drivers\Rdbss.sys) is implemented as a driver subroutine library, 

and the miniport (\%SystemRoot%\System32\Drivers\Mrxsmb.sys) uses services imple-

mented by the port driver. Another redirector miniport driver is WebDAV (\%SystemRoot%\

System32\Drivers\Mrxdav.sys), which implements the client side of file access over HTTP. 

The port/miniport model simplifies redirector development because the port driver, which 

all remote FSD miniport drivers share, handles many of the mundane details involved with 

interfacing a client-side remote FSD to the Windows I/O manager. In addition to the FSD 

components, both LANMan Redirector and LANMan Server include Windows services named 

Workstation and Server, respectively. Figure 11-6 shows the relationship between a client 

accessing files remotely from a server through the redirector and server FSDs.
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FIGURE 11-6 Common Internet File System file sharing

Windows relies on the Common Internet File System (CIFS) protocol to format messages 

exchanged between the redirector and the server. CIFS is a version of Microsoft’s Server 

Message Block (SMB) protocol. (For more information on CIFS, go to www.cifs.com.)

Like local FSDs, client-side remote FSDs usually use cache manager services to locally cache 

file data belonging to remote files and directories. However, client-side remote FSDs must 

implement a distributed cache coherency protocol, called oplock (opportunistic locking), so 

that the data an application sees when it accesses a remote file is the same as the data appli-

cations running on other computers that are accessing the same file see. Although server-

side remote FSDs participate in maintaining cache coherency across their clients, they don’t 

cache data from the local FSDs because local FSDs cache their own data.

When a client wants to access a server file, it must first request an oplock. The client dictates 

the kind of caching that the client can perform based on the type of oplock that the server 

grants.

There are three main types of oplocks:

A Level I oplock is granted when a client has exclusive access to a file. A client holding 

this type of oplock for a file can cache both reads and writes on the client system.

A Level II oplock represents a shared file lock. Clients that hold a Level II oplock can 

cache reads, but writing to the file invalidates the Level II oplock.
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A Batch oplock is the most permissive kind of oplock. A client with this oplock can 

cache both reads and writes to the file as well as open and close the file without 

requesting additional oplocks. Batch oplocks are typically used only to support the 

execution of batch files, which can open and close a file repeatedly as they execute.

If a client has no oplock, it can cache neither read nor write data locally and instead must 

retrieve data from the server and send all modifications directly to the server.

An example, shown in Figure 11-7, will help illustrate oplock operation. The server automati-

cally grants a Level I oplock to the first client to open a server file for access. The redirec-

tor on the client caches the file data for both reads and writes in the file cache of the client 

machine. If a second client opens the file, it too requests a Level I oplock. However, because 

there are now two clients accessing the same file, the server must take steps to present a 

consistent view of the file’s data to both clients. If the first client has written to the file, as 

is the case in Figure 11-7, the server revokes its oplock and grants neither client an oplock. 

When the first client’s oplock is revoked, or broken, the client flushes any data it has cached 

for the file back to the server.
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Flushes cached
modified data

Noncached read(s)
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Client 1 Client 2

Grant Level I
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FIGURE 11-7 Oplock example

If the first client hadn’t written to the file, the first client’s oplock would have been broken 

to a Level II oplock, which is the same type of oplock the server would grant to the second 

client. Now both clients can cache reads, but if either writes to the file, the server revokes 

their oplocks so that noncached operation commences. Once oplocks are broken, they aren’t 

granted again for the same open instance of a file. However, if a client closes a file and then 

reopens it, the server reassesses what level of oplock to grant the client based on which other 

clients have the file open and whether or not at least one of them has written to the file.
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EXPERIMENT: Viewing the List of Registered File Systems

When the I/O manager loads a device driver into memory, it typically names the driver 

object it creates to represent the driver so that it’s placed in the \Driver object manager 

directory. The driver objects for any driver the I/O manager loads that have a Type 

attribute value of SERVICE_FILE_SYSTEM_DRIVER (2) are placed in the \FileSystem direc-

tory by the I/O manager. Thus, using a tool such as WinObj (from Sysinternals), you can 

see the file systems that have registered on a system, as shown in the following screen 

shot. (Note that some file system drivers also place device objects in the \FileSystem 

directory.)

Another way to see registered file systems is to run the System Information viewer. 

Run Msinfo32 from the Start menu’s Run dialog box and select System Drivers under 

Software Environment. Sort the list of drivers by clicking the Type column, and drivers 

with a Type attribute of SERVICE_FILE_SYSTEM_DRIVER group together.
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Note that just because a driver registers as a file system driver type doesn’t mean that it 

is a local or remote FSD. For example, Npfs (Named Pipe File System), which is visible in 

the list just shown, is a network API driver that supports named pipes but implements a 

private namespace, and therefore is in some ways like a file system driver. See Chapter 

12 for an experiment that reveals the Npfs namespace.

File System Operation

Applications and the system access files in two ways: directly, via file I/O functions (such as 

ReadFile and WriteFile), and indirectly, by reading or writing a portion of their address space 

that represents a mapped file section. (See Chapter 9 for more information on mapped files.) 

Figure 11-8 is a simplified diagram that shows the components involved in these file sys-

tem operations and the ways in which they interact. As you can see, an FSD can be invoked 

through several paths:

From a user or system thread performing explicit file I/O

From the memory manager’s modified and mapped page writers

Indirectly from the cache manager’s lazy writer

Indirectly from the cache manager’s read-ahead thread

From the memory manager’s page fault handler
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FIGURE 11-8 Components involved in file system I/O

The following sections describe the circumstances surrounding each of these scenarios and 

the steps FSDs typically take in response to each one. You’ll see how much FSDs rely on the 

memory manager and the cache manager.

Explicit File I/O

The most obvious way an application accesses files is by calling Windows I/O functions 

such as CreateFile, ReadFile, and WriteFile. An application opens a file with CreateFile and 

then reads, writes, or deletes the file by passing the handle returned from CreateFile to 

other Windows functions. The CreateFile function, which is implemented in the Kernel32.dll 

Windows client-side DLL, invokes the native function NtCreateFile, forming a complete root-

relative pathname for the path that the application passed to it (processing “.” and “..” symbols 

in the pathname) and prepending the path with “\??” (for example, \??\C:\Daryl\Todo.txt).

The NtCreateFile system service uses ObOpenObjectByName to open the file, which parses 

the name starting with the object manager root directory and the first component of the 

path name (“??”). Chapter 3 includes a thorough description of object manager name resolu-

tion and its use of process device maps, but we’ll review the steps it follows here with a focus 

on volume drive letter lookup.
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The first step the object manager takes is to translate \?? to the process’s per-session 

namespace directory that the DosDevicesDirectory field of the device map structure in the 

process object references (which was propagated from the first process in the logon session 

by using the logon session references field in the logon session’s token). Only volume names 

for network shares and drive letters mapped by the Subst.exe utility are typically stored 

in the per-session directory, so on those systems when a name (C: in this example) is not 

present in the per-session directory, the object manager restarts its search in the directory 

referenced by the GlobalDosDevicesDirectory field of the device map associated with the 

per-session directory. The GlobalDosDevicesDirectory always points at the \Global?? direc-

tory, which is where Windows stores volume drive letters for local volumes. (See the section 

“Session Namespace” in Chapter 3 for more information.)

The symbolic link for a volume drive letter points to a volume device object under \Device, 

so when the object manager encounters the volume object, the object manager hands the 

rest of the pathname to the parse function that the I/O manager has registered for device 

objects, IopParseDevice. (In volumes on dynamic disks, a symbolic link points to an interme-

diary symbolic link, which points to a volume device object.) Figure 11-9 shows how volume 

objects are accessed through the object manager namespace. The figure shows how the 

\GLOBAL??\C: symbolic link points to the \Device\HarddiskVolume3 volume device object.

After locking the caller’s security context and obtaining security information from the caller’s 

token, IopParseDevice creates an I/O request packet (IRP) of type IRP_MJ_CREATE, creates 

a file object that stores the name of the file being opened, follows the VPB of the volume 

device object to find the volume’s mounted file system device object, and uses IoCallDriver 
to pass the IRP to the file system driver that owns the file system device object.

When an FSD receives an IRP_MJ_CREATE IRP, it looks up the specified file, performs secu-

rity validation, and if the file exists and the user has permission to access the file in the way 

requested, returns a success code. The object manager creates a handle for the file object in 

the process’s handle table, and the handle propagates back through the calling chain, finally 

reaching the application as a return parameter from CreateFile. If the file system fails the cre-

ate operation, the I/O manager deletes the file object it created for it.

We’ve skipped over the details of how the FSD locates the file being opened on the volume, 

but a ReadFile function call operation shares many of the FSD’s interactions with the cache 

manager and storage driver. Both ReadFile and CreateFile are system calls that map to I/O 

manager functions, but the NtReadFile system service doesn’t need to perform a name 

lookup—it calls on the object manager to translate the handle passed from ReadFile into 

a file object pointer. If the handle indicates that the caller obtained permission to read the 

file when the file was opened, NtReadFile proceeds to create an IRP of type IRP_MJ_READ 

and sends it to the FSD on which the file resides. NtReadFile obtains the FSD’s device object, 

which is stored in the file object, and calls IoCallDriver, and the I/O manager locates the FSD 

from the device object and gives the IRP to the FSD.
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FIGURE 11-9 Drive-letter name resolution

If the file being read can be cached (that is, the FILE_FLAG_NO_BUFFERING flag wasn’t 

passed to CreateFile when the file was opened), the FSD checks to see whether caching has 

already been initiated for the file object. The PrivateCacheMap field in a file object points to 

a private cache map data structure (which we described in Chapter 10) if caching is initiated 

for a file object. If the FSD hasn’t initialized caching for the file object (which it does the first 

time a file object is read from or written to), the PrivateCacheMap field will be null. The FSD 

calls the cache manager CcInitializeCacheMap function to initialize caching, which involves 

the cache manager creating a private cache map and, if another file object referring to the 

same file hasn’t initiated caching, a shared cache map and a section object.

After it has verified that caching is enabled for the file, the FSD copies the requested file 

data from the cache manager’s virtual memory to the buffer that the thread passed to the 

ReadFile function. The file system performs the copy within a try/except block so that it 

catches any faults that are the result of an invalid application buffer. The function the file 

system uses to perform the copy is the cache manager’s CcCopyRead function. CcCopyRead 

takes as parameters a file object, file offset, and length.
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When the cache manager executes CcCopyRead, it retrieves a pointer to a shared cache map, 

which is stored in the file object. Recall from Chapter 10 that a shared cache map stores 

pointers to virtual address control blocks (VACBs), with one VACB entry for each 256-KB 

block of the file. If the VACB pointer for a portion of a file being read is null, CcCopyRead 

allocates a VACB, reserving a 256-KB view in the cache manager’s virtual address space, and 

maps (using MmMapViewInSystemCache) the specified portion of the file into the view. Then 

CcCopyRead simply copies the file data from the mapped view to the buffer it was passed 

(the buffer originally passed to ReadFile). If the file data isn’t in physical memory, the copy 

operation generates page faults, which are serviced by MmAccessFault.

When a page fault occurs, MmAccessFault examines the virtual address that caused the 

fault and locates the virtual address descriptor (VAD) in the VAD tree of the process that 

caused the fault. (See Chapter 9 for more information on VAD trees.) In this scenario, the VAD 

describes the cache manager’s mapped view of the file being read, so MmAccessFault calls 

MiDispatchFault to handle a page fault on a valid virtual memory address. MiDispatchFault 
locates the control area (which the VAD points to) and through the control area finds a file 

object representing the open file. (If the file has been opened more than once, there might 

be a list of file objects linked through pointers in their private cache maps.)

With the file object in hand, MiDispatchFault calls the I/O manager function IoPageRead to 

build an IRP (of type IRP_MJ_READ) and sends the IRP to the FSD that owns the device object 

the file object points to. Thus, the file system is reentered to read the data that it requested 

via CcCopyRead, but this time the IRP is marked as noncached and paging I/O. These flags 

signal the FSD that it should retrieve file data directly from disk, and it does so by determin-

ing which clusters on disk contain the requested data and sending IRPs to the volume man-

ager that owns the volume device object on which the file resides. The volume parameter 

block (VPB) field in the FSD’s device object points to the volume device object.

The memory manager waits for the FSD to complete the IRP read and then returns control to 

the cache manager, which continues the copy operation that was interrupted by a page fault. 

When CcCopyRead completes, the FSD returns control to the thread that called NtReadFile, 

having copied the requested file data—with the aid of the cache manager and the memory 

manager—to the thread’s buffer.

The path for WriteFile is similar except that the NtWriteFile system service generates an IRP of 

type IRP_MJ_WRITE and the FSD calls CcCopyWrite instead of CcCopyRead. CcCopyWrite, like 

CcCopyRead, ensures that the portions of the file being written are mapped into the cache 

and then copies to the cache the buffer passed to WriteFile.

If a file’s data is already stored in the system’s working set, there are several variants on 

the scenario we’ve just described. If a file’s data is already stored in the cache, CcCopyRead 

doesn’t incur page faults. Also, under certain conditions, NtReadFile and NtWriteFile call an 

FSD’s fast I/O entry point instead of immediately building and sending an IRP to the FSD. 

Some of these conditions follow: the portion of the file being read must reside in the first 
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4 GB of the file, the file can have no locks, and the portion of the file being read or written 

must fall within the file’s currently allocated size.

The fast I/O read and write entry points for most FSDs call the cache manager’s CcFastCopy-
Read and CcFastCopyWrite functions. These variants on the standard copy routines ensure 

that the file’s data is mapped in the file system cache before performing a copy operation. 

If this condition isn’t met, CcFastCopyRead and CcFastCopyWrite indicate that fast I/O isn’t 

possible. When fast I/O isn’t possible, NtReadFile and NtWriteFile fall back on creating an IRP. 

(See the section “Fast I/O” in Chapter 10 for a more complete description of fast I/O.)

Memory Manager’s Modified and Mapped Page Writer

The memory manager’s modified and mapped page writer threads wake up periodi-

cally and when available memory runs low to flush modified pages. The threads call 

IoAsynchronousPageWrite to create IRPs of type IRP_MJ_WRITE and write pages to either a 

paging file or a file that was modified after being mapped. Like the IRPs that MiDispatchFault 
creates, these IRPs are flagged as noncached and paging I/O. Thus, an FSD bypasses the file 

system cache and issues IRPs directly to a storage driver to write the memory to disk.

Cache Manager’s Lazy Writer

The cache manager’s lazy writer thread also plays a role in writing modified pages because 

it periodically flushes views of file sections mapped in the cache that it knows are dirty. 

The flush operation, which the cache manager performs by calling MmFlushSection, trig-

gers the memory manager to write any modified pages in the portion of the section 

being flushed to disk. Like the modified and mapped page writers, MmFlushSection uses 

IoSynchronousPageWrite to send the data to the FSD.

Cache Manager’s Read-Ahead Thread

The cache manager includes a thread that is responsible for attempting to read data from 

files before an application, a driver, or a system thread explicitly requests it. The read-ahead 

thread uses the history of read operations that were performed on a file, which are stored 

in a file object’s private cache map, to determine how much data to read. When the thread 

performs a read-ahead, it simply maps the portion of the file it wants to read into the cache 

(allocating VACBs as necessary) and touches the mapped data. The page faults caused by 

the memory accesses invoke the page fault handler, which reads the pages into the system’s 

working set.

Memory Manager’s Page Fault Handler

We described how the page fault handler is used in the context of explicit file I/O and 

cache manager read-ahead, but it is also invoked whenever any application accesses virtual 
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memory that is a view of a mapped file and encounters pages that represent portions of a 

file that aren’t part of the application’s working set. The memory manager’s MmAccessFault 
handler follows the same steps it does when the cache manager generates a page fault from 

CcCopyRead or CcCopyWrite, sending IRPs via IoPageRead to the file system on which the file 

is stored.

File System Filter Drivers

A filter driver that layers over a file system driver is called a file system filter driver. (See 

Chapter 7 for more information on filter drivers.) The ability to see all file system requests 

and optionally modify or complete them enables a range of applications, including remote 

file replication services, file encryption, efficient backup, and licensing. Every commercial on-

access virus scanner includes a file system filter driver that intercepts IRPs that deliver IRP_MJ_

CREATE commands that issue whenever an application opens a file. Before propagating the 

IRP to the file system driver to which the command is directed, the virus scanner examines 

the file being opened to ensure that it’s clean of a virus. If the file is clean, the virus scanner 

passes the IRP on, but if the file is infected the virus scanner communicates with its associated 

Windows service process to quarantine or clean the file. If the file can’t be cleaned, the driver 

fails the IRP (typically with an access-denied error) so that the virus cannot become active.

Process Monitor

Process Monitor (Procmon), a system activity monitoring utility from Sysinternals that has 

been used throughout this book, is an example of a passive filter driver, which is one that 

does not modify the flow of IRPs between applications and file system drivers. Windows 

includes the Filesystem Filter Manager (%SystemRoot%\System32\Drivers\Fltmgr.sys) as 

part of a port/miniport model for file system filter drivers. The Filesystem Filter Manager 

greatly simplifies the development of filter drivers by interfacing a filter miniport driver to the 

Windows I/O system and providing services for querying file names, attaching to volumes, 

and interacting with other filters. Process Monitor’s file system monitoring is implemented as 

a minifilter driver.

Process Monitor works by extracting a file system filter device driver from its executable 

image (Procmon.exe) the first time you run it after a boot, installing the driver in memory, 

and then deleting the driver image from disk. Through the Process Monitor GUI, you can 

direct the driver to monitor file system activity on local volumes that have assigned drive 

letters, network shares, named pipes, and mail slots. When the driver receives a command 

to start monitoring a volume, it registers filtering callbacks with the Filter Manager, which is 

attached to the device object that represents a mounted file system on the volume. After an 

attach operation, the I/O manager redirects an IRP targeted at the underlying device object 

to the driver owning the attached device, in this case the Filter Manager, which sends the 

event to registered minifilter drivers, in this case Process Monitor.
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When the Process Monitor driver intercepts an IRP, it records information about the IRP’s 

command, including target file name and other parameters specific to the command (such as 

read and write lengths and offsets) to a nonpaged kernel buffer. Twice a second the Process 

Monitor GUI sends an IRP to Process Monitor’s interface device object, which requests a copy 

of the buffer containing the latest activity and displays the activity in its output window. 

Process Monitor’s use is described further in the next section, “Troubleshooting File System 

Problems.”

Troubleshooting File System Problems

Chapter 4 describes the way that the system and applications store data in the registry. 

Registry-related problems such as misconfigured security and missing registry values and 

keys are the source of many system and application failures. The system and applications also 

use files to store data, and they access executable and DLL image files. Misconfigured NTFS 

security and missing files or directories are therefore also a common source of system and 

application failures because the system and applications often make assumptions about what 

they should be able to access and then misbehave in unexpected ways when the assumptions 

are violated.

Process Monitor shows all file activity as it occurs, which makes it an ideal tool for trouble-

shooting file system–related system and application failures. To run Process Monitor the first 

time on a system, an account must have the Load Driver and Debug privileges. After loading, 

the driver remains resident, so subsequent executions require only the Debug privilege.

Process Monitor Basic vs. Advanced Modes

When you run Process Monitor, it starts in basic mode, which shows the file system activity 

most often useful for troubleshooting. When in basic mode, Process Monitor omits certain 

file system operations from being displayed, including:

I/O to NTFS metadata files

I/O to the paging file

I/O generated by the System process

I/O generated by the Process Monitor process

While in basic mode, Process Monitor also reports file I/O operations with friendly names 

rather than with the IRP types used to represent them. For example, both IRP_MJ_WRITE and 

FASTIO_WRITE operations display as WriteFile, and IRP_MJ_CREATE operations show as Open 

if they represent an open operation and as Create for the creation of new files.
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EXPERIMENT: Viewing File System Activity on an Idle System

Windows file system drivers implement support for file change notification, which 

enables applications to request notifications of file system changes without polling for 

them. The Windows functions for doing so include ReadDirectoryChangesW and the 

FindFirstChangeNotification, FindNextChangeNotification pair. When you run Process 

Monitor on a system that’s idle, you should therefore not see the repeated accesses 

to files or directories because that activity unnecessarily negatively affects a system’s 

overall performance.

Run Process Monitor, and after several seconds examine the output log to see whether 

you can spot polling behavior. Right-click on an output line associated with polling, 

click Properties on the context menu, and then click the Process tab in the Properties 

dialog box to view details of the process performing the activity.

Process Monitor Troubleshooting Techniques

The two basic Process Monitor troubleshooting techniques for file system problems are 

identical to those for registry-related problems: looking in a Process Monitor trace at the 

last thing an application did before it failed, or comparing a Process Monitor trace of a 

failing application with a trace from a working system. See the section “Process Monitor 

Troubleshooting Techniques” in Chapter 4 for more information on these techniques.

Entries in a Process Monitor trace that have values of NAME NOT FOUND, NO SUCH FILE, 

PATH NOT FOUND, SHARING VIOLATION, and ACCESS DENIED in the Result column are ones 

that you should investigate. The first three are reported when an application or the system 

attempts to open a nonexistent file or directory. In many cases, these errors do not indicate a 

serious problem. When you execute a program from the Start menu’s Run dialog box without 

specifying its full path, for instance, Windows Explorer will search the directories listed in the 

system PATH environment variable for the image file until it locates the file or has searched 

all the listed directories. Each attempt to find the image in a directory that does not contain 

it results in a Process Monitor output line similar to this:

25314     7:44:27.4180943 PM     Explorer.EXE     1640     CreateFile     C:\Program Files\

Microsoft Windows Performance Toolkit\test.exe     NAME NOT FOUND     Desired Access: Read 

Attributes, Disposition: Open, Options: Open Reparse Point, Attributes: n/a, ShareMode: 

Read, Write, Delete, AllocationSize: n/a

Access-denied errors are a common source of file system–related application failures, and 

they occur when an application does not have permission to open the file or directory for the 

access types it desires. Some applications do not check error codes or perform error recov-

ery, and they fail by crashing or terminating; others display misleading error messages that 

mask the root cause of the error.
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Buffer-overflow exploits are a serious security concern, but a code result of BUFFER 

OVERFLOW is simply a file system driver’s way to indicate to an application that the buffer 

it specified to store result data was too small to hold the data. Application developers use 

this behavior to determine how large a buffer should be because the file system driver also 

returns the size of the buffer required to store the data. Operations with a buffer overflow 

result are usually followed by the same operation with a successful result.

Process Monitor has been used extensively within Microsoft and other organizations to solve 

difficult or nearly impossible-to-diagnose problems.

Common Log File System

Transactional semantics for a database or a journaled file system often require keeping track 

of changes made to the data and metadata contained in the files or entries. Typically, these 

changes are stored in data structures called log records through an operation called logging. 

These log records can then be used to undo (roll back), redo, or validate the changes at a 

later time, even across system reboots.

Windows provides this kind of logging service through the Common Log File System (CLFS) 

to support the transactional features built into Windows, including transactional NTFS (TxF) 

and transactional registry (TxR), and to enable third-party developers to take advantage of 

similar technology. CLFS provides both user-mode and kernel-mode services for creating, 

reading, and writing CLFS log files. The services are flexible and extensible, which allows the 

implementation details and structure of the log records stored in a log file to be defined by a 

caller.

Although CLFS calls itself a file system, it actually provides a virtual abstraction layer on top 

of NTFS by using streams and containers, described later. What CLFS exposes as a single vir-

tual log file could actually be a single physical log file, a single log file divided into multiple 

physical files, or even different log files each divided into multiple physical files. Later, we’ll 

describe how NTFS interacts with CLFS to provide transactional support.

Marshalling

Internally, CLFS encapsulates the functionality of the Algorithm for Recovery and Isolation 

Exploiting Semantics (ARIES), which allows it to provide reliable recovery and replication of 

operations by using an industry-approved standard. However, CLFS is not limited to support-

ing ARIES; it is well suited to a variety of logging scenarios. You can find the full ARIES specifi-

cation at www.sai.msu.su/~megera/postgres/gist/papers/concurrency/p94-mohan.pdf.

The primary job of any high-performance transactional log is to allow log clients to accu-

rately repeat history. CLFS does this by marshalling client log records into memory buffers, 

forcing them to stable storage, and reading records back on request. After a record makes it 
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to stable storage and the storage media is intact, CLFS is able to read the record across sys-

tem failures.

Both user-mode and kernel-mode clients marshal data buffers into log records that are part 

of a marshalling area maintained in the client’s address space. When creating a marshalling 

area, a client must specify the number and size of the log I/O buffers it wants to maintain in 

its marshaling area. The marshalling runtime implements policy on allocating log I/O buffers, 

appending them to the log internal queue and flushing them to disk. Clients can override the 

default marshalling code policy by forcing queue appends and flushes to disk via API calls.

One of the design goals of the CLFS marshalling runtime is to minimize kernel transitions, 

which it achieves, among other things, through log-space reservation, a requirement for sup-

porting scenarios such as transaction rollbacks. Every time the log marshalling area talks to 

the CLFS driver (which implies a kernel transition for user-mode clients), the marshalling area 

tries to negotiate a desired amount of reserved space, usually larger than what is currently 

required. This means that if the client requires more space in the future, the marshalling area 

can immediately satisfy the new request without issuing a new kernel transition. Note, how-

ever, that if the amount of the reservation cannot be satisfied, the marshalling area will try to 

get just enough of the reservation to satisfy the user’s request (without extra reserved space), 

which could potentially lead to additional kernel transitions.

Log Types

CLFS supports two types of logs: dedicated logs and multiplexed logs (also called common 

logs). A dedicated log has a single stream of log records that is used by all the log’s clients. 

A multiplexed log has several streams: each stream has its own clients and its own memory 

buffers for marshalling log records, but the records from all those buffers are multiplexed 

into a single queue and written to a single log on stable storage. Multiplexing allows the I/O 

operations of several streams to be consolidated. When a log is created or opened, CLFS 

determines whether the log is dedicated or multiplexed depending on whether a dedicated 

log path or a multiplexed log path is specified.

If the request is for a client on a dedicated log (called a physical client), CLFS locates the phys-

ical file control block (FCB) object for the file proper and handles the request.

If the request is for a client on a multiplexed log (called a virtual client), CLFS locates the cor-

responding virtual FCB and context control block (CCB) objects to translate the request into 

an operation on the physical FCB object. CLFS then handles the operation on the CLFS physi-

cal FCB object as just described.

In either case, if the request is a cached read, CLFS uses the cache manager’s services for 

accessing cached data. (For more information on the cache manager, see Chapter 10.) Just as 

it does for requests from other file system drivers, the cache manager maps a view of the file 

and references the view, which might cause the memory manager to issue noncached reads 
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to CLFS against the physical log. For flushes and noncached reads, CLFS finds the target con-

tainer object through the log metadata and issues IRPs to NTFS directly. Figure 11-10 shows 

the possible CLFS paths for a request coming from user mode or kernel mode.

CLFS user-mode APIs

I/O managerCLFS kernel-mode APIs

CLFS requests

CLFS virtual FCBs

CLFS physical FCBs

CLFS CCBs

Cache managerCLFS BLF files

CLFS containers

NTFS

User mode

Kernel mode

Physical log

Flush/noncached read Cached read

Virtual log

Physical log
noncached
read

FIGURE 11-10 CLFS request paths

Because each stream of a multiplexed log provides its clients with the illusion that their 

stream is the entire log, CLFS must include metadata in the physical log that identifies which 

client each data block belongs to. This data is called the owner page and is always exactly one 

page (4 KB) in size. Each 512 KB of client data results in an owner page to describe it. Since 

dedicated logs require no tracking of client and data mapping, they don’t include owner 

pages. Figure 11-11 shows two clients writing log records to a multiplexed log and how the 

writes are kept together in a unified flush queue that can then be uniformly flushed to physi-

cal storage through a single I/O operation.
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t4t3t2t1 t5

Exclusive lock on flush queue

t4t3t1 t2 t5

Client A
Write three blocks at time t1, t3, and t4

Client B
Write two blocks at time t2 and t5

Multiplex

Flush

Log flush queue

Log physical storage

Client vs. data mapping
(owner page)

FIGURE 11-11 CLFS multiplexing

The flush queue will be emptied in the following conditions:

The amount of data in the flush queue exceeds a certain threshold. (The default is 

40,000 bytes.)

The CLFS flush API is called.

A restart area is being written, and the log needs to be flushed beyond the restart area.

When flushing, CLFS scans the flush queue and determines how many entries need to be 

flushed. It then issues IRPs to NTFS for the corresponding log files of each of the entries and 

waits for all the IRPs to complete. If some IRPs fail, CLFS may re-issue IRPs (failures such as 

low memory condition, lack of quota, and so on are subject to retry) to redo the work and 

wait again.

Log Layout

A log file is made up of a base log file (BLF) that contains metadata and up to 1,023 contain-
ers that hold the actual data. The base log file is initially 64 KB in size and grows as needed. 

The log metadata stores information about the log, including the beginning of the log, the 

container size, the container path, the location from which restart operations should be per-

formed, the log state, the log name, and the log clients. For consistency in case a system fail-

ure occurs during a log update, the base log file stores two copies of the log metadata, and 
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when it makes updates it overwrites the older copy. The BFL stores a value, the dump count, 
that indicates which copy is newer.

A container is the unit of allocation for an active physical log stream. All the containers in a 

log have the same size, which is a multiple of 512 KB with a 4 GB maximum size. A CLFS cli-

ent grows or shrinks a log stream by adding or deleting containers from the log file. CLFS 

implements containers as contiguous files on the volume on which the BLF resides. Figure 

11-12 shows the relationship between a base log file and the associated log data stored in 

containers.

Log metadata
Container

Container

Data

Data

Data

. . .

. . .

. . .

(1st copy)
Dump count

log containers

(2nd copy)
Dump count

log containers

Log data

Log start LSN

FIGURE 11-12 CLFS base log file and containers

Internally, the CLFS driver places the containers in a container queue to give clients a logical 

view of a single contiguous physical log stream; in doing so, the CLFS driver maps the physi-
cal container identifier to a logical container identifier. Containers are recycled when the tail of 

the active log migrates beyond the last sector of the container. Recycling a container involves 

moving it from the tail to the head of the container queue and appropriately updating its 

logical container identifier.

Log Sequence Numbers

When a client writes a record to a stream, CLFS returns a log sequence number (LSN) that 

identifies the log record for future reference. The LSNs assigned to the records that are writ-

ten to a particular stream form an increasing sequence. That is, the LSN assigned to a record 

that is written to a stream is always greater than the LSN assigned to the previous record 

written to that same stream. Two critical LSNs that the base log file keeps track of are the log 
start LSN and the restart LSN, which, as described earlier, are stored in the BLF metadata.
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An LSN is 64 bits wide and consists of three parts, as shown in Figure 11-13:

A 32-bit container index that identifies the log container where the log record resides

A 23-bit block offset that identifies an offset within a container

A 9-bit record offset that identifies a record within a block

Block offsetContainer ID Record offset

32 bits 23 bits 9 bits

FIGURE 11-13 CLFS LSN structure

Log Blocks

Because it is possible that a write to a log might fail, which is called a torn write, CLFS uses log 
blocks to track whether log records are fully committed to storage. CLFS stores log records 

within log blocks, which correspond to 512-byte sectors, and reads and writes data to a log 

using log blocks. Each log block includes a 2-byte sector signature at the end of each sector 

in the block that stores a sequence number and flags, as well as a copy of the most recently 

committed signatures in a signature array at the end of the block, as shown in Figure 11-14. 

Only if all the sector signatures in a log block are valid and match the signatures in the array, 

does CLFS consider the block valid. If a log block is partially written and a system failure 

occurs, for example, the signatures won’t match, and CLFS considers the log block invalid.

Original content copied to signature
array. Reused as sector signature.

Sector 1 Sector 2 Sector 3

Padding
(0s)

Block
header

Signature
array

. . .Record
data

Record
data

Record
header

Record
header

FIGURE 11-14 CLFS log blocks

Owner Pages

As mentioned previously, each 512-KB block of data in a multiplexed log (called a region) is 

correlated with its virtual log through an owner page. Each region consists of 4-KB pages, 
and each page contains one or more sectors, which contain log blocks. The owner page is 

the last page of a region, as shown in Figure 11-15. Because the owner page is itself a log 

block, CLFS can detect torn writes on the owner page, just as for a log record, by using the 

log block signature array.
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Block split by owner page

Owner
page
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pageBlockBlock Block BlockBlockBlock
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512 KB 512 KB

FIGURE 11-15 CLFS regions and owner pages

An owner page contains two kinds of information:

For each sector in the region, the virtual log to which the sector belongs as well as the 

sector’s serial number (starting from 0). Because the sector size is 512 bytes, there can 

be at most 1,024 sectors in a region.

For each virtual log, the minimum and maximum virtual log LSN for the region. These 

values give the range of valid virtual LSNs for the region.

CLFS can tell by looking at the owner page of a virtual log LSN whether the record specified 

by the LSN resides in the current region or not. If the record does not reside in the current 

region, CLFS can decide whether it should search the previous region or the next region by 

comparing the virtual log LSN with the virtual log LSN range for the region.

When CLFS inserts log blocks into a multiplexed log’s physical FCB flush queue, if it finds 

that the current log block will overlap the owner page of the current region, it splits the cur-

rent log block and inserts an owner page log block after the first half of the split log block 

(as shown in Figure 11-15). In other words, the owner page is only written to disk after the 

region that it describes becomes full. When a client reopens a multiplexed log file, CLFS scans 

the regions and rebuilds an in-memory owner page describing the latest region for which it 

hasn’t written an owner page log block.

Note that when reopening the log file, CLFS doesn’t know exactly where the log end LSN 

is, so it must find the LSN to avoid losing data or using corrupted data. For a dedicated log, 

CLFS reads the log blocks sequentially until an invalid log block is found and then sets the 

end of the log there. For a multiplexed log, CLFS reads the last owner page (the base log file 

saves a copy of the last flushed owner page’s LSN when the log metadata is last flushed) and 

verifies it is indeed valid. CLFS then reads the next region’s owner page repeatedly until an 

invalid owner page is found. After that, CLFS scans backward to find the first region with only 

valid log data blocks. CLFS then assumes the end of the log must fall within the next region. 

It will scan log block by log block until an invalid log block is found and then set the end of 

the log there.
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Translating Virtual LSNs to Physical LSNs

CLFS relies on physical LSNs to identify log blocks within a physical log. However, CLFS com-

bines several virtual logs in a physical log for multiplexed logs and uses virtual LSNs to locate 

log blocks in a virtual log. Therefore, for a virtual log client, a log block can be addressed 

both by a physical LSN and by a virtual LSN.

To translate a virtual log LSN to a physical log LSN, CLFS follows these steps:

 1. Reads the owner page for the region indicated by the virtual log LSN.

 2. Checks the owner page’s virtual LSN region to see whether the virtual LSN is actually in 

the region or not. Most of the time the log block will be in the region.

 3. If the virtual LSN is in the region, CLFS refers to the sector to client mapping in the 

owner page to find the physical LSN’s block offset. Given a client’s virtual LSN and its 

size, CLFS can calculate the virtual LSN of the next log block. Applying this rule, CLFS 

can deterministically calculate the physical LSN of every virtual log block in the region, 

as shown in Figure 11-16.

 4. If the virtual LSN is not in the region, CLFS searches either the previous region or the 

next region depending on whether the virtual LSN is smaller or larger than the current 

region’s virtual LSN range.

Owner page
Sector 0: Client 1 1st sector of block
Sector 1: Client 1 2nd sector of block
Sector 2: Client 2 1st sector of block
Sector 3: Client 2 2nd sector of block
Sector 4: Client 2 3rd sector of block
Sector 5: Client 2 4th sector of block
Sector 6: Client 1 1st sector of block
Sector 7: Client 1 2nd sector of block
Sector 8: Client 1 1st sector of block
Sector 9: Client 1 2nd sector of block
Sector 10: Client 2 1st sector of block
Client 1 virtual LSN range (0.0.0 ~ 0.1400.0)
Client 2 virtual LSN range (0.0.0 ~ 0.1600.0)

To translate client 1 virtual LSN 0.1000.0:
1. Search owner page. The first sector
 that belongs to client 1 is physical LSN
 0.0.0. This block’s size is 2 sectors. So,
 its next virtual LSN must be 0.400.0.
2. Search owner page again. The next
 block that belongs to client 1 is physical
 LSN 0.C00.0. This block’s size is 2 sectors.
 So, its next virtual LSN must be 0.1000.0.
 Find a match.
3. Search the owner page again. The next
 block that belongs to client 1 is physical 
 LSN 0.1000.0. Done. Return 0.1000.0.

Virtual LSNs

EA B C D

Client 1
0.0.0

Client 2
0.C00.0

Client 1
0.1000.0

Client 1
0.400.0

Client 2
0.0.0

0.0.0 0.C00.0 0.1000.0 0.1400.00.400.0Physical LSNs

FIGURE 11-16 CLFS virtual to physical LSN translation
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Management Policies

Each CLFS log can be defined by a set of management policies that are configurable by the 

client. Table 11-4 lists these policies and their usage.

TABLE 11-4 CLFS Management Policies

Policy Name Description

ClfsMgmtPolicyMaximumSize Specifies the maximum size of a log.

ClfsMgmtPolicyMinimumSize Specifies the minimum size of a log.

ClfsMgmtPolicyNewContainerSize Specifies the size of new containers that are created.

ClfsMgmtPolicyGrowthRate Specifies how many new containers will be added to the log 

each time the log grows. Can be specified as either a relative 

percentage or an absolute number.

ClfsMgmtPolicyLogTail Specifies how much free space will be requested when a client 

is notified to move its log tail. Can be specified as either a 

minimum percentage of free space or a minimum number of 

containers.

ClfsMgmtPolicyAutoShrink Specifies when the log will shrink based on the percentage of 

the log that is free.

ClfsMgmtPolicyAutoGrow Specifies whether the log should grow when fewer than two 

containers are free.

ClfsMgmtPolicyNewContainerPrefix Specifies a prefix for the file name of each container, as well as 

the full path to the directory where the containers are located.

NTFS Design Goals and Features

In the following section, we’ll look at the requirements that drove the design of NTFS. Then in 

the subsequent section, we’ll examine the advanced features of NTFS.

High-End File System Requirements

From the start, NTFS was designed to include features required of an enterprise-class file sys-

tem. To minimize data loss in the face of an unexpected system outage or crash, a file system 

must ensure that the integrity of its metadata is guaranteed at all times; and to protect sensi-

tive data from unauthorized access, a file system must have an integrated security model. 

Finally, a file system must allow for software-based data redundancy as a low-cost alternative 

to hardware-redundant solutions for protecting user data. In this section, you’ll find out how 

NTFS implements each of these capabilities.

Recoverability

To address the requirement for reliable data storage and data access, NTFS provides file 

system recovery based on the concept of an atomic transaction. Atomic transactions are a 
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technique for handling modifications to a database so that system failures don’t affect the 

correctness or integrity of the database. The basic tenet of atomic transactions is that some 

database operations, called transactions, are all-or-nothing propositions. (A transaction 

is defined as an I/O operation that alters file system data or changes the volume’s direc-

tory structure.) The separate disk updates that make up the transaction must be executed 

atomically—that is, once the transaction begins to execute, all its disk updates must be com-

pleted. If a system failure interrupts the transaction, the part that has been completed must 

be undone, or rolled back. The rollback operation returns the database to a previously known 

and consistent state, as if the transaction had never occurred.

NTFS uses atomic transactions to implement its file system recovery feature. If a program 

initiates an I/O operation that alters the structure of an NTFS volume—that is, changes the 

directory structure, extends a file, allocates space for a new file, and so on—NTFS treats that 

operation as an atomic transaction. It guarantees that the transaction is either completed or, 

if the system fails while executing the transaction, rolled back. The details of how NTFS does 

this are explained in the section “NTFS Recovery Support” later in the chapter. In addition, 

NTFS uses redundant storage for vital file system information so that if a sector on the disk 

goes bad, NTFS can still access the volume’s critical file system data. 

Security

Security in NTFS is derived directly from the Windows object model. Files and directories are 

protected from being accessed by unauthorized users. (For more information on Windows 

security, see Chapter 6.) An open file is implemented as a file object with a security descrip-

tor stored on disk as a part of the file. Before a process can open a handle to any object, 

including a file object, the Windows security system verifies that the process has appropri-

ate authorization to do so. The security descriptor, combined with the requirement that a 

user log on to the system and provide an identifying password, ensures that no process 

can access a file unless given specific permission to do so by a system administrator or by 

the file’s owner. (For more information about security descriptors, see the section “Security 

Descriptors and Access Control” in Chapter 6, and for more details about file objects, see the 

section “Opening Devices” in Chapter 7.)

Data Redundancy and Fault Tolerance

In addition to recoverability of file system data, some customers require that their own 

data not be endangered by a power outage or catastrophic disk failure. The NTFS recovery 

capabilities do ensure that the file system on a volume remains accessible, but they make no 

guarantees for complete recovery of user files. Protection for applications that can’t risk los-

ing file data is provided through data redundancy.

Data redundancy for user files is implemented via the Windows layered driver model 

(explained in Chapter 7), which provides fault-tolerant disk support. NTFS communicates 

with a volume manager, which in turn communicates with a hard disk driver to write data to 
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disk. A volume manager can mirror, or duplicate, data from one disk onto another disk so 

that a redundant copy can always be retrieved. This support is commonly called RAID level 
1. Volume managers also allow data to be written in stripes across three or more disks, using 

the equivalent of one disk to maintain parity information. If the data on one disk is lost or 

becomes inaccessible, the driver can reconstruct the disk’s contents by means of exclusive-

OR operations. This support is called RAID level 5. (See Chapter 8 for more information on 

striped volumes, mirrored volumes, and RAID-5 volumes.)

Advanced Features of NTFS

In addition to NTFS being recoverable, secure, reliable, and efficient for mission-critical sys-

tems, it includes the following advanced features that allow it to support a broad range of 

applications. Some of these features are exposed as APIs for applications to leverage, and 

others are internal features:

Multiple data streams

Unicode-based names

General indexing facility

Dynamic bad-cluster remapping

Hard links

Symbolic (soft) links and junctions

Compression and sparse files

Change logging

Per-user volume quotas

Link tracking

Encryption

POSIX support

Defragmentation

Read-only support and dynamic partitioning

The following sections provide an overview of these features.

Multiple Data Streams

In NTFS, each unit of information associated with a file—including its name, its owner, its 

time stamps, its contents, and so on—is implemented as a file attribute (NTFS object attri-

bute). Each attribute consists of a single stream—that is, a simple sequence of bytes. This 

generic implementation makes it easy to add more attributes (and therefore more streams) 
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to a file. Because a file’s data is “just another attribute” of the file and because new attributes 

can be added, NTFS files (and file directories) can contain multiple data streams.

An NTFS file has one default data stream, which has no name. An application can create 

additional, named data streams and access them by referring to their names. To avoid alter-

ing the Windows I/O APIs, which take a string as a file name argument, the name of the data 

stream is specified by appending a colon (:) to the file name. Because the colon is a reserved 

character, it can serve as a separator between the file name and the data stream name, as 

illustrated in this example:

myfile.dat:stream2

Each stream has a separate allocation size (which defines how much disk space has been 

reserved for it), actual size (which is how many bytes the caller has used), and valid data 

length (which is how much of the stream has been initialized). In addition, each stream is 

given a separate file lock that is used to lock byte ranges and to allow concurrent access.

One component in Windows that uses multiple data streams is the Attachment Execution 

Service, which is invoked whenever the standard Windows API for saving Internet-based 

attachments is used by applications such as Internet Explorer or Outlook. Depending on 

which zone the file was downloaded from (such as the My Computer zone, the Intranet zone 

or the Untrusted zone), Windows Explorer might warn the user that the file came from a pos-

sibly untrusted location or even completely block access to the file. For example, Figure 11-17 

shows the dialog box that’s displayed when executing Process Explorer after it was down-

loaded from the Sysinternals site.

FIGURE 11-17 Security warning for files downloaded from the Internet

Other applications can use the multiple data stream feature as well. A backup utility, for 

example, might use an extra data stream to store backup-specific time stamps on files. Or 

an archival utility might implement hierarchical storage in which files that are older than a 

certain date or that haven’t been accessed for a specified period of time are moved to tape. 
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The utility could copy the file to tape, set the file’s default data stream to 0, and add a data 

stream that specifies the name and location of the tape on which the file is stored.

EXPERIMENT: Looking at Streams

Most Windows applications aren’t designed to work with alternate named streams, but 

both the echo and more commands are. Thus, a simple way to view streams in action 

is to create a named stream using echo and then display it using more. The following 

command sequence creates a file named test with a stream named stream:

C:\>echo hello > test:stream  

C:\>more < test:stream  

hello  

C:\>

If you perform a directory listing, test’s file size doesn’t reflect the data stored in the 

alternate stream because NTFS returns the size of only the unnamed data stream for 

file query operations, including directory listings.

C:\>dir test   

 Volume in drive C is WINDOWS  

 Volume Serial Number is 3991-3040  

  

 Directory of C:\  

  

08/01/00  02:37p                    0 test  

               1 File(s)             0 bytes  

                            112,558,080 bytes free

You can determine what files and directories on your system have alternate data 

streams with the Streams utility from Sysinternals (see the following output) or by using 

the /r switch in the dir command.

C:\>streams test  

  

Streams v1.56 - Enumerate alternate NTFS data streams  

Copyright (C) 1999-2007 Mark Russinovich  

Sysinternals - www.sysinternals.com 

  

 C:\Temp\test:  

          :stream:$DATA 8

Unicode-Based Names

Like Windows as a whole, NTFS is fully Unicode enabled, using Unicode characters to store 

names of files, directories, and volumes. Unicode, a 16-bit character-coding scheme, allows 

each character in each of the world’s major languages to be uniquely represented, which 

aids in moving data easily from one country to another. Unicode is an improvement over the 
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traditional representation of international characters—using a double-byte coding scheme 

that stores some characters in 8 bits and others in 16 bits, a technique that requires loading 

various code pages to establish the available characters. Because Unicode has a unique rep-

resentation for each character, it doesn’t depend on which code page is loaded. Each direc-

tory and file name in a path can be as many as 255 characters long and can contain Unicode 

characters, embedded spaces, and multiple periods.

General Indexing Facility

The NTFS architecture is structured to allow indexing of file attributes on a disk volume. 

This structure enables the file system to efficiently locate files that match certain criteria—

for example, all the files in a particular directory. The FAT file system indexes file names but 

doesn’t sort them, making lookups in large directories slow.

Several NTFS features take advantage of general indexing, including consolidated security 

descriptors, in which the security descriptors of a volume’s files and directories are stored in 

a single internal stream, have duplicates removed, and are indexed using an internal security 

identifier that NTFS defines. The use of indexing by these features is described in the section 

“NTFS On-Disk Structure” later in this chapter.

Dynamic Bad-Cluster Remapping

Ordinarily, if a program tries to read data from a bad disk sector, the read operation fails 

and the data in the allocated cluster becomes inaccessible. If the disk is formatted as a fault-

tolerant NTFS volume, however, the Windows fault-tolerant driver dynamically retrieves a 

good copy of the data that was stored on the bad sector and then sends NTFS a warning that 

the sector is bad. NTFS allocates a new cluster, replacing the cluster in which the bad sector 

resides, and copies the data to the new cluster. It flags the bad cluster and no longer uses 

it. This data recovery and dynamic bad-cluster remapping is an especially useful feature for 

file servers and fault-tolerant systems or for any application that can’t afford to lose data. If 

the volume manager isn’t loaded when a sector goes bad, NTFS still replaces the cluster and 

doesn’t reuse it, but it can’t recover the data that was on the bad sector.

Hard Links

A hard link allows multiple paths to refer to the same file. (Hard links are not supported on 

directories.) If you create a hard link named C:\Documents\Spec.doc that refers to the exist-

ing file C:\Users\Administrator\Documents\Spec.doc, the two paths link to the same on-disk 

file and you can make changes to the file using either path. Processes can create hard links 

with the Windows CreateHardLink function or the ln POSIX function.

NTFS implements hard links by keeping a reference count on the actual data, where each 

time a hard link is created for the file, an additional file name reference is made to the data. 

This means that if you have multiple hard links for a file, you can delete the original file name 
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that referenced the data (C:\Users\Administrator\Documents\Spec.doc in our example), and 

the other hard links (C:\Documents\Spec.doc) will remain and point to the data. However, 

because hard links are on-disk local references to data (represented by file reference records), 
they can exist only within the same volume and can’t span volumes or computers.

EXPERIMENT: Creating a Hard Link

There are two ways you can create a hard link: the fsutil hardlink create command or 

the mklink utility with the /H option. In this experiment we’ll use mklink because we’ll 

use this utility later to create a symbolic link as well. First, create a file called test.txt and 

add some text to it, as shown here.

C:\>echo hello > test.txt

Now create a hard link called hard.txt as shown here:

C:\>mklink hard.txt test.txt /H 

Hardlink created for hard.txt <<===>> test.txt

If you list the directory’s contents, you’ll notice that the two files will be identical in 

every way, with the same creation date, permissions, and file size; only the file names 

differ.

C:\>dir *.txt 

 Volume in drive C is OS 

 Volume Serial Number is 38D4-EA71 

 Directory of C:\ 

10/18/2008  11:55 PM                 8 hard.txt 

10/18/2008  11:55 PM                 8 test.txt 

               2 File(s)             16 bytes 

               0 Dir(s)  10,646,011,904 bytes free

Symbolic (Soft) Links and Junctions

In addition to hard links, NTFS supports another type of file-name aliasing called symbolic 
links or soft links. Unlike hard links, symbolic links are strings that are interpreted dynamically 

and can be relative or absolute paths that refer to locations on any storage device, includ-

ing ones on a different local volume or even a share on a different system. This means that 

symbolic links don’t actually increase the reference count of the original file, so deleting the 

original file will result in the loss of the data, and a symbolic link that points to a non-existing 

file will be left behind. Finally, unlike hard links, symbolic links can point to directories, not 

just files, which gives them an added advantage.

For example, if the path C:\Drivers is a directory symbolic link that redirects to 

C:\%SystemRoot%\ System32\Drivers, an application reading C:\Drivers\Ntfs.sys actually reads 

C:\%System Root%\ System\Drivers\Ntfs.sys. Directory symbolic links are a useful way to lift 
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directories that are deep in a directory tree to a more convenient depth without disturbing 

the original tree’s structure or contents. The example just cited lifts the Drivers directory to 

the volume’s root directory, reducing the directory depth of Ntfs.sys from three levels to one 

when Ntfs.sys is accessed through the directory symbolic link. File symbolic links work much 

the same way—you can think of them as shortcuts, except they are actually implemented on 

the file system instead of being .lnk files managed by Windows Explorer. Just like hard links, 

symbolic links can be created with the mklink utility (without the /H option) or through the 

CreateSymbolicLink API.

Because certain legacy applications might not behave securely in the presence of sym-

bolic links, especially across different machines, the creation of symbolic links requires the 

SeCreateSymbolicLink privilege, which is typically granted only to administrators. The file 

system also has a behavior option called SymLinkEvaluation that can be configured with the 

following command:

fsutil behavior set SymLinkEvaluation

By default, the Windows default symbolic link evaluation policy allows only local-to-local and 

local-to-remote symbolic links but not the opposite, as shown here:

C:\>fsutil behavior query SymLinkEvaluation 

Local to local symbolic links are enabled 

Local to remote symbolic links are enabled. 

Remote to local symbolic links are disabled. 

Remote to Remote symbolic links are disabled.

Symbolic links are based on an NTFS mechanism called reparse points. (Reparse points are 

discussed further in the section “Reparse Points” later in this chapter.) A reparse point is a 

file or directory that has a block of data called reparse data associated with it. Reparse data 

is user-defined data about the file or directory, such as its state or location, that can be read 

from the reparse point by the application that created the data, a file system filter driver, or 

the I/O manager. When NTFS encounters a reparse point during a file or directory lookup, 

it returns a reparse status code, which signals file system filter drivers that are attached to 

the volume and the I/O manager to examine the reparse data. Each reparse point type has 

a unique reparse tag. The reparse tag allows the component responsible for interpreting 

the reparse point’s reparse data to recognize the reparse point without having to check the 

reparse data. A reparse tag owner, either a file system filter driver or the I/O manager, can 

choose one of the following options when it recognizes reparse data:

The reparse tag owner can manipulate the pathname specified in the file I/O operation 

that crosses the reparse point and let the I/O operation reissue with the altered path-

name. Junctions (described shortly) take this approach to redirect a directory lookup, 

for example.

The reparse tag owner can remove the reparse point from the file, alter the file in some 

way, and then reissue the file I/O operation.
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There are no Windows functions for creating reparse points. Instead, processes must use the 

FSCTL_SET_REPARSE_POINT file system control code with the Windows DeviceIoControl func-

tion. A process can query a reparse point’s contents with the FSCTL_GET_REPARSE_POINT 

file system control code. The FILE_ATTRIBUTE_REPARSE_POINT flag is set in a reparse 

point’s file attributes, so applications can check for reparse points by using the Windows 

GetFileAttributes function.

Another type of reparse point that NTFS supports is the junction. Junctions are a legacy NTFS 

concept and work almost identically to directory symbolic links, except they can only be local 

to a volume. There is no advantage to using a junction instead of a directory symbolic link, 

except that junctions are compatible with older versions of Windows, while directory sym-

bolic links are not.

EXPERIMENT: Creating a Symbolic Link

This experiment shows you the main difference between a symbolic link and a hard 

link, even when dealing with files on the same volume. Create a symbolic link called 

soft.txt as shown here, pointing to the test.txt file created in the previous experiment:

C:\>mklink soft.txt test.txt 

symbolic link created for soft.txt <<===>> test.txt

If you list the directory’s contents, you’ll notice that the symbolic link doesn’t have a file 

size and is identified by the <SYMLINK> type. Furthermore, you’ll note that the creation 

time is that of the symbolic link, not of the target file. The symbolic link can also have 

security permissions that are different from the permissions on the target file.

C:\>dir *.txt 

 Volume in drive C is OS 

 Volume Serial Number is 38D4-EA71 

 

 Directory of C:\ 

 

10/18/2008  11:55 PM                 8 hard.txt 

10/19/2008  12:28 AM    <SYMLINK>      soft.txt [test.txt] 

10/18/2008  11:55 PM                 8 test.txt 

               3 File(s)             16 bytes 

               0 Dir(s)  10,636,480,512 bytes free

Finally, if you delete the original test.txt file, you can verify that both the hard link and 

symbolic link still exist but that the symbolic link does not point to a valid file anymore, 

while the hard link references the file data.
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Compression and Sparse Files

NTFS supports compression of file data. Because NTFS performs compression and decom-

pression procedures transparently, applications don’t have to be modified to take advantage 

of this feature. Directories can also be compressed, which means that any files subsequently 

created in the directory are compressed.

Applications compress and decompress files by passing DeviceIoControl the FSCTL_SET_

COMPRESSION file system control code. They query the compression state of a file or direc-

tory with the FSCTL_GET_COMPRESSION file system control code. A file or directory that is 

compressed has the FILE_ATTRIBUTE_COMPRESSED flag set in its attributes, so applications 

can also determine a file or directory’s compression state with GetFileAttributes.

A second type of compression is known as sparse files. If a file is marked as sparse, NTFS 

doesn’t allocate space on a volume for portions of the file that an application designates as 

empty. NTFS returns 0-filled buffers when an application reads from empty areas of a sparse 

file. This type of compression can be useful for client/server applications that implement 

circular-buffer logging, in which the server records information to a file and clients asynchro-

nously read the information. Because the information that the server writes isn’t needed after 

a client has read it, there’s no need to store the information in the file. By making such a file 

sparse, the client can specify the portions of the file it reads as empty, freeing up space on 

the volume. The server can continue to append new information to the file without fear that 

the file will grow to consume all available space on the volume.

As for compressed files, NTFS manages sparse files transparently. Applications specify 

a file’s sparseness state by passing the FSCTL_SET_SPARSE file system control code to 

DeviceIoControl. To set a range of a file to empty, applications use the FSCTL_SET_ZERO_

DATA code, and they can ask NTFS for a description of what parts of a file are sparse by using 

the control code FSCTL_QUERY_ALLOCATED_RANGES. One application of sparse files is the 

NTFS change journal, described next.

Change Logging

Many types of applications need to monitor volumes for file and directory changes. For 

example, an automatic backup program might perform an initial full backup and then incre-

mental backups based on file changes. An obvious way for an application to monitor a vol-

ume for changes is for it to scan the volume, recording the state of files and directories, and 

on a subsequent scan detect differences. This process can adversely affect system perfor-

mance, however, especially on computers with thousands or tens of thousands of files.

An alternate approach is for an application to register a directory notification by using the 

FindFirstChangeNotification or ReadDirectoryChangesW Windows function. As an input 

parameter, the application specifies the name of a directory it wants to monitor, and the 

function returns whenever the contents of the directory change. Although this approach 
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is more efficient than volume scanning, it requires the application to be running at all 

times. Using these functions can also require an application to scan directories because 

FindFirstChangeNotification doesn’t indicate what changed—just that something in the direc-

tory has changed. An application can pass a buffer to ReadDirectoryChangesW that the FSD 

fills in with change records. If the buffer overflows, however, the application must be pre-

pared to fall back on scanning the directory.

NTFS provides a third approach that overcomes the drawbacks of the first two: an application 

can configure the NTFS change journal facility by using the DeviceIoControl function’s FSCTL_

CREATE_USN_JOURNAL file system control code to have NTFS record information about file 

and directory changes to an internal file called the change journal. A change journal is usually 

large enough to virtually guarantee that applications get a chance to process changes with-

out missing any. Applications use the FSCTL_QUERY_USN_JOURNAL file system control code 

to read records from a change journal, and they can specify that the DeviceIoControl function 

not complete until new records are available.

Per-User Volume Quotas

Systems administrators often need to track or limit user disk space usage on shared storage 

volumes, so NTFS includes quota-management support. NTFS quota-management support 

allows for per-user specification of quota enforcement, which is useful for usage tracking and 

tracking when a user reaches warning and limit thresholds. NTFS can be configured to log an 

event indicating the occurrence to the System event log if a user surpasses his warning limit. 

Similarly, if a user attempts to use more volume storage then her quota limit permits, NTFS 

can log an event to the System event log and fail the application file I/O that would have 

caused the quota violation with a “disk full” error code.

NTFS tracks a user’s volume usage by relying on the fact that it tags files and directories with 

the security ID (SID) of the user who created them. (See Chapter 6 for a definition of SIDs.) 

The logical sizes of files and directories a user owns count against the user’s administrator-

defined quota limit. Thus, a user can’t circumvent his or her quota limit by creating an empty 

sparse file that is larger than the quota would allow and then fill the file with nonzero data. 

Similarly, whereas a 50-KB file might compress to 10 KB, the full 50 KB is used for quota 

accounting.

By default, volumes don’t have quota tracking enabled. You need to use the Quota tab of a 

volume’s Properties dialog box, shown in Figure 11-18, to enable quotas, to specify default 

warning and limit thresholds, and to configure the NTFS behavior that occurs when a user 

hits the warning or limit threshold. The Quota Entries tool, which you can launch from this 

dialog box, enables an administrator to specify different limits and behavior for each user. 

Applications that want to interact with NTFS quota management use COM quota interfaces, 

including IDiskQuotaControl, IDiskQuotaUser, and IDiskQuotaEvents.
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FIGURE 11-18 Volume Properties dialog box

Link Tracking

Shell shortcuts allow users to place files in their shell namespace (on their desktop, for exam-

ple) that link to files located in the file system namespace. The Windows Start menu uses shell 

shortcuts extensively. Similarly, object linking and embedding (OLE) links allow documents 

from one application to be transparently embedded in the documents of other applications. 

The products of the Microsoft Office suite, including PowerPoint, Excel, and Word, use OLE 

linking.

Although shell and OLE links provide an easy way to connect files with one another and with 

the shell namespace, they can be difficult to manage if a user moves the source of a shell 

or OLE link (a link source is the file or directory to which a link points). NTFS in Windows 

includes support for a service application called distributed link-tracking, which maintains the 

integrity of shell and OLE links when link targets move. Using the NTFS link-tracking support, 

if a link target located on an NTFS volume moves to any other NTFS volume within the origi-

nating volume’s domain, the link-tracking service can transparently follow the movement and 

update the link to reflect the change.

NTFS link-tracking support is based on an optional file attribute known as an object ID. An 

application can assign an object ID to a file by using the FSCTL_CREATE_OR_GET_OBJECT_ID 

(which assigns an ID if one isn’t already assigned) and FSCTL_SET_OBJECT_ID file system 
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control codes. Object IDs are queried with the FSCTL_CREATE_OR_GET_OBJECT_ID and 

FSCTL_GET_OBJECT_ID file system control codes. The FSCTL_DELETE_OBJECT_ID file system 

control code lets applications delete object IDs from files.

Encryption

Corporate users often store sensitive information on their computers. Although data stored 

on company servers is usually safely protected with proper network security settings and 

physical access control, data stored on laptops can be exposed when a laptop is lost or sto-

len. NTFS file permissions don’t offer protection because NTFS volumes can be fully accessed 

without regard to security by using NTFS file-reading software that doesn’t require Windows 

to be running. Furthermore, NTFS file permissions are rendered useless when an alternate 

Windows installation is used to access files from an administrator account. Recall from 

Chapter 6 that the administrator account has the take-ownership and backup privileges, both 

of which allow it to access any secured object by overriding the object’s security settings.

NTFS includes a facility called Encrypting File System (EFS), which users can use to encrypt 

sensitive data. The operation of EFS, as that of file compression, is completely transparent 

to applications, which means that file data is automatically decrypted when an application 

running in the account of a user authorized to view the data reads it and is automatically 

encrypted when an authorized application changes the data.

Note NTFS doesn’t permit the encryption of files located in the system volume’s root directory 

or in the \Windows directory because many files in these locations are required during the boot 

process and EFS isn’t active during the boot process. BitLocker, described in Chapter 6, is a tech-

nology much better suited for environments in which this is a requirement because it supports 

full-volume encryption.

EFS relies on cryptographic services supplied by Windows in user mode, so it consists of both 

a kernel-mode component that tightly integrates with NTFS as well as user-mode DLLs that 

communicate with the Local Security Authority Subsystem (Lsass) and cryptographic DLLs.

Files that are encrypted can be accessed only by using the private key of an account’s EFS 

private/public key pair, and private keys are locked using an account’s password. Thus, EFS-

encrypted files on lost or stolen laptops can’t be accessed using any means (other than a 

brute-force cryptographic attack) without the password of an account that is authorized to 

view the data.

Applications can use the EncryptFile and DecryptFile Windows API functions to encrypt and 

decrypt files, and FileEncryptionStatus to retrieve a file or directory’s EFS-related attributes, 

such as whether the file or directory is encrypted. A file or directory that is encrypted has the 

FILE_ATTRIBUTE_ENCRYPTED flag set in its attributes, so applications can also determine a 

file or directory’s encryption state with GetFileAttributes.
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POSIX Support

As explained in Chapter 2, one of the mandates for Windows was to fully support the POSIX 

1003.1 standard. In the file system area, the POSIX standard requires support for case-

sensitive file and directory names, traversal permissions (where security for each directory 

of a path is used when determining whether a user has access to a file or directory), a “file-

change-time” time stamp (which is different from the MS-DOS “time-last-modified” stamp), 

and hard links. NTFS implements each of these features.

Defragmentation

Even though NTFS makes efforts to keep files contiguous, a volume’s files can still become 

fragmented over time, especially when there is limited free space. A file is fragmented if its 

data occupies discontiguous clusters. For example, Figure 11-19 shows a fragmented file 

consisting of five fragments. However, like most file systems (including versions of FAT on 

Windows), NTFS makes no special efforts to keep files contiguous, other than to reserve a 

region of disk space known as the master file table (MFT) zone for the MFT. (NTFS lets other 

files allocate from the MFT zone when volume free space runs low.) Keeping an area free for 

the MFT can help it stay contiguous, but it, too, can become fragmented. (See the section 

“Master File Table” later in this chapter for more information on MFTs.)

Fragmented file Contiguous file

FIGURE 11-19 Fragmented and contiguous files

To facilitate the development of third-party disk defragmentation tools, Windows includes a 

defragmentation API that such tools can use to move file data so that files occupy contiguous 

clusters. The API consists of file system controls that let applications obtain a map of a vol-

ume’s free and in-use clusters (FSCTL_GET_VOLUME_BITMAP), obtain a map of a file’s cluster 

usage (FSCTL_GET_RETRIEVAL_POINTERS), and move a file (FSCTL_MOVE_FILE).

Windows includes a built-in defragmentation tool that is accessible by using the Disk 

Defragmenter utility (\%SystemRoot%\System32\Dfrgui.exe), shown in Figure 11-20, as well 

as a command-line interface, \%SystemRoot%\System32\Defrag.exe, that you can run inter-

actively or schedule but that does not produce detailed reports or offer control—such as 

excluding files or directories—over the defragmentation process.
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FIGURE 11-20 Disk Defragmenter

The only limitation imposed by the defragmentation implementation in NTFS is that paging 

files and NTFS log files cannot be defragmented.

Dynamic Partitioning

The NTFS driver allows users to dynamically resize any partition, including the system parti-

tion, either shrinking or expanding it (if enough space is available). Expanding a partition 

is easy if enough space exists on the disk and is performed through the FSCTL_EXPAND_

VOLUME file system control code. Shrinking a partition is a more complicated process, 

because it requires moving any file system data that is currently in the area to be thrown 

away to the region that will still remain after the shrinking process (a mechanism similar to 

defragmentation). Shrinking is implemented by two components: the shrinking engine and 

the file system driver.

The shrinking engine is implemented in user mode. It communicates with NTFS to determine 

the maximum number of reclaimable bytes—that is, how much data can be moved from 

the region that will be resized into the region that will remain. The shrinking engine uses the 

standard defragmentation mechanism shown earlier, which doesn’t support relocating page 

file fragments that are in use or any other files that have been marked as unmovable with 

the FSCTL_MARK_HANDLE file system control code (like the hibernation file). The master 

file table backup and other NTFS metadata files (described later), including the change jour-

nal, also cannot be moved, which limits the minimum size of the shrunk volume and causes 

wasted space.

The file system driver shrinking code is responsible for ensuring that the volume remains in 

a consistent state throughout the shrinking process. To do so, it exposes an interface that 
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uses three requests that describe the current operation, which are sent through the FSCTL_

SHRINK_VOLUME control code:

The ShrinkPrepare request, which must be issued before any other operation. This 

request takes the desired size of the new volume in sectors and is used so that the file 

system can block further allocations outside the new volume boundary. The prepare 

request doesn’t verify whether the volume can actually be shrunk by the specified 

amount, but it does make sure that the amount is numerically valid and that there 

aren’t any other shrinking operations ongoing. Note that after a prepare operation, the 

file handle to the volume becomes associated with the shrink request. If the file handle 

is closed, the operation is assumed to be aborted.

The ShrinkCommit request, which the shrinking engine issues after a ShrinkPrepare 

request. In this state, the file system attempts the removal of the requested num-

ber of clusters in the most recent prepare request. (If multiple prepare requests have 

been sent with different sizes, the last one is the determining one.) The ShrinkCommit 

request assumes that the shrinking engine has completed and will fail if any allocated 

blocks remain in the area to be shrunk.

The ShrinkAbort request, which can be issued by the shrinking engine or caused by 

events such as the closure of the file handle to the volume. This request undoes the 

commit operation by returning the partition to its original size and allows new alloca-

tions outside the shrunk region to occur again. However, defragmentation changes 

made by the shrinking engine remain.

If a system is rebooted during a shrinking operation, NTFS restores the file system to a con-

sistent state via its metadata recovery mechanism, explained later in the chapter. Because the 

actual shrink operation isn’t executed until all other operations have been completed, the 

volume retains its original size and only defragmentation operations that had already been 

flushed out to disk persist.

Finally, shrinking a volume has several effects on the volume shadow copy mechanism (for 

more information on VSS, see Chapter 8). Recall that the copy-on-write mechanism allows 

VSS to simply retain parts of the file that were actually modified while still linking to the orig-

inal file data. For deleted files, this file data will not be associated with visible files but appear 

as free space instead—free space that will likely be located in the area that is about to be 

shrunk. The shrinking engine therefore communicates with VSS to engage it in the shrinking 

process. In summary, the VSS mechanism’s job is to copy deleted file data into its differencing 

area and to increase the differencing area as required to accommodate additional data. This 

detail is important because it poses another constraint on the size to which even volumes 

with ample free space can shrink.
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NTFS File System Driver

As described in Chapter 7, in the framework of the Windows I/O system, NTFS and other file 

systems are loadable device drivers that run in kernel mode. They are invoked indirectly by 

applications that use Windows or other I/O APIs (such as POSIX). As Figure 11-21 shows, the 

Windows environment subsystems call Windows system services, which in turn locate the 

appropriate loaded drivers and call them. (For a description of system service dispatching, 

see the section “System Service Dispatching” in Chapter 3.)

Environment
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or DLL

User mode

Kernel mode

Kernel

Object
manager

Security
reference
monitor

Windows
executive

… Advanced
local

procedure
call

facility

Memory
manager

Windows system services

NTFS driver

Volume
manager

Disk driver

I/O manager

FIGURE 11-21 Components of the Windows I/O system

The layered drivers pass I/O requests to one another by calling the Windows executive’s I/O 

manager. Relying on the I/O manager as an intermediary allows each driver to maintain inde-

pendence so that it can be loaded or unloaded without affecting other drivers. In addition, 

the NTFS driver interacts with the three other Windows executive components, shown in the 

left side of Figure 11-22, that are closely related to file systems.

The log file service (LFS) is the part of NTFS that provides services for maintaining a log of 

disk writes. The log file that LFS writes is used to recover an NTFS-formatted volume in the 

case of a system failure. (See the section “Log File Service (LFS)” later in the chapter.)
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FIGURE 11-22 NTFS and related components

The cache manager is the component of the Windows executive that provides systemwide 

caching services for NTFS and other file system drivers, including network file system drivers 

(servers and redirectors). All file systems implemented for Windows access cached files by 

mapping them into system address space and then accessing the virtual memory. The cache 

manager provides a specialized file system interface to the Windows memory manager for 

this purpose. When a program tries to access a part of a file that isn’t loaded into the cache 

(a cache miss), the memory manager calls NTFS to access the disk driver and obtain the file 

contents from disk. The cache manager optimizes disk I/O by using its lazy writer threads to 

call the memory manager to flush cache contents to disk as a background activity (asynchro-

nous disk writing). (For a complete description of the cache manager, see Chapter 10.)

NTFS participates in the Windows object model by implementing files as objects. This imple-

mentation allows files to be shared and protected by the object manager, the component of 

Windows that manages all executive-level objects. (The object manager is described in the 

section “Object Manager” in Chapter 3.)

An application creates and accesses files just as it does other Windows objects: by means of 

object handles. By the time an I/O request reaches NTFS, the Windows object manager and 

security system have already verified that the calling process has the authority to access the 

file object in the way it is attempting to. The security system has compared the caller’s access 

token to the entries in the access control list for the file object. (See Chapter 6 for more infor-

mation about access control lists.) The I/O manager has also transformed the file handle into 

a pointer to a file object. NTFS uses the information in the file object to access the file on 

disk.
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Figure 11-23 shows the data structures that link a file handle to the file system’s on-disk 

structure.

FIGURE 11-23 NTFS data structures

NTFS follows several pointers to get from the file object to the location of the file on disk. 

As Figure 11-23 shows, a file object, which represents a single call to the open-file system 

service, points to a stream control block (SCB) for the file attribute that the caller is trying to 

read or write. In Figure 11-23, a process has opened both the unnamed data attribute and a 

named stream (alternate data attribute) for the file. The SCBs represent individual file attri-

butes and contain information about how to find specific attributes within a file. All the SCBs 

for a file point to a common data structure called a file control block (FCB). The FCB contains 

a pointer (actually, a file reference, explained in the section “File Reference Numbers” later in 

this chapter) to the file’s record in the disk-based master file table (MFT), which is described 

in detail in the following section.
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NTFS On-Disk Structure

This section describes the on-disk structure of an NTFS volume, including how disk space is 

divided and organized into clusters, how files are organized into directories, how the actual 

file data and attribute information is stored on disk, and finally, how NTFS data compression 

works.

Volumes

The structure of NTFS begins with a volume. A volume corresponds to a logical partition on a 

disk, and it is created when you format a disk or part of a disk for NTFS. You can also create a 

RAID volume that spans multiple disks by using the Windows Disk Management MMC snap-

in or the diskpart command available from the Windows command prompt.

A disk can have one volume or several. NTFS handles each volume independently of the oth-

ers. Three sample disk configurations for a 150-MB hard disk are illustrated in Figure 11-24.

FIGURE 11-24 Sample disk configurations

A volume consists of a series of files plus any additional unallocated space remaining on the 

disk partition. In the FAT file system, a volume also contains areas specially formatted for use 

by the file system. An NTFS volume, however, stores all file system data, such as bitmaps and 

directories, and even the system bootstrap, as ordinary files.

Note The on-disk format of NTFS volumes on Windows Vista and Windows Server 2008 is ver-

sion 3.1, the same as on Windows XP and Windows Server 2003. The version number of a volume 

is stored in its $Volume metadata file.

Clusters

The cluster size on an NTFS volume, or the cluster factor, is established when a user formats 

the volume with either the format command or the Disk Management MMC snap-in. The 

default cluster factor varies with the size of the volume, but it is an integral number of physi-

cal sectors, always a power of 2 (1 sector, 2 sectors, 4 sectors, 8 sectors, and so on). The clus-

ter factor is expressed as the number of bytes in the cluster, such as 512 bytes, 1 KB, or 2 KB.
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Internally, NTFS refers only to clusters. (However, NTFS forms low-level volume I/O operations 

such that clusters are sector-aligned and have a length that is a multiple of the sector size.) 

NTFS uses the cluster as its unit of allocation to maintain its independence from physical sec-

tor sizes. This independence allows NTFS to efficiently support very large disks by using a 

larger cluster factor or to support nonstandard disks that have a sector size other than 512 

bytes. On a larger volume, use of a larger cluster factor can reduce fragmentation and speed 

allocation, at a small cost in terms of wasted disk space. Both the format command available 

from the command prompt and the Format menu option under the All Tasks option on the 

Action menu in the Disk Management MMC snap-in choose a default cluster factor based on 

the volume size, but you can override this size.

NTFS refers to physical locations on a disk by means of logical cluster numbers (LCNs). LCNs 

are simply the numbering of all clusters from the beginning of the volume to the end. To 

convert an LCN to a physical disk address, NTFS multiplies the LCN by the cluster factor to 

get the physical byte offset on the volume, as the disk driver interface requires. NTFS refers 

to the data within a file by means of virtual cluster numbers (VCNs). VCNs number the clusters 

belonging to a particular file from 0 through m. VCNs aren’t necessarily physically contigu-

ous, however; they can be mapped to any number of LCNs on the volume.

Master File Table

In NTFS, all data stored on a volume is contained in files, including the data structures used 

to locate and retrieve files, the bootstrap data, and the bitmap that records the allocation 

state of the entire volume (the NTFS metadata). Storing everything in files allows the file 

system to easily locate and maintain the data, and each separate file can be protected by a 

security descriptor. In addition, if a particular part of the disk goes bad, NTFS can relocate the 

metadata files to prevent the disk from becoming inaccessible.

The MFT is the heart of the NTFS volume structure. The MFT is implemented as an array of 

file records. The size of each file record is fixed at 1 KB, regardless of cluster size. (The struc-

ture of a file record is described in the “File Records” section later in this chapter.) Logically, 

the MFT contains one record for each file on the volume, including a record for the MFT 

itself. In addition to the MFT, each NTFS volume includes a set of metadata files containing 

the information that’s used to implement the file system structure. Each of these NTFS meta-

data files has a name that begins with a dollar sign ($), although the signs are hidden. For 

example, the file name of the MFT is $MFT. The rest of the files on an NTFS volume are nor-

mal user files and directories, as shown in Figure 11-25.

Usually, each MFT record corresponds to a different file. If a file has a large number of attri-

butes or becomes highly fragmented, however, more than one record might be needed for 

a single file. In such cases, the first MFT record, which stores the locations of the others, is 

called the base file record.
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$MFT - MFT

$MFTMirr - MFT mirror

$LogFile - Log file

\ - Root directory

$Volume - Volume file

$AttrDef - Attribute definition table

Reserved for NTFS
metadata files

0

1

2

3

4

5

$BitMap - Volume cluster allocation file

$Boot - Boot sector

$BadClus - Bad-cluster file

$Extend - Extended metadata directory

$Secure - Security settings file

$UpCase - Uppercase character mapping

6

7

8

9

10

11

12

Unused

$Extend\$Quota - Quota information

$Extend\$ObjId - Distributed link tracking information

$Extend\$RmMetadata\$Repair - RM repair information

$Extend\$Reparse - Backreferences to reparse points

$Extend\$RmMetadata - RM metadata directory

23

24

25

26

27

28

$Extend\$RmMetadata\$TxfLog - TxF log directory

$Extend\$RmMetadata\$Txf - TxF metadata directory

$Extend\$RmMetadata\$TxfLog\$Tops - TOPS file

$Extend\$RmMetadata\$TxfLog\$TxfLog.blf - TxF BLF

User files and directories

29

30

31

32

33

Unused

FIGURE 11-25 File records for NTFS metadata files in the MFT

When it first accesses a volume, NTFS must mount it—that is, read metadata from the disk 

and construct internal data structures so that it can process application file system accesses. 

To mount the volume, NTFS looks in the boot sector to find the physical disk address of the 

MFT. The MFT’s own file record is the first entry in the table; the second file record points to 

a file located in the middle of the disk called the MFT mirror (file name $MFTMirr) that con-

tains a copy of the first few rows of the MFT. This partial copy of the MFT is used to locate 

metadata files if part of the MFT file can’t be read for some reason.

Once NTFS finds the file record for the MFT, it obtains the VCN-to-LCN mapping information 

in the file record’s data attribute and stores it in memory. Each run (runs are explained later 

in this chapter in the section “Resident and Nonresident Attributes”) has a VCN-to-LCN map-

ping and a run length because that’s all the information necessary to locate an LCN for any 

VCN. This mapping information tells NTFS where the runs composing the MFT are located 
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on the disk. NTFS then processes the MFT records for several more metadata files and opens 

the files. Next, NTFS performs its file system recovery operation (described in the section 

“Recovery”), and finally, it opens its remaining metadata files. The volume is now ready for 

user access.

Note For the sake of clarity, the text and diagrams in this chapter depict a run as including a 

VCN, an LCN, and a run length. NTFS actually compresses this information on disk into an LCN/

next-VCN pair. Given a starting VCN, NTFS can determine the length of a run by subtracting the 

starting VCN from the next VCN.

As the system runs, NTFS writes to another important metadata file, the log file (file name 

$LogFile). NTFS uses the log file to record all operations that affect the NTFS volume struc-

ture, including file creation or any commands, such as copy, that alter the directory structure. 

The log file is used to recover an NTFS volume after a system failure and is also described in 

the “Recovery” section later in this chapter.

Another entry in the MFT is reserved for the root directory (also known as “\”). Its file record 

contains an index of the files and directories stored in the root of the NTFS directory struc-

ture. When NTFS is first asked to open a file, it begins its search for the file in the root direc-

tory’s file record. After opening a file, NTFS stores the file’s MFT file reference so that it can 

directly access the file’s MFT record when it reads and writes the file later.

NTFS records the allocation state of the volume in the bitmap file (file name $BitMap). The 

data attribute for the bitmap file contains a bitmap, each of whose bits represents a cluster 

on the volume, identifying whether the cluster is free or has been allocated to a file.

The security file (file name $Secure) stores the volume-wide security descriptor database. 

NTFS files and directories have individually settable security descriptors, but to conserve 

space, NTFS stores the settings in a common file, which allows files and directories that have 

the same security settings to reference the same security descriptor. In most environments, 

entire directory trees have the same security settings, so this optimization provides a signifi-

cant savings.

Another system file, the boot file (file name $Boot), stores the Windows bootstrap code. For 

the system to boot, the bootstrap code must be located at a specific disk address. During 

formatting, however, the format command defines this area as a file by creating a file record 

for it. Creating the boot file allows NTFS to adhere to its rule of making everything on the 

disk a file. The boot file as well as NTFS metadata files can be individually protected by 

means of the security descriptors that are applied to all Windows objects. Using this “every-

thing on the disk is a file” model also means that the bootstrap can be modified by normal 

file I/O, although the boot file is protected from editing.

NTFS also maintains a bad-cluster file (file name $BadClus) for recording any bad spots on 

the disk volume and a file known as the volume file (file name $Volume), which contains the 

volume name, the version of NTFS for which the volume is formatted, and a bit that when 
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set signifies that a disk corruption has occurred and must be repaired by the Chkdsk utility. 

(The Chkdsk utility is covered in more detail later in the chapter.) The uppercase file (file name 

$UpCase) includes a translation table between lowercase and uppercase characters. NTFS 

maintains a file containing an attribute definition table (file name $AttrDef) that defines the 

attribute types supported on the volume and indicates whether they can be indexed, recov-

ered during a system recovery operation, and so on.

NTFS stores several metadata files in the extensions (directory name $Extend) metadata direc-

tory, including the object identifier file (file name $ObjId), the quota file (file name $Quota), 

the change journal file (file name $UsnJrnl), the reparse point file (file name $Reparse), and the 

default resource manager directory (directory name $RmMetadata). These files store informa-

tion related to optional features of NTFS. The object identifier file stores file object IDs, the 

quota file stores quota limit and behavior information on volumes that have quotas enabled, 

the change journal file records file and directory changes, and the reparse point file stores 

information about which files and directories on the volume include reparse point data.

The default resource manager directory contains directories related to transactional NTFS 

(TxF) support, including the transaction log directory (directory name $TxfLog), the transac-
tion isolation directory (directory name $Txf), and the transaction repair directory (file name 

$Repair). The transaction log directory contains the TxF base log file (file name $TxfLog.blf) 

and any number of log container files, depending on the size of the transaction log, but it 

always contains at least two: one for the Kernel Transaction Manager (KTM) log stream (file 

name $TxfLogContainer00000000000000000001), and one for the TxF log stream (file name 

$TxfLogContainer00000000000000000002). The transaction log directory also contains the 

TxF old page stream (file name $Tops), which we’ll describe later.

EXPERIMENT: Viewing NTFS Information

You can use the built-in Fsutil.exe command-line program to view information about an 

NTFS volume, including the placement and size of the MFT and MFT zone:

C:\Users\Administrator>fsutil fsinfo ntfsinfo c: 

NTFS Volume Serial Number :       0x9a38d50e38d4ea71 

Version :                         3.1 

Number Sectors :                  0x0000000015c82ff0 

Total Clusters :                  0x0000000002b905fe 

Free Clusters  :                  0x000000000013c332 

Total Reserved :                  0x0000000000000780 

Bytes Per Sector  :               512 

Bytes Per Cluster :               4096 

Bytes Per FileRecord Segment    : 1024 

Clusters Per FileRecord Segment : 0 

Mft Valid Data Length :           0x0000000023db0000 

Mft Start Lcn  :                  0x00000000000c0000 

Mft2 Start Lcn :                  0x00000000016082ff 

Mft Zone Start :                  0x0000000002751f60 

Mft Zone End   :                  0x000000000275cd60 

RM Identifier:        CF7234E7-39E3-11DC-BDCE-00188BDD5F49
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File Reference Numbers

A file on an NTFS volume is identified by a 64-bit value called a file reference. The file refer-

ence consists of a file number and a sequence number. The file number corresponds to the 

position of the file’s file record in the MFT minus 1 (or to the position of the base file record 

minus 1 if the file has more than one file record). The sequence number, which is incre-

mented each time an MFT file record position is reused, enables NTFS to perform internal 

consistency checks. A file reference is illustrated in Figure 11-26.

FIGURE 11-26 File reference

File Records

Instead of viewing a file as just a repository for textual or binary data, NTFS stores files as a 

collection of attribute/value pairs, one of which is the data it contains (called the unnamed 
data attribute). Other attributes that comprise a file include the file name, time stamp infor-

mation, and possibly additional named data attributes. Figure 11-27 illustrates an MFT record 

for a small file.

Master file table

Standard
information Filename

…

Data

FIGURE 11-27 MFT record for a small file

Each file attribute is stored as a separate stream of bytes within a file. Strictly speaking, NTFS 

doesn’t read and write files—it reads and writes attribute streams. NTFS supplies these attri-

bute operations: create, delete, read (byte range), and write (byte range). The read and write 

services normally operate on the file’s unnamed data attribute. However, a caller can specify 

a different data attribute by using the named data stream syntax.
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Table 11-5 lists the attributes for files on an NTFS volume. (Not all attributes are present for 

every file.)

TABLE 11-5 Attributes for NTFS Files

Attribute Attribute Type Name Description

Volume information $VOLUME_INFORMATION, 

$VOLUME_NAME

These attributes are present only in 

the $Volume metadata file. They store 

volume version and label information.

Standard information $STANDARD_INFORMATION File attributes such as read-only, archive, 

and so on; time stamps, including when 

the file was created or last modified; and 

how many directories point to the file (its 

hard link count).

Filename $FILE_NAME The file’s name in Unicode characters. A 

file can have multiple filename attributes, 

as it does when a hard link to a file exists 

or when a file with a long name has an 

automatically generated “short name” for 

access by MS-DOS and 16-bit Windows 

applications.

Security descriptor $SECURITY_DESCRIPTOR This attribute is present for backward 

compatibility with previous versions of 

NTFS. The latest versions of NTFS store 

all security descriptors in the $Secure 

metadata file, sharing descriptors among 

files and directories that have the same 

settings. Previous versions of NTFS stored 

private security descriptor information 

with each file and directory.

Data $DATA The contents of the file. In NTFS, a file 

has one default unnamed data attribute 

and can have additional named data 

attributes—that is, a file can have 

multiple data streams. A directory has 

no default data attribute but can have 

optional named data attributes.

Index root, index 

allocation, and index 

bitmap

$INDEX_ROOT,  

$INDEX_ALLOCATION,  

$BITMAP

Three attributes used to implement file 

name allocation and bitmap indexes for 

large directories (directories only).

Attribute list $ATTRIBUTE_LIST A list of the attributes that make up the 

file and the file reference of the MFT file 

record in which each attribute is located. 

This seldom-used attribute is present 

when a file requires more than one MFT 

file record.
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Attribute Attribute Type Name Description

Object ID $OBJECT_ID A 64-byte identifier for a file or directory, 

with the lowest 16 bytes (128 bits) unique 

to the volume. The link-tracking service 

assigns object IDs to shell shortcut and 

OLE link source files. NTFS provides 

APIs so that files and directories can be 

opened with their object ID rather than 

their file name.

Reparse information $REPARSE_POINT This attribute stores a file’s reparse point 

data. NTFS junctions and mount points 

include this attribute.

Extended attributes $EA, $EA_INFORMATION Extended attributes aren’t actively 

used but are provided for backward 

compatibility with OS/2 applications.

Logged utility stream $LOGGED_UTILITY_STREAM EFS stores data in this attribute ($EFS) 

that’s used to manage a file’s encryption, 

such as the encrypted version of the key 

needed to decrypt the file and a list of 

users who are authorized to access the 

file. When a file or directory becomes 

part of a transaction, TxF also stores 

transaction data in the $TXF_DATA 

attribute, such as the file’s unique 

transaction ID. 

Table 11-5 shows attribute names; however, attributes actually correspond to numeric type 

codes, which NTFS uses to order the attributes within a file record. The file attributes in an 

MFT record are ordered by these type codes (numerically in ascending order), with some 

attribute types appearing more than once—if a file has multiple data attributes, for example, 

or multiple file names.

Each attribute in a file record is identified with its attribute type code and has a value and an 

optional name. An attribute’s value is the byte stream composing the attribute. For example, 

the value of the $FILE_NAME attribute is the file’s name; the value of the $DATA attribute is 

whatever bytes the user stored in the file.

Most attributes never have names, although the index-related attributes and the $DATA 

attribute often do. Names distinguish between multiple attributes of the same type that a 

file can include. For example, a file that has a named data stream has two $DATA attributes: 

an unnamed $DATA attribute storing the default unnamed data stream and a named $DATA 

attribute having the name of the alternate stream and storing the named stream’s data.
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File Names

Both NTFS and FAT allow each file name in a path to be as many as 255 characters long. File 

names can contain Unicode characters as well as multiple periods and embedded spaces. 

However, the FAT file system supplied with MS-DOS is limited to 8 (non-Unicode) characters 

for its file names, followed by a period and a 3-character extension. Figure 11-28 provides a 

visual representation of the different file namespaces Windows supports and shows how they 

intersect.

"TrailingDots..."
"SameNameDifferentCase"
"samenamedifferentcase"
"TrailingSpaces   "

Examples

"LongFileName"
"UnicodeName. "
"File.Name.With.Dots"
"File.Name2.With.Dots"
"Name With Embedded Spaces"
".BeginningDot"

"EIGHTCHR.123"
"CASEBLND.TYP"

POSIX
subsystem

Windows
subsystem

MS-DOS–Windows
clients

FIGURE 11-28 Windows file namespaces

The POSIX subsystem requires the biggest namespace of all the application execution envi-

ronments that Windows supports, and therefore the NTFS namespace is equivalent to the 

POSIX namespace. The POSIX subsystem can create names that aren’t visible to Windows and 

MS-DOS applications, including names with trailing periods and trailing spaces. Ordinarily, 

creating a file using the large POSIX namespace isn’t a problem because you would do that 

only if you intended the POSIX subsystem or POSIX client systems to use that file.

The relationship between 32-bit Windows (Windows) applications and MS-DOS and 16-bit 

Windows applications is a much closer one, however. The Windows area in Figure 11-28 

represents file names that the Windows subsystem can create on an NTFS volume but that 

MS-DOS and 16-bit Windows applications can’t see. This group includes file names longer 

than the 8.3 format of MS-DOS names, those containing Unicode (international) characters, 

those with multiple period characters or a beginning period, and those with embedded 

spaces. When a file is created with such a name, NTFS automatically generates an alternate, 

MS-DOS-style file name for the file. Windows displays these short names when you use the 

/x option with the dir command.
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The MS-DOS file names are fully functional aliases for the NTFS files and are stored in the 

same directory as the long file names. The MFT record for a file with an autogenerated 

MS-DOS file name is shown in Figure 11-29.

Standard

information

NTFS

file name

MS-DOS

file name Data

New filename
attribute

FIGURE 11-29 MFT file record with an MS-DOS filename attribute

The NTFS name and the generated MS-DOS name are stored in the same file record and 

therefore refer to the same file. The MS-DOS name can be used to open, read from, write 

to, or copy the file. If a user renames the file using either the long file name or the short file 

name, the new name replaces both the existing names. If the new name isn’t a valid MS-DOS 

name, NTFS generates another MS-DOS name for the file (note that NTFS only generates 

MS-DOS-style file names for the first file name).

Note Hard links are implemented in a similar way. When a hard link to a file is created, NTFS 

adds another file name attribute to the file’s MFT file record. The two situations differ in one 

regard, however. When a user deletes a file that has multiple names (hard links), the file record 

and the file remain in place. The file and its record are deleted only when the last file name (hard 

link) is deleted. If a file has both an NTFS name and an autogenerated MS-DOS name, however, a 

user can delete the file using either name.

Here’s the algorithm NTFS uses (the algorithm is actually implemented in the kernel function 

RtlGenerate8dot3Name and is also used by other drivers, such as CDFS, FAT, and third-party 

file systems) to generate an MS-DOS name from a long file name:

 1. Remove from the long name any characters that are illegal in MS-DOS names, includ-

ing spaces and Unicode characters. Remove preceding and trailing periods. Remove all 

other embedded periods, except the last one.

 2. Truncate the string before the period (if present) to six characters (it may already be six 

or fewer because this algorithm is applied when any character that is illegal in MS-DOS 

is present in the name); if it is two or fewer characters, generate and concatenate a 

four-character hex checksum string. Append the string ~n (where n is a number, start-

ing with 1, that is used to distinguish different files that truncate to the same name). 

Truncate the string after the period (if present) to three characters.

 3. Put the result in uppercase letters. MS-DOS is case-insensitive, and this step guarantees 

that NTFS won’t generate a new name that differs from the old only in case.
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 4. If the generated name duplicates an existing name in the directory, increment the ~n 

string. If n is greater than 4, and a checksum was not concatenated already, truncate 

the string before the period to two characters and generate and concatenate a four-

character hex checksum string.

Table 11-6 shows the long Windows file names from Figure 11-28 and their NTFS-generated 

MS-DOS versions. The current algorithm and the examples in Figure 11-28 should give you 

an idea of what NTFS-generated MS-DOS-style file names look like.

Note Although not generally recommended because it can cause incompatibilities with appli-

cations that rely on them, you can disable short name generation by setting HKLM\SYSTEM\

CurrentControlSet\Control\FileSystem\NtfsDisable8dot3NameCreation in the registry to a 

DWORD value of 1.

TABLE 11-6 NTFS-Generated File Names

Windows Long Name NTFS-Generated Short Name

LongFileName LONGFI~1

UnicodeName.ΦΔΠΛ UNICOD~1

File.Name.With.Dots FILENA~1.DOT

File.Name2.With.Dots FILENA~2.DOT

File.Name3.With.Dots FILENA~3.DOT

File.Name4.With.Dots FILENA~4.DOT

File.Name5.With.Dots FIF596~1.DOT

Name With Embedded Spaces NAMEWI~1

.BeginningDot BEGINN~1

25¢.two characters 255440~1.TWO

© 6E2D~1

Tunneling

NTFS uses the concept of tunneling to allow compatibility with older programs that 

depend on the file system to cache certain file metadata for a period of time even after 

the file is gone, such as when it has been deleted or renamed. With tunneling, any new 

file created with the same name as the original file, and within a certain period of time, 

will keep some of the same metadata. The idea is to replicate behavior expected by 

MS-DOS programs when using the safe save programming method, in which modified 

data is copied to a temporary file, the original file is deleted, and then the temporary 

file is renamed to the original name. The expected behavior in this case is that the 

renamed temporary file should appear to be the same as the original file, otherwise the 

creation time would continuously update itself with each modification (which is how 

the modified time is used).
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NTFS uses tunneling so that when a file name is removed from a directory, its long 

name and short name, as well as its creation time, are saved into a cache. When a new 

file is added to a directory, the cache is searched to see whether there is any tunneled 

data to restore. Because these operations apply to directories, each directory instance 

has its own cache, which is deleted if the directory is removed. NTFS will use tunnel-

ing for the following series of operations if the names used result in the deletion and 

 re-creation of the same file name:

Delete + Create

Delete + Rename

Rename + Create

Rename + Rename

By default, NTFS keeps the tunneling cache for 15 seconds, although you can modify 

this timeout by modifying the MaximumTunnelEntryAgeInSeconds value in the HKLM\

SYSTEM\CurrentControlSet\Control\FileSystem registry key. Tunneling can also be com-

pletely disabled by creating a new value called MaximumTunnelEntries and setting it to 

0; however, this will cause older applications to break if they rely on the compatibility 

behavior.

You can see tunneling in action with the following simple experiment in the command 

prompt:

 1. Create a file called file1.

 2. Wait for more than 15 seconds (the default tunnel cache timeout).

 3. Create a file called file2.

 4. Perform a dir /TC. Note the creation times.

 5. Rename file1 to file.

 6. Rename file2 to file1.

 7. Perform a dir /TC. Note that the creation times are identical.

Resident and Nonresident Attributes

If a file is small, all its attributes and their values (its data, for example) fit in the file record. 

When the value of an attribute is stored directly in the MFT, the attribute is called a resident 
attribute. (In Figure 11-29, for example, all attributes are resident.) Several attributes are 

defined as always being resident so that NTFS can locate nonresident attributes. The stan-

dard information and index root attributes are always resident, for example.
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Each attribute begins with a standard header containing information about the attribute, 

information that NTFS uses to manage the attributes in a generic way. The header, which is 

always resident, records whether the attribute’s value is resident or nonresident. For resident 

attributes, the header also contains the offset from the header to the attribute’s value and 

the length of the attribute’s value, as Figure 11-30 illustrates for the filename attribute.

Standard
information Filename Data

“RESIDENT”
Offset: 8h
Length: 14h

Attribute header

Attribute value

MYFILE.DAT

FIGURE 11-30 Resident attribute header and value

When an attribute’s value is stored directly in the MFT, the time it takes NTFS to access the 

value is greatly reduced. Instead of looking up a file in a table and then reading a succes-

sion of allocation units to find the file’s data (as the FAT file system does, for example), NTFS 

accesses the disk once and retrieves the data immediately.

The attributes for a small directory, as well as for a small file, can be resident in the MFT, as 

Figure 11-31 shows. For a small directory, the index root attribute contains an index of file 

references for the files and the subdirectories in the directory.

FIGURE 11-31 MFT file record for a small directory

Of course, many files and directories can’t be squeezed into a 1-KB, fixed-size MFT record. 

If a particular attribute, such as a file’s data attribute, is too large to be contained in an MFT 

file record, NTFS allocates clusters for the attribute’s data separate from the MFT. This area 

is called a run (or an extent). If the attribute’s value later grows (if a user appends data to the 

file, for example), NTFS allocates another run for the additional data. Attributes whose values 

are stored in runs rather than in the MFT are called nonresident attributes. The file system 

decides whether a particular attribute is resident or nonresident; the location of the data is 

transparent to the process accessing it.
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When an attribute is nonresident, as the data attribute for a large file might be, its header 

contains the information NTFS needs to locate the attribute’s value on the disk. Figure 11-32 

shows a nonresident data attribute stored in two runs.

NTFS
extended
attributes

Standard
information Filename Data

Data Data

FIGURE 11-32 MFT file record for a large file with two data runs

Among the standard attributes, only those that can grow can be nonresident. For files, the 

attributes that can grow are the data and the attribute list (not shown in Figure 11-32). The 

standard information and filename attributes are always resident.

A large directory can also have nonresident attributes (or parts of attributes), as Figure 11-33 

shows. In this example, the MFT file record doesn’t have enough room to store the index of 

files that make up this large directory. A part of the index is stored in the index root attri-

bute, and the rest of the index is stored in nonresident runs called index buffers. The index 

root, index allocation, and bitmap attributes are shown here in a simplified form. They are 

described in more detail in the next section. The standard information and filename attri-

butes are always resident. The header and at least part of the value of the index root attri-

bute are also resident for directories.

Index
allocation Bitmap

Standard
information Filename Index root

Index buffers file1  file2  file3 file5  file6

Index of files

file4 file8

FIGURE 11-33 MFT file record for a large directory with a nonresident file name index

When a file’s (or a directory’s) attributes can’t fit in an MFT file record and separate alloca-

tions are needed, NTFS keeps track of the runs by means of VCN-to-LCN mapping pairs. 

LCNs represent the sequence of clusters on an entire volume from 0 through n. VCNs number 

the clusters belonging to a particular file from 0 through m. For example, the clusters in the 

runs of a nonresident data attribute are numbered as shown in Figure 11-34.
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Standard
information

0 1 2 3

1355 1356 1357 1358

Filename Data

Data Data

File 16

4 5 6 7

1588 1589 1590 1591

VCN

LCN

FIGURE 11-34 VCNs for a nonresident data attribute

If this file had more than two runs, the numbering of the third run would start with VCN 8. 

As Figure 11-35 shows, the data attribute header contains VCN-to-LCN mappings for the two 

runs here, which allows NTFS to easily find the allocations on the disk.

Standard
information

0 1 2 3

1355 1356 1357 1358

Filename Data

Data Data

File 16

4 5 6 7

1588 1589 1590 1591

VCN

LCN

1355

1588

4

4

0

4

Starting
VCN

Starting
LCN

Number of
clusters

FIGURE 11-35 VCN-to-LCN mappings for a nonresident data attribute

Although Figure 11-34 shows just data runs, other attributes can be stored in runs if there 

isn’t enough room in the MFT file record to contain them. And if a particular file has too 

many attributes to fit in the MFT record, a second MFT record is used to contain the addi-

tional attributes (or attribute headers for nonresident attributes). In this case, an attribute 

called the attribute list is added. The attribute list attribute contains the name and type code 

of each of the file’s attributes and the file reference of the MFT record where the attribute 

is located. The attribute list attribute is provided for those cases in which a file grows so 

large or so fragmented that a single MFT record can’t contain the multitude of VCN-to-

LCN mappings needed to find all its runs. Files with more than 200 runs typically require an 

attribute list.

Data Compression and Sparse Files

NTFS supports compression on a per-file, per-directory, or per-volume basis. (NTFS com-

pression is performed only on user data, not file system metadata.) You can tell whether a 

volume is compressed by using the Windows GetVolumeInformation function. To retrieve the 
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actual compressed size of a file, use the Windows GetCompressedFileSize function. Finally, 

to examine or change the compression setting for a file or directory, use the Windows 

DeviceIoControl function. (See the FSCTL_GET_COMPRESSION and FSCTL_SET_COMPRESSION 

file system control codes.) Keep in mind that although setting a file’s compression state com-

presses (or decompresses) the file right away, setting a directory’s or volume’s compression 

state doesn’t cause any immediate compression or decompression. Instead, setting a direc-

tory’s or volume’s compression state sets a default compression state that will be given to all 

newly created files and subdirectories within that directory or volume.

The following section introduces NTFS compression by examining the simple case of com-

pressing sparse data. The subsequent sections extend the discussion to the compression of 

ordinary files and sparse files.

Compressing Sparse Data

Sparse data is often large but contains only a small amount of nonzero data relative to its 

size. A sparse matrix is one example of sparse data. As described earlier, NTFS uses VCNs, 

from 0 through m, to enumerate the clusters of a file. Each VCN maps to a corresponding 

LCN, which identifies the disk location of the cluster. Figure 11-36 illustrates the runs (disk 

allocations) of a normal, noncompressed file, including its VCNs and the LCNs they map to.

0 1 2 3

1355 1356 1357 1358

Data Data

4 5 6 7

1588 1589 1590 1591

Data

8 9 10 11

2033 2034 2035 2036

FIGURE 11-36 Runs of a noncompressed file

This file is stored in 3 runs, each of which is 4 clusters long, for a total of 12 clusters. Figure 

11-37 shows the MFT record for this file. As described earlier, to save space the MFT record’s 

data attribute, which contains VCN-to-LCN mappings, records only one mapping for each 

run, rather than one for each cluster. Notice, however, that each VCN from 0 through 11 has 

a corresponding LCN associated with it. The first entry starts at VCN 0 and covers 4 clusters, 

the second entry starts at VCN 4 and covers 4 clusters, and so on. This entry format is typical 

for a noncompressed file.
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Starting
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Starting
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Number of
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FIGURE 11-37 MFT record for a noncompressed file
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When a user selects a file on an NTFS volume for compression, one NTFS compression tech-

nique is to remove long strings of zeros from the file. If the file’s data is sparse, it typically 

shrinks to occupy a fraction of the disk space it would otherwise require. On subsequent 

writes to the file, NTFS allocates space only for runs that contain nonzero data.

Figure 11-38 depicts the runs of a compressed file containing sparse data. Notice that certain 

ranges of the file’s VCNs (16–31 and 64–127) have no disk allocations.
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FIGURE 11-38 Runs of a compressed file containing sparse data

The MFT record for this compressed file omits blocks of VCNs that contain zeros and there-

fore have no physical storage allocated to them. The first data entry in Figure 11-39, for 

example, starts at VCN 0 and covers 16 clusters. The second entry jumps to VCN 32 and cov-

ers 16 clusters.

133

193

16

16
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96 1648

32

Starting
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Starting
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Number of
clusters

324 16128

FIGURE 11-39 MFT record for a compressed file containing sparse data

When a program reads data from a compressed file, NTFS checks the MFT record to deter-

mine whether a VCN-to-LCN mapping covers the location being read. If the program is 
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reading from an unallocated “hole” in the file, it means that the data in that part of the file 

consists of zeros, so NTFS returns zeros without accessing the disk. If a program writes non-

zero data to a “hole,” NTFS quietly allocates disk space and then writes the data. This tech-

nique is very efficient for sparse file data that contains a lot of zero data.

Compressing Nonsparse Data

The preceding example of compressing a sparse file is somewhat contrived. It describes 

“compression” for a case in which whole sections of a file were filled with zeros but the 

remaining data in the file wasn’t affected by the compression. The data in most files isn’t 

sparse, but it can still be compressed by the application of a compression algorithm.

In NTFS, users can specify compression for individual files or for all the files in a directory. 

(New files created in a directory marked for compressed are automatically compressed—

existing files must be compressed individually.) When it compresses a file, NTFS divides the 

file’s unprocessed data into compression units 16 clusters long (equal to 8 KB for a 512-byte 

cluster, for example). Certain sequences of data in a file might not compress much, if at all; so 

for each compression unit in the file, NTFS determines whether compressing the unit will save 

at least 1 cluster of storage. If compressing the unit won’t free up at least 1 cluster, NTFS allo-

cates a 16-cluster run and writes the data in that unit to disk without compressing it. If the 

data in a 16-cluster unit will compress to 15 or fewer clusters, NTFS allocates only the number 

of clusters needed to contain the compressed data and then writes it to disk. Figure 11-40 

illustrates the compression of a file with four runs. The unshaded areas in this figure repre-

sent the actual storage locations that the file occupies after compression. The first, second, 

and fourth runs were compressed; the third run wasn’t. Even with one noncompressed run, 

compressing this file saved 26 clusters of disk space, or 41 percent.
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FIGURE 11-40 Data runs of a compressed file
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Note Although the diagrams in this chapter show contiguous LCNs, a compression unit need 

not be stored in physically contiguous clusters. Runs that occupy noncontiguous clusters produce 

slightly more complicated MFT records than the one shown in Figure 11-40.

When it writes data to a compressed file, NTFS ensures that each run begins on a virtual 

16-cluster boundary. Thus the starting VCN of each run is a multiple of 16, and the runs 

are no longer than 16 clusters. NTFS reads and writes at least one compression unit at a 

time when it accesses compressed files. When it writes compressed data, however, NTFS 

tries to store compression units in physically contiguous locations so that it can read them 

all in a single I/O operation. The 16-cluster size of the NTFS compression unit was chosen 

to reduce internal fragmentation: the larger the compression unit, the less the overall disk 

space needed to store the data. This 16-cluster compression unit size represents a trade-off 

between producing smaller compressed files and slowing read operations for programs that 

randomly access files. The equivalent of 16 clusters must be decompressed for each cache 

miss. (A cache miss is more likely to occur during random file access.) Figure 11-41 shows the 

MFT record for the compressed file shown in Figure 11-40.
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FIGURE 11-41 MFT record for a compressed file

One difference between this compressed file and the earlier example of a compressed 

file containing sparse data is that three of the compressed runs in this file are less than 16 

clusters long. Reading this information from a file’s MFT file record enables NTFS to know 

whether data in the file is compressed. Any run shorter than 16 clusters contains com-

pressed data that NTFS must decompress when it first reads the data into the cache. A run 

that is exactly 16 clusters long doesn’t contain compressed data and therefore requires no 

decompression.

If the data in a run has been compressed, NTFS decompresses the data into a scratch buf-

fer and then copies it to the caller’s buffer. NTFS also loads the decompressed data into the 

cache, which makes subsequent reads from the same run as fast as any other cached read. 

NTFS writes any updates to the file to the cache, leaving the lazy writer to compress and 

write the modified data to disk asynchronously. This strategy ensures that writing to a com-

pressed file produces no more significant delay than writing to a noncompressed file would.
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NTFS keeps disk allocations for a compressed file contiguous whenever possible. As the 

LCNs indicate, the first two runs of the compressed file shown in Figure 11-39 are physically 

contiguous, as are the last two. When two or more runs are contiguous, NTFS performs disk 

read-ahead, as it does with the data in other files. Because the reading and decompression of 

contiguous file data take place asynchronously before the program requests the data, subse-

quent read operations obtain the data directly from the cache, which greatly enhances read 

performance.

Sparse Files

Sparse files (the NTFS file type, as opposed to files that consist of sparse data, described ear-

lier) are essentially compressed files for which NTFS doesn’t apply compression to the file’s 

nonsparse data. However, NTFS manages the run data of a sparse file’s MFT record the same 

way it does for compressed files that consist of sparse and nonsparse data.

The Change Journal File

The change journal file, \$Extend\$UsnJrnl, is a sparse file in which NTFS stores records of 

changes to files and directories. Applications like the Windows File Replication Service (FRS) 

and the Windows Search service make use of the journal to respond to file and directory 

changes as they occur.

The journal stores change entries in the $J data stream and the maximum size of the journal 

in the $Max data stream. Entries are versioned and include the following information about a 

file or directory change:

The time of the change

The reason for the change (see Table 11-7)

The file or directory’s attributes

The file or directory’s name

The file or directory’s file reference number

The file reference number of the file’s parent directory

The security ID

The update sequence number (USN) of the record
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TABLE 11-7 Change Journal Change Reasons

Identifier Reason

USN_REASON_DATA_OVERWRITE The data in the file or directory was overwritten

USN_REASON_DATA_EXTEND Data was added to the file or directory

USN_REASON_DATA_TRUNCATION The data in the file or directory was truncated

USN_REASON_NAMED_DATA_OVERWRITE The data in a file’s data stream was overwritten

USN_REASON_NAMED_DATA_EXTEND The data in a file’s data stream was extended

USN_REASON_NAMED_DATA_TRUNCATION The data in a file’s data stream was truncated

USN_REASON_FILE_CREATE A new file or directory was created

USN_REASON_FILE_DELETE A file or directory was deleted

USN_REASON_EA_CHANGE The extended attributes for a file or directory 

changed

USN_REASON_SECURITY_CHANGE The security descriptor for a file or directory was 

changed

USN_REASON_RENAME_OLD_NAME A file or directory was renamed; this is the old 

name

USN_REASON_RENAME_NEW_NAME A file or directory was renamed; this is the new 

name

USN_REASON_INDEXABLE_CHANGE The indexing state for the file or directory was 

changed (whether or not the Indexing service will 

process this file or directory)

USN_REASON_BASIC_INFO_CHANGE The file or directory attributes and/or the time 

stamps were changed

USN_REASON_HARD_LINK_CHANGE A hard link was added or removed from the file or 

directory

USN_REASON_COMPRESSION_CHANGE The compression state for the file or directory was 

changed

USN_REASON_ENCRYPTION_CHANGE The encryption state (EFS) was enabled or disabled 

for this file or directory

USN_REASON_OBJECT_ID_CHANGE The object ID for this file or directory was changed

USN_REASON_REPARSE_POINT_CHANGE The reparse point for a file or directory was 

changed, or a new reparse point (such as a 

symbolic link) was added or deleted from a file or 

directory

USN_REASON_STREAM_CHANGE A new data stream was added to or removed from 

a file or renamed

USN_REASON_TRANSACTED_CHANGE This value is added (ORed) to the change reason to 

indicate that the change was the result of a recent 

commit of a TxF transaction

USN_REASON_CLOSE The handle to a file or directory was closed, 

indicating that this is the final modification made 

to the file in this series of operations
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EXPERIMENT: Reading the Change Journal

You can use the Usndump.exe command-line program from Winsider Seminars & 

Solutions (www.winsiderss.com/tools/usndump/usndump.htm) to dump the contents of 

the change journal if the current volume has one. You can also create, delete, or query 

journal information with the built-in Fsutil.exe utility, as shown here:

C:\>fsutil usn queryjournal c: 

Usn Journal ID   : 0x01c89ddaec1b9648 

First Usn        : 0x0000000038140000 

Next Usn         : 0x000000003a22fa50 

Lowest Valid Usn : 0x0000000000000000 

Max Usn          : 0x00000fffffff0000 

Maximum Size     : 0x0000000002000000 

Allocation Delta : 0x0000000000400000

The output indicates the maximum size of the change journal on the volume and its 

current state. As a simple experiment to see how NTFS records changes in the journal, 

create a file called Usn.txt in the current directory, rename it to UsnNew.txt, and then 

dump the journal with Usndump, as shown here:

C:\>echo hello > Usn.txt 

C:\>ren Usn.txt UsnNew.txt 

C:\>Usndump.exe 

... 

File Ref#       : 0x00670000000006BF 

ParentFile Ref# : 0x0005000000000005 

Usn             : 0x0000000000000000 

SecurityId      : 0x00000000 

Reason          : 0x00000100 (USN_REASON_FILE_CREATE) 

Name (014)      : usn.txt 

 

File Ref#       : 0x00670000000006BF 

ParentFile Ref# : 0x0005000000000005 

Usn             : 0x0000000000000050 

SecurityId      : 0x00000000 

Reason          : 0x00000102 (USN_REASON_FILE_CREATE | USN_REASON_DATA_EXTEND) 

Name (014)      : usn.txt 

 

File Ref#       : 0x00670000000006BF 

ParentFile Ref# : 0x0005000000000005 

Usn             : 0x00000000000000A0 

SecurityId      : 0x00000000 

Reason          : 0x80000102 (USN_REASON_FILE_CREATE | USN_REASON_DATA_EXTEND) 

Name (014)      : usn.txt 

 

File Ref#       : 0x00670000000006BF 

ParentFile Ref# : 0x0005000000000005 

Usn             : 0x0000000000000138 

SecurityId      : 0x00000000 

Reason          : 0x00001000 (USN_REASON_RENAME_OLD_NAME) 

Name (014)      : usn.txt 
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File Ref#       : 0x00670000000006BF 

ParentFile Ref# : 0x0005000000000005 

Usn             : 0x0000000000000188 

SecurityId      : 0x00000000 

Reason          : 0x00002000 (USN_REASON_RENAME_NEW_NAME) 

Name (020)      : UsnNew.txt 

 

File Ref#       : 0x00670000000006BF 

ParentFile Ref# : 0x0005000000000005 

Usn             : 0x00000000000001D8 

SecurityId      : 0x00000000 

Reason          : 0x80002000 (USN_REASON_CLOSE | USN_REASON_RENAME_NEW_NAME) 

Name (020)      : UsnNew.txt

The entries reflect the individual modification operations involved in the operations 

underlying the command-line operations.

The journal is sparse so that it never overflows; when the journal’s on-disk size exceeds the 

maximum defined for the file, NTFS simply begins zeroing the file data that precedes the 

window of change information having a size equal to the maximum journal size, as shown in 

Figure 11-42. To prevent constant resizing when an application is continuously exceeding the 

journal’s size, NTFS shrinks the journal only when its size is twice an application-defined value 

over the maximum configured size.

File name
Type of change
Time of change
File MFT entry number
…

$J Alternate stream

Virtual size of $UsnJrnl:$J

Physical size of $UsnJrnl:$J

Change Entry

Empty

…

FIGURE 11-42 Change journal ($UsnJrnl) space allocation
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Indexing

In NTFS, a file directory is simply an index of file names—that is, a collection of file names 

(along with their file references) organized in a particular way for quick access. To create a 

directory, NTFS indexes the filename attributes of the files in the directory. The MFT record 

for the root directory of a volume is shown in Figure 11-43.
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FIGURE 11-43 File name index for a volume’s root directory

Conceptually, an MFT entry for a directory contains in its index root attribute a sorted list of 

the files in the directory. For large directories, however, the file names are actually stored in 

4-KB, fixed-size index buffers that contain and organize the file names. Index buffers imple-

ment a b-tree data structure, which minimizes the number of disk accesses needed to find a 

particular file, especially for large directories. The index root attribute contains the first level 

of the b-tree (root subdirectories) and points to index buffers containing the next level (more 

subdirectories, perhaps, or files).

Figure 11-43 shows only file names in the index root attribute and the index buffers (file6, for 

example), but each entry in an index also contains the file reference in the MFT where the file 

is described and time stamp and file size information for the file. NTFS duplicates the time 

stamp and file size information from the file’s MFT record. This technique, which is used by 

FAT and NTFS, requires updated information to be written in two places. Even so, it’s a signifi-

cant speed optimization for directory browsing because it enables the file system to display 

each file’s time stamps and size without opening every file in the directory.
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The index allocation attribute maps the VCNs of the index buffer runs to the LCNs that 

indicate where the index buffers reside on the disk, and the bitmap attribute keeps track of 

which VCNs in the index buffers are in use and which are free. Figure 11-43 shows one file 

entry per VCN (that is, per cluster), but file name entries are actually packed into each cluster. 

Each 4-KB index buffer can contain about 20 to 30 file name entries.

The b-tree data structure is a type of balanced tree that is ideal for organizing sorted data 

stored on a disk because it minimizes the number of disk accesses needed to find an entry. 

In the MFT, a directory’s index root attribute contains several file names that act as indexes 

into the second level of the b-tree. Each file name in the index root attribute has an optional 

pointer associated with it that points to an index buffer. The index buffer it points to contains 

file names with lexicographic values less than its own. In Figure 11-43, for example, file4 is a 

first-level entry in the b-tree. It points to an index buffer containing file names that are (lexi-

cographically) less than itself—the file names file0, file1, and file3. Note that the names file1, 

file3, and so on that are used in this example are not literal file names but names intended to 

show the relative placement of files that are lexicographically ordered according to the dis-

played sequence.

Storing the file names in b-trees provides several benefits. Directory lookups are fast because 

the file names are stored in a sorted order. And when higher-level software enumerates the 

files in a directory, NTFS returns already-sorted names. Finally, because b-trees tend to grow 

wide rather than deep, NTFS’s fast lookup times don’t degrade as directories grow.

NTFS also provides general support for indexing data besides file names, and several NTFS 

features—including object IDs, quota tracking, and consolidated security—use indexing to 

manage internal data.

Object IDs

In addition to storing the object ID assigned to a file or directory in the $OBJECT_ID attri-

bute of its MFT record, NTFS also keeps the correspondence between object IDs and their 

file reference numbers in the $O index of the \$Extend\$ObjId metadata file. The index col-

lates entries by object ID, making it easy for NTFS to quickly locate a file based on its ID. This 

feature allows applications, using undocumented native API functionality, to open a file or 

directory using its object ID. Figure 11-44 demonstrates the correspondence of the $ObjId 

metadata file and $OBJECT_ID attributes in MFT records.
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FIGURE 11-44 $ObjId and $OBJECT_ID relationships

Quota Tracking

NTFS stores quota information in the \$Extend\$Quota metadata file, which consists of 

the indexes $O and $Q. Figure 11-45 shows the organization of these indexes. Just as NTFS 

assigns each security descriptor a unique internal security ID, NTFS assigns each user a unique 

user ID. When an administrator defines quota information for a user, NTFS allocates a user ID 

that corresponds to the user’s SID. In the $O index, NTFS creates an entry that maps an SID to 

a user ID and sorts the index by user ID; in the $Q index, NTFS creates a quota control entry. 

A quota control entry contains the value of the user’s quota limits, as well as the amount of 

disk space the user consumes on the volume.
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FIGURE 11-45 $Quota indexing
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When an application creates a file or directory, NTFS obtains the application user’s SID and 

looks up the associated user ID in the $O index. NTFS records the user ID in the new file or 

directory’s $STANDARD_INFORMATION attribute, which counts all disk space allocated to 

the file or directory against that user’s quota. Then NTFS looks up the quota entry in the $Q 

index and determines whether the new allocation causes the user to exceed his or her warn-

ing or limit threshold. When a new allocation causes the user to exceed a threshold, NTFS 

takes appropriate steps, such as logging an event to the System event log or not letting the 

user create the file or directory. As a file or directory changes size, NTFS updates the quota 

control entry associated with the user ID stored in the $STANDARD_INFORMATION attribute. 

NTFS uses general indexing to efficiently correlate user IDs with account SIDs, and, given a 

user ID, to efficiently look up a user’s quota control information.

Consolidated Security

NTFS has always supported security, which lets an administrator specify which users can 

and can’t access individual files and directories. NTFS optimizes disk utilization for security 

descriptors by using a central metadata file named $Secure to store only one instance of 

each security descriptor on a volume.

The $Secure file contains two index attributes—$SDH and $SII—and a data-stream attribute 

named $SDS, as Figure 11-46 shows. NTFS assigns every unique security descriptor on a vol-

ume an internal NTFS security ID (not to be confused with an SID, which uniquely identifies 

computers and user accounts) and hashes the security descriptor according to a simple hash 

algorithm. A hash is a potentially nonunique shorthand representation of a descriptor. Entries 

in the $SDH index map the security descriptor hashes to the security descriptor’s storage 

location within the $SDS data attribute, and the $SII index entries map NTFS security IDs to 

the security descriptor’s location in the $SDS data attribute.

When you apply a security descriptor to a file or directory, NTFS obtains a hash of the 

descriptor and looks through the $SDH index for a match. NTFS sorts the $SDH index entries 

according to the hash of their corresponding security descriptor and stores the entries in a 

b-tree. If NTFS finds a match for the descriptor in the $SDH index, NTFS locates the offset of 

the entry’s security descriptor from the entry’s offset value and reads the security descrip-

tor from the $SDS attribute. If the hashes match but the security descriptors don’t, NTFS 

looks for another matching entry in the $SDH index. When NTFS finds a precise match, the 

file or directory to which you’re applying the security descriptor can reference the existing 

security descriptor in the $SDS attribute. NTFS makes the reference by reading the NTFS 

security identifier from the $SDH entry and storing it in the file or directory’s $STANDARD_

INFORMATION attribute. The NTFS $STANDARD_INFORMATION attribute, which all files and 

directories have, stores basic information about a file, including its attributes, time stamp 

information, and security identifier.



964 Windows Internals, Fifth Edition

Hash of a security
descriptor when a security

setting is applied to a
file or directory

$SDH index

Hash 1

$SDS offset

Hash 2

$SDS offset

Hash 0

$SDS offset

$SDS data stream

Security descriptor
0

Security descriptor
1

Security descriptor
2

ID taken from a file’s
$STANDARD_INFORMATION

attribute during a file or
directory security check

$SII index

NTFS security ID 0

$SDS offset

NTFS security ID 1

$SDS offset

NTFS security ID 2

$SDS offset

FIGURE 11-46 $Secure indexing

If NTFS doesn’t find in the $SDH index an entry that has a security descriptor that matches 

the descriptor you’re applying, the descriptor you’re applying is unique to the volume and 

NTFS assigns the descriptor a new internal security ID. NTFS internal security IDs are 32-bit 

values, whereas SIDs are typically several times larger, so representing SIDs with NTFS secu-

rity IDs saves space in the $STANDARD_INFORMATION attribute. NTFS then adds the security 

descriptor to the $SDS attribute, which is sorted in a b-tree by the NTFS security ID, and it 

adds to the $SDH and $SII indexes entries that reference the descriptor’s offset in the $SDS 

data.

When an application attempts to open a file or directory, NTFS uses the $SII index to look up 

the file or directory’s security descriptor. NTFS reads the file or directory’s internal security 

ID from the MFT entry’s $STANDARD_INFORMATION attribute. It then uses the $Secure file’s 

$SII index to locate the ID’s entry in the $SDS attribute. The offset into the $SDS attribute lets 

NTFS read the security descriptor and complete the security check. NTFS stores the 32 most 

recently accessed security descriptors with their $SII index entries in a cache so that it will 

access the $Secure file only when the $SII isn’t cached.

NTFS doesn’t delete entries in the $Secure file, even if no file or directory on a volume 

references the entry. Not deleting these entries doesn’t significantly decrease disk space 

because most volumes, even those used for long periods, have relatively few unique security 

descriptors.

NTFS’s use of general indexing lets files and directories that have the same security set-

tings efficiently share security descriptors. The $SII index lets NTFS quickly look up a security 

descriptor in the $Secure file while performing security checks, and the $SDH index lets NTFS 
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quickly determine whether a security descriptor being applied to a file or directory is already 

stored in the $Secure file and can be shared.

Reparse Points

As described earlier in the chapter, a reparse point is a block of up to 16 KB of application-

defined reparse data and a 32-bit reparse tag that are stored in the $REPARSE_POINT attri-

bute of a file or directory. Whenever an application creates or deletes a reparse point, NTFS 

updates the \$Extend\$Reparse metadata file, in which NTFS stores entries that identify the 

file record numbers of files and directories that contain reparse points. Storing the records 

in a central location enables NTFS to provide interfaces for applications to enumerate all a 

volume’s reparse points or just specific types of reparse points, such as mount points. (See 

Chapter 8 for more information on mount points.) The \$Extend\$Reparse file uses the gen-

eral indexing facility of NTFS by collating the file’s entries (in an index named $R) by reparse 

point tags.

Transaction Support

By leveraging the Kernel Transaction Manager (KTM) support in the kernel, as well as the 

facilities provided by the Common Log File System that were described earlier, NTFS imple-

ments a transactional model called Transactional NTFS or TxF. TxF provides a set of user-

mode APIs that applications can use for transacted operations on their files and directories 

and also a file system control (FSCTL) interface for managing its resource managers.

Note Support for TxF was added to the NTFS driver starting with Windows Vista and Windows 

Server 2008 without actually changing the format of the NTFS data structures, which is why the 

NTFS format version number, 3.1, is the same as for Windows XP and Windows Server 2003. TxF 

achieves backward compatibility by reusing the attribute type that was previously used only for 

EFS support instead of adding a new one.

The overall architecture for TxF, shown in Figure 11-47, uses several components:

Transacted APIs implemented in the Kernel32.dll library

A library for reading TxF logs (%SystemRoot%\System32\Txfw32.dll)

A COM component for TxF logging functionality (%SystemRoot\System32\Txflog.dll)

The transactional NTFS library inside the NTFS driver

The CLFS infrastructure for reading and writing log records
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User mode

Kernel mode

CLFS libraryTxF library

Application

Transacted APIs

NTFS driver CLFS driver

FIGURE 11-47 TxF architecture

Isolation

Although transactional file operations are opt-in, just like the transactional registry (TxR) 

operations described in Chapter 4, TxF has an impact on regular applications that are not 

transaction-aware because it ensures that the transactional operations are isolated. For 

example, if an antivirus program is scanning a file that’s currently being modified by another 

application via a transacted operation, TxF must make sure that the scanner reads the pre-

transaction data, while applications that access the file within the transaction work with the 

modified data. This model is called read-committed isolation.

Read-committed isolation involves the concept of transacted writers and transacted readers. 
The former always view the most up-to-date version of a file, including all changes made 

by the transaction that is currently associated with the file. At any given time, there can be 

only one transacted writer for a file, which means that its write access is exclusive. Transacted 

readers, on the other hand, only have access to the committed version of the file at the time 

they open the file. They are therefore isolated from changes made by transacted writers. This 

allows for readers to have a consistent view of a file, even when a transacted writer commits 

its changes. To see the updated data, the transacted reader must open a new handle to the 

modified file.

Nontransacted writers, on the other hand, are prevented from opening the file by both trans-

acted writers and transacted readers, so they cannot make changes to the file without being 

part of the transaction. Nontransacted readers act similarly to transacted readers in that they 

see only the file contents that were last committed when the file handle was open. Unlike 

transacted readers, however, they do not receive read-committed isolation, and as such they 

always receive the updated view of the latest committed version of a transacted file without 
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having to open a new file handle. This allows non-transaction-aware applications to behave 

as expected.

To summarize, TxF’s read-committed isolation model has the following characteristics:

Changes are isolated from transacted readers

Changes are rolled back (undone) if the associated transaction is rolled back, if the 

machine crashes, or if the volume is forcibly dismounted.

Changes are flushed to disk if the associated transaction is committed.

EXPERIMENT: Understanding and Managing Transactions

In this experiment we’ll use the Transactdemo.exe tool to create a new file, add some 

data to it as part of a transaction, and see how nontransacted clients interact with the 

file while the transaction is active. First, open a Command Prompt window and run 

Transactdemo.exe:

C:\>Transactdemo.exe 

 

Transaction Demo v1.0 

by Mark Russinovich 

 

Transaction created: {5CD5E900-9DA8-11DD-8379-005056C00008} 

 

Created C:\TransactionDemo.txt. 

Pass TransDemo the GUID listed above to see the transacted file. 

 

Rollback or commit transaction? (r/c):

Transactdemo creates c:\TransactionDemo.txt within a transaction that it has not com-

mitted. Open a second Command Prompt window, and use the dir command to look 

for the presence of the TransactionDemo.txt file:

C:\>dir transactiondemo.txt 

 Volume in drive C is OS 

 Volume Serial Number is 0C30-686E 

 

 Directory of C:\ 

File Not Found

According to this second command prompt, the file doesn’t even exist. Now simulate a 

nontransacted writer by trying to add data to the file via the echo command:

C:\>echo Hello > TransactionDemo.txt 

The function attempted to use a name that is reserved for use by another transaction.

As expected, nontransacted writers are blocked from modifying the file.
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The Ktmutil and Fsutil built-in applications can be very useful for dealing with transac-

tional operations on the file system. For example, you can get a list of all current trans-

actions on the system with the following command:

C:\>ktmutil list transactions 

TxGuid                                 Description 

-------------------------------------- ----------------------------------------------- 

{5cd5e900-9da8-11dd-8379-005056c00008}  Demo Transaction?

Note that the GUID matches what Transactdemo returned. With the GUID, you can now 

use the Fsutil command to query information about the transaction and to commit it 

or roll it back. For example, here’s how to list the files part of the transaction and the 

owner account:

C:\>fsutil transaction query all {5cd5e900-9da8-11dd-8379-005056c00008} 

dwOutcome:        1 

dwIsolationLevel: 0 

dwIsolationFlags: 0 

dwTimeout:        -1 

Owner:            BUILTIN\Administrators 

Number of Files:  1 

---- \TransactionDemo.txt

Although the Transactdemo tool presents you with the option to roll back or commit 

the current transaction, the Fsutil utility allows commits or rollbacks to any ongoing 

transaction your account has access to. Go back to the command prompt where you 

ran Transactdemo and press C to commit the transaction, after which the file becomes 

a standard nontransacted file.

Transactional APIs

TxF implements transacted versions of the Windows file I/O APIs, which use the suffix 

Transacted:

Create APIs CreateDirectoryTransacted, CreateFileTransacted, 
CreateHardLinkTransacted, CreateSymbolicLinkTransacted

Find APIs FindFirstFileNameTransacted, FindFirstFileTransacted, 
FindFirstStreamTransacted

Query APIs GetCompressedFileSizeTransacted, GetFileAttributesTransacted, 
GetFullPathNameTransacted, GetLongPathNameTransacted

Delete APIs DeleteFileTransacted, RemoveDirectoryTransacted

Copy and Move/Rename APIs CopyFileTransacted, MoveFileTransacted

Set APIs SetFileAttributesTransacted
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In addition, some APIs automatically participate in transacted operations when the file han-

dle they are passed is part of a transaction, like one created by the CreateFileTransacted API. 

Table 11-8 lists Windows APIs that have modified behavior when dealing with a transacted 

file handle.

TABLE 11-8 API Behavior Changed by TxF

API Name Change

CloseHandle Transactions will not be committed until all applications 

close transacted handles to the file.

CreateFileMapping, MapViewOfFile Modifications to mapped views of a file part of a transaction 

will be associated with the transaction themselves.

FindNextFile, ReadDirectoryChanges, 
GetInformationByHandle, GetFileSize

If the file handle is part of a transaction, read-isolation rules 

will be applied to these operations.

GetVolumeInformation Function will return FILE_SUPPORTS_TRANSACTIONS if the 

volume supports TxF.

ReadFile, WriteFile Read and write operations to a transacted file handle will be 

part of the transaction.

SetFileInformationByHandle Changes to the FileBasicInfo, FileRenameInfo, 

FileAllocationInfo, FileEndOfFileInfo, and FileDispositionInfo 

classes will be transacted if the file handle is part of a 

transaction.

SetEndOfFile, SetFileShortName, 
SetFileTime

Changes will be transacted if the file handle is part of a 

transaction.

Resource Managers

Just like TxR uses a resource manager (RM) to keep track of transactional metadata and log 

files, TxF uses a default resource manager, one for each volume, to keep track of its trans-

actional state. TxF, however, also supports additional resource managers called secondary 
resource managers. These resource managers can be defined by application writers and 

have their metadata located in any directory of the application’s choosing, defining their 

own transactional work units for undo, backup, restore, and redo operations. TxF uses the 

default resource manager for transacted APIs, and applications that use transactions with 

the Distributed Transaction Coordinator or the .NET Framework’s System.Transaction classes 

create and manage secondary TxF resource managers with TxF resource manager file system 

control commands. Applications can create and manage secondary RMs by using file system 

control codes defined for TxF, such as FSCTL_TXFS_CREATE_SECONDARY_RM, FSCTL_TXFS_

START_RM, and FSCTL_TXFS_SHUTDOWN_RM. When a secondary RM is created, it must 

be made consistent by one or more FSCTL_TXFS_ROLLFORWARD_REDO calls followed by   

FSCTL_TXFS_ROLLFORWARD_UNDO, which redo and/or undo operations that were stored in 

the log but never committed (such as in the case of a machine crash). We’ll cover the recovery 
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procedure for resource managers shortly. Both the default resource manager and secondary 

resource managers contain a number of metadata files and directories that describe their 

current state:

The $Txf directory, which is where files are linked when they are deleted or overwrit-

ten by transactional operations. If a file is deleted in a transaction, read-isolation rules 

specify that nontransacted readers should still be able to access the file before the 

delete operation is actually committed. This isolation is achieved by moving the trans-

action-deleted file into the $Txf directory. The NTFS driver will then keep track of the 

isolation by inserting a temporary structure in the SCB of the parent directory where 

the deleted file was originally located. In this way, the file will continue to show up if the 

parent is enumerated, and it will store the file reference, allowing the file to be opened. 

When the transaction is committed, NTFS deletes the temporary structure and deletes 

the file from the $Txf directory. On the other hand, if the transaction is rolled back, 

NTFS moves the file back to its original directory.

The $Tops, or TxF Old Page Stream (TOPS) file, which contains a default data stream 

and an alternate stream called $T. The default stream for the TOPS file contains meta-

data about the resource manager, such as its GUID, its CLFS log policy, and the LSN at 

which recovery should start. The $T stream contains file data that is partially overwrit-

ten by a transactional writer (as opposed to a full overwrite, which would move the file 

into the $Txf directory). NTFS keeps a structure in memory that keeps track of which 

parts of a file are being modified under a transaction so that nontransacted readers 

can still access the noncommitted data by having their reads forwarded to $Tops:$T. 

When the transaction is committed or aborted, the pages are either moved from the 

$T stream into the original file or simply thrown out in the case of an abort.

The TxF log files, which are CLFS log files storing transaction records. For the default 

resource manager, these files are part of the $TxfLog directory, but secondary resource 

managers can store them anywhere. TxF uses a multiplexed base log file called 

$TxfLog.blf, which contains two streams: the KtmLog stream used for Kernel Transaction 

Manager metadata records, and the TxfLog stream, which contains the TxF log records. 

Each stream is stored in CLFS log containers that start with $TxfLogContainer and are 

followed by a unique, increasing ID, such as 00000000000000000001. As the TxF log 

grows, more container files are created.

As described earlier, the default resource manager stores its files in the \$Extend\$RmMetadata 

directory on each NTFS-formatted volume on the machine.
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EXPERIMENT: Querying Resource Manager Information

You can use the built-in Fsutil.exe command-line program to query information about 

the default resource manager, as well as to create, start, and stop secondary resource 

managers and configure their logging policies and behaviors. The following command 

queries information about the default resource manager, which is identified by the root 

directory (\):

C:\>fsutil resource info \ 

RM Identifier:        CF7234E7-39E3-11DC-BDCE-00188BDD5F49 

KTM Log Path for RM:  \Device\HarddiskVolume3\$Extend\$RmMetadata\$TxfLog\ 

                      $TxfLog::KtmLog 

Space used by TOPS:   79 Mb 

TOPS free space:      100% 

RM State:             Active 

Running transactions: 0 

One phase commits:    0 

Two phase commits:    1 

System initiated rollbacks: 0 

Age of oldest transaction:  00:00:00 

Logging Mode:         Simple 

Number of containers: 2 

Container size:       10 Mb 

Total log capacity:   20 Mb 

Total free log space: 14 Mb 

Minimum containers:   2 

Maximum containers:   20 

Log growth increment: 2 container(s) 

Auto shrink:          Not enabled 

 

RM prefers availability over consistency.

As mentioned, the fsutil resource command has many options for configuring TxF 

resource managers, including the ability to create a secondary resource manager in any 

directory of your choice. For example, you can use the fsutil resource create c:\rmtest 
command to create a secondary resource manager in the Rmtest directory, followed by 

the fsutil resource start c:\rmtest command to initiate it. Note the presence of the $Tops 

and $TxfLogContainer* files and of the TxfLog and $Txf directories in this folder.

On-Disk Implementation

As shown earlier in Table 11-5, TxF uses the $LOGGED_UTILITY_STREAM attribute type to 

store additional data for files and directories that are or have been part of a transaction. This 

attribute is called $TXF_DATA and contains important information that allows TxF to keep 

active offline data for a file part of a transaction. The attribute is permanently stored in the 

MFT; that is, even after the file is not part of a transaction anymore, the stream remains, 

for reasons we’ll explain shortly. The major components of the attribute are shown in 

Figure 11-48.
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FIGURE 11-48 $TXF_DATA attribute

The first field shown is the file reference to the root of the resource manager responsible for 

the transaction associated with this file. For the default resource manager, the file reference 

ID is 5, which is the file record for the root directory (\), as shown earlier in Figure 11-25. TxF 

needs this information when it creates an FCB for the file so that it can link it to the correct 

resource manager, which in turn needs to create an enlistment for the transaction when a 

transacted file request is received by NTFS. (For more information on enlistments and trans-

actions, see the KTM section in Chapter 3.)

Another important piece of data stored in the $TXF_DATA attribute is the TxF file ID, or TxID, 

and this explains why $TXF_DATA attributes are never deleted. Because NTFS writes file 

names to its records when writing to the transaction log, it needs a way to uniquely identify 

files in the same directory that may have had the same name. For example, if sample.txt is 

deleted from a directory in a transaction and later a new file with the same name is created 

in the same directory (and as part of the same transaction), TxF needs a way to uniquely 

identify the two instances of sample.txt. This identification is provided by a 64-bit unique 

number, the TxID, that TxF increments when a new file (or an instance of a file) becomes part 

of a transaction. Because they can never be reused, TxIDs are permanent, so the $TXF_DATA 

attribute will never be removed from a file.

Last but not least, three CLFS LSNs are stored for each file part of a transaction. Whenever 

a transaction is active, such as during create, rename, or write operations, TxF writes a log 

record to its CLFS log. Each record is assigned an LSN, and that LSN gets written to the 

appropriate field in the $TXF_DATA attribute. The first LSN is used to store the log record 

that identifies the changes to NTFS metadata in relation to this file. For example, if the stan-

dard attributes of a file are changed as part of a transacted operation, TxF must update the 

relevant MFT file record, and the LSN for the log record describing the change is stored. TxF 

uses the second LSN when the file’s data is modified. Finally, TxF uses the third LSN when the 

file name index for the directory requires a change related to a transaction the file took part 

in, or when a directory was part of a transaction and received a TxID.

The $TXF_DATA attribute also stores internal flags that describe the state information to 

TxF and the index of the USN record that was applied to the file on commit. A TxF transac-

tion can span multiple USN records that may have been partly updated by NTFS’s recovery 
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mechanism (described shortly), so the index tells TxF how many more USN records must be 

applied after a recovery.

Logging Implementation

As mentioned earlier, each time a change is made to the disk because of an ongoing trans-

action, TxF writes a record of the change to its log. TxF uses a variety of log record types to 

keep track of transactional changes, but regardless of the record type, all TxF log records 

have a generic header that contains information identifying the type of the record, the action 

related to the record, the TxID that the record applies to, and the GUID of the KTM transac-

tion that the record is associated with.

A redo record specifies how to reapply a change part of a transaction that’s already been 

committed to the volume if the transaction has actually never been flushed from cache to 

disk. An undo record, on the other hand, specifies how to reverse a change part of a trans-

action that hasn’t been committed at the time of a rollback. Some records are redo-only, 

meaning they don’t contain any equivalent undo data, while other records contain both redo 

and undo information.

Through the TOPS file, TxF maintains two critical pieces of data, the base LSN and the restart 
LSN. The base LSN determines the LSN of the first valid record in the log, while the restart 

LSN indicates at which LSN recovery should begin when starting the resource manager. 

When TxF writes a restart record, it updates these two values, indicating that changes have 

been made to the volume and flushed out to disk—meaning that the file system is fully con-

sistent up to the new restart LSN.

TxF also writes compensating log records or CLRs. These records store the actions that are 

being performed during transaction rollback (explained next). They’re primarily used to store 

the undo-next LSN, which allows the recovery process to avoid repeated undo operations 

by bypassing undo records that have already been processed, a situation that can happen if 

the system fails during the recovery phase and has already performed part of the undo pass. 

Finally, TxF also deals with prepare records, abort records, and commit records, which describe 

the state of the KTM transactions related to TxF.

Recovery Implementation

When a resource manager starts because of an FSCTL_TXFS_START_RM call (or, for the default 

resource manager, as soon as the volume is mounted), TxF runs the recovery process. It reads 

the TOPS file to determine the restart LSN, where the recovery process should start, and then 

reads each record forward through the log (called the redo pass). As each record is being 

processed, TxF opens the file referenced by the record and compares the LSN in the $TXF_DATA 

attribute with the LSN in the record. If the LSN stored in the attribute is greater than or equal 

to the LSN of the log record, the action is not applied because the on-disk copy of the file 

is as new or newer than that of the log record action. If the LSN is not greater than or equal 
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to the LSN in the record, the log contains information about the file that was never written 

to the file itself. In this case, TxF applies whichever action was recorded in the log record and 

updates the LSN in the $TXF_DATA attribute with the LSN from the record.

As TxF is processing its redo pass, it builds its transaction table, which describes the opera-

tions that it has completed; if it encounters an abort or commit record along the way, TxF 

discards the related transactions. By the end of the redo pass, TxF parses the final transaction 

table and connects to the KTM to see whether the KTM recorded a commit or an abort for 

the transactions. (KTM stores this information in the KtmLog stream of the TxF multiplexed 

log, as explained earlier.)

After TxF has finished communicating with the KTM, it looks at any leftover transactions in 

the transaction table and begins the undo pass. In the undo pass, TxF aborts all the remain-

ing transactions in the transaction table by traversing each transaction’s undo LSN chain 

and applying the undo action for each log record. At the end of the undo pass, the resource 

manager is consistent and initialized.

This process is very similar to the log file service’s recovery procedure, which is described 

later in more detail. You should refer to this description for a complete picture of the stan-

dard transactional recovery mechanisms.

NTFS Recovery Support

NTFS recovery support ensures that if a power failure or a system failure occurs, no file sys-

tem operations (transactions) will be left incomplete and the structure of the disk volume will 

remain intact without the need to run a disk repair utility. The NTFS Chkdsk utility is used to 

repair catastrophic disk corruption caused by I/O errors (bad disk sectors, electrical anoma-

lies, or disk failures, for example) or software bugs. But with the NTFS recovery capabilities in 

place, Chkdsk is rarely needed.

As mentioned earlier (in the section “Recoverability”), NTFS uses a transaction-processing 

scheme to implement recoverability. This strategy ensures a full disk recovery that is also 

extremely fast (on the order of seconds) for even the largest disks. NTFS limits its recovery 

procedures to file system data to ensure that at the very least the user will never lose a vol-

ume because of a corrupted file system; however, unless an application takes specific action 

(such as flushing cached files to disk), NTFS’s recovery support doesn’t guarantee user data to 

be fully updated if a crash occurs. This is the job of Transactional NTFS (TxF).

The following sections detail the transaction-logging scheme NTFS uses to record modi-

fications to file system data structures and explain how NTFS recovers a volume if the 

system fails.
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Design

NTFS implements the design of a recoverable file system. These file systems ensure volume 

consistency by using logging techniques (sometimes called journaling) originally devel-

oped for transaction processing. If the operating system crashes, the recoverable file system 

restores consistency by executing a recovery procedure that accesses information that has 

been stored in a log file. Because the file system has logged its disk writes, the recovery 

procedure takes only seconds, regardless of the size of the volume. The recovery procedure 

for a recoverable file system is exact, guaranteeing that the volume will be restored to a 

consistent state.

A recoverable file system incurs some costs for the safety it provides. Every transaction that 

alters the volume structure requires that one record be written to the log file for each of the 

transaction’s suboperations. This logging overhead is ameliorated by the file system’s batch-
ing of log records—writing many records to the log file in a single I/O operation. In addition, 

the recoverable file system can employ the optimization techniques of a lazy write file sys-

tem. It can even increase the length of the intervals between cache flushes because the file 

system can be recovered if the system crashes before the cache changes have been flushed 

to disk. This gain over the caching performance of lazy write file systems makes up for, and 

often exceeds, the overhead of the recoverable file system’s logging activity.

Neither careful write nor lazy write file systems guarantee protection of user file data. If the 

system crashes while an application is writing a file, the file can be lost or corrupted. Worse, 

the crash can corrupt a lazy write file system, destroying existing files or even rendering an 

entire volume inaccessible.

The NTFS recoverable file system implements several strategies that improve its reliability 

over that of the traditional file systems. First, NTFS recoverability guarantees that the volume 

structure won’t be corrupted, so all files will remain accessible after a system failure. Second, 

although NTFS doesn’t guarantee protection of user data in the event of a system crash—

some changes can be lost from the cache—applications can take advantage of the NTFS 

write-through and cache-flushing capabilities to ensure that file modifications are recorded 

on disk at appropriate intervals.

Both cache write-through—forcing write operations to be immediately recorded on disk—

and cache flushing—forcing cache contents to be written to disk—are efficient operations. 

NTFS doesn’t have to do extra disk I/O to flush modifications to several different file sys-

tem data structures because changes to the data structures are recorded—in a single write 

operation—in the log file; if a failure occurs and cache contents are lost, the file system 

modifications can be recovered from the log. Furthermore, unlike the FAT file system, NTFS 

guarantees that user data will be consistent and available immediately after a write-through 

operation or a cache flush, even if the system subsequently fails.
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Metadata Logging

NTFS provides file system recoverability by using the same logging technique used by TxF, 

which consists of recording all operations that modify file system metadata to a log file. 

Unlike TxF, however, NTFS’s built-in file system recovery support doesn’t make use of CLFS 

but uses an internal logging implementation called the log file service. Another difference 

is that while TxF is used only when callers opt-in for transacted operations, NTFS records all 

metadata changes so that the file system can be made consistent in the face of a system 

failure.

Log File Service

The log file service (LFS) is a series of kernel-mode routines inside the NTFS driver that NTFS 

uses to access the log file. NTFS passes the LFS a pointer to an open file object, which speci-

fies a log file to be accessed. The LFS either initializes a new log file or calls the Windows 

cache manager to access the existing log file through the cache, as shown in Figure 11-49. 

Note that although LFS and CLFS have similar sounding names, they are separate logging 

implementations used for different reasons, although their operation is similar in many ways.

Log file
service

Flush the
log file

Read/write/flush
the log file

Log the transaction

Write the
volume updates

NTFS driver
…

I/O manager

Cache
manager

Call the memory
manager to access

the mapped file

FIGURE 11-49 Log file service (LFS)

The LFS divides the log file into two regions: a restart area and an “infinite” logging area, as 

shown in Figure 11-50.
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FIGURE 11-50 Log file regions

NTFS calls the LFS to read and write the restart area. NTFS uses the restart area to store con-

text information such as the location in the logging area at which NTFS will begin to read 

during recovery after a system failure. The LFS maintains a second copy of the restart data 

in case the first becomes corrupted or otherwise inaccessible. The remainder of the log file 

is the logging area, which contains transaction records NTFS writes to recover a volume in 

the event of a system failure. The LFS makes the log file appear infinite by reusing it circularly 

(while guaranteeing that it doesn’t overwrite information it needs). Just like CLFS, the LFS uses 

LSNs to identify records written to the log file. As the LFS cycles through the file, it increases 

the values of the LSNs. NTFS uses 64 bits to represent LSNs, so the number of possible LSNs 

is so large as to be virtually infinite.

NTFS never reads transactions from or writes transactions to the log file directly. The LFS 

provides services that NTFS calls to open the log file, write log records, read log records in 

forward or backward order, flush log records up to a particular LSN, or set the beginning of 

the log file to a higher LSN. During recovery, NTFS calls the LFS to perform the same actions 

as described in the TxF recovery section: a redo pass for nonflushed committed changes, fol-

lowed by an undo pass for noncommitted changes.

Here’s how the system guarantees that the volume can be recovered:

 1. NTFS first calls the LFS to record in the (cached) log file any transactions that will mod-

ify the volume structure.

 2. NTFS modifies the volume (also in the cache).

 3. The cache manager prompts the LFS to flush the log file to disk. (The LFS implements 

the flush by calling the cache manager back, telling it which pages of memory to flush. 

Refer back to the calling sequence shown in Figure 11-49.)

 4. After the cache manager flushes the log file to disk, it flushes the volume changes (the 

metadata operations themselves) to disk.

These steps ensure that if the file system modifications are ultimately unsuccessful, the corre-

sponding transactions can be retrieved from the log file and can be either redone or undone 

as part of the file system recovery procedure.
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File system recovery begins automatically the first time the volume is used after the system 

is rebooted. NTFS checks whether the transactions that were recorded in the log file before 

the crash were applied to the volume, and if they weren’t, it redoes them. NTFS also guaran-

tees that transactions not completely logged before the crash are undone so that they don’t 

appear on the volume.

Log Record Types

The NTFS recovery mechanism uses similar log record types as the TxF recovery mechanism: 

update records, which correspond to the redo and undo records that TxF uses, and checkpoint 
records, which are similar to the restart records used by TxF. Figure 11-51 shows three update 

records in the log file. Each record represents one suboperation of a transaction, creating a 

new file. The redo entry in each update record tells NTFS how to reapply the suboperation to 

the volume, and the undo entry tells NTFS how to roll back (undo) the suboperation.

Redo: Allocate/initialize an MFT file record
Undo: Deallocate the file record

Redo: Set bits 3–9 in the bitmap
Undo: Clear bits 3–9 in the bitmap

Redo: Add the file name to the index
Undo: Remove the file name from the index

LFS restart area Logging area

Log file records

T1a T1b T1c… ...

FIGURE 11-51 Update records in the log file

After logging a transaction (in this example, by calling the LFS to write the three update 

records to the log file), NTFS performs the suboperations on the volume itself, in the cache. 

When it has finished updating the cache, NTFS writes another record to the log file, record-

ing the entire transaction as complete—a suboperation known as committing a transaction. 

Once a transaction is committed, NTFS guarantees that the entire transaction will appear on 

the volume, even if the operating system subsequently fails.

When recovering after a system failure, NTFS reads through the log file and redoes each 

committed transaction. Although NTFS completed the committed transactions from before 

the system failure, it doesn’t know whether the cache manager flushed the volume modifi-

cations to disk in time. The updates might have been lost from the cache when the system 

failed. Therefore, NTFS executes the committed transactions again just to be sure that the 

disk is up to date.

After redoing the committed transactions during a file system recovery, NTFS locates all the 

transactions in the log file that weren’t committed at failure and rolls back each suboperation 

that had been logged. In Figure 11-51, NTFS would first undo the T1c suboperation and then 

follow the backward pointer to T1b and undo that suboperation. It would continue to follow 
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the backward pointers, undoing suboperations, until it reached the first suboperation in the 

transaction. By following the pointers, NTFS knows how many and which update records it 

must undo to roll back a transaction.

Redo and undo information can be expressed either physically or logically. As the lowest 

layer of software maintaining the file system structure, NTFS writes update records with 

physical descriptions that specify volume updates in terms of particular byte ranges on the 

disk that are to be changed, moved, and so on, unlike TxF, which uses logical descriptions that 

express updates in terms of operations such as “delete file A.dat.” NTFS writes update records 

(usually several) for each of the following transactions:

Creating a file

Deleting a file

Extending a file

Truncating a file

Setting file information

Renaming a file

Changing the security applied to a file

The redo and undo information in an update record must be carefully designed because 

although NTFS undoes a transaction, recovers from a system failure, or even operates nor-

mally, it might try to redo a transaction that has already been done or, conversely, to undo 

a transaction that never occurred or that has already been undone. Similarly, NTFS might try 

to redo or undo a transaction consisting of several update records, only some of which are 

complete on disk. The format of the update records must ensure that executing redundant 

redo or undo operations is idempotent, that is, has a neutral effect. For example, setting a bit 

that is already set has no effect, but toggling a bit that has already been toggled does. The 

file system must also handle intermediate volume states correctly.

In addition to update records, NTFS periodically writes a checkpoint record to the log file, as 

illustrated in Figure 11-52.

Checkpoint
record

LFS restart area

NTFS restart

Logging area

Log file records

LSN
2058

LSN
2061

... ...LSN
2059

LSN
2060

FIGURE 11-52 Checkpoint record in the log file
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A checkpoint record helps NTFS determine what processing would be needed to recover 

a volume if a crash were to occur immediately. Using information stored in the checkpoint 

record, NTFS knows, for example, how far back in the log file it must go to begin its recovery. 

After writing a checkpoint record, NTFS stores the LSN of the record in the restart area so 

that it can quickly find its most recently written checkpoint record when it begins file sys-

tem recovery after a crash occurs—this is similar to the restart LSN used by TxF for the same 

reason.

Although the LFS presents the log file to NTFS as if it were infinitely large, it isn’t. The gener-

ous size of the log file and the frequent writing of checkpoint records (an operation that usu-

ally frees up space in the log file) make the possibility of the log file filling up a remote one. 

Nevertheless, the LFS, just like CLFS, accounts for this possibility by tracking several numbers:

The available log space

The amount of space needed to write an incoming log record and to undo the write, 

should that be necessary

The amount of space needed to roll back all active (noncommitted) transactions, 

should that be necessary

If the log file doesn’t contain enough available space to accommodate the total of the last 

two items, the LFS returns a “log file full” error, and NTFS raises an exception. The NTFS 

exception handler rolls back the current transaction and places it in a queue to be restarted 

later.

To free up space in the log file, NTFS must momentarily prevent further transactions on files. 

To do so, NTFS blocks file creation and deletion and then requests exclusive access to all 

system files and shared access to all user files. Gradually, active transactions either are com-

pleted successfully or receive the “log file full” exception. NTFS rolls back and queues the 

transactions that receive the exception.

Once it has blocked transaction activity on files as just described, NTFS calls the cache man-

ager to flush unwritten data to disk, including unwritten log file data. After everything is 

safely flushed to disk, NTFS no longer needs the data in the log file. It resets the beginning of 

the log file to the current position, making the log file “empty.” Then it restarts the queued 

transactions. Beyond the short pause in I/O processing, the “log file full” error has no effect 

on executing programs.

This scenario is one example of how NTFS uses the log file not only for file system recovery 

but also for error recovery during normal operation. You’ll find out more about error recov-

ery in the following section.
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Recovery

NTFS automatically performs a disk recovery the first time a program accesses an NTFS 

volume after the system has been booted. (If no recovery is needed, the process is trivial.) 

Recovery depends on two tables NTFS maintains in memory: a transaction table, which 

behaves just like the one TxF maintains, and a dirty page table, which records which pages in 

the cache contain modifications to the file system structure that haven’t yet been written to 

disk. This data must be flushed to disk during recovery.

NTFS writes a checkpoint record to the log file once every 5 seconds. Just before it does, it 

calls the LFS to store a current copy of the transaction table and of the dirty page table in the 

log file. NTFS then records in the checkpoint record the LSNs of the log records containing 

the copied tables. When recovery begins after a system failure, NTFS calls the LFS to locate 

the log records containing the most recent checkpoint record and the most recent copies 

of the transaction and dirty page tables. It then copies the tables to memory.

The log file usually contains more update records following the last checkpoint record. These 

update records represent volume modifications that occurred after the last checkpoint 

record was written. NTFS must update the transaction and dirty page tables to include these 

operations. After updating the tables, NTFS uses the tables and the contents of the log file to 

update the volume itself.

To effect its volume recovery, NTFS scans the log file three times, loading the file into mem-

ory during the first pass to minimize disk I/O. Each pass has a particular purpose:

 1. Analysis

 2. Redoing transactions

 3. Undoing transactions

Analysis Pass

During the analysis pass, as shown in Figure 11-53, NTFS scans forward in the log file from 

the beginning of the last checkpoint operation to find update records and use them to 

update the transaction and dirty page tables it copied to memory. Notice in the figure that 

the checkpoint operation stores three records in the log file and that update records might 

be interspersed among these records. NTFS therefore must start its scan at the beginning of 

the checkpoint operation.
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FIGURE 11-53 Analysis pass

Most update records that appear in the log file after the checkpoint operation begins repre-

sent a modification to either the transaction table or the dirty page table. If an update record 

is a “transaction committed” record, for example, the transaction the record represents must 

be removed from the transaction table. Similarly, if the update record is a “page update” 

record that modifies a file system data structure, the dirty page table must be updated to 

reflect that change.

Once the tables are up to date in memory, NTFS scans the tables to determine the LSN of the 

oldest update record that logs an operation that hasn’t been carried out on disk. The trans-

action table contains the LSNs of the noncommitted (incomplete) transactions, and the dirty 

page table contains the LSNs of records in the cache that haven’t been flushed to disk. The 

LSN of the oldest update record that NTFS finds in these two tables determines where the 

redo pass will begin. If the last checkpoint record is older, however, NTFS will start the redo 

pass there instead.

Note In the TxF recovery model, there is no distinct analysis pass. Instead, as described in the 

TxF recovery section, TxF performs the equivalent work in the redo pass.

Redo Pass

During the redo pass, as shown in Figure 11-54, NTFS scans forward in the log file from the 

LSN of the oldest update record, which it found during the analysis pass. It looks for “page 

update” records, which contain volume modifications that were written before the system 

failure but that might not have been flushed to disk. NTFS redoes these updates in the cache.

Beginning of
checkpoint operation

Oldest unwritten
log record

Dirty page
table

Update
record

Update
record

Transaction
table

Checkpoint
record

Update
record

FIGURE 11-54 Redo pass
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When NTFS reaches the end of the log file, it has updated the cache with the necessary vol-

ume modifications, and the cache manager’s lazy writer can begin writing cache contents to 

disk in the background.

Undo Pass

After it completes the redo pass, NTFS begins its undo pass, in which it rolls back any transac-

tions that weren’t committed when the system failed. Figure 11-55 shows two transactions in 

the log file; transaction 1 was committed before the power failure, but transaction 2 wasn’t. 

NTFS must undo transaction 2.

LSN
4044

LSN
4049

LSN
4045

LSN
4046

LSN
4047

LSN
4048

“Transaction committed” recordTransaction 1

Transaction 2

Power failure

FIGURE 11-55 Undo pass

Suppose that transaction 2 created a file, an operation that comprises three suboperations, 

each with its own update record. The update records of a transaction are linked by backward 

pointers in the log file because they are usually not contiguous.

The NTFS transaction table lists the LSN of the last-logged update record for each noncom-

mitted transaction. In this example, the transaction table identifies LSN 4049 as the last 

update record logged for transaction 2. As shown from right to left in Figure 11-56, NTFS 

rolls back transaction 2.

... LSN
4044

LSN
4049

LSN
4045

LSN
4046

LSN
4047

LSN
4048

Transaction 1

Transaction 2

Redo: Allocate/initialize an MFT file record
Undo: Deallocate the file record

Redo: Add the file name to the index
Undo: Remove the file name from the index

Redo: Set bits 3–9 in the bitmap
Undo: Clear bits 3–9 in the bitmap

FIGURE 11-56 Undoing a transaction
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After locating LSN 4049, NTFS finds the undo information and executes it, clearing bits 3 

through 9 in its allocation bitmap. NTFS then follows the backward pointer to LSN 4048, 

which directs it to remove the new file name from the appropriate file name index. Finally, it 

follows the last backward pointer and deallocates the MFT file record reserved for the file, as 

the update record with LSN 4046 specifies. Transaction 2 is now rolled back. If there are other 

noncommitted transactions to undo, NTFS follows the same procedure to roll them back. 

Because undoing transactions affects the volume’s file system structure, NTFS must log the 

undo operations in the log file. After all, the power might fail again during the recovery, and 

NTFS would have to redo its undo operations!

When the undo pass of the recovery is finished, the volume has been restored to a consis-

tent state. At this point, NTFS is prepared to flush the cache changes to disk to ensure that 

the volume is up to date. Before doing so, however, it executes a callback that TxF registers 

for notifications of LFS flushes. Because TxF and NTFS both use write-ahead logging, TxF 

must flush its log through CLFS before the NTFS log is flushed to ensure consistency of its 

own metadata. (And similarly, the TOPS file must be flushed before the CLFS-managed log 

files.) NTFS then writes an “empty” LFS restart area to indicate that the volume is consistent 

and that no recovery need be done if the system should fail again immediately. Recovery is 

complete.

NTFS guarantees that recovery will return the volume to some preexisting consistent state, 

but not necessarily to the state that existed just before the system crash. NTFS can’t make 

that guarantee because, for performance, it uses a “lazy commit” algorithm, which means 

that the log file isn’t immediately flushed to disk each time a “transaction committed” record 

is written. Instead, numerous “transaction committed” records are batched and written 

together, either when the cache manager calls the LFS to flush the log file to disk or when 

the LFS writes a checkpoint record (once every 5 seconds) to the log file. Another reason the 

recovered volume might not be completely up to date is that several parallel transactions 

might be active when the system crashes and some of their “transaction committed” records 

might make it to disk whereas others might not. The consistent volume that recovery pro-

duces includes all the volume updates whose “transaction committed” records made it to 

disk and none of the updates whose “transaction committed” records didn’t make it to disk.

NTFS uses the log file to recover a volume after the system fails, but it also takes advantage 

of an important “freebie” it gets from logging transactions. File systems necessarily contain 

a lot of code devoted to recovering from file system errors that occur during the course of 

normal file I/O. Because NTFS logs each transaction that modifies the volume structure, it can 

use the log file to recover when a file system error occurs and thus can greatly simplify its 

error handling code. The “log file full” error described earlier is one example of using the log 

file for error recovery.
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Most I/O errors a program receives aren’t file system errors and therefore can’t be resolved 

entirely by NTFS. When called to create a file, for example, NTFS might begin by creating a 

file record in the MFT and then enter the new file’s name in a directory index. When it tries to 

allocate space for the file in its bitmap, however, it could discover that the disk is full and the 

create request can’t be completed. In such a case, NTFS uses the information in the log file 

to undo the part of the operation it has already completed and to deallocate the data struc-

tures it reserved for the file. Then it returns a “disk full” error to the caller, which in turn must 

respond appropriately to the error.

NTFS Bad-Cluster Recovery

The volume manager included with Windows (VolMgr) can recover data from a bad sector 

on a fault-tolerant volume, but if the hard disk doesn’t use the SCSI protocol or runs out of 

spare sectors, a volume manager can’t perform sector sparing to replace the bad sector. (See 

Chapter 8 for more information on the volume manager.) When the file system reads from 

the sector, the volume manager instead recovers the data and returns the warning to the file 

system that there is only one copy of the data.

The FAT file system doesn’t respond to this volume manager warning. Moreover, neither 

FAT nor the volume manager keeps track of the bad sectors, so a user must run the Chkdsk 

or Format utility to prevent the volume manager from repeatedly recovering data for the 

file system. Both Chkdsk and Format are less than ideal for removing bad sectors from use. 

Chkdsk can take a long time to find and remove bad sectors, and Format wipes all the data 

off the partition it’s formatting.

In the file system equivalent of a volume manager’s sector sparing, NTFS dynamically 

replaces the cluster containing a bad sector and keeps track of the bad cluster so that it won’t 

be reused. (Recall that NTFS maintains portability by addressing logical clusters rather than 

physical sectors.) NTFS performs these functions when the volume manager can’t perform 

sector sparing. When a volume manager returns a bad-sector warning or when the hard disk 

driver returns a bad-sector error, NTFS allocates a new cluster to replace the one containing 

the bad sector. NTFS copies the data that the volume manager has recovered into the new 

cluster to reestablish data redundancy.

Figure 11-57 shows an MFT record for a user file with a bad cluster in one of its data runs as 

it existed before the cluster went bad. When it receives a bad-sector error, NTFS reassigns the 

cluster containing the sector to its bad-cluster file. This prevents the bad cluster from being 

allocated to another file. NTFS then allocates a new cluster for the file and changes the file’s 

VCN-to-LCN mappings to point to the new cluster. This bad-cluster remapping (introduced 

earlier in this chapter) is illustrated in Figure 11-57. Cluster number 1357, which contains the 

bad sector, must be replaced by a good cluster.
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FIGURE 11-57 MFT record for a user file with a bad cluster

Bad-sector errors are undesirable, but when they do occur, the combination of NTFS and 

the volume manager provides the best possible solution. If the bad sector is on a redundant 

volume, the volume manager recovers the data and replaces the sector if it can. If it can’t 

replace the sector, it returns a warning to NTFS, and NTFS replaces the cluster containing the 

bad sector.

If the volume isn’t configured as a redundant volume, the data in the bad sector can’t be 

recovered. When the volume is formatted as a FAT volume and the volume manager can’t 

recover the data, reading from the bad sector yields indeterminate results. If some of the file 

system’s control structures reside in the bad sector, an entire file or group of files (or poten-

tially, the whole disk) can be lost. At best, some data in the affected file (often, all the data in 

the file beyond the bad sector) is lost. Moreover, the FAT file system is likely to reallocate the 

bad sector to the same or another file on the volume, causing the problem to resurface.

Like the other file systems, NTFS can’t recover data from a bad sector without help from a 

volume manager. However, NTFS greatly contains the damage a bad sector can cause. If 

NTFS discovers the bad sector during a read operation, it remaps the cluster the sector is in, 

as shown in Figure 11-58. If the volume isn’t configured as a redundant volume, NTFS returns 

a “data read” error to the calling program. Although the data that was in that cluster is lost, 

the rest of the file—and the file system—remains intact; the calling program can respond 

appropriately to the data loss, and the bad cluster won’t be reused in future allocations. If 

NTFS discovers the bad cluster on a write operation rather than a read, NTFS remaps the 

cluster before writing and thus loses no data and generates no error.

The same recovery procedures are followed if file system data is stored in a sector that goes 

bad. If the bad sector is on a redundant volume, NTFS replaces the cluster dynamically, using 

the data recovered by the volume manager. If the volume isn’t redundant, the data can’t be 

recovered, and NTFS sets a bit in the volume file that indicates corruption on the volume. 

The NTFS Chkdsk utility checks this bit when the system is next rebooted, and if the bit is set, 

Chkdsk executes, fixing the file system corruption by reconstructing the NTFS metadata.
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FIGURE 11-58 Bad-cluster remapping

In rare instances, file system corruption can occur even on a fault-tolerant disk configura-

tion. A double error can destroy both file system data and the means to reconstruct it. If the 

system crashes while NTFS is writing the mirror copy of an MFT file record—of a file name 

index or of the log file, for example—the mirror copy of such file system data might not be 

fully updated. If the system were rebooted and a bad-sector error occurred on the primary 

disk at exactly the same location as the incomplete write on the disk mirror, NTFS would be 

unable to recover the correct data from the disk mirror. NTFS implements a special scheme 

for detecting such corruptions in file system data. If it ever finds an inconsistency, it sets the 

corruption bit in the volume file, which causes Chkdsk to reconstruct the NTFS metadata 

when the system is next rebooted. Because file system corruption is rare on a fault-tolerant 

disk configuration, Chkdsk is seldom needed. It is supplied as a safety precaution rather than 

as a first-line data recovery strategy.

The use of Chkdsk on NTFS is vastly different from its use on the FAT file system. Before writ-

ing anything to disk, FAT sets the volume’s dirty bit and then resets the bit after the modifi-

cation is complete. If any I/O operation is in progress when the system crashes, the dirty bit 
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is left set and Chkdsk runs when the system is rebooted. On NTFS, Chkdsk runs only when 

unexpected or unreadable file system data is found and NTFS can’t recover the data from a 

redundant volume or from redundant file system structures on a single volume. (The system 

boot sector is duplicated, as are the parts of the MFT required for booting the system and 

running the NTFS recovery procedure. This redundancy ensures that NTFS will always be able 

to boot and recover itself.)

Table 11-9 summarizes what happens when a sector goes bad on a disk volume format-

ted for one of the Windows-supported file systems according to various conditions we’ve 

described in this section.

TABLE 11-9 Summary of NTFS Data Recovery Scenarios

Scenario

With a SCSI Disk That Has Spare 

Sectors

With a Non-SCSI Disk or a Disk 

with No Spare Sectors1

Fault-tolerant 

volume2

 1. Volume manager recovers the 

data.

 2. Volume manager performs 

sector sparing (replaces the bad 

sector).

 3. File system remains unaware of 

the error.

 1. Volume manager recovers the 

data.

 2. Volume manager sends the data 

and a bad-sector error to the file 

system.

 3. NTFS performs cluster 

remapping.

Non-fault-tolerant 

volume

 1. Volume manager can’t recover 

the data.

 2. Volume manager sends a bad-

sector error to the file system.

 3. NTFS performs cluster 

remapping. Data is lost.3

 1. Volume manager can’t recover 

the data.

 2. Volume manager sends a bad-

sector error to the file system.

 3. NTFS performs cluster 

remapping. Data is lost.

1 In neither of these cases can a volume manager perform sector sparing: (1) hard disks that don’t use the SCSI pro-
tocol have no standard interface for providing sector sparing; (2) some hard disks don’t provide hardware support 
for sector sparing, and SCSI hard disks that do provide sector sparing can eventually run out of spare sectors if a 
lot of sectors go bad.

2 A fault-tolerant volume is one of the following: a mirror set or a RAID-5 set.
3 In a write operation, no data is lost: NTFS remaps the cluster before the write.

If the volume on which the bad sector appears is a fault-tolerant volume (a mirrored or 

RAID-5 volume) and if the hard disk is one that supports sector sparing (and that hasn’t run 

out of spare sectors), it doesn’t matter which file system you’re using (FAT or NTFS). The vol-

ume manager replaces the bad sector without the need for user or file system intervention.

If a bad sector is located on a hard disk that doesn’t support sector sparing, the file system 

is responsible for replacing (remapping) the bad sector or—in the case of NTFS—the cluster 

in which the bad sector resides. The FAT file system doesn’t provide sector or cluster remap-

ping. The benefits of NTFS cluster remapping are that bad spots in a file can be fixed without 

harm to the file (or harm to the file system, as the case may be) and that the bad cluster 

won’t be reallocated to the same or another file.
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Self-Healing

With today’s multiterabyte storage devices, taking a volume offline for a consistency check 

can result in a service outage of many hours. Recognizing that many disk corruptions are 

localized to a single file or portion of metadata, NTFS implements a self-healing feature to 

repair damage while a volume remains online. When NTFS detects corruption, it prevents 

access to the damaged file or files and creates a system worker thread that executes Chkdsk-

like corrections to the corrupted data structures, allowing access to the repaired files when it 

has finished. Access to other files continues normally during this operation, minimizing ser-

vice disruption.

You can use the fsutil repair set command to view and set a volume’s repair options, which 

are summarized in Table 11-10. The Fsutil utility uses the FSCTL_SET_REPAIR file system con-

trol code to set these settings, which are saved in the VCB for the volume.

TABLE 11-10 NTFS Self-Healing Behaviors

Flag Behavior

SET_REPAIR_ENABLED Enable self-healing for the volume.

SET_REPAIR_WARN_ABOUT_

DATA_LOSS 

If the self-healing process is unable to fully recover a file, specifies 

whether the user should be visually warned.

SET_REPAIR_DISABLED_AND_

BUGCHECK_ON_CORRUPTION

If the NtfsBugCheckOnCorrupt NTFS registry value was set by 

using fsutil behavior set NtfsBugCheckOnCorrupt 1 and this flag 

is set, the system will crash with a STOP error 0x24, indicating file 

system corruption. This setting is automatically cleared during 

boot time to avoid repeated reboot cycles.

In all cases, including when the visual warning is disabled (the default), NTFS will log any self-

healing operation it undertook in the System event log.

Apart from periodic automatic self-healing, NTFS also supports manually initiated self-

healing cycles through the FSCTL_INITIATE_REPAIR and FSCTL_WAIT_FOR_REPAIR control 

codes, which can be initiated with the fsutil repair initiate and fsutil repair wait commands. 

This allows the user to force the repair of a specific file and to wait until repair of that file is 

complete.

To check the status of the self-healing mechanism, the FSCTL_QUERY_REPAIR control code or 

the fsutil repair query command can be used, as shown here:

C:\>fsutil repair query c: 

Self healing is enabled for volume c: with flags 0x1. 

 flags: 0x01 - enable general repair 

        0x08 - warn about potential data loss 

        0x10 - disable general repair and bugcheck once on first corruption
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Encrypting File System Security

EFS security relies on cryptography support. The first time a file is encrypted, EFS assigns 

the account of the user performing the encryption a private/public key pair for use in file 

encryption. Users can encrypt files via Windows Explorer by opening a file’s Properties dia-

log box, clicking Advanced, and then selecting the Encrypt Contents To Secure Data option, 

as shown in Figure 11-59. Users can also encrypt files via a command-line utility named 

cipher. Windows automatically encrypts files that reside in directories that are designated as 

encrypted directories. When a file is encrypted, EFS generates a random number for the file 

that EFS calls the file’s file encryption key (FEK). EFS uses the FEK to encrypt the file’s contents 

with a stronger variant of the Data Encryption Standard (DES) algorithm—Triple-DES (3DES) 

or Advanced Encryption Standard (AES). EFS stores the file’s FEK with the file but encrypts the 

FEK with the user’s EFS public key by using the RSA public key–based encryption algorithm. 

After EFS completes these steps, the file is secure: other users can’t decrypt the data without 

the file’s decrypted FEK, and they can’t decrypt the FEK without the private key.

FIGURE 11-59 Encrypt files by using the Advanced Attributes dialog box

EFS FEK Key Strength

The default FEK encryption algorithm is AES. The Windows AES algorithm uses 256-

bit keys. Use of 3DES allows access to larger sized keys, so if you require greater key 

strength you can enable 3DES encryption in one of two ways: either as the algorithm 

for all system cryptographic services or just for EFS.

To have 3DES be the encryption algorithm for all system cryptographic services, open 

the Local Security Policy Editor by entering secpol.msc in the Run dialog box from the 

Start menu and open the Security Options node under Local Policies. View the proper-

ties of System Cryptography: Use FIPS Compliant Algorithms For Encryption, Hashing 

And Signing, and enable it.

To enable 3DES for EFS only, create the DWORD value HKLM\SOFTWARE\Microsoft\

Windows NT\CurrentVersion\EFS\AlgorithmID, set it to 0x6603, and reboot.
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EFS uses a private/public key algorithm to encrypt FEKs. To encrypt file data, EFS uses AES 

or 3DES because both are symmetric encryption algorithms, which means that they use the 

same key to encrypt and decrypt data. Symmetric encryption algorithms are typically very 

fast, which makes them suitable for encrypting large amounts of data, such as file data. 

However, symmetric encryption algorithms have a weakness: you can bypass their security if 

you obtain the key. If multiple users want to share one encrypted file protected only by AES 

or 3DES, each user would require access to the file’s FEK. Leaving the FEK unencrypted would 

obviously be a security problem, but encrypting the FEK once would require all the users to 

share the same FEK decryption key—another potential security problem.

Keeping the FEK secure is a difficult problem, which EFS addresses with the public key–based 

half of its encryption architecture. Encrypting a file’s FEK for individual users who access the 

file lets multiple users share an encrypted file. EFS can encrypt a file’s FEK with each user’s 

public key and can store each user’s encrypted FEK with the file. Anyone can access a user’s 

public key, but no one can use a public key to decrypt the data that the public key encrypted. 

The only way users can decrypt a file is with their private key, which the operating system 

must access. A user’s private key decrypts the user’s encrypted copy of a file’s FEK. Public 

key–based algorithms are usually slow, but EFS uses these algorithms only to encrypt FEKs. 

Splitting key management between a publicly available key and a private key makes key 

management a little easier than symmetric encryption algorithms do and solves the dilemma 

of keeping the FEK secure.

Windows stores a user’s private keys in the user’s profile directory (typically under \Users) 

within the AppData\Roaming\Microsoft\Crypto\RSA subdirectory. To protect private keys, 

Windows encrypts all files within the RSA folder with a random symmetric key called the 

user’s master key. The master key is 64 bytes in length and is generated by a strong random 

number generator. The master key is also stored in the user’s profile under the AppData\

Roaming\Microsoft\Protect directory and is 3DES-encrypted with a key that’s in part based 

on the user’s password. When a user changes his or her password, master keys are automati-

cally unencrypted and re-encrypted using the new password.

Several components work together to make EFS work, as the diagram of EFS architecture in 

Figure 11-60 shows. EFS support is merged into the NTFS driver. Whenever NTFS encounters 

an encrypted file, NTFS executes EFS functions that it contains. The EFS functions encrypt 

and decrypt file data as applications access encrypted files. Although EFS stores an FEK with 

a file’s data, users’ public keys encrypt the FEK. To encrypt or decrypt file data, EFS must 

decrypt the file’s FEK with the aid of cryptography services that reside in user mode.
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FIGURE 11-60 EFS architecture

The Local Security Authority Subsystem (Lsass; \%SystemRoot%\System32\Lsass.exe) man-

ages logon sessions but also handles EFS key management chores. For example, when EFS 

needs to decrypt an FEK to decrypt file data a user wants to access, NTFS sends a request 

to Lsass. EFS sends the request via an advanced local procedure call (ALPC) message. The 

KSecDD (\%SystemRoot%\System32\Drivers\Ksecdd.sys) device driver exports functions for 

other drivers that need to send ALPC messages to Lsass. The Local Security Authority Server 

(Lsasrv; \%SystemRoot%\System32\Lsasrv.dll) component of Lsass that listens for remote pro-

cedure call (RPC) requests passes requests to decrypt an FEK to the appropriate EFS-related 

decryption function, which also resides in Lsasrv. Lsasrv uses functions in Microsoft CryptoAPI 

(also referred to as CAPI) to decrypt the FEK, which the NTFS driver sent to Lsass in encrypted 

form.

CryptoAPI comprises cryptographic service provider (CSP) DLLs that make various cryp-

tography services (such as encryption/decryption and hashing) available to applications. 

The CSP DLLs manage retrieval of user private and public keys, for example, so that Lsasrv 

doesn’t need to concern itself with the details of how keys are protected or even with the 

details of the encryption algorithms. EFS uses the RSA encryption algorithms provided by the 

Microsoft Enhanced Cryptographic provider (\%SystemRoot%\System32\Rsaenh.dll). After 

Lsasrv decrypts an FEK, Lsasrv returns the FEK to the NTFS driver via an ALPC reply mes-

sage. After EFS receives the decrypted FEK, EFS can use AES to decrypt the file data for NTFS. 



 Chapter 11 File Systems 993

Let’s look at the details of how EFS integrates with NTFS and how Lsasrv uses CryptoAPI to 

manage keys.

Encrypting a File for the First Time

The NTFS driver calls its internal EFS functions when it encounters an encrypted file. A file’s 

attributes record that the file is encrypted in the same way that a file records that it is com-

pressed (discussed earlier in this chapter). NTFS has specific interfaces for converting a file 

from nonencrypted to encrypted form, but user-mode components primarily drive the pro-

cess. As described earlier, Windows lets you encrypt a file in two ways: by using the cipher 
command-line utility or by checking the Encrypt Contents To Secure Data check box in 

the Advanced Attributes dialog box for a file in Windows Explorer. Both Windows Explorer 

and the cipher command rely on the EncryptFile Windows API that Advapi32.dll (Advanced 

Windows APIs DLL) exports. Advapi32 loads another DLL, Feclient.dll (File Encryption Client 

DLL), to obtain APIs that Advapi32 can use to invoke EFS interfaces in Lsasrv via ALPC.

When Lsasrv receives an RPC message from Feclient to encrypt a file, Lsasrv uses the 

Windows impersonation facility to impersonate the user that ran the application (either 

cipher or Windows Explorer) that is encrypting the file. (Impersonation is described in 

Chapter 6.) This procedure lets Windows treat the file operations that Lsasrv performs as if 

the user who wants to encrypt the file is performing them. Lsasrv usually runs in the System 

account. (The System account is described in Chapter 6.) In fact, if it doesn’t impersonate the 

user, Lsasrv usually won’t have permission to access the file in question.

Lsasrv next creates a log file in the volume’s System Volume Information directory into which 

Lsasrv records the progress of the encryption process. The log file usually has the name Efs0.

log, but if other files are undergoing encryption, increasing numbers replace the 0 until a 

unique log file name for the current encryption is created.

CryptoAPI relies on information that a user’s registry profile stores, so if the profile is not 

already loaded, Lsasrv next uses the LoadUserProfile API function of Userenv.dll (User Envi-

ron ment DLL) to load the profile into the registry of the user it is impersonating. Typically, 

the user profile is already loaded because Winlogon loads a user’s profile when a user logs 

on. However, if a user uses the Windows RunAs command to log on to a different account, 

when the user tries to access encrypted files from that account, the account’s profile might 

not be loaded.

Lsasrv then generates an FEK for the file by using the RSA encryption facilities of the 

Microsoft Base Cryptographic Provider 1.0 CSP.
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Constructing Key Rings

At this point, Lsasrv has an FEK and can construct EFS information to store with the file, 

including an encrypted version of the FEK. Lsasrv reads the HKEY_ CURRENT_USER\Software\

Microsoft\Windows NT\CurrentVersion\EFS\CurrentKeys\CertificateHash value of the user 

performing the encryption to obtain the user’s public key signature. (Note that this key 

doesn’t appear in the registry until a file or folder is encrypted.) Lsasrv uses the signature to 

access the user’s public key and encrypt FEKs.

Lsasrv can now construct the information that EFS stores with the file. EFS stores only one 

block of information in an encrypted file, and that block contains an entry for each user shar-

ing the file. These entries are called key entries, and EFS stores them in the Data Decryption 

Field (DDF) portion of the file’s EFS data. A collection of multiple key entries is called a key 
ring because, as mentioned earlier, EFS lets multiple users share encrypted files.

Figure 11-61 shows a file’s EFS information format and key entry format. EFS stores enough 

information in the first part of a key entry to precisely describe a user’s public key. This data 

includes the user’s security ID (SID) (note that the SID is not guaranteed to be present), the 

container name in which the key is stored, the cryptographic provider name, and the private/

public key pair certificate hash. Only the private/public key pair certificate hash is used by 

the decryption process. The second part of the key entry contains an encrypted version of 

the FEK. Lsasrv uses the CryptoAPI to encrypt the FEK with the RSA algorithm and the user’s 

public key.

EFS information

Header

Data
decryption

field

Data
recovery

field

Version

Checksum

Number of DDF key entries

DDF key entry 1

DDF key entry 2

Number of DRF key entries

DRF key entry 1

Key entry

User SID
(S-1-5-21-...)

Container name
(ee341-2144-55ba...)

Provider name
(Microsoft Base Cryptographic Provider 1.0)

EFS certificate hash
(cb3e4e...)

Encrypted FEK
(03fe4f3c...)

FIGURE 11-61 Format of EFS information and key entries

Next, Lsasrv creates another key ring that contains recovery key entries. EFS stores infor-

mation about recovery key entries in a file’s Data Recovery Field (DRF). The format of DRF 

entries is identical to the format of DDF entries. The DRF’s purpose is to let designated 

accounts, or Recovery Agents, decrypt a user’s file when administrative authority must have 
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access to the user’s data. For example, suppose a company employee forgot his or her logon 

password. An administrator can reset the user’s password, but without Recovery Agents, no 

one can recover the user’s encrypted data.

Recovery Agents are defined with the Encrypted Data Recovery Agents security policy of 

the local computer or domain. This policy is available from the Local Security Policy MMC 

snap-in, as shown in Figure 11-62. When you use the Add Recovery Agent Wizard (by right-

clicking Encrypting File System and then clicking Add Data Recovery Agent), you can add 

Recovery Agents and specify which private/public key pairs (designated by their certificates) 

the Recovery Agents use for EFS recovery. Lsasrv interprets the recovery policy when it initial-

izes and when it receives notification that the recovery policy has changed. EFS creates a DRF 

key entry for each Recovery Agent by using the cryptographic provider registered for EFS 

recovery.

FIGURE 11-62 Encrypted Data Recovery Agents group policy

In the final step in creating EFS information for a file, Lsasrv calculates a checksum for the 

DDF and DRF by using the MD5 hash facility of Base Cryptographic Provider 1.0. Lsasrv stores 

the checksum’s result in the EFS information header. EFS references this checksum during 

decryption to ensure that the contents of a file’s EFS information haven’t become corrupted 

or been tampered with.

Encrypting File Data

Figure 11-63 illustrates the flow of the encryption process. After Lsasrv constructs the nec-

essary information for a file a user wants to encrypt, it can begin encrypting the file. Lsasrv 

creates a backup file, Efs0.tmp, for the file undergoing encryption. (Lsasrv uses higher num-

bers in the backup file name if other backup files exist.) Lsasrv creates the backup file in the 

directory that contains the file undergoing encryption. Lsasrv applies a restrictive security 

descriptor to the backup file so that only the System account can access the file’s contents. 

Lsasrv next initializes the log file that it created in the first phase of the encryption process. 

Finally, Lsasrv records in the log file that the backup file has been created. Lsasrv encrypts the 

original file only after the file is completely backed up.
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Lsasrv next sends the EFS kernel-mode code inside NTFS a command to add to the original 

file the EFS information that it just created. The EFS kernel-mode code takes the EFS infor-

mation that Lsasrv sent and applies the information to the file, which lets EFS add the $EFS 

attribute to NTFS files. Execution returns to Lsasrv, which copies the contents of the file 

undergoing encryption to the backup file. When the backup copy is complete, including 

backups of all alternate data streams, Lsasrv records in the log file that the backup file is up 

to date. Lsasrv then sends another command to NTFS to tell NTFS to encrypt the contents of 

the original file.

Application

Application writes data
to an encrypted file.

NTFS file
system
driver

Cache
manager

User mode

Kernel mode
NTFS places data in
file system cache.

2

Cache manager lazy
writes data to disk via NTFS.

3

1

NTFS uses EFS code to encrypt
file contents headed to disk. 
NTFS writes encrypted
file contents to disk.

4

VolumeVolume

FIGURE 11-63 Flow of EFS

When NTFS receives the EFS command to encrypt the file, NTFS deletes the contents of the 

original file and copies the backup data to the file. After NTFS copies each section of the file, 

NTFS flushes the section’s data from the file system cache, which prompts the cache man-

ager to tell NTFS to write the file’s data to disk. Because the file is marked as encrypted, at 

this point in the file-writing process, NTFS calls its EFS routines to encrypt the data before it 

writes the data to disk. EFS uses the unencrypted FEK that NTFS passes it to perform AES or 

3DES encryption of the file as appropriate, one sector (512 bytes) at a time.

After EFS encrypts the file, Lsasrv records in the log file that the encryption was successful 

and deletes the file’s backup copy. Finally, Lsasrv deletes the log file and returns control to 

the application that requested the file’s encryption.
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Encryption Process Summary

The following list summarizes the steps EFS performs to encrypt a file:

 1. The user profile is loaded if necessary.

 2. A log file is created in the System Volume Information directory with the name Efsx.log, 

where x is a unique number (for example, Efs0.log). As subsequent steps are performed, 

records are written to the log so that the file can be recovered in case the system fails 

during the encryption process.

 3. Base Cryptographic Provider 1.0 generates a random 128-bit FEK for the file.

 4. A user EFS private/public key pair is generated or obtained. HKEY_CURRENT_USER\

Software\Microsoft\Windows NT\CurrentVersion\EFS\CurrentKeys\CertificateHash iden-

tifies the user’s key pair.

 5. A DDF key ring is created for the file that has an entry for the user. The entry contains a 

copy of the FEK that has been encrypted with the user’s EFS public key.

 6. A DRF key ring is created for the file. It has an entry for each Recovery Agent on the 

system, with each entry containing a copy of the FEK encrypted with the agent’s EFS 

public key.

 7. A backup file with a name in the form Efs0.tmp is created in the same directory as the 

file to be encrypted.

 8. The DDF and DRF key rings are added to a header and augment the file as its EFS 

attribute.

 9. The backup file is marked as encrypted, and the original file is copied to the backup.

 10. The original file’s contents are destroyed, and the backup is copied to the original. This 

copy operation results in the data in the original file being encrypted because the file is 

now marked as encrypted.

 11. The backup file is deleted.

 12. The log file is deleted.

 13. The user profile is unloaded (if it was loaded in step 1).

If the system crashes during the encryption process, either the original file remains intact 

or the backup file contains a consistent copy. When Lsasrv initializes after a system crash, it 

looks for log files under the System Volume Information subdirectory on each NTFS volume 

on the system. If Lsasrv finds one or more log files, it examines their contents and determines 

how recovery should take place. Lsasrv deletes the log file and the corresponding backup 

file if the original file wasn’t modified at the time of the crash; otherwise, Lsasrv copies the 
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backup file over the original, partially encrypted file and then deletes the log and backup. 

After Lsasrv processes log files, the file system will be in a consistent state with respect to 

encryption, with no loss of user data.

The Decryption Process

The decryption process begins when a user opens an encrypted file. NTFS examines the file’s 

attributes when opening the file and reads the $EFS attribute associated with the encrypted 

file. NTFS completes the necessary steps to open the file and ensures that the user opening 

the file has access privileges to the file’s encrypted data (that is, that an encrypted FEK in 

either the DDF or DRF key ring corresponds to a private/public key pair associated with the 

user). As EFS performs this validation, EFS obtains the file’s decrypted FEK to use in subse-

quent data operations the user might perform on the file.

EFS can’t decrypt an FEK and relies on Lsasrv (which can use CryptoAPI) to perform FEK 

decryption. EFS sends an ALPC message by way of the Ksecdd.sys driver to Lsasrv that asks 

Lsasrv to obtain the decrypted form of the encrypted FEK in the $EFS attribute data (the EFS 

data) that corresponds to the user who is opening the file.

When Lsasrv receives the ALPC message, Lsasrv executes the Userenv.dll (User Environment 

DLL) LoadUserProfile API function to bring the user’s profile into the registry, if the profile 

isn’t already loaded. Lsasrv proceeds through each key field in the EFS data, using the user’s 

private key to try to decrypt each FEK. For each key, Lsasrv attempts to decrypt a DDF or 

DRF key entry’s FEK. If the certificate hash in a key field doesn’t refer to a key the user owns, 

Lsasrv moves on to the next key field. If Lsasrv can’t decrypt any DDF or DRF key field’s FEK, 

the user can’t obtain the file’s FEK. Consequently, EFS denies access to the application open-

ing the file. However, if Lsasrv identifies a hash as corresponding to a key the user owns, it 

decrypts the FEK with the user’s private key using CryptoAPI.

Because Lsasrv processes both DDF and DRF key rings when decrypting an FEK, it automati-

cally performs file recovery operations. If a Recovery Agent that isn’t registered to access 

an encrypted file (that is, it doesn’t have a corresponding field in the DDF key ring) tries to 

access a file, EFS will let the Recovery Agent gain access because the agent has access to a 

key pair for a key field in the DRF key ring.

Decrypted FEK Caching

Traveling the path from the NTFS driver to Lsasrv and back can take a relatively long time—

in the process of decrypting an FEK, CryptoAPI results in more than 2,000 registry API calls 

and 400 file system accesses on a typical system. The NTFS driver uses a cache to try to avoid 

this expense.
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Decrypting File Data

After an application opens an encrypted file, the application can read from and write to the 

file. NTFS uses EFS to decrypt file data as NTFS reads the data from the disk and before NTFS 

places the data in the file system cache. Similarly, when an application writes data to a file, 

the data remains in unencrypted form in the file system cache until the application or the 

cache manager uses NTFS to flush the data back to disk. When an encrypted file’s data writes 

back from the cache to the disk, NTFS uses EFS to encrypt the data.

As stated earlier, EFS performs encryption and decryption in 512-byte units. The 512-byte 

size is the most convenient for the driver because disk reads and writes occur in multiples of 

the 512-byte sector.

Backing Up Encrypted Files

An important aspect of any file encryption facility’s design is that file data is never available 

in unencrypted form except to applications that access the file via the encryption facility. 

This restriction particularly affects backup utilities, in which archival media store files. EFS 

addresses this problem by providing a facility for backup utilities so that the utilities can back 

up and restore files in their encrypted states. Thus, backup utilities don’t have to be able to 

decrypt file data, nor do they need to encrypt file data in their backup procedures.

Backup utilities use the EFS API functions OpenEncryptedFileRaw, ReadEncryptedFileRaw, 

WriteEncryptedFileRaw, and CloseEncryptedFileRaw in Windows to access a file’s encrypted 

contents. The Advapi32.dll library provides these API functions, which all use ALPC to invoke 

corresponding functions in Lsasrv. For example, after a backup utility opens a file for raw 

access during a backup operation, the utility calls ReadEncryptedFileRaw to obtain the file 

data. The Lsasrv function EfsReadFileRaw issues control commands (which the EFS session key 

encrypts with AES or 3DES) to the NTFS driver to read the file’s EFS attribute first and then 

the encrypted contents.

EfsReadFileRaw might have to perform multiple read operations to read a large file. 

As EfsReadFileRaw reads each portion of such a file, Lsasrv sends an RPC message to 

Advapi32.dll that executes a callback function that the backup program specified when it 

issued the ReadEncryptedFileRaw API function. EfsReadFileRaw hands the encrypted data 

it just read to the callback function, which can write the data to the backup media. Backup 

utilities restore encrypted files in a similar manner. The utilities call the WriteEncryptedFileRaw 

API function, which invokes a callback function in the backup program to obtain the unen-

crypted data from the backup media while Lsasrv’s EfsWriteFileRaw function is restoring the 

file’s contents.
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EXPERIMENT: Viewing EFS Information

EFS has a handful of other API functions that applications can use to manipulate 

encrypted files. For example, applications use the AddUsersToEncryptedFile API function 

to give additional users access to an encrypted file and RemoveUsersFromEncryptedFile 

to revoke users’ access to an encrypted file. Applications use the QueryUsersOn-
EncryptedFile function to obtain information about a file’s associated DDF and DRF key 

fields. QueryUsersOnEncryptedFile returns the SID, certificate hash value, and display 

information that each DDF and DRF key field contains. The following output is from the 

EFSDump utility, from Sysinternals, when an encrypted file is specified as a command-

line argument:

C:\>efsdump test.txt  

EFS Information Dumper v1.02  

Copyright (C) 1999 Mark Russinovich  

Systems Internals – http://www.sysinternals.com   

  

test.txt:  

DDF Entry:  

    DARYL\Mark:  

         CN=Mark,L=EFS,OU=EFS File Encryption Certificate  

DRF Entry:  

    Unknown user: 

        EFS Data Recovery

You can see that the file test.txt has one DDF entry for user Mark and one DRF entry for 

the EFS Data Recovery agent, which is the only Recovery Agent currently registered on 

the system.

Conclusion

Windows supports a wide variety of file system formats accessible to both the local system 

and remote clients. The file system filter driver architecture provides a clean way to extend 

and augment file system access, and NTFS provides a reliable, secure, scalable file system for-

mat for local file system storage. In the next chapter, we’ll look at networking on Windows.
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Chapter 12

Networking

Windows was designed with networking in mind, and it includes broad networking support 

that is integrated with the I/O system and the Windows API. The four basic types of network-

ing software are services, APIs, protocols, and network adapter device drivers, and each is 

layered on the next to form a network stack. Windows has well-defined interfaces for each 

layer, so in addition to using the wide variety of APIs, protocols, and adapter device drivers 

that ship with Windows, third parties can extend the operating system’s networking capabili-

ties by developing their own.

In this chapter, we take you from the top of the Windows networking stack to the bottom. 

First, we present the mapping between the Windows networking software components and 

the Open Systems Interconnection (OSI) reference model. Then we briefly describe the net-

working APIs available on Windows and explain how they are implemented. You’ll learn how 

multiple redirector support and name resolution work and how protocol drivers are imple-

mented. After looking at the implementation of network adapter device drivers, we examine 

binding, which is the glue that connects services, protocol stacks, and network adapters.

Windows Networking Architecture

The goal of network software is to take a request (usually an I/O request) from an application 

on one machine, pass it to another machine, execute the request on the remote machine, 

and return the results to the first machine. In the course of this process, the request must be 

transformed several times. A high-level request, such as “read x number of bytes from file 

y on machine z,” requires software that can determine how to get to machine z and what 

communication software that machine understands. Then the request must be altered for 

transmission across a network—for example, divided into short packets of information. When 

the request reaches the other side, it must be checked for completeness, decoded, and sent 

to the correct operating system component for execution. Finally, the reply must be encoded 

for sending back across the network.

The OSI Reference Model

To help different computer manufacturers standardize and integrate their networking 

software, in 1984 the International Organization for Standardization (ISO) defined a soft-

ware model for sending messages between machines. The result was the Open Systems 
Interconnection (OSI) reference model. The model defines six layers of software and one physi-

cal layer of hardware, as shown in Figure 12-1.
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FIGURE 12-1 OSI reference model

The OSI reference model is an idealized scheme that few systems implement precisely, but it’s 

often used to frame discussions of networking principles. Each layer on one machine assumes 

that it is “talking to” the same layer on the other machine. Both machines “speak” the same 

language, or protocol, at the same level. In reality, however, a network transmission must 

pass down each layer on the client machine, be transmitted across the network, and then 

pass up the layers on the destination machine until it reaches a layer that can understand and 

implement the request.

The purpose of each layer in the OSI model is to provide services to higher layers and to 

abstract how the services are implemented at lower layers. Detailing the purpose of each 

layer is beyond the scope of this book, but here are some brief descriptions of the various 

layers:

Application layer Handles information transfer between two network applications, 

including functions such as security checks, identification of the participating machines, 

and initiation of the data exchange.

Presentation layer Handles data formatting, including issues such as whether lines 

end in a carriage return/line feed (CR/LF) or just a carriage return (CR), whether data is 

to be compressed or encrypted, and so forth.

Session layer Manages the connection between cooperating applications, including 

high-level synchronization and monitoring of which application is “talking” and which is 

“listening.”

Transport layer On the client, this layer divides messages into packets and assigns 

them sequence numbers to ensure that they are all received in the proper order. On 

the destination, it assembles packets that have been received. It also shields the session 

layer from the effects of changes in hardware.

Network layer Creates packet headers and handles routing, congestion control, and 

internetworking. It is the highest layer that understands the network’s topology—that 

is, the physical configuration of the machines in the network, any limitations in band-

width, and so on.
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Data-link layer Transmits low-level data frames, waits for acknowledgment that they 

were received, and retransmits frames that were lost over unreliable lines as a result of 

collisions.

Physical layer Passes bits to the network cable or other physical transmission 

medium.

The gray lines in Figure 12-1 represent protocols used in transmitting a request to a remote 

machine. As stated earlier, each layer of the hierarchy assumes that it is speaking to the same 

layer on another machine and uses a common protocol. The collection of protocols through 

which a request passes on its way down and back up the layers of the network is called a 

 protocol stack.

Windows Networking Components

Figure 12-2 provides an overview of the components of Windows networking, showing how 

each component fits into the OSI reference model and which protocols are used between 

layers. The mapping between OSI layers and networking components isn’t precise, which 

is the reason that some components cross layers. The various components include the 

following:

Networking APIs provide a protocol-independent way for applications to communicate 

across a network. Networking APIs can be implemented in user mode or in both user 

mode and kernel mode, and in some cases they are wrappers around another network-

ing API that implements a specific programming model or provides additional services. 

(Note that the term networking API also describes any programming interfaces pro-

vided by networking-related software.)

Transport Driver Interface (TDI) clients are legacy kernel-mode device drivers that usu-

ally implement the kernel-mode portion of a networking API’s implementation. TDI 

clients get their name from the fact that the I/O request packets (IRPs) they send to 

protocol drivers are formatted according to the Windows Transport Driver Interface 

standard (documented in the Windows Driver Kit). This standard specifies a common 

programming interface for kernel-mode device drivers. (See Chapter 7 for more infor-

mation about IRPs.)

TDI transports, also known as transports, Network Driver Interface Specification (NDIS) 
protocol drivers, and protocol drivers, are kernel-mode protocol drivers. They accept 

IRPs from TDI clients and process the requests these IRPs represent. This processing 

might require network communications with a peer, prompting the TDI transport to 

add protocol-specific headers (for example, TCP, UDP, and/or IP) to data passed in the 

IRP and to communicate with adapter drivers using NDIS functions (also documented in 
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the Windows Driver Kit). TDI transports generally facilitate application network commu-

nications by transparently performing message operations such as segmentation and 

reassembly, sequencing, acknowledgment, and retransmission.

Winsock Kernel (WSK) is a transport-independent, kernel-mode networking API that 

replaces the legacy TDI mechanism. WSK provides network communication by using 

socketlike programming semantics similar to user-mode Winsock, while also providing 

unique features such as asynchronous I/O operations built on IRPs and event callbacks. 

WSK also natively supports IP version 6 (IPv6) functionality in the Next Generation TCP/

IP network stack in Windows.

The Windows Filtering Platform (WFP) is a set of APIs and system services that provide 

the ability to create network filtering applications. The WFP allows applications to inter-

act with packet processing at different levels of the Windows networking stack, much 

like file system filters. Similarly, network data can be traced, filtered, and also modified 

before it reaches its destination.

WFP callout drivers are kernel-mode drivers that implement one or more callouts, which 

extend the capabilities of the WFP by processing TCP/IP-based network data in ways 

that extend the basic functionality provided by the WFP.

The NDIS library (Ndis.sys) provides encapsulation for adapter drivers, hiding from 

them specifics of the Windows kernel-mode environment. The NDIS library exports 

functions for use by TDI transports as well as support functions for adapter drivers.

NDIS miniport drivers are kernel-mode drivers that are responsible for interfacing TDI 

transports to particular network adapters. NDIS miniport drivers are written so that 

they are wrapped by the Windows NDIS library. NDIS miniport drivers don’t process 

IRPs; rather, they register a call-table interface to the NDIS library that contains point-

ers to functions corresponding to ones that the NDIS library exports to TDI transports. 

NDIS miniport drivers communicate with network adapters by using NDIS library func-

tions that resolve to hardware abstraction layer (HAL) functions.

As Figure 12-2 shows, the OSI layers don’t correspond to actual software. WSK transport pro-

viders, for example, frequently cross several boundaries. In fact, the bottom three layers of 

software and the hardware layer are often referred to collectively as “the transport.” Software 

components residing in the upper three layers are referred to as “users of the transport.”
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FIGURE 12-2 OSI model and Windows networking components

In the remainder of this chapter, we’ll examine the networking components shown in Figure 

12-2 (as well as others not shown in the figure), looking at how they fit together and how 

they relate to Windows as a whole.
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Networking APIs

Windows implements multiple networking APIs to provide support for legacy applications 

and compatibility with industry standards. In this section, we’ll briefly look at the networking 

APIs and describe how applications use them. It’s important to keep in mind that the decision 

about which API an application uses depends on characteristics of the API, such as which pro-

tocols the API can layer over, whether the API supports reliable or bidirectional communica-

tion, and the API’s portability to other Windows platforms the application might run on. We’ll 

discuss the following networking APIs:

Windows Sockets (Winsock)

Winsock Kernel

Remote procedure call (RPC)

Web access APIs

Named pipes and mailslots

NetBIOS

Other networking APIs

Windows Sockets

The original Windows Sockets (Winsock) (version 1.0) was Microsoft’s implementation of 

BSD (Berkeley Software Distribution) Sockets, a programming API that became the standard 

by which UNIX systems have communicated over the Internet since the 1980s. Support for 

sockets on Windows makes the task of porting UNIX networking applications to Windows 

relatively straightforward. The modern versions of Winsock include most of the functional-

ity of BSD Sockets but also include Microsoft-specific enhancements, which continue to 

evolve. Winsock supports reliable-connection-oriented communication as well as unreliable-

 connectionless communication. Windows provides Winsock 2.2, which adds numerous 

features beyond the BSD Sockets specification, such as functions that take advantage of 

Windows asynchronous I/O to offer far better performance and scalability than straight BSD 

Socket programming.

Winsock includes the following features:

Support for scatter-gather and asynchronous application I/O.

Quality of service (QoS) conventions so that applications can negotiate latency and 

bandwidth requirements when the underlying network supports QoS.

Extensibility so that Winsock can be used with protocols other than those Windows 

requires it to support.
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Support for integrated namespaces other than those defined by a protocol that an 

application is using with Winsock. A server can publish its name in Active Directory, for 

example, and by using namespace extensions, a client can look up the server’s address 

in Active Directory.

Support for multipoint messages where messages transmit from a single source to mul-

tiple receivers simultaneously.

We’ll examine typical Winsock operation and then describe ways that Winsock can be 

extended.

Winsock Client Operation

The first step a Winsock application takes is to initialize the Winsock API with a call to an ini-

tialization function. A Winsock application’s next step is to create a socket that will represent 

a communications endpoint. The application obtains the address of the server to which it 

wants to connect by calling getaddrinfo (and later calling freeaddrinfo to release the informa-

tion). The getaddrinfo function returns the list of addresses assigned to the server, and the cli-

ent attempts to connect to each one in turn until it is able to establish a connection with one 

of them. This ensures that a client that supports both IP version 4 (IPv4) and IPv6 will connect 

to the appropriate and/or most efficient address on a server that might have both IPv4 and 

IPv6 addresses assigned to it. Winsock is a protocol-independent API, so an address can be 

specified for any protocol installed on the system over which Winsock operates (TCP/IP or 

TCP/IP with IPv6). After obtaining the server address, a connection-oriented client attempts 

to connect to the server by using connect and specifying the server address.

When a connection is established, the client can send and receive data over its socket using 

recv and send, for example. A connectionless client specifies the remote address with con-

nectionless APIs, such as the connectionless equivalents of send and recv, and sendto and 

recvfrom. Clients can also use the select and WSAPoll APIs to wait on or poll multiple sockets 

for synchronous I/O operations or to check their state.

Winsock Server Operation

The sequence of steps for a server application differs from that of a client. After initializing 

the Winsock API, the server creates a socket and then binds it to a local address by using 

bind. Again, the address type specified—whether TCP/IP, TCP/IP with IPv6, or some other 

address type—is up to the server application.

If the server is connection oriented, it performs a listen operation on the socket, indicating 

the backlog, or the number of connections the server asks Winsock to hold until the server 

is able to accept them. Then it performs an accept operation to allow a client to connect to 

the socket. If there is a pending connection request, the accept call completes immediately; 

otherwise, it completes when a connection request arrives. When a connection is made, the 
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accept function returns a new socket that represents the server’s end of the connection. The 

server can perform receive and send operations by using functions such as recv and send. 

Like Winsock clients, servers can use the select and WSAPoll functions to query the state of 

one or more sockets; however, the Winsock WSAEventSelect function and overlapped I/O 

extensions are preferable for higher scalability. Figure 12-3 shows connection-oriented com-

munication between a Winsock client and server.

Server 
application

Client 
application

listen connect

send, recv
accept

FIGURE 12-3 Connection-oriented Winsock operation

After binding an address, a connectionless server is no different from a connectionless cli-

ent: it can send and receive data over the socket simply by specifying the remote address 

with each operation. Most connectionless protocols are unreliable and in general will not 

know whether the destination actually received the sent data packets, known as datagrams. 
Datagram protocols are ideal for quick message passing, where the overhead of establishing 

a connection is too much and reliability is not required (although an application can build 

reliability on top of the protocol).

Winsock Extensions

In addition to supporting functions that correspond directly to those implemented in BSD 

Sockets, Microsoft has added a handful of functions that aren’t part of the Winsock stan-

dard. Two of these functions, AcceptEx and TransmitFile, are worth describing because many 

Web servers on Windows use them to achieve high performance. AcceptEx is a version of the 

accept function that, in the process of establishing a connection with a client, returns the cli-

ent’s address and the client’s first message. AcceptEx allows the server application to prepost 

multiple accept operations so that high volumes of incoming connection requests can be 

handled. With this function, a Web server avoids executing multiple Winsock functions that 

would otherwise be required.

After establishing a connection with a client, a Web server sometimes sends a file, such as a 

Web page, to the client. The TransmitFile function’s implementation is integrated with the 

Windows cache manager so that a client can send a file directly from the file system cache. 

Sending data in this way is called zero-copy because the server doesn’t have to touch the 
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file data to send it; it simply specifies a handle to a file and the ranges of the file to send. 

In addition, TransmitFile allows a server to prepend or append data to the file’s data so 

that the server can send header information, which might include the name of the Web 

server and a field that indicates to the client the size of the message the server is sending. 

Internet Information Services (IIS), which is included with Windows, uses both AcceptEx and 

TransmitFile.

Windows also supports a handful of other, multifunction APIs, including ConnectEx, Dis-
con nectEx, and TransmitPackets. ConnectEx establishes a connection and sends the first 

message on the connection. DisconnectEx closes a connection and allows the socket han-

dle representing the connection to be reused in a call to AcceptEx or ConnectEx. Finally, 

TransmitPackets is similar to TransmitFile, except that it allows for the sending of in-memory 

data in addition to or in lieu of file data. Finally, by using the WSAImpersonateSocketPeer and 

WSARevertImpersonation functions, Winsock servers can perform impersonation (described 

in Chapter 6) to perform authorization or to gain access to resources based on the client’s 

security credentials.

Extending Winsock

Winsock is an extensible API on Windows because third parties can add a transport service 
provider that interfaces Winsock with other protocols or layers on top of existing protocols to 

provide functionality such as proxying. Third parties can also add a namespace service pro-
vider to augment Winsock’s name-resolution facilities. Service providers plug in to Winsock 

by using the Winsock service provider interface (SPI). When a transport service provider is 

registered with Winsock, Winsock uses the transport service provider to implement socket 

functions, such as connect and accept, for the address types that the provider indicates it 

implements. There are no restrictions on how the transport service provider implements the 

functions, but the implementation usually involves communicating with a transport driver in 

kernel mode.

A requirement of any Winsock client/server application is for the server to make its address 

available to clients so that the clients can connect to the server. Standard services that exe-

cute on the TCP/IP protocol use “well-known addresses” to make their addresses available. As 

long as a browser knows the name of the computer a Web server is running on, it can con-

nect to the Web server by specifying the well-known Web server address (the IP address of 

the server concatenated with :80, the port number used for HTTP). Namespace service pro-

viders make it possible for servers to register their presence in other ways. For example, one 

namespace service provider might on the server side register the server’s address in Active 

Directory, and on the client side look up the server’s address in Active Directory. Namespace 

service providers supply this functionality to Winsock by implementing standard Winsock 

name-resolution functions such as getaddrinfo and getnameinfo.
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EXPERIMENT: Looking at Winsock Service Providers

The Net Shell (Netsh.exe) utility included with Windows is able to show the registered 

Winsock transport and namespace providers by using the netsh winsock show catalog 

command. For example, if there are two TCP/IP transport service providers, the first one 

listed is the default provider for Winsock applications using the TCP/IP protocol. Here’s 

sample output from Netsh showing the registered transport service providers:

C:\Users\Administrator>netsh winsock show catalog 

 

Winsock Catalog Provider Entry 

------------------------------------------------------ 

Entry Type:                         Base Service Provider 

Description:                        MSAFD Tcpip [TCP/IP] 

Provider ID:                        {E70F1AA0-AB8B-11CF-8CA3-00805F48A192} 

Provider Path:                      %SystemRoot%\system32\mswsock.dll 

Catalog Entry ID:                   1001 

Version:                            2 

Address Family:                     2 

Max Address Length:                 16 

Min Address Length:                 16 

Socket Type:                        1 

Protocol:                           6 

Protocol Chain Length:              1 

 

Winsock Catalog Provider Entry 

------------------------------------------------------ 

Entry Type:                         Base Service Provider 

Description:                        MSAFD Tcpip [UDP/IP] 

Provider ID:                        {E70F1AA0-AB8B-11CF-8CA3-00805F48A192} 

Provider Path:                      %SystemRoot%\system32\mswsock.dll 

Catalog Entry ID:                   1002 

Version:                            2 

Address Family:                     2 

Max Address Length:                 16 

Min Address Length:                 16 

Socket Type:                        2 

Protocol:                           17 

Protocol Chain Length:              1 

 

Winsock Catalog Provider Entry 

------------------------------------------------------ 

Entry Type:                         Base Service Provider 

Description:                        MSAFD Tcpip [RAW/IP] 

Provider ID:                        {E70F1AA0-AB8B-11CF-8CA3-00805F48A192} 

Provider Path:                      %SystemRoot%\system32\mswsock.dll 

Catalog Entry ID:                   1003 

Version:                            2 

Address Family:                     2 

Max Address Length:                 16 

Min Address Length:                 16 

Socket Type:                        3 

Protocol:                           0 

Protocol Chain Length:              1
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You can also use the Autoruns utility from Windows Sysinternals (www.microsoft.com/
technet/sysinternals) to view namespace and transport providers, as well as to disable 

those that might be causing problems or unwanted behavior on the system.

Winsock Implementation

Winsock’s implementation is shown in Figure 12-4. Its application interface consists of an API 

DLL, Ws2_32.dll (\%SystemRoot%\System32\Ws2_32.dll), which provides applications access 

to Winsock functions. Ws2_32.dll calls on the services of namespace and transport service 

providers to carry out name and message operations. The Mswsock.dll library acts as a trans-

port service provider for the protocols Microsoft provides support for in Winsock and uses 

Winsock Helper libraries that are protocol specific to communicate with kernel-mode pro-

tocol drivers. For example, Wshtcpip.dll is the TCP/IP helper. Mswsock.dll (\%SystemRoot%\

System32\Mswsock.dll) implements the Microsoft Winsock extension functions, such as 

TransmitFile, AcceptEx, and WSARecvEx. 

Windows ships with helper DLLs for TCP/IP, TCP/IP with IPv6, Bluetooth, NetBIOS, IrDA 

(Infrared Data Association), and PGM (Pragmatic General Multicast). It also includes 

namespace service providers for DNS (TCP/IP), Active Directory (LDAP), and NLA (Network 

Location Awareness).

NtReadFile,
NtWriteFile,

NtCreateFile,
NtDeviceIoControlFile

User mode

Kernel mode

Application Ws2_32.dll

TDI
TLNPI

Wshtcpip.dll, ...

Ntdll.dll

Service providers
SPI

\Device\AFD
AFD FSD

NetBIOS TCP/IPProtocol drivers

Mswsock.dll, ...

TLNPI

FIGURE 12-4 Winsock implementation 
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Like the named pipe and mailslot APIs (described later in this chapter), Winsock integrates 

with the Windows I/O model and uses file handles to represent sockets. This support 

requires the aid of a kernel-mode file system driver, so Msafd.dll uses the services of the 

Ancillary Function Driver (AFD—\%SystemRoot%\System32\Drivers\Afd.sys) to implement 

socket-based functions. AFD is a Transport Layer Network Provider Interface (TLNPI) client 

and executes network socket operations, such as sending and receiving messages, by send-

ing TDI IRPs to protocol drivers. AFD isn’t coded to use particular protocol drivers; instead, 

Msafd.dll informs AFD of the name of the protocol used for each socket so that AFD can 

open the device object representing the protocol.

Winsock Kernel (WSK)

To enable kernel-mode drivers and modules to have access to networking API interfaces 

similar to those available to user-mode applications, Windows implements a socket-based 

networking programming interface called Winsock Kernel (WSK). WSK replaces the legacy 

TDI API interface present on older versions of Windows but maintains the TDI SPI interface 

for transport providers. Compared to TDI, WSK provides better performance and scalability 

and much easier programming, because it relies less on internal kernel behavior and more 

on socket-based semantics. Additionally, WSK was written to take full advantage of the latest 

technologies in the Windows TCP/IP stack, which TDI was not originally anticipated to sup-

port. As shown in Figure 12-5, WSK makes use of the Network Module Registrar (NMR) com-

ponent of Windows to attach to and detach from transport devices, and it can be used, just 

like Winsock, to support many different kinds of network clients—for example, the Http.sys 

driver for the HTTP Server API (mentioned later in the chapter) is a WSK client.

I/O manager

Kernel-mode networking client applications

Winsock Kernel (WSK)

Transport
(TCP/IPv4)

Network
Module
Registrar
(NMR)

Transport
(TCP/IPv6)

Transport
(third party)

. . .

FIGURE 12-5 WSK overview

WSK Implementation

WSK’s implementation is shown in Figure 12-6. At its core is the WSK subsystem itself, which 

uses the Next Generation TCP/IP Stack (%SystemRoot%\System32\Drivers\Netio.sys) but is 

actually implemented in AFD. The subsystem is responsible for the provider side of the WSK 
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API. The subsystem interfaces with transport providers (shown at the bottom of Figure 12-5) 

to provide support for various transport protocols. Attached to the WSK subsystem are WSK 

applications, which are kernel-mode drivers that implement the client-side WSK API in order 

to perform network operations. The WSK subsystem calls WSK applications to notify them of 

asynchronous events.

WSK
application

WSK
provider NPI

WSK
subsystem

WSK
client NPI

WSK
registration
functions

FIGURE 12-6 WSK implementation

WSK applications are bound to the WSK subsystem through the NMR or through the WSK’s 

registration functions, which allow WSK applications to dynamically detect when the WSK 

subsystem becomes available and then load their own dispatch table to describe the pro-

vider and client-side implementations of the WSK API. These implementations provide the 

standard WSK socket-based functions, such as WskSocket, WskAccept, WskBind, WskConnect, 
WskReceive, and WskSend, which have similar semantics (but not necessarily similar parame-

ters) as their user-mode Winsock counterparts. However, unlike user-mode Winsock, the WSK 

subsystem defines four different kinds of socket categories, which identify which functions 

and events are available:

Basic sockets, which are used only to get and set information on the transport. They 

cannot be used to send or receive data or be bound to an address.

Listening sockets, which are used for sockets that accept only incoming connections.

Datagram sockets, which are used solely for sending and receiving datagrams.

Connection-oriented sockets, which support all the functionality required to send and 

receive network traffic over an established connection.

Apart from the socket functions described, WSK also provides events through which appli-

cations are notified of network status. Unlike the model for socket functions, in which a 

client controls the connection, events allow the subsystem to control the connection and 

merely notify the client. These include the WskAcceptEvent, WskInspectEvent, WskAbortEvent, 
WskReceiveFromEvent, WskReceiveEvent, WskDisconnectEvent, and WskSendBacklogEvent 
routines.
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Finally, like user-mode Winsock, WSK can be extended through extension interfaces that 

applications can associate with sockets. These extensions can enhance the default functional-

ity provided by the WSK subsystem.

Remote Procedure Call

Remote procedure call (RPC) is a network programming standard originally developed in the 

early 1980s. The Open Software Foundation (now The Open Group) made RPC part of the 

distributed computing environment (DCE) distributed computing standard. Although there 

is a second RPC standard, SunRPC, the Microsoft RPC implementation is compatible with the 

OSF/DCE standard. RPC builds on other networking APIs, such as named pipes or Winsock, to 

provide an alternate programming model that in some sense hides the details of networking 

programming from an application developer.

RPC Operation

An RPC facility is one that allows a programmer to create an application consisting of any 

number of procedures, some that execute locally and others that execute on remote com-

puters via a network. It provides a procedural view of networked operations rather than a 

transport-centered view, thus simplifying the development of distributed applications.

Networking software is traditionally structured around an I/O model of processing. In 

Windows, for example, a network operation is initiated when an application issues a remote 

I/O request. The operating system processes the request accordingly by forwarding it to a 

redirector, which acts as a remote file system by making the client interaction with the remote 

file system invisible to the client. The redirector passes the operation to the remote file sys-

tem, and after the remote system fills the request and returns the results, the local network 

card interrupts. The kernel handles the interrupt, and the original I/O operation completes, 

returning results to the caller.

RPC takes a different approach altogether. RPC applications are like other structured applica-

tions, with a main program that calls procedures or procedure libraries to perform specific 

tasks. The difference between RPC applications and regular applications is that some of the 

procedure libraries in an RPC application execute on remote computers, as shown in Figure 

12-7, whereas others execute locally.

To the RPC application, all the procedures appear to execute locally. In other words, instead 

of making a programmer actively write code to transmit computational or I/O-related 

requests across a network, handle network protocols, deal with network errors, wait for 

results, and so forth, RPC software handles these tasks automatically. And the Windows RPC 

facility can operate over any available transports loaded into the system.
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RPC client application

ServerFunction()

RPC stub libraryRPC stub library

RPC server application

ServerFunction() { 

}

Network

...

FIGURE 12-7 RPC operation

To write an RPC application, the programmer decides which procedures will execute locally 

and which will execute remotely. For example, suppose an ordinary workstation has a net-

work connection to a Cray supercomputer or to a machine designed specifically for high-

speed vector operations. If the programmer were writing an application that manipulated 

large matrices, it would make sense from a performance point of view to off-load the math-

ematical calculations to the remote computer by writing the program as an RPC application.

RPC applications work like this: As an application runs, it calls local procedures as well as pro-

cedures that aren’t present on the local machine. To handle the latter case, the application is 

linked to a local static-link library or DLL that contains stub procedures, one for each remote 

procedure. For simple applications, the stub procedures are statically linked with the applica-

tion, but for bigger components the stubs are included in separate DLLs. In DCOM, covered 

later in the chapter, the latter method is typically used. The stub procedures have the same 

name and use the same interface as the remote procedures, but instead of performing the 

required operations, the stub takes the parameters passed to it and marshals them for trans-

mission across the network. Marshaling parameters means ordering and packaging them in 

a particular way to suit a network link, such as resolving references and picking up a copy of 

any data structures that a pointer refers to.

The stub then calls RPC run-time procedures that locate the computer where the remote 

procedure resides, determine which transport mechanisms that computer uses, and send 

the request to it using local transport software. When the remote server receives the RPC 

request, it unmarshals the parameters (the reverse of marshaling them), reconstructs the 

original procedure call, and calls the procedure. When the server finishes, it performs the 

reverse sequence to return results to the caller.

In addition to the synchronous function-call-based interface described here, Windows RPC 

also supports asynchronous RPC. Asynchronous RPC lets an RPC application execute a func-

tion but not wait until the function completes to continue processing. Instead, the applica-

tion can execute other code and later, when a response has arrived from the server, the 

RPC runtime notifies the client that the operation has completed. The RPC runtime uses 
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the notification mechanism requested by the client. If the client uses an event synchroni-

zation object for notification, it waits for the signaling of the event object by calling the 

WaitForSingleObject or WaitForMultipleObject function. If the client provides an asynchro-

nous procedure call (APC), the runtime queues the execution of the APC to the thread that 

executed the RPC function. If the client program uses an I/O completion port as its notifica-

tion mechanism, it must call GetQueuedCompletionStatus to learn of the function’s comple-

tion. Alternatively, a client can poll for completion by calling RpcAsyncGetCallStatus.

In addition to the RPC runtime, Microsoft’s RPC facility includes a compiler, called the 

Microsoft Interface Definition Language (MIDL) compiler. The MIDL compiler simplifies the 

creation of an RPC application. The programmer writes a series of ordinary function proto-

types (assuming a C or C++ application) that describe the remote routines and then places 

the routines in a file. The programmer then adds some additional information to these proto-

types, such as a network-unique identifier for the package of routines and a version number, 

plus attributes that specify whether the parameters are input, output, or both. The embel-

lished prototypes form the developer’s Interface Definition Language (IDL) file.

Once the IDL file is created, the programmer compiles it with the MIDL compiler, which pro-

duces both client-side and server-side stub routines, mentioned previously, as well as header 

files to be included in the application. When the client-side application is linked to the stub 

routines file, all remote procedure references are resolved. The remote procedures are then 

installed, using a similar process, on the server machine. A programmer who wants to call an 

existing RPC application need only write the client side of the software and link the applica-

tion to the local RPC run-time facility.

The RPC runtime uses a generic RPC transport provider interface to talk to a transport pro-

tocol. The provider interface acts as a thin layer between the RPC facility and the transport, 

mapping RPC operations onto the functions provided by the transport. The Windows RPC 

facility implements transport provider DLLs for named pipes, HTTP, TCP/IP, and UDP. In a 

similar fashion, the RPC facility is designed to work with different network security facilities.

Most of the Windows networking services are RPC applications, which means that both local 

processes and processes on remote computers can call them. Thus, a remote client computer 

can call the server service to list shares, open files, write to print queues, or activate users on 

your server, all subject to security constraints, of course.

Server name publishing, which is the ability of a server to register its name in a location acces-

sible for client lookup, is in RPC and is integrated with Active Directory. If Active Directory 

isn’t installed, the RPC name locator services fall back on NetBIOS broadcast. This behavior 

allows RPC to function on stand-alone servers and workstations.
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RPC Security

Windows RPC includes integration with security support providers (SSPs) so that RPC clients 

and servers can use authenticated or encrypted communications. When an RPC server wants 

secure communication, it tells the RPC runtime what authentication service to add to the 

list of available authentication services. When a client wants to use secure communication, it 

binds to the server. At that time, it must tell the RPC runtime the authentication service and 

authentication level it wants. Various authentication levels exist to ensure that only authorized 

clients connect to a server, verify that each message a server receives originates at an autho-

rized client, check the integrity of RPC messages to detect manipulation, and even encrypt 

RPC message data. Obviously, higher authentication levels require more processing. The 

 client can also optionally specify the server principal name. A principal is an entity that the 

RPC security system recognizes. The server must register its SSP-specific principal name with 

an SSP.

An SSP handles the details of performing network communication authentication and 

encryption, not only for RPC but also for Winsock. Windows includes a number of built-in 

SSPs, including a Kerberos SSP to implement Kerberos version 5 authentication (including AES 

support) and Secure Channel (SChannel), which implements Secure Sockets Layer (SSL) and 

the Transport Layer Security (TLS) protocols. SChannel also supports TLS and SSL extensions, 

which allow you to use the AES cipher as well as elliptic curve cryptographic (ECC) ciphers 

on top of the protocols. Also, because it supports an open cryptographic interface (OCI) and 

crypto-agile capabilities, SChannel allows government organizations to substitute the exist-

ing ciphers with more complex combinations. In the absence of a specified SSP, RPC software 

uses the built-in security of the underlying transport. Some transports, such as named pipes 

or local RPC, have built-in security. Others, like TCP, do not, and in this case RPC makes unse-

cure calls in the absence of a specified SSP.

Another feature of RPC security is the ability of a server to impersonate the security identity 

of a client with the RpcImpersonateClient function. After a server has finished performing 

impersonated operations on behalf of a client, it returns to its own security identity by calling 

RpcRevertToSelf or RpcRevertToSelfEx. (See Chapter 6 for more information on impersonation.)

RPC Implementation

RPC implementation is depicted in Figure 12-8, which shows that an RPC-based application 

links with the RPC run-time DLL (\%SystemRoot%\System32\Rpcrt4.dll). The RPC run-time 

DLL provides marshaling and unmarshaling functions for use by an application’s RPC function 

stubs as well as functions for sending and receiving marshaled data. The RPC run-time DLL 

includes support routines to handle RPC over a network as well as a form of RPC called local 
RPC. Local RPC can be used for communication between two processes located on the same 

system, and the RPC run-time DLL uses the advanced local procedure call (ALPC) facilities 

in kernel mode as the local networking API. (See Chapter 3 for more information on ALPCs.) 



1018 Windows Internals, Fifth Edition

When RPC is based on nonlocal communication mechanisms, the RPC run-time DLL uses the 

Winsock or named pipe APIs.

User mode

Kernel mode

Application
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Svchost.exe Rpcss.dll
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Advanced local 
procedure call 
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FIGURE 12-8 RPC implementation

The RPC subsystem (RPCSS—\%SystemRoot%\System32\Rpcss.dll) is implemented as a 

Windows service. RPCSS is itself an RPC application that communicates with instances of itself 

on other systems to perform name lookup, registration, and dynamic endpoint mapping. (For 

clarity, Figure 12-8 doesn’t show RPCSS linked with the RPC run-time DLL.)

Windows also includes support for RPC in kernel mode through the kernel-mode RPC driver 

(%SystemRoot%\System32\Drivers\Msrpc.sys). Kernel-mode RPC is for internal use by the 

system and is implemented on top of ALPC. Winlogon includes an RPC server with a docu-

mented set of interfaces that user-mode RPC clients can access, while Win32k.sys includes 

an RPC client that communicates with Winlogon for internal notifications, such as the secure 

attention sequence (SAS; see Chapter 6 for more information). The TCP/IP stack in Windows 

(as well as the WFP) also uses kernel-mode RPC to communicate with the Network Store 
Interface (NSI) service, which handles network routing information.

Web Access APIs

To ease the development of Internet applications, Windows provides both client and server 

Internet APIs. By using the APIs, applications can provide and use FTP and HTTP services 

without knowledge of the intricacies of the corresponding protocols. The client APIs include 

Windows Internet, also known as WinInet, which enables applications to interact with the FTP 

and HTTP protocols, and WinHTTP, which enables applications to interact with the HTTP pro-

tocol and is more suitable than WinInet in certain situations. HTTP Server is a server-side API 

that enables the development of Web server applications.
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WinInet

WinInet supports the FTP and HTTP 1.0 and 1.1 protocols. The APIs break down into sub-API 

sets specific to each protocol. Using the FTP-related APIs—such as InternetConnect to con-

nect to an FTP server, FtpFindFirstFile and FtpFindNextFile to enumerate the contents of an 

FTP directory, and FtpGetFile and FtpPutFile to receive and send files—an application devel-

oper avoids the details of establishing a connection and formatting TCP/IP messages to the 

FTP protocol. The HTTP-related APIs provide similar levels of abstraction, providing cookie 

persistence, automatic dial-up services, client-side file caching, and automatic credential dia-

log handling. WinInet is used by core Windows components such as Windows Explorer and 

Internet Explorer.

WinHTTP

The current version of the WinHTTP API, 6.0, is available on Windows Vista and Windows 

Server 2008. It provides an abstraction of the HTTP/1.1 protocol for HTTP client applications 

similar to what the WinInet HTTP-related APIs provide. However, whereas the WinInet HTTP 

API is intended for user-interactive client-side applications, the WinHTTP API is designed 

for server applications that communicate with HTTP servers. Server applications are often 

implemented as Windows services that do not provide a user interface and so do not desire 

the dialog boxes that WinInet APIs display. In addition, the WinHTTP APIs are more scalable 

(such as supporting uploads of greater than 4 GB) and offer security functionality, such as 

thread impersonation, not available from the WinInet API. WinHTTP also provides support 

for chunked transfer encoding, issuer list retrieval for SSL authentication, client certificate 

requests, and port range reservations.

HTTP 

Using the HTTP Server API, which Windows Vista and Windows Server 2008 implement, 

server applications can register to receive HTTP requests for particular URLs, receive HTTP 

requests, and send HTTP responses. The HTTP Server API includes SSL support so that 

applications can exchange data over secure HTTP connections. The API includes server-side 

caching capabilities, synchronous and asynchronous I/O models, and both IPv4 and IPv6 

addressing. IIS version 7, the version that ships with Windows Server 2008, uses the HTTP 

Server API.

The HTTP Server API, which applications access through the Httpapi.dll library, relies on the 

kernel-mode Http.sys driver. Http.sys starts on demand the first time any application on the 

system calls HttpInitialize. Applications then call HttpCreateServerSession to initialize a server 

session for the HTTP Server API. Next they use HttpCreateRequestQueue to create a private 

request queue and HttpCreateUrlGroup to create a URL group, specifying the URLs that they 

want to handle requests for with HttpAddUrlToUrlGroup. Using the request queues and their 

registered URLs (which they associate by using HttpSetUrlGroupProperty), Http.sys allows 

more than one application to service HTTP requests on a given port (port 80 for example), 
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with each servicing HTTP requests to different parts of the URL namespace, as shown in 

Figure 12-9.
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FIGURE 12-9 HTTP request queues and URL groups

HttpReceiveHttpRequest receives incoming requests directed at registered URLs, and 

HttpSendHttpResponse sends HTTP responses. Both functions offer asynchronous operation 

so that an application can use GetOverlappedResult or I/O completion ports to determine 

when an operation is completed.

Applications can use Http.sys to cache data in nonpaged physical memory by calling 

HttpAddFragmentToCache and associating a fragment name (specified as a URL prefix) with 

the cached data. Http.sys invokes the memory manager function MmAllocatePagesForMdlEx 

to allocate unmapped physical pages (for large requests, Http.sys also attempts to use large 

pages to optimize access to the buffered data). When Http.sys requires a virtual address 

mapping for the physical memory described by an entry in the cache—for instance, when 

it copies data to the cache or sends data from the cache—it uses MmMap Locked Pages-
SpecifyCache and then MmUnmapLockedPages after it completes its access. Http.sys main-

tains cached data until an application invalidates it or an optional application-specified 

timeout associated with the data expires. Http.sys also trims cached data in a worker thread 

that wakes up when the low memory notification event is signaled. (See Chapter 9 for infor-

mation on the low memory notification event.) When an application specifies one or more 

fragment names in a call to HttpSendHttpResponse, Http.sys passes a pointer to the cached 

data in physical memory to the TCP/IP driver and avoids a copy operation. Http.sys also 
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contains code for performing server-side authentication, including full SSL support, which 

removes the need to call back to the user-mode API to perform encryption and decryption 

of traffic.

Finally, the HTTP Server API contains many configuration options that clients can use to set 

functionality, such as authentication policies, bandwidth throttling, logging, connection lim-

its, server state, response caching, and SSL certificate binding.

Named Pipes and Mailslots

Named pipes and mailslots are programming APIs for interprocess communication. Named 

pipes provide for reliable bidirectional communications, whereas mailslots provide unreliable 

unidirectional data transmission. An advantage of mailslots is that they support broadcast 

capability. In Windows, both APIs take advantage of Windows security, which allows a server 

to control precisely which clients can connect to it.

The names that servers assign to named pipes and clients conform to the Windows Universal 

Naming Convention (UNC), which is a protocol-independent way to identify resources on a 

Windows network. The implementation of UNC names is described later in the chapter.

Named Pipe Operation

Named pipe communication consists of a named pipe server and a named pipe client. A 

named pipe server is an application that creates a named pipe to which clients can connect. 

A named pipe’s name has the format \\Server\Pipe\PipeName. The Server component of the 

name specifies the computer on which the named pipe server is executing. (A named pipe 

server can’t create a named pipe on a remote system.) The name can be a DNS name (for 

example, mspress.microsoft.com), a NetBIOS name (mspress), or an IP address (131.107.0.1). 

The Pipe component of the name must be the string “Pipe”, and PipeName is the unique 

name assigned to a named pipe. The unique portion of the named pipe’s name can include 

subdirectories; an example of a named pipe name with a subdirectory is \\MyComputer\Pipe\

MyServerApp\ConnectionPipe.

A named pipe server uses the CreateNamedPipe Windows function to create a named pipe. 

One of the function’s input parameters is a pointer to the named pipe name, in the form 

\\.\Pipe\PipeName. The “\\.\” is a Windows-defined alias for “this computer.” Other param-

eters the function accepts include an optional security descriptor that protects access to the 

named pipe, a flag that specifies whether the pipe should be bidirectional or unidirectional, a 

value indicating the maximum number of simultaneous connections the pipe supports, and a 

flag specifying whether the pipe should operate in byte mode or message mode.

Most networking APIs operate only in byte mode, which means that a message sent with one 

send function might require the receiver to perform multiple receive operations, building up 

the complete message from fragments. A named pipe operating in message mode simplifies 
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the implementation of a receiver because there is a one-to-one correspondence between 

send and receive requests. A receiver therefore obtains an entire message each time it com-

pletes a receive operation and doesn’t have to concern itself with keeping track of message 

fragments.

The first call to CreateNamedPipe for a particular name creates the first instance of that name 

and establishes the behavior of all named pipe instances having that name. A server cre-

ates additional instances, up to the maximum specified in the first call, with additional calls 

to CreateNamedPipe. After creating at least one named pipe instance, a server executes the 

ConnectNamedPipe Windows function, which enables the named pipe the server created 

to establish connections with clients. ConnectNamedPipe can be executed synchronously 

or asynchronously, and it doesn’t complete until a client establishes a connection with the 

instance (or an error occurs).

A named pipe client uses the Windows CreateFile or CallNamedPipe function, specifying the 

name of the pipe a server has created, to connect to a server. If the server has performed 

a ConnectNamedPipe call, the client’s security profile and the access it requests to the pipe 

(read, write) are validated against the named pipe’s security descriptor. (See Chapter 6 for 

more information on the security-check algorithms Windows uses.) If the client is granted 

access to a named pipe, it receives a handle representing the client side of a named pipe 

connection and the server’s call to ConnectNamedPipe completes.

After a named pipe connection is established, the client and server can use the ReadFile and 

WriteFile Windows functions to read from and write to the pipe. Named pipes support both 

synchronous and asynchronous operations for message transmittal. Figure 12-10 shows a 

server and client communicating through a named pipe instance.

Server 
application

Client 
application

\\Server\Pipe\AppPipe

Named pipe 
instances

Client named pipe 
endpoint

FIGURE 12-10 Named pipe communications

Another characteristic of the named pipe networking API is that it allows a server to imper-

sonate a client by using the ImpersonateNamedPipeClient function. See the “Impersonation” 

section in Chapter 6 for a discussion of how impersonation is used in client/server applica-

tions. A second advanced area of functionality of the named pipe API is that it allows for 

atomic send and receive operations through the TransactNamedPipe API, which behaves 

according to a simple transactional model in which a message is both sent and received in 

the same operation.



 Chapter 12 Networking 1023

Mailslot Operation

Mailslots provide an unreliable unidirectional broadcast mechanism. One example of an 

application that can use this type of communication is a time-synchronization service, which 

might broadcast a source time across the domain every few seconds. Receiving the source-

time message isn’t crucial for every computer on the network and is therefore a good candi-

date for the use of mailslots.

Like named pipes, mailslots are integrated with the Windows API. A mailslot server creates 

a mailslot by using the CreateMailslot function. CreateMailslot accepts a name of the form 

“\\.\Mailslot\MailslotName” as an input parameter. Again like named pipes, a mailslot server 

can create mailslots only on the machine it’s executing on, and the name it assigns to a 

mailslot can include subdirectories. CreateMailslot also takes a security descriptor that con-

trols client access to the mailslot. The handles returned by CreateMailslot are overlapped, 

which means that operations performed on the handles, such as sending and receiving mes-

sages, are asynchronous.

Because mailslots are unidirectional and unreliable, CreateMailslot doesn’t take many of the 

parameters that CreateNamedPipe does. After it creates a mailslot, a server simply listens for 

incoming client messages by executing the ReadFile function on the handle representing the 

mailslot.

Mailslot clients use a naming format similar to that used by named pipe clients but with 

variations that make it possible to broadcast messages to all the mailslots of a given name 

within the client’s domain or a specified domain. To send a message to a particular instance 

of a mailslot, the client calls CreateFile, specifying the computer-specific name. An example 

of such a name is “\\Server\Mailslot\MailslotName”. (The client can specify “\\.\” to represent 

the local computer.) If the client wants to obtain a handle representing all the mailslots of a 

given name on the domain it’s a member of, it specifies the name in the format “\\*\Mailslot\

MailslotName”, and if the client wants to broadcast to all the mailslots of a given name within 

a different domain, the format it uses is “\\DomainName\Mailslot\MailslotName”.

After obtaining a handle representing the client side of a mailslot, the client sends messages 

by calling WriteFile. Because of the way mailslots are implemented, only messages smaller 

than 424 bytes can be broadcast. If a message is larger than 424 bytes, the mailslot imple-

mentation uses a reliable communications mechanism that requires a one-to-one  client/

server connection, which precludes broadcast capability. This limitation makes mailslots 

 generally unsuitable for messages larger than 424 bytes. Figure 12-11 shows an example of a 

client broadcasting to multiple mailslot servers within a domain.
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FIGURE 12-11 Mailslot broadcast

Named Pipe and Mailslot Implementation

As evidence of their tight integration with Windows, named pipe and mailslot functions are 

all implemented in the Kernel32.dll Windows client-side DLL. ReadFile and WriteFile, which 

are the functions applications use to send and receive messages using named pipes or 

mailslots, are the primary Windows I/O routines. The CreateFile function, which a client uses 

to open either a named pipe or a mailslot, is also a standard Windows I/O routine. However, 

the names specified by named pipe and mailslot applications specify file system namespaces 

managed by the named pipe file system driver (\%SystemRoot%\System32\Drivers\Npfs.sys) 

and the mailslot file system driver (\%SystemRoot%\System32\Drivers\Msfs.sys), as shown in 

Figure 12-12. 

The named pipe file system driver creates a device object named \Device\NamedPipe and 

a symbolic link to that object named \Global??\Pipe. The mailslot file system driver creates 

a device object named \Device\Mailslot and a symbolic link named \Global??\Mailslot that 

points to that object. (See Chapter 3 for an explanation of the \Global?? object manager 

directory.) Names passed to CreateFile of the form \\.\Pipe\… and \\.\Mailslot\… have their 

prefix of \\.\ translated to \Global??\ so that the names resolve through a symbolic link to 

a device object. The special functions CreateNamedPipe and CreateMailslot use the corre-

sponding native functions NtCreateNamedPipeFile and NtCreateMailslotFile.

Application

\Device\NamedPipe
Named pipe FSD

Kernel32.dll

Ntdll.dll

\Device\Mailslot
Mailslot FSD

FIGURE 12-12 Named pipe and mailslot implementation
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Later in the chapter, we’ll discuss how the redirector file system driver is involved when a 

name that specifies a remote named pipe or mailslot resolves to a remote system. However, 

when a named pipe or mailslot is created by a server or opened by a client, the appropriate 

file system driver (FSD) on the machine where the named pipe or mailslot is located is even-

tually invoked. There are several reasons why FSDs in kernel mode implement named pipes 

and mailslots, the main one being that they integrate with the object manager namespace 

and can use file objects to represent opened named pipes and mailslots. This integration 

results in several benefits:

The FSDs use kernel-mode security functions to implement standard Windows security 

for named pipes and mailslots.

Applications can use CreateFile to open a named pipe or mailslot because FSDs inte-

grate with the object manager namespace.

Applications can use Windows functions such as ReadFile and WriteFile to interact with 

named pipes and mailslots.

The FSDs rely on the object manager to track handle and reference counts for file 

objects representing named pipes and mailslots.

The FSDs can implement their own named pipe and mailslot namespaces, complete 

with subdirectories.

Because named pipes and mailslots use name resolution that relies on the redirector FSD to 

communicate across the network, they indirectly rely on the Server Message Block (SMB) pro-

tocol. SMB works by using the TCP/IP and TCP/IP with IPv6 protocols, so applications running 

on systems that have at least one of these in common can use named pipes and mailslots. 

For more information about SMB, see Chapter 11.

EXPERIMENT: Listing the Named Pipe Namespace and Watching 

Named Pipe Activity

It’s not possible to use the Windows API to open the root of the named pipe FSD 

and perform a directory listing, but you can do this by using native API services. The 

PipeList tool from Sysinternals shows you the names of the named pipes defined on a 

computer as well as the number of instances that have been created for a name and 

the maximum number of instances as defined by a server’s call to CreateNamedPipe. 

Here’s an example of PipeList output:

C:\>pipelist  

 

PipeList v1.01 

by Mark Russinovich 

http://www.sysinternals.com 
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Pipe Name                                    Instances       Max Instances 

---------                                    ---------       ------------- 

InitShutdown                                      3               -1 

lsass                                             6               -1 

protected_storage                                 3               -1 

ntsvcs                                            3               -1 

scerpc                                            3               -1 

net\NtControlPipe1                                1                1 

plugplay                                          3               -1 

net\NtControlPipe2                                1                1 

Winsock2\CatalogChangeListener-394-0              1                1 

epmapper                                          3               -1 

Winsock2\CatalogChangeListener-25c-0              1                1 

LSM_API_service                                   3               -1 

net\NtControlPipe3                                1                1 

eventlog                                          3               -1 

net\NtControlPipe4                                1                1 

Winsock2\CatalogChangeListener-3f8-0              1                1 

net\NtControlPipe5                                1                1 

net\NtControlPipe6                                1                1 

net\NtControlPipe0                                1                1 

atsvc                                             3               -1 

Winsock2\CatalogChangeListener-438-0              1                1 

Winsock2\CatalogChangeListener-2c8-0              1                1 

net\NtControlPipe7                                1                1 

net\NtControlPipe8                                1                1 

net\NtControlPipe9                                1                1 

net\NtControlPipe10                               1                1 

net\NtControlPipe11                               1                1 

net\NtControlPipe12                               1                1 

142CDF96-10CC-483c-A516-3E9057526912              1                1 

net\NtControlPipe13                               1                1 

net\NtControlPipe14                               1                1 

TSVNCache-000000000001b017                       20               -1 

TSVNCacheCommand-000000000001b017                 2               -1 

Winsock2\CatalogChangeListener-2b0-0              1                1 

Winsock2\CatalogChangeListener-468-0              1                1 

TermSrv_API_service                               3               -1 

Ctx_WinStation_API_service                        3               -1 

PIPE_EVENTROOT\CIMV2SCM EVENT PROVIDER            2               -1 

net\NtControlPipe15                               1                1 

keysvc                                            3               -1      

It’s clear from this output that several system components use named pipes as their 

communications mechanism. For example, the InitShutdown pipe is created by 

Winlogon to accept remote shutdown commands, and the Atsvc pipe is created by the 

Task Scheduler service to enable applications to communicate with it to schedule tasks. 

You can determine what process has each of these pipes open by using the object 

search facility in Process Explorer.
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Note A Max Instances value of –1 means that there is no upper limit on the number of 

instances.

NetBIOS

Until the 1990s, the Network Basic Input/Output System (NetBIOS) programming API had 

been the most widely used network programming API on PCs. NetBIOS allows for both 

 reliable-connection-oriented and unreliable-connectionless communication. Windows sup-

ports NetBIOS for its legacy applications. Microsoft discourages application developers from 

using NetBIOS because other APIs, such as named pipes and Winsock, are much more flex-

ible and portable. NetBIOS is supported by the TCP/IP protocol on Windows.

NetBIOS Names

NetBIOS relies on a naming convention whereby computers and network services are 

assigned a 16-byte name called a NetBIOS name. The sixteenth byte of a NetBIOS name 

is treated as a modifier that can specify a name as unique or as part of a group. Only one 

instance of a unique NetBIOS name can be assigned to a network, but multiple applications 

can assign the same group name. A client can broadcast messages by sending them to a 

group name.

To support interoperability with Windows NT 4 systems as well as Windows 9x/Me, Windows 

automatically defines a NetBIOS name for a domain that includes up to the first 15 bytes of 

the left-most Domain Name System (DNS) name that an administrator assigns to the domain. 

For example, if a domain were named mspress.microsoft.com, the NetBIOS name of the 

domain would be mspress. Similarly, Windows requires an administrator to assign each com-

puter a NetBIOS name at the time of installation.

Another concept used by NetBIOS is that of LAN adapter (LANA) numbers. A LANA num-

ber is assigned to every NetBIOS-compatible protocol that layers above a network adapter. 

For example, if a computer has two network adapters and TCP/IP and NWLink can use 

either adapter, there would be four LANA numbers. LANA numbers are important because 

a NetBIOS application must explicitly assign its service name to each LANA through which 

it’s willing to accept client connections. If the application listens for client connections on a 

particular name, clients can access the name only via protocols on the network adapters for 

which the name is registered.

The “Windows Internet Name Service” section later in this chapter describes the resolution of 

NetBIOS names to TCP/IP addresses.
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NetBIOS Operation

A NetBIOS server application uses the NetBIOS API to enumerate the LANAs present on a 

system and assign a NetBIOS name representing the application’s service to each LANA. If 

the server is connection oriented, it performs a NetBIOS listen command to wait for client 

connection attempts. After a client is connected, the server executes NetBIOS functions to 

send and receive data. Connectionless communication is similar, but the server simply reads 

messages without establishing connections.

A connection-oriented client uses NetBIOS functions to establish a connection with a 

NetBIOS server and then executes further NetBIOS functions to send and receive data. An 

established NetBIOS connection is also known as a session. If the client wants to send con-

nectionless messages, it simply specifies the NetBIOS name of the server with the send 

function.

NetBIOS consists of a number of functions, but they all route through the same interface: 

Netbios. This routing scheme is the result of a legacy left over from the time when NetBIOS 

was implemented on MS-DOS as an MS-DOS interrupt service. A NetBIOS application would 

execute an MS-DOS interrupt and pass a data structure to the NetBIOS implementation that 

specified every aspect of the command being executed. As a result, the Netbios function in 

Windows takes a single parameter, which is a data structure that contains the parameters 

specific to the service the application requests.

EXPERIMENT: Using Nbtstat to See NetBIOS Names

You can use the Nbtstat command, which is included with Windows, to list the active 

sessions on a system, the NetBIOS-to-TCP/IP name mappings cached on a computer, 

and the NetBIOS names defined on a computer. Here’s an example of the Nbtstat com-

mand with the –n option, which lists the NetBIOS names defined on the computer:

C:\Users\Administrator>nbtstat -n 

 

Local Area Connection: 

Node IpAddress: [192.168.0.193] Scope Id: [] 

 

                NetBIOS Local Name Table 

 

       Name               Type         Status 

    --------------------------------------------- 

    WIN-NLRTEOW2ILZ<00>  UNIQUE      Registered 

    WORKGROUP      <00>  GROUP       Registered 

    WIN-NLRTEOW2ILZ<20>  UNIQUE      Registered
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NetBIOS API Implementation

The components that implement the NetBIOS API are shown in Figure 12-13. The Netbios 
function is exported to applications by \%SystemRoot%\System32\Netapi32.dll. Netapi32.dll 

opens a handle to the kernel-mode driver named the NetBIOS emulator (\%SystemRoot%\

System32\Drivers\Netbios.sys) and issues Windows DeviceIoControl file commands on behalf 

of an application. The NetBIOS emulator translates NetBIOS commands issued by an applica-

tion into TDI commands that it sends to protocol drivers.

User mode

Kernel mode

Application

\Device\Netbios
NetBIOS

emulation driver

Netapi32.dll
Netbios

Ntdll.dll

NtDeviceIoControlFile

TDI

\Device\Netbt_XXX
NetBT

TCP/IP

TDI IRP

FIGURE 12-13 NetBIOS API implementation

If an application wants to use NetBIOS over the TCP/IP protocol, the NetBIOS emulator 

requires the presence of the NetBT driver (\%SystemRoot%\System32\Drivers\Netbt.sys). 

NetBT is known as the NetBIOS over TCP/IP driver and is responsible for supporting NetBIOS 

semantics that are inherent to the NetBIOS Extended User Interface (NetBEUI) protocol 

(included in previous versions of Windows) but not the TCP/IP protocol. For example, NetBIOS 

relies on NetBEUI’s message-mode transmission and NetBIOS name resolution facilities, so 

the NetBT driver implements them on top of the TCP/IP protocol. 
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Other Networking APIs

Windows includes other networking APIs that are used less frequently or are layered on 

the APIs already described (and outside the scope of this book). Five of these, however— 

Background Intelligent Transfer Service (BITS), Distributed Component Object Model 

(DCOM), Message Queuing, Peer-to-Peer Infrastructure (P2P), and Universal Plug and Play 

(UPnP) with Plug and Play Extensions (PnP-X)—are important enough to the operation of a 

Windows system and many applications to merit brief descriptions.

BITS

The BITS API, currently at version 3.0 on Windows Vista and Windows Server 2008, allows 

application developers to transfer files between a client and a server asynchronously with 

transfer jobs, which can be either download, upload, or upload-reply. A download job down-

loads a file from a client, an upload job uploads a file to a server, and an upload-reply job 

receives a reply from the server after the data transfer is complete. BITS continues to transfer 

files even after the requesting application has exited, as long as there is an active network 

connection (BITS will not force a connection, such as initiating a dial-up connection) and the 

user who initiated the transfer is still logged on. If the network connection is dropped, the 

user logs off, or the system is restarted, BITS suspends the transfer, retaining enough infor-

mation to resume the job when the user logs on again and the connection is restored. 

BITS also allows for prioritization of different jobs, based on two priority classes: foreground 

transfers and background transfers. Background transfers are further divided into three 

priority levels. BITS uses a scheduling algorithm in which higher-level priorities preempt 

lower-priority transfers, while equal priorities execute concurrently. Therefore, under the BITS 

scheduling algorithm, lower-priority jobs remain suspended until no higher-priority jobs are 

eligible for execution.

Furthermore, BITS only makes use of idle networking bandwidth to perform its transfers, 

and it fine-tunes the upload and download speeds based on the amount of idle network-

ing bandwidth available. If client network applications start using more bandwidth, BITS 

decreases its own usage to give priority to the user’s network activities.

Finally, BITS supports peer caching, and if a job allows it, BITS will attempt to obtain the 

content from one or more peers instead of the direct Internet source, especially in LAN 

environments. 

Note Peer caching is disabled by default, and jobs must explicitly permit downloading from 

peers. BITS implements its own peer-caching protocols and does not make use of the Peer-to-

Peer Infrastructure described in the next section.



 Chapter 12 Networking 1031

Peer-to-Peer Infrastructure

Peer-to-Peer Infrastructure is a set of APIs that cover different technologies to enhance the 

Windows networking stack by providing flexible peer-to-peer (P2P) support for applications 

and services. The P2P infrastructure covers four major technologies, shown in Figure 12-14.
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Microsoft TCP/IP version 6 protocol

Graphing Grouping

NSP

Identity
Manager

WIn32 APIs

Crypto API

Flood and
synchronization

Store

Group
SSP

Group
security

PNRP

FIGURE 12-14 Peer-to-peer architecture

Peer-to-Peer Graphing allows applications to pass data between peers efficiently and 

reliably by using nodes and events.

Peer-to-Peer Namespace Provider enables serverless name resolution of peers and 

their services (described later in the “Name Resolution” section).

Peer-to-Peer Grouping combines graphing and namespace technologies to group and 

isolate services and/or peers into a defined group and uniquely identify it.

Peer-to-Peer Identity Manager enhances the services offered by the namespace pro-

vider to securely create, publish, and identify peer names, as well as to identify group 

members that are part of the grouping API.

The Peer-to-Peer Infrastructure in Windows is also paired with the Peer-to-Peer Collaboration 

Interface, which adds support for creating collaborative P2P applications, such as online 

games and group instant messaging, and supersedes the Real-Time Communications (RTC) 

architecture in earlier versions of Windows. It also provides presence capabilities through the 

People Near Me (PNM) architecture. 

DCOM

Microsoft’s COM API lets applications consist of different components, each component 

being a replaceable self-contained module. A COM object exports an object-oriented 
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interface to methods for manipulating the data within the object. Because COM objects pre-

sent well-defined interfaces, developers can implement new objects to extend existing inter-

faces and dynamically update applications with the new support.

DCOM extends COM by letting an application’s components reside on different computers, 

which means that applications don’t need to be concerned that one COM object might be 

on the local computer and another might be across the LAN. DCOM thus provides loca-

tion transparency, which simplifies developing distributed applications. DCOM isn’t a self-

 contained API but relies on RPC to carry out its work.

Message Queuing

Message Queuing is a general-purpose platform for developing distributed applications that 

take advantage of loosely coupled messaging. Message Queuing is therefore an API and a 

messaging infrastructure. Its flexibility comes from the fact that its queues serve as message 

repositories in which senders can queue messages for receivers, and receivers can de-queue 

the messages at their discretion. Senders and receivers do not need to establish connections 

to use Message Queuing, nor do they even need to be executing at the same time, which 

allows for disconnected asynchronous message exchange.

A notable feature of Message Queuing is that it is integrated with Microsoft Transaction 

Server (MTS) and SQL Server, so it can participate in Microsoft Distributed Transaction 

Coordinator (MS DTC) coordinated transactions. Using MS DTC with Message Queuing allows 

you to develop reliable transaction functionality for three-tier applications.

UPnP with PnP-X

Universal Plug and Play is an architecture for peer-to-peer network connectivity of intelligent 

appliances, devices, and control points. It is designed to bring easy-to-use, flexible, standards-

based connectivity to ad-hoc, managed, or unmanaged networks, whether these networks 

are in the home, in small businesses, or attached directly to the Internet. Universal Plug and 

Play is a distributed, open networking architecture that uses existing TCP/IP and Web tech-

nologies to enable seamless proximity networking in addition to control and data transfer 

among networked devices.

Universal Plug and Play supports zero-configuration, invisible networking, and automatic dis-

covery for a range of device categories from a wide range of vendors. This enables a device 

to dynamically join a network, obtain an IP address, and convey its capabilities upon request. 

Then other control points can use the Control Point API with UPnP technology to learn about 

the presence and capabilities of other devices. A device can leave a network smoothly and 

automatically when it is no longer in use.

Plug and Play Extensions (PnP-X), shown in Figure 12-15, is an additional component of 

Windows that allows network-attached devices to integrate with the Plug and Play manager 



 Chapter 12 Networking 1033

in the kernel. With PnP-X, network-connected devices are shown in the Device Manager like 

locally attached devices and provide the same installation, management, and behavioral 

experience as a local device. (For example, installation is performed through the standard 

Add New Hardware wizard.) 

Function discovery API

IPBusEnum

Plug and Play

Device driver

Network discovery providers

Third partySSDPWSD

DevNode

Network Explorer user interface

FIGURE 12-15 PnP-X implementation

PnP-X uses a virtual network bus driver that uses an IP bus enumerator (%SystemRoot%\

System32\Ipbusenum.dll) to discover PnP-X compatible devices, which include UPnP devices 

(through the Simple Service Discovery Protocol) and newer Device Profile for Web Services 

(DPWS) devices (through the WS-Discovery protocol). The IP bus enumerator reports devices 

it discovers to the Plug and Play manager, which uses user-mode Plug and Play manager 

services if needed (such as for driver installation). Similar to wireless discovery (like Bluetooth) 

and unlike wired device discovery (USB), however, PnP-X enumeration and driver installation 

must be explicitly requested by a user from the Network Explorer.

Note DPWS is a specification created by Microsoft that has goals similar to those of UPnP but is 

tightly integrated with Web services standards and frameworks and allows greater extensibility 

than UPnP.

Multiple Redirector Support

Applications can examine or access resources on remote systems in two ways. One way is 

by using the UNC standard with Windows functions to directly address a remote resource; a 

second way is by using the Windows Networking (WNet) API to enumerate computers and 

resources that those computers export for sharing. Both these approaches use the capabili-

ties of a redirector to find their way to the network. As we stated earlier, to access SMB serv-

ers from a client, Microsoft supplies an SMB redirector, which has a kernel-mode component 

called the redirector FSD and a user-mode component called the Workstation service. (SMB is 

described in Chapter 11.) Microsoft also makes available redirectors that can access WebDAV 

resources, Terminal Services–shared drives, and resources shared by Novell NetWare servers. 
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Third parties can add their own redirectors to Windows. In this section, we’ll examine the 

software that decides which redirector to invoke when remote I/O requests are issued. Here 

are the responsible components:

Multiple Provider Router (MPR) is a DLL (\%SystemRoot%\System32\Mpr.dll) that deter-

mines which network to access when an application uses the Windows WNet API for 

browsing remote file systems.

Multiple UNC Provider (MUP) is a driver (\%SystemRoot%\System32\Drivers\Mup.sys) 

that determines which network to access when an application uses the Windows I/O 

API to open remote files.

Multiple Provider Router

The Windows WNet functions allow applications (including the Network and Sharing Center) 

to connect to network resources, such as file servers and printers, and to browse the differ-

ent share points. Because the WNet API can be called to work across different networks using 

different transport protocols, software must be present to send the request correctly over 

the network and to understand the results that the remote server returns. Figure 12-16 shows 

the redirector software responsible for these tasks.

Application Mpr.dll
WNet API

Ntlanman.dll
Other redirector 

provider

Workstation 
service

RPC

Ntdll.dll

Other redirectorRedirector FSD

FIGURE 12-16 MPR components

A provider is software that establishes Windows as a client of a remote network server. Some 

of the operations a WNet provider performs include making and breaking network connec-

tions as well as supporting network printing. The built-in SMB WNet provider includes a DLL, 
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the Workstation service, and the redirector. Other network vendors need to supply only a 

DLL and a redirector.

When an application calls a WNet routine, the call passes directly to the MPR DLL. MPR takes 

the call and determines which network provider recognizes the resource being accessed. 

Each provider DLL beneath MPR supplies a set of standard functions collectively called the 

network provider interface. This interface allows MPR to determine which network the appli-

cation is trying to access and to direct the request to the appropriate WNet provider soft-

ware. The SMB Workstation service’s provider is \%SystemRoot%\System32\Ntlanman.dll, as 

directed by the ProviderPath value under the HKLM\SYSTEM\CurrentControlSet\Services\

lanmanworkstation\NetworkProvider registry key.

When called by the WNetAddConnection2 or WNetAddConnection3 API function to connect 

to a remote network resource, MPR checks the HKLM\SYSTEM\CurrentControlSet\Control\

NetworkProvider\HwOrder\ProviderOrder registry value to determine which network provid-

ers are loaded. It polls them one at a time in the order in which they’re listed in the registry 

until a redirector recognizes the resource or until all available providers have been polled. 

You can change the ProviderOrder by using the Advanced Settings dialog box shown in 

Figure 12-17. You can access the dialog box by first opening the Network Connections folder 

(by right-clicking the Network icon on the desktop or Start menu, selecting Properties from 

the pop-up menu to display the Network and Sharing Center, and then clicking Manage 

Network Connections). Open the Advanced menu, choose Advanced Settings, and then click 

the Provider Order tab.

FIGURE 12-17 The provider order editor
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The WNetAddConnection function can also assign a drive letter or device name to a remote 

resource. When called to do so, WNetAddConnection routes the call to the appropriate net-

work provider. The provider, in turn, creates a symbolic-link object in the object manager 

namespace that maps the drive letter being defined to the redirector (that is, the remote FSD) 

for that network.

Figure 12-18 shows the Session 0 DosDevices directory corresponding to the LUID (Logon ID) 

of the user that performed the drive letter mapping, which is where connections to remote 

file shares are stored. The symbolic link created by network providers relies on MUP to serve 

as the connection between a network path and the corresponding redirector. The figure 

shows that MUP creates a device object named \Device\LanmanRedirector, which is itself a 

symbolic link to \Device\MUP (which is not shown in the figure because the symbolic link is 

in the \Device directory) with additional text included in the symbolic link’s value indicating 

to the MUP redirector which mini-redirector the drive letter corresponds to. The \Global?? 

directory shows you the drive letters available to the system session—others will be mapped 

in the session-specific DosDevices directory.

FIGURE 12-18 Resolving a network resource name

Then, when the WNet or other API calls the object manager to open a resource on a different 

network, the object manager uses the device object as a jumping-off point into the remote 

file system. It calls an I/O manager parse method associated with the device object to locate 

the redirector FSD that can handle the request. (See Chapter 11 for more information on file 

system drivers.)
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Multiple UNC Provider

The Multiple UNC Provider is a networking component similar to MPR but which registers 

itself as a file system with the I/O manager, allowing it to field all remote file system I/O 

requests. MUP takes such requests and, like MPR, determines which local redirector rec-

ognizes the remote resource. Unlike MPR, MUP is a device driver (loaded at system boot 

time) that issues I/O requests to lower-layer drivers, in this case to redirectors, as shown in 

Figure 12-19. 

When MUP loads during the boot it creates a device object named \Device\Mup. When 

a network redirector, like SMB, loads the redirector, it creates an unnamed device 

object and supplies a device name (for example \Device\LanmanRedirector) to regis-

ter itself with MUP as a UNC provider by calling the function FsRtlRegisterUncProviderEx. 
FsRtlRegisterUncProviderEx creates a symbolic link name for the specified device name to 

point to its own device object, \Device\Mup. Because all network redirectors’ namespaces are 

represented as symbolic links to the MUP device object, filter drivers can attach to \Device\

Mup to intercept all remote file I/O operations.
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Ntdll.dll

TDI

Redirector
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(TDI transport)

\Device\MUP
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UNC mapping
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FIGURE 12-19 Multiple UNC Provider (MUP)

The MUP driver is activated when an application first attempts to open a remote file or 

device by specifying a UNC name (instead of a redirected drive letter, as described earlier). 

When the Windows client-side DLL Kernel32.dll (which is the DLL that exports file-I/O-related 

APIs) receives a file I/O request with UNC paths, the subsystem appends the UNC path to 

the string \Global??\UNC and then calls the NtCreateFile system service to open the file. 
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\global??\UNC resolves to \Device\Mup, and MUP must determine which provider should 

process the request.

When the MUP driver receives an I/O, MUP uses the HKLM\SYSTEM\CurrentControlSet\

Control\NetworkProvider\Order\ProviderOrder registry value to determine priority order of 

the network providers that registered with it using FsRtlRegisterUncProviderEx. It polls them 

one at a time in the order in which they’re listed in the value until one of them indicates that 

it recognizes the path or until all available providers have been polled. MUP ignores those 

redirectors that are listed in the registry key but not registered. When a redirector recognizes 

a path the redirector indicates how much of the path is unique to it. For example, if the path 

is \\WIN2K3SERVER\PUBLIC\Windowsinternals\Chap12.doc, the redirector might recognize it 

and claim the prefix \\WIN2K3SERVER\PUBLIC as its own. The MUP driver caches this infor-

mation and thereafter sends requests beginning with that prefix directly to the redirector, 

skipping the polling operation. The MUP driver’s cache has a timeout feature, so after a 

period, a prefix’s association with a particular redirector expires.

To simplify development of redirectors, Windows implements a mini-redirector model 

similar to the miniport driver model used by other device classes (see Chapter 7). The 

equivalent of the port driver in this case is the Redirected Drive Buffering Subsystem 

(RDBSS) (%SystemRoot%\System32\Drivers\Rdbss.sys). WebDAV and SMB redirec-

tors are mini-redirectors that register with RDBSS by using RxRegisterMinirdr (instead of 

FsRtlRegisterUncProviderEx). As shown in Figure 12-20, RDBSS is ultimately responsible for 

communicating with MUP and the I/O manager and for providing mapped-file buffering 

through the cache manager.

Redirected Drive Buffering Subsystem

LAN Manager
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mrxsmb.sys

TS
mini-redirector:

rdpdr.sys

WebDAV
mini-redirector:

mrxdav.sys

Network transports
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manager

I/O
system

Local file
systems

FIGURE 12-20 Mini-redirector architecture
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Name Resolution

Name resolution is the process by which a character-based name, such as www.micro-

 soft.com or Mycomputer, is translated into a numeric address, such as 192.168.1.1, that the 

protocol stack can recognize. This section describes the three TCP/IP-related name resolu-

tion protocols provided by Windows: Domain Name System (DNS), Windows Internet Name 

Service (WINS), and Peer Name Resolution Protocol (PNRP).

Domain Name System

Domain Name System (DNS) is a standard by which Internet names (such as www.micro-
 soft.com) are translated to their corresponding IP addresses. A network application that 

wants to resolve a DNS name to an IP address sends a DNS lookup request using the TCP/IP 

protocol to a DNS server. DNS servers implement a distributed database of name/IP address 

pairs that are used to perform translations, and each server maintains the translations for 

a particular zone. Describing the details of DNS is outside the scope of this book, but DNS 

is the foundation of naming in Windows and so it is the primary Windows name resolution 

protocol.

The Windows DNS server is implemented as a Windows service (\%SystemRoot%\System32\

Dns.exe) that is included in server versions of Windows. Standard DNS server implementation 

relies on a text file as the translation database, but the Windows DNS server can be config-

ured to store zone information in Active Directory.

Windows Internet Name Service

A networking service called Windows Internet Name Service (WINS) maintains the map-

ping between NetBIOS names and IP addresses used for NetBIOS-based TCP/IP applica-

tions. If WINS isn’t installed, NetBIOS uses local broadcast messages for name operations 

on a subnet. Note that NetBIOS names are secondary to DNS names for Windows Sockets 

applications; computer names are registered and resolved first through DNS, with Windows 

falling back on NetBIOS names only if DNS name resolution fails. Link-Local Multicast Name 

Resolution (LLMNR) is a secondary fallback mechanism, used in cases in which IPv4 is not 

installed on the host machine. LLMNR extends the DNS packet format to allow both IPv4 and 

IPv6 name resolution to function on the same local link.

Peer Name Resolution Protocol

The Peer Name Resolution Protocol (PNRP) is a distributed peer-to-peer protocol that allows 

for dynamic name resolution and publication exclusively across IPv6 networks. It allows 

Internet-connected devices to publish peer names and their associated IPv6 address, as well 

as optional information. Other devices will then resolve the peer name, retrieve the IPv6 

address, and establish a connection. 
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PNRP offers significant advantages over DNS, mainly by being distributed, which means that 

it is essentially serverless (other than for early bootstrapping), can scale to potentially millions 

of names, and is fault tolerant and bottleneck free. Because it includes secure name publica-

tion services, changes to name records can be performed from any system. DNS generally 

requires contacting a DNS server administrator to perform updates. PNRP name updates 

also occur in real time, making it appropriate for highly mobile devices, whereas DNS caches 

results. Finally, PNRP allows for naming more than just computers and services by allowing 

extended information to be published with name records.

Windows exposes PNRP via a PNRP API for applications and services, as well as by extending 

the getaddrinfo Winsock API described earlier in the chapter to perform resolution of PNRP 

IDs (described next) when an address includes the reserved .pnrp.net domain suffix.

PNRP peer names (also called P2P IDs) are made up of two components:

Authority For secure clients (which have their name records signed by a certifying 

authority), the authority is identified by an SHA-1 hash of an associated public key, 

while for unsecured clients, it is zero. If a client is secure, PNRP validates the name 

record before publishing it.

Classifier The classifier uses a simple string to identify a service provided by a peer, 

which allows multiple services to be provided by the same device. 

To create a PNRP ID, PNRP hashes the P2P ID and combines it with a unique 128-bit ID 

called the service location, as shown in Figure 12-21. The service location identifies different 

instances of the same P2P ID in the same cloud. (PNRP uses two clouds: a global cloud, which 

corresponds to all IPv6 addresses on the Internet, and the link-local cloud, which corresponds 

to IPv6 addresses within a single subnet.) 

authority.classifier

Public key

Friendly nameHash

Hash

(128 bits) Service location (128 bits)

} P2P ID

} PNRP ID

FIGURE 12-21 PNRP ID generation
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PNRP Resolution and Publication

PNRP name resolution occurs in two phases:

Endpoint determination In this phase, the requesting peer determines the IPv6 

address associated with the peer responsible for publishing the PNRP ID of the desired 

service.

PNRP ID resolution In this phase, once the requesting peer has located and con-

firmed the availability of the peer associated with the IPv6 address, it sends a PNRP 

request message for the PNRP ID of the service being requested. The peer providing 

the service replies to confirm the PNRP ID and can supply a comment and up to 4 KB of 

additional data, such as context information related to the service.

During the first phase, PNRP iterates over nodes while locating the publishing node, such 

that the node performing name resolution will be responsible for contacting nodes that 

are successively closer to the desired PNRP ID. Each iteration works as follows: Once a peer 

receives a request message, it performs a lookup in its cache for the requested PNRP ID. If a 

match is found, the request message is sent directly; otherwise, it is sent to the next closest 

PNRP ID (by seeing how much of the ID matches).

When a node receives a request message for which it cannot find a PNRP ID, it checks the 

distance of any other IDs in the cache to the target ID. If it finds a node that is closer, the 

requested node sends a reply to the requesting node, where the reply contains the IPv6 

address of the peer that most closely matches the target PNRP ID. The requesting node can 

then use the IPv6 address to send another query to that address’s node. If no node is closer, 

the requesting node is notified, and that node sends the request to the next closest node. 

Assuming PNRP IDs of 200, 350, 450, 500, and 800, Figure 12-22 depicts a possible endpoint 

determination phase for an example in which peer A is trying to find the endpoint for PNRP 

800 (peer E).

To publish its PNRP ID(s), a peer first sends PNRP publication messages to its closest neigh-

bors (entries in its cache that have IDs that are in the lowest levels) to seed their caches. It 

then randomly chooses nodes in the cloud that are not neighbors and sends them PNRP 

name resolution requests for its own PNRP ID. Through the mechanism described earlier, the 

endpoint determination phase will result in the seeding of the PNRP ID across the caches of 

the random nodes that were chosen in the cloud.
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1 Peer A sends a PNRP 
request message to the 
node that registered the PNRP 
ID of 500 (peer C) because it is 
the closest (numerically) to 800.

2 Peer C does not have an entry for the 
PNRP ID of 800 or any entries that are 
closer to 800, so it sends back a response 
indicating that it could not find an entry 
closer to 800.

3 Peer A now sends a PNRP request message 
to the next closest PNRP ID (450), peer B.

5 Peer A sends a PNRP request 
to peer E.

4 Peer B does have an entry in 
its cache for the PNRP ID of 
800, so it sends the IPv6 
address of peer E to peer A.

6 Peer E sends a positive name 
resolution response back to 
peer A.

FIGURE 12-22 Example of PNRP name resolution.

Location and Topology

Today’s networked computers often move between networks that require different con-

figuration settings, for example, a corporate LAN and a home-based wireless network. 

Additionally, today’s networks are complex, often spanning multiple devices across different 

topologies. Windows includes the Network Location Awareness (NLA) service to enable the 

dynamic configuration of network applications and settings based on location, and Link-

Layer Topology Discovery (LLTD) to enable the intelligent discovery and mapping of net-

worked devices. 

Network Location Awareness (NLA)

The NLA service provider is implemented as a Winsock Namespace Provider (NSP) and 

provides the necessary framework for allowing computers and devices that move across 

different networks to select the most appropriate configuration settings. For example, an 

application taking advantage of NLA can detect when the user moves from a high-speed 
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LAN to a high-latency wireless network and fine-tune its bandwidth use appropriately. NLA 

can also detect when a home computer on a LAN may also have a secondary VPN connec-

tion to the office and select the proper configuration options.

Instead of having developers rely on manual network interface information to figure out the 

type of network, and the IP addresses or DNS names associated with them, NLA provides a 

standardized query API for enumerating all the local network attachment information and 

correlating it with network interface information. The NLA API also includes notifications that 

enable applications to respond to changes when they occur. NLA provides applications two 

pieces of location information:

Logical network identity This identity is based on the logical network’s DNS domain 

name. If one does not exist, NLA uses custom static information stored in the registry 

together with the network’s subnet address as the identity.

Logical network interfaces For each network that a device is attached to, NLA creates 

an adapter name that identifies interfaces such as NICs or RAS connections in a unique 

fashion. Applications use adapter names with the IP Helper API (%SystemRoot%\

System32\Iphlpapi.dll) to query interface information and characteristics.

Each logical network is implemented as a service class with an associated GUID and proper-

ties. NLA creates instances of that service class when it returns information about a logi-

cal network. Service classes are schemas that describe a namespace; they define the name, 

identifier, and namespace-specific information that is common to all instances. These classes 

are then used in combination with the WSALookupService* API when performing name 

resolution.

Link-Layer Topology Discovery (LLTD)

The LLTD protocol operates over both wired and wireless networks and enables applica-

tions to discover the topology of a network. For example, the Network Map functionality 

in Windows uses LLTD to draw the local network topology for the connected devices that 

support the LLTD protocol. Additionally, LLTD supports Quality of Service (QoS) extensions, 

which allow applications to diagnose network problems such as low signal strength on a 

wireless network and bandwidth constraints on home networks. Because it operates on the 

OSI Data-link layer (2), LLTD works only on a single subnet, and therefore can’t cross routers, 

but its capabilities make it suitable for most home and small-office networks.

The LLTD Mapper I/O and the LLTD Responder components implement LLTD. The former is 

responsible for the discovery process and for generating network maps. Because it uses a 

protocol different from IP, the LLTD Mapper uses NDIS APIs to directly send commands to 

the network via the network adapter. The LLTD Responder listens for and responds to discov-

ery commands with information about the computer. As mentioned earlier, only devices that 

have a responder are shown in the network map.



1044 Windows Internals, Fifth Edition

Protocol Drivers

Networking API drivers must take API requests and translate them into low-level network 

protocol requests for transmission across the network. The API drivers rely on transport pro-

tocol drivers in kernel mode to do the actual translation. Separating APIs from underlying 

protocols gives the networking architecture the flexibility of letting each API use a number of 

different protocols. The Internet’s explosive growth and reliance on the TCP/IP protocol has 

made TCP/IP the preeminent protocol in Windows. The Defense Advanced Research Projects 

Agency (DARPA) developed TCP/IP in 1969 specifically as the foundation for the Internet; 

therefore, TCP/IP has WAN-friendly characteristics such as routability and good WAN perfor-

mance. TCP/IP is the preferred Windows protocol and is installed by default, although it can 

be removed.

However, the 4-byte network addresses used by the IPv4 protocol on the legacy TCP/IP 

stack limits the number of public IP addresses to roughly 4 billion, which is a limit that will be 

pressed as more and more devices, such as cell phones and PDAs, acquire an Internet pres-

ence. For that reason, the IPv6 protocol, which has 16-byte addresses, is gaining adoption. 

Windows includes a combined TCP/IP stack, called the Next Generation TCP/IP Stack, which 

supports both IP and IPv6. When operating on IPv6 networks, the stack also supports coex-

istence with IPv4 networks through the use of tunneling. The Next Generation TCP/IP Stack 

offers several advanced features to improve network performance, some of which are out-

lined in the following list:

Receive Window Auto Tuning. The TCP protocol defines a receive window size, which 

determines how much data a receiver can accept before the server requests an 

acknowledgment. A higher size favors low-latency networks with high throughput, 

while lower values work better on networks such as Wi-Fi. The Windows TCP/IP stack 

is capable of analyzing the conditions of a network and choosing the optimal receive 

window size, adjusting it as needed if the network conditions change.

Compound TCP (CTCP). While automatically changing the receive window size allows 

more data to be received, CTCP aggressively increases the amount of data that can be 

sent by a machine, while monitoring bandwidth, latency, and packet loss. Using CTCP 

on a high-bandwidth, low-latency network can significantly improve transfer speeds. 

CTCP is disabled by default.

Explicit Congestion Notification (ECN). Whenever a TCP packet is lost, the TCP protocol 

assumes that the data was dropped because of router congestion and enforces conges-

tion control, dramatically lowering the sender’s transmission rate. ECN allows routers 

to explicitly mark packets as being forwarded during congestion, which is read by the 

Windows TCP/IP stack as a sign that transmission rates should be lowered. Lowering 

rates in this manner results in better performance than relying on congestion control. 

ECN is disabled by default.
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High-loss throughput improvements, including the NewReno Fast Recovery Algorithm, 

Enhanced Selective Acknowledgment (SACK), Forward RTO-Recovery (F-RTO), and 

Limited Transit. These algorithms reduce the overall retransmission of acknowledg-

ments or TCP segments during high-loss scenarios while still maintaining the integrity 

of the TCP stream. This allows for greater bandwidth in these environments and pre-

serves TCP’s reliable transport semantics.

The Next Generation TCP/IP Stack (\%SystemRoot%\Drivers\Tcpip.sys), shown in Figure 12-23, 

implements TCP, UDP, IP, ARP, ICMP, and IGMP. To support legacy protocols such as NetBIOS, 

which make use of the deprecated TDI interface, the network stack also includes a com-

ponent called TDX, which creates device objects that represent particular protocols so that 

clients can obtain a file object representing a protocol and issue network I/O to the protocol 

using TDI IRPs. The TDX component creates several device objects that represent various TDI 

client–accessible protocols: \Device\Tcp6, \Device\Tcp, \Device\Udp6, \Device\Udp, \Device\

Rawip, and \Device\Tdx.

WSK clients

User mode

Kernel mode

Ancillary
Function

Driver

TDI clients

TDX

TDI

WSK

Winsock

IPv6 tunnelIPv4 tunnelLoopbackWLAN802.3

IPv4 IPv6

TCP RAWUDP

NDIS

Next Generation TCP/IP Stack (Tcpip.sys)

Windows
Filtering
Platform
API

FIGURE 12-23 Windows Next Generation TCP/IP Stack

EXPERIMENT: Looking at TCP/IP’s Device Objects

Using the kernel debugger to look at a live system, you can examine TCP/IP’s device 

objects. After performing the !drvobj command to see the addresses of each of the 

driver’s device objects, execute !devobj to view the name and other details about the 

device object.

kd> !drvobj tdx 

Driver object (861d9478) is for: 

 \Driver\tdx 

Driver Extension List: (id , addr) 
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Device Object list: 

861db310  861db440  861d8440  861d03e8 

861cd440  861d2318  861d9350   

lkd> !devobj 861cd440   

Device object (861cd440) is for: 

 Tcp6 \Driver\tdx DriverObject 861d9478 

Current Irp 00000000 RefCount 7 Type 00000012 Flags 00000050 

Dacl 8b1bc54c DevExt 861cd4f8 DevObjExt 861cd500  

ExtensionFlags (0x00000800)   

                             Unknown flags 0x00000800 

Device queue is not busy. 

lkd> !devobj 861db440   

Device object (861db440) is for: 

 RawIp \Driver\tdx DriverObject 861d9478 

Current Irp 00000000 RefCount 0 Type 00000012 Flags 00000050 

Dacl 8b1bc54c DevExt 861db4f8 DevObjExt 861db500  

ExtensionFlags (0x00000800)   

                             Unknown flags 0x00000800 

Device queue is not busy. 

lkd> !devobj 861d8440   

Device object (861d8440) is for: 

 Udp6 \Driver\tdx DriverObject 861d9478 

Current Irp 00000000 RefCount 0 Type 00000012 Flags 00000050 

Dacl 8b1bc54c DevExt 861d84f8 DevObjExt 861d8500  

ExtensionFlags (0x00000800)   

                             Unknown flags 0x00000800 

Device queue is not busy. 

lkd> !devobj 861d03e8 

Device object (861d03e8) is for: 

 Udp \Driver\tdx DriverObject 861d9478 

Current Irp 00000000 RefCount 6 Type 00000012 Flags 00000050 

Dacl 8b1bc54c DevExt 861d04a0 DevObjExt 861d04a8  

ExtensionFlags (0x00000800)   

                             Unknown flags 0x00000800 

Device queue is not busy. 

lkd> !devobj 861cd440   

Device object (861cd440) is for: 

 Tcp6 \Driver\tdx DriverObject 861d9478 

Current Irp 00000000 RefCount 7 Type 00000012 Flags 00000050 

Dacl 8b1bc54c DevExt 861cd4f8 DevObjExt 861cd500  

ExtensionFlags (0x00000800)   

                             Unknown flags 0x00000800 

Device queue is not busy. 

lkd> !devobj 861d2318   

Device object (861d2318) is for: 

 Tcp \Driver\tdx DriverObject 861d9478 

Current Irp 00000000 RefCount 167 Type 00000012 Flags 00000050 

Dacl 8b1bc54c DevExt 861d23d0 DevObjExt 861d23d8  

ExtensionFlags (0x00000800)   

                             Unknown flags 0x00000800 

Device queue is not busy. 

lkd> !devobj 861d9350   

Device object (861d9350) is for: 

 Tdx \Driver\tdx DriverObject 861d9478 
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Current Irp 00000000 RefCount 0 Type 00000021 Flags 00000050 

Dacl 8b0649a8 DevExt 00000000 DevObjExt 861d9408  

ExtensionFlags (0x00000800)   

                             Unknown flags 0x00000800 

Device queue is not busy.

Windows Filtering Platform (WFP)

Windows includes a rich and extensible platform for monitoring, intercepting, and processing 

network traffic at all levels in the network stack. Other Windows networking services extend 

basic networking features of the TCP/IP protocol driver by relying on the WFP. These include 

network address translation (NAT), IP filtering, IP inspection, and Internet Protocol Security 

(IPSec). Figure 12-24 shows how the different components of the WFP are integrated with the 

TCP/IP stack. These include:

Filter engine The filter engine is implemented in both user mode and kernel mode 

and performs all the filtering operations on the network. Each filter engine compo-

nent consists of filtering layers, one for each component of the network stack. The 

user-mode engine, responsible for RPC and IPSec keying policy, among other things, 

contains approximately 10 filters, while the kernel-mode engine, which performs the 

network and transport layer filtering of the TCP/IP stack, contains around 50.

Shims Shims are the kernel-mode components that reside between the network stack 

and the filter engine. They are responsible for making the decision to allow or block 

network traffic based on their filtering behavior, which is defined by the filter engine. 

A shim operates in three steps: it parses the incoming data to match incoming values 

with entries in the filter engine, calls the filter engine to return an action based on the 

incoming values, and then interprets the action (drop the packet, for example).

Base filtering engine (BFE) The BFE is a user-mode service (%SystemRoot%\

System32\Bfe.dll) that manages all WFP operations. It is responsible for adding and 

removing filters from the WFP stack, managing the filter configuration, and enforcing 

security on the filter database.

Callout drivers Callout drivers are kernel-mode components that add custom filtering 

functionality outside the basic support provided by the WFP. Callout drivers associate 

callout functions with one or more kernel-mode filtering layers, and the WFP enables 

callout functions to perform deep packet inspection and modification. Network address 

translation (described next) and IPSec, are implemented as callout drivers, for example.
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Network Address Translation

Network address translation (NAT) is a routing service that allows multiple private IP 

addresses to map to a single public IP address. Without NAT, each computer of a LAN must 

be assigned a public IP address to communicate across the Internet. NAT allows one com-

puter of the LAN to be assigned an IP address and the other computers to use private IP 

addresses and be connected to the Internet through that computer. NAT translates between 

private IP addresses and the public IP address as necessary, routing packets between LAN 

computers and the Internet.

NAT components on Windows consist of a NAT device driver, \%SystemRoot%\System32\

Drivers\Ipnat.sys, that interfaces with the WFP stack as a callout driver, as well as editors that 

can perform additional packet processing beyond address and port translation. NAT can be 

installed as a routing protocol component with the Routing And Remote Access MMC snap-

in or by configuring Internet Connection Sharing (ICS), although NAT is much more configu-

rable when installed using the Routing And Remote Access MMC snap-in.

IP Filtering

Windows includes a very basic IP filtering capability with which a user can choose to allow 

only certain ports or IP protocols into or out of the network. While this capability can serve 

to protect a computer from unauthorized network accesses, its drawback is that it is static 

and does not automatically create new filters for traffic initiated by applications running on 

the computer. 

Windows also includes host firewall capability, called Windows Firewall, that goes beyond the 

basic filtering just described. Windows Firewall uses WFP to provide a stateful firewall, which 

is one that keeps track of traffic flow so that it distinguishes between TCP/IP traffic that origi-

nates on the local LAN and unsolicited traffic that originates on the Internet. When Windows 

Firewall is enabled on an interface, one of three profiles can be applied—public, private, and 

domain. By default, when the public profile is chosen (or until a profile is selected), all unso-

licited incoming and outgoing traffic received and sent by the computer is discarded, other 

than traffic from network services and other system applications. A user or application can 

define exceptions so that services running on the computer, such as file and printer sharing 

or a Web site, can be accessed from other computers.

The Windows Firewall service, which executes in a Svchost process, uses the BFE to pass 

exception rules defined in the configuration user interface to the IPNat driver. The WFP filter 

engine executes the callback functions of each registered callout driver as it processes both 

inbound and outbound IP packets. A callback function can provide NAT functionality by 

modifying source and destination addresses in a packet, or as a firewall by returning a sta-

tus code to TCP/IP that requests that TCP/IP drop the packet and cease processing for it. In 

kernel mode, Windows Firewall uses a driver (%SystemRoot%\System32\Drivers\Mpsdrv.sys) 

that provides support for PPTP and FTP filtering, since those protocols provide their own 
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independent control and data channels. The driver must analyze the control channel to fig-

ure out which data channel to manipulate. The driver is also used for displaying notification 

windows when an application starts listening on a socket. 

Internet Protocol Security

Internet Protocol Security (IPSec), which is integrated with the Windows TCP/IP stack, helps 

protect unicast (IPSec itself supports multicast, but the Windows implementation does not) 

IP data against attacks such as eavesdropping, sniffer attacks, data modification, IP address 

spoofing, and man-in-the-middle attacks (as long as the identity of the remote machine 

can be verified, such as a VPN). You can use IPSec to provide defense-in-depth against 

network-based attacks from untrusted computers; certain attacks that can result in the 

denial-of- service of applications, services, or the network; data corruption, data theft, and 

user-credential theft; and the administrative control over servers, other computers, and the 

network. IPSec helps defend against network-based attacks through cryptography-based 

security services, security protocols, and dynamic key management.

IPSec provides the following properties for unicast IP packets sent between trusted hosts:

Data origin authentication, which verifies the origin of an IP packet and ensures that 

unauthenticated parties cannot access data.

Data integrity, which protects an IP packet from being modified in transit without being 

detected.

Data confidentiality, which encrypts the payload of IP packets before transmission. Data 

confidentiality ensures that only the IPSec peer with which a computer is communicat-

ing can read and interpret the contents of the packets. This property is optional.

Anti-replay (or replay protection), which ensures that each IP packet is unique and can’t 

be reused. This property prevents an attacker from intercepting IP packets and insert-

ing modified packets into a data stream between a source computer and a destination 

computer. When anti-replay is used, attackers cannot reply to captured messages to 

establish a session or gain unauthorized access to data.

You can use IPSec to help defend against network-based attacks by configuring host-based 

IPSec packet filtering and enforcing trusted communications. When you use IPSec for host-

based IPSec packet filtering, IPSec can permit or block specific types of unicast IP traffic 

based on source and destination address combinations and specific protocols and specific 

ports.

In an Active Directory environment, Group Policy can be used to configure domains, sites, 

and organizational units (OUs), and IPSec policies (called connection security rules) can 

then be assigned as required to Group Policy objects (GPOs) through Windows Firewall 

with Advanced Security configuration settings. Alternatively, you can configure and assign 

local IPSec policies. Active Directory–based connection security rules are stored in Active 
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Directory, and a copy of the current policy is maintained in a cache in the local registry. Local 

connection security rules are stored in the local system registry.

To establish trusted communications, IPSec uses mutual authentication, and it supports the 

following authentication methods through AuthIP, Microsoft’s extension to Internet Key 

Exchange (IKE):

Interactive user Kerberos 5 credentials or interactive user NTLMv2 credentials

User x.509 certificates

Computer SSL certificates

NAP health certificates

Anonymous authentication (optional authentication)

Preshared key

If AuthIP is not available, plain IKE is also supported by IPSec. The Windows implementation 

of IPSec is based on IPSec Requests for Comments (RFCs). The Windows IPSec architecture 

includes Windows Firewall with Advanced Security, the legacy IPSec Policy Agent, the IKE and 

Authenticated Internet Protocol (AuthIP) protocols, and an IPSec WFP callout driver.

Windows Firewall with Advanced Security In addition to the filtering functional-

ity described earlier, the Windows Firewall service is also responsible for providing the 

security and policy configuration settings for IPSec, which can be configured through 

Group Policy either locally or on an Active Directory domain.

Legacy IPSec Policy Agent The legacy IPSec Policy Agent runs as a service. In the 

Services snap-in in the Microsoft Management Console (MMC), the IPSec Policy Agent 

appears in the list of computer services under the name IPSEC Policy Agent. The IPSec 

Policy Agent obtains legacy IPSec policy from an Active Directory domain or the local 

registry and then passes IP address filters to the IPSec driver and authentication and 

security settings to IKE. These policies are honored for compatibility with older versions 

of Windows, which implement IPSec management through Active Directory.

IKE and AuthIP IKE is a protocol that supports the authentication and key negotia-

tion services required by IPSec. For outgoing traffic, IKE waits for requests to negotiate 

security associations (SAs) from the IPSec driver, negotiates the SAs, and then sends 

the SA settings back to the IPSec driver. For incoming traffic, IKE receives a negotiation 

request directly from the remote peer, and all other traffic from the peer is dropped 

until the SAs have been successfully negotiated. SAs are a combination of mutually 

agreeable IPSec policy settings and keys that defines the security services, mechanisms, 

and keys that are used to help secure communications between IPSec peers. Each SA is 

a one-way or simplex connection that secures the traffic it carries. IKE negotiates main 

mode SAs and quick mode SAs when requested by the IPSec driver. The IKE main mode 

(or ISAKMP) SA protects the IKE negotiation. The quick mode (or IPSec) SAs protect 
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application traffic. AuthIP is an extension to IKE supported by Windows Vista and later 

versions. It adds a secondary authentication mechanism to increase security and sim-

plify maintenance and configuration of IPSec.

IPSec WFP callout driver The IPSec WFP callout driver is a device driver 

(\%SystemRoot%\System32\Drivers\Ipsec.sys) that is bound to the WFP and that pro-

cesses packets that pass through the TCP/IP driver. The IPSec driver monitors and 

secures outbound unicast IP traffic, and it monitors, decrypts, and validates inbound 

unicast IP packets. The WFP receives filters from the IPSec Policy Agent and invokes the 

callout, which then permits, blocks, or secures packets as required. To secure traffic, the 

IPSec driver uses active SA settings, or it requests that new SAs be created.

You can use the Windows Firewall with Advanced Security (Wf.msc) snap-in that is available in 

MMC to create and manage connection security rules by using the New Connection Security 

Rule Wizard, shown in Figure 12-25. This snap-in can be used to create, modify, and store 

local connection security rules or Active Directory–based connection security rules, and to 

modify connection security rules on remote computers. Alternatively, you can use the Netsh 

utility with the netsh advfirewall consec command to manage connection security rules. After 

IPSec-secured communication is established, you can monitor IPSec information for local 

computers and for remote computers by using the Windows Firewall with Advanced Security 

snap-in or the Netsh utility with the netsh advfirewall monitor command.

FIGURE 12-25 New Connection Security Rule Wizard
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NDIS Drivers

When a protocol driver wants to read or write messages formatted in its protocol’s format 

from or to the network, the driver must do so using a network adapter. Because expecting 

protocol drivers to understand the nuances of every network adapter on the market (pro-

prietary network adapters number in the thousands) isn’t feasible, network adapter vendors 

provide device drivers that can take network messages and transmit them via the vendors’ 

proprietary hardware. In 1989, Microsoft and 3Com jointly developed the Network Driver 

Interface Specification (NDIS), which lets protocol drivers communicate with network adapter 

drivers in a device-independent manner. Network adapter drivers that conform to NDIS are 

called NDIS drivers or NDIS miniport drivers. The version of NDIS that ships with Windows 

Vista SP1 and Windows Server 2008 is NDIS 6.1.

The NDIS library (\%SystemRoot%\System32\Drivers\Ndis.sys) implements the NDIS bound-

ary that exists between network transports, such as the TCP/IP driver, and NDIS drivers. The 

NDIS library is a helper library that NDIS driver clients use to format commands they send 

to NDIS drivers. NDIS drivers interface with the library to receive requests and send back 

responses. Figure 12-26 shows the relationship between various NDIS-related components.

WSK transport

NDIS

HAL

NDIS NBL

NDIS library

NDIS intermediate driver

NDIS miniport driver

NDIS protocol interface

NDIS miniport interface

NDIS protocol interface

NDIS miniport interface

NDIS filter driver
NDIS filter interface

NDIS filter interface

FIGURE 12-26 NDIS components

Instead of merely providing the NDIS boundary helper routines, the NDIS library provides 

NDIS drivers with an entire execution environment. NDIS drivers aren’t genuine Windows 

drivers because they can’t function without the encapsulation the NDIS library gives them. 
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This insulation layer wraps NDIS drivers so thoroughly that NDIS drivers don’t accept and 

process IRPs. Rather, protocol drivers such as TCP/IP call a function in the NDIS library, 

NdisAllocateNetBuffer, and pass the packets to an NDIS miniport by calling an NDIS library 

function (NdisSendNetBufferLists, for example). Additionally, to make development simpler, all 

components of the Windows Next Generation TCP/IP Stack make use of net buffers, includ-

ing TCP/IP and WSK, which streamlines communications with NDIS. 

NDIS includes the following features:

NDIS drivers can report whether or not their network medium is active, which allows 

Windows to display a network connected/disconnected icon on the taskbar. This fea-

ture also allows protocols and other applications to be aware of this state and react 

accordingly. The TCP/IP transport, for example, will use this information to determine 

when it should reevaluate addressing information it receives from DHCP.

NDIS drivers can be paused and resumed, which enables run-time reconfiguration, such 

as during a response to a Plug and Play event. This allows dynamic operations such as 

binding and unbinding a protocol driver without requiring a reboot.

TCP/IP offloading, including task and chimney offloading. Task offloading allows a 

miniport to use advanced features of a network adapter to perform operations such as 

packet checksums and IPSec. NDIS includes support for IPSec Task Offload Version 2, 

which includes support for additional cryptography suites used in IPSec, such as AES, 

as well as IPv6 support. Chimney offloading provides a direct connection (the so-called 

chimney) between network applications and the network card hardware, enabling 

greater offloading and connection state management to be implemented by the net-

work card. These offloading operations can improve system performance by relieving 

the CPU from the tasks.

Receive scaling enables multiple processors to perform packet receive operations and 

appropriate scaling to be selected based on the most efficient use of available target 

processors. NDIS supports the receive-side scaling (RSS) interface at the hardware level 

and queues DPCs to the appropriate processors.

Wake-on-LAN allows a wake-on-LAN-capable network adapter to bring Windows out 

of a suspend power state. Events that can trigger the network adapter to signal the sys-

tem include media connections (such as plugging a network cable into the adapter), the 

receipt of protocol-specific patterns registered by a protocol (the TCP/IP transport asks 

to be woken for Address Resolution Protocol [ARP] requests), and, for Ethernet adapt-

ers, the receipt of a magic packet (a network packet that contains 16 contiguous copies 

of the adapter’s Ethernet address).

Header-data split allows compatible network cards to improve network performance 

by splitting the data and header part of an Ethernet frame into different buffers and 

subsequently combining the buffers into smaller regions of memory than if the buf-

fers were combined. This allows more efficient memory usage as well as better caching 

because multiple headers can fit in a single page.
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Connection-oriented NDIS (CoNDIS) allows NDIS drivers to manage connection-

 oriented media such as PPP devices. (CoNDIS is described in more detail shortly.)

The interfaces that the NDIS library provides for NDIS drivers to interface with network 

adapter hardware are available via functions that translate directly to corresponding func-

tions in the HAL.

EXPERIMENT: Listing the Loaded NDIS Miniports

The Ndiskd kernel debugger extension library includes the !miniports and !miniport 
commands, which let you list the loaded miniports using a kernel debugger and, given 

the address of a miniport block (a data structure Windows uses to track miniports), 

see detailed information about the miniport driver. The following example shows the 

!miniports and !miniport commands being used to list all the miniports and then specif-

ics about the miniport responsible for interfacing the system to a PCI Ethernet adapter. 

(Note that WAN miniport drivers work with dial-up connections.)

lkd> .load ndiskd  

Loaded ndiskd extension DLL  

 

 

lkd> !miniports 

NDIS Driver verifier level: 0 

NDIS Failed allocations   : 0 

Miniport Driver Block: 86880d78, Version 0.0 

  Miniport: 868cf0e8, NetLuidIndex: 1, IfIndex: 9, RAS Async Adapter 

Miniport Driver Block: 84c3be60, Version 4.0 

  Miniport: 84c3c0e8, NetLuidIndex: 3, IfIndex: 15, VMware Virtual Ethernet Adapter  

Miniport Driver Block: 84c29240, Version 0.0 

  Miniport: 84c2b438, NetLuidIndex: 0, IfIndex: 2, WAN Miniport (SSTP) 

... 

lkd> !miniport 84bcc0e8 

 

 Miniport 84bcc0e8 : Broadcom NetXtreme 57xx Gigabit Controller, v6.0 

 

    AdapterContext : 85f6b000 

    Flags          : 0c452218 

                     BUS_MASTER, 64BIT_DMA, IGNORE_TOKEN_RING_ERRORS 

                     DESERIALIZED, RESOURCES_AVAILABLE, SUPPORTS_MEDIA_SENSE 

                     DOES_NOT_DO_LOOPBACK, SG_DMA,  

                     NOT_MEDIA_CONNECTED,  

    PnPFlags       : 00610021 

                     PM_SUPPORTED, DEVICE_POWER_ENABLED, RECEIVED_START 

                     HARDWARE_DEVICE, NDIS_WDM_DRIVER,  

    MiniportState        : STATE_RUNNING 

    IfIndex                  : 10 

    Ndis5MiniportInNdis6Mode : 0 

    InternalResetCount    : 0000 

    MiniportResetCount    : 0000 

    References            : 5 

    UserModeOpenReferences: 0 
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    PnPDeviceState        : PNP_DEVICE_STARTED 

    CurrentDevicePowerState : PowerDeviceD0 

    Bus PM capabilities 

 DeviceD1:  0 

 DeviceD2:  0 

 WakeFromD0:  0 

 WakeFromD1:  0 

 WakeFromD2:  0 

 WakeFromD3:  1 

 

 SystemState  DeviceState 

 PowerSystemUnspecified PowerDeviceUnspecified 

 S0   D0 

 S1   PowerDeviceUnspecified 

 S2   PowerDeviceUnspecified 

 S3   D3 

 S4   D3 

 S5   D3 

 SystemWake: S5 

 DeviceWake: D3 

 

    WakeupMethods Enabled 2: 

 WAKE_UP_PATTERN_MATCH   

    WakeUpCapabilities: 

 MinMagicPacketWakeUp: 4 

 MinPatternWakeUp: 4 

 MinLinkChangeWakeUp: 0 

    Current PnP and PM Settings:          : 00000030 

                     DISABLE_WAKE_UP, DISABLE_WAKE_ON_RECONNECT,  

    Translated Allocated Resources: 

        Memory: ecef0000, Length: 10000 

        Interrupt Level: 9, Vector: a8 

    MediaType      : 802.3 

    DeviceObject   : 84bcc030, PhysDO : 848fd6b0  Next DO: 848fc7b0 

    MapRegisters   : 00000000 

    FirstPendingPkt: 00000000 

    DriverVerifyFlags  : 00000000 

    Miniport Interrupt : 85f72000 

    Miniport version 6.0 

    Miniport Filter List: 

    Miniport Open Block Queue: 

      8669bad0: Protocol 86699530 = NDISUIO, ProtocolBindingContext 8669be88, v6.0 

      86690008: Protocol 86691008 = VMNETBRIDGE, ProtocolBindingContext 866919b8, v5.0 

      84f81c50: Protocol 849fb918 = TCPIP6, ProtocolBindingContext 84f7b930, v6.1 

      84f7b230: Protocol 849f43c8 = TCPIP, ProtocolBindingContext 84f7b5e8, v6.1

The Flags field for the miniport that was examined indicates that the miniport sup-

ports 64-bit direct memory access operation (64BIT_DMA), that the media is currently 

not active (NOT_MEDIA_CONNECTED), and that it can dynamically detect whether the 

media is connected or disconnected (SUPPORTS_MEDIA_SENSE). Also listed are the 

adapter’s system-to-device power-state mappings and the bus resources that the Plug 

and Play manager assigned to the adapter. (See the section “The Power Manager” in 

Chapter 7 for more information on power-state mappings.)
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Variations on the NDIS Miniport

The NDIS model also supports hybrid network transport NDIS drivers, called NDIS intermedi-
ate drivers. These drivers lie between transport drivers and NDIS drivers. To an NDIS driver, 

an NDIS intermediate driver looks like a transport driver; to a transport driver, an NDIS inter-

mediate driver looks like an NDIS driver. NDIS intermediate drivers can see all network traf-

fic taking place on a system because the drivers lie between protocol drivers and network 

drivers. Software that provides fault tolerant and load balancing options for network adapt-

ers, such as Microsoft’s Network Load Balancing Provider, are based on NDIS intermediate 

drivers.

Finally, the NDIS model also implements lightweight filter drivers (LWDs), which are similar 

to intermediate drivers but specifically designed for filtering network traffic. LWDs sup-

port dynamic insertion and removal while the protocol stack is running. Filter drivers have 

the ability to filter almost all communications to and from the underlying miniport adapter 

because they’re not associated with a particular protocol driver. They also have the ability 

to select only certain services for filtering and to be bypassed for those that they are not 

interested in. Just like insertion and removal, these service bindings are also dynamic and can 

change at run time.

Connection-Oriented NDIS

Support for connection-oriented network hardware (for example, PPP) is native in Windows, 

which makes connection management and establishment standard in the Windows network 

architecture. Connection-oriented NDIS drivers use many of the same APIs that standard 

NDIS drivers use; however, connection-oriented NDIS drivers send packets through estab-

lished network connections rather than place them on the network medium.

In addition to miniport support for connection-oriented media, NDIS includes definitions for 

drivers that work to support a connection-oriented miniport driver:

Call managers are NDIS drivers that provide call setup and teardown services for 

 connection-oriented clients (described shortly). A call manager uses a connection-

oriented miniport to exchange signaling messages with other network entities such as 

network switches or other call managers. A call manager supports one or more signal-

ing protocols.

An integrated miniport call manager (MCM) is a connection-oriented miniport driver 

that also provides call manager services to connection-oriented clients. An MCM is 

essentially an NDIS miniport driver with a built-in call manager.
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A connection-oriented client uses the call setup and teardown services of a call 

manager or MCM and the send and receive services of a connection-oriented NDIS 

miniport driver. A connection-oriented client can provide its own protocol services to 

higher levels in the network stack, or it can implement an emulation layer that inter-

faces connectionless legacy protocols and connection-oriented media. An example of 

an emulation layer fulfilled by a connection-oriented client is a LAN emulation (LANE), 

which hides the connected-oriented characteristics of ATM and presents a connection-

less media (such as Ethernet) to protocols above it.

Figure 12-27 shows the relationships between these components.
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NDIS library
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FIGURE 12-27 Connection-oriented NDIS drivers
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EXPERIMENT: Using Network Monitor to Capture 

Network Packets

Microsoft provides a tool named Network Monitor that lets you capture packets that 

flow through one or more NDIS miniport drivers on your system by installing an NDIS 

lightweight filter driver (Netmon). You can obtain the latest version of Network Monitor 

by going to the Microsoft Support Knowledge Base Article http://support.micro-
 soft.com/kb/955998. When you first start Network Monitor, you’ll see a window similar 

to the one shown here:

In the Select Networks pane, Network Monitor lets you select which network connec-

tion you want to monitor. After selecting one or more, start the capture environment 

by clicking the New Capture button on the toolbar. You can now initiate monitoring by 

clicking the Start button on the toolbar. Perform operations that generate network 

activity on the connection you’re monitoring (such as browsing to a Web site), and after 

you see that Network Monitor has captured packets, stop monitoring by clicking the 

Stop button. In the Frame Summary pane, you will see all the raw network traffic dur-

ing the capture period. The Network Conversations pane will display network traffic 

isolated by process, whenever possible. By clicking on the Iexplore.exe process in this 

example, Network Monitor shows only the relevant frames in the Frame Summary view, 

as shown next.
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The window shows the HTTP packets that Network Monitor captured as the Microsoft 

Web site was accessed through Internet Explorer. If you click on a frame, Network 

Monitor displays a view of the packet that breaks it apart to show various layered appli-

cation and protocol headers in the Frame Details pane, as shown in the previous screen 

shot.

Network Monitor also includes a number of other features, such as capture triggers and 

filters, that make it a powerful tool for troubleshooting network problems. You can also 

add parsers for other protocols, as well as view and modify their source code. Network 

Monitor parsers are hosted on CodePlex, the Microsoft open source project site.

Remote NDIS

Prior to the development of Remote NDIS, a vendor that developed a USB network device, 

for example, had to provide a driver that interfaced with NDIS as a miniport driver as well as 

interfacing with a USB WDM bus driver, as shown in Figure 12-28. If the vendor’s hardware 

supported other buses, such as IEEE 1394, the vendor was required to implement drivers that 

interfaced with each specific bus type.
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FIGURE 12-28 NDIS miniport driver for a USB network device

Remote NDIS is a specification for network devices on dynamic Plug and Play I/O buses such 

as USB, IEEE 1394, Bluetooth, and Infiniband. The specification eliminates the need for a 

hardware vendor to write an NDIS miniport driver at all by defining bus-independent mes-

sages and the mechanism by which the messages are transmitted over various buses. Remote 

NDIS messages mirror the NDIS interface and include messages for initializing and resetting 

a device, transmitting and receiving packets, setting and querying device parameters, and 

indicating media link status.

The Remote NDIS architecture, in Figure 12-29, relies on a Microsoft-supplied NDIS miniport 

driver, \%SystemRoot%\System32\Drivers\Rndismp.sys, that translates NDIS commands and 

forwards them to a bus transport driver for the bus on which a device is located. The archi-

tecture allows for a single NDIS miniport driver to be used for all Remote NDIS drivers and a 

single bus transport driver for each supported bus.
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FIGURE 12-29 Remote NDIS architecture for USB network devices
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Currently, Remote NDIS for USB devices is included on Windows. While Remote NDIS on 

IEEE 1394 is fully specified, Windows does not yet support it, nor does it support it over 

Infiniband.

QoS

If no special measures are taken, IP traffic is delivered over a network on a first-come, first-

serve basis. Applications have no control over the priority of their messages, and they can 

experience bursty network behavior, where they occasionally obtain high throughput and 

low latencies, but otherwise receive poor network performance. While this level of service is 

acceptable in most situations, an increasing number of network applications demand more 

consistent service levels, or quality of service (QoS) guarantees. Video conferencing, media 

streaming, and enterprise resource planning (ERP) are examples of applications that require 

good network performance. QoS allows an application to specify minimum bandwidth and 

maximum latencies, which can be satisfied only if every networking software and hardware 

component between a sender and a receiver supports QoS standards such as IEEE 802.1P, 

an industry standard that specifies the format of QoS packets and how OSI layer 2 devices 

(switches and network adapters) respond to them.

Windows supports QoS through a policy-based QoS implementation that takes full advantage 

of the Next Generation TCP/IP network stack, the WFP, and NDIS lightweight filter drivers. 

The implementation allows for managing or prioritizing bandwidth use based on different 

conditions, such as the application, the source or destination IP address, the protocol being 

used, and the source or destination ports. Network administrators typically apply QoS set-

tings to a logon session or a computer with Active Directory–based Group Policy, but they 

can be applied locally as well.

Policy-based QoS provides two methods through which bandwidth can be managed. The 

first uses a special field in the IP header called the Differentiated Services Code Point (DSCP). 

Routers that support DSCP read the value and separate packets into specific queues. The QoS 

architecture in Windows can mark outgoing packets with the appropriate DSCP field so that 

network devices can provide differentiated levels of service. The other bandwidth manage-

ment method is the ability to simply throttle outgoing traffic based on the conditions out-

lined earlier, where the QoS components limit bandwidth to a specified rate.

The Windows QoS implementation consists of several components, as shown in Figure 12-30. 

First, the QoS Client Side Extension (%SystemRoot%\System32\Gptext.dll) notifies the Group 

Policy client and the QoS Inspection Module that QoS settings have changed. Next, the QoS 

Inspection Module (eQoS), which is a WFP packet-inspection component implemented in the 

TCP/IP driver that reacts to policy changes, retrieves the updated policy and works with the 

transport layer and QoS Packet Scheduler to mark traffic that matches the policy. Finally, 

the QoS Packet Scheduler, or Pacer (%SystemRoot%\System32\Drivers\Pacer.sys), provides 
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the NDIS lightweight filter functionality, such as throttling and setting the DSCP value, to 

control packet scheduling based on the QoS policies. Pacer also provides the GQoS (Generic 

QoS) and TC (Traffic Control) API support for legacy Windows applications that used these 

mechanisms. 

In addition to the systemwide, policy-based QoS support provided by the QoS architecture, 

Windows enables specific classes of socket-based applications to have individual and specific 

control of QoS behavior through an API called the Quality Windows Audio/Video Experience, 

or qWAVE. Network-based multimedia applications, like Voice over IP (VoIP), can use the 

qWAVE API to query information on real-time network bandwidth and adapt to changing 

network conditions, as well as to prioritize packets to efficiently use the available bandwidth. 

qWAVE also takes advantage of the topology protocols described earlier to dynamically 

determine if the current network devices will support the required bandwidth for a video 

stream, for example. It can notify applications of diminishing bandwidth, at which point the 

multimedia application is expected to reduce the stream quality, for example.
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FIGURE 12-30 Policy-based QoS architecture

qWAVE is implemented in the QoS2 (%SystemRoot%\System32\Qwave.dll) API library and 

provides four main components:

Admission control, which determines, when a new network multimedia stream is 

started, if the current network can support the sustained bandwidth requested.
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Caching, which allows the detailed admission control checks to be bypassed if similar 

usage patterns occurred in the past and the calculation result was already cached.

Monitoring and probing, which keep track of available bandwidth and notify applica-

tions during low-bandwidth or high-latency situations.

Traffic tagging and shaping, which uses the 802.11p and DSCP technologies mentioned 

earlier to tag packets with the appropriate priority to ensure timely delivery.

Figure 12-31 shows the general overview of the qWAVE architecture:
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FIGURE 12-31 qWAVE architecture

Binding

The final piece in the Windows networking architecture puzzle is the way in which the 

components at the various layers—networking API layer, transport driver layer, NDIS driver 

layer—locate one another. The name of the process that connects the layers is binding. 

You’ve witnessed binding taking place if you’ve changed your network configuration by add-

ing or removing a component using the Network Connections folder.

When you install a networking component, you must supply an INF file for the component. 

(INF files are described in Chapter 7.) This file includes directions that setup API routines must 

follow to install and configure the component, including binding dependencies or binding 

relationships. A developer can specify binding dependencies for a proprietary component so 

that the Service Control Manager (the Service Control Manager is described in Chapter 4) will 

not only load the component in the correct order but will load the component only if other 

components the proprietary component depends on are present on the system. Binding 

relationships, which the bind engine determines with the aid of additional information in a 
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component’s INF file, establish connections between components at the various layers. The 

connections specify which components a network component on one layer can use on the 

layer beneath it.

For example, the Workstation service (redirector) will automatically bind to the TCP/IP pro-

tocol. The order of the binding, which you can examine on the Adapters And Bindings tab 

in the Advanced Settings dialog box, shown in Figure 12-32, determines the priority of the 

binding. (See the section “Multiple Redirector Support” earlier in this chapter for instructions 

on how to launch the Advanced Settings dialog box.) When the redirector receives a request 

to access a remote file, it submits the request to both protocol drivers simultaneously. When 

the response comes, the redirector waits until it has also received responses from any higher-

priority protocol drivers. Only then will the redirector return the result to the caller. Thus, it 

can be advantageous to reorder bindings so that bindings of high priority are also the most 

performance efficient or applicable to most of the computers in your network. You can also 

manually remove bindings with the Advanced Settings dialog box.

FIGURE 12-32 Editing bindings with the Advanced Settings dialog box

The Bind value, in the Linkage subkey of a network component’s registry configuration key, 

stores binding information for that component. For example, if you examine HKLM\SYSTEM\

CurrentControlSet\Services\LanmanWorkstation\Linkage\Bind, you’ll see the binding infor-

mation for the Workstation service.
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Layered Network Services

Windows includes network services that build on the APIs and components we’ve presented 

in this chapter. Describing the capabilities and detailed internal implementation of these ser-

vices is outside the scope of this book, but this section provides a brief overview of remote 

access, Active Directory, Network Load Balancing, and Distributed File System (DFS), includ-

ing DFS Replication (DFSR).

Remote Access

Remote access, which is available with Windows Server with the Routing and Remote Access 

service, allows remote access clients to connect to remote access servers and access network 

resources such as files, printers, and network services as if the client were physically con-

nected to the remote access server’s network. Windows provides two types of remote access:

Dial-up remote access is used by clients that connect to a remote access server via 

a telephone or other telecommunications infrastructure. The telecommunications 

medium is used to create a temporary physical or virtual connection between the client 

and the server.

Virtual private network (VPN) remote access lets a VPN client establish a virtual point-

to-point connection to the server over an IP network such as the Internet. Windows 

also supports the Secure Socket Transmission Protocol (SSTP), which is a newer tunnel-

ing protocol for VPN connections that has the ability to pass through most firewalls and 

routers that block PPTP or L2TP/IPSec traffic. It does so by packaging PPP data over the 

SSL channel of the HTTPS protocol. Because the latter operates on port 443 and is usu-

ally part of typical Web browsing behavior, it is much more likely to be available than 

traditional VPN tunneling protocols.

Remote access differs from remote control solutions because remote access acts as a proxy 

connection to a Windows network, whereas remote control software executes applications 

on a server, presenting a user interface to the client.

Active Directory

Active Directory is the Windows implementation of Lightweight Directory Access Protocol 

(LDAP) directory services. Active Directory is based on a database that stores objects repre-

senting resources defined by applications in a Windows network. For example, the structure 

and membership of a Windows domain, including the user account and password informa-

tion, are stored in Active Directory.
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Object classes and the attributes that define properties of objects are specified by a schema. 

The objects in the Active Directory are hierarchically arranged, much like the registry’s logi-

cal organization, where container objects can store other objects, including other container 

objects. (See Chapter 6 for more information on container objects.)

Active Directory supports a number of APIs that clients can use to access objects within an 

Active Directory database:

The LDAP C API is a C language API that uses the LDAP networking protocol. 

Applications written in C or C++ can use this API directly, and applications written in 

other languages can access the APIs through translation layers.

Active Directory Service Interfaces (ADSI) is a COM interface to Active Directory imple-

mented on top of LDAP that abstracts the details of LDAP programming. ADSI supports 

multiple languages, including Microsoft Visual Basic, C, and Microsoft Visual C++. ADSI 

can also be used by Microsoft Windows Script Host (WSH) applications.

Messaging API (MAPI) is supported for compatibility with Microsoft Exchange client 

and Outlook Address Book client applications.

Security Account Manager (SAM) APIs are built on top of Active Directory to provide 

an interface to logon authentication packages such as MSV1_0 (\%SystemRoot%\

System32\Msv1_0.dll, which is used for legacy NT LAN Manager authentication) and 

Kerberos (\%SystemRoot%\System32\Kdcsvc.dll).

Windows NT 4 networking APIs (Net APIs) are used by Windows NT 4 clients to gain 

access to Active Directory through SAM.

NTDS API is used to look up SIDs and GUIDs in an Active Directory implementation 

(via DsCrackNames mostly) as well as for its main purposes, Active Directory manage-

ment and replication. Several third parties have written applications that monitor Active 

Directory from these APIs.

Active Directory is implemented as a database file that by default is named \%SystemRoot%\

Ntds\Ntds.dit, and that is replicated across the domain controllers in a domain. The Active 

Directory directory service, which is a Windows service that executes in the Local Security 

Authority Subsystem (Lsass) process, manages the database, using DLLs that implement the 

on-disk structure of the database as well as provide transaction-based updates to protect 

the integrity of the database. The Active Directory database store is based on a version of 

the Extensible Storage Engine (ESE), also known as JET Blue, database used by Microsoft 

Exchange Server 2007, Desktop Search, and Windows Mail. The ESE library (%SystemRoot%\

System32\Esent.dll) provides routines for accessing the database, which are open for other 

applications to use as well. Figure 12-33 shows the Active Directory architecture.
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FIGURE 12-33 Active Directory architecture

Network Load Balancing

As we stated earlier in the chapter, Network Load Balancing, which is included with Windows 

Server 2008, is based on NDIS lightweight filter technology. Network Load Balancing allows 

for the creation of a cluster containing up to 32 computers, which are called cluster hosts 
in Network Load Balancing. The cluster can maintain multiple dedicated IP addresses and a 

single virtual IP address that is published for access by clients. Client requests go to all the 

computers in the cluster, but only one cluster host responds to the request. The Network 

Load Balancing NDIS drivers effectively partition the client space among available cluster 

hosts in a distributed manner. This way, each host handles its portion of incoming client 

requests and every client request always gets handled by one and only one host. The cluster 

host that determines it should handle a client request allows the request to propagate up to 

the TCP/IP protocol driver and eventually a server application; the other cluster hosts don’t. 

If a cluster host fails, the rest of the cluster realizes that the cluster host is no longer a candi-

date for processing requests and redistributes the incoming client requests to the remaining 
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cluster hosts. No new client requests are sent to the downed cluster host. Another cluster 

host can be added to the cluster as a replacement, and it will then seamlessly start handling 

client requests.

Network Load Balancing isn’t a general-purpose clustering solution because the server 

application that clients communicate with must have certain characteristics: the first is that it 

must be based on protocols supported by the Windows TCP/IP stack, and the second is that 

it must be able to handle client requests on any system in a Network Load Balancing cluster. 

This second requirement typically means that an application that must have access to shared 

state in order to service client requests must manage the shared state itself—Network Load 

Balancing doesn’t include services for automatically distributing shared state across cluster 

hosts. Applications that are ideally suited for Network Load Balancing include a Web server 

that serves static content, Windows Media Server, and Terminal Services. Figure 12-34 shows 

an example of a Network Load Balancing operation.
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FIGURE 12-34 Network Load Balancing operation

Distributed File System and DFS Replication

Distributed File System (DFS) is a service that layers on top of the Workstation service to 

connect together file shares into a single namespace. The file shares can reside on the same 

computer or on different computers, and DFS provides client access to the resources in a 

location-transparent manner. The root of a DFS namespace must be a file share defined on a 

Windows server.
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In addition to delivering a unified network-resource namespace, DFS provides other benefits 

through DFS replica sets. An administrator can create a DFS replica set from two or more 

shares and use a replication mechanism such as File Replication Service (FRS) to copy data 

between the shares of a replica set to keep their contents synchronized. DFS provides sev-

eral forms of load balancing by ordering and/or selecting members of a replica set to fulfill a 

client request for data on the replica set. In addition, DFS achieves high availability by rout-

ing requests to the working member or members of a replica set when a member becomes 

unavailable.

The components that make up the DFS architecture are shown in Figure 12-35. The server-

side implementation of DFS consists of a Windows service (\%SystemRoot%\System32\

Dfssvc.exe) and a device driver (\%SystemRoot%\System32\Drivers\Dfs.sys). The DFS service 

is responsible for exporting DFS topology-management interfaces and maintaining the DFS 

topology in either the registry (on non–Active Directory systems) or Active Directory. The DFS 

driver performs topology lookups when it receives a client request so that it can direct the 

client to the system where the file it is requesting resides.
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FIGURE 12-35 DFS components

On the client side, DFS support is implemented in another device driver (%SystemRoot%\

System32\Drivers\Dfsc.sys) and uses the SMB redirector for its internal communication 

with DFS servers. The DFS client provider is implemented in \%SystemRoot%\System32\

Ntlanman.dll. When a client issues a file I/O request that specifies a file in the DFS namespace, 

the DFS client driver communicates with the target file server by using the appropriate 

redirector.

DFS also includes DFS Replication (DFSR). Its primary purpose is to replicate the contents 

of any DFS share, as well as the domain controller’s \SYSVOL directory, which is where 

Windows domain controllers store logon scripts and Group Policy files. (Group Policy permits 
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administrators to define usage and security policies for the computers that belong to a 

domain.) DFSR allows for distributed multimaster replication, which enables any server to 

perform replication activity. When a replicated directory or file is changed, the changes are 

propagated to the other domain controllers. 

The fundamental concept in DFSR is a replica set, which consists of two or more systems that 

replicate between themselves the contents of a directory tree according to an administra-

tively defined schedule and replication topology, which is the set of connections that defines 

the relationship between domain controllers in a forest and the directory partition replicas 

they share. Only directories on NTFS volumes can be replicated because DFSR relies on the 

NTFS change journal to detect changes to files in directories in a replica set. Because DFSR is 

based on multimaster replication, it can theoretically support hundreds or even thousands of 

systems as part of a replica set, and the computers of a replica set (called a replica group) can 

be connected with arbitrary network topologies (such as ring, star, or mesh). Computers can 

also be members of multiple replica sets. DFSR uses Remote Differential Compression (RDC) 

to compress replica sets, which means that only differences between two servers are repli-

cated, reducing bandwidth. DFSR is implemented as a Windows service (\%SystemRoot%\

System32\Dfsr.exe) that uses authenticated RPC with encryption to communicate between 

instances of itself running on different computers. In addition, because Active Directory con-

tains its own replication capabilities, DFSR uses Active Directory APIs to retrieve FRS configu-

ration information from a domain’s Active Directory. DFSR also exposes a WMI interface for 

tracing, configuration, and management of the service.

Conclusion

The Windows network architecture provides a flexible infrastructure for networking APIs, 

network protocol drivers, and network adapter drivers. The Windows networking architec-

ture takes advantage of I/O layering to give networking support the extensibility to evolve as 

computer networking evolves. When new protocols appear, developers can write a TDI trans-

port to implement the protocol on Windows. Similarly, new APIs can interface to existing 

Windows protocol drivers. Finally, the range of networking APIs implemented on Windows 

affords network application developers a range of possible implementations, each with dif-

ferent programming models and protocol support.
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Chapter 13

Startup and Shutdown

In this chapter, we’ll describe the steps required to boot Windows and the options that can 

affect system startup. Understanding the details of the boot process will help you diagnose 

problems that can arise during a boot. Then we’ll explain the kinds of things that can go 

wrong during the boot process and how to resolve them. Finally, we’ll explain what occurs on 

an orderly system shutdown.

Boot Process

In describing the Windows boot process, we’ll start with the installation of Windows and pro-

ceed through the execution of boot support files. Device drivers are a crucial part of the boot 

process, so we’ll explain the way that they control the point in the boot process at which they 

load and initialize. Then we’ll describe how the executive subsystems initialize and how the 

kernel launches the user-mode portion of Windows by starting the Session Manager process 

(Smss.exe), which starts the initial two sessions (session 0 and session 1). Along the way, we’ll 

highlight the points at which various text appears on the screen to help you correlate the 

internal process with what you see when you watch Windows boot.

The early phases of the boot process differ significantly on x86 and x64 systems with a BIOS 

(basic input output system) versus systems with an EFI (Extensible Firmware Interface). EFI is 

a newer standard that does away with much of the legacy 16-bit code that BIOS systems use 

and allows the loading of preboot programs and drivers to support the operating system 

loading phase. The next sections describe the portions of the boot process specific to BIOS-

based systems and are followed with a section describing the EFI-specific portions of the 

boot process.

To support these different firmware implementations (as well as EFI 2.0, also called Unified 

EFI, or UEFI), Windows provides a boot architecture that abstracts many of the differences 

away from users and developers in order to provide a consistent environment and experience 

regardless of the type of firmware used on the installed system.

BIOS Preboot

The Windows boot process doesn’t begin when you power on your computer or press the 

reset button. It begins when you install Windows on your computer. At some point during 

the execution of the Windows Setup program, the system’s primary hard disk is prepared 

with code that takes part in the boot process. Before we get into what this code does, let’s 
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look at how and where Windows places the code on a disk. Since the early days of MS-DOS, a 

standard has existed on x86 systems for the way physical hard disks are divided into volumes.

Microsoft operating systems split hard disks into discrete areas known as partitions and use 

file systems (such as FAT and NTFS) to format each partition into a volume. A hard disk can 

contain up to four primary partitions. Because this apportioning scheme would limit a disk 

to four volumes, a special partition type, called an extended partition, further allocates up to 

four additional partitions within each extended partition. Extended partitions can contain 

extended partitions, which can contain extended partitions, and so on, making the number 

of volumes an operating system can place on a disk effectively infinite. Figure 13-1 shows an 

example of a hard disk layout, and Table 13-1 summarizes the files involved in the BIOS boot 

process. (You can learn more about Windows partitioning in Chapter 8, which covers storage 

management.)

TABLE 13-1 BIOS Boot Process Components

Component Processor Execution Responsibilities Location

Master Boot 

Record (MBR)

16-bit real mode Reads and loads partition 

boot sectors

Per storage device

Boot sector 16-bit real mode Reads the root directory to 

load Bootmgr.

Per partition

Bootmgr 16-bit real mode and 

32-bit without paging

Reads the Boot 

Configuration Database 

(BCD), presents boot menu, 

and allows execution 

of preboot programs 

such as the Memory Test 

 application (Memtest.exe). 

If a 64-bit installation is 

booted, switches to 64-bit 

long mode before loading 

Winload.

Per system

Winload.exe 32-bit protected mode 

with paging, 64-bit 

protected mode if 

booting a Win64 

installation

Loads Ntoskrnl.exe and its 

dependencies (Bootvid.dll 

on 32-bit systems, Hal.dll, 

Kdcom.dll, Ci.dll, Clfs.sys, 

Pshed.dll) and boot-start 

device drivers. 

Per Windows 

installation

Winresume.exe 32-bit protected 

mode, 64-bit protect-

ed mode if resuming a 

Win64 installation

If resuming after a 

hibernation state, resumes 

from the hibernation file 

(Hiberfil.sys) instead of 

typical Windows loading.

Per Windows 

installation
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Component Processor Execution Responsibilities Location

Memtest.exe 32-bit protected mode If selected from the Boot 

Manager, starts up and 

provides a graphical inter-

face for scanning memory 

and detecting damaged 

RAM.

Per system

Ntoskrnl.exe Protected mode with 

paging

Initializes executive sub-

systems and boot and 

system-start device drivers, 

prepares the system for 

running native applica-

tions, and runs Smss.exe.

Per Windows 

installation

Hal.dll Protected mode with 

paging

Kernel-mode DLL that 

interfaces Ntoskrnl and 

drivers to the hardware.

Per Windows 

installation

Smss.exe Native application Initial instance starts a 

copy of itself to initialize 

each session. The ses-

sion 0 instance loads the 

Windows subsystem driver 

(Win32k.sys) and starts 

the Windows subsystem 

process (Csrss.exe) and 

Windows initialization 

process (Wininit.exe). All 

other per-session instances 

start a Csrss and Winlogon 

process.

Per Windows 

installation

Wininit.exe Windows application Starts the service control 

manager (SCM), the Local 

Security Authority pro-

cess (LSASS), and the local 

session manager (LSM). 

Initializes the rest of the 

registry and performs 

user-mode initialization 

tasks.

Per Windows 

installation

Winlogon.exe Windows application Coordinates logon and 

user security, launches 

LogonUI.

Per Windows 

installation

Logonui.exe Windows application Presents interactive logon 

dialog box.

Per Windows 

installation

Services.exe Windows application Loads and initializes auto-

start device drivers and 

Windows services.

Per Windows 

installation
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FIGURE 13-1 Sample hard disk layout

Physical disks are addressed in units known as sectors. A hard disk sector on a BIOS PC is 

typically 512 bytes. Utilities that prepare hard disks for the definition of volumes, such as the 

Windows Setup program, write a sector of data called a Master Boot Record (MBR) to the first 

sector on a hard disk. (MBR partitioning is described in Chapter 8.) The MBR includes a fixed 

amount of space that contains executable instructions (called boot code) and a table (called 

a partition table) with four entries that define the locations of the primary partitions on the 

disk. When a BIOS-based computer boots, the first code it executes is called the BIOS, which 

is encoded into the computer’s ROM. The BIOS selects a boot device, reads that device’s MBR 

into memory, and transfers control to the code in the MBR.

The MBRs written by Microsoft partitioning tools, such as the one integrated into Windows 

Setup and the Disk Management MMC snap-in, go through a similar process of reading and 

transferring control. First, an MBR’s code scans the primary partition table until it locates a 

partition containing a flag that signals the partition is bootable. When the MBR finds at least 

one such flag, it reads the first sector from the flagged partition into memory and transfers 

control to code within the partition. This type of partition is called a system partition, and the 

first sector of such a partition is called a boot sector. The volume defined for this partition is 

called the system volume.

Operating systems generally write boot sectors to disk without a user’s involvement. For 

example, when Windows Setup writes the MBR to a hard disk, it also writes the file system 

boot code (part of the boot sector) to the first bootable partition of the disk.

Before writing to a partition’s boot sector, Windows Setup ensures that the boot partition is 

formatted with NTFS, the only supported file system that Windows can boot from, or formats 
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the boot partition (and any other partition) with NTFS. Note that the format of the system 

partition can be any format that Windows supports (such as FAT32). If partitions are already 

formatted appropriately, you can instruct Setup to skip this step. After Setup formats the sys-

tem partition, Setup copies the Boot Manager program (Bootmgr) that Windows uses to the 

system partition (the system volume).

Another of Setup’s roles is to prepare the Boot Configuration Database (BCD), which on BIOS 

systems is stored in the \Boot\BCD file on the root directory of the system volume. This file 

contains options for starting the version of Windows that Setup installs and any preexisting 

Windows installations. If the BCD already exists, the Setup program simply adds new entries 

relevant to the new installation.

The BIOS Boot Sector and Bootmgr

Setup must know the partition format before it writes a boot sector because the contents 

of the boot sector vary depending on the format. For a partition that is in NTFS format, 

Windows writes NTFS-capable code. The role of the boot-sector code is to give Windows 

information about the structure and format of a volume and to read in the Bootmgr file 

from the root directory of the volume. Thus, the boot-sector code contains just enough 

read-only file system code to accomplish this task. After the boot-sector code loads Bootmgr 

into memory, it transfers control to Bootmgr’s entry point. If the boot-sector code can’t find 

Bootmgr in the volume’s root directory, it displays the error message “BOOTMGR is missing”.

Bootmgr begins its existence while a system is executing in an x86 operating mode called 

real mode. In real mode, no virtual-to-physical translation of memory addresses occurs, which 

means that programs that use the memory addresses interpret them as physical addresses 

and that only the first 1 MB of the computer’s physical memory is accessible. Simple MS-DOS 

programs execute in a real-mode environment. However, the first action Bootmgr takes is 

to switch the system to protected mode. Still no virtual-to-physical translation occurs at this 

point in the boot process, but a full 32 bits of memory becomes accessible. After the system 

is in protected mode, Bootmgr can access all of physical memory. After creating enough 

page tables to make memory below 16 MB accessible with paging turned on, Bootmgr 

enables paging. Protected mode with paging enabled is the mode in which Windows exe-

cutes in normal operation.

After Bootmgr enables protected mode, it is fully operational. However, it still relies on func-

tions supplied by BIOS to access IDE-based system and boot disks as well as the display. 

Bootmgr’s BIOS-interfacing functions briefly switch the processor back to a mode in which 

services provided by the BIOS can be executed, called real mode. Bootmgr next reads the 

BCD file from the \Boot directory using built-in file system code. Like the boot sector’s code, 

Bootmgr contains read-only NTFS code (Bootmgr also supports other file systems, such as 

FAT, El Torito CDFS, UDFS, and WIM files); unlike the boot sector’s code, however, Bootmgr’s 

file system code can read subdirectories.
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Note Bootmgr and other boot applications can still write to preallocated files on NTFS volumes, 

because only the data needs to be written, instead of performing all the complex allocation 

work that is typically required on an NTFS volume. This is how these applications can write to 

bootsect.dat, for example.

Bootmgr next clears the screen. If Windows enabled the BCD setting to inform Bootmgr of 

a hibernation resume, this shortcuts the boot process by launching Winresume.exe, which 

will read the contents of the file into memory and transfer control to code in the kernel that 

resumes a hibernated system. That code is responsible for restarting drivers that were active 

when the system was shut down. Hiberfil.sys will be valid only if the last time the computer 

was shut down it was hibernated. (See the section “The Power Manager” in Chapter 7 for 

information on hibernation.)

If there is more than one boot-selection entry in the BCD, Bootmgr presents the user with 

the boot-selection menu (if there is only one entry, Bootmgr bypasses the menu and pro-

ceeds to launch Winload.exe). Selection entries in the BCD direct Bootmgr to the partition on 

which the Windows system directory (typically \Windows) of the selected installation resides. 

This partition might be the same as the system partition, or it might be another primary or 

extended partition.

Entries in the BCD can include optional arguments that Bootmgr, Winload, and other compo-

nents involved in the boot process interpret. Table 13-2 contains a list of these options and 

their effects for Bootmgr, Table 13-3 shows a list of BCD options for boot applications, and 

Table 13-4 shows BCD options for the Windows boot loader.

The Bcdedit.exe tool provides a convenient interface for setting a number of the switches. 

Some options that are included in the BCD save to the registry value HKLM\SYSTEM\

CurrentControlSet\Control\SystemStartOptions if they correspond to command-line switches; 

otherwise, they are kept only in the BCD.

TABLE 13-2 BCD Options for the Windows Boot Manager (Bootmgr)

BCD Element Values Meaning

bcdfilepath Path Points to the Boot Configuration Database (usually \Boot\BCD) 

file on the disk.

displaybootmenu Boolean Determines whether the Boot Manager shows the boot menu 

or picks the default entry automatically.

keyringaddress Physical 

address

Specifies the physical address where the BitLocker key ring is 

located.

noerrordisplay Boolean Silences the output of errors encountered by the Boot 

Manager.

resume Boolean Whether or not resuming from hibernation should be attempt-

ed. This option is automatically set when Windows hibernates.

timeout Seconds Number of seconds that the Boot Manager should wait before 

choosing the default entry.
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TABLE 13-3 BCD Options for Boot Applications

BCD Element Values Meaning

badmemoryaccess Boolean Forces usage of memory pages in the Bad Page List 

(see Chapter 9 for more information on the page 

lists).

badmemorylist Array of page frame 

numbers (PFNs)

Specifies a list of physical pages on the system that 

are known to be bad because of faulty RAM.

baudrate Baud rate in bps Specifies an override for the default baud rate 

(19200) at which a remote kernel debugger host 

will connect through a serial port.

bootdebug Boolean Enables remote boot debugging for the boot load-

er. With this option enabled, you can use Kd.exe or 

Windbg.exe to connect to the boot loader.

bootems Boolean Used to cause Windows to enable Emergency 

Management Services (EMS) for boot applications, 

which reports boot information and accepts system 

management commands through a serial port.

channel Channel between 0 

and 62

Used in conjunction with {debugtype, 1394} to 

specify the IEEE 1394 channel through which kernel 

debugging communications will flow.

configaccesspolicy Default, 

DisallowMmConfig

Configures whether the system uses memory 

mapped I/O to access the PCI manufacturer’s con-

figuration space or falls back to using the HAL’s I/O 

port access routines. Can sometimes be helpful in 

solving platform device problems.

debugaddress Hardware address Specifies the hardware address of the serial (COM) 

port used for debugging.

debugport COM port number Specifies an override for the default serial port 

(usually COM2 on systems with at least two serial 

ports) to which a remote kernel debugger host is 

connected.

debugstart Active, AutoEnable, 

Disable

Specifies settings for the debugger when kernel 

debugging is enabled. AutoEnable enables the 

debugger when a breakpoint or kernel exception, 

including kernel crashes, occurs. 

debugtype Serial, 1394, USB Specifies whether kernel debugging will be com-

municated through a serial, FireWire (IEEE 1394), or 

USB 2.0 port. (The default is serial.)

emsbaudrate Baud rate in bps Specifies the baud rate to use for EMS.

emsport COM port number Specifies the serial (COM) port to use for EMS.

extendedinput Boolean Enables boot applications to leverage BIOS support 

for extended console input.

firstmegabytepolicy UseNone, UseAll, 

UsePrivate

Specifies how the low 1 MB of physical memory is 

consumed by the HAL to mitigate corruptions by 

the BIOS during power transitions.
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BCD Element Values Meaning

graphicsmodedisabled Boolean Disables graphics mode for boot applications.

graphicsresolution Resolution Sets the graphics resolution for boot applications.

initialconsoleinput Boolean Specifies an initial character that the system inserts 

into the PC/AT keyboard input buffer.

locale Localization string Sets the locale for the boot application (such as 

EN-US).

noumex Boolean Disables user-mode exceptions when kernel de-

bugging is enabled. If you experience system hangs 

(freezes) when booting in debugging mode, try 

enabling this option.

novesa Boolean Disables the usage of VESA display modes.

relocatephysical Physical address Relocates an automatically selected NUMA node’s 

physical memory to the specified physical address.

testsigning Boolean Enables test-signing mode, which allows driver 

 developers to load locally signed 64-bit drivers. 

This option results in a watermarked desktop.

truncatememory Address in bytes Disregards physical memory above the specified 

physical address.

TABLE 13-4 BCD Options for the Windows Boot Loader (Winload)

BCD Element Values Meaning

advancedoptions Boolean If false, executes the default behavior of launching 

the auto-recovery command boot entry when the 

boot fails; otherwise, displays the boot error and 

offers the user the advanced boot option menu 

 associated with the boot entry. This is equivalent to 

pressing F8.

bootlog Boolean Causes Windows to write a log of the boot to the file 

%SystemRoot%\Ntbtlog.txt.

bootstatuspolicy DisplayAllFailures, 

IgnoreAllFailures, 

IgnoreShutdown-

Failures, 

IgnoreBoot-

Failures

Overrides the system’s default behavior of offering 

the user a troubleshooting boot menu if the system 

did not complete the previous boot or shutdown.

clustermodeaddressing Number of 

processors

Defines the maximum number of processors 

to  include in a single Advanced Programmable 

Interrupt Controller (APIC) cluster.

configflags Flags Specifies processor-specific configuration flags.

dbgtransport Transport image 

name

Overrides using one of the default kernel debug-

ging transports (Kdcom.dll, Kd1394, Kdusb.dll) and 

instead uses the given file, permitting specialized 

debugging transports to be used that are not typi-

cally supported by Windows.
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BCD Element Values Meaning

debug Boolean Enables kernel-mode debugging.

detecthal Boolean Enables the dynamic detection of the HAL.

driverloadfailurepolicy Fatal, 

UseErrorControl

Describes the loader behavior to use when a boot 

driver has failed to load. Fatal will prevent booting, 

while UseErrorControl causes the system to honor a 

driver’s default error behavior, specified in its service 

key.

ems Boolean Instructs the kernel to use EMS as well. (If only 

bootems is used, only the boot loader will use EMS.)

exportascd Boolean If this option is set, the kernel will treat the ramdisk 

file specified as an ISO image and not a Windows 

Installation Media (WIM) or System Deployment 

Image (SDI) file.

hal HAL image name Overrides the default file name for the HAL image 

(hal.dll). This option can be useful when booting a 

combination of a checked HAL and checked kernel 

(requires specifying the kernel element as well).

halbreakpoint Boolean Causes the HAL to stop at a breakpoint early in HAL 

initialization. The first thing the Windows kernel 

does when it initializes is to initialize the HAL, so 

this breakpoint is the earliest one possible (unless 

boot debugging is used). If the switch is used with-

out the /DEBUG switch, the system will elicit a blue 

screen with a STOP code of 0x00000078 (PHASE0_ 

EXCEPTION).

hypervisorbaudrate Baud rate in bps If using serial hypervisor debugging, specifies the 

baud rate to use.

hypervisorchannel Channel number 

from 0 to 62

If using FireWire (IEEE 1394) hypervisor debugging, 

specifies the channel number to use.

hypervisordebug Boolean Enables debugging the hypervisor.

hypervisordebugport COM port 

number

If using serial hypervisor debugging, specifies the 

COM port to use.

hypervisordebugtype Serial, 1394 Specifies which hardware port to use for hypervisor 

debugging.

hypervisorlaunchtype Off, Auto Enables loading of the hypervisor on a Hyper-V sys-

tem, or forces it to be disabled.

hypervisorpath Hypervisor binary 

image name

Specifies the path of the hypervisor binary.

increaseuserva Size in MB Increases the size of the user process address space 

from 2 GB to the specified size, up to 3 GB (and 

therefore reduces the size of system space). Giving 

virtual-memory-intensive applications such as 

 database servers a larger address space can improve 

their performance. (See the section “Address Space 

Layout” in Chapter 9 for more information.)
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BCD Element Values Meaning

kernel Kernel image 

name

Overrides the default file name for the kernel image 

(ntoskrnl.exe). This option can be useful when boot-

ing a combination of a checked HAL and checked 

kernel (requires specifying the hal element to be 

used as well).

lastknowngood Boolean Boots the last known good configuration, instead of 

the current control set.

loadoptions Extra command-

line parameters

This option is used to add other command-line 

parameters that are not defined by BCD elements. 

These parameters could be used to configure or 

define the operation of other components on the 

system that might not be able to use the BCD (such 

as legacy components).

maxproc Boolean Forces the maximum number of supported proces-

sors that Windows will report to drivers and applica-

tions to accommodate the arrival of additional CPUs 

via dynamic processor support.

msi Default, 

ForceDisable

Allows disabling support for message signaled 

interrupts.

nocrashautoreboot Boolean Disables the automatic reboot after a system crash 

(blue screen).

nointegritychecks Boolean Disables integrity checks performed by Windows 

when loading drivers. Automatically removed at the 

next reboot.

nolowmem Boolean Requires that PAE be enabled and that the system 

have more than 4 GB of physical memory. If these 

conditions are met, the PAE-enabled version of the 

Windows kernel, Ntkrnlpa.exe, won’t use the first 4 

GB of physical memory. Instead, it will load all appli-

cations and device drivers and allocate all memory 

pools from above that boundary. This switch is use-

ful only to test device-driver compatibility with large 

memory systems.

numproc Number of 

processors

Specifies the number of CPUs that can be used on a 

multiprocessor system. Example: /NUMPROC=2 on 

a four-way system will prevent Windows from using 

two of the four processors

nx OptIn, OptOut, 

AlwaysOff, 

AlwaysOn

This option is available only on 32-bit versions of 

Windows when running on processors that support 

no-execute memory and only when PAE (explained 

further in the pae entry) is also enabled. It enables 

no-execute protection. No-execute protection is 

always enabled on 64-bit versions of Windows on 

x64 processors. See Chapter 9 for a description of 

this behavior.
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BCD Element Values Meaning

onecpu Boolean Causes Windows to use only one CPU on a multipro-

cessor system.

optionsedit Boolean Enables the options editor in the Boot Manager. 

With this option, Boot Manager allows the user to 

interactively set on-demand command-line options 

and switches for the current boot. This is equivalent 

to pressing F10.

pae Default, 

ForceEnable, 

ForceDisable

Default allows the boot loader to determine whether 

the system supports PAE and loads the PAE kernel. 

ForceEnable forces this behavior, while ForceDisable 

forces the loader to load the non–PAE version of 

the Windows kernel, even if the system is detected 

as supporting x86 PAEs and has more than 4 GB of 

physical memory.

pciexpress Default, 

ForceDisable

Can be used to disable support for PCI Express buses 

and devices.

perfmem Size in MB Size of the buffer to allocate for performance data 

logging. This option acts similarly to the remove-
memory element, since it prevents Windows from 

seeing the size specified as available memory.

quietboot Boolean Instructs Windows not to initialize the VGA video 

driver responsible for presenting bitmapped graph-

ics during the boot process. The driver is used to 

display boot progress information, so disabling 

it will disable the ability of Windows to show this 

information.

ramdiskimagelength Length in bytes Size of the ramdisk specified.

ramdiskimageoffset Offset in bytes If the ramdisk contains other data (such as a header) 

before the virtual file system, instructs the boot 

loader where to start reading the ramdisk file from.

ramdisksdipath Image file name Specifies the name of the SDI ramdisk to load.

ramdisktftpblocksize Block size If loading a WIM ramdisk from a network Trivial FTP 

(TFTP) server, specifies the block size to use.

ramdisktftpclientport Port number If loading a WIM ramdisk from a network TFTP 

 server, specifies the port.

ramdisktftpwindowsize Window size If loading a WIM ramdisk from a network TFTP 

 server, specifies the window size to use.

removememory Amount in bytes Specifies an amount of memory Windows won’t use.

restrictapiccluster Cluster number Defines the largest APIC cluster number to be used 

by the system.

resumeobject Object GUID Describes which application to use for resuming 

from hibernation, typically Winresume.exe.
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BCD Element Values Meaning

safeboot Minimal, 

Network, 

DsRepair

Specifies options for a safe-mode boot. Minimal cor-

responds to safe mode without networking, Network 

to safe mode with networking, and DsRepair to safe 

mode with Directory Services Restore mode. (Safe 

mode is described later in this chapter.)

safebootalternateshell Boolean Tells Windows to use the program specified by 

the HKLM\SYSTEM\CurrentControlSet\Control\

SafeBoot\AlternateShell value as the graphical shell 

rather than the default, which is Windows Explorer. 

This option is referred to as Safe Mode With 

Command Prompt in the alternate boot menu.

sos Boolean Causes Windows to list the device drivers marked 

to load at boot time and then to display the sys-

tem version number (including the build num-

ber), amount of physical memory, and number of 

processors.

stampdisks Boolean Specifies that Winload will write an MBR disk sig-

nature to a RAW disk when booting Windows PE 

(Preinstallation Environment). This can be required in 

deployment environments in order to create a map-

ping from operating system–enumerated hard disks 

to BIOS-enumerated hard disks to know which disk 

should be the system disk. 

targetname Name For USB 2.0 debugging, assigns a name to the 

 machine that is being debugged.

usefirmwarepcisettings Boolean Stops Windows from dynamically assigning IO/IRQ 

resources to PCI devices and leaves the devices con-

figured by the BIOS. See Microsoft Knowledge Base 

article Q148501 for more information.

usephysicaldestination Boolean Forces the use of the APIC in physical destination 

mode.

vga Boolean Forces Windows to use of the VGA display driver 

instead of the third-party high-performance driver.

winpe Boolean Used by Windows PE, this option causes the configu-

ration manager to load the registry SYSTEM hive as a 

volatile hive such that changes made to it in memory 

are not saved back to the hive image.

If the user doesn’t select an entry from the selection menu within the timeout period the 

BCD specifies, Bootmgr chooses the default selection specified in the BCD (if there is only one 

entry, it chooses this one). Once the boot selection has been made, Bootmgr loads the boot 

loader associated with that entry, which will be Winload.exe for Windows installations.
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Winload.exe also contains code that queries the system’s ACPI BIOS to retrieve basic device 

and configuration information. This information includes the following:

The time and date information stored in the system’s CMOS (nonvolatile memory)

The number, size, and type of disk drives on the system

Legacy device information, such as buses (for example, ISA, PCI, EISA, Micro Channel 

Architecture [MCA]), mice, parallel ports, and video adapters are not queried and 

instead faked out

This information is gathered into internal data structures that will be stored under the HKLM\

HARDWARE\DESCRIPTION registry key later in the boot.

Next, Winload begins loading the files from the boot volume needed to start the kernel ini-

tialization. The boot volume is the volume that corresponds to the partition on which the 

system directory (usually \Windows) of the installation being booted is located. The steps 

Winload follows here include:

 1. Loads the appropriate kernel and HAL images (Ntoskrnl.exe and Hal.dll by default) as 

well as any of their dependencies. If Winload fails to load either of these files, it prints 

the message “Windows could not start because the following file was missing or cor-

rupt”, followed by the name of the file.

 2. Reads in the VGA font file (by default, vgaoem.fon). If this file fails, the same error mes-

sage as described in step 1 will be shown.

 3. Reads in the NLS (National Language System) files used for internationalization. By 

default, these are l_intl.nls, c_1252.nls, and c_437.nls.

 4. Reads in the SYSTEM registry hive, \Windows\System32\Config\System, so that it can 

determine which device drivers need to be loaded to accomplish the boot. (A hive 

is a file that contains a registry subtree. You’ll find more details about the registry in 

Chapter 4.)

 5. Scans the in-memory SYSTEM registry hive and locates all the boot device drivers. Boot 

device drivers are drivers necessary to boot the system. These drivers are indicated in 

the registry by a start value of SERVICE_BOOT_START (0). Every device driver has a reg-

istry subkey under HKLM\SYSTEM\CurrentControlSet\Services. For example, Services 

has a subkey named fvevol for the BitLocker driver, which you can see in Figure 13-2. 

(For a detailed description of the Services registry entries, see the section “Services” in 

Chapter 4.)
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FIGURE 13-2 BitLocker driver service settings

 6. Adds the file system driver that’s responsible for implementing the code for the type of 

partition (NTFS) on which the installation directory resides to the list of boot drivers to 

load. Winload must load this driver at this time; if it didn’t, the kernel would require the 

drivers to load themselves, a requirement that would introduce a circular dependency.

 7. Loads the boot drivers, which should only be drivers that, like the file system driver for 

the boot volume, would introduce a circular dependency if the kernel was required to 

load them. To indicate the progress of the loading, Winload updates a progress bar 

displayed below the text “Starting Windows”. If the sos option is specified in the BCD, 

Winload doesn’t display the progress bar but instead displays the file names of each 

boot driver. Keep in mind that the drivers are loaded but not initialized at this time—

they initialize later in the boot sequence.

 8. Prepares CPU registers for the execution of Ntoskrnl.exe.

This action is the end of Winload’s role in the boot process. At this point, Winload calls 

the main function in Ntoskrnl.exe (KiSystemStartup) to perform the rest of the system 

initialization.

The EFI Boot Process

An EFI-compliant system has firmware that runs boot loader code that’s been programmed 

into the system’s nonvolatile RAM (NVRAM) by Windows Setup. The boot code reads the 

BCD’s contents, which are also stored in NVRAM. The Bcdedit.exe tool mentioned earlier also 

has the ability to abstract the firmware’s NVRAM variables in the BCD, allowing for full trans-

parency of this mechanism.
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The EFI standard defines the ability to prompt the user with an EFI Boot Manager that can 

be used to select an operating system or additional applications to load. However, to pro-

vide a consistent user interface between BIOS systems and EFI systems, Windows sets a 

2- second timeout for selecting the EFI Boot Manager, after which the EFI-version of Bootmgr 

(Bootmgfw.efi) loads instead.

Hardware detection occurs next, where the boot loader uses EFI interfaces to determine the 

number and type of the following devices:

Network adapters

Video adapters

Keyboards

Disk controllers

Storage devices

On EFI systems, all operations and programs execute in the native CPU mode with pag-

ing enabled and no part of the Windows boot process executes in 16-bit mode. Note that 

although EFI is supported on both 32-bit and 64-bit systems, Windows provides support for 

EFI only on 64-bit platforms.

Just as Bootmgr does on x86 and x64 systems, the EFI Boot Manager presents a menu of 

boot selections with an optional timeout. Once a boot selection is made, the loader navigates 

to the subdirectory on the EFI System partition corresponding to the selection and loads the 

EFI version of the Windows boot loader (Winload.efi).

The EFI specification requires that the system have a partition designated as the EFI System 

partition that is formatted with the FAT file system and is between 100 MB and 1 GB in size 

or up to one percent of the size of the disk, and each Windows installation has a subdirectory 

on the EFI System partition under EFI\Microsoft.

Note that through the unified boot process and model in Windows Vista, the components 

in Table 13-1 apply almost identically to EFI systems, except that those ending in .exe end in 

.efi, and they use EFI APIs and services instead of BIOS interrupts. Another difference is that 

to avoid limitations of the MBR partition format (including a maximum of four partitions per 

disk), EFI systems use the GPT (GUID Partition Table) format, which uses GUIDs to identify dif-

ferent partitions and their roles on the system.

Note Although the EFI standard has been available since early 2001, very few computer manu-

facturers have started using this technology because of backward compatibility concerns and 

the difficulty of moving from an entrenched 20-year-old technology to a new one. Two notable 

exceptions are Itanium machines and Apple’s Intel Macintosh computers. The latter, however, 

require a specialized BIOS emulation module to load Windows, because of implementation 

incompatibilities.
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Initializing the Kernel and Executive Subsystems

When Winload calls Ntoskrnl, it passes a data structure called the loader parameter block 

that contains the system and boot partition paths, a pointer to the memory tables Winload 

generated to describe the physical memory on the system, a pointer to the in-memory copy 

of the HARDWARE and SYSTEM registry hives, a pointer to the list of boot drivers Winload 

loaded, as well as various other information related to the boot processing performed until 

this point.

Ntoskrnl then begins the first of its two-phase initialization process, called phase 0 and phase 
1. Most executive subsystems have an initialization function that takes a parameter that iden-

tifies which phase is executing.

During phase 0, interrupts are disabled. The purpose of this phase is to build the rudimentary 

structures required to allow the services needed in phase 1 to be invoked. Ntoskrnl’s main 

function calls KiSystemStartup, which in turn calls HalInitializeProcessor and KiInitializeKernel 
for each CPU. KiInitializeKernel, if running on the boot CPU, performs systemwide ker-

nel initialization, such as initializing internal lists and other data structures that all CPUs 

share. It also checks whether virtualization was specified as a BCD option (hypervisor-
launchtype), and whether the CPU supports hardware virtualization technology. The first 

instance of KiInitializeKernel then calls the function responsible for orchestrating phase 0, 

InitBootProcessor, while subsequent processors only call HalInitSystem.

InitBootProcessor starts by initializing the pool look-aside pointers for the initial CPU and by 

checking for and honoring the BCD burnmemory boot option, where it discards the amount 

of physical memory the value specifies. It then performs enough initialization of the NLS files 

that were loaded by Winload (described earlier) to allow Unicode to ANSI and OEM transla-

tion to work. Next, it continues by calling the HAL function HalInitSystem, which gives the 

HAL a chance to gain system control before Windows performs significant further initializa-

tion. One responsibility of HalInitSystem is to prepare the system interrupt controller of each 

CPU for interrupts and to configure the interval clock timer interrupt, which is used for CPU 

time accounting. (See the section “Quantum Accounting” in Chapter 5 for more on CPU time 

accounting.)

When HalInitSystem returns control, InitBootProcessor proceeds by computing the recip-

rocal for timer expiration. Reciprocals are used for optimizing divisions on most modern 

processors. They can perform multiplications faster, and because Windows must divide the 

current 64-bit time value in order to find out which timers need to expire, this static calcula-

tion reduces interrupt latency when the clock interval fires. InitBootProcessor then continues 

by setting up the system root path and searching the kernel image for the location of the 

crash message strings it displays on blue screens, caching their location to avoid looking up 

the strings during a crash, which could be dangerous and unreliable. Next, InitBootProcessor 
initializes the quota functionality part of the process manager and reads the control vector. 
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This data structure contains more than 150 kernel-tuning options that are part of the HKLM\

SYSTEM\CurrentControlSet\Control registry key, including information such as the licensing 

data and version information for the installation.

InitBootProcessor is now ready to call the phase 0 initialization routines for the executive, 

Driver Verifier, and memory manager. These components perform the following initialization 

steps:

 1. The executive initializes various internal locks, resources, lists, and variables and vali-

dates that the product suite type in the registry is valid, discouraging casual modifica-

tion of the registry in order to “upgrade” to a SKU of Windows that was not actually 

purchased. This is only one of the many such checks in the kernel.

 2. The Driver Verifier, if enabled, initializes various settings and behaviors based on the 

current state of the system (such as whether safe mode is enabled) and verification 

options. It also picks which drivers to target for tests that target randomly chosen 

drivers.

 3. The memory manager constructs page tables and internal data structures that are nec-

essary to provide basic memory services. It also builds and reserves an area for the sys-

tem file cache and creates memory areas for the paged and nonpaged pools (described 

in Chapter 9). The other executive subsystems, the kernel, and device drivers use these 

two memory pools for allocating their data structures.

Next, InitBootProcessor calls HalInitializeBios to set up the BIOS emulation code part of the 

HAL. This code is used both on real BIOS systems, as well as on EFI systems, to allow access 

(or to emulate access) to 16-bit real mode interrupts and memory, which are used mainly 

by Bootvid to display the early VGA boot screen and bugcheck screen. After the function 

returns, the kernel initializes the Bootvid library and displays early boot status messages by 

calling InbvEnableBootDriver and InbvDriverInitailize.

At this point, InitBootProcessor enumerates the boot-start drivers that were loaded by 

Winload and calls DbgLoadImageSymbols to inform the kernel debugger (if attached) to load 

symbols for each of these drivers. If the host debugger has configured the break on symbol 
load option, this will be the earliest point for a kernel debugger to gain control of the sys-

tem. InitBootProcessor now calls HvlInitSystem, which attempts to connect to the hypervisor 

in case Windows might be running inside a Hyper-V host system’s child partition. When the 

function returns, it calls HeadlessInit to initialize the serial console if the machine was config-

ured for Emergency Management Services (EMS).

Next, InitBootProcessor builds the versioning information that will be used later in the boot 

process, such as the build number, service pack version, and beta version status. Then it cop-

ies the NLS tables that Winload previously loaded into paged pool, re-initializes them, and 

creates the kernel stack trace database if the global flags specify creating one. (For more 

information on the global flags, see Chapter 3.)
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Finally, InitBootProcessor calls the object manager, security reference monitor, process man-

ager, user-mode debugging framework, and the Plug and Play manager. These components 

perform the following initialization steps:

 1. During the object manager initialization, the objects that are necessary to construct 

the object manager namespace are defined so that other subsystems can insert objects 

into it. A handle table is created so that resource tracking can begin.

 2. The security reference monitor initializes the token type object and then uses the 

object to create and prepare the first local system account token for assignment to the 

initial process. (See Chapter 6 for a description of the local system account.)

 3. The process manager performs most of its initialization in phase 0, defining the process 

and thread object types and setting up lists to track active processes and threads. The 

process manager also creates a process object for the initial process and names it Idle. 

As its last step, the process manager creates the System process and a system thread 

to execute the routine Phase1Initialization. This thread doesn’t start running right away 

because interrupts are still disabled.

 4. The user-mode debugging framework creates the definition of the debug object type 

that is used for attaching a debugger to a process and receiving debugger events. For 

more information on user-mode debugging, see Chapter 3.

 5. The Plug and Play manager’s phase 0 initialization then takes place, which involves sim-

ply initializing an executive resource used to synchronize bus resources.

When control returns to KiInitializeKernel, the last step is to allocate the DPC stack for the 

current processor and the I/O privilege map save area (on x86 systems only), after which con-

trol proceeds to the Idle loop, which then causes the system thread created in step 3 of the 

previous process description to begin executing phase 1. (Secondary processors wait to begin 

their initialization until step 8 of phase 1, described in the following list.)

Phase 1 consists of the following steps:

 1. Phase1InitializationDiscard, which, as the name implies, discards the code that is part of 

the INIT section of the kernel image in order to preserve memory.

 2. The initialization thread sets its priority to 31, the highest possible, in order to prevent 

preemption.

 3. HalInitSystem prepares the system to accept interrupts from devices and to enable 

interrupts.

 4. The boot video driver is called, which in turn displays the Windows startup screen, 

which by default consists of a black screen and a progress bar. If the quietboot boot 

option was used, this step will not occur.

 5. The kernel builds various strings and version information, which are displayed on the 

boot screen through Bootvid if the sos boot option was enabled. This includes the 
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full version information, number of processors supported, and amount of memory 

supported.

 6. The power manager’s initialization is called.

 7. The system time is initialized (by calling HalQueryRealTimeClock) and then stored as the 

time the system booted.

 8. On a multiprocessor system, the remaining processors are initialized by 

KeStartAllProcessors and HalAllProcessorsStarted. The number of processors that will be 

initialized and supported depends on a combination of the actual physical count, the 

licensing information for the installed SKU of Windows, boot options such as numproc 
and onecpu, and whether dynamic partitioning is enabled (Windows Server 2008 sys-

tems only). After all the available processors have initialized, the affinity of the system 

process is updated to include all processors.

 9. The object manager creates the namespace root directory (\), \ObjectTypes direc-

tory, and the DOS device name mapping directory (\Global??). It then creates the 

\DosDevices symbolic link that points at the Windows subsystem device name mapping 

directory.

 10. The executive is called to create the executive object types, including semaphore, 

mutex, event, and timer.

 11. The I/O manager is called to create the I/O manager object types, including device, 

driver, controller, adapter, and file objects.

 12. The kernel debugger library finalizes initialization of debugging settings and param-

eters if the debugger has not been triggered prior to this point.

 13. The transaction manager also creates its object types, such as the enlistment, resource 

manager, and transaction manager types.

 14. The kernel initializes scheduler (dispatcher) data structures and the system service dis-

patch table.

 15. If the Driver Verifier is enabled and, depending on verification options, pool verification 

is enabled, object handle tracing is started for the system process.

 16. The security reference monitor creates the \Security directory in the object manager 

namespace and initializes auditing data structures if auditing is enabled.

 17. The memory manager is called to create the section object and the memory manager’s 

system worker threads (which are explained in Chapter 9).

 18. NLS tables are mapped into system space so that they can be easily mapped by user-

mode processes.

 19. Ntdll.dll is mapped into the system address space.

 20. The cache manager initializes the file system cache data structures and creates its 

worker threads.
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 21. The configuration manager creates the \Registry key object in the object manager 

namespace and copies the initial registry data passed by Winload into the HARDWARE 

and SYSTEM hives.

 22. The errata manager initializes and scans the registry for errata information, as well as 

the INF (driver installation file, described in Chapter 7) database containing errata for 

various drivers.

 23. SuperFetch and the prefetcher are initialized.

 24. The current time zone information is initialized.

 25. Global file system driver data structures are initialized.

 26. Phase 1 of debugger-transport-specific information is performed by calling the 

KdDebuggerInitialize1 routine in the registered transport, such as Kdcom.dll.

 27. The Plug and Play manager calls the Plug and Play BIOS.

 28. The advanced local procedure call (ALPC) subsystem initializes the ALPC port type and 

ALPC waitable port type objects. The older LPC objects are set as aliases.

 29. If the system was booted with boot logging (with the BCD bootlog option), the boot 

log file is initialized. If the system was booted in safe mode, a string is displayed on the 

boot screen with the current safe mode boot type.

 30. The executive is called to execute its second initialization phase, where it configures 

part of the Windows licensing functionality in the kernel, such as validating the registry 

settings that hold license data. Also, if persistent data from boot applications is present 
(such as memory diagnostic results or resume from hibernation information), the rel-

evant log files and information are written to disk or to the registry.

 31. The MiniNT/WinPE registry keys are created if this is such a boot, and the NLS object 

directory is created in the namespace, which will be used later to host the section 

objects for the various memory-mapped NLS files.

 32. The I/O manager initialization now takes place. This stage is a complex phase of system 

startup that accounts for most of the boot time.

The I/O manager first initializes various internal structures and creates the driver and 

device object types. It then calls the Plug and Play manager, power manager, and 

HAL to begin the various stages of dynamic device enumeration and initialization. 

(Because this process is complex and specific to the I/O system, we cover the details 

in Chapter 7.) Then the Windows Management Instrumentation (WMI) subsystem is 

initialized, which provides WMI support for device drivers. (See the section “Windows 

Management Instrumentation” in Chapter 4 for more information.) This also initializes 

Event Tracing for Windows (ETW). Next, all the boot-start drivers are called to perform 

their driver-specific initialization, and then the system-start device drivers are loaded 

and initialized. (Details on the processing of the driver load control information on the 
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registry are also covered in Chapter 7.) Finally, the Windows subsystem device names 

are created as symbolic links in the object manager’s namespace.

 33. The transaction manager sets up the Windows software trace preprocessor (WPP) and 

ETW and initializes with WMI. (ETW and WMI are described in Chapter 4.)

 34. Now that boot-start and system-start drivers are loaded, the errata manager loads the 

INF database with the driver errata and begins parsing it, which includes applying reg-

istry PCI configuration workarounds.

 35. If the computer is booting in safe mode, this fact is recorded in the registry.

 36. Unless explicitly disabled in the registry, paging of kernel-mode code (in Ntoskrnl and 

drivers) is enabled.

 37. The configuration manager makes sure that all processors on an SMP system are identi-

cal in terms of the features that they support; otherwise, it crashes the system.

 38. On 32-bit systems, VDM (Virtual Dos Machine) support is initialized, which includes 

determining whether the processor supports Virtual Machine Extensions (VME).

 39. The process manager is called to set up rate limiting for jobs, initialize the static envi-

ronment for protected processes, and look up the various system-defined entry points 

in the user-mode system library (Ntdll.dll).

 40. The power manager is called to initialize various power management structures.

 41. The rest of the licensing information for the system is initialized, including caching the 

current policy settings stored in the registry.

 42. The security reference monitor is called to create the Command Server Thread that 

communicates with Lsass. (See the section “Security System Components” in Chapter 6 

for more on how security is enforced in Windows.)

 43. The Session Manager (Smss) process (introduced in Chapter 2) is started. Smss is 

responsible for creating the user-mode environment that provides the visible interface 

to Windows—its initialization steps are covered in the next section.

 44. All the memory used up by the loader parameter block and all its references is now 

freed.

As a final step before considering the executive and kernel initialization complete, the phase 

1 initialization thread waits for the handle to the Session Manager process with a timeout 

value of 5 seconds. If the Session Manager process exits before the 5 seconds elapse, the sys-

tem crashes with a SESSION5_INITIALIZATION_FAILED stop code.

If the 5-second wait times out (that is, if 5 seconds elapse), the Session Manager is assumed 

to have started successfully, and the phase 1 initialization function calls the memory man-

ager’s zero page thread function (explained in Chapter 9). Thus, this system thread becomes 

the zero page thread for the remainder of the life of the system.
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Smss, Csrss, and Wininit

Smss is like any other user-mode process except for two differences: First, Windows considers 

Smss a trusted part of the operating system. Second, Smss is a native application. Because it’s 

a trusted operating system component, Smss can perform actions few other processes can 

perform, such as creating security tokens. Because it’s a native application, Smss doesn’t use 

Windows APIs—it uses only core executive APIs known collectively as the Windows native 

API. Smss doesn’t use the Win32 APIs because the Windows subsystem isn’t executing when 

Smss launches. In fact, one of Smss’s first tasks is to start the Windows subsystem.

Smss then calls the configuration manager executive subsystem to finish initializing the 

registry, fleshing the registry out to include all its keys. The configuration manager is pro-

grammed to know where the core registry hives are stored on disk (excluding hives corre-

sponding to user profiles), and it records the paths to the hives it loads in the HKLM\SYSTEM\

CurrentControlSet\Control\hivelist key.

The main thread of Smss performs the following initialization steps:

 1. Marks itself as a critical process and its main thread as a critical thread. As discussed 

earlier, this will cause the kernel to crash the system if Smss quits unexpectedly. Smss 

also enables the automatic affinity update mode to support dynamic processor addi-

tion (see Chapter 5 for more information).

 2. Creates protected prefixes for the mailslot and named pipe file system drivers, creating 

privileged paths for administrators and service accounts to communicate through those 

paths.

 3. Calls SmpInit, which tunes the maximum concurrency level for Smss, meaning the maxi-

mum number of parallel sessions that will be created by spawning copies of Smss into 

other sessions. This is at minimum four and at most the number of active CPUs.

 4. SmpInit then creates an ALPC port object (\SmApiPort) to receive client requests (such 

as to load a new subsystem or create a session).

 5. SmpInit calls SmpLoadDataFromRegistry, which starts by setting up the default envi-

ronment variables for the system, and sets the SAFEBOOT variable if the system was 

booted in safe mode.

 6. SmpLoadDataFromRegistry calls SmpInitializeDosDevices to define the symbolic links for 

MS-DOS device names (such as COM1 and LPT1).

 7. SmpLoadDataFromRegistry creates the \Sessions directory in the object manager’s 

namespace (for multiple sessions).

 8. SmpLoadDataFromRegistry runs any programs defined in HKLM\SYSTEM\Current-

Control Set\Control\Session Manager\BootExecute with SmpExecuteCommand. Typically, 

this value contains one command to run Autochk (the boot-time version of Chkdsk).

 9. SmpLoadDataFromRegistry calls SmpProcessFileRenames to perform delayed file 

rename and delete operations as directed by HKLM\SYSTEM\CurrentControlSet\
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Control\Session Manager\PendingFileRenameOperations and HKLM\SYSTEM\

CurrentControlSet\Control\Session Manager\PendingFileRenameOperations2. 

 10. SmpLoadDataFromRegistry calls SmpCreatePagingFiles to create additional paging files. 

Paging file configuration is stored under HKLM\SYSTEM\CurrentControlSet\Control\

Session Manager\Memory Management\PagingFiles.

 11. SmpLoadDataFromRegistry initializes the registry by calling the native function 

NtInitializeRegistry. The configuration manager builds the rest of the registry by load-

ing the registry hives for the HKLM\SAM, HKLM\SECURITY, and HKLM\SOFTWARE 

keys. Although HKLM\SYSTEM\CurrentControlSet\Control\hivelist locates the hive files 

on disk, the configuration manager is coded to look for them in \Windows\System32\

Config.

 12. SmpLoadDataFromRegistry calls SmpCreateDynamicEnvironmentVariables to add 

system environment variables that are defined in HKLM\SYSTEM\CurrentControlSet\

Session Manager\Environment, as well as processor-specific environment variables such 

as NUMBER_PROCESSORS, PROCESSOR_ARCHITECTURE, and PROCESSOR_LEVEL.

 13. SmpLoadDataFromRegistry runs any programs defined in HKLM\SYSTEM\Current-

ControlSet\Control\Session Manager\SetupExecute with SmpExecuteCommand. 

Typically, this value is set only if Windows is being booted as part of the second stage 

of installation and Setupcl.exe is the default value.

 14. SmpLoadDataFromRegistry calls SmpConfigureSharedSessionData to initialize the list of 

subsystems that will be started in each session (both immediately and deferred) as well 

as the Session 0 initialization command (which, by default, is to launch the Wininit.exe 

process). The initialization command can be overridden by creating a string value called 

S0InitialCommand in HKLM\SYSTEM\CurrentControlSet\Control\Session Manager and 

setting it as the path to another program.

 15. SmpLoadDataFromRegistry calls SmpInitializeKnownDlls to open known DLLs, and 

creates section objects for them in the \Knowndlls directory of the object man-

ager namespace. The list of DLLs considered known is located in HKLM\SYSTEM\

CurrentControlSet\Control\Session Manager\KnownDLLs, and the path to the directory 

in which the DLLs are located is stored in the Dlldirectory value of the key.

 16. Finally, SmpLoadDataFromRegistry calls SmpTranslateSystemPartitionInformation to 

convert the SystemPartition key stored in HKLM\SYSTEM\Setup, which is stored in 

native NT object manager path format, to a volume drive letter stored in the BootDir 

value. Among other components, Windows Update uses this registry key to figure out 

what the system volume is.

 17. At this point, SmpLoadDataFromRegistry returns to SmpInit, which returns to the 

main thread entry point. Smss then creates the number of initial sessions that were 

defined (typically, only one, session 0, but you can change this number through the 

NumberOfInitialSessions registry value in the Smss registry key mentioned earlier) by 
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calling SmpCreateInitialSession, which creates an Smss process for each user session. 

This function’s main job is to call SmpStartCsr to start Csrss in each session.

 18. As part of Csrss’s initialization, it loads the kernel-mode part of the Windows subsystem 

(Win32k.sys). The initialization code in Win32k.sys uses the video driver to switch the 

screen to the resolution defined by the default profile, so this is the point at which the 

screen changes from the VGA mode the boot video driver uses to the default resolution 

chosen for the system.

 19. Meanwhile, each spawned Smss in a different user session starts the other subsystem 

processes, such as Psxss if the Subsystem for Unix-based Applications feature was 

installed. (See Chapter 3 for more information on subsystem processes.)

 20. The first Smss from session 0 executes the Session 0 initialization command (described 

in step 14), by default launching the Windows initialization process (Wininit). Other 

Smss instances start the interactive logon manager process (Winlogon), which, unlike 

Wininit, is hardcoded. The startup steps of Wininit and Winlogon are described shortly.

Pending File Rename Operations

The fact that executable images and DLLs are memory-mapped when they are used 

makes it impossible to update core system files after Windows has finished boot-

ing (unless hotpatching technology is used, which is only for Microsoft patches to 

the operating system). The MoveFileEx Windows API has an option to specify that 

a file move be delayed until the next boot. Service packs and hotfixes that must 

update in-use  memory-mapped files install replacement files onto a system in tem-

porary locations and use the MoveFileEx API to have them replace otherwise in-

use files. When used with that option, MoveFileEx simply records commands in the 

PendingFileRenameOperations and PendingFileRenameOperations2 values under 

HKLM\SYSTEM\CurrentControlSet\Control\Session Manager. These registry values are 

of type MULTI_SZ, where each operation is specified in pairs of file names: the first 

file name is the source location, and the second is the target location. Delete opera-

tions use an empty string as their target path. You can use the Pendmoves utility from 

Windows Sysinternals (www.microsoft.com/technet/sysinternals) to view registered 

delayed rename and delete commands.

After performing these initialization steps, the main thread in Smss waits forever on the pro-

cess handle of Winlogon, while the other ALPC threads wait for messages to create new ses-

sions or subsystems. If either Wininit or Csrss terminate unexpectedly, the kernel crashes the 

system because these processes are marked as critical. If Winlogon terminates unexpectedly, 

the session associated with it is logged off.
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Wininit then performs its startup steps, such as creating the initial window station and desk-

top objects. It also configures the Session 0 window hook, which is used by the Interactive 

Services Detection service (UI0Detect.exe) to provide backward compatibility with inter-

active services (see Chapter 4 for more information on services). Wininit then creates the 

service control manager (SCM) process (\Windows\System32\Services.exe), which loads all 

services and device drivers marked for auto-start, and the Local Security Authority subsys-

tem (Lsass) process (\Windows\System32\Lsass.exe). Finally, it loads the local session man-

ager (\Windows\System32\Lsm.exe). On session 1 and beyond, Winlogon runs instead and 

loads the registered credential providers for the system (by default, the Microsoft credential 

provider supports password-based and smartcard-based logons) into a child process called 

LogonUI (\Windows\System32\Logonui.exe, which is responsible for displaying the logon 

interface. (For more details on the startup sequence for Wininit, Winlogon, and Lsass, see the 

section “Winlogon Initialization” in Chapter 6.)

After the SCM initializes the auto-start services and drivers and a user has successfully logged 

on at the console, the SCM deems the boot successful. The registry’s last known good 

control set (as indicated by HKLM\SYSTEM\Select\LastKnownGood) is updated to match 

\CurrentControlSet.

Note Because noninteractive servers might never have an interactive logon, they might not 

get LastKnownGood updated to reflect the control set used for a successful boot. You can over-

ride the definition of a successful boot by setting HKLM\SOFTWARE\Microsoft\Windows NT\

CurrentVersion\Winlogon\ReportBootOk to 0, writing a custom boot verification program that 

calls the NotifyBootConfigStatus Windows API when a boot is successful, and entering the path to 

the verification program in HKLM\SYSTEM\CurrentControlSet\Control\BootVerificationProgram.

After launching the SCM, Winlogon waits for an interactive logon notification from the 

credential provider. When it receives a logon and validates the logon (a process for which 

you can find more information in the section “User Logon Steps” in Chapter 6), Winlogon 

loads the registry hive from the profile of the user logging in and maps it to HKCU. It then 

sets the user’s environment variables that are stored in HKCU\Environment and notifies the 

Winlogon notification packages registered in HKLM\SOFTWARE\Microsoft\Windows NT\

CurrentVersion\Winlogon\Notify that a logon has occurred.

Winlogon next starts the shell by launching the executable or executables specified in HKLM\

SOFTWARE\Microsoft\Windows NT\CurrentVersion\WinLogon\Userinit (with multiple exe-

cutables separated by commas) that by default points at \Windows\System32\Userinit.exe. 

Userinit.exe performs the following steps:

 1. Processes the user scripts specified in HKCU\Software\Policies\Microsoft\Windows\

System\Scripts and the machine logon scripts in HKLM\SOFTWARE\Policies\Microsoft\

Windows\System\Scripts. (Because machine scripts run after user scripts, they can over-

ride user settings.)



1098 Windows Internals, Fifth Edition

 2. If Group Policy specifies a user profile quota, starts \Windows\System32\Proquota.exe 

to enforce the quota for the current user.

 3. Launches the comma-separated shell or shells specified in HKCU\Software\Microsoft\

Windows NT\CurrentVersion\Winlogon\Shell. If that value doesn’t exist, Userinit.exe 

launches the shell or shells specified in HKLM\SOFTWARE\Microsoft\Windows NT\

CurrentVersion\Winlogon\Shell, which is by default Explorer.exe.

Winlogon then notifies registered network providers that a user has logged in. The Microsoft 

network provider, Multiple Provider Router (\Windows\System32\Mpr.dll), restores the user’s 

persistent drive letter and printer mappings stored in HKCU\Network and HKCU\Printers, 

respectively. Figure 13-3 shows the process tree as seen in Process Monitor after a logon 

(using its boot logging capability). Note the Smss processes that are dimmed (meaning that 

they have since exited). These refer to the spawned copies that initialized each session.

FIGURE 13-3 Process tree during logon
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ReadyBoot

Windows uses the standard logical boot-time prefetcher (described in Chapter 9) if the sys-

tem has less than 512 MB of memory, but if the system has 700 MB or more of RAM, it uses 

an in-RAM cache to optimize the boot process. The size of the cache depends on the total 

RAM available, but it is large enough to create a reasonable cache and yet allow the system 

the memory it needs to boot smoothly.

After every boot, the ReadyBoost service (see Chapter 9 for information on ReadyBoost) uses 

idle CPU time to calculate a boot-time caching plan for the next boot. It analyzes file trace 

information from the five previous boots and identifies which files were accessed and where 

they are located on disk. It stores the processed traces in %SystemRoot%\Prefetch\Readyboot 

as .fx files and saves the caching plan under HKLM\SYSTEM\CurrentControlSet\Services\

Ecache\Parameters in REG_BINARY values named for internal disk volumes they refer to.

The cache is implemented by the same device driver that implements ReadyBoost caching 

(Ecache.sys), but the cache’s population is guided by the boot plan previously stored in the 

registry. Although the boot cache is compressed like the ReadyBoost cache, another differ-

ence between ReadyBoost and ReadyBoot cache management is that while in ReadyBoot 

mode, other than the ReadyBoost service’s updates, the cache doesn’t change to reflect data 

that’s read or written during the boot. The ReadyBoost service deletes the cache 90 seconds 

after the start of the boot, or if other memory demands warrant it, and records the cache’s 

statistics in HKLM\SYSTEM\CurrentControlSet\Services\Ecache\Parameters\ReadyBootStats, 

as shown in Figure 13-4.

FIGURE 13-4 ReadyBoot statistics
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Images That Start Automatically

In addition to the Userinit and Shell registry values in Winlogon’s key, there are many 

other registry locations and directories that default system components check and process 

for automatic process startup during the boot and logon processes. The Msconfig utility 

(Windows\System32\Msconfig.exe) displays the images configured by several of the locations. 

The Autoruns tool, which you can download from Sysinternals and that is shown in Figure 

13-5, examines more locations than Msconfig and displays more information about the 

images configured to automatically run. By default, Autoruns shows only the locations that 

are configured to automatically execute at least one image, but selecting the Include Empty 

Locations entry on the Options menu causes Autoruns to show all the locations it inspects. 

The Options menu also has selections to direct Autoruns to hide Microsoft entries, but you 

should always combine this option with Verify Image Signatures; otherwise, you risk hiding 

malicious programs that include false information about their company name information.

FIGURE 13-5 The Autoruns tool available from Sysinternals

EXPERIMENT: Autoruns

Many users are unaware of how many programs execute as part of their logon. Original 

equipment manufacturers (OEMs) often configure their systems with add-on utilities 

that execute in the background using registry values or file system directories pro-

cessed for automatic execution and so are not normally visible. See what programs are 

configured to start automatically on your computer by running the Autoruns utility 

from Sysinternals. Compare the list shown in Autoruns with that shown in Msconfig 

and identify any differences. Then ensure that you understand the purpose of each 

program.
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Troubleshooting Boot and Startup Problems

This section presents approaches to solving problems that can occur during the Windows 

startup process as a result of hard disk corruption, file corruption, missing files, and third-

party driver bugs. First we describe three Windows boot-problem recovery modes: last 

known good, safe mode, and Windows Recovery Environment (WinRE). Then we present 

common boot problems, their causes, and approaches to solving them. The solutions refer to 

last known good, safe mode, WinRE, and other tools that ship with Windows.

Last Known Good

Last known good (LKG) is a useful mechanism for getting a system that crashes during the 

boot process back to a bootable state. Because the system’s configuration settings are stored 

in HKLM\SYSTEM\CurrentControlSet\Control and driver and service configuration is stored 

in HKLM\SYSTEM\CurrentControlSet\Services, changes to these parts of the registry can 

render a system unbootable. For example, if you install a device driver that has a bug that 

crashes the system during the boot, you can press the F8 key during the boot and select 

last known good from the resulting menu. The system marks the control set that it was 

using to boot the system as failed by setting the Failed value of HKLM\SYSTEM\Select and 

then changes HKLM\SYSTEM\Select\Current to the value stored in HKLM\SYSTEM\Select\

LastKnownGood. It also updates the symbolic link HKLM\SYSTEM\CurrentControlSet to point 

at the LastKnownGood control set. Because the new driver’s key is not present in the Services 

subkey of the LastKnownGood control set, the system will boot successfully.

Safe Mode

Perhaps the most common reason Windows systems become unbootable is that a device 

driver crashes the machine during the boot sequence. Because software or hardware config-

urations can change over time, latent bugs can surface in drivers at any time. Windows offers 

a way for an administrator to attack the problem: booting in safe mode. Safe mode is a boot 

configuration that consists of the minimal set of device drivers and services. By relying on 

only the drivers and services that are necessary for booting, Windows avoids loading third-

party and other nonessential drivers that might crash.

When Windows boots, you press the F8 key to enter a special boot menu that contains the 

safe-mode boot options. You typically choose from three safe-mode variations: Safe Mode, 

Safe Mode With Networking, and Safe Mode With Command Prompt. Standard safe mode 

includes the minimum number of device drivers and services necessary to boot successfully. 

Networking-enabled safe mode adds network drivers and services to the drivers and services 

that standard safe mode includes. Finally, safe mode with command prompt is identical to 

standard safe mode except that Windows runs the command prompt application (Cmd.exe) 

instead of Windows Explorer as the shell when the system enables GUI mode.
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Windows includes a fourth safe mode—Directory Services Restore mode—which is different 

from the standard and networking-enabled safe modes. You use Directory Services Restore 

mode to boot the system into a mode where the Active Directory service of a domain con-

troller is offline and unopened. This allows you to perform repair operations on the database 

or restore it from backup media. All drivers and services, with the exception of the Active 

Directory service, load during a Directory Services Restore mode boot. In cases where you 

can’t log on to a system because of Active Directory database corruption, this mode enables 

you to repair the corruption.

Driver Loading in Safe Mode

How does Windows know which device drivers and services are part of standard and 

networking-enabled safe mode? The answer lies in the HKLM\SYSTEM\CurrentControlSet\

Control\SafeBoot registry key. This key contains the Minimal and Network subkeys. Each sub-

key contains more subkeys that specify the names of device drivers or services or of groups 

of drivers. For example, the vga.sys subkey identifies the VGA display device driver that the 

startup configuration includes. The VGA display driver provides basic graphics services for 

any PC-compatible display adapter. The system uses this driver as the safe-mode display 

driver in lieu of a driver that might take advantage of an adapter’s advanced hardware fea-

tures but that might also prevent the system from booting. Each subkey under the SafeBoot 

key has a default value that describes what the subkey identifies; the vga.sys subkey’s default 

value is “Driver”.

The Boot file system subkey has as its default value “Driver Group”. When developers design 

a device driver’s installation script, they can specify that the device driver belongs to a driver 

group. The driver groups that a system defines are listed in the List value of the HKLM\

SYSTEM\CurrentControlSet\Control\ServiceGroupOrder key. A developer specifies a driver 

as a member of a group to indicate to Windows at what point during the boot process the 

driver should start. The ServiceGroupOrder key’s primary purpose is to define the order in 

which driver groups load; some driver types must load either before or after other driver 

types. The Group value beneath a driver’s configuration registry key associates the driver with 

a group.

Driver and service configuration keys reside beneath HKLM\SYSTEM\CurrentControlSet\

Services. If you look under this key, you’ll find the VgaSave key for the VGA display device 

driver, which you can see in the registry is a member of the Video Save group. Any file sys-

tem drivers that Windows requires for access to the Windows system drive are automatically 

loaded as if part of the Boot file system group. Other file system drivers are part of the File 

system group, which the standard and networking-enabled safe-mode configurations also 

include.



 Chapter 13 Startup and Shutdown 1103

When you boot into a safe-mode configuration, the boot loader (Winload) passes an asso-

ciated switch to the kernel (Ntoskrnl.exe) as a command-line parameter, along with any 

switches you’ve specified in the BCD for the installation you’re booting. If you boot into any 

safe mode, Winload sets the safeboot BCD option with a value describing the type of safe 

mode you select. For standard safe mode, Winload sets minimal, and for networking-enabled 

safe mode, it adds network. Winload adds minimal and sets safebootalternateshell for safe 

mode with command prompt and dsrepair for Directory Services Restore mode.

The Windows kernel scans boot parameters in search of the safe-mode switches early during 

the boot, during the InitSafeBoot function, and sets the internal variable InitSafeBootMode 

to a value that reflects the switches the kernel finds. The kernel writes the InitSafeBootMode 

value to the registry value HKLM\SYSTEM\CurrentControlSet\Control\SafeBoot\Option\

OptionValue so that user-mode components, such as the SCM, can determine what boot 

mode the system is in. In addition, if the system is booting in safe mode with command 

prompt, the kernel sets the HKLM\SYSTEM\CurrentControlSet\Control\SafeBoot\Option\

UseAlternateShell value to 1. The kernel records the parameters that Winload passes to it in 

the value HKLM\SYSTEM\CurrentControlSet\Control\SystemStartOptions.

When the I/O manager kernel subsystem loads device drivers that HKLM\SYSTEM\

CurrentControlSet\Services specifies, the I/O manager executes the function IopLoadDriver. 
When the Plug and Play manager detects a new device and wants to dynamically load 

the device driver for the detected device, the Plug and Play manager executes the func-

tion PipCallDriverAddDevice. Both these functions call the function IopSafebootDriverLoad 

before they load the driver in question. IopSafebootDriverLoad checks the value of 

InitSafeBootMode and determines whether the driver should load. For example, if the sys-

tem boots in standard safe mode, IopSafebootDriverLoad looks for the driver’s group, if the 

driver has one, under the Minimal subkey. If IopSafebootDriverLoad finds the driver’s group 

listed, IopSafebootDriverLoad indicates to its caller that the driver can load. Otherwise, 

IopSafebootDriverLoad looks for the driver’s name under the Minimal subkey. If the driver’s 

name is listed as a subkey, the driver can load. If IopSafebootDriverLoad can’t find the driver 

group or driver name subkeys, the driver can’t load. If the system boots in networking-

enabled safe mode, IopSafebootDriverLoad performs the searches on the Network subkey. If 

the system doesn’t boot in safe mode, IopSafebootDriverLoad lets all drivers load.

Note An exception exists regarding the drivers that safe mode excludes from a boot: Winload, 

rather than the kernel, loads any drivers with a Start value of 0 in their registry key, which speci-

fies loading the drivers at boot time. Winload doesn’t check the SafeBoot registry key because 

it assumes that any driver with a Start value of 0 is required for the system to boot success-

fully. Because Winload doesn’t check the SafeBoot registry key to identify which drivers to load, 

Winload loads all boot-start drivers (and later Ntoskrnl starts them).
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Safe-Mode-Aware User Programs

When the service control manager (SCM) user-mode component (which Services.exe imple-

ments) initializes during the boot process, the SCM checks the value of HKLM\SYSTEM\

CurrentControlSet\Control\SafeBoot\Option\OptionValue to determine whether the system 

is performing a safe-mode boot. If so, the SCM mirrors the actions of IopSafebootDriverLoad. 

Although the SCM processes the services listed under HKLM\SYSTEM\CurrentControlSet\

Services, it loads only services that the appropriate safe-mode subkey specifies by name. 

You can find more information on the SCM initialization process in the section “Services” in 

Chapter 4.

Userinit, the component that initializes a user’s environment when the user logs on 

(\Windows\System32\Userinit.exe), is another user-mode component that needs to know 

whether the system is booting in safe mode. It checks the value of HKLM\SYSTEM\Current-

ControlSet\Control\SafeBoot\Option\UseAlternateShell. If this value is set, Userinit runs the 

program specified as the user’s shell in the value HKLM\SYSTEM\CurrentControlSet\Control\

SafeBoot\AlternateShell rather than executing Explorer.exe. Windows writes the program 

name Cmd.exe to the AlternateShell value during installation, making the Windows command 

prompt the default shell for safe mode with command prompt. Even though the command 

prompt is the shell, you can type Explorer.exe at the command prompt to start Windows 

Explorer, and you can run any other GUI program from the command prompt as well.

How does an application determine whether the system is booting in safe mode? By call-

ing the Windows GetSystemMetrics(SM_CLEANBOOT) function. Batch scripts that need to 

perform certain operations when the system boots in safe mode look for the SAFEBOOT_

OPTION environment variable because the system defines this environment variable only 

when booting in safe mode.

Boot Logging in Safe Mode

When you direct the system to boot into safe mode, Winload hands the string specified by 

the bootlog option to the Windows kernel as a parameter, together with the parameter that 

requests safe mode. When the kernel initializes, it checks for the presence of the boot log 

parameter whether or not any safe-mode parameter is present. If the kernel detects a boot 

log string, the kernel records the action the kernel takes on every device driver it consid-

ers for loading. For example, if IopSafebootDriverLoad tells the I/O manager not to load a 

driver, the I/O manager calls IopBootLog to record that the driver wasn’t loaded. Likewise, 

after IopLoadDriver successfully loads a driver that is part of the safe-mode configuration, 

IopLoadDriver calls IopBootLog to record that the driver loaded. You can examine boot logs 

to see which device drivers are part of a boot configuration.
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Because the kernel wants to avoid modifying the disk until Chkdsk executes, late in the boot 

process, IopBootLog can’t simply dump messages into a log file. Instead, IopBootLog records 

messages in the HKLM\SYSTEM\CurrentControlSet\BootLog registry value. As the first 

 user-mode component to load during a boot, the Session Manager (\Windows\System32\

Smss.exe) executes Chkdsk to ensure the system drives’ consistency and then completes 

registry initialization by executing the NtInitializeRegistry system call. The kernel takes this 

action as a cue that it can safely open a log file on the disk, which it does, invoking the func-

tion IopCopyBootLogRegistryToFile. This function creates the file Ntbtlog.txt in the Windows 

system directory (\Windows by default) and copies the contents of the BootLog registry value 

to the file. IopCopyBootLogRegistryToFile also sets a flag for IopBootLog that lets IopBootLog 

know that writing directly to the log file, rather than recording messages in the registry, is 

now OK. The following output shows the partial contents of a sample boot log:

Microsoft (R) Windows (R) Version 6.0 (Build 6000) 

10  4 2007 09:04:53.375 

Loaded driver \SystemRoot\system32\ntkrnlpa.exe 

Loaded driver \SystemRoot\system32\hal.dll 

Loaded driver \SystemRoot\system32\kdcom.dll 

Loaded driver \SystemRoot\system32\mcupdate_GenuineIntel.dll 

Loaded driver \SystemRoot\system32\PSHED.dll 

Loaded driver \SystemRoot\system32\BOOTVID.dll 

Loaded driver \SystemRoot\system32\CLFS.SYS 

Loaded driver \SystemRoot\system32\CI.dll 

Loaded driver \SystemRoot\system32\drivers\Wdf01000.sys 

Loaded driver \SystemRoot\system32\drivers\WDFLDR.SYS 

Loaded driver \SystemRoot\system32\drivers\acpi.sys 

Loaded driver \SystemRoot\system32\drivers\WMILIB.SYS 

Loaded driver \SystemRoot\system32\drivers\msisadrv.sys 

Loaded driver \SystemRoot\system32\drivers\pci.sys 

Loaded driver \SystemRoot\system32\drivers\volmgr.sys 

Loaded driver \SystemRoot\system32\DRIVERS\compbatt.sys 

Loaded driver \SystemRoot\system32\DRIVERS\BATTC.SYS 

Loaded driver \SystemRoot\System32\drivers\mountmgr.sys 

Loaded driver \SystemRoot\system32\drivers\intelide.sys 

Loaded driver \SystemRoot\system32\drivers\PCIIDEX.SYS 

Loaded driver \SystemRoot\system32\DRIVERS\pciide.sys 

Loaded driver \SystemRoot\System32\drivers\volmgrx.sys 

Loaded driver \SystemRoot\system32\drivers\atapi.sys 

Loaded driver \SystemRoot\system32\drivers\ataport.SYS 

Loaded driver \SystemRoot\system32\drivers\fltmgr.sys 

Loaded driver \SystemRoot\system32\drivers\fileinfo.sys 

§ 

Did not load driver @battery.inf,%acpi\acpi0003.devicedesc%;Microsoft AC Adapter 

Did not load driver @battery.inf,%acpi\pnp0c0a.devicedesc%;Microsoft ACPI-Compliant Control 

Method Battery 

Did not load driver @oem46.inf,%nvidia_g71.dev_0297.1%;NVIDIA GeForce Go 7950 GTX 

Did not load driver @oem5.inf,%nic_mpciex%;Intel(R) PRO/Wireless 3945ABG Network Connection 

Did not load driver @netb57vx.inf,%bcm5750a1clnahkd%;Broadcom NetXtreme 57xx Gigabit 

Controller 

Did not load driver @sdbus.inf,%pci\cc_080501.devicedesc%;SDA Standard Compliant SD Host 

Controller 

§
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Windows Recovery Environment (WinRE)

Safe mode is a satisfactory fallback for systems that become unbootable because a device 

driver crashes during the boot sequence, but in some situations a safe-mode boot won’t help 

the system boot. For example, if a driver that prevents the system from booting is a member 

of a Safe group, safe-mode boots will fail. Another example of a situation in which safe mode 

won’t help the system boot is when a third-party driver, such as a virus scanner driver, that 

loads at the boot prevents the system from booting. (Boot-start drivers load whether or not 

the system is in safe mode.) Other situations in which safe-mode boots will fail are when a 

system module or critical device driver file that is part of a safe-mode configuration becomes 

corrupt or when the system drive’s Master Boot Record (MBR) is damaged.

You can get around these problems by using the Windows Recovery Environment. The 

Windows Recovery Environment provides an assortment of tools and automated repair tech-

nologies to automatically fix the most common startup problems. It includes five main tools:

Startup Repair An automated tool that detects the most common Windows startup 

problems and automatically attempts to repair them.

System Restore Allows restoring to a previous restore point in cases in which you 

cannot boot the Windows installation to do so, even in safe mode.

Complete PC Restore Called ASR (Automated System Recovery) in previous versions 

of Windows, this restores a Windows installation from a complete backup, not just a 

system restore point, which may not contain all damaged files and lost data.

Windows Memory Diagnostic Tool Performs memory diagnostic tests that check for 

signs of faulty RAM. Faulty RAM can be the reason for random kernel and application 

crashes and erratic system behavior.

Command Prompt For cases where troubleshooting or repair requires manual inter-

vention (such as copying files from another drive or manipulating the BCD), you can 

use the command prompt to have a full Windows shell that can launch any Windows 

program—unlike the Recovery Console on earlier versions of Windows, which only sup-

ported a limited set of specialized commands.

When you boot a system from the Windows CD or boot disks, Windows Setup gives you 

the choice of installing Windows or repairing an existing installation. If you choose to repair 

an installation, the system displays a dialog box called System Recovery Options, shown in 

Figure 13-6.

Some OEMs install WinRE to a recovery partition on their systems. On these systems, you can 

access WinRE by using the F8 option to access advanced boot options during Bootmgr exe-

cution. If you see an option Repair Your Computer, your machine has a local hard disk copy. 

By following the instructions at the Microsoft WinRE blog (http://blogs.msdn.com/winre) you 

can also install WinRE on the hard disk yourself from your Windows installation media and 

Windows Automated Installation Kit (AIK).
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FIGURE 13-6 The System Recovery Options dialog box

Additionally, if your system failed to boot as the result of damaged files or any other reason 

that Winload can understand, it instructs Bootmgr to automatically start WinRE at the next 

reboot cycle. Instead of the dialog box shown in Figure 13-6, the recovery environment will 

automatically launch the Startup Repair tool, shown in Figure 13-7.

FIGURE 13-7 The Startup Repair tool

At the end of the scan and repair cycle, the tool will automatically attempt to fix any damage 

found, including replacing system files from the installation media. You can click the details 

link to see information about the damage that was fixed. For example, in Figure 13-8, the 

Startup Repair tool fixed a damaged boot sector.
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FIGURE 13-8 Details view of the Startup Repair tool

If the Startup Repair tool cannot automatically fix the damage, or if you cancel the operation, 

you’ll get a chance to try other methods and the System Recovery Options dialog box will be 

displayed.

Boot Status File

Windows uses a boot status file (%SystemRoot%\Bootstat.dat) to record the fact that 

it has progressed through various stages of the system life cycle, including boot and 

shutdown. This allows the Boot Manager, Windows loader, and the Startup Repair 

tool to detect abnormal shutdown or a failure to shut down cleanly and offer the user 

recovery and diagnostic boot options, like Last Known Good and Safe Mode. This 

binary file contains information through which the system reports the success of the 

following phases of the system life cycle:

Boot (the definition of a successful boot is the same as the one used for deter-

mining Last Known Good status, which was described earlier)

Shutdown

Resume from hibernate or suspend

The boot status file also indicates whether a problem was last detected and the recov-

ery options shown, indicating that the user has been made aware of the problem and 

taken action. Runtime Library APIs (Rtl) in Ntdll.dll contain the private interfaces that 

Windows uses to read from and write to the file. Like the BCD, it cannot be edited by 

users.
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Solving Common Boot Problems

This section describes problems that can occur during the boot process, describing their 

symptoms, causes, and approaches to solving them. To help you locate a problem that you 

might encounter, they are organized according to the place in the boot at which they occur. 

Note that for most of these problems, you should be able to simply boot into the Windows 

Recovery Environment and allow the Startup Repair tool to scan your system and perform 

any automated repair tasks.

MBR Corruption

Symptoms A system that has Master Boot Record (MBR) corruption will execute the 

BIOS power-on self test (POST), display BIOS version information or OEM branding, 

switch to a black screen, and then hang. Depending on the type of corruption the MBR 

has experienced, you might see one of the following messages: “Invalid partition table,” 

“Error loading operating system,” or “Missing operating system.”

Cause The MBR can become corrupt because of hard-disk errors, disk corruption as a 

result of a driver bug while Windows is running, or intentional scrambling as a result of 

a virus.

Resolution Boot into the Windows Recovery Environment, choose the Command 

Prompt option, and then execute the bootrec /fixmbr command. This command 

replaces the executable code in the MBR.

Boot Sector Corruption

Symptoms Boot sector corruption can look like MBR corruption, where the system 

hangs after BIOS POST at a black screen, or you might see the messages “A disk read 

error occurred,” “BOOTMGR is missing,” or “ BOOTMGR is compressed” displayed on a 

black screen.

Cause The boot sector can become corrupt because of hard-disk errors, disk corrup-

tion as a result of a driver bug while Windows is running, or intentional scrambling as a 

result of a virus.

Resolution Boot into the Windows Recovery Environment, choose the Command 

Prompt option, and then execute the bootrec /fixboot command. This command 

rewrites the boot sector of the volume that you specify. You should execute the com-

mand on both the system and boot volumes if they are different.

BCD Misconfiguration

Symptom After BIOS POST, you’ll see a message that begins “Windows could not start 

because of a computer disk hardware configuration problem,” “Could not read from 

selected boot disk,” or “Check boot path and disk hardware.”
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Cause The BCD has been deleted, become corrupt, or no longer references the boot 

volume because the addition of a partition has changed the name of the volume.

Resolution Boot into the Windows Recovery Environment, choose the Command 

Prompt option, and then execute the bootrec /scanos and bootrec /rebuildbcd com-

mands. These commands will scan each volume looking for Windows installations. 

When they discover an installation, they will ask you whether they should add it to the 

BCD as a boot option and what name should be displayed for the installation in the 

boot menu. For other kinds of BCD-related damage, you can also use Bcdedit.exe to 

perform tasks such as building a new BCD from scratch or cloning an existing good 

copy.

System File Corruption

Symptoms There are several ways the corruption of system files—which include 

executables, drivers, or DLLs—can manifest. One way is with a message on a black 

screen after BIOS POST that says, “Windows could not start because the following 

file is missing or corrupt,” followed by the name of a file and a request to reinstall 

the file. Another way is with a blue screen crash during the boot with the text, “STOP: 

0xC0000135 {Unable to Locate Component}.”

Causes The volume on which a system file is located is corrupt or one or more system 

files have been deleted or become corrupt.

Resolution Boot into the Windows Recovery Environment, choose the Command 

Prompt option, and then execute the chkdsk command. Chkdsk will attempt to repair 

volume corruption. If Chkdsk does not report any problems, obtain a backup copy 

of the system file in question. One place to check is in the \Windows\winsxs\Backup 

directory, in which Windows places copies of many system files for access by Windows 

Resource Protection. (See the “Windows Resource Protection” sidebar.) If you cannot 

find a copy of the file there, see if you can locate a copy from another system in the 

network. Note that the backup file must be from the same service pack or hotfix as the 

file that you are replacing.

In some cases, multiple system files are deleted or become corrupt, so the repair process can 

involve multiple reboots and boot failures as you repair the files one by one. If you believe 

the system file corruption to be extensive, you should consider restoring the system from a 

backup image, such as one generated by Windows Vista CompletePC Backup or from a sys-

tem restore point.

When you run Windows Backup (located in the System folder under Accessories on the Start 

menu), you can generate a CompletePC backup image, which includes all the files on the sys-

tem and boot volumes, plus a floppy disk on which it stores information about the system’s 

disks and volumes. To restore a system from an ASR backup image, back up boot from the 

Windows setup media and press F2 when prompted.
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If you do not have a backup from which to restore, a last resort is to execute a Windows 

repair install: boot from the Windows setup media, and follow the wizard as if you were 

going to perform a new installation. The wizard will ask you whether you want to perform a 

repair or fresh install. When you tell it that you want to repair, Setup reinstalls all system files, 

leaving your application data and registry settings intact.

Windows Resource Protection

To preserve the integrity of the many components involved in the boot process, 

as well as other critical Windows files, libraries, and applications, Windows imple-

ments a technology called Windows Resource Protection (WRP). WRP is implemented 

through access control lists (ACLs) that protect critical system files on the machine. It 

is also exposed through an API (located in \Windows\System32\Sfc.dll and \Windows\

System32\Sfc_os.dll) that can be accessed by the Sfc.exe utility to manually check a file 

for corruption and restore it.

WRP will also protect entire critical folders if required, even locking down the folder so 

that it is inaccessible by administrators (without modifying the access control list on the 

folder). The only supported way to modify WRP-protected files is through the Windows 

Modules Installer service, which can run under the TrustedInstaller account. This service 

is used for the installation of patches, service packs, hotfixes, and Windows Update. 

This account has access to the various protected files and is trusted by the system (as 

its name implies) to modify critical files and replace them. WRP also protects critical 

registry keys, and it may even lock entire registry trees if all the values and subkeys are 

considered to be critical.

Unlike the previous incarnation of WRP, called WFP (Windows File Protection), this 

implementation does not make use of file and directory change notifications to prevent 

replacement of critical files. Instead, the ACL on protected files, directories, or registry 

keys is set so that only the TrustedInstaller account is able to modify or delete these 

files. Application developers can use the SfcIsFileProtected or SfcIsKeyProtected APIs to 

check whether a file or registry key is locked down.

For backward compatibility, certain installers are considered well-known—an applica-

tion compatibility shim exists that will suppress the “access denied” error that certain 

installers would receive while attempting to modify WRP-protected resources. Instead, 

the installer receives a fake “success” code, but the modification isn’t made. This virtual-

ization is similar to the User Access Control (UAC) virtualization technology discussed in 

Chapter 6, but it applies to write operations as well. It applies if the following are true:

The application is a legacy application, meaning that it does not contain a 

manifest file compatible with Windows Vista or Windows Server 2008 with the 

requestedExecutionLevel value set.
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The application is trying to modify a WRP-protected resource (the file or reg-

istry key contains the TrustedInstaller SID).

The application is being run under an administrator account (always true on 

systems with UAC enabled because of automatic installer program detection).

WRP copies files that are needed to restart Windows to the cache directory located at 

\Windows\winsxs\Backup. Critical files that are not needed to restart Windows are not 

copied to the cache directory. The size of the cache directory and the list of files copied 

to the cache cannot be modified. To recover a file from the cache directory, you can 

use the System File Checker (Sfc.exe) tool, which can scan your system for modified pro-

tected files and restore them from a good copy.

System Hive Corruption

Symptoms If the System registry hive (which is discussed along with hive files in the 

section “The Registry” in Chapter 4) is missing or corrupted, Winload will display the 

message “Windows could not start because the following file is missing or corrupt: 

\WINDOWS\SYSTEM32\CONFIG\SYSTEM,” on a black screen after the BIOS POST.

Causes The System registry hive, which contains configuration information necessary 

for the system to boot, has become corrupt or has been deleted.

Resolution Boot into the Windows Recovery Environment, choose the Command 

Prompt option, and then execute the chkdsk command. If the problem is not corrected, 

obtain a backup of the System registry hive. Windows makes copies of the registry 

hives every 12 hours (keeping the immediately previous copy with a .OLD extension) in 

a folder called \Windows\System32\Config\RegBack, so copy the file named System to 

\Windows\System32\Config.

If System Restore is enabled (System Restore is discussed in Chapter 11), you can often obtain 

a more recent backup of the registry hives, including the System hive, from the most recent 

restore point. You can choose System Restore from the Windows Recovery Environment to 

restore your registry from the last restore point.

Post–Splash Screen Crash or Hang

Symptoms Problems that occur after the Windows splash screen displays, the desktop 

appears, or you log on fall into this category and can appear as a blue screen crash or a 

hang, where the entire system is frozen or the mouse cursor tracks the mouse but the 

system is otherwise unresponsive.
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Causes These problems are almost always a result of a bug in a device driver, but they 

can sometimes be the result of corruption of a registry hive other than the System hive.

Resolution You can take several steps to try and correct the problem. The first thing 

you should try is the last known good configuration. Last known good (LKG), which is 

described earlier in this chapter and in the “Services” section of Chapter 4, consists of 

the registry control set that was last used to boot the system successfully. Because a 

control set includes core system configuration and the device driver and services regis-

tration database, using a version that does not reflect changes or newly installed driv-

ers or services might avoid the source of the problem. You access last known good by 

pressing the F8 key early in the boot process to access the same menu from which you 

can boot into safe mode.

As stated earlier in the chapter, when you boot into LKG, the system saves the control set that 

you are avoiding and labels it as the failed control set. You can leverage the failed control set 

in cases where LKG makes a system bootable to determine what was causing the system to 

fail to boot by exporting the contents of the current control set of the successful boot and 

the failed control set to .reg files. You do this by using the Regedit’s export functionality, 

which you access under the File menu:

 1. Run Regedit, and select HKLM\SYSTEM\CurrentControlSet.

 2. Select Export from the File menu, and save to a file named good.reg.

 3. Open HKLM\SYSTEM\Select, read the value of Failed, and select the subkey named 

HKLM\SYSTEM\ControlXXX, where XXX is the value of Failed.

 4. Export the contents of the control set to bad.reg.

 5. Use WordPad (which is found under Accessories on the Start menu) to globally replace 

all instances of CurrentControlSet in good.reg with ControlSet.

 6. Use WordPad to change all instances of ControlXXX (replacing XXX with the value of 

the Failed control set) in bad.reg with ControlSet.

 7. Run Windiff from the Support Tools, and compare the two files.

The differences between a failed control set and a good one can be numerous, so you 

should focus your examination on changes beneath the Control subkey as well as under the 

Parameters subkeys of drivers and services registered in the Services subkey. Ignore changes 

made to Enum subkeys of driver registry keys in the Services branch of the control set.

If the problem you’re experiencing is caused by a driver or service that was present on the 

system since before the last successful boot, LKG will not make the system bootable. Similarly, 

if a problematic configuration setting changed outside the control set or was made before 

the last successful boot, LKG will not help. In those cases, the next option to try is safe mode 
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(described earlier in this section). If the system boots successfully in safe mode and you know 

that particular driver was causing the normal boot to fail, you can disable the driver by using 

the Device Manager (accessible from the Hardware tab of the System Control Panel item). To 

do so, select the driver in question and choose Disable from the Action menu. If you recently 

updated the driver, and believe that the update introduced a bug, you can choose to roll 

back the driver to its previous version instead, also with the Device Manager. To restore a 

driver to its previous version, double-click on the device to open its Properties dialog box 

and click Roll Back Driver on the Driver tab.

On systems with System Restore enabled, an option when LKG fails is to roll back all system 

state (as defined by System Restore) to a previous point in time. Safe mode detects the exis-

tence of restore points, and when they are present it will ask you whether you want to log 

on to the installation to perform a manual diagnosis and repair or launch the System Restore 

Wizard. Using System Restore to make a system bootable again is attractive when you know 

the cause of a problem and want the repair to be automatic or when you don’t know the 

cause but do not want to invest time to determine the cause.

If System Restore is not an option or you want to determine the cause of a crash during the 

normal boot and the system boots successfully in safe mode, attempt to obtain a boot log 

from the unsuccessful boot by pressing F8 to access the special boot menu and choosing 

the boot logging option. As described earlier in this chapter, Session Manager (\Windows\

System32\Smss.exe) saves a log of the boot that includes a record of device drivers that the 

system loaded and chose not to load to \Windows\ntbtlog.txt, so you’ll obtain a boot log if 

the crash or hang occurs after Session Manager initializes. When you reboot into safe mode, 

the system appends new entries to the existing boot log. Extract the portions of the log file 

that refer to the failed attempt and safe-mode boots into separate files. Strip out lines that 

contain the text “Did not load driver”, and then compare them with a text comparison tool 

such as Windiff. One by one, disable the drivers that loaded during the normal boot but not 

in the safe-mode boot until the system boots successfully again. (Then reenable the drivers 

that were not responsible for the problem.)

If you cannot obtain a boot log from the normal boot (for instance, because the system is 

crashing before Session Manager initializes), if the system also crashes during the safe-mode 

boot, or if a comparison of boot logs from the normal and safe-mode boots do not reveal 

any significant differences (for example, when the driver that’s crashing the normal boot 

starts after Session Manager initializes), the next tool to try is the Driver Verifier combined 

with crash dump analysis. (See Chapter 14 for more information on both these topics.)
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Shutdown

If someone is logged on and a process initiates a shutdown by calling the Windows Exit-
WindowsEx function, a message is sent to that session’s Csrss instructing it to perform the 

shutdown. Csrss in turn impersonates the caller and sends an RPC message to Winlogon, tell-

ing it to perform a system shutdown. Winlogon then impersonates the currently logged-on 

user (who might or might not have the same security context as the user who initiated the 

system shutdown) and calls ExitWindowsEx with some special internal flags. Again, this call 

causes a message to be sent to the Csrss process inside that session, requesting a system 

shutdown.

This time, Csrss sees that the request is from Winlogon and loops through all the pro-

cesses in the logon session of the interactive user (again, not the user who requested a 

shutdown) in reverse order of their shutdown level. A process can specify a shutdown level, 

which indicates to the system when they want to exit with respect to other processes, by 

calling SetProcessShutdownParameters. Valid shutdown levels are in the range 0 through 

1023, and the default level is 640. Explorer, for example, sets its shutdown level to 2 and 

Task Manager specifies 1. For each process that owns a top-level window, Csrss sends the 

WM_QUERYENDSESSION message to each thread in the process that has a Windows mes-

sage loop. If the thread returns TRUE, the system shutdown can proceed. Csrss then sends 

the WM_ENDSESSION Windows message to the thread to request it to exit. Csrss waits the 

number of seconds defined in HKCU\Control Panel\Desktop\HungAppTimeout for the thread 

to exit. (The default is 5000 milliseconds.)

If the thread doesn’t exit before the timeout, Csrss fades out the screen and displays the 

hung-program screen shown in Figure 13-9. (You can disable this screen by changing the 

registry value HKCU\Control Panel\Desktop\AutoEndTasks to 1.) This screen indicates which 

programs are currently running and, if available, their current state. Windows indicates which 

program isn’t shutting down in a timely manner and gives the user a choice of either killing 

the process or aborting the shutdown. (There is no timeout on this screen, which means that 

a shutdown request could wait forever at this point.) Additionally, third-party applications 

can add their own specific information regarding state—for example, a virtualization product 

could display the number of actively running virtual machines.

If the thread does exit before the timeout, Csrss continues sending the WM_QUERYEND-

SESSION/WM_ENDSESSION message pairs to the other threads in the process that own win-

dows. Once all the threads that own windows in the process have exited, Csrss terminates the 

process and goes on to the next process in the interactive session.
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EXPERIMENT: Witnessing the HungAppTimeout

You can see the use of the HungAppTimeout registry value by running Notepad, enter-

ing text into its editor, and then logging off. After the amount of time specified by the 

HungAppTimeout registry value has expired, Csrss.exe presents a prompt that asks you 

whether or not you want to end the Notepad process, which has not exited because it’s 

waiting for you to tell it whether or not to save the entered text to a file. If you click the 

Cancel button, Csrss.exe aborts the shutdown.

As a second experiment, if you try shutting down again (with Notepad’s query dialog 

box still open), Notepad will display its own message box to inform you that shutdown 

cannot cleanly proceed. However, this dialog box is merely an informational message 

to help users—Csrss.exe will still consider that Notepad is “hung” and display the user 

interface to terminate unresponsive processes.

If Csrss finds a console application, it invokes the console control handler by sending the 

CTRL_LOGOFF_EVENT event. (Only service processes receive the CTRL_SHUTDOWN_EVENT 

event on shutdown.) If the handler returns FALSE, Csrss kills the process. If the handler returns 

TRUE or doesn’t respond by the number of seconds defined by HKCU\Control Panel\Desktop\

WaitToKillAppTimeout (the default is 20,000 milliseconds), Csrss displays the hung-program 

screen shown in Figure 13-9.

Next, Winlogon calls ExitWindowsEx to have Csrss terminate any COM processes that are part 

of the interactive user’s session.

At this point, all the processes in the interactive user’s session have been terminated. Wininit 

next calls ExitWindowsEx, which this time executes within the system process context. This 

causes Wininit to send a message to the Csrss part of session 0, where the services live. Csrss 

then looks at all the processes belonging to the system context and performs and sends the 

WM_QUERYENDSESSION/WM_ENDSESSION messages to GUI threads (as before). Instead 

of sending CTRL_LOGOFF_EVENT, however, it sends CTRL_ SHUTDOWN_EVENT to console 

applications that have registered control handlers. Note that the SCM is a console program 

that does register a control handler. When it receives the shutdown request, it in turn sends 
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the service shutdown control message to all services that registered for shutdown notifica-

tion. For more details on service shutdown (such as the shutdown timeout Csrss uses for the 

SCM), see the “Services” section in Chapter 4.

FIGURE 13-9 Hung program screen

Although Csrss performs the same timeouts as when it was terminating the user processes, 

it doesn’t display any dialog boxes and doesn’t kill any processes. (The registry values for the 

system process timeouts are taken from the default user profile.) These timeouts simply allow 

system processes a chance to clean up and exit before the system shuts down. Therefore, 

many system processes are in fact still running when the system shuts down, such as Smss, 

Wininit, Services, and Lsass.

Once Csrss has finished its pass notifying system processes that the system is shutting 

down, Winlogon finishes the shutdown process by calling the executive subsystem function 

NtShutdownSystem. This function calls the function PoSetSystemPowerState to orchestrate the 

shutdown of drivers and the rest of the executive subsystems (Plug and Play manager, power 

manager, executive, I/O manager, configuration manager, and memory manager).

For example, PoSetSystemPowerState calls the I/O manager to send shutdown I/O packets to 

all device drivers that have requested shutdown notification. This action gives device drivers 

a chance to perform any special processing their device might require before Windows exits. 
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The stacks of worker threads are swapped in, the configuration manager flushes any modified 

registry data to disk, and the memory manager writes all modified pages containing file data 

back to their respective files. If the option to clear the paging file at shutdown is enabled, the 

memory manager clears the paging file at this time. The I/O manager is called a second time 

to inform the file system drivers that the system is shutting down. System shutdown ends 

in the power manager. The action the power manager takes depends on whether the user 

specified a shutdown, a reboot, or a power down.

Conclusion

In this chapter, we’ve examined the detailed steps involved in starting and shutting down 

Windows (both normally and in error cases). We’ve examined the overall structure of 

Windows and the core system mechanisms that get the system going, keep it running, and 

eventually shut it down. The final chapter of this book explains how to deal with an unusual 

type of shutdown: system crashes.
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Chapter 14

Crash Dump Analysis

Almost every Windows user has heard of, if not experienced, the infamous “blue screen of 

death.” This ominous term refers to the blue screen that is displayed when Windows crashes, 

or stops executing, because of a catastrophic fault or an internal condition that prevents the 

system from continuing to run.

In this chapter, we’ll cover the basic problems that cause Windows to crash, describe the 

information presented on the blue screen, and explain the various configuration options 

available to create a crash dump, a record of system memory at the time of a crash that can 

help you figure out which component caused the crash and why. This section is not intended 

to provide detailed troubleshooting information on how to analyze a Windows system crash. 

This section will also show you how to analyze a crash dump to identify a faulty driver or 

component. The effort required to perform basic crash dump analysis is minimal and takes 

a few minutes. Even if an analysis ascertains the problematic driver for only one out of every 

five or ten crash dumps, it’s still worth doing: one successful analysis can avoid future data 

loss, system downtime, and frustration.

Why Does Windows Crash?

Windows crashes (stops execution and displays the blue screen) for many possible reasons. A 

common source is a reference to a memory address that causes an access violation, either a 

write operation to read-only memory or a read operation on an address that is not mapped. 

Another common cause is an unexpected exception or trap. Crashes also occur when a kernel 

subsystem (such as the memory manager and power manager) or a driver (such as a USB or 

display driver) detect inconsistencies in their operation.

When a kernel-mode device driver or subsystem causes an illegal exception, Windows faces a 

difficult dilemma. It has detected that a part of the operating system with the ability to access 

any hardware device and any valid memory has done something it wasn’t supposed to do.

But why does that mean Windows has to crash? Couldn’t it just ignore the exception and let 

the device driver or subsystem continue as if nothing had happened? The possibility exists 

that the error was isolated and that the component will somehow recover. But what’s more 

likely is that the detected exception resulted from deeper problems—for example, from a 

general corruption of memory or from a hardware device that’s not functioning properly. 

Permitting the system to continue operating would probably result in more exceptions, and 

data stored on disk or other peripherals could become corrupt—a risk that’s too high to take. 

So Windows adopts a fail fast policy in attempting to prevent the corruption in RAM from 

spreading to disk.
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The Blue Screen

Regardless of the reason for a system crash, the function that actually performs the crash 

is KeBugCheckEx, documented in the Windows Driver Kit (WDK). This function takes a stop 
code (sometimes called a bugcheck code) and four parameters that are interpreted on a per–

stop code basis. After KeBugCheckEx masks out all interrupts on all processors of the system, 

it switches the display into a low-resolution VGA graphics mode (one implemented by all 

Windows-supported video cards), paints a blue background, and then displays the stop code, 

followed by some text suggesting what the user can do. Finally, KeBugCheckEx calls any regis-

tered device driver bugcheck callbacks (registered by calling the KeRegisterBugCheckCallback 

function), allowing drivers an opportunity to stop their devices. It then calls registered reason 

callbacks (registered with KeRegisterBugCheckReasonCallback), which allow drivers to append 

data to the crash dump or write crash dump information to alternate devices.

(It’s possible that system data structures have been so seriously corrupted that the blue 

screen isn’t displayed.) Figure 14-1 shows a sample Windows blue screen.

FIGURE 14-1 Example of a blue screen

KeBugCheckEx displays the textual representation of the stop code near the top of the blue 

screen and the numeric stop code and four parameters at the bottom of the blue screen.

The first line in the Technical information section lists the stop code and the four additional 

parameters passed to KeBugCheckEx. A text line near the top of the screen provides the text 

equivalent of the stop code’s numeric identifier. According to the example in Figure 14-1, the 
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stop code 0x000000D1 is a DRIVER_IRQL_NOT_LESS_OR_EQUAL crash. When a parameter 

contains an address of a piece of operating system or device driver code (as in Figure 14-1), 

Windows displays the base address of the module the address falls in, the date stamp, and 

the file name of the device driver. This information alone might help you pinpoint the faulty 

component.

Although there are more than 300 unique stop codes, most are rarely, if ever, seen on pro-

duction systems. Instead, just a few common stop codes represent the majority of Windows 

system crashes. Also, the meaning of the four additional parameters depends on the stop 

code (and not all stop codes have extended parameter information). Nevertheless, looking up 

the stop code and the meaning of the parameters (if applicable) might at least assist you in 

diagnosing the component that is failing (or the hardware device that is causing the crash).

You can find stop code information in the section “Bug Checks (Blue Screens)” in the Debug-

ging Tools for Windows help file. (For information on the Debugging Tools for Windows, see 

Chapter 1.) You can also search Microsoft’s Knowledge Base (http://support.microsoft.com) for 

the stop code and the name of the suspect hardware or application. You might find informa-

tion about a workaround, an update, or a service pack that fixes the problem you’re having. 

The Bugcodes.h file in the WDK contains a complete list of the 300 or so stop codes, with 

some additional details on the reasons for some of them.

Based on data collected from the release of Windows Vista through the release of Windows 

Vista SP1, the top 30 stop codes account for 96 percent of crashes and can be grouped into a 

dozen categories:

Page fault A page fault on memory backed by data in a paging file or a memory-

mapped file occurs at an IRQL of DPC/dispatch level or above, which would require the 

memory manager to have to wait for an I/O operation to occur. The kernel cannot wait 

or reschedule threads at an IRQL of DPC/dispatch level or higher. (See Chapter 3 for 

details on IRQLs.) This category also includes page faults in nonpaged areas. The com-

mon stop codes are:

0xA - IRQL_NOT_LESS_OR_EQUAL

0xD1 - DRIVER_IRQL_NOT_LESS_OR_EQUAL

Power management A device driver or an operating system function running in ker-

nel mode is in an inconsistent or invalid power state. Most frequently, some component 

has failed to complete a power management I/O request operation within 10 minutes. 

This crash category is new in Windows Vista. In previous versions of the Windows oper-

ating system, these failures generally resulted in a system hang with no crash. The stop 

codes are:

0x9F - DRIVER_POWER_STATE_FAILURE

0xA0 - INTERNAL_POWER_ERROR
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Exceptions and traps A device driver or an operating system function running in ker-

nel mode incurs an unexpected exception or trap. The common stop codes are:

0x1E - KMODE_EXCEPTION_NOT_HANDLED

0x3B - SYSTEM_SERVICE_EXCEPTION

0x7E - SYSTEM_THREAD_EXCEPTION_NOT_HANDLED

0x7F - UNEXPECTED_KERNEL_MODE_TRAP

0x8E - KERNEL_MODE_EXCEPTION_NOT_HANDLED with P1 != 0xC0000005 

STATUS_ACCESS_VIOLATION

Access violations A device driver or an operating system function running in kernel 

mode incurs a memory access violation, which is caused either by attempting to write 

to a read-only page or by attempting to read an address that isn’t currently mapped 

and therefore is not a valid memory location. The common stop codes are:

0x50 - PAGE_FAULT_IN_NONPAGED_AREA

0x8E - KERNEL_MODE_EXCEPTION_NOT_HANDLED with P1 = 0xC0000005 

STATUS_ACCESS_VIOLATION

Display The display device driver detects that it can no longer control the graphics 

processing unit or detects an inconsistency in video memory management. The com-

mon stop codes are:

0xEA - THREAD_STUCK_IN_DEVICE_DRIVER

0x10E - VIDEO_MEMORY_MANAGEMENT_INTERNAL

0x116 - VIDEO_TDR_FAILURE

Pool The kernel pool manager detects an improper pool reference. The common stop 

codes are:

0xC2 - BAD_POOL_CALLER

0xC5 - DRIVER_CORRUPTED_EXPOOL

Memory management The kernel memory manager detects a corruption of memory 

management data structures or an improper memory management request. The com-

mon stop codes are:

0x1A - MEMORY_MANAGEMENT

0x4E - PFN_LIST_CORRUPT

Consistency check This is a catch-all category for various other consistency checks 

performed by the kernel or device drivers. The common stop codes are:

0x18 - REFERENCE_BY_POINTER

0x35 - NO_MORE_IRP_STACK_LOCATIONS

0x44 - MULTIPLE_IRP_COMPLETE_REQUESTS
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0xCE - DRIVER_UNLOADED_WITHOUT_CANCELLING_PENDING_OPERATIONS

0x8086 – This is a stop code used by the Intel storage driver iastor.sys

Hardware A hardware error, such as a machine check or a nonmaskable interrupt 

(NMI), occurs. This category also includes disk failures when the memory manager is 

attempting to read data to satisfy page faults. The common stop codes are:

0x77 – KERNEL_STACK_INPAGE_ERROR

0x7A - KERNEL_DATA_INPAGE_ERROR

0x124 - WHEA_UNCORRECTABLE_ERROR

0x101 - CLOCK_WATCHDOG_TIMEOUT (Software bugs can cause these errors too, 

but they are most common on over-clocked hardware systems.)

USB An unrecoverable error occurs in a universal serial bus operation. The common 

stop code is:

0xFE - BUGCODE_USB_DRIVER

Critical object A fatal error occurs in a critical object without which Windows cannot 

continue to run. The common stop code is:

0xF4 - CRITICAL_OBJECT_TERMINATION

NTFS file system A fatal error is detected by the NTFS file system. The common stop 

code is:

0x24 - NTFS_FILE_SYSTEM

Figure 14-2 shows the distribution of these categories for Windows Vista SP1 in September 

2008:

NTFS file system, 
1.5%

Critical object,
2.3%

USB, 2.7%

Memory management,
4.8%

Pool, 5.5%

Display, 7.8%

Power management, 
17.4%

Page fault, 20.6%

Exception and trap,
9.8% Access violation, 

15.4%

Other, 4.0%

Hardware, 3.6%

Consistency check, 4.7%

FIGURE 14-2 Distribution of error categories for Windows Vista SP1 as of September 2008.
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Troubleshooting Crashes

You often begin seeing blue screens after you install a new software product or piece of 

hardware. If you’ve just added a driver, rebooted, and gotten a blue screen early in system 

initialization, you can reset the machine, press the F8 key when instructed, and then select 

Last Known Good Configuration. Enabling last known good causes Windows to revert to 

a copy of the registry’s device driver registration key (HKLM\SYSTEM\CurrentControlSet\

Services) from the last successful boot (before you installed the driver). From the perspective 

of last known good, a successful boot is one in which all services and drivers have finished 

loading and at least one logon has succeeded. (Last known good is further described in 

Chapter 13.)

During the reboot after a crash, the Boot Manager (Bootmgr) will automatically detect that 

Windows did not shut down properly and display a Windows Error Recovery message simi-

lar to the one shown in Figure 14-3. This screen gives you the option to attempt booting 

into safe mode so that you can disable or uninstall the software component that might be 

broken.

FIGURE 14-3 An example of a Windows Error Recovery message
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If you keep getting blue screens, an obvious approach is to uninstall the components you 

added just before the first blue screen appeared. If some time has passed since you added 

something new or you added several things at about the same time, you need to note the 

names of the device drivers referenced in any of the parameters. If you recognize any of the 

names as being related to something you just added (such as Storport.sys if you put on a new 

SCSI drive), you’ve possibly found your culprit.

Many device drivers have cryptic names, but one approach you can take to figure out which 

application or hardware device is associated with a name is to find out the name of the ser-

vice in the registry associated with a device driver by searching for the name of the device 

driver under the HKLM\SYSTEM\CurrentControlSet\Services key. This branch of the registry 

is where Windows stores registration information for every device driver in the system. If you 

find a match, look for values named DisplayName and Description. Some drivers fill in these 

values to describe the device driver’s purpose. For example, you might find the string “Virus 

Scanner” in the DisplayName value, which can implicate the antivirus software you have run-

ning. The list of drivers can be displayed in the System Information tool (from the Start menu, 

select Programs, System Tools, System Information. In System Information, expand Software 

Environment, and then select System Drivers. Process Explorer also lists the currently loaded 

drivers, including their version numbers and load addresses, in the DLL view of the System 

process. Another option is to open the Properties dialog box for the driver file and examine 

the information on the Details tab, which often contains the description and company infor-

mation for the driver. Keep in mind that the registry information and file description are pro-

vided by the driver manufacturer, and there is nothing to guarantee their accuracy.

More often than not, however, the stop code and the four associated parameters aren’t 

enough information to troubleshoot a system crash. For example, you might need to exam-

ine the kernel-mode call stack to pinpoint the driver or system component that triggered 

the crash. Also, because the default behavior on Windows systems is to automatically reboot 

after a system crash, it’s unlikely that you would have time to record the information dis-

played on the blue screen. That is why, by default, Windows attempts to record information 

about the system crash to the disk for later analysis, which takes us to our next topic, crash 

dump files.

Crash Dump Files

By default, all Windows systems are configured to attempt to record information about the 

state of the system when the system crashes. You can see these settings by opening the 

System tool in Control Panel, clicking the Advanced tab in the System Properties dialog box, 

and then clicking the Settings button under Startup And Recovery. The default settings for a 

Windows system are shown in Figure 14-4.
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FIGURE 14-4 Crash dump settings

Three levels of information can be recorded on a system crash:

Complete memory dump A complete memory dump contains all of physical memory 

at the time of the crash. This type of dump requires that a page file be at least the 

size of physical memory plus 1 MB for the header. Device drivers can take advantage 

of up to 256 MB for device dump data, but the additional space is not required for a 

header. Because it can require an inordinately large page file on large memory sys-

tems, this type of dump file is the least common setting. If the system has more than 

2 GB of RAM, this option will be disabled in the UI, but you can manually enable it by 

setting the CrashDumpEnabled value to 1 in the HKLM\SYSTEM\CurrentControlSet\

Control\CrashControl registry key. At initialization time, Windows will check whether 

the page-file size is large enough for a complete dump and automatically switch to 

creating a small memory dump if not. Large server systems might not have space for 

a complete dump but may be able to dump useful information, so you can add the 

IgnorePagefileSize value to the same registry key to have the system generate a dump 

file until it runs out of space.

Kernel memory dump A kernel memory dump contains only the kernel-mode read/

write pages present in physical memory at the time of the crash. This type of dump 

doesn’t contain pages belonging to user processes. Because only kernel-mode code 

can directly cause Windows to crash, however, it’s unlikely that user process pages are 

necessary to debug a crash. In addition, all data structures relevant for crash dump 

analysis—including the list of running processes, stack of the current thread, and list of 

loaded drivers—are stored in nonpaged memory that saves in a kernel memory dump. 
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There is no way to predict the size of a kernel memory dump because its size depends 

on the amount of kernel-mode memory allocated by the operating system and driv-

ers present on the machine. This is the default setting for both Windows Vista and 

Windows Server 2008.

Small memory dump A small memory dump, which is typically between 128 KB and 

1 MB in size and is also called a minidump or triage dump, contains the stop code and 

parameters, the list of loaded device drivers, the data structures that describe the cur-

rent process and thread (called the EPROCESS and ETHREAD—described in Chapter 

5), the kernel stack for the thread that caused the crash, and additional memory con-

sidered potentially relevant by crash dump heuristics, such as the pages referenced by 

processor registers that contain memory addresses and secondary dump data added 

by drivers.

Note Device drivers can register a secondary dump data callback routine by calling KeRegister-
BugCheckReasonCallback. The kernel invokes these callbacks after a crash and a callback routine 

can add additional data to a crash dump file, such as device hardware memory or device infor-

mation for easier debugging. Up to 256 MB can be added systemwide by all drivers, depending 

on the space required to store the dump and the size of the file into which the dump is written, 

and each driver can add at most one-eighth of the available additional space. Once the additional 

space is consumed, drivers subsequently called are not offered the chance to add data.

The debugger indicates that it has limited information available to it when it loads a mini-

dump, and basic commands like !process, which lists active processes, don’t have the data 

they need. Here is an example of !process executed on a minidump:

Microsoft (R) Windows Debugger Version 6.10.0003.233 X86 

Copyright (c) Microsoft Corporation. All rights reserved. 

 

Loading Dump File [C:\Windows\Minidump\Mini100108-01.dmp] 

Mini Kernel Dump File: Only registers and stack trace are available 

... 

0: kd> !process  0 0 

**** NT ACTIVE PROCESS DUMP **** 

GetPointerFromAddress: unable to read from 81d3a86c 

Error in reading nt!_EPROCESS at 00000000

A kernel memory dump includes more information, but switching to a different process’s 

address space mappings won’t work because required data isn’t in the dump file. Here is an 

example of the debugger loading a kernel memory dump, followed by an attempt to switch 

process address spaces:

Microsoft (R) Windows Debugger Version 6.10.0003.233 X86 

Copyright (c) Microsoft Corporation. All rights reserved. 
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Loading Dump File [C:\Windows\MEMORY.DMP] 

Kernel Summary Dump File: Only kernel address space is available 

... 

0: kd> !process 0 0 explorer.exe 

PROCESS 867250a8 ... 

 

0: kd> .process 867250a8 ... 

Process 867250a8 has invalid page directories

While a complete memory dump is a superset of the other options, it has the drawback 

that its size tracks the amount of physical memory on a system and can therefore become 

unwieldy. It’s not unusual for systems today to have several gigabytes of memory, resulting 

in crash dump files that are too large to be uploaded to an FTP server or burned onto a CD. 

Because user-mode code and data are not used during the analysis of most crashes (because 

crashes originate as a result of problems in kernel memory, and system data structures reside 

in kernel memory) much of the data stored in a complete memory dump is not relevant to 

analysis and therefore contributes wastefully to the size of a dump file. A final disadvantage is 

that the paging file on the boot volume (the volume with the \Windows directory) must be at 

least as large as the amount of physical memory on the system plus up to 365 MB. Because 

the size of the paging files required, in general, inversely tracks the amount of physical mem-

ory present, this requirement can force the paging file to be unnecessarily large. You should 

therefore consider the advantages offered by the small and kernel memory dump options.

An advantage of a minidump is its small size, which makes it convenient for exchange via 

e-mail, for example. In addition, each crash generates a file in the directory \Windows\

Minidump with a unique file name consisting of the string “Mini” plus the date plus 

a sequence number that counts the number of minidumps on that day (for example, 

Mini082608-01.dmp). A disadvantage of minidumps is that to analyze them, you must have 

access to the exact images used on the system that generated the dump at the time you ana-

lyze the dump. (At a minimum, a copy of the matching Ntoskrnl.exe is needed to perform the 

most basic analysis.) This can be problematic if you want to analyze a dump on a system dif-

ferent from the system that generated the dump. However, the Microsoft symbol server con-

tains images (and symbols) for all recent Windows versions, so you can set the image path in 

the debugger to point to the symbol server, and the debugger will automatically download 

the needed images. (Of course, the Microsoft symbol server won’t have images for third-

party drivers you have installed.)

A more significant disadvantage is that the limited amount of data stored in the dump can 

hamper effective analysis. You can also get the advantages of minidumps even when you 

configure a system to generate kernel or complete crash dumps by opening the larger 

crash with WinDbg and using the .dump /m command to extract a minidump. Note that a 

minidump is automatically created even if the system is set for full or kernel dumps.
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Note You can use the .dump command from within Livekd to generate a memory image of a 

live system that you can analyze offline without stopping the system. This approach is useful 

when a system is exhibiting a problem, but is still delivering services, and you want to trouble-

shoot the problem without interrupting service. The resultant crash image isn’t necessarily fully 

consistent because the contents of different regions of memory reflect different points in time, 

but it might contain information useful for an analysis.

The kernel memory dump option offers a practical middle ground. Because it contains all 

of kernel-mode-owned physical memory, it has the same level of analysis-related data as a 

complete memory dump, but it omits the usually irrelevant user-mode data and code, and 

therefore can be significantly smaller. As an example, on a system running Windows Vista 

with 4 GB of RAM, a kernel memory dump was 160 MB in size.

When you configure kernel memory dumps, the system checks whether the paging file is 

large enough, as described earlier. Some general recommendations follow in Table 14-1, but 

these are only estimated sizes because there is no way to predict the size of a kernel memory 

dump. The reason you can’t predict the size of a kernel memory dump is that its size depends 

on the amount of kernel-mode memory in use by the operating system and drivers present 

on the machine at the time of the crash.

TABLE 14-1 Default Minimum Paging File Sizes for Kernel Dumps

System Memory Size Minimum Page File Size for Kernel Dumps

< 128 MB 50 MB

< 4 GB 200 MB

< 8 GB 400 MB

>= 8 GB 800 MB

Therefore, it is possible that at the time of the crash, the paging file is too small to hold a 

kernel dump. If you want to see the size of a kernel dump on your system, force a manual 

crash either by configuring the option to allow you to initiate a manual system crash from 

the console or by using the Notmyfault tool described later in this chapter. (Both these 

approaches are described later in the chapter.) When you reboot, you can check to make sure 

that a kernel dump was generated and check its size to gauge how large to make your boot 

volume paging file. To be conservative, on 32-bit systems you can choose a page file size of 

2 GB plus up to 356 MB, because 2 GB is the maximum kernel-mode address space available 

(unless you are booting with the 3gb and/or userva boot options, in which case this can be up 

to 3 GB). If you do not have enough space on the boot volume for saving the memory.dmp 

file, you can choose a location on any other local hard disk through the dialog box shown in 

Figure 14-4.
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Crash Dump Generation

When the system boots, it checks the crash dump options configured by reading the registry 

value HKLM\SYSTEM\CurrentControlSet\Control\CrashControl. If a dump is configured, it 

makes a copy of the disk miniport driver used to write to the boot volume in memory and 

gives it the same name as the miniport with the word “dump_” prefixed. It also checksums the 

components involved with writing a crash dump—including the copied disk miniport driver, 

the I/O manager functions that write the dump, and the map of where the boot volume’s 

paging file is on disk—and saves the checksum. When KeBugCheckEx executes, it checksums 

the components again and compares the new checksum with that obtained at the boot. If 

there’s not a match, it does not write a crash dump, because doing so would likely fail or 

corrupt the disk. Upon a successful checksum match, KeBugCheckEx writes the dump infor-

mation directly to the sectors on disk occupied by the paging file, bypassing the file system 

driver and storage driver stack (which might be corrupted or even have caused the crash).

Note Because the page file is created early in system startup during memory manager initializa-

tion, most crashes the are caused by bugs in system-start driver initialization result in a dump 

file. Crashes in early Windows boot components such as the HAL or the initialization of boot driv-

ers occur too early for the system to have a page file, so using another computer to debug the 

startup process is the only way to perform dump analysis in those cases.

When the Session Manager (SMSS) re-initializes the page file during the boot process, it calls 

the function SmpCheckForCrashDump, which looks in the boot volume’s current paging file 

(created by the kernel during the boot process) to see whether a crash dump is present. SMSS 

then checks whether the target dump file is on a different volume than the paging file. If so, 

it renames the paging file to a temporary dump file name, Dumpxxx.tmp (where xxx is the 

current low value of the system’s tick count), and truncates the file to the size of the dump 

data. (This information is stored in the header on top of each dump file.) It also removes 

both the hidden and system attributes from the file. SMSS then creates the volatile registry 

key HKLM\SYSTEM\CurrentControlSet\Control\CrashControl\MachineCrash and stores the 

temporary dump file name in the value “DumpFile”. It then writes a REG_DWORD to the 

“TempDestination” value indicating whether the dump file location is only the temporary 

destination. If the paging file is on the same volume as the destination dump file, a tempo-

rary dump file isn’t used, and the paging file is directly renamed to the dump file name. In 

this case, the DumpFile value will be %SystemRoot%\Memory.dmp and TempDestination will 

be 0.

Later in the boot, Wininit checks for the presence of the MachineCrash key, and if it exists, 

Wininit launches WerFault, which reads the TempDestination and DumpFile values and 

either renames or copies the temporary file to its target location (typically %System Root%\

Mem ory.dmp, unless configured otherwise) depending on whether the target is on the 
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same volume as the Windows directory. WerFault then writes the final dump file name to the 

FinalDumpFile Location value in the MachineCrash key. These steps are shown in Figure 14-5.

User mode

Kernel mode

Session
Manager

WerFault

NtCreatePagingFile

Dumpxxx.tmp

Paging file

2

3

1

Wininit
Memory.dmp

4 SMSS

“MachineCrash”

5 Wininit

FIGURE 14-5 Crash dump file generation

To support machines that might not have a paging file or no paging file on the boot vol-

ume, for example on systems that boot from a SAN or read-only media, Windows also 

supports the use of a dedicated dump file that is configured in the DedicatedDumpFile and 

DumpFileSize values under the HKLM\SYSTEM\CurrentControlSet\Control\CrashControl reg-

istry key. When a dedicated dump file is specified, the crash dump driver (%SystemRoot%\

System32\Drivers\Crashdmp.sys) creates the dump file of the required size and writes the 

crash data there instead of the paging file. If a full or kernel dump is configured but there is 

not enough space on the target volume to create the dedicated dump file of the required 

size, the system falls back to writing a minidump.

Windows Error Reporting

As mentioned in Chapter 3, Windows includes a facility called Windows Error Reporting 

(WER), which facilitates the automatic submission of process and system failures (such as 

crashes and/or hangs) to Microsoft (or an internal error reporting server) for analysis. This 

feature is enabled by default, but it can be modified by changing WER’s behavior, which 

takes the additional step of determining whether the system is configured to send a crash 

dump to Microsoft (or a private server, explained further in the “Online Crash Analysis” sec-

tion later in the chapter) for analysis on a reboot following a crash. The WER Advanced 

Settings screen, which you access from the Problem Reports And Solutions screen of the 

Control Panel’s System applet, is shown in Figure 14-6. This dialog box allows you to config-

ure the system’s error reporting settings.
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FIGURE 14-6 Error reporting configuration dialog box

As mentioned earlier, if Wininit.exe finds the HKLM\SYSTEM\CurrentControlSet\Control\

CrashControl\MachineCrash key, it executes WerFault.exe with the –k –c  flags (the k flag indi-

cates kernel error reporting, and the c flag indicates that the full or kernel dump should be 

converted to a minidump) to have WerFault.exe check for a kernel crash dump file. WerFault 

takes the following steps for preparing to send a crash dump report to the Microsoft Online 

Crash Analysis (OCA) site (or, if configured, an internal error reporting server):

 1. If the type of dump it generated was not a minidump, it extracts a minidump 

from the dump file and stores it in the default location of \Windows\Minidumps, 

unless otherwise configured through the MinidumpDir value in the HKLM\SYSTEM\

CurrentControlSet\Control\CrashControl\ key.

 2. It writes the name of the minidump files to HKLM\SOFTWARE\Microsoft\Windows\

Windows Error Reporting\KernelFaults\Queue.

 3. It adds a command to execute WerFault.exe (\Windows\System32\WerFault.exe) to 

HKLM\SOFTWARE\Microsoft\Windows\CurrentVersion\RunOnce so that WerFault is 

executed one more time during the first user’s logon to the system for purposes of 

actually sending the error report.
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Online Crash Analysis

When the WerFault utility executes during logon, as a result of having configured itself 

to start, it checks the HKLM\SOFTWARE\Microsoft\Windows\Windows Error Reporting\

KernelFaults\Queue key to look for queued reports that may have been added in the previ-

ous dump conversion phase. It also checks whether there are previously unsent crash reports 

from previous sessions. If there are, it launches WerFault.exe with the –k –q flags (the q flag 

specifies the usage of queued reporting mode) to generate an XML-formatted file contain-

ing a basic description of the system, including the operating system version, a list of drivers 

installed on the machine, and the list of Plug and Play drivers loaded on the system at the 

time of the crash.

If configured to ask for user input (which is not the default), it then presents the dialog box 

shown in Figure 14-7, which asks the user whether he or she wants to send an error report 

to Microsoft. If the user chooses to send the error report, and unless overridden by Group 

Policy, WerFault sends the XML file and minidump to http://oca.microsoft.com, which for-

wards the data to a server farm for automated analysis, described in the next section.

FIGURE 14-7 Crash dump error reporting dialog box

The server farm’s automated analysis uses the same analysis engine that the Microsoft 

kernel debuggers use when you load a crash dump file into them (described shortly). The 

analysis generates a bucket ID, which is a signature that identifies a particular crash type. 

The server farm queries a database using the bucket ID to see whether a resolution has 

been found for the crash, and it sends a URL back to WerFault that refers it to the OCA Web 

site (http://oca.microsoft.com). If configured to do so, WerFault launches the Windows Error 

Reporting Console, or WerCon (%SystemRoot%\System32\Wercon.exe), which is a pro-

gram that allows users to interface with WER for receiving problem resolution and tracking 
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information as well as for configuring WER behavior. When browsing for solutions, WerCon 

contains an Internet browser frame to open the page on the WER Web site that reports the 

preliminary crash analysis. If a resolution is available, the page instructs the user where to 

obtain a hotfix, service pack, or third-party driver update.

Basic Crash Dump Analysis

If OCA fails to identify a resolution or you are unable to submit the crash to OCA, an alter-

native is analyzing crashes yourself. As mentioned earlier, WinDbg and Kd both execute the 

same analysis engine used by OCA when you load a crash dump file, and the basic analysis 

can sometimes pinpoint the problem. So you might be fortunate and have the crash dump 

solved by the automatic analysis. But if not, there are some straightforward techniques to try 

to solve the crash.

This section explains how to perform basic crash analysis steps, followed by tips on leverag-

ing the Driver Verifier (which is introduced in Chapter 7) to catch buggy drivers when they 

corrupt the system so that a crash dump analysis pinpoints them.

Note  OCA’s automated analysis may occasionally identify a highly likely cause of a crash but 

not be able to inform you of the suspected driver. This happens because it only reports the cause 

for crashes that have their bucket ID entry populated in the OCA database, and entries are cre-

ated only when Microsoft crash-analysis engineers have verified the cause. If there’s no bucket ID 

entry, OCA reports that the crash was caused by “unknown driver.”

Notmyfault

You can use the Notmyfault utility from Windows Sysinternals (www.microsoft.com/technet/
sysinternals) to generate the crashes described here. Notmyfault consists of an executable 

named Notmyfault.exe and a driver named Myfault.sys. When you run the Notmyfault 

executable, it loads the driver and presents the dialog box shown in Figure 14-8, which allows 

you to crash the system in various ways or to cause the driver to leak paged pool. The crash 

types offered represent the ones most commonly seen by Microsoft’s product support ser-

vices. Selecting an option and clicking the Do Bug button causes the executable to tell the 

driver, by using the DeviceIoControl Windows API, which type of bug to trigger.

Note You should execute Notmyfault crashes on a test system or on a virtual machine because 

there is a small risk that memory it corrupts will be written to disk and result in file or disk 

corruption.
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Kernel mode

IOCTL Interface

MyFault.sys

FIGURE 14-8 Notmyfault

Note The names of the Notmyfault executable and driver highlight the fact that user mode 

cannot directly cause the system to crash. The Notmyfault executable can cause a crash only by 

loading a driver to perform an illegal operation for it in kernel mode.

Basic Crash Dump Analysis

The most straightforward Notmyfault crash to debug is the one caused by selecting the 

High IRQL Fault (Kernelmode) option and clicking the Do Bug button. This causes the driver 

to allocate a page of paged pool, free the pool, raise the IRQL to above DPC/dispatch level, 

and then touch the page it has freed. (See Chapter 3 for more information on IRQLs.) If that 

doesn’t cause a crash, the process continues by reading memory past the end of the page 

until it causes a crash by accessing invalid pages. The driver performs several illegal opera-

tions as a result:

 1. It references memory that doesn’t belong to it.
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 2. It references paged pool at an IRQL that’s DPC/dispatch level or higher, which is illegal 

because page faults are not permitted when the processor IRQL is DPC/dispatch level 

or higher.

 3. When it goes past the end of the memory that it had allocated, it tries to reference 

memory that is potentially invalid.

The reason the first page reference might not cause a crash is that it won’t generate a page 

fault if the page that the driver frees remains in the system working set. (See Chapter 9 for 

information on the system working set.)

When you load a crash generated with this bug into WinDbg, the tool’s analysis displays 

something like this:

Microsoft (R) Windows Debugger Version 6.9.0003.113 X86 

Copyright (c) Microsoft Corporation. All rights reserved. 

 

Loading Dump File [C:\windows\MEMORY.DMP] 

Kernel Summary Dump File: Only kernel address space is available 

 

Symbol search path is: srv*c:\programming\symbols\*http://msdl.microsoft.com/download/

symbols 

Executable search path is:  

Windows Server 2008 Kernel Version 6001 (Service Pack 1) MP (2 procs) Free x86 compatible 

Product: WinNt, suite: TerminalServer SingleUserTS 

Built by: 6001.18063.x86fre.vistasp1_gdr.080425-1930 

Kernel base = 0x81804000 PsLoadedModuleList = 0x8191bc70 

Debug session time: Sun Sep 21 22:58:19.994 2008 (GMT-4) 

System Uptime: 2 days 0:11:17.876 

Loading Kernel Symbols 

............................................................................................

.................................................... 

Loading User Symbols 

Loading unloaded module list 

....... 

******************************************************************************* 

*                                                                             * 

*                        Bugcheck Analysis                                    * 

*                                                                             * 

******************************************************************************* 

 

Use !analyze -v to get detailed debugging information. 

 

BugCheck D1, {a35db800, 1c, 0, 9879c3dd} 

 

*** ERROR: Module load completed but symbols could not be loaded for myfault.sys 

Probably caused by : myfault.sys ( myfault+3dd ) 

 

Followup: MachineOwner 

---------
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The first thing to note is that WinDbg reports errors trying to load symbols for Myfault.sys 

and Notmyfault.exe. These are expected because the symbol files for Myfault.sys and 

Notmyfault.exe are not on the symbol-file path (which is configured to point at the Microsoft 

symbol server). You’ll see similar errors for third-party drivers and executables that do not 

ship with the operating system.

The analysis text itself is terse, showing the numeric stop code and bug-check parameters 

followed by a “Probably caused by” line that shows the analysis engine’s best guess at the 

offending driver. In this case it’s on the mark and points directly at Myfault.sys, so there’s no 

need for manual analysis.

The “Followup” line is not generally useful except within Microsoft, where the debugger looks 

for the module name in the Triage.ini file that’s located within the Triage directory of the 

Debugging Tools for Windows installation directory. The Microsoft-internal version of that 

file lists the developer or group responsible for handling crashes in a specific driver, and the 

debugger displays the developer’s or group’s name in the Followup line when appropriate.

Verbose Analysis

Even though the basic analysis of the Notmyfault crash identifies the faulty driver, you should 

always have the debugger execute a verbose analysis by entering the command:

!analyze –v

The first obvious difference between the verbose and default analysis is the description of 

the stop code and its parameters. Following is the output of the command when executed on 

the same dump:

DRIVER_IRQL_NOT_LESS_OR_EQUAL (d1) 

An attempt was made to access a pageable (or completely invalid) address at an 

interrupt request level (IRQL) that is too high.  This is usually 

caused by drivers using improper addresses. 

If kernel debugger is available get stack backtrace. 

Arguments: 

Arg1: a35db800, memory referenced 

Arg2: 0000001c, IRQL 

Arg3: 00000000, value 0 = read operation, 1 = write operation 

Arg4: 9879c3dd, address which referenced memory

This saves you the trouble of opening the help file to find the same information, and the text 

sometimes suggests troubleshooting steps, an example of which you’ll see in the next section 

on advanced crash dump analysis.
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The other potentially useful information in a verbose analysis is the stack trace of the thread 

that was executing on the processor that crashed at the time of the crash. Here’s what it looks 

like for the same dump:

STACK_TEXT:   

80395b78 9879c3dd badb0d00 8312d054 00000003 nt!KiTrap0E+0x2ac 

WARNING: Stack unwind information not available. Following frames may be wrong. 

80395c44 81a505e5 855802e0 849e26c0 849e2730 myfault+0x3dd 

80395c64 81a50d8a 83746238 855802e0 00000000 nt!IopSynchronousServiceTail+0x1d9 

80395d00 81a3aa61 83746238 849e26c0 00000000 nt!IopXxxControlFile+0x6b7 

80395d34 8185ba7a 0000007c 00000000 00000000 nt!NtDeviceIoControlFile+0x2a 

80395d34 770f9a94 0000007c 00000000 00000000 nt!KiFastCallEntry+0x12a  

0012f4a0 77e84c9b 0000007c 00000000 00000000 ntdll!ZwDeviceIoControlFile+0xb  

0012f504 004017c3 0000007c 83360018 00000000 KERNEL32!DeviceIoControl+0x100  

000200ac 00000000 00000000 00000000 00000000 NotMyfault+0x17c3

The preceding stack shows that the Notmyfault executable image, shown at the bottom, 

invoked the DeviceIoControl function in Kernel32.dll, which in turn invoked ZwDeviceIo-
Control File in Ntdll.dll, and so on, until finally the system crashed with the execution of an 

instruction in the Myfault image. A stack trace like this can be useful because crashes some-

times occur as the result of one driver passing another one that is improperly formatted or 

corrupt or has illegal parameters. The driver that’s passed the invalid data might cause a crash 

and get the blame in an analysis, when the stack reveals that another driver was involved. In 

this sample trace, no driver other than Myfault is listed. (The module “nt” is Ntoskrnl.)

If the driver singled out by an analysis is unfamiliar to you, use the lm (list modules) command 

to look at the driver’s version information. Add the k (kernel modules) and v (verbose) options 

along with the m (match) option followed by the name of the driver and a wildcard:

lkd> lm kv m myfault* 

start    end        module name 

a98e1000 a98e1ec0   myfault    (deferred)              

    Image path: \??\C:\Windows\system32\drivers\myfault.sys 

    Image name: myfault.sys 

    Timestamp:        Sat Oct 14 16:09:18 2006 (453143EE) 

    CheckSum:         0000295E 

    ImageSize:        00000EC0 

    File version:     2.0.0.0 

    Product version:  2.0.0.0 

    File flags:       0 (Mask 3F) 

    File OS:          40004 NT Win32 

    File type:        3.7 Driver 

    File date:        00000000.00000000 

    Translations:     0409.04b0 

    CompanyName:      Sysinternals 

    ProductName:      Sysinternals Myfault 

    InternalName:     myfault.sys 

    OriginalFilename: myfault.sys 

    ProductVersion:   2.0 

    FileVersion:      2.0 

    FileDescription:  Crash Test Driver 

    LegalCopyright:   Copyright (C) M. Russinovich 2002-2004
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In addition to using the description to identify the purpose of a driver, you can also use the 

file and product version numbers to see whether the version installed is the most up-to-date 

version available. (You can do this by checking the vendor Web site, for instance.) If version 

information isn’t present (because it might have been paged out of physical memory at the 

time of the crash), look at the driver image file’s properties in Windows Explorer on the sys-

tem that crashed.

Using Crash Troubleshooting Tools

The crash generated in the preceding section with Notmyfault’s High IRQL Fault (Kernel-

mode) option poses no challenge for the debugger’s automated analysis. Unfortunately, most 

crashes are not so easy and sometimes are impossible to debug. There are several levels of 

increasing severity in terms of system performance degradation that might help turn system 

crashes that cannot be analyzed into ones that can be. If the crashes generated after you 

configure a level and reboot aren’t revealing the cause, try the next level.

 1. If there are one or more drivers you consider likely sources of the crashes—because 

they were introduced into the system relatively recently, they were recently updated, or 

the circumstances of the crash implicate them—enable them for verification using the 

Driver Verifier and check all the verification options except for low resources simulation. 

(See Chapter 7 for more information on Driver Verifier.)

 2. Enable the same level of verification as in level 1 on all unsigned drivers in the system.

 3. Enable the same verification as in level 1 on all drivers in the system. To maintain rea-

sonable performance, you may want to divide the drivers into groups, enabling the 

Driver Verifier on one group at a time between reboots

Obviously, before you spend time and energy making system configuration changes and 

analyzing crashes, you should ensure that your system’s kernel and drivers are the most 

recent available by using the services of Windows Update and third-party driver support 

sites.

Note If your system becomes unbootable because the Driver Verifier detects a driver error and 

crashes the system, then start in safe mode (where verification is disabled), run the Driver Verifier, 

and delete verification settings.

The following sections demonstrate how the Driver Verifier can make impossible-to-debug 

crashes into ones that you can solve.
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Buffer Overrun, Memory Corruptions, and Special Pool

By far the most common source of crashes on Windows is pool corruption. Pool corrup-

tion usually occurs when a driver suffers from a buffer overrun or buffer underrun bug that 

causes it to overwrite data past either the end or start of a buffer it has allocated from paged 

or nonpaged pool. The Executive’s pool-tracking structures reside on either side of a pool 

buffer and separate buffers from each other. These bugs, therefore, cause corruption to the 

pool tracking structures, to buffers owned by other drivers, or to both. You can often catch 

the culprit of a pool overrun by using the !pool command to examine the surrounding pool 

tags. Find the address at which the corruption occurred and use !pool address_of_corruption. 

This command will display all the pool allocations that are on the same page as the corrup-

tion. Looking in the left column, find the range of the corrupted address and then look at 

the allocation just previous to it and find its pool tag. This will likely be the culprit in a buf-

fer overrun. You can use the pooltag.txt file in the Triage folder of the Debugging Tools for 

Windows installation directory to find the driver that owns the pool tag, or use the Strings 

utility from Sysinternals.

Pool corruption can also occur when a driver writes to pool it had previously owned but sub-

sequently freed. This is called a use after free bug and is usually caused by a race condition in 

a driver. These bugs are particularly hard to debug because the driver that corrupts memory 

no longer has any traceable ties to the memory, such as a neighboring pool tag as in a buf-

fer overrun. Another fairly common cause of pool corruption is direct memory access (DMA). 

DMA occurs when hardware writes directly to RAM instead of going through a driver; how-

ever, the driver is still responsible for coordinating the whole process by allocating the mem-

ory that the hardware will write to and programming the hardware registers of the device 

with the details of the operation. If a driver has a bug that releases the memory it is using for 

DMA before the hardware writes to it, the memory can be given to another driver or even to 

a user-mode application, which will certainly not expect to have hardware writing to it.

The crashes caused by pool corruption are virtually impossible to debug because the system 

crashes when corrupted data is referenced, not when the corruption occurs. However, some-

times you can take steps to at least obtain a clue about what corrupted the memory. The first 

step is to try to determine the size of the corruption by looking at the corrupted data. If the 

corruption is a single bit, it was likely caused by bad RAM. If the corruption is fairly small, it 

could be caused by hardware or software, and finding a root cause will be nearly impossible. 

In the case of large corruptions, you can look for patterns in the corruption, like strings (for 

example, HTTP packet payloads, file contents of text-based files, and so on) or audio/video 

data (usually patterns of integers less than 1,024). Open an MP3 file in a hex editor to get an 

idea of what audio data looks like in memory.
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Note To assist in catching pool corruptions, Windows checks the consistency of a buffer’s pool-

tracking structures, and those of the buffer’s immediate neighbors, on every pool allocation and 

free operation. Thus, buffer overruns are likely to be detected shortly after the corruption and 

identified with a crash that has the BAD_POOL_HEADER stop code.

You can generate a pool corruption crash by running Notmyfault and selecting the Buffer 

Overflow bug. This causes Myfault to allocate a buffer and then overwrite the 40 bytes fol-

lowing the buffer. There can be a significant delay between the time you click the Do Bug 

button and when a crash occurs, and you might even have to generate pool usage by exer-

cising applications before a crash occurs, which highlights the distance between a corruption 

and its effect on system stability. An analysis of the resultant crash almost always reports 

Ntoskrnl or another driver as being the likely cause, which demonstrates the usefulness of a 

verbose analysis with its description of the stop code:

DRIVER_CORRUPTED_EXPOOL (c5)  

An attempt was made to access a pageable (or completely invalid) address at an  

interrupt request level (IRQL) that is too high.  This is  

caused by drivers that have corrupted the system pool.  Run the driver  

verifier against any new (or suspect) drivers, and if that doesn’t turn up  

the culprit, then use gflags to enable special pool.  

Arguments:  

Arg1: 4f4f4f53, memory referenced  

Arg2: 00000002, IRQL  

Arg3: 00000001, value 0 = read operation, 1 = write operation  

Arg4: 81926886, address which referenced memory

The advice in the description is to run the Driver Verifier against any new or suspect drivers 

or to use Gflags to enable special pool. Both accomplish the same thing: to have the system 

detect a potential corruption when it occurs and crash the system in a way that makes the 

automated analysis point at the driver causing the corruption.

If the Driver Verifier’s special pool option is enabled, verified drivers use special pool, rather 

than paged or nonpaged pool, for any allocations they make for buffers slightly less than a 

page in size. A buffer allocated from special pool is sandwiched between two invalid pages 

and by default is aligned against the top of the page. The special pool routines also fill the 

unused portions of the page in which the buffer resides with a random pattern. Figure 14-9 

depicts a special pool allocation.

The system detects any buffer overruns of under a page in size at the time of the over-

run because they cause a page fault on the invalid page following the buffer. The signature 

serves to catch buffer underruns at the time the driver frees a buffer because the integrity of 

the pattern placed there at the time of allocation will have been compromised.
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FIGURE 14-9 Special pool buffer allocation

To see how the use of special pool causes a crash that the analysis engine easily diagnoses, 

run the Driver Verifier Manager. Choose the Create Custom Settings (For Code Developers) 

option on the first page of the wizard, choose Select Individual Settings From A Full List on 

the second, and then select Special Pool. Choose the Select Drivers From A List option on the 

subsequent page, and on the page that lists drivers press the button to add unloaded drivers, 

and then type myfault.sys into the File Find dialog box. (You do not have to find myfault.sys 

in the File Find dialog box; just enter its name.) Then check the myfault.sys driver, exit the 

wizard, and reboot.

When you run Notmyfault and cause a buffer overflow, the system will immediately crash 

and the analysis of the dump reports this:

Probably caused by : myfault.sys ( myfault+3f1 )

A verbose analysis describes the stop code like this:

DRIVER_PAGE_FAULT_BEYOND_END_OF_ALLOCATION (d6)  

N bytes of memory was allocated and more than N bytes are being referenced.  

This cannot be protected by try-except.  

When possible, the guilty driver’s name (Unicode string) is printed on  

the bugcheck screen and saved in KiBugCheckDriver.  

Arguments:  

Arg1: beb50000, memory referenced  

Arg2: 00000001, value 0 = read operation, 1 = write operation  

Arg3: ec3473f1, if non-zero, the address which referenced memory.  

Arg4: 00000000, (reserved)

Special pool made an elusive bug into one that instantly reveals itself and makes the analysis 

trivial.
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Code Overwrite and System Code Write Protection

A driver with a bug that causes corruption or misinterpretation of its own data structures can 

reference memory the driver doesn’t own when it interprets corrupted data as a memory 

pointer value. The target of the pointer can be anything in the virtual address space, includ-

ing data belonging to other drivers, invalid memory, or the code of other drivers or the ker-

nel. As with buffer overruns, by the time that corruption is detected and the system crashes, 

it’s usually impossible to identify the driver that caused the corruption. Enabling special pool 

increases the chance of catching wild-pointer bugs, but it does not catch code corruption.

When you run Notmyfault and select the Code Overwrite option, the Myfault driver corrupts 

the entry point to the NtReadFile kernel function. One of two things will happen at this point: 

if your system has 255 MB or less of physical memory, you’ll get a crash for which an analysis 

points at Myfault.sys. The stop code description that a verbose analysis displays tells you that 

Myfault attempted to write to read-only memory:

ATTEMPTED_WRITE_TO_READONLY_MEMORY (be)  

An attempt was made to write to readonly memory.  The guilty driver is on the  

stack trace (and is typically the current instruction pointer).  

When possible, the guilty driver’s name (Unicode string) is printed on  

the bugcheck screen and saved in KiBugCheckDriver.  

Arguments:  

Arg1: 804bb7fd, Virtual address for the attempted write.  

Arg2: 004bb121, PTE contents.  

Arg3: b804db60, (reserved)  

Arg4: 0000000b, (reserved)

However, if you have more than 255 MB of memory, you’ll get a different type of crash 

because the attempt to corrupt the memory isn’t caught. Because NtReadFile is a com-

monly executed system service that is used by the Windows subsystem to read keyboard and 

mouse input, the system will almost immediately crash as a thread attempts to execute the 

corrupted code and generates an illegal instruction fault. The analysis of crashes generated 

with this bug is always wrong, but it might vary, with Win32k.sys and Ntoskrnl.exe commonly 

being the analyzer’s best guess as to what’s responsible. The bugcheck description for these 

crashes is:

KMODE_EXCEPTION_NOT_HANDLED (1e)  

This is a very common bugcheck.  Usually the exception address pinpoints  

the driver/function that caused the problem.  Always note this address  

as well as the link date of the driver/image that contains this address.  

Arguments:  

Arg1: c0000005, The exception code that was not handled  

Arg2: 80461885, The address that the exception occurred at  

Arg3: 00000000, Parameter 0 of the exception  

Arg4: 00000000, Parameter 1 of the exception

The reason for the different behaviors on different configurations relates to a mechanism 

called system code write protection. If system code write protection is enabled, the memory 
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manager maps Ntoskrnl.exe, the HAL, and boot drivers using standard physical pages (4 KB 

on x86 and x64, and 8 KB on IA64). Because the granularity of protection in an image is 

the standard page size, the memory manager can write-protect code pages so that an 

attempt to modify them generates an access fault (as seen in the first crash). However, when 

system code write protection is disabled on systems with more than 255 MB of RAM, the 

memory manager uses large pages (4 MB on x86, and 16 MB on IA64 and x86-64) to map 

Ntoskrnl.exe and the HAL.

If system code write protection is off and crash analysis reports unlikely causes for a crash 

or you suspect code corruption, you should enable it. Verifying at least one driver with the 

Driver Verifier is the easiest way to enable it. You can also enable it manually by adding two 

registry values under HKLM\SYSTEM\CurrentControlSet\Control\Session Manager\Memory 

Management. First, specify the amount of RAM at which the memory manager uses large 

pages instead of standard pages to map Ntoskrnl.exe as an effectively infinite value. You do 

this by creating a DWORD value called LargePageMinimum and setting it to 0xFFFFFFFF. Then 

add another DWORD value named EnforceWriteProtection and set it to 1. You must reboot 

for the changes to take effect.

Note When the debugger has access to the image files included in a crash dump, the analysis 

internally executes the !chkimg debugger command to verify that a copy of an image in a crash 

dump matches the on-disk image and reports any differences. Note that chkimg will always 

report discrepancies in Ntoskrnl.exe if you’ve enabled the Driver Verifier.

Advanced Crash Dump Analysis

The preceding section leverages the Driver Verifier to create crashes that the debugger’s 

automated analysis engine can resolve. You might still encounter cases where you cannot 

get a system to produce easily analyzable crashes and, if so, you will need to execute manual 

analysis to try and determine what the problem is. Here are some examples of basic com-

mands that can provide clues during crash analysis. The Debugging Tools for Windows help 

file provides complete documentation on these and other commands as well as examples of 

how to use them during crash analysis:

Use the !process 0 0 debugger command to look at the processes running, and make 

sure that you understand the purpose of each one. Try disabling or uninstalling unnec-

essary applications and services.

Use the lm command with the kv option to list the loaded kernel-mode drivers. Make 

sure that you understand the purpose of any third-party drivers and that you have the 

most recent versions.
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Use the !vm command to see whether the system has exhausted virtual memory, 

paged pool, or nonpaged pool. If virtual memory is exhausted, the committed pages 

will be close to the commit limit, so try to identify a potential memory leak by exam-

ining the list of processes to see which one reports high commit usage. If nonpaged 

pool or paged pool is exhausted (that is, the usage is close to the maximum), see the 

“Troubleshooting a Pool Leak” experiment in Chapter 9.

There are other debugging commands that can prove useful, but more advanced knowledge 

is required to apply them. The !irp command is one of them. The next section shows the use 

of this command to identify a suspect driver.

Stack Trashes

Stack overrun or stack trashing typically results from a buffer overrun or underrun or when 

a driver passes a buffer address located on the stack to a lower driver on the device stack, 

which then performs the work asynchronously.

In the case of a buffer overrun or underrun, instead of residing in pool, as you saw with 

Notmyfault’s buffer overrun bug, the target buffer is on the stack of the thread that executes 

the bug. This type of bug is another one that’s difficult to debug because the stack is the 

foundation for any crash dump analysis.

In the case of passing buffers on the stack to lower drivers, if the lower driver returns to the 

caller immediately because it used a completion routine to perform the work, instead of 

returning synchronously, when the completion routine is called, it will use the stack address 

that was passed previously, which could now correspond to a different state on the caller’s 

stack and result in corruption.

When you run Notmyfault and select Stack Trash, the Myfault driver overruns a buffer it allo-

cates on the kernel stack of the thread that executes it. When Myfault tries to return control 

to the Ntoskrnl function that was invoked, it reads the return address, which is the address at 

which it should continue executing, from the stack. The address was corrupted by the stack-

buffer overrun, so the thread continues execution at some different address in memory—an 

address that might not even contain code. An illegal exception and crash occur when the 

thread executes an illegal CPU instruction or it references invalid memory.

The driver that the crash dump analysis of a stack overrun points the blame at will vary from 

crash to crash, but the stop code will almost always be KMODE_EXCEPTION_NOT_HANDLED. 

If you execute a verbose analysis, the stack trace looks like this:

STACK_TEXT:    

881fc744 81c82590 0000008e c0000005 00000000 nt!KeBugCheckEx+0x1e 

881fcb14 81ca45da 881fcb30 00000000 881fcb84 nt!KiDispatchException+0x1a9 

881fcb7c 81ca458e 881fcc44 00000000 badb0d00 nt!CommonDispatchException+0x4a 

881fcc2c 81d07fd3 9762b658 84736e68 84736e68 nt!Kei386EoiHelper+0x186 
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881fcc44 81e98615 99321810 84736e68 84736ed8 nt!IofCallDriver+0x63 

881fcc64 81e98dba 9762b658 99321810 00000000 nt!IopSynchronousServiceTail+0x1d9 

881fcd00 81e82a8d 9762b658 84736e68 00000000 nt!IopXxxControlFile+0x6b7 

881fcd34 81ca3a1a 0000007c 00000000 00000000 nt!NtDeviceIoControlFile+0x2a 

881fcd34 779e9a94 0000007c 00000000 00000000 nt!KiFastCallEntry+0x12a 

WARNING: Frame IP not in any known module. Following frames may be wrong. 

0012f9f4 00000000 00000000 00000000 00000000 0x779e9a94

Notice how the call to IofCallDriver leads immediately to Kei386EoiHelper and into an excep-

tion, instead of a driver’s IRP dispatch routine. This is consistent with the stack having been 

corrupted and the IRP dispatch routine causing an exception when attempting to return to 

its caller by referencing a corrupted return address. Unfortunately, mechanisms like special 

pool and system code write protection can’t catch this type of bug. Instead, you must take 

some manual analysis steps to determine indirectly which driver was operating at the time of 

the corruption. One way is to examine the IRPs that are in progress for the thread that was 

executing at the time of the stack trash. When a thread issues an I/O request, the I/O man-

ager stores a pointer to the outstanding IRP on the IRP list of the ETHREAD structure for the 

thread. The !thread debugger command dumps the IRP list of the target thread. (If you don’t 

specify a thread object address, !thread dumps the processor’s current thread.) Then you can 

look at the IRP with the !irp command:

lkd> !thread  

THREAD 858d1aa0  Cid 0248.02c0  Teb: 7ffd9000 Win32Thread: ffad4e90 RUNNING on processor 0  

IRP List:  

    bc5a7f68: (0006,0094) Flags: 00000000  Mdl: 00000000  

Not impersonating  

Attached Process 84f45d90        

...  

  

lkd> !irp bc5a7f68  

Irp is active with 1 stacks 1 is current (= 0x837a7ab8)  

 No Mdl Thread 858d1aa0:  Irp stack trace.    

     cmd  flg cl Device   File     Completion-Context  

>[  e, 0]   0  0 856f6378 8504f290 00000000-00000000      

       \Driver\MYFAULT Args: 00000000 00000000 83360010 00000000

The output shows that the IRP’s current and only stack location (designated with the “>” pre-

fix) is owned by the Myfault driver. If this were a real crash, the next steps would be to ensure 

that the driver version installed is the most recent available, install the new version if it isn’t, 

and if it is, to enable the Driver Verifier on the driver (with all settings except low memory 

simulation).

Manually analyzing the stack is often the most powerful technique when dealing with crashes 

such as these. Typically, this involves dumping the current stack pointer register (for example, 

esp and rsp on 32-bit and x64 respectively). However, because the code responsible for 

crashing the system itself might modify the stack in ways that make analysis difficult, the 

processor responsible for crashing the system provides a backing store for the current data 

in the stack, called KiPreBugcheckStackSaveArea, which contains a copy of the stack before 
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any code in KeBugCheckEx executes. By using the dps (dump pointer with symbols) command 

in the debugger, you can dump this area (instead of the CPU’s stack pointer register) and 

resolve symbols in an attempt to discover any potential stack traces. In this crash, here’s what 

dumping the stack area eventually revealed on a 32-bit system.

kd> dps KiPreBugcheckStackSaveArea KiPreBugcheckStackSaveArea+3000 

81d7dd20  881fcc44 

81d7dd24  98fcf406 myfault+0x406 

81d7dd28  badb0d00

Although this data was located among many other different functions, it is of special interest 

because it mentions a function in the Myfault driver, which as we’ve seen was currently exe-

cuting an IRP, that doesn’t show on the stack. For more information on manual stack analysis, 

see the Debugging Tools for Windows help file and the additional resources referenced later 

in this chapter.

Hung or Unresponsive Systems

If a system becomes unresponsive (that is, you are receiving no response to keyboard 

or mouse input), the mouse freezes, or you can move the mouse but the system doesn’t 

respond to clicks, the system is said to have hung. A number of things can cause the system 

to hang:

A device driver does not return from its interrupt service (ISR) routine or deferred pro-

cedure call (DPC) routine

A high priority real-time thread preempts the windowing system driver’s input threads

A deadlock (when two threads or processors hold resources each other wants and nei-

ther will yield what they have) occurs in kernel mode

You can check for deadlocks by using the Driver Verifier option called deadlock detection. 

Deadlock detection monitors the use of spinlocks, fast mutexes, and mutexes, looking for 

patterns that could result in a deadlock. (For more information on these and other synchro-

nization primitives, see Chapter 3.) If one is found, the Driver Verifier crashes the system with 

an indication of which driver causes the deadlock. The simplest form of deadlock occurs 

when two threads hold resources each other thread wants and neither will yield what they 

have or give up waiting for the one they want. The first step to troubleshooting hung systems 

is therefore to enable deadlock detection on suspect drivers, then unsigned drivers, and then 

all drivers, until you get a crash that pinpoints the driver causing the deadlock.

There are two ways to approach a hanging system so that you can apply the manual crash 

troubleshooting techniques described in this chapter to determine what driver or compo-

nent is causing the hang: the first is to crash the hung system and hope that you get a dump 

that you can analyze, and the second is to break into the system with a kernel debugger and 

analyze the system’s activity. Both approaches require prior setup and a reboot. You use the 
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same exploration of system state with both approaches to try and determine the cause of the 

hang.

To manually crash a hung system, you must first add the DWORD registry value HKLM\

SYSTEM\CurrentControlSet\Services\i8042prt\Parameters\CrashOnCtrlScroll and set it to 1. 

After rebooting, the i8042 port driver, which is the port driver for PS2 keyboard input, moni-

tors keystrokes in its ISR (discussed further in Chapter 3) looking for two presses of the scroll 

lock key while the right control key is depressed. When the driver sees that sequence, it 

calls KeBugCheckEx with the MANUALLY_INITIATED_CRASH (0xE2) stop code that indicates a 

manually initiated crash. When the system reboots, open the crash dump file and apply the 

techniques mentioned earlier to try and determine why the system was hung (for example, 

determining what thread was running when the system hung, what the kernel stack indicates 

was happening, and so on). Note that this works for most hung system scenarios, but it won’t 

work if the i8042 port driver’s ISR doesn’t execute. (The i8042 port driver’s ISR won’t execute 

if all processors are hung as a result of their IRQL being higher than the ISR’s IRQL, or if cor-

ruption of system data structures extends to interrupt-related code or data.)

Note Manually crashing a hung system by using the support provided in the i8042 port driver 

does not work with USB keyboards. It works with PS2 keyboards only.

You can also trigger a crash if your hardware has a built-in “crash” button. (Some high-end 

servers have this.) In this case, the crash is initiated by signaling the nonmaskable inter-

rupt (NMI) pin of the system’s motherboard. To enable this, set the registry DWORD value 

HKLM\SYSTEM\CurrentControlSet\Control\CrashControl\NMICrashDump to 1. Then, when 

you press the dump switch, an NMI is delivered to the system and the kernel’s NMI interrupt 

handler calls KeBugCheckEx. This works in more cases than the i8042 port driver mecha-

nism because the NMI IRQL is always higher than that of the i8042 port driver interrupt. See 

www.microsoft.com/whdc/system/sysinternals/dmpsw.mspx for more information.

If you are unable to manually generate a crash dump, you can attempt to break into the 

hung system by first making the system boot into debugging mode. You do this in one of 

two ways. You can press the F8 key during the boot and select Debugging Mode, or you 

can create a debugging-mode boot option in the BCD by copying an existing boot entry 

and adding the debug option. When using the F8 approach, the system will use the default 

connection (Serial Port COM2 and 19200 Baud), but you can use the F10 key to display the 

Edit Boot Options screen to edit debug-related boot options. With the debug option, you 

must also configure the connection mechanism to be used between the host system running 

the kernel debugger and the target system booting in debugging mode and then config-

ure the debugport and baudrate switches appropriately for the connection type. The three 

connection types are a null modem cable using a serial port, an IEEE 1394 (FireWire) cable 

using 1394 ports on each system, or a USB 2.0 host-to-host cable using USB ports on each 
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system. For details on configuring the host and target system for kernel debugging, see the 

Debugging Tools for Windows help file.

When booting in debugging mode, the system loads the kernel debugger at boot time and 

makes it ready for a connection from a kernel debugger running on a different computer 

connected through a serial cable, IEEE 1394 cable, or USB 2.0 host-to-host cable. Note that 

the kernel debugger’s presence does not affect performance. When the system hangs, run 

the WinDbg or Kd debugger on the connected system, establish a kernel debugging connec-

tion, and break into the hung system. This approach will not work if interrupts are disabled or 

the kernel debugger has become corrupted.

Note Booting a system in debugging mode does not affect performance if it’s not connected to 

another system; however, a system that’s configured to automatically reboot after a crash will not 

do so if it’s booted with kernel debugging enabled, because the kernel debugger waits for a con-

nection from another system after a crash.

Instead of leaving the system in its halted state while you perform analysis, you can also use 

the debugger .dump command to create a crash dump file on the host debugger machine. 

Then you can reboot the hung system and analyze the crash dump offline (or submit it to 

Microsoft). Note that this can take a long time if you are connected using a serial null modem 

cable or USB 2.0 connection (versus a higher speed 1394 connection), so you might want to 

just capture a minidump using the .dump /m command. Alternatively, if the target machine 

is capable of writing a crash dump, you can force it to do so by issuing the .crash command 

from the debugger. This will cause the target machine to create a dump on its local hard 

drive that you can examine after the system reboots.

You can cause a hang by running Notmyfault and selecting the Hang option. This causes the 

Myfault driver to queue a DPC on each processor of the system that executes an infinite loop. 

Because the IRQL of the processor while executing DPC functions is DPC/dispatch level, the 

keyboard ISR will respond to the special keyboard crashing sequence.

Once you’ve broken into a hung system or loaded a manually generated dump from a hung 

system into a debugger, you should execute the !analyze command with the –hang option. 

This causes the debugger to examine the locks on the system and try to determine whether 

there’s a deadlock, and if so, what driver or drivers are involved. However, for a hang like the 

one that Notmyfault’s Hang option generates, the !analyze analysis command will report 

nothing useful.

If the !analyze command doesn’t pinpoint the problem, execute !thread and !process in each 

of the dump’s CPU contexts to see what each processor is doing. (Switch CPU contexts with 

the ~ command—for example, use ~1 to switch to processor 1’s context.) If a thread has 

hung the system by executing in an infinite loop at an IRQL of DPC/dispatch level or higher, 

you’ll see the driver module in which it has become stuck in the stack trace of the !thread 
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command. The stack trace of the crash dump you get when you crash a system experiencing 

the Notmyfault hang bug looks like this:

STACK_TEXT:    

f9e66ed8 f9b0d681 000000e2 00000000 00000000 nt!KeBugCheckEx+0x19  

f9e66ef4 f9b0cefb 0069b0d8 010000c6 00000000 i8042prt!I8xProcessCrashDump+0x235  

f9e66f3c 804ebb04 81797d98 8169b020 00010009 i8042prt!I8042KeyboardInterruptService+0x21c  

f9e66f3c fa12e34a 81797d98 8169b020 00010009 nt!KiInterruptDispatch+0x3d  

WARNING: Stack unwind information not available. Following frames may be wrong.  

ffdff980 8169b288 f9e67000 0000210f 00000004 myfault+0x34a  

8054ace4 ffdff980 804ebf58 00000000 0000319c 0x8169b288  

8054ace4 ffdff980 804ebf58 00000000 0000319c 0xffdff980  

8169ae9c 8054ace4 f9b12b0f 8169ac88 00000000 0xffdff980  

...

The top few lines of the stack trace reference the routines that execute when you type the 

i8042 port driver’s crash key sequence. The presence of the Myfault driver indicates that it 

might be responsible for the hang. Another command that might be revealing is !locks, which 

dumps the status of all executive resource locks. By default, the command lists only resources 

that are under contention, which means that they are both owned and have at least one 

thread waiting to acquire them. Examine the thread stacks of the owners with the !thread 

command to see what driver they might be executing in. Sometimes you will find that the 

owner of one of the locks is waiting for an IRP to complete (a list of IRPs related to a thread is 

displayed in the !thread output). In these cases it is very hard to tell why an IRP is not making 

forward progress. (IRPs are usually queued to privately managed driver queues before they 

are completed). One thing you can do is examine the IRP with the !irp command and find 

the driver that pended the IRP (it will have the word “pending” displayed in its stack location 

from the !irp output). Once you have the driver name, you can use the !stacks command to 

look for other threads that the driver might be running on, which often provides clues about 

what the lock-owning driver is doing. Much of the time you will find the driver is deadlocked 

or waiting on some other resource that is blocked waiting for the driver.

When There Is No Crash Dump

In this section, we’ll address how to troubleshoot systems that for some reason are not 

recording a crash dump. One reason why a crash dump might not be recorded is if the pag-

ing file on the boot volume is too small to hold the dump. This can easily be remedied by 

increasing the size of the paging file. A second reason why there might not be a crash dump 

recorded is because the kernel code and data structures needed to write the crash dump 

have been corrupted at the time of the crash. As described earlier, this data is checksummed 

when the system boots, and if the checksum made at the time of the crash does not match, 

the system does not even attempt to save the crash dump (so as not to risk corrupting data 

on the disk). So in this case, you need to catch the system as it crashes and then try to deter-

mine the reason for the crash.
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Another reason occurs when the disk subsystem for the system disk is not able to process 

disk write requests (a condition that might have triggered the system failure itself). One such 

condition would be a hardware failure in the disk controller or maybe a cabling issue near the 

hard disk.

Yet another possibility occurs when the system has drivers that have registered to add sec-

ondary dump data to the dump file. When the driver callbacks are called, they might incor-

rectly access data structures located in paged memory (for example), which will lead to a 

second crash.

One simple option is to turn off the Automatically Restart option in the Startup And Recovery 

settings so that if the system crashes, you can examine the blue screen on the console. 

However, only the most straightforward crashes can be solved from just the blue-screen text.

To perform more in-depth analysis, you need to use the kernel debugger to look at the sys-

tem at the time of the crash. This can be done by booting the system in debugging mode, 

which is described in the previous section. When a system is booted in debugging mode and 

crashes, instead of painting the blue screen and attempting to record the dump, it will wait 

forever until a host kernel debugger is connected. In this way, you can see the reason for 

the crash and perhaps perform some basic analysis using the kernel debugger commands 

described earlier. As mentioned in the previous section, you can use the .dump command in 

the debugger to save a copy of the crashed system’s memory space for later debugging, thus 

allowing you to reboot the crashed system and debug the problem offline.

The operating system code and data structures that handle processor exceptions can become 

corrupted such that a series of recursive faults occur. One example of this would be if the 

operating system trap handler got corrupted and caused a page fault. This would invoke the 

page fault handler, which would fault again, and so on. If such a situation occurred, the sys-

tem would be hopelessly stuck. To prevent such a situation from occurring, CPUs have a built-

in recursive fault protection mechanism, which sets a hard limit on the depth of a recursive 

fault. On most x86 processors, a fault can nest to two levels deep. When the third recursive 

fault occurs, the processor resets itself and the machine reboots. This is called a triple fault. 
This can happen when there’s a faulty hardware component as well. Even a kernel debugger 

won’t be invoked in a triple fault situation. However, sometimes the mere fact that the kernel 

debugger doesn’t activate can confirm that there’s a problem with newly added hardware or 

drivers.

Note  You can use the kernel debugger to trigger a triple fault on a machine by setting a break-

point on the kernel debugger dispatch routine KiDispatchException. This happens because the 

exception dispatcher now causes a breakpoint exception, which invokes the exception dispatcher, 

and so on.
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EXPERIMENT: The Blue Screen Screen Saver

A great way to remind yourself of what a blue screen looks like or to fool your 

office workers and friends is to run the Sysinternals Blue Screen screen saver from 

Sysinternals. The screen saver simulates authentic looking blue screens that reflect the 

version of Windows on which you run it, generating all blue screen text using actual 

system information such as the list of loaded drivers. It also mimics an automatic-

reboot, complete with the Windows startup splash screen. Note that unlike other 

screen savers, where a mouse movement dismisses them, the Blue Screen screen saver 

requires a key press.

Using the following syntax for the Psexec tool from Sysinternals, you can even run the 

screen saver on another system:

psexec \\computername –i –d "c:\sysinternalsbluescreen.scr" –s

The command requires that you have administrative privilege on the remote system. 

(You can use the –u and –p Psexec switches to specify alternate credentials.) Make sure 

that your coworker has a sense of humor!

Conclusion

Although many crashes can be analyzed with some of the techniques described in this chap-

ter, many require analysis that goes beyond the scope of this book. Here are some additional 

resources that may be useful if you want to learn more advanced crash analysis techniques 

and information:

The Microsoft Platforms Global Escalation Services team blog at http://blogs.msdn.com/
ntdebugging provides various tips and tricks and real-life scenarios encountered by the 

team.

The Web site www.dumpanalysis.org provides hundreds of patterns and advanced 

analysis scenarios and hints.
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Glossary

access control list (ACL) The part of a secu-
rity descriptor that enumerates who has 
what access  to an object. The owner of an 
object can change the object’s ACL to allow 
or disallow others access to the object. An 
ACL is made up of an ACL header and zero 
or more access control entry (ACE) struc-
tures. An ACL with zero ACEs is called a null 
ACL and indicates that no user has access 
to the object.

access token A data structure that contains 
the security identification of a process or a 
thread, which includes its security ID (SID), 
the list of groups that the user is a mem-
ber of, User Access Control (UAC) virtual-
ization state, and the list of privileges that 
are enabled and disabled. Each process has 
a primary access token that it inherits by 
default from its creating process.

add-device routine A routine implemented 
by drivers that supports Plug and Play. 
The Plug and Play manager sends a driver 
notification via this routine whenever a 
device for which the driver is responsible 
is detected. In this routine, a driver typi-
cally allocates a device object to represent 
the device.

Address Windowing Extensions (AWE) A 
mechanism in Windows that allows a 32-bit 
application to allocate up to 64 GB of phys-
ical memory and then map views, or win-
dows, into its 2-GB virtual address space. 
Using AWE puts the burden of managing 
mappings of virtual-to-physical memory on 
the programmer but solves the immediate 
need of being able to directly access more 
physical memory than can be mapped at 
any one time in a 32-bit process address 
space.

advanced local procedure call (ALPC) An 
interprocess communication facility for 
high-speed message passing (not avail-
able through the Windows API but rather 
through an internal mechanism available 
only to Windows operating system com-
ponents). ALPCs are typically used between 
a server process and one or more client 
processes of that server. An ALPC connec-
tion can be established between two user-
mode processes or between a kernel-mode 
component and a user-mode process.

affinity mask A bitmask that specifies the 
processors on which the thread is allowed 
to run. The initial thread affinity mask is 
inherited from the process affinity mask.

aging A process performed on a page that 
increments a count indicating that the 
page hasn’t been referenced since the last 
working set trim scan. On a single-pro-
cessor system, the working set manager 
tries to remove pages that haven’t been 
accessed recently. It does this by first clear-
ing the accessed bit in the hardware page 
table entry (PTE) and then later checking 
the bit to see whether the page has been 
accessed. If the bit remains clear, the page 
wasn’t accessed between scans and is aged. 
Later, the age of pages is used to locate 
candidate pages to remove from the work-
ing set.

alertable wait state A thread state that 
the thread enters either by waiting on 
an object handle and specifying that 
its wait is alertable (with the Windows 
WaitForMultipleObjectsEx function) or by 
testing directly whether it has a pending 
APC (using SleepEx). In both cases, if a user-
mode APC is pending, the kernel interrupts 
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(alerts) the thread, transfers control to the 
APC routine, and resumes the thread’s exe-
cution when the APC routine completes. 
User-mode APCs are delivered to a thread 
only when it’s in an alertable wait state.

allocation granularity The granularity 
with which virtual memory is allocated. 
Windows aligns each region of reserved 
process address space to begin on an 
integral boundary defined by the system 
allocation granularity value, which can be 
retrieved from the Windows GetSystemInfo 
or GetNativeSystemInfo function. Currently, 
this value is 64 KB. This size was chosen 
so that if support were added for future 
processors with large page sizes (for 
example, up to 64 KB), the risk of requir-
ing changes to applications that made 
assumptions about allocation alignment 
would be reduced. (Windows kernel-mode 
code isn’t subject to the same restrictions; 
it can reserve memory on a single-page 
granularity.)

altitudes A way for different vendors to 
register a “height” on the registry filter-
ing stack so that the order in which the 
system calls each callback routine can 
be deterministic and correct. This avoids 
a scenario in which an antivirus product 
would be scanning encrypted keys before 
an encryption product would run its own 
callback to decrypt them.

APC queue A queue in which asynchronous 
procedure calls (APCs) waiting to execute 
reside. The APC queues (one for user mode 
and one for kernel mode) are thread-spe-
cific—each thread has its own APC queues 
(unlike the DPC queue, which is processor-
wide).

asymmetric multiprocessing (ASMP) A sys-
tem of processing on a multiprocessor sys-
tem that typically selects one processor to 
execute operating system code while other 
processors run only user code.

asynchronous I/O An I/O model that allows 
an application to issue an I/O request and 
then continue executing while the request is 
completed. This type of I/O can improve an 
application’s throughput because it allows 
the application to continue with other work 
while an I/O operation is in progress.

asynchronous procedure call (APC) A func-
tion that provides a way for user programs 
and system code to execute code in the 
context of a particular user thread (and 
hence a particular process address space). 
An APC can be either kernel mode or user 
mode. (Kernel-mode APCs don’t require 
“permission” from a target thread to run 
in that thread’s context, as user-mode 
APCs do.)

asynchronous read-ahead with history A 
method in which the cache manager main-
tains a history of the last two read requests 
in the private cache map for the file handle 
being accessed.

atomic transaction A technique for han-
dling modifications to a database so that 
system failures don’t affect the correctness 
or integrity of the database. The basic tenet 
of atomic transactions is that some data-
base operations, called transactions, are 
all-or-nothing propositions. The separate 
disk updates that make up the transac-
tion must be executed atomically; that is, 
once the transaction begins to execute, all 
its disk updates must be completed. If a 
system failure interrupts the transaction, 
the part that has been completed must 
be undone, or rolled back. The rollback 
operation returns the database to a previ-
ously known and consistent state, as if the 
transaction had never occurred. See also 
transaction.

attribute list A special kind of file attribute 
in an NTFS file header that contains addi-
tional attributes. The attribute list is created 
if a particular file has too many attributes 
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to fit in the master file table (MFT) record. 
The attribute list attribute contains the 
name and type code of each of the file’s 
attributes and the file reference of the MFT 
record where the attribute is located.

authentication packages Dynamic-link 
libraries (DLLs) that run in the context of 
the LSASS process and that implement 
Windows authentication policy. An authen-
tication DLL is responsible for checking 
whether a given user name and password 
match, and if so, returning to LSASS infor-
mation detailing the user’s security identity. 
Windows authentication packages include 
Kerberos and MSV1_0.

automatic working set trimming When 
physical memory runs low, the working set 
manager, a routine that runs in the context 
of the balance set manager system thread, 
initiates automatic working set trimming to 
increase the amount of free memory avail-
able in the system.

bad-cluster file A system file (file name 
$Bad-Clus) that records any bad spots on 
the disk volume.

bad-cluster remapping A process in which 
NTFS dynamically retrieves good data from 
a cluster with a bad sector, allocates a new 
cluster, and copies the data to the new 
cluster.

balance set manager A system thread that 
wakes up once per second to check and 
possibly initiate various scheduling and 
memory management–related events.

basic disk A disk that relies on the MBR-
style or GPT partitioning scheme. See also 
dynamic disk.

BitLocker Drive Encryption A full-volume 
encryption feature that helps prevent 
unauthorized access to data on lost or 
stolen computers by combining two major 
data-protection procedures: encrypting the 
entire Windows operating system volume 

on the hard disk and verifying the integrity 
of early boot components and boot con-
figuration data.

bitmap file A system file (file name $BitMap) 
in which NTFS records the allocation state 
of the volume. The data attribute for the 
bitmap file contains a bitmap, each of 
whose bits represents a cluster on the vol-
ume, identifying whether the cluster is free 
or has been allocated to a file.

boot code Instructions executed when a 
system is booted.

boot device drivers Device drivers neces-
sary to boot the system.

boot file A system file (file name $Boot) that 
stores the Windows bootstrap code.

boot sector The first sector of the partition 
marked as active and from which the MBR 
boots. The boot sector contains informa-
tion identifying the partition’s file system 
format and structure.

boot volume The volume that corresponds 
to the partition on which the system direc-
tory (usually \Windows) of the installation 
being booted is located. The boot volume 
can be, but does not have to be, the same 
as the system volume.

bus driver Driver that services a bus control-
ler, adapter, bridge, or any device that has 
child devices. Bus drivers are required driv-
ers, and Microsoft generally provides them; 
each type of bus (such as PCI, PCMCIA, and 
USB) on a system has one bus driver.

cache manager The component of the 
Windows executive that provides system-
wide caching services for NTFS and other 
file system drivers, including network file 
system drivers (servers and redirectors).

change journal An internal file where an 
NTFS file system can record information 
that allows applications to efficiently moni-
tor file and directory changes. A change 
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journal is usually large enough to virtually 
guarantee that applications get a chance to 
process changes without missing any.

checked build A special debug version of 
Windows that is available only as part of 
the MSDN Professional (or Universal) sub-
scription. The checked build is created by 
compiling the Windows sources with the 
compile-time flag “DBG” defined.

checkpoint record A record that helps 
NTFS determine what processing would 
be needed to recover a volume if a crash 
were to occur immediately. This record also 
includes redo and undo information.

class driver A type of kernel-mode device 
driver that implements the I/O processing 
for a particular class of devices, such as disk, 
tape, or CD-ROM.

clock algorithm A working set page replace-
ment policy implemented on uniprocessor 
systems, similar to a least recently used 
policy (as implemented in most versions 
of UNIX).

clock interrupt handler A system routine 
that updates the system time and then dec-
rements a counter that tracks how long the 
current thread has run.

cluster factor The cluster size on a volume, 
which is established when a user formats 
the volume with either the format com-
mand or the Disk Management Microsoft 
Management Console (MMC) snap-in.

clustering A method by which the memory 
manager resolves a page fault by reading 
into memory several pages near the page 
explicitly accessed.

clusters Same-size allocation units into which 
a volume is divided. Each cluster must be 
uniquely numbered using 16 bits.

code integrity A mechanism that authen-
ticates the integrity and source of execut-
able images (such as applications, DLLs, or 

drivers) by validating a digital certificate 
contained within the image’s resources. 
This mechanism works in conjunction 
with system policies, defining how signing 
should be enforced.

collided page fault A fault that occurs when 
another thread or process faults a page 
that is currently being in-paged.

commitment The process by which the 
memory manager keeps track of private 
committed memory usage on a global 
basis.

common model A set of classes in the 
Common Information Model (CIM) that 
represent objects that are specific to man-
agement areas of a system but indepen-
dent of a particular implementation. These 
classes are considered an extension of the 
CIM core model. See also core model.

complete memory dump A memory dump 
that contains all of physical memory at 
the time of the crash. This type of dump 
requires that a page file be at least the 
size of physical memory plus 1 MB for the 
header. Because it can require an inordi-
nately large page file on large memory 
systems, this type of dump file is the least 
common.

completion port A mechanism to deliver 
I/O completion notification to threads. 
Once a file is associated with a completion 
port, any asynchronous I/O operations that 
complete on the file result in a completion 
packet being queued to the completion 
port. A thread can wait for any outstanding 
I/Os to complete on multiple files simply 
by waiting for a completion packet to be 
queued to the completion port. With com-
pletion ports, concurrency, or the number 
of threads that an application has actively 
servicing client requests, is controlled with 
the aid of the system.
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configuration manager A major compo-
nent of the executive that’s responsible for 
implementing and managing the system 
registry.

container object A namespace object that 
can hold other objects, including other 
container objects. Examples of containers 
are directories in the file system namespace 
and keys in the registry namespace.

context switch The procedure of saving 
the volatile machine state associated with 
a running thread, loading another thread’s 
volatile state, and starting the new thread’s 
execution.

control objects A set of kernel objects that 
establishes semantics for controlling vari-
ous operating system functions. This set 
includes the kernel process object, the 
asynchronous procedure call (APC) object, 
the deferred procedure call (DPC) object, 
and several objects the I/O system uses, 
such as the interrupt object.

core model A set of classes in the Common 
Information Model (CIM) provided as part 
of the WBEM standard. These classes are 
CIM’s basic language and represent objects 
that apply to all areas of management. See 
also common model.

crash dump A record of system memory at 
the time of a crash that can help you figure 
out which component caused the crash.

credential provider Credential providers 
are COM objects located inside DLLs. The 
default providers are %SystemRoot%\
System32\authui.dll and %Systemroot%\
System32\SmartcardCredentialProvider.dll, 
which support both password and smart-
card PIN authentication. Windows allows 
other credential providers to be installed, 
enabling it to use different user-identifica-
tion mechanisms.

critical sections Sections of code that access 
a nonshareable resource. To ensure correct 

code, only one thread at a time can execute 
in a critical section.

deadlock detection A Driver Verifier option 
that monitors the use of spinlocks, fast 
mutexes, and mutexes, looking for patterns 
that could result in deadlock.

deferred procedure call (DPC) A routine 
that performs most of the work involved 
in handling a device interrupt after the 
interrupt service routine (ISR) executes. 
The DPC routine executes at an interrupt 
request level (IRQL) that is lower than that 
of the ISR to avoid blocking other inter-
rupts unnecessarily. A DPC routine initiates 
I/O completion and starts the next queued 
I/O operation on a device.

deferred procedure call (DPC) object A ker-
nel control object that describes a request 
to defer interrupt processing to DPC/dis-
patch level. (See interrupt request levels 
[IRQLS].) This object isn’t visible to user-
mode programs but is visible to device 
drivers and other system code. The most 
important piece of information the DPC 
object contains is the address of the system 
function that the kernel will call when it 
processes the DPC interrupt.

Deferred Ready A state used for threads 
that have been selected to run on a specific 
processor but have not yet been scheduled. 
This state exists so that the kernel can mini-
mize the amount of time the systemwide 
lock on the scheduling database is held.

demand-paging policies A fetch policy that 
loads a page into physical memory only 
when a page fault occurs. In a demand-
paging system, a process incurs many page 
faults when its threads first begin executing 
because the threads reference the initial set 
of pages they need to get going. Once this 
set of pages is loaded into memory, the 
paging activity of the process decreases.
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desired access rights The accesses desired 
by a process opening an object.

device drivers Loadable kernel-mode mod-
ules (typically ending in .sys) that interface 
between the I/O system and the relevant 
hardware. Device drivers on Windows don’t 
manipulate hardware devices directly, but 
rather they call parts of the hardware 
application layer (HAL) to interface with 
the hardware.

device ID A device identifier reported to the 
Plug and Play manager. The identifiers are 
bus-specific; for a USB bus, an identifier 
consists of a vendor ID (VID) for the hard-
ware vendor that made the device and a 
product ID (PID) that the vendor assigned 
to the device.

device instance ID (DIID) An identifier con-
sisting of a device ID and an instance ID 
that the Plug and Play manager uses to 
locate the device’s key in the enumeration 
branch of the registry (HKLM\SYSTEM\
CurrentControlSet\Enum).

device object A data structure that repre-
sents a physical or logical device on the 
system and describes its characteristics, 
such as the alignment it requires for buf-
fers and the location of its device queue to 
hold incoming I/O request packets.

device-specific module (DSM) Built-in or 
third-party drivers used to manage details 
of the path management, such as load bal-
ancing policies that choose which path to 
use for routing requests and error detec-
tion mechanisms to inform Windows when 
a path fails.

device tree An internal tree the Plug and 
Play manager creates that represents the 
relationships between devices. Nodes 
in the tree are called devnodes. See also 
devnode.

devnode A node in a device tree. A devnode 
contains information about the device 

objects that represent the device as well 
as other Plug and Play–related information 
the Plug and Play manager stores. See also 
device tree.

direct memory access (DMA) A third 
interface provided by the cache manager 
to cached data. The DMA functions are 
used to read from or write to cache pages 
without intervening buffers, such as when 
a network file system is doing a transfer 
over the network.

dirty page threshold The number of pages 
that the system cache will allow to be dirty 
before throttling cached writers. The value 
is computed at system initialization time 
and depends on the product type (client 
or server).

discretionary access control Allows the 
owner of a resource to determine who can 
access the resource and what they can do 
with it. The owner grants rights that per-
mit various kinds of access to a user or to 
a group.

disk group The name of a computer concat-
enated with Dg0 (for example, Daryl-Dg0 
if the computer’s name is Daryl).

dispatch code Instructions of assembly lan-
guage code stored in an interrupt object 
when it is initialized. When an interrupt 
occurs, this code is executed.

dispatch routines The main functions that 
a device driver provides. Some examples 
of dispatch routines are open, close, read, 
and write, and any other capabilities the 
device, file system, or network supports. 
When called on to perform an I/O opera-
tion, the I/O manager generates an IRP and 
calls a driver through one of the driver’s 
dispatch routines.

dispatcher A set of routines in the kernel that 
implement Windows scheduling. Windows 
doesn’t have a single “scheduler” module 
or routine—the code is spread throughout 
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the kernel in which scheduling-related 
events occur.

dispatcher database A set of data structures 
the kernel maintains to make thread-sched-
uling decisions. The dispatcher database 
keeps track of which threads are waiting 
to execute and which processors are exe-
cuting which threads. See also dispatcher 
ready queue.

dispatcher header A data structure that 
contains the object type, the signaled state, 
and a list of the threads waiting on that 
object.

dispatcher objects A set of kernel objects 
that incorporate synchronization capabili-
ties and alter or affect thread scheduling. 
The dispatcher objects include the kernel 
thread, mutex (called mutant internally), 
event, kernel event pair, semaphore, timer, 
and waitable timer.

dispatcher ready queue The most impor-
tant structure in the dispatcher database 
(located at DispatcherReadyListHead). The 
dispatcher ready queue is really a series of 
queues, one queue for each scheduling pri-
ority. The queues contain threads that are 
in the ready state, waiting to be scheduled 
for execution.

display driver Driver that translates device-
independent graphics requests into device-
specific requests. The device-specific 
requests are then paired with a kernel-
mode video miniport driver to complete 
video display support. A display driver is 
responsible for implementing drawing 
operations, either by writing directly to 
the frame buffer or by communicating 
with the graphics accelerator chip on the 
controller.

driver object Data structure that represents 
an individual driver in the system and 
records for the I/O manager the address 

of each of the driver’s dispatch routines 
(entry points).

Driver Verifier A mechanism that can be 
used to help find and isolate commonly 
found bugs in device drivers or other 
kernel-mode system code. Microsoft uses 
Driver Verifier to check its own device driv-
ers as well as all device drivers that ven-
dors submit for Hardware Compatibility 
List (HCL) testing.

dynamic disk A disk that supports multipar-
tition volumes, providing a more flexible 
partitioning scheme than that of a basic 
disk. See also basic disk.

dynamic-link library (DLL) A set of callable 
subroutines linked as a binary image that 
can be dynamically loaded by applications 
that use them.

environment subsystems User processes 
and DLLs that expose the native operat-
ing system services to user applications, 
thus providing an operating system envi-
ronment, or personality. Windows Vista 
Ultimate and Enterprise include support 
for an enhanced POSIX subsystem called 
Subsystem for Unix-based Applications.

event An object with a persistent state (sig-
naled or not signaled) that can be used for 
synchronization; also, a system occurrence 
that triggers an action.

exception A synchronous condition that 
results from the execution of a particular 
instruction. Running a single program with 
the same data under the same conditions 
can reproduce exceptions.

exception dispatcher A kernel module that 
services all exceptions, except those simple 
enough to be resolved by the trap handler. 
The exception dispatcher’s job is to find an 
exception handler that can “dispose of” the 
exception.
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executive The upper layer of Ntoskrnl.exe. 
(The kernel is the lower layer.) The execu-
tive contains the base operating system 
services, such as the process and thread 
manager, the memory manager, the secu-
rity reference monitor, the I/O system, and 
the cache manager. See also kernel.

executive objects Objects implemented by 
various components of the executive (such 
as the process manager, memory manager, 
I/O subsystem, and so on). The executive 
objects and object services are primitives 
that the environment subsystems use to 
construct their own versions of objects and 
other resources. Because executive objects 
are typically created either by an environ-
ment subsystem on behalf of a user appli-
cation or by various components of the 
operating system as part of their normal 
operation, many of them contain (encap-
sulate) one or more kernel objects. See also 
kernel objects.

executive resources Resources that provide 
exclusive access (such as a mutex) as well 
as shared read access (multiple readers 
sharing read-only access to a structure). 
Because executive resources are available 
only to kernel-mode code, they aren’t 
accessible from the Windows API.

extended partition A special partition 
type that contains a master boot record 
(MBR) with its own partition table. By using 
extended partitions, Microsoft’s operat-
ing systems overcome the apparent limit 
of four partitions per disk. In general, the 
recursion that extended partitions permit 
can continue indefinitely, which means 
that no upper limit exists to the number 
of possible partitions on a disk. See also 
partition.

fast I/O A means of reading or writing a 
cached file without going through the work 
of generating an I/O request packet (IRP).

fast LPC A special interprocess commu-
nication facility used to send messages 
between threads.

file mapping objects Windows API under-
lying primitives in the memory manager 
that are used to implement shared memory 
(called section objects internally). See also 
section object.

file reference A 64-bit value that identifies a 
file on an NTFS volume. The file reference 
consists of a file number and a sequence 
number. The file number corresponds to 
the position of the file’s file record in the 
master file table minus 1 (or to the position 
of the base file record minus 1 if the file has 
more than one file record).

file system driver (FSD) A type of kernel-
mode device driver that accepts I/O 
requests to files and satisfies the requests 
by issuing its own, more explicit, requests 
to physical device drivers. See also local file 
system driver (FSD), network file system 
driver (FSD).

file system filter driver A type of kernel-
mode device driver that intercepts I/O 
requests, performs additional process-
ing, and passes them on to lower-level 
drivers.

file system format Defines the way that 
file data is stored on storage media and 
impacts a file system’s features. For exam-
ple, a format that doesn’t allow user per-
missions to be associated with files and 
directories can’t support security. A file 
system format can also impose limits on 
the sizes of files and storage devices that 
the file system supports.

filter device object (FiDO) A device object 
that can be part of a devnode. One or more 
optional FiDOs can layer either between 
the physical device object (PDO) and the 
functional device object (FDO) or above 
the FDO. See also devnode, functional 
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device object (FDO), physical device object 
(PDO).

filter driver See file system filter driver.

frame-based exception handlers The mech-
anism that permits each stack frame in a 
call stack to have its own exception handler 
declared.

foreground application The process that 
owns the thread that owns the window 
that’s in focus.

free build The version of the Windows 
system that can be purchased as a retail 
product. It is built with full compiler optimi-
zations turned on and has internal symbol 
table information stripped out from the 
images. See also checked build.

function driver The main device driver that 
provides the operational interface for its 
device. It is a required driver unless the 
device is used raw (an implementation in 
which I/O is done by the bus driver and any 
bus filter drivers, such as SCSI PassThru). 
A function driver is the driver that knows 
the most about a particular device and is 
usually the only driver that accesses device-
specific registers.

functional device object (FDO) A device 
object that is a required part of a devnode. 
The function driver that the Plug and Play 
manager loads to manage a detected 
device creates the FDO. An FDO represents 
the logical interface to a device. See also 
devnode, filter device object (FiDO), physi-
cal device object (PDO).

granted access rights The accesses granted 
to a thread by the security reference moni-
tor as the result of a successful object 
open.

handle An object identifier. A process 
receives a handle to an object when it cre-
ates or opens an object by name. Referring 
to an object by its handle is faster than 

using its name because the object man-
ager can skip the name lookup and find 
the object directly.

handle table A table that contains point-
ers to all the objects that the process has 
opened a handle to. Handle tables are 
implemented as a three-level scheme, 
similar to the way that the x86 memory 
management unit implements virtual-to-
physical address translation.

hardware abstraction layer (HAL) A load-
able kernel-mode module (Hal.dll) that 
provides the low-level interface to the 
hardware platform on which Windows is 
running. The HAL hides hardware-depen-
dent details such as I/O interfaces, interrupt 
controllers, and multiprocessor communi-
cation mechanisms—any functions that 
are architecture-specific and machine-
dependent.

hardware device drivers Device drivers that 
manipulate hardware to write output to 
or retrieve input from a physical device or 
network. There are many types of hardware 
device drivers, such as bus drivers, human 
interface drivers, mass storage drivers, and 
so on.

hash A statistically unique value that is gen-
erated from a block of data (for example, 
a file) using cryptographic algorithms. 
Because different data results in differ-
ent hashes, hashes can be used to detect 
changes to data from corruption or tam-
pering. The Windows driver signing facility 
uses hashes.

heap A region of one or more pages that 
can be subdivided and allocated in smaller 
chunks by a set of functions provided by 
the heap manager.

heap manager A component that man-
ages allocations inside larger memory 
areas reserved using the page granular-
ity memory allocation functions. The 
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allocation granularity in the heap man-
ager is relatively small: 8 bytes on 32-bit 
systems and 16 bytes on 64-bit systems. 
The heap manager has been designed to 
optimize memory usage and performance 
in the case of these smaller allocations. The 
heap manager functions exist in two places: 
Ntdll.dll and Ntoskrnl.exe. The subsystem 
APIs (such as the Windows heap APIs) use 
the copy in Ntdll, and various executive 
components and device drivers use the 
copy in Ntoskrnl.

hive One of a number of files stored on disk 
that contain registry information. Each hive 
contains a registry tree, which has a key 
that serves as the root or starting point 
of the tree.

hyperspace  A special region used to map 
the process working set list, invalidating 
page table entries in other page tables 
(such as when a page is removed from the 
standby list), and on process creation set-
ting up a new process’s address space.

hypervisor A thin piece of low-level system 
software that uses strictly hardware-assisted 
virtualization support. A hypervisor handles 
notifications as well as the various config-
uration steps required for allowing guest 
operating systems to run concurrently.

I/O completion routine A routine imple-
mented by a layered driver that will notify 
the driver when a lower-level driver finishes 
processing an I/O request packet (IRP). For 
example, the I/O manager calls a file sys-
tem driver’s I/O completion routine after a 
device driver finishes transferring data to 
or from a file. The completion routine noti-
fies the file system driver about the opera-
tion’s success, failure, or cancellation, and 
it allows the file system driver to perform 
cleanup operations.

I/O request packet (IRP) A data struc-
ture that controls how the I/O operation 

is processed at each stage. Most I/O 
requests are represented by an IRP, which 
travels from one I/O system component 
to another.

I/O subsystem API The internal executive 
system services (such as NtReadFile and 
NtWriteFile) that subsystem DLLs call to 
implement a subsystem’s documented I/O 
functions.

I/O system The Windows executive compo-
nent that accepts I/O requests (from both 
user-mode and kernel-mode callers) and 
delivers them, in a different form, to I/O 
devices.

ideal processor The preferred processor 
that a particular thread should run on.

idle summary A bitmask (KiIdleSummary) 
in which each set bit represents an idle 
processor.

image loader A component that performs 
initialization work for applications outside 
the kernel, preparing context and the envi-
ronment. Some of the main tasks of the 
image loader include initializing the user-
mode state for an application, parsing the 
import table of the application to look for 
required DLLs, loading and unloading DLLs 
at run time, allowing for run-time patch-
ing, handling manifest files, and reading 
the application compatibility database for 
any shims and loading the shim engine DLL 
if required.

impersonation A mechanism through which 
a thread can assume a different security 
context than that of its process. When a 
thread is impersonating, security valida-
tion mechanisms use the thread’s secu-
rity context instead of that of the thread’s 
process.

initialization routine A driver routine that 
the I/O manager executes when it loads 
the driver into the operating system. The 
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initialization routine creates system objects 
that the I/O manager uses to recognize and 
access the driver.

in-paging I/O A condition that occurs when 
a read operation must be issued to a file 
(paging or mapped) to satisfy a page fault. 
The in-page I/O operation is synchronous—
the thread waits on an event until the I/O 
completes—and isn’t interruptible by asyn-
chronous procedure call (APC) delivery.

instancing The term for making separate 
copies of the same parts of a namespace. 
Instancing \DosDevices makes it possible 
for each user to have different drive letters 
and Windows objects such as serial ports.

integrity level An element of the integ-
rity mechanism Windows uses to achieve 
intrauser isolation. The Windows integ-
rity mechanism is used by User Account 
Control (UAC) elevations, Protected Mode 
Internet Explorer (PMIE), and User Interface 
Privilege Isolation (UIPI). To support migrat-
ing from previous versions of Windows 
(whose registry keys and files would not 
include integrity level information), as well 
as to make it simpler for application devel-
opers, all objects have an implicit integrity 
level in order to avoid having to manually 
specify one.

intelligent file read-ahead A technique 
that predicts what data the calling thread 
is likely to read next based on the data it’s 
currently reading.

interprocessor interrupt (IPI) An interrupt 
the kernel issues to request that another 
processor perform an action, such as dis-
patching a particular thread for execution 
or updating its translation look-aside buf-
fer cache.

interrupt An asynchronous event (one that 
can occur at any time) that is unrelated to 
what the processor is executing. Interrupts 

are generated primarily by I/O devices, 
processor clocks, or timers, and they can 
be enabled or disabled.

interrupt dispatch table (IDT) A data struc-
ture that Windows uses to locate the rou-
tine that will handle a particular interrupt. 
The interrupt request level (IRQL) of the 
interrupting source serves as a table index, 
and table entries point to the interrupt-
handling routines.

interrupt dispatcher A submodule of the 
kernel’s trap handler that responds to 
interrupts.

interrupt object A kernel control object that 
allows device drivers to register interrupt 
service routines (ISRs) for their devices. 
An interrupt object contains all the infor-
mation the kernel needs to associate a 
device ISR with a particular level of inter-
rupt, including the address of the ISR, the 
interrupt request level (IRQL) at which the 
device interrupts, and the entry in the ker-
nel’s interrupt dispatch table with which the 
ISR should be associated.

interrupt request (IRQ) A value identifying 
an interrupt. On x86 systems, external I/O 
interrupts come into one of the lines on an 
interrupt controller. The controller in turn 
interrupts the processor on a single line. 
Once the processor is interrupted, it queries 
the controller to get the interrupt request 
(IRQ). The interrupt controller translates 
the IRQ to an interrupt number, uses this 
number as an index into the interrupt dis-
patch table (IDT), and transfers control to 
the appropriate interrupt dispatch routine. 
At system boot time, Windows fills in the 
IDT with pointers to the kernel routines that 
handle each interrupt and exception.

interrupt request levels (IRQLs) An inter-
rupt priority scheme imposed by Windows. 
The kernel represents IRQLs internally as 
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a number from 0 through 31 (0 to 15 on 
64-bit Windows), with higher numbers 
representing higher-priority interrupts. 
Although the kernel defines the standard 
set of IRQLs for software interrupts, the 
HAL maps hardware-interrupt numbers 
to the IRQLs.

interrupt service routine (ISR) A device 
driver routine that the kernel’s interrupt 
dispatcher transfers control to when a 
device issues an interrupt. In the Windows 
I/O model, ISRs run at a high device inter-
rupt request level (IRQL), so they perform 
as little work as possible to avoid blocking 
lower-level interrupts unnecessarily. An 
ISR usually queues a deferred procedure 
call (DPC), which runs at a lower IRQL, to 
execute the remainder of interrupt pro-
cessing. Only drivers for interrupt-driven 
devices have ISRs; a file system, for exam-
ple, doesn’t have one.

job object A nameable, securable, shareable 
object in Windows that controls certain 
attributes of processes associated with the 
job. A job object’s basic function is to allow 
groups of processes to be managed and 
manipulated as a unit. The job object also 
records basic accounting information for 
all processes associated with the job and 
for all processes that were associated with 
the job but have since terminated.

journaling A logging technique originally 
developed for transaction processing that 
a recoverable file system such as NTFS uses 
to ensure volume consistency.

kernel The lowest layer in Ntoskrnl.exe. 
The kernel, a component of the executive, 
determines how the operating system uses 
the processor or processors and ensures 
that they are used prudently. The kernel 
provides thread scheduling and dispatch-
ing, trap handling and exception dispatch-
ing, interrupt handling and dispatching, 

and multiprocessor synchronization. See 
also executive.

kernel debugger A tool used to debug driv-
ers, troubleshoot hung systems, and exam-
ine crash dumps. It is also a useful tool for 
investigating Windows internals because it 
can display internal Windows system infor-
mation not visible through any standard 
utility.

kernel handle table A table (referenced inter-
nally with the name ObpKernelHandleTable) 
whose handles are accessible only from 
kernel mode and in any process context. 
A kernel-mode function can reference the 
handles in this table in any process context 
with no performance impact.

kernel memory dump A type of memory 
dump (the default on Windows Server sys-
tems) that contains only the kernel-mode 
read/write pages present in physical mem-
ory at the time of the crash. A kernel mem-
ory dump doesn’t contain pages belonging 
to user processes. Because only kernel-
mode code can directly cause Windows 
to crash, however, it’s unlikely that user 
process pages are necessary to debug a 
crash. There is no way to predict the size 
of a kernel memory dump because its size 
depends on the amount of kernel-mode 
memory allocated by the operating system 
and drivers present on the machine.

kernel mode A privileged mode of code 
execution in a processor in which all mem-
ory is totally accessible and all CPU instruc-
tions can be issued. Operating system code 
(such as system services and device drivers) 
runs in kernel mode. See also user mode.

kernel objects A primitive set of objects 
implemented by the Windows kernel. 
These objects aren’t visible to user-mode 
code but are created and used only within 
the executive. Kernel objects provide fun-
damental capabilities, such as synchroniza-
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tion, on which executive objects are built. 
See also executive objects.

kernel streaming filter drivers Kernel-mode 
drivers chained together to perform signal 
processing on data streams, such as record-
ing or displaying audio and video.

Kernel Transaction Manager (KTM) Provides 
a common, two-phase commit mechanism 
to resource managers such as the transac-
tional registry (TxR) and transactional NTFS 
(TxF).

kernel-mode device driver The only type of 
driver that can directly control and access 
hardware devices.

kernel-mode graphics driver A Windows 
subsystem display or print device driver 
that translates device-independent graph-
ics (GDI) requests into device-specific 
requests.

key A mechanism to refer to data in the reg-
istry. Although keys appear in the object 
manager namespace, the registry manages 
them in a way similar to how it manages file 
objects. Zero or more key values are associ-
ated with a key object; key values contain 
data about the key. The term key also is 
used for a unique identifier that identifies 
the instance of the keyed event (an asso-
ciation of the keyed event to a single criti-
cal section) when a thread signals a keyed 
event or performs a wait on it.

key control block A structure that stores the 
name of a registry key, includes the cell 
index of the key node that the control block 
refers to, and contains a flag that notes 
whether the configuration manager needs 
to delete the key cell that the key control 
block refers to when the last handle for 
the key closes. In Windows, all key control 
blocks are in an alphabetized binary tree 
to enable quick searches for existing key 
control blocks by name. A key object points 
to its corresponding key control block, so 

if two applications open the same registry 
key, each will receive a key object and both 
key objects will point to a common key 
control block.

key object An object type the configuration 
manager defines to integrate the regis-
try’s namespace with the kernel’s general 
namespace.

keyed event A synchronization object that 
allows a thread to specify a “key” for which 
it waits, where the thread wakes when 
another thread of the same process sig-
nals the event with the same key. Keyed 
events were originally implemented to help 
processes deal with low-memory situations 
when using critical sections.

last known good control set A copy 
of the critical boot-time information 
under the registry key HKLM\SYSTEM\
CurrentControlSet, made when a user 
successfully logs on. The last known good 
control set can be selected at boot time in 
case configuration changes made to the 
registry result in the system not being able 
to boot successfully.

lazy IRQL A performance optimization that 
avoids Programmable Interrupt Controller 
(PIC) accesses. When the interrupt request 
level (IRQL) is raised, the HAL notes the 
new IRQL internally instead of changing 
the interrupt mask. If a lower-priority inter-
rupt subsequently occurs, the HAL sets the 
interrupt mask to the settings appropriate 
for the first interrupt and postpones the 
lower-priority interrupt until the IRQL is 
lowered. Thus, if no lower-priority inter-
rupts occur while the IRQL is raised, the 
HAL doesn’t need to modify the PIC.

lazy writer A set of system threads that call 
the memory manager to flush cache con-
tents to disk as a background activity (asyn-
chronous disk writing). The cache manager 
optimizes disk I/O by using its lazy writer.
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legacy drivers Device drivers written for 
Microsoft Windows NT but that run 
unchanged on Windows 2000 and later. 
They are differentiated from other Windows 
drivers in that they don’t support power 
management or work with the Windows 
Plug and Play manager.

local file system driver (FSD) A driver that 
manages volumes directly connected to 
the computer. See also file system driver.

local kernel debugging The ability to con-
nect the kernel debugger to the local 
running system to view internal state (as 
opposed to connecting to a target system 
booted in debugging mode using a null 
modem or 1394 cable).

local security authority (LSA) server A 
user-mode process running the image 
\%SystemRoot%\System32\LSASS.exe that 
is responsible for the local system security 
policy (such as which users are allowed to 
log on to the machine, password policies, 
privileges granted to users and groups, and 
the system security auditing settings), user 
authentication, and sending security audit 
messages to the Event Log. The LSA ser-
vice (Lsasrv—\Winnt\System32\Lsasrv.dll), a 
library that LSASS loads, implements most 
of this functionality.

local security authority (LSA) server policy 

database A database (stored in the reg-
istry under HKLM\SECURITY) that contains 
the system security policy settings. This 
database includes such information as what 
domains are trusted to authenticate logon 
attempts, who has permission to access the 
system and how (interactive, network, and 
service logons), who is assigned which priv-
ileges, and what kind of security auditing 
is to be performed.

Local Security Authority subsystem 

(Lsass) The system user-mode process 
responsible for authentication of accounts 
accessing a computer.

Local System account A predefined local 
account that is used to start a service 
and provide the security context for that 
service. The name of the account is NT 
AUTHORITY\System. This account does 
not have a password, and any password 
information that you supply is ignored. 
The Local System account has full access 
to the system, including the directory ser-
vice on domain controllers. Because the 
Local System account acts as a computer 
on the network, it has access to network 
resources.

log file A metadata file (file name $LogFile) 
NTFS uses to record all operations that 
affect the NTFS volume structure, includ-
ing file creation or any commands, such as 
Copy, that alter the directory structure. The 
log file is used to recover an NTFS volume 
after a system failure.

log hive A registry hive the configuration 
manager uses to make sure that a non-
volatile registry hive (one with an on-disk 
file) is always in a recoverable state. Each 
nonvolatile hive has an associated log hive, 
which is a hidden file with the same base 
name as the hive and a .logN extension. 
See also hive.

logical cluster numbers (LCNs) The num-
bers of all clusters from the beginning of 
the volume to the end with which NTFS 
refers to physical locations on a disk. To 
convert an LCN to a physical disk address, 
NTFS multiplies the LCN by the cluster 
factor to get the physical byte offset on 
the volume, as the disk driver interface 
requires.

logical prefetcher The kernel component 
that monitors boot and application startup 
file access and that preemptively reads that 
data to speed up subsequent booting and 
application startups.
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logical sequence numbers (LSNs) The num-
bers that NTFS uses to identify records 
written to the log file.

logon process A user-mode process run-
ning Winlogon.exe that is responsible for 
capturing the username and password, 
sending them to the local security author-
ity server for verification, and creating the 
initial process in the user’s session.

look-aside list A fast memory allocation 
mechanism that contains only fixed-sized 
blocks. Look-aside lists can be either page-
able or nonpageable, so they are allocated 
from paged or nonpaged pool.

mapped file I/O The ability to view a file 
residing on disk as part of a process’s vir-
tual memory. A program can access the file 
as a large array without buffering data or 
performing disk I/O. The program accesses 
memory, and the memory manager uses its 
paging mechanism to load the correct page 
from the disk file. If the application writes 
to its virtual address space, the memory 
manager writes the changes back to the 
file as part of normal paging.

marshalling area  An area maintained in the 
client’s address space. Both user-mode and 
kernel-mode clients marshal data buffers 
into log records that are part of a marshal-
ling area. When creating a marshalling area, 
a client must specify the number and size 
of the log I/O buffers it wants to maintain 
in the area. The marshalling runtime imple-
ments policy on allocating log I/O buffers, 
appending them to the log internal queue 
and flushing them to disk. Clients can over-
ride the default marshalling code policy by 
forcing queue appends and flushes to disk 
via API calls.

mask The process whereby interrupts wait 
for an executing thread to lower the IRQL 
before the interrupt is processed. Interrupts 
from a source with an IRQL above the cur-
rent level interrupt the processor, whereas 

interrupts from sources with IRQLs equal to 
or below the current level are masked until 
an executing thread lowers the IRQL.

master file table (MFT) The heart of the 
NTFS volume structure. The MFT is imple-
mented as an array of file records. The size 
of each file record is fixed at 1 KB, regard-
less of cluster size.

memory manager The Windows executive 
component that implements demand-
paged virtual memory, giving each pro-
cess the illusion that it has a large virtual 
address space (while mapping a subset of 
that address space to physical memory).

metadata Data that describes the files on a 
disk; also called volume structure data.

metadata files A set of files in each NTFS 
volume that contains the information used 
to implement the file system structure.

MFT mirror An NTFS metadata file (file name 
$MFTMirr) located in the middle of the disk 
called that contains a copy of the first few 
rows of the master file table.

miniport driver A type of kernel-mode 
device driver that maps a generic I/O 
request to a type of port into an adapter 
type, such as a specific SCSI adapter.

mirrored volume A volume on which the 
contents of a partition on one disk are 
duplicated in an equal-sized partition on 
another disk. Mirrored volumes are some-
times referred to as RAID level 1 (RAID-1).

mirror set A technique by which the con-
tents of a partition on one disk are dupli-
cated in an equal-size partition on another 
disk.

modified page writer A thread in the virtual 
memory manager that is responsible for 
limiting the size of the modified page list by 
writing pages to their backing store loca-
tions when the list becomes too big. The 
modified page writer consists of two system 
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threads: one to write out modified pages 
(MiModifiedPageWriter) to the paging file 
and a second one to write modified pages 
to mapped files (MiMappedPageWriter).

mount A technique NTFS uses when it first 
accesses a volume; in this context, to mount 
means to prepare the volume for use. To 
mount the volume, NTFS looks in the boot 
file to find the physical disk address of the 
master file table.

mount points A mechanism that permits 
the linking of volumes through directories 
on NTFS volumes, which makes volumes 
accessible with no drive-letter assignment. 
Reparse points in NTFS make mount points 
possible.

MSDN Microsoft Developer Network, 
Microsoft’s support program for devel-
opers. For more information, see msdn.
microsoft.com.

multipartition volumes Objects that repre-
sent sectors from multiple partitions and 
that file system drivers manage as a single 
unit. Multipartition volumes offer perfor-
mance, reliability, and sizing features that 
simple volumes don’t.

multipathing Where more than one set of 
hardware exists between the computer and 
a disk so that if a path fails, the system can 
still access the disk via an alternate path.

mutant Internal name for a mutex.

mutex A synchronization mechanism used 
to serialize access to a resource.

mutual exclusion A means whereby only 
one thread or processor is allowed access 
to a resource at any given time.

name retention The first phase of object 
retention, which the object manager imple-
ments. Name retention is controlled by 
the number of open handles to an object 
that exist. Every time a process opens a 
handle to an object, the object manager 

increments the open handle counter in the 
object’s header. As processes finish using 
the object and close their handles to it, 
the object manager decrements the open 
handle counter. When the counter drops to 
0, the object manager deletes the object’s 
name from its global namespace. This dele-
tion prevents new processes from opening 
a handle to the object.

native application An application that 
uses only system service APIs provided by 
Ntdll and that isn’t a client of the Windows 
subsystem. Smss (Session Manager) is an 
example of a native application.

network file system driver (FSD) A driver 
that allows users to access data volumes 
connected to remote computers. See also 
file system driver.

network logon service A Windows service 
that sets up the secure channel to a domain 
controller, over which security requests, 
such as an interactive logon, are sent.

network redirectors and servers File system 
drivers that transmit remote I/O requests 
to a machine on the network and receive 
such requests, respectively.

nonpaged pool Memory pool that consists 
of ranges of system virtual addresses that 
are guaranteed to be resident in physi-
cal memory at all times and thus can be 
accessed from any address space without 
incurring paging I/O. Nonpaged pool is 
created at system initialization and is used 
by kernel-mode components to allocate 
system memory.

Ntdll.dll A special system-support library 
primarily for the use of subsystem DLLs 
that contains system service dispatch stubs 
to Windows executive system services and 
internal support functions used by subsys-
tems, subsystem DLLs, and other native 
images.
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Ntkrnlmp.exe The executive and kernel for 
multiprocessor systems.

Ntoskrnl.exe The executive and kernel for 
uniprocessor systems.

object In the Windows executive, a single, 
run-time instance of a statically defined 
object type.

object attribute A field of data in an object 
that partially defines the object’s state.

object directory A container object for 
other objects. The object directory is used 
to implement the hierarchical namespace 
within which other object types are 
stored.

object handle An index into a process-spe-
cific handle table, pointed to by the execu-
tive process (EPROCESS) block.

object manager The Windows execu-
tive component responsible for creating, 
deleting, protecting, and tracking objects. 
The object manager centralizes resource 
control operations that would otherwise 
be scattered throughout the operating 
system.

object methods The means for manipulat-
ing objects, usually to read or change the 
object attributes. For example, the open 
method for a process would accept a pro-
cess identifier as input and return a pointer 
to the object as output.

object reuse protection A means of pre-
venting users from seeing data that another 
user has deleted or from accessing memory 
that another user previously used and then 
released. Object reuse protection prevents 
potential security holes by initializing all 
objects, including files and memory, before 
they are allocated to a user.

object type A system-defined data type, 
including services that operate on instances 
of the data type and a set of object attri-
butes; sometimes called an object class.

page directory A page the memory man-
ager creates to map the location of all page 
tables for that process. Each process has a 
single page directory.

page directory entries (PDEs) The page 
directory is composed of PDEs, each of 
which is 4 bytes long and describes the 
state and location of all the possible page 
tables for that process.

page fault A reference to an invalid page. 
The kernel trap handler dispatches this kind 
of fault to the memory manager fault han-
dler (MmAccessFault) to resolve.

page file backed section A section object 
that is mapped to committed memory.

page file quota A limit on the number of 
committed pages a process can consume—
not necessarily page file space.

page frame number (PFN) database De- 
scribes the state of each page in physical 
memory.

page table A page of mapping informa-
tion (made up of an array of page table 
entries) the operating system constructs 
that describes the location of the virtual 
pages in a process address space. Because 
Windows provides a private address space 
for each process, each process has its own 
set of process page tables to map that 
private address space because the map-
pings will be different for each process. The 
page tables that describe system space are 
shared among all processes.

page table entry (PTE) An entry in a pro-
cess’s page table that contains the address 
to which the virtual address is mapped. The 
page can be in physical memory or it can 
be on disk.

paged pool A region of virtual memory in 
system space that can be paged in and out 
of the system process’s working set. Paged 
pool is created at system initialization and 



1170 Glossary

is used by kernel-mode components to 
allocate system memory. Uniprocessor sys-
tems have two paged pools; multiproces-
sor systems have four. Having more than 
one paged pool reduces the frequency of 
system code blocking on simultaneous calls 
to pool routines.

paging The process of moving memory 
contents to disk, freeing physical memory 
so that it can be used for other processes 
or for the operating system itself. Because 
most systems have much less physical 
memory than the total virtual memory in 
use by the running processes (2 GB or 3 GB 
for each process), the memory manager 
transfers, or pages, some of the memory 
contents to disk.

partition A discrete area of the hard disk 
in Microsoft operating systems. File sys-
tems (such as FAT and NTFS) format each 
partition into a volume. A hard disk can 
contain up to four primary partitions. See 
also extended partition.

partition table A part of the master boot 
record (MBR) that consists of four entries 
that define the locations of as many as 
four primary partitions on a disk. The par-
tition table also records a partition’s type. 
Numerous predefined partition types exist, 
and a partition’s type specifies which file 
system the partition includes.

Peer-to-Peer Infrastructure A set of APIs 
that cover dif ferent technologies to 
enhance the Windows networking stack by 
providing flexible peer-to-peer (P2P) sup-
port for applications and services. The P2P 
infrastructure covers four major technolo-
gies: Peer-to-Peer Graphing, Peer-to-Peer 
Namespace Provider, Peer-to-Peer Group-
ing, and Peer-to-Peer Identity Manager.

Physical Address Extension (PAE) A mem-
ory-mapping mode included in all Intel x86 
processors since the Pentium Pro. With the 
proper chipset, the PAE mode allows access 

to up to 64 GB of physical memory. When 
the x86 executes in PAE mode, the memory 
management unit (MMU) divides virtual 
addresses into four fields.

physical device object (PDO) A device 
object that’s a required part of a devnode. 
The PDO represents the physical interface 
to a device. See also devnode.

Plug and Play (PnP) manager A major 
component of the executive that deter-
mines which drivers are required to sup-
port a particular device and loads those 
drivers. The PnP manager retrieves the 
hardware resource requirements for each 
device during enumeration. Based on the 
resource requirements of each device, 
the PnP manager assigns the appropriate 
hardware resources such as I/O ports, IRQs, 
DMA channels, and memory locations. It is 
also responsible for sending proper event 
notification for device changes (addition or 
removal of a device) on the system.

port driver A type of kernel-mode device 
driver that implements the processing of an 
I/O request specific to a type of I/O port, 
such as SCSI.

port object A single executive object that 
an advanced local procedure call (ALPC) 
exports to maintain the state needed for 
communication.

power manager A major component of the 
executive that coordinates power events 
and generates power management I/O 
notifications to device drivers. When the 
system is idle, the power manager can be 
configured to reduce power consumption 
by putting the CPU to sleep. Changes in 
power consumption by individual devices 
are handled by device drivers but are coor-
dinated by the power manager.

printer driver A driver that translates device-
independent graphics requests to printer-
specific commands. These commands are 



 Glossary 1171

then typically forwarded to a kernel-mode 
port driver such as the parallel port driver 
(Parport.sys) or the USB printer port driver 
(Usbprint.sys).

private cache map A structure that contains 
the location of the last two reads so that 
the cache manager can perform intelligent 
read-ahead.

process The virtual address space and con-
trol information necessary for the execu-
tion of a set of thread objects.

process and thread manager The services in 
the executive that export the process and 
thread object. These services use primitive 
functions in the kernel to create processes 
and threads.

process ID A unique identifier for a process 
(internally called a client ID).

process working set The subset of a pro-
cess’s virtual address space that is resident 
and owned by the running process. See also 
system working set.

processor affinity The set of processors a 
thread is permitted to run on.

processor control region (PCR) A data 
structure that along with its extension, 
the processor control block (PRCB), con-
tains information about the state of each 
processor in the system, such as the cur-
rent interrupt request level (IRQL), a pointer 
to the hardware interrupt dispatch table 
(IDT), the currently running thread, and 
the next thread selected to run. The kernel 
and the HAL use this information to per-
form architecture-specific and machine-
specific actions. Portions of the PCR and 
PRCB structures are defined publicly in the 
Windows Device Driver Kit (DDK) header 
file Ntddk.h.

program A static sequence of instructions.

protected mode A state during the boot 
process in which no virtual-to-physical 

translation occurs but a full 32 bits of mem-
ory becomes accessible. After the system 
is in protected mode, BootMgr can access 
all of physical memory.

protected processes Processes that exist 
alongside normal Windows processes; they 
add significant constraints to the access 
rights that other processes on the system 
(even when running with administrative 
privileges) can request.

protocol driver A driver that implements 
a networking protocol such as TCP/IP, 
NetBEUI, or IPX/SPX.

prototype page table entries (prototype 

PTEs) A software structure the memory 
manager uses to map potentially shared 
pages when a page can be shared between 
two processes. An array of prototype PTEs 
is created when a section object is first 
created.

quality of service (QoS) A networking tech-
nology that ensures that critical network 
applications receive highest priority.

quantum The length of time a thread is 
allowed to run before Windows interrupts 
the thread to find out whether another 
thread at the same priority level is wait-
ing to run or whether the thread’s priority 
needs to be reduced.

quantum target An estimate of what the 
number of CPU clock cycles a thread has 
consumed should be when its turn would 
be given up. This target should be equal 
to an equivalent number of clock interval 
timer ticks because the calculation of clock 
cycles per quantum is based on the clock 
interval timer frequency.

quantum unit A value that represents how 
long a thread can run until its quantum 
expires. This value represents one-third of 
a clock interval.
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queue A method for threads to enqueue and 
dequeue notifications of the completion of 
I/O operations (called an I/O completion 
port in the Windows API).

queued spinlock A special type of spin-
lock that is used only by the kernel and 
not exported for executive components 
or device drivers. A queued spinlock scales 
better on multiprocessor systems than a 
standard spinlock does. See also spinlock.

quota charges In the Windows object man-
ager, the record of how much the object 
manager subtracts from a process’s allotted 
paged and/or nonpaged pool quota when 
a thread in the process opens a handle to 
the object.

RAID-5 volume A fault tolerant variant of 
a regular stripe volume. Fault tolerance is 
achieved by reserving the equivalent of 
one disk for storing parity for each stripe. 
Also called stripe volume with parity.

ready summary A bit mask (ReadySummary) 
that Windows maintains to speed up 
the selection of which thread to run or 
preempt.

real mode An operating mode in which no 
virtual-to-physical translation of memory 
addresses occurs, which means that pro-
grams that use the memory addresses 
interpret them as physical addresses and 
that only the first 1 MB of the comput-
er’s physical memory is accessible. Simple 
MS-DOS programs execute in a real-mode 
environment.

recoverability An advanced feature of NTFS 
that allows a system to recover from an 
unexpected system halt. If a system is 
halted unexpectedly, the metadata of a FAT 
volume can be left in an inconsistent state, 
leading to the corruption of large amounts 
of file and directory data. NTFS imple-
ments recoverability by logging changes 
to metadata in a transactional manner so 

that file system structures can be repaired 
to a consistent state with no loss of file or 
directory structure information. (File data 
can be lost, however.)

reference count The object manager’s 
record of how many object pointers it has 
dispensed to operating system processes. 
The object manager increments a reference 
count for an object each time it gives out 
a pointer to the object; when kernel-mode 
components finish using the pointer, they 
call the object manager to decrement the 
object’s reference count.

reparse data User-defined data about the 
file or directory, such as its state or location, 
that can be read from the reparse point by 
the application that created the data, a file 
system filter driver, or the I/O manager.

reparse point An NTFS file or directory that 
has a block of data called reparse data 
associated with it.

reparse tag The reparse tag allows the com-
ponent responsible for interpreting the 
reparse point’s reparse data to recognize 
the reparse point without having to check 
the reparse data.

resident attribute An attribute that is stored 
directly in the master file table. (If a file is 
small, all its attributes and their values [its 
data, for example] fit in the file record.)

resource arbitration A process by which 
the Plug and Play (PnP) manager optimally 
assigns hardware resources so that each 
device meets the requirements necessary 
for its operation. Because hardware devices 
can be added to the system after boot-time 
resource assignment, the PnP manager 
must also be able to reassign resources to 
accommodate the needs of dynamically 
added devices.

restricted token A token created from a 
primary or impersonation token using 
the CreateRestrictedToken function. The 
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restricted token is a copy of the token it’s 
derived from, with some possible modifica-
tions: Privileges can be removed from the 
token’s privilege array. SIDs in the token 
can be marked as deny-only. SIDS in the 
token can be marked as restricted.

ring A privilege level defined in the x86 and 
x64 processor architectures to protect sys-
tem code and data from being overwritten 
either inadvertently or maliciously by code 
of lesser privilege. Windows on the x86 and 
x64 platforms use privilege level 0 (or ring 
0) for kernel mode and privilege level 3 (or 
ring 3) for user mode.

safe mode A boot configuration that con-
sists of the minimal set of device drivers 
and services. By relying on only the drivers 
and services that are necessary for boot-
ing, Windows avoids loading third-party 
and other nonessential drivers that might 
crash.

SAM database A database (stored in the 
registry under HKLM\SAM) that contains 
the defined users and groups, along with 
their passwords and other attributes.

scatter/gather I/O A kind of high-perfor-
mance I/O Windows supports, available 
via the Windows ReadFileScatter and 
WriteFileGather functions. These functions 
allow an application to issue a single read 
or write from more than one buffer in vir-
tual memory to a contiguous area of a file 
on disk. To use scatter/gather I/O, the file 
must be opened for noncached I/O, the 
user buffers being used have to be page-
aligned, and the I/Os must be asynchro-
nous (overlapped).

section object An object that represents a 
block of memory that two or more pro-
cesses can share. A section object can be 
mapped to the paging file or to another file 
on disk. The executive uses section objects 
to load executable images into memory, 
and the cache manager uses them to access 

data in a cached file. In the Windows sub-
system, a section object is called a file-
mapping object.

section object pointers Structure for each 
open file (represented by a file object) that 
is the key to maintaining data consistency 
for all types of file access as well as to pro-
viding caching for files. The section object 
pointers structure points to one or two 
control areas. One control area is used to 
map the file when accessed as a data file, 
and one is used to map the file when it is 
run as an executable image.

sector A hardware-addressable portion of a 
physical disk. A hard disk sector on a BIOS 
PC is typically 512 bytes. Utilities that pre-
pare hard disks for the definition of vol-
umes, such as the Windows Setup program, 
write a sector of data called a master boot 
record (MBR) to the first sector on a hard 
disk. The MBR includes a fixed amount of 
space that contains executable instructions 
(called boot code) and a partition table 
with four entries that define the locations 
of the primary partitions on the disk. See 
also boot code, partition table.

secure attention sequence (SAS) A key-
stroke combination that when entered noti-
fies Winlogon of a user logon request.

secure logon facility Requires that users 
can be uniquely identified and that they 
must be granted access to the computer 
only after they have been authenticated 
in some way.

Security Accounts Manager (SAM) ser-

vice A set of subroutines responsible for 
managing the database that contains the 
user names and groups defined on the local 
machine or for a domain (if the system is 
a domain controller). The SAM runs in the 
context of the LSASS process.

security auditing A way in which Windows 
detects and records important security-
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related events or any attempts to create, 
access, or delete system resources. Logon 
identifiers record the identities of all users, 
making it easier to trace anyone who per-
forms an unauthorized action.

security descriptor The data structure that 
specifies who can perform what actions on 
an object. A security descriptor consists of 
attributes.

security identifier (SID) A means of uniquely 
identifying entities that perform actions in 
a system. A SID is a variable-length numeric 
value that consists of a SID structure revi-
sion number, a 48-bit identifier authority 
value, and a variable number of 32-bit 
subauthority or relative identifier (RID) 
values.

security quality of service (SQOS) The 
indicator specified by a client opening a 
server resource that specifies the maximum 
level of client impersonation the server is 
allowed.

security reference monitor (SRM) A com-
ponent in the Windows executive (Ntoskrnl.
exe) that enforces security policies on the 
local computer. It guards operating system 
resources, performing run-time object pro-
tection and auditing.

semaphore A counter that provides a 
resource gate by allowing some maximum 
number of threads to access the resources 
protected by the semaphore.

server processes User processes that are 
Windows services, such as the Event Log 
and Schedule services. Many add-on 
server applications, such as Microsoft SQL 
Server and Microsoft Exchange Server, also 
include components that run as Windows 
services.

session Consists of the processes and other 
system objects (such as the window station, 
desktops, and windows) that represent a 
single user’s workstation logon session. 

Each session has a session-specific paged 
pool area used by the kernel-mode portion 
of the Windows subsystem (Win32k.sys) to 
allocate session-private GUI data structures. 
In addition, each session has its own copy 
of the Windows subsystem process (Csrss.
exe) and logon process (Winlogon.exe).

session space A component that contains 
information global to each session. All ses-
sionwide data structures are mapped into 
this region of system space. When a pro-
cess is created, this range of addresses is 
mapped to the pages appropriate to the 
session that the process belongs to.

shared cache map A structure that describes 
the state of a cached file, including its size 
and its valid data length.

shared memory Memory visible to more 
than one process or that is present in more 
than one virtual address space.

shrinking engine In the file system, a 
mechanism that communicates with NTFS 
to determine the maximum number of 
reclaimable bytes—how much data can be 
moved from a region that will be resized 
into a region that will remain.

shadow copies The Volume Shadow Copy 
Service (VSS) is a built-in Windows mecha-
nism that enables the creation of consis-
tent, point-in-time copies of data. These 
are known as shadow copies or snapshots.  
VSS coordinates with applications, file-
system services, backup applications, fast-
recovery solutions, and storage hardware 
to produce consistent shadow copies.

signaled state One state of a synchroniza-
tion object. At any given moment, a syn-
chronization object is in either the signaled 
state or the nonsignaled state.

simple volume A set of objects that repre-
sent sectors from a single partition that file 
system drivers manage as a single unit.



 Glossary 1175

single sign-on The ability for logon infor-
mation to be simultaneously authenticated 
on more than one system. For example, 
a user logging on to a Windows system 
might simultaneously be authenticated on 
a UNIX server. That user would then be able 
to access resources of the UNIX server from 
the machine running Windows without 
requiring additional authentication.

small memory dump A small memory dump 
(typically between 128 KB and 1 MB in size) 
containing the stop code and parameters, 
the list of loaded device drivers, the data 
structures that describe the current pro-
cess and thread (called the EPROCESS and 
ETHREAD), and the kernel stack for the 
thread that caused the crash.

spanned volume A single logical volume 
composed of a maximum of 32 free par-
titions on one or more disks. The Disk 
Management Microsoft Management 
Console (MMC) snap-in combines the 
partitions into a spanned volume, which 
can then be formatted for any of the file 
systems that Windows supports.

sparse files Files, often large, that contain 
only a small amount of nonzero data rela-
tive to their size.

spinlock The locking mechanism the ker-
nel uses to achieve multiprocessor mutual 
exclusion. The spinlock gets its name from 
the fact that the kernel (and thus, the pro-
cessor) is held in limbo, “spinning,” until 
it gets the lock. Spinlocks, like the data 
structures they protect, reside in global 
memory. See also queued spinlock.

stack frame Information, representing the 
activation of a procedure, that is pushed 
onto the stack when a procedure is invoked. 
A stack frame can have one or more excep-
tion handlers associated with it, each of 
which protects a particular block of code 
in the source program.

stream A sequence of bytes within a file.

striped volume Series of up to 32 partitions, 
one partition per disk, that combines into a 
single logical volume. Striped volumes are 
also known as RAID level 0 (RAID-0) vol-
umes. A partition in a striped volume need 
not span an entire disk; the only restriction 
is that the partitions on each disk be the 
same size.

stop code An error code that classifies the 
type of error detected by a component 
that crashes the system.

structured exception handling A type of 
exception handling that allows applications 
to gain control when exceptions occur. The 
application can then fix the condition and 
return to the place the exception occurred, 
unwind the stack (thus terminating execu-
tion of the subroutine that raised the excep-
tion), or declare back to the system that the 
exception isn’t recognized, and continue 
searching for an exception handler that 
might process the exception.

subsection A structure that describes the 
mapping information for each section of 
the file (read-only, read-write, copy-on-
write, and so on).

subsystem dynamic-link libraries (DLLs) DLLs 
that translate a documented function into 
the appropriate undocumented Windows 
system service calls. This translation might 
or might not involve sending a message to 
the environment subsystem process that is 
serving the user application.

Subsystem for Unix-based Applications 

(SUA) An enhanced POSIX subsystem 
that provides nearly 2,000 UNIX functions 
and 300 UNIX-like tools and utilities. SUA 
can be enabled on any Windows Server 
2008 machine, as well as for Windows Vista 
Ultimate and Enterprise editions.

SuperFetch A memory management 
scheme that enhances the least-recently 
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accessed approach with historical infor-
mation and proactive memory manage-
ment. SuperFetch is composed of several 
components in the system that work hand 
in hand to proactively manage memory 
and limit the impact on user activity when 
SuperFetch is performing its work.

symbolic link A mechanism for referring to 
an object name indirectly.

symmetric encryption algorithm An algo-
rithm that uses the same key to encrypt 
and decrypt data. Symmetric encryption 
algorithms are typically very fast, which 
makes them suitable for encrypting large 
amounts of data, such as file data. They do 
have a weakness, however; their security 
can be bypassed if their key is obtained.

symmetric multiprocessing (SMP) A mul-
tiprocessing operating system in which 
there is no master processor—the operat-
ing system as well as user threads can be 
scheduled to run on any processor. All the 
processors share just one memory space.

synchronization A thread’s ability to syn-
chronize its execution by waiting for an 
object to change from one state to another. 
A thread can synchronize with executive 
process, thread, file, event, semaphore, 
mutex, and timer objects. Section, port, 
access token, object directory, symbolic-
link, profile, and key objects don’t support 
synchronization.

synchronous I/O A model for I/O in which a 
device performs a data transfer and returns 
a status code when the I/O is complete. The 
program can then access the transferred 
data immediately. When used in their 
simplest form, the Windows ReadFile and 
WriteFile functions are executed synchro-
nously. They complete an I/O operation 
before returning control to the caller.

system access control list (SACL) Specifies 
which operations by which users should be 
logged in the security audit log.

system code write protection The setting of 
the read-only parts of the kernel as read-
only pages.

system audit ACE An access-control entry 
(ACE) contained by a system access-con-
trol list (SACL) that, along with the system 
audit-object ACE, specifies which opera-
tions performed on the object by specific 
users or groups should be audited. System 
audit-object ACEs specify a GUID indicating 
the types of objects or subobjects that the 
ACE applies to and an optional GUID that 
controls propagation of the ACE to particu-
lar child object types. If an SACL is null, no 
auditing takes place on the object.

system cache Pages used to map files open 
in the system cache.

system page table entries (PTEs) Pool of 
system PTEs used to map system pages 
such as I/O space, kernel stacks, and mem-
ory descriptor lists.

system  partition The partition that contains 
core operating system files. The boot parti-
tion is identified by the system at startup. 
The code in a master boot record (MBR) 
scans the primary partition table until it 
locates a partition containing a flag that 
signals the partition is bootable. When the 
MBR finds at least one such flag, it reads 
the first sector from the flagged partition 
into memory and transfers control to code 
within the partition.

system service dispatch table Table in 
which each entry contains a pointer to a 
system service rather than to an interrupt 
handling routine.

system services (or executive system ser-

vices) Native functions in the Windows 
operating system that are callable from 
user mode. For example, NtCreateProcess 
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is the internal system service the Windows 
CreateProcess function calls to create a new 
process.

system support processes User processes, 
such as the logon process and the Session 
Manager, that are not Windows ser-
vices (that is, not started by the service 
controller).

system thread A kind of thread that runs 
only in kernel mode. System threads 
always reside in the system process. These 
threads have all the attributes and contexts 
of regular user-mode threads (such as a 
hardware context, priority, and so on) but 
run only in kernel-mode executing code 
loaded in system-space code, whether that 
be in Ntoskrnl.exe or in any other loaded 
device driver. System threads don’t have 
a user process address space and hence 
must allocate any dynamic storage from 
operating system memory heaps, such as 
paged or nonpaged pool.

system worker threads Threads created in 
the system process during system initializa-
tion that exist solely to perform work on 
behalf of other threads.

system working set The physical memory 
being used by the system cache, paged 
pool, pageable code in Ntoskrnl.exe, and 
pageable code in device drivers. See also 
process working set.

thread An entity within a process that 
Windows schedules for execution. A thread 
includes the contents of a set of volatile 
registers representing the state of the pro-
cessor; two stacks, one for the thread to use 
while executing in kernel mode and one 
for executing in user mode; a private stor-
age area for use by subsystems, run-time 
libraries, and DLLs; and a unique identifier 
called a thread ID (also internally called a 
client ID).

thread context A thread’s volatile registers, 
the stacks, and the private storage area. 
Because this information is different for each 
machine architecture that Windows runs 
on, this structure is architecture-specific. 
In fact, the CONTEXT structure returned 
by the Windows GetThreadContext func-
tion is the only public data structure in the 
Windows API that is machine-dependent.

timer A mechanism that notifies a thread 
when a fixed period of time elapses.

transaction An I/O operation that alters file 
system data or changes the volume’s direc-
tory structure. The separate disk updates 
that make up the transaction must be exe-
cuted atomically; that is, once the transac-
tion begins to execute, all its disk updates 
must be completed. If a system failure 
interrupts the transaction, the part that 
has been completed must be undone, or 
rolled back. The rollback operation returns 
the database to a previously known and 
consistent state, as if the transaction had 
never occurred.

transaction table A table that keeps track 
of transactions that have been started but 
that aren’t yet committed. The subopera-
tions of these active transactions must be 
removed from the disk during recovery.

Transactional NTFS (TxF) A transactional 
model that NTFS implements by leverag-
ing the Kernel Transaction Manger (KTM) 
support in the kernel as well as facilities 
provided by the Common Log File System. 
TxF provides a set of user-mode APIs that 
applications can use for transacted opera-
tions on their files and directories and also 
a file system control (FSCTL) interface for 
managing its resource managers. See also 
Kernel Transaction Manager (KTM).

Transactional Registry (TxR) An API that 
developers can use to implement robust 
error-recovery capabilities when perform-
ing registry operatations. TxR is supported 



1178 Glossary

by the Kernel Transaction Manager (KTM). 
See also Kernel Transaction Manager 
(KTM).

transition A kind of invalid page table 
entry (PTE) in which the desired page is 
in memory on either the standby, modi-
fied, or modified-no-write list. The page 
is removed from the list and added to the 
working set.

translation look-aside buffer (TLB) A CPU 
cache of recently translated virtual page 
numbers.

trap A processor’s mechanism for capturing 
an executing thread when an exception or 
an interrupt occurs, switching it from user 
mode into kernel mode, and transferring 
control to a fixed location in the operating 
system. In Windows, the processor trans-
fers control to the kernel’s trap handler.

trap frame A data structure in which the 
execution state of the interrupted thread 
is stored. This information allows the ker-
nel to resume execution of the thread after 
handling the interrupt or the exception. The 
trap frame is usually a subset of a thread’s 
complete context.

trap handler A module in the kernel that 
acts as a switchboard, fielding exceptions 
and interrupts detected by the proces-
sor and transferring control to code that 
handles the condition.

trusted facility management Requires sup-
port for separate account roles for admin-
istrative functions. For example, separate 
accounts are provided for administration 
(Administrators), user accounts charged 
with backing up the computer, and stan-
dard users.

trusted path functionality Prevents Trojan 
horse programs from being able to inter-
cept users’ names and passwords as they 
try to log in. The trusted path functional-
ity in Windows comes in the form of its 

Ctrl+Alt+Delete logon-attention sequence, 
which cannot be intercepted by nonprivi-
leged applications. This sequence of key-
strokes, which is also known as the secure 
attention sequence (SAS), always pops up 
a logon dialog box, so would-be Trojan 
horses can easily be recognized. A Trojan 
horse presenting a fake logon dialog box 
will be bypassed when the SAS is entered.

type object An internal system object that 
contains information common to each 
instance of the object.

Unicode An international character set stan-
dard that defines unique 16-bit values for 
most of the world’s known character sets.

update records Update records corre-
spond to the redo and undo records that 
Transactional NTFS (TxF) uses.

User Account Control UAC is a mechanism 
meant to enable users to run more eas-
ily with standard user rights, as opposed 
to administrative rights. Without admin-
istrative rights, users cannot accidentally 
(or deliberately) modify system settings, 
malware can’t normally alter system secu-
rity settings or disable antivirus software, 
and users can’t compromise the sensi-
tive information of other users on shared 
computers.

user mode The nonprivileged processor 
mode that applications run in. A limited 
set of interfaces is available in this mode, 
and the access to system data is limited. 
See also kernel mode.

user-mode debugging A framework respon-
sible for sending events to the user-mode 
debugging API—allowing breakpoints and 
stepping through code to work—as well as 
for changing contexts of running threads.

VACB index array An array of pointers main-
tained by the cache manager to keep track 
of which views for a given file are mapped 
to the system cache.
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view The portion of the section object 
required by a process. A section object 
can refer to files that are much larger 
than can fit in the address space of a 
process. (If the paging file backs a sec-
tion object, sufficient space must exist in 
the paging file to contain it.) To access a 
very large section object, a process can 
map only a view of the section by calling 
the MapViewOfFile, MapViewOfFileEx, or 
MapViewOfFileExNuma function and then 
specifying the range to map. Mapping 
views permits processes to conserve 
address space because only the views of 
the section object needed at the time must 
be mapped into memory. See also section 
object.

virtual address control blocks (VACBs) The 
data structures that the cache manager 
uses to manage the system address space 
into which it maps files. When the cache 
manager initializes during the bootup pro-
cess, it allocates an initial array of VACBs 
to describe cached memory. As caching 
requirements grow and more memory 
is required, the cache manager allocates 
more VACB arrays, as needed.

virtual address descriptors (VADs) Data 
structures the memory manager maintains 
that keep track of which virtual addresses 
have been reserved in the process’s address 
space. VADs are structured as a self-bal-
ancing AVL tree algorithm (named after 
its inventors, Adelson-Velskii and Landis) 
that better balances the VAD tree, resulting 
in, on average, fewer comparisons when 
searching for a VAD corresponding with a 
virtual address.

virtual address space A set of virtual mem-
ory addresses that a process can use.

virtual block caching A method the 
Windows cache manager uses to keep 
track of which parts of which files are in 
the cache.

virtual cluster numbers (VCNs) VCNs num-
ber the clusters belonging to a particular 
file from 0 through m. VCNs aren’t neces-
sarily physically contiguous, but they can 
be mapped to any number of logical clus-
ter numbers (LCNs) on a volume.

virtual device drivers (VDDs) Drivers used to 
emulate 16-bit MS-DOS applications. They 
trap what an MS-DOS application thinks 
are references to I/O ports and translate 
them into native Windows I/O functions. 
Because Windows is a fully protected oper-
ating system, user-mode MS-DOS appli-
cations can’t access hardware directly and 
thus must go through a real kernel-mode 
device driver. Because 64-bit editions of 
Windows do not support 16-bit applica-
tions anymore, these types of drivers are 
not present on that architecture.

virtualization One of the key technologies 
in the software industry, used by system 
administrators, developers, and testers 
alike. Virtualization refers to the ability to 
run multiple operating systems simultane-
ously. One operating system, in which the 
virtualization software is executing, is called 
the host, while the other operating systems 
are running as guests inside the virtual-
ization software. The usage scenarios for 
virtualization cover everything from test-
ing an application on different platforms 
to having fully virtual servers all actually 
running as part of the same machine and 
managed through one central point.

volume One or more logical disk partitions 
that are treated as a single unit.

volume file A system file (file name $Volume) 
that contains the volume name, the version 
of NTFS for which the volume is format-
ted, and a bit that when set signifies that a 
disk corruption has occurred and must be 
repaired by the Chkdsk utility.

volume set A single logical volume com-
posed of a maximum of 32 areas of free 
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space on one or more disks.  Spanned vol-
umes were called volume sets in Windows 
NT 4.

wait block A data structure that represents 
a thread waiting on an object. Each thread 
that is in a wait state has a list of the wait 
blocks that represent the objects the thread 
is waiting on. Each dispatcher object has a 
list of the wait blocks that represent which 
threads are waiting on the object.

wait hint A value indicating how long a 
service should wait before informing the 
system a shutdown is complete.

WDM drivers Device drivers that adhere to 
the Windows Driver Model (WDM). WDM 
includes support for Windows power man-
agement, Plug and Play, and Windows 
Management Instrumentation (WMI). 
There are three types of WDM drivers: bus 
drivers, function drivers, and filter drivers.

WDM Windows Management Instru-

mentation routines Enable device drivers 
to publish performance and configuration 
information and receive commands from 
the user-mode WMI service. Consumers 
of WMI information can be on the local 
machine or remote across the network.

WFP callout drivers Kernel-mode drivers 
that implement one or more callouts, which 
extend the capabilities of the Windows 
Filtering Platform (WFP) by processing 
TCP/IP-based network data in ways that 
extend the basic functionality provided 
by the WFP. See also Windows Filtering 
Platform (WFP).

Windows API The system programming 
interface to the Windows operating sys-
tem family. In this book, the term Windows 
API refers to both the 32-bit and 64-bit 
programming interfaces to Windows Vista 
and Windows Server 2008.

Windows Diagnostic Infrastructure (WDI) A 
mechanism that helps to detect, diagnose, 

and resolve common problem scenarios 
with minimal user intervention. Windows 
components implement triggers that cause 
WDI to launch scenario-specific trouble-
shooting modules to detect the occurrence 
of a problem scenario. A trigger can indi-
cate that the system is approaching or has 
reached a problematic state.

Windows Driver Foundation A model 
intended to simplify driver development 
by providing two frameworks, the Kernel-
Mode Driver Framework (KMDF) and the 
User-Mode Driver Framework (UMDF).

Windows services A mechanism to start 
processes at system startup time that pro-
vide services not tied to an interactive user. 
Services are similar to UNIX daemon pro-
cesses and often implement the server side 
of client/server applications.

window station A window station contains 
desktops, and desktops contain windows. 
Only one window station can be visible 
on a console and receive user mouse and 
keyboard input. In a Terminal Services envi-
ronment, one window station per session 
is visible, but services all run as part of the 
console session.

Windows drivers Device drivers that inte-
grate with the Windows power manager 
and Plug and Play manager, when required. 
They include drivers for mass storage 
devices, protocol stacks, and network 
adapters.

Windows Filtering Platform (WFP) A set of 
APIs and system services that provide the 
ability to create network filtering applica-
tions. The WFP allows applications to inter-
act with packet processing at different 
levels of the Windows networking stack, 
much like file system filters. Similarly, net-
work data can be traced, filtered, and also 
modified before it reaches its destination.



 Glossary 1181

work item A unit of work placed on a queue 
dispatcher object when an executive com-
ponent requests a system worker thread’s 
services by calling the executive functions 
ExQueueWorkItem or IoQueueWorkItem. 
(Device drivers should use only the lat-
ter because this associates the work item 
with a Device object, allowing for greater 
accountability and the handling of sce-
narios in which a driver unloads while its 
work item is active.) These functions place 
a work item on a queue dispatcher object 
where the threads look for work. 

working set A subset of virtual pages resi-
dent in physical memory. There are two 
kinds of working sets—process working 
sets and the system working set. On sys-
tems with Terminal Services enabled, each 
session also has a working set.

working set manager A routine that runs 
in the context of the balance set manager 

system thread to initiate automatic working 
set trimming to increase the amount of free 
memory available in the system. Although 
Windows attempts to keep memory avail-
able by writing modified pages to disk, when 
modified pages are being generated at a 
very high rate, more memory is required to 
meet memory demands. The working set 
manager is called when physical memory 
runs low (when MmAvailablePages is less 
than MmMinimumFreePages).

write throttling Prevents system perfor-
mance from degrading because of a lack 
of memory when a file system or network 
server issues a large write operation.

zero page thread A kernel-mode system 
thread (thread 0 in the system process). 
A zero page thread zeroes out pages on 
the free list so that a cache of zero pages 
is available to satisfy future demand-zero 
page faults.
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Index

Symbols and 
Numbers
! commands. See kernel debugger 

commands
!analyze command, 1149
!apic command, 91
!devhandles command, 155–156
!devstack command, 579
!drvobj command, 671
!exqueue command, 200
!gflag command, 202
!handle command, 133, 154
!htrace command, 156
!idt command, 88–89, 102
!ioapic command, 91
!irp command, 1145–1147
!irql command, 95
!locks command, 191
!numa command, 437
!object command, 144, 489, 

552–553
!obtrace command, 156
!pcr command, 62–64, 95
!pic command, 91
!process command

data displayed by, 345
identifying processes with, 144
job process associations, 

displaying, 447–449
process page directory physical 

addresses, 765
running processes, viewing all, 

1144
!qlocks command, 176
!ready command, 391
!reg dumppool, 273
!reg findkcb, 278
!reg hivelist, 274
!reg kcb, 278
!reg openkeys, 278
!thread command, 376, 569
!timer command, 109
!vm command

memory data listed by, 703
memory exhaustion, checking 

for, 1145
!wsle command, 830
.NET Framework components, 3
32-bit emulation on 64-bit 

Windows. See Wow64
3DES (Triple-DES), 990–991

64-bit Windows versions (x64)
address space layouts, 745–746
address spaces, 15
CMPXCHG16B processor 

instruction issue, 749–750
execution prevention, 714
Itanium versions. See IA64 CPUs
kernel mode code signing, 17
memory and processor support, 

table of, 44–45
physical memory limits for, 

818–819
process size limitations, 699
singly linked lists issue, 749–751
technologies supported by, 38
UAC virtualization disabled for 

applications, 522
virtual addressing limitations, 

749–751
x64 address translation, 773

A
AAM (Admin Approval Mode), 

528–533
AcceptEx function, 1008
access checks

AccessCheck. See AccessCheck 
tool

default security, 460
discretionary. See discretionary 

access checks
events causing, 459–460
file object security, 460
integrity levels, 464–473
mandatory policies, 473
masks. See access masks
mechanics of, 459–461
ObCheckObjectAccess function 

for, 459–460
ordering of ACEs, 497
referencing events causing, 460
SeAccessCheck function, 460
SIDs for, 461–464
tokens. See tokens
user-mode checks, 461

access control
access-denied errors, 909
ACEs. See ACEs (access control 

entries)
ACLs. See ACLs (access control 

lists)

checks. See access checks
desired access rights, 157, 1158
determining for objects, 492–501
discretionary. See discretionary 

access control
effective permissions, 500
entries. See ACEs (access control 

entries)
lists. See ACLs (access control lists)
mandatory integrity control, 22
masks. See access masks
object access checks. See access 

checks
owner rights of objects, 495–497
privileged, 22
protected processes, 346–348
security descriptors for. See 

security descriptors
stop codes from violations, 1122
tokens. See tokens
types of, 22
user logon test for, 518

access faults, page. See page faults
access masks

algorithm for applying, 496–497
DACL algorithm, role in, 495
defined, 486–487
granted-access masks, 495
protected processes, table for, 

347
access tokens. See tokens
AccessCheck tool

object access, displaying, 158
object integrity levels, viewing, 

472–473
security descriptors, viewing, 488

account rights
defined, 501
displaying, 501
functions for changing, 503
mechanism for, 502–503
table of user rights, 503

accounts
HKLM\SAM subkey, 258
local service account, 288, 291
local system. See local system 

accounts
network service account, 290–291
privileges of. See privileges, 

account
rights of. See account rights
service applications, for, 288–291
trusted facili ty management, 453
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ACEs (access control entries)
access masks, 496–497
ACLs, relation to, 1153
callback ACEs, 486–487
DACLs, types appearing in, 

486–487
discretionary access checks using, 

495
effective permissions, 500
GUI permissions editors issue, 

498–499
inheritance flags, 487
inheritance mechanics, 490–492
order of, results from, 497–499
security descriptor interactions 

with, 485–488
SIDs for, 462
system audit types, 488, 1176

ACLs (access control lists)
accumulation of ACE access rights, 

487
assignment to new objects, 

490–491
composition of, 486–487
defined, 1153
discretionary. See DACLs 

(discretionary access control 
lists)

displaying for objects, 157–158
entries in. See ACEs (access control 

entries)
inheritance mechanics, 490–492
section objects, of, 713
service accounts, isolation issues 

with, 294–300
system. See SACLs (system access 

control lists)
ACPI (Advanced Configuration and 

Power Interface), 636–638
act as part of operating system 

privilege, 508, 510
activation stacks, thread, 381
Active Directory

ACE types for, 487
ADSI service interfaces, 1067
APIs for accessing, 1066–1067
authentication against, 518
connection security rules 

management, 1052
defined, 454–455
Directory Services Restore mode, 

1102
Distributed File System (DFS) 

service, 1069–1071
ID lookups, 1067
IPSec for policies, 1050
MAPI support, 1067
SAM (Security Accounts Manager) 

service, 1067
server name publishing, 1016

shadow copies, enabling, 688–689
Windows NT 4 networking APIs, 

1067
Winsock support for, 1009, 1011

Active page state, 804
active parti tions, 653–654
active processor masks, 434
add-device routines, 548, 607, 1153
address spaces

64-bit, 15, 745–751
ASLR for user address space, 

757–761
AWE. See AWE (Address 

Windowing Extension)
committing pages, 706–708
CreateProcess function, setup by, 

355–357
granularity of allocations, 708
hypervisor managed, 238–239
kernel mode, 16
large address space aware images, 

699, 739, 746
layouts of. See virtual address 

space layouts
marshalling areas, 1167
pools. See pools, memory
private, 712
processes marked for extra space, 

14–15
reserving pages, 706–708
section objects for mapping. See 

section objects
shareable memory, 758
sizes of, 14–15
system. See system address spaces
user mode, 16
viewing with Vmmap utili ty, 

758–759
virtual. See virtual address spaces
Wow64, 211
x86 address space layouts, 

737–740
address translation

byte index fields, 768
caching of results, 768–769
defined, 761
IA64, 772
PAE, 769–771
page directory mechanics, 

764–766
page table mechanics, 766–767
PTE mechanics, 762–763, 766–767
steps for, 764
translation look-aside buffers, 

767–769
x64, 773
x86 mechanics overview, 762–764

Address Windowing Extension. 
See AWE (Address Windowing 
Extension)

Admin Approval Mode (AAM), 
528–533

administrative rights, 473–474, 
528–533

Advanced Configuration and Power 
Interface (ACPI), 636–638

Advanced Encryption Standard 
(AES), 990–991

Advanced Local Procedure Calls. 
See ALPCs (Advanced Local 
Procedure Calls)

AES (Advanced Encryption 
Standard), 990–991

AFD (Ancillary Function Driver), 
1012

affinity manager, LFH, 733
affinity masks

defined, 1153
drawbacks of, 440
functions for, 395
image headers, set ting in, 439
job processor affinity set ting, 447
job wide, 439
NUMA functions, 438
SetProcessAffinityMask function, 

438
SetThreadAffinityMask function, 

438
set ting for processes, 439
thread affinity masks, 438–439
uniprocessor flags, 439

aging, 1153
AIS (application information service), 

529–531
alertable wait states, 1153–1154
AllocateUserPhysicalPages function, 

720
allocation. See memory manager
allocation granularity values, 708, 

1153–1154
Allow logon rights, table of, 503
ALPCs (Advanced Local Procedure 

Calls)
client-server connections, 

205–206
components using, 202–203
defined, 202, 1153
LPCs, 203
message exchange methods, 

204–205
port objects, 205–206, 1170
role in executive, 60
RPC use of, 202–204, 1017–1018
securing, 206
security component use of, 457
UMDF support, 203
viewing, 203–204
Winlogon to Lsass, 515

alti tudes, 170, 280, 1154
AMD64, 38
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ANSI string parameters, 23–24
APCs (asynchronous procedure calls)

APC level IRQL, 97
defined, 1154
device driver use of, 113
disabling, 112
executive use of, 112
I/O completion with, 575–577
interrupts, 112–114
KTHREAD field for, 373
modes with, 112
objects, 112
queues, 112, 1154
thread control with, 112
types of, 112–113
user mode, 113
wait queue reordering by, 114

APICs (Advanced Programmable 
Interrupt Controllers)

BCD option for maximum 
processor number, 1080

hypervisors with, 238
IRQ to IRQL mapping, 96
mechanics of, 89–91

APIs (application programming 
interfaces)

AuthZ, 500–501
DeviceIoControlFile API, 214–215
HTTP Server API, 1019–1021
Hyper-V API library, 232
I/O subsystem API, 1162
job related, table of, 446
scheduling related, 395–396
translating DLL API functions to 

service calls, 54
Win32. See Win32 API
Windows. See Windows API
Windows Networking API, 

1033–1036
application information service 

(AIS), 529–531
application layer, OSI, 1002
Application Verifier tool, 604
applications

compatibili ty shims, 522–523
crashes following new installations 

of, 1124–1125
foreground, 1161
installing, UAC issues with. See 

UAC (User Account Control)
legacy, well-known installers, 

1111–1112
native applications, 1168
registries, reading during startup, 

250
services. See service applications
Software Restriction Policies 

controls for, 533–535
user, 36

architecture
applications in separate mode, 34
assembly language components, 

38–39
boot process abstraction, 1073
C language, 35
checked build version, 47–49
core components, file names of, 

37–38
design goals of Windows NT, 

33–34
device drivers, 68–69
diagram of, 35–36, 49
executive component of, 37
fast LPC, 55
HAL (hardware abstraction layer), 

37–39
hardware isolation by kernel, 

64–65
Hyper-V, 230–231, 235–236
kernel mode, 34–35, 37
layered design, 38
microkernel-based operating 

systems, 34–35
monolithic operating systems, 34
networking, overview of, 1001
Ntdll.dll, 57–58
object-oriented kernel code, 35
operating system model, 34–35
portabili ty, 38–39
scalabili ty of, 43
server versions compared to client 

versions, 43–47
subsystem DLLs, 36–37
system processes. See system 

processes
user-mode components, 36
windowing and graphics system, 

37
Windows Driver Model. See WDM 

(Windows Driver Model) drivers
Windows subsystem. See 

Windows subsystem
WMI, 318–319

ARIES (Algorithm for Recovery and 
Isolation Exploiting Semantics), 
910

ASLR (Address Space Layout 
Randomization)

disabling, 759
heap randomization, 760
image randomization by, 759–760
mechanics of, 759
purpose of, 757
stack randomization, 760
viewing processes for support 

status, 761
ASMP (asymmetric multiprocessing), 

39, 1154

ASR (Automated System Recovery). 
See Complete PC Restore

assemblies, 364–366
assembly language components of 

Windows, 38–39
asynchronous I/O

cancellations, 588
defined, 1154
Driver Verifier completion 

simulation, 606
mechanics of, 563
requests to layered drivers, 

578–587
asynchronous read-ahead with 

history, 876, 1154
asynchronous RPC, 1015–1016
Ataport.sys, 647
ATL (Active Template Library) DEP 

compatibili ty, 716
atomic execution, 197
atomic transactions, 918–919, 1154. 

See also  NTFS recovery support
Attachment Execution Service, 921
attribute lists, NTFS, 1154–1155
attributes, file

at tribute definition tables, 
940–941

attribute streams, 942
resident at tributes, 948–951
table of, 943–944
type codes, 944
unnamed data at tribute, 942

attributes, object. See object 
at tributes

audio, 346–347, 430–434
auditing, security

audit events, 511
defined, 1173–1174
local security policy, 511
Lsass support for, 511
privilege for, 505
privileges related to, 511
queuing of messages for, 512
TCSEC rating criteria for, 452

authentication
AuthIP, 1051–1052
calls to, 514
credential providers, 79
data origin authentication, 1050
IPSec-supported methods, 1051
Kerberos. See Kerberos 

authentication
levels of, 1017
LSASS. See LSASS (local security 

authentication server process)
MSV1_0, 513, 517–518
packages (DLLs), 455, 513, 1155
RPC, for, 1017
user logons, packages for, 517



1186 authority, P2P

authority, P2P, 1040
AuthZ API, 500–501
Autochk, 1094
automatic working set trimming, 

1155
auto-reset events, 195
Autoruns tool, 1011, 1100
AWE (Address Windowing 

Extension)
defined, 1153
mechanics of, 719–721
purpose of, 15

B
Background Intelligent Transfer 

Service (BITS), 1030
backups, 506, 692–693, 999
bad cluster files, 940–941, 1155
Bad page state, 804
bad-cluster remapping, 1155
balance set manager

defined, 1155
mechanics of, 427–430
memory manager, as a 

component of, 700
system thread, as a, 76
working set expansion and 

trimming by, 831–832
bandwidth reservation for I/O, 

603–604
base LSNs, 973
base priority determination, 393
BaseNamedObjects namespace, 167
basic disks

defined, 652–653, 1155
enumeration of, 655
GPT partitioning, 654
MBR partitioning, 653–654
types of devices limited to, 653
volume manager with, 655

basic volumes, mounting, 667–668
.bat files, process creation for, 353
BCD (Boot Configuration Database)

bad physical pages list, 1079
BCDEdit utility, 256
Bootmgr file read of, 1077
debugging options, 1079–1080, 

1148–1149
default selection by Bootmgr, 

1084
editing tool for, 1078
entry storage, 255
HKEY_LOCAL_MACHINE\BCD, 

255–257
hypervisor options, 1081
multiple boot selection entries 

in, 1078
optional argument for Bootmgr, 

1078

options for boot applications, 
table of, 1079–1080

preparation by Setup, 1077
Registry Editor for editing, 

256–257
troubleshooting configuration 

issues, 1109–1110
watermarked desktop option, 

1080
Winload options, 1080–1084

BFE (base filtering engine), 1047
binding, network, 1064–1065
bins, registry, 269–272
BIOS (basic I/O system)

BitLocker boot process, 683
boot process files, table of, 

1074–1075
MBR reads by, 653
setup process for, 1073–1077
x64 vs. x86 boots, 1073

BitLocker
architecture of, 677–678
boot process, 683–684
cryptography algorithms of, 679
defined, 1155
Elephant diffuser algorithm, 681, 

686
foreign volumes, 685
FVE (full volume encryption), 686
FVEK with, 679
Group Policy for, 687
key escrow services, 687
keys, 679–681
major protection capabilities of, 

677
management of, 687
passwords for recovery, 684–685
PCRs (platform configuration 

registers), 681–683
programmatic access to, 687
purpose of, 677
recoveries, 684–685
sealing VMKs, 681–682
sector encryption keys, 686
system change recoveries, 685
TPM for, 677, 681–683, 687
unsealing VMKs, 684
VMKs, 679–681

bitmap files ($BitMap), 940, 1155
BITS (Background Intelligent 

Transfer Service), 1030
B-level security, 453
BLFs (base log files), 913–914
blocks, hive, 269
blue screen of death

causes of, 1119–1120
debugging causes. See crash 

dump analysis
example, 1120
screen saver simulation of, 1152

stop code interpretation. See stop 
codes

Bluetooth, 616, 1011
boot code, defined, 1155
boot loader

Bootmgr loads, 1084
image system addresses, 752
parameter block structure, 1088

boot process. See also EFI 
(Extensible Firmware Interface)

architecture, abstraction of, 1073
automatic process startups, 1100
BCD file reads, 1077
BIOS role in. See BIOS (basic I/O 

system)
BitLocker boot process, 683–684
boot disk based, recovery options, 

1106
Boot Manager. See Bootmgr 

(Windows Boot Manager)
boot start driver issues, 1106
boot status files, 1108
boot-selection menu 

presentation, 1078
Bootvid initialization, 1089
code, defined, 1155
Csrss, starting and initialization, 

1095–1096
disk access during boots, 646
DPC stack allocation, 1090
driver enumeration and symbol 

loads, 1089
Driver Verifier initialization, 1089
EFI boot process, 1086–1087
executive Phase I initialization, 

1089
HAL initiation steps, 1088–1089
hard disk setup for, 1073–1074
HKLM\SYSTEM subkey, 259
I/O manager initializations, 

1091–1093
InitBootProcessor responsibilities, 

1088–1090
KiInitializeKernel responsibilities, 

1088–1099
last known good. See last known 

good control sets
logging in safe mode, 1104–1105, 

1114
MBRs, control transfer to, 1076. 

See also MBR (Master Boot 
Record)

memory manager, initializations 
by, 1089, 1091

NTFS recoveries on, 981
Ntoskrnl phases, 1088–1093
object manager initializations, 

1090
page file reads, 781
Phase 0 steps, 1088–1090
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Phase 1 steps, 1090–1093
prefetching, 823–827
process manager initializations, 

1090, 1093
ReadyBoot, 1099
registry fixes during, 279
registry initializations, 1095
registry, reading of, 250
safe mode, 1101
SCM with, 300, 304, 1097
screen crashes during, 1112–1114
security reference monitor 

initializations, 1090
Session Manager initialization, 

1093–1096
system hive corruption, 1112
tracing with Process Monitor, 

265–266
troubleshooting, 1106–1114
Wininit steps of, 1097
Winload role in, 1084–1086
Winlogon steps for, 1097–1098
x64 vs. x86, 1073

boot sectors
creation of, 1076
defined, 1155
format dependence of, 1077
FSD use of, 896
system partition, relation to, 1076
troubleshooting corruption issues, 

1109
boot volumes, 1155
Bootmgr (Windows Boot Manager)

BCD optional arguments for, 1078
BIOS-interfacing functions, 1077
boot loader loads, 1084
boot-selection menu 

presentation, 1078
crashes, detecting on reboot, 

1124
defined, 1074
hibernation resumes, 1078
paging enabling by, 1077
protected mode, switching to, 

1077
reading in of file, 1077
real mode execution, 1077
screen clears by, 1078
storage read role, 646

Bootvid initialization, 1089
Bootvid.dll, 67
boundary descriptors, 164
BSD Sockets, 1006
buckets, 732–733
buffer overflow errors, file systems, 

910
buffers, I/O

buffer management types, 
570–571

Direct I/O, 570

driver use of, 571
FILE_FLAG_NO_BUFFERING flag, 

875
IRP references for, 571
mechanics of, 570–571
Neither I/O, 571
overruns, 1140–1142
pool corruption, 1140–1142

bugcheck codes. See stop codes
bus drivers

defined, 69, 542–543, 1155
device enumeration role, 624–628
HAL acting as, 624–625
instance IDs, 630
IRQ mapping IRQLs, 96
Multipath Bus Driver, 649
Plug and Play support, 621
responsibilities of, 542–543
Root virtual bus driver, 624–625

Bypass Traverse Checking privilege, 
505, 509

C
C language, 35, 38–39
C2 security ratings, 451–452
cache manager

!defwrites debugger command, 
886

!filecache debugger command, 
857

architecture of, 850
boots, initialization during, 1091
buffer management, 871
CcDbg debugging variables, 

861–862
client/server example, 858
coherency of data, 850–852
copying method, 869
data structure overview, 859–860
defined, 849, 1155
determining if files are in the 

cache, 862–863
dirty page threshold, 885–886
disabling lazy writing, 883
DMA caching, 872
fast I/O, 873–875
fast teardown queues, 886–887
file I/O not handled by, 875
file mapping objects with, 850
file system drivers, 868, 904–905
file system interface overview, 868
flushing mapped files, 883–884
flushing of cache pages, 877
global look-aside lists, 887
hint support, 849
I/O operation interactions, 868
initialization for files not in cache, 

868

intelligent read-ahead, 875–876, 
878–883, 1163

key features of, 849
lazy writing, 877–883, 906, 1165
least recently used VACBs, 861
logical sequence numbers (LSNs), 

853–854
mapped files, 566, 710
mapped page writer thread of, 

881
mapping interfaces, 870–871
memory manager use by, 

849–850
metadata, functions for finding 

locations of, 870
modified page lists, 858–859
NTFS cache flushing operations, 

977
NTFS file system driver with, 935
per-file data structures, 862–868
per-processor look-aside lists, 887
physical memory size, 858–859
pinning interfaces, 870–871
post tick queues, 887
private cache map structures, 

862–867
private cache maps, 1171
purpose of, 59
queue types used by, 886–887
read activity, examining, 869–870
read-ahead. See intelligent read-

ahead
recoverable file system support, 

853–854
remote file system driver oplock 

protocol, 898–899
section objects, 850, 862
shared cache map structures, 

862–867, 1174
size computation, 855–859
size system variables, table of, 856
standby lists, 858–859
stream-based caching, 852
system space to application buffer 

issue, 869
system threads of, 886–887
systemwide data structures, 

860–862
VACBs. See VACBs (virtual address 

control blocks)
viewing cache maps, 866–867
viewing file system activity of, 

878–883
views, 854–855, 862–863
virtual address space model, 850
virtual block caching, 852
virtual memory management, 

854–855
virtual size, 855–856
working set size, 856–857
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cache manager, continued
write throttling, 885–886
write-back caching, 877–883
write-behinds, 878–882
write-through caching, 883

cache-aware pushlocks, 193
caches, CPU-specific code variants, 

64
caches, HTTP, 1020–1021
call managers, NDIS, 1057
callbacks

bugcheck callbacks, 1120
callback ACEs, 486–487
driver, 170
Evtlo callback routines, 607
fast dispatch routines, 549
KMDF, 607, 614
reason callbacks for crash dumps, 

1120
Wow64, 212

callouts, WFP, 1004, 1047
cancel I/O routines, 549, 587–592
case sensitivity of object names, 163
.cat files, 538–539
catalog files, assembly, 365
catalog files, device driver, 635–636
CBS (Component Based Servicing), 

subkey for, 257–258
CC (Common Criteria), 453
CDFS (CD-ROM file system),  

890–891, 896
CD-ROM drives, 890–891, 896
cells, registry

bins, 270–271
configuration management of, 

272–276
data types of, 270
defined, 269–270
examining, 271
indexes, 271
maps, 272–276
organization of, 271

certificates, 533, 1051
change journal files, 941, 956–959, 

1155–1156
change logging, NTFS, 927–928
charge notification, 834
checked build version, 47–49, 1156
checkpoint records, 1156
child partitions, hypervisor, 230, 

232–234
chimney offloading, 1054
Chkdsk utility

Autochk run during boots, 1094
bad sector fixes by, 986–988
NTFS preventing need for, 974
system file corruption, fixing, 1110

chunked transfer encoding, 1019
Ci.dll, 67

CIFS (Common Internet File System) 
protocol, 898

CIM (Common Information Model)
CIMOM (CIM Object Manager), 

319
class model of, 320–321
common model, 1156
core model, 1157
Event Log provider use of, 

321–322
MOF with, 322
specification for, 319–320

class drivers, 543, 1156
classifier, P2P, 1040
CLFS (Common Log File System)

ARIES, 910
base log files, 913–914
Clfs.sys, 67
common logs, 911
containers, 913–914
dedicated logs, 911–913
dump counts, 913–914
flush queues, 912–913
identifiers of containers, 914
layout of logs, 913–914
log blocks, 915
log space reservation, 911
LSNs (log sequence numbers), 

914–915, 917
management policies, 918
marshalling, 910–911
multiplexed logs, 911–913
owner pages, 912, 915–916
pages, 915
physical vs. virtual clients, 911
purpose of, 910
regions, 915
sector signatures, 915
torn writes, 915
TxF log files, 970
types of logs, 911–913
virtual logs, 916
virtual LSNs, 916–917

client versions of Windows
architecture compared to server 

versions, 43–47
list of, 43–44
optimization compared to servers, 

46
physical memory limits for, 

818–822
client/server model

impersonation with, 480–483
LogonUser function with, 481–483
remote file system drivers for, 

897–899
Client/Server Run-Time Subsystem. 

See Csrss.exe
clock algorithm, 827–828, 1156
clock interrupt handler, 1156

clock interval timer frequencies, 
406–407

clock, system, 97
Clockres, 407
clone shadow copies, 688
C-LOOK algorithm, 647
close object method, 148
clouds, P2P, 1040
CLR. See Common Language 

Runtime (CLR)
clustered page faults, 779–780
clustering, memory manager, 1156
clusters, file

bad clusters, 940–941, 985–988, 
1155

defined, 889, 1156
dynamic bad-cluster remapping, 

923
factors, defined, 1156
FAT size variations, 891–894
LCNs (logical cluster numbers), 

938–940, 950–951
NTFS, 937–938
sectors, relationship to, 937–938
size of, setting, 937
sizes of, 895
VCNs (virtual cluster numbers), 

938–940, 950–951
.cmd files, process creation for, 353
CMPXCHG16B processor instruction, 

749–750
code corruption from drivers, 

1143–1144
code integrity, 246–247, 1156
collided page faults, 779, 1156
COM (Component Object Model)

distributed. See DCOM 
(Distributed Component Object 
Model)

HKEY_CLASSES_ROOT class 
registries, 255

WMI COM API, 319
comctl32.dll, 365
command prompts

safe mode with, 1101, 1104
troubleshooting with, 1106

commit charge notification, 834
commit charges, 782, 833–834
committed pages, 706–708, 710, 

1156
common controls DLL, 365
Common Criteria (CC), 453
Common Internet File System (CIFS) 

protocol, 898
Common Language Runtime 

(CLR), 3
Common Log File System. See CLFS 

(Common Log File System)
common logging file system driver 

(Clfs.sys), 67



 crash dump analysis 1189

common model, CIM, 1156
compatible IDs, 634
complete memory dumps, 

1126–1128, 1156
Complete PC Restore, 1106, 1110
completion ports. See I/O 

completion ports
Compound TCP (CTCP), 1044
compression support, NTFS

file, directory, and volume basis, 
951–952

nonsparse data compression, 
954–956

sparse data compression, 952–954
sparse files, 956
types of compression, 927

concurrency values, 593–595
CoNDIS (connection-oriented NDIS), 

1055, 1057–1060
condition variables, 195–196
confidentiality, IPSec for, 1050
configuration manager

altitude, 280
ASCII vs. Unicode storage, 281
bins, 269–272
blocks, 269
cell indexes, 271
cells, 269–272
defined, 266, 1157
dirty sector arrays, 279
hive syncs, 279
hives, loading of, 266
kernel handle tables, 268
key control blocks, 276–278, 281
key object type, 276
lazy write operations, 279
log hives, 278–279
memory mapping of hives, 

272–276
namespace integration, 276
new keys created by applications, 

277
operation flow control, 277–278
performance optimizations by, 

280–281
registry filtering, 280
registry initialization during 

boots, 1095
search methods of, 272
self-healing operations, 279
symbolic links, 268
Windows executive, as 

component of, 59
ConnectEx function, 1009
connecting an interrupt object, 

105–106
connections, network, 1007–1008
consent elevations, 529
consistency check stop codes, 

1122–1123

console windows, DLLs supporting, 
54

consumers, ETW, 207
container objects, 1157
containers, log system, 913–914
context switching

address space sharing within 
processes, 764–765

address translation after, 764
architecture dependence of, 

64–65
defined, 1157
mechanics of, 418
minimizing, goal of, 592–593
multiprocessor threads, 435
quantum ends allowing for, 407
thread scheduling requiring, 392

control areas of section objects, 
796–798

control objects, 62, 1157
control sets, 1113–1114
controllers, ETW, 207
cookies, stack, 717–718
copy-on-write page protection, 

718–719
copy-on-write shadow copies, 688
core model, CIM, 1157
counters

descriptions of, viewing, 25
disk performance, 665–666
performance. See performance 

counters
CPs. See credential providers (CPs)
CPU Stress tool

CPU starvation boosts, watching, 
428–430

priority boosts, viewing, 423–425
CPU utilization, 9, 382
CPUs

dynamic processor addition, 238
GetLogicalProcessorInformation 

function, 395
ideal processors, 1162
Itanium. See IA64 CPUs
memory cache entries, 815
memory protection built into, 712
mode-related performance 

counters, 17–19
multiple-core, 40. See also SMP 

(symmetric multiprocessing)
portability between architectures, 

38
privilege levels of, 16
rate limits on, 444–445
starvation, priority level boosts 

for, 427–430
unified kernel, 41
utilization. See CPU utilization
virtual, 237–238

CR3 register, 764–765

crash analysis server, Microsoft, 121
crash dump analysis

!analyze command, 1149
!irp command, 1145–1147, 1150
!locks command, 1150
!process command, 1144, 

1149–1150
!stacks command, 1150
!thread command, 1149–1150
!vm command, 1145
advanced, using manual 

commands, 1144–1145
auxiliary computer dump 

captures, 1130, 1148–1149
basic analysis overview, 1134
booting into debugging mode, 

1148–1149
bucket ID entries, 1134
causes of crashes, 1119
checksums, pre-write, 1130
code corruption from drivers, 

1143–1144
complete memory dumps, 

1126–1128
deadlock detection, 1147
dedicated dump files, 1131
default generation of crash 

dumps, 1125
defined, 1119
device driver secondary dumps, 

1127
dps (dump pointer with symbols) 

command, 1146–1147
Drive Verifier as an aid to, 1139
driver information, viewing, 

1138–1139
exceptions, kernel-mode, 1119
fail fast policy of Windows, 1119
generation of dumps, mechanics 

of, 1130–1131
hung systems, troubleshooting, 

1147–1150
IRP analysis, 1146
Kd for, 1134
KeBugCheckEx function, 

1120–1121
kernel memory dumps, 

1126–1129
lm kv command, 1144
manually crashing hung systems, 

1148
miniport drivers for dumps, 1130
missing dumps, 1150–1152
Notmyfault utility, 1134–1139
OCA (Online Crash Analysis), 

1133–1134
parameter information with stop 

codes, 1120–1121
pool corruption, 1140–1142
recursive faults, 1151
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crash dump analysis, continued
reporting settings, 1131–1132
sending reports to Microsoft, 

1132
small memory dumps, 1127–1128
stack traces of executing threads, 

1138, 1149–1150
stack trashes, 1145–1147
Startup And Recovery settings, 

1125
stop codes, 1120–1123
troubleshooting crashes, 

1124–1125
WER for. See WER (Windows Error 

Reporting)
WinDbg for, 1134, 1137

crash dumps
analysis of. See crash dump 

analysis
defined, 1157
system space for, 737

create global object privilege, 168
CreateEventEx for access checks, 

159
CreateFile function

asynchronous I/O flag for, 563
file system driver operations after 

calling, 902–906
mailslots with, 1024
named pipes with, 1024
read-ahead flags of, 876
write-through caching flag, 883

CreateProcess functions
address space setup steps, 357
debugging notifications, 363
decision tree for image types, 

table of, 353
elevation check, 362
EPROCESS block setup, 354–355
executive objects vs. subsystem 

process creation, 349
executive process object creation 

stage, 354–359
executive process object 

finalization, 359
handle table initialization, 355
initial process address space 

creation, 355–356
initialization in new process 

context stage, 363–370
job binding, 359
LdrpInitializeProcess, 369
NtCreateUserProcess with, 349, 

351–352, 360
opening of executable images, 

351–354
parameter validation and 

conversion step, 350–351
parent process inheritance, 

354–355

PEB setup, 357–358
performance options, applying, 

355
prefetch checks, 363, 369
process creation overview, 

348–349
PspAllocateProcess, 354–359
PspInsertProcess, 359
PspUserThreadStartup, 363–364
registry checks, 352, 367
section object creation, 351–352
single CPU flag, 358
stages, list of, 349
support images, 352
SxS setup, 361
table of, 344
thread execution start stage, 362
thread initialization stage, 

359–360
thread seed initialization, 356
thread stack creation, 360
user vs. kernel mode, viewing, 

367–368
validation checks, 361
viewing startup process, 366–370
virtualization check, 362
Windows subsystem operations 

stage, 360–362
CreateThread function, 117–118, 

380–381
Creator Group ID group, 462
Creator Owner ID group, 462
creator process IDs, 5–6
credential manger, 508
credential providers (CPs)

default and third-party, 514
defined, 455, 1157
logon role of, 79
user logon role, 516–517

critical code sections
advantages of, 194
condition variables, 195–196
defined, 171, 1157
EnterCriticalSection function, 

187–188
kernel critical sections, 172
keyed events, 187–189
limitations of, 195
mutexes in, 194–195
semaphores in, 194–195
shared mode, 194
spinlocks for, 173–174, 177
SRW locks as replacement for, 196
user mode, staying in, 194

critical object stop codes, 1123
critical sections. See critical code 

sections
critical worker threads, 199
CryptoAPI, 992–998
cryptographic services, 930

Csr functions, 58, 361
Csrss.exe. See also Windows 

subsystem
boot process initialization of, 

1095–1096
critical nature of, 1096
DLLs loaded by, 54
integrity levels of threads created 

by, 494
process creation operations by, 

361–362
process data structures of, 

335–336
purpose of, 51–52
session manager launching of, 78
shutdowns, 1115–1118

CTCP TCP (Compound), 1044
Ctrl+Alt+Delete logon attention

beginning user logon, 516–517
desktop chosen by, 515
SAS implementation with, 516
trusted path functionality of, 453

CurrentControlSet subkey, 308–309

D
DACLs (discretionary access control 

lists)
ACE flags, 487
ACEs of, 486–488
assignment to new objects, 

490–491
Create APIs with, 159
discretionary access checks using, 

495
inheritance mechanics, 490–492
security descriptors, in, 485–487
tokens, of, 476

daemon processes. See services
Data Collector Set Kernel Trace logs, 

208–210
data execution prevention. See DEP 

(data execution prevention)
data integrity, IPSec for, 1050
data origin authentication, 1050
data structures, process, 335–342
datagrams, 1008, 1013
data-link layer, OSI, 1003
DbgUi functions

DbgPrintEx function, 48–49
native application support, 

217–218
Ntdll support for, 58
responsibilities of, 216

DCE (distributed computing 
environment), 1014

DCOM (Distributed Component 
Object Model), 1015, 1031–1032

DDE (Dynamic Data Exchange) 
impersonation, 481
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deadlocks, 194, 1147–1150, 1157
debug objects, 216
debug ports, 216
debug programs privilege, 346, 506, 

509–510
debugger commands, kernel. See 

kernel debugger commands
debugging

BCD options for, 1079–1080
booting into debugging mode, 

1148–1149
checked build version use, 47–49
commands, kernel. See kernel 

debugger commands
copy-on-write with, 719
DbgPrintEx function, 48–49
DbgUi functions, 58
Debugging Tools. See Debugging 

Tools for Windows
Driver Verifier, 604–606
HD content playback prohibition, 

348
heap manager features for, 

734–735
kernel data structures. See kernel 

debugging
process creation checks, 363
tools for Windows. See 

Debugging Tools for Windows
user mode. See user-mode 

debugging
user-mode debugging framework 

of executive, 60
Debugging Tools for Windows

attaching to user-mode 
processes, 27

capabilities for kernel debugging, 
28

command-line version, 28
crash dump files, 28
debugger extension commands, 

29
dt command, 29–30
help file for, 29–30
invasive attachment option, 27
LiveKd tool with, 30–31
local kernel debugging, 28
noninvasive attachment option, 

27
pageheap, 735
remote connection kernel 

debugging, 28
source for latest versions, 27
stop codes, viewing, 1121. See 

also stop codes
substructures, viewing, 30

decrementing, interlocked, 172–173
decryption, EFS, 998–999
default resource manager, TxR, 

969–971

deferred deletion of objects, 160
deferred ready lists, 435
Deferred Ready thread execution 

state, 400, 1157
defragmentation

API for, 931
fragmentation defined, 931
paging files, special tool for, 781
SuperFetch service use of, 

826–827
tool for, 931–932

delayed worker threads, 199
delegation, privilege for, 506
deletion of objects, 148, 160
demand paging, 823, 1157
demand zero, 706–707
Deny logon rights, table of, 503
DEP (data execution prevention)

ATL framework compatibility, 716
BCD options for, 714–716
bugcheck codes from, 713–714
changing computer settings for, 

714
defined, 713–714
PAE mode requirement, 714
pointer encoding, 717–718
registry values for exclusions, 714
self-disabling applications, 716
SetProcessDEPPolicy function, 716
software DEP, 717–718
stack cookies, 717–718
viewing, 715–717

dependencies, loading, 222–227
Dependency Walker tool, 52, 66
dereference segment threads, 701
desired access rights, 157, 1158
desktops

application, created by Winlogon, 
515

association of windows with by 
CreateProcess, 351

crashes or hangs, troubleshooting, 
1112–1114

Desktop object type, 137, 148–149
watermarked desktop BCD 

option, 1080
Winlogon desktop, 515

device driver functions, 58, 61, 
547–550

device drivers
add-device routines, 548
APCs with, 113
architecture, place in, 37, 68–69
autostarting by SCM, 303–307
blue screens, data displayed in, 

1120–1121
boot phase designation, 624
break on symbol load boot 

option, 1089
bugcheck callbacks, 1120

bus. See bus drivers
cancel I/O routines, 549, 587–592
catalog files, 635–636
checked build version use, 47–49
class drivers, 543
completion ports for. See I/O 

completion ports
crash dumps, secondary, 1127
crashes following new installations 

of, 1124–1125
CRITICAL_STRUCTURE_

CORRUPTION crashes, work 
arounds, 245–246

defined, 68, 538, 1158
detecting illegitimate 

modifications, 247
development framework for. 

See WDF (Windows Driver 
Foundation)

device identifiers, 630
device objects, 550–555
DeviceIoControlFile API, 214–215
dispatch routines, 548, 568
DPC routines, 549
driver objects, 550–555
driver signing policies, 634–636
Driver Verifier tool. See Driver 

Verifier
enumeration, PnP, 624–628
error logging routines, 550
fast dispatch routines, 549
file objects, 555–562
file system. See file system drivers 

(FSDs)
filter. See filter drivers
forcing IRQL checking with Driver 

Verifier, 802
FSDs. See file system drivers (FSDs)
function drivers. See function 

drivers
functions, 58, 61, 547–550
Group values, 623–624
HAL, relationship to, 68
hardware device drivers, 68
I/O completion routines, 549
I/O requests to layered drivers, 

578–587
I/O requests to single-layered 

drivers, 572–578
INF files, 538–539, 632–634
initialization routines, 548
installation of, PnP, 632–636
IRP processing, 540
ISRs. See ISRs (interrupt service 

routines)
kernel access with, 69
kernel address space access 

dangers, 16
kernel-mode operation of, 68
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device drivers, continued
Kernel Patch Protection (KPP) 

against, 244–246
kernel streaming filter drivers, 68
kernel-mode, categories of, 542
KMDF. See KMDF (Kernel-Mode 

Driver Framework)
layering of, 543–544
listing loaded, 71
load and unload privilege, 507, 

510
load order of, 623–624, 626–627, 

631–632
low resources simulation by Driver 

Verifier, 802
miniport drivers, 543
names of devices, displaying, 

552–553, 1125
network redirectors and servers, 

68
Non–Plug and Play. See Non–Plug 

and Play drivers
opening devices, 555–562
PAE support for, 770, 819–820
paged pools for, 721
Plug and Play. See Plug and Play 

drivers
pools used by, monitoring, 

725–726
port drivers, 543
portability of, 68
printer drivers, 542
protected driver lists, 636
protocol drivers, 68
reason callbacks for crash dumps, 

1120
registry key records of, 628
safe mode loading of, 1102–1103
services registry parameters, table 

of, 283–287
spinlocks with, 174–175
stacks, viewing, 579
start I/O routines, 548
Start values, 623–624
startup errors, 307–308
structures of, 547–550
system thread creation, 76
system threads, mapping to, 

76–77
system worker threads for, 

198–199
system-shutdown notification 

routines, 550
Tag values, 624
test-signing mode, 1080
types of, 68, 541–542
UMDF. See UMDF (User-Mode 

Driver Framework)

unkillable processes, debugging, 
590–592

unload routines, 550
VDDs (virtual device drivers), 542
viewing lists of, 546–547
WDM. See WDM (Windows Driver 

Model) drivers
Windows Driver Foundation. 

See WDF (Windows Driver 
Foundation)

Windows Driver Model. See WDM 
(Windows Driver Model) drivers

Wow64 I/O request issues, 
214–215

device enumeration, 624–628
device IDs, 630, 1158
Device Manager

devnodes, viewing, 631
memory, viewing reserved, 821
viewing devices, 626

device objects
!devobj command, 671
creation by drivers, 550–551
defined, 550, 1158
enumeration of, 551
listing addresses of, 671
names of, viewing, 552
partition objects, 651–652
symbolic links for, 551
VPB data structures of, 670

device trees
defined, 1158
devnodes of, 1158
PnP manager creation of, 625–628

devices
device instance IDs. See DIIDs 

(device instance IDs)
drivers for. See device drivers
registry key records of, 628

device-specific modules (DSMs), 
648–649

devnodes
defined, 1158
device identifiers, 630
device objects of, 628–629
DIIDs (device instance IDs), 630
driver loading, 630–632
enumeration, use in, 625–627
FDOs (functional device objects), 

629, 1161
FiDOs (filter device objects), 

628–629, 1160–1161
IRP flow, 627, 629
PDOs (physical device objects), 

628
unloaded drivers during boots, 

632
viewing with !devnode command, 

627–628

viewing with Device Manager, 631
DFS (Distributed File System) service, 

1069–1071
Diagnostic Policy Service (DPS), 

330–331
diagnostics, WDI for, 329–333
Differentiated Services Code Point 

(DSCP), 1062
digital rights management, 346–348
DIIDs (device instance IDs), 630, 

1158
direct I/O, 570–571
directories, file

Bypass Traverse Checking 
privilege, 505, 509

index buffers, 950
nonresident attributes of, 950
restore files and directories 

privilege, 507, 510
synchronization services privilege, 

508
virtualization, UAC, 523–526

directories, object, 163
Directory object type, 137
Directory Services Restore mode, 

1102
DirectX Win32k.sys wrappers, 54
dirty pages

cache manager flushes to disk, 
541–542

mapped page writer, 700
modified page writer, 700
threshold, 885–886, 1158

DisconnectEx function, 1009
disconnecting an interrupt object, 

105–106
discretionary access checks, 492, 

494–497
discretionary access control

defined, 22, 1158
object protection, 458
TCSEC rating criteria for, 452

Disk (Disk.sys) driver, 647, 649–651
Disk Defragmenter, 931–932
disk groups, 1158
Disk Management MMC snap-in, 

661–663, 665
disk storage drivers

class drivers, 647
class/port/miniport architecture 

of, 647
C-LOOK algorithm, 647
Disk driver, 647
disk object representation, 

650–651
DSMs (device-specific modules), 

648–649
iSCSI drivers, 648
miniport drivers, 543, 647
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MPIO (Multipath I/O) drivers, 
648–649

port drivers, 647
request mechanics, 647
Scsiport.sys, 647
startup by Windows I/O manager, 

647
symbolic links for disk objects, 

650–651
Diskmon tool, 649
disks

basic. See basic disks
CD. See CD-ROM drives
defined, 645
defragmenting. See 

defragmentation
diagnostics for, 332
drivers for. See disk storage 

drivers
dynamic. See dynamic disks
IDs of, 652
integrity checking with Driver 

Verifier, 606
letters for. See drive letters
monitoring disk activity, 649
names, backward compatibility 

for, 650–651
objects representing, 650–651
partitions of. See partitions, disk
paths to, 648–649
ReadyDrive for H-HDD, 845–846
sectors of. See sectors
seek times, improvement with 

prefetching, 823
setup for boot process, 1073–1074
virtual memory saved to. See 

paging virtual memory to disks
volumes. See volumes

dispatch code, 101, 1158
dispatch routines, device driver, 548
dispatcher databases

defined, 1159
mechanics of, 404–405
multiprocessor thread scheduling 

considerations, 434–435
dispatcher headers

debug active flag, 183
defined, 182–183, 1159
dt command, viewing with, 184
flags, table of, 185
KTHREAD field for, 372
Type field, 185

dispatcher objects
defined, 62, 178–179, 1159
dispatcher headers, 182–185
fast mutexes built on, 189
key traits of, 178
manual reset events, 182
nonsignaled state, 179
signaled state, 179–180

wait blocks, 183–186
WaitForMultipleObjects function, 

178–179
WaitForSingleObject function, 

178–179
dispatchers

defined, 1158–1159
headers, 1159
KMDF queue dispatch methods, 

614
ready queues, 1159

dispatching
dispatcher locks, 594
exception. See exception 

dispatching
fast dispatch routines, 549
interrupt. See interrupt 

dispatching
objects for. See dispatcher objects
routines implementing. See 

dispatchers
threads, 392
trap. See trap dispatching

display device drivers, 1122, 1159. 
See also video

Distributed File System (DFS) 
service, 1069–1071

distributed link-tracking service, 
929–930

distributed transaction coordinator. 
See DTC (distributed transaction 
coordinator)

DLLs (dynamic-link libraries)
core subsystem, file names of, 37
defined, 4, 1159
HAL, 65
hotpatches to, 242–244
isolating application distributions 

of, 364
known, opening during boots, 

1095
loading by image loader, 222–227
mapped files, viewing as, 711
memory-mapping of, updating 

issues from, 1096
randomization of image file 

addresses, 759–760
subsystem DLLs, 36–37, 1175
translating API functions to 

service calls, 54
user address space for, 757

DMA (direct memory access)
caching with, 872
defined, 1158
Driver Verifier, checking with, 606
I/O buffering, 570–571
pool corruption from, 1140

DMDiskManager, 661
DNS (Domain Name System)

client service account, 290–291

implementation of, 1039
NetBIOS names, 1027
PNRP advantages over, 1040
Winsock service provider for, 1011

domain controllers, 454–455
domains, 454–455, 473–474
DOS machine (VDM) processes, 54
DosDevices namespace, 167–168
doubly linked list ExInterlocked 

functions, 176–177
DPC stacks, 787
DPC/dispatch level IRQLs, 97, 

100–101, 106–107, 171–172
DPCs (deferred procedure calls)

boot process, stack allocation 
during, 1090

clock IRQL with, 109
CPU time of, 75
defined, 1157
device interrupts, mechanics of, 

573–574
DPC/dispatch IRQL (interrupt 

request level), 97, 106–107
idle thread role for, 419
interrupt dispatching, 106–111
interrupt generation rules, table 

of, 108
kernel use of, 109
monitoring with Process Explorer, 

110–111
multiple processor issues, 108
object representation of, 107, 

1157
purpose of, 107
queues, 107
restrictions requiring scheduler 

thread changes, 100–101
routines for device drivers, 549
spinlocks with. See spinlocks
threaded, 110
unresponsiveness from, 110

DPS (Diagnostic Policy Service), 
330–331

DPWS (Device Profile for Web 
Services), 1033

drive letters
assigned by mounting. See 

mounting devices
checking on boot, 673
mapping by network providers, 

1036
registry storage of, 667–668

driver objects, 550–555, 1159
Driver Verifier

active items in free memory 
checks, 802–803

boot initializations by, 1089
deadlock detection, 1147, 1157
defined, 1159
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Driver Verifier, continued
enabling system code write 

protection, 1144
forcing IRQL checking, 802
I/O verification, 604–606
locked memory page tracking, 

801
low resources simulation by, 802
MDL checks, 803
mechanics of verification, 799
memory management options, 

799–803
overview of troubleshooting 

crashes with, 1139
Pool Tracking, 801
purpose of, 799
registry settings for, 799
special pool option, 1141–1142
Special Pool verification, 799–801

drivers. See also device drivers
altitude filtering, 170
boot start driver issues, 1106
callbacks, 170
code corruption from, 1143–1144
detecting illegitimate 

modifications, 247
driver host processes, 616
Driver Verifier tool. See Driver 

Verifier
file system. See file system drivers 

(FSDs)
function. See function drivers
image ranges of, 751–752
installation of, PnP, 632–636
IRP processing, 540
lightweight filter drivers (LWDs), 

1057
NDIS, 1053–1054
pool corruption caused by, 

1140–1142
protected driver lists, 636

drives, disk. See disks
drives, logical, 653–654
DSCP (Differentiated Services Code 

Point), 1062
DSMs (device-specific modules), 

648–649, 1158
dt nt!_kinterrupt command, 

102–106
dt nt!_OBJECT_HEADER command, 

144
dt nt!_OBJECT_INITIALIZER 

command, 145
dt nt!_OBJECT_TYPE command, 145
DTC (distributed transaction 

coordinator), 240, 969–970
dump analysis. See crash dump 

analysis

Dumpbin utility, 738–739
DVDs, UDF (Universal Disk Format), 

891
dynamic disks

advantages over basic disks, 656
defined, 652–653, 1159
LDM partitioning for, 656–660
MBR or GPT partitioning for, 660
volume manager for, 661

dynamic-link libraries. See DLLs 
(dynamic-link libraries)

dynamic processor additions
HAL support for, 441
overview of, 441
thread synchronization for, 

441–442
dynamic volumes, drive letters for, 

667–668
dynamic worker threads, 199–200

E
ECN (Explicit Congestion 

Notification), 1044
editions of Microsoft Windows. See 

versions of Microsoft Windows
EFI (Extensible Firmware Interface)

Boot Manager, 1087
boot process mechanics, 

1086–1087
GPT structure of, 654
hardware detection, 1087
System partition for, 1087
x64 vs. x86 boots, 1073

EFS (Encrypting File System)
algorithm choices with, 990–991
architecture of, 991
backups of encrypted files, 999
crashes during encryption, 

997–998
CryptoAPI with, 992–998
DDF (Data Decryption Field), 

994–1000
decrypted FEK caching, 998
decryption process, 998–999
disadvantages for system file 

protection, 677
DRF (Data Recovery Field), 

994–1000
Encrypt Contents command of 

Properties dialog box, 990
FEKs (file encryption keys), 

990–991
file data encryption mechanics, 

995–996
first time file encryption, 993
key pair assignment, 990
key ring construction, 994–995
KSecDD functions for, 455

Lsasrv with, 992–999
Lsass management of, 992
NTFS file attribute supporting, 

944
NTFS use of, 930
overview of, 990
private keys, 991
public keys, 991
read/write process by 

applications, 999
Recovery Agents, 994–1000
steps for encryption, outline of, 

997–998
symmetric file data encryption, 

991
user master keys, 991
viewing with EFSDump, 1000

elevations, UAC, 528–533
EM64T, 38
Embedded Standard, Windows, 

104–106
EMS (Emergency Management 

Services), 1079, 1081
encryption

EFS. See EFS (Encrypting File 
System)

hashes, 1161
NTFS support for, 930
RPC, types available for, 1017
symmetric algorithms for, 1176

Enlistment objects, KTM, 241
enumeration of devices, 624–628
enumeration-based driver loading, 

623
environment subsystems

defined, 1159
DLLs loaded by Csrss.exe, 54
executive objects, relationship 

to, 136
role of, 51
server processes, 36

environment variables, setting 
during boots, 1095

EPROCESS blocks
!process command, displaying 

with, 345
DeviceMap field, 164–167
protected process access bit, 

347–348
setup by CreateProcess function, 

354–355
structure of, 335–342

ERESOURCE. See executive resources
errata manager, 60, 1092–1093
error logging routines, device driver, 

550
errors

access-denied errors, 909
blue screens, causing. See stop 

codes
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difficulties for recovery, 240
KTM for recovery. See KTM 

(Kernel Transaction Manager)
memory pages not found. See 

page faults
startup errors, 307–308
troubleshooting. See crash dump 

analysis; debugging
Windows hardware error 

architecture, 61
ETHREAD blocks

creation by PspAllocateThread, 
360

defined, 370
displaying, 374
fields of, 370–372

ETW (Event Tracing for Windows)
application types with, 207
defined, 61
enabling of, 207
Etw functions, 58
kernel logger, enabling, 208–210
kernel trace classes for, 207–208

Event Log
CIM basis for, 321–322
permissions for, 511
provider for, 320

Event Logger, 511
Event object type, 137
Event Tracing for Windows. See ETW 

(Event Tracing for Windows)
events

defined, 1159
gate primitives, 189
keyed events, 186–187
manual reset events, 182
priority level boosts after waits 

for, 421–422
synchronization based, 179

Everyone group, 462
Evtlo callback routines, 607
exception dispatching

64-bit application, 116
architecture-independent 

exceptions, 114
debug event for, 217
debug registry key values, 120
debuggers with, 116–117
defined, 1159
exception handling role of, 114
frame-based exception handlers, 

115
interrupt numbers, 114–115
kernel traps, 115
mechanism of, 116–117
POSIX, 117
start-of-thread function, 117–118
structured exception handling, 

114

unhandled exceptions, 117–120
vectored exception handling, 116
WER. See WER (Windows Error 

Reporting)
Wow64, 212

exception handling
basic concepts of, 114
mechanism of, 116–117
predefined interrupt numbers 

for, 114
RtlUserThreadStart setup for, 364
safe structured exception 

handling, 717–718
exceptions

defined, 86, 1159
dispatching. See exception 

dispatching
handling. See exception handling
kernel-mode, 1119
stop codes from, 1122
structured exception handling, 

114
table of, 114–115
unhandled exceptions, 117–120

Exchange Server shadow copies, 
688–689

executable files
accessed as data, then as 

executable, 795–796
load offset for address ranges, 

759
processes from. See processes
section objects for, 792

executive mutexes. See fast mutexes
executive objects

creation of, 136
defined, 135, 1160
environment subsystems, 

relationship to, 136
table of, 136–137
Windows subsystem use of, 136

executive process object creation, 
354–359

executive resources
boosts during executive resource 

waits, 422–423
defined, 190, 1160
key traits of, 178
listing, 191
mechanism of, 191
synchronization, 179

executive system services, 
1176–1177. See also native 
system services

executive, Windows
ALPC, 60
APCs with, 112
boot process initialization of 

subsystems, 1088–1093

cache manager, 59
common run-time library 

functions of, 60
configuration manager, 59
defined, 37, 1160
device driver functions, 58
Driver Verifier, 61
errata manager, 60
Event Tracing for Windows, 61. 

See also ETW (Event Tracing for 
Windows)

fast mutex acquisition functions, 
189

function prefixes, table of, 72–73
hypervisor library, 60
I/O manager component of. See 

I/O manager
Interlocked functions, 176–177
internal memory functions of, 58
Iop functions of, 58
kernel debugger library, 60
kernel of. See kernel, Windows
kernel transaction manager, 60
logical prefetcher, 60. See also 

logical prefetching
major components of, 59–60
memory manager as part of, 59
Ntoskrnl.exe, place in, 58
object manager. See object 

manager
PnP manager, 59. See also Plug 

and Play manager
power manager component. See 

power manager
process and thread manager, 59
SRM (security reference monitor), 

59
subsystem DLL function calls to, 

53
SuperFetch, 60. See also 

SuperFetch service
support routines, 60
system services functions, 58
user-mode debugging 

framework, 60
WDK functions, 58
Windows diagnostic 

infrastructure, 61
Windows Driver Model Windows 

Management instrumentation 
routines, 59

Windows hardware error 
architecture, 61

exFAT, 894
ExInterlocked functions, 176–177
exit from system service operations, 

364
Explicit Congestion Notification 

(ECN), 1044
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explicit driver loading, 623
Explorer.exe, Userinit process for, 80
extended partitions, 653–654, 1160
Extensible Firmware Interface (EFI), 

654

F
facilities, displaying, 47
fail fast policy of Windows, 1119
failed control sets, 1113–1114
fast dispatch routines, 549
fast I/O

defined, 1160
determination when used, 873
displaying file system driver 

object table for, 564–565
performance counters, table of, 

874–875
purpose of, 873
steps for I/O with, 873–874

fast LPC, 55
fast mutexes, 178, 189–190
fast user switching, 20, 840
FAT file systems

cluster sizes, table of, 892
exFAT, 894
FAT32, 894
file names, 945
format organization, 892
mechanics of, 891–894
recovery issues, 985–988

fault tolerance, 923. See also RAID 
level 5

faults, page. See page faults
FCBs (file control blocks), 936
FCL. See Framework Class Library 

(FCL)
FDOs (functional device objects), 

1161
FEKs (file encryption keys), 990–991
fibers, 12
FiDOs (filter device objects), 

1160–1161
file attributes, NTFS, 940–944, 

948–951
file control blocks (FCBs), 936
file mapping objects, 12, 136, 1160. 

See also section objects
file names, 255, 945–948
file objects

!fileobj command, 560
attributes, table of, 555–556
cached file pointers, 862
defined, 555
extension fields, table of, 556
File object type, 136
handles to devices, viewing, 

559–560
NTFS interactions with, 935–936

opening of files, 557
security of, 558
shared underlying resources, 

mechanics for, 560–561
symbolic links for, 556, 561–562
viewing data structures of, 557
viewing name mappings, 561–562

file records, NTFS, 938
file references, 1160
file system drivers (FSDs)

boot sectors, use of, 896
cache manager lazy writer, 906
cache responsibilities, 868, 897
caching file metadata with 

mapping and pinning, 870–871
caching operations, 904–905
defined, 68, 542, 1160
dismount operations, 897
explicit file I/O operations, 

902–906
file change notification support, 

909
filter drivers. See file system filter 

drivers
I/O manager interactions, 896
invocation path overview, 

901–902
IRP handling, 903–906
kernel-mode drivers, differences 

with standard, 895–896
LANMan, 897–899
layering of, 543–544
local, 896–897
mailslots with, 1025
memory manager modified and 

mapped page writer, 906
memory manager page fault 

handler, 906–907
named pipes with, 1025
neither I/O for, 571
NTFS driver, 934–936
operations of, 896–897
oplock protocol, 898–899
Raw, 896
remote, 897–899
requests to layered drivers, 

578–587
shrinking engine with, 932–933
volume device objects, 896
volume I/O operations, 674–675
volume mounting, 670–674
volume recognition, 672–673, 896
VPBs with, 896
WDK required to build, 895–896
WebDAV, 897

file system filter drivers
defined, 68, 907, 1160
Filesystem Filter Manager, 907
Process Monitor as example of, 

907–908

virus scanner use of, 907
file system runtime library, 61
file systems

access-denied errors, 909
buffer management by cache 

manager, 871
buffer overflow errors, 910
caching for. See cache manager
CDFS, 890–891
clusters. See clusters, file
common logging. See CLFS 

(Common Log File System)
common logging file system 

driver (Clfs.sys), 67
defragmentation, 931–932
drivers. See file system drivers 

(FSDs)
exFAT, 894
FAT. See FAT file systems
formats, 889–890, 1160
logical sequence numbers (LSNs), 

853–854
metadata defined, 890
metadata update steps ensuring 

recovery, 853
NTFS. See NTFS (NT File System)
overview of, 889–890
recovery from corruption of, 

986–988
sectors of. See sectors
stop code for fatal errors, 1123
troubleshooting, 908–910
UDF (Universal Disk Format), 891
viewing registered, 900–901
Wow64 file system redirection, 

212–213
FileInfo driver, 839
files

access-denied errors, 909
attributes, NTFS. See file 

attributes, NTFS
CreateFile function, 557
creation of objects for, 136
file change notifications, 909
handles to open files, searching 

for, 155–156
NTFS. See NTFS (NT File System)
object IDs for, 929–930
object security for, 460
objects, default, 146
reference numbers, NTFS, 942
restore files and directories 

privilege, 507, 510
symbolic links, 167
virtualization, UAC, 523–526
writing to, access checks on, 460

filter drivers
defined, 543, 1161
file system. See file system filter 

drivers
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FVE (full volume encryption), 686
lightweight filter drivers (LWDs), 

1057
loading order, 631–632
Plug and Play support, 621
purpose of, 69–70
UMDF reflectors, 617

filter engine, WFP, 1047
filtered admin tokens, 483–484
fingerprint readers, 79
firmware environment modify 

privilege, 508
flags object header field, 139
flags, global, 200–202
flash memory, 844–846
floating point state, 101–102
foreground processes, 423–425, 

1161
foreign volumes, 685
frame-based exception handlers, 

115, 1161
frames, stack, 1175
Framework Class Library (FCL), 3
free builds of Windows, 1161
Free page state, 804
freeing virtual memory pages, 707
FRS (File Replication Service), 

Windows, 956
FSDs. See file system drivers (FSDs)
Fsutil.exe

default resource manager queries, 
971

NTFS volume information, 941
self-healing checks, 989
transaction queries, 968

FTP, WinInet API for, 1019
function drivers

defined, 69, 543, 1161
FDOs (functional device objects), 

1161
loading order, 631–632

functional device objects. See FDOs 
(functional device objects)

functions
cache copying, 869
fiber functions, 12
kernel support. See kernel support 

functions
Ntdll.dll system support library, 

57–58
prefixes, table of, 72–73
process-related, table of, 344–345
system services, 58
thread creation and manipulation, 

table of, 380
time in, determining, 97–100
Windows API, 4

G
Gait Waiting thread execution state, 

401
games, MMCSS with, 430–434
gates, 178, 189–190, 192–193
GDI (Graphics Device Interface)

batched operations, 55
direct access for, 55
functions for, 54–55
GDI/User objects, 135
service descriptor tables for, 

130–133
Win32k.sys, contained in, 54
windowing and graphics system, 

37
GDTs (global descriptor tables), 64
Get process functions, table of, 

344–345
GetThreadContext function, 12
Gflags.exe tool

enabling special pool with, 1141
image loader, viewing debug 

output from, 221
viewing and editing flags, 

200–202
global clouds, P2P, 1040
global flags, 200–202
global replacement policies, 828
GPT partitioning, 654, 660
granted access rights. See also 

access control
defined, 1161
granted-access masks, 495
mechanics of, 157

granularity of memory allocations, 
708

graphics device drivers, 54
Graphics Device Interface. See GDI 

(Graphics Device Interface)
guarded mutexes, 178, 189–190
GUI permissions editors, 498–499
GUID Partition Table. See GPT 

partitioning

H
HAL (hardware abstraction layer)

architecture, role in, 65–67
BCD options for, 1081
bus driver, acting as, 624–625
checked build version, 49
defined, 37, 1161
determining version running, 66
device drivers, interaction with, 68
DLLs for, 37, 65
driver verifier option, 604
dynamic processor support, 441
Hal.dll, 1075
I/O system component, as a, 539

IRQ mapping IRQLs, 96
kernel dependencies, viewing, 66
lazy IRQL, 93
NSIS miniport driver functions 

for, 1004
portability role of, 38–39
purpose of, 65
system space for, 737, 752
undocumented interfaces, 

viewing, 72–73
handles

!devhandles command, 155–156
!handle command, 154
!htrace command, 156
access masks of, 153
accessing objects without, 150
advantages of, 150
counters for, 159–161
creation of, 149
debugging mechanisms, 156
defined, 149, 1161
duplication of, 149
flags of, 153
granted access rights, 157
Handle count object header field, 

139
handle information object 

subheader, 139–140
Handle tool, 151
Handle Tracing Database, 156
Handle Viewer, 133
inheritance of, 149, 153
kernel handle tables, 154–156
leaks, 156
names of objects with, 163
object, 1169
object manager rights to, 150
Object Reference Tracing, 156
object retention, role in, 159–161
okay to close object method, 148
open file handles, searching for, 

155–156
per process maximum, 151–153
processes, lists for, 5, 13
protect from close flag, 153
session namespaces, viewing, 

168–169
structure of, 153
subhandle tables, 152
tables for, 150–152, 1161
Testlimit tool for, 152–153
user mode process requirement 

for, 149
viewing open, 150–151

hard disks. See disks
hard links, 923–924
hardware

crashes following new installations 
of, 1124–1125

disk drives. See disks
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hardware, continued
hardware IDs, 634
HKEY_LOCAL_MACHINE\ 

HARDWARE subkey, 258
interrupt processing. See interrupt 

dispatching
kernel support role, 64–65
memory. See physical memory
processors. See CPUs
stop codes for, 1123
Windows hardware error 

architecture, 61
hardware abstraction layer. See HAL 

(hardware abstraction layer)
hardware device drivers, 68, 1161. 

See also device drivers
Hardware Installation Wizard, 632
hashes, 1161
headers, object. See object headers
heap manager

affinity manager of LFH, 733
allocation management, 730–731
architecture of, 730
C runtime use of, 730
core functionality, 731
debugging features, 734–735
defined, 1161–1162
front end layer, 731
functions for, 730
granularity of allocations by, 

729–730
LFHs (Low Fragmentation Heaps), 

732–733
locking heaps, 732
pageheap, debugging with, 735
purpose of, 729–730
security features, 733–734
structure of, 731
synchronization of heaps, 732

heaps
address ranges, viewing, 758
allocation management, 730–731
block header dumps, 734
buckets, 732–733
creation by processes, 730
default process heaps, 730
defined, 1161
destruction by processes, 730
functions for, 730
HeapWalk block enumeration 

function, 732
IDs, displaying, 759
image loader initialization of, 

220, 222
kernel mode. See pools, memory
LFHs (Low Fragmentation Heaps), 

732–733
locking, 732
manager for. See heap manager

memory-mapped, issues with, 
730–731

multiprocessor issues, 732
pageheap, debugging with, 735
randomization by ASLR, 760
security issues of, 733–734
synchronization, 732
system. See pools, memory

H-HDDs, 844–845
hibernation, 840, 1078
hierarchy prioritization strategy for 

I/O, 599
high-IRQL synchronization

ExInterlocked functions, 176–177
fast mutexes, 189–190
Interlocked functions, 172–173
kernel critical sections, 172
motivation for, 171–172
overview of, 171–172
queued spinlocks, 175–176
spinlocks. See spinlocks

hives, registry
!reg hivelist, 274
ASCII vs. Unicode storage, 281
base blocks, 269
bins, 269–272
blocks, 269
cell indexes, 271
cells, 269–272
defined, 1162
dirty sector arrays, 279
handles, viewing, 268
key cell type, 270
lazy write operations, 279
loading with Regedit, 267
log hives, 278–279
memory mapping, 272–276
memory usage, viewing, 274
paged pool usage, viewing with 

!reg dumppool, 273
root keys of, 266
security-descriptor cell type, 270
size limits of, 268
structure of, 266, 269–272
subkey cell type, 270
symbolic links, 268
syncs, 279
system hive corruption, 1112
table of registry and file paths, 

267
value cell type, 270
value-list cell type, 270
version numbers, 269
volatile, 266

HKEY_CLASSES_ROOT (HKCR), 255
HKEY_CURRENT_CONFIGURATION 

(HKCC), 259
HKEY_CURRENT_USER (HKCU), 253
HKEY_LOCAL_MACHINE (HKLM)

BCD subkey, 255–257

COMPONENTS subkey, 257–258
CurrentControlSet subkey, 

308–309
defined, 23, 255
HARDWARE subkey, 258
hive file paths for, table of, 267
SAM subkey, 258
SECURITY subkey, 258
Services subkey, 282–287
SOFTWARE subkey, 258
SYSTEM subkey, 259, 268

HKEY_PERFORMANCE_DATA 
(HKPD), 259

HKEY_USERS (HKU)
\DEFAULT, 253
hive file paths for, table of, 267
purpose of, 253
user profiles, 254

hooks to keystrokes, 516
host-based virtualization, 228
hotfixes, pending file moves for, 

1096
hotpatches, 242–244
HTTP (Hypertext Transport Protocol)

1.0, WinInet API for, 1019
cache functions, 1020–1021
HTTP Server API, 1019–1021
Http.sys, 1019–1020
RPC transport interface for, 1016
serving. See Web servers
WebDAV miniport driver, 897
WinHTTP, 1019

hung systems, troubleshooting, 
1147–1150

HungAppTimeout registry values, 
1115–1116

hypercritical worker threads, 199
hyperspace, 737, 1162
hyperthreading

defined, 40
ideal processor numbers with, 440
idling processors, thread 

preferences while, 443
pause assembly instructions, 174
viewing information for, 436

Hyper-V
address spaces for, 238–239
AMD vs. Intel implementations, 

232
API library for, 232
architecture of, 230–231
child partitions, 230, 232–234
emulated devices, 235
enlightened storage I/O, 236
enlightenments, 229, 233–234
GPA (guest physical address) 

space, 238–239
Guest Virtual Address Spaces, 

232–233
hardware device support, 234–237
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hardware virtualization, 228
hypervisor architecture, 228
hypervisor component, 232
hypervisor stack, 230–231
I/O architecture, 235–236
integration components, 235–236
intercept mechanism, 239
memory, 238–239
partitions overview, 230
patch issues, 245
purpose of, 229
root partitions, 230–232
scheduler, 237
slowness of installations, 235
SPA (system physical address) 

space, 238–239
synthetic devices, 235–237
VDevs (virtual devices), 234–235
VID (VM infrastructure driver), 232
virtual machine (VM) service, 231
virtual processors, 237–238
virtualization overview, 228
VMBus, 236–237
VSCs (virtualization service 

clients), 233, 236–237
VSPs (virtualization service 

providers), 232, 236–237
Windows Server Core, 231
worker processes, 231–232, 

234–235
hypervisors. See also Hyper-V

BCD options for, 1081
defined, 1162
library, 60

I
I/O completion ports

advantages of, 592–593
completion status tests, 563
concurrency values, 593–595
creating, 595
defined, 1156
IoCompletion objects, 593
lock contention issues, 594
mechanics of, 593–597
notification modes, 597–598
queue basis of, 595–597
scalability from, 43
thread agnostic I/O, 587, 595
worker factory use of, 388

I/O completion routines, 1162
I/O manager

advantages of, 540
boots, initializations during, 

1091–1093
cancellations, I/O, 587–592
defined, 538

device driver dispatch routines, 
548

device load order role, 626
device objects, 550–555
driver abstraction, 540
driver objects, 550–555
driver verifier option, 604
drivers, layering of, 543–544
error logging routines of device 

drivers, 550
fast I/O with, 565, 873–875
file object security, 460
file system driver interactions, 896
initialization routines, device 

driver, 548
IRPs, 539–540, 570–571
MDLs (memory descriptor lists), 

570–571
neither I/O, 571
NTFS file system driver 

interactions with, 934–935
opening files, 557–561
packet-driven nature of, 539
requests to layered drivers, 

578–587
requests to single-layered drivers, 

572–578
shutdowns, 1117–1118
start I/O routines, 548
Start value for, 623–624
UMDF management, 617
volume mounting role, 670–671
Windows executive, as 

component of, 59
I/O priorities

hierarchy prioritization strategy, 
599

idle prioritization strategy, 599
purpose of, 598
storage port driver strategy, 600
system storage driver strategy, 

600–601
table of, 598–599
viewing, 601–602

I/O processing
asynchronous I/O, 563
bandwidth reservation, 603–604
buffered I/O, 570–571
caching files, 565–566
cancellations, I/O, 587–592
completion ports. See I/O 

completion ports
direct I/O, 570–571
fast I/O, 564–565
I/O completion, 575–577
in-paging I/O, 778–779
interrupts, mechanics of, 573–574
IoCompletion objects, 593. See 

also I/O completion ports

IRPs in, 566–571
locked user buffers, 587
mapped file I/O, 565–566
neither I/O, 571
priorities, 598–603
requests to layered drivers, 

578–587
requests to single-layered drivers, 

572–578
scatter/gather I/O, 566
scheduled file I/O, 603–604
status blocks, 575
synchronization issues, 577–578
synchronous I/O, 563, 572–578
thread agnostic I/O, 587
thread termination cancellations, 

589–592
types of I/O, 563–571
unkillable processes, debugging, 

590–592
I/O subsystem API, 1162
I/O system. See also I/O processing

components of, 537–539
defined, 1162
design goals of, 537–538
device drivers. See device drivers
file abstraction, 540–541
file objects, 555–562
I/O completion routines, 549
INF files, 538–539
KMDF. See KMDF (Kernel-Mode 

Driver Framework)
manager. See I/O manager
miniport drivers, 543
packet-driven nature of, 539
Plug and Play. See Plug and Play 

manager
port drivers, 543
power management with. See 

power manager
typical processing, 540–541
UMDF. See UMDF (User-Mode 

Driver Framework)
I/O, explicit file, 902–906
IA64 CPUs

address translation, 772
page sizes for, 705
versions of Windows for, 44–45
virtual address space layouts, 746
Wow64 restrictions, 215

IDE, Ataport.sys, 647
ideal processors, 440–441, 1162
IDL (Interface Definition Language), 

1016
idle prioritization strategy for I/O, 

599
idle process, 75
idle summary masks, 434
idle system polling behavior, 909
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idle threads, 418–419
IDTs (interrupt dispatch tables)

defined, 1163
entry numbers, 89
indexes for, 88
interrupt objects, 101
one per processor rule, 89
viewing, 88–89

IEEE 1394 (FireWire), UMDF with, 
616

IIS (Internet Information Server), 
1019

IKE (Internet Key Exchange), 
1051–1052

image files
accessed as data, then as 

executable, 795–796
address ranges for, displaying, 758
DLLs. See DLLs (dynamic-link 

libraries)
image bias computation, 759
large address space awareness, 

699, 739, 746
loading. See image loader
randomization of, 759–760

image global flags, 200–202
image loader

behavior of, 220
bound import tables, 226
defined, 1162
dependencies of DLLs, loading, 

222–227
flags, loader data table entry, 225
forwarder entries, 226
import parsing steps, 226–227
initialization steps of, 222
Ldr functions, 58
LDR_DATA_TABLE_ENTRY 

structures, 223–225
linked DLLs, loading, 222, 226–227
loaded module database, 223–225
loader data table entries, 223–225
loader data table entry fields, 

table of, 223
loader snaps, 221
mapped files, 710
Ntdll.dll, residence in, 220
PEB_LDR_DATA, 223–225
post-process initialization steps, 

227–228
purpose of, 220
relocation, 226
tasks of, 220
viewing debug output from, 221

impersonation
advantages of, 480–481
client/server model with, 480–483
defined, 458, 1162
disadvantages of, 481

mechanisms available for, 481
modifiers for settings, 482
named pipes, for, 1022
privilege for, 506
RPC, for, 1017
servers, limitations on use of, 

482–483
spoofing issues, 482–483
SQOS levels, 482
system global data location okay 

for, 522
Winsock functions for, 1009

indexing NTFS files, 923, 960–961
INF files, 538–539, 632–634, 

1064–1065
init once. See run once initialization
initialization routines, device driver, 

548, 607, 1162–1163
Initialized thread execution state, 

401
in-page I/O operations, 778–779, 

1163
input/output. See I/O system
instack queued spinlocks, 176
InstallShield, 64-bit Windows issues, 

215
instance IDs, PnP, 630
instancing namespaces, 1163
integrity levels

access of processes based on, 492
AccessCheck tool, displaying with, 

158
default policies, 492
defined, 1163
explicit object integrity levels, 

471–472
implicit object integrity levels, 471
launching programs in Low, 480
mandatory integrity checks, 492
object, viewing, 472–473
objects, of, 471–473
PMIE example, 466–470
process propagation of, 466
purpose of, 459
SIDs for, 464–465
spoofing prevention, 482–483
UIPI with, 493–494
viewing for processes, 465–466

integrity of data, IPSec for, 1050
intelligent read-ahead

defined, 1163
mechanics of, 875–876
preventing, 876
private cache maps, 1171
viewing with Process Monitor, 

878–883
Interactive Services Detection 

service, 299–300
intercepts, hypervisor management 

of, 239

Interface Definition Language (IDL), 
1016

Interlocked functions, 172–173
Internet APIs. See also Web access 

APIs
FTP, 1019
HTTP APIs. See HTTP (Hypertext 

Transport Protocol)
Internet Explorer

memory address ranges, viewing 
for, 758

Protected Mode integrity levels, 
466–470

Internet Key Exchange (IKE), 
1051–1052

interrupt controllers
APICs, 89–91
IA64 systems, 90
IRQ queries, 88
IRQ to IDT mapping, 89
MP Specification, 89–90
PICs, 89–91
purpose of, 88
routing algorithms, 89–90
slaves, 89–90
state storage by KPCR, 62–64
x64 systems, 89–90
x86 systems, 89–90

interrupt dispatching
APC interrupts, 112–114
APICs, 89–91
connecting an interrupt object, 

105–106
disconnecting an interrupt object, 

105–106
dispatch code, 101
dispatchers defined, 1163
DPC interrupts, 106–111
dt nt!_kinterrupt command, 

102–106
floating point state, 101–102
hardware interrupt overview, 

88–89
I/O device generated of 

interrupts, 87
interrupt objects, 101–106
IRQ queries, 88
IRQLs. See IRQLs (interrupt 

request levels)
IRQs. See IRQs (interrupt requests)
ISRs, handing control to, 87
KiInterruptDispatch, 101
KiInterruptTemplate, 101
masked interrupts, 93–94
message-based interrupts, 106
overview of trap dispatching, 

85–87
PICs, 89–91
Plug and Play manager with, 105
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real-time processing issues, 
104–106

service routines. See ISRs 
(interrupt service routines)

software generated interrupts, 87
software interrupt overview, 106
tables. See IDTs (interrupt dispatch 

tables)
trap handler installation, 87
x64 systems, 89–90
x86 systems, 89–90

interrupt objects, 101–106, 1163
interrupt request levels. See IRQLs 

(interrupt request levels)
interrupt service routines. See ISRs 

(interrupt service routines)
interrupts

APC interrupts, 112–114
controllers. See interrupt 

controllers
defined, 86, 1163
device-based, mechanics of, 

573–574
disabling by kernel, 87
dispatching. See interrupt 

dispatching
dt nt!_kinterrupt command, 

102–106
idle thread role for, 419
IoConnectInterruptEx API, 106
KINTERRUPT objects, 102, 

174–175
masked, 93–94, 172
message-based interrupts, 106
request levels. See IRQLs 

(interrupt request levels)
requests. See IRQs (interrupt 

requests)
routing algorithms, 89–90
service routines. See ISRs 

(interrupt service routines)
viewing objects associated with, 

102–106
intrinsic functions, 172–173
IoCompletion objects, 137, 593
IoConnectInterruptEx API, 106
IoQueueWork functions, 198
IP filtering, 1049–1050
IPIs (interprocessor interrupts), 96, 

1163
IPSec (Internet Protocol Security), 

1050–1052, 1054
IPv4, 1044–1045
IPv6

HTTP Server API support for, 1019
Next Generation TCP/IP Stack for, 

1044–1045
Peer Name Resolution Protocol 

(PNRP), 1039–1041

SMB (Server Message Block) 
protocol with, 1025

Winsock support for, 1007
WSK (Winsock Kernel) support 

for, 1004
IrDA, Winsock Helper library for, 

1011
IRPs (I/O request packets)

!irp debugger command, 570
associated, 584–585
buffer management, 570–571
cancel I/O routines, 549
components of, 568
crash dump analysis of, 1146, 

1150
defined, 1162
device driver dispatch routines, 

548
device trees, flow through, 627
examining, 581–582
file system driver handling of, 

903–906
function codes, 568
headers of, 568
I/O completion, 575
I/O manager creation of, 539–540
IRP stack locations, 579
KMDF model with, 612–614
lists of, 569
mechanics of, 566–567
monitoring with Driver Verifier, 

606
stack locations, 568–570
start I/O routines, 548
thread termination cancellations, 

589–592
uncompleted, 581–582

IRQLs (interrupt request levels)
!irql command, 95
APC level, 97
clock level, 97, 109
correctable machine check levels, 

97
crashes due to, 101
defined, 92, 1163–1164
device levels, 97
DPC/dispatch level, 97, 100–101, 

106–107, 171–172
fast mutex raising of, 189
forcing IRQL checking with Driver 

Verifier, 802
high level, 96
high, crashing systems with, 

1135–1137
high, synchronization. See high-

IRQL synchronization
interprocessor interrupt level, 96
interrupt objects, 101–106
IPIs, 96

kernel-mode thread effects, 94
lazy IRQL, 93, 1165
levels, list of predefined, 96–97
levels, purposes of specific, 96
low, synchronization. See low-

IRQL synchronization
mapping IRQs to, 96
masked interrupts, 93–94, 172
multiprocessor system issues, 

434–435
numbers for, 92
page fault stop codes, 1121
passive level, 97
PCR, values saved to, 95
power fail level, 96
processor IRQL settings, 93
profile level, 97
servicing order, 92–93
synchronization dependence on, 

171–172
system worker threads for 

lowering, 198
thread scheduling, raising for, 405
threads, of, 399
user-mode code level, 96

IRQs (interrupt requests)
defined, 1163
mapping IRQLs to, 96
mapping to IDTs, 89
queries for, 88
real-time processing issues, 

104–106
verifying with Device Manager, 

103–104
iSCSI drivers, 648
isolation of services, 294–300
isolation of transactions by TxR, 

966–968
ISRs (interrupt service routines)

connecting an interrupt object, 
105–106

control, transfers to, 87
defined, 1164
device driver use of, 548–549
device interrupts, mechanics of, 

573–574
interrupt objects, 101–106
Plug and Play manager with, 105
purpose of, 87

Itanium processors. See IA64 CPUs

J
jobs

!job command, 447
binding during process creation, 

359
default working sets, 447
defined, 13
job objects defined, 445, 1164
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jobs, continued
maximum active processes limit, 

446
object type for, 136
per-process user-mode CPU time 

limits, 446
process priority class, 447
processor affinity setting, 447
scheduling class, 446
security limits, 447
user-interface limits, 447
user-mode CPU time limits, 446
viewing names and processes of, 

447–449
virtual memory limits, 447
Windows API functions for, table 

of, 446
Joliet disk format, 890–891
journaling, 1164
junctions, 926

K
Kd.exe, 28, 1134
Ke spinlock functions, 174–175
KeAcquireStackQueuedSpinLock, 

176
KeBugCheckEx function, 87, 

1120–1121
KeInitThread, 360
Kenrate tool, 97–100
Kerberos authentication

domains, user logons to, 517
IPSec support for, 1051
mechanics of logons, 518
purpose of, 513

kernel debugger commands
!analyze command, 1149
!apic command, 91
!dbgprint command, 49
!defwrites command, 886
!devhandles command, 155–156
!devnode command, 627
!devstack command, 579
!drvobj command, 671
!exqueue command, 200
!gflag command, 202
!handle command, 133, 154
!heap, 734
!htrace, 156
!idt command, 88–89, 102
!ioapic command, 91
!irp command, 1145–1147
!irql command, 95
!job command, 447
!locks command, 191
!memusage command, 807
!miniports, 1055
!numa command, 437

!object command, 144, 489, 
552–553

!obtrace, 156
!pcr command, 62–64, 95
!pic command, 91
!popolicy command, 642
!process command, 144, 345, 

447–449, 765, 1144
!qlocks command, 176
!ready command, 391
!reg dumppool, 273
!reg findkcb, 278
!reg hivelist, 274
!reg kcb, 278
!reg openkeys, 278
!teb command, 378
!thread command, 184, 376, 569
!timer command, 109
!token command, 478
!vm command, 703, 1145
!wdfkd.wdfldr, 608
!wsle, 830
defined, 29
lm kv, 547

kernel debugging
! commands. See kernel debugger 

commands
attaching Debugging Tools to 

user-mode processes, 27
booting into debugging mode, 

1148–1149
crash dump files, 28
crashes, viewing with host 

debuggers, 1151
debug events, table of, 216–217
debugger extension commands, 

29
defined, 26
dt command, 29–30
handle tables, viewing, 154
help file for, 29–30
KPCR, displaying, 62–64
LiveKd tool for, 30–31
local, 28
remote connection method, 28
security descriptors, viewing, 

488–490
substructures, viewing, 30
symbol files, 26–27
tools for, 26
Windows executive library, 60

kernel dispatcher objects. See 
dispatcher objects

kernel event tracing, 207–210
kernel handle tables, 1164
kernel logger. See KT Kernel Logger
Kernel Memory counters, 702
kernel memory dumps, 1126–1129, 

1164

kernel mode
access dangers, 16
address space of, 16
architecture, role in system, 34–35
cache copying functions, 869
code signing (KMCS), 17
components of Windows, 37
defined, 16, 1164
device drivers. See kernel-mode 

device drivers
executive, Windows, 37
HAL (hardware abstraction layer), 

37
handle tables for, 154–156
heaps. See pools, memory
KMDF. See KMDF (Kernel-Mode 

Driver Framework)
monitoring in Task Manager, 18
Ntdll.dll system support library, 

calls from, 57–58
performance counters for, 17–19
switching with user mode, 17
system service dispatching, 

127–129
system threads. See system 

threads
time in, determining, 97–100
windowing and graphics system, 

37
Kernel-Mode Driver Framework 

(KMDF). See KMDF (Kernel 
Mode Driver Framework)

kernel objects, 135, 1164–1165
Kernel Patch Protection (KPP), 

244–246
Kernel Profiler tool, 97–100
kernel profiling, 97
kernel queue worker factory 

support, 388
Kernel Security Device Driver. See 

KSecDD (Kernel Security Device 
Driver)

kernel stacks, 786–787, 816
kernel streaming filter drivers, 68, 

1165
kernel support functions, 4
kernel transaction manager. See 

KTM (Kernel Transaction 
Manager)

kernel trap handlers. See trap 
dispatching

kernel variables, 342–343, 379
kernel, Windows

boot process initialization of 
subsystems, 1088–1093

compatibility between Windows 
versions, 45

context switching, 64–65
control objects, 62
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debuggers in. See kernel 
debugging

defined, 37, 1164
dispatcher objects. See dispatcher 

objects
executive objects, relationship 

to, 61
handle tables for, 154–156
hardware support role, 64–65
kernel-mode components of 

Windows, 37
KPCR. See KPCR (kernel processor 

control region)
KPRCB. See KPRCB (kernel 

processor control block)
microkernel-based operating 

systems, 34–35
mode for processes. See kernel 

mode
MS-DOS support, 64
Ntoskrnl.exe binaries links, 67
objects, 61–62
processor control region, 62–64
protected process support, 347
structure of, 61
transaction manager. See KTM 

(Kernel Transaction Manager)
unified for multiple CPUs, 41
user-written code for, using 

device drivers, 69
variables. See kernel variables

Kernel32.dll
CreateThread function, 380–381
mailslots implementation by, 

1024–1026
named pipes implementation by, 

1024–1026
process initializing operations, 

360–362
kernel-mode device drivers

bus drivers, 542–543
C programming language for, 550
categories of, 542
class drivers, 543
defined, 1165
file objects, 555–562
file system. See file system drivers 

(FSDs)
filter drivers, 543
function drivers, 543
I/O requests to single-layered 

drivers, 572–578
layering of, 543–544
listing, 546
lm kv command, listing with, 1144
miniport drivers, 543
Non–Plug and Play drivers, 542, 

550
Plug and Play drivers, 542
port drivers, 543

structures of, 547–550
WDM. See WDM (Windows Driver 

Model) drivers
kernel-mode graphics drivers, 1165
kernel-mode system threads. See 

system threads
KeServiceDescriptorTable, 130–133
KeSynchronizeExecution, 578
key objects, 137, 276, 1165
keyed events, 186–189, 1165
keys, encryption, 991
keys, registry

cell indexes, 271
control blocks, 1165
defined, 251, 1165
HKEY_CLASSES_ROOT, 255
HKEY_CURRENT_CONFIGURATION 

(HKCC), 259
HKEY_CURRENT_USER, 253
HKEY_LOCAL_MACHINE. See 

HKEY_LOCAL_MACHINE 
(HKLM)

HKEY_PERFORMANCE_DATA 
(HKPD), 259

HKEY_USERS (HKU), 253–254
key cell type, 270
key control blocks, 276–278, 281
key object type, 276–277
naming convention, 251
new, created by applications, 277
object namespace form of key 

names, 276
root keys. See root keys, registry
subkeys, 251
symbolic links, 268
value types, 251–252

KINTERRUPT, 102, 174–175
KiThreadStartup, 363
KiWaitTest function, 179
KMCS (kernel-mode code signing), 

17, 246–247
KMDF (Kernel-Mode Driver 

Framework)
add-device routines, 607
attributes, table of, 612
callback routines for events, 

607–608, 614
data model for, 608–612
defined, 70
dispatch methods for queues, 614
displaying drivers, 608
events, 607–608
Evtlo callback routines, 607
handler tasks, 614
handlers for IRPs, 612–613
hierarchy of, 609–611
I/O model, 612–614
initialization routines, 607
IRPs with, 612–614
object contexts, 611–612

object management, 608–609
object types, table of, 609–610
power management states, 614
queues for, 613–614
structure of drivers for, 607
suitability of, 607
WDM, relation to, 607, 612

KOBJECTS enumeration, 185
KPCR (kernel processor control 

region), 62–64
KPP (Kernel Patch Protection), 

244–246
KPRCB (kernel processor control 

block)
cache mapping and pinning fields, 

871
cache MDL activity fields, 872
cache read activity fields, 869–870
fast I/O fields, 874–875
flush operation fields, 883
lazy write fields, 877
mechanism of, 62–64
thread-scheduling fields, 405

KPROCESS blocks
creation of, 356
KeInitializeProcess, 356
page directories addresses, 764
structure of, 338–340

KSecDD (Kernel Security Device 
Driver), 455

KT Kernel Logger, 207–210
KTHREAD blocks

defined, 372
displaying, 375
fields, table of, 372–373
initialization during process 

creation, 360
system service pointer field, 372

KTM (Kernel Transaction Manager)
APIs for, 260
CommitTransaction function, 261
CreateTransaction function, 260
deferred deletion of objects, 160
defined, 60, 1165
DTC, enabling of, 240
Enlistment objects, 241
Ktmutil.exe tool for viewing, 241
logging operations, 260–261
NTFS use of, 240
purpose of, 240
resource manager (RM), 261–262
Resource Manager (RM) objects, 

241
Tm object types, 137
Transaction Manager (TM) 

objects, 241
Transaction objects, 241
TxF with, 240, 973
TxR with, 240
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L
languages, single worldwide binary 

for, 24
LANMan, 897–899
large address space aware images, 

699, 739, 746
large pages, 705–706
last known good control sets

BCD option for booting, 1082
defined, 1165
HKLM\SYSTEM subkey, 259
mechanics of, 1101
SCM management of, 308–309
screen crashes during boots, for 

correction of, 1113
last processor numbers, 440
latency, striped volumes for 

reducing, 663–664
layered design of Windows, 38
lazy evaluation, 719, 787
lazy IRQL, 93, 1165
lazy writing, 877–883, 906, 1165
LCNs (logical cluster numbers)

data runs with, 950–951
defined, 1166
physical addresses, conversion 

to, 938
VCN-to-LCN mapping, 939–940

LDAP (Lightweight Directory Access 
Protocol), 1011, 1067

LDM (Logical Disk Manager) 
partitioning

advantages of, 656
database for, 656–657
GPT or MBR with, 660
LDMDump, 658
viewing databases, 658
volume manager for, 661

Ldr. See image loader
LdrpInitializeProcess, 369
LDTs (local descriptor tables), 64
legacy drivers, 1166
LFHs (Low Fragmentation Heaps), 

732–733
LFS (log file service), 976–978, 981
licensing, determining features 

enabled by, 46–47
lightweight filter drivers (LWDs), 

1057
line-based interrupts, 106
Link-Layer Topology Discovery 

(LLTD), 1043
link-local clouds, P2P, 1040
Link-Local Multicast Name 

Resolution (LLMNR), 1039
links, hard, 923–924
lists, ExInterlocked functions for, 

176–177
LiveKd tool, 30–31, 1129

LKG. See last known good control 
sets

LLMNR (Link-Local Multicast Name 
Resolution), 1039

LLTD (Link-Layer Topology 
Discovery), 1043

lm kv command, 1144
load and unload device drivers 

privilege, 510
load balancing, network, 1068–1069
loaded module database, 223–225
loader data table entries, 223–225
loader snaps, 221
loader, image. See image loader
local FDSs, 896–897, 1166
Local group, SID for, 462
local kernel debugging, 28, 1166
local procedure calls

advanced. See ALPCs (Advanced 
Local Procedure Calls)

fast. See fast LPC
LPCs replaced by ALPCs, 203

local replacement policies, 828
local RPC, 1017–1018
local security authentication server 

process. See LSASS (local 
security authentication server 
process)

Local Security Authority Server 
(Lsasrv), 992–998

Local Security Authority subsystem. 
See Lsass (Local Security 
Authority subsystem)

local security policy, 511
Local Security Policy Editor, 501, 

511, 533–535
local service account, 288, 291
local system accounts

characteristics of, 289
defined, 288, 1166
group memberships of, 289
privileges of, 289–290
service applications running in, 

288–290
Windows subsystem services in, 

297
locally unique identifiers. See LUIDs 

(locally unique identifiers)
LocalService default service 

groupings, 314
location awareness. See NLA 

(Network Location Awareness)
locking pages in physical memory, 

707–708
log hives, 278–279, 1166
log sequence numbers (LSNs), 

914–915
log start LSNs, 914
logging

base log files, 913–914

boot logging in safe mode, 1114
cache manager recovery support, 

853–854
change logging, 927–928
CLFS. See CLFS (Common Log File 

System)
common logging file system 

driver (Clfs.sys), 67
containers, 913–914
dedicated logs, 911–913
defined, 910, 1166
Event Log logging. See Event Log; 

Event Logger
event tracing for, 207–210
journaling, 1164
kernel logger, enabling, 208–210
log record structures, 910
LSNs (log sequence numbers), 

914–915, 917
multiplexed logs, 911–913
NTFS log file writes, 940
security event log management 

privilege, 511
torn writes, 915
transaction logs. See CLFS 

(Common Log File System)
TxF logging, 973

Logical Disk Manager (LDM) 
partitioning, 656–660

logical drives, 653–654
logical network identity and 

interfaces, 1043
logical prefetching

DLL loading by, 369
mechanics of, 823–827
prefetcher kernel component, 

1166
process initialization, during, 363

logical processors, 435
logical sequence numbers (LSNs), 

853
logoffs, tracing with Process 

Monitor, 265–266
logons. See also Winlogon

access check step, 518
account rights retrieval for, 

502–503
authentication calls, 514
authentication of. See 

authentication
components of, 513
credential providers for, 514
Ctrl+Alt+Delete logon attention, 

453, 515–516
interface, displaying, 514. See also 

LogonUI
listing active sessions, 519–520
logon process, 1167. See also 

Winlogon
manager for. See Winlogon
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overview of, 513–515
registry, reading of, 250
SCM, notification of success to, 

308–309
secure logon facility rating, 452
single sign-ons, 515
tokens, created for, 473, 518
tracing with Process Monitor, 

265–266
trusted path functionality, 453
user interface for. See LogonUI
user logon steps, 516–518
user profiles, loading, 520

LogonUI
credential provider use of, 79
defined, 455
network secondary authentication 

capabilities, 515
purpose of, 514
user logon steps, 516–518

LogonUser function, 481–483
look-aside lists, 728–729, 1167
low-IRQL synchronization

condition variables, 195–196
dispatcher headers, 182–185
event setting mechanism, 179
executive resources, 190–191
guarded mutexes, 189–190
kernel dispatcher objects. See 

dispatcher objects
keyed events, 186–187
KiWaitTest function, 179
mechanisms for, lists of, 178
purpose of, 177–178
pushlocks, 192–193
SRW locks, 196
wait blocks, 183–186

low-memory conditions
keyed events, 187–188
simulating to test drivers, 802
trimming working sets to free 

up, 829
LPCs (local procedure calls)

advanced. See ALPCs (Advanced 
Local Procedure Calls)

fast. See fast LPC
KSecDD functions for, 455

LRU (least recently used) algorithm, 
827–828

LSA (Local Security Authority)
account right retrieval, 502–503
audit record messages to, 512
policy database, 1166
server process, 1166

Lsasrv (Local Security Authority 
Server), 992–999

LSASS (local security authentication 
server process)

access token generation, 80
defined, 80

logging on services, 305
mechanics of, 80
SCM calls to, 301–302
services contained by, 313

Lsass (Local Security Authority 
subsystem)

act as part of operating system 
privilege, 508, 510

audit responsibilities, 511
defined, 454, 1166
EFS management, 992
initialization, 457
KSecDD functions for, 455
local security policy, 511
policy database, 454
SAM service, 454
token creation by, 473
user logon steps, 516–518
Winlogon authentication calls 

to, 514
LSNs (log sequence numbers)

base LSNs, 973
defined, 1167
mechanics of, 914–915
restart LSNs, 914, 973–974
translating virtual of physical, 917

LSNs (logical sequence numbers), 
853–854

LUIDs (locally unique identifiers), 
476–477, 520

LWDs (lightweight filter drivers), 
1057

M
magic packages, 1054
mailslots

defined, 1021
file system drivers for, 1025
implementation of, 1024–1026
operation of, 1023
UNC names for, 1021

Managed Object Format (MOF) 
language, 319–323

management applications, 318–319
mandatory integrity checks, 492
mandatory integrity control, 22
mandatory labels, 471
mandatory policies, object, 473
mandatory policies, token, 476
manifests, assembly, 364–365
manual-reset events, 195
MAPI support, 1067
mapped files

ACLs for, 713
address ranges, viewing, 758
defined, 710
I/O of, 565–566, 1167
image loader with, 710
MapView functions, 710

prototype PTEs, 776–777
viewing with Process Explorer, 711

mapped page writer, 700, 812–813
MapUserPhysicalPages functions, 

720
MapView functions, 710
marshalling areas, 1167
masks, access, 496–497
masks, active processor, 434
masks, affinity. See affinity masks
masks, IRQL, 93–94, 1167
Master Boot Record. See MBR 

(Master Boot Record)
master file tables, NTFS, 938–941
MBR (Master Boot Record)

bootable partition searches by, 
1076

GPT disks, on, 654
partition tables, 1170
partitioning based on, 653–654, 

660
transfer of control to, 1076
troubleshooting corruption issues, 

1109
MBR partitioning, 653–654, 660
MCMs (miniport call managers), 

1057–1058
MDLs (memory descriptor lists)

Direct I/O memory descriptions, 
570–571

DMA caching use of, 872
Driver Verifier checks of, 803
dummy pages, 780
support routines, 762

Media Foundation API, 346–348
MemInfo tool

paging list dumps with, 806
PFN entries, 817
physical memory layout, 821
standby paging list sizes, 810–812

MemLimit utility, 755
memory

!vm command, 703
64-bit address spaces, 15
address spaces for. See address 

spaces
amounts supported, 818–819
bad physical pages list, BCD, 1079
commit charge notification, 834
committed. See committed pages
diagnostics tool, 332
execution prevention. See DEP 

(data execution prevention)
file mapping objects, 12
flash, ReadyBoost for, 844–845
Hyper-V management of, 238–239
look-aside lists, 728–729
low, simulating to test drivers, 802
low, trimming to increase. See 

working set manager
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memory, continued
manager. See memory manager
mapped files. See mapped files
mapping virtual to physical. See 

address translation
mapping with PAE. See PAE 

(Physical Address Extension)
Memory bar histogram, 702
nonpaged, 570–571
notification events, 833–835
paging. See paging virtual 

memory to disks
paging defined, 1170
physical. See physical memory
Physical Memory counters, 702
pools. See pools, memory
priority numbers, 809–812
private address spaces for 

processes, 712, 758
proactive management of. See 

SuperFetch service
process page file quotas, 707
process virtual address spaces, 12
protecting, 711–713
quotas for types of processes, 756
RAM. See physical memory
registry hives, mapping of, 

272–276
shared memory sections, 12
SuperFetch. See SuperFetch 

service
versions of Windows, amount 

supported by, 44–45
virtual implementation for 

processes. See virtual memory 
system

Write Copies/sec counter, 719
zeroing, 701, 808

Memory and Process performance 
counters. See performance 
counters

Memory Diagnostic Tool, Windows, 
1106

memory dumps
analysis. See crash dump analysis
kernel. See kernel memory dumps

memory manager
boot initializations by, 1089, 1091
cache manager use of, 849–850
cache size issues, 855–859
cluster prefetches, 779–780
clustering, 1156
commitment, 1156
component overview, 700–701
copy-on-write page protection, 

718–719
core services overview, 699–700
defined, 1167
demand paging, 787, 823
dereference segment threads, 701

DLL loading, 760
driver verifier option, 604
exception handler of, 700
execution prevention. See DEP 

(data execution prevention)
executive, as component of, 59, 

700
flushing of cache pages, 877
granularity of allocations, 708
Http.sys with, 1020–1021
internal synchronization of, 701
kernel-mode system thread 

components, 700–701
logical prefetching, 823–827
look-aside lists, 728–729
mapped file I/O, 1167
mapped page writer, 700
mapping virtual to physical 

memory, 699
Mm functions of, 704
modified and mapped page 

writer, 812–813, 906
modified page writer, 700
multiprocessor system 

capabilities, 701
notification events, 833–835
NUMA support, 791–792
page directories, 764–766
page fault handler, 906–907
page fault handling. See page 

faults
page file management. See page 

files
page priority handling, 809–812
page table creation, 762, 787–788
page units, 705–706
paging function of, 699
permissions for sections, 713
placement policies, 827–828
pools. See pools, memory
primary tasks of, 699
process handle permissions, 704
process/stack swapper 

component, 700
prototype PTEs, 776–777
PTEs, setting bits in, 767
pushlocks in, 193
quotas, 756
replacement policies, 827–828
section objects. See section 

objects
services overview, 704
shared memory sections, 709–711
stop codes generated by, 1122
system thread use, 76
transparency of, 14
virtual address spaces. See virtual 

address space layouts
Windows API functions exposing 

services of, 704

working set manager, 700
zero page threads, 701
zeroing memory, 807–809

memory-mapped executable issues, 
1096

memory-mapped file functions, 704
Memtest.exe, 1075
Message Queuing API, 1032
message-based interrupts, 106
metadata

base log file structure, 913–914
defined, 890, 1167
extensions metadata directory, 

NTFS, 941
logging by NTFS recovery support 

system, 976–980
NTFS metadata, 938, 947–948
update steps ensuring recovery, 

853
methods, object. See object 

methods
MFTs (master file tables), NTFS

defined, 1167
mechanics of, 938–941
mirrors, 1167
TxF data stored in, 971
viewing information about, 941

microkernel-based operating 
systems, 34–35

Microsoft Developer Network 
(MSDN), 1168

Microsoft Interface Definition 
Language (MIDL) compiler, 
1016

Microsoft Systems Center 2007, 121
Microsoft Transaction Server (MTS), 

1032
MIDL (Microsoft Interface Definition 

Language) compiler, 1016
MiInitialize functions, 751
MiModifiedPageWriter, 812–813, 

906
minidumps, 1127–1128
miniport drivers

defined, 543, 1167
Flags field, 1056
LANMan Redirector, 897
listing loaded, 1055
MCMs (miniport call managers), 

1057–1058
NDIS, 1004, 1053
partitioning information, 651–652
place in disk driver architecture, 

647
Remote NDIS, 1060–1062
WebDAV, 897
Windows-supplied, 648

mirror sets, 1167
mirrored volumes, 664–666, 675, 

1167
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MiSystemVaType array, 753
MiSystemVaTypeCountLimit array, 

755
mklink utility, 923–926
Mm functions, 704, 708
MMCSS (MultiMedia Class Scheduler 

Service), 420, 430–434
modes

kernel. See kernel mode
performance counters for, 17–19
purpose of, 16
switching between by 

applications, 17
user. See user mode
viewing in Task Manager, 18

modified and mapped page writer, 
700, 812–813, 906, 1167–1168

Modified no-write page state, 804
Modified page state, 804
modified page writer, 700, 812–813, 

906
Mount Manager, 667–674
mount points, 669–670, 1168
mounting devices

defined, 1168
dismount operations, 897
Plug and Play with, 668
registry storage of data for, 

667–668
removable media, 674
reparse points, 669
types of devices mounted, 

667–668
volume mounting, 670–671, 939
VPBs (volume parameter blocks), 

670–673
MoveFileEx API, 1096
MP Specification, 89–90
MPIO (Multipath I/O) drivers, 

648–649
MPR (Multiple Provider Router), 303, 

1034–1036
MS DTC (Microsoft Distributed 

Transaction Coordinator), 1032
Msconfig utility, 1100
MSDN (Microsoft Developer 

Network), 1168
MS-DOS

file names, 945–947
granularity of memory allocations, 

708
kernel support for, 64
support images for process 

creation, 352–353
symbolic link creation by Smss, 

1094
Msinfo32, 71, 546
MSV1_0, 513, 517–518
MTS (Microsoft Transaction Server), 

1032

multimedia playback priority 
boosts, 420

multipartition volumes, 645, 
661–667, 1168

Multipath I/O (MPIO), 648–649
multipathing, 1168
multiple core system thread 

scheduling, 435
Multiple Provider Router. See MPR 

(Multiple Provider Router)
multiple redirector support, 

1033–1038
multiple sessions, Terminal Services 

for, 19–20
Multiple UNC Provider. See MUP 

(Multiple UNC Provider)
multiprocessor systems. See 

also SMP (symmetric 
multiprocessing)

boot initialization of extra 
processors, 1091

fast mutexes, advantages of, 189
heap scaling issues, 732
idle threads, 418–419
IPIs (interprocessor interrupts), 96
memory manager capabilities 

for, 701
number of supported processors, 

40
scalability, 43
thread scheduling. See 

multiprocessor thread 
scheduling

unified kernel, 41
versions of Windows, amount 

supported by, 44–45
multiprocessor thread scheduling

active processor masks, 434
affinity masks, 438–440
compared to uniprocessor 

systems, 434
dispatcher database 

considerations, 434–435
dynamic processor issues, 

441–442
ideal processor numbers, 440–441
idle processors, scheduling while 

there are, 443
idle summary masks, 434
IRQL issues, 434–435
last processor numbers, 440
logical processors, 435
no idle processors, choosing 

when, 443–444
NUMA systems, 436–438
per-CPU deferred ready state 

thread list, 435
specific CPUs, selecting threads 

for, 444

multitasking. See also SMP 
(symmetric multiprocessing)

defined, 39
preemption scheduling scenario, 

414
voluntary switch scenario, 413

multithreading
atomic execution problem, 197
ideal processor numbers with, 440
multiprocessor support for, 43

MUP (Multiple UNC Provider)
defined, 1034
MPR use of, 1036
operation of, 1037–1038

mutants. See mutexes
mutexes

critical sections, inside, 194–195
defined, 1168
executive mutexes. See fast 

mutexes
fast mutexes, 189–190
guarded mutexes, 189–190
Mutex object type, 137
OS/2 history of, 137
purpose of, 182

mutual exclusion, 170–171, 1168. 
See also synchronization

N
name resolution

defined, 1039
DNS. See DNS (Domain Name 

System)
LLMNR (Link-Local Multicast 

Name Resolution), 1039
Peer Name Resolution Protocol 

(PNRP), 1039–1041
WINS, 1039
Winsock name-resolution 

functions, 1009
name retention, 159, 1168
named pipes

defined, 1021
driver for, protected prefix for, 

1094
file system drivers for, 1025
format for names, 1021
functions for, 1021–1022, 1024
impersonation for, 481, 1022
implementation of, 1024–1026
mode options, 1021–1022
operation of, 1021–1022
PipeList tool, 1025–1026
reading and writing functions, 

1022
RPC with, 1016–1018
servers, 1021
transactions with, 1022
UNC names for, 1021
viewing, 1025–1026
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names of objects
base object names, listing, 165
case sensitivity of, 163
directories, 163
global visibility of, 162
handles, relation to, 163
kernel objects, 163–164
management of, 162–166
network visibility of, 164
private namespaces, 164
session namespaces, 167–169
single-instancing with named 

objects, 166
squatting attacks, 164

namespaces
BaseNamedObjects, 167
DosDevices, 167–168
global, 167
instancing, 167, 1163
Key object type, 137
local, 167
private namespaces, 164–167
registry, 276
session namespaces, 167–169
virtualization, UAC, 521–528
volume, 667
Winsock, adding service providers 

to, 1009
WMI, 324–325

NAP health certificates, 1051
NAT (network address translation), 

1049–1050
National Computer Security Center 

(NCSC), 451
native applications, 1168
native system services, 4, 51, 

130–133
Nbtstat command, 1028
NCSC (National Computer Security 

Center), 451
NDIS (Network Driver Interface 

Specification)
activity awareness of drivers, 1054
call managers, 1057–1058
components of, 1053–1055
connection-oriented (CoNDIS), 

1055, 1057–1060
drivers, 1053–1054
header-data split capability, 1054
interfaces for drivers, 1055
intermediate drivers, 1057
IPSec with, 1054
library (Ndis.sys), 1004, 1053–1054
lightweight filter drivers (LWDs), 

1057
listing loaded miniports, 1055
load balancing drivers, 1068–1069
MCMs (miniport call managers), 

1057–1058
miniport drivers, 1004, 1053, 1056

Network Monitor, 1059–1060
protocol drivers, 1003–1004, 

1053–1054
purpose of, 1053
receive scaling ability, 1054
Remote, 1060–1062
run-time configuration capability 

of, 1054
TCP/IP offloading, 1054
wake-on-LAN, 1054

neither I/O, 571
NetBIOS (network basic I/O system)

API implementation, 1029
disadvantages of, 1027
LAN adapter (LANA) numbers, 

1027–1028
name system, 1027
Next Generation TCP/IP Stack 

with, 1045
operation of, 1028
routing scheme for, 1028
sessions, 1028
TCP/IP, over, 1029
viewing names with Nbtstat, 1028
WINS name resolution for, 1039
Winsock Helper library for, 1011

Netlogon, 455, 518
Netsh.exe, 1010, 1052
network adapters

header-data split capability, 1054
logical network interfaces for, 

1043
NDIS miniport drivers, 1004
wake-on-LAN, 1054

Network and Sharing Center, 1034
network drives, SCM notification 

role, 303
network file system, 872, 1168
Network Load Balancing, 1068–1069
Network Location Awareness (NLA), 

1011, 1042–1043
network logon service, 1168
Network Map functionality, 1043
Network Monitor, 1059–1060
network protocol drivers. See 

protocol drivers
network provider interfaces, 1035
network redirectors and servers, 68, 

852, 885–886, 1168
network service account, 288, 

290–291
networking

adapters. See network adapters
APIs for. See networking APIs
architecture for, overview of, 1001
binding, 1064–1065
BITS (Background Intelligent 

Transfer Service), 1030
components for, list of, 1003–1005
datagrams, 1008, 1013

diagnostics for, 332
file system drivers, network, 1168
filtering for. See WFP (Windows 

Filtering Platform)
goal for, 1001
Helper libraries for protocols with 

Winsock, 1011
IP filtering, 1049–1050
IPSec (Internet Protocol Security), 

1050–1052
layers, OSI, 1002–1003
LLTD (Link-Layer Topology 

Discovery), 1043
location awareness. See NLA 

(Network Location Awareness)
mailslots for. See mailslots
Message Queuing API, 1032
MUP for. See MUP (Multiple UNC 

Provider)
named pipes for. See named pipes
NAT, 1049–1050
NetBIOS API. See NetBIOS 

(Network Basic I/O System)
network layer, OSI, 1002
Network Monitor, 1059–1060
NetworkService default service 

groupings, 314
OSI Reference Model, 1001–1003
Peer-to-Peer Infrastructure APIs, 

1031
protocol drivers. See protocol 

drivers
QoS (Quality of Service), 

1062–1064
redirectors. See network 

redirectors and servers
remote access, 1066
remote procedure call API. See 

RPC (remote procedure call)
request-reply model, 1001
restriction rules, table of, 297
software types in stacks, 1001
stacks for. See stacks, network
TCP/IP protocol. See TCP/IP
TDI clients. See TDI (Transport 

Driver Interface) clients
topology discovery. See LLTD 

(Link-Layer Topology Discovery)
transport service providers, 

adding, 1009
UPnP (Universal Plug and Play), 

1032–1033
Web access. See Web access APIs
well-known addresses for 

Winsock, 1009
Winsock API for. See Winsock
WNet API, 1033–1036

networking APIs
kernel. See WSK (Winsock Kernel)
list of, 1006
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mailslots. See mailslots
named pipes. See named pipes
NetBIOS. See NetBIOS (network 

basic I/O system)
purpose of, 1003
RPC. See RPC (remote procedure 

call)
sockets. See Winsock
Web access. See Web access APIs

Next Generation TCP/IP Stack, 
1012–1013, 1044–1045, 
1053–1054

NLA (Network Location Awareness), 
1011, 1042–1043

NLS for internationalization, 222
NMR (Network Module Registrar), 

1012–1013
no execute page protection, 

713–718. See also DEP (data 
execution prevention)

Nobody group, 462
nodes, NUMA, 436–438
nonpaged memory, 570–571
nonpaged pools

corruption of, 1140–1142
defined, 721, 1168
initial sizes of, 722
location of, 721
monitoring usage of, 724–728
notification events, 834
number of, 721–722
quotas for, 756
reservation of addresses for, 751
sizes of, 722–724
system, 737
system space addresses for, 752

Non–Plug and Play drivers
defined, 542
device object creation, 550–551
legacy drivers, 620–621
Process Monitor device driver 

mechanics, 262
Start values, 623–624

nonsignaled state, 179
nonuniform memory access 

architecture. See NUMA (Non 
Uniform Memory Architecture)

No-Read-Up object policy, 473, 492
notification events, 195, 833–835
Notmyfault tool

Buffer Overflow bug, creating, 
1141–1142

code corruption from drivers, 
1143–1144

driver information commands, 
1138–1139

Hang option, 1149–1150
High IRQL Fault option, 

1135–1137
launching, 1134

pool leak detections, 727–728
Stack Crash option, 1145–1147
stack traces of executing threads, 

1138
stop codes shown by, 1137
unkillable processes, debugging, 

590–592
verbose analysis with, 1137–1139

NtCreateFile system service, 902
NtCreateUserProcess, 349, 351–352, 

360
Ntddk.h ASSERT macro, 48
Ntdll.dll

defined, 37, 1168
functions in, 57–58
heap manager functions, 730
hotpatching, 242
image loader, 220
NtCreateFile function, 557
purpose of, 57
system services functions, 58
undocumented interfaces, 

viewing, 72–73
user-mode debugging role, 

217–218
NTFS (NT File System)

$DATA attribute, 943–944
advanced feature list, 920
advanced feature overview, 895
atomic transactions, 918–919
attribute lists, 1154–1155
attributes, file, 940–944, 948–951
bad clusters, 940–941, 985–988
base file records, 938
bitmap file of allocation state, 

940, 1155
boot file, 940
cache manager recoverable file 

system support, 853–854
cache manager with file system 

driver, 935
change journal files, 941, 956–959
change logging, 927–928
clusters for, 895, 937–938
compression support, 927, 

951–956
data attribute, 943
default resource manager 

directory, 941
defined, 895
defragmentation support, 

931–932
design goals of, 918–920
dynamic bad-cluster remapping, 

923
dynamic partitioning, 932–933
encryption support. See EFS 

(Encrypting File System)
extensions metadata directory, 

941

FCBs (file control blocks), 936
file names, 945–948
file objects and handles, 935–936
file records, 938, 942–944
file reference numbers, 942
file system driver of, 934–936
Filename attribute, 943
hard links, 923–924
I/O manager interactions with file 

system driver, 934–935
indexing facility of, 923, 943, 

960–961
KTM update support for, 240
LCNs (logical cluster numbers), 

938–940, 950–951
local file system driver for, 

896–897
log file writes, 940
metadata files, 938
MFTs (master file tables), 938–941, 

971
mirror, MTF, 939
mount points with, 669–670
mounting volumes, 939
MS-DOS file names, 945–947
nonresident attributes, 948–951
Ntfs.sys, 896
object IDs, 929–930, 941, 944, 961
OLE linking, 929–930
per-user volume quotas, 928
physical disk address calculations, 

938
POSIX support, 931
quota files, 941, 962–963
recovery support. See NTFS 

recovery support
redundancy support, 919–920
reparse points. See reparse points
resident attributes, 948–951
rollback operations, 918–919
root directory records, 940
SCBs (stream control blocks), 936
sector relationship to clusters, 938
security descriptor attribute. See 

security descriptors
security file, 940
security model of, 919
self-healing feature, 895, 989
shortcuts, shell, tracking support 

for, 929–930
shrinking engine, 932–933
spanned volumes, 662–663
sparse data compression, 952–954
sparse files, 927, 956
stop code for fatal errors, 1123
stream-based caching, 852
streams, 920–922
symbolic links, 924–926
tunneling file metadata, 947–948
TxF. See TxF (Transactional NTFS)
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NTFS (NT File System), continued
Unicode-based names, 922–923
uppercase file, 940–941
VCNs (virtual cluster numbers), 

938–940, 950–951
viewing volume information with 

Fsutil.exe, 941
volume file, 940–941
volumes, 937

NTFS recovery support
analysis passes, 981–982
atomic transaction basis of, 

918–919
bad-cluster recoveries, 985–988
batching, 975
cache flushing operations, 975, 

977
checkpoint records, 978–980
committed transactions, 978–979, 

984
dirty page tables, 981–985
errors, file system, 984–985
file system corruption, recovery 

from, 986–988
guaranteed consistent states, 984
importance of, 895
journaling, 975
lazy writes, 975
LFS (log file service), 976–978
LFS calls for recovery, 981
limits without TxF, 974
log file resets, 980
log file size issues, 980
log record types, 978–980
mechanics of recoveries, 981–985
metadata logging by, 976–980
overhead from, 975
overview of, 974
recoverable file system design, 

975
redo entries, 978–979
redo passes, 982–983
reliability strategies of, 975
rollbacks, 978–979
scenarios, table of, 988
self-healing feature, 989
transaction tables, 981–985
TxF for. See TxF (Transactional 

NTFS)
types of transactions tracked, 979
undo entries, 978–979
undo passes, 983–984
update records, 978–981
write-through operations, 975

NtGlobalFlag variable, 200–202
Ntkrnlmp.exe, 1169
Ntkrnlpa.exe, 37, 770
Ntoskrnl.exe

binaries linked to, 67
boot phase mechanics, 1088–1093

defined, 37, 1075, 1169
executive functions in, 58
executive of, 1160
HAL dependencies, 66–67
heap manager functions, 730
memory manager, 700
undocumented interfaces, 

viewing, 72–73
version, checking which is 

running, 41–42
NtReadFile function, 1143
NUMA (Non Uniform Memory 

Architecture)
defined, 40
functions for application node 

choice, 791
ideal nodes selection, 791–792
ideal processor numbers with, 440
mechanics of, 791–792
memory manager support for, 

791–792
node graph construction, 791
page pool dependence on, 

721–722
thread synchronization 

mechanisms, 436–438

O
object attributes

defined, 21, 1169
flags, table of, 140–142
ObjectAttributes parameter, 21
type-specific, 143–147

Object Browser, WMI, 325–326
object directories, 1169
object headers, 138–140, 144, 162
object IDs, NTFS

application use of, 961
attribute for, 944
defined, 929–930
storage of, 941

object manager
access checks, 459–461
attribute flags, table of, 140–142
boot initializations, 1090
C2 security compliance, 134
close object method, 148
default object type, 146–147
defined, 21, 60, 1169
delete object method, 148
executive. See executive objects
filtering, 170
flags, table of, 140–142
generic services, 142–143
goals of, 134–135
granted access rights, 157
handles, object, 149–157. See also 

handles
header fields, 138–140

headers, accessing, 142
methods, object, 147–149
names management, 162–166
namespaces, 133
naming scheme, 134
network I/O calls, 1036
object retention, 159–161
object security. See object security
object-tracking debug flag, 143
okay to close object method, 149
open object method, 148
Openfiles /query command 

handle display, 133–134
parse object method, 148–149
purpose of, 133
pushlocks in, 193
resource accounting, 161–162
resource management role, 134
retention of objects goal, 135
section object management, 793
security descriptor management, 

488
security object method, 149
security role of, 458
services, non-generic, 142
session namespaces, 167–169
session object isolation goal, 135
subheaders, 139–140
subheaders, accessing, 142
symbolic links, 167
synchronization, 146–147, 179
tools for viewing, 133
type creation issues, 147
type initializer fields, 146
type objects, 143–147
types with, 142
WinObj tool, 133

object methods
close object method, 148
defined, 21, 147, 1169
delete object method, 148
extensibility, 147
object manager with, 147–149
okay to close object method, 149
open object method, 148
parse object method, 148–149
security object method, 149
type creation issues, 147

Object Reference Tracing, 156
object retention, 159–161
object security

access checks for. See access 
checks

access determination mechanics, 
492–501

access masks, 496–497
ACLs, assignment to new objects, 

490–491
ACLs, displaying for objects, 

157–158
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AuthZ API, 500–501
denial of service attacks, 164
desired access rights, 157
Ex versions of API vs. open API, 

159
granted access rights, 157
integrity levels, 471–473
mandatory policies, 473
object manager role in, 458
overview of, 458–459
reuse protection, 452
security descriptors for. See 

security descriptors
security reference monitor, 157
squatting attacks, 164
tokens, 473–480
UIPI for user processes, 493–494

object types
advantages of, 142
defined, 21, 1169
type data structures, viewing, 145
type object header field, 139

Object Viewer, 794
object-oriented kernel code, 35
objects

accessing without handles, 150
attributes. See object attributes
bodies of, 142
control objects, 62, 1157
creator information subheader, 

139–140
data structures, compared to, 21
default object type, 146–147
deferred deletion of, 160
defined, 21, 1169
deletion of, 160
executive, 135
filtering, 170
Flags type initializer field, 146
flags, table of, 140–142
GDI/User objects, 135
global object create privilege, 506
handle information subheader, 

139–140
handles for, 1169. See also handles
headers. See object headers
integrity levels of, 471–473
kernel, 61–62. See also kernel 

objects
labels, modification privilege, 507
manager. See object manager
mandatory labels, 471
methods. See object methods
name information subheader, 

139–140
names management, 162–166
ObjectAttributes parameter, 21
ObpCreateHandle function, 459
okay to close object method, 

148–149

opening by name, 459
owner rights of, 495–497
permanent, 159
pointers to. See pointers, object
quota charges, 162
quota information subheader, 

139–140
reference counts, 160
retention of, 159–161
reuse protection, 1169
security. See object security
security descriptors of. See 

security descriptors
signaled state effects by type, 180
structure overview, 138
subheaders, 139–140
tasks performed by, 21
temporary, 159–161
type data structures, viewing, 145
type objects, 143–147
types. See object types

ObpCreateHandle function, 459
ObRegisterCallback API, 170
OCA (Online Crash Analysis), 

1133–1134
OCI (open cryptographic interface), 

1017
okay to close object method, 

148–149
OLE (object linking and embedding), 

929–930
one-time initialization. See run once 

initialization
Online Crash Analysis (OCA), 

1133–1134
open cryptographic interface (OCI), 

1017
open object method, 148
Open Systems Interconnection (OSI) 

reference model, 1001–1003
OpenEvent for access checks, 159
Openfiles /query command handle 

display, 133–134
operating system model, 34–35
oplock protocol, 898–899
Orange Book, 451
OSI Reference Model

correlation with Windows APIs, 
1004–1005

defined, 1001–1002
layers in, 1002–1003
protocol stacks, 1003

OTS (over-the-shoulder) elevation, 
528–533

output. See I/O system
over-the-shoulder (OTS) elevation, 

528–533
owner rights of objects, 495–497, 

508, 510

P
P2P IDs, 1040
packet filtering, IPSec for, 1050
PAE (Physical Address Extension)

address translation example, 
770–771

BCD options for, 1082–1083
defined, 37, 1170
DEP requirements, 714
device driver issues, 819–820
internal system file names, table 

of, 41
kernel differences when present, 

41
mechanics of, 769–771
Ntkrnlpa.exe, 770
Ntoskrnl.exe, checking version of, 

41–42
page directory pointer tables, 

769–771
page tables for, 763
purpose of, 769

page directories
address translation mechanics, 

764–766
CPU register for, 764–765
defined, 764, 1169
indexes, 763
locating for the current process, 

764
locating PDEs (page directory 

entries), 764
structure of, 765
viewing address of for running 

processes, 765
virtual addresses of, viewing, 765
widths for, 763
x64, 773

page directory pointer tables, PAE, 
769–771

page faults
clustered, 779–780
collided page faults, 779
defined, 774, 1169
demand paging triggered by, 823
demand zero faults, 775, 807–809
in-page I/O operations from, 

778–779
invalid PTE basis of, 774
invalid PTE types, 775–776
page file access faults, 775
prototype PTEs, 776–777
PTE unknown faults, 776
reasons for, table of, 774–775
replacement policies, 827–828
signaling page table creation with, 

787–788
transition faults, 775
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page files. See also paging virtual 
memory to disks

adding new, 782
clearing at shutdown, 781
commit limit, viewing, 783
committed memory, relation to, 

710
criteria for sizing, 782–783
default sizes, table of, 781
defragmenting, 781
locking with AWE, 721
maximum sizes of, 781
performance counter meaning, 

780–781
performance counters for, 782
potential page file usage, viewing, 

783
Process Explorer data on, 784
purpose of, 780–781
quotas for, 756, 781, 1169
registry tracking of, 781
Session Manager reads during 

boots, 781
system running on virtual 

memory errors, 783
viewing system page files, 782
viewing usage with Task Manager, 

783
page frame numbers. See PFNs 

(page frame numbers)
page tables

creation by memory manager, 762
defined, 1169
entries. See PTEs (page table 

entries)
indexes for locating PTEs, 763, 766
kernel-mode-only marking of, 736
lazy evaluation for construction 

of, 787–788
locating PTEs in indexes, 764
locating with page directory 

indexes, 763
maximum number of, 765
mechanics of translations, 

766–767
number required to cover address 

space, 766
page directories of. See page 

directories
private address space maps, 

765–766
structure of, 763
x64, 773

paged pools
corruption of, 1140–1142
defined, 721, 1169–1170
limiting size of, 755
location of, 721
monitoring usage of, 724–728

notification events, 834
number of, 721–722
quotas for, 756
sizes of, 722–724
system paged pool, 737
system space addresses for, 752

Pagedefrag tool, 781
page-file-backed sections, 710, 1169
pageheap feature, 735
pages

bad, notification of, 834
committing, 706–708
copy-on-write page protection, 

718–719
creation for initial process address 

space, 355–356
defined, 705
disk writes of, 707. See also paging 

virtual memory to disks
execution prevention. See DEP 

(data execution prevention)
invalid, references to. See page 

faults
large page advantages, 705–706
large page security issue, 706
locked memory page tracking, 

801
locking in physical memory, 

707–708
memory manager modified and 

mapped page writer, 906
memory protection options, 

712–713
owner pages, CLFS, 915–916
page fault handler, 906–907
page-related structure allocation, 

753
pool corruption of, 1140–1142
prefetched, 779–780
priority numbers, 809–812
private, 706–707
reserving, 706–708
shared, 776–777
sizes of, 705–706
states, table of, 804
synchronization objects in bug, 

802
tables of. See page tables

paging. See paging virtual memory 
to disks

paging files. See page files
paging virtual memory to disks

!vm command, 703, 1145
address translation, 705–706
Bootmgr enabling of, 1077
cache management for, 701
defined, 14, 1170
dereference segment threads, 701
files on disk. See page files

free page requests, 700
freeing virtual memory pages, 707
in-page I/O operations, 778–779
Kernel Memory counters, 702
mapped page writer, 700
memory manager role in, 699–700
modified page writer, 700
purpose of, 14
System Page File counter, 702
writing pages to, 707
zero page threads, 701

parse object method, 148–149
partition manager

multipartition volume 
management, 661–667

PnP coordination, 655
responsibilities of, 651–652
SAN policy, 670–671

partition tables, 1170
partitions, disk

active partitions, 653–654
boot sectors of, 653–654, 

1073–1077
defined, 645, 1170
dynamic partitioning, 932–933
EFI (Extensible Firmware 

Interface), 654
EFI System partitions, 1087
extended, 653–654
GPT partitioning, 654
hard versus soft, 660
hidden, 652
IDs of, 652
LDM partitioning. See LDM 

(Logical Disk Manager) 
partitioning

manager for. See partition 
manager

MBR partitioning, 653–654
mirror sets, 1167
partition tables, 653
primary partitions, 653
spanned volumes, 662–663
stored key conversion to volume 

drive letters, 1095
striped volumes, 663–664
volume equivalence for basic 

disks, 655
volume possession mechanics, 

652
Windows installations, 

partitioning during, 660
partitions, hypervisor

child partitions, 230, 232–234
overview of, 230
root partitions, 230–232

passwords
credential providers, 79
user logon request mechanics, 

516–517
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patches, 242–246
PatchGuard, 244–246
pause assembly instructions, 

spinlocks with, 174
PCA (Program Compatibility 

Assistant), 333
PCR (processor control region)

defined, 1171
IRQL values saved to, 95
viewing contents of, 95

PCRs (platform configuration 
registers), 681–683

PDEs (page directory entries)
defined, 1169
locating, 764
PAE address translation example, 

770–771
PAE width for, 769–771
PFNs in, 764
structure of, 765

PDOs (physical device objects), 628, 
1160–1161, 1170

PEB (process environment block)
address space for, 335
CreateProcess setup of, 357–358
dumping, 342
initial value fields, table of, 

357–358
purpose of, 340–341
structure of, 341
Windows replacements for initial 

value fields, table of, 358
Peer Name Resolution Protocol 

(PNRP), 1039–1041
Peer-to-Peer Infrastructure APIs

defined, 1170
mechanics of, 1031

per processor flags, 175–176
performance 

counters. See performance 
counters

diagnostics, 332
I/O caching. See cache manager
quantums, controlling, 408–410

performance counters
cache mapping and pinning, 871
cache MDL activity, 872
cache read activity fields, 869–870
Data Maps/sec, 884
fast I/O, 874–875
flush operation fields, 883
HKEY_PERFORMANCE_DATA 

(HKPD), 259
Kernel Memory counters, 702
lazy write counters, 877, 884
Memory: Free System Page Table 

Entries, 744
Memory: Write Copies/sec 

counter, 719

memory-related, table of, 
702–703

mode-related, 17–19
page file, table of, 782
Performance Data Helper (PDH) 

functions, 259
Physical Memory counters, 702
pool size counters, 724
Process: Page File Bytes counter, 

780–781
process related, table of, 343–344
Read Aheads/sec, 875–876
System Page File counter, 702
thread related, table of, 379–380
working set size counters, 830

Performance Monitor
counter descriptions, viewing, 25
CPU starvation boosts, watching, 

428–430
disk monitoring with, 665–666
mode related counters, 17–19
priority boosts, viewing, 423–425
starting as Reliability and 

Performance Monitor, 25
system threads, finding running, 

76
thread execution states, viewing, 

402–404
working set size counters, 830

performance options, applying to, 
355

permanent objects, 159
permissions. See access control
PFNs (page frame numbers)

!memusage command, 807
Active state, 804
Bad state, 804
collided page faults processing, 

779
Color field, 815
database structure of, 804
defined, 1169
field in PTEs, 766
fields of, variance of, 814–817
flags, 815–816
Free state, 804
I/Os in progress, 816
kernel stack field, 816
list link field, 816
lists of pages by state, 805
Modified no-write state, 804
Modified state, 804
Original PTE contents field, 815
page list mechanics, 807–809
page location step, 764
page priority handling, 809–812, 

815
page states, table of, 804
PDEs, inside of, 764
PFN of PTE field, 815

physical memory limits, as reason 
for limiting, 818–819

PTE address field, 814
PTE changes from, 809
purpose of, 803
reference count field, 814
Rom state, 804
share count field, 816
Standby state, 804, 809–812
synchronized access to database 

of, 701
system space addresses for, 752
Transition state, 804
Valid state, 804
viewing the database, 806–807
viewing the entries in, 817
working set index field, 816
zero page threads, 808
zero pages, 804, 807–808

PGM (Pragmatic General Multicast) 
Winsock Helper library, 1011

physical device objects. See PDOs 
(physical device objects)

physical disks. See disks
physical layer, OSI, 1003
physical memory

!filecache debugger command, 
857

!vm command, 703
32-bit client limits to useful, 

820–821
amounts supported, 818–822
availability, viewing with Task 

Manager, 821
AWE functions, 719–721
cache size in, 858–859
committed virtual pages for, 

706–708
copy-on-write page protection, 

718–719
DMA caching, 872
free, notification events, 834
freed memory checks, 802–803
granularity of allocations, 708
layout, viewing, 821
limitations, 818–819
locking pages in, 707–708
low, trimming to increase. See 

working set manager
mapping virtual memory system 

to. See address translation
Memory bar histogram, 702
nonpaged pools, 721
optimization software, 846–847
paging defined, 1170
PFN databases of. See PFNs (page 

frame numbers)
Physical Memory counters, 702
priority numbers, 809–812
replacement policies, 827–828
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physical memory, continued
reserved, viewing, 821–822
shared memory sections, 709–711
SuperFetch. See SuperFetch 

service
system variables describing, 818
system working sets in, 856–857
versions of Windows, amount 

supported by, 44–45
virtual address space in. See 

working sets
working sets of. See working sets

PICs (Programmable Interrupt 
Controllers), 89–91

PIDs (product IDs), 1158
PipeList tool, 1025–1026
placement policies, 827–828
Plug and Play

drivers. See Plug and Play drivers
manager. See Plug and Play 

manager
PnP-X (Plug and Play Extensions), 

1032–1033
UPnP (Universal Plug and Play), 

1032–1033
Plug and Play drivers

boot initialization, 1090
defined, 542
device objects, 550–551
load order, 631–632
loading responsibility, 619
manager, support for, 621–622
signing policies, 634–636
UMDF reflectors for, 617

Plug and Play manager
capabilities provided by, 619–620
commands to drivers, 621–622
compatible IDs, 634
defined, 538, 1170
device identifiers, 630
device trees, 625–628
devnodes of trees. See devnodes
digital signing policy, 247
DIIDs (device instance IDs), 630
docking station removal privilege, 

508
driver loading responsibility, 619
driver signing policies, 634–636
driver support for, 621–622
enumeration of devices, 624–628
filter driver support for, 621
hardware IDs, 634
Hardware Installation Wizard 

calls, 632
inf files, 632–634
installation of drivers, 632–636
instance IDs, 630
interrupt chaining, 105
levels of support for non-PnP 

devices, 620–621

load order of drivers, 626–627
Mount Manager registration with, 

668
network device support, 620
notifications, 621
protected driver lists, 636
purpose of, 619
query-remove commands, 621
query-stop commands, 622
remove commands, 621
resource arbitration, 619, 621
Root virtual bus driver, 624–625
start device commands, 621
Start values, 623–624
state transitions, 622
stop commands, 622
surprise-remove commands, 622
volume manager, coordination 

with, 655
Windows executive, as 

component of, 59
PMIE (Protected Mode Internet 

Explorer), 466–470
PnP. See Plug and Play
PnP (Plug and Play) manager. See 

Plug and Play manager
PnP-X (Plug and Play Extensions), 

1032–1033
PNRP (Peer Name Resolution 

Protocol), 1039–1041
pointers, object

Pointer count object header field, 
139

pointer encoding, 717–718
retention, role in, 160

policies
log management, 918
lsass database, 454
Software Restriction Policies, 

533–535
pools, memory

!poolused command, 726
!vm command, 1145
allocation routines for, 721
corruption of, 1140–1142
defined, 4
device drivers, viewing usage by, 

725–726
Driver Verifier special pool option, 

1141–1142
Driver Verifier tracking of, 726
executive allocation routines for, 

60
Gflags, enabling special, 1141
hives usage of, viewing with !reg 

dumppool, 273
Kernel Memory counters, 702
leaks, detecting, 727–728
location of, 721
look-aside lists, 728–729

monitoring usage of, 724–728
nonpaged pools, 721
NUMA node dependence, 

721–722
number of, 721–722
paged pools, 721
pool tags, 157, 725–726
Pool Tracking for drivers, 801
Poolmon tool, 724–726
sizes of, 722–724
Special Pool verification, 799–801

pools, thread. See worker factories
port drivers

C-LOOK algorithm, 647
defined, 1170
LANMan Redirector, 897
MPIO-aware, 649
place in disk driver architecture, 

647
Scsiport.sys, 647
undocumented interfaces of, 543
Windows-supplied, 647

port objects, 1170
portability, 38–39, 68
POSIX

configuring, 57
DLL for, 52
enhanced version availability, 

50–51
exception dispatching, 117
name space support for, 945
NTFS support for, 931
SUA. See SUA (Subsystem for 

Unix-based Applications)
subsystem functions, 56–57
support images for process 

creation, 352
user-mode processes for, 36
Windows subsystem, calls to, 53

power manager
!popolicy command, 642
ACPI compliance, 636–638
commands, sending of, 639–640
control of device power by drivers 

and applications, 643–644
defined, 1170
device power states, 638
driver power operation, 639–643
hardware latency characteristic of 

states, 636
option configuration, 641–642
PnP manager queries to devices, 

639
policies, displaying, 642
power consumption characteristic 

of states, 636
query commands, 640
sleeping states of, 637–638
software resumption 

characteristic of states, 636
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stop codes for crashes, 1121
system power capabilities, 

viewing, 641
system state definitions, table 

of, 637
system to device state mappings, 

639–640
time out values, 643
transition decisions, 638–639
viewing device status, 640
Windows executive, as 

component of, 59
PPP support, 1057
PPs (Protection Profiles), 453
PRCB (processor control block)

IRQL values saved to, 95
multiprocessor thread scheduling, 

434–435
queued spinlock pointers in, 175
ready queues, 404

preemptive multitasking, 413–414
prefetching. See logical prefetching
prefixes, function name, table of, 

72–73
presentation layer, OSI, 1002
Previous Versions, 693–695, 698
primary partitions, 653
principal names, RPC, 1017
printer drivers

64-bit, from 32-bit processes, 215
defined, 1170–1171
port drivers with, 542

priority classes
job processes, setting for, 447
organization of threads by, 393
specifying, 350–351, 396
viewing, 397

priority levels, thread
balance set manager use of, 

427–430
booster function, 395
boosts during executive resource 

waits, 422–423
boosts to, list of cases for, 419
CPU starvation, boosts for, 

427–430
determination of, 393–395
foreground process boosts after 

waits, 423–425
functions for getting/setting, 395
GUI thread wake-up boosts, 

425–427
I/O completion boosts to, 

420–423
MMCSS boosts, 430–434
multimedia playback boost, 420
preemption scheduling scenario, 

414
privilege for increasing, 506

quantum end scenario, 415–417
ready queues for, 404
real-time priorities, 399
tools for viewing, 396–398
voluntary switch scenario, 413
waits for events and semaphores, 

boosts after, 421–422
private address space page tables, 

765–766
private cache maps, 1171
private committed pages, 706–707
private memory allocations, 712, 

758
private namespaces, 164–167
private pages, 706–707
privilege levels of CPUs, 16
privileged access control, 22
privileges, account

APIs for checking, 503
assignment tools, 501
component enforcement of, 503
defined, 501
displaying, 501
enabling of, 503–504
security auditing, 511
super privileges, 509–510
table of, 505–508

procedure calls. See local procedure 
calls

process and thread manager. See 
process manager

process blocks. See EPROCESS 
blocks

Process Explorer
access rights, displaying for 

objects, 158
ASLR support status of processes, 

761
color coding of processes, 11
CPU utilization, viewing, 9
DEP settings, viewing, 716–717
device drivers, listing, 546
Difference Highlight Duration 

option, 11
DPCs, display of time used by, 75
DPCs, monitoring, 110–111
evading single-instancing, 166
full paths for images, 11
handles, viewing open, 150–151
hive handles, viewing, 268
I/O priorities, 602–603
information available from, 8–9
integrity levels, viewing, 465–466
interrupts, 75
job objects, viewing, 447–449
layout of, 10
mapped files, viewing, 711
mapping system threads, 77

page file data, 784
page priority, viewing, 810
priority, viewing, 397
privileges, viewing, 503–504
processes requesting memory 

resource notification, 835
section objects, viewing, 794
security descriptors, viewing, 488
service processes, 82, 315
session namespaces, 168–169
SIDs, viewing, 463–464
System Idle Process, 418
thread start addresses, viewing, 

117–119
threads, viewing, 381–386
tree view, 11
viewing process details with, 

10–11
worker factories, viewing, 

388–390
process IDs, 5, 1171
process manager

boot initializations, 1090, 1093
CPU rate limit enforcement, 445
defined, 1171
quotas for address spaces, 756
thread creation, 380–381
Windows executive, as 

component of, 59
Process Monitor

access-denied errors, 909
application settings, locating, 263
basic vs. advanced modes, 908
BUFFER OVERFLOW trace results, 

264–265
cache file system activity, viewing, 

878–883
device driver mechanics, 262
file system filter drivers, as 

example of, 907–908
file system traces, 909–910
friendly names for I/O, 908
I/O priorities, viewing, 601–602
idle system polling behavior, 909
integrity levels, PMIE, 466–470
logon traces, 265–266
prefetcher activity, viewing, 826
privileges required for, 908
registry monitoring overview, 262
registry troubleshooting 

techniques, 264–265
registry, viewing idle system 

activity, 262
repetitive polling of registry, 

viewing, 262
traces with, 264–265
troubleshooting file systems, 

908–910
unprivileged user sessions, 

tracing, 265
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Process Monitor, continued
viewing process startup process, 

366–370
viewing system processes tree, 74

Process object type, 136
Process: Page File Bytes counter, 

780–781
process page file quotas, 707
process VADs, 788–789
process working sets, 822, 1171
process/stack swapper, 700
processes

access tokens of, 5, 13
address space limitations on, 

14–15
ASLR support status of, 761
components of, 5
CPU utilization, viewing, 9
creating. See CreateProcess 

functions
data structures of, 335–342
debug ports of, 216
defined, 1171
elevation of, 528–533
EPROCESS blocks, 335–342, 345
executable programs of, 5
Explorer. See Process Explorer
functions related to, table of, 

344–345
handles for objects. See handles
handles of, 5, 13. See also handles
idle, swapping out of memory, 

832
IDs of. See process IDs
image loader initialization of, 222
integrity levels of, 465–466
jobs, relationship to, 13, 445
kernel global variables for, table 

of, 342–343
KPROCESS blocks, 338–340
object basis of, 21
page directories of, 764–766
page file quotas, 707
page priority, 809–810
parent process IDs, viewing, 5–6
PEB (process environment block), 

335–342
performance counters for, table 

of, 343–344
priority of, 394–395
private address spaces of, 712, 736
Process Explorer for viewing, 8–9
programs, distinguished from, 5
protected processes, 346–348, 

384–386
quantum reset values, 407
security structure for, 512
server processes, 1174
shared memory sections, 12, 

709–711

signaled states for 
synchronization, 179–180

start-of-thread function, 117–118
system. See system processes
system addresses for, 752
Task Manager, viewing 

information with, 6–8
thread scheduling indifference to, 

392–393
threads as components of, 5
threads of. See threads
unkillable I/O, debugging, 

590–592
virtual address descriptors, 13
virtual address spaces of, 5, 12
virtual size limits, 699

Processor: % Privileged Time 
counter, 17–19

Processor: % User Time counter, 
17–19

processor affinity, 1171
processor masks, active. See active 

processor masks
processors. See CPUs
profile system performance 

privilege, 508
Program Compatibility Assistant 

(PCA), 333
programs

application programs. See 
applications

defined, 1171
processes, distinguished from, 5

protected driver lists, 636
protected mode, 1077, 1171
protected processes

access masks for, table of, 347
defined, 1171
mechanics of, 346–348
purpose of, 346
threads of, viewing, 384–386

protecting memory, 711–713
Protection Profiles (PPs), 453
protocol device classes, 616
protocol drivers

defined, 68, 1171
NDIS for device independence. 

See NDIS (Network Driver 
Interface Specification)

purpose of, 1044
TDI. See TDI (Transport Driver 

Interface) transports
protocol stacks, 1003. See also 

stacks, network
prototype PTEs, 776–777, 794, 1171
providers

ETW, 207
network provider interfaces, 1035
ordering of, 1035
WNET, 1034–1035

PsCreateSystemThread function, 76
Psexec tool

Blue Screen tool, running, 1152
launching programs at Low 

integrity level, 480
PsExec, viewing security descriptors 

with, 456
PsGetSid, 463
Pshed.dll, 67
PspAllocateProcess, 354–359
PspAllocateThread, 359–360
PspCreateThread, 359–360, 381
PspCreateThreadNotifyRoutine 

variable, 379
PspInsertProcess, 359
PspInsertThread, 359–360
PspUserThreadStartup, 363–364
Psxss startup, 1096
PTEs (page table entries)

Accessed bits, 767
byte index fields, 768
byte indexes, 763–764
defined, 762, 1169
Dirty bits, 767, 775
fields of, 766
flags in, 766
invalid. See page faults
invalid types of, 775–776
limitations of, 744
locating in page table indexes, 

764, 766
locating with page table indexes, 

763
mechanics of translations, 

766–767
PAE address translation example, 

770–771
PAE width for, 769–771
page location step, 764
performance counter for, 744
PFN field, 766
PFNs, pointers from, 809
prefetched pages in, 779
prototype PTEs, 776–777
status and protection bits, table 

of, 767
structure of, 763
system, 737, 1176
system space, 744–745
system space addresses for, 752
tracking and viewing, 745
transition, 1178
translation look-aside buffers, 

767–769
widths, 763
Write bits, 767

pushlocks, 178, 192–193
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Q
QoS (Quality of Service), 1043, 

1062–1064, 1171
Quality Windows Audio/Video 

Experience (qWAVE), 1063–1064
quantums, thread

accounting for, 407–408
boosting, 410
clock intervals for, 406–408
controlling, 408–410
defined, 392, 1171
end processing, triggering of, 407
initial value set by CreateProcess, 

356
job scheduling class, 446
jobs, values for, 409
partial quantum decay, 407
process reset values, 407
Programs vs. Background Services 

settings, 409–410
quantum end scenario, 415–417
quantum targets, 406–407
registry values for, 410–412
reset values, 407
Short vs. Long settings, 410–412
targets, 1171
units, 1171
Variable vs. Fixed settings, 

410–412
windows in foreground, effect 

of, 410
query name object method, 148
queued spinlocks, 175–176, 1172
queues

defined, 1172
dispatcher ready threads, 404
I/O completion ports based on, 

595–597
WDFQUEUE for KMDF, 613–614
work items, 1181

quotas
charges, 162, 1172
management system, 444–445
NTFS tracking of, 962–963
per user for disk space, 928
system address space, 756

qWAVE (Quality Windows Audio/
Video Experience), 1063–1064

R
race conditions, use after free bugs, 

1140
RAID level 0, 663–664
RAID level 1, 664–666
RAID level 5, 666–667, 1172
RAM. See physical memory
RAM optimization software, 

846–847

ramdisks, BCD options for, 1083
Raw FSD, 896
read I/O operations. See I/O 

processing
read-ahead, intelligent. See 

intelligent read-ahead
read-committed isolation, 966
ReadFile function

file system driver operations after 
calling, 902–906

mailslots with, 1024–1025
named pipes with, 1024–1025
synchronous I/O, 563

ReadFileEx, 113, 577
ReadProcessMemory function, 

706–707
ready queues, dispatcher, 404, 435
ready summary bit masks, 1172
Ready thread execution state, 400
ReadyBoost, 844–845, 1099
ReadyBoot, 1099
ReadyDrive, 845–846
real mode, 1077, 1172
real-time priorities, 399
real-time processing, 104–106, 399
receive scaling, 1054
Receive Window Auto Tuning, 1044
recovery

cache manager recoverable file 
system support, 853–854

CLFS support for. See CLFS 
(Common Log File System)

FAT file systems, 985–988
NTFS bad-cluster recoveries, 

985–988
NTFS design goal for, 918–919
NTFS support for. See NTFS 

recovery support
recoverability defined, 1172
TxF implementation of, 973–974

recursive faults, 1151
redirectors, 897–899, 1033–1038, 

1065
redundancy, NTFS support for, 

919–920
reference counts, 160, 1172
referencing objects, access checks 

for, 460
Reg.exe, 249–250
Regedit, 249–250, 267, 1112–1114
Regini.exe, 249–250
registries

altitude, 280
application settings, locating, 263
application startups reading of, 

250
ASCII vs. Unicode storage, 281
bins, 269–272
boot loader reading of, 250
cell indexes, 271

cells. See cells, registry
configuration management 

subsystem. See configuration 
manager

drive letter storage in, 667–668
editing, overview of tools for, 

249–250
enumeration of devices in, 628, 

630
filtering, 280
hives of. See hives, registry
HKEY_CLASSES_ROOT, 255
HKEY_CURRENT_CONFIGURATION 

(HKCC), 259
HKEY_CURRENT_USER, 253
HKEY_LOCAL_MACHINE (HKLM), 

255–259
HKEY_PERFORMANCE_DATA 

(HKPD), 259
HKEY_USERS, 253–254
initialization during boots, 

1094–1095
kernel reading of, 250
key control blocks, 276–278, 281
key object type, 137, 276
keys. See keys, registry
KTM support for updates to, 240
logon process reading of, 250
memory mapping of, 272–276
memory usage, viewing, 274
modification scenarios, common, 

250
monitoring overview, 262
namespaces of, 276
object namespace form of key 

names, 276
operation flow control, 277–278
overview of, 23
paged pool usage, viewing with 

!reg dumppool, 273
performance optimizations of, 

280–281
polling vs. notification of changes 

in, 250
quantums, settings for, 410–412
readings of, principal times for, 

250
REG_ value types, table of, 

251–252
REG_LINK type, 251–252
Regedit.exe. See Regedit
RegNotifyChangeKey function, 

262
repetitive polling, viewing, 262
resource manager (RM), 261–262
root keys. See root keys, registry
security descriptors, 280–281
security-descriptor cell type, 270
Services subkey values, table of, 

282–287
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registries, continued
session manager configuration 

information, 78
structure of, 252
subkeys, 251. See also keys, 

registry
System.sav, 279
transaction operations on. See TxR 

(Transactional Registry)
troubleshooting techniques, 

Process Monitor, 264–265
value types, 251–252
virtualization of, 526–528
Wow64 structure for, 213–214

Registry Editor, 256–257
Reliability and Performance 

Monitor. See Performance 
Monitor

remote access, 1066
remote connections, Terminal 

Services for, 19–20
remote FSDs (file system drivers), 

897–899
Remote NDIS, 1060–1062
Remote Registry Service, 291
reparse data, 1172
reparse points

defined, 1172
junctions, 926
mount points with, 669
NTFS reparse point attribute, 944, 

965
NTFS reparse point files, 941
symbolic links, 925–926

reparse tags, 1172
replacement policies, 827–828
replay protection, IPSec for, 1050
request packets. See IRPs (I/O 

request packets)
reserving pages, 706–708
resident attribute, 1172
resource accounting, 161–162
resource arbitration, Plug and Play 

manager, 619, 621, 1172
Resource Manager (RM)

group for, 462
objects, KTM, 241
TxF use of, 969–971

Resource Monitor, 25–26
resources

exhaustion prevention, 332
file objects, 555–562
low, simulation by Driver Verifier, 

802
mutual exclusion rule, 170–171
TxF resource managers, 969–971

restart LSNs, 914, 973–974
restore files and directories 

privilege, 510
restricted tokens, 483, 1172–1173

resuming after hibernation, 1078
rings, 1173
RM. See Resource Manager (RM)
Rom page state, 804
root keys, registry

defined, 251
hive root keys, relation to, 266
HKEY_CLASSES_ROOT, 255
HKEY_CURRENT_CONFIGURATION 

(HKCC), 259
HKEY_CURRENT_USER, 253
HKEY_LOCAL_MACHINE (HKLM), 

255–259
HKEY_PERFORMANCE_DATA 

(HKPD), 259
HKEY_USERS, 253–254
tables of, 252

root partitions, hypervisor, 230–232
Root virtual bus driver, 624–625
rotate VADs, 790
routines, kernel support. See kernel 

support functions
Routing and Remote Access service, 

1066
RPC (remote procedure call)

advantages for programmers, 
1014–1015

ALPC support for, 202–204
asynchronous version of, 

1015–1016
availability of networking 

provided by, 1016
defined, 1014
IDL (Interface Definition 

Language), 1016
impersonation for, 481, 1017
implementation, 1017–1018
kernel-mode support for, 1018
local execution, appearance of, 

1014
local RPC, 1017–1018
marshalling for remote execution, 

1015
MIDL compiler for, 1016
named pipes with, 1017–1018
notification mechanism of, 

1015–1016
operation mechanics, 1014–1016
principal names, 1017
procedural model of, 1014
purpose of, 1014
run-time DLL for, 1017–1018
security issues, 1017
server name publishing, 1016
stub procedures libraries, 1015
subsystem, 1018
transport provider interface of, 

1016
unmarshalling procedures, 1015
Winsock with, 1017–1018

Rtl functions
Ntdll as container of, 58
RtlUserThreadStart, 364

Run As Administrator command, 531
run as functionality, 528–533
run once initialization, 197–198
run time library. See Rtl functions
Running thread execution state, 400

S
SACLs (system access control lists)

ACE types in, 488
assignment to new objects, 491
defined, 1176
security descriptors, in, 485–487
system audit ACEs, 1176

safe mode
boot logging in, 1104–1105
defined, 1173
Directory Services Restore mode, 

1102
driver loading in, 1102–1103
F8 command for, 1101
options of, 1101–1102
purpose of, 1101
services loaded in, 1104
user program awareness of, 1104
Userinit in, 1104

safe structured exception handling, 
717–718

SAM (Security Accounts Manager) 
service

APIs, 1067
database for, 1173
defined, 454, 1173
viewing descriptors for, 456

SANs (storage area networks)
iSCSI drivers, 648
policy for volumes, 670–671

SAS (secure attention sequence)
beginning user logon, 516–517
B-level security provided by, 453
defined, 1173
logon process role of, 79
mechanics of, 516
notifications to Winlogon, 515

scalability
architectural support for, 43
dispatcher databases for, 404
worker factory, 387

scatter/gather I/O, 566, 1173
ScAutoStartServices, 303–304
SCBs (stream control blocks), 936
ScGenerateServiceDB, 300–301
SChannel (Secure Channel), 1017
scheduled file I/O, 603–604
scheduling threads. See thread 

scheduling
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SCM (service control manager)
application registration by, 

282–283
auto started services, 303–307
auto starts completed event, 307
binding dependencies, specifying 

for, 1064–1065
boot steps for, 1097
command processing for 

applications, 287–288
database generation, 300–301
delayed auto starts, 306–307
dependencies, 304
device driver loading, 302, 306
failed service starts, 306
failures of services, 310–311
groups, organization of, 300–301
ImagePath values, 305
last known good boots, 308–309
logging on services, 305
looping through services stage, 

306
LSASS calls, 301–302
network drive notifications, 303
preshutdown notifications, 

312–313
privilege creation by, 291–292
recovery options, 310–311
RPC pipes of, 302
SCP dialog function, 300
SCP interaction with, 317
service processes, launching, 306
service startup process, 287, 

303–307
service tags, 316
services database, 301
shared services processes, 

313–316
shutdown mechanism, 311–313
shutdown preparations, 302
startup errors, 307–308
startup of, 300–302
SvcCtrlMain, 300–301
synchronization event of, 300
system architecture role, 80–82
time out value, 311

SCPs (service control programs)
defined, 317
policy layering, 317
SCM dialog function for, 300
Services MMC snap-in as example, 

317
screen crashes during boots, 

1112–1114
SCSI, 647–648
SDK. See Windows Software 

Development Kit (SDK)
Search service change journals, 956
secondary resource manager, TxR, 

969–971

section objects
access rights, 710
ACLs for, 713
Based attribute, 793
committed virtual pages, 706–708
control areas, 794, 796–798
copy-on-write page protection, 

718–719
creation of, 351–352, 710
data structures for mapped 

sections, 794
defined, 1173
execution prevention. See DEP 

(data execution prevention)
executive use of, 792
mapped file I/O, 565–566, 792
mapped files, 710–711, 792
Maximum size attribute, 793
object manager allocation control 

of, 793
page file backed sections, 1169
Page protection attribute, 793
Paging file/Mapped file attribute, 

793
pointer structure, 794
pointers, 1173
prototype PTEs, 776–777, 794
Section object type, 136
segment structures, 794
sharing memory with, 709–711
structure of, 793
subsection structures, 794
subsections, 1175
viewing, 794
viewing mapped files, 711
views of partial sections, 710, 1179

sectors
bad-cluster recoveries, 985–988
boot sectors, use of, 896
clusters, relationship to, 937–938
defined, 645, 889, 1173

secure attention sequence (SAS), 
79, 453

Secure Channel (SChannel), 1017
secure logon facilities, 1173
Secure Sockets Layer. See SSL 

(Secure Sockets Layer)
security

access. See access control
auditing. See auditing, security
authentication for. See 

authentication
AuthZ API, 500–501
B-level security, 453
C2 security ratings, 451–452
Common Criteria, 453
components, system, 454–457
contexts. See security contexts
descriptors. See security 

descriptors

directory services. See Active 
Directory

heap management, 733–734
HKLM\SECURITY subkey, 258
impersonating threads. See 

impersonation
integrity mechanism. See integrity 

levels
IPSec (Internet Protocol Security), 

1050–1052, 1054
KSecDD, 455
locking paging files, 721
Lsass. See Lsass (Local Security 

Authority subsystem)
LSASS. See LSASS (local security 

authentication server process)
object access checks. See access 

checks
object method, 148–149
object protection. See object 

security
object reuse protection, 452
overview of, 22–23
protected process issues. See 

protected processes
rating standards for, 451–453
reference monitor. See SRM 

(security reference monitor)
routine, default object method 

for, 147
RPC issues, 1017
security-descriptor cell type, 270
STs (Security Targets), 453
Trusted Computer System 

Evaluation Criteria, 451–453
trusted facility management, 453
trusted path functionality, 453
Windows subsystem, 22–23

security contexts
access tokens of processes, 5
defined, 473
threads, of, 12
threads, when differing from their 

processes. See impersonation
tokens for identifying. See tokens

security descriptors
access determination with, 

492–501
ACEs with, 485–488
attributes, list of, 485
DACL assignments to objects, 

490–491
defined, 484–485, 1174
flags, table of, 485–486
NTFS attribute for, 943, 963–965
NTFS security file database of, 940
NTFS use of, 919
null DACL access rights, 487
object header fields, 139, 489
object manager with, 488
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security descriptors, continued
privilege for accessing, 507
viewing, 488–490

security quality of service (SQOS) 
levels, 482

security reference monitor. See SRM 
(security reference monitor)

segment structure prototype PTEs, 
776–777

self-healing file systems, 989
semaphores

critical sections, inside, 194–195
defined, 1174
priority level boosts after waits 

for, 421–422
Semaphore object type, 137

Server service, 897
server versions of Windows

architecture compared to client 
versions, 43–47

list of, 43–44
optimization compared to clients, 

46
physical memory limits for, 

818–819
servers

communications ports, ALPC, 205
connection ports, ALPC, 205
name publishing, 1016
remote file system drivers for, 

897–899
Server Message Block (SMB) 

protocol, 898, 1025
server processes, defined, 1174
Web. See Web servers

service applications
accounts for, 288
alternative accounts, configuring, 

291
auto starting of, 303–307
control handlers for, 287
CreateService function, 282–283
defined, 282
dependencies, 304
error control registry values, 284
installation and registration of, 

282–283
isolation issues, 294–300
least privilege, running with, 

291–294
local service account with, 291
local system account with, 

288–290
multiple services per process, 

286–287
network service account with, 

290–291
registry key creation, 282–283
SCM command processing, 

287–288

SCMs, relation to, 282
SCPs, control by, 282
security contexts for, 288
security descriptors, 286
Session 0 Isolation, 297–300
settings, table of, 283–287
SID registry values, 286
SIDs for, 295–300
Start registry values, 284
StartService function, 282
StartServiceCtrlDispatcher, 287
startup process, 303–307
status messages of, 287
Type registry values, 284, 286–287
user accounts, running under, 297
user interaction, configuring for, 

298–299
Windows Services MMC snap-in, 

291
service control manager. See SCM 

(service control manager)
service descriptor tables, 130–133
service packs, pending file moves 

for, 1096
service processes, 36
services

applications. See service 
applications

components implemented as, 81
components of, 282
CurrentControlSet subkey, 

308–309
defined, 4, 281, 1180
dialog box display prohibition, 

297
failures and recoveries, 310–311
generic object manager, 142–143
groupings, table of, 314
ImagePath values, 305
Interactive Services Detection, 

299–300
isolation issues, 294–300
listing, 81–82
mapping, 81
names of, 81
native system. See native system 

services
privileges, viewing, 293–294
Process Explorer, viewing in, 82
recoveries, 310–311
Sc.exe tool, 293–294
SCM. See SCM (service control 

manager)
SCPs. See SCPs (service control 

programs)
server processes, 1174
service control manager (SCM), 

80–82
Service Host (SvcHost), 313
Services registry key, 308–309

Services.exe, 81
shared processes, 313–316
shutdown mechanics, 1115–1118
shutdown mechanism, 311–313
SIDs for, 295–300
startup errors, 307–308
startup process, 303–307
types of, 4
user mode processes, 36
viewing services running inside 

processes, 315–316
Services MMC snap-in, 291, 310–311
Services.exe. See SCM (service 

control manager)
Session 0 Isolation, 297–300
session layer, OSI, 1002
Session Manager. See Smss.exe 

(Session Manager)
session namespaces, 167–169
session spaces

defined, 736, 1174
global space addresses, 752
memory utilization, viewing, 743
system addresses for, 752
x86 layout of, 740–743

session working sets, 823
sessions

defined, 1174
multiple, 19–20
number of, 20
process membership in, 

displaying, 742
version differences for, 20
viewing MM_SESSION_SPACE, 742

Setup, Windows
BCD preparation, 1077
boot sector creation by, 

1076–1077
boot sector format dependence, 

1077
EFI firmware setup, 1086
system partition formatting, 

1076–1077
Sfc.exe (System File Checker), 

1111–1112
shadow copies. See VSS (Volume 

Shadow Copy Service)
shared assemblies, 364–365
shared cache maps, 862–867, 1174
shared memory sections. See also 

section objects
defined, 709, 1174
prototype PTEs, 776–777
thread vs. process addressable 

space, 12
shatter attacks, 494
shims, WFP, 1047
shortcuts, shell, 929–930
shrinking engine, 1174
shrinking partitions, 932–933
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shutdowns
mechanics of, 1115–1118
privileges to, 507–508
services shutdown mechanism, 

311–313
system-shutdown notification 

routines, device driver, 550
side-by-side assemblies. See SxS 

(Side-by-Side Assembly)/Fusion
SideShow, UMDF with, 616
SIDs (Security IDs)

access checks, for, 461–462
assignment of, 461–462
built-in, 462
defined, 461, 1174
enabled vs. disabled, 496
format of, 461
group, in tokens, 475–476
integrity levels with, 464–465
Owner Rights SID, 495–496
relative identifiers (RIDs), 461
restricted tokens, in, 483
security descriptors, in, 485–487
services, for, 295–300
user logons, generation for, 

516–517
user, file tagging with, 928
viewing, 463–464
well-known
Winlogon session SIDs, 462

Sigcheck utility, 533
signaled state, 179–180, 1174
signed drivers, 634–636
simple volumes, 645, 1174
single sign-ons, 515, 1175
single-instancing with named 

objects, 166
singly linked lists, 176–177, 749–751
slim reader writer locks. See SRW 

(slim reader writer) locks
SlPolicy tool, 46–47
small memory dumps, 1127–1128, 

1175
smartcard credential providers, 79
SMB (Server Message Block) 

protocol
CIFS version of, 898
named pipe and mailslot reliance 

on, 1025
WNet provider for, 1034–1035

SMP (symmetric multiprocessing)
ASMP compared to, 39
defined, 39, 1176
identical processor check during 

boot, 1093
mutual exclusion rule, 171
scalability support, 43
threading synchronization. 

See multiprocessor thread 
scheduling

Smss.exe (Session Manager)
concurrency level, setting, 1094
configuration manager call during 

boot, 1094
crashes on Csrss and Winlogon 

termination, 79
critical process setting, 1094
Csrss, starting, 1095–1096
defined, 1075
known DLLs, opening, 1095
MS-DOS device symbolic link 

creation, 1094
page files, reads during boots, 781
processes launched by, 78
protected prefix creation by, 1094
purpose of, 78–79
registry information for, 78
Smpinit duties, 1094
special characteristics of, 1094
start of process during boots, 

1093–1096
subsystems, initializing lists to run 

during boots, 1095
Terminal Services sessions, 79
user session creation, 78–79
Wininit/Winlogon launches, 1096

snapshots. See VSS (Volume Shadow 
Copy Service)

sockets. See Winsock
soft links. See symbolic links
software DEP (data execution 

prevention), 717–718
Software Development Kit. 

See Windows Software 
Development Kit (SDK)

software interrupts. See interrupt 
dispatching

Software Restriction Policies, 
533–535

spanned volumes, 662–663, 1175
sparse data compression, 952–954
sparse files, 927, 956, 1175
spinlocks

availability to executive, 174–175
defined, 173, 1175
device drivers requiring, 174–175
disadvantages of, 177
ExInterlocked functions, 176–177
global queued, 175
hardware support for, 173
instack queued spinlocks, 176
IRQLs of, 174
Ke functions with, 174–175
KeAcquireStackQueuedSpinLock, 

176
lock operation, 173
mechanism of, 173–175
pause assembly instructions, 174
queued, 175–176

splash-screen crashes or hangs, 
troubleshooting, 1112–1114

SQL Server shadow copies, enabling, 
688–689

SQOS (security quality of service) 
levels, 482, 1174

squatting attacks, 164
SRM (security reference monitor)

access checks, 459–461
auditing role, 511
boot initializations, 1090
calls to, 157
defined, 1174
discretionary access checks, 497
impersonation with. See 

impersonation
inputs to model, 461
integrity levels with, 464
mechanics of, 457
privilege to act as part of the 

operating system, 508, 510
responsibilities of, 454
SeAccessCheck function, 460
SID inputs to, 461–464
tokens with. See tokens
Windows executive, as 

component of, 59
SRW (slim reader writer) locks, 196
SSL (Secure Sockets Layer)

HTTP Server API support for, 
1019–1021

IPSec certificate support, 1051
SSP implementation of, 1017
WinHTTP support for, 1019

SSPIs (Security Support Provider 
Interfaces)

built-in, list of, 1017
impersonation for, 481
RPC with, 1017

SSTP (Secure Socket Transmission 
Protocol), 1066

stack cookies, 717–718
stack crashing, 124–125, 1145–1147
stacks, memory

address ranges for, 758
DPC stacks, 787
frames of, 1175
kernel stacks, 786–787
process/stack swapper, 700
randomization by ASLR, 760
threads, reservations for, 707
two stacks per thread model, 784
user stacks, 785
viewing for threads, 382–383

stacks, network
layers of software types 

supporting, 1001
Next Generation TCP/IP Stack, 

1012–1013, 1044–1045
OSI Reference Model, 1001–1003
protocol stacks, 1003

stacks, storage. See storage stacks
Standby page state, 804, 809–812
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Standby thread execution state, 400
standby, SuperFetch service 

scenario for, 840
start I/O routines, 548
start-of-thread function, 117–118
Startup And Recovery settings, 1125
startups

automatic program executions 
during, 1100

boots. See boot process
last known good. See last known 

good control sets
startup repair tool, 332
Startup Repair tool, 1106–1108
troubleshooting with WinRE, 

1106–1108
stop codes

access violation-based, 1122
blue screens, displayed in, 

1120–1121
consistency check based, 

1122–1123
critical object termination, 1123
defined, 1175
DEP-based, 713–714
display-based, 1122
exception-based, 1122, 1145
file system, 1123
hardware error based, 1123
IRQL issues, 1121
KeBugCheckEx function, as inputs 

to, 1120–1121
kernel pool manager generated, 

1122
memory management based, 

1122
Notmyfault, shown by, 1137
page fault, 1121
parameter information with, 

1120–1121
power management, 1121
reference information for, 1121
trap-based, 1122
USB error based, 1123

storage
basic disk based. See basic disks
BitLocker for security. See 

BitLocker
class drivers. See storage class 

drivers
defragmentation, 931–932
disks for. See disks
drivers for. See disk storage 

drivers
dynamic. See dynamic disks
importance of, 645
latency, striped volumes for 

reducing, 663–664
per user volume quotas, 928
port drivers, 647

self-healing, 989
stacks. See storage stacks
symbolic links for disk objects, 

650–651
terminology, 645
Winload support for, 646

storage class drivers
Disk driver, 647
disk object representation, 

650–651
place in disk driver architecture, 

647
storage stacks

driver architecture of, 646
MPIO, 649
system storage driver strategy, 

600–601
Storport.sys, 647
streams

caching based on, 852
defined, 1175
multiple data streams feature of 

NTFS, 920–922
SCBs (stream control blocks), 936

string parameters, 23–24
Strings utility, viewing prefetch files 

with, 825
striped volumes, 663–664, 674, 1175
structured exception handling, 114, 

1175
STs (Security Targets), 453
SUA (Subsystem for Unix-based 

Applications)
advantages over POSIX, 56
as enhancement to POSIX, 50–51
boot startup of, 1096
configuring, 57
defined, 1175
launching, 57

subheaders, object
conditions required for presence 

of, 140
defined, 139
Subheader offsets field of 

headers, 139
table of, 139–140

subkeys, registry, 251
subsections, 1175
subsystem DLLs, 1175
Subsystem for Unix-based 

Applications. See SUA 
(Subsystem for Unix-based 
Applications)

subsystems
binding of executable images 

to, 51
DLLs, applications calls to, 53
DLLs, purpose of, 36–37, 52
environment, role of, 51
I/O subsystem API, 1162

initializing lists to run during 
boots, 1095

Ntdll.dll system support library, 
57–58

POSIX, 56–57
RPC, 1018
specifying binding in Visual C++, 

51
Unix-based applications, for. See 

SUA (Subsystem for Unix-based 
Applications)

viewing type for images, 52
Windows. See Windows 

subsystem
super privileges, 509–510
super users, 509
SuperFetch service

advantages of, 842
agents, 837
application launch agent, 842
architecture of, 837
defined, 1175–1176
FileInfo driver with, 839
logical prefetches, role in, 

823–827
memory manager, use of, 837
overview of, 836
page access tracking, 839
page prioritization, 840–841
ReadyDrive with, 846
rebalancer, 837, 841–842
robustness component, 843–844
Scenario manager, 837, 840
Trace Collector and Processor, 

836–837
Tracer mechanism, 836, 838–839

support images, 352
SvcCtrlMain, 300–301
swapper, working set, 832
SxS (Side-by-Side Assembly)/Fusion

allocation by image loader, 222
mechanism of, 364
setup during process creation, 361
shared assembly capability, 365

symbol files for kernel debugging, 
26–27

symbolic links
creating, 924–926
default evaluation policy, 925
defined, 1176
device objects, of, 551
disk objects, 650–651
explicit I/O operations, use in, 903
file object, 556, 561–562
keys for, registry, 268
mechanics of, 924–925
MS-DOS device, creation by Smss, 

1094
network provider creation of, 

1036
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NTFS feature for, 924–926
object manager implementation 

of, 167
privilege for creating, 506, 925
reparse point basis of, 925–926

symmetric encryption algorithms, 
1176

symmetric multiprocessing. See SMP 
(symmetric multiprocessing)

synchronization
condition variables, 195–196
critical code sections for, 194–195
deadlocks, 194
defined, 146, 1176
dispatcher headers, 182–185
DPC/dispatch level, dependence 

on, 171–172
events, condition variables to 

replace, 195
executive resources, 190–191
executive, visibility to 

programmers, 178–179
ExInterlocked functions, 176–177
gates, 189
guarded mutexes, 189–190
heaps, of, 732
high-IRQL. See high-IRQL 

synchronization
Interlocked functions, 172–173
IRQL checking with Driver Verifier, 

802
kernel dispatcher objects. See 

dispatcher objects
kernel mechanisms, table of, 178
keyed events, 186–187
KiWaitTest function, 179
KTHREAD data for. See KTHREAD 

blocks
mutexes. See mutexes
mutual exclusion, 170–171
nonsignaled state, 179
object support for, 146–147
overview of, 170–172
pushlocks, 192–193
queued spinlocks, 175–176
run once initialization, 197–198
signaled state, 179–180, 1174
spinlocks. See spinlocks
user-mode code primitives for, list 

of, 178
user-visible objects, 178–179
wait blocks, 183–186

synchronous I/O
cancellations, 588
defined, 563, 1176
requests to single-layered drivers, 

572–578
Sysinternals tools, 32
system address spaces

cache pages in, 869

code, 736
components of, 736–737
crash dump information space, 

737
defined, 736
dynamic management of, 751–755
HAL space, 737
hyperspace, 737
initialization functions, 751
kernel virtual allocator 

mechanism, 751–752
limiting range size by type, 

754–755
mapped views, 736
MemLimit utility, 755
nonpaged pools, 737
paged pools, 737
page-related structure allocation, 

753
PTEs, 737, 744–745
quotas, 756
reclaiming memory, 752–754
requests and releases, dynamic, 

751
types of addresses, determining, 

753
types of addresses, table of, 752
types of addresses, viewing usage, 

754
working set list, 737
x86 system address space layouts, 

740
system architecture. See architecture
system audit ACEs, 488, 1176
system cache. See also cache 

manager
defined, 737, 1176
prefetched pages, 779–780
system space addresses for, 752
working set, 737

System Calls/Sec counter, 133
system code write protection, 

1143–1144, 1176
System File Checker, 1111–1112
system files, 41, 1110–1111
system functions

accessing internal, 69
DPCs for execution of, 107
KeBugCheckEx function, 87
services, 58
Windows. See Windows 

subsystem
system global flags, 200–202
system global location namespace 

virtualization, 521–528
system hive corruption, 1112
system idle process, 75, 418
System Information viewer, 900–901
system memory pools. See pools, 

memory

System Page File counter, 702
system partitions

boot process role of, 1076
defined, 1176
formatting by Windows Setup, 

1076–1077
System process

mapping system threads, 76–77
purpose of, 75
threads. See system threads

system processes
DPCs (deferred procedure calls), 

75
idle process, 75
interrupts, 75
list of common, 74
LSASS. See LSASS (local security 

authentication server process)
service control manager, 80–82
session manager. See Smss.exe 

(Session Manager)
System process, 75–77
System process threads. See 

system threads
tree of, 74
Userinit, 80
Winlogon. See Winlogon

system PTEs (page table entries), 
737, 1176

System Restore
purpose of, 1106
rolling back option, 1114
shadow copies for, 694

system service dispatching
32-bit, 125–127
64-bit, 127
defined, 125
dispatch tables, 127, 129, 1176
drivers with, 128–129
epc for IA64, 127
handler registration, 126
iretd instruction, 125
kernel mode, 127–129
KeServiceDescriptorTable, 

130–133
KiSystemService, 126, 128–129
mapping call numbers to 

functions, 130–133
monitoring activity of, 133
previous mode values, 128
processor detection, 127
service descriptor tables, 130–133
syscall for 32-bit AMD processors, 

126
syscall for x64, 127
sysenter instruction, 125, 127
sysexit instruction, 125
trampolines, 129
Zw calls, 128–129

system services, 58, 1176–1177
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system support processes, 36, 1177
system threads

balance set manager, 76
components calling, 76
defined, 1177
device driver creation of, 76
mapping to device drivers, 76–77
mechanics of, 75–76
memory for, 75
PsCreateSystemThread function, 

76
tracing to calling routines, 76–77

system timers, 109
system variables

physical memory, for, 818
system working set, 833

system volumes, 660, 1076
system worker threads

cache manager use of, 886–887
defined, 198, 1177
device drivers with, 198–199
dynamic worker threads, 199–200
lazy writes with, 877
listing, 200
mechanics of, 198–199
number created, 199
requesting, 198
types of, 199

system working sets. See also 
working sets

components included in, 856
defined, 823, 1177
examining, 833
list data structures of, 737
size computations, 833
system cache working set 

misnomer, 737
types of pages in, 832
viewing, 856–857

system-shutdown notification 
routines, 550

systemwide cookies, 363
systemwide data structures, 

protection of, 711

T
take ownership privilege, 510
Task Manager

Applications tab, 7–8
kernel mode, monitoring, 18
Memory Usage bar, 783
page file usage, viewing, 783
physical memory availability, 821
process information, viewing with, 

6–8
process priority, viewing, 397
System Idle Process, 418
virtualization status, changing, 

525

virtualization status, viewing, 522
TCBs (thread control blocks). See 

KTHREAD blocks
TCP/IP

binding to, 1065
Compound TCP (CTCP), 1044
ECN (Explicit Congestion 

Notification), 1044
filtering. See WFP (Windows 

Filtering Platform)
high loss throughput 

improvements for, 1045
logging activity with kernel 

logger, 208–210
name resolution protocols for, 

1039
NDIS offloading of, 1054
NetBIOS over, 1029
Next Generation TCP/IP Stack, 

1012–1013, 1044–1045, 
1053–1054

preferred Windows protocol, 
reasons for, 1044

QoS implementation, 1062–1063
Receive Window Auto Tuning, 

1044
RPC transport interface for, 1016
UMDF with, 616
viewing device objects of, 1045
Winsock Helper library for, 1011

TCSEC (Trusted Computer System 
Evaluation Criteria), 451–453

TDI (Transport Driver Interface) 
clients

defined, 1003
replacement API for. See WSK 

(Winsock Kernel)
TDI (Transport Driver Interface) 

transports
defined, 1003–1004
NDIS functions for, 1004
TDI interface availability in WSK, 

1012
TDX, 1045
TEBs (thread environment blocks)

!teb command, 378
allocation by PspAllocateThread, 

360
CreateThread setup of, 381
granularity of memory allocations, 

708
KTHREAD pointer to, 373
storage of, 377
viewing, 378

temporary objects, 159–161
Terminal Server registry hives 

memory issues, 268
Terminal Services

API for, 20
interactive window stations, 167

purpose of, 19–20
session manager session creation 

for, 79
session namespaces, 167–168
version differences for, 20

Terminated thread execution state, 
401

termination of threads, 417
TestLimit tool

handle creation limits, 152–153
memory leak data, 740
reserving address space with, 746

thread agnostic I/O
file object attribute data for, 556
I/O completion ports for, 587, 595. 

See also I/O completion ports
locking user buffers mechanism, 

587
mechanisms for, 587
user-initiated cancellation, 588

thread IDs, 12, 759
Thread object type, 136
thread pools. See worker factories
thread scheduling

!ready command, 391
API functions for, 395–396
balance set manager, 427–430
base priority determination, 

393–395
code locations for, 392
context switching, 392
CPU rate limits, 444–445
current priority determination, 

394
dispatcher databases, 404–405
dispatchers, 392
execution states for, 400–404
increase scheduling priority 

privilege, 399
IRQLs with, 399, 405
KPRCB thread-scheduling fields, 

405
KTHREAD field for data, 373
multiprocessor. See 

multiprocessor thread 
scheduling

overview of, 391
preemption scheduling scenario, 

414
priority levels, 393–395
priority-driven nature of, 391
process indifference of, 392–393
quantum end scenario, 415–417
quantums. See quantums, thread
real-time priorities, 399
SetThreadIdealProcessor function, 

395
sleep functions, 396
SwitchToThread function, 396
termination of threads, 417
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tools for viewing priorities, 
396–398

viewing ready threads, 391
voluntary switch scenario, 413
wait functions, 396

Thread: % Privileged Time counter, 
17–19

Thread: % User Time counter, 17–19
threaded DPCs, 110
threads

access rights denied for protected 
processes, table of, 384–386

access tokens of, 13
activation stacks, 381
alertable wait states, 1153–1154
APC control of, 112
completion ports for. See I/O 

completion ports
components of, 12
context switching, 418
contexts of, 12, 1177
CPU register contents, 12
CreateProcess creation of, 

359–360
creation steps, 380–381
creation, DLLs supporting, 54
critical worker threads, 199
data structures of, 370–378
Deferred Ready state, 1157
defined, 1177
delayed worker threads, 199
dispatcher databases, 404–405
dispatching, 392. See also thread 

scheduling
dynamic worker threads, 199–200
environment blocks. See TEBs 

(thread environment blocks)
ETHREAD blocks, 360, 370–378
examining activity of, 381–386
execution states for, 400–404
fibers compared to, 12
functions for creating and 

manipulating, table of, 380
hypercritical worker threads, 199
I/O processing cancellations, 

589–592
idle threads, 418–419
IDs of. See thread IDs
impersonation by. See 

impersonation
KeInitThread, 360
kernel variables for, 379
killing in Process Explorer, 

396–398
KiThreadStartup, 363
KTHREAD data. See KTHREAD 

blocks
message states, viewing in Task 

Manager, 7–8
modes, switching between, 17

multiprocessor support for 
multiple, 43

multiprocessor, scheduling. 
See multiprocessor thread 
scheduling

mutual exclusion principle, 
170–171

NtCreateThreadEx, 381
number per client requests, 

importance of, 592–593
page priority, 809–810
performance counters for, 

379–380
pools of. See worker factories
priority levels, 393–395
processes, as components of, 5
processes, use of resources of, 12
protected process threads, 

384–386
PspAllocateThread, 359–360
PspCreateThread, 359–360, 381
PspInsertThread, 359–360
quantums. See quantums, thread
reserving memory for user-mode 

stacks, 707
scheduling. See thread scheduling
security contexts pf, 12
security structure for, 512
seed initialization during process 

creation, 356
shared memory sections, 12
signaled state, 179–180
spinlock acquisition, 174
stack crashing, 124–125
stack creation, 360
stack randomization, 760
stacks of, 12
stacks, viewing, 382–383
start addresses, viewing, 117–119, 

382–383
storage area of, 12
system. See system threads
system worker. See system worker 

threads
TEBs. See TEBs (thread 

environment blocks)
termination of, 417
timers, 1177
TLS (thread-local storage), 12
TpWorkerFactory object type, 137
trap frames, 86–87
viewing information for, 376–377
wait queue reordering by APCs, 

114
waiting, swapping memory of, 832
Windows subsystem structures 

for, 371
thunk context setup, 364
time

change privileges, 508

system, 109
Timer object type, 137
timers, thread, 1177

TLBs (translation look-aside buffers), 
767–769, 1178

Tlist.exe tool
process tree, viewing with, 5–6
thread information, 377

TLS (thread-local storage), 12
Tm object types, 137
tokens

!token debugger command, 478
create a token object privilege, 

506, 510
DACLs of, 476
defined, 473, 1153
discretionary access checks using, 

496–497
dt nt!_TOKEN debugger 

command, 477
expiration time field, 477
fields of, 476–477
filtered admin tokens, 474, 

483–484
flags of, 476
group SIDs in, 475–476
information contained in, 474
inheritance of, 474
LogonUser function creation of, 

474
LSASS generation of, 80
LUIDs of, 476–477
mandatory integrity policies, 

475–476
mandatory policies of, 476
primary compared to 

impersonation, 476. See also 
impersonation

privilege arrays, 476, 483
processes, of, 5, 13
restricted, 483
SIDs, restrictions with, 483
threads, of, 13
Token object type, 137
user logons, created for, 473, 518
viewing, 477–479

tools used in book, list of, 24–25
topology discovery. See LLTD (Link-

Layer Topology Discovery)
torn writes, 915
TPM (Trusted Platform Module)

defined, 677–678
Services, 687
TBS, 681–683

TpWorkerFactory object type, 137
tracing

consumers, ETW, 207
controllers, ETW, 207
ETW (Event Tracing for Windows), 

207–210
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tracing, continued
kernel events, 207–210
kernel trace classes for, 207–208
NtTraceControl system call, 207
providers, ETW, 207

Transactional Registry. See TxR 
(Transactional Registry)

transactions
atomic transactions, 918–919
boots, manager initializations 

during, 1091–1093
CLFS support for. See CLFS 

(Common Log File System)
defined, 1177
Fsutil.exe transaction queries, 968
isolation of, 966–968
KTM for. See KTM (Kernel 

Transaction Manager)
Ktmutil.exe tool for viewing, 241
listing current, 968
named pipes, for, 1022
nontransacted writers and 

readers, 966–967
rollback operations, 918–919, 967
tables, transaction, 1177
TM (Transaction Manager) 

objects, 241
Tm object types, 137
Transact-demo.exe tool, 967–968
transacted writers and readers, 

966
TxF. See TxF (Transactional NTFS)
TxR. See TxR (Transactional 

Registry)
transfer jobs, 1030
Transition page state, 804
transition PTE, 1178
Transition thread execution state, 

401
translating virtual to physical 

addresses. See address 
translation

translation look-aside buffers, 
767–769

TransmitFile function, 1008–1009
TransmitPackets function, 1009
Transport Driver Interface clients. 

See TDI (Transport Driver 
Interface) clients

transport drivers, NDIS intermediate 
drivers, 1057

transport layer, OSI, 1002, 
1004–1005

transport protocol drivers. See 
protocol drivers

transport provider interface, RPC, 
1016

transport service providers
adding to Winsock, 1009
Mswsock.dll, 1011

NMR with WSK for, 1012
TDI. See TDI (Transport Driver 

Interface) transports
transports. See TDI (Transport Driver 

Interface) transports
trap dispatching

activators of, 85–86
exceptions. See exception 

dispatching
handlers. See trap handlers
interrupts. See interrupt 

dispatching
KeBugCheckEx function, 87
machine state capture, 86–87
page fault dispatching, 774
system service traps. See system 

service dispatching
trap frames, 86–87, 1178
trap handlers

control transfer mechanism, 87
defined, 85, 1178
interrupt handler installation, 87
KeBugCheckEx function, 87

traps, 85, 1178
triage dumps, 1127
trimming, working set, 1155
triple faults, 1151
Triple-DES (3DES), 990–991
troubleshooting file systems, 

908–910
Trusted Computer System 

Evaluation Criteria (TCSEC), 
451–453

trusted facility management, 453, 
1178

trusted path functionality, 453, 1178
Trusted Platform Module. See TPM 

(Trusted Platform Module)
TSCs (time stamp counters), 759–760
TxF (Transactional NTFS)

$TXT_DATA attribute, 971–973
APIs for, 968–969
architecture of, 965
CLRs (compensating log records), 

973
defined, 1177
directories for, 941
Fsutil.exe transaction queries, 968
isolation of transactions, 966–967
KTM with, 240, 973
listing current transactions, 968
log files, 970
logging implementation, 973
LSN storage by, 972
LSNs, base and restart, 973
MFT, permanent data stores for 

TxF, 971–973
recovery implementation of, 

973–974
redo passes, 973–974

redo records, 973
resource managers of, 969–971
rollback criteria, 967
TOPS files, 970–971, 973–974
Transact-demo.exe tool, 967–968
transaction tables, 974
TxIDs, 972
undo passes, 974
undo records, 973
undo-next LSNs, 973
USN records, 972–973

TxR (Transactional Registry)
APIs for, 260
CommitTransaction function, 261
CreateTransaction function, 

260–261
defined, 1177–1178
internal log files, 261
isolation levels, 261
KTM with, 240
logging operations, 260–261
resource manager (RM), 261–262
subkeys, deletions of, 260

type initializer fields, 146
type objects

defined, 143, 1178
initializer fields, table of, 146
uniform formats of objects with, 

142
viewing, 144–145

U
UAC (User Account Control)

application-compatibility shims, 
522–523

compatibility flags, using to run 
applications, 533

compatible manifests with, 522
defined, 1178
digital signatures, effects of, 

529–530
domain-based elevation, 529
elevation dialog boxes, 529–530
elevations, 528–533
file virtualization, 523–526
File Virtualization Filter Driver, 524
filtered admin tokens with, 

483–484
HKEY_CLASSES_ROOT, 255
integrity levels of objects, impact 

of, 471–472
issues and solutions of, 520–521
LSASS access token generation, 80
namespace virtualization, 521–528
purpose of, 520–521
registry virtualization, 526–528
requesting administrative rights, 

531–533
super privileges with, 509
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trustinfo elements in manifests, 
532

UIPI bypasses, 532
viewing virtualization status, 522
virtualization status, changing, 

525
UDF (Universal Disk Format), 891
UDP, RPC transport interface for, 

1016
UI Access flag, 494
UIPI (User Interface Privilege 

Isolation)
integrity levels for messaging, 

493–494
UAC bypasses, 532

UMDF (User-Mode Driver 
Framework)

architecture of, 616–619
defined, 70, 542
driver host processes, 616
driver manager, 618
host processes, 618
I/O manager with, 617
kernel-mode drivers for, 618
KMDF compared to, 616
protocol device classes, 616
reflectors, 617
stacks of drivers, 616–617

UNC (Universal Naming Convention)
defined, 1021
MUP. See MUP (Multiple UNC 

Provider)
undocumented interfaces, 72–73
Unicode

defined, 1178
NTFS names based on, 922–923
Windows internal use of, 23–24

uniprocessor flag, 439
Universal Disk Format (UDF), 891
Universal Naming Convention. 

See UNC (Universal Naming 
Convention)

Universal Plug and Play (UPnP), 
1032–1033

UNIX. See POSIX; SUA (Subsystem 
for Unix-based Applications)

unkillable processes, debugging, 
590–592

unload routines, 550
unresponsive systems, 1147–1150
update records, 1178
updates (hotpatches), 242–244
UPnP (Universal Plug and Play), 

1032–1033
USB

PIDs (product IDs), 630
Remote NDIS for, 1060–1062
stop code for, 1123
UMDF with, 616, 618–619

user-mode drivers, 70
VIDs (vendor IDs), 630

use after free bugs, 1140
User Account Control. See UAC (User 

Account Control)
user address spaces

ASLR for, 757–761
DLL image files in, 757
dynamic management of, 757
heap randomization, 760
image randomization, 759–760
layout of, 757–758
quotas for, 756
stack randomization, 760
types for allocations, 758
viewing with Vmmap utility, 

758–759
user applications, types of, 36
user data, system global storage 

issue, 521–522
USER functions

purpose of, 54
windowing and graphics system, 

37
User Interface Privilege Isolation. 

See UIPI (User Interface 
Privilege Isolation)

user mode
address space of, 16
APCs, 113
attaching Debugging Tools to 

processes, 27
AuthZ API security, 500–501
components of system 

architecture, 36
critical sections, staying in, 194
debugging framework of 

executive, 60
defined, 16, 1178
DLL function calls remaining in, 53
environment subsystem server 

processes, 36
image loader initialization of 

processes, 222
performance counters for, 17–19
services processes, 36
switching with kernel mode, 17
system support processes, 36
Windows subsystem use of, 56

user names
user logon request mechanics, 

516–517
Winlogon processing of, 79–80

user process address space BCD 
option, 1081

user profiles
HKEY_USERS, 253–254
storage locations for, 254

User Profiles management dialog 
box, 254

USER service, service descriptor 
tables for, 130–133

user stacks, 785
Userinit

LSASS invoking of, 80
purpose of, 80
safe mode awareness, 1104

user-mode debugging
boot initialization, 1090
consumers, 217
create events, 217
DbgUi APIs, 216–218
debug events, table of, 216–217
debug object, 216
debug ports, 216
defined, 1178
handles management, 219
kernel support for, 216–217
Kernel32.dll support for, 219
load dll events, 217
mechanics of debugger requests, 

217
modules supporting, 216
native support for, 217–219
Ntdll.dll, 217–218
producers, 217
viewing debugger objects, 

218–219
Windows subsystem support for, 

219
User-Mode Driver Framework 

(UMDF), 70
user-mode drivers, 70
users, super, 509
Usndump.exe change journal 

dumps, 947–959

V
VACBs (virtual address control 

blocks)
array structures, 860–862
defined, 1178–1179
index arrays, 863–865, 1178
priority mapping levels, 860
views, cache, 854–855

VADs (virtual address descriptors)
address translation role, 765
defined, 13, 1179
demand paging, 787
process VADs, 788–789
prototype PTEs with, 776–777
purpose of, 787–788
rotate VADs, 790
structure of, 788
viewing, 789

Valid page state, 804
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VCNs (virtual cluster numbers)
arrangement of, 938
defined, 1179
mappings to LCNs, 939–940, 

950–951
VDDs (virtual device drivers), 542, 

1179
VDM (virtual DOS machine) 

processes, 54, 353–354
VDS (Virtual Disk Service), 675–677
vectored exception handling, 116
versions of Microsoft Windows

checked build version, 47–49
client. See client versions of 

Windows
determining edition booted, 

45–46
key differences between, 44
list of, 43–44
optimization differences between, 

46
physical memory limits for, 

818–822
server. See server versions of 

Windows
table of, 1

video
drivers, GDI direct access to, 55
GDI. See GDI (Graphics Device 

Interface)
mapped memory for, 821–822
MMCSS with, 430–434
rotate VADs for drivers, 790
VGA mode to default resolution 

change during boots, 1096
VIDs (vendor IDs), 1158
views, section object, 710, 1179
views, VACB, 854–855, 862–863
virtual address control blocks 

(VACBs). See VACBs (virtual 
address control blocks)

virtual address descriptors. 
See VADs (virtual address 
descriptors)

virtual address space layouts
64-bit, 745–746
64-bit addressing limitations, 

749–751
escaping 2GB process limits in 

x86, 738–739
high addresses, forcing allocation 

of, 739–740
IA64, 746
large address space awareness, 

738–739
process address space overview, 

736
session spaces, 736
shareable memory, 758

system space components, 
736–737

types of data mapped into, 736
user address space layouts, 

757–758
x86 address space layouts, 

737–740
x86 session space layouts, 

740–743
x86 system address space, 740

virtual address spaces
ASLR for user address space, 

757–761
AWE functions with, 719–721
committing pages, 706–708
components of addresses for 

translations, 763
defined, 1179
dynamic system management of, 

751–755
freeing virtual memory pages, 707
layouts of. See virtual address 

space layouts
limiting range size by type, 

754–755
mapping to physical pages. See 

address translation
nonpaged pool space. See 

nonpaged pools
paged pool space. See paged 

pools
pages, defined, 705. See also 

pages; paging virtual memory 
to disks

placement policies, 827–828
pools. See pools, memory
priority numbers, 809–812
process size limits, 699
quotas, 756
reclaiming memory, 752–754
reserving pages, 706–708
section objects for mapping. See 

section objects
sizes of pages, 705–706
types of addresses, determining, 

753
types of addresses, viewing usage, 

754
viewing with Vmmap utility, 

758–759
working sets of. See working sets

virtual address translation. See 
address translation

virtual block caching, 852, 1179
Virtual Disk Service. See VDS (Virtual 

Disk Service)
virtual DOS machine (VDM) 

processes, 54
virtual memory system

!vm command, 1145
64-bit address spaces, 15
address space of. See virtual 

address spaces
AWE extensions of, 15
cache manager with, 854–855
job limits for, 447
kernel mode address space, 16
mapping, 14
memory protection, 712
paging to disks, 14. See also 

paging virtual memory to disks
purpose of, 14
RAM optimization software effect 

on, 846–847
size of address spaces, 14–15

virtual memory, disk storage of. 
See page files; paging virtual 
memory to disks

virtual pages. See paging virtual 
memory to disks; virtual 
memory system

VirtualAlloc functions, 706–708, 720
virtualization, 362, 1179. See also 

Hyper-V
virtualization, UAC, 521–528
VirtualLock function, 707–708
virus scanner use of file system filter 

drivers, 907
Vista, Windows. See client versions 

of Windows
VMBus, 236–237
VMKs (volume master keys)

purpose of, 679–681
sealing, 681–682
unsealing, 684

Vmmap utility, 758–759
volume files, 1179
volume manager

application direct requests, 674
bad-cluster recoveries, 985–988
basic disk management, 655
DMDiskManager, 661
driver nature of, 655
drivers, layering with file system 

drivers, 544
dynamic disk, 661
I/O operations, 674–675
mirrored volumes, 664–667
mount operations, 655, 668
multipartition volume 

management, 661–667
names of device objects, 650–651
object creation, 655
partition possession mechanics, 

652
PnP manager, coordination with, 

655
spanned volumes, 662–663
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striped volumes, 663–664
VolMgr, 661–662
VolMgrX, 661–662

volume master keys. See VMKs 
(volume master keys)

volume sets, 662, 1179–1180. See 
also spanned volumes

Volume Shadow Copy Service. See 
VSS (Volume Shadow Copy 
Service)

volumes
basic disks, equivalence to 

partitions, 655
boot volume creation, 660
boot volumes defined, 1155
cache manager recoverable file 

system support, 853–854
compression, testing for, 951–952
defined, 1179
dismount operations, 897
FAT, 892–894
foreign volumes, BitLocker, 685
I/O operations of, 674–675
MFTs (master file tables), 938–941
mirrored volumes, 664–667
mount points for, 669–670
namespace mechanism, 667
NTFS, 937
privilege for task performance, 

507
quotas, per-user, 928
RAID level 0, 663–664
RAID level 1, 664–666
RAID level 5, 666–667
shrinking, 933
simple compared to 

multipartition, 645
snapshots, scheduling for, 

697–698
spanned volumes, 662–663
striped volumes, 663–664
system volumes, 660
types of multipartition volumes, 

662
VPBs (volume parameter blocks), 

670–673
VPBs (volume parameter blocks)

file system driver interactions 
with, 896

mount mechanics with, 670–673
VPNs (Virtual Private Networks), 

1066
VSS (Volume Shadow Copy Service)

architecture of, 688–689
backups, using for, 692–693
clone shadow copies, 688
copy-on-write shadow copies, 688
defined, 688
device objects of, 692–693
differential copies, 688

operation of, 689–690
Previous Versions feature use of, 

693–695, 698
scheduling snapshots for volumes, 

697–698
shadow copies defined, 1174
Shadow Copy Provider, 690–692
steps for copy creation, 689–690
System Restore use of, 694
transportable copies, 690
types of copy mechanisms, 688
Volsnap (Volume Shadow Copy 

Driver), 690–692
Vssadmin utility for viewing 

copies, 696–697

W
wait blocks

defined, 183, 1180
KTHREAD fields for, 373
relationship to threads and 

dispatcher objects, 183
viewing, 184, 186

wait hints, 1180
wait queues, 114, 413
wait state

alertable wait states, 1153–1154
boosts during executive resource 

waits, 422–423
priority level boosts after events 

and semaphore waits, 421–422
voluntary switching from, 413
Waiting thread execution state, 

401
WaitForMultipleObjects function, 

178–179
WaitForSingleObject function, 

178–179
wake-on-LAN, 1054
watermarked desktop option, 1080
WBEM (Web-Based Enterprise 

Management)
basis for WMI, 318
CIM specification, 319–320
WbetTest tool, 323

WDF (Windows Driver Foundation)
defined, 1180
KMDF compared to UMDF, 70
purpose of, 70

Wdfkd.dll, 608
WDI (Windows Diagnostic 

Infrastructure), 61, 329–333, 
1180

WDK (Windows Driver Kit)
ASSERT macro, 48
documentation, 31
downloading, 31
file system drivers, required to 

build, 895–896

header files, 31–32
Windows executive functions, 58

WDM (Windows Driver Model) 
drivers

bus drivers, 69, 542–543
categories of, 542–543
defined, 69, 1180
filter drivers, 69–70
function drivers, 69
interactions of, 543
types of drivers, 69
WMI routines. See WMI (Windows 

Management Instrumentation)
Web access APIs

HTTP Server API, 1019–1021
purpose of, 1018
WinHTTP, 1019
WinInet, 1019

Web servers
cache functions, 1020–1021
configuration functions for, 1021
HTTP Server API, 1019–1021
Http.sys, 1019–1020
port range reservations, 1019
request queues, 1019–1020
URL groups, 1019–1020
well-known addresses for 

Winsock, 1009
WinHTTP API for, 1019
Winsock extensions for, 

1008–1009
Web services, DPWS, 1033
WebDAV, 897
well-known addresses for Winsock, 

1009
well-known installers, 1111–1112
WER (Windows Error Reporting)

ALPC error ports, 124
analysis at Microsoft, 1133–1134
configuration options, 122–124
configuring, 120
crashed unhandled exception 

filters, 122
debugger option, 121
defined, 120
error report options, 121
Microsoft Systems Center 2007 

with, 121
OCA (Online Crash Analysis), 

1133–1134
purpose of, 1131
sending of reports to Microsoft, 

1133
settings screen for, 1131
silent process deaths, 122–125
solutions suggested to users, 

1133–1134
unhandled exceptions triggering 

mechanism, 121
user input requests, 1133



1230 WFP

WER (Windows Error Reporting), 
continued

Wercon.exe, launching, 120
WerFault dump operations, 1132
WerFault execution during logons, 

1133
WerFault pre-dump operations, 

1130–1131
WerFault.exe, 121

WFP (Windows File Protection)
callout drivers, 1180
differences with WRP, 1111

WFP (Windows Filtering Platform)
BFE (base filtering engine), 1047, 

1049–1050
callout drivers, 1004, 1047
components of, 1047
defined, 1004, 1180
filter engine, 1047
IPSec callout driver, 1052
NAT support, 1049
shims, 1047
Windows Firewall support, 

1049–1050
WHQL (Windows Hardware Quality 

Labs), 538–539, 635
Win16, process creation for, 

353–354
Win32 API. See also Windows API

defined, 2
history of, 3–4

Win32k.sys. See also Windows 
subsystem

components contained in, 54
defined, 37
GDI components, 54–55
kernel load during boots, 1096
system mapped views for, 736
threads, structures for, 371

WinDbg
crash dump analysis with, 1134, 

1137
kernel debugging with, 28
loader databases, viewing, 

223–225
viewing user-mode debugger 

objects, 218–219
window stations

defined, 1180
opening by SCM, 305
service access to, 297–299
Winlogon, creation of, 515

windows
priority level boosts for, 425–427
quantums, effect of windows in 

foreground on, 410
windows and graphics system, 37

Windows 3.1, 353–354
Windows API

categories of callable functions, 2

defined, 2, 1180
documentation in SDK, 2
functions, 4
Heap interfaces, 730
history of, 3–4
memory manager functions, 704
memory protection options, 

712–713
Windows Boot Loader. See Winload 

(Windows Boot Loader)
Windows Boot Manager. See 

Bootmgr (Windows Boot 
Manager)

Windows Diagnostic Infrastructure. 
See WDI (Windows Diagnostic 
Infrastructure)

Windows Driver Foundation. 
See WDF (Windows Driver 
Foundation)

Windows Driver Kit. See WDK 
(Windows Driver Kit)

Windows drivers, 1180. See also 
device drivers

Windows Error Reporting (WER). See 
WER (Windows Error Reporting)

Windows executive. See executive, 
Windows

Windows Filtering Platform. See 
WFP (Windows Filtering 
Platform)

Windows Firewall
connection security rules 

management, 1052
IPSec support for, 1051
network restriction rules, 296–297
WFP support for, 1049–1050

Windows hardware error 
architecture, 61

Windows Internet Name Service 
(WINS), 1039

Windows Management 
Instrumentation. See WMI 
(Windows Management 
Instrumentation)

Windows Media Player, 166, 
430–434

Windows Memory Diagnostic Tool, 
1106

Windows native API, 1094
Windows Networking API, 

1033–1036
Windows Next Generation TCP/

IP Stack. See Next Generation 
TCP/IP Stack

Windows NT
legacy drivers, 1166
networking APIs, 1067

Windows Recovery Environment 
(WinRE), 1106–1108

Windows Resources Protection 
(WRP), 1111–1112

Windows Server. See server versions 
of Windows

Windows Server Core, 231
Windows services. See services
Windows Setup. See Setup, 

Windows
Windows Sockets. See Winsock
Windows Software Development 

Kit (SDK)
latest version of, obtaining, 31
Windows API documentation in, 2

Windows subsystem. See also 
Win32k.sys

calls from other subsystems, 53
components of, 54
CreateProcess operations with, 

360–362
DirectX wrappers, 54
DLLs loaded by Csrss.exe, 54
DLLs translating API functions to 

service calls, 54
DLLs, application calls to, 53
executive objects, 136
file specification of, 51
GDI, 54–56
importance of, 51
kernel load during boots, 1096
kernel-mode device driver, 54
launch by Smss during boot 

process, 1094
startup values, 51
threads, structures for, 371
undocumented interfaces, 72–73
user interface control calls, 54
user-mode functions, 56
window manager, 54

Windows System Resource Manager 
(WSRM), 398–399

Windows Task Manager 
Performance tab, 702–703

Windows Transport Driver Interface 
standard, 1003

Windows Update
hotpatches, 242–244
TxR use by, 261

Windows Vista. See client versions 
of Windows

Windows, versions of. See versions 
of Microsoft Windows

WindowStation object type
components represented by, 137
okay to close object method, 149
open object method, 148

WinHTTP, 1019
WinInet, 1019
Wininit

boot steps of, 1097
critical nature of, 1096
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defined, 1075
Smss launches of during boots, 

1096
Winlogon steps compared to, 516

Winload (Windows Boot Loader)
autorecovery BCD option for, 

1080
BCD options for, table of, 

1080–1084
boot volume file load steps, 

1085–1086
configuration queries by, 1085
defined, 1074
loading by Bootmgr, 1084
registry fixes by, 279
storage support in, 646
troubleshooting menu, BCD 

option for, 1080
WinRE, automatic launches of, 

1107
Winlogon

activity triggers for, 80
authentication, 79
authentication calls to Lsass, 514
boot steps of, 1097–1098
credential providers, 79, 514
Ctrl+Alt+Delete logon attention, 

515–516
defined, 455
desktops created by, 515
locked nature of desktop, 516
LogonUI, 79
LSASS calls, 80
Lsass connection creation, 515
passwords, 79–80
request handling by, 79
responsibilities of, 513
SAS notifications, 515
SCM, notification of success to, 

308–309
secure attention sequence, 79
session SIDs, 462
shutdown initiation, 311
shutdown mechanics, 1115–1117
Smss launches of during boots, 

1096
system initialization steps, 

515–516
user logon steps, 516–518
user names, 79–80
window station creation, 515

WinObj tool
ACL display for objects, 157–158
ALPC port objects, viewing, 203
base object names, listing, 165
device object name display, 552
disk objects, displaying, 650–651
file systems, viewing registered, 

900
memory condition events, 835

object manager namespace, 
viewing, 133

purpose of, 133
session namespaces, 168
type objects, listing, 144

WinRE (Windows Recovery 
Environment), 1106–1108

Winresume, 1074
WINS (Windows Internet Name 

Service), 1039
Winsock

accept operations, 1007–1008
AcceptEx function, 1008
AFD (Ancillary Function Driver), 

1012
binds, 1007
BSD Sockets basis of, 1006
client operation, 1007
ConnectEx function, 1009
connection backlogs, 1007–1008
connectionless operation, 1008
connection-oriented operation, 

1007–1008
datagrams, 1008
DisconnectEx function, 1009
DLLs for, 1011
extensibility by third parties, 

1009–1011
extension APIs, 1008–1009
feature list, 1006–1007
file handles for sockets, 1012
Helper libraries, 1011
history of, 1006
impersonation functions, 1009
implementation of, 1011–1012
initialization, 1007
IPv6 support, 1007
kernel API. See WSK (Winsock 

Kernel)
listen operations, 1007–1008
Mswsock.dll, 1011
multipoint message support, 1007
name-resolution functions, 1009
namespace support, 1007, 1009
PNRP for IPv6, 1040
polling sockets, 1007–1008
protocol independence of, 1007
receive functions, 1007–1008
RPC run-time DLL use of, 

1017–1018
select functions, 1007–1008
send functions, 1007–1008
server operation, 1007–1008
showing providers with Netsh, 

1010
socket creation, 1007
SPI (service provider interface), 

1009
TransmitFile function, 1008–1009
TransmitPackets function, 1009

transport service providers, 
adding, 1009

well-known addresses with, 1009
Ws2_32.dll, 1011
WSAPoll functions, 1007–1008

Winsock Kernel. See WSK (Winsock 
Kernel)

WinSta0, 167
WMI (Windows Management 

Instrumentation)
APIs for, 319
architecture of, 318–319
association classes, 325–327
CIM with, 320–323
CIMOM, 319
COM API, 319
defined, 318
dynamic designator, 323
Event Log provider example, 320
infrastructure, 319
managed objects, 318–319
management applications, 

318–319
MOF with, 320–323
namespace for, 324–325
Object Browser, 325–326
providers, 318–320
registry settings, 328
scripting support, 326
security issues, 329
service mechanics, 327–328
SQL support, 327
WDM routines, 1180
WMIC utility, 328

WNet API, 1033–1036
work items, 1181
worker factories

API for, 386
defined, 386
Factory object, 387
I/O completion ports, 388
kernel queue support for, 388
object manager type for, 387
responsibilities of, 387–388
scalability benefit of, 387
stop codes from bad references, 

1122
viewing, 388–390
Vista compared to pre-Vista, 

386–387
worker threads. See system worker 

threads
working set manager

aging pages, 1153
automatic trimming, 1155
calls from and to the balance set 

manager, 831–832
defined, 1181
purpose of, 700
trimming initialization by, 829



1232 working sets

working sets
automatic trimming of, 829, 1155
balance set manager context of, 

831–832
clock algorithm for, 1156
defined, 699, 1181
demand paging, 823
entries, viewing, 830
freeing a page during PFN 

operations, 809
lock implementation for, 701
logical prefetching, 823–827
manager. See working set 

manager
mechanics of, 829
PFN index field for, 816
placement policies, 827–828
process working sets, 822, 1171
quotas for, 756
replacement policies, 827–828
session working sets, 823
size of, viewing, 830
sizing of, 828–829
swapper mechanics, 832
system. See system working sets
system cache, 737

Workstation service, 897
Wow64

16-bit applications, 215
16-bit installer applications, 215
address space for, 211, 746
architecture of, 211
defined, 211
device driver issues, 214–215
DLLs for, 211
exception dispatching, 212
file system redirection, 212–213
I/O control functions, 214–215
IA64 (Itanium) issues, 215

printing from 32-bit processes, 
215

registry reflected keys, 214
registry spli ts, 213–214
restrictions for, 215
Sysnative virtual directory, 213
system calls, 212
user callbacks, 212

WPD (Windows Portable Device) 
Framework, 616

WQL (WMI Query Language), 327
write I/O operations. See also  I/O 

processing
fast I/O steps for, 873–874
lazy writing, 877–883
write throt tling, 885–886
write-through caching, 883

write throt tling, 1181
write-back caching, 877–883
WriteFile function

file system driver operations after 
calling, 902–906

mailslots with, 1024–1025
named pipes with, 1024–1025
synchronous I/O, 563

WriteFileEx
I/O completion, 577
user-mode APCs with, 113

WriteProcessMemory function, 
706–707

writing, memory protection against, 
712–713

WRP (Windows Resources 
Protection), 1111–1112

WS Discovery, 1033
Ws2_32.dll, 1011. See also  Winsock
WSK (Winsock Kernel)

advantages of, 1012
binding of applications, 1013
defined, 1004

events of, 1013
extension interfaces, 1014
implementation, 1012–1014
NMR (Network Module Registrar) 

with, 1012–1013
registration functions, 1013
socket categories, 1013
TDI SPI interface availabili ty in, 

1012
WSRM (Windows System Resource 

Manager), 398–399

X
x.509 certificates, 1051
x64 Windows. See 64-bit Windows 

versions (x64)
x86 systems

address space layouts, 737–740
session space layouts, 740–743
system address space layouts, 740

XP, Windows. See client versions of 
Windows

Z
zero page threads, 701, 808, 1181
Zeroed page state, 804
zone security system, 921



Mark Russinovich

Mark Russinovich is a technical fellow in the Windows Core Operating 

System Division. He is a member of the core team that provides archi-

tectural direction and oversight across Windows, with a focus on secu-

rity and virtualization. Mark is currently working on the technical 

direction and architectural plan for Windows 8. He also continues 

 developing tools for the Windows Sysinternals Web site, the most pop-

ular TechNet subsite, with 2 million downloads per month. Mark consis-

tently delivers the top-rated sessions at major IT and developer 

conferences, including Microsoft TechEd, TechReady, and WinHEC.

Mark has written dozens of magazine articles and serves as contributing editor for both 

Microsoft TechNet and Windows IT Pro magazines. Mark joined Microsoft in 2006 when the 

85-person company he cofounded 10 years earlier, Winternals Software, was acquired along 

with Sysinternals. At Winternals he was chief software architect, defining the business and 

technical direction for the company. 

David Solomon

David Solomon, president of David Solomon Expert Seminars 

(www.solsem.com), has focused on explaining the internals of the 

Microsoft Windows NT operating system line since 1992. He has taught 

his world-renowned Windows internals classes to thousands of devel-

opers and IT professionals worldwide. His clients include all the major 

software and hardware companies, including Microsoft. He was nomi-

nated a Microsoft Most Valuable Professional in 1993 and from 

2005–2008.

Prior to starting his own company, David worked for nine years 

as a project leader and developer in the VMS operating system development group at 

Digital Equipment Corporation. His first book was entitled Windows NT for Open VMS 
Professionals (Digital Press/Butterworth Heinemann, 1996). It explained Windows NT to VMS-

knowledgeable programmers and system administrators. His second book, Inside Windows 
NT, Second Edition (Microsoft Press, 1998), covered the internals of Windows NT 4.0. Since 

the third edition (Inside Windows 2000) David has coauthored this book series with Mark 

Russinovich.

In addition to organizing and teaching seminars, David is a regular speaker at technical con-

ferences such as Microsoft TechEd and Microsoft PDCs. He has also served as technical chair 

for several past Windows NT conferences. When he’s not researching Windows, David enjoys 

sailing, reading, and watching Star Trek.



Alex Ionescu

Alex Ionescu is the founder of Winsider Seminars & Solutions Inc., spe-

cializing in low-level system software for administrators and develop-

ers. He also teaches Windows internals courses for David Solomon 

Expert Seminars, including at Microsoft. Alex was the lead kernel devel-

oper for ReactOS, an open source clone of Windows XP/Windows 

Server 2003 written from scratch, for which he wrote most of the 

Windows NT–based kernel.

Alex is also very active in the security research community, discover-

ing and reporting several vulnerabilities related to the Windows kernel 

and presenting talks at conferences such as Blackhat and Recon. Alex’s experience in oper-

ating system design and kernel coding dates back to his early adolescence, when he first 

played with John Fine’s educational operating system and kernel and boot loader code. Since 

then he has been active in the area of NT kernel development, offering help and advice for 

driver developers, as well as in the NT reverse engineering and security fields, where he has 

published a number of articles and source code, such as documentation for the Linux NTFS 

project, extensive papers on the Visual Basic metadata and pseudo-code format and NTFS 

structures and data streams. In the last three years, he has contributed to patches and devel-

opment in two major commercially used operating system kernels.



who literally wrote the book on Windows internals! 
SIT DOWN WITH THE EXPERTS

“These videos drill into the core of the platform, 
capture its technical essence and present it in a 
powerful interactive video format.”–Rob Short, 
Vice President Core Technologies,  
Microsoft Corporation

If you liked their 
book, you’ll love
hearing them in 
person. Get one of 
their video tutorials 
or come to a live 
class.

LIVE, INSTRUCTOR LED CLASSES
If you’re an IT professional deploying 
and supporting Windows servers and 
workstations, you need to be able to 
dig beneath the surface when things go 
wrong. In our classes, you’ll gain a deep 
understanding of the internals of the 
operating system and how to leverage 
advanced troubleshooting tools to 
solve system and application problems 
and understand performance issues 
more effectively.  Attend a public class 
or schedule a private on site seminar 
at your location. For dates, course de-
tails, pricing, and registration informa-
tion, see www.solsem.com.

“The information given 
in this class should be 
required for all Windows 
engineers/administrators.”

“This course holds the 
key to understanding 
Windows.”

“Should be required train-
ing for anyone responsible 
for Windows software 
development, administra-
tion, or design.”

To view video samples or for a detailed outline,
 visit www.solsem.com or email videos@solsem.com

INTERACTIVE DVD TUTORIAL 
Sit down with the experts who 
literally wrote the book on Win-
dows internals.  Windows Internals 
COMPLETE consists of 12 hours of 
interactive training taking you under 
the hood of the operating system to 
learn how the kernel components 
work.  As the ultimate compliment,  
Microsoft Corporation licensed these 
videos for their corporate training 
worldwide.  
The Sysinternals Video Library (also 
12 hours) covers essential Windows 
troubleshooting topics such as crash 
dump analysis and memory trouble-
shooting as well as how to leverage key 
Sysinternals tools.



Windows Internals, Fifth Edition and MCTS Exam 70-660

This book delivers in-depth, kernel-level insights into the Windows OS. You may also find it helpful 

when preparing for the following topics in Microsoft Certification Exam 70-660:

Exam Objectives/Skills See Topic-Related Coverage Here

Identifying Architectural Components

Identify memory types and mechanisms Chapter 9

Identify I/O mechanisms Chapter 7, see “I/O Processing”; Chapter 3

Identify subsystems Chapter 2, see “Key System Components”

Identify processor functions and architecture Chapter 3, see “System Service Dispatching”; Chapter 5, see 

“Overview of Windows Scheduling”

Identify processes and threads Chapter 5, see “Process Internals,” “Thread Internals,” and 

“Thread Scheduling”

Designing Solutions

Optimize a system for its drivers Chapter 7, see “Device Drivers” and “The Plug and Play (PnP) 

Manager”; Chapter 3, see “Interrupt Dispatching” and “System 

Worker Threads”; Chapter 9, see “Driver Verifier”

Design applications Chapter 3, see “Windows Global Flags,” “Exception 

Dispatching,” and “Synchronization”; Chapter 5, see “Thread 

Internals”; Chapter 9; Chapter 6

Deploy compatible applications Chapter 3, see “Windows Global Flags” (limited coverage)

Identify optimal I/O models for applications Chapter 7, see “I/O Processing” and “I/O Completion Ports”

Monitoring Windows

Monitor I/O latency Chapters 1, 7, and 8

Monitor I/O throughput Chapters 3, 7, 8, and 11

Monitor memory usage Chapter 9

Monitor CPU utilization Chapters 5 and 14

Monitor handled and unhandled exceptions Chapter 3, see “Exception Dispatching”; Chapter 14, see 

“Windows Error Reporting”

Analyzing User Mode

Analyze heap leaks Chapter 9, see “Heap Manager”

Analyze heap corruption Chapter 9, see “Heap Manager”

Handle leaks Chapter 3, see “Object Handles and the Process Handle Table”

Resolve image load issues Chapter 3, see “Image Loader”

Analyze services and host processes Chapter 4, see “Services”

Analyze cross-process application calls Not covered

Analyze the modification of executables at 

run time

Not covered

Analyze GUI performance issues Not covered



 

Exam Objectives/Skills See Topic-Related Coverage Here

Analyzing Kernel Mode

Find and identify objects in object manager 

namespaces and identify the objects’ 

attributes

Chapter 3, see “Object Manager”

Analyze Plug and Play (PnP) device failure Chapter 7, see “The Plug and Play (PnP) Manager”; Chapter 13

Analyze pool corruption Chapters 1 and 3

Analyze pool leaks Chapters 1, 3, 9, and 14

Isolate the root cause of S state failure Chapter 7, see “Power Manager”

Analyze kernel mode CPU utilization Chapter 14, see “Hung or Unresponsive Systems”; Chapter 3

Debugging Windows

Debug memory Chapters 9 and 14

Identify a pending I/O Chapter 7

Identify a blocking thread Chapter 3, see “Synchronization”; Chapter 5, see “Thread 

Scheduling”

Identify a runaway thread Chapter 5, see “Thread Scheduling”; Chapter 14

Debug kernel crash dumps Chapters 14, 3, and 5

Debug user crash dumps Not covered

Set up the debugger Chapters 14, 13, and 1

For complete information on MCTS Exam 70-660, go to www.microsoft.com/learning/en/us/Exams/70-
660.aspx. And for more information on Microsoft certifications, visit www.microsoft.com/learning.


	Cover
	Home Page
	Copyright

	Dedication
	Table of Contents
	Foreword
	Acknowledgments
	Introduction
	Structure of the Book
	History of the Book
	Fifth Edition Changes
	Hands-On Experiments
	Topics Not Covered
	A Warning and a Caveat
	Find Additional Content Online
	Support
	From the Authors
	From Microsoft Press
	Questions and Comments


	Chapter 1: Concepts and Tools
	Windows Operating System Versions
	Foundation Concepts and Terms
	Windows API
	Services, Functions, and Routines
	Processes, Threads, and Jobs
	Virtual Memory
	Kernel Mode vs. User Mode
	Terminal Services and Multiple Sessions
	Objects and Handles
	Security
	Registry
	Unicode

	Digging into Windows Internals
	Reliability and Performance Monitor
	Kernel Debugging
	Windows Software Development Kit
	Windows Driver Kit
	Sysinternals Tools

	Conclusion

	Chapter 2: System Architecture
	Requirements and Design Goals
	Operating System Model
	Architecture Overview
	Portability
	Symmetric Multiprocessing
	Scalability
	Differences Between Client and Server Versions
	Checked Build

	Key System Components
	Environment Subsystems and Subsystem DLLs
	Ntdll.dll
	Executive
	Kernel
	Hardware Abstraction Layer
	Device Drivers
	System Processes

	Conclusion

	Chapter 3: System Mechanisms
	Trap Dispatching
	Interrupt Dispatching
	Exception Dispatching
	System Service Dispatching

	Object Manager
	Executive Objects
	Object Structure

	Synchronization
	High-IRQL Synchronization
	Low-IRQL Synchronization

	System Worker Threads
	Windows Global Flags
	Advanced Local Procedure Calls (ALPCs)
	Kernel Event Tracing
	Wow64
	Wow64 Process Address Space Layout
	System Calls
	Exception Dispatching
	User Callbacks
	File System Redirection
	Registry Redirection and Reflection
	I/O Control Requests
	16-Bit Installer Applications
	Printing
	Restrictions

	User-Mode Debugging
	Kernel Support
	Native Support
	Windows Subsystem Support

	Image Loader
	Early Process Initialization
	Loaded Module Database
	Import Parsing
	Post Import Process Initialization

	Hypervisor (Hyper-V)
	Partitions
	Root Partition
	Child Partitions
	Hardware Emulation and Support

	Kernel Transaction Manager
	Hotpatch Support
	Kernel Patch Protection
	Code Integrity
	Conclusion

	Chapter 4: Management Mechanisms
	The Registry
	Viewing and Changing the Registry
	Registry Usage
	Registry Data Types
	Registry Logical Structure
	Transactional Registry (TxR)
	Monitoring Registry Activity
	Registry Internals

	Services
	Service Applications
	The Service Control Manager
	Service Startup
	Startup Errors
	Accepting the Boot and Last Known Good
	Service Failures
	Service Shutdown
	Shared Service Processes
	Service Tags
	Service Control Programs

	Windows Management Instrumentation
	Providers
	The Common Information Model and the Managed Object Format Language
	Class Association
	WMI Implementation
	WMI Security

	Windows Diagnostic Infrastructure
	WDI Instrumentation
	Diagnostic Policy Service
	Diagnostic Functionality

	Conclusion

	Chapter 5: Processes, Threads, and Jobs
	Process Internals
	Data Structures
	Kernel Variables
	Performance Counters
	Relevant Functions

	Protected Processes
	Flow of CreateProcess
	Stage 1: Converting and Validating Parameters and Flags
	Stage 2: Opening the Image to Be Executed
	Stage 3: Creating the Windows Executive Process Object (PspAllocateProcess)
	Stage 4: Creating the Initial Thread and Its Stack and Context
	Stage 5: Performing Windows Subsystem–Specific Post-Initialization
	Stage 6: Starting Execution of the Initial Thread
	Stage 7: Performing Process Initialization in the Context of the New Process

	Thread Internals
	Data Structures
	Kernel Variables
	Performance Counters
	Relevant Functions
	Birth of a Thread

	Examining Thread Activity
	Limitations on Protected Process Threads

	Worker Factories (Thread Pools)
	Thread Scheduling
	Overview of Windows Scheduling
	Priority Levels
	Windows Scheduling APIs
	Relevant Tools
	Real-Time Priorities
	Thread States
	Dispatcher Database
	Quantum
	Scheduling Scenarios
	Context Switching
	Idle Thread
	Priority Boosts
	Multiprocessor Systems
	Multiprocessor Thread-Scheduling Algorithms
	CPU Rate Limits

	Job Objects
	Conclusion

	Chapter 6: Security
	Security Ratings
	Trusted Computer System Evaluation Criteria
	The Common Criteria

	Security System Components
	Protecting Objects
	Access Checks
	Security Descriptors and Access Control

	Account Rights and Privileges
	Account Rights
	Privileges
	Super Privileges

	Security Auditing
	Logon
	Winlogon Initialization
	User Logon Steps

	User Account Control
	Virtualization
	Elevation

	Software Restriction Policies
	Conclusion

	Chapter 7: I/O System
	I/O System Components
	The I/O Manager
	Typical I/O Processing

	Device Drivers
	Types of Device Drivers
	Structure of a Driver
	Driver Objects and Device Objects
	Opening Devices

	I/O Processing
	Types of I/O
	I/O Request to a Single-Layered Driver
	I/O Requests to Layered Drivers
	I/O Cancellation
	I/O Completion Ports
	I/O Prioritization
	Driver Verifier

	Kernel-Mode Driver Framework (KMDF)
	Structure and Operation of a KMDF Driver
	KMDF Data Model
	KMDF I/O Model

	User-Mode Driver Framework (UMDF)
	The Plug and Play (PnP) Manager
	Level of Plug and Play Support
	Driver Support for Plug and Play
	Driver Loading, Initialization, and Installation
	Driver Installation

	The Power Manager
	Power Manager Operation
	Driver Power Operation
	Driver and Application Control of Device Power

	Conclusion

	Chapter 8: Storage Management
	Storage Terminology
	Disk Drivers
	Winload
	Disk Class, Port, and Miniport Drivers
	Disk Device Objects
	Partition Manager

	Volume Management
	Basic Disks
	Dynamic Disks
	Multipartition Volume Management
	The Volume Namespace
	Volume I/O Operations
	Virtual Disk Service

	BitLocker Drive Encryption
	BitLocker Architecture
	Encryption Keys
	Trusted Platform Module (TPM)
	BitLocker Boot Process
	BitLocker Key Recovery
	Full Volume Encryption Driver
	BitLocker Management

	Volume Shadow Copy Service
	Shadow Copies
	VSS Architecture
	VSS Operation
	Uses in Windows

	Conclusion

	Chapter 9: Memory Management
	Introduction to the Memory Manager
	Memory Manager Components
	Internal Synchronization
	Examining Memory Usage

	Services the Memory Manager Provides
	Large and Small Pages
	Reserving and Committing Pages
	Locking Memory
	Allocation Granularity
	Shared Memory and Mapped Files
	Protecting Memory
	No Execute Page Protection
	Copy-on-Write
	Address Windowing Extensions

	Kernel-Mode Heaps (System Memory Pools)
	Pool Sizes
	Monitoring Pool Usage
	Look-Aside Lists

	Heap Manager
	Types of Heaps
	Heap Manager Structure
	Heap Synchronization
	The Low Fragmentation Heap
	Heap Security Features
	Heap Debugging Features
	Pageheap

	Virtual Address Space Layouts
	x86 Address Space Layouts
	x86 System Address Space Layout
	x86 Session Space
	System Page Table Entries
	64-Bit Address Space Layouts
	64-Bit Virtual Addressing Limitations
	Dynamic System Virtual Address Space Management
	System Virtual Address Space Quotas
	User Address Space Layout

	Address Translation
	x86 Virtual Address Translation
	Translation Look-Aside Buffer
	Physical Address Extension (PAE)
	IA64 Virtual Address Translation
	x64 Virtual Address Translation

	Page Fault Handling
	Invalid PTEs
	Prototype PTEs
	In-Paging I/O
	Collided Page Faults
	Clustered Page Faults
	Page Files

	Stacks
	User Stacks
	Kernel Stacks
	DPC Stack

	Virtual Address Descriptors
	Process VADs
	Rotate VADs

	NUMA
	Section Objects
	Driver Verifier
	Page Frame Number Database
	Page List Dynamics
	Page Priority
	Modified Page Writer
	PFN Data Structures

	Physical Memory Limits
	Windows Client Memory Limits

	Working Sets
	Demand Paging
	Logical Prefetcher
	Placement Policy
	Working Set Management
	Balance Set Manager and Swapper
	System Working Set
	Memory Notification Events

	Proactive Memory Management (SuperFetch)
	Components
	Tracing and Logging
	Scenarios
	Page Priority and Rebalancing
	Robust Performance
	ReadyBoost
	ReadyDrive

	Conclusion

	Chapter 10: Cache Manager
	Key Features of the Cache Manager
	Single, Centralized System Cache
	The Memory Manager
	Cache Coherency
	Virtual Block Caching
	Stream-Based Caching
	Recoverable File System Support

	Cache Virtual Memory Management
	Cache Size
	Cache Virtual Size
	Cache Working Set Size
	Cache Physical Size

	Cache Data Structures
	Systemwide Cache Data Structures
	Per-File Cache Data Structures

	File System Interfaces
	Copying to and from the Cache
	Caching with the Mapping and Pinning Interfaces
	Caching with the Direct Memory Access Interfaces

	Fast I/O
	Read Ahead and Write Behind
	Intelligent Read-Ahead
	Write-Back Caching and Lazy Writing
	Write Throttling
	System Threads

	Conclusion

	Chapter 11: File Systems
	Windows File System Formats
	CDFS
	UDF
	FAT12, FAT16, and FAT32
	exFAT
	NTFS

	File System Driver Architecture
	Local FSDs
	Remote FSDs
	File System Operation
	File System Filter Drivers

	Troubleshooting File System Problems
	Process Monitor Basic vs. Advanced Modes
	Process Monitor Troubleshooting Techniques

	Common Log File System
	NTFS Design Goals and Features
	High-End File System Requirements
	Advanced Features of NTFS

	NTFS File System Driver
	NTFS On-Disk Structure
	Volumes
	Clusters
	Master File Table
	File Reference Numbers
	File Records
	File Names
	Resident and Nonresident Attributes
	Data Compression and Sparse Files
	The Change Journal File
	Indexing
	Object IDs
	Quota Tracking
	Consolidated Security
	Reparse Points
	Transaction Support

	NTFS Recovery Support
	Design
	Metadata Logging
	Recovery
	NTFS Bad-Cluster Recovery
	Self-Healing

	Encrypting File System Security
	Encrypting a File for the First Time
	The Decryption Process
	Backing Up Encrypted Files

	Conclusion

	Chapter 12: Networking
	Windows Networking Architecture
	The OSI Reference Model
	Windows Networking Components

	Networking APIs
	Windows Sockets
	Winsock Kernel (WSK)
	Remote Procedure Call
	Web Access APIs
	Named Pipes and Mailslots
	NetBIOS
	Other Networking APIs

	Multiple Redirector Support
	Multiple Provider Router
	Multiple UNC Provider

	Name Resolution
	Domain Name System
	Windows Internet Name Service
	Peer Name Resolution Protocol

	Location and Topology
	Network Location Awareness (NLA)
	Link-Layer Topology Discovery (LLTD)

	Protocol Drivers
	Windows Filtering Platform (WFP)

	NDIS Drivers
	Variations on the NDIS Miniport
	Connection-Oriented NDIS
	Remote NDIS
	QoS

	Binding
	Layered Network Services
	Remote Access
	Active Directory
	Network Load Balancing
	Distributed File System and DFS Replication

	Conclusion

	Chapter 13: Startup and Shutdown
	Boot Process
	BIOS Preboot
	The BIOS Boot Sector and Bootmgr
	The EFI Boot Process
	Initializing the Kernel and Executive Subsystems
	Smss, Csrss, and Wininit
	ReadyBoot
	Images That Start Automatically

	Troubleshooting Boot and Startup Problems
	Last Known Good
	Safe Mode
	Windows Recovery Environment (WinRE)
	Solving Common Boot Problems

	Shutdown
	Conclusion

	Chapter 14: Crash Dump Analysis
	Why Does Windows Crash?
	The Blue Screen
	Troubleshooting Crashes
	Crash Dump Files
	Crash Dump Generation

	Windows Error Reporting
	Online Crash Analysis
	Basic Crash Dump Analysis
	Notmyfault
	Basic Crash Dump Analysis
	Verbose Analysis

	Using Crash Troubleshooting Tools
	Buffer Overrun, Memory Corruptions, and Special Pool
	Code Overwrite and System Code Write Protection

	Advanced Crash Dump Analysis
	Stack Trashes
	Hung or Unresponsive Systems
	When There Is No Crash Dump

	Conclusion

	Glossary
	Index
	About the Authors
	Mark Russinovich
	David Solomon
	Alex Ionescu



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /All
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.6
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /SyntheticBoldness 1.000000
  /Description <<

    /CHS <FEFF4F7F75288FD94E9B8BBE7F6E6765521B5EFA7684002000410064006F006200650020005000440046002065876863517759078F8552A95DE55177FF0C53735305542B68077B7E30018D8594FE63A530014E667B7E30014EA44E9251437D20548C56FE5C423002521B5EFA76840020005000440046002065874EF653EF4EE54F7F75280020004100630072006F0062006100740020548C002000410064006F00620065002000520065006100640065007200200037002E00300020621666F49AD87248672C676562535F003002>
    /CHT <FEFF4F7F752890194E9B8A2D5B9A5EFA7ACB7684002000410064006F006200650020005000440046002065874EF651775099535452A95DE55177FF0C53735305542B6A197C6430018D8590237D50300166F87C6430014E9252D551437D20548C57165C6430025EFA7ACB76840020005000440046002065874EF653EF4EE54F7F75280020004100630072006F0062006100740020548C002000410064006F00620065002000520065006100640065007200200037002E00300020621666F49AD87248672C958B555F3002>



    /ENU (Use these settings to create accessible Adobe PDF documents that include tags, hyperlinks, bookmarks, interactive elements, and layers. Created PDF documents can be opened with Acrobat and Adobe Reader 7.0 and later.)



    /HEB <>




    /NLD (Gebruik deze instellingen om toegankelijke Adobe PDF-documenten met labels, hyperlinks, bladwijzers, interactieve elementen en lagen te maken. U kunt gemaakte PDF-documenten openen met Acrobat en Adobe Reader 7.0 en hoger.)


    /PTB <>
    /RUM <>
    /RUS <>



    /UKR <>
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /NoConversion
      /DestinationProfileName ()
      /DestinationProfileSelector /NA
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements true
      /GenerateStructure true
      /IncludeBookmarks true
      /IncludeHyperlinks true
      /IncludeInteractive true
      /IncludeLayers true
      /IncludeProfiles true
      /MultimediaHandling /EmbedAll
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /NA
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice




