
Copyright © 2002 by Microsoft Corporation

PUBLISHED BY

Microsoft Press

A Division of Microsoft Corporation

One Microsoft Way

Redmond, Washington 98052-6399

Copyright ÿý��������� 2002 by Anthony Jones

All rights reserved. No part of the contents of this book may be reproduced or

transmitted in any form or by any means without the written permission of the

publisher.

Library of Congress Cataloging-in-Publication Data

Jones, Anthony, 1973-

 Network Programming for Microsoft Windows / Anthony Jones, Jim

Ohlund.--2nd ed.

 p. cm.

 Includes index.

 ISBN 0-7356-1579-9

 1. Internet programming. 2. Microsoft Windows (Computer file) I. Ohlund, Jim,

1966-

 II. Title.

QA76.625 .J65 2002

005.2'768--dc21 2001058715

Printed and bound in the United States of America.

1 2 3 4 5 6 7 8 9 QWT 7 6 5 4 3 2

Distributed in Canada by Penguin Books Canada Limited.

A CIP catalogue record for this book is available from the British Library.

Microsoft Press books are available through booksellers and distributors worldwide.

For further information about international editions, contact your local Microsoft

Corporation office or contact Microsoft Press International directly at fax (425)

936-7329. Visit our Web site at www.microsoft.com/mspress. Send comments to

mspinput@microsoft.com.

Microsoft, Microsoft Press, MS-DOS, Visual Basic, Visual C++, Visual C#, Win32,

Win64, Windows, and Windows NT are either registered trademarks or trademarks of

Microsoft Corporation in the United States and/or other countries. Other product and

company names mentioned herein may be the trademarks of their respective owners.

The example companies, organizations, products, domain names, e-mail addresses,

logos, people, places, and events depicted herein are fictitious. No association with

any real company, organization, product, domain name, e-mail address, logo, person,

place, or event is intended or should be inferred.

Acquisitions Editor: David Clark

Project Editor: Kurt Stephan

Body Part No. X08-68161

http://www.microsoft.com/mspress
mailto:mspinput@microsoft.com

Dedication

For my loving wife, Genevieve, thanks for your patience and understanding.

-A.J.

For Samantha

-J.O.

Acknowledgments

In addition to all the people who contributed to the first edition, we would like to thank

the following individuals for their generous help in writing this edition. Very special

thanks go to Jory Prather for verifying the code samples as well as fixing them for

consistency. Thanks to Dave Thaler, Brian Zill, and Rich Draves for clarifying our IPv6

questions, Mohammad Alam and Rajesh Peddibhotla for help with reliable

multicasting, and Jeff Venable for his contributions on the Network Location

Awareness functionality. Thanks to Vadim Eydelman for his Winsock expertise. And

finally we would like to thank the .NET Application Frameworks team (Lance Olson,

Mauro Ottaviani, and Ron Alberda) for their help with our questions about .NET

Sockets.

Introduction

Welcome to Network Programming for Microsoft Windows, Second Edition! The second edition covers

the same topics as the first edition and even more as well. This book primarily focuses on the Winsock

network programming technology. In particular, we've added a chapter on writing high-performance,

scalable Winsock applications and a chapter devoted to Winsock programming in the C# programming

language using the exciting new .NET Application Frameworks library. In addition, we've completely

updated the chapter on the Windows Service Provider Interface (SPI), and we cover additional

protocols (such as IPv6 and reliable multicasting) and reveal functionality that is new to Windows XP.

This book covers a wide variety of networking functions available in Windows 95, Windows 98,

Windows Me, Windows NT 4.0, Windows 2000, Windows XP, and Windows CE. The majority of the

text covers intermediate and advanced networking topics, but we retooled the Winsock section so that

it is more accessible to programmers of all levels.

How to Use This Book

This book covers six technical areas:

Winsock application programming interface (API)

.NET Sockets (from C#)

Visual Basic Winsock Control

Client Remote Access Server (RAS)

IP Helper API

Legacy Networking—NetBIOS and the Windows redirector

The NetBIOS and Windows redirector technologies have not changed since the first edition, and

because of space considerations, these chapters are included only with the eBook located on the

companion CD-ROM as Chapters 17-22.

In this edition, the majority of the book is dedicated to covering the Winsock API. Chapter 1 starts with

an introduction to Winsock and is specifically geared for the beginning Winsock programmer. This

chapter covers all the basics and introduces Transmission Control Protocol (TCP) and User Datagram

Protocol (UDP) through simple samples, as well as providing a roadmap to advanced Winsock topics

covered in other chapters. For the sake of simplicity, Chapter 1 covers the IPv4 protocol.

Chapter 2 discusses the Winsock architecture such as the Winsock catalog, as well as how Winsock

fits into the overall network stack. In addition, we cover how to enumerate the Winsock catalog and

find characteristics specific to each protocol installed on the system.

Chapter 3 is dedicated to the Internet Protocol (IP). In this chapter we cover both IPv4 and IPv6 and

include addressing information and name resolution for each. The last part of this chapter illustrates

how to write applications that work seamlessly over either protocol. The remaining protocols

accessible from Winsock are covered in Chapter 4. In both chapters, we present simple samples

illustrating the basic concepts of each protocol family.

Chapters 5 and 6 cover the input/output (I/O) models Winsock offers for the advanced Winsock

programmer. Chapter 5 presents each model and the basics of how to use it, while Chapter 6 goes

into detail on how to write high-performance, scalable Winsock applications. In this chapter, we discuss

resource management and the merits of the different I/O models as well as performance numbers.

Sample code is provided that illustrates each of the I/O models.

Chapter 7 is a reference that covers all the socket options and ioctls that can be accessed from

Winsock. These include generic Winsock options as well as protocol-specific ioctls. For each option,

we provide the expected input and output parameters necessary for successfully accessing the option.

This chapter has been updated to include options specific to new protocols (such as IPv6 and reliable

multicasting).

Chapter 8 covers Winsock registration and name resolution and introduces the different name spaces

in which queries can be performed, such as Domain Name System (DNS), Service Advertising

Protocol (SAP), and the Active Directory directory service. The chapter also discusses the new

Network Location Awareness (NLA) namespace, which can provide valuable information about the

network you are currently connected to.

Multicasting is the topic of Chapter 9. This chapter covers IPv4 and IPv6 multicasting as well as the

reliable multicasting transport new to Windows XP. This chapter also discusses ATM

point-to-multipoint communications. Chapter 10 is devoted to Quality of Service (QOS), which is a

technology that allows for guaranteeing a portion of the network bandwidth to an application. Chapter

11 moves on to raw IP sockets and discusses how to build your own protocol headers which can be

used to communicate directly over IP networks—this includes both IPv4 and IPv6.

Chapter 12 covers the Winsock Service Provider Interface (SPI). This interface is a means by which a

programmer can install a layer between Winsock and lower-level service providers such as

Transmission Control Protocol/Internet Protocol (TCP/IP) for the purpose of manipulating socket and

protocol behavior or name registration and resolution. This is an advanced feature that allows software

developers to extend Winsock functionality. The SPI chapter has been completely rewritten and

provides fully functioning, robust layered service provider (LSP) sample code.

Chapter 13 covers the .NET Application Framework's Network Socket object. In this chapter, we show

how to access the new Socket class from the C# language. Chapter 14 discusses the Microsoft Visual

Basic Winsock control. We decided to include this chapter after seeing how many developers rely on

Visual Basic and this control. The control is limited in its ability to utilize the advanced features of

Winsock, but it is fantastic for Visual Basic developers who require simple, easy-to-use network

communication.

Chapter 15 covers the Remote Access Server (RAS) client API. We decided to include a chapter on

RAS because of the popularity of the Internet, dial-up communication, and Virtual Private Networking

(VPN) communication. The ability for a programmer to add dial-up capability to a network application is

quite useful since it makes the program easier for the user. That is, an end user does not need to

know how to set up and establish a dial-up connection to use your network application.

Chapter 16 covers the IP Helper API, which provides useful information about the network

configuration on the current computer. This includes a new function that enumerates IPv6 specific

information.

Finally, chapters on the legacy technologies (NetBIOS, mailslots, named pipes, and Windows

Redirector) from the first edition, as well as NetBIOS command and Winsock error code references,

are included in eBook form (as Chapters 17-22) on the companion CD-ROM.

We hope that you will find this book to be a valuable learning and reference tool. We still believe it is

the most comprehensive book about Windows network programming available.

How to Use the Companion CD-ROM

In each chapter, we present code examples that demonstrate how to use many of the net-working

APIs we describe. These examples are available on the accompanying CD-ROM. To install them,

place the CD into your drive and Autorun will launch a starting menu. If the starting menu does not

launch automatically, it can be accessed by running StartCD.exe in the disc's root directory. The

sample code can be installed by selecting the Install Example Code option on the starting menu, or

you can access each example from the CD (under Samples\ChapterXX).

The CD-ROM requires a computer running a 32-bit Microsoft Windows platform.

About the eBook

The companion CD-ROM also includes an electronic version of the book that you can view using

Microsoft Internet Explorer 5.01 or later.

To Use the eBook

Insert the companion CD-ROM into your CD-ROM drive.1.

On the starting menu that appears, click eBook and follow the instructions, or select Run from

the Start menu and type D:\eBook\Autorun.exe (where D is the name of your CD-ROM disk

drive). This will install an icon for the eBook on your desktop.

2.

Click OK to exit the Installation Wizard.3.

You must have the companion CD-ROM inserted in your CD-ROM drive to run the eBook.4.

Microsoft Press Support Information

Every effort has been made to ensure the accuracy of the contents of this book and the companion

CD-ROM. Microsoft Press provides corrections for this book at

http://www.microsoft.com/mspress/support/.

Many of the function definitions and tables in this book were adapted or reprinted here with the

generous participation and permission of the Microsoft Platform SDK documentation group. Some

material is based on preliminary documentation and is subject to change. For the latest Platform SDK

information as well as updates and bug fixes, please visit the MSDN Web site at

http://www.microsoft.com/msdownload/platformsdk/sdkupdate/.

If you have comments, questions, or ideas regarding this book or its companion CD, please send them

to Microsoft Press via e-mail to:

MSPInput@Microsoft.com

or via postal mail to:

Microsoft Press

Attn: Network Programming for Microsoft Windows, Second Edition Editor

One Microsoft Way

Redmond, WA 98052-6399

Please note that product support is not offered through the above address.

http://www.microsoft.com/mspress/support/
http://www.microsoft.com/msdownload/platformsdk/sdkupdate/
mailto:MSPInput@Microsoft.com

Chapter 1

Introduction to Winsock

This chapter is dedicated to learning the basic techniques for writing successful

Winsock applications. Winsock is a standard application programming interface (API)

that allows two or more applications (or processes) to communicate either on the

same machine or across a network and is primarily designed to foster data

communication over a network. It is important to understand that Winsock is a network

programming interface and not a protocol. Winsock provides the programming

interface for applications to communicate using popular network protocols such as

Transmission Control Protocol/Internet Protocol (TCP/IP) and Internetwork Packet

Exchange (IPX). The Winsock interface inherits a great deal from the BSD Sockets

implementation on UNIX platforms. In Windows environments, the interface has

evolved into a truly protocol-independent interface, especially with the release of

Winsock 2.

In this chapter, we'll look at the fundamentals of setting up communication from one

machine on a network to another, along with how to send and receive data. The

examples presented in this chapter help to provide an understanding of the Winsock

calls that are required for accepting connections, establishing connections, and

sending and receiving data. Because the purpose of this chapter is to learn these

fundamental Winsock calls, the examples presented use straight blocking Winsock

calls. Chapter 5 presents non-blocking and other advanced I/O methods available in

Winsock, including code examples.

In addition, in this chapter we will present both the Winsock 1 and Winsock 2 versions

of the various API functions. You can differentiate the two functions with the WSA

prefix. If Winsock 2 updated or added a new API function in its specification, the

function name is prefixed with WSA. For example, the Winsock 1 function to create a

socket is simply socket. Winsock 2 introduces a newer version named WSASocket

that is capable of using some of the new features made available in Winsock 2. There

are a few exceptions to this naming rule. WSAStartup, WSACleanup, WSARecvEx,

and WSAGetLastError are in the Winsock 1.1 specification.

Before you begin developing an application using Winsock, you need to understand

what files and libraries are required to build your application.

Winsock Headers and Libraries

As mentioned previously, Winsock is available in two major versions—Winsock 1 and

Winsock 2—on all Windows platforms except Windows CE (Windows CE has only

Winsock 1). When developing new applications you should target the Winsock 2

specification by including WINSOCK2.H in your application. For compatibility with

older Winsock applications and when developing on Windows CE platforms,

WINSOCK.H is available. There is also an additional header file: MSWSOCK.H, which

targets Microsoft-specific programming extensions that are normally used for

developing high performance Winsock applications, which will be described in Chapter

6.

When compiling your application with WINSOCK2.H, you should link with

WS2_32.LIB library. When using WINSOCK.H (as on Windows CE) you should use

WSOCK32.LIB. If you use extension APIs from MSWSOCK.H, you must also link with

MSWSOCK.DLL. Once you have included the necessary header files and link

environment, you are ready to begin coding your application, which requires initializing

Winsock.

Initializing Winsock

Every Winsock application must load the appropriate version of the Winsock DLL. If

you fail to load the Winsock library before calling a Winsock function, the function

returns a SOCKET_ERROR; the error will be WSANOTINITIALISED. Loading the

Winsock library is accomplished by calling the WSAStartup function, which is defined

as

int WSAStartup(

 WORD wVersionRequested,

 LPWSADATA lpWSAData

);

The wVersionRequested parameter is used to specify the version of the Winsock

library you want to load. The high-order byte specifies the minor version of the

requested Winsock library, while the low-order byte is the major version. You can use

the handy macro MAKEWORD(x, y), in which x is the high byte and y is the low byte,

to obtain the correct value for wVersionRequested.

The lpWSAData parameter is a pointer to a LPWSADATA structure that WSAStartup

fills with information related to the version of the library it loads:

typedef struct WSAData

{

 WORD wVersion;

 WORD wHighVersion;

 char szDescription[WSADESCRIPTION_LEN + 1];

 char szSystemStatus[WSASYS_STATUS_LEN + 1];

 unsigned short iMaxSockets;

 unsigned short iMaxUdpDg;

 char FAR * lpVendorInfo;

} WSADATA, * LPWSADATA;

WSAStartup sets the first field, wVersion, to the Winsock version you will be using.

The wHighVersion parameter holds the highest version of the Winsock library

available. Remember that in both of these fields, the high-order byte represents the

Winsock minor version, and the low-order byte is the major version. The szDescription

and szSystemStatus fields are set by the particular implementation of Winsock and

aren't really useful. Do not use the next two fields, iMaxSockets and iMaxUdpDg.

They are supposed to be the maximum number of concurrently open sockets and the

maximum datagram size; however, to find the maximum datagram size you should

query the protocol information through WSAEnumProtocols (see Chapter 2). The

maximum number of concurrent sockets isn't some magic number—it depends more

on the physical resources available. Finally, the lpVendorInfo field is reserved for

vendor-specific information regarding the implementation of Winsock. This field is not

used on any Windows platforms.

Table 1-1 lists the versions of Winsock that the various Microsoft Windows platforms

support. What's important to remember is the difference between major versions.

WINSOCK 1.x does not support many of the advanced Winsock features detailed in

this section.

Table 1-1Supported Winsock Versions

Platform Winsock Version

Windows 95 1.1 (2.2)

Windows 98 2.2

Windows Me 2.2

Windows NT 4.0 2.2

Windows 2000 2.2

Windows XP 2.2

Windows CE 1.1

Note that even though a platform supports Winsock 2, you do not have to request the

latest version. That is, if you want to write an application that is supported on a

majority of platforms, you should write it to the Winsock 1.1 specification. This

application will run perfectly well on Windows NT 4.0 because all Winsock 1.1 calls

are mapped through the Winsock 2 DLL. Also, if a newer version of the Winsock

library becomes available for a platform that you use, it is often in your best interest to

upgrade. These new versions contain bug fixes, and your old code should run without

a problem—at least theoretically. In some cases, the Winsock stack's behavior is

different from what the specification defines. As a result, many programmers write

their applications according to the behavior of the particular platform they are targeting

instead of the specification.

For the most part, when writing new applications you will load the latest version of the

Winsock library currently available. Remember that if, for example, Winsock 3 is

released, your application that loads version 2.2 should run as expected. If you

request a Winsock version later than that which the platform supports, WSAStartup

will fail. Upon return, the wHighVersion of the WSADATA structure will be the latest

version supported by the library on the current system.

When your application is completely finished using the Winsock interface, you should

call WSACleanup, which allows Winsock to free up any resources allocated by

Winsock and cancel any pending Winsock calls that your application made.

WSACleanup is defined as

int WSACleanup(void);

Failure to call WSACleanup when your application exits is not harmful because the

operating system will free up resources automatically; however, your application will

not be following the Winsock specification. Also, you should call WSACleanup for

each call that is made to WSAStartup.

Error Checking and Handling

We'll first cover error checking and handling, as they are vital to writing a successful

Winsock application. It is actually common for Winsock functions to return an error;

however, there are some cases in which the error is not critical and communication

can still take place on that socket. The most common return value for an unsuccessful

Winsock call is SOCKET_ERROR, although this is certainly not always the case.

When covering each API call in detail, we'll point out the return value corresponding to

an error. The constant SOCKET_ERROR actually is -1. If you make a call to a

Winsock function and an error condition occurs, you can use the function

WSAGetLastError to obtain a code that indicates specifically what happened. This

function is defined as

int WSAGetLastError (void);

A call to the function after an error occurs will return an integer code for the particular

error that occurred. These error codes returned from WSAGetLastError all have

predefined constant values that are declared in either WINSOCK.H or WINSOCK2.H,

depending on the version of Winsock. The only difference between the two header

files is that WINSOCK2.H contains more error codes for some of the newer API

functions and capabilities introduced in Winsock 2. The constants defined for the

various error codes (with #define directives) generally begin with WSAE. On the flip

side of WSAGetLastError, there is WSASetLastError, which allows you to manually

set error codes that WSAGetLastError retrieves.

The following program demonstrates how to construct a skeleton Winsock application

based on the discussion so far:

#include <winsock2.h>

void main(void)

{

 WSADATA wsaData;

 // Initialize Winsock version 2.2

 if ((Ret = WSAStartup(MAKEWORD(2,2), &wsaData)) != 0)

 {

 // NOTE: Since Winsock failed to load we cannot use

 // WSAGetLastError to determine the specific error for

 // why it failed. Instead we can rely on the return

 // status of WSAStartup.

 printf("WSAStartup failed with error %d\n", Ret);

 return;

 }

 // Setup Winsock communication code here

 // When your application is finished call WSACleanup

 if (WSACleanup() == SOCKET_ERROR)

 {

 printf("WSACleanup failed with error %d\n", WSAGetLastError());

 }

}

Now we are ready to describe how to set up communication using a network protocol.

Addressing a Protocol

For simplicity's sake, and to avoid repetition, the remaining discussion in this chapter

is limited to describing how to make fundamental Winsock calls to set up

communication using the Internet Protocol (IP). We chose IP because most Winsock

applications developed today use it because it is widely available due to the popularity

of the Internet. As we mentioned earlier, Winsock is a protocol-independent interface

and specific details for using other protocols, such as IPX, are covered in Chapter 4.

Also, our discussion of IP in this chapter is limited to briefly describing IP version 4

(IPv4). Chapter 3 fully describes all IP versions—IPv4 and IP version 6 (IPv6)—in

greater detail.

Throughout the remainder of this chapter, we will demonstrate the basics of how to

set up Winsock communication using the IPv4 protocol. IP is widely available on most

computer operating systems and can be used on most local area networks (LANs),

such as a small network in your office, and on wide area networks (WANs), such as

the Internet. By design, IP is a connectionless protocol and doesn't guarantee data

delivery. Two higher-level protocols—Transmission Control Protocol (TCP) and User

Datagram Protocol (UDP)—are used for connection-oriented and connectionless data

communication over IP, which we will describe later. Both TCP and UDP use IP for

data transmission and are normally referred to as TCP/IP and UDP/IP. To use IPv4 in

Winsock, you need understand how to address IPv4.

Addressing IPv4

In IPv4, computers are assigned an address that is represented as a 32-bit quantity.

When a client wants to communicate with a server through TCP or UDP, it must

specify the server's IP address along with a service port number. Also, when servers

want to listen for incoming client requests, they must specify an IP address and a port

number. In Winsock, applications specify IP addresses and service port information

through the SOCKADDR_IN structure, which is defined as

struct sockaddr_in

{

 short sin_family;

 u_short sin_port;

 struct in_addr sin_addr;

 char sin_zero[8];

};

The sin_family field must be set to AF_INET, which tells Winsock we are using the IP

address family.

The sin_port field defines which TCP or UDP communication port will be used to

identify a server service. Applications should be particularly careful in choosing a port

because some of the available port numbers are reserved for well-known services,

such as File Transfer Protocol (FTP) and Hypertext Transfer Protocol (HTTP). There

are more details about choosing a port in Chapter 2.

The sin_addr field of the SOCKADDR_IN structure is used for storing an IPv4 address

as a four-byte quantity, which is an unsigned long integer data type. Depending on

how this field is used, it can represent a local or a remote IP address. IP addresses

are normally specified in Internet standard dotted notation as “a.b.c.d.” Each letter

represents a number (in decimal, octal, or hexadecimal format) for each byte and is

assigned, from left to right, to the four bytes of the unsigned long integer. The final

field, sin_zero, functions only as padding to make the SOCKADDR_IN structure the

same size as the SOCKADDR structure.

A useful support function named inet_addr converts a dotted IP address to a 32-bit

unsigned long integer quantity. The inet_addr function is defined as

unsigned long inet_addr(

 const char FAR *cp

);

The cp field is a null-terminated character string that accepts an IP address in dotted

notation. Note that this function returns an IP address as a 32-bit unsigned long

integer in network-byte order.

Byte Ordering

Different computer processors represent numbers in big-endian and little-endian

form, depending on how they are designed. For example, on Intel x86 processors,

multibyte numbers are represented in little-endian form: the bytes are ordered from

least significant to most significant. When an IP address and port number are

specified as multibyte quantities in a computer, they are represented in host-byte

order. However, when IP addresses and port numbers are specified over a network,

Internet networking standards specify that multibyte values must be represented in

big-endian form (most significant byte to least significant), normally referred to as

network-byte order.

A series of functions can be used to convert a multibyte number from host-byte order

to network-byte order and vice versa. The following four API functions convert a

number from host-byte to network-byte order:

u_long htonl(u_long hostlong);

int WSAHtonl(

 SOCKET s,

 u_long hostlong,

 u_long FAR * lpnetlong

);

u_short htons(u_short hostshort);

int WSAHtons(

 SOCKET s,

 u_short hostshort,

 u_short FAR * lpnetshort

);

The hostlong parameter of htonl and WSAHtonl is a four-byte number in host-byte

order. The htonl function returns the number in network-byte order, whereas the

WSAHtonl function returns the number in network-byte order through the lpnetlong

parameter. The hostshort parameter of htons and WSAHtons is a two-byte number in

host-byte order. The htons function returns the number as a two-byte value in

network-byte order, whereas the WSAHtons function returns the number through the

lpnetshort parameter.

The next four functions are the opposite of the preceding four functions; they convert

network-byte order to host-byte order.

u_long ntohl(u_long netlong);

int WSANtohl(

 SOCKET s,

 u_long netlong,

 u_long FAR * lphostlong

);

u_short ntohs(u_short netshort);

int WSANtohs(

 SOCKET s,

 u_short netshort,

 u_short FAR * lphostshort

);

We will now demonstrate how to address IPv4 by creating a SOCKADDR_IN structure

using the inet_addr and htons functions described previously.

SOCKADDR_IN InternetAddr;

INT nPortId = 5150;

InternetAddr.sin_family = AF_INET;

// Convert the proposed dotted Internet address 136.149.3.29

// to a four-byte integer, and assign it to sin_addr

InternetAddr.sin_addr.s_addr = inet_addr("136.149.3.29");

// The nPortId variable is stored in host-byte order. Convert

// nPortId to network-byte order, and assign it to sin_port.

InternetAddr.sin_port = htons(nPortId);

As you can probably tell, IP addresses aren't easy to remember. Most people would

much rather refer to a machine (or host) by using an easy-to-remember, user-friendly

host name instead of an IP address. Chapter 3 describes useful address and name

resolution functions that can help you resolve a host name, such as

www.somewebsite.com, to an IP address and a service name, such as FTP, to a port

number using functions such as getaddrinfo, getnameinfo, gethostbyaddr,

gethostbyname, gethostname, getprotobyname, getprotobynumber, get-servbyname,

and getservbyport. There are also some asynchronous versions of some of these

functions: WSAAsyncGetHostByAddr, WSAAsyncGetHostByName,

WSAAsyncGetProtoByName, WSAAsyncGetProtoByNumber, WSAAsyncGetServBy-

Name, and WSAAsyncGetServByPort.

Now that you have the basics of addressing a protocol such as IPv4, you can prepare

to set up communication by creating a socket.

Creating a Socket

If you're familiar with Winsock, you know that the API is based on the concept of a

socket. A socket is a handle to a transport provider. In Windows, a socket is not the

same thing as a file descriptor and therefore is a separate type: SOCKET in

WINSOCK2.H. There are two functions that can be used to create a socket: socket

and WSASocket. The next three chapters describe socket creation for each of the

available protocols in great detail. For simplicity, we will briefly describe socket:

SOCKET socket (

 int af,

 int type,

 int protocol

);

The first parameter, af, is the protocol's address family. Since we describe Winsock in

this chapter using only the IPv4 protocol, you should set this field to AF_INET. The

second parameter, type, is the protocol's socket type. When you are creating a socket

to use TCP/IP, set this field to SOCK_STREAM, for UDP/IP use SOCK_DGRAM. The

third parameter is protocol and is used to qualify a specific transport if there are

multiple entries for the given address family and socket type. For TCP you should set

this field to IPPROTO_TCP; for UDP use IPPROTO_UDP. Chapter 2 describes

socket creation in greater detail for all protocols, including the WSASocket API.

Winsock features four useful functions to control various socket options and socket

behaviors: setsockopt, getsockopt, ioctlsocket, and WSAIoctl. For simple Winsock

programming, you will not need to use them specifically. Chapter 7 describes each of

these functions and all the available options. Once you have successfully created a

socket, you are ready to set up communication on the socket to prepare it for sending

and receiving data. In Winsock there are two basic communication techniques:

connection-oriented and connectionless communication.

Connection-Oriented Communication

In this section, we'll cover the Winsock functions necessary for both receiving connections and establishing

connections. We'll first discuss how to develop a server by listening for client connections and explore the

process for accepting or rejecting a connection. Then we'll describe how to develop a client by initiating a

connection to a server. Finally, we'll discuss how data is transferred in a connection-oriented session.

In IP, connection-oriented communication is accomplished through the TCP/IP protocol. TCP provides reliable

error-free data transmission between two computers. When applications communicate using TCP, a virtual

connection is established between the source computer and the destination computer. Once a connection is

established, data can be exchanged between the computers as a two-way stream of bytes.

Server API Functions

A server is a process that waits for any number of client connections with the purpose of servicing their

requests. A server must listen for connections on a well-known name. In TCP/IP, this name is the IP address

of the local interface and a port number. Every protocol has a different addressing scheme and therefore a

different naming method. The first step in Winsock is to create a socket with either the socket or WSASocket

call and bind the socket of the given protocol to its well-known name, which is accomplished with the bind API

call. The next step is to put the socket into listening mode, which is performed (appropriately enough) with the

listen API function. Finally, when a client attempts a connection, the server must accept the connection with

either the accept or WSAAccept call. In the next few sections, we will discuss each API call that is required for

binding, listening, and accepting a client connection. Figure 1-1 illustrates the basic calls a server and a client

must perform in order to establish a communication channel.

Figure 1-1 Winsock basics for server and client

Binding

Once the socket of a particular protocol is created, you must bind it to a well-known address. The bind

function associates the given socket with a well-known address. This function is declared as

int bind(

 SOCKET s,

 const struct sockaddr FAR* name,

 int namelen

);

The first parameter, s, is the socket on which you want to wait for client connections. The second parameter is

of type struct sockaddr, which is simply a generic buffer. You must actually fill out an address buffer specific to

the protocol you are using and cast that as a struct sockaddr when calling bind. The Winsock header file

defines the type SOCKADDR as struct sockaddr. We'll use this type throughout the chapter for brevity. The

third parameter is simply the size of the protocol-specific address structure being passed. For example, the

following code illustrates how this is done on a TCP connection:

SOCKET s;

SOCKADDR_IN tcpaddr;

int port = 5150;

s = socket(AF_INET, SOCK_STREAM, IPPROTO_TCP);

tcpaddr.sin_family = AF_INET;

tcpaddr.sin_port = htons(port);

tcpaddr.sin_addr.s_addr = htonl(INADDR_ANY);

bind(s, (SOCKADDR *)&tcpaddr, sizeof(tcpaddr));

From the example, you'll see a stream socket being created, followed by setting up the TCP/IP address

structure on which client connections will be accepted. In this case, the socket is being bound to the default IP

interface by using a special address, INADDR_ANY, and occupies port number 5150. We could have

specified an explicit IP address available on the system, but INADDR_ANY allows us to bind to all available

interfaces on the system so that any incoming client connection on any interface (but the correct port) will be

accepted by our listening socket. The call to bind formally establishes this association of the socket with the

local IP interface and port.

On error, bind returns SOCKET_ERROR. The most common error encountered with bind is

WSAEADDRINUSE. With TCP/IP, the WSAEADDRINUSE error indicates that another process is already

bound to the local IP interface and port number or that the IP interface and port number are in the

TIME_WAIT state. If you call bind again on a socket that is already bound, WSAEFAULT will be returned.

Listening

The next piece of the equation is to put the socket into listening mode. The bind function merely associates

the socket with a given address. The API function that tells a socket to wait for incoming connections is listen,

which is defined as

int listen(

 SOCKET s,

 int backlog

);

Again, the first parameter is a bound socket. The backlog parameter specifies the maximum queue length for

pending connections. This is important when several simultaneous requests are made to the server. For

example, let's say the backlog parameter is set to two. If three client requests are made at the same time, the

first two will be placed in a “pending” queue so that the application can service their requests. The third

connection request will fail with WSAECONNREFUSED. Note that once the server accepts a connection, the

request is removed from the queue so that others can make a request. The backlog parameter is silently

limited to a value that the underlying protocol provider determines. Illegal values are replaced with their

nearest legal values. In addition, there is no standard provision for finding the actual backlog value.

The errors associated with listen are fairly straightforward. By far the most common is WSAEINVAL, which

usually indicates that you forgot to call bind before listen. Otherwise, it is possible to receive the

WSAEADDRINUSE error on the listen call as opposed to the bind call. This error occurs most often on the

bind call.

Accepting Connections

Now you're ready to accept client connections. This is accomplished with the accept, WSAAccept, or

AcceptEx function. (AcceptEx, an extended version of accept, is described in detail in Chapter 6.) The

prototype for accept is

SOCKET accept(

 SOCKET s,

 struct sockaddr FAR* addr,

 int FAR* addrlen

);

Parameter s is the bound socket that is in a listening state. The second parameter should be the address of a

valid SOCKADDR_IN structure, while addrlen should be a reference to the length of the SOCKADDR_IN

structure. For a socket of another protocol, substitute the SOCKADDR_IN with the SOCKADDR structure

corresponding to that protocol. A call to accept services the first connection request in the queue of pending

connections. When the accept function returns, the addr structure contains the IPv4 address information of

the client making the connection request, and the addrlen parameter indicates the size of the structure. In

addition, accept returns a new socket descriptor that corresponds to the accepted client connection. For all

subsequent operations with this client, the new socket should be used. The original listening socket is still

open to accept other client connections and is still in listening mode.

If an error occurs, INVALID_SOCKET is returned. The most common error encountered is

WSAEWOULDBLOCK if the listening socket is in asynchronous or non-blocking mode and there is no

connection to be accepted. Block, non-blocking, and other socket modes are covered in Chapter 5. Winsock 2

introduced the function WSAAccept, which has the capability to conditionally accept a connection based on

the return value of a condition function. Chapter 10 will describe WSAAccept in greater detail.

At this point, we have described all the necessary elements to construct a simple Winsock TCP/IP server

application. The following program fragment demonstrates how to write a simple server that can accept one

TCP/IP connection. We did not perform any error checking on the calls to make reading the code less

confusing. You will find a complete version of this application in a file named TCPSERVER on the companion

CD.

#include <winsock2.h>

void main(void)

{

 WSADATA wsaData;

 SOCKET ListeningSocket;

 SOCKET NewConnection;

 SOCKADDR_IN ServerAddr;

 SOCKADDR_IN ClientAddr;

 int Port = 5150;

 // Initialize Winsock version 2.2

 WSAStartup(MAKEWORD(2,2), &wsaData);

 // Create a new socket to listen for client connections.

 ListeningSocket = socket(AF_INET, SOCK_STREAM, IPPROTO_TCP);

 // Set up a SOCKADDR_IN structure that will tell bind that we

 // want to listen for connections on all interfaces using port

 // 5150. Notice how we convert the Port variable from host byte

 // order to network byte order.

 ServerAddr.sin_family = AF_INET;

 ServerAddr.sin_port = htons(Port);

 ServerAddr.sin_addr.s_addr = htonl(INADDR_ANY);

 // Associate the address information with the socket using bind.

 bind(ListeningSocket, (SOCKADDR *)&ServerAddr,

 sizeof(ServerAddr));

 // Listen for client connections. We used a backlog of 5, which

 // is normal for many applications.

 listen(ListeningSocket, 5);

 // Accept a new connection when one arrives.

 NewConnection = accept(ListeningSocket, (SOCKADDR *)

 &ClientAddr,&ClientAddrLen));

 // At this point you can do two things with these sockets. Wait

 // for more connections by calling accept again on ListeningSocket

 // and start sending or receiving data on NewConnection. We will

 // describe how to send and receive data later in the chapter.

 // When you are finished sending and receiving data on the

 // NewConnection socket and are finished accepting new connections

 // on ListeningSocket, you should close the sockets using the

 // closesocket API. We will describe socket closure later in the

 // chapter.

 closesocket(NewConnection);

 closesocket(ListeningSocket);

 // When your application is finished handling the connections,

 // call WSACleanup.

 WSACleanup();

}

Now that you understand how to construct a server that can receive a client connection, we will describe how

to construct a client.

Client API Functions

The client is much simpler and involves fewer steps to set up a successful connection. There are only three

steps for a client:

Create a socket.1.

Set up a SOCKADDR address structure with the name of server you are going to connect to

(dependent on underlying protocol). For TCP/IP, this is the server's IP address and port number its

application is listening on.

2.

Initiate the connection with connect or WSAConnect.3.

You already know how to create the socket and construct a SOCKADDR structure, so the only remaining step

is establishing a connection.

TCP States

As a Winsock programmer, you are not required to know the actual TCP states, but by knowing them you will

gain a better understanding of how the Winsock API calls affect change in the underlying protocol. In addition,

many programmers run into a common problem when closing sockets: the TCP states surrounding a socket

closure are of the most interest.

The start state of every socket is the CLOSED state. When a client initiates a connection, it sends a SYN

packet to the server and puts the client socket in the SYN_SENT state. When the server receives the SYN

packet, it sends a SYN-ACK packet, which the client responds to with an ACK packet. At this point, the client's

socket is in the ESTABLISHED state. If the server never sends a SYN-ACK packet, the client times out and

reverts to the CLOSED state.

When a server's socket is bound and is listening on a local interface and port, the state of the socket is

LISTEN. When a client attempts a connection, the server receives a SYN packet and responds with a

SYN-ACK packet. The state of the server's socket changes to SYN_RCVD. Finally, the client sends an ACK

packet, which causes the state of the server's socket to change to ESTABLISHED.

Once the application is in the ESTABLISHED state, there are two paths for closure. If your application initiates

the closure, it is known as an active socket closure; otherwise, the socket closure is passive. Figure 1-2

illustrates both an active and a passive closure. If you actively initiate a closure, your application sends a FIN

packet. When your application calls closesocket or shutdown (with SD_SEND as its second argument), your

application sends a FIN packet to the peer, and the state of your socket changes to FIN_WAIT_1. Normally,

the peer responds with an ACK packet, and your socket's state becomes FIN_WAIT_2. If the peer also closes

the connection, it sends a FIN packet and your computer responds by sending an ACK packet and placing

your socket in the TIME_WAIT state.

The TIME_WAIT state is also called the 2MSL wait state. MSL stands for Maximum Segment Lifetime and

represents the amount of time a packet can exist on the network before being discarded. Each IP packet has

a time-to-live (TTL) field, which when decremented to 0 causes the packet to be discarded. Each router on

the network that handles the packet decrements the TTL by 1 and passes the packet on. Once an application

enters the TIME_WAIT state, it remains there for twice the MSL time. This allows TCP to re-send the final

ACK in case it's lost, causing the FIN to be retransmitted. After the 2MSL wait state completes, the socket

goes to the CLOSED state.

On an active close, two other paths lead to the TIME_WAIT state. In our previous discussion, only one side

issues a FIN and receives an ACK response, but the peer is still free to send data until it too closes. This is

where the other two paths come into play. In one path—the simultaneous close—a computer and its peer at

the other side of a connection issue a close at the same time; the computer sends a FIN packet to the peer

and receives a FIN packet from the peer. Then the computer sends an ACK packet in response to the peer's

FIN packet and changes its socket to the CLOSING state. Once the computer receives the last ACK packet

from the peer, the computer's socket state becomes TIME_WAIT.

Figure 1-2 TCP socket closure states

The other path for an active closure is just a variation on the simultaneous close: the socket transitions from

the FIN_WAIT_1 state directly to the TIME_WAIT state. This occurs when an application sends a FIN packet

but shortly thereafter receives a FIN-ACK packet from the peer. In this case, the peer is acknowledging the

application's FIN packet and sending its own, to which the application responds with an ACK packet.

The major effect of the TIME_WAIT state is that while a TCP connection is in the 2MSL wait state, the socket

pair defining that connection cannot be reused. A socket pair is the combination of local IP–local port and

remote IP–remote port. Some TCP implementations do not allow the reuse of any port number in a socket

pair in the TIME_WAIT state. Microsoft's implementation does not suffer from this deficiency. However, if a

connection is attempted in which the socket pair is already in the TIME_WAIT state, the connection attempt

will fail with error WSAEADDRINUSE. One way around this (besides waiting for the socket pair that is using

that local port to leave the TIME_WAIT state) is to use the socket option SO_REUSEADDR. Chapter 7 covers

the SO_REUSEADDR option in detail.

The last point of discussion for socket states is the passive closure. In this scenario, an application receives a

FIN packet from the peer and responds with an ACK packet. At this point, the application's socket changes to

the CLOSE_WAIT state. Because the peer has closed its end, it can't send any more data, but the application

still can until it also closes its end of the connection. To close its end of the connection, the application sends

its own FIN, causing the application's TCP socket state to become LAST_ACK. After the application receives

an ACK packet from the peer, the application's socket reverts to the CLOSED state.

For more information regarding the TCP/IP protocol, consult RFC 793. This RFC and others can be found at

http://www.rfc-editor.org.

connect

http://www.rfc-editor.org

Connecting a socket is accomplished by calling connect, WSAConnect, or ConnectEx. We'll look at the

Winsock 1 version of this function, which is defined as

int connect(

 SOCKET s,

 const struct sockaddr FAR* name,

 int namelen

);

The parameters are fairly self-explanatory: s is the valid TCP socket on which to establish the connection,

name is the socket address structure (SOCKADDR_IN) for TCP that describes the server to connect to, and

namelen is the length of the name variable.

If the computer you're attempting to connect to does not have a process listening on the given port, the

connect call fails with the WSAECONNREFUSED error. The other error you might encounter is

WSAETIMEDOUT, which occurs if the destination you're trying to reach is unavailable (either because of a

communication-hardware failure on the route to the host or because the host is not currently on the network).

The following program fragment demonstrates how to write a simple client that can connect to the server

application described earlier. You will find a complete version of this application in a file called TCPCLIENT on

the companion CD.

#include <winsock2.h>

void main(void)

{

 WSADATA wsaData;

 SOCKET s;

 SOCKADDR_IN ServerAddr;

 int Port = 5150;

 // Initialize Winsock version 2.2

 WSAStartup(MAKEWORD(2,2), &wsaData);

 // Create a new socket to make a client connection.

 s = socket(AF_INET, SOCK_STREAM, IPPROTO_TCP);

 // Set up a SOCKADDR_IN structure that will be used to connect

 // to a listening server on port 5150. For demonstration

 // purposes, let's assume our server's IP address is 136.149.3.29.

 // Obviously, you will want to prompt the user for an IP address

 // and fill in this field with the user's data.

 ServerAddr.sin_family = AF_INET;

 ServerAddr.sin_port = htons(Port);

 ServerAddr.sin_addr.s_addr = inet_addr("136.149.3.29");

 // Make a connection to the server with socket s.

 connect(s, (SOCKADDR *) &ServerAddr, sizeof(ServerAddr));

 // At this point you can start sending or receiving data on

 // the socket s. We will describe sending and receiving data

 // later in the chapter.

 // When you are finished sending and receiving data on socket s,

 // you should close the socket using the closesocket API. We will

 // describe socket closure later in the chapter.

 closesocket(s);

 // When your application is finished handling the connection, call

 // WSACleanup.

 WSACleanup();

}

Now that you can set up communication for a connection-oriented server and client, you are ready to begin

handling data transmission.

Data Transmission

Sending and receiving data is what network programming is all about. For sending data on a connected

socket, there are two API functions: send and WSASend. The second function is specific to Winsock 2.

Likewise, two functions are for receiving data on a connected socket: recv and WSARecv. The latter is also a

Winsock 2 call. An important thing to keep in mind is that all buffers associated with sending and receiving

data are of the simple char type which is just simple byte-oriented data. In reality, it can be a buffer with any

raw data in it—whether it's binary or string data doesn't matter.

In addition, the error code returned by all send and receive functions is SOCKET_ERROR. Once an error is

returned, call WSAGetLastError to obtain extended error information. The two most common errors

encountered are WSAECONNABORTED and WSAECONNRESET. Both of these deal with the connection

being closed—either through a timeout or through the peer closing the connection. Another common error is

WSAEWOULDBLOCK, which is normally encountered when either nonblocking or asynchronous sockets are

used. This error basically means that the specified function cannot be completed at this time. In Chapter 5, we

will describe various Winsock I/O methods that can help you avoid some of these errors.

send and WSASend

The first API function to send data on a connected socket is send, which is prototyped as

int send(

 SOCKET s,

 const char FAR * buf,

 int len,

 int flags

);

The SOCKET parameter is the connected socket to send the data on. The second parameter, buf, is a pointer

to the character buffer that contains the data to be sent. The third parameter, len, specifies the number of

characters in the buffer to send. Finally, the flags parameter can be either 0, MSG_DONTROUTE, or

MSG_OOB. Alternatively, the flags parameter can be a bitwise OR any of those flags. The

MSG_DONTROUTE flag tells the transport not to route the packets it sends. It is up to the underlying

transport to honor this request (for example, if the transport protocol doesn't support this option, it will be

ignored). The MSG_OOB flag signifies that the data should be sent out of band.

On a good return, send returns the number of bytes sent; otherwise, if an error occurs, SOCKET_ERROR will

be returned. A common error is WSAECO-NNABORTED, which occurs when the virtual circuit terminates

because of a timeout failure or a protocol error. When this occurs, the socket should be closed, as it is no

longer usable. The error WSAECONNRESET occurs when the application on the remote host resets the

virtual circuit by executing a hard close or terminating unexpectedly, or when the remote host is rebooted.

Again, the socket should be closed after this error occurs. The last common error is WSAETIMEDOUT, which

occurs when the connection is dropped because of a network failure or the remote connected system going

down without notice.

The Winsock 2 version of the send API function, WSASend, is defined as

int WSASend(

 SOCKET s,

 LPWSABUF lpBuffers,

 DWORD dwBufferCount,

 LPDWORD lpNumberOfBytesSent,

 DWORD dwFlags,

 LPWSAOVERLAPPED lpOverlapped,

 LPWSAOVERLAPPED_COMPLETION_ROUTINE lpCompletionRoutine

);

The socket is a valid handle to a connection session. The second parameter is a pointer to one or more

WSABUF structures. This can be either a single structure or an array of such structures. The third parameter

indicates the number of WSABUF structures being passed. Remember that each WSABUF structure is a

character buffer and the length of that buffer. You might wonder why you would want to send more than one

buffer at a time. This is called scatter-gather I/O and will be discussed later in this chapter; however, in the

case of data sent using multiple buffers on a connected socket, each buffer is sent from the first to the last

WSABUF structure in the array. The lpNumberOfBytesSent is a pointer to a DWORD that on return from the

WSASend call contains the total number of bytes sent. The dwFlags parameter is equivalent to its counterpart

in send. The last two parameters, lpOverlapped and lpCompletionRoutine, are used for overlapped I/O.

Overlapped I/O is one of the asynchronous I/O models that Winsock supports and is discussed in detail in

Chapter 5.

The WSASend function sets lpNumberOfBytesSent to the number of bytes written. The function returns 0 on

success and SOCKET_ERROR on any error, and generally encounters the same errors as the send function.

There is one final send function you should be aware of: WSASendDisconnect.

WSASendDisconnect

This function is rather specialized and not generally used. The function prototype is

int WSASendDisconnect (

 SOCKET s,

 LPWSABUF lpOutboundDisconnectData

);

Out-of-Band Data

When an application on a connected stream socket needs to send data that is more important than regular

data on the stream, it can mark the important data as out-of-band (OOB) data. The application on the other

end of a connection can receive and process OOB data through a separate logical channel that is

conceptually independent of the data stream.

In TCP, OOB data is implemented via an urgent 1-bit marker (called URG) and a 16-bit pointer in the TCP

segment header that identify a specific downstream byte as urgent data. Two specific ways of implementing

urgent data currently exist for TCP. RFC 793, which describes TCP and introduces the concept of urgent

data, indicates that the urgent pointer in the TCP header is a positive offset to the byte that follows the urgent

data byte. However, RFC 1122 describes the urgent offset as pointing to the urgent byte itself.

The Winsock specification uses the term OOB to refer to both protocol-independent OOB data and TCP's

implementation of OOB data (urgent data). To check whether pending data contains urgent data, you must

call the ioctlsocket function with the SIOCATMARK option. Chapter 7 discusses how to use SIOCATMARK.

Winsock provides several methods for obtaining the urgent data. Either the urgent data is inlined so that it

appears in the normal data stream, or inlining can be turned off so that a discrete call to a receive function

returns only the urgent data. The socket option SO_OOBINLINE, also discussed in detail in Chapter 7,

controls the behavior of OOB data.

Telnet and Rlogin use urgent data for several reasons. However, unless you plan to write your own Telnet or

Rlogin, you should stay away from urgent data. It's not well defined and might be implemented differently on

platforms other than Windows. If you require a method of signaling the peer for urgent reasons, implement a

separate control socket for this urgent data and reserve the main socket connection for normal data transfers.

The function initiates a shutdown of the socket and sends disconnect data. Of course, this function is

available only to those transport protocols that support graceful close and disconnect data. None of the

transport providers currently support disconnect data. The WSASendDisconnect function behaves like a call

to the shutdown function (which is described later) with an SD_SEND argument, but it also sends the data

contained in its lpOutboundDisconnectData parameter. Subsequent sends are not allowed on the socket.

Upon failure, WSASendDisconnect returns SOCKET_ERROR. This function can encounter some of the same

errors as the send function.

recv and WSARecv

The recv function is the most basic way to accept incoming data on a connected socket. This function is

defined as

int recv(

 SOCKET s,

 char FAR* buf,

 int len,

 int flags

);

The first parameter, s, is the socket on which data will be received. The second parameter, buf, is the

character buffer that will receive the data, and len is either the number of bytes you want to receive or the size

of the buffer, buf. Finally, the flags parameter can be one of the following values: 0, MSG_PEEK, or

MSG_OOB. In addition, you can bitwise OR any one of these flags together. Of course, 0 specifies no special

actions. MSG_PEEK causes the data that is available to be copied into the supplied receive buffer, but this

data is not removed from the system's buffer. The number of bytes pending is also returned.

Message peeking is bad. Not only does it degrade performance, as you now need to make two system calls

(one to peek and one without the MSG_PEEK flag to actually remove the data), but it is also unreliable under

certain circumstances. The data returned might not reflect the entire amount available. Also, by leaving data

in the system buffers, the system has less space to contain incoming data. As a result, the system reduces

the TCP window size for all senders. This prevents your application from achieving the maximum possible

throughput. The best thing to do is to copy all the data you can into your own buffer and manipulate it there.

There are some considerations when using recv on a message- or datagram-based socket such as UDP,

which we will describe later. If the data pending is larger than the supplied buffer, the buffer is filled with as

much data as it will contain. In this event, the recv call generates the error WSAEMSGSIZE. Note that the

message-size error occurs with message-oriented protocols. Stream protocols such as TCP buffer incoming

data and will return as much data as the application requests, even if the amount of pending data is greater.

Thus, for streaming protocols you will not encounter the WSAEMSGSIZE error.

The WSARecv function adds some new capabilities over recv, such as overlapped I/O and partial datagram

notifications. The definition of WSARecv is

int WSARecv(

 SOCKET s,

 LPWSABUF lpBuffers,

 DWORD dwBufferCount,

 LPDWORD lpNumberOfBytesRecvd,

 LPDWORD lpFlags,

 LPWSAOVERLAPPED lpOverlapped,

 LPWSAOVERLAPPED_COMPLETION_ROUTINE lpCompletionRoutine

);

Parameter s is the connected socket. The second and third parameters are the buffers to receive the data.

The lpBuffers parameter is an array of WSABUF structures, and dwBufferCount indicates the number of

WSABUF structures in the array. The lpNumberOfBytesReceived parameter points to the number of bytes

received by this call if the receive operation completes immediately. The lpFlags parameter can be one of the

values MSG_PEEK, MSG_OOB, or MSG_PARTIAL, or a bitwise OR combination of those values. The

MSG_PARTIAL flag has several different meanings depending on where it is used or encountered. For

message-oriented protocols that support partial messaging (like AppleTalk), this flag is set upon return from

WSARecv (if the entire message could not be returned in this call because of insufficient buffer space). In this

case, subsequent WSARecv calls set this flag until the entire message is returned, when the MSG_PARTIAL

flag is cleared. If this flag is passed as an input parameter, the receive operation should complete as soon as

data is available, even if it is only a portion of the entire message. The MSG_PARTIAL flag is used only with

message-oriented protocols, not with streaming ones. In addition, not all protocols support partial messages.

The protocol entry for each protocol contains a flag indicating whether it supports this feature. See Chapter 2

for more information. The lpOverlapped and lpCompletionRoutine parameters are used in overlapped I/O

operations, discussed in Chapter 5. There is one other specialized receive function you should be aware of:

WSARecvDisconnect.

WSARecvDisconnect

This function is the opposite of WSASendDisconnect and is defined as follows:

int WSARecvDisconnect(

 SOCKET s,

 LPWSABUF lpInboundDisconnectData

);

Like its sending counterpart, the parameters of WSASendDisconnect are the connected socket handle and a

valid WSABUF structure with the data to be received. The data received can be only disconnect data that is

sent by a WSASendDisconnect on the other side; it cannot be used to receive normal data. In addition, once

the data is received, this function disables reception from the remote party, which is equivalent to calling the

shutdown function (which is described later) with SD_RECEIVE.

Stream Protocols

Because most connection-oriented communication, such as TCP, is streaming protocols, we'll briefly describe

them here. A streaming protocol is one that the sender and receiver may break up or coalesce data into

smaller or larger groups. The main thing to be aware of with any function that sends or receives data on a

stream socket is that you are not guaranteed to read or write the amount of data you request. Let's say you

have a character buffer with 2048 bytes of data you want to send with the send function. The code to send

this is

char sendbuff[2048];

int nBytes = 2048;

// Fill sendbuff with 2048 bytes of data

// Assume s is a valid, connected stream socket

ret = send(s, sendbuff, nBytes, 0);

It is possible for send to return having sent less than 2048 bytes. The ret variable will be set to the number of

bytes sent because the system allocates a certain amount of buffer space for each socket to send and receive

data. In the case of sending data, the internal buffers hold data to be sent until such time as the data can be

placed on the wire. Several common situations can cause this. For example, simply transmitting a huge

amount of data will cause these buffers to become filled quickly. Also, for TCP/IP, there is what is known as

the window size. The receiving end will adjust this window size to indicate how much data it can receive. If the

receiver is being flooded with data, it might set the window size to 0 to catch up with the pending data. This

will force the sender to stop until it receives a new window size greater than 0. In the case of our send call,

there might be buffer space to hold only 1024 bytes, in which case you would have to resubmit the remaining

1024 bytes. The following code ensures that all your bytes are sent:

char sendbuff[2048];

int nBytes = 2048,

 nLeft,

 idx;

// Fill sendbuff with 2048 bytes of data

// Assume s is a valid, connected stream socket

nLeft = nBytes;

idx = 0;

while (nLeft > 0)

{

 ret = send(s, &sendbuff[idx], nLeft, 0);

 if (ret == SOCKET_ERROR)

 {

 // Error

 }

 nLeft -= ret;

 idx += ret;

}

The same principle holds true for receiving data on a stream socket but is less significant. Because stream

sockets are a continuous stream of data, when an application reads, it isn't generally concerned with how

much data it should read. If your application requires discrete messages over a stream protocol, you might

have to do a little work. If all the messages are the same size, life is pretty simple, and the code for reading,

say, 512-byte messages would look like this:

char recvbuff[1024];

int ret,

 nLeft,

 idx;

nLeft = 512;

idx = 0;

while (nLeft > 0)

{

 ret = recv(s, &recvbuff[idx], nLeft, 0);

 if (ret == SOCKET_ERROR)

 {

 // Error

 }

 idx += ret;

 nLeft -= ret;

}

Things get a little complicated if your message sizes vary. It is necessary to impose your own protocol to let

the receiver know how big the forthcoming message will be. For example, the first four bytes written to the

receiver will always be the integer size in bytes of the forthcoming message. The receiver will start every read

by looking at the first four bytes, converting them to an integer, and determining how many additional bytes

that message comprises.

Scatter-Gather I/O

Scatter-gather support is a concept originally introduced in Berkeley Sockets with the functions recv and

writev. This feature is available with the Winsock 2 functions WSARecv, WSARecvFrom, WSASend, and

WSASendTo. It is most useful for applications that send and receive data that is formatted in a very specific

way. For example, messages from a client to a server might always be composed of a fixed 32-byte header

specifying some operation, followed by a 64-byte data block and terminated with a 16-byte trailer. In this

example, WSASend can be called with an array of three WSABUF structures, each corresponding to the

three message types. On the receiving end, WSARecv is called with three WSABUF structures, each

containing data buffers of 32 bytes, 64 bytes, and 16 bytes.

When using stream-based sockets, scatter-gather operations simply treat the supplied data buffers in the

WSABUF structures as one contiguous buffer. Also, the receive call might return before all buffers are full. On

message-based sockets, each call to a receive operation receives a single message up to the buffer size

supplied. If the buffer space is insufficient, the call fails with WSAEMSGSIZE and the data is truncated to fit

the available space. Of course, with protocols that support partial messages, the MSG_PARTIAL flag can be

used to prevent data loss.

Breaking the Connection

Once you are finished with a socket connection, you must close it and release any resources associated with

that socket handle. To actually release the resources associated with an open socket handle, use the

closesocket call. Be aware, however, that closesocket can have some adverse effects—depending on how it

is called—that can lead to data loss. For this reason, a connection should be gracefully terminated with the

shutdown function before a call to the closesocket function. These two API functions are discussed next.

shutdown

To ensure that all data an application sends is received by the peer, a well-written application should notify

the receiver that no more data is to be sent. Likewise, the peer should do the same. This is known as a

graceful close and is performed by the shutdown function, defined as

int shutdown(

 SOCKET s,

 int how

);

The how parameter can be SD_RECEIVE, SD_SEND, or SD_BOTH. For SD_RECEIVE, subsequent calls to

any receive function on the socket are disallowed. This has no effect on the lower protocol layers. And for

TCP sockets, if data is queued for receive or if data subsequently arrives, the connection is reset. However,

on UDP sockets incoming data is still accepted and queued (because shutdown has no meaning for

connectionless protocols). For SD_SEND, subsequent calls to any send function are disallowed. For TCP

sockets, this causes a FIN packet to be generated after all data is sent and acknowledged by the receiver.

Finally, specifying SD_BOTH disables both sends and receives.

Note that not all connection-oriented protocols support graceful closure, which is what the shutdown API

performs. For these protocols (such as ATM), only closesocket needs to be called to terminate the session.

closesocket

The closesocket function closes a socket and is defined as

int closesocket (SOCKET s);

Calling closesocket releases the socket descriptor and any further calls using the socket fail with

WSAENOTSOCK. If there are no other references to this socket, all resources associated with the descriptor

are released. This includes discarding any queued data.

Pending synchronous calls issued by any thread in this process are canceled without posting any notification

messages. Pending overlapped operations are also canceled. Any event, completion routine, or completion

port that is associated with the overlapped operation is performed but will fail with the error

WSA_OPERATION_ABORTED. Socket I/O models are discussed in greater depth in Chapter 5. In addition,

one other factor influences the behavior of closesocket: whether the socket option SO_LINGER has been set.

Consult the description for the SO_LINGER option in Chapter 7 for a complete explanation.

Connectionless Communication

Connectionless communication behaves differently than connection-oriented

communication, so the method for sending and receiving data is substantially

different. First we'll discuss the receiver (or server, if you prefer) because the

connectionless receiver requires little change when compared with the

connection-oriented servers. After that we'll look at the sender.

In IP, connectionless communication is accomplished through UDP/IP. UDP doesn't

guarantee reliable data transmission and is capable of sending data to multiple

destinations and receiving it from multiple sources. For example, if a client sends data

to a server, the data is transmitted immediately regardless of whether the server is

ready to receive it. If the server receives data from the client, it doesn't acknowledge

the receipt. Data is transmitted using datagrams, which are discrete message packets.

Receiver

The steps in the process of receiving data on a connectionless socket are simple.

First, create the socket with either socket or WSASocket. Next, bind the socket to the

interface on which you wish to receive data. This is done with the bind function

(exactly like the session-oriented example). The difference with connectionless

sockets is that you do not call listen or accept. Instead, you simply wait to receive the

incoming data. Because there is no connection, the receiving socket can receive

datagrams originating from any machine on the network. The simplest of the receive

functions is recvfrom, which is defined as

int recvfrom(

 SOCKET s,

 char FAR* buf,

 int len,

 int flags,

 struct sockaddr FAR* from,

 int FAR* fromlen

);

The first four parameters are the same as recv, including the possible values for flags:

MSG_OOB and MSG_PEEK. The same warnings for using the MSG_PEEK flag also

apply to connectionless sockets. The from parameter is a SOCKADDR structure for

the given protocol of the listening socket, with fromlen pointing to the size of the

address structure. When the API call returns with data, the SOCKADDR structure is

filled with the address of the workstation that sent the data.

The Winsock 2 version of the recvfrom function is WSARecvFrom. The prototype for

this function is

int WSARecvFrom(

 SOCKET s,

 LPWSABUF lpBuffers,

 DWORD dwBufferCount,

 LPDWORD lpNumberOfBytesRecvd,

 LPDWORD lpFlags,

 struct sockaddr FAR * lpFrom,

 LPINT lpFromlen,

 LPWSAOVERLAPPED lpOverlapped,

 LPWSAOVERLAPPED_COMPLETION_ROUTINE lpCompletionRoutine

);

The difference is the use of WSABUF structures for receiving the data. You can

supply one or more WSABUF buffers to WSARecvFrom with dwBufferCount indicating

this. By supplying multiple buffers, scatter-gather I/O is possible. The total number of

bytes read is returned in lpNumberOfBytesRecvd. When you call WSARecvFrom, the

lpFlags parameter can be 0 for no options, MSG_OOB, MSG_PEEK, or

MSG_PARTIAL. These flags can be bitwise OR together. If MSG_PARTIAL is

specified when the function is called, the provider knows to return data even if only a

partial message has been received. Upon return, the flag MSG_PARTIAL is set if only

a partial message was received. Upon return, WSARecvFrom will store the address of

the sending machine in the lpFrom parameter (a pointer to a SOCKADDR structure).

Again, lpFromLen points to the size of the SOCKADDR structure, except that in this

function it is a pointer to a DWORD. The last two parameters, lpOverlapped and

lpCompletionRoutine, are used for overlapped I/O (which we'll discuss in Chapter 5).

Another method of receiving (and sending) data on a connectionless socket is to

establish a connection. This might seem strange, but it's not quite what it sounds like.

Once a connectionless socket is created, you can call connect or WSAConnect with

the SOCKADDR parameter set to the address of the remote machine to communicate

with. No actual connection is made, however. The socket address passed into a

connect function is associated with the socket so recv and WSARecv can be used

instead of recvfrom or WSARecvFrom because the data's origin is known. The

capability to connect a datagram socket is handy if you intend to communicate with

only one endpoint at a time in your application.

The following code sample demonstrates how to construct a simple UDP receiver

application. You will find a complete version of this application in a file named

UDPRECEIVER on the companion CD.

#include <winsock2.h>

void main(void)

{

 WSADATA wsaData;

 SOCKET ReceivingSocket;

 SOCKADDR_IN ReceiverAddr;

 int Port = 5150;

 char ReceiveBuf[1024];

 int BufLength = 1024;

 SOCKADDR_IN SenderAddr;

 int SenderAddrSize = sizeof(SenderAddr);

 // Initialize Winsock version 2.2

 WSAStartup(MAKEWORD(2,2), &wsaData);

 // Create a new socket to receive datagrams on.

 ReceivingSocket = socket(AF_INET, SOCK_DGRAM, IPPROTO_UDP);

 // Set up a SOCKADDR_IN structure that will tell bind that we

 // want to receive datagrams from all interfaces using port

 // 5150.

 ReceiverAddr.sin_family = AF_INET;

 ReceiverAddr.sin_port = htons(Port);

 ReceiverAddr.sin_addr.s_addr = htonl(INADDR_ANY);

 // Associate the address information with the socket using bind.

 bind(ReceivingSocket, (SOCKADDR *)&SenderAddr, sizeof(SenderAddr));

 // At this point you can receive datagrams on your bound socket.

 recvfrom(ReceivingSocket, ReceiveBuf, BufLength, 0,

 (SOCKADDR *)&SenderAddr, &SenderAddrSize);

 // When your application is finished receiving datagrams close

 // the socket.

 closesocket(ReceivingSocket);

 // When your application is finished call WSACleanup.

 WSACleanup();

}

Now that you understand how to construct a receiver that can receive a datagram, we

will describe how to construct a sender.

Sender

There are two options to send data on a connectionless socket. The first, and

simplest, is to create a socket and call either sendto or WSASendTo. We'll cover

sendto first, which is defined as

int sendto(

 SOCKET s,

 const char FAR * buf,

 int len,

 int flags,

 const struct sockaddr FAR * to,

 int tolen

);

The parameters are the same as recvfrom except that buf is the buffer of data to send

and len indicates how many bytes to send. Also, the to parameter is a pointer to a

SOCKADDR structure with the destination address of the workstation to receive the

data. The Winsock 2 function WSASendTo can also be used. This function is defined

as

int WSASendTo(

 SOCKET s,

 LPWSABUF lpBuffers,

 DWORD dwBufferCount,

 LPDWORD lpNumberOfBytesSent,

 DWORD dwFlags,

 const struct sockaddr FAR * lpTo,

 int iToLen,

 LPWSAOVERLAPPED lpOverlapped,

 LPWSAOVERLAPPED_COMPLETION_ROUTINE lpCompletionRoutine

);

Again, WSASendTo is similar to its ancestor. This function takes a pointer to one or

more WSABUF structures with data to send to the recipient as the lpBuffers

parameter, with dwBufferCount indicating how many structures are present. You can

send multiple WSABUF structures to enable scatter-gather I/O. Before returning,

WSASendTo sets the fourth parameter, lpNumberOfBytesSent, to the number of bytes

actually sent to the receiver. The lpTo parameter is a SOCKADDR structure for the

given protocol, with the recipient's address. The iToLen parameter is the length of the

SOCKADDR structure. The last two parameters, lpOverlapped and

lpCompletionRoutine, are used for overlapped I/O (discussed in Chapter 5).

As with receiving data, a connectionless socket can be connected to an endpoint

address and data can be sent with send and WSASend. Once this association is

established, you cannot go back to using sendto or WSASendTo with an address

other than the address passed to one of the connect functions. If you attempt to send

data to a different address, the call will fail with WSAEISCONN. The only way to

disassociate the socket handle from that destination is to call connect with the

destination address of INADDR_ANY.

The following code sample demonstrates how to construct a simple UDP sender

application. You will find a complete version of this application on the companion CD

in a file named UDPSENDER.

#include <winsock2.h>

void main(void)

{

 WSADATA wsaData;

 SOCKET SendingSocket;

 SOCKADDR_IN ReceiverAddr;

 int Port = 5150;

 char SendBuf[1024];

 int BufLength = 1024;

 // Initialize Winsock version 2.2

 WSAStartup(MAKEWORD(2,2), &wsaData);

 // Create a new socket to receive datagrams on.

 SendingSocket = socket(AF_INET, SOCK_DGRAM, IPPROTO_UDP);

 // Set up a SOCKADDR_IN structure that will identify who we

 // will send datagrams to. For demonstration purposes, let's

 // assume our receiver's IP address is 136.149.3.29 and waits

 // for datagrams on port 5150.

 ReceiverAddr.sin_family = AF_INET;

 ReceiverAddr.sin_port = htons(Port);

 ReceiverAddr.sin_addr.s_addr = inet_addr("136.149.3.29");

 // Send a datagram to the receiver.

 sendto(SendingSocket, SendBuf, BufLength, 0,

 (SOCKADDR *)&ReceiverAddr, sizeof(RecieverAddr));

 // When your application is finished sending datagrams close

 // the socket.

 closesocket(SendingSocket);

 // When your application is finished call WSACleanup.

 WSACleanup();

}

Message-Based Protocols

Just as most connection-oriented communication is also streaming, connectionless

communication is almost always message-based. Thus, there are some

considerations when you're sending and receiving data. First, because

message-based protocols preserve data boundaries, data submitted to a send

function blocks until completed. For non-blocking I/O modes, if a send cannot be

completely satisfied, the send function returns with the error WSAEWOULDBLOCK.

This means that the underlying system was not able to process that data and you

should attempt the send call again at a later time. This scenario will be discussed in

greater detail in Chapter 5. The main point to remember is that with message-based

protocols, the write can occur as an autonomous action only.

On the flip side, a call to a receive function must supply a sufficiently large buffer. If

the supplied buffer is not large enough, the receive call fails with the error

WSAEMSGSIZE. If this occurs, the buffer is filled to its capacity, but the remaining

data is discarded. The truncated data cannot be retrieved. The only exception is for

protocols that do support partial messages, such as the AppleTalk PAP protocol. Prior

to returning, the WSARecv, WSARecvEx, or WSARecvFrom functions set the in-out

flag parameter to MSG_PARTIAL when it receives only part of a message.

For datagrams based on protocols supporting partial messages, consider using one of

the WSARecv* functions because when you make a call to recv/recvfrom, there is no

notification that the data read is only a partial message. It is up to the programmer to

implement a method for the receiver to determine if the entire message has been

read. Subsequent calls to recv/recvfrom return other pieces of the datagram. Because

of this limitation, it can be convenient to use the WSARecvEx function, which allows

the setting and reading of the MSG_PARTIAL flag to indicate if the entire message

was read. The Winsock 2 functions WSARecv and WSARecvFrom also support this

flag. See the descriptions for WSARecv, WSARecvEx, and WSARecvFrom for

additional information about this flag.

Finally, let's take a look at one of the more frequently asked questions about sending

UDP/IP messages on machines with multiple network interfaces: What happens when

a UDP socket is bound explicitly to a local IP interface and datagrams are sent? With

UDP sockets, you don't really bind to the network interface; you create an association

whereby the IP interface that is bound becomes the source IP address of UDP

datagrams sent. The routing table actually determines which physical interface the

datagram is transmitted on. If you do not call bind but instead use either

sendto/WSASendTo or perform a connect first, the network stack automatically picks

the best local IP address based on the routing table. So if you explicitly bind first, the

source IP address could be incorrect. That is, the source IP might not be the IP

address of the interface on which the datagram was actually sent.

Releasing Socket Resources

Because there is no connection with connectionless protocols, there is no formal

shutdown or graceful closing of the connection. When the sender or the receiver is

finished sending or receiving data, it simply calls the closesocket function on the

socket handle. This releases any associated resources allocated to the socket.

Miscellaneous APIs

In this section, we'll cover a few Winsock API functions that you might find useful

when you put together your own network applications.

getpeername

This function is used to obtain the peer's socket address information on a connected

socket. The function is defined as

int getpeername(

 SOCKET s,

 struct sockaddr FAR* name,

 int FAR* namelen

);

The first parameter is the socket for the connection; the last two parameters are a

pointer to a SOCKADDR structure of the underlying protocol type and its length. For

datagram sockets, this function returns the address passed to a connect call;

however, it will not return the address passed to a sendto or WSASendTo call.

getsockname

This function is the opposite of getpeername. It returns the address information for the

local interface of a given socket. The function is defined as follows:

int getsockname(

 SOCKET s,

 struct sockaddr FAR* name,

 int FAR* namelen

);

The parameters are the same as the getpeername parameters except that the

address information returned for socket s is the local address information. In the case

of TCP, the address is the same as the server socket listening on a specific port and

IP interface.

WSADuplicateSocket

The WSADuplicateSocket function is used to create a WSAPROTOCOL_INFO

structure that can be passed to another process, thus enabling the other process to

open a handle to the same underlying socket so that it too can perform operations on

that resource. Note that this is necessary only between processes; threads in the

same process can freely pass the socket descriptors. This function is defined as

int WSADuplicateSocket(

 SOCKET s,

 DWORD dwProcessId,

 LPWSAPROTOCOL_INFO lpProtocolInfo

);

The first parameter is the socket handle to duplicate. The second parameter,

dwProcessId, is the process ID of the process that intends to use the duplicated

socket. Third, the lpProtocolInfo parameter is a pointer to a WSAPROTOCOL_INFO

structure that will contain the necessary information for the target process to open a

duplicate handle. Some form of interprocess communication must occur so that the

current process can pass the WSAPROTOCOL_INFO structure to the target process,

which then uses this structure to create a handle to the socket (using the WSASocket

function).

Both socket descriptors can be used independently for I/O. Winsock provides no

access control, however, so it is up to the programmer to enforce some kind of

synchronization. All of the state information associated with a socket is held in

common across all the descriptors because the socket descriptors are duplicated, not

the actual socket. For example, any socket option set by the setsockopt function on

one of the descriptors is subsequently visible using the getsockopt function from any

or all descriptors. If a process calls closesocket on a duplicated socket, it causes the

descriptor in that process to become deallocated. The underlying socket, however, will

remain open until closesocket is called on the last remaining descriptor.

In addition, be aware of some issues with notification on shared sockets when using

WSAAsyncSelect and WSAEventSelect. These two functions are discussed in

Chapter 5. Issuing either of these calls using any of the shared descriptors cancels

any previous event registration for the socket regardless of which descriptor was used

to make that registration. Thus, for example, a shared socket cannot deliver

FD_READ events to process A and FD_WRITE events to process B. If you require

event notifications on both descriptors, you should rethink your application design so

that it uses threads instead of processes.

Windows CE

All the information in the preceding sections applies equally to Windows CE. The only

exception is that because Windows CE is based on the Winsock 1.1 specification,

none of the Winsock 2–specific functions—such as WSA variants of the sending,

receiving, connecting, and accepting functions—is available. The only WSA functions

available with Windows CE are WSAStartup, WSACleanup, WSAGetLastError,

WSASetLastError, and WSAIoctl. We have already discussed the first three of these

functions; the last will be covered in Chapter 7.

Windows CE supports the TCP/IP protocol, which means you have access to both

TCP and UDP. In addition to TCP/IP, infrared sockets are also supported. The IrDA

protocol supports only stream-oriented communication. For both protocols, you make

all the usual Winsock 1.1 API calls for creating and transmitting data. The only

exception has to do with a bug in UDP datagram sockets in Windows CE 2.0: every

call to send or sendto causes a kernel memory leak. This bug was fixed in Windows

CE 2.1, but because the kernel is distributed in ROM, no software updates can be

distributed to fix the problem with Windows CE 2.0. The only solution is to avoid using

datagrams in Windows CE 2.0.

Because Windows CE does not support console applications and uses UNICODE

only, the examples presented in this chapter are targeted to Windows 95, Windows

98, and Windows NT platforms. The purpose of our examples is to teach the core

concepts of Winsock without having to trudge through code that doesn't relate to

Winsock. Unless you're writing a service for Windows CE, a user interface is almost

always required. This entails writing many additional functions for window handlers

and other user-interface elements, which can obfuscate what we're trying to teach. In

addition, there is the dilemma of UNICODE vs. non-UNICODE Winsock functions. It is

up to the programmer to decide if the strings passed to the sending and receiving

Winsock functions are UNICODE or ANSI strings. Winsock doesn't care what you

pass as long as it's a valid buffer. (Of course, you might need to typecast the buffer to

silence the compiler warnings.) Don't forget that if you cast a UNICODE string to

char*, the length parameter for how many bytes to send should be adjusted

accordingly. In Windows CE, if you want to display any data sent or received, you

must take into account whether it is UNICODE so that it can be displayed, as all the

other Windows system functions do require UNICODE strings. In sum, Windows CE

requires a great deal more housekeeping to make a simple Winsock application.

If you do want to run these examples on Windows CE, only a few minor modifications

are required for the Winsock code to compile. First, the header file must be

WINSOCK.H, as opposed to WINSOCK2.H. WSAStartup should load version 1.1

because that is the current version of Winsock in Windows CE. Also, Windows CE

does not support console applications so you must use WinMain instead of main. Note

that this does not mean you are required to incorporate a window into your

application; it just means you can't use console text I/O functions such as printf.

Conclusion

In this chapter, we presented the core Winsock functions that are required for

connection-oriented and connectionless communication using the TCP and UDP

protocols specifically. For connection-oriented communication, we demonstrated how

to accept a client connection and how to establish a client connection to a server. We

covered the semantics for session-oriented data-send operations and data-receive

operations. For connectionless communication, we also described how to send and

receive data. Since this chapter was designed to introduce the core Winsock APIs, we

did not address network programming performance considerations. Chapter 6 will

address performance issues and introduce the Microsoft Winsock extensions

TransmitFile, TransmitPackets, AcceptEx, GetAcceptExSockaddrs, ConnectEx,

DisconnectEx, and WSARecvMsg, which can help you write high performance,

scalable Winsock applications.

Our discussions so far have demonstrated using Winsock with the IPv4 protocol. In

the next three chapters, we will present the design of the Winsock architecture and

show how to use other available protocols.

Chapter 2

Winsock Design

Now that we've introduced the Winsock basics, we'll delve into the system architecture

and how Winsock fits into the overall system design. Afterward, we'll discuss protocol

characteristics and how applications can enumerate the installed protocols. Then we'll

discuss the details of socket creation via the socket and WSASocket functions and

how they interact with the Winsock catalog.

System Architecture

Before getting into the system architecture, it is important to mention that applications should not rely on the

specific details mentioned in this chapter (names of drivers, DLLs, etc.) as they may change in future releases.

Instead, applications should be concerned with the Winsock specification—but it is also important to have a

general understanding of the overall system design. The following section pertains mainly to the Windows

NT–based operating systems. At the end of this section, we will note some of the differences between

Windows NT and Windows 95, Windows 98, and Windows Me.

The majority of the Winsock API is implemented in WS2_32.DLL and is declared in WINSOCK2.H. The only

exception is for the Microsoft–specific Winsock extensions (such as TransmitFile, AcceptEx, etc.), which are

located in MSWSOCK.DLL. These extensions are not a part of the formal Winsock specification but have

been added by Microsoft. Also, because these are Microsoft-specific extensions and are not part of the formal

Winsock specification, some of the extension APIs are available only on certain versions of Windows. Chapter

6 covers these APIs in detail.

When an application calls into the Winsock API, it calls into WS2_32.DLL. The Winsock DLL performs some

parameter validation and then determines which protocol service provider the call should be routed to. There

may be multiple providers installed in the Winsock catalog and WS2_32.DLL determines which provider

should handle the call.

There are two types of providers: base and layered. A base provider sits on top of a transport protocol, such

as Microsoft TCP/IP and UDP/IP providers or the Resource Reservation Protocol (RSVP) provider, which

implements QOS (Chapter 10). The Microsoft base provider consists of MSAFD.DLL and MSWSOCK.DLL,

but actually exposes one or more providers for the individual protocols of TCP/IP, IPX/SPX, NetBIOS,

AppleTalk, etc. Later in this chapter we'll describe how to programmatically enumerate the providers available

on the system.

A layered provider sits below WS2_32.DLL and above a base provider and can intercept and manipulate the

Winsock calls. That is, if an application creates a socket from the layered provider, the layered provider will

intercept all Winsock calls using that socket. The layered provider may block, modify, or pass the call

unmodified to the underlying provider. Also, there may be numerous layered providers installed, one on top of

another. Layered service providers are covered in detail in Chapter 12.

Once a Winsock call makes it to the base provider, the base provider will in turn make calls to the Winsock

kernel mode component. Unlike some other operating systems, the Windows NT transport protocols do not

have a Winsock-like interface that applications can use to directly talk to them. Instead, they implement a

much more general API called the Transport Driver Interface (TDI). The generality of this API allows the

Windows NT subsystems to free themselves from being tied to a particular version-of-the-decade

network-programming interface. The sockets emulation is provided by the Winsock kernel mode driver

(currently implemented in AFD.SYS). This driver is responsible for the connection and buffer management

related to providing a sockets-like interface to an application. AFD, in turn, talks TDI to the transport protocol

driver (see Figure 2-1).

For Windows 95, Windows 98, and Windows Me, the overall architecture is similar to Windows NT except for

the kernel mode components. Since Windows 95, Windows 98, and Windows Me implement drivers within

VXDs, there is no AFD.SYS or TCPIP.SYS. Instead, the drivers are AFVXD.VXD, WSOCK2.VXD,

WSOCK.VXD, and so on. Of course, as we stated earlier, applications should not concern themselves with

the actual filenames of drivers or system components. The Winsock API is a specification that is available

across all versions of the Windows operating system.

Figure 2-1 Winsock system architecture

Protocol Characteristics

Now that we've given some information about the internals of Winsock, we'll discuss the protocols that may be

accessed. As we mentioned earlier, a Winsock provider implements a protocol that exhibits certain

characteristics. A multitude of different transport protocols are available on Windows, such as TCP, UDP, IPX,

and SPX. Each protocol behaves differently. Some require a connection to be established before sending or

receiving data. Others don't guarantee the reliability or integrity of the data. In this section we'll look at the

characteristics that apply to protocols.

Message-Oriented

A protocol is said to be message-oriented if for each discrete write command, it transmits only those bytes as

a single message on the network. This also means that when the receiver requests data, the data returned is

a discrete message written by the sender. The receiver will not get more than one message. In Figure 2-2, for

example, the workstation on the left submits messages of 128, 64, and 32 bytes destined for the workstation

on the right. The receiving workstation issues three recv calls with a 256-byte buffer. Each call in succession

returns 128, 64, and 32 bytes. The first call to recv does not return all three packets even if all the packets

have been received. This logic is known as “preserving message boundaries” and is often desired when

structured data is exchanged. A network game is a good example of preserving message boundaries. Each

player sends all other players a packet with positional information. The code behind such communication is

simple: one player requests a packet of data, and that player gets exactly one packet of positional information

from another player in the game.

Figure 2-2 Datagram services

Stream-Oriented

A protocol that does not preserve message boundaries is often referred to as a stream-based protocol. Be

aware that the term stream based is often loosely used to imply additional characteristics. Stream service is

defined as transmitting data in a continual process; the receiver reads as much data as is available with no

respect to message boundaries. For the sender, this means that the system is allowed to break up the original

message into pieces or to lump several messages together to form a bigger packet of data. On the receiving

end, the network stack reads data as it arrives and buffers it for the process. When the process requests an

amount of data, the system returns as much data as possible without overflowing the buffer that the client call

supplied. In Figure 2-3, the sender submits packets of 128, 64, and 32 bytes; however, the local system stack

is free to gather the data into larger packets. In this case, the second two packets are transmitted together.

The decision to lump discrete packets of data together is based on a number of factors, such as the maximum

transmit unit or the Nagle algorithm. In TCP/IP, the Nagle algorithm consists of a host waiting for data to

accumulate before sending it on the wire. The host will wait until it has a large enough chunk of data to send

or until a predetermined amount of time elapses. When implementing the Nagle algorithm the host's peer

waits a predetermined amount of time for outgoing data before sending an acknowledgement to the host so

the peer doesn't have to send a packet with only the acknowledgement. Sending many small packets is

inefficient and adds substantial overhead for error checking and acknowledgments.

Figure 2-3 Stream services

On the receiving end, the network stack pools together all incoming data for the given process. Take a look at

Figure 2-2. If the receiver performs a recv with a 256-byte buffer, all 224 bytes are returned at once. If the

receiver requests that only 20 bytes be read, the system returns only 20 bytes.

Pseudo Stream

Pseudo stream is a term often applied to a system with a message-based protocol that sends data in discrete

packets, which the receiver reads and buffers in a pool so the receiving application reads data chunks of any

size. Combining the sender in Figure 2-2 with the receiver in Figure 2-3 illustrates how pseudo streams work.

The sender must send each individual packet separately, but the receiver is free to coalesce them in whatever

sizes are available. For the most part, treat pseudo streaming as you would a stream-oriented protocol.

Connection-Oriented and Connectionless

A protocol provides either connection-oriented services or connectionless services. In connection-oriented

services, a path is established between the two communicating parties before any data is exchanged. This

ensures that there is a route between the two parties in addition to ensuring that both parties are alive and

responding. This also means that establishing a communication channel between two participants requires

substantial overhead. In addition, most connection-oriented protocols guarantee delivery, which increases

overhead as additional computations are performed to verify correctness. On the other hand, a connectionless

protocol makes no guarantees that the recipient is listening. A connectionless service is similar to the postal

service: the sender addresses a letter to a particular person and puts it in the mail. The sender doesn't know if

the recipient is expecting to receive a letter or if severe storms are preventing the post office from delivering

the message.

Note that for some connectionless protocols, such as UDP, a Winsock application may call connect with the

destination's IP address but this does not imply that any physical connection is established. It is simply a

convenient way to associate a destination address with the socket so that the send and WSASend APIs may

be used instead of sendto and WSASendTo.

Reliability and Ordering

Reliability and ordering are perhaps the most critical characteristics to be aware of when designing an

application to use a particular protocol. Reliability, or guaranteed delivery, ensures that each byte of data from

the sender will reach the intended recipient unaltered. An unreliable protocol does not ensure that each byte

arrives, and it makes no guarantee of the data's integrity.

Ordering has to do with the order in which the data arrives at the recipient. A protocol that preserves ordering

ensures that the recipient receives the data in the exact order that it was sent. Obviously, a protocol that does

not preserve order makes no such guarantees.

In most cases, reliability and ordering are closely tied to whether a protocol is connectionless or

connection-oriented. In the case of connection-oriented communications, if you are already making the extra

effort to establish a clear communication channel between the two participants, you usually want to guarantee

data integrity and data ordering. In most cases, connection-oriented protocols do guarantee reliability. Note

that by ensuring packet ordering, you do not automatically guarantee data integrity. Of course, the great

benefit of connectionless protocols is their speed; they don't bother to establish a virtual connection to the

recipient. Why slow this down with error checking? This is why connectionless protocols generally don't

guarantee data integrity or ordering and connection-oriented protocols do. Why would anyone use datagrams

with all these faults? In general, connectionless protocols are much faster than connection-oriented

communications. No checks need to be made for factors such as data integrity and acknowledgments of

received data—factors that add a great deal of complexity to sending even small amounts of data. Datagrams

are useful for noncritical data transfers. Datagrams are well suited for applications like the game example that

we discussed earlier: each player can use data-grams to periodically send his or her positions within the game

to every other player. If one client misses a packet, it quickly receives another, giving the player an

appearance of seamless communication.

Graceful Close

A graceful close is associated with connection-oriented protocols only. In a graceful close, one side initiates

the shutting down of a communication session and the other side still has the opportunity to read pending data

on the wire or the network stack. A connection-oriented protocol that does not support graceful closes causes

an immediate termination of the connection and loss of any data not read by the receiving end whenever

either side closes the communication channel. In the case of TCP, each side of a connection has to perform a

close to fully terminate the connection. The initiating side sends a segment (datagram) with a FIN control flag

to the peer. Upon receipt, the peer sends an ACK control flag back to the initiating side to acknowledge receipt

of the FIN, but the peer is still able to send more data. The FIN control flag signifies that no more data will be

sent from the side originating the close. Once the peer decides it no longer needs to send data, it too issues a

FIN, which the initiator acknowledges with an ACK control flag. At this point, the connection has been closed

completely.

Broadcast Data

To broadcast data is to send data from one workstation so that all other workstations on the LAN can receive

it. This feature is available to connectionless protocols because all machines on the LAN can pick up and

process a broadcast message. The drawback to using broadcast messages is that every machine has to

process the message. For example, let's say the user broadcasts a message on the LAN, and the network

card on each machine picks up the message and passes it up to the network stack. The stack then cycles

through all network applications to see if they should receive this message. Usually, a majority of the

machines on the network are not interested and simply discard the data. However, each machine still has to

spend time processing the packet to see if any applications are interested in it. Consequently, high-broadcast

traffic can bog down machines on a LAN as each workstation inspects the packet. In general, routers do not

propagate broadcast packets between networks.

Multicast Data

Multicasting is the capability of one process to send data that one or more recipients will receive. The method

by which a process joins a multicast session differs depending on the underlying protocol. For example, under

the IP protocol, multicasting is a modified form of broadcasting. IP multicasting requires that all hosts

interested in sending or receiving data join a special group. When a process wishes to join a multicast group,

a filter is added on the network card so that data bound to that group address only will be picked up by the

network hardware and propagated up the network stack to the appropriate process. Video conferencing

applications often use multicasting. Chapter 9 covers multicast programming from Winsock and other critical

multicasting issues.

Quality of Service (QOS)

QOS is an application's capability to request certain network bandwidth requirements to be dedicated for

exclusive use. One good use for QOS is real-time video streaming. For the receiving end of a real-time video

streaming application to display a smooth, clear picture, the data being sent must fall within certain

restrictions. In the past, an application would buffer data and play back frames from the buffer to maintain a

smooth video. If there was a period during which data was not being received fast enough, the playback

routine had a certain number of buffered frames that it could play. QOS allows bandwidth to be reserved on

the network, so frames can be read off the wire within a set of guaranteed constraints. Theoretically, this

means that the same real-time video streaming application can use QOS and eliminate the need to buffer any

frames. QOS is discussed in detail in Chapter 10.

Partial Messages

Partial messages apply to message-oriented protocols only. Let's say an application wants to receive a

message but the local computer has received only part of the data. This can occur if the sending computer is

transmitting large messages and the local machine does not have enough resources free to contain the whole

message. In reality, most message-oriented protocols impose a reasonable limit on the maximum size of a

datagram, so this particular event is not encountered often. However, most datagram protocols support

messages large enough to require being broken into a number of smaller chunks for transmission on the

physical medium. Thus the possibility exists that when a user's application requests to read a message, the

user's system might have received only a portion of the message. If the protocol supports partial messages,

the reader is notified that the data being returned is only a part of the whole message. If the protocol does not

support partial messages, the underlying network stack holds onto the pieces until the whole message arrives.

If for some reason the whole message does not arrive, most unreliable protocols that lack support for partial

messages will simply discard the incomplete datagram.

Routing Considerations

One important consideration for application developers is whether a protocol is routable. If a protocol is

routable, a successful communication path can be set up (either a virtual connection-oriented circuit or a data

path for datagram communication) between two workstations, no matter what network hardware lies between

them. For example, machine A is on a separate network from machine B. A router linking the two networks

separates the two machines. A routable protocol realizes that machine B is not on the same network as

machine A; therefore, the protocol directs the data to the router, which decides how to best forward it so that it

reaches machine B. A nonroutable protocol is not able to make such provisions—the router drops any packets

of nonroutable protocols that it receives. The router does not forward a packet from a nonroutable protocol

even if the packet's intended destination is on the connected subnet. NetBEUI is the only protocol supported

by Windows platforms that is not capable of being routed.

Other Characteristics

Each protocol that Windows supports has characteristics that are specialized or unique. Also, a myriad of

other protocol characteristics, such as byte ordering and maximum transmission size, can be used to describe

every protocol available on networks today. Not all of those characteristics are necessarily critical to writing a

successful Winsock application. Winsock provides a facility to enumerate each available protocol provider and

query its characteristics. The next section of this chapter explains this function and presents a code sample.

Winsock Catalog

The Winsock catalog is a database that contains the different protocols available on

the system. Winsock provides a method for determining which protocols are installed

on a given workstation and returning a variety of characteristics for each protocol. If a

protocol is capable of multiple behaviors, each distinct behavior type has its own

catalog entry within the system. For example, if you install TCP/IP on your system,

there will be two IP entries: one for TCP, which is reliable and connection-oriented,

and one for UDP, which is unreliable and connectionless.

The function call to obtain information on installed network protocols is

WSAEnumProtocols and is defined as:

int WSAEnumProtocols (

 LPINT lpiProtocols,

 LPWSAPROTOCOL_INFO lpProtocolBuffer,

 LPDWORD lpdwBufferLength

);

This function supersedes the Winsock 1.1 function EnumProtocols, the necessary

function for Windows CE. The only difference is that WSAEnumProtocols returns an

array of WSAPROTOCOL_INFO structures, whereas EnumProtocols returns an array

of PROTOCOL_INFO structures that contain fewer fields than the

WSAPROTOCOL_INFO structure (but more or less the same information). The

WSAPROTOCOL_INFO structure is defined as

typedef struct _WSAPROTOCOL_INFO {

 DWORD dwServiceFlags1;

 DWORD dwServiceFlags2;

 DWORD dwServiceFlags3;

 DWORD dwServiceFlags4;

 DWORD dwProviderFlags;

 GUID ProviderId;

 DWORD dwCatalogEntryId;

 WSAPROTOCOLCHAIN ProtocolChain;

 int iVersion;

 int iAddressFamily;

 int iMaxSockAddr;

 int iMinSockAddr;

 int iSocketType;

 int iProtocol;

 int iProtocolMaxOffset;

 int iNetworkByteOrder;

 int iSecurityScheme;

 DWORD dwMessageSize;

 DWORD dwProviderReserved;

 TCHAR szProtocol[WSAPROTOCOL_LEN + 1];

} WSAPROTOCOL_INFO, FAR * LPWSAPROTOCOL_INFO;

The easiest way to call WSAEnumProtocols is to make the first call with

lpProtocolBuffer equal to NULL and set lpdwBufferLength to 0. The call fails with

WSAENOBUFS, but lpdwBufferLength then contains the correct size of the buffer

required to return all the protocol information. Once you allocate the correct buffer size

and make another call with the supplied buffer, the function returns the number of

WSAPROTOCOL_INFO structures returned. At this point, you can step through the

structures to find the protocol entry with your required attributes. The sample program

called ENUMCAT.C on the companion CD enumerates all installed protocols and

prints out each protocol's characteristics.

The most commonly used field of the WSAPROTOCOL_INFO structure is

dwServiceFlags1, which is a bit field for the various protocol attributes. Table 2-1 lists

the various bit flags that can be set in the field and briefly describes the meaning of

each property.

Table 2-1Protocol Flags

Property Meaning

XP1_CONNECTIONLESS

This protocol provides connectionless service.

If not set, the protocol supports

connection-oriented data transfers.

XP1_GUARANTEED_DELIVERY
This protocol guarantees that all data sent will

reach the intended recipient.

XP1_GUARANTEED_ORDER

This protocol guarantees that the data will

arrive in the order in which it was sent and that

it will not be duplicated. However, this does

not guarantee delivery.

XP1_MESSAGE_ORIENTED This protocol honors message boundaries.

XP1_PSEUDO_STREAM

This protocol is message-oriented, but the

message boundaries are ignored on the

receiver side.

Property Meaning

XP1_GRACEFUL_CLOSE

This protocol supports two-phase closes: each

party is notified of the other's intent to close

the communication channel. If not set, only

abortive closes are performed.

XP1_EXPEDITED_DATA
This protocol supports urgent data

(out-of-band data).

XP1_CONNECT_DATA
This protocol supports transferring data with

the connection request.

XP1_DISCONNECT_DATA
This protocol supports transferring data with

the disconnect request.

XP1_SUPPORT_BROADCAST
This protocol supports the broadcast

mechanism.

XP1_SUPPORT_MULTIPOINT

This protocol supports multipoint or multicast

mechanisms. Multipoint communication is

covered in Chapter 9.

XP1_MULTIPOINT_CONTROL_

PLANE

If this flag is set, the control plane is rooted.

Otherwise, it is nonrooted.

XP1_MULTIPOINT_DATA_PLANE
If this flag is set, the data plane is rooted.

Otherwise, it is nonrooted.

XP1_QOS_SUPPORTED
This protocol supports QOS requests. QOS is

covered in Chapter 10.

XP1_UNI_SEND
This protocol is unidirectional in the send

direction.

XP1_UNI_RECV
This protocol is unidirectional in the receive

direction.

XP1_IFS_HANDLES

The socket descriptors returned by the

provider are Installable File System (IFS)

handles and can be used in API functions

such as ReadFile and WriteFile.

XP1_PARTIAL_MESSAGE
The MSG_PARTIAL flag is supported in

WSASend and WSASendTo.

XP1_INTERRUPT Reserved flag.

Most of these flags will be discussed in one or more of the following chapters, so we

won't go into detail about the full meaning of each flag now. The other fields of

importance are iProtocol, iSocketType, and iAddressFamily. The iProtocol field

defines which protocol an entry belongs to. The iSocketType field is important if the

protocol is capable of multiple behaviors, such as stream-oriented connections or

datagram connections. Finally, iAddressFamily is used to distinguish the correct

addressing structure to use for a given protocol.

Winsock Catalog and Win64

On 64-bit Windows, it is possible to run 32-bit applications under the WOW64

(Windows on Windows) subsystem. Because both 32-bit and 64-bit applications may

need to access the Winsock catalog, the system maintains two separate catalogs.

When a 64-bit Winsock application runs and calls WSAEnumProtocols, the 64-bit

catalog is used. Likewise, when a 32-bit Winsock application calls

WSAEnumProtocols, the 32-bit catalog is used. This will become more important

when dealing with the Winsock Service Provider Interface, which is discussed in

Chapter 12.

Creating Sockets

In Chapter 1 we saw simple examples of how to create a socket using the socket

function. This function takes three parameters: address family, socket type, and

protocol. When an application creates a socket, the Winsock catalog is consulted and

an attempt is made to match the supplied parameters with those contained in each

WSAPROTOCOL_INFO structure. If the parameters match, then a socket is created

from that provider. Note that in some instances the protocol parameter can be 0. If the

dwProviderFlags field of the WSAPROTOCOL_INFO structure is

PFL_MATCHES_PROTOCOL_ZERO and if the requested address family and socket

type match its entries, then that provider is used to create a socket. For example,

consider the following call:

SOCKET s;

s = socket(AF_INET, SOCK_STREAM, 0);

Winsock will enumerate the catalog and first match the address family followed by the

socket type. Since the protocol value is 0 and the MSAFD TCP provider contains the

PFL_MATCHES_PROTOCOL_ZERO flag, this call will create a TCP socket from the

MSAFD TCP provider. The system will not attempt to match the request to any further

providers.

In some instances, multiple providers may share the same address family, socket

type, and protocol. This is the case with the RSVP provider. The RSVP provider offers

QOS over TCP/IP and UDP/IP. Because multiple providers share the same address

family, socket type, and protocol, there is no way to use the socket API to create a

socket from the RSVP provider. To do so, you must use the Winsock 2 function

WSASocket, which is defined as

SOCKET WSASocket(

 int af,

 int type,

 int protocol,

 LPWSAPROTOCOL_INFO lpProtocolInfo,

 GROUP g,

 DWORD dwFlags);

The first three parameters are the same as those of socket but the fourth parameter

takes a WSAPROTOCOL_INFO structure. If lpProtocolInfo references a provider entry

and each of the first three parameters is the predefined value

FROM_PROTOCOL_INFO, then a socket is created from the given provider. An

application can create an RSVP socket using this method.

The fourth parameter deals with socket groups that are discussed in the Winsock

specification but are not implemented in Windows. The last parameter is optional flags

that may be passed. For now, the only flag of importance is

WSA_FLAG_OVERLAPPED. If you plan on using overlapped IO (as described in

Chapter 5), then this flag needs to be present when creating the socket. Note that

when using the socket API, the overlapped flag is always implied. The other socket

flags pertain to multicasting and are covered in Chapter 9.

Conclusion

In this chapter, you have seen how Winsock fits into the overall system architecture

and how various protocols plug into the system. In addition, you looked at the

characteristics that protocols exhibit as well as how to programmatically enumerate

the Winsock catalog to obtain this information. Finally, you have seen how to create a

socket from an explicit provider using the WSASocket API. In the next chapter, we'll

examine the IP protocol, including IPv4 and IPv6, in more detail.

Chapter 3

Internet Protocol

This chapter describes the Internet Protocol (IP). As we discussed in Chapter 1, to

establish communication through Winsock you must understand how to address a

workstation for a particular protocol (as we demonstrated with IPv4 in Chapter 1). This

chapter covers IPv4 and IPv6. Chapter 4 will cover the most common protocols

available on Windows platforms.

IPv4 is commonly known as the network protocol that the Internet uses. IP is widely

available on most computer operating systems and can be used on most LANs, such

as a small network in your office, and on WANs, such as the Internet. With the

explosion in the number of computers on the Internet, the limitations of IPv4 are

becoming apparent, and as a result, the next generation IP was developed, which is

known as IPv6.

In this chapter, we will discuss the background, addressing scheme, name resolution,

and Winsock specifics for both IPv4 and IPv6. Then, we'll discuss how to write

applications that seamlessly operate over either version of IP.

IPv4

IPv4 was developed by the U.S. Department of Defense's Advanced Research Project

Agency (ARPA), which built an experimental packet switching network in the 1960s.

The initial network protocols were cumbersome, which led to the development of a

better protocol in the mid 1970s. This research eventually led to IPv4 as well as TCP.

Addressing

In IPv4, computers are assigned an address that is represented as a 32-bit number,

formally known as an IPv4 address. IPv4 addresses are typically represented in a

dotted decimal format in which each octet (8 bits) of the address is converted to a

decimal number and separated by a period (“dots”).

IPv4 addresses are divided into classes that describe the portion of the address

assigned to the network and the portion assigned to endpoints. Table 3-1 lists the

different classes.

Table 3-1IPv4 Address Classes

Class Network Portion First Number Number of Endpoints

A 8 bits 0–127 16,777,216

B 16 bits 128–191 65,536

C 24 bits 192–223 256

D N/A 224–239 N/A

E N/A 240–255 N/A

When specifying an IP address, the number of bits indicating the network portion can

be appended to the dotted decimal address after a back slash (/). For example, the

address 172.31.28.120/16 indicates that the first 16 bits make up the network portion

of the address. This is equivalent to a subnet mask of 255.255.0.0.

The last two entries in Table 3-1 are special classes of IPv4 addresses. Class D

addresses are reserved for IPv4 multicasting and class E addresses are experimental.

Also, there are several blocks of addresses that have been reserved for private use

and cannot be used by a system on the Internet. They are the following:

10.0.0.0–10.255.255.255 (10.0.0.0/8)

172.16.0.0–172.31.255.255 (172.16.0.0/12)

192.168.0.0–192.168.255.255 (192.168.0.0/16)

Finally, there is the loopback address (127.0.0.1), which is a special address that

refers to the local computer.

To list the IPv4 addresses assigned to the local interfaces, the IPCONFIG.EXE

command can be used to list each network adapter and the IPv4 address(es)

assigned to it. If an application needs to programmatically obtain a list of its IPv4

addresses, it can call WSAIoctl with the SIO_ADDRESS_LIST_QUERY command,

which is covered in Chapter 7. In addition, the IP Helper APIs provide this function and

are described in Chapter 16.

We've discussed the breakdown of the IPv4 address space, and from within these

different address classes there are three types of IPv4 addresses: unicast, multicast,

and broadcast. Each address type will be covered in the next sections.

Unicast

Unicast addresses are those addresses that are assigned to an individual computer

interface. Only one interface may be assigned that address. If another computer is

configured with the same address on the network, then that is an error that will result

in data being delivered incorrectly. Classes A, B, and C comprise the unicast address

space for IPv4.

Typically, an interface on a host is assigned an IPv4 (unicast) address either statically

or by a configuration protocol like Dynamic Host Configuration Protocol (DHCP). If a

DHCP server cannot be reached, the system automatically assigns an address in the

range of 169.254.0.0/16 using Automatic Private IP Addressing (APIPA).

To prevent having to memorize numeric IP addresses, an IPv4 address can be

associated to the host computer name by using the Domain Name System (DNS).

Later, we will discuss how to resolve the host name to its IPv4 address (and its IPv6

address as well).

Multicast

Multicast addresses are not assigned to a specific interface. Instead, multiple

computers may “join” a multicast group listening on a particular multicast address.

Everyone joined to that group will receive any data destined to that address. Multicast

addresses are class D addresses. One of the greatest benefits to multicasting is the

capability to deliver multicast data to only those machines that are interested in that

data. IP multicasting is discussed in detail in Chapter 9.

Broadcast

IPv4 supports broadcasting data. This means that data sent to the limited broadcast

address, 255.255.255.255, will be received and processed by every machine on the

local network. This is generally considered a bad practice because even those

computers that are not interested in the broadcast data must process the packet.

If applications require broadcasting, it is better to use subnet directed broadcasts. This

is still broadcasting data, but as the name implies it is directed to machines on a

specific subnet only. For example, a datagram sent to 172.31.28.255 will be received

by every machine on only that same subnet.

IPv4 Management Protocols

The IPv4 protocol relies on several other protocols to function. The three support

protocols we are most interested in is the Address Resolution Protocol (ARP), the

Internet Control Message Protocol (ICMP), and the Internet Group Management

Protocol (IGMP).

ARP is used to resolve the 32-bit IPv4 address into a physical or hardware address so

the IPv4 packet can be wrapped in the appropriate media frame (such as an Ethernet

frame). A host must resolve the next-hop IPv4 address to its corresponding hardware

address before sending data on the wire. If the destination address is on the local

network, the ARP request is made for the destination's physical address. If one or

more routers separate the source from the destination, an ARP request is made for

the default gateway and the packet is forwarded to it. The IP Helper API contains

some ARP routines and is described in Chapter 16.

ICMP is designed to send status and error messages between IPv4 hosts. The types

of messages include echo requests and replies, destination unreachable, and time

exceeded. ICMP is also used to discover nearby routers. Chapter 11 will go into more

detail on ICMP and will illustrate how to send your own ICMP messages.

IGMP is used to manage multicast group membership. When applications on a host

join multicast group, the host sends out IGMP membership reports, which inform

routers on the network segment which multicast groups data is to be received on.

Routers need this information to forward multicast packets destined to these multicast

groups to network segments only when there are receivers interested in it. IGMP will

be discussed in more detail in Chapter 9.

Addressing IPv4 from Winsock

In Winsock, applications specify IPv4 addresses and service port information through

the SOCKADDR_IN structure, which is defined as

struct sockaddr_in

{

 short sin_family;

 u_short sin_port;

 struct in_addr sin_addr;

 char sin_zero[8];

};

The sin_family field must be set to AF_INET, which tells Winsock you are using the IP

address family. The sin_port field defines which TCP or UDP communication port will

be used to identify a server service. Note that the port number does not actually apply

to the IPv4 protocol but is a property of the transport layer protocol(s) encapsulated

within an IPv4 header, such as TCP or UDP.

Applications should be particularly careful in choosing a port because some of the

available port numbers are reserved for well-known services, such as FTP and HTTP.

The ports that well-known services use are controlled and assigned by the Internet

Assigned Numbers Authority (IANA) and are listed on its Web page at

http://www.iana.org/assignments/port-numbers. Essentially, the port numbers are

divided into the following three ranges: well-known, registered, and dynamic and/or

private ports.

0–1023 are controlled by IANA and are reserved for well-known services.

1024–49151 are registered ports listed by IANA and can be used by ordinary user

processes or programs executed by ordinary users.

http://www.iana.org/assignments/port-numbers

49152–65535 are dynamic and/or private ports.

Ordinary user applications should choose the registered ports in the range

1024–49151 to avoid the possibility of using a port already in use by another

application or a system service. Ports in the range 49152–65535 can also be used

freely because no services are registered on these ports with IANA. If, when using the

bind API function, your application binds to a port that is already in use by another

application on your host, the system will return the Winsock error WSAEADDRINUSE.

Also, it is valid for clients to send or connect without explicitly binding to a local

address and port. In this case, the system will implicitly bind the socket to a local port

from the range of 1024 to 5000. This is the same behavior that occurs if an application

explicitly binds the socket but specifies a local port of zero.

The sin_addr field of the SOCKADDR_IN structure is used for storing an IPv4 address

as a four-byte, network-byte-ordered quantity, which is an unsigned long integer data

type. Depending on how this field is used, it can represent a local or a remote IP

address. IP addresses are normally specified in Internet standard dotted notation as

“a.b.c.d.” Each letter represents a number for each byte and is assigned, from left to

right, to the four bytes of the unsigned long integer. The final field, sin_zero, functions

only as padding to make the SOCKADDR_IN structure the same size as the

SOCKADDR structure.

All fields of this and every other socket address structure need to be in network byte

order. However, if applications use the name resolution and assignment APIs

discussed later in this chapter, the necessary conversion is automatically performed. It

is only when an application explicitly assigns or retrieves values from the structure

members that the byte order conversion is required. Byte ordering was described in

Chapter 1.

IPv6

With the explosion in the number of computers on the Internet, the limitations of IPv4

are becoming apparent. First and foremost, the number of available IPv4 addresses is

being exhausted. This has led to the use of network address translators (NATs), which

map multiple private addresses to a single public IP addresses. NATs are useful for

client-server applications but can be problematic when connecting two organizations

that use the private address space. Also, NATs must sometimes be aware of the

underlying protocols to perform the appropriate address translation.

Second, IPv4 addressing is not entirely hierarchical, which means that the Internet

backbone routers must maintain vast routing tables to deliver IPv4 packets correctly to

any location on the Internet.

Another incentive for developing IPv6 is to provide simpler configuration. With IPv4,

addresses must be assigned statically or via a configuration protocol such as DHCP.

Ideally, hosts would not have to rely upon the administration of a DHCP infrastructure.

Instead, they will be able to auto configure themselves based on the network segment

on which they are located.

A developer-release version of IPv6 is provided with Windows XP. For Windows 2000,

a technology preview IPv6 protocol is available for download from

http://www.microsoft.com/ipv6. For Windows NT 4.0, a Microsoft Research IPv6

protocol may also be obtained from http://www.microsoft.com/ipv6.

In this section, we will cover the different types of IPv6 addresses, the support

protocols that IPv6 uses, and how IPv6 addresses are handled from Winsock.

Although we will discuss addressing and name resolution, we will not cover all

aspects of IPv6, such as routing or setting up an IPv6 network. For more information,

consult the Windows XP online help or the book Understanding IPv6, by Joseph

Davies (Microsoft Press, 2002).

Addressing

The most noticeable difference between IPv4 and IPv6 addresses is that an IPv6

address is 128 bits, which is four times larger than an IPv4 address. One reason for

http://www.microsoft.com/ipv6
http://www.microsoft.com/ipv6

such a large address space is to subdivide the available addresses into a hierarchy of

routing domains that reflect the Internet's topology. Table 3-2 lists a portion of how the

address space is allocated and lists the address prefix for each portion. The address

prefix denotes the high order bits of an IPv6 address. IPv6 addressing is described in

RFC 2373.

Table 3-2IPv6 Address Allocation

Allocation
Address

Prefix

Fraction of Address

Space

Reserved 0000 0000 1/256

Reserved for NSAP allocation 0000 001 1/128

Aggregatable global unicast

addresses
001 1/8

Link-local unicast addresses 1111 1110 10 1/1024

Site-local unicast addresses 1111 1110 11 1/1024

Multicast addresses 1111 1111 1/256

An IPv6 address is typically expressed in 16-bit chunks displayed as hexadecimal

numbers separated by colons. The following is an example of an IPv6 address:

21DA:00D3:0000:2F3B:02AA:00FF:FE28:9C5A

Leading zeroes within each 16-bit block may be removed, as seen here:

21DA:D3:0:2F3B:2AA:FF:FE28:9C5A

Many IPv6 addresses contain long sequences of zeroes, which may be compressed

by substituting two colons for the block of zeros. For example, the following address:

FE80:0:0:0:12:0:34:56

can be compressed to:

FE80::12:0:34:56

Note that only a single contiguous sequence of 16-bit zero blocks may be

compressed.

Depending on the platform, you can use one of two methods to obtain a list of the

IPv6 addresses assigned to a computer's interfaces. For the Microsoft Research and

Windows 2000 Technology Preview stacks downloaded from the Web as well as

Windows XP Home Edition and Windows XP Professional, the IPV6.EXE command is

used. To enumerate the IPv6 interfaces, execute IPV6.EXE if at the command

prompt. For all versions of Windows 2000 and Windows XP (including future versions

of Windows releases), the NETSH.EXE command may also be used. The command

syntax is: NETSH.EXE interface IPv6 show interface. To programmatically obtain the

configuration of local interfaces, the SIO_ADDRESS_LIST_QUERY ioctl (Chapter 7)

and the IP Helper API (Chapter 16) can be used.

There are three basic types of IPv6 addresses: unicast, anycast, and multicast. Note

that IPv6 does not define a broadcast address (multicasting is used instead). In the

following sections, we will discuss each address type.

Unicast

A unicast address identifies a single interface. With IPv6, however, an interface will

most likely have more than one unicast address assigned to it. There are four types of

unicast addresses that you will likely encounter:

Link-local addresses

Site-local addresses

Global addresses

Compatibility addresses

An interface will always have a link-local address assigned to it—each physical

network interface is auto configured with one. A link-local address is used to

communicate only with other nodes on the same link. Link-local address always begin

with an fe80::/64 prefix. Also, because no routing information is kept for link-local

addresses, the interface index is often displayed with the address. Every physical

interface on the system is assigned an adapter index number (also known as a scope

ID). When a link-local address is assigned to an interface, the link number is

appended to the address. The following address is the link-local address assigned to

the physical adapter whose interface index number is five.

fe80::250:8bff:fea0:92ed%5

In Winsock, if a connection is being established using link-local addresses, then the

interface index must be present to indicate which link the remote host is reachable

from. An IPv6 link-local address is synonymous with an IPv4 APIPA address

discussed earlier in the chapter.

For example, consider host A, which has the link-local address

fe80::250:8bff:fea0:92ed%5 and host B, which has the link-local address

fe80::250:daff:fec3:9e34%4. If host A issues a connect to host B, it would use the

destination address of B with its own scope ID that can reach host B. The address to

connect to would be fe80::250:daff:fec3:9e34%5.

Site-local addresses are IPv6 addresses that are reachable only on the local network

environment, such as the corporate network at a particular site. These addresses are

comparable to the IPv4 private address space because they cannot be reached from

other sites or the Internet and routers on the private network do not forward this traffic

beyond the local site. Site-local addresses use the prefix fec0::/48. Site-local

addresses must be assigned from either an IPv6 router or via DHCPv6. Currently,

Microsoft's implementation of IPv6 does not support DHCPv6. IPv6-enabled routers

will send Router Advertisement (RA) messages, which advertise the network portion

of the address (such as the first 64 bits of the address consisting of the 48-bit

site-local prefix and a 16-bit subnet ID), which the host will then use to assign a

site-local address to the interface on which the RA was received.

Global addresses are just that: globally reachable on IPv6 Internet. Global addresses

begin with 001. The remaining 61 bits of the first 64 bits are used to establish a

routing hierarchy, and the last 64 bits comprise the interface identifier that uniquely

identifies a network interface on a subnet. Global addresses are also assigned via

router advertisements or by using DHCPv6.

The last type of unicast addresses are compatibility addresses, which are designed to

aid in the transition from IPv4 to IPv6. There are four kinds of compatibility addresses

that Windows supports: Intrasite Automatic Tunnel Addressing Protocol (ISATAP),

6to4, 6over4, and IPv4 compatible. ISATAP addresses can be derived from any IPv6

unicast address, such as link-local, site-local, and global addresses. Most often you

will see an ISATAP address derived from a link-local address. These addresses also

contain an embedded IPv4 address. For example, the ISATAP address

fe80::5efe:172.17.7.2 is a link-local address and contains the IPv4 address of the host

(172.17.7.2). When data is sent from this interface, the IPv6 packet is encapsulated

within an IPv4 header. The IPv4 destination address is obtained from the v4 address

embedded within the IPv6 ISATAP destination address. The v4 address must be

globally reachable for two endpoints to communicate via automatic tunneling. ISATAP

addresses are currently an Internet Engineering Task Force (IETF) draft.

The second type of compatibility address is called 6to4 and is described in RFC 3056.

6to4 addresses use the global prefix 2002:WWXX:YYZZ::/48, in which WWXX:YYZZ

is the hexadecimal-colon representation of w.x.y.z, a public IPv4 address. 6to4 allows

IPv6/IPv4 hosts to communicate over an IPv4 routing infrastructure.

Windows XP provides a 6to4 service. This service allows hosts to communicate with

other 6to4 hosts within the same site, 6to4 hosts connected to the Internet, 6to4 hosts

in other sites across the IPv4 Internet, as well as with hosts on the IPv6 Internet using

a 6to4 relay router. On Windows XP, the 6to4 service is configured to run

automatically. If there is a public IPv4 address assigned to an interface, a 6to4

Tunneling Interface (interface index 3) is created and assigned the 6to4 address(es).

The third type of compatibility address is 6over4, which is a tunneling technique using

IPv4 multicasting. It allows IPv4 and IPv6 nodes to communicate using IPv6 over an

IPv4 infrastructure. This technique is described in RFC 2529.

The last type of compatibility address is the IPv4 compatible address. These

addresses take the form of 0:0:0:0:0:0:w.x.y.z (or ::w.x.y.z) in which w.x.y.z is the

dotted decimal representation of a public IPv4 address. When a IPv4 compatible

address is used by an application as the destination, the IPv6 traffic is automatically

encapsulated within an IPv4 header and sent to the destination over the IPv4 network.

Anycast

Anycast is an address that identifies multiple interfaces. The purpose of these

addresses is to route packets destined to an anycast address to the nearest interface

assigned that anycast address. A good scenario for anycast addresses is when there

are several nodes on the network that provide a certain service. Each machine can be

assigned the same anycast address and clients interested in contacting that service

will be routed to the nearest member. This is different from multicast because this

communication is one to one of many instead of one to many. Currently however,

anycast addresses are assigned to routers only.

Multicast

Multicasting in IPv6 is similar to IPv4 multicasting. A process joins a multicast group

on a particular interface and data destined to that multicast address is received. IPv6

multicast addresses begin with 1111 1111 (FF). IPv6 multicasting and IPv6 multicast

addresses are covered in more detail in Chapter 9.

IPv6 Management Protocols

IPv6 requires only a single helper protocol: Internet Control Message Protocol for IPv6

(ICMPv6), which is defined in RFC 2463. ICMPv6 provides the same types of services

that ICMP does, such as destination unreachable, echo and echo reply, but also

provides a mechanism for Multicast Listener Discovery (MLD) and Neighbor Discovery

(ND). MLD replaces IGMP and ND replaces ARP.

Addressing IPv6 from Winsock

To specify IPv6 addresses in Winsock applications, the following structure is used.

struct sockaddr_in6 {

 short sin6_family;

 u_short sin6_port;

 u_long sin6_flowinfo;

 struct in6_addr sin6_addr;

 u_long sin6_scope_id;

};

The first field simply identifies the address family, which is AF_INET6, and the second

is the port number. All fields within this structure must be in network byte order. Note

that all the information discussed about port numbers in the IPv4 section apply equally

to IPv6 because the port number is a property of the encapsulated protocols, such as

TCP and UDP, which are also available from IPv6. The third field, sin6_flowinfo, is

used to mark the traffic for the connection but is not implemented in the Microsoft IPv6

stack. The fourth field is a 16-byte structure that contains the binary IPv6 address. The

last member, sin6_scope_id, indicates the interface index (or scope ID) on which the

address is located. Remember that for link-local addresses, the local scope ID on

which the destination is located must be specified and the sin6_scope_id field is used

for this. Site-local addresses may reference the site number as the scope ID. Global

addresses do not contain a scope ID.

One last item to note is that the SOCKADDR_IN6 structure is 28 bytes in length and

the SOCKADDR and SOCKADDR_IN structures are only 16 bytes long.

Address and Name Resolution

In this section, we'll cover how to assign both literal string addresses and resolve

names to the address specific structures for both IP protocols. First, we will cover the

new name resolution APIs: getaddrinfo and getnameinfo. These APIs have replaced

the IPv4 specific routines. Then we'll cover the generic Winsock APIs for converting

between string literal addresses and socket address structure. These APIs are

WSAAddressToString and WSAStringToAddress. Note that these functions perform

only address conversion and assignment, not name resolution.

Next, the IPv4 specific legacy routines will be described. We include the legacy API

descriptions in case legacy code needs to be maintained, but any new projects should

use the newer API functions. By using the newer functions it will be trivial to write an

application that can seamlessly operate over both IPv4 and IPv6, which is the topic of

the last section in this chapter.

Finally, note that all the name resolution functions covered in this chapter deal only

with resolving names and not registering a name with an address. This is

accomplished by the Winsock Registration and Name Resolution (RNR) APIs

discussed in Chapter 8.

Name Resolution Routines

Along with IPv6, several new name resolution functions were introduced that could

handle both IPv4 and IPv6 addresses. The legacy functions like gethostbyname and

inet_addr work with IPv4 addresses only. The replacement functions are named

getnameinfo and getaddrinfo.

These new name resolution routines are defined in WS2TCPIP.H. Also, note that

although these functions are new for Windows XP, they can be made available to

work on all Winsock 2 enabled platforms. This is done by including the header file

WSPIAPI.H before including WS2TCPIP.H. The compiled binary will then run on all

Winsock 2–enabled platforms, such as Windows 95, Windows 98, Windows Me,

Windows NT 4.0, and Windows 2000.

The getaddrinfo function provides protocol-independent name resolution. The function

prototype is

int getaddrinfo(

 const char FAR *nodename,

 const char FAR *servname,

 const struct addrinfo FAR *hints,

 struct addrinfo FAR *FAR *res

);

The nodename parameter specifies the NULL-terminated host name or literal address.

The servname is a NULL-terminated string containing the port number or a service

name such as “ftp” or “telnet.” The third parameter, hints, is a structure that can pass

one or more options that affect how the name resolution is performed. Finally, the res

parameter returns a linked list of addrinfo structure containing the addresses the string

name was resolved to. If the operation succeeds, zero is returned; otherwise the

Winsock error code is returned.

The addrinfo structure is defined as

struct addrinfo {

 int ai_flags;

 int ai_family;

 int ai_socktype;

 int ai_protocol;

 size_t ai_addrlen;

 char *ai_canonname;

 struct sockaddr *ai_addr;

 struct addrinfo *ai_next;

};

When passing hints into the API, the structure should be zeroed out beforehand, and

the first four fields are relevant:

ai_flags indicates one of three values: AI_PASSIVE, AI_CANONNAME, or

AI_NUMERICHOST. AI_CANONNAME indicates that nodename is a computer

name like www.microsoft.com and AI_NUMERICHOST indicates that it is a literal

string address such as “10.10.10.1”. AI_PASSIVE will be discussed later.

ai_family can indicate AF_INET, AF_INET6, or AF_UNSPEC. If you wish to resolve

to a specific address, type the supply AF_INET or AF_INET6. Otherwise, if

AF_UNSPEC is given, then the addresses returned could be either IPv4 or IPv6 or

both.

ai_socktype specifies the desired socket type, such as SOCK_DGRAM,

SOCK_STREAM. This field is used when servname contains the name of a service.

That is, some services have different port numbers depending on whether UDP or

TCP is used.

ai_protocol specifies the desired protocol, such as IPPROTO_TCP. Again, this field

is useful when servname indicates a service.

If no hints are passed into getaddrinfo, the function behaves as if a zeroed hints

structure was provided with an ai_family of AF_UNSPEC.

If the function succeeds, then the resolved addresses are returned via res. If the name

resolved to more than one address, then the result is a linked list chained by the

ai_next field. Every address resolved from the name is indicated in ai_addr with the

length of that socket address structure given in ai_addrlen. These two fields may be

passed directly into bind, connect, sendto, etc.

The following code sample illustrates how to resolve a hostname along with the port

number before making a TCP connection to the server.

SOCKET s;

struct addrinfo hints,

 *result;

int rc;

memset(&hints, 0, sizeof(hints));

hints.ai_flags = AI_CANONNAME;

hints.ai_family = AF_UNSPEC;

hints.ai_socktype = SOCK_STREAM;

hints.ai_protocol = IPPROTO_TCP;

rc = getaddrinfo("foobar", "5001", &hints, &result);

if (rc != 0) {

 // unable to resolve the name

}

s = socket(result->ai_family, result->ai_socktype,

result->ai_protocol);

if (s == INVALID_SOCKET) {

 // socket API failed

}

rc = connect(s, result->ai_addr, result->ai_addrlen);

if (rc == SOCKET_ERROR) {

 // connect API failed

}

freeaddrinfo(result);

In this example, the application is resolving the hostname “foobar” and wants to

establish a TCP connection to a service on port 5001. You'll also notice that this code

doesn't care if the name resolved to an IPv4 or an IPv6 address. It is possible that

“foobar” has both IPv4 and IPv6 addresses registered, in which case result will contain

additional addrinfo structures linked by the ai_next field. If an application wanted only

IPv4 addresses registered to “foobar,” the hints.ai_family should be set to AF_INET.

Finally, note that the information returned via res is dynamically allocated and needs to

be freed by calling the freeaddrinfo API once the application is finished using the

information.

Another common action that applications perform is assigning a literal string address

such as “172.17.7.1” or “fe80::1234” into a socket address structure of the appropriate

type. The getaddrinfo function does this by setting the AI_NUMERICHOST flag within

the hints. The following code illustrates this.

struct addrinfo hints,

 *result;

int rc;

memset(&hints, 0, sizeof(hints));

hints.ai_flags = AI_NUMERICHOST;

hints.ai_family = AI_UNSPEC;

hints.ai_socktype = SOCK_STREAM;

hints.ai_protocol = IPPROTO_TCP;

rc = getaddrinfo("172.17.7.1", "5001", &hints, &result);

if (rc != 0) {

 // invalid literal address

}

// Use the result

freeaddrinfo(result);

The literal address “172.17.7.1” will be converted to the necessary socket address

structure and returned via result. Because AF_UNSPEC is passed, the API will

determine the correct socket address structure (SOCKADDR_IN or SOCKADDR_IN6)

required and convert the address accordingly. As before, the port field of the resulting

socket address structure will be initialized to 5001.

Note that if no flags are passed as part of the hints and a literal string address is

resolved, the returned structure addrinfo containing the converted address will have

the AI_NUMERICHOST flags set. Likewise, if a hostname is resolved but no hints are

passed, the returned structure addrinfo flag will contain AI_CANONNAME.

The last flag that can be used with getaddrinfo is AI_PASSIVE, which is used to obtain

an address that can be passed to the bind function. For IPv4, this would be

INADDR_ANY (0.0.0.0) and for IPv6 it would be IN6ADDR_ANY (::). To obtain the

bind address, the hints should indicate which address family the passive address is to

be obtained for (via ai_family), nodename should be NULL, and servname should be

non-NULL—indicating the port number the application will bind to (which can be “0”). If

AF_UNSPEC is passed in the hints, then two addrinfo structures will be returned, one

with the IPv4 bind address and the other with the IPv6 bind address.

The AI_PASSIVE flag is useful after resolving a hostname via getaddrinfo. Once the

resolved address is returned, the original result's ai_family can be used in another call

to getaddrinfo to obtain the appropriate bind address for that address family. This

prevents applications from having to touch the internal socket address structure's

fields and also removes the need for two separate code paths for binding the socket

depending on which address family the address was resolved to.

The other new name resolution API is getnameinfo, which performs the reverse of the

getaddrinfo function. It takes a socket address structure already initialized and returns

the host and service name corresponding to the address and port information. The

getnameinfo function is prototyped as the following:

int getnameinfo(

 const struct sockaddr FAR *sa,

 socklen_t salen,

 char FAR *host,

 DWORD hostlen,

 char FAR *serv,

 DWORD servlen,

 int flags

);

The parameters are fairly self-explanatory. sa is the socket address structure on which

the name information will be obtained for and salen is the size of that structure. host is

the character buffer to receive the host's name. By default, the fully qualified domain

name (FQDN) will be returned. hostlen simply indicates the size of the host buffer.

serv is the character buffer to receive the service/port information and servlen is the

length of that buffer. Finally, the flags parameter indicates how the socket address

should be resolved. The possible flag values are the following:

NI_NOFQDN indicates that only the relative distinguished name (RDN) returned.

For example, with this flag set the host named “mist.microsoft.com” would return

only “mist”.

NI_NUMERICHOST indicates to return the string representation of the address and

not the hostname.

NI_NAMEREQD indicates if the address cannot be resolved to a FQDN to return an

error.

NI_NUMERICSERV indicates to return the port information as a string instead of

resolving to a well-known service name, such as “ftp.” Note that if the serv buffer is

supplied with this flag absent and the port number cannot be resolved to a

well-known service, genameinfo will fail with error WSANO_DATA (11004).

NI_DGRAM is used to differentiate datagram services from stream services. This is

necessary for those few services that define different port numbers for UDP and

TCP.

There is a file named RESOLVER.CPP that performs name resolution on the

companion CD. A hostname or address is passed to the application along with service

or port information and is resolved via getaddrinfo. Then for every resolved address

returned, getnameinfo is called to obtain either the machine name back or the string

literal address.

Simple Address Conversion

When an application needs only to convert between string literal addresses and

socket address structures, the WSAStringToAddress and WSAAddressToString APIs

are available. WSAStringToAddress is not as “smart” as getaddrinfo because you

must specify the address family that the string address belongs to. The API is the

following:

INT WSAStringToAddress(

 LPTSTR AddressString,

 INT AddressFamily,

 LPWSAPROTOCOL_INFO lpProtocolInfo,

 LPSOCKADDR lpAddress,

 LPINT lpAddressLength

);

The first parameter is the string to convert and the second indicates the address

family the string belongs to (such as AF_INET, AF_INET6, or AF_IPX). The third

parameter, lpProtocolInfo, is an optional pointer to the WSAPROTOCOL_INFO

structure that defines the protocol provider to use when performing the conversion. If

there are multiple providers implementing a protocol, this parameter can be used to

specify an explicit provider. The fourth parameter is the appropriate socket address

structure to which the string address will be converted and assigned into.

Note that this API will convert string addresses that contain port numbers. For

example, the IPv4 string notation allows a colon followed by the port number at the

end of the address. For example, “157.54.126.42:1200” indicates the IPv4 address

using port 1200. In IPv6, the IPv6 address string must be enclosed in square brackets

after which the colon and port notation may be used. For example,

[fe80::250:8bff:fea0:92ed%5]:80 indicates a link-local address with its scope ID followed

by port 80. Note that only port numbers will be resolved and not service names (such

as “ftp”). For both these examples, if these strings were converted with

WSAStringToAddress, then the returned socket address structure will be initialized

with the appropriate binary IP address, port number, and address family. For IPv6, the

scope ID field will also be initialized if the string address contains “%scope_ID” after

the address portion.

The WSAAddressToString provides a mapping from a socket address structure to a

string representation of that address. The prototype is

INT WSAAddressToString(

 LPSOCKADDR lpsaAddress,

 DWORD dwAddressLength,

 LPWSAPROTOCOL_INFO lpProtocolInfo,

 LPTSTR lpszAddressString,

 LPDWORD lpdwAddressStringLength

);

This function takes a SOCKADDR structure and formats the binary address to a string

indicated by the buffer lpszAddressString. Again, if there is more than one transport

provider for a given protocol, a specific one may be selected by passing its

WSAPROTOCOL_INFO structure as lpProtocolInfo. Note that the address family is a

field of the SOCKADDR structure passed as lpsaAddress.

Legacy Name Resolution Routines

This section covers the legacy name resolution and is included only for the sake of

code maintenance, because new applications should be using getaddrinfo and

getnameinfo. The other feature you will notice is that the two new API calls replace

eight legacy functions.

The function inet_addr converts a dotted IPv4 address to a 32-bit unsigned long

integer quantity. The inet_addr function is defined as

unsigned long inet_addr(

 const char FAR *cp

);

The cp field is a null-terminated character string that accepts an IP address in dotted

notation. Note that this function returns an IPv4 address as a 32-bit unsigned long

integer in network-byte order, which can be assigned into the SOCKADDR_IN field

sin_addr. Network-byte order is described in Chapter 1.

The reverse of inet_addr is inet_ntoa, which takes an IPv4 network address and

converts it to a string. This function is declared as

char FAR *inet_ntoa(

 Struct in_addr in

);

The following code sample demonstrates how to create a SOCKADDR_IN structure

using the inet_addr and htons functions.

SOCKADDR_IN InternetAddr;

INT nPortId = 5150;

InternetAddr.sin_family = AF_INET;

// Convert the proposed dotted Internet address 136.149.3.29

// to a 4-byte integer, and assign it to sin_addr

InternetAddr.sin_addr.s_addr = inet_addr("136.149.3.29");

// The nPortId variable is stored in host-byte order. Convert

// nPortId to network-byte order, and assign it to sin_port.

InternetAddr.sin_port = htons(nPortId);

The Winsock functions gethostbyname, WSAAsyncGetHostByName, gethostbyaddr,

and WSAAsyncGetHostByAddr retrieve host information corresponding to a host

name or host address from a host database. The first two functions translate a

hostname to its network IPv4 addresses and the second two do the reverse—map an

IPv4 network address back to a hostname. These functions return a HOSTENT

structure that is defined as

struct hostent

{

 char FAR * h_name;

 char FAR * FAR * h_aliases;

 short h_addrtype;

 short h_length;

 char FAR * FAR * h_addr_list;

};

The h_name field is the official name of the host. If your network uses the DNS, it is

the FQDN that causes the name server to return a reply. If your network uses a local

“hosts” file, it is the first entry after the IP address. The h_aliases field is a

null-terminated array of alternative names for the host. The h_addrtype represents the

address family being returned. The h_length field defines the length in bytes of each

address in the h_addr_list field, which will be four bytes for IPv4 addresses. The

h_addr_list field is a null-terminated array of IP addresses for the host. (A host can

have more than one IP address assigned to it.) Each address in the array is returned

in network-byte order.

Normally, applications use the first address in the array. However, if more than one

address is returned, applications should randomly choose an available address rather

than always use the first address.

The prototypes for these functions are

struct hostent FAR * gethostbyname (

 const char FAR * name

);

HANDLE WSAAsyncGetHostByName(

 HWND hWnd,

 unsigned int wMsg,

 const char FAR * name,

 char FAR * buf,

 int buflen

);

struct HOSTENT FAR * gethostbyaddr(

 const char FAR * addr,

 int len,

 int type

);

HANDLE WSAAsyncGetHostByAddr(

 HWND hWnd,

 unsigned int wMsg,

 const char FAR *addr,

 int len,

 int type,

 char FAR *buf,

 int buflen

);

For the first two functions, the name parameter represents a friendly name of the host

you are looking for, and the latter two functions take an IPv4 network address in the

addr parameter. The length of the address is specified as len. Also, type indicates the

address family of the network address passed, which would be AF_INET. All four

functions return the results via a HOSTENT structure. For the two synchronous

functions, the HOSTENT is a system-allocated buffer that the application should not

rely on being static. The two asynchronous functions will copy the HOSTENT structure

to the buffer indicated by the buf parameter. This buffer size should be equal to

MAXGETHOSTSTRUCT.

Finally, these and the rest of the asynchronous name and service resolution functions

return a HANDLE identifying the operation issued. Upon completion, a window

message indicated by wMsg is posted to the window given by hWnd. If at some point

the application wishes to cancel the asynchronous request, the

WSACancelAsyncRequest function is used. This function is declared as

int WSACancelAsyncRequest(

 HANDLE hAsyncTaskHandle

);

Keep in mind that the synchronous API calls will block until the query completes or

times out, which could take several seconds.

The next type of legacy resolution functions provide the capability to retrieve port

numbers for well-known services and the reverse. The API functions getservbyname

and WSAAsyncGetServByName take the name of a well-known service like “FTP”

and return the port number that the service uses. The functions getservbyport and

WSAAsyncGetServByPort perform the reverse operation by taking the port number

and returning the service name that uses that port. These functions simply retrieve

static information from a file named services. In Windows 95, Windows 98, and

Windows Me, the services file is located under %WINDOWS%; in Windows NT, it is

located under %WINDOWS%\System32\Drivers\Etc.

These four functions return the service information in a SERVENT structure that is

defined as

struct servent {

 char FAR * s_name;

 char FAR * FAR *s_aliases;

 short s_port;

 char FAR * s_proto

};

The field s_name is the name of the service and s_aliases is a NULL terminated array

of string pointers, each containing another name for the service. s_port is the port

number used by the service and s_proto is the protocol used by the service, such as

the strings “tcp” and “udp.”

These functions are defined as follows:

struct servent FAR * getservbyname(

 const char FAR * name,

 const char FAR * proto

);

HANDLE WSAAsyncGetServByName(

 HWND hWnd,

 unsigned int wMsg,

 const char FAR *name,

 const char FAR *proto,

 char FAR *buf,

 int buflen

);

struct servent FAR *getservbyport(

 int port,

 const char FAR *proto

);

HANDLE WSAAsyncGetServByPort(

 HWND hWnd,

 unsigned int wMsg,

 int port,

 const char FAR *proto,

 char FAR *buf,

 int buflen

);

The name parameter represents the name of the service you are looking for. The

proto parameter optionally points to a string that indicates the protocol that the service

in name is registered under, such as “tcp” or “udp”. The second two functions simply

take the port number to match to a service name. The synchronous API functions

return a SERVENT structure, which is a system allocated buffer, and the

asynchronous ones take an application supplied buffer, which should also be of the

size MAXGETHOSTSTRUCT.

The last set of legacy name resolution API functions convert between a protocol string

name, such as “tcp”, and its protocol number (“tcp” would resolve to IPPROTO_TCP.).

These functions are getprotobyname, WSAAsyncGetProtoByName,

getprotobynumber, and WSAAsyncGetProtoByNumber. The first two convert from the

string protocol to the protocol number and the latter two do the opposite—map the

protocol number back to its string name. These functions return a PROTOENT

structure defined as

struct protoent {

 char FAR * p_name;

 char FAR * FAR *p_aliases;

 short p_proto;

};

The first field, p_name, is the string name of the protocol, and p_aliases is a NULL

terminated array of string pointers that contain other names the protocol is known by.

Finally, p_proto is the protocol number (such as IPPROTO_UDP or IPPROTO_TCP).

These function prototypes are

struct protoent FAR *getprotbyname(

 const char FAR *name

);

HANDLE WSAAsyncGetProtoByName(

 HWND hWnd,

 unsigned int wMsg,

 const char FAR *name,

 char FAR *buf,

 int buflen

);

struct protoent FAR *getprotobynumber(

 int number

);

HANDLE WSAAsyncGetProtoByNumber(

 HWND hWnd,

 unsigned int wMsg,

 int number,

 char FAR *buf,

 int buflen

);

These functions behave the same way the legacy name resolution functions

described earlier do in terms of synchronous and asynchronous functions.

Writing IP Version–Independent Programs

In this section, we'll cover how to develop applications that work seamlessly over IPv4

and IPv6. This method requires using the new name resolution APIs getaddrinfo and

getnameinfo and requires a bit of rearranging Winsock calls from what you are

probably used to.

Before we get into the specifics, let's cover some of the basic practices that you

should follow. First, applications should not allocate the socket address structures

specific to each protocol (such as SOCKADDR_IN and SOCKADDR_IN6 for IPv4 and

IPv6, respectively) because they can be different sizes. Instead, a new socket

address structure SOCKADDR_STORAGE has been introduced that is as large as the

largest possible protocol specific address structure and includes padding for 64-bit

alignment issues. The following code uses a SOCKADDR_STORAGE structure to

store the destination IPv6 address.

SOCKADDR_STORAGE saDestination;

SOCKET s;

int addrlen,

 rc;

s = socket(AF_INET6, SOCK_STREAM, IPPROTO_TCP);

if (s == INVALID_SOCKET) {

 // socket failed

}

addrlen = sizeof(saDestination);

rc = WSAStringToAddress(

 "3ffe:2900:d005:f28d:250:8bff:fea0:92ed",

 AF_INET6,

 NULL,

 (SOCKADDR *)&saDestination,

 &addrlen

);

if (rc == SOCKET_ERROR) {

 // conversion failed

}

rc = connect(s, (SOCKADDR *)&saDestination, sizeof(saDestination));

if (rc == SOCKET_ERROR) {

 // connect failed

}

Second, functions that take an address as a parameter should pass the entire socket

address structure and not the protocol specific types like struct in_addr or struct

in6_addr. This is important for IPv6, which might require the scope ID information to

successfully connect. The SOCKADDR_STORAGE structure containing the address

should be passed instead.

Third, avoid hardcode addresses regardless of whether they are IPv4 or IPv6. The

Winsock header files define constants for all the address that are hard coded such as

the loopback address and the wildcard address used for binding.

Now that some of the basic issues are out of the way, let's move to discussing how an

application should be structured to be IP independent. We will divide our discussion

into two sections: the client and the server.

Client

For both TCP and UDP clients, the application typically possesses the server (or

recipient's) IP address or hostname. Whether it resolves to an IPv4 address or IPv6

address doesn't matter. The client should follow these three steps:

Resolve the address using the getaddrinfo function. The hints should contain

AF_UNSPEC as well as the socket type and protocol depending on whether

the client uses TCP or UDP to communicate.

1.

Create the socket using the ai_family, ai_socktype, and ai_protocol fields from

the addrinfo structure returned in step 1.

2.

Call connect or sendto with the ai_addr member of the addrinfo structure.3.

The following code sample illustrates these principles.

SOCKET s;

struct addrinfo hints,

 *res=NULL

char *szRemoteAddress=NULL,

 *szRemotePort=NULL;

int rc;

// Parse the command line to obtain the remote server's

// hostname or address along with the port number, which are contained

// in szRemoteAddress and szRemotePort.

memset(&hints, 0, sizeof(hints));

hints.ai_family = AF_UNSPEC;

hints.ai_socktype = SOCK_STREAM;

hints.ai_protocol = IPPROTO_TCP;

// first resolve assuming string is a string literal address

rc = getaddrinfo(

 szRemoteAddress,

 szRemotePort,

 &hints,

 &res

);

if (rc == WSANO_DATA) {

 // Unable to resolve name - bail out

 }

s = socket(res->ai_family, res->ai_socktype, res->ai_protocol);

if (s == INVALID_SOCKET) {

 // socket failed

}

rc = connect(s, res->ai_addr, res->ai_addrlen);

if (rc == SOCKET_ERROR) {

 // connect failed

}

freeaddrinfo(res);

First, you will notice that there are no explicit references to AF_INET or AF_INET6.

Also, there's no need to manipulate the underlying SOCKADDR_IN or

SOCKADDR_IN6 addresses. The getaddrinfo call fully initializes the returned socket

address structure with all the required information—address family, binary address,

etc.—that is necessary for connecting or sending datagrams.

If the client application needs to explicitly bind the socket to a local port after socket

creation but before connect or sendto, then another getaddrinfo call can be made.

This call would specify the address family, socket type, and protocol returned from the

first call along with the AI_PASSIVE flag and desired local port, which will return

another socket address structure initialized to the necessary bind address (such as

0.0.0.0 for IPv4 and :: for IPv6).

Server

The server side is a bit more involved than the client side. This is because the

Windows IPv6 stack is a dual stack. That is, there is a separate stack for IPv4 and

IPv6, so if a server wishes to accept both IPv4 and IPv6 connections, it must create a

socket for each one. The two steps for creating an IP independent server are the

following:

Call getaddrinfo with hints containing AI_PASSIVE, AF_UNSPEC, and the

desired socket type and protocol along with the desired local port to listen or

receive data on. This will return two addrinfo structures: one containing the

listening address for IPv4 and the other containing the listening address for

IPv6.

1.

For every addrinfo structure returned, create a socket with the ai_family,

ai_socktype, and ai_protocol fields followed by calling bind with the ai_addr and

ai_addrlen members.

2.

The following code illustrates this principle.

SOCKET slisten[16];

char *szPort="5150";

struct addrinfo hints,

 * res=NULL,

 * ptr=NULL;

int count=0,

 rc;

memset(&hints, 0, sizeof(hints));

hints.ai_family = AF_UNSPEC;

hints.ai_socktype = SOCK_STREAM;

hints.ai_protocol = IPPROTO_TCP;

hints.ai_flags = AI_PASSIVE;

rc = getaddrinfo(NULL, szPort, &hints, &res);

if (rc != 0) {

 // failed for some reason

}

ptr = res;

while (ptr)

{

 slisten[count] = socket(ptr->ai_family,

 ptr->ai_socktype, ptr->ai_protocol);

 if (slisten[count] == INVALID_SOCKET) {

 // socket failed

 }

 rc = bind(slisten[count], ptr->ai_addr, ptr->ai_addrlen);

 if (rc == SOCKET_ERROR) {

 // bind failed

 }

 rc = listen(slisten[count], 7);

 if (rc == SOCKET_ERROR) {

 // listen failed

 }

 count++;

 ptr = ptr->ai_next;

}

Once the sockets are created and bound, the application simply needs to wait for

incoming connections on each. Chapter 5 covers the various I/O models available in

Winsock and provides fully functioning client and server samples that are written using

the principles covered in this section.

Conclusion

In this chapter, we've discussed both IPv4 and IPv6. We covered addressing, name

resolution, as well as the necessary Winsock data structures for each address family.

The new name resolution functions were described followed by the legacy name

resolution functions. Finally, we covered how to write applications that work

seamlessly over IPv4 and IPv6. In Chapter 4, we will cover the remaining protocols

accessible from Winsock, including IPX/SPX, AppleTalk, IrDA, and ATM.

Chapter 4

Other Supported Protocols

To establish communication through Winsock, you must understand how to address a

workstation using a particular protocol. In Chapter 3, we described how to do so using

the IPv4 and IPv6 address families specifically. This chapter explains other protocols

that Winsock supports—IrDA, IPX/SPX, NetBIOS, AppleTalk, and ATM—and how

each protocol resolves an address specific to that family to an actual machine on the

network. We'll cover only the basic knowledge necessary to form an address structure

for each protocol family. Chapter 8 covers the registration and name resolution

functions, which advertise a service of a given protocol family. (This is a bit different

from just resolving a name.) See Chapter 8 for more details on the differences

between straight name resolution and service advertising and resolution.

For each covered address family, we will discuss the basics of how to address a

machine on a network. We will then create a socket for each family. In addition, we will

cover the protocol-specific options for name resolution. For each protocol discussed,

we present basic client and server examples on the companion CD.

Infrared Sockets

Infrared sockets, or IrSock, are a new technology first introduced on the Windows CE platform.

Infrared sockets allow two PCs to communicate with each other through an infrared serial port.

Infrared sockets are now available on Windows 98, Windows Me, Windows 2000, and Windows XP.

Infrared sockets differ from traditional sockets in that infrared sockets are designed to take into

account the transient nature of portable computing. Infrared sockets present a new name resolution

model that will be discussed in the next section.

Addressing

Because most computers with Infrared Data Association (IrDA) devices are likely to move around,

traditional name-resolution schemes don't work well. Conventional resolution methods assume that the

use of static resources such as name servers, which cannot be used when a person is moving a

handheld PC or laptop computer running a network client. To circumvent this problem, IrSock is

designed to browse in-range resources in an ad hoc manner without the overhead of a large network,

and it doesn't use standard Winsock name service functions or even IP addressing. Instead, the name

service has been incorporated into the communication stream, and a new address family has been

introduced to support services bound to infrared serial ports. The IrSock address structure includes a

service name that describes the application used in bind and connect calls and a device identifier that

describes the device on which the service runs. This pair is analogous to the IP address and port

number pair used by conventional TCP/IP sockets. The IrSock address structure is defined as

typedef struct _SOCKADDR_IRDA

{

 u_short irdaAddressFamily;

 u_char irdaDeviceID[4];

 char irdaServiceName[25];

} SOCKADDR_IRDA, *PSOCKADDR_IRDA, FAR *LPSOCKADDR_IRDA;

The irdaAddressFamily field is always set to AF_IRDA. The irdaDeviceID is a four-character string that

uniquely identifies the device on which a particular service is running. This field is ignored when an

IrSock server is created. However, the field is significant for a client because it specifies which IrDA

device to connect to. (There can be multiple devices in range.) Finally, the irdaServiceName field is the

name of the service that the application either will register itself with or is trying to connect to.

Name Resolution

Addressing can be based on IrDA Logical Service Access Point Selectors (LSAP-SELs) or on services

registered with the Information Access Services (IAS). The IAS abstracts a service from an LSAP-SEL

into a user-friendly text service name, in much the same way that an Internet domain name server

maps names to numeric IP addresses. You can use either an LSAP-SEL or a user-friendly name to

connect successfully, but user-friendly names require name resolution. For the most part, you

shouldn't use the direct LSAP-SEL “address” because its address space for IrDA services is limited.

The Windows implementation allows LSAP-SEL integer identifiers in the range of 1 to 127. Essentially,

an IAS server can be thought of as a WINS server because it associates an LSAP-SEL with a textual

service name.

An actual IAS entry has three fields of importance: class name, attribute, and attribute value. For

example, let's say a server wishes to register under the service name MyServer. This is accomplished

when the server issues the bind call with the appropriate SOCKADDR_IRDA structure. Once this

occurs, an IAS entry is added with a class name MyServer, the attribute Irda:TinyTP:LsapSel, and an

attribute value of, say, 3. The attribute value is the next unused LSAP-SEL assigned by the system

upon registration. The client, on the other hand, passes in a SOCKADDR_IRDA structure to the

connect call. This initiates an IAS lookup for a service with the class name MyServer and the attribute

Irda:TinyTP:LsapSel. The IAS query will return the value 3. You also can formulate your own IAS

query by using the socket option IRLMP_IAS_QUERY in the getsockopt call.

If you want to bypass IAS altogether (which is not recommended), you can specify an LSAP-SEL

address directly for a server name or an endpoint to which a client wants to connect. You should

bypass IAS only to communicate with legacy IrDA devices that don't provide any kind of IAS

registration (such as infrared-capable printers). You can bypass the IAS registration and lookup by

specifying the service name in the SOCKADDR_IRDA structure as LSAP-SEL-xxx, in which xxx is the

attribute value between 1 and 127. For a server, this would directly assign the server to the given

LSAP-SEL address (assuming the LSAP-SEL address is unused). For a client, this bypasses the IAS

lookup and causes an immediate attempt to connect to whatever service is running on that LSAP-SEL.

Enumerating IrDA Devices

Because infrared devices move in and out of range, a method of dynamically listing all available

infrared devices within range is necessary. This section describes how to accomplish that. Let's begin

with a few platform discrepancies between the Windows CE implementation and the Windows 98,

Windows Me, Windows 2000, and Windows XP implementation. Windows CE supported IrSock before

the other platforms and provided minimal information about infrared devices. Later, Windows 98,

Windows Me, Windows 2000, and Windows XP provided support for IrSock, but they added additional

“hint” information that the enumeration request returned. (This hint information will be discussed

shortly.) As a result, the AF_IRDA.H header file for Windows CE contains the original, minimal

structure definitions; however, the new header file for the other platforms contains conditional structure

definitions for each platform that now supports IrSock. We recommend that you use the later

AF_IRDA.H header file for consistency.

The way to enumerate nearby infrared devices is by using the IRLMP_ENUM_DEVICES command for

getsockopt. A DEVICELIST structure is passed as the optval parameter. There are two structures, one

for Windows 98, Windows Me, Windows 2000, and Windows XP and one for Windows CE. They are

defined as

typedef struct _WINDOWS_DEVICELIST

{

 ULONG numDevice;

 WINDOWS_IRDA_DEVICE_INFO Device[1];

} WINDOWS_DEVICELIST, *PWINDOWS_DEVICELIST, FAR *LPWINDOWS_DEVICELIST;

typedef struct _WCE_DEVICELIST

{

 ULONG numDevice;

 WCE_IRDA_DEVICE_INFO Device[1];

} WCE_DEVICELIST, *PWCE_DEVICELIST;

The only difference between the non–Windows CE platforms structure and the Windows CE structure

is that the non–Windows CE structure contains an array of WINDOWS_IRDA_DEVICE_INFO

structures as opposed to an array of WCE_IRDA_DEVICE_INFO structures. A conditional #define

directive declares DEVICELIST as the appropriate structure depending on the target platform.

Likewise, two declarations for the IRDA_DEVICE_INFO structures exist:

typedef struct _WINDOWS_IRDA_DEVICE_INFO

{

 u_char irdaDeviceID[4];

 char irdaDeviceName[22];

 u_char irdaDeviceHints1;

 u_char irdaDeviceHints2;

 u_char irdaCharSet;

} WINDOWS_IRDA_DEVICE_INFO, *PWINDOWS_IRDA_DEVICE_INFO,

 FAR *LPWINDOWS_IRDA_DEVICE_INFO;

typedef struct _WCE_IRDA_DEVICE_INFO

{

 u_char irdaDeviceID[4];

 char irdaDeviceName[22];

 u_char Reserved[2];

} WCE_IRDA_DEVICE_INFO, *PWCE_IRDA_DEVICE_INFO;

Again, a conditional #define directive declares IRDA_DEVICE_INFO to the correct structure definition

depending on the target platform.

As we mentioned earlier, the function to use for the actual enumeration of infrared devices is

getsockopt with the option IRLMP_ENUM_DEVICES. The following piece of code lists the device IDs

of all infrared devices nearby:

SOCKET sock;

DEVICELIST devList;

DWORD dwListLen=sizeof(DEVICELIST);

sock = WSASocket(AF_IRDA, SOCK_STREAM, 0, NULL, 0,

 WSA_FLAG_OVERLAPPED);

...

devList.numDevice = 0;

dwRet = getsockopt(sock, SOL_IRLMP, IRLMP_ENUMDEVICES,

 (char *)&devList, &dwListLen);

Before you pass a DEVICELIST structure into the getsockopt call, don't forget to set the numDevice

field to 0. A successful enumeration will set the numDevice field to a value greater than 0 and set an

equal number of IRDA_DEVICE_INFO structures in the Device field. Also, in an actual application you

probably want to perform getsockopt more than once to check for devices that just moved into range.

For example, attempting to discover an infrared device in five tries or less is a good heuristic. Simply

place the call in a loop with a short call to the Sleep function after each unsuccessful enumeration.

Now that you know how to enumerate infrared devices, creating a client or a server is simple. The

server side of the equation is a bit simpler because it looks like a “normal” server. That is, no extra

steps are required. The five general steps for an IrSock server are as follows:

Create a socket of address family AF_IRDA and of socket type SOCK_STREAM.1.

Fill out a SOCKADDR_IRDA structure with the service name of the server.2.

Call bind with the socket handle and the SOCKADDR_IRDA structure.3.

Call listen with the socket handle and the backlog limit.4.

Block on an accept call for incoming clients.5.

The steps for a client are a bit more involved because you must enumerate infrared devices. The

following four steps are necessary for an IrSock client.

Create a socket of address family AF_IRDA and socket type SOCK_STREAM.1.

Enumerate available infrared devices by calling getsockopt with the IRLMP_ENUM_DEVICES

option.

2.

For each device returned, fill out a SOCKADDR_IRDA structure with the device ID returned

and the service name you want to connect to.

3.

Call the connect function with the socket handle and with the SOCKADDR_IRDA structure. Do

this for each structure filled out in step 3 until a connect succeeds.

4.

Querying IAS

There are two ways to find out if a given service is running on a particular device. The first method is

to attempt a connection to the service; the other is to query IAS for the given service name. Both

methods require you to enumerate all infrared devices and attempt a query (or connection) with each

device until one of them succeeds or you have exhausted every device. Perform a query by calling

getsockopt with the IRLMP_IAS_QUERY option. A pointer to an IAS_QUERY structure is passed as

the optval parameter. Again, there are two IAS_QUERY structures, one for Windows 98, Windows Me,

Windows 2000, and Windows XP, and another for Windows CE. Here are the definitions of each

structure:

typedef struct _WINDOWS_IAS_QUERY

{

 u_char irdaDeviceID[4];

 char irdaClassName[IAS_MAX_CLASSNAME];

 char irdaAttribName[IAS_MAX_ATTRIBNAME];

 u_long irdaAttribType;

 union

 {

 LONG irdaAttribInt;

 struct

 {

 u_long Len;

 u_char OctetSeq[IAS_MAX_OCTET_STRING];

 } irdaAttribOctetSeq;

 struct

 {

 u_long Len;

 u_long CharSet;

 u_char UsrStr[IAS_MAX_USER_STRING];

 } irdaAttribUsrStr;

 } irdaAttribute;

} WINDOWS_IAS_QUERY, *PWINDOWS_IAS_QUERY, FAR *LPWINDOWS_IAS_QUERY;

typedef struct _WCE_IAS_QUERY

{

 u_char irdaDeviceID[4];

 char irdaClassName[61];

 char irdaAttribName[61];

 u_short irdaAttribType;

 union

 {

 int irdaAttribInt;

 struct

 {

 int Len;

 u_char OctetSeq[1];

 u_char Reserved[3];

 } irdaAttribOctetSeq;

 struct

 {

 int Len;

 u_char CharSet;

 u_char UsrStr[1];

 u_char Reserved[2];

 } irdaAttribUsrStr;

 } irdaAttribute;

} WCE_IAS_QUERY, *PWCE_IAS_QUERY;

As you can see, the two structure definitions are similar except for the lengths of certain character

arrays.

Performing a query for the LSAP-SEL number of a particular service is simple: set the irdaClassName

field to the property string for LSAP-SELs, which is “IrDA:IrLMP:LsapSel”, and set the

irdaAttributeName field to the service name you want to query for. In addition, you have to set the

irdaDeviceID with a valid device within range.

Creating a Socket

Creating an infrared socket is simple. Few options are required because IrSock supports only

connection-oriented streams. The following code illustrates how to create an infrared socket using

either the socket or WSASocket call. You must use socket for Windows CE because of its Winsock 1.1

limitation.

s = socket(AF_IRDA, SOCK_STREAM, 0);

s = WSASocket(AF_IRDA, SOCK_STREAM, 0, NULL, 0,

WSA_FLAG_OVERLAPPED);

If you want to be specific, you can pass IRDA_PROTO_SOCK_STREAM as the protocol parameter of

either function. However, the protocol parameter isn't required because the transport catalog has only

one entry of address family AF_IRDA. Specifying AF_IRDA causes that transport entry to be used by

default.

Socket Options

Many SO_ socket options aren't meaningful to IrDA. Only SO_LINGER and SO_DONTLINGER are

specifically supported. The IrSock-specific socket options are of course supported only on sockets of

the address family AF_IRDA. These options are also covered in Chapter 7, which summarizes all

socket options and their parameters.

You will find a basic client and server IrSock application named IRCLIENT.CPP and

IRSERVER.CPP, respectively, on the companion CD.

IPX/SPX

The IPX protocol is known as the protocol most often used with computers featuring Novell NetWare

client/server networking services. IPX provides connectionless communication between two

processes; therefore, if a workstation transmits a data packet, there is no guarantee that the packet will

be delivered to the destination. If an application needs guaranteed delivery of data and insists on using

IPX, it can use a higher-level protocol over IPX, such as the Sequence Packet Exchange (SPX) and

SPX II protocols, in which SPX packets are transmitted through IPX. Winsock provides applications

with the capability to communicate through IPX on Windows 95, Windows 98, Windows Me, and

Windows NT platforms but not on Windows CE.

Addressing

In an IPX network, network segments are bridged using an IPX router. Every network segment is

assigned a unique four-byte network number. As more network segments are bridged, IPX routers

manage communication between different network segments using the unique network segment

numbers. When a computer is attached to a network segment, it is identified using a unique six-byte

node number, which is usually the network adapter's physical address. A node (which is a computer) is

typically capable of having one or more processes forming communication over IPX. IPX uses socket

numbers to distinguish communication for processes on a node.

To prepare a Winsock client or server application for IPX communication, you have to set up a

SOCKADDR_IPX structure. The SOCKADDR_IPX structure is defined in the WSIPX.H header file,

and your application must include this file after including WINSOCK2.H. The SOCKADDR_IPX

structure is defined as

typedef struct sockaddr_ipx

{

 short sa_family;

 char sa_netnum[4];

 char sa_nodenum[6];

 unsigned short sa_socket;

} SOCKADDR_IPX, *PSOCKADDR_IPX, FAR *LPSOCKADDR_IPX;

The sa_family field should always be set to the AF_IPX value. The sa_netnum field is a four-byte

number representing a network number of a network segment on an IPX network. The sa_nodenum

field is a six-byte number representing a node number of a computer's physical address. The

sa_socket field represents a socket or port used to distinguish IPX communication on a single node.

Creating a Socket

Creating a socket using IPX offers several possibilities. To open an IPX socket, call the socket function

or the WSASocket function with the address family AF_IPX, the socket type SOCK_DGRAM, and the

protocol NSPROTO_IPX, as follows:

s = socket(AF_IPX, SOCK_DGRAM, NSPROTO_IPX);

s = WSASocket(AF_IPX, SOCK_DGRAM, NSPROTO_IPX,

 NULL, 0, WSA_FLAG_OVERLAPPED);

Note that the third parameter protocol must be specified and cannot be 0. This is important because

this field can be used to set specific IPX packet types.

As we mentioned at the beginning of this section, IPX provides unreliable connectionless

communication using datagrams. If an application needs reliable communication using IPX, it can use

higher-level protocols over IPX, such as SPX and SPX II. This can be accomplished by setting the type

and protocol fields of the socket and WSASocket calls to the socket type SOCK_SEQPACKET or

SOCK_STREAM, and the protocol NSPROTO_SPX or NSPROTO_SPXII.

If SOCK_STREAM is specified, data is transmitted as a continuous stream of bytes with no message

boundaries—similar to how sockets in TCP/IP behave. On the other hand, if SOCK_SEQPACKET is

specified, data is transmitted with message boundaries. For example, if a sender transmits 2000 bytes,

the receiver won't return until all 2000 bytes have arrived. SPX and SPX II accomplish this by setting

an end-of-message bit in an SPX header. When SOCK_SEQPACKET is specified, this bit is

respected—meaning Winsock recv and WSARecv calls won't complete until a packet is received with

this bit set. If SOCK_STREAM is specified, the end-of-message bit isn't respected, and recv

completes as soon as any data is received, regardless of the setting of the end-of-message bit. From

the sender's perspective (using the SOCK_SEQPACKET type), sends smaller than a single packet are

always sent with the end-of-message bit set. Sends larger than single packets are packetized with the

end-of-message bit set on only the last packet of the send.

Binding a Socket

When an IPX application associates a local address with a socket using bind, you shouldn't specify a

network number and a node address in a SOCKADDR_IPX structure. The bind function populates

these fields using the first IPX network interface available on the system. If a machine has multiple

network interfaces (a multihomed machine), it isn't necessary to bind to a specific interface. Windows

95, Windows 98, Windows Me, and Windows NT platforms provide a virtual internal network in which

every network interface can be reached regardless of the physical network it is attached to. We will

describe internal network numbers in greater detail later in this chapter. After your application binds

successfully to a local interface, you can retrieve local network number and node number information

using the getsockname function, as in the following code fragment:

SOCKET sdServer;

SOCKADDR_IPX IPXAddr;

int addrlen = sizeof(SOCKADDR_IPX);

if ((sdServer = socket (AF_IPX, SOCK_DGRAM, NSPROTO_IPX))

 == INVALID_SOCKET)

{

 printf("socket failed with error %d\n",

 WSAGetLastError());

 return;

}

ZeroMemory(&IPXAddr, sizeof(SOCKADDR_IPX));

IPXAddr.sa_family = AF_IPX;

IPXAddr.sa_socket = htons(5150);

if (bind(sdServer, (PSOCKADDR) &IPXAddr, sizeof(SOCKADDR_IPX))

 == SOCKET_ERROR)

{

 printf("bind failed with error %d\n",

 WSAGetLastError());

 return;

}

if (getsockname(sdServer, (PSOCKADDR) &IPXAddr, &addrlen)

 == SOCKET_ERROR)

{

 printf("getsockname failed with error %d",

 WSAGetLastError());

 return;

}

// Print out SOCKADDR_IPX information returned from

// getsockname()

Network Number vs. Internal Network Number

A network number (known as an external network number) identifies network segments in IPX and is

used for routing IPX packets between network segments. Windows 95, Windows 98, Windows Me,

and Windows NT platforms also feature an internal network number that is used for internal routing

purposes and to uniquely identify the computer on an inter-network (several networks bridged

together). The internal network number is also known as a virtual network number—the internal

network number identifies another (virtual) segment on the inter-network. Thus, if you configure an

internal network number for a computer running Windows 95, Windows 98, Windows Me, or Windows

NT platforms, a NetWare server or an IPX router will add an extra hop in its route to that computer.

The internal virtual network serves a special purpose in the case of a multihomed computer. When

applications bind to a local network interface, they shouldn't specify local interface information but

instead should set the sa_netnum and sa_nodenum fields of a SOCKADDR_IPX structure to 0. This is

because IPX is able to route packets from any external network to any of the local network interfaces

using the internal virtual network. For example, even if your application explicitly binds to the network

interface on Network A, and a packet comes in on Network B, the internal network number will cause

the packet to be routed internally so that your application receives it.

Setting IPX Packet Types Through Winsock

Winsock allows your application to specify IPX packet types when you create a socket using the

NSPROTO_IPX protocol specification. The packet type field in an IPX packet indicates the type of

service offered or requested by the IPX packet. In Novell, the following IPX packet types are defined:

01h Routing Information Protocol (RIP) Packet

04h Service Advertising Protocol (SAP) Packet

05h Sequenced Packet Exchange (SPX) Packet

11h NetWare Core Protocol (NCP) Packet

14h Propagated Packet for Novell NetBIOS

To modify the IPX packet type, simply specify NSPROTO_IPX + n as the protocol parameter of the

socket API, with n representing the packet type number. For example, to open an IPX socket that sets

the packet type to 04h (SAP Packet), use the following socket call:

s = socket(AF_IPX, SOCK_DGRAM, NSPROTO_IPX + 0x04);

Name Resolution

As you can probably tell, addressing IPX in Winsock is sort of ugly because you must supply multi-byte

network and node numbers to form an address. IPX provides applications with the ability to locate

services by using user-friendly names to retrieve network number, node number, and port number in

an IPX network through the SAP protocol. As you will see in Chapter 8, Winsock 2 provides a

protocol-independent method for name registration using the WSASetService API function. Through

the SAP protocol, IPX server applications use WSASetService to register under a user-friendly name

the network number, node number, and port number they are listening on. Winsock 2 also provides a

protocol-independent method of name resolution through the following API functions:

WSALookupServiceBegin, WSALookupServiceNext, and WSALookupServiceEnd.

It is possible to perform your own name-service registration and lookups by opening an IPX socket

and specifying an SAP packet type. After opening the socket, you can begin broadcasting SAP

packets to the IPX network to register and locate services on the network. This requires that you

understand the SAP protocol in great detail and that you deal with the programming details of

decoding an IPX SAP packet.

On the companion CD, you will find an IPX client and server application named

SOCKSPX.CPP that demonstrates how to transmit datagrams over IPX or transmit

reliable data communication over SPX.

NetBIOS

The NetBIOS address family is more of an unusual protocol family accessible from Winsock. NetBIOS

itself is a network programming interface (instead of a network protocol) that can communicate over

many network protocols, such as TCP/IP. Winsock interfaces with the NetBIOS programming interface

through the NetBIOS address family. Addressing NetBIOS from Winsock requires that you know

NetBIOS names and LANA numbers. You can familiarize yourself with many NetBIOS concepts with

the Chapter 17 NetBIOS API discussion included on the companion CD. We won't discuss the entire

core NetBIOS interface concepts here, instead, we'll continue with the specifics of accessing NetBIOS

from Winsock.

The NetBIOS address family is exposed by Winsock only on Windows NT platforms. It

is not available on Windows 95, Windows 98, or Windows Me platforms or on Windows

CE.

Addressing

The basis for addressing a machine under NetBIOS is a NetBIOS name. A NetBIOS name is 16

characters long, with the last character reserved as a qualifier to define what type of service the name

belongs to. There are two types of NetBIOS names: unique and group. A unique name can be

registered by only one process on the entire network. For example, a session-based server would

register the name FOO, and clients who wanted to contact that server would attempt a connection to

FOO. Group names allow a group of applications to register the same name, so datagrams sent to that

name will be received by all processes that registered that name.

In Winsock, the NetBIOS addressing structure is defined in WSNETBS.H, as follows:

#define NETBIOS_NAME_LENGTH 16

typedef struct sockaddr_nb

{

 short snb_family;

 u_short snb_type;

 char snb_name[NETBIOS_NAME_LENGTH];

} SOCKADDR_NB, *PSOCKADDR_NB, FAR *LPSOCKADDR_NB;

The snb_family field specifies the address family of this structure and should always be set to

AF_NETBIOS. The snb_type field is used to specify a unique or a group name. The following defines

can be used for this field:

#define NETBIOS_UNIQUE_NAME (0x0000)

#define NETBIOS_GROUP_NAME (0x0001)

Finally, the snb_name field is the actual NetBIOS name.

Now that you know what each field means and what it should be set to, the following handy macro

defined in the header file sets all of this for you:

#define SET_NETBIOS_SOCKADDR(_snb, _type, _name, _port) \

 { \

 int _i; \

 (_snb)->snb_family = AF_NETBIOS; \

 (_snb)->snb_type = (_type); \

 for (_i = 0; _i < NETBIOS_NAME_LENGTH - 1; _i++) { \

 (_snb)->snb_name[_i] = ' '; \

 } \

 for (_i = 0; \

 *((_name) + _i) != '\0' \

 && _i < NETBIOS_NAME_LENGTH - 1; \

 _i++) \

 { \

 (_snb)->snb_name[_i] = *((_name)+_i); \

 } \

 (_snb)->snb_name[NETBIOS_NAME_LENGTH - 1] = (_port); \

 }

The first parameter to the macro, called _snb, is the address of the SOCKADDR_NB structure you are

filling in. As you can see, it automatically sets the snb_family field to AF_NETBIOS. For the _type

parameter to the macro, specify NETBIOS_UNIQUE_NAME or NETBIOS_GROUP_NAME. The

_name parameter is the NetBIOS name. The macro assumes it is either at least

NETBIOS_NAME_LENGTH – 1 characters in length or is null-terminated if shorter. Notice that the

snb_name field is prefilled with spaces. Finally, the macro sets the 16th character of the snb_name

character string to the value of the _port parameter.

You can see that the NetBIOS name structure in Winsock is straightforward and shouldn't present any

particular difficulties. The name resolution is performed under the hood, so you don't have to resolve a

name into a physical address before performing any operations like you have to with TCP and IrDA.

This becomes clear when you consider that NetBIOS is implemented over multiple protocols and each

protocol has its own addressing scheme.

Creating a Socket

The most important consideration when you create a NetBIOS socket is the LANA number. Just as in

the native NetBIOS API, you have to be aware of which LANA numbers concern your application. For

a NetBIOS client and server to communicate, they must have a common transport protocol on which

they both listen or connect. There are two ways to create a NetBIOS socket. The first is to call socket

or WSASocket, as follows:

s = WSASocket(AF_NETBIOS, SOCK_DGRAM, -lana,

 NULL, 0, WSA_FLAG_OVERLAPPED);

The type parameter of WSASocket is either SOCK_DGRAM or SOCK_SEQPACKET, depending on

whether you want a connectionless datagram or a connection-oriented session socket. The third

parameter, protocol, is the LANA number on which the socket should be created, except that you have

to make it negative. The fourth parameter is null because you are specifying your own parameters, not

using a WSAPROTOCOL_INFO structure. The fifth parameter is not used. Finally, the dwFlags

parameter is set to WSA_FLAG_ OVERLAPPED; you should specify WSA_FLAG_OVERLAPPED on

all calls to WSASocket. If you plan on using overlapped IO (as described in the next chapter), then this

flag needs to be present when creating the socket.

The drawback to the first method of socket creation is that you need to know which LANA numbers are

valid to begin with. Unfortunately, Winsock doesn't have a nice, short method of enumerating available

LANA numbers. The alternative in Winsock is to enumerate all transport protocols with

WSAEnumProtocols. Of course, you could call the Netbios function with the NCBENUM command as

described in Chapter 17 to get the valid LANAs. Chapter 2 described how to call WSAEnumProtocols.

The following sample enumerates all transport protocols, searches for a NetBIOS transport, and

creates a socket for each one.

dwNum = WSAEnumProtocols(NULL, lpProtocolBuf, &dwBufLen);

if (dwNum == SOCKET_ERROR)

{

 // Error

}

for (i = 0; i < dwNum; i++)

{

 // Look for those entries in the AF_NETBIOS address family

 if (lpProtocolBuf[i].iAddressFamily == AF_NETBIOS)

 {

 // Look for either SOCK_SEQPACKET or SOCK_DGRAM

 if (lpProtocolBuf[i].iSocketType == SOCK_SEQPACKET)

 {

 s[j++] = WSASocket(FROM_PROTOCOL_INFO,

 FROM_PROTOCOL_INFO, FROM_PROTOCOL_INFO,

 &lpProtocolBuf[i], 0, WSA_FLAG_OVERLAPPED);

 }

 }

}

In the pseudocode shown, we enumerate the available protocols and iterate through them looking for

those belonging to the AF_NETBIOS address family. Next, we check the socket type, and in this case,

look for entries of type SOCK_SEQPACKET. Otherwise, if we wanted datagrams we would check for

SOCK_DGRAM. If this matches, we have a NetBIOS transport we can use. If you need the LANA

number, take the absolute value of the iProtocol field in the WSAPROTOCOL_INFO structure. The

only exception is LANA 0. The iProtocol field for this LANA is 0x80000000 because 0 is reserved for

use by Winsock. The variable j will contain the number of valid transports.

On the companion CD you will find a NetBIOS client and server application named

WSNBCLNT.CPP and WSNBSVR.CPP, respectively.

AppleTalk

AppleTalk support in Winsock has been around for a while, although few people are aware of it. You

probably will not choose AppleTalk unless you are communicating with Macintosh computers.

AppleTalk is somewhat similar to NetBIOS in that it is name-based on a per-process basis. That is, a

server dynamically registers a particular name that it will be known as. Clients use this name to

establish a connection. However, AppleTalk names are substantially more complicated than NetBIOS

names. The next section will discuss how computers using the AppleTalk protocol are addressed on

the network.

Addressing

An AppleTalk name is actually based on three separate names: name, type, and zone. Each name

can be up to 32 characters long. The name identifies the process and its associated socket on a

machine. The type is a subgrouping mechanism for zones. Traditionally, a zone is a network of

AppleTalk-enabled computers physically located on the same loop. Microsoft's implementation of

AppleTalk allows a Windows machine to specify the default zone it is located within. Multiple networks

can be bridged together. These human-friendly names map to a socket number, a node number, and

a network number. An AppleTalk name must be unique within the given type and zone. This

requirement is enforced by the Name Binding Protocol (NBP), which broadcasts a query to see if the

name is already in use. Under the hood, AppleTalk uses the Routing Table Maintenance Protocol

(RTMP) to dynamically discover routes to the different AppleTalk networks linked together.

The following structure provides the basis for addressing AppleTalk hosts from Winsock:

typedef struct sockaddr_at

{

 USHORT sat_family;

 USHORT sat_net;

 UCHAR sat_node;

 UCHAR sat_socket;

} SOCKADDR_AT, *PSOCKADDR_AT;

Notice that the address structure contains only characters or short integers and not friendly names.

The SOCKADDR_AT structure is passed into Winsock calls such as bind, connect, and WSAConnect,

but to translate the human-readable names you must query the network to either resolve or register

that name first. This is done by using a call to getsockopt or setsockopt, respectively.

Registering an AppleTalk Name

A server that wants to register a particular name so that clients can easily connect to it calls setsockopt

with the SO_REGISTER_NAME option. For all socket options involving AppleTalk names, use the

WSH_NBP_NAME structure, which is defined as

typedef struct

{

 CHAR ObjectNameLen;

 CHAR ObjectName[MAX_ENTITY];

 CHAR TypeNameLen;

 CHAR TypeName[MAX_ENTITY];

 CHAR ZoneNameLen;

 CHAR ZoneName[MAX_ENTITY];

} WSH_NBP_NAME, *PWSH_NBP_NAME;

A number of types—which include WSH_REGISTER_NAME, WSH_DEREGISTER_NAME, and

WSH_REMOVE_NAME—are defined based on the WSH_NBP_NAME structure. Using the

appropriate type depends on whether you look up a name, register a name, or remove a name.

The following code sample illustrates how to register an AppleTalk name:

#define MY_ZONE "*"

#define MY_TYPE "Winsock-Test-App"

#define MY_OBJECT "AppleTalk-Server"

WSH_REGISTER_NAME atname;

SOCKADDR_AT ataddr;

SOCKET s;

//

// Fill in the name to register

//

strcpy(atname.ObjectName, MY_OBJECT);

atname.ObjectNameLen = strlen(MY_OBJECT);

strcpy(atname.TypeName, MY_TYPE);

atname.TypeNameLen = strlen(MY_TYPE);

strcpy(atname.ZoneName, MY_ZONE);

atname.ZoneNameLen = strlen(MY_ZONE);

s = socket(AF_APPLETALK, SOCK_STREAM, ATPROTO_ADSP);

if (s == INVALID_SOCKET)

{

 // Error

}

ataddr.sat_socket = 0;

ataddr.sat_family = AF_APPLETALK;

if (bind(s, (SOCKADDR *)&ataddr, sizeof(ataddr)) == SOCKET_ERROR)

{

 // Unable to open an endpoint on the AppleTalk network

}

if (setsockopt(s, SOL_APPLETALK, SO_REGISTER_NAME,

 (char *)&atname, sizeof(WSH_NBP_NAME)) == SOCKET_ERROR)

{

 // Name registration failed!

}

The first thing you'll notice is the MY_ZONE, MY_TYPE, and MY_OBJECT strings. Remember that an

AppleTalk name is three-tiered. Notice that the zone is an asterisk (*). This is a special character used

in the zone field to specify the “current” zone the computer is located in. Next, we create a socket of

type SOCK_STREAM of the AppleTalk Data Stream Protocol (ADSP). Following socket creation, you'll

notice a call to the bind function with an address structure that has a zeroed-out sat_socket field and

only the protocol family field set. This is important because it creates an endpoint on the AppleTalk

network for your application to make requests from. Note that although this call to bind allows you to

perform simple actions on the network, by itself it doesn't allow your application to accept incoming

connection requests from clients. To accept client connections, you must register your name on the

network, which is the next step.

Registering an AppleTalk name is simple. Make the call to setsockopt by passing SOL_APPLETALK

as the level parameter and SO_REGISTER_NAME as the optname parameter. The last two

parameters are a pointer to our WSH_REGISTER_NAME structure and its size. If the call succeeds,

our server name was successfully registered. If the call fails, the name is probably already in use. The

Winsock error returned is WSAEADDRINUSE (10048). Note that for both datagram-oriented and

stream-oriented AppleTalk protocols, a process that wants to receive data must register a name that

clients can either send datagrams to or connect to.

Resolving an AppleTalk Name

On the client side of the equation, an application usually knows a server by its friendly name and must

resolve that into the network, node, and socket numbers Winsock calls use. This is accomplished by

calling getsockopt with the SO_LOOKUP_NAME option. Performing a name lookup relies on the

WSH_LOOKUP_NAME structure. This structure and its dependent structure are defined as

typedef struct

{

 WSH_ATALK_ADDRESS Address;

 USHORT Enumerator;

 WSH_NBP_NAME NbpName;

} WSH_NBP_TUPLE, *PWSH_NBP_TUPLE;

typedef struct _WSH_LOOKUP_NAME

{

 // Array of NoTuple WSH_NBP_TUPLEs

 WSH_NBP_TUPLE LookupTuple;

 ULONG NoTuples;

} WSH_LOOKUP_NAME, *PWSH_LOOKUP_NAME;

When we call getsockopt with the SO_LOOKUP_NAME option, we pass a buffer cast as a

WSH_LOOKUP_NAME structure and fill in the WSH_NBP_NAME field within the first LookupTuple

member. Upon a successful call, getsockopt returns an array of WSH_NBP_TUPLE elements

containing physical address information for that name. The following sample contains the file

ATALKNM.C, which illustrates how to look up a name. In addition, it shows how to list all “discovered”

AppleTalk zones and how to find your default zone. Zone information can be obtained by using the

getsockopt options SO_LOOKUP_ZONES and SO_LOOKUP_MYZONE.

#include <winsock.h>

#include <atalkwsh.h>

#include <stdio.h>

#include <stdlib.h>

#define DEFAULT_ZONE "*"

#define DEFAULT_TYPE "Windows Sockets"

#define DEFAULT_OBJECT "AppleTalk-Server"

char szZone[MAX_ENTITY],

 szType[MAX_ENTITY],

 szObject[MAX_ENTITY];

BOOL bFindName = FALSE,

 bListZones = FALSE,

 bListMyZone = FALSE;

void usage()

{

 printf("usage: atlookup [options]\n");

 printf(" Name Lookup:\n");

 printf(" -z:ZONE-NAME\n");

 printf(" -t:TYPE-NAME\n");

 printf(" -o:OBJECT-NAME\n");

 printf(" List All Zones:\n");

 printf(" -lz\n");

 printf(" List My Zone:\n");

 printf(" -lm\n");

 ExitProcess(1);

}

void ValidateArgs(int argc, char **argv)

{

 int i;

 strcpy(szZone, DEFAULT_ZONE);

 strcpy(szType, DEFAULT_TYPE);

 strcpy(szObject, DEFAULT_OBJECT);

 for(i = 1; i < argc; i++)

 {

 if (strlen(argv[i]) < 2)

 continue;

 if ((argv[i][0] == '-') ¦¦ (argv[i][0] == '/'))

 {

 switch (tolower(argv[i][1]))

 {

 case 'z': // Specify a zone name

 if (strlen(argv[i]) > 3)

 strncpy(szZone, &argv[i][3], MAX_ENTITY);

 bFindName = TRUE;

 break;

 case 't': // Specify a type name

 if (strlen(argv[i]) > 3)

 strncpy(szType, &argv[i][3], MAX_ENTITY);

 bFindName = TRUE;

 break;

 case 'o': // Specify an object name

 if (strlen(argv[i]) > 3)

 strncpy(szObject, &argv[i][3], MAX_ENTITY);

 bFindName = TRUE;

 break;

 case 'l': // List zones information

 if (strlen(argv[i]) == 3)

 // List all zones

 if (tolower(argv[i][2]) == 'z')

 bListZones = TRUE;

 // List my zone

 else if (tolower(argv[i][2]) == 'm')

 bListMyZone = TRUE;

 break;

 default:

 usage();

 }

 }

 }

}

int main(int argc, char **argv)

{

 WSADATA wsd;

 char cLookupBuffer[16000],

 *pTupleBuffer = NULL;

 PWSH_NBP_TUPLE pTuples = NULL;

 PWSH_LOOKUP_NAME atlookup;

 PWSH_LOOKUP_ZONES zonelookup;

 SOCKET s;

 DWORD dwSize = sizeof(cLookupBuffer);

 SOCKADDR_AT ataddr;

 int i;

 // Load the Winsock library

 //

 if (WSAStartup(MAKEWORD(2, 2), &wsd) != 0)

 {

 printf("Unable to load Winsock library!\n");

 return 1;

 }

 ValidateArgs(argc, argv);

 atlookup = (PWSH_LOOKUP_NAME)cLookupBuffer;

 zonelookup = (PWSH_LOOKUP_ZONES)cLookupBuffer;

 if (bFindName)

 {

 // Fill in the name to look up

 //

 strcpy(atlookup->LookupTuple.NbpName.ObjectName, szObject);

 atlookup->LookupTuple.NbpName.ObjectNameLen =

 strlen(szObject);

 strcpy(atlookup->LookupTuple.NbpName.TypeName, szType);

 atlookup->LookupTuple.NbpName.TypeNameLen = strlen(szType);

 strcpy(atlookup->LookupTuple.NbpName.ZoneName, szZone);

 atlookup->LookupTuple.NbpName.ZoneNameLen = strlen(szZone);

 }

 // Create the AppleTalk socket

 //

 s = socket(AF_APPLETALK, SOCK_STREAM, ATPROTO_ADSP);

 if (s == INVALID_SOCKET)

 {

 printf("socket() failed: %d\n", WSAGetLastError());

 return 1;

 }

 // We need to bind in order to create an endpoint on the

 // AppleTalk network to make our query from

 //

 ZeroMemory(&ataddr, sizeof(ataddr));

 ataddr.sat_family = AF_APPLETALK;

 ataddr.sat_socket = 0;

 if (bind(s, (SOCKADDR *)&ataddr, sizeof(ataddr)) ==

 INVALID_SOCKET)

 {

 printf("bind() failed: %d\n", WSAGetLastError());

 return 1;

 }

 if (bFindName)

 {

 printf("Looking up: %s:%s@%s\n", szObject, szType, szZone);

 if (getsockopt(s, SOL_APPLETALK, SO_LOOKUP_NAME,

 (char *)atlookup, &dwSize) == INVALID_SOCKET)

 {

 printf("getsockopt(SO_LOOKUP_NAME) failed: %d\n",

 WSAGetLastError());

 return 1;

 }

 printf("Lookup returned: %d entries\n",

 atlookup->NoTuples);

 //

 // Our character buffer now contains an array of

 // WSH_NBP_TUPLE structures after our WSH_LOOKUP_NAME

 // structure

 //

 pTupleBuffer = (char *)cLookupBuffer +

 sizeof(WSH_LOOKUP_NAME);

 pTuples = (PWSH_NBP_TUPLE) pTupleBuffer;

 for(i = 0; i < atlookup->NoTuples; i++)

 {

 ataddr.sat_family = AF_APPLETALK;

 ataddr.sat_net = pTuples[i].Address.Network;

 ataddr.sat_node = pTuples[i].Address.Node;

 ataddr.sat_socket = pTuples[i].Address.Socket;

 printf("server address = %lx.%lx.%lx.\n",

 ataddr.sat_net,

 ataddr.sat_node,

 ataddr.sat_socket);

 }

 }

 else if (bListZones)

 {

 // It is very important to pass a sufficiently big buffer

 // for this option. Windows NT 4 SP3 blue screens if it

 // is too small.

 //

 if (getsockopt(s, SOL_APPLETALK, SO_LOOKUP_ZONES,

 (char *)atlookup, &dwSize) == INVALID_SOCKET)

 {

 printf("getsockopt(SO_LOOKUP_NAME) failed: %d\n",

 WSAGetLastError());

 return 1;

 }

 printf("Lookup returned: %d zones\n", zonelookup->NoZones);

 //

 // The character buffer contains a list of null-separated

 // strings after the WSH_LOOKUP_ZONES structure

 //

 pTupleBuffer = (char *)cLookupBuffer +

 sizeof(WSH_LOOKUP_ZONES);

 for(i = 0; i < zonelookup->NoZones; i++)

 {

 printf("%3d: '%s'\n", i+1, pTupleBuffer);

 while (*pTupleBuffer++);

 }

 }

 else if (bListMyZone)

 {

 // This option returns a simple string

 //

 if (getsockopt(s, SOL_APPLETALK, SO_LOOKUP_MYZONE,

 (char *)cLookupBuffer, &dwSize) == INVALID_SOCKET)

 {

 printf("getsockopt(SO_LOOKUP_NAME) failed: %d\n",

 WSAGetLastError());

 return 1;

 }

 printf("My Zone: '%s'\n", cLookupBuffer);

 }

 else

 usage();

 WSACleanup();

 return 0;

}

When you are using most of the AppleTalk socket options—such as SO_LOOKUP_MYZONE,

SO_LOOKUP_ZONES, and SO_LOOKUP_NAME—you need to provide a large character buffer to

the getsockopt call. If you call an option that requires you to provide a structure, that structure needs to

be at the start of the supplied character buffer. If the call to getsockopt is successful, the function

places the returned data in the character buffer after the end of the supplied structure. Take a look at

the SO_LOOKUP_NAME section in the above code sample. The variable, cLookupBuffer, is a simple

character array used in the call to getsockopt. First, cast it as a PWSH_LOOKUP_NAME and fill in the

name information you want to find. Pass the buffer into getsockopt, and upon return, increment the

character pointer pTupleBuffer so that it points to the character after the end of the

WSH_LOOKUP_NAME structure. Next, cast that pointer to a variable of PWSH_NBP_TUPLE

because the data returned from a lookup name call is an array of WSH_NBP_TUPLE structures. Once

you have the proper starting location and type of the tuples, you can walk through the array. Chapter 7

contains more in-depth information about the various socket options specific to the AppleTalk address

family.

Creating a Socket

AppleTalk is available in Winsock 1.1 and later, so you can use either socket-creation routine. Again,

you have two options of specifying the underlying AppleTalk protocols. First, you can supply the

corresponding define from atalkwsh.h for the protocol you want, or you can enumerate the protocols

using WSAEnumProtocols and passing the WSAPROTOCOL_INFO structure. Table 4-1 lists the

required parameters for each AppleTalk protocol type when you create a socket directly using socket

or WSASocket.

Table 4-1AppleTalk Protocols and Parameters

Protocol
Address

Family
Socket Type Protocol Type

MSAFD AppleTalk [ADSP] SOCK_RDM ATPROTO_ADSP

MSAFD AppleTalk [ADSP]

[Pseudo-Stream]
SOCK_STREAM ATPROTO_ADSP

MSAFD AppleTalk [PAP] AF_APPLETALK SOCK_RDM ATPROTO_PAP

MSAFD AppleTalk [RTMP] SOCK_DGRAM DDPPROTO_RTMP

MSAFD AppleTalk [ZIP] SOCK_DGRAM DDPPROTO_ZIP

On the companion CD, you will find an AppleTalk application named ATALK.CPP which

can operate as a sender or a receiver application over the PAP and ADSP protocols.

ATM

The Asynchronous Transfer Mode (ATM) protocol is one of the newest protocols available that is

supported by Winsock 2 on Windows 98, Windows Me, Windows 2000, and Windows XP. ATM is

usually used for high-speed networking on LANs and WANs and can be used for all types of

communication, such as voice, video, and data requiring high-speed communication. In general, ATM

provides guaranteed QOS using Virtual Connections (VCs) on a network. As you will see in a moment,

Winsock is capable of using VCs on an ATM network through the ATM address family. An ATM

network—as shown in Figure 4-1—typically comprises endpoints (or computers) that are

interconnected by switches that bridge an ATM network together.

Figure 4-1 ATM network

There are a few points to be aware of when programming for the ATM protocol. First, ATM is a media

type and not really a protocol. That is, ATM is similar to writing Ethernet frames directly on an Ethernet

network. Like Ethernet, the ATM protocol doesn't provide flow control. It is a connection-oriented

protocol that provides either message or stream modes. This also means that a sending application

might overrun the local buffers if data cannot be sent quickly enough. Likewise, a receiving application

must post receives frequently; otherwise, when the receiving buffers become full, any additional

incoming data might be dropped. If your application requires flow control, one alternative is to use IP

over ATM, which is simply the IP protocol running over an ATM network. As a result, the application

follows the IP address family described in Chapter 3. Of course, ATM does offer some advantages

over IP, such as a rooted multicast scheme (described in Chapter 9); however, the protocol that best

suits you depends on your application's needs.

Addressing

An ATM network has two network interfaces: the user network interface (UNI) and the network node

interface (NNI). The UNI interface is the communication established between an endpoint and an ATM

switch, while the NNI interface is the communication established between two switches. Each of these

interfaces has a related communication protocol. These are described here:

UNI signaling protocol Allows an endpoint to establish communication on an ATM network by

sending setup and control information between an endpoint and an ATM switch. Note that this

protocol is limited to transmissions between an endpoint and an ATM switch and isn't directly

transmitted over an ATM network through switches.

NNI signaling protocol Allows an ATM switch to communicate routing and control information

between two switches.

For purposes of setting up an ATM connection through Winsock, we will only discuss certain

information elements in the UNI signaling protocol. Winsock on Windows XP, Windows 2000,

Windows Me, and Windows 98 (service pack 1) currently supports the UNI version 3.1 signaling

protocol.

Winsock allows a client/server application to communicate over an ATM network by setting up an SAP

to form connections using the ATM UNI signaling protocol. ATM is a connection-oriented protocol that

requires endpoints to establish virtual connections across an ATM network for communication. An SAP

simply allows Winsock applications to register and identify a socket interface for communication on an

ATM network through a SOCKADDR_ATM address structure. Once an SAP is established, Winsock

uses the SAP to establish a virtual connection between a Winsock client and server over ATM by

making calls to the ATM network using the UNI signaling protocol. The SOCKADDR_ATM structure is

defined as

typedef struct sockaddr_atm

{

 u_short satm_family;

 ATM_ADDRESS satm_number;

 ATM_BLLI satm_blli;

 ATM_BHLI satm_bhli;

} sockaddr_atm, SOCKADDR_ATM, *PSOCKADDR_ATM, *LPSOCKADDR_ATM;

The satm_family field should always be set to AF_ATM. The satm_number field represents an actual

ATM address represented as an ATM_ADDRESS structure using one of two basic ATM addressing

schemes: E.164 and Network Service Access Point (NSAP). NSAP addresses are also referred to as

an NSAP-style ATM Endsystem Address (AESA). The ATM_ADDRESS structure is defined as

typedef struct

{

 DWORD AddressType;

 DWORD NumofDigits;

 UCHAR Addr[ATM_ADDR_SIZE];

} ATM_ADDRESS;

The AddressType field defines the specified addressing scheme. This should be set to ATM_E164 for

the E.164 addressing scheme and ATM_NSAP for the NSAP-style addressing scheme. In addition, the

AddressType field can be set to other values defined in Table 4-2 when an application tries to bind a

socket to an SAP, which we will discuss in more detail later in this chapter. The NumofDigits field

should always be set to ATM_ADDR_SIZE. The Addr field represents an actual ATM 20-byte E.164 or

NSAP address.

The satm_blli and satm_bhli fields of the SOCKADDR_ATM structure represent Broadband Lower

Layer Information (BLLI) and Broadband Higher Layer Information (BHLI) in ATM UNI signaling,

respectively. In general, these structures are used to identify the protocol stack that operates over an

ATM connection. Several well-known combinations of BHLI and BLLI values are described in ATM

Form/IETF documents. (A particular combination of values identifies a connection as being used by

LAN Emulation over ATM, another combination identifies native IP over ATM, and so on.) Complete

ranges of values for the fields in these structures are given in the ATM UNI 3.1 standards book. ATM

Form/IETF documents can be found at http://www.ietf.org.

Table 4-2ATM Socket Address Types

ATM_ADDRESS AddressType

Setting
Type of Address

ATM_E164 An E.164 address; applies when connecting to an SAP

ATM_NSAP
An NSAP-style ATM Endsystem Address (AESA); applies

when connecting to an SAP

SAP_FIELD_ANY_AESA_SEL
An NSAP-style ATM Endsystem Address with the selector

octet wildcarded; applies to binding a socket to an SAP

SAP_FIELD_ANY_AESA_REST

An NSAP-style ATM Endsystem Address with all the octets

except for the selector octet wildcarded; applies to binding a

socket to an SAP

The BHLI and BLLI data structures are defined as

typedef struct

{

 DWORD HighLayerInfoType;

 DWORD HighLayerInfoLength;

 UCHAR HighLayerInfo[8];

} ATM_BHLI;

typedef struct

{

 DWORD Layer2Protocol;

 DWORD Layer2UserSpecifiedProtocol;

 DWORD Layer3Protocol;

http://www.ietf.org

 DWORD Layer3UserSpecifiedProtocol;

 DWORD Layer3IPI;

 UCHAR SnapID[5];

} ATM_BLLI;

Further details of the definition and use of these fields are beyond the scope of this book. An

application that simply wants to form Winsock communication over an ATM network should set the

following fields in the BHLI and BLLI structures to the SAP_FIELD_ABSENT value:

ATM_BLLI—Layer2Protocol

ATM_BLLI—Layer3Protocol

ATM_BHLI—HighLayerInfoType

When these fields are set to this value, none of the other fields in either structure are used. The

following pseudocode demonstrates how an application might use the SOCKADDR_ATM structure to

set up an SAP for an NSAP address:

SOCKADDR_ATM atm_addr;

UCHAR MyAddress[ATM_ADDR_SIZE];

atm_addr.satm_family = AF_ATM;

atm_addr.satm_number.AddressType = ATM_NSAP;

atm_addr.satm_number.NumofDigits = ATM_ADDR_SIZE;

atm_addr.satm_blli.Layer2Protocol = SAP_FIELD_ABSENT;

atm_addr.satm_blli.Layer3Protocol = SAP_FIELD_ABSENT;

atm_addr.satm_bhli.HighLayerInfoType = SAP_FIELD_ABSENT;

memcpy(&atm_addr.satm_number.Addr, MyAddress, ATM_ADDR_SIZE);

ATM addresses are normally represented as a hexadecimal ASCII string of 40 characters, which

corresponds to the 20 bytes that make up either an NSAP-style or an E.164 address in an

ATM_ADDRESS structure. For example, an ATM NSAP-style address might look like this:

47000580FFE1000000F21A1D540000D10FED5800

Converting this string to a 20-byte address can be a tedious task. However, Winsock provides a

protocol-independent API function, WSAStringToAddress, which can allow you to convert a

40-character ATM hexadecimal ASCII string to an ATM_ADDRESS structure. This API is described in

Chapter 3. Another way to convert a hexadecimal ASCII string to hexadecimal (binary) format is to use

the function AtoH defined in the following code. This function isn't part of Winsock. However, it is

simple enough to develop, and you will see it used in the ATM sample (described later) included on the

companion CD.

//

// Function: AtoH

//

// Description: This function coverts the ATM

// address specified in string (ASCII) format to

// binary (hexadecimal) format

//

void AtoH(CHAR *szDest, CHAR *szSource, INT iCount)

{

 while (iCount--)

 {

 *szDest++ = (BtoH (*szSource++) << 4)

 + BtoH (*szSource++);

 }

 return;

}

//

// Function: BtoH

//

// Description: This function returns the equivalent

// binary value for an individual character specified

// in ASCII format

//

UCHAR BtoH(CHAR ch)

{

 if (ch >= '0' && ch <= '9')

 {

 return (ch - '0');

 }

 if (ch >= 'A' && ch <= 'F')

 {

 return (ch - 'A' + 0xA);

 }

 if (ch >= 'a' && ch <= 'f')

 {

 return (ch - 'a' + 0xA);

 }

 //

 // Illegal values in the address will not be

 // accepted

 //

 return -1;

}

Creating a Socket

In ATM, applications can create only connection-oriented sockets because ATM allows communication

only over a VC. Therefore, data can be transmitted either as a stream of bytes or in a

message-oriented fashion. To open a socket using the ATM protocol, call the socket function or the

WSASocket function with the address family AF_ATM and the socket type SOCK_RAW, and set the

protocol field to ATMPROTO_AAL5. For example:

s = socket(AF_ATM, SOCK_RAW, ATMPROTO_AAL5);

s = WSASocket(AF_ATM, SOCK_RAW, ATMPROTO_AAL5, NULL, 0,

 WSA_FLAG_OVERLAPPED);

By default, opening a socket (as in the example) creates a stream-oriented ATM socket. Windows also

features an ATM provider that can perform message-oriented data transfers. Using the

message-oriented provider requires you to explicitly specify the native ATM protocol provider to the

WSASocket function by using a WSAPROTOCOL_INFO structure, as described in Chapter 2. This is

necessary because the three elements in the socket call and the WSASocket call (address family,

socket type, and protocol) match every ATM provider available in Winsock. By default, Winsock

returns the protocol entry that matches those three attributes and is marked as default, which in this

case is the stream-oriented provider. The following pseudocode demonstrates how to retrieve the ATM

message-oriented provider and establish a socket:

dwRet = WSAEnumProtocols(NULL, lpProtocolBuf, &dwBufLen);

for (i = 0; i < dwRet; i++)

{

 if ((lpProtocolBuf[i].iAddressFamily == AF_ATM) &&

 (lpProtocolBuf[i].iSocketType == SOCK_RAW) &&

 (lpProtocolBuf[i].iProtocol == ATMPROTO_AAL5) &&

 (lpProtocolBuf[i].dwServiceFlags1 &

 XP1_MESSAGE_ORIENTED))

 {

 s = WSASocket(FROM_PROTOCOL_INFO, FROM_PROTOCOL_INFO,

 FROM_PROTOCOL_INFO, lpProtocolBuf[i], 0,

 WSA_FLAG_OVERLAPPED);

 }

}

Binding a Socket to an SAP

ATM addresses are actually quite complicated because the 20 bytes they comprise contain many

informational elements. Winsock application programmers need not worry about all the specific details

of these elements with the exception of the last byte. The last byte in NSAP-style and E.164 addresses

represents a selector value that uniquely allows your application to define and specify a particular SAP

on an endpoint. As we described earlier, Winsock uses an SAP to form communication over an ATM

network.

When Winsock applications want to communicate over ATM, a server application must register an

SAP on an endpoint and wait for a client application to connect on the registered SAP. For a client

application, this simply involves setting up a SOCKADDR_ATM structure with the ATM_E164 or

ATM_NSAP address type and supplying the ATM address associated with the server's SAP. To create

an SAP to listen for connections, your application must first create a socket for the AF_ATM address

family. Once the socket is created, your application must define a SOCKADDR_ATM structure using

the SAP_FIELD_ANY_AESA_SEL, SAP_FIELD_ANY_AESA_REST, ATM_E164, or ATM_ NSAP

address type as defined in Table 4-2. For an ATM socket, an SAP will be created once your

application calls the Winsock bind API function (which we describe in Chapter 1), and these address

types define how Winsock creates an SAP on your endpoint.

The address type SAP_FIELD_ANY_AESA_SEL tells Winsock to create an SAP that is capable of

listening for any incoming ATM Winsock connection, which is known as wildcarding an ATM address

and the selector. This means that only one socket can be bound to this endpoint listening for any

connection; if another socket tries to bind with this address type, it will fail with Winsock error

WSAEADDRINUSE. However, you can have another socket bound explicitly to your endpoint on a

particular selector. The address type SAP_FIELD_ANY_AESA_REST can be used to create an SAP

that is explicitly bound to a specified selector on an endpoint. This is known as wildcarding only the

ATM address and not the selector. You can have only one socket at a time bound to a particular

selector on an endpoint or the bind call will fail with error WSAEADDRINUSE. When you use the

SAP_FIELD_ANY_AESA_SEL type, you should specify an ATM address of all zeros in the

ATM_ADDRESS structure. If you use SAP_FIELD_ANY_AESA_REST, you should specify all zeros

for the first 19 bytes of the ATM address and the last byte should indicate which selector number you

plan to use.

Sockets that are bound to explicit selectors (SAP_FIELD_ANY_AESA_REST) take higher precedence

than those sockets that are bound to a wildcarded selector (SAP_FIELD_ANY_AESA_SEL). Those

that are bound to explicit selectors (SAP_FIELD_ANY_AESA_REST) or explicit interfaces

(ATM_NSAP and ATM_E164) will get first choice at connections. (That is, if a connection comes in on

the endpoint and the selector that a socket is explicitly listening on, that socket gets the connection.)

Only when no explicitly bound socket is available will a wildcarded selector socket get the connection.

On the companion CD, there is an ATM sample named WSOCKATM.CPP that serves

as a client and server application and further demonstrates how to set up a socket that

listens for connections on an SAP.

Finally, a Windows utility named ATMADM.EXE allows you to retrieve all ATM address and virtual

connection information on an endpoint. This utility can be useful when you are developing an ATM

application and need to know which interfaces are available on an endpoint. The command line

options listed in Table 4-3 are available.

Table 4-3ATMADM.EXE Program Options

Parameter Description

-c Lists all connections (VC). Lists the remote address and the local interface.

-a Lists all registered addresses (such as all local ATM interfaces and their addresses).

-s
Prints statistics (such as current number of calls, number of signaling and ILMI packets

sent/received).

Name Resolution

Currently, there are no name providers available for ATM under Winsock. Unfortunately, this requires

applications to specify the 20-byte ATM address to establish socket communication over an ATM

network. Chapter 8 discusses the Windows 2000 and Windows XP domain name space that can be

generically used to register ATM addresses with user-friendly service names.

Conclusion

In this chapter, we described the remaining (non-IP) protocol address families that

Winsock supports and explained addressing attributes specific to each family. For

each address family, we discussed how to create a socket and how to set up a socket

address structure to begin communication over a protocol.

At this point in the book, we have completed our discussion of Winsock's basic

communication techniques and have described all of the available address families

that enable you to construct a simple Winsock application. Chapter 5 will start our

discussion of advanced Winsock topics, and we will begin with advanced I/O methods

that allow you to manage I/O in a Winsock application.

Chapter 5

Winsock I/O Methods

This chapter focuses on managing I/O in a Windows sockets application. Winsock features socket

modes and socket I/O models to control how I/O is processed on a socket. A socket mode simply

determines how Winsock functions behave when called with a socket. A socket model, on the other

hand, describes how an application manages and processes I/O on a socket.

Winsock features two socket modes: blocking and non-blocking. The first part of this chapter describes

these modes in detail and demonstrates how an application can use them to manage I/O. As you'll see

later in the chapter, Winsock offers some interesting I/O models that help applications manage

communication on one or more sockets at a time in an asynchronous fashion: blocking, select,

WSAAsyncSelect, WSAEventSelect, overlapped I/O, and completion port. By the chapter's end, we'll

review the pros and cons of the various socket modes and I/O models and help you decide which one

best meets your application's needs.

All Windows platforms offer blocking and non-blocking socket operating modes. However, not every

I/O model is available for every platform. As you can see in Table 5-1, only one of the I/O models is

available under current versions of Windows CE. Windows 95, Windows 98, and Windows Me

(depending on whether you have Winsock version 1 or 2) support most of the I/O models with the

exception of I/O completion ports. Every I/O model is available on Windows NT and later versions.

Table 5-1Available Socket I/O Models

Platform Block-ing
Non-blocking

Select

WSAAsync

Select

WSAEvent

Select
Over-lapped

Completion

Port

Windows

CE
Yes Yes No No No No

Windows

95

(Winsock

1)

Yes Yes Yes No No No

Windows

95

(Winsock

2)

Yes Yes Yes Yes Yes No

Windows

98
Yes Yes Yes Yes Yes No

Windows

Me
Yes Yes Yes Yes Yes No

Windows

NT
Yes Yes Yes Yes Yes Yes

Platform Block-ing
Non-blocking

Select

WSAAsync

Select

WSAEvent

Select
Over-lapped

Completion

Port

Windows

2000
Yes Yes Yes Yes Yes Yes

Windows

XP
Yes Yes Yes Yes Yes Yes

Socket Modes

As we mentioned, Windows sockets perform I/O operations in two socket operating

modes: blocking and non-blocking. In blocking mode, Winsock calls that perform

I/O—such as send and recv—wait until the operation is complete before they return to

the program. In non-blocking mode, the Winsock functions return immediately.

Applications running on the Windows CE and Windows 95 (with Winsock 1) platforms,

which support few of the I/O models, require you to take certain steps with blocking

and non-blocking sockets to handle a variety of situations.

Blocking Mode

Blocking sockets cause concern because any Winsock API call on a blocking socket

can do just that—block for some period of time. Most Winsock applications follow a

producer-consumer model in which the application reads (or writes) a specified

number of bytes and performs some computation on that data. The following code

snippet illustrates this model:

SOCKET sock;

char buff[256];

int done = 0,

 nBytes;

...

while(!done)

{

 nBytes = recv(sock, buff, 65);

 if (nBytes == SOCKET_ERROR)

 {

 printf("recv failed with error %d\n",

 WSAGetLastError());

 Return;

 }

 DoComputationOnData(buff);

}

...

The problem with this code is that the recv function might never return if no data is

pending because the statement says to return only after reading some bytes from the

system's input buffer. Some programmers might be tempted to peek for the necessary

number of bytes in the system's buffer by using the MSG_PEEK flag in recv or by

calling ioctlsocket with the FIONREAD option. Peeking for data without actually

reading it is considered bad programming practice and should be avoided at all costs

(reading the data actually removes it from the system's buffer). The overhead

associated with peeking is great because one or more system calls are necessary just

to check the number of bytes available. Then, of course, there is the overhead of

making the recv call that removes the data from the system buffer. To avoid this, you

need to prevent the application from totally freezing because of lack of data (either

from network problems or from client problems) without continually peeking at the

system network buffers. One method is to separate the application into a reading

thread and a computation thread. Both threads share a common data buffer. Access

to this buffer is protected with a synchronization object, such as an event or a mutex.

The purpose of the reading thread is to continually read data from the network and

place it in the shared buffer. When the reading thread has read the minimum amount

of data necessary for the computation thread to do its work, it can signal an event that

notifies the computation thread to begin. The computation thread then removes a

chunk of data from the buffer and performs the necessary calculations.

The following section of code illustrates this approach by providing two functions: one

responsible for reading network data (ReadThread) and one for performing the

computations on the data (ReadThread).

#define MAX_BUFFER_SIZE 4096

// Initialize critical section (data) and create

// an auto-reset event (hEvent) before creating the

// two threads

CRITICAL_SECTION data;

HANDLE hEvent;

SOCKET sock;

TCHAR buff[MAX_BUFFER_SIZE];

int done=0;

// Create and connect sock

...

// Reader thread

void ReadThread(void)

{

 int nTotal = 0,

 nRead = 0,

 nLeft = 0,

 nBytes = 0;

 while (!done)

 {

 nTotal = 0;

 nLeft = NUM_BYTES_REQUIRED;

// However many bytes constitutes

// enough data for processing

// (i.e. non-zero)

 while (nTotal != NUM_BYTES_REQUIRED)

 {

 EnterCriticalSection(&data);

 nRead = recv(sock, &(buff[MAX_BUFFER_SIZE - nBytes]),

 nLeft, 0);

 if (nRead == -1)

 {

 printf("error\n");

 ExitThread();

 }

 nTotal += nRead;

 nLeft -= nRead;

 nBytes += nRead;

 LeaveCriticalSection(&data);

 }

 SetEvent(hEvent);

 }

}

// Computation thread

void ProcessThread(void)

{

 WaitForSingleObject(hEvent);

 EnterCriticalSection(&data);

 DoSomeComputationOnData(buff);

 // Remove the processed data from the input

 // buffer, and shift the remaining data to

 // the start of the array

 nBytes -= NUM_BYTES_REQUIRED;

 LeaveCriticalSection(&data);

}

One drawback of blocking sockets is that communicating via more than one

connected socket at a time becomes difficult for the application. Using the foregoing

scheme, the application could be modified to have a reading thread and a data

processing thread per connected socket. This adds quite a bit of housekeeping

overhead, but it is a feasible solution. The only drawback is that the solution does not

scale well once you start dealing with a large number of sockets.

Non-blocking Mode

The alternative to blocking sockets is non-blocking sockets. Non-blocking sockets are

a bit more challenging to use, but they are every bit as powerful as blocking sockets,

with a few advantages. The following example illustrates how to create a socket and

put it into non-blocking mode.

SOCKET s;

unsigned long ul = 1;

int nRet;

s = socket(AF_INET, SOCK_STREAM, 0);

nRet = ioctlsocket(s, FIONBIO, (unsigned long *) &ul);

if (nRet == SOCKET_ERROR)

{

 // Failed to put the socket into non-blocking mode

}

Once a socket is placed in non-blocking mode, Winsock API calls that deal with

sending and receiving data or connection management return immediately. In most

cases, these calls fail with the error WSAEWOULDBLOCK, which means that the

requested operation did not have time to complete during the call. For example, a call

to recv returns WSAEWOULDBLOCK if no data is pending in the system's input

buffer. Often additional calls to the same function are required until it encounters a

successful return code. Table 5-2 describes the meaning of WSAEWOULDBLOCK

when returned by commonly used Winsock calls.

Table 5-2WSAEWOULDBLOCK Errors on Non-blocking Sockets

Function Name Description

WSAAccept and accept
The application has not received a connection

request. Call again to check for a connection.

closesocket

In most cases, this means that setsockopt was called

with the SO_LINGER option and a nonzero timeout

was set.

WSAConnect and connect
The connection is initiated. Call again to check for

completion.

WSARecv, recv,

WSARecvFrom, and

recvfrom

No data has been received. Check again later.

WSASend, send,

WSASendTo, and sendto

No buffer space available for outgoing data. Try again

later.

Because non-blocking calls frequently fail with the WSAEWOULDBLOCK error, you

should check all return codes and be prepared for failure at any time. The trap many

programmers fall into is that of continually calling a function until it returns a success.

For example, placing a call to recv in a tight loop to read 200 bytes of data is no better

than polling a blocking socket with the MSG_PEEK flag mentioned previously.

Winsock's socket I/O models can help an application determine when a socket is

available for reading and writing.

Each socket mode—blocking and non-blocking—has advantages and disadvantages.

Blocking sockets are easier to use from a conceptual standpoint but become difficult

to manage when dealing with multiple connected sockets or when data is sent and

received in varying amounts and at arbitrary times. On the other hand, non-blocking

sockets are more difficult because more code needs to be written to handle the

possibility of receiving a WSAEWOULDBLOCK error on every Winsock call. Socket

I/O models help applications manage communications on one or more sockets at a

time in an asynchronous fashion.

Socket I/O Models

Essentially, six types of socket I/O models are available that allow Winsock applications to manage

I/O: blocking, select, WSAAsyncSelect, WSAEventSelect, overlapped, and completion port. This

section explains the features of each I/O model and outlines how to use it to develop an application

that can manage one or more socket requests. On the companion CD, you will find sample

applications for each I/O model demonstrating how to develop a simple TCP echo server using the

principles described in each model.

Note that technically speaking, there could be a straight non-blocking I/O model—that is, an

application that places all sockets into non-blocking mode with ioctlsocket. However, this soon

becomes unmanageable because the application will spend most of its time cycling through socket

handles and I/O operations until they succeed.

The blocking Model

Most Winsock programmers begin with the blocking model because it is the easiest and most

straightforward model. The Winsock samples in Chapter 1 use this model. As we have mentioned,

applications following this model typically use one or two threads per socket connection for handling

I/O. Each thread will then issue blocking operations, such as send and recv.

The advantage to the blocking model is its simplicity. For very simple applications and rapid

prototyping, this model is very useful. The disadvantage is that it does not scale up to many

connections as the creation of more threads consumes valuable system resources.

The select Model

The select model is another I/O model widely available in Winsock. We call it the select model

because it centers on using the select function to manage I/O. The design of this model originated on

UNIX-based computers featuring Berkeley socket implementations. The select model was

incorporated into Winsock 1.1 to allow applications that want to avoid blocking on socket calls the

capability to manage multiple sockets in an organized manner. Because Winsock 1.1 is

backward-compatible with Berkeley socket implementations, a Berkeley socket application that uses

the select function should technically be able to run without modification.

The select function can be used to determine if there is data on a socket and if a socket can be written

to. The reason for having this function is to prevent your application from blocking on an I/O bound call

such as send or recv when a socket is in a blocking mode and to prevent the WSAEWOULDBLOCK

error when a socket is in a non-blocking mode. The select function blocks for I/O operations until the

conditions specified as parameters are met. The function prototype for select is as follows:

int select(

 int nfds,

 fd_set FAR * readfds,

 fd_set FAR * writefds,

 fd_set FAR * exceptfds,

 const struct timeval FAR * timeout

);

The first parameter, nfds, is ignored and is included only for compatibility with Berkeley socket

applications. You'll notice that there are three fd_set parameters: one for checking readability

(readfds), one for writeability (writefds), and one for out-of-band data (exceptfds). Essentially, the

fd_set data type represents a collection of sockets. The readfds set identifies sockets that meet one of

the following conditions:

Data is available for reading.

Connection has been closed, reset, or terminated.

If listen has been called and a connection is pending, the accept function will succeed.

The writefds set identifies sockets in which one of the following is true:

Data can be sent.

If a non-blocking connect call is being processed, the connection has succeeded.

Finally, the exceptfds set identifies sockets in which one of the following is true:

If a non-blocking connect call is being processed, the connection attempt failed.

OOB data is available for reading.

For example, when you want to test a socket for readability, you must add it to the readfds set and wait

for the select function to complete. When the select call completes, you have to determine if your

socket is still part of the readfds set. If so, the socket is readable—you can begin to retrieve data from

it. Any two of the three parameters (readfds, writefds, exceptfds) can be null values (at least one must

not be null), and any non-null set must contain at least one socket handle; otherwise, the select

function won't have anything to wait for. The final parameter, timeout, is a pointer to a timeval structure

that determines how long the select function will wait for I/O to complete. If timeout is a null pointer,

select will block indefinitely until at least one descriptor meets the specified criteria. The timeval

structure is defined as

struct timeval

{

 long tv_sec;

 long tv_usec;

};

The tv_sec field indicates how long to wait in seconds; the tv_usec field indicates how long to wait in

milliseconds. The timeout value {0, 0} indicates select will return immediately, allowing an application

to poll on the select operation. This should be avoided for performance reasons. When select

completes successfully, it returns the total number of socket handles that have I/O operations pending

in the fd_set structures. If the timeval limit expires, it returns 0. If select fails for any reason, it returns

SOCKET_ERROR.

Before you can begin to use select to monitor sockets, your application has to set up either one or all

of the read, write, and exception fd_set structures by assigning socket handles to a set. When you

assign a socket to one of the sets, you are asking select to let you know if the I/O activities just

described have occurred on a socket. Winsock provides the following set of macros to manipulate and

check the fd_set sets for I/O activity.

FD_ZERO(*set) Initializes set to the empty set. A set should always be cleared before using.

FD_CLR(s, *set) Removes socket s from set.

FD_ISSET(s, *set) Checks to see if s is a member of set and returns TRUE if so.

FD_SET(s, *set) Adds socket s to set.

For example, if you want to find out when it is safe to read data from a socket without blocking, simply

assign your socket to the fd_read set using the FD_SET macro and then call select. To test whether

your socket is still part of the fd_read set, use the FD_ISSET macro. The following five steps describe

the basic flow of an application that uses select with one or more socket handles:

Initialize each fd_set of interest by using the FD_ZERO macro.1.

Assign socket handles to each of the fd_set sets of interest by using the FD_SET macro.2.

Call the select function and wait until I/O activity sets one or more of the socket handles in

each fd_set set provided. When select completes, it returns the total number of socket handles

that are set in all of the fd_set sets and updates each set accordingly.

3.

Using the return value of select, your application can determine which application sockets have

I/O pending by checking each fd_set set using the FD_ISSET macro.

4.

After determining which sockets have I/O pending in each of the sets, process the I/O and go

to step 1 to continue the select process.

5.

When select returns, it modifies each of the fd_set structures by removing the socket handles that do

not have pending I/O operations. This is why you should use the FD_ISSET macro as in step 4 to

determine if a particular socket is part of a set. The following code sample outlines the basic steps

needed to set up the select model for a single socket. Adding more sockets to this application simply

involves maintaining a list or an array of additional sockets.

SOCKET s;

fd_set fdread;

int ret;

// Create a socket, and accept a connection

// Manage I/O on the socket

while(TRUE)

{

 // Always clear the read set before calling

 // select()

 FD_ZERO(&fdread);

 // Add socket s to the read set

 FD_SET(s, &fdread);

 if ((ret = select(0, &fdread, NULL, NULL, NULL))

 == SOCKET_ERROR)

 {

 // Error condition

 }

 if (ret > 0)

 {

 // For this simple case, select() should return

 // the value 1. An application dealing with

 // more than one socket could get a value

 // greater than 1. At this point, your

 // application should check to see whether the

 // socket is part of a set.

 if (FD_ISSET(s, &fdread))

 {

 // A read event has occurred on socket s

 }

 }

}

The advantage of using select is the capability to multiplex connections and I/O on many sockets from

a single thread. This prevents the explosion of threads associated with blocking sockets and multiple

connections. The disadvantage is the maximum number of sockets that may be added to the fd_set

structures. By default, the maximum is defined as FD_SETSIZE, which is defined in WINSOCK2.H as

64. To increase this limit, an application might define FD_SETSIZE to something large. This define

must appear before including WINSOCK2.H. Also, the underlying provider imposes an arbitrary

maximum fd_set size, which typically is 1024 but is not guaranteed to be. Finally, for a large

FD_SETSIZE, consider the performance hit of setting 1000 sockets before calling select followed by

checking whether each of those 1000 sockets is set after the call returns.

The WSAAsyncSelect Model

Winsock provides a useful asynchronous I/O model that allows an application to receive Windows

message–based notification of network events on a socket. This is accomplished by calling the

WSAAsyncSelect function after creating a socket. Before we continue, however, we need to make one

subtle distinction. The WSAAsyncSelect and WSAEventSelect models provide asynchronous

notification of the capability to read or write data. It does not provide asynchronous data transfer like

the overlapped and completion port models.

This model originally existed in Winsock 1.1 implementations to help application programmers cope

with the cooperative multitasking message-based environment of 16-bit Windows platforms, such as

Windows for Workgroups. Applications can still benefit from this model, especially if they manage

window messages in a standard Windows procedure, usually referred to as a winproc. This model is

also used by the Microsoft Foundation Class (MFC) CSocket object.

Message Notification

To use the WSAAsyncSelect model, your application must first create a window using the

CreateWindow function and supply a window procedure (winproc) support function for it. You can also

use a dialog box with a dialog procedure instead of a window because dialog boxes are windows. For

our purposes, we will demonstrate this model using a simple window with a supporting window

procedure. Once you have set up the window infrastructure, you can begin creating sockets and

turning on window message notification by calling the WSAAsyncSelect function, which is defined as

 int WSAAsyncSelect(

 SOCKET s,

 HWND hWnd,

 unsigned int wMsg,

 long lEvent

);

The s parameter represents the socket we are interested in. The hWnd parameter is a window handle

identifying the window or the dialog box that receives a message when a network event occurs. The

wMsg parameter identifies the message to be received when a network event occurs. This message is

posted to the window that is identified by the hWnd window handle. Applications usually set this

message to a value greater than the Windows WM_USER value to avoid confusing a network window

message with a predefined standard window message. The last parameter, lEvent, represents a

bitmask that specifies a combination of network events—listed in Table 5-3—that the application is

interested in. Most applications are typically interested in the FD_READ, FD_WRITE, FD_ACCEPT,

FD_CONNECT, and FD_CLOSE network event types. Of course, the use of the FD_ACCEPT or the

FD_CONNECT type depends on whether your application is a client or a server. If your application is

interested in more than one network event, simply set this field by performing a bitwise OR on the

types and assigning them to lEvent. For example:

WSAAsyncSelect(s, hwnd, WM_SOCKET,

 FD_CONNECT ¦ FD_READ ¦ FD_WRITE ¦ FD_CLOSE);

This allows our application to get connect, send, receive, and socket-closure network event

notifications on socket s. It is impossible to register multiple events one at a time on the socket. Also

note that once you turn on event notification on a socket, it remains on unless the socket is closed by a

call to closesocket or the application changes the registered network event types by calling

WSAAsyncSelect (again, on the socket). Setting the lEvent parameter to 0 effectively stops all network

event notification on the socket.

When your application calls WSAAsyncSelect on a socket, the socket mode is automatically changed

from blocking to the non-blocking mode that we described previously. As a result, if a Winsock I/O call

such as WSARecv is called and has to wait for data, it will fail with error WSAEWOULDBLOCK. To

avoid this error, applications should rely on the user-defined window message specified in the wMsg

parameter of WSAAsyncSelect to indicate when network event types occur on the socket.

Table 5-3Network Event Types for the WSAAsyncSelect Function

Event Type Meaning

FD_READ
The application wants to receive notification of readiness

for reading.

FD_WRITE
The application wants to receive notification of readiness

for writing.

FD_OOB
The application wants to receive notification of the arrival of

OOB data.

FD_ACCEPT
The application wants to receive notification of incoming

connections.

FD_CONNECT
The application wants to receive notification of a completed

connection or a multipoint join operation.

FD_CLOSE
The application wants to receive notification of socket

closure.

FD_QOS
The application wants to receive notification of socket QOS

changes.

FD_GROUP_QOS

The application wants to receive notification of socket

group QOS changes (reserved for future use with socket

groups).

FD_ROUTING_INTERFACE_CHANGE
The application wants to receive notification of routing

interface changes for the specified destination(s).

FD_ADDRESS_LIST_CHANGE
The application wants to receive notification of local

address list changes for the socket's protocol family.

After your application successfully calls WSAAsyncSelect on a socket, the application begins to

receive network event notification as Windows messages in the window procedure associated with the

hWnd parameter window handle. A window procedure is normally defined as

LRESULT CALLBACK WindowProc(

 HWND hWnd,

 UINT uMsg,

 WPARAM wParam,

 LPARAM lParam

);

The hWnd parameter is a handle to the window that invoked the window procedure. The uMsg

parameter indicates which message needs to be processed. In your case, you will be looking for the

message defined in the WSAAsyncSelect call. The wParam parameter identifies the socket on which a

network event has occurred. This is important if you have more than one socket assigned to this

window procedure. The lParam parameter contains two important pieces of information—the low word

of lParam specifies the network event that has occurred, and the high word of lParam contains any

error code.

When network event messages arrive at a window procedure, the application should first check the

lParam high-word bits to determine whether a network error has occurred on the socket. There is a

special macro, WSAGETSELECTERROR, that returns the value of the high-word bits error

information. After the application has verified that no error occurred on the socket, the application

should determine which network event type caused the Windows message to fire by reading the

low-word bits of lParam. Another special macro, WSAGETSELECTEVENT, returns the value of the

low-word portion of lParam.

The following example demonstrates how to manage window messages when using the

WSAAsyncSelect I/O model. The code highlights the steps needed to develop a basic server

application and removes the programming details of developing a fully featured Windows application.

#define WM_SOCKET WM_USER + 1

#include <winsock2.h>

#include <windows.h>

int WINAPI WinMain(HINSTANCE hInstance,

 HINSTANCE hPrevInstance, LPSTR lpCmdLine,

 int nCmdShow)

{

 WSADATA wsd;

 SOCKET Listen;

 SOCKADDR_IN InternetAddr;

 HWND Window;

 // Create a window and assign the ServerWinProc

 // below to it

 Window = CreateWindow();

 // Start Winsock and create a socket

 WSAStartup(MAKEWORD(2,2), &wsd);

 Listen = socket (AF_INET, SOCK_STREAM, IPPROTO_TCP);

 // Bind the socket to port 5150

 // and begin listening for connections

 InternetAddr.sin_family = AF_INET;

 InternetAddr.sin_addr.s_addr = htonl(INADDR_ANY);

 InternetAddr.sin_port = htons(5150);

 bind(Listen, (PSOCKADDR) &InternetAddr,

 sizeof(InternetAddr));

 // Set up window message notification on

 // the new socket using the WM_SOCKET define

 // above

 WSAAsyncSelect(Listen, Window, WM_SOCKET,

 FD_ACCEPT ¦ FD_CLOSE);

 listen(Listen, 5);

 // Translate and dispatch window messages

 // until the application terminates

 while (1) {

 // ...

 }

}

BOOL CALLBACK ServerWinProc(HWND hDlg,UINT wMsg,

 WPARAM wParam, LPARAM lParam)

{

 SOCKET Accept;

 switch(wMsg)

 {

 case WM_PAINT:

 // Process window paint messages

 break;

 case WM_SOCKET:

 // Determine whether an error occurred on the

 // socket by using the WSAGETSELECTERROR() macro

 if (WSAGETSELECTERROR(lParam))

 {

 // Display the error and close the socket

 closesocket((SOCKET) wParam);

 break;

 }

 // Determine what event occurred on the

 // socket

 switch(WSAGETSELECTEVENT(lParam))

 {

 case FD_ACCEPT:

 // Accept an incoming connection

 Accept = accept(wParam, NULL, NULL);

 // Prepare accepted socket for read,

 // write, and close notification

 WSAAsyncSelect(Accept, hDlg, WM_SOCKET,

 FD_READ ¦ FD_WRITE ¦ FD_CLOSE);

 break;

 case FD_READ:

 // Receive data from the socket in

 // wParam

 break;

 case FD_WRITE:

 // The socket in wParam is ready

 // for sending data

 break;

 case FD_CLOSE:

 // The connection is now closed

 closesocket((SOCKET)wParam);

 break;

 }

 break;

 }

 return TRUE;

}

One final detail worth noting is how applications should process FD_WRITE event notifications.

FD_WRITE notifications are sent under only three conditions:

After a socket is first connected with connect or WSAConnect

After a socket is accepted with accept or WSAAccept

When a send, WSASend, sendto, or WSASendTo operation fails with WSAEWOULDBLOCK and

buffer space becomes available

Therefore, an application should assume that sends are always possible on a socket starting from the

first FD_WRITE message and lasting until a send, WSASend, sendto, or WSASendTo returns the

socket error WSAEWOULDBLOCK. After such failure, another FD_WRITE message notifies the

application that sends are once again possible.

The WSAAsyncSelect model offers many advantages; foremost is the capability to handle many

connections simultaneously without much overhead, unlike the select model's requirement of setting

up the fd_set structures. The disadvantages are having to use a window if your application requires no

windows (such as a service or console application). Also, having a single window procedure to service

all the events on thousands of socket handles can become a performance bottleneck (meaning this

model doesn't scale very well).

The WSAEventSelect Model

Winsock provides another useful asynchronous event notification I/O model that is similar to the

WSAAsyncSelect model that allows an application to receive event-based notification of network

events on one or more sockets. This model is similar to the WSAAsyncSelect model because your

application receives and processes the same network events listed in Table 5-3 that the

WSAAsyncSelect model uses. The major difference with this model is that network events are notified

via an event object handle instead of a window procedure.

Event Notification

The event notification model requires your application to create an event object for each socket used

by calling the WSACreateEvent function, which is defined as

WSAEVENT WSACreateEvent(void);

The WSACreateEvent function simply returns a manual reset event object handle. Once you have an

event object handle, you have to associate it with a socket and register the network event types of

interest, as shown in Table 5-3. This is accomplished by calling the WSAEventSelect function, which is

defined as

int WSAEventSelect(

 SOCKET s,

 WSAEVENT hEventObject,

 long lNetworkEvents

);

The s parameter represents the socket of interest. The hEventObject parameter represents the event

object—obtained with WSACreateEvent—to associate with the socket. The last parameter,

lNetworkEvents, represents a bitmask that specifies a combination of network event types (listed in

Table 5-3) that the application is interested in. For a detailed discussion of these event types, see the

WSAAsyncSelect I/O model discussed previously.

The event created for WSAEventSelect has two operating states and two operating modes. The

operating states are known as signaled and non-signaled. The operating modes are known as manual

reset and auto reset. WSACreateEvent initially creates event handles in a non-signaled operating state

with a manual reset operating mode. As network events trigger an event object associated with a

socket, the operating state changes from non-signaled to signaled. Because the event object is

created in a manual reset mode, your application is responsible for changing the operating state from

signaled to non-signaled after processing an I/O request. This can be accomplished by calling the

WSAResetEvent function, which is defined as

BOOL WSAResetEvent(WSAEVENT hEvent);

The function takes an event handle as its only parameter and returns TRUE or FALSE based on the

success or failure of the call. When an application is finished with an event object, it should call the

WSACloseEvent function to free the system resources used by an event handle. The WSACloseEvent

function is defined as

BOOL WSACloseEvent(WSAEVENT hEvent);

This function also takes an event handle as its only parameter and returns TRUE if successful or

FALSE if the call fails.

Once a socket is associated with an event object handle, the application can begin processing I/O by

waiting for network events to trigger the operating state of the event object handle. The

WSAWaitForMultipleEvents function is designed to wait on one or more event object handles and

returns either when one or all of the specified handles are in the signaled state or when a specified

timeout interval expires. WSAWaitForMultipleEvents is defined as

DWORD WSAWaitForMultipleEvents(

 DWORD cEvents,

 const WSAEVENT FAR * lphEvents,

 BOOL fWaitAll,

 DWORD dwTimeout,

 BOOL fAlertable

);

The cEvents and lphEvents parameters define an array of WSAEVENT objects in which cEvents is the

number of event objects in the array and lphEvents is a pointer to the array.

WSAWaitForMultipleEvents can support only a maximum of WSA_MAXIMUM_WAIT_EVENTS

objects, which is defined as 64. Therefore, this I/O model is capable of supporting only a maximum of

64 sockets at a time for each thread that makes the WSAWaitForMultipleEvents call. If you need to

have this model manage more than 64 sockets, you should create additional worker threads to wait on

more event objects. The fWaitAll parameter specifies how WSAWaitForMultipleEvents waits for

objects in the event array. If TRUE, the function returns when all event objects in the lphEvents array

are signaled. If FALSE, the function returns when any one of the event objects is signaled. In the latter

case, the return value indicates which event object caused the function to return. Typically,

applications set this parameter to FALSE and service one socket event at a time. The dwTimeout

parameter specifies how long (in milliseconds) WSAWaitForMultipleEvents will wait for a network

event to occur. The function returns if the interval expires, even if conditions specified by the fWaitAll

parameter are not satisfied. If the timeout value is 0, the function tests the state of the specified event

objects and returns immediately, which effectively allows an application to poll on the event objects. If

no events are ready for processing, WSAWaitForMultipleEvents returns WSA_WAIT_TIMEOUT. If

dwsTimeout is set to WSA_INFINITE, the function returns only when a network event signals an event

object. The final parameter, fAlertable, can be ignored when you're using the WSAEventSelect model

and should be set to FALSE. It is intended for use in processing completion routines in the overlapped

I/O model, which will be described later in this chapter.

Note that by servicing signaled events one at a time (by setting the fWaitAll parameter to FALSE), it is

possible to starve sockets toward the end of the event array. Consider the following code:

WSAEVENT HandleArray[WSA_MAXIMUM_WAIT_EVENTS];

int WaitCount=0, ret, index;

// Assign event handles into HandleArray

while (1) {

 ret = WSAWaitForMultipleEvents(

 WaitCount,

 HandleArray,

 FALSE,

 WSA_INFINITE,

 TRUE);

 if ((ret != WSA_WAIT_FAILED) && (ret != WSA_WAIT_TIMEOUT)) {

 index = ret - WSA_WAIT_OBJECT_0;

 // Service event signaled on HandleArray[index]

 WSAResetEvent(HandleArray[index]);

 }

}

If the socket connection associated in index 0 of the event array is continually receiving data such that

after the event is reset additional data arrives causing the event to be signaled again, the rest of the

events in the array are starved. This is clearly undesirable. Once an event within the loop is signaled

and handled, all events in the array should be checked to see if they are signaled as well. This can be

accomplished by using WSAWaitForMultipleEvents with each individual event handle after the first

signaled event and specifying a dwTimeOut of zero.

When WSAWaitForMultipleEvents receives network event notification of an event object, it returns a

value indicating the event object that caused the function to return. As a result, your application can

determine which network event type is available on a particular socket by referencing the signaled

event in the event array and matching it with the socket associated with the event. When you

reference the events in the event array, you should reference them using the return value of

WSAWaitForMultipleEvents minus the predefined value WSA_WAIT_EVENT_0. For example:

Index = WSAWaitForMultipleEvents(...);

MyEvent = EventArray[Index - WSA_WAIT_EVENT_0];

Once you have the socket that caused the network event, you can determine which network events are

available by calling the WSAEnumNetworkEvents function, which is defined as

int WSAEnumNetworkEvents(

 SOCKET s,

 WSAEVENT hEventObject,

 LPWSANETWORKEVENTS lpNetworkEvents

);

The s parameter represents the socket that caused the network event, and the hEventObject

parameter is an optional parameter representing an event handle identifying an associated event

object to be reset. Because our event object is in a signaled state, we can pass it in and it will be set to

a non-signaled state. The hEventObject parameter is optional in case you wish to reset the event

manually via the WSAResetEvent function. The final parameter, lpNetworkEvents, takes a pointer to a

WSANETWORKEVENTS structure, which is used to retrieve network event types that occurred on the

socket and any associated error codes. The WSANETWORKEVENTS structure is defined as

typedef struct _WSANETWORKEVENTS

{

 long lNetworkEvents;

 int iErrorCode[FD_MAX_EVENTS];

} WSANETWORKEVENTS, FAR * LPWSANETWORKEVENTS;

The lNetworkEvents parameter is a value that indicates all the network event types (see Table 5-3)

that have occurred on the socket.

More than one network event type can occur whenever an event is signaled. For

example, a busy server application might receive FD_READ and FD_WRITE notification

at the same time.

The iErrorCode parameter is an array of error codes associated with the events in lNetworkEvents. For

each network event type, there is a special event index similar to the event type names—except for an

additional “_BIT” string appended to the event name. For example, for the FD_READ event type, the

index identifier for the iErrorCode array is named FD_READ_BIT. The following code fragment

demonstrates this for an FD_READ event:

// Process FD_READ notification

if (NetworkEvents.lNetworkEvents & FD_READ)

{

 if (NetworkEvents.iErrorCode[FD_READ_BIT] != 0)

 {

 printf("FD_READ failed with error %d\n",

 NetworkEvents.iErrorCode[FD_READ_BIT]);

 }

}

After you process the events in the WSANETWORKEVENTS structure, your application should

continue waiting for more network events on all of the available sockets. The following example

demonstrates how to develop a server and manage event objects when using the WSAEventSelect I/O

model. The code highlights the steps needed to develop a basic server application capable of

managing one or more sockets at a time.

SOCKET SocketArray [WSA_MAXIMUM_WAIT_EVENTS];

WSAEVENT EventArray [WSA_MAXIMUM_WAIT_EVENTS],

 NewEvent;

SOCKADDR_IN InternetAddr;

SOCKET Accept, Listen;

DWORD EventTotal = 0;

DWORD Index, i;

// Set up a TCP socket for listening on port 5150

Listen = socket (PF_INET, SOCK_STREAM, 0);

InternetAddr.sin_family = AF_INET;

InternetAddr.sin_addr.s_addr = htonl(INADDR_ANY);

InternetAddr.sin_port = htons(5150);

bind(Listen, (PSOCKADDR) &InternetAddr,

 sizeof(InternetAddr));

NewEvent = WSACreateEvent();

WSAEventSelect(Listen, NewEvent,

 FD_ACCEPT ¦ FD_CLOSE);

listen(Listen, 5);

SocketArray[EventTotal] = Listen;

EventArray[EventTotal] = NewEvent;

EventTotal++;

while(TRUE)

{

 // Wait for network events on all sockets

 Index = WSAWaitForMultipleEvents(EventTotal,

 EventArray, FALSE, WSA_INFINITE, FALSE);

 Index = Index - WSA_WAIT_EVENT_0;

 // Iterate through all events to see if more than one is signaled

 for(i=Index; i < EventTotal ;i++

 {

 Index = WSAWaitForMultipleEvents(1, &EventArray[i], TRUE, 1000,

 FALSE);

 if ((Index == WSA_WAIT_FAILED) ¦¦ (Index == WSA_WAIT_TIMEOUT))

 continue;

 else

 {

 Index = i;

 WSAEnumNetworkEvents(

 SocketArray[Index],

 EventArray[Index],

 &NetworkEvents);

 // Check for FD_ACCEPT messages

 if (NetworkEvents.lNetworkEvents & FD_ACCEPT)

 {

 if (NetworkEvents.iErrorCode[FD_ACCEPT_BIT] != 0)

 {

 printf("FD_ACCEPT failed with error %d\n",

 NetworkEvents.iErrorCode[FD_ACCEPT_BIT]);

 break;

 }

 // Accept a new connection, and add it to the

 // socket and event lists

 Accept = accept(

 SocketArray[Index],

 NULL, NULL);

 // We cannot process more than

 // WSA_MAXIMUM_WAIT_EVENTS sockets, so close

 // the accepted socket

 if (EventTotal > WSA_MAXIMUM_WAIT_EVENTS)

 {

 printf("Too many connections");

 closesocket(Accept);

 break;

 }

 NewEvent = WSACreateEvent();

 WSAEventSelect(Accept, NewEvent,

 FD_READ ¦ FD_WRITE ¦ FD_CLOSE);

 EventArray[EventTotal] = NewEvent;

 SocketArray[EventTotal] = Accept;

 EventTotal++;

 printf("Socket %d connected\n", Accept);

 }

 // Process FD_READ notification

 if (NetworkEvents.lNetworkEvents & FD_READ)

 {

 if (NetworkEvents.iErrorCode[FD_READ_BIT] != 0)

 {

 printf("FD_READ failed with error %d\n",

 NetworkEvents.iErrorCode[FD_READ_BIT]);

 break;

 }

 // Read data from the socket

 recv(SocketArray[Index - WSA_WAIT_EVENT_0],

 buffer, sizeof(buffer), 0);

 }

 // Process FD_WRITE notification

 if (NetworkEvents.lNetworkEvents & FD_WRITE)

 {

 if (NetworkEvents.iErrorCode[FD_WRITE_BIT] != 0)

 {

 printf("FD_WRITE failed with error %d\n",

 NetworkEvents.iErrorCode[FD_WRITE_BIT]);

 break;

 }

 send(SocketArray[Index - WSA_WAIT_EVENT_0],

 buffer, sizeof(buffer), 0);

 }

 if (NetworkEvents.lNetworkEvents & FD_CLOSE)

 {

 if (NetworkEvents.iErrorCode[FD_CLOSE_BIT] != 0)

 {

 printf("FD_CLOSE failed with error %d\n",

 NetworkEvents.iErrorCode[FD_CLOSE_BIT]);

 break;

 }

 closesocket(SocketArray[Index]);

 // Remove socket and associated event from

 // the Socket and Event arrays and decrement

 // EventTotal

 CompressArrays(EventArray, SocketArray, &EventTotal);

 }

 }

 }

}

The WSAEventSelect model offers several advantages. It is conceptually simple and it does not

require a windowed environment. The only drawback is its limitation of waiting on only 64 events at a

time, which necessitates managing a thread pool when dealing with many sockets. Also, because

many threads are required to handle a large number of socket connections, this model does not scale

as well as the overlapped models discussed next.

The Overlapped Model

The overlapped I/O model in Winsock offers applications better system performance than any of the

I/O models explained so far. The overlapped model's basic design allows your application to post one

or more asynchronous I/O requests at a time using an overlapped data structure. At a later point, the

application can service the submitted requests after they have completed. This model is available on

all Windows platforms except Windows CE. The model's overall design is based on the Windows

overlapped I/O mechanisms available for performing I/O operations on devices using the ReadFile and

WriteFile functions.

Originally, the Winsock overlapped I/O model was available only to Winsock 1.1 applications running

on Windows NT. Applications could take advantage of the model by calling ReadFile and WriteFile on

a socket handle and specifying an overlapped structure. Since the release of Winsock 2, overlapped

I/O has been incorporated into new Winsock functions, such as WSASend and WSARecv. As a result,

the overlapped I/O model is now available on all Windows platforms that feature Winsock 2.

With the release of Winsock 2, overlapped I/O can still be used with the functions

ReadFile and WriteFile under Windows NT and Windows 2000. However, this

functionality was not added to Windows 95, Windows 98, and Windows Me. For

compatibility across platforms, you should always consider using the WSARecv and

WSASend functions instead of the Windows ReadFile and WriteFile functions. This

section will only describe how to use overlapped I/O through the Winsock 2 functions.

To use the overlapped I/O model on a socket, you must first create a socket that has the overlapped

flag set. See Chapter 2 for more information on creating overlapped enabled sockets.

After you successfully create a socket and bind it to a local interface, overlapped I/O operations can

commence by calling the Winsock functions listed below and specifying an optional

WSAOVERLAPPED structure.

WSASend

WSASendTo

WSARecv

WSARecvFrom

WSAIoctl

WSARecvMsg

AcceptEx

ConnectEx

TransmitFile

TransmitPackets

DisconnectEx

WSANSPIoctl

To use overlapped I/O, each function takes a WSAOVERLAPPED structure as a parameter. When

these functions are called with a WSAOVERLAPPED structure, they complete

immediately—regardless of the socket's mode (described at the beginning of this chapter). They rely

on the WSAOVERLAPPED structure to manage the completion of an I/O request. There are

essentially two methods for managing the completion of an overlapped I/O request: your application

can wait for event object notification or it can process completed requests through completion

routines. The first six functions in the list have another parameter in common: a

WSAOVERLAPPED_COMPLETION_ROUTINE. This parameter is an optional pointer to a completion

routine function that gets called when an overlapped request completes. We will explore the event

notification method next. Later in this chapter, you will learn how to use optional completion routines

instead of events to process completed overlapped requests.

Event Notification

The event notification method of overlapped I/O requires associating Windows event objects with

WSAOVERLAPPED structures. When I/O calls such as WSASend and WSARecv are made using a

WSAOVERLAPPED structure, they return immediately. Typically, you will find that these I/O calls fail

with the return value SOCKET_ERROR and that WSAGetLastError reports a WSA_IO_PENDING

error status. This error status simply means that the I/O operation is in progress. At a later time, your

application will need to determine when an overlapped I/O request completes by waiting on the event

object associated with the WSAOVERLAPPED structure. The WSAOVERLAPPED structure provides

the communication medium between the initiation of an overlapped I/O request and its subsequent

completion, and is defined as

typedef struct WSAOVERLAPPED

{

 DWORD Internal;

 DWORD InternalHigh;

 DWORD Offset;

 DWORD OffsetHigh;

 WSAEVENT hEvent;

} WSAOVERLAPPED, FAR * LPWSAOVERLAPPED;

The Internal, InternalHigh, Offset, and OffsetHigh fields are all used internally by the system and an

application should not manipulate or directly use them. The hEvent field, on the other hand, allows an

application to associate an event object handle with this operation.

When an overlapped I/O request finally completes, your application is responsible for retrieving the

overlapped results. In the event notification method, Winsock will change the event-signaling state of

an event object that is associated with a WSAOVERLAPPED structure from non-signaled to signaled

when an overlapped request finally completes. Because an event object is assigned to the

WSAOVERLAPPED structure, you can easily determine when an overlapped I/O call completes by

calling the WSAWaitForMultipleEvents function, which we also described in the WSAEventSelect I/O

model. WSAWaitForMultipleEvents waits a specified amount of time for one or more event objects to

become signaled. We can't stress this point enough: remember that WSAWaitForMultipleEvents is

capable of waiting on only 64 event objects at a time. Once you determine which overlapped request

has completed, you need to determine the success or failure of the overlapped call by calling

WSAGetOverlappedResult, which is defined as

BOOL WSAGetOverlappedResult(

 SOCKET s,

 LPWSAOVERLAPPED lpOverlapped,

 LPDWORD lpcbTransfer,

 BOOL fWait,

 LPDWORD lpdwFlags

);

The s parameter identifies the socket that was specified when the overlapped operation was started.

The lpOverlapped parameter is a pointer to the WSAOVERLAPPED structure that was specified when

the overlapped operation was started. The lpcbTransfer parameter is a pointer to a DWORD variable

that receives the number of bytes that were actually transferred by an overlapped send or receive

operation. The fWait parameter determines whether the function should wait for a pending overlapped

operation to complete. If fWait is TRUE, the function does not return until the operation has been

completed. If fWait is FALSE and the operation is still pending, WSAGetOverlappedResult returns

FALSE with the error WSA_IO_INCOMPLETE. Because in our case we waited on a signaled event for

overlapped completion, this parameter has no effect. The final parameter, lpdwFlags, is a pointer to a

DWORD that will receive resulting flags if the originating overlapped call was made with the WSARecv

or the WSARecvFrom function.

If the WSAGetOverlappedResult function succeeds, the return value is TRUE. This means that your

overlapped operation has completed successfully and that the value pointed to by lpcbTransfer has

been updated. If the return value is FALSE, one of the following statements is true:

The overlapped I/O operation is still pending (as we previously described).

The overlapped operation completed, but with errors.

The overlapped operation's completion status could not be determined because of errors in one or

more of the parameters supplied to WSAGetOverlappedResult.

Upon failure, the value pointed to by lpcbTransfer will not be updated, and your application should call

the WSAGetLastError function to determine the cause of the failure.

The following sample of code demonstrates how to structure a simple server application that is

capable of managing overlapped I/O on one socket using the event notification described above.

#define DATA_BUFSIZE 4096

void main(void)

{

 WSABUF DataBuf;

 char buffer[DATA_BUFSIZE];

 DWORD EventTotal = 0,

 RecvBytes=0,

 Flags=0;

 WSAEVENT EventArray[WSA_MAXIMUM_WAIT_EVENTS];

 WSAOVERLAPPED AcceptOverlapped;

 SOCKET ListenSocket, AcceptSocket;

 // Step 1:

 // Start Winsock and set up a listening socket

 ...

 // Step 2:

 // Accept an inbound connection

 AcceptSocket = accept(ListenSocket, NULL, NULL);

 // Step 3:

 // Set up an overlapped structure

 EventArray[EventTotal] = WSACreateEvent();

 ZeroMemory(&AcceptOverlapped,

 sizeof(WSAOVERLAPPED));

 AcceptOverlapped.hEvent = EventArray[EventTotal];

 DataBuf.len = DATA_BUFSIZE;

 DataBuf.buf = buffer;

 EventTotal++;

 // Step 4:

 // Post a WSARecv request to begin receiving data

 // on the socket

 if (WSARecv(AcceptSocket, &DataBuf, 1, &RecvBytes,

 &Flags, &AcceptOverlapped, NULL) == SOCKET_ERROR)

 {

 if (WSAGetLastError() != WSA_IO_PENDING)

 {

 // Error occurred

 }

 }

 // Process overlapped receives on the socket

 while(TRUE)

 {

 DWORD Index;

 // Step 5:

 // Wait for the overlapped I/O call to complete

 Index = WSAWaitForMultipleEvents(EventTotal,

 EventArray, FALSE, WSA_INFINITE, FALSE);

 // Index should be 0 because we

 // have only one event handle in EventArray

 // Step 6:

 // Reset the signaled event

 WSAResetEvent(

 EventArray[Index - WSA_WAIT_EVENT_0]);

 // Step 7:

 // Determine the status of the overlapped

 // request

 WSAGetOverlappedResult(AcceptSocket,

 &AcceptOverlapped, &BytesTransferred,

 FALSE, &Flags);

 // First check to see whether the peer has closed

 // the connection, and if so, close the

 // socket

 if (BytesTransferred == 0)

 {

 printf("Closing socket %d\n", AcceptSocket);

 closesocket(AcceptSocket);

 WSACloseEvent(

 EventArray[Index - WSA_WAIT_EVENT_0]);

 return;

 }

 // Do something with the received data

 // DataBuf contains the received data

 ...

 // Step 8:

 // Post another WSARecv() request on the socket

 Flags = 0;

 ZeroMemory(&AcceptOverlapped,

 sizeof(WSAOVERLAPPED));

 AcceptOverlapped.hEvent = EventArray[Index -

 WSA_WAIT_EVENT_0];

 DataBuf.len = DATA_BUFSIZE;

 DataBuf.buf = buffer;

 if (WSARecv(AcceptSocket, &DataBuf, 1,

 &RecvBytes, &Flags, &AcceptOverlapped,

 NULL) == SOCKET_ERROR)

 {

 if (WSAGetLastError() != WSA_IO_PENDING)

 {

 // Unexpected error

 }

 }

 }

}

The application outlines the following programming steps:

Create a socket and begin listening for a connection on a specified port.1.

Accept an inbound connection.2.

Create a WSAOVERLAPPED structure for the accepted socket and assign an event object

handle to the structure. Also assign the event object handle to an event array to be used later

by the WSAWaitForMultipleEvents function.

3.

Post an asynchronous WSARecv request on the socket by specifying the WSAOVERLAPPED

structure as a parameter.

4.

Call WSAWaitForMultipleEvents using the event array and wait for the event associated with

the overlapped call to become signaled.

5.

Determine the return status of the overlapped call by using WSA-GetOverlappedResult.6.

Reset the event object by using WSAResetEvent with the event array and process the

completed overlapped request.

7.

Post another overlapped WSARecv request on the socket.8.

Repeat steps 5–8.9.

This example can easily be expanded to handle more than one socket by moving the overlapped I/O

processing portion of the code to a separate thread and allowing the main application thread to service

additional connection requests.

If a Winsock function is called in an overlapped fashion (either by specifying an event

within the WSAOVERLAPPED structure or with a completion routine), the operation

might complete immediately. For example, calling WSARecv when data has already

been received and buffered causes WSARecv to return NO_ERROR. If any overlapped

function fails with WSA_IO_PENDING or immediately succeeds, the completion event

will always be signaled and the completion routine will be scheduled to run (if

specified). For overlapped I/O with a completion port, this means that completion

notification will be posted to the completion port for servicing.

Completion Routines

Completion routines are the other method your application can use to manage completed overlapped

I/O requests. Completion routines are simply functions that you optionally pass to an overlapped I/O

request and that the system invokes when an overlapped I/O request completes. Their primary role is

to service a completed I/O request using the caller's thread. In addition, applications can continue

overlapped I/O processing through the completion routine.

To use completion routines for overlapped I/O requests, your application must specify a completion

routine, along with a WSAOVERLAPPED structure, to an I/O bound Winsock function (described

previously). A completion routine must have the following function prototype:

void CALLBACK CompletionROUTINE(

 DWORD dwError,

 DWORD cbTransferred,

 LPWSAOVERLAPPED lpOverlapped,

 DWORD dwFlags

);

When an overlapped I/O request completes using a completion routine, the parameters contain the

following information:

The parameter dwError specifies the completion status for the overlapped operation as indicated by

lpOverlapped.

The cbTransferred parameter specifies the number of bytes that were transferred during the

overlapped operation.

The lpOverlapped parameter is the same as the WSAOVERLAPPED structure passed into the

originating I/O call.

The dwFlags parameter returns any flags that the operation may have completed with (such as from

WSARecv).

There is a major difference between overlapped requests submitted with a completion routine and

overlapped requests submitted with an event object. The WSAOVERLAPPED structure's event field,

hEvent, is not used, which means you cannot associate an event object with the overlapped request.

Once you make an overlapped I/O call with a completion routine, your calling thread must eventually

service the completion routine once it has completed. This requires you to place your calling thread in

an alertable wait state and process the completion routine later, after the I/O operation has

completed. The WSAWaitForMultipleEvents function can be used to put your thread in an alertable

wait state. The catch is that you must also have at least one event object available for the

WSAWaitForMultipleEvents function. If your application handles only overlapped requests with

completion routines, you are not likely to have any event objects around for processing. As an

alternative, your application can use the Windows SleepEx function to set your thread in an alertable

wait state. Of course, you can also create a dummy event object that is not associated with anything. If

your calling thread is always busy and not in an alertable wait state, no posted completion routine will

ever get called.

As you saw earlier, WSAWaitForMultipleEvents normally waits for event objects associated with

WSAOVERLAPPED structures. This function is also designed to place your thread in an alertable wait

state and to process completion routines for completed overlapped I/O requests if you set the

parameter fAlertable to TRUE. When overlapped I/O requests complete with a completion routine, the

return value is WSA_IO_COMPLETION instead of an event object index in the event array. The

SleepEx function provides the same behavior as WSAWaitForMultipleEvents except that it does not

need any event objects. The SleepEx function is defined as

DWORD SleepEx(

 DWORD dwMilliseconds,

 BOOL bAlertable

);

The dwMilliseconds parameter defines how long in milliseconds SleepEx will wait. If dwMilliseconds is

set to INFINITE, SleepEx waits indefinitely. The bAlertable parameter determines how a completion

routine will execute. If bAlertable is set to FALSE and an I/O completion callback occurs, the I/O

completion function is not executed and the function does not return until the wait period specified in

dwMilliseconds has elapsed. If it is set to TRUE, the completion routine executes and the SleepEx

function returns WAIT_IO_COMPLETION.

The following code outlines how to structure a simple server application that is capable of managing

one socket request using completion routines as described earlier.

#define DATA_BUFSIZE 4096

SOCKET AcceptSocket,

 ListenSocket;

WSABUF DataBuf;

WSAEVENT EventArray[MAXIMUM_WAIT_OBJECTS];

DWORD Flags,

 RecvBytes,

 Index;

char buffer[DATA_BUFSIZE];

void main(void)

{

 WSAOVERLAPPED Overlapped;

 // Step 1:

 // Start Winsock, and set up a listening socket

 ...

 // Step 2:

 // Accept a new connection

 AcceptSocket = accept(ListenSocket, NULL, NULL);

 // Step 3:

 // Now that we have an accepted socket, start

 // processing I/O using overlapped I/O with a

 // completion routine. To get the overlapped I/O

 // processing started, first submit an

 // overlapped WSARecv() request.

 Flags = 0;

 ZeroMemory(&Overlapped, sizeof(WSAOVERLAPPED));

 DataBuf.len = DATA_BUFSIZE;

 DataBuf.buf = buffer;

 // Step 4:

 // Post an asynchronous WSARecv() request

 // on the socket by specifying the WSAOVERLAPPED

 // structure as a parameter, and supply

 // the WorkerRoutine function below as the

 // completion routine

 if (WSARecv(AcceptSocket, &DataBuf, 1, &RecvBytes,

 &Flags, &Overlapped, WorkerRoutine)

 == SOCKET_ERROR)

 {

 if (WSAGetLastError() != WSA_IO_PENDING)

 {

 printf("WSARecv() failed with error %d\n",

 WSAGetLastError());

 return;

 }

 }

 // Because the WSAWaitForMultipleEvents() API

 // requires waiting on one or more event objects,

 // we will have to create a dummy event object.

 // As an alternative, we can use SleepEx()

 // instead.

 EventArray [0] = WSACreateEvent();

 while(TRUE)

 {

 // Step 5:

 Index = WSAWaitForMultipleEvents(1, EventArray,

 FALSE, WSA_INFINITE, TRUE);

 // Step 6:

 if (Index == WAIT_IO_COMPLETION)

 {

 // An overlapped request completion routine

 // just completed. Continue servicing

 // more completion routines.

 continue;

 }

 else

 {

 // A bad error occurred:óstop processing!

 // If we were also processing an event

 // object, this could be an index to

 // the event array.

 return;

 }

 }

}

void CALLBACK WorkerRoutine(DWORD Error,

 DWORD BytesTransferred,

 LPWSAOVERLAPPED Overlapped,

 DWORD InFlags)

{

 DWORD SendBytes, RecvBytes;

 DWORD Flags;

 if (Error != 0 ¦¦ BytesTransferred == 0)

 {

 // Either a bad error occurred on the socket

 // or the socket was closed by a peer

 closesocket(AcceptSocket);

 return;

 }

 // At this point, an overlapped WSARecv() request

 // completed successfully. Now we can retrieve the

 // received data that is contained in the variable

 // DataBuf. After processing the received data, we

 // need to post another overlapped WSARecv() or

 // WSASend() request. For simplicity, we will post

 // another WSARecv() request.

 Flags = 0;

 ZeroMemory(&Overlapped, sizeof(WSAOVERLAPPED));

 DataBuf.len = DATA_BUFSIZE;

 DataBuf.buf = buffer;

 if (WSARecv(AcceptSocket, &DataBuf, 1, &RecvBytes,

 &Flags, &Overlapped, WorkerRoutine)

 == SOCKET_ERROR)

 {

 if (WSAGetLastError() != WSA_IO_PENDING)

 {

 printf("WSARecv() failed with error %d\n",

 WSAGetLastError());

 return;

 }

 }

}

The application illustrates the following programming steps:

Create a socket and begin listening for a connection on a specified port.1.

Accept an inbound connection.2.

Create a WSAOVERLAPPED structure for the accepted socket.3.

Post an asynchronous WSARecv request on the socket by specifying the WSAOVERLAPPED

structure as a parameter and supplying a completion routine.

4.

Call WSAWaitForMultipleEvents with the fAlertable parameter set to TRUE and wait for an

overlapped request to complete. When an overlapped request completes, the completion

routine automatically executes and WSAWaitForMultipleEvents returns

WSA_IO_COMPLETION. Inside the completion routine, then post another overlapped

WSARecv request with a completion routine.

5.

Verify that WSAWaitForMultipleEvents returns WSA_IO_COMPLETION.6.

Repeat steps 5 and 6.7.

The overlapped model provides high-performance socket I/O. It is different from all the previous

models because an application posts buffers to send and receive data that the system uses directly.

That is, if an application posts an overlapped receive with a 10 KB buffer and data arrives on the

socket, it is copied directly into this posted buffer. In the previous models, data would arrive and be

copied to the per-socket receive buffers at which point the application is notified of the capability to

read. After the application calls a receive function, the data is copied from the per-socket buffer to the

application's buffer. Chapter 6 will discuss strategies for developing high-performance, scalable

Winsock applications. Chapter 6 will also discuss the WSARecvMsg, AcceptEx, ConnectEx,

TransmitFile, TransmitPackets, and DisconnectEx API functions in more detail.

The disadvantage of using overlapped I/O with events is, again, the limitation of being able to wait on

a maximum of 64 events at a time. Completion routines are a good alternative but care must be taken

to ensure that the thread that posted the operation goes into an alertable wait state in order for the

completion routine to complete. Also, care should be taken to make sure that the completion routines

do not perform excessive computations so that these routines may fire as fast as possible under a

heavy load.

The Completion Port Model

For newcomers, the completion port model seems overwhelmingly complicated because extra work is

required to add sockets to a completion port when compared to the initialization steps for the other I/O

models. However, as you will see, these steps are not that complicated once you understand them.

Also, the completion port model offers the best system performance possible when an application has

to manage many sockets at once. Unfortunately, it's available only on Windows NT, Windows 2000,

and Windows XP; however, the completion port model offers the best scalability of all the models

discussed so far. This model is well suited to handling hundreds or thousands of sockets.

Essentially, the completion port model requires you to create a Windows completion port object that

will manage overlapped I/O requests using a specified number of threads to service the completed

overlapped I/O requests. Note that a completion port is actually a Windows I/O construct that is

capable of accepting more than just socket handles. However, this section will describe only how to

take advantage of the completion port model by using socket handles. To begin using this model, you

are required to create an I/O completion port object that will be used to manage multiple I/O requests

for any number of socket handles. This is accomplished by calling the CreateIoCompletionPort

function, which is defined as

HANDLE CreateIoCompletionPort(

 HANDLE FileHandle,

 HANDLE ExistingCompletionPort,

 DWORD CompletionKey,

 DWORD NumberOfConcurrentThreads

);

Before examining the parameters in detail, be aware that this function is actually used for two distinct

purposes:

To create a completion port object

To associate a handle with a completion port

When you initially create a completion port object, the only parameter of interest is

NumberOfConcurrentThreads; the first three parameters are not significant. The

NumberOfConcurrentThreads parameter is special because it defines the number of threads that are

allowed to execute concurrently on a completion port. Ideally, you want only one thread per processor

to service the completion port to avoid thread context switching. The value 0 for this parameter tells

the system to allow as many threads as there are processors in the system. The following code

creates an I/O completion port.

 CompletionPort = CreateIoCompletionPort(INVALID_HANDLE_VALUE,

 NULL, 0, 0);

This will return a handle that is used to identify the completion port when a socket handle is assigned

to it.

Worker Threads and Completion Ports

After a completion port is successfully created, you can begin to associate socket handles with the

object. Before associating sockets, though, you have to create one or more worker threads to service

the completion port when socket I/O requests are posted to the completion port object. At this point,

you might wonder how many threads should be created to service the completion port. This is actually

one of the more complicated aspects of the completion port model because the number needed to

service I/O requests depends on the overall design of your application. It's important to note the

distinction between number of concurrent threads to specify when calling CreateIoCompletionPort

versus the number of worker threads to create; they do not represent the same thing. We

recommended previously that you should have the CreateIoCompletionPort function specify one

thread per processor to avoid thread context switching. The NumberOfConcurrentThreads parameter

of CreateIoCompletionPort explicitly tells the system to allow only n threads to operate at a time on the

completion port. If you create more than n worker threads on the completion port, only n threads will be

allowed to operate at a time. (Actually, the system might exceed this value for a short amount of time,

but the system will quickly bring it down to the value you specify in CreateIoCompletionPort.) You

might be wondering why you would create more worker threads than the number specified by the

CreateIoCompletionPort call. As we mentioned previously, this depends on the overall design of your

application. If one of your worker threads calls a function—such as Sleep or

WaitForSingleObject—and becomes suspended, another thread will be allowed to operate in its place.

In other words, you always want to have as many threads available for execution as the number of

threads you allow to execute in the CreateIoCompletionPort call. Thus, if you expect your worker

thread to ever become blocked, it is reasonable to create more worker threads than the value specified

in CreateIoCompletionPort's NumberOfConcurrentThreads parameter.

Once you have enough worker threads to service I/O requests on the completion port, you can begin

to associate socket handles with the completion port. This requires calling the CreateIoCompletionPort

function on an existing completion port and supplying the first three parameters—FileHandle,

ExistingCompletionPort, and CompletionKey—with socket information. The FileHandle parameter

represents a socket handle to associate with the completion port. The ExistingCompletionPort

parameter identifies the completion port to which the socket handle is to be associated with. The

CompletionKey parameter identifies per-handle data that you can associate with a particular socket

handle. Applications are free to store any type of information associated with a socket by using this

key. We call it per-handle data because it represents data associated with a socket handle. It is useful

to store the socket handle using the key as a pointer to a data structure containing the socket handle

and other socket-specific information. As we will see later in this chapter, the thread routines that

service the completion port can retrieve socket-handle–specific information using this key.

Let's begin to construct a basic application framework from what we've described so far. The following

example demonstrates how to start developing an echo server application using the completion port

model. In this code, we take the following preparation steps:

Create a completion port. The fourth parameter is left as 0, specifying that only one worker

thread per processor will be allowed to execute at a time on the completion port.

1.

Determine how many processors exist on the system.2.

Create worker threads to service completed I/O requests on the completion port using

processor information in step 2. In the case of this simple example, we create one worker

thread per processor because we do not expect our threads to ever get in a suspended

condition in which there would not be enough threads to execute for each processor. When the

CreateThread function is called, you must supply a worker routine that the thread executes

upon creation. We will discuss the worker thread's responsibilities later in this section.

3.

Prepare a listening socket to listen for connections on port 5150.4.

Accept inbound connections using the accept function.5.

Create a data structure to represent per-handle data and save the accepted socket handle in

the structure.

6.

Associate the new socket handle returned from accept with the completion port by calling

CreateIoCompletionPort. Pass the per-handle data structure to CreateIoCompletionPort via the

completion key parameter.

7.

Start processing I/O on the accepted connection. Essentially, you want to post one or more

asynchronous WSARecv or WSASend requests on the new socket using the overlapped I/O

mechanism. When these I/O requests complete, a worker thread services the I/O requests and

continues processing future I/O requests, as we will see later in the worker routine specified in

step 3.

8.

Repeat steps 5–8 until server terminates.

HANDLE CompletionPort;

WSADATA wsd;

SYSTEM_INFO SystemInfo;

SOCKADDR_IN InternetAddr;

SOCKET Listen;

int i;

typedef struct _PER_HANDLE_DATA

{

 SOCKET Socket;

 SOCKADDR_STORAGE ClientAddr;

 // Other information useful to be associated with the handle

} PER_HANDLE_DATA, * LPPER_HANDLE_DATA;

// Load Winsock

StartWinsock(MAKEWORD(2,2), &wsd);

// Step 1:

// Create an I/O completion port

CompletionPort = CreateIoCompletionPort(

 INVALID_HANDLE_VALUE, NULL, 0, 0);

9.

// Step 2:

// Determine how many processors are on the system

GetSystemInfo(&SystemInfo);

// Step 3:

// Create worker threads based on the number of

// processors available on the system. For this

// simple case, we create one worker thread for each

// processor.

for(i = 0; i < SystemInfo.dwNumberOfProcessors; i++)

{

 HANDLE ThreadHandle;

 // Create a server worker thread, and pass the

 // completion port to the thread. NOTE: the

 // ServerWorkerThread procedure is not defined

 // in this listing.

 ThreadHandle = CreateThread(NULL, 0,

 ServerWorkerThread, CompletionPort,

 0, NULL;

 // Close the thread handle

 CloseHandle(ThreadHandle);

}

// Step 4:

// Create a listening socket

Listen = WSASocket(AF_INET, SOCK_STREAM, 0, NULL, 0,

 WSA_FLAG_OVERLAPPED);

InternetAddr.sin_family = AF_INET;

InternetAddr.sin_addr.s_addr = htonl(INADDR_ANY);

InternetAddr.sin_port = htons(5150);

bind(Listen, (PSOCKADDR) &InternetAddr,

 sizeof(InternetAddr));

// Prepare socket for listening

listen(Listen, 5);

while(TRUE)

{

 PER_HANDLE_DATA *PerHandleData=NULL;

 SOCKADDR_IN saRemote;

 SOCKET Accept;

 int RemoteLen;

 // Step 5:

 // Accept connections and assign to the completion

 // port

 RemoteLen = sizeof(saRemote);

 Accept = WSAAccept(Listen, (SOCKADDR *)&saRemote,

 &RemoteLen);

 // Step 6:

 // Create per-handle data information structure to

 // associate with the socket

 PerHandleData = (LPPER_HANDLE_DATA)

 GlobalAlloc(GPTR, sizeof(PER_HANDLE_DATA));

 printf("Socket number %d connected\n", Accept);

 PerHandleData->Socket = Accept;

 memcpy(&PerHandleData->ClientAddr, &saRemote, RemoteLen);

 // Step 7:

 // Associate the accepted socket with the

 // completion port

 CreateIoCompletionPort((HANDLE) Accept,

 CompletionPort, (DWORD) PerHandleData, 0);

 // Step 8:

 // Start processing I/O on the accepted socket.

 // Post one or more WSASend() or WSARecv() calls

 // on the socket using overlapped I/O.

 WSARecv(...);

}

 DWORD WINAPI ServerWorkerThread(LPVOID lpParam)

 {

 // The requirements for the worker thread will be

 // discussed later.

 return 0;

}

Completion Ports and Overlapped I/O

After associating a socket handle with a completion port, you can begin processing I/O requests by

posting overlapped send and receive requests on the socket handle. You can now start to rely on the

completion port for I/O completion notification. Basically, the completion port model takes advantage of

the Windows overlapped I/O mechanism in which Winsock API calls such as WSASend and WSARecv

return immediately when called. It is up to your application to retrieve the results of the calls at a later

time through an OVERLAPPED structure. In the completion port model, this is accomplished by having

one or more worker threads wait on the completion port using the GetQueuedCompletionStatus

function, which is defined as

BOOL GetQueuedCompletionStatus(

 HANDLE CompletionPort,

 LPDWORD lpNumberOfBytesTransferred,

 PULONG_PTR lpCompletionKey,

 LPOVERLAPPED * lpOverlapped,

 DWORD dwMilliseconds

);

The CompletionPort parameter represents the completion port to wait on. The

lpNumberOfBytesTransferred parameter receives the number of bytes transferred after a completed

I/O operation, such as WSASend or WSARecv. The lpCompletionKey parameter returns per-handle

data for the socket that was originally passed into the CreateIoCompletionPort function. As we already

mentioned, we recommend saving the socket handle in this key. The lpOverlapped parameter receives

the WSAOVERLAPPED structure of the completed I/O operation. This is actually an important

parameter because it can be used to retrieve per I/O–operation data, which we will describe shortly.

The final parameter, dwMilliseconds, specifies the number of milliseconds that the caller is willing to

wait for a completion packet to appear on the completion port. If you specify INFINITE, the call waits

forever.

Per-handle Data and Per-I/O Operation Data

When a worker thread receives I/O completion notification from the GetQueuedCompletionStatus API

call, the lpCompletionKey and lpOverlapped parameters contain socket information that can be used

to continue processing I/O on a socket through the completion port. Two types of important socket

data are available through these parameters: per-handle data and per-I/O operation data.

The lpCompletionKey parameter contains what we call per-handle data because the data is related to

a socket handle when a socket is first associated with the completion port. This is the data that is

passed as the CompletionKey parameter of the CreateIoCompletionPort API call. As we noted earlier,

your application can pass any type of socket information through this parameter. Typically, applications

will store the socket handle related to the I/O request here.

The lpOverlapped parameter contains an OVERLAPPED structure followed by what we call per-I/O

operation data, which is anything that your worker thread will need to know when processing a

completion packet (echo the data back, accept the connection, post another read, and so on). Per-I/O

operation data is any number of bytes contained in a structure also containing an OVERLAPPED

structure that you pass into a function that expects an OVERLAPPED structure. A simple way to make

this work is to define a structure and place an OVERLAPPED structure as a field of the new structure.

For example, we declare the following data structure to manage per-I/O operation data:

typedef struct

{

 OVERLAPPED Overlapped;

 char Buffer[DATA_BUFSIZE];

 int BufferLen;

 int OperationType;

} PER_IO_DATA;

This structure demonstrates some important data elements you might want to relate to an I/O

operation, such as the type of I/O operation (a send or receive request) that just completed. In this

structure, we consider the data buffer for the completed I/O operation to be useful. To call a Winsock

API function that expects an OVERLAPPED structure, you dereference the OVERLAPPED element of

your structure. For example,

PER_IO_OPERATION_DATA PerIoData;

WSABUF wbuf;

DWORD Bytes, Flags;

// Initialize wbuf ...

WSARecv(socket, &wbuf, 1, &Bytes, &Flags, &(PerIoData.Overlapped),

NULL);

Later in the worker thread, GetQueuedCompletionStatus returns with an overlapped structure and

completion key. To retrieve the per-I/O data the macro CONTAINING_RECORD should be used. For

example,

PER_IO_DATA *PerIoData=NULL;

OVERLAPPED *lpOverlapped=NULL;

ret = GetQueuedCompletionStatus(

 CompPortHandle,

 &Transferred,

 (PULONG_PTR)&CompletionKey,

 &lpOverlapped,

 INFINITE);

// Check for successful return

PerIoData = CONTAINING_RECORD(lpOverlapped, PER_IO_DATA, Overlapped);

This macro should be used; otherwise, the OVERLAPPED member of the PER_IO_DATA structure

would always have to appear first, which can be a dangerous assumption to make (especially with

multiple developers working on the same code).

You can determine which operation was posted on this handle by using a field of the per-I/O structure

to indicate the type of operation posted. In our example, the OperationType member would be set to

indicate a read, write, etc., operation. One of the biggest benefits of per-I/O operation data is that it

allows you to manage multiple I/O operations (such as read/write, multiple reads, and multiple writes)

on the same handle. You might ask why you would want to post more than one I/O operation at a time

on a socket. The answer is scalability. For example, if you have a multiple-processor machine with a

worker thread using each processor, you could potentially have several processors sending and

receiving data on a socket at the same time.

Before continuing, there is one other important aspect about Windows completion ports that needs to

be stressed. All overlapped operations are guaranteed to be executed in the order that the application

issued them. However, the completion notifications returned from a completion port are not

guaranteed to be in that same order. That is, if an application posts two overlapped WSARecv

operations, one with a 10 KB buffer and the next with a 12 KB buffer, the 10 KB buffer is filled first,

followed by the 12 KB buffer. The application's worker thread may receive notification from

GetQueuedCompletionStatus for the 12 KB WSARecv before the completion event for the 10 KB

operation. Of course, this is only an issue when multiple operations are posted on a socket.

To complete this simple echo server sample, we need to supply a ServerWorkerThread function. The

following code outlines how to develop a worker thread routine that uses per-handle data and per-I/O

operation data to service I/O requests.

 DWORD WINAPI ServerWorkerThread(

 LPVOID CompletionPortID)

{

 HANDLE CompletionPort = (HANDLE) CompletionPortID;

 DWORD BytesTransferred;

 LPOVERLAPPED Overlapped;

 LPPER_HANDLE_DATA PerHandleData;

 LPPER_IO_DATA PerIoData;

 DWORD SendBytes, RecvBytes;

 DWORD Flags;

 while(TRUE)

 {

 // Wait for I/O to complete on any socket

 // associated with the completion port

 ret = GetQueuedCompletionStatus(CompletionPort,

 &BytesTransferred,(LPDWORD)&PerHandleData,

 (LPOVERLAPPED *) &PerIoData, INFINITE);

 // First check to see if an error has occurred

 // on the socket; if so, close the

 // socket and clean up the per-handle data

 // and per-I/O operation data associated with

 // the socket

 if (BytesTransferred == 0 &&

 (PerIoData->OperationType == RECV_POSTED ¦¦

 PerIoData->OperationType == SEND_POSTED))

 {

 // A zero BytesTransferred indicates that the

 // socket has been closed by the peer, so

 // you should close the socket. Note:

 // Per-handle data was used to reference the

 // socket associated with the I/O operation.

 closesocket(PerHandleData->Socket);

 GlobalFree(PerHandleData);

 GlobalFree(PerIoData);

 continue;

 }

 // Service the completed I/O request. You can

 // determine which I/O request has just

 // completed by looking at the OperationType

 // field contained in the per-I/O operation data.

 if (PerIoData->OperationType == RECV_POSTED)

 {

 // Do something with the received data

 // in PerIoData->Buffer

 }

 // Post another WSASend or WSARecv operation.

 // As an example, we will post another WSARecv()

 // I/O operation.

 Flags = 0;

 // Set up the per-I/O operation data for the next

 // overlapped call

 ZeroMemory(&(PerIoData->Overlapped),

 sizeof(OVERLAPPED));

 PerIoData->DataBuf.len = DATA_BUFSIZE;

 PerIoData->DataBuf.buf = PerIoData->Buffer;

 PerIoData->OperationType = RECV_POSTED;

 WSARecv(PerHandleData->Socket,

 &(PerIoData->DataBuf), 1, &RecvBytes,

 &Flags, &(PerIoData->Overlapped), NULL);

 }

}

If an error has occurred for a given overlapped operation, GetQueuedCompletionStatus will return

FALSE. Because completion ports are a Windows I/O construct, if you call GetLastError or

WSAGetLastError, the error code is likely to be a Windows error code and not a Winsock error code.

To retrieve the equivalent Winsock error code, WSAGetOverlappedResult can be called specifying the

socket handle and WSAOVERLAPPED structure for the completed operation, after which

WSAGetLastError will return the translated Winsock error code.

One final detail not outlined in the last two examples we have presented is how to properly close an

I/O completion port—especially if you have one or more threads in progress performing I/O on several

sockets. The main thing to avoid is freeing an OVERLAPPED structure when an overlapped I/O

operation is in progress. The best way to prevent this is to call closesocket on every socket

handle—any overlapped I/O operations pending will complete. Once all socket handles are closed,

you need to terminate all worker threads on the completion port. This can be accomplished by sending

a special completion packet to each worker thread using the PostQueuedCompletionStatus function,

which informs each thread to exit immediately. PostQueuedCompletionStatus is defined as

BOOL PostQueuedCompletionStatus(

 HANDLE CompletionPort,

 DWORD dwNumberOfBytesTransferred,

 ULONG_PTR dwCompletionKey,

 LPOVERLAPPED lpOverlapped

);

The CompletionPort parameter represents the completion port object to which you want to send a

completion packet. The dwNumberOfBytesTransferred, dwCompletionKey, and lpOverlapped

parameters each will allow you to specify a value that will be sent directly to the corresponding

parameter of the GetQueuedCompletionStatus function. Thus, when a worker thread receives the

three passed parameters of GetQueuedCompletionStatus, it can determine when it should exit based

on a special value set in one of the three parameters. For example, you could pass the value 0 in the

dwCompletionKey parameter, which a worker thread could interpret as an instruction to terminate.

Once all the worker threads are closed, you can close the completion port using the CloseHandle

function and finally exit your program safely.

The completion port I/O model is by far the best in terms of performance and scalability. There are no

limitations to the number of sockets that may be associated with a completion port and only a small

number of threads are required to service the completed I/O. For more information on using completion

ports to develop scalable, high-performance servers, see Chapter 6.

I/O Model Consideration

By now you might be wondering how to choose the I/O model you should use when

designing your application. As we've mentioned, each model has its strengths and

weaknesses. All of the I/O models do require fairly complex programming compared

with developing a simple blocking-mode application with many servicing threads. We

offer the following suggestions for client and server development.

Client Development

When you are developing a client application that manages one or more sockets, we

recommend using overlapped I/O or WSAEventSelect over the other I/O models for

performance reasons. But, if you are developing a Windows-based application that

manages window messages, the WSAAsyncSelect model might be a better choice

because WSAAsyncSelect lends itself to the Windows message model, and your

application is already set up for handling messages.

Server Development

When you are developing a server that processes several sockets at a given time, we

recommend using overlapped I/O over the other I/O models for performance reasons.

However, if you expect your server to service a large number of I/O requests at any

given time, you should consider using the I/O completion port model for even better

performance.

Conclusion

At this point, we have covered the various I/O models available in Winsock. These

models allow applications to tailor Winsock I/O according to their needs, from simple

blocking I/O to high-performance completion port I/O for the maximum throughput

possible. Up to this point, you have learned about available transport protocols, socket

creation attributes, creating a basic client/server application, and other fundamental

Winsock topics. Chapter 6 focuses on writing high-performance, scalable servers, and

the remaining chapters introduce more specialized Winsock topics.

Chapter 6

Scalable Winsock Applications

Developing Winsock applications has always been considered to be cryptic and

difficult to learn. In reality, there are only a few basic principles, such as socket

creation, connecting a socket, accepting connections, and sending and receiving data.

The real difficultly lies in developing a scalable Winsock application that can handle a

single connection or thousands of connections. This chapter describes how to write

scalable Winsock applications for Windows NT. The main focus is the server side of

the client-server model; however, some of the topics apply equally to both.

This discussion of writing scalable applications applies to server applications and

therefore only applies to Windows NT 4.0 and later versions. We don't include earlier

versions of Windows NT because many of the features we will cover require Winsock

2, which is available only on Windows NT 4.0 and later versions. Finally, the focus of

our discussion will be on the TCP/IP protocol. However, all of the topics we cover can

easily apply to other connection-oriented, stream-based protocols. Some of the topics

apply to UDP/IP as well (such as resource management) but connectionless,

message-based protocols themselves will not be covered.

This chapter will first discuss the different Winsock API functions designed for use in

scalable, high-performance applications such as AcceptEx, TransmitFile, and

ConnectEx. Typically, these are Microsoft-specific extensions added with different

versions of the operating system because the original Winsock specification leaves

out several key asynchronous functions. We'll then cover the necessary steps for

implementing a scalable server and discuss how to handle low resource conditions

that occur when the number of connections becomes very large.

APIs and Scalability

The only I/O model that provides true scalability on Windows NT platforms is

overlapped I/O using completion ports for notification. In Chapter 5, we covered the

various methods of socket I/O and explained that for a large number of connections,

completion ports offer the greatest flexibility and ease of implementation. Mechanisms

like WSAAsyncSelect and select are provided for easier porting from Windows 3.1 and

UNIX, respectively, but are not designed to scale. The event-based models are not

scalable because of the operating system limit of simultaneous wait events.

The other major advantages of overlapped I/O are the several Microsoft-specific

extensions that can only be called in an overlapped manner. When you use

overlapped I/O there are several options for how the notifications can be received.

Event-based notification is not scalable because the operating system limit of waiting

on 64 objects necessitates using many threads. This is not only inefficient but requires

a lot of housekeeping overhead to assign events to available worker threads.

Overlapped I/O with callbacks is not an option for several reasons. First, many of the

Microsoft-specific extensions do not allow Asynchronous Procedure Calls (APCs) for

completion notification. Second, due to the nature of how APCs are handled on

Windows, it is possible for an application thread to starve. Once a thread goes into an

alertable wait, all pending APCs are handled on a first in first out (FIFO) basis. Now

consider the situation in which a server has a connection established and posts an

overlapped WSARecv with a completion function. When there is data to receive, the

completion routine fires and posts another overlapped WSARecv. Depending on

timing conditions and how much work is performed within the APC, another

completion function is queued (because there is more data to be read). This can

cause the server's thread to starve as long as there is pending data on that socket.

Before delving deeper into the architecture of scalable Winsock applications, let's

discuss the Microsoft-specific extensions that will aid us in developing scalable

servers. These APIs are TransmitFile, AcceptEx, ConnectEx, TransmitPackets,

DisconnectEx, and WSARecvMsg. There is a related extension function,

GetAcceptExSockaddrs, which is used in conjunction with AcceptEx.

Before describing each of the extension API functions, it is important to point out that

these functions are defined in MSWSOCK.H. Also, only three of the functions

(TransmitFile, AcceptEx, and GetAcceptExSockaddrs) are actually exported from

MSWSOCK.DLL. However, applications should avoid using those. Instead,

applications should dynamically load the extension function, which is required for all

the remaining extension APIs. Not all providers have to support these APIs, so it is

best to explicitly load these APIs from the provider you are using. See Chapter 7 and

the SIO_GET_EXTENSION_ FUNCTION_POINTER for an example of how to load

the extension APIs.

AcceptEx

Perhaps the most useful extension API for scalable TCP/IP servers is AcceptEx. This

function allows the server to post an asynchronous call that will accept the next

incoming client connection. This function is defined as

BOOL

PASCAL FAR

AcceptEx (

 IN SOCKET sListenSocket,

 IN SOCKET sAcceptSocket,

 IN PVOID lpOutputBuffer,

 IN DWORD dwReceiveDataLength,

 IN DWORD dwLocalAddressLength,

 IN DWORD dwRemoteAddressLength,

 OUT LPDWORD lpdwBytesReceived,

 IN LPOVERLAPPED lpOverlapped

);

The first parameter is the listening socket, and sAcceptSocket is a valid, unbound

socket handle that will be assigned to the next client connection. So the socket handle

for the client needs to be created before posting the AcceptEx call. This is necessary

because socket creation is expensive, and if a server is interested in handling client

connections as fast as possible, it needs to have a pool of sockets already created on

which new connections will be assigned.

The four parameters that follow sAcceptSocket are related. The lpOutputBuffer is

required and is filled in with the local and remote addresses for the client connection

as well as an optional buffer to receive the first data chunk received from the client.

The dwReceiveDataLength indicates how many bytes of the supplied buffer should be

used to receive data sent by the client. An application may choose not to receive data

and may specify zero. The dwLocalAddressLength specifies the size of the socket

address structure corresponding to the address family of the client socket plus 16

bytes. The local address of the client socket connection is placed in the

lpOutputBuffer following the receive data if specified. The dwRemoteAddressLength is

the same. The remote address of the client connection will be written to the

lpOutputBuffer following the receive data (if specified) and the local address. Note that

dwReceiveDataLength may be zero but dwLocalAddressLength and

dwRemoteAddressLength cannot be.

The lpdwBytesReceived indicates the number of bytes received on the

newly-established client connection if the operation succeeds immediately. Finally,

lpOverlapped is the WSAOVERLAPPED structure for this overlapped operation. This

parameter is required—if you want to perform a blocking accept call, just use accept

or WSAAccept.

Before going any farther, let's take a quick look at an example using the AcceptEx

function. The following code creates an IPv4 listening socket and posts a single

AcceptEx.

SOCKET s, sclient;

HANDLE hCompPort;

LPFN_ACCEPTEX lpfnAcceptEx=NULL;

GUID GuidAcceptEx=WSAID_ACCEPTEX;

// The WSAOVERLAPPEDPLUS type will be described in detail in

// Chapter 12 and includes a WSAOVERLAPPED structure as well as

// context information for the overlapped operation.

WSAOVERLAPPEDPLUS ol;

SOCKADDR_IN salocal;

DWORD dwBytes;

char buf[1024];

int buflen=1024;

// Create the completion port

hCompPort = CreateIoCompletionPort(INVALID_HANDLE_VALUE,

 NULL,

 (ULONG_PTR)0,

 0

);

// Create the listening socket

s = socket(AF_INET, SOCK_STREAM, IPPROTO_TCP);

// Associate listening socket to completion port

CreateIoCompletionPort((HANDLE)s,

 hCompPort,

 (ULONG_PTR)0,

 0

);

// Bind the socket to the local port

salocal.sin_family = AF_INET;

salocal.sin_port = htons(5150);

salocal.sin_addr.s_addr = htonl(INADDR_ANY);

bind(s, (SOCKADDR *)&salocal, sizeof(salocal));

// Set the socket to listening

listen(s, 200);

// Load the AcceptEx function

WSAIoctl(s,

 SIO_GET_EXTENSION_FUNCTION_POINTER,

 &GuidAcceptEx,

 sizeof(GuidAcceptEx),

 &lpfnAcceptEx,

 sizeof(lpfnAcceptEx),

 &dwBytes,

 NULL,

 NULL

);

// Create the client socket for the accepted connection

sclient = socket(AF_INET, SOCK_STREAM, IPPROTO_TCP);

// Initialize our "extended" overlapped structure

memset(&ol, 0, sizeof(ol));

ol.operation = OP_ACCEPTEX;

ol.client = sclient;

lpfnAcceptEx(s,

 sclient,

 buf,

 buflen - ((sizeof(SOCKADDR_IN) + 16) * 2),

 sizeof(SOCKADDR_IN) + 16,

 sizeof(SOCKADDR_IN) + 16,

 &dwBytes,

 &ol.overlapped

);

// Call GetQueuedCompletionStatus within the completion function

// After the AcceptEx operation completes associate the accepted client

// socket with the completion port

This sample is a bit simplified but it shows the necessary steps. It shows how to set up

the listening socket, which you've seen before. Then it shows how to load the

AcceptEx function. Applications should always load the extension functions

themselves to avoid the performance penalty of the exported extension functions from

MSWSOCK.DLL, because for each call they simply end up loading the same function.

Next, the application-specific overlapped structure is established, which contains

necessary information concerning the asynchronous operation so that when it

completes the server can figure out what happened. The actual declaration of this

type is not included for the sake of simplicity. See Chapter 5 for more information

about this. Finally, once the AcceptEx operation completes, the newly-accepted client

socket should be associated with the completion port.

Also be aware that because of the high performance nature of AcceptEx, the listening

socket's socket attributes are not automatically inherited by the client socket. To do

this, the server must call setsockopt with SO_UPDATE_ ACCEPT_CONTEXT with the

client socket handle. See Chapter 7 for more information.

Another point to be aware of, which we mentioned in Chapter 5, is that if a receive

buffer is specified to AcceptEx (for example, dwReceiveDataLength is greater than

zero), then the overlapped operation will not complete until at least one byte of data

has been received on the connection. So a malicious client could post many

connections but never send any data. Chapter 5 discusses methods to prevent this by

using the SO_CONNECT_TIME socket option. The AcceptEx function is available on

Windows NT 4.0 and later versions.

GetAcceptExSockaddrs

This is really a companion function to AcceptEx because it is required to decode the

local and remote addresses contained within the buffer passed to the accept call. As

you remember, a single buffer will contain any data received on the connection as well

as the local and remote addresses for that connection. Any data indicated to be

received will always be placed at the start of this buffer followed by the addresses.

However, these addresses are in a packed form and the GetAcceptExSockaddrs

function will decode them into the appropriate SOCKADDR structure for the address

family. This function is defined as

VOID

PASCAL FAR

GetAcceptExSockaddrs (

 IN PVOID lpOutputBuffer,

 IN DWORD dwReceiveDataLength,

 IN DWORD dwLocalAddressLength,

 IN DWORD dwRemoteAddressLength,

 OUT struct sockaddr **LocalSockaddr,

 OUT LPINT LocalSockaddrLength,

 OUT struct sockaddr **RemoteSockaddr,

 OUT LPINT RemoteSockaddrLength

);

The first four parameters are the same as those in the AcceptEx call and they must

match the values passed to AcceptEx. That is, if 1024 was specified as

dwReceiveDataLength in AcceptEx then the same value must be passed to

GetAcceptExSockaddrs. The remaining four parameters are SOCKADDR pointers

and their lengths for the local and remote addresses. These parameters are all output

parameters. The following code illustrates how you would call Get-

AcceptExSockaddrs after the AcceptEx call in our previous example completes:

// buf and bufflen were defined previously

SOCKADDR *lpLocalSockaddr=NULL,

 *lpRemoteSockaddr=NULL;

int LocalSockaddrLen=0,

 RemoteSockaddrLen=0;

LPFN_GETACCEPTEXSOCKADDRS lpfnGetAcceptExSockaddrs=NULL;

// Load the GetAcceptExSockaddrs function

lpfnGetAcceptExSockaddrs(

 buf,

 buflen - ((sizeof(SOCKADDR_IN) + 16) * 2),

 sizeof(SOCKADDR_IN) + 16,

 sizeof(SOCKADDR_IN) + 16,

 &lpLocalSockaddr,

 &LocalSockaddrLen,

 &lpRemoteSockaddr,

 &RemoteSockaddrLen

);

After the function completes, the lpLocalSockaddr and lpRemoteSockaddr point to

within the specified buffer where the socket addresses have been unpacked into the

correct socket address structure.

TransmitFile

TransmitFile is an extension API that allows an open file to be sent on a socket

connection. This frees the application from having to manually open the file and

repeatedly perform a read from the file, followed by writing that chunk of data on the

socket. Instead, an open file handle is given along with the socket connection and the

file data is read and sent on the socket all within kernel mode. This prevents the

multiple kernel transitions required when you perform the file read yourself. This API is

defined as

BOOL

PASCAL FAR

TransmitFile (

 IN SOCKET hSocket,

 IN HANDLE hFile,

 IN DWORD nNumberOfBytesToWrite,

 IN DWORD nNumberOfBytesPerSend,

 IN LPOVERLAPPED lpOverlapped,

 IN LPTRANSMIT_FILE_BUFFERS lpTransmitBuffers,

 IN DWORD dwReserved

);

The first parameter is the connection socket. The hFile parameter is a handle to an

open file. This parameter can be NULL in which case the lpTransmitBuffers are

transmitted. Of course it doesn't make much sense to use TransmitFile to send

memory-only buffers. nNumberOfBytesToWrite is the number of bytes to send from

the file. A value of zero indicates send the entire file. The nNumberOfBytesPerSend

indicates the size of each block of data sent in each send operation. If zero is

specified, the system uses the default send size. The default send size on Windows

NT Workstation is 4k and on Windows Server it is 64k. The lpOverlapped structure is

optional. Note that if the OVERLAPPED structure is omitted, then the file transfer

begins at the current file pointer position. Otherwise, the offset values in the

OVERLAPPED structure can indicate where the operation starts. The

lpTransmitBuffers is a TRANSMIT_FILE_BUFFERS structure that contains memory

buffers to transmit before and after the file is transmitted. This parameter is optional.

The last parameter is optional flags, which affect the behavior of the file operation.

Table 6-1 contains the possible flags and their meaning. Multiple flags may be

specified.

Table 6-1TransmitFile Flags

Flag Meaning

TF_DISCONNECT
Start a transport-level disconnect after the

TransmitFile operation has been queued.

TF_REUSE_SOCKET

Prepare the socket handle to be reused. After the

TransmitFile completes, the socket handle may be

used as the client socket in AcceptEx. This flag is

valid only if TF_DISCONNECT is also specified.

TF_USE_DEFAULT_WORKER
Indicates the file transfer to use the system's

default thread. This is useful for large file sends.

TF_USE_SYSTEM_THREAD
This option also indicates the TransmitFile

operation to use system threads for processing.

TF_USE_KERNEL_APC

Indicates that kernel asynchronous procedure calls

should be used instead of worker threads to

process the TransmitFile request. Note that kernel

APCs can only be scheduled to run when the

application is in a wait state (not necessarily an

alertable wait state though).

TF_WRITE_BEHIND

Indicates that the TransmitFile request should

return immediately even though the data may not

have been acknowledged by the remote end. This

flag should not be used with TF_DISCONNECT or

TF_REUSE_SOCKET.

The TransmitFile function is useful for file-based I/O such as Web servers. In addition,

one beneficial feature of TransmitFile is the capability of specifying the flags

TF_DISCONNECT and TF_REUSE_SOCKET. When both of these flags are

specified, the file and/or memory buffers are transmitted and the socket is

disconnected once the send operation has completed. Also, the socket handle passed

to the API can then be used as the client socket in AcceptEx or the connecting socket

in ConnectEx. This is extremely beneficial because socket creation is very expensive.

A server can use AcceptEx to handle client connections, then use TransmitFile to send

data (specifying these flags), and afterward the socket handle may be used in a

subsequent call to AcceptEx.

Note that you can call TransmitFile with a NULL file handle and NULL

lpTransmitBuffers but still specify TF_DISCONNECT and TF_REUSE_SOCKET. This

call will not send any data but allows the socket to be reused in AcceptEx. This is a

good workaround for platforms that do not support the DisconnectEx API discussed

later in this chapter. Finally, the TransmitFile function is available on Windows NT 4.0

and later version. Also, because TransmitFile is geared toward server applications, it

is fully functional only on server versions of Windows. On home and professional

versions, there may be only two outstanding TransmitFile (or TransmitPackets) calls at

any given time. If there are more, then they are queued and not processed until the

executing calls are finished.

TransmitPackets

The TransmitPackets extension is similar to TransmitFile because it too is used to

send data. The difference between them is that TransmitPackets can send both files

and memory buffers in any number and order. This function is defined as

BOOL

(PASCAL FAR * LPFN_TRANSMITPACKETS) (

 SOCKET hSocket,

 LPTRANSMIT_PACKETS_ELEMENT lpPacketArray,

 DWORD nElementCount,

 DWORD nSendSize,

 LPOVERLAPPED lpOverlapped,

 DWORD dwFlags

);

The first parameter is the connected socket on which to send the data. Also,

TransmitPackets works over datagram and stream-oriented protocols (such as TCP/IP

and UDP/IP), unlike TransmitFile. The lpPacketArray is an array of one or more

TRANSMIT_PACKETS_ELEMENT structures, which we'll define shortly.

nElementCount simply indicates the number of members in the

TRANSMIT_PACKETS_ELEMENT array. nSendSize is the same as the

nNumberOfBytesPerSend parameter of TransmtFile. lpOverlapped indicates the

overlapped structure is optional. dwFlags are the same as those for TransmitFile. See

Table 6-1 for the options. The only exception is that the flag names begin with TP

instead of TF—but their meanings are the same. And because TransmitPackets works

over datagrams, the TP_DISCONNECT and TP_REUSE_SOCKET have no meaning

for datagrams and specifying them will result in an error.

The TRANSMIT_PACKETS_ELEMENT structure is defined as

typedef struct _TRANSMIT_PACKETS_ELEMENT {

 ULONG dwElFlags;

#define TP_ELEMENT_MEMORY 1

#define TP_ELEMENT_FILE 2

#define TP_ELEMENT_EOP 4

 ULONG cLength;

 union {

 struct {

 LARGE_INTEGER nFileOffset;

 HANDLE hFile;

 };

 PVOID pBuffer;

 };

} TRANSMIT_PACKETS_ELEMENT, *PTRANSMIT_PACKETS_ELEMENT,

FAR *LPTRANSMIT_PACKETS_ELEMENT;

The first field indicates the type of buffer contained in this element, either memory or

file as given by TP_ELEMENT_MEMORY and TP_ELEMENT_FILE, respectively. The

TP_ELEMENT_EOP flag can be bitwise OR'ed in with one of the other two flags. It

indicates that this element should not be combined with the following element in a

single send operation. This allows the application to shape how the traffic is placed on

the wire. The cLength field indicates how many bytes to transfer from the file's

memory buffer. If the element contains a file pointer, then a cLength of zero indicates

transmit the entire file. The union contains either a pointer to a buffer in memory or a

handle to an open file as well as an offset value into that file. It is possible to reference

the same file handle in multiple elements of the TRANSMIT_PACKETS_ELEMENT. In

this case, the offset can specify where to begin the transfer. Alternately, a value of -1

indicates begin transmitting at the current file pointer position in that file.

A word of caution about using TransmitPackets with datagram sockets: the system is

able to process and queue the send requests extremely fast, and it is possible that too

many datagrams will pile up in the protocol driver. At this point, for unreliable protocols

it is perfectly acceptable for the system to drop packets before they are even sent on

the wire!

The TransmitPackets extension API is available on Windows XP and later version and

is subject to the same type of limitation that TransmitFile is. On a non-server version

of Windows NT, there can be only two outstanding TransmitPackets (or TransmitFile)

calls at any given time.

ConnectEx

The ConnectEx extension function is a much-needed API available with Windows XP

and later versions. This function allows for overlapped connect calls. Previously, the

only way to issue multiple connect calls without using one thread for each connect

was to use multiple non-blocking connects, which can be cumbersome to manage.

This function is defined as

BOOL

(PASCAL FAR *LPFN_CONNECTEX) (

 IN SOCKET s,

 IN const struct sockaddr FAR *name,

 IN int namelen,

 IN PVOID lpSendBuffer,

 IN DWORD dwSendDataLength,

 OUT LPDWORD lpdwBytesSent,

 IN LPOVERLAPPED lpOverlapped

);

The first parameter is a previously bound socket. The name parameter indicates the

remote address to connect to and namelen is the length of that socket address

structure. The lpSendBuffer is an optional pointer to a block of memory to send after

the connection has been established, and dwSendDataLength indicates the number of

bytes to send. lpdwBytesSent is updated to indicate the number of bytes sent

successfully after the connection was established, if the operation completed

immediately. lpOverlapped is the OVERLAPPED structure associated with this

operation. This extension function can be called only in an overlapped manner.

Like with AcceptEx function, because ConnectEx is designed for performance, any

previously set socket options or attributes are not automatically copied to the

connected socket. To do so, the application must call

SO_UPDATE_CONNECT_CONTEXT on the socket after the connection is

established. In addition, as with AcceptEx, socket handles that have been

“disconnected and re-used,” either by TransmitFile, TransmitPackets, or

DisconnectEx, may be used as the socket parameter to ConnectEx.

There isn't anything difficult about the ConnectEx API, and the only requirement is the

socket passed into ConnectEx needs to be previously bound with a call to bind. There

are no special flags, and it simply is an overlapped version of connect with the optional

bonus of sending a block of data after the connection is established.

DisconnectEx

This extension API is simple. It takes a socket handle and performs a transport level

disconnect and prepares the socket handle for re-use in a subsequent AcceptEx call.

Both the TransmitFile and TransmitPackets APIs allow the socket to be disconnected

and re-used after the send operation completes, but this standalone API was

introduced for those applications that don't use either of those two APIs before

shutting down. This extension API is available with Windows XP or later versions.

However, for Windows 2000 or Windows NT 4.0 it is possible to call TransmitFile with

a null file handle and buffers but specify the disconnect and re-use flags, which will

achieve the same results. This API is defined as

typedef

BOOL

(PASCAL FAR * LPFN_DISCONNECTEX) (

 IN SOCKET s,

 IN LPOVERLAPPED lpOverlapped,

 IN DWORD dwFlags,

 IN DWORD dwReserved

);

The first two parameters are self-explanatory. The dwFlags parameter can specify

zero or TF_REUSE_SOCKET. If the flags are zero, then this function simply

disconnects the connection. To be able to re-use the socket in AcceptEx, the

TF_REUSE_SOCKET flag must be specified. The last parameter must be zero;

otherwise, WSAEINVAL will be returned. If this function is invoked with an overlapped

structure and if there are still pending operations on the socket, the DisconnectEx call

will return FALSE with the error WSA_IO_PENDING. The operation will complete

once all pending operations are finished and the transport level disconnect has been

issued. Otherwise, if it is called in a blocking manner, the function will not return until

pending I/O is completed and the disconnect has been issued. Note that the

DisconnectEx function works only on connection-oriented sockets.

WSARecvMsg

This last extension function is not too interesting in the discussion of

high-performance, scalable I/O, but it is new to Windows XP (and later versions) and

we chose to be consistent and cover it with the rest of the extension APIs. The

WSARecvMsg is nothing more than a complicated WSARecv with the exception that it

returns information about which interface the packet was received on. This is useful

for datagram sockets that are bound to the local wildcard address on a multihomed

machine and need to know which interface a packet arrived on. This function is

defined as

typedef

INT

(PASCAL FAR * LPFN_WSARECVMSG) (

 IN SOCKET s,

 IN OUT LPWSAMSG lpMsg,

 OUT LPDWORD lpdwNumberOfBytesRecvd,

 IN LPWSAOVERLAPPED lpOverlapped,

 IN LPWSAOVERLAPPED_COMPLETION_ROUTINE lpCompletionRoutine

);

Most of the parameters are self-explanatory. Unlike the other extension functions,

which cannot be called with an overlapped completion routine, this one can. The

parameter that requires explaining is lpMsg. This is a WSAMSG structure that

contains the buffers for receiving data as well as the informational buffers that will

contain information about the data received. This structure is defined as

typedef struct _WSAMSG {

 LPSOCKADDR name; /* Remote address */

 INT namelen; /* Remote address length */

 LPWSABUF lpBuffers; /* Data buffer array */

 DWORD dwBufferCount; /* Number of elements in the array */

 WSABUF Control; /* Control buffer */

 DWORD dwFlags; /* Flags */

} WSAMSG, *PWSAMSG, * FAR LPWSAMSG;

The first field is a buffer that will contain the address of the remote system and

namelen specifies how large the address buffer is. lpBuffers and dwBufferCount are

the same as in WSARecv. The Control field specifies a buffer that will contain the

optional control data. Lastly, dwFlags is also the same as in WSARecv and

WSARecvFrom. However, there are additional flags that can be returned that provide

information about the packet received. These new flags are described in Table 6-2.

Table 6-2Flags Returned from WSARecvMsg

Flag Description

MSG_BCAST
Datagram was received as a link-layer broadcast or with a

destination address that was a broadcast address.

MSG_TRUNC
Datagram was truncated. There was more data that could be

copied to the supplied receive buffer.

MSG_CTRUNC
Control data was truncated. The buffer supplied in the WSAMSG

Control field was too small to receive the control data.

By default, no control information is returned when WSARecvMsg is called. To enable

control information, one or more socket options must be set on the socket, indicating

the type of information to be returned. Currently, only one option is supported, which is

IP_PKTINFO for IPv4 and IPV6_PKTINFO for IPv6. These options return information

about which local interface the packet was received on. See Chapter 7 for more

information about setting these options.

Once the appropriate socket option is set and the WSARecvMsg completes, the

control information requested is returned via the Control buffer specified in the

WSAMSG parameter. Each type of information requested is preceded by a

WSACMSGHDR structure that indicates the type of information following as well as its

size. This header structure is defined as

typedef struct _WSACMSGHDR {

 SIZE_T cmsg_len;

 INT cmsg_level;

 INT cmsg_type;

 /* followed by UCHAR cmsg_data[] */

} WSACMSGHDR, *PWSACMSGHDR, FAR *LPWSACMSGHDR;

Within MSWSOCK.H, several useful macros are defined that extract the message

headers and their data.

Scalable Server Architecture

Now that we've introduced the Microsoft-specific extensions, we'll get into the details

of implementing a scalable server. Because this chapter focuses on

connection-oriented protocols such as TCP/IP, we will first discuss accepting

connections followed by managing data transfers. The last section will discuss

resource management in more detail.

Accepting Connections

The most common action a server performs is accepting connections. The Microsoft

extension AcceptEx is the only Winsock function capable of accepting a client

connection via overlapped I/O. As we mentioned previously, the AcceptEx function

requires that the client socket be created beforehand by calling socket. The socket

must be unbound and unconnected, although it is possible to re-use socket handles

after calling TransmitFile, TransmitPackets, or DisconnectEx.

A responsive server must always have enough AcceptEx calls outstanding so that

incoming client connections may be handled immediately. However, there is no magic

number of outstanding AcceptEx calls that will guarantee that the server will be able to

accept the connection immediately. Remember that the TCP/IP stack will

automatically accept connections on behalf of the listening application, up to the

backlog limit. For Windows NT Server, the maximum backlog value is currently 200. If

a server posts 15 AcceptEx calls and then a burst of 50 clients connect to the server,

none of the clients' connections will be rejected. The server's accept calls will satisfy

the first 15 connections and the system will accept the remaining connections

silently—this dips into the backlog amount so that the server will be able to accept 165

additional connections. Then when the server posts additional AcceptEx calls, they will

succeed immediately because one of the system queued connections will be returned.

The nature of the server plays an important role in determining how many AcceptEx

operations to post. For example, a server that is expected to handle many short-lived

connections from a great number of clients may want to post more concurrent

AcceptEx operations than a server that handles fewer connections with longer

lifetimes. A good strategy is to allow the number of AcceptEx calls to vary between a

low and high watermark. An application can keep track of the number of outstanding

AcceptEx operations that are pending. Then, when one or more of those completes

and the outstanding count decreases below the set watermark, additional AcceptEx

calls may be posted. Of course, if at some point an AcceptEx completes and the

number of outstanding accepts is greater than or equal to the high watermark then no

additional calls should be posted in the handling of the current AcceptEx.

On Windows 2000 and later versions, Winsock provides a mechanism for determining

if an application is running behind in posting adequate AcceptEx calls. When creating

the listening socket, associate it with an event by using the WSAEventSelect API call

and registering for FD_ACCEPT notification. If there are no pending AcceptEx

operations but there are incoming client connections (accepted by the system

according to the backlog value), then the event will be signaled. This can even be

used as an indication to post additional AcceptEx operations.

One significant benefit of using AcceptEx is the capability to receive data in addition to

accepting the client connection. For servers whose clients send an initial request this

is ideal. However, as we mentioned in Chapter 5, the AcceptEx operation will not

complete until at least one byte of data has been received. To prevent malicious

attacks or stale connections, a server should cycle through all client socket handles in

outstanding AcceptEx operations and call getsockopt with SO_CONNECT_TIME,

which will return regardless of whether the socket is actually connected. If it is

connected, the return value is greater than zero. A value of -1 indicates it is not

connected. If the WSAEventSelect suggestion is implemented, then when the event is

signaled it is a good time to check whether the client socket handles in outstanding

accept calls are connected. Once an AcceptEx call accepts an incoming connection, it

will then wait to receive data, and at this point there is one less outstanding accept

call. Once there are no remaining accepts, the event will be signaled on the next

incoming client connection. As a word of warning, applications should not under any

circumstances close a client socket handle used in an AcceptEx call that has not been

accepted because it can lead to memory leaks. For performance reasons, the

kernel-mode structures associated with an AcceptEx call will not be cleaned up when

the unconnected client handle is closed until a new client connection is established or

until the listening socket is closed.

Although it may seem logical and simpler to post AcceptEx requests in one of the

worker threads handling notification from the completion port, you should avoid this

because socket creation process is expensive. In addition, any complex computations

should be avoided within the worker threads so the server may process the

completion notifications as fast as possible. One reason socket creation is expensive

is the layered architecture of Winsock 2.0. When the server creates a socket, it may

be routed through multiple providers, each performing their own tasks, before the

socket is created and returned to the application. Chapter 12 discusses layered

providers in detail. Instead, a server should create client sockets and post AcceptEx

operations from a separate thread. When an overlapped AcceptEx completes in the

worker thread, an event can be used to signal the accept issuing thread.

Data Transfers

Once clients are connected, the server will need to transfer data. This process is fairly

straightforward, and once again, all data sent or received should be performed with

overlapped I/O. By default, each socket has an associated send and receive buffer

that is used to buffer outgoing and incoming data, respectively. In most cases these

buffers should be left alone, but it is possible to change them or set them to zero by

calling setsockopt with the SO_SNDBUF or SO_RCVBUF options.

Let's look at how the system handles a typical send call when the send buffer size is

non-zero. When an application makes a send call, if there is sufficient buffer space,

the data is copied into the socket's send buffers, the call completes immediately with

success, and the completion is posted. On the other hand, if the socket's send buffer

is full, then the application's send buffer is locked and the send call fails with

WSA_IO_PENDING. After the data in the send buffer is processed (for example,

handed down to TCP for processing), then Winsock will process the locked buffer

directly. That is, the data is handed directly to TCP from the application's buffer and

the socket's send buffer is completely bypassed.

The opposite is true for receiving data. When an overlapped receive call is performed,

if data has already been received on the connection, it will be buffered in the socket's

receive buffer. This data will be copied directly into the application's buffer (as much

as will fit), the receive call returns success, and a completion is posted. However, if

the socket's receive buffer is empty, when the overlapped receive call is made, the

application's buffer is locked and the call fails with WSA_IO_PENDING. Once data

arrives on the connection, it will be copied directly into the application's buffer,

bypassing the socket's receive buffer altogether.

Setting the per-socket buffers to zero generally will not increase performance because

the extra memory copy can be avoided as long as there are always enough

overlapped send and receive operations posted. Disabling the socket's send buffer

has less of a performance impact than disabling the receive buffer because the

application's send buffer will always be locked until it can be passed down to TCP for

processing. However, if the receive buffer is set to zero and there are no outstanding

overlapped receive calls, any incoming data can be buffered only at the TCP level.

The TCP driver will buffer only up to the receive window size, which is 17 KB—TCP

will increase these buffers as needed to this limit; normally the buffers are much

smaller. These TCP buffers (one per connection) are allocated out of non-paged pool,

which means if the server has 1000 connections and no receives posted at all, 17 MB

of the non-paged pool will be consumed! The non-paged pool is a limited resource,

and unless the server can guarantee there are always receives posted for a

connection, the per-socket receive buffer should be left intact.

Only in a few specific cases will leaving the receive buffer intact lead to decreased

performance. Consider the situation in which a server handles many thousands of

connections and cannot have a receive posted on each connection (this can become

very expensive, as you'll see in the next section). In addition, the clients send data

sporadically. Incoming data will be buffered in the per-socket receive buffer and when

the server does issue an overlapped receive, it is performing unnecessary work. The

overlapped operation issues an I/O request packet (IRP) that completes, immediately

after which notification is sent to the completion port. In this case, the server cannot

keep enough receives posted, so it is better off performing simple non-blocking

receive calls.

TransmitFile and TransmitPackets

For sending data, servers should consider using the TransmitFile and

TransmitPackets API functions where applicable. The benefit of these functions is that

a great deal of data can be queued for sending on a connection while incurring just a

single user-to-kernel mode transition. For example, if the server is sending file data to

a client, it simply needs to open a handle to that file and issue a single TransmitFile

instead of calling ReadFile followed by a WSASend, which would invoke many

user-to-kernel mode transitions. Likewise, if a server needs to send several memory

buffers, it also can build an array of TRANSMIT_PACKETS_ELEMENT structures and

use the TransmitPackets API. As we mentioned, these APIs allow you to disconnect

and re-use the socket handles in subsequent AcceptEx calls.

Resource Management

On a machine with sufficient resources, a Winsock server should have no problem

handling thousands of concurrent connections. However, as the server handles

increasingly more concurrent connections, a resource limitation will eventually be

encountered. The two limits most likely to be encountered are the number of locked

pages and non-paged pool usage. The locked pages limitation is less serious and

more easily avoided than running out of the non-paged pool.

With every overlapped send or receive operation, it is probable that the data buffers

submitted will be locked. When memory is locked, it cannot be paged out of physical

memory. The operating system imposes a limit on the amount of memory that may be

locked. When this limit is reached, overlapped operations will fail with the

WSAENOBUFS error. If a server posts many overlapped receives on each

connection, this limit will be reached as the number of connections grow. If a server

anticipates handling a very high number of concurrent clients, the server can post a

single zero byte receive on each connection. Because there is no buffer associated

with the receive operation, no memory needs to be locked. With this approach, the

per-socket receive buffer should be left intact because once the zero-byte receive

operation completes, the server can simply perform a non-blocking receive to retrieve

all the data buffered in the socket's receive buffer. There is no more data pending

when the non-blocking receive fails with WSAEWOULDBLOCK. This design would be

for servers that require the maximum possible concurrent connections while sacrificing

the data throughput on each connection.

Of course, the more you are aware of how the clients will be interacting with the

server, the better. In the previous example, a non-blocking receive is performed once

the zero-byte receive completes to retrieve the buffered data. If the server knows that

clients send data in bursts, then once the zero-byte receive completes, it may post

one or more overlapped receives in case the client sends a substantial amount of data

(greater than the per-socket receive buffer that is 8 KB by default).

Another important consideration is the page size on the architecture the server is

running on. When the system locks memory passed into overlapped operations, it

does so on page boundaries. On the x86 architecture, pages are locked in multiples of

4 KB. If an operation posts a 1 KB buffer, then the system is actually locking a 4 KB

chunk of memory. To avoid this waste, overlapped send and receive buffers should be

a multiple of the page size. The Windows API GetSystemInfo can be called to obtain

the page size for the current architecture.

Hitting the non-paged pool limit is a much more serious error and is difficult to recover

from. Non-paged pool is the portion of memory that is always resident in physical

memory and can never be paged out. Kernel-mode operating system components,

such as a driver, typically use the non-paged pool that includes Winsock and the

protocol drivers such as tcpip.sys. Each socket created consumes a small portion of

non-paged pool that is used to maintain socket state information. When the socket is

bound to an address, the TCP/IP stack allocates additional non-paged pool for the

local address information. When a socket is then connected, a remote address

structure is also allocated by the TCP/IP stack. In all, a connected socket consumes

about 2 KB of non-paged pool and a socket returned from accept or AcceptEx uses

about 1.5 KB of non-paged pool (because an accepted socket needs only to store the

remote address). In addition, each overlapped operation issued on a socket requires

an I/O request packet to be allocated, which uses approximately 500 non-paged pool

bytes.

As you can see, the amount of non-paged pool each connection uses is not great;

however, as the number of clients connecting increases, the amount of non-paged

pool the server uses can be significant. For example, consider a server running

Windows 2000 (or greater) with 1 GB physical memory. For this amount of memory

there will be 256 MB set aside for the non-paged pool. In general, the amount of

non-paged pool allocated is one quarter the amount of physical memory with a 256

MB limit on Windows 2000 and later versions and a limit of 128 MB on Windows NT

4.0. With 256 MB of non-paged pool, it is possible to handle 50,000 or more

connections, but care must be taken to limit the number of overlapped operations

queued for accepting new connections as well as sending and receiving on existing

connections. In this example, the connected sockets alone consume 75 MB on

non-paged pool (assuming each socket uses 1.5 KB of non-paged pool as

mentioned). Therefore, if the zero-byte overlapped receive strategy is used, then a

single IRP is allocated for each connection, which uses another 25 MB of non-paged

pool.

If the system does run out of non-paged pool, there are two possibilities. In the

best-case scenario, Winsock calls will fail with WSAENOBUFS. The worst-case

scenario is the system crashes with a terminal error. This typically occurs when a

kernel mode component (such as a third-party driver) doesn't handle a failed memory

allocation correctly. As such there is no guaranteed way to recover from exhausting

the non-paged pool, and furthermore, there is no reliable way of monitoring the

available amount of non-paged pool because any kernel mode component can chew

up non-paged pool. The main point of this discussion is that there is no magical or

programmatic method of determining how many concurrent connections and

overlapped operations are acceptable. Also, it is virtually impossible to determine

whether the system has run out of non-paged pool or exceeded the locked page count

because both will result in Winsock calls failing with WSAENOBUFS. Testing must be

performed on the server. Because of these factors, the developer must test the

server's performance with varying numbers of concurrent connections and overlapped

operations in order to find a happy medium. If programmatic limits are imposed to

prevent the server from exhausting non-paged pool, you will know that any

WSAENOBUFS failures are generally the result of exceeding the locked page limit,

and that can be handled in a graceful manner programmatically, such as further

restricting the number of outstanding operations or closing some of the connections.

Server Strategies

In this section, we'll take a look at several strategies for handling resources depending on the nature of

the server. Also, the more control you have over the design of the client and server allows you to

design both accordingly to avoid the limitations and bottlenecks discussed previously. Again, there is

no foolproof method that will work 100 percent in all situations. Servers can be divided roughly into two

categories: high throughput and high connections. A high throughput server is more concerned with

pushing data on a small number of connections. Of course, the meaning of the phrase “small number

of connections” is relative to the amount of resources available on the server. A high connection server

is more concerned with handling a large number of connections and is not attempting to push large

data amounts.

In the next two sections, we'll discuss both high throughput and high connection server strategies. After

that, we'll look at performance numbers gathered from the server samples provided on the companion

CD.

High Throughput

An FTP server is an example of a high throughput server. It is concerned with delivering bulk content.

In this case, the server is concerned with processing each connection to minimize the amount of time

required to transfer the data. To do so, the server must limit the number of concurrent connections

because the greater the simultaneous connections, the lower the throughput will be on each

connection. An example would be an FTP server that refuses a connection because it is too busy.

The goal for this strategy is I/O. The server should keep enough receives or sends posted to maximize

throughput. Because each overlapped I/O requires memory to be locked as well as a small portion of

non-paged pool for each IRP associated with the operation, it is important to limit I/O to a small set of

connections. It is possible for the server to continually accept connections and have a relatively high

number of established connections, but I/O must be limited to a smaller set.

In this case, the server may post a number of sends or receives on a subset of the established clients.

For example, the server could handle client connections in a first-in, first-out manner and post a

number of overlapped sends and/or receives on the first 100 connections. After those clients are

handled, the server can move on the next set of clients in the queue. In this model, the number of

outstanding send and receive operations are limited to a smaller set of connections. This prevents the

server from blindly posting I/O operations on every connection, which could quickly exhaust the

server's resources.

The server should take care to monitor the number of operations outstanding on each connection so it

may prevent malicious clients from attacking it. For example, a server designed to receive data from a

client, process it, and send some sort of response should keep track of how many sends are

outstanding. If the client is simply flooding the server with data but not posting any receives, the server

may end up posting dozens of overlapped sends that will never complete. In this case, once the server

finds that there are too many outstanding operations, it can close the connection.

Maximizing Connections

Maximizing the number of concurrent client connections is the more difficult of the two strategies.

Handling the I/O on each connection becomes difficult. A server cannot simply post one or more sends

or receives on each connection because the amount of memory (both in terms of locked pages and

non-paged pool) is great. In this scenario, the server is interested in handling many connections at the

expense of throughput on each connection. An example of this would be an instant messenger server.

The server would handle many thousands of connections but would need to send or receive only a

small number of bytes at a time.

For this strategy, the server does not necessarily want to post an overlapped receive on each

connection because this would involve locking many pages for each of the receive buffers. Instead, the

server can post an overlapped zero-byte receive. Once the receive completes, the server would

perform a non-blocking receive until WSAEWOUDLBLOCK is returned. This allows the server to

immediately receive all buffered data received on that connection. Because this model is geared

toward clients that send data intermittently, it minimizes the number of locked pages but still allows

processing of data on each connection.

Performance Numbers

This section covers performance numbers from the different servers provided in Chapters 5 and 6. The

various servers tested are those using blocking sockets, non-blocking with select, WSAAsyncSelect,

WSAEventSelect, overlapped I/O with events, and overlapped I/O with completion ports. Table 6-3

summarizes the results of these tests. For each I/O model, there are a couple of entries. The first entry

is where 7000 connections were attempted from three clients. For all of these tests, the server is an

echo server. That is, for each connection that is accepted, data is received and sent back to the client.

The first entry for each I/O model represents a high-throughput server where the client sends data as

fast as possible to the server. Each of the sample servers does not limit the number of concurrent

connections. The remaining entries represent the connections when the clients limit the rate in which

they send data so as to not overrun the bandwidth available on the network. The second entry for each

I/O model represents 12,000 connections from the client, which is rate limiting the data sent. If the

server was able to handle the majority of the 12,000 connections, then the third entry is the maximum

number of clients the server was able to handle.

As we mentioned, the servers used are those provided from Chapter 5 except for the I/O completion

port server, which is a slightly modified version of the Chapter 5 completion port server except that it

limits the number of outstanding operations. This completion port server limits the number of

outstanding send operations to 200 and posts just a single receive on each client connection. The

client used in this test is the I/O completion port client from Chapter 5. Connections were established in

blocks of 1000 clients by specifying the ‘-c 1000' option on the client. The two x86-based clients

initiated a maximum of 12,000 connections and the Itanium system was used to establish the

remaining clients in blocks of 4000. In the tests that were rate limited, each client block was limited to

200,000 bytes per second (using the ‘-r 200000' switch). So the average send throughput for that

entire block of clients was limited to 200,000 bytes per second (not that each client was limited to this

amount).

Table 6-3I/O Method Performance Comparison

I/O

Model
Attempted/Connected

Memory

Used

(KB)

Non-Paged

Pool

CPU

Usage
Threads

Throughput

(Send/

Receive

Bytes Per

Second)

Blocking 7000/ 1008 25,632 36,121 10–60% 2016
2,198,148/

2,198,148

12,000/ 1008 25,408 36,352 5– 40% 2016
404,227/

402,227

Non-

blocking
7000/ 4011 4208 135,123 95–100%* 1 0/0

12,000/ 5779 5224 156,260 95–100%* 1 0/0

WSA-

Async

Select

7000/ 1956 3640 38,246 75–85% 3
1,610,204/

1,637,819

12,000/ 4077 4884 42,992 90–100% 3
652,902/

652,902

WSA-

Event

Select

7000/ 6999 10,502 36,402 65–85% 113
4,921,350/

5,186,297

12,000/ 11,080 19,214 39,040 50–60% 192
3,217,493/

3,217,493

46,000/ 45,933 37,392 121,624 80–90% 791
3,851,059/

3,851,059

Over-

lapped

(events)

7000/ 5558 21,844 34,944 65–85% 66
5,024,723/

4,095,644

12,000/12,000 60,576 48,060 35–45% 195
1,803,878/

1,803,878

49,000/48,997 241,208 155,480 85–95% 792
3,865,152/

3,834,511

Over-

lapped

(comple-

tion

port)

7000/ 7000 36,160 31,128 40–50% 2
6,282,473/

3,893,507

I/O

Model
Attempted/Connected

Memory

Used

(KB)

Non-Paged

Pool

CPU

Usage
Threads

Throughput

(Send/

Receive

Bytes Per

Second)

12,000/12,000 59,256 38,862 40–50% 2
5,027,914/

5,027,095

50,000/49,997 242,272 148,192 55–65% 2
4,326,946/

4,326,496

The server was a Pentium 4 1.7 GHz Xeon with 768 MB memory. Clients were established from three

machines: Pentium 2 233MHz with 128 MB memory, Pentium 2 350 MHz with 128 MB memory, and

an Itanium 733 MHz with 1 GB memory. The test network was a 100 MB isolated hub. All of the

machines tested had Windows XP installed.

The blocking model is the poorest performing of all the models. The blocking server spawns two

threads for each client connection: one for sending data and one for receiving it. In both test cases, the

server was unable to handle a fraction of the connections because it hit a system resource limit on

creating threads. Thus the CreateThread call was failing with ERROR_NOT_ENOUGH_MEMORY.

The remaining client connections failed with WSAECONNREFUSED.

The non-blocking model faired only somewhat better. It was able to accept more connections but ran

into a CPU limitation. The non-blocking server puts all the connected sockets into an FD_SET, which

is passed into select. When select completes, the server uses the FD_ISSET macro to search to

determine if that socket is signaled. This becomes inefficient because the number of connections

increases. Just to determine if a socket is signaled, a linear search through the array is required! To

partially alleviate this problem, the server can be redesigned so that it iteratively steps through the

FD_SETs returned from select. The only issue is that the server then needs to be able to quickly find

the SOCKET_INFO structure associated with that socket handle. In this case, the server can provide a

more sophisticated cataloging mechanism, such as a hash tree, which allows quicker lookups. Also

note that the non-paged pool usage is extremely high. This is because both AFD and TCP are

buffering data on the client connections because the server is unable to read the data fast enough (as

indicated by the zero-byte throughput) as indicated by the high CPU usage.

The WSAAsyncSelect model is acceptable for a small number of clients but does not scale well

because the overhead of the message loop quickly bogs down its capability to process messages fast

enough. In both tests, the server is able to handle only about a third of the connections made. The

clients receive many WSAECONNREFUSED errors indicating that the server cannot handle the

FD_ACCEPT messages quickly enough so the listen backlog is not exhausted. However, even for

those connections accepted, you will notice that the average throughput is rather low (even in the case

of the rate limited clients).

Surprisingly, the WSAEventSelect model performed very well. In all the tests, the server was, for the

most part, able to handle all the incoming connections while obtaining very good data throughput. The

drawback to this model is the overhead required to manage the thread pool for new connections.

Because each thread can wait on only 64 events, when new connections are established new threads

have to be created to handle them. Also, in the last test case in which more than 45,000 connections

were established, the machine became very sluggish. This was most likely due to the great number of

threads created to service the many connections. The overhead for switching between the 791 threads

becomes significant. The server reached a point at which it was unable to accept any more

connections due to numerous WSAENOBUFS errors. In addition, the client application reached its

limitation and was unable to sustain the already established connections (we'll discuss this in detail

later).

The overlapped I/O with events model is similar to the WSAEventSelect in terms of scalability. Both

models rely on thread pools for event notification, and both reach a limit at which the thread switching

overhead becomes a factor in how well it handles client communication. The performance numbers for

this model almost exactly mirror that of WSAEventSelect. It does surprisingly well until the number of

threads increases.

The last entry is for overlapped I/O with completion ports, which is the best performing of all the I/O

models. The memory usage (both user and non-paged pool) and accepted clients are similar to both

the overlapped I/O with events and WSAEventSelect model. However, the real difference is in CPU

usage. The completion port model used only around 60 percent of the CPU, but the other two models

required substantially more horsepower to maintain the same number of connections. Another

significant difference is that the completion port model also allowed for slightly better throughput.

While carrying out these tests, it became apparent that there was a limitation introduced due to the

nature of the data interaction between client and server. The server is designed to be an echo server

such that all data received from the client was sent back. Also, each client continually sends data

(even if it's at a lower rate) to the server. This results in data always pending on the server's socket

(either in the TCP buffers or in AFD's per-socket buffers, which are all non-paged pool). For the three

well-performing models, only a single receive is performed at a time; however, this means that for the

majority of the time, there is still data pending. It is possible to modify the server to perform a

non-blocking receive once data is indicated on the connection. This would drain the data buffered on

the machine. The drawback to this approach in this instance is that the client is constantly sending and

it is possible that the non-blocking receive could return a great deal of data, which would lead to

starvation of other connections (as the thread or completion thread would not be able to handle other

events or completion notices). Typically, calling a non-blocking receive until WSAEWOULDBLOCK

works on connections where data is transmitted in intervals and not in a continuous manner.

From these performance numbers it is easily deduced that WSAEventSelect and overlapped I/O offer

the best performance. For the two event based models, setting up a thread pool for handling event

notification is cumbersome but still allows for excellent performance for a moderately stressed server.

Once the connections increase and the number of threads increases, then scalability becomes an

issue as more CPU is consumed for context switching between threads. The completion port model

still offers the ultimate scalability because CPU usage is less of a factor as the number of clients

increases.

Winsock Direct and Sockets Direct Protocol

Winsock Direct is a high-speed interconnect introduced on Windows 2000 Datacenter

Server. It is a protocol that runs over special hardware available from several vendors,

such as Giganet, Compaq, and others. What is so special about Winsock Direct is that

it completely bypasses the TCP stack and goes directly to the network interface card,

which allows for extremely high-speed data communications. The advantage of

Winsock Direct is that it is completely transparent to a TCP Winsock application. That

is, if a TCP application is run on a machine with a Winsock Direct capable card, it

transparently goes over the Winsock Direct route (given that it is the appropriate

route) instead of over a regular Ethernet connection.

The Sockets Direct Protocol is the next evolution of the Winsock Direct protocol. It is

designed to run over Infiniband-compatible hardware available in future releases of

the Windows operating system. The on the wire protocol is slightly different than that

of Winsock Direct but it is still transparent to the applications.

Because Winsock Direct is designed to be transparent, the same issues encountered

with “regular” Winsock applications still apply when running over Winsock Direct.

Applications still have to manage the number of outstanding overlapped operations so

as to not exceed the locked pages or non-paged pool limits.

Conclusion

This chapter focused on writing high-performance, scalable Winsock servers for

Windows NT–based operating systems. We discussed several of the

Microsoft-specific Winsock extensions that greatly aid programmers in developing

these servers. In addition, we covered several approaches to accepting connections

so as to minimize the chance a client will receive a connection refused as well as how

throughput can be maximized. Afterward we covered resource management, which is

the core concept required to writing high performance servers. Finally, we compared

the performance of the various I/O models introduced in Chapter 5 to see how well

they scale when many client connections are attempted.

Chapter 7

Socket Options and Ioctls

Once a socket has been created, various attributes can be manipulated with socket

options and ioctl commands to affect the socket's behavior. Some of these options

simply return information, and others affect the way the socket behaves in your

application. An ioctl is an I/O control command that also affects the behavior of the

socket. This chapter is dedicated to discussing four Winsock functions: getsockopt,

setsockopt, ioctlsocket, and WSAIoctl. Each function has numerous commands, many

of which have never been properly documented. In the following sections, we will

discuss the required parameters and available options for each function as well as the

platforms that support those options. Every option is assumed to work on all Windows

platforms (Windows CE, Windows 95, Windows 98, Windows Me, Windows NT,

Windows 2000, and Windows XP) unless otherwise noted. The only exception occurs

when an option requires Winsock 2. Because Winsock 2 is not available on every

platform, Winsock 2 ioctl commands and options are not supported on Windows CE or

Windows 95 (unless the Winsock 2 update has been applied to Windows 95).

Furthermore, remember that Windows CE does not support any protocol-specific

options not pertaining to TCP/IP.

Most of these ioctl commands and options are defined in either WINSOCK.H or

WINSOCK2.H, depending on whether they are specific to Winsock 1 or Winsock 2;

however, a few of the options are specific either to the Microsoft provider or to a

particular transport protocol. Microsoft-specific extensions are defined in

WINSOCK2.H and MSWSOCK.H. Transport provider extensions are defined in their

protocol-specific header files. For the transport-specific options, we will indicate the

correct header file along with the option. Applications using the Microsoft-specific

extensions must link with MSWSOCK.LIB.

Socket Options

The getsockopt function is most frequently used to get information about the given socket. The

prototype for this function is

int getsockopt (

 SOCKET s,

 int level,

 int optname,

 char FAR* optval,

 int FAR* optlen

);

The first parameter, s, is the socket on which you want to perform the specified option. This must be a

valid socket for the given protocol you are using. A number of options are specific to a particular

protocol and socket type, while others pertain to all types of sockets. This ties in with the second

parameter, level. An option of level SOL_SOCKET means it is a generic option that isn't necessarily

specific to a given protocol. We say “necessarily” because not all protocols implement each socket

option of level SOL_SOCKET. For example, SO_BROADCAST puts the socket into broadcast mode,

but not all supported protocols support the notion of broadcast sockets. The optname parameter is the

actual option you are interested in. These option names are constant values defined in the Winsock

header files. The most common and protocol-independent options (such as those with the

SOL_SOCKET level) are defined in WINSOCK.H and WINSOCK2.H. Each specific protocol has its

own header file that defines options specific to it. Finally, the optval and optlen parameters are the

variables returned with the value of the desired option. In most cases—but not all—the option value is

an integer.

The setsockopt function is used to set socket options on either a socket level or a protocol-specific

level. The function is defined as

int setsockopt (

 SOCKET s,

 int level,

 int optname,

 const char FAR * optval,

 int optlen

);

The parameters are the same as in getsockopt except that you pass in a value as the optval and

optlen parameters, which are the values to set for the specified option. As with getsockopt, optval is

often, but not always, an integer. Consult each option for the specifics on what is passed as the option

value.

The most common mistake associated with calling either getsockopt or setsockopt is attempting to

obtain socket information for a socket whose underlying protocol doesn't possess that particular

characteristic. For example, a socket of type SOCK_STREAM is not capable of broadcasting data;

therefore, attempting to set or get the SO_BROADCAST option results in the error

WSAENOPROTOOPT.

SOL_SOCKET Option Level

This section describes the socket options that return information based on the socket's characteristics

and are not specific to that socket's protocol.

SO_ACCEPTCONN

optval Type Get/Set Winsock Version Description

BOOL Get only 1+ If TRUE, socket is in listening mode.

If the socket has been put into listening mode by the listen function, this option returns TRUE. Sockets

of type SOCK_DGRAM do not support this option.

SO_BROADCAST

optval

Type
Get/Set

Winsock

Version
Description

BOOL Both 1+
If TRUE, socket is configured for sending broadcast

messages.

If the given socket has been configured for sending or receiving broadcast data, querying this socket

option returns TRUE. Use setsockopt with SO_BROADCAST to enable broadcast capabilities on the

socket. This option is valid for sockets that aren't of type SOCK_STREAM.

Broadcasting is the capability to send data so that every machine on the local subnet receives the

data. Of course, there must be some process on each machine that listens for incoming broadcast

data. The drawback of broadcasting is that if many processes are all sending broadcast data, the

network can become saturated and network performance suffers. To receive a broadcast message,

you must enable the broadcast option and then use one of the datagram receive functions, such as

recvfrom or WSARecvfrom. You can also connect the socket to the broadcast address by calling

connect or WSAConnect and then use recv or WSARecv. For UDP broadcasts, you must specify a

port number to send the datagram to; likewise, the receiver must request to receive the broadcast data

on that port also. The following code example illustrates how to send a broadcast message with UDP.

SOCKET s;

BOOL bBroadcast;

char *sMsg = "This is a test";

SOCKADDR_IN bcast;

s = WSASocket(AF_INET, SOCK_DGRAM, 0, NULL, 0, WSA_FLAG_OVERLAPPED);

bBroadcast = TRUE;

setsockopt(s, SOL_SOCKET, SO_BROADCAST, (char *)&bBroadcast,

 sizeof(BOOL));

bcast.sin_family = AF_INET;

bcast.sin_addr.s_addr = inet_addr(INADDR_BROADCAST);

bcast.sin_port = htons(5150);

sendto(s, sMsg, strlen(sMsg), 0, (SOCKADDR *)&bcast, sizeof(bcast));

For UDP, a special broadcast address exists to which broadcast data should be sent. This address is

255.255.255.255. A #define directive for INADDR_BROADCAST is provided to make things a bit

simpler and easier to read.

AppleTalk is another protocol capable of sending broadcast messages. AppleTalk also has a special

address used by broadcast data. You learned in Chapter 4 that an AppleTalk address has three parts:

network, node, and socket (destination). For broadcasting, set the destination to

ATADDR_BROADCAST (0xFF), which causes the datagram to be sent to all endpoints on the given

network.

Normally, you need to set only the SO_BROADCAST option when sending broadcast datagrams. To

receive a broadcast datagram, you need to be listening only for incoming datagrams on that specified

port. However, on Windows 95 when using IPX, the receiving socket must set the SO_BROADCAST

option in order to receive broadcast data, as described in Knowledge Base article Q137914, which can

be found at http://support.microsoft.com/support/search. This is a bug in Windows 95.

SO_CONDITIONAL_ACCEPT

optval

Type
Get/Set

Winsock

Version
Description

BOOL Both 2+
Allows true connection acceptance or rejection from

WSAAccept.

This option allows applications to conditionally accept or reject incoming connections at the protocol

level. For example, by default, this option is off for TCP and any incoming SYN packet is

acknowledged with an ACK+SYN even if the application has not called the accept, WSAAccept, or

AcceptEx functions. When this option is enabled, the connection is not acknowledged until the

application calls one of the accept functions. In the case of WSAAccept and a conditional accept

function, the connection is not acknowledged until the conditional accept function returns

CF_ACCEPT. This option must be set before the listen call.

The drawback to enabling this is if the application does not post an accept or return CF_ACCEPT in a

timely fashion, the client's connection request will time out with an error (WSAETIMEDOUT). For

TCP/IP this option is off by default while for ATM, it is enabled by default. This option is available on

Windows 2000 and later versions.

SO_CONNECT_TIME

http://support.microsoft.com/support/search

optval

Type
Get/Set

Winsock

Version
Description

int Get only 1+
Returns the number of seconds the socket has been

connected

SO_CONNECT_TIME is a Microsoft-specific option that returns the number of seconds a connection

has been established. The most frequent use of this option is with the AcceptEx function. AcceptEx

requires that a valid socket handle be passed for the incoming client connection. This option can be

called on the client's SOCKET handle to determine whether the connection has been made and how

long it has been established. If the socket is not currently connected, the value returned is

0xFFFFFFFF.

This option is especially relevant in the case of AcceptEx. If an application posts an AcceptEx with a

receive buffer, then the AcceptEx will not complete until data is received on the client connection. A

malicious application could perform a denial of service attack by making many connections without

sending data. To prevent this, the server should cycle through all client sockets outstanding in

AcceptEx calls to see if they have been connected but the accept has not completed. Refer to Chapter

6 for more details.

SO_DEBUG

optval Type Get/Set Winsock Version Description

BOOL Both 1+ If TRUE, debug output is enabled.

Winsock service providers are encouraged (but not required) to supply output debug information if the

SO_DEBUG option is set by an application. How the debug information is presented depends on the

underlying service provider's implementation. To turn debug information on, call setsockopt with

SO_DEBUG and a Boolean variable set to TRUE. Calling getsockopt with SO_DEBUG returns TRUE

or FALSE if debugging is enabled or disabled, respectively. Unfortunately, no Windows platform

currently implements the SO_DEBUG option, as described in Knowledge Base article Q138965. No

error is returned when the option is set, but the underlying network provider ignores the option.

SO_DONTLINGER

optval Type Get/Set Winsock Version Description

BOOL Both 1+ If TRUE, SO_LINGER is disabled.

For protocols that support graceful socket connection closure, a mechanism is implemented so that if

one or both sides close the socket, any data still pending or in transmission will be sent or received by

both parties. It is possible, with setsockopt and the SO_LINGER option, to change this behavior so that

after a specified period of time, the socket and all its resources will be torn down. Any pending or

arriving data associated with that socket is discarded and the peer's connection is reset

(WSAECONNRESET). The SO_DONTLINGER option can be checked to ensure that a linger period

has not been set. Calling getsockopt with SO_DONTLINGER will return a Boolean TRUE or FALSE if a

linger value is set or not set, respectively. A call to setsockopt with SO_DONTLINGER disables

lingering. Sockets of type SOCK_DGRAM do not support this option.

SO_DONTROUTE

optval

Type
Get/Set

Winsock

Version
Description

BOOL Both 1+
If TRUE, messages are sent directly to the network

interface without consulting the routing table.

The SO_DONTROUTE option tells the underlying network stack to ignore the routing table and to

send the data out on the interface the socket is bound to. For example, if you create a IPv4 UDP

socket and bind it to interface A and then send a packet destined for a machine on the network

attached to interface B, the packet will in fact be routed so that it is sent on interface B. Using

setsockopt with the Boolean value TRUE prevents this because the packet goes out on the bound

interface. The getsockopt function can be called to determine if routing is enabled (which it is by

default).

Calling this option on a Windows platform will succeed; however, the Microsoft provider silently ignores

the request and always uses the routing table to determine the appropriate interface for outgoing data.

SO_ERROR

optval Type Get/Set Winsock Version Description

int Get only 1+ Returns the error status

The SO_ERROR option returns and resets the per-socket–based error code, which is different from

the per-thread–based error code that is handled using the WSAGetLastError and WSASetLastError

function calls. A successful call using the socket does not reset the per-socket–based error code

returned by the SO_ERROR option. Calling this option will not fail; however, the error value is not

always updated immediately, so there is a possibility of this option returning 0 (indicating no error). It is

best to use WSAGetLastError.

SO_ EXCLUSIVEADDRUSE

optval

Type
Get/Set

Winsock

Version
Description

BOOL Set only 2+
If TRUE, the local port that the socket is bound to cannot

be reused by another process.

This option is the complement of SO_REUSEADDR, which we will describe shortly. This option exists

to prevent other processes from using the SO_REUSEADDR on a local address that your application

is using. If two separate processes are bound to the same local address (assuming that

SO_REUSEADDR is set earlier), which of the two sockets receives notifications for incoming

connections is not defined. The SO_EXCLUSIVEADDRUSE option locks down the local address to

which the socket is bound, so if any other process tries to use SO_REUSEADDR with the same local

address, that process fails. Administrator rights are required to set this option. It is available on only

Windows 2000 or later versions.

SO_KEEPALIVE

optval

Type
Get/Set

Winsock

Version
Description

BOOL Both 1+
If TRUE, socket is configured to send keepalive

messages on the session.

For a TCP-based socket, an application can request that the underlying service provider enable the

use of keepalive packets on TCP connections by turning on the SO_KEEPALIVE socket option. On

Windows platforms, keep-alives are implemented in accordance with section 4.2.3.6 of RFC 1122. If a

connection is dropped as the result of keepalives, the error code WSAENETRESET is returned to any

calls in progress on the socket, and any subsequent calls will fail with WSAENOTCONN. For the exact

implementation details, consult the RFC. The important point is that keepalives are sent at intervals no

less than two hours apart. The two-hour keepalive time is configurable via the Registry; however,

changing the default value changes the keepalive behavior for all TCP connections on the system,

which is generally discouraged. Another solution is to implement your own keepalive strategy. Sockets

of type SOCK_DGRAM do not support this option.

The Registry keys for keepalives are KeepAliveInterval and KeepAliveTime. Both keys store values of

type REG_DWORD in milliseconds. The former key is the interval separating keepalive

retransmissions until a response is received; the latter entry controls how often TCP sends a keepalive

packet in an attempt to verify that an ideal connection is still valid. In Windows 95, Windows 98, and

Windows Me, these keys are located under the following Registry path:

\HKEY_LOCAL_MACHINE\System\CurrentControlSet\Services\VxD\MSTCP

In Windows NT, store the keys under

\HKEY_LOCAL_MACHINE\System\CurrentControlSet\Services\TCPIP\Parameters

In Windows 2000, a new socket ioctl command—SIO_KEEPALIVE_VALS —allows you to change the

keepalive value and interval on a per-socket basis, as opposed to a system-wide basis. This ioctl

command is described later in this chapter.

SO_LINGER

optval Type Get/Set Winsock Version Description

struct Both 1+ Sets or gets the current linger values linger

SO_LINGER controls the action taken when unsent data is queued on a socket and a closesocket is

performed. A call to getsockopt with this socket option returns the current linger times in a linger

structure, which is defined as

struct linger {

 u_short l_onoff;

 u_short l_linger;

}

A nonzero value for l_onoff means that lingering is enabled, and l_linger is the timeout in seconds, at

which point any pending data to be sent or received is discarded and the connection with the peer is

reset. Conversely, you can call setsockopt to turn lingering on and specify the length of time before

discarding any queued data. This is accomplished by setting the desired values in a variable of type

struct linger. When setting a linger value with setsockopt, you must set the l_onoff field of the structure

to a nonzero value. To turn lingering off once it has been enabled, you can call setsockopt with the

SO_LINGER option and the l_onoff field of the linger structure set to 0, or call setsockopt with the

SO_DONTLINGER option, passing the value TRUE for the optval parameter. Sockets of type

SOCK_DGRAM do not support this option.

Setting the linger option directly affects how a connection behaves when the closesocket function is

called. Table 7-1 lists these behaviors.

Table 7-1Linger Options

Option Interval Type of Close Wait for Close?

SO_DONTLINGER Not applicable Graceful No

SO_LINGER 0 Hard No

SO_LINGER Non-zero Graceful Yes

If SO_LINGER is set with a zero timeout interval (that is, the linger structure member l_onoff is not 0

and l_linger is 0), closesocket is not blocked, even if queued data has not yet been sent or

acknowledged. This is called a hard, or abortive, close because the socket's virtual circuit is reset

immediately and any unsent data is lost. Any receive call on the remote side of the circuit fails with

WSAECONNRESET.

If SO_LINGER is set with a nonzero timeout interval on a blocking socket, the closesocket call blocks

on a blocking socket until the remaining data has been sent or until the timeout expires. This is called

a graceful disconnect. If the timeout expires before all data has been sent, the Windows Sockets

implementation terminates the connection before closesocket returns.

SO_MAX_MSG_SIZE

optval

Type
Get/Set

Winsock

Version
Description

unsigned int Get only 2+
The maximum size of a message for a

message-oriented socket

This is a get-only socket option that indicates the maximum outbound (send) size of a message for

message-oriented socket types as implemented by a particular service provider. It has no meaning for

byte-stream–oriented sockets.

SO_OOBINLINE

optval

Type
Get/Set

Winsock

Version
Description

BOOL Both 1+
If TRUE, any OOB data is returned in the normal data

stream.

By default, OOB data is not inlined, so a call to a receive function (with the appropriate MSG_OOB flag

set) returns the OOB data in a single call. If this option is set, the OOB data appears within the data

stream returned from a receive call, and a call to ioctlsocket with the SIOCATMARK option is required

to determine which byte is the OOB data. Sockets of type SOCK_DGRAM do not support this option.

See Chapter 1 for more details on OOB data.

SO_OPENTYPE

optval

Type
Get/Set

Winsock

Version
Description

BOOL Both 1+
When set, subsequent calls to socket will return

non-overlapped handles.

The socket API returns handles that are overlapped capable by default. However, if the socket is to be

used in the C runtime routines, the socket must have been created without the overlapped flag. With

Winsock 2, the WSASocket function can be called without specifying the WSA_FLAG_OVERLAPPED

flag. Otherwise, this socket option may be set, which affects all subsequent calls to socket from the

current thread so that non-overlapped handles are returned. To set this option, INVALID_SOCKET is

passed for the SOCKET parameter to setsockopt with a non-zero optval. To change it back, specify a

zero optval. A socket created non-overlapped cannot be used with an overlapped fashion (such as

completion routines or completion ports)—the operation will fail.

SO_PROTOCOL_INFO

optval Type Get/Set
Winsock

Version
Description

WSAPROTOCOL_INFO Get only 2+
Returns the Winsock catalog entry for the

socket's protocol

This is another get-only option that fills in the supplied WSAPROTOCOL_ INFO structure with the

characteristics of the protocol associated with the socket. See Chapter 2 for a description of the

WSAPROTOCOL_INFO structure and its member fields.

SO_RCVBUF

optval

Type
Get/Set

Winsock

Version
Description

Int Both 1+
Gets or sets the per-socket buffer size for receive

operations

This is a simple option that either returns the size or sets the size of the buffer allocated to this socket

for receiving data. When a socket is created, a send buffer and a receive buffer are assigned to the

socket for sending and receiving data. When requesting to set the receive buffer size to a value, the

call to setsockopt can succeed even when the implementation does not provide the entire amount

requested. To ensure that the requested buffer size is allocated, call getsockopt to get the actual size

allocated. All Windows platforms can get or set the receive buffer size except Windows CE, which

does not allow you to change the value—you can get only the receive buffer size.

One possible reason for changing the buffer size is to tailor buffer sizes according to your application's

behavior. For example, when writing code to receive UDP datagrams, you should generally make the

receive buffer size an even multiple of the datagram size. For overlapped I/O, setting the buffer sizes

to 0 can increase performance in certain situations; when the buffers are non-zero, an extra memory

copy is involved in moving data from the system buffer to the user-supplied buffer. If there is no

intermediate buffer, data is immediately copied to the user-supplied buffer. The one caveat is that this

is efficient only with multiple outstanding receive calls. Posting only a single receive can hurt

performance because the local system cannot accept any incoming data unless you have a buffer

posted and ready to receive the data. Performance considerations are covered in Chapter 6.

SO_RCVTIMEO

optval

Type
Get/Set

Winsock

Version
Description

int Both 1+
Gets or sets the timeout value (in milliseconds) associated

with receiving data on the socket

The SO_RCVTIMEO option sets the receive timeout value on a blocking socket. The timeout value is

an integer in milliseconds that indicates how long a Winsock receive function should block when

attempting to receive data. If you need to use the SO_RCVTIMEO option and you use the WSASocket

function to create the socket, you must specify WSA_FLAG_OVERLAPPED as part of WSASocket's

dwFlags parameter. Subsequent calls to any Winsock receive function (such as recv, recvfrom,

WSARecv, or WSARecvFrom) block only for the amount of time specified. If no data arrives within that

time, the call fails with the error 10060 (WSAETIMEDOUT). If the receiver operation does time out the

socket is in an indeterminate state and should not be used.

For performance reasons, this option was disabled in Windows CE 2.1. If you attempt to set this

option, it is silently ignored and no failure returns. Previous versions of Windows CE do implement this

option.

SO_REUSEADDR

optval

Type
Get/Set

Winsock

Version
Description

BOOL Both 1+

If TRUE, the socket can be bound to an address already in

use by another socket or to an address in the TIME_WAIT

state.

By default, a socket cannot be bound to a local address that is already in use; however, occasionally it

is necessary to reuse an address this way. A connection is uniquely identified by the combination of its

local and remote addresses. As long as the address you are connecting to is unique in the slightest

respect (such as a different port number in TCP/IP), the binding will be allowed.

The only exception is for a listening socket. Two separate sockets cannot bind to the same local

interface (and port, in the case of TCP/IP) to await incoming connections. If two sockets are actively

listening on the same port, the behavior is undefined as to which socket will receive notification of an

incoming connection. The SO_REUSEADDR option is most useful in TCP when a server shuts down

or exits abnormally so that the local address and port are in the TIME_WAIT state, which prevents any

other sockets from binding to that port. By setting this option, the server can listen on the same local

interface and port when it is restarted.

SO_SNDBUF

optval

Type
Get/Set

Winsock

Version
Description

BOOL Both 1+
Gets or sets the per-socket buffer size for send

operations

This is a simple option that either returns the size or sets the size of the buffer allocated to this socket

for sending data. When a socket is created, a send buffer and a receive buffer are assigned to the

socket for sending and receiving data. When requesting to set the size of the send buffer, the call to

setsockopt can succeed even when the implementation does not provide the entire amount requested.

To ensure that the requested buffer size is allocated, call getsockopt to get the actual size allocated.

All Windows platforms can get or set the send buffer size except Windows CE, which does not allow

you to change the value—you can get only the receive buffer size.

As with SO_RCVBUF, you can use the SO_SNDBUF option to set the size of the send buffer to 0. The

advantage of the buffer size being 0 for blocking send calls is that when the call completes you know

that your data is on the wire. Also, as in the case of a receive operation with a zero-length buffer, there

is no extra memory copy of your data to system buffers. The drawback is that you lose the pipelining

gained by the default stack buffering when the send buffers are nonzero in size. In other words, if you

have a loop performing sends, the local network stack can copy your data to a system buffer to be

sent when possible (depending on the I/O model being used). On the other hand, if your application is

concerned with other logistics, disabling the send buffers can save you a few machine instructions in

the memory copy. See Chapter 6 for more information.

SO_SNDTIMEO

optval

Type
Get/Set

Winsock

Version
Description

Int Both 1+
Gets or sets the timeout value (in milliseconds) associated

with sending data on the socket

The SO_SNDTIMEO option sets the timeout value on a blocking socket when calling a Winsock send

function. The timeout value is an integer in milliseconds that indicates how long the send function

should block when attempting to send data. If you need to use the SO_SNDTIMEO option and you

use the WSASocket function to create the socket, you must specify WSA_FLAG_OVERLAPPED as

part of WSASocket's dwFlags parameter. Subsequent calls to any Winsock send function (such as

send, sendto, WSASend, or WSASendTo) block for only the amount of time specified. If the send

operation cannot complete within that time, the call fails with error 10060 (WSAETIMEDOUT). If the

send operation times out the socket is in an indeterminate state and should not be used.

For performance reasons, this option was disabled in Windows CE 2.1. If you attempt to set this

option, the option is silently ignored and no failure is returned. Previous versions of Windows CE do

implement this option.

SO_TYPE

optval

Type
Get/Set

Winsock

Version
Description

Int Get only 1+
Returns the socket type (for example, SOCK_DGRAM,

SOCK_STREAM) of the given socket

The SO_TYPE option is a get-only option that simply returns the socket type of the given socket. The

possible socket types are SOCK_DGRAM, SOCK_ STREAM, SOCK_SEQPACKET, SOCK_RDM,

and SOCK_RAW.

SO_UPDATE_ACCEPT_CONTEXT

optval

Type
Get/Set

Winsock

Version
Description

SOCKET Both 1+
Updates a client socket with the same properties of the

listening socket

This option is a Microsoft-specific extension used in conjunction with the AcceptEx function. The

unique characteristic of this function is that it is part of the Winsock 1 specification and allows the use

of overlapped I/O for an accept call. The function takes the listening socket as a parameter as well as a

socket handle that becomes the accepted client. This socket option must be set for the characteristics

of the listening socket to be carried over to the client socket. This is particularly important for

QOS–enabled listening sockets. For the client socket to be QOS-enabled, this option must be set. To

set this option on a socket, use the listening socket as the SOCKET parameter to setsockopt and pass

the accepting socket handle (for example, the client handle) as optval. This option is specific to

Windows.

SOL_APPLETALK Option Level

The following options are socket options specific to the AppleTalk protocol and can be used only with

sockets created using socket or WSASocket with the AF_APPLETALK flag. A majority of the options

listed here deal with either setting or obtaining AppleTalk names. For more information on the

AppleTalk address family, refer back to Chapter 4. Some AppleTalk socket options—such as

SO_DEREGISTER_NAME—have more than one option name. In such cases, all of the option's

names can be used interchangeably.

SO_CONFIRM_NAME

optval Type Get/Set
Winsock

Version
Description

WSH_NBP_TUPLE Get only 1
Confirms that the given AppleTalk name is bound

to the given address

The SO_CONFIRM_NAME option is used to verify that a given AppleTalk name is bound to the

supplied address. This results in a Name Binding Protocol (NBP) lookup request being sent to the

address to verify the name. If the call fails with the error WSAEADDRNOTAVAIL, the name is no

longer bound to the address given.

SO_DEREGISTER_NAME, SO_REMOVE_NAME

optval Type Get/Set
Winsock

Version
Description

WSH_REGISTER_NAME Set only 1
Deregisters the given name from the

network

This option is used to deregister a name from the network. If the name does not currently exist on the

network, the call will return indicating success. Refer to the section entitled “Registering an AppleTalk

Name” in Chapter 4 for a description of the WSH_REGISTER_NAME structure, which is simply

another name for the WSH_NBP_NAME structure.

SO_LOOKUP_MYZONE, SO_GETMYZONE

optval Type Get/Set Winsock Version Description

char* Get only 1 Returns the default zone on the network

This option returns the default zone on the network. The optval parameter to getsockopt should be a

character string of at least 33 characters. Remember that the maximum length of an NBP name is

MAX_ENTITY_LEN, which is defined as 32. The extra character is required for the null terminator.

SO_LOOKUP_NAME

optval Type Get/Set
Winsock

Version
Description

WSH_LOOKUP_NAME Get only 1
Looks up a specified NBP name and returns the

matching tuples of names and NBP information

This option is used to look up a specified name on the network (for example, when a client wants to

connect to a server). The well-known textual name must be resolved to an AppleTalk address before a

connection can be established. See the section “Resolving an AppleTalk Name” in Chapter 4 for

sample code on how to look up an AppleTalk name.

One point to be aware of is that upon successful return, the WSH_NBP_ TUPLE structures occupy the

space in the supplied buffer after the WSH_LOOKUP_NAME information. That is, you should supply

getsockopt with a buffer large enough to hold the WSH_LOOKUP_NAME information at the start of the

buffer and a number of WSH_NBP_TUPLE structures in the remaining space. Figure 7-1 illustrates

how the buffer should be prepared prior to the call (with respect to WSH_LOOKUP_NAME) and where

the WSH_NBP_TUPLE structures are placed upon return.

Figure 7-1 SO_LOOKUP_NAME buffer

SO_LOOKUP_ZONES, SO_GETZONELIST

optval Type Get/Set
Winsock

Version
Description

WSH_LOOKUP_ZONES Get only 1
Returns zone names from the Internet

zone list

This option requires a buffer large enough to contain a WSH_LOOKUP_ ZONES structure at the head.

Upon successful return, the space after the WSH_LOOKUP_ZONES structure contains the list of

null-terminated zone names. The following code demonstrates how to use the SO_LOOKUP_ZONES

option:

PWSH_LOOKUP_NAME atlookup;

PWSH_LOOKUP_ZONES zonelookup;

char cLookupBuffer[4096],

 *pTupleBuffer = NULL;

atlookup = (PWSH_LOOKUP_NAME)cLookupBuffer;

zonelookup = (PWSH_LOOKUP_ZONES)cLookupBuffer;

ret = getsockopt(s, SOL_APPLETALK, SO_LOOKUP_ZONES, (char *)atlookup,

 &dwSize);

pTupleBuffer = (char *)cLookupBuffer + sizeof(WSH_LOOKUP_ZONES);

for(i = 0; i < zonelookup->NoZones; i++)

{

 printf("%3d: '%s'\n", i + 1, pTupleBuffer);

 while (*pTupleBuffer++);

}

SO_LOOKUP_ZONES_ON_ADAPTER,
SO_GETLOCALZONES

optval Type Get/Set
Winsock

Version
Description

WSH_LOOKUP_ZONES Get only 1
Returns a list of zone names known to the

given adapter name

This option is similar to SO_LOOKUP_ZONES except that you specify the adapter name for which you

want to obtain a list of zones local to the network that that adapter is connected to. Again, you must

supply a sufficiently large buffer that has a WSH_LOOKUP_ZONES structure at the head. The

returned list of null-terminated zone names begins in the space after the WSH_LOOKUP_ZONES

structure. In addition, the name of the adapter must be passed in as a UNICODE string (WCHAR).

SO_LOOKUP_NETDEF_ON_ADAPTER, SO_GETNETINFO

optval Type Get/Set
Winsock

Version
Description

WSH_LOOKUP_NETDEF_

ON_ADAPTER
Set only 1

Returns the seeded values for the

network as well as the default zone

This option returns the seeded values for the network numbers and a null-terminated ANSI string

containing the default zone for the network on the indicated adapter. The adapter is passed as a

UNICODE (WCHAR) string following the structure and is overwritten by the default zone upon function

return. If the network is not seeded, the network range 1–0xFFFE is returned and the null-terminated

ANSI string contains the default zone “*”.

SO_PAP_GET_SERVER_STATUS

optval Type Get/Set
Winsock

Version
Description

WSH_PAP_GET_SERVER_STATUS Get only 1
Returns the PAP status from a

given server

This option gets the Printer Access Protocol (PAP) status registered on the address specified in

ServerAddr (usually obtained via an NBP lookup). The four reserved bytes correspond to the four

reserved bytes in the PAP status packet. These will be in network byte order. A PAP status string can

be arbitrary and is set with the option SO_PAP_SET_SERVER_STATUS, which we'll explain later in

this chapter. The WSH_PAP_GET_SERVER_STATUS structure is defined as

#define MAX_PAP_STATUS_SIZE 255

#define PAP_UNUSED_STATUS_BYTES 4

typedef struct _WSH_PAP_GET_SERVER_STATUS

{

 SOCKADDR_AT ServerAddr;

 UCHAR Reserved[PAP_UNUSED_STATUS_BYTES];

 UCHAR ServerStatus[MAX_PAP_STATUS_SIZE + 1];

} WSH_PAP_GET_SERVER_STATUS, *PWSH_PAP_GET_SERVER_STATUS;

The following code snippet is a quick example of how to request the PAP status. The length of the

status string is the first byte of the ServerStatus field.

WSH_PAP_GET_SERVER_STATUS status;

int nSize = sizeof(status);

status.ServerAddr.sat_family = AF_APPLETALK;

ret = getsockopt(s, SOL_APPLETALK, SO_PAP_GET_SERVER_STATUS,

 (char *)&status, &nSize);

SO_PAP_PRIME_READ

optval

Type
Get/Set

Winsock

Version
Description

char [] Set only 1
This call primes a read on a PAP connection so that the

sender can actually send the data.

When this option is called on a socket describing a PAP connection, it enables the remote client to

send the data without the local application having called recv or WSARecvEx. After this option is set,

the application can block on a select call and then the actual reading of the data can occur. The optval

parameter to this call is the buffer that is to receive the data, which must be at least

MIN_PAP_READ_BUF_SIZE (4096) bytes in length. This option allows support for non-blocking

sockets on the read-driven PAP protocol. Note that for each buffer you want to read, you must make a

call to setsockopt with the SO_PAP_PRIME_READ option.

SO_PAP_SET_SERVER_STATUS

optval

Type
Get/Set

Winsock

Version
Description

char [] Set only 1
Sets the status to be sent if another client requests the

status

A client can request to obtain the PAP status by using SO_PAP_GET_SERVER_ STATUS. This

option can be used to set the status so that if clients request the PAP status, the buffer submitted to

the set command will be returned on the get command. The status is a buffer of at most 255 bytes

containing the status of the associated socket. If the set option is called with a null buffer, the previous

status value set is erased.

SO_REGISTER_NAME

optval Type Get/Set
Winsock

Version
Description

WSH_REGISTER_NAME Set only 1
Registers the given name on the

AppleTalk network

This option is used to register the supplied name on the AppleTalk network. If the name already exists

on the network, the error WSAEADDRINUSE is returned. Refer to Chapter 4 for a description of the

WSH_REGISTER_NAME structure.

SOL_IRLMP Option Level

The SOL_IRLMP level deals with the IrDA protocol, whose address family is AF_IRDA. Keep in mind

when using IrDA socket options that the implementation of infrared sockets varies among platforms.

Because Windows CE first offered IR support, it does not have all the options available that were

introduced in Windows 98 and later versions. In this section, each option is followed by the platforms it

is supported on.

IRLMP_9WIRE_MODE

optval Type Get/Set Winsock Version Description

BOOL Both 1+ Puts the IrDA socket into IrCOMM mode

This is another rarely used option needed to communicate with Windows 98 via IrCOMM, which is at a

lower level than the level at which IrSock normally operates. In 9-wire mode, each TinyTP or IrLMP

packet contains an additional 1-byte IrCOMM header. To accomplish this through the socket interface,

you need to first get the maximum PDU size of an IrLMP packet with the IRLMP_SEND_PDU_LEN

option. The socket is then put into 9-wire mode with setsockopt before connecting or accepting a

connection. This tells the stack to add the 1-byte IrCOMM header (always set to 0) to each outgoing

frame. Each send must be of a size less than the maximum PDU length to leave room for the added

IrCOMM byte. IrCOMM is beyond the scope of this book. This option is available in Windows 98 and

later versions.

IRLMP_ENUMDEVICES

optval Type Get/Set
Winsock

Version
Description

DEVICELIST Get only 1+
Returns a list of IrDA device IDs for IR-capable devices

within range

Because of the nature of infrared networking, devices capable of communicating are mobile and can

move in and out of range. This option “queries” which IR devices are within range, and to connect to

another device you must perform this step to obtain the device ID for each device you want to connect

to.

The DEVICELIST structures are different on the various platforms that support IrSock because the

latest platforms that added support also added functionality. Recall that Windows CE offered IrSock

support first and as a result the data structures are somewhat different. The DEVICELIST structure

definition for Windows 98 and later versions is

typedef struct _WINDOWS_DEVICELIST

{

 ULONG numDevice;

 WINDOWS_IRDA_DEVICE_INFO Device[1];

} WINDOWS_DEVICELIST, *PWINDOWS_DEVICELIST, FAR *LPWINDOWS_DEVICELIST;

typedef struct _WINDOWS_IRDA_DEVICE_INFO

{

 u_char irdaDeviceID[4];

 char irdaDeviceName[22];

 u_char irdaDeviceHints1;

 u_char irdaDeviceHints2;

 u_char irdaCharSet;

} WINDOWS_IRDA_DEVICE_INFO, *PWINDOWS_IRDA_DEVICE_INFO,

 FAR *LPWINDOWS_IRDA_DEVICE_INFO;

In Windows CE, the DEVICELIST structure is defined as

typedef struct _WCE_DEVICELIST

{

 ULONG numDevice;

 WCE_IRDA_DEVICE_INFO Device[1];

} WCE_DEVICELIST, *PWCE_DEVICELIST;

typedef struct _WCE_IRDA_DEVICE_INFO

{

 u_char irdaDeviceID[4];

 char irdaDeviceName[22];

 u_char Reserved[2];

} WCE_IRDA_DEVICE_INFO, *PWCE_IRDA_DEVICE_INFO;

Each of these structures contains a field, irdaDeviceID, which is a 4-byte identification tag used to

uniquely identify that device. You need this field to fill out the SOCKADDR_IRDA structure used to

connect to a specific device or to manipulate or obtain an IAS entry with the options IRLMP_IAS_SET

and IRLMP_IAS_QUERY.

When you call getsockopt to enumerate infrared devices, the optval parameter must be a DEVICELIST

structure. The only requirement is that the numDevice field be set to 0 at first. The call to getsockopt

does not return an error if no IR devices are discovered. After a call, the numDevice field should be

checked to see whether it is greater than 0, which means that one or more devices were found. The

Device field returns with a number of structures equal to the value returned in numDevice.

IRLMP_EXCLUSIVE_MODE

optval Type Get/Set Winsock Version Description

BOOL Both 1+ If TRUE, socket connection is in exclusive mode.

This option isn't normally used by user applications because it bypasses the TinyTP layer in the IrDA

stack and communicates directly with IrLMP. If you are really interested in using this option, you should

consult the IrDA specification at http://www.irda.org. This option is available on Windows CE and

Windows 2000 or later versions.

IRLMP_IAS_QUERY

optval Type Get/Set
Winsock

Version
Description

IAS_QUERY Get only 1+
Queries IAS on a given service and class name for its

attributes

This socket option is the complement of IRLMP_IAS_SET because it retrieves information about a

class name and its service. Before making the call to getsockopt, you must first fill out the irdaDeviceID

field to the device you are querying. Set the irdaAttribName field to the property string on which you

want to retrieve its value. The most common query would be for the LSAP-SEL number; its property

string is “IrDA:IrLMP:LsapSel”. Next, you need to set the irdaClassName field to the name of the

service that the given property string applies to. Once these fields are filled, make the call to

getsockopt. Upon success, the irdaAttribType field indicates which field in the union to obtain the

information from. Use the identifiers in Table 7-2 to decode this entry. The most common error is

WSASERVICE_NOT_FOUND, which is returned when the given service is not found on that device.

IRLMP_IAS_SET

optval Type Get/Set
Winsock

Version
Description

IAS_QUERY Set only 1+
Sets an attribute value for a given class name and

attribute

http://www.irda.org

IAS is a dynamic service registration entity that can be queried and modified. The IRLMP_IAS_SET

option allows you to set a single attribute for a single class within the local IAS. As with

IRLMP_ENUMDEVICES, there are separate structures for Windows CE and for Windows 98 and later

versions. The structure for these is

typedef struct _WINDOWS_IAS_QUERY

{

 u_char irdaDeviceID[4];

 char irdaClassName[IAS_MAX_CLASSNAME];

 char irdaAttribName[IAS_MAX_ATTRIBNAME];

 u_long irdaAttribType;

 union

 {

 LONG irdaAttribInt;

 struct

 {

 u_long Len;

 u_char OctetSeq[IAS_MAX_OCTET_STRING];

 } irdaAttribOctetSeq;

 struct

 {

 u_long Len;

 u_long CharSet;

 u_char UsrStr[IAS_MAX_USER_STRING];

 } irdaAttribUsrStr;

 } irdaAttribute;

} WINDOWS_IAS_QUERY, *PWINDOWS_IAS_QUERY, FAR *LPWINDOWS_IAS_QUERY;

The IAS query structure for Windows CE is

typedef struct _WCE_IAS_QUERY

{

 u_char irdaDeviceID[4];

 char irdaClassName[61];

 char irdaAttribName[61];

 u_short irdaAttribType;

 union

 {

 int irdaAttribInt;

 struct

 {

 int Len;

 u_char OctetSeq[1];

 u_char Reserved[3];

 } irdaAttribOctetSeq;

 struct

 {

 int Len;

 u_char CharSet;

 u_char UsrStr[1];

 u_char Reserved[2];

 } irdaAttribUsrStr;

 } irdaAttribute;

} WCE_IAS_QUERY, *PWCE_IAS_QUERY;

Table 7-2 provides the different constants for the irdaAttribType field, which indicates which type the

attribute belongs to. The last two entries are not values that you can set, but values that a call to

getsockopt with an IRLMP_IAS_QUERY socket option can return in the irdaAttribType field. These are

included in the table for the sake of completeness.

Table 7-2IAS Attribute Types

irdaAttribType Value Field to Set

IAS_ATTRIB_INT IrdaAttribInt

IAS_ATTRIB_OCTETSEQ IrdaAttribOctetSeq

IAS_ATTRIB_STR IrdaAttribUsrStr

IAS_ATTRIB_NO_CLASS None

IAS_ATTRIB_NO_ATTRIB None

To set a value, you must fill in irdaDeviceID to the IR device on which to modify the IAS entry. Also,

irdaAttribName must be set to the class on which to set the attribute, while irdaClassName usually

refers to the service on which to set the attribute. Remember that with IrSock, socket servers are

services registered with IAS that have an associated LSAP-SEL number that clients use to connect to

the server. The LSAP-SEL number is an attribute associated with that service. To modify the

LSAP-SEL number in the service's IAS entry, set the irdaDeviceID field to the device ID on which the

service is running. Set the irdaAttribName field to the property string “IrDA:IrLMP:LsapSel” and the

irdaClassName field to the name of the service (for example, “MySocketServer”). From there, set

irdaAttribType to IAS_ATTRIB_INT and irdaAttribInt to the new LSAP-SEL number. Of course,

changing the service's LSAP-SEL number is a bad idea, but this example is for illustration only.

IRLMP_IRLPT_MODE

optval

Type
Get/Set

Winsock

Version
Description

BOOL Both 1+
If TRUE, socket is configured to communicate to

IR-capable printers.

It is possible to connect to an infrared printer using Winsock and send data to be printed. This is

accomplished by putting the socket in IRLPT mode before establishing the connection. Simply pass

the Boolean value TRUE to this option after socket creation. You can use the option

IRLMP_ENUMDEVICES to find infrared-capable printers within range. Note that some legacy IR

printers do not register themselves with IAS; you might need to connect to them directly using the

“LSAP-SEL-xxx” identifier. See Chapter 4 and its discussion of IrSock for more details on bypassing

IAS. This option is available on Windows CE, and Windows 2000 and later.

IRLMP_SEND_PDU_LEN

optval Type Get/Set Winsock Version Description

int Get only 1+ Gets the maximum PDU length

This option retrieves the maximum Protocol Data Unit (PDU) size needed when using the option

IRLMP_9WIRE_MODE. See the description of IRLMP_9WIRE_MODE for more information about this

option, which is available on Windows CE, and Windows 2000 and later.

IPPROTO_IP Option Level

The socket options on the IPPROTO_IP level pertain to attributes specific to the IPv4 protocol, such as

modifying certain fields in the IPv4 header and adding a socket to an IPv4 multicast group. Many of

these options are declared in both WINSOCK.H and WINSOCK2.H with different values. Note that if

you load Winsock 1, you must include the correct header and link with Wsock32.lib. Likewise for

Winsock 2, you should include the Winsock 2 header file and link with Ws2_32.lib. This is especially

relevant to multicasting, which is available under both versions. Multicasting is supported on all

Windows platforms except Windows CE, in which it is available on versions 2.1 and later. The new

IGMPv3-related multicasting options are defined in Ws2tcpip.h.

IP_OPTIONS

optval Type Get/Set Winsock Version Description

char [] Both 1+ Gets or sets IP options within the IP header

This flag allows you to set various IP options within the IP header. Some of the possible options are:

Security and handling restrictions. RFC 1108.

Record route. Each router adds its IPv4 address to the header (see the ping sample in Chapter 11).

Timestamp. Each router adds its IPv4 address and time.

Loose source routing. The packet is required to visit each IPv4 address listed in the option header.

Strict source routing. The packet is required to visit only those IPv4 addresses listed in the option

header.

Be aware that hosts and routers do not support all of these options.

When setting an IPv4 option, the data that you pass into the setsockopt call follows the structure

shown in Figure 7-2. The IPv4 option header can be up to 40 bytes long.

Figure 7-2 IP option header format

The code field indicates which type of IP option is present. For example, the value 0x7 represents the

record route option. Length is simply the length of the option header, and offset is the offset value into

the header where the data portion of the header begins. The data portion of the header is specific to

the particular option. In the following code snippet, we set up the record route option. Notice that we

declare a structure (struct ip_option_hdr) that contains the first three option values (code, length,

offset), and then we declare the option-specific data as an array of nine unsigned long integers

because the data to be recorded is up to nine IPv4 addresses. Remember that the maximum size of

the IPv4 option header is 40 bytes; however, our structure occupies only 39 bytes. The system will pad

the header to a multiple of a 32-bit word for you (up to 40 bytes).

struct ip_option_hdr

{

 unsigned char code;

 unsigned char length;

 unsigned char offset;

 unsigned long addrs[9];

} opthdr;

...

ZeroMemory((char *)&opthdr, sizeof(opthdr));

opthdr.code = 0x7;

opthdr.length = 39;

opthdr.offset = 4; // Offset to first address (addrs)

ret = setsockopt(s, IPPROTO_IP, IP_OPTIONS, (char *)&opthdr,

 sizeof(opthdr));

Once the option is set, it applies to any packets sent on the given socket. At any pointer thereafter,

you can call getsockopt with IP_OPTIONS to retrieve which options were set; however, this will not

return any data filled into the option-specific buffers. To retrieve the data set in the IPv4 options, either

the socket must be created as a raw socket (SOCK_RAW) or the IP_HDRINCL option should be

set—in which case, the IPv4 header is returned along with data after a call to a Winsock receive

function.

IP_HDRINCL

optval

Type
Get/Set

Winsock

Version
Description

BOOL Both 2+
If TRUE, IP header is submitted with data to Winsock

send calls.

Setting the IP_HDRINCL option to TRUE causes the send function to include the IPv4 header ahead

of the data Thus, when you call a Winsock send function, you must include the entire IPv4 header

ahead of the data and fill each field of the IP header correctly. Note that the IPv4 network stack will

fragment the data portion of the packet if necessary when this option is set. This option is valid only for

sockets of type SOCK_RAW. Figure 7-3 shows what the IPv4 header should look like. This option is

available only in Windows 2000 and later versions.

Figure 7-3 The IPv4 header

The first field of the header is the IPv4 version, which is 4. The header length is the number of 32-bit

words in the header. An IP header must always be a multiple of 32 bits. The next field is the type of

service field. Consult the IP_TOS socket option, discussed in the next section, for more information.

The total length field is the length in bytes of the IP header and data. The identification field is a unique

value used to identify each IPv4 packet sent. Normally, the system increments this value with each

packet sent. The flags and fragmentation offset fields are used when IPv4 packets are fragmented into

smaller packets. The TTL limits the number of routers through which the packet can pass. Each time a

router forwards the packet, the TTL is decremented by 1. Once the TTL is 0, the packet is dropped.

This limits the amount of time a packet can be live on the network. The protocol field is used to

demultiplex incoming packets. Some of the valid protocols that use IP addressing are TCP, UDP,

IGMP, and ICMP. The checksum is the 16-bit one's complement sum of the header. It is calculated

over the header only and not the data. The next two fields are the 32-bit IP source and destination

addresses. The IPv4 options field is a variable length field that contains optional information, usually

regarding security or routing.

The easiest way to include an IPv4 header with the data you are sending is to define a structure that

contains the IP header and the data and pass it into the Winsock send call. See Chapter 11 for more

details and an example of this option. This option works only in Windows 2000 and later versions.

IP_TOS

optval Type Get/Set Winsock Version Description

int Both 1+ IPv4 type of service

The type of service (TOS) is a field present in the IPv4 header that is used to signify certain

characteristics of a packet. The field is eight bits long and is broken into three parts: a 3-bit

precedence field (which is ignored), a 4-bit TOS field, and the remaining bit (which must be 0). The

four TOS bits are minimize delay, maximize throughput, maximize reliability, and minimize monetary

costs. Only one bit can be set at a time. All four bits being 0 implies normal service. RFC 1340

specifies the recommended bits to set for various standard applications such as TCP, SMTP, and

NNTP. In addition, RFC 1349 contains some corrections to the original RFC.

Interactive applications—such as Rlogin or Telnet—might want to minimize delay. Any kind of file

transfer—such as FTP—is interested in maximum throughput. Maximum reliability is used by network

management (Simple Network Management Protocol, or SNMP) and routing protocols. Finally, Usenet

news (Network News Transfer Protocol, or NNTP) is an example of minimizing monetary costs. The

IP_TOS option is not available in Windows CE.

There is another issue when you attempt to set the TOS bits on a QOS-enabled socket. Because IP

precedence is used by QOS to differentiate levels of service, it is undesirable to allow developers the

capability to change these values. As a result, when you call setsockopt with IP_TOS on a

QOS-enabled socket, the QOS service provider intercepts the call to verify whether the change can

take place. See Chapter 10 for more information about QOS.

IP_TTL

optval Type Get/Set Winsock Version Description

int Both 1+ IP TTL parameter

The TTL field is present in an IP header. Datagrams use the TTL field to limit the number of routers

through which the datagram can pass. The purpose of this limitation is to prevent routing loops in

which datagrams can spin in circles forever. The idea behind this is that each router that the datagram

passes through decrements the datagram's TTL value by 1. When the value equals 0, the datagram is

discarded. This option is not available in Windows CE.

IP_MULTICAST_IF

optval Type Get/Set
Winsock

Version
Description

unsigned

long
Both 1+

Gets or sets the local interface for outgoing multicast

data

The IP multicast interface (IF) option sets which local interface multicast data will be sent from. This

option is only of interest on machines that have more than one connected network interface (such as

network card or modem). The optval parameter should be an unsigned long integer representing the

binary IP address of the local interface. The function inet_addr can be used to convert a string IP

dotted decimal address to an unsigned long integer, as in the following sample:

DWORD mcastIF;

// First join socket s to a multicast group

mcastIF = inet_addr("129.113.43.120");

ret = setsockopt(s, IPPROTO_IP, IP_MULTICAST_IF, (char *)&mcastIF,

 sizeof(mcastIF));

IP_MULTICAST_TTL

optval

Type
Get/Set

Winsock

Version
Description

int Both 1+
Gets or sets the TTL on multicast packets for this

socket

Similar to the IP TTL, this option performs the same function except that it applies only to multicast

data sent using the given socket. Again, the purpose of the TTL is to prevent routing loops, but in the

case of multicasting, setting the TTL narrows the scope of how far the data will travel. Therefore,

multicast group members must be within “range” to receive datagrams. The default TTL value for

multicast datagrams is 1.

IP_MULTICAST_LOOP

optval

Type
Get/Set

Winsock

Version
Description

BOOL Both 1+
If TRUE, data sent to a multicast address will be echoed to

the socket's incoming buffer.

By default, when you send IP multicast data, the data will be looped back to the sending socket if it is

also a member of that multicast group. If you set this option to FALSE, any data sent will not be posted

to the incoming data queue for the socket.

IP_ADD_MEMBERSHIP

optval Type Get/Set Winsock Version Description

struct ip_mreq Set only 1+ Adds the socket to the given IP group membership

This option is the Winsock 1 method of adding a socket to an IP multicast group. This is done by

creating a socket of address family AF_INET and the socket type SOCK_DGRAM with the socket

function. To add the socket to a multicast group, use the following structure.

struct ip_mreq

{

 struct in_addr imr_multiaddr;

 struct in_addr imr_interface;

};

In the ip_mreq structure, imr_multiaddr is the binary address of the multicast group to join, while

imr_interface is the local interface on which the group is joined. See Chapter 9 for more information

about valid multicast addresses. The imr_interface field is either the binary IPv4 address of a local

interface or the value INADDR_ANY, which can be used to select the default interface (according to

the routing table).

IP_DROP_MEMBERSHIP

optval Type Get/Set
Winsock

Version
Description

struct

ip_mreq
Set only 1+

Removes the socket from the given IP group

membership

This option is the opposite of IP_ADD_MEMBERSHIP. By calling this option with an ip_mreq structure

that contains the same values used when joining the given multicast group, the socket s will be

removed from the given group. Chapter 9 contains much more detailed information on IP multicasting.

IP_ADD_SOURCE_MEMBERSHIP

optval Type Get/Set
Winsock

Version
Description

struct

ip_mreq_source
Set only 2+

Joins a multicast group but accepts data from

only the given source

This multicast option joins the specified multicast group on the given interface but will accept data from

only the given source IPv4 address (this is know as an include list). This option may be called multiple

times to build an include list of multiple acceptable sources. The input structure is defined as

struct ip_mreq_source {

 struct in_addr imr_multiaddr;

 struct in_addr imr_sourceaddr;

 struct in_addr imr_interface

};

The first field is the 32-bit multicast address, the second field is the 32-bit IPv4 address of the

acceptable source, and the last field is the 32-bit IPv4 address of the local interface on which to join

the group.

This option is supported on Windows XP and later versions and requires the local network to be

IGMPv3 enabled. See Chapter 9 for more details.

IP_DROP_SOURCE_MEMBERSHIP

optval Type Get/Set
Winsock

Version
Description

struct

ip_mreq_source
Set only 2+

Remove the given IPv4 source from the list of

acceptable sources

This option is the complement to IP_ADD_SOURCE_MEMBERSHIP. Once one or more sources for a

particular multicast group are added via IP_ADD_SOURCE_MEMBERSHIP, this option can be used

to remove selected sources from the include list. Using these two options, an application can manage

the list of sources to accept multicast data from a given multicast address. This option requires

Windows XP and an IGMPv3-enabled network. See Chapter 9 for more details.

IP_BLOCK_SOURCE

optval Type Get/Set
Winsock

Version
Description

struct

ip_mreq_source
Set only 2+

Joins a multicast group but accepts data from

everyone except the given IPv4 source

This and the IP_UNBLOCK_SOURCE options are used to build an exclude list of sources for multicast

traffic. The IP_BLOCK_SOURCE specifies a source from which multicast data will not be accepted.

This option may be called multiple times to exclude additional sources. This option requires Windows

XP and an IGMPv3-enabled network. See Chapter 9 for more details.

IP_UNBLOCK_SOURCE

optval Type Get/Set
Winsock

Version
Description

struct

ip_mreq_source
Both 2+

Adds the given IPv4 source to the list of

acceptable sources

This option removes the given source from the exclude list so that multicast data received from the

removed source will be propagated to the socket. This option requires Windows XP and an

IGMPv3-enabled network. See Chapter 9 for more details.

IP_DONTFRAGMENT

optval Type Get/Set Winsock Version Description

BOOL Both 1+ If TRUE, do not fragment IP datagrams.

This flag tells the network not to fragment the IPv4 datagram during transmission. However, if the size

of the IPv4 datagram exceeds the maximum transmission unit (MTU) and the IP don't fragment flag is

set within the IPv4 header, the datagram will be dropped and an ICMP error message (“fragmentation

needed but don't fragment bit set”) will be returned to the sender. This option is not available on

Windows CE.

IP_PKTINFO

optval

Type
Get/Set

Winsock

Version
Description

int Set only 2+
Indicates whether packet information should be returned

from WSARecvMsg

This option indicates that IPv4 packet information should be returned as a part of the control buffer

passed to the WSARecvMsg API. This function was discussed in Chapter 6. For IPv4, the structure

returned is the IN_PKTINFO defined as

typedef struct in_pktinfo {

 IN_ADDR ipi_addr;

 UINT ipi_ifindex;

} IN_PKTINFO;

The first field is the 32-bit binary IPv4 address on which the packet was received. The second field is

the interface index that can be correlated to a particular network adapter via the IP Helper APIs

discussed in Chapter 16.

IPPROTO_IPV6 Option Level

The IPPROTO_IPV6 level indicates socket options that pertain to the IPv6 protocol. Many of these

options mirror the IPv4 socket options. These values are defined in WS2TCPIP.H.

IPV6_HDRINCL

optval

Type
Get/Set

Winsock

Version
Description

BOOL Both 2+
If TRUE, IPv6 header is submitted to Winsock send

calls.

This option indicates that the application will supply the IPv6 header for each packet of data sent by a

Winsock send call. The IPv6 stack will not perform any fragmentation for packets larger than the MTU.

Applications must build the appropriate fragmentation headers for each packet sent that is larger than

the MTU. This socket option is valid only for sockets of type SOCK_RAW. On IPv6, raw sockets are

truly raw. Figure 7-4 shows the IPv6 header.

Figure 7-4 IPv6 header

The first field is four bits in length and is the IP version which is six. The next 8-bit field defines the

traffic class. Currently, there are no well-defined values for this field. The 20-bit flow label is used to

label sequences of packets that request special treatment. Again, there are no predefined values for

this field. The 16-bit payload field is the length of the payload in octets. This includes any extension

headers but not the basic IPv6 header itself. The 8-bit next header field indicates the protocol value of

the next header. This can either be an IPv6 extension header (such as the fragmentation header) or

the next encapsulated protocol (such as UDP or TCP). The 8-bit hop limit field indicates the TTL value

for the packet. The last two fields are the 128-bit source and destination IPv6 addresses. See Chapter

11 for examples of using the IPV6_HDRINCL option.

IPV6_UNICAST_HOPS

optval Type Get/Set Winsock Version Description

int Both 2+ IPv6 TTL parameter

This option is used to set the TTL value to be used on unicast traffic sent on the socket. This is

analogous to the IPv4 option IP_TTL.

IPV6_MULTICAST_IF

optval Type Get/Set Winsock Version Description

int Both 2+ IPv6 multicast interface for outgoing multicast data

This option is analogous to the IP_MULTICAST_IF option except that it sets the outgoing interface for

IPv6 multicast traffic. Also, instead of specifying the local IPv6 interface address for the outgoing

traffic, the interface's scope ID is specified instead. The IP Helper function GetAdaptersAddress can

be called to obtain the local interface indices. Chapter 9 covers IPv6 multicasting in more detail and

Chapter 16 discusses the IP Helper APIs.

IPV6_MULTICAST_HOPS

optval Type Get/Set Winsock Version Description

int Both 2+ IPv6 TTL parameter for multicast data

This option is analogous to the IP_MULTICAST_TTL option except that it sets the TTL option for IPv6

multicast traffic.

IPV6_MULTICAST_LOOP

optval

Type
Get/Set

Winsock

Version
Description

int Both 2+
If TRUE, data sent to a multicast address will be echoed to

the socket's incoming buffer.

This option enables outgoing IPv6 multicast traffic to be echoed back to the sending socket if the

sending socket is also a member of the multicast group. This option is analogous to the IPv4 multicast

option IP_MULTICAST_LOOP.

IPV6_ADD_MEMBERSHIP, IPV6_JOIN_GROUP

optval Type Get/Set
Winsock

Version
Description

struct

ipv6_mreq
Both 2+

Joins an IPv6 multicast group on the specified

interface

This option joins the IPv6 multicast group on a particular interface. The input parameter is defined as

typedef struct ipv6_mreq {

 struct in6_addr ipv6mr_multiaddr;

 unsigned int ipv6mr_interface;

} IPV6_MREQ;

The first field is the IPv6 address of the multicast address to join, and the second field is the interface

index (or scope ID) on which to join the group. See Chapter 9 for more information.

IPV6_DROP_MEMBERSHIP, IPV6_LEAVE_GROUP

optval Type Get/Set Winsock Version Description

struct ipv6_mreq Both 2+ Drops the multicast group from the given interface

This option drops membership of the IPv6 multicast group from the given interface. The input

parameter is the struct ipv6_mreq containing the multicast group to drop from the given interface

(scope ID). See Chapter 9 for more information.

IPV6_PKTINFO

optval

Type
Get/Set

Winsock

Version
Description

int Both 2+
Indicates whether packet information should be returned

from WSARecvMsg

This option indicates that IPv6 packet information should be returned as a part of the control buffer

passed to the WSARecvMsg API. This function was discussed in Chapter 6. For IPv6, the structure

returned is the IN6_PKTINFO defined as

typedef struct in6_pktinfo {

 IN6_ADDR ipi6_addr;

 UINT ipi6_ifindex;

} IN6_PKTINFO;

The first field is the binary IPv6 address on which the packet was received. The second field is the

interface index that can be correlated to a particular network adapter via the IP Helper APIs discussed

in Chapter 16.

IPPROTO_RM Option Level

Socket options of the IPPROTO_RM level are used by the reliable multicast transport. These options

are declared in wsrm.h. For more information on the reliable multicast protocol available on Windows

XP, see Chapter 9.

RM_RATE_WINDOW_SIZE

optval Type Get/Set Winsock Version Description

RM_SEND_WINDOW Both 2+ Specifies the data rate and window size

This option sets the size of the send window, which determines the amount or time data remains valid

for repairs. The RM_SEND_WINDOW structure is declared as

typedef struct _RM_SEND_WINDOW {

 ULONG RateKbitsPerSec;

 ULONG WindowSizeInMSecs;

 ULONG WindowSizeInBytes;

} RM_SEND_WINDOW

The first field indicates the data rate in kilobits per second. The second field is the size of the window in

milliseconds. The last field indicates the window size in bytes. The values supplied for these three

fields must satisfy the equation Rate-KbitsPerSec = (WindowSizeInBytes 1024) /

(WindowSizeInMSecs 1000).

RM_SET_MESSAGE_BOUNDARY

optval

Type
Get/Set

Winsock

Version
Description

int Both 2+
Indicates the logical size of the packet in bytes to

follow

This option is used to send large messages in multiple chunks. For example, if a sender wishes to

send a 2 MB buffer as a single packet, for performance reasons it is undesirable to submit a 2 MB

buffer in a single call to send. Instead, this option is set to indicate the logical size of the forthcoming

packet. Afterward, the sender may send the 2 MB packet in small chunks.

RM_FLUSHCACHE

optval Type Get/Set Winsock Version Description

BOOL Set only 2+ Flushes the entire contents of the send window

This option flushes the entire contents of the send window so that no more Negative

Acknowledgements (NAKs) can be satisfied. This option is currently not implemented.

RM_SENDER_WINDOW_ADVANCE_METHOD
optval Type Get/Set Winsock Description

Version

eWINDOW_ADVANCE_METHOD Both 2+
Indicates how the send window

advances

This option specifies how the send window advances. The possible values are an enumerated type:

enum eWINDOW_ADVANCE_METHOD

{

 E_WINDOW_ADVANCE_BY_TIME = 1, // Default mode

 E_WINDOW_USE_AS_DATA_CACHE

};

The first value indicates that the window advances with time. That is, the send data is valid for the

amount of time specified in WindowSizeInMSecs field of the RM_SEND_WINDOW structure. The

second value indicates that data is discarded only after the send window becomes full as specified by

the WindowSizeInBytes field of the RM_SEND_WINDOW structure.

RM_SENDER_STATISTICS

optval Type Get/Set Winsock Version Description

RM_SENDER_STATS Get only 2+ Returns statistics for a sender socket

This option retrieves an RM_SENDER_STATS structure that contains various network statistics for the

session. This structure is defined as

typedef struct _RM_SENDER_STATS

{

 ULONGLONG DataBytesSent; // # client data bytes sent

 // out so far

 ULONGLONG TotalBytesSent; // SPM, OData and RData bytes

 ULONGLONG NaksReceived; // # NAKs received so far

 ULONGLONG NaksReceivedTooLate; // # NAKs recvd after window

 // advanced

 ULONGLONG NumOutstandingNaks; // # NAKs yet to be

 // responded to

 ULONGLONG NumNaksAfterRData; // # NAKs yet to be

 // responded to

 ULONGLONG RepairPacketsSent; // # Repairs (RDATA)

 // sent so far

 ULONGLONG BufferSpaceAvailable; // # partial messages dropped

 ULONGLONG TrailingEdgeSeqId; // smallest (oldest) Sequence

 // Id in the window

 ULONGLONG LeadingEdgeSeqId; // largest (newest) Sequence

 // Id in the window

 ULONGLONG RateKBitsPerSecOverall; // Internally calculated

 // send-rate from the

 // beginning

 ULONGLONG RateKBitsPerSecLast; // Send-rate calculated every

 // INTERNAL_RATE_CALCULATION_

 // FREQUENCY

} RM_SENDER_STATS;

The comments for each field from the header file explain the structure so we won't repeat them.

RM_LATEJOIN

optval Type Get/Set Winsock Version Description

int Both 2+ Allows receivers to NAK for any packet in the window

When this option is set, a receiver may NAK any sequence number in the advertise window upon

session join.

RM_SET_SEND_IF

optval Type Get/Set Winsock Version Description

ULONG Both 2+
Sets the outgoing interface for reliable multicast

traffic

This option sets the outgoing interface for reliable multicast traffic. The 32-bit binary address of the

local outgoing interface is supplied as the input parameter.

RM_ADD_RECEIVE_IF

optval Type Get/Set Winsock Version Description

ULONG Set only 2+ Adds the given interface as a receiving interface

By default, when a reliable multicast receiver is created, it listens for traffic on the default interface (as

indicated by the routing table). This option can be used to specify the 32-bit binary IPv4 address of the

local interface to listen for traffic. This option can be specified multiple times to add more than one

listening interface in the event of a multihomed machine.

RM_DEL_RECEIVE_IF

optval

Type
Get/Set

Winsock

Version
Description

ULONG Set only 2+
Removes the given interface from the list of receiving

interfaces

This option removes the supplied interface from the list of valid receiving interfaces for reliable

multicast traffic. The address is supplied as a 32-bit binary IPv4 address.

RM_SEND_WINDOW_ADV_RATE

optval Type Get/Set Winsock Version Description

int Both 2+ Sets the increment percentage for the send window

The send window advances incrementally over time so that a portion of the oldest data is discarded to

make room for new data sent by the application. This option controls how much data is discarded with

each incremental advance. The maximum possible increment value as a percentage of the whole

window is defined as MAX_WINDOW_INCREMENT_PERCENTAGE.

RM_USE_FEC

optval Type Get/Set Winsock Version Description

RM_FEC_INFO Both 2+ Enables forward error correction on the session

This option enables the use of forward error correction (FEC) on the session. This RM_FEC_INFO

structure is defined as

typedef struct _RM_FEC_INFO

{

 USHORT FECBlockSize;

 USHORT FECProActivePackets;

 UCHAR FECGroupSize;

 BOOLEAN fFECOnDemandParityEnabled;

} RM_FEC_INFO;

The FECGroupSize indicates the number of original packets to build parity packets from and the

FECBlockSize indicates the number of original packets plus the number of parity packets generated.

FECProActivePackets indicates to transmit FEC packets always (instead of only for repair data). The

fFECOnDemandParityEnabled allows receivers to request FEC repair data on demand.

RM_SET_MCAST_TTL

optval Type Get/Set Winsock Version Description

int Both 2+ Sets the TTL for reliable multicast data sent

This option sets the TTL value for a reliable multicast sender.

RM_RECEIVER_STATISTICS

optval Type Get/Set
Winsock

Version
Description

RM_RECEIVER_STATS Both 2+
Retrieves session statistics on a receiver

socket

This option retrieves an RM_SENDER_STATS structure, which contains various network statistics for

the session. This structure is defined as

typedef struct _RM_RECEIVER_STATS

{

 ULONGLONG NumODataPacketsReceived;// # OData sequences received

 ULONGLONG NumRDataPacketsReceived;// # RData sequences received

 ULONGLONG NumDuplicateDataPackets;// # RData sequences received

 ULONGLONG DataBytesReceived; // # client data bytes

 // received out so far

 ULONGLONG TotalBytesReceived; // SPM, OData and RData bytes

 ULONGLONG RateKBitsPerSecOverall; // Internally calculated

 // Receive-rate from the

 // beginning

 ULONGLONG RateKBitsPerSecLast; // Receive-rate calculated

 // every INTERNAL_RATE_

 // CALCULATION_FREQUENCY

 ULONGLONG TrailingEdgeSeqId; // smallest (oldest)

 // Sequence Id in the window

 ULONGLONG LeadingEdgeSeqId; // largest (newest) Sequence

 // Id in the window

 ULONGLONG AverageSequencesInWindow;

 ULONGLONG MinSequencesInWindow;

 ULONGLONG MaxSequencesInWindow;

 ULONGLONG FirstNakSequenceNumber; // # First Outstanding NAK

 ULONGLONG NumPendingNaks; // # Sequences waiting

 // for NCFs

 ULONGLONG NumOutstandingNaks; // # Sequences for which

 // NCFs have been received,

 // but no RDATA

 ULONGLONG NumDataPacketsBuffered; // # Data packets currently

 // buffered by transport

 ULONGLONG TotalSelectiveNaksSent; // # Selective NAKs sent

 // so far

 ULONGLONG TotalParityNaksSent; // # Parity NAKs sent so far

} RM_RECEIVER_STATS;

The comments for each field from the header file explain the structure so we won't repeat them.

IPPROTO_TCP Option Level

There is only one option belonging to the IPPROTO_TCP level. It is valid only for sockets that are

stream sockets (SOCK_STREAM) and belong to family AF_INET. This option is available on all

versions of Winsock and is supported on all Windows platforms.

TCP_NODELAY

optval

Type
Get/Set

Winsock

Version
Description

BOOL Both 1+ If TRUE, the Nagle algorithm is disabled on the

optval

Type
Get/Set

Winsock

Version
Description

socket.

To increase performance and throughput by minimizing overhead, the system implements the Nagle

algorithm. When an application requests to send a chunk of data, the system might hold on to that

data for a while and wait for other data to accumulate before actually sending it on the wire. Of course,

if no other data accumulates in a given period of time, the data will be sent regardless. This results in

more data in a single TCP packet, as opposed to smaller chunks of data in multiple TCP packets. The

overhead is that the TCP header for each packet is 20 bytes long. Sending a couple bytes here and

there with a 20-byte header is wasteful. The other part of this algorithm is the delayed

acknowledgments. Once a system receives TCP data it must send an ACK to the peer. However, the

host will wait to see if it has data to send to the peer so that it can piggyback the ACK on the data to

be sent—resulting in one less packet on the network.

The purpose of this option is to disable the Nagle algorithm because its behavior can be detrimental in

a few cases. This algorithm can adversely affect any network application that sends relatively small

amounts of data and expects a timely response. A classic example is Telnet. Telnet is an interactive

application that allows the user to log on to a remote machine and send it commands. Typically, the

user hits only a few keystrokes per second. The Nagle algorithm would make such a session seem

sluggish and unresponsive.

NSPROTO_IPX Option Level

The socket options in this section are Microsoft-specific extensions to the Window IPX/SPX Windows

Sockets interface, provided for use as necessary for compatibility with existing applications. They are

otherwise not recommended because they are guaranteed to work over only the Microsoft IPX/SPX

stack. An application that uses these extensions might not work over other IPX/SPX implementations.

These options are defined in WSNWLINK.H, which should be included after WINSOCK.H and

WSIPX.H.

IPX_PTYPE

optval Type Get/Set Winsock Version Description

int Both 1+ Gets or sets the IPX packet type

This option gets or sets the IPX packet type. The value specified in the optval argument will be set as

the packet type on every IPX packet sent from this socket. The optval parameter is an integer.

IPX_FILTERPTYPE

optval Type Get/Set Winsock Version Description

int Both 1+ Gets or sets the IPX packet type to filter on

This option gets or sets the receive filter packet type. Only IPX packets with a packet type equal to the

value specified in the optval argument are returned on any receive call; packets with a packet type that

does not match are discarded.

IPX_STOPFILTERPTYPE

optval Type Get/Set Winsock Version Description

int Set only 1+ Removes the filter on the given IPX packet

You can use this option to stop filtering on packet types that are set with the IPX_FILTERPTYPE

option.

IPX_DSTYPE

optval

Type
Get/Set

Winsock

Version
Description

int Both 1+
Sets or gets the value of the datastream field in the

SPX header

This option gets or sets the value of the datastream field in the SPX header of every packet sent.

IPX_EXTENDED_ADDRESS

optval

Type
Get/Set

Winsock

Version
Description

BOOL Both 1+
If TRUE, enables extended addressing on IPX

packets

This option enables or disables extended addressing. On sends, it adds the element unsigned char

sa_ptype to the SOCKADDR_IPX structure, making the total length of the structure 15 bytes. On

receives, the option adds both the sa_ptype and unsigned char sa_flags elements to the

SOCKADDR_IPX structure, making the total length 16 bytes. The current bits defined in sa_flags are

0x01 The received frame was sent as a broadcast.

0x02 The received frame was sent from this machine.

IPX_RECVHDR

optval Type Get/Set Winsock Version Description

BOOL Both 1+ If TRUE, returns IPX header with receive call

If this option is set to TRUE, any Winsock receive call returns the IPX header along with the data.

IPX_MAXSIZE

optval Type Get/Set Winsock Version Description

int Get only 1+ Returns the maximum IPX datagram size

Calling getsockopt with this option returns the maximum IPX datagram size possible.

IPX_ADDRESS

optval Type Get/Set
Winsock

Version
Description

IPX_ADDRESS_DATA Get only 1+
Returns information regarding an

IPX-capable adapter

This option queries for information about a specific adapter that IPX is bound to. In a system with n

adapters, the adapters are numbered 0 through n - 1. To find the number of IPX-capable adapters on

the system, use the IPX_MAX_ADAPTER_NUM option with getsockopt or call IPX_ADDRESS with

increasing values of adapternum until it fails. The optval parameter points to an IPX_ADDRESS_DATA

structure defined as

typedef struct _IPX_ADDRESS_DATA

{

 INT adapternum; // Input: 0-based adapter number

 UCHAR netnum[4]; // Output: IPX network number

 UCHAR nodenum[6]; // Output: IPX node address

 BOOLEAN wan; // Output: TRUE = adapter is on a WAN link

 BOOLEAN status; // Output: TRUE = WAN link is up (or adapter

 // is not WAN)

 INT maxpkt; // Output: max packet size, not including IPX

 // header

 ULONG linkspeed; // Output: link speed in 100 bytes/sec

 // (i.e., 96 == 9600 bps)

} IPX_ADDRESS_DATA, *PIPX_ADDRESS_DATA;

IPX_GETNETINFO

optval Type Get/Set
Winsock

Version
Description

IPX_NETNUM_DATA Get only 1+
Returns information about a specific IPX

network number

This option obtains information about a specific IPX network number. If the network is in IPX's cache,

the option returns the information directly; otherwise, it issues RIP requests to find it. The optval

parameter points to a valid IPX_NETNUM_DATA structure defined as

typedef struct _IPX_NETNUM_DATA

{

 UCHAR netnum[4]; // Input: IPX network number

 USHORT hopcount; // Output: hop count to this network,

 // in machine order

 USHORT netdelay; // Output: tick count to this network,

 // in machine order

 INT cardnum; // Output: 0-based adapter number used

 // to route to this net; can be used as

 // adapternum input to IPX_ADDRESS

 UCHAR router[6]; // Output: MAC address of the next hop router,

 // zeroed if the network is directly attached

} IPX_NETNUM_DATA, *PIPX_NETNUM_DATA;

IPX_GETNETINFO_NORIP

optval Type Get/Set Winsock Version Description

IPX_NETNUM_DATA Both 1+ If TRUE, do not fragment IP datagrams.

This option is similar to IPX_GETNETINFO except that it does not issue RIP requests. If the network is

in IPX's cache, it returns the information; otherwise, it fails. (See also IPX_RERIPNETNUMBER, which

always issues RIP requests.) Like IPX_GETNETINFO, this option requires passing an

IPX_NETNUM_DATA structure as the optval parameter.

IPX_SPXGETCONNECTIONSTATUS

optval Type Get/Set
Winsock

Version
Description

IPX_SPXCONNSTATUS_DATA Get only 1+
Returns information about a

connected SPX socket

This option returns information on a connected SPX socket. The optval parameter points to an

IPX_SPXCONNSTATUS_DATA structure defined below. All numbers are in network (high to low) byte

order.

typedef struct _IPX_SPXCONNSTATUS_DATA

{

 UCHAR ConnectionState;

 UCHAR WatchDogActive;

 USHORT LocalConnectionId;

 USHORT RemoteConnectionId;

 USHORT LocalSequenceNumber;

 USHORT LocalAckNumber;

 USHORT LocalAllocNumber;

 USHORT RemoteAckNumber;

 USHORT RemoteAllocNumber;

 USHORT LocalSocket;

 UCHAR ImmediateAddress[6];

 UCHAR RemoteNetwork[4];

 UCHAR RemoteNode[6];

 USHORT RemoteSocket;

 USHORT RetransmissionCount;

 USHORT EstimatedRoundTripDelay; /* In milliseconds */

 USHORT RetransmittedPackets;

 USHORT SuppressedPacket;

} IPX_SPXCONNSTATUS_DATA, *PIPX_SPXCONNSTATUS_DATA;

IPX_ADDRESS_NOTIFY

optval Type Get/Set
Winsock

Version
Description

IPX_ADDRESS_DATA Get only 1+
Asynchronously notifies when the status of an

IPX adapter changes

This option submits a request to be notified when the status of an adapter that IPX is bound to

changes, which typically occurs when a WAN line goes up or down. This option requires the caller to

submit an IPX_ADDRESS_DATA structure as the optval parameter. The exception, however, is that

the IPX_ADDRESS_DATA structure is followed immediately by a handle to an unsignaled event. The

following pseudo-code illustrates one method for calling this option.

char buff[sizeof(IPX_ADDRESS_DATA) + sizeof(HANDLE)];

IPX_ADDRESS_DATA *ipxdata;

HANDLE *hEvent;

ipxdata = (IPX_ADDRESS_DATA *)buff;

hEvent = (HANDLE *)(buff + sizeof(IPX_ADDRESS_DATA));

ipxdata->adapternum = 0; // Set to the appropriate adapter

*hEvent = CreateEvent(NULL, TRUE, FALSE, NULL);

setsockopt(s, NSPROTO_IPX, IPX_ADDRESS_NOTIFY, (char *)buff,

sizeof(buff));

When the getsockopt query is submitted, it completes successfully. However, the

IPX_ADDRESS_DATA structure pointed to by optval will not be updated at that point. Instead, the

request is queued internally inside the transport, and when the status of an adapter changes, IPX

locates a queued getsockopt query and fills in all the fields in the IPX_ADDRESS_DATA structure. It

then signals the event pointed to by the handle in the optval buffer. If multiple getsockopt calls are

submitted at once, different events must be used. The event is used because the call needs to be

asynchronous; getsockopt does not currently support this.

In the current implementation, the transport signals only one queued query for

each status change. Therefore, only one service that uses a queued query should

run at once.

IPX_MAX_ADAPTER_NUM

optval Type Get/Set Winsock Version Description

int Get only 1+ Returns the number of IPX adapters present

This option returns the number of IPX-capable adapters present on the system. If this call returns n

adapters, the adapters are numbered 0 through n – 1.

IPX_RERIPNETNUMBER

optval Type Get/Set Winsock Version Description

IPX_NETNUM_DATA Get only 1+
Returns information about a network

number

This option is related to IPX_GETNETINFO except that it forces IPX to reissue RIP requests even if

the network is in its cache (but not if it is directly attached to that network). Like IPX_GETNETINFO,

this option requires passing an IPX_NETNUM_DATA structure as the optval parameter.

IPX_RECEIVE_BROADCAST

optval Type Get/Set Winsock Version Description

BOOL Set only 1+ If TRUE, do not receive broadcast IPX packets.

By default, an IPX socket is capable of receiving broadcast packets. Applications that do not need to

receive broadcast packets should set this option to FALSE, which can cause better system

performance. Note, however, that setting the option to FALSE does not necessarily cause broadcasts

to be filtered for the application.

IPX_IMMEDIATESPXACK

optval

Type
Get/Set

Winsock

Version
Description

BOOL Both 1+
If TRUE, do not delay sending ACKs on SPX

connections.

If you set this option to true, acknowledgment packets will not be delayed for SPX connections.

Applications that do not tend to have back-and-forth traffic over SPX should set this—it increases the

number of ACKs sent but prevents slow performance as a result of delayed acknowledgments.

Ioctlsocket, WSAIoctl, and WSANSPIoctl

The socket ioctl functions are used to control the behavior of I/O on the socket, as well as to obtain

information about I/O pending on that socket. The first function, ioctlsocket, originated in the Winsock

1 specification and is declared as

int ioctlsocket (

 SOCKET s,

 long cmd,

 u_long FAR *argp

);

The parameter s is the socket descriptor to act on, and cmd is a predefined flag for the I/O control

command to execute. The last parameter, argp, is a pointer to a variable specific to the given

command. When each command is described, the type of the required variable is given. Winsock 2

introduced a new ioctl function that adds quite a few new options. First, it breaks the single argp

parameter into a set of input parameters for values passed into the function and a set of output

parameters used to return data from the call. In addition, the function call can use overlapped I/O. This

function is WSAIoctl, which is defined as

int WSAIoctl(

 SOCKET s,

 DWORD dwIoControlCode,

 LPVOID lpvInBuffer,

 DWORD cbInBuffer,

 LPVOID lpvOutBuffer,

 DWORD cbOutBuffer,

 LPDWORD lpcbBytesReturned,

 LPWSAOVERLAPPED lpOverlapped,

 LPWSAOVERLAPPED_COMPLETION_ROUTINE lpCompletionRoutine

);

The first two parameters are the same as those in ioctlsocket. The second two, lpvInBuffer and

cbInBuffer, describe the input parameters. The lpvInBuffer parameter is a pointer to the value passed

in, and cbInBuffer is the size of that data in bytes. Likewise, lpvOutBuffer and cbOutBuffer are used for

any data returned from the call. The lpvOutBuffer parameter points to a data buffer in which any

information returned is placed. The cbOutBuffer parameter is the size in bytes of the buffer passed in

as lpvOutBuffer. Note that some calls might use only input or output parameters, and others will use

both. The seventh parameter, lpcbBytesReturned, is the number of bytes actually returned. The last

two parameters, lpOverlapped and lpCompletionRoutine, are used when calling this function with

overlapped I/O. Consult Chapter 5 for detailed information on using overlapped I/O.

Lastly, a new ioctl function, WSANSPIoctl, has been introduced for Windows XP. This function is used

exclusively for making I/O control calls to name space providers. The function is defined as

int WSANSPIoctl(

 HANDLE hLookup,

 DWORD dwControlCode,

 LPVOID lpvInBuffer,

 DWORD cbInBuffer,

 LPVOID lpvOutBuffer,

 DWORD cbOutBuffer,

 LPDWORD lpcbBytesReturned,

 LPWSACOMPLETION lpCompletion

);

The parameters to this function are the same as WSAIoctl except for hLookup and lpCompletion. The

handle passed into this function is the handle returned from WSALookupServiceBegin. This handle

identifies a name space query to a particular name space provider. The lpCompletion parameter

specifies how the application should be notified if there is a change to the name space provider or

query. This new ioctl function is used by the Network Location Awareness (NLA) service, which is

described in detail in Chapter 8, so we won't explain it in full here.

Standard Ioctl Commands

There are three ioctl commands that are the most common and are carryovers from the Unix world.

They are available on all Windows platforms. Also, these three commands can be called using either

ioctlsocket or WSAIoctl.

FIONBIO

Which Function? Input Output
Winsock

Version
Description

ioctlsocket/WSAIoctl unsigned int None 1+
Puts socket in non-blocking

mode

This command enables or disables non-blocking mode on socket s. By default, all sockets are blocking

sockets upon creation. When you call ioctlsocket with the FIONBIO ioctl command, set argp to pass a

pointer to an unsigned long integer whose value is nonzero if non-blocking mode is to be enabled. The

value 0 places the socket in blocking mode. If you use WSAIoctl instead, simply pass the unsigned

long integer in as the lpvInBuffer parameter.

Calling the WSAAsyncSelect or WSAEventSelect function automatically sets a socket to non-blocking

mode. If either of these functions has been called, any attempt to set the socket back to blocking mode

fails with WSAEINVAL. To set the socket back to blocking mode, an application must first disable

WSAAsyncSelect by calling WSAAsyncSelect with the lEvent parameter equal to 0 or disable

WSAEventSelect by calling WSAEventSelect with the lNetworkEvents parameter equal to 0.

FIONREAD

Which

Function?
Input Output

Winsock

Version
Description

Both None
unsigned

long
1+

Returns the amount of data to be read

on the socket

This command determines the amount of data that can be read from the socket. For ioctlsocket, the

argp value returns with an unsigned integer that will contain the number of bytes to be read. When

using WSAIoctl, the unsigned integer is returned in lpvOutBuffer. If socket s is stream-oriented

(SOCK_STREAM), FIONREAD returns the total amount of data that can be read in a single receive

call. Remember that using this or any other message-peeking mechanism is not always guaranteed to

return the correct amount. When this ioctl command is used on a datagram socket (SOCK_DGRAM),

the return value is the size of the first message queued on the socket.

SIOCATMARK

Which

Function?
Input Output

Winsock

Version
Description

Both None BOOL 1+
Determines whether OOB data has been

read

When a socket has been configured to receive OOB data and has been set to receive this data inline

(by setting the SO_OOBINLINE socket option), this ioctl command returns a Boolean value indicating

TRUE if the OOB data is to be read next. Otherwise, FALSE is returned and the next receive operation

returns all or some of the data that precedes the OOB data. For ioctlsocket, argp returns with a pointer

to a Boolean variable, while for WSAIoctl, the pointer to the Boolean variable returns in lpvOutBuffer.

Remember that a receive call will never mix OOB data and normal data in the same call. Refer back to

Chapter 1 for more information on OOB data.

Other Ioctl Commands

These ioctl commands are specific to Winsock 2 except for those dealing with Secure Sockets Layer

(SSL), which are available only on Windows CE. If you examine the Winsock 2 headers, you might

actually see other ioctl commands declared; however, the ioctls listed in this section are the only ones

that are meaningful or available to a user's application. In addition, as you will see, not all ioctl

commands work on all (or any) Windows platform, but of course this could change with operating

system updates. For Winsock 2, a majority of these commands are defined in WINSOCK2.H. Some of

the newer ioctls are defined in MSTCPIP.H.

SIO_ENABLE_CIRCULAR_QUEUEING

Which

Function?
Input Output

Winsock

Version
Description

WSAIoctl BOOL BOOL 2+
If the incoming buffer queue overflows,

discard oldest message first.

This ioctl command controls how the underlying service provider handles incoming datagram

messages when the queues are full. By default, when the incoming queue is full, any datagram

messages subsequently received are dropped. When this option is set to TRUE, it indicates that the

newly arrived messages should never be dropped as a result of buffer overflow; instead, the oldest

message in the queue should be discarded to make room for the newly arrived message. This

command is valid only for sockets associated with unreliable, message-oriented protocols. If this ioctl

command is used on a socket of another type (such as a stream-oriented protocol socket), or if the

service provider doesn't support the command, the error WSAENOPROTOOPT is returned. This

option is supported only on Windows NT.

This ioctl command can be used either to set circular queuing on or off or to query the current state of

the option. When you are setting the option, only the input parameters need to be used. When you are

querying the current value of the option, only the output BOOL parameter needs to be supplied.

SIO_FIND_ROUTE

Which

Function?
Input Output

Winsock

Version
Description

WSAIoctl SOCKADDR BOOL 2+
Verifies that a route to the given

address exists

This ioctl command is used to check whether a particular address can be reached via the network. The

lpvInBuffer parameter points to a SOCKADDR structure for the given protocol. If the address already

exists in the local cache, it is invalidated. For IPX, this call initiates an IPX GetLocalTarget call that

queries the network for the given remote address. Unfortunately, the Microsoft provider for current

Windows platforms does not implement this ioctl command.

SIO_FLUSH

Which Function? Input Output Winsock Version Description

WSAIoctl None None 2+ Discards the send buffers

This ioctl command discards the current contents of the sending queue associated with the given

socket. There are no input or output parameters for this option. Currently, this option is supported on

Windows NT 4 Service Pack 4, Windows 2000, and Windows XP.

SIO_GET_BROADCAST_ADDRESS

Which

Function?
Input Output

Winsock

Version
Description

WSAIoctl None SOCKADDR 2+
Returns a broadcast address for the

address family of the socket

This ioctl command returns a SOCKADDR structure (via lpvOutBuffer) that contains the broadcast

address for the address family of socket s that can be used in sendto or WSASendTo. This ioctl works

only on Windows NT. Windows 95, Windows 98, and Windows Me return WSAEINVAL.

SIO_GET_EXTENSION_FUNCTION_POINTER

Which

Function?
Input Output

Winsock

Version
Description

WSAIoctl GUID
Function

pointer
2+

Retrieves a function pointer specific to

the underlying provider

This ioctl command is used to obtain functions that are provider-specific but are not part of the

Winsock specification. If a provider chooses, it can make functions available to programmers through

this ioctl command by assigning each function a GUID. Then an application can obtain a pointer to this

function by using the SIO_GET_EXTENSION_FUNCTION_POINTER ioctl. The header file Mswsock.h

defines those Winsock functions that Microsoft has added, including their globally unique identifiers

(GUIDs). For example, to query whether the installed Winsock provider supports the TransmitFile

function, you can query the provider by using its GUID, which is given by the following define:

#define WSAID_TRANSMITFILE \

 {0xb5367df0,0xcbac,0x11cf,{0x95,0xca,0x00,0x80,0x5f,0x48,0xa1,0x92}}

Once you obtain the function pointer for an extension function, such as TransmitFile, you can call it

directly without having to link your application to the Mswsock.lib library. This will actually reduce one

intermediate function call that is made in Mswsock.lib.

You can look through Mswsock.h for other Microsoft-specific extensions that have these GUIDs

defined for them. See Chapter 6 for more information on the Microsoft-specific extensions. Also, this

ioctl command is an important part of developing a layered service provider. See Chapter 12 for more

details about the service provider interface.

SIO_CHK_QOS

Which

Function?
Input Output

Winsock

Version
Description

WSAIoctl DWORD DWORD 2+
Checks QOS attributes for the given

socket

This ioctl command can be used to check the status of six states within QOS and is currently

supported only on Windows 2000 and later versions. Six flags correspond to these states:

ALLOWED_TO_SEND_DATA, ABLE_TO_RECV_ RSVP, LINE_RATE,

LOCAL_TRAFFIC_CONTROL, LOCAL_QOSABILITY, and END_ TO_END_QOSABILITY.

The first flag, ALLOWED_TO_SEND_DATA, is used once QOS levels are set on a socket using

SIO_SET_QOS but before any RSVP reservation request (RESV) message has been received.

Receiving a RESV message indicates that the desired bandwidth requirements have been allocated to

your flow. Prior to receiving the RESV message, the flow corresponding to the socket is given only

best-effort service. The RSVP protocol and reservation of network resources are covered in greater

detail in Chapter 10. Use the ALLOWED_TO_SEND_DATA flag to see if the current best-effort service

is sufficient for the levels of QOS requested by SIO_SET_QOS. The return value will be either

1—meaning that the current best-effort bandwidth is sufficient—or 0, meaning that the bandwidth

cannot accommodate the requested levels. If the ALLOWED_TO_SEND_DATA flag returns 0, the

sending application should wait until a RESV message is received before sending data.

The second flag, ABLE_TO_RECV_RSVP, indicates whether the host is able to receive and process

RSVP messages on the interface that the given socket is bound to. The return value is either 1 or 0,

corresponding to whether RSVP messages can or cannot be received, respectively.

The next flag, LINE_RATE, returns the best-effort line rate in kilobits per second (kbps). If the line rate

is not known, the value INFO_NOT_AVAILABLE is returned.

The last three flags indicate whether certain capabilities exist on the local machine or the network. All

three options return 1 to indicate the option is supported, 0 if it is not supported, or

INFO_NOT_AVAILABLE if there is no way to check. LOCAL_TRAFFIC_CONTROL is used to

determine if the Traffic Control component is installed and available on the machine.

LOCAL_QOSABILITY determines whether QOS is supported on the local machine. Finally,

END_TO_END_QOSABILITY indicates whether the local network is QOS-enabled.

SIO_GET_QOS

Which

Function?
Input Output

Winsock

Version
Description

WSAIoctl None QOS 2+
Returns the QOS structure associated with

the socket

This ioctl command retrieves the QOS structure associated with the socket. The supplied buffer must

be large enough to contain the whole structure, which in some cases is larger than sizeof(QOS)

because the structure might contain provider-specific information. For more information on QOS, see

Chapter 10. If this ioctl command is used on a socket whose address family does not support QOS,

the error WSAENOPROTOOPT is returned. This option and SIO_SET_QOS are available only on

platforms that provide a QOS-capable transport, such as Windows 98, Windows Me, and Windows

2000 and later versions.

SIO_SET_QOS

Which

Function?
Input Output

Winsock

Version
Description

WSAIoctl QOS None 2+
Sets the QOS attributes for the given

socket

This ioctl command is the companion to SIO_GET_QOS. The input parameter for this call is a QOS

structure that defines the bandwidth requirements for this socket. This call does not return any output

values. See Chapter 10 for more information about QOS. This option and SIO_GET_QOS are

available only on those platforms that provide a QOS-capable transport, such as Windows 98,

Windows Me, and Windows 2000 and later versions.

SIO_MULTIPOINT_LOOPBACK

Which

Function?
Input Output

Winsock

Version
Description

WSAIoctl BOOL BOOL 2+
Sets or gets whether multicast data will be

looped back to the socket

When sending multicast data, the default behavior is to have any data sent to the multicast group

posted as incoming data on the socket's receive queue. Of course, this loopback is in effect only if the

socket is also a member of the multicast group that it is sending to. Currently, this loopback behavior is

seen only in IP multicasting and is not present in ATM multicasting. To disable this loopback, pass a

Boolean variable with the value FALSE into the input parameter lpvInBuffer. To obtain the current

value of this option, leave the input value as NULL and supply a Boolean variable as the output

parameter.

SIO_MULTICAST_SCOPE

Which

Function?
Input Output

Winsock

Version
Description

WSAIoctl int int 2+
Gets or sets the TTL value for multicast

data

This ioctl command controls the lifetime, or scope, of multicast data. The scope is the number of

routed network segments that data is allowed to traverse; by default, the value is only 1. When a

multicast packet hits a router, the TTL value is decremented by 1. Once the TTL reaches 0, the packet

is discarded. To set the value, pass an integer with the desired TTL as lpvInBuffer; otherwise, to get

the current TTL value, call WSAIoctl with the lpvOutBuffer pointing to an integer.

SIO_KEEPALIVE_VALS

Which

Function?
Input Output

Winsock

Version
Description

WSAIoctl tcp_keepalive tcp_keepalive 2+
Sets the TCP keepalive active on

a per-connection basis

This ioctl command allows setting the TCP keepalive active on a per-connection basis and allows you

to specify the keepalive interval. The socket option SO_KEEPALIVE also enables TCP keepalives, but

the interval on which they are sent is set in the Registry. Changing the Registry value will change the

keepalive interval for all processes on the machine. This ioctl command allows you to set the interval

on a per-socket basis. To set the keepalive active on the given connected socket, initialize a

tcp_keepalive structure and pass it as the input buffer. The structure is defined as

 struct tcp_keepalive

{

 u_long onoff;

 u_long keepalivetime;

 u_long keepaliveinterval;

}

The meaning of the structure fields keepalivetime and keepaliveinterval are identical to the Registry

values discussed in the SO_KEEPALIVE option presented earlier in this chapter. Once a keepalive is

set, you can query for the current keepalive values by calling WSAIoctl with the

SIO_KEEPALIVE_VALS ioctl command and supplying a tcp_keepalive structure as the output buffer.

This ioctl command is available on Windows 2000 and later versions.

SIO_RCVALL

Which

Function?
Input Output

Winsock

Version
Description

WSAIoctl
unsigned

int
None 2+

Receives all packets on the

network

Using this ioctl command with the value TRUE allows the given socket to receive all IPv4 packets on

the network. This option is currently not implemented for IPv6 sockets, so the socket handle that must

be passed to WSAIoctl must be of address family AF_INET, socket type SOCK_RAW, and protocol

IPPROTO_IP. In addition, the socket must be bound to an explicit local interface. That is, you cannot

bind to INADDR_ANY. Once the socket is bound and the ioctl is set, calls to recv/WSARecv return

IPv4 datagrams. Keep in mind that these are datagrams—you must supply a sufficiently large buffer.

Because the total length field of the IPv4 header is a 16-bit quantity, the maximum theoretical limit is

65,535 bytes; however, in practice the maximum transmission unit (MTU) of networks is much lower.

Using this ioctl command requires Administrator privileges on the local machine. In addition, this ioctl

command is available in Windows 2000 and later versions.

A sample application on the companion CD, RCVALL.C, illustrates using this and the

other two SIO_RCVALL ioctl commands.

SIO_RCVALL_MCAST

Which

Function?
Input Output

Winsock

Version
Description

WSAIoctl unsigned None 2+ Receives all multicast packets on the

Which

Function?
Input Output

Winsock

Version
Description

int network

This ioctl command is similar to the SIO_RCVALL command just described. The same usage rules

mentioned for SIO_RCVALL also apply to this command except that the socket passed to WSAIoctl

should be created with the protocol equal to IPPROTO_UDP. The one difference is that only multicast

IPv4 traffic is returned, as opposed to all IP packets. This means that only IPv4 packets destined for

addresses in the range 224.0.0.0 through 239.255.255.255 are returned. This ioctl command is

available on Windows 2000 and later versions.

SIO_RCVALL_IGMPMCAST

Which

Function?
Input Output

Winsock

Version
Description

WSAIoctl
unsigned

int
None 2+

Receives all IGMP packets on the

network

Again, this ioctl command is the same as SIO_RCVALL, except that the socket passed into WSAIoctl

should be created with the protocol equal to IPPROTO_IGMP. Setting this option returns only IGMP

packets. See the SIO_RCVALL entry for instructions about how to use this option. This ioctl is

available in Windows 2000 and later versions.

SIO_ROUTING_INTERFACE_QUERY

Which

Function?
Input Output

Winsock

Version
Description

Both SOCKADDR None 2+
Returns the local interface used to

reach the supplied destination

This ioctl command allows you to find the address of the local interface that should be used to send

data to a remote machine. The remote machine's address should be supplied in the form of a

SOCKADDR structure as the lpvInBuffer parameter. In addition, a sufficiently large buffer needs to be

supplied as the lpvOutBuffer, which will contain an array of one or more SOCKADDR structures

describing the local interface(s) that can be used. This command can be used for either unicast or

multicast endpoints, and the interface returned from this call can be used in a subsequent call to bind.

The Windows 2000 and Windows XP plug-and-play capabilities are the motivation for having an ioctl

like this. The user can insert or remove a PCMCIA network card, affecting which interfaces an

application can use. A well-written application in Windows 2000 should take this into account.

Therefore, applications cannot rely on the information returned by

SIO_ROUTING_INTERFACE_QUERY to be persistent. To handle this situation, you should also use

the SIO_ROUTING_INTERFACE_CHANGE ioctl command, which notifies your application when the

interfaces change. Once this occurs, call SIO_ROUTING_INTERFACE_QUERY once again to obtain

the latest information.

See the code sample in the directory SIO_ROUTING_INTERFACE on the companion

CD for an example on how to use these ioctls.

SIO_ROUTING_INTERFACE_CHANGE

Which

Function?
Input Output

Winsock

Version
Description

WSAIoctl SOCKADDR None 2+
Sends notification when an interface to

an endpoint has changed

Using this ioctl command indicates that you want to be notified of any change in the local routing

interface that is used to access the specified remote address. When you use this command, a

SOCKADDR structure to the remote address in question is submitted in the input buffer and no data is

returned upon successful completion. However, if the interface to that route changes in some way, the

application will be notified, at which point the application can call

SIO_ROUTING_INTERFACE_QUERY to determine which interface to use as a result.

There are several ways to make a call to this command. If the socket is blocking, the WSAIoctl call will

not complete until some point at which the interface changes. If the socket is in non-blocking mode,

the error WSAEWOULDBLOCK is returned. Then the application can wait for routing-change events

through either WSAEventSelect or WSAAsyncSelect, with the FD_ROUTING_INTERFACE_CHANGE

flag set in the network event bitmask. Overlapped I/O can also be used to make the call. With this

method, you supply an event handle in the WSAOVERLAPPED structure, which is signaled upon a

routing change.

The address specified in the input SOCKADDR structure can be a specific address, or you can use the

wildcard INADDR_ANY, indicating that you want to be notified of any routing changes. Note that

because routing information remains fairly static, providers have the option of ignoring the information

that the application supplied in the input buffer and simply sending a notification upon any interface

change. As a result, it is probably a good idea to register for notification on any change and simply call

SIO_ROUTING_INTERFACE_QUERY to see whether the change affects your application.

SIO_ADDRESS_LIST_QUERY

Which

Function?
Input Output

Winsock

Version
Description

WSAIoctl None SOCKET_ADDRESS_LIST 2+
Returns a list of interfaces

that the socket can bind to

This ioctl is used to obtain a list of local transport addresses matching the socket's protocol family that

the application can bind to. The output buffer is a SOCKET_ADDRESS_LIST structure, defined as

typedef struct _SOCKET_ADDRESS_LIST

{

 INT iAddressCount;

 SOCKET_ADDRESS Address[1];

} SOCKET_ADDRESS_LIST, FAR * LPSOCKET_ADDRESS_LIST;

typedef struct _SOCKET_ADDRESS

{

 LPSOCKADDR lpSockaddr;

 INT iSockaddrLength;

} SOCKET_ADDRESS, *PSOCKET_ADDRESS, FAR * LPSOCKET_ADDRESS;

The iAddressCount field returns the number of address structures in the list, and the Address field is

an array of protocol family–specific addresses.

In Windows plug-and-play environments, the number of valid addresses can change dynamically;

therefore, applications cannot rely on the information this ioctl command returns to remain constant. To

take this into account, applications should first call SIO_ADDRESS_LIST_QUERY to obtain current

interface information and then call SIO_ADDRESS_LIST_CHANGE to receive notification of future

changes. If the address list changes, the application should again make a query.

If the supplied output buffer is not of sufficient size, WSAIoctl fails with WSAEFAULT, and the

lcbBytesReturned parameter indicates the required buffer size. This ioctl is supported in Windows

2000 or later versions.

See the code sample in the directory SIO_ADDRESS_LIST on the companion CD for an

example of how to use these ioctls.

SIO_ADDRESS_LIST_SORT

Which

Function?
Input Output

Winsock

Version
Description

WSAIoctl
SOCKET_

ADDRESS_LIST

SOCKET_

ADDRESS_LIST
2+

Sorts the address list

by preference

This option takes the SOCKET_ADDRESS_LIST structure returned from an

SIO_ADDRESS_LIST_QUERY command and sorts the addresses as well as fills in the appropriate

scope IDs in the case of IPv6 addresses. Note that the scope IDs are only set for site-local addresses

when there is a global address in the list, and the global address falls within one of the global

site-prefixes. This iocl is available in Windows XP and later versions.

SIO_ADDRESS_LIST_CHANGE

Which Function? Input Output Winsock Version Description

WSAIoctl None None 2+ Notifies when local interfaces change

An application can use this command to receive notification of changes in the list of local transport

addresses of the given socket's protocol family that the application can bind to. No information is

returned in the output parameters upon successful completion of the call.

There are several ways to make a call to this command. If the socket is blocking, the WSAIoctl call will

not complete until some point at which the interface changes. If the socket is in non-blocking mode,

the error WSAEWOULDBLOCK is returned. Then the application can wait for routing-change events

through either WSAEventSelect or WSAAsyncSelect with the FD_ADDRESS_LIST_CHANGE flag set

in the network event bitmask. In addition, overlapped I/O can be used to make the call. With this

method, you supply an event handle in the WSAOVERLAPPED structure, which is signaled on a

routing change. This ioctl is supported in Windows 2000 and later versions.

SIO_GET_INTERFACE_LIST

Which

Function?
Input Output

Winsock

Version
Description

WSAIoctl None
INTERFACE_INFO

[]
2+

Returns a list of local

interfaces

This ioctl is defined in Ws2tcpip.h. It is used to return information about each interface on the local

machine. Nothing is required on input, but on output, an array of INTERFACE_INFO structures is

returned. These structures are defined as

typedef struct _INTERFACE_INFO

{

 u_long iiFlags; /* Interface flags */

 sockaddr_gen iiAddress; /* Interface address */

 sockaddr_gen iiBroadcastAddress; /* Broadcast address */

 sockaddr_gen iiNetmask; /* Network mask */

} INTERFACE_INFO, FAR * LPINTERFACE_INFO;

#define IFF_UP 0x00000001 /* Interface is up */

#define IFF_BROADCAST 0x00000002 /* Broadcast is supported */

#define IFF_LOOPBACK 0x00000004 /* This is loopback interface */

#define IFF_POINTTOPOINT 0x00000008 /* This is point-to-point interface*/

#define IFF_MULTICAST 0x00000010 /* Multicast is supported */

typedef union sockaddr_gen

{

 struct sockaddr Address;

 struct sockaddr_in AddressIn;

 struct sockaddr_in6 AddressIn6;

} sockaddr_gen;

The iiFlags member returns a bitmask of flags indicating whether the interface is up (IFF_UP) as well

as whether broadcast (IFF_BROADCAST) or multicast (IFF_MULTICAST) is supported. It also

indicates whether the interface is loopback (IFF_LOOPBACK) or point-to-point (IFF_POINTTOPOINT).

The other three fields contain the address of the interface, the broadcast address, and the

corresponding netmask.

SIO_GET_INTERFACE_LIST_EX

Which

Function?
Input Output

Winsock

Version
Description

WSAIoctl None
INTERFACE_INFO_EX

[]
2+

Returns a list of local

interfaces

This ioctl is the same as SIO_GET_INTERFACE_LIST except the structure returned contains

embedded SOCKET_ADDRESS structure to describe each local interface, as opposed to

SOCKADDR_GEN structure. This removes the dependency the size of the socket address structure.

The INTERFACE_INFO_EX structure is defined as

typedef struct _INTERFACE_INFO_EX

{

 u_long iiFlags; /* Interface flags */

 SOCKET_ADDRESS iiAddress; /* Interface address */

 SOCKET_ADDRESS iiBroadcastAddress; /* Broadcast address */

 SOCKET_ADDRESS iiNetmask; /* Network mask */

} INTERFACE_INFO_EX, FAR * LPINTERFACE_INFO_EX;

The fields have the same meaning as the INTERFACE_INFO structure described previously. This ioctl

is supported in Windows XP and later versions.

SIO_GET_MULTICAST_FILTER

Which

Function?
Input Output

Winsock

Version
Description

WSAIoctl None
struct

ip_msfilter
2+

Returns the multicast filter set on a

socket

This ioctl retrieves the multicast filter set on a given socket. The multicast state is set with the

SIO_SET_MULTICAST_FILTER ioctl. This ioctl requires an IGMPv3-enabled network and is supported

in only Windows XP. See Chapter 9 for more information about multicasting.

SIO_SET_MULTICAST_FILTER

Which

Function?
Input Output

Winsock

Version
Description

WSAIoctl
struct

ip_msfilter
None 2+

Sets a multicast filter on a

socket

This ioctl sets the multicast state. The input parameter is a struct ip_msfilter, which is defined as

struct ip_msfilter {

 struct in_addr imsf_multiaddr;

 struct in_addr imsf_interface;

 u_long imsf_fmode;

 u_long imsf_numsrc;

 struct in_addr imsf_slist[1];

};

The first field is the multicast address to join and the second field is the local interface to join the

group. The imsf_fmode indicates whether the filter state is include or exclude by the defines

MCAST_INCLUDE and MCAST_EXCLUDE, respectively. The imsf_numsrc indicates the number of

IPv4 source addresses contained in the imsf_slist array.

This ioctl can be used to set the multicast state in a single call instead of multiple calls to

IP_ADD_SOURCE_MEMBERSHIP, IP_DROP_SOURCE_MEMBERSHIP, IP_BLOCK_SOURCE, and

IP_UNBLOCK_SOURCE. This ioctl requires an IGMPv3-enabled network and Windows XP. See

Chapter 9 for more information.

SIO_INDEX_BIND

Which

Function?
Input Output

Winsock

Version
Description

WSAIoctl int None 2+
Binds the socket to the given interface

index

This ioctl binds a socket to an interface index specified as the input parameter instead of an address.

This ioctl is supported in Windows 2000 and later versions.

SIO_INDEX_MCASTIF

Which

Function?
Input Output

Winsock

Version
Description

WSAIoctl Int None 2+
Sets the multicast send interface to the

specified index

This ioctl sets the outgoing interface for multicast traffic via an interface index as the input parameter

instead of an address. This ioctl is supported on Windows 2000 and later versions.

SIO_INDEX_ADD_MCAST

Which

Function?
Input Output

Winsock

Version
Description

WSAIoctl
struct

ip_mreq
None 2+

Joins a multicast group on the

specified interface index

This ioctl joins a multicast group using an interface index instead of an address. The input parameter

is a struct ip_mreq structure except that the imr_interface field contains the interface index. See

Chapter 9 for more information. This ioctl is supported in Windows 2000 and later versions.

SIO_INDEX_DEL_MCAST

Which

Function?
Input Output

Winsock

Version
Description

WSAIoctl
struct

ip_mreq
None 2+

Drops a multicast group from the

specified interface index

This ioctl drops membership to the specified multicast group from the selected interface. This ioctl is

supported in Windows 2000 and later versions. See Chapter 9 for more details.

SIO_NSP_NOTIFY_CHANGE

Which

Function?
Input Output

Winsock

Version
Description

WSANSPIoctl None None 2+
Notifies when a name space query is no

longer valid

This ioctl is used to receive notification when the available networks change. This ioctl is supported in

Windows XP and later versions. See Chapter 8 for more information about this ioctl.

SIO_QUERY_TARGET_PNP_HANDLE

Which

Function?
Input Output

Winsock

Version
Description

WSAIoctl None SOCKET 2+
Returns the underlying provider's

SOCKET handle

This ioctl queries the underlying provider for a handle that can be used to receive plug and play event

notifications. This ioctl is supported in Windows 2000 and later versions.

SIO_UDP_CONNRESET

Which

Function?
Input Output

Winsock

Version
Description

WSAIoctl BOOL None 2+
Enables ICMP errors to be propagated to

the socket

By default, any ICMP errors generated by traffic sent on a UDP socket are not propagated to the

socket. For example, if data is sent to an endpoint where there is no socket listening, an ICMP error is

returned. When this ioctl is set to TRUE, these errors are propagated to the sending socket, usually in

the form of a WSAECONNRESET error. This ioctl is supported in Windows 2000 and later versions.

Secure Socket Layer Ioctl Commands

SSL commands are supported only in Windows CE. Currently, Windows 95, Windows 98, Windows

Me, Windows NT, Windows 2000, and Windows XP do not provide an SSL-capable provider. Because

these commands are available only in Windows CE, the only version of Winsock currently supported

for these options is version 1.

SO_SSL_GET_CAPABILITIES

Which Function? Input Output Description

WSAIoctl None DWORD Returns the Winsock security provider's capabilities

This command retrieves a set of flags describing the Windows Sockets security provider's capabilities.

The output buffer must be a pointer to a DWORD bit field. At present, only the flag SO_CAP_CLIENT

is defined.

SO_SSL_GET_FLAGS

Which Function? Input Output Description

WSAIoctl None DWORD Returns s-channel–specific flags associated with socket

This command retrieves s-channel–specific flags associated with a particular socket. The output buffer

must be a pointer to a DWORD bit field. See SO_SSL_SET_FLAGS below for details of valid flags.

SO_SSL_SET_FLAGS

Which Function? Input Output Description

WSAIoctl DWORD None Sets the socket's s-channel–specific flags

The input buffer here must be a pointer to a DWORD bit field. Currently, the only flag defined is

SSL_FLAG_DEFER_HANDSHAKE, which allows the application to send and receive plain text data

before switching to cipher text. This flag is required for setting up communication through proxy

servers.

Normally, the Windows Sockets security provider performs the secure handshake in the Windows

Sockets connect function. However, if this flag is set, the handshake is deferred until the application

issues the SO_SSL_PERFORM_HANDSHAKE control code. After the handshake, this flag is reset.

SO_SSL_GET_PROTOCOLS

Which

Function?
Input Output Description

WSAIoctl None SSLPROTOCOLS
Returns a list of protocols that the security provider

supports

This command retrieves a list of protocols that the provider currently supports on this socket. The

output buffer must be a pointer to a SSLPROTOCOLS structure, as described here:

typedef struct _SSLPROTOCOL

{

 DWORD dwProtocol;

 DWORD dwVersion;

 DWORD dwFlags;

} SSLPROTOCOL, *LPSSLPROTOCOL;

typedef struct _SSLPROTOCOLS

{

 DWORD dwCount;

 SSLPROTOCOL ProtocolList[1];

} SSLPROTOCOLS, FAR *LPSSLPROTOCOLS;

Valid protocols for the dwProtocol field include SSL_PROTOCOL_SSL2, SSL_PROTOCOL_SSL3,

and SSL_PROTOCOL_PCT1.

SO_SSL_SET_PROTOCOLS

Which

Function?
Input Output Description

WSAIoctl SSLPROTOCOLS None
Sets a list of protocols that the underlying provider

should support

This ioctl command specifies a list of protocols that the provider is to support on this socket. The input

buffer must be a pointer to the SSLPROTOCOLS structure described previously.

SO_SSL_SET_VALIDATE_CERT_HOOK

Which

Function?
Input Output Description

WSAIoctl SSLVALIDATECERTHOOK None
Sets the validation function for accepting

SSL certificates

This ioctl command sets the pointer to the socket's certificate validation hook. It is used to specify the

callback function the Windows Sockets security provider invokes when it receives a set of credentials

from the remote party. The input buffer must be a pointer to the SSLVALIDATECERTHOOK structure,

described as follows:

typedef struct

{

 SSLVALIDATECERTFUNC HookFunc;

 LPVOID pvArg;

} SSLVALIDATECERTHOOK, *PSSLVALIDATECERTHOOK;

The HookFunc field is a pointer to a certificate validation callback function; pvArg is a pointer to

application-specific data and can be used by the application for any purpose.

SO_SSL_PERFORM_HANDSHAKE

Which Function? Input Output Description

WSAIoctl None None Initiates a secure handshake on a connected socket

This ioctl command initiates the secure handshake sequence on a connected socket in which the

SSL_FLAG_DEFER_HANDSHAKE flag has been set prior to the connection. Data buffers are not

required, but the SSL_FLAG_DEFER_HANDSHAKE flag will be reset.

ATM Ioctl Commands

The ioctl commands in this section are specific to the ATM protocol family. They are fairly basic,

dealing mainly with obtaining the number of ATM devices and ATM addresses of the local interfaces.

See Chapter 4 for more detailed information about the addressing mechanisms for ATM.

SIO_GET_NUMBER_OF_ATM_DEVICES

Which Function? Input Output Winsock Version Description

WSAIoctl None DWORD 2+ Returns the number of ATM adapters

This ioctl command fills the output buffer pointed to by lpvOutBuffer with a DWORD containing the

number of ATM devices in the system. Each specific device is identified by a unique ID, in the range 0

to the number returned by this ioctl command minus 1.

SIO_GET_ATM_ADDRESS

Which

Function?
Input Output

Winsock

Version
Description

WSAIoctl DWORD ATM_ADDRESS 2+
Returns the ATM address for the

given device

This ioctl command retrieves the local ATM address associated with the specified device. A device ID

of type DWORD is specified in the input buffer for this ioctl command, and the output buffer pointed to

by lpvOutBuffer will be filled with an ATM_ADDRESS structure containing a local ATM address

suitable for use with bind.

SIO_ASSOCIATE_PVC

Which

Function?
Input Output

Winsock

Version
Description

WSAIoctl ATM_PVC_PARAMS None 2+
Associates socket with a

permanent virtual circuit

This ioctl command associates the socket with a permanent virtual circuit (PVC), as indicated in the

input buffer, which contains the ATM_PVC_PARAMS structure. The socket should be of the AF_ATM

address family. After successfully returning from this function, the application is able to start sending

and receiving data as if the connection has been set up.

The ATM_PVC_PARAMS structure is defined as

typedef struct

{

 ATM_CONNECTION_ID PvcConnectionId;

 QOS PvcQos;

} ATM_PVC_PARAMS;

typedef struct

{

 DWORD DeviceNumber;

 DWORD VPI;

 DWORD VCI;

} ATM_CONNECTION_ID;

SIO_GET_ATM_CONNECTION_ID

Which

Function?
Input Output

Winsock

Version
Description

Both None ATM_CONNECTION_ID 2+
Determines whether OOB

data has been read

This ioctl command retrieves the ATM Connection ID associated with the socket. Upon successfully

returning from this function, the output buffer pointed to by lpvOutBuffer is filled with an

ATM_CONNECTION_ID structure containing the device number and Virtual Path/Channel Identifier

(VPI/VCI) values, which are defined in the earlier entry for SIO_ASSOCIATE_PVC.

Conclusion

Such an enormous variety of socket options and ioctl commands might seem

overwhelming at first, but they do allow applications to access protocol-specific

characteristics, as well as offer you the capability to fine-tune an application. In some

cases, an application must use one or more socket options or ioctls in order to

operate, as in the case of AppleTalk or IrDA. Even so, an application will most likely

use only a few options at a time. Of course, one of the more frustrating aspects of

socket options and ioctls is that not all options or ioctls are available on every

Windows platform, causing trouble for those applications that are attempting to be

cross-platform–compatible.

Chapter 8

Registration and Name Resolution

This chapter covers the protocol-independent name registration and resolution model

introduced by Winsock 2. The method introduced by Winsock 1 using GetService and

SetService is now obsolete; therefore, we will not cover it. We will first give a bit of

background on the importance and uses of name registration and resolution. Then we

will move into the different types of name registration models available, followed by a

description of the functions that Winsock 2 provides that can be used to resolve

names. We will also cover how to register your own services for others to look up, how

to query DNS names and how to query for IP network names using the NLA service.

Background

Name registration is the process of associating a user-friendly name with a

protocol-specific address. Host names and their IP addresses are a good example.

Most people find it cumbersome to remember a workstation's address, such as

“157.54.185.186.” They would rather name their machines something easier to

remember, such as “MP3Server.” In the case of IP, DNS maps IP addresses to

names. Other protocols offer ways of registering their specific addresses to friendlier

names. Name spaces will be discussed in more detail in the next section.

Not only do you want to be able to register and resolve host names, you would also

like the ability to map your Winsock server's address so that clients can retrieve it to

connect to the server. For example, you might have a server running on machine

157.64.185.186 off port 5000. If the server runs on only that machine, you can always

hardcode the server address in the client application.

But what if you wanted a more dynamic server—one that can run on multiple

machines, perhaps a distributed application with fault tolerance? If one server crashed

or was too busy, another instance could be started somewhere else to service clients.

In this case, finding out where the servers are possibly running can create headaches.

Ideally, you want the ability to register your server—named “Fault-Tolerant Distributed

Server”—with multiple addresses. In addition, you want to be able to dynamically

update the registered service and its addresses. This is what name registration and

resolution is all about, and this chapter will address the facilities Winsock offers to

accommodate distributed server registration and name resolution.

Name Space Models

Before we begin to explore the Winsock function, we need to introduce the various

name space models that most of the protocols adhere to. A name space offers the

capability to associate the protocol and its addressing attributes with a user-friendly

name. Some of the more common name spaces are DNS for IP and the NetWare

Directory Services (NDS) from Novell for IPX. These name spaces vary widely in their

organization and implementation. Some of their properties are particularly important in

understanding how to register and resolve names from Winsock.

There are three different types of name spaces: dynamic, static, and persistent. A

dynamic name space allows you to register a service on the fly. Also, clients can look

up the service at run time. Typically, a dynamic name space relies on periodically

broadcasting service information to signal that the service is continuously available.

Examples of dynamic name spaces include SAP—used in an IPX networking

environment—and AppleTalk's NBP name space.

Static name spaces are the least flexible of the three types. Registering a service in a

static name space requires that it be manually registered ahead of time. There is no

way to register a name with a static name space from Winsock—there is only a

method of resolving names. DNS is an example of a static name space. For example,

with DNS you manually enter IP addresses and host names into a file that the DNS

service uses to handle resolution requests. The Windows XP platform supports

dynamic DNS, but in general, the Winsock interface does not provide a method to

update DNS.

Persistent name spaces, like dynamic name spaces, allow services to register on the

fly. Unlike dynamic name spaces, however, the persistent model maintains the

registration information in nonvolatile storage, such as a file on a disk. Only when the

service requests that it be removed will a persistent name space delete its entry. The

advantage of a persistent name space is that it is flexible yet does not continually

broadcast any kind of availability information. The drawback is that if a service is not

well behaved (or is poorly written), it can go away without ever notifying the name

space provider to remove its service entry, leading clients to believe incorrectly that

the service is still available. NDS is an example of a persistent name space.

Enumerating Name Spaces

Now that you are acquainted with the various attributes of a name space, let's

examine how to find out which name spaces are available on a machine. Most of the

predefined name spaces are declared in the NSPAPI.H header file. Each name space

has an integer value assigned to it. Table 8-1 contains some of the more commonly

supported name spaces available on Windows platforms. The name spaces returned

depend on which protocols are installed on the workstation. For example, unless

IPX/SPX is installed on a workstation, the NS_SAP name space will not be returned.

Table 8-1Supported Name Spaces

Name

Space
Value Description

NS_SAP 1 SAP name space; used on IPX networks

NS_NDS 2 NDS name space; used on IPX networks

NS_DNS 11
DNS name space; most commonly found on TCP/IP networks

and on the Internet

ND_NTDS 32
Windows NT domain space; protocol-independent name

space found on Windows 2000 and Windows XP

When you install IPX/SPX on a machine, the SAP name space is supported for

queries only. If you want to register your own service, you also need to install the SAP

Agent service. In some cases, the Client Services for NetWare are required to display

local IPX interface addresses correctly. Without this service, the local addresses show

up as all zeros. In addition, you must add an NDS client to use the NDS name space.

You can add all of these protocols and services from the Network Control Panel.

Winsock 2 provides a method of programmatically obtaining a list of the name spaces

available on a system. This is accomplished by calling the function

WSAEnumNameSpaceProviders, which is defined as

INT WSAEnumNameSpaceProviders (

 LPDWORD lpdwBufferLength,

 LPWSANAMESPACE_INFO lpnspBuffer

);

The first parameter is the size of the buffer submitted as lpnspBuffer, which is a

sufficiently large array of WSANAMESPACE_INFO structures. If the function is called

with an insufficiently large buffer, it fails, sets lpdwBufferLength to the required

minimum size, and causes WSAGetLastError to return WSAEFAULT. The function

returns the number of WSANAMESPACE_INFO structures returned, or

SOCKET_ERROR upon any error.

The WSANAMESPACE_INFO structure describes an individual name space installed

on the machine. This structure is defined as

typedef struct _WSANAMESPACE_INFO {

 GUID NSProviderId;

 DWORD dwNameSpace;

 BOOL fActive;

 DWORD dwVersion;

 LPTSTR lpszIdentifier;

} WSANAMESPACE_INFO, *PWSANAMESPACE_INFO,

*LPWSANAMESPACE_INFO;

There are actually two definitions for this structure: Unicode and ANSI. The Winsock 2

header file type defines the appropriate structure to WSANAMESPACE_INFO

according to how you build your project. Actually, all structures and Winsock 2

registration and name resolution functions have both ANSI and UNICODE versions.

The first member of this structure, NSProviderId, is a GUID that describes this

particular name space. The dwNameSpace field is the name space's integer constant,

such as NS_DNS or NS_SAP. The fActive member is a Boolean value, which if true

indicates that the name space is available and ready to take queries; otherwise, the

provider is inactive and unable to take queries that specifically reference this provider.

The dwVersion field simply identifies the version of this provider. Finally, the

lpszIdentifier is a descriptive string identifier for this provider.

Registering a Service

The next step is to find out how to set up your own service and make it available and known to other

machines on the network. This is known as registering an instance of your service with the name

space provider so that it can either be advertised or queried by clients that want to communicate with

it. Registering a service is actually a two-step process. The first step is to install a service class that

describes your service's characteristics.

It is important to distinguish between a service class and the actual service. For example, the service

class describes which name spaces your service is to be registered with as well as certain

characteristics about the service, such as whether it is connection-oriented or connectionless. The

service class in no way describes how a client can establish a connection. Once the service class is

registered, you register an actual instance of your service that references the correct service class it

belongs to. Once this occurs, a client can perform a query to find out where your service instance is

running and therefore can attempt communication.

Installing a Service Class

Before you register an instance of a service, you need to define the service class that your service will

belong to. A service class defines what name spaces that a service belonging to this class is

registered with. The Winsock function that registers a service class is WSAInstallServiceClass, which

is defined as

INT WSAInstallServiceClass (LPWSASERVICECLASSINFO lpServiceClassInfo);

The single parameter lpServiceClassInfo points to a WSASERVICECLASSINFO structure that defines

the attributes of this class. The structure is defined as

typedef struct _WSAServiceClassInfo {

 LPGUID lpServiceClassId;

 LPTSTR lpszServiceClassName;

 DWORD dwCount;

 LPWSANSCLASSINFO lpClassInfos;

} WSASERVICECLASSINFO, *PWSASERVICECLASSINFO, *LPWSASERVICECLASSINFO;

The first field is a GUID that uniquely identifies this particular service class. There are a couple of ways

to generate a GUID to use here. One way is to use the utility UUIDGEN.EXE and create a GUID for

this service class. The problem with this method is that if you need to refer back to this GUID, you

basically have to hardcode its value into a header file somewhere. This is where the second solution is

useful. Within the header file SVCGUID.H, several macros generate a GUID based on a simple

attribute. For example, if you install a service class for SAP that will be used to advertise your IPX

application, you can use the SVCID_NETWARE macro. The only parameter is the SAP ID number you

assign to your “class” of applications. A number of SAP IDs are predefined in NetWare, such as 0x4

for file servers and 0x7 for a print server. Using this method, all you need is the easy-to-remember

SAP ID to generate the GUID for the corresponding service class. In addition, several macros exist

that accept a port number as a parameter and return the corresponding service's GUID. Take a look at

the header file SVCGUID.H, which contains other useful macros for the reverse operation—extracting

the service port number from a GUID. Table 8-2 lists the most commonly used macros for generating

GUIDs from simple protocol attributes such as port numbers or SAP IDs. The header file also contains

constants for well-known port numbers for services such as FTP and Telnet.

Table 8-2Common Service ID Macros

Macro Description

SVCID_TCP(Port) Generates a GUID from a TCP port number

SVCID_DNS(RecordType) Generates a GUID from a DNS record type

SVCID_UDP(Port) Generates a GUID from a UDP port number

SVCID_NETWARE(SapId) Generates a GUID from an SAP ID number

The second field of the WSASERVICECLASSINFO structure, lpszServiceClassName, is simply a

string name for this particular service class. The last two fields are related. The dwCount field refers to

the number of WSANSCLASSINFO structures passed in the lpClassInfos field. These structures

define the name spaces and protocol characteristics that apply to the services that register under this

service class. The structure is defined as

typedef struct _WSANSClassInfo {

 LPSTR lpszName;

 DWORD dwNameSpace;

 DWORD dwValueType;

 DWORD dwValueSize;

 LPVOID lpValue;

}WSANSCLASSINFO, *PWSANSCLASSINFO, *LPWSANSCLASSINFO;

The lpszName field defines the attribute that the service class possesses. Table 8-3 lists the various

attributes available. Every attribute listed has a value type of REG_DWORD.

Table 8-3Service Types

String Value Constant Define
Name

Space
Description

“SapId”
SERVICE_TYPE_VALUE_

SAPID
NS_SAP SAP identifier

“Connection-

Oriented”

SERVICE_TYPE_VALUE_

CONN
Any

Indicates whether service is

connection-oriented or

connectionless

“TcpPort”
SERVICE_TYPE_VALUE_

TCPPORT

NS_DNS

NS_NTDS
TCP port

“UdpPort”
SERVICE_TYPE_VALUE_

UDPPORT

NS_DNS

NS_NTDS
UDP port

The dwNameSpace is the name space this attribute applies to. Table 8-3 also lists the name spaces to

which the various service types usually apply. The last three fields, dwValueType, dwValueSize, and

lpValue, all describe the value associated with the service type. The dwValueType field signifies the

type of data associated with this entry and therefore can be one of the registry type values. For

example, if the value is a DWORD, the value type is REG_DWORD. The next field, dwValueSize, is

simply the size of the data passed as lpValue, which is a pointer to the data.

The following code example illustrates how to install a service class named “Widget Server Class.”

WSASERVICECLASSINFO sci;

WSANSCLASSINFO aNameSpaceClassInfo[4];

DWORD dwSapId = 200,

 dwUdpPort = 5150,

 dwZero = 0;

int ret;

memset(&sci, 0, sizeof(sci));

SET_NETWARE_SVCID(&sci.lpServiceClassId, dwSapId);

sci.lpszServiceClassName = (LPSTR)"Widget Server Class";

sci.dwCount = 4;

sci.lpClassInfos = aNameSpaceClassInfo;

memset(aNameSpaceClassInfo, 0, sizeof(WSANSCLASSINFO) * 4);

// NTDS name space setup

aNameSpaceClassInfo[0].lpszName = SERVICE_TYPE_VALUE_CONN;

aNameSpaceClassInfo[0].dwNameSpace = NS_NTDS;

aNameSpaceClassInfo[0].dwValueType = REG_DWORD;

aNameSpaceClassInfo[0].dwValueSize = sizeof(DWORD);

aNameSpaceClassInfo[0].lpValue = &dwZero;

aNameSpaceClassInfo[1].lpszName = SERVICE_TYPE_VALUE_UDPPORT;

aNameSpaceClassInfo[1].dwNameSpace = NS_NTDS;

aNameSpaceClassInfo[1].dwValueType = REG_DWORD;

aNameSpaceClassInfo[1].dwValueSize = sizeof(DWORD);

aNameSpaceClassInfo[1].lpValue = &dwUdpPort;

// SAP name space setup

aNameSpaceClassInfo[2].lpszName = SERVICE_TYPE_VALUE_CONN;

aNameSpaceClassInfo[2].dwNameSpace = NS_SAP;

aNameSpaceClassInfo[2].dwValueType = REG_DWORD;

aNameSpaceClassInfo[2].dwValueSize = sizeof(DWORD);

aNameSpaceClassInfo[2].lpValue = &dwZero;

aNameSpaceClassInfo[3].lpszName = SERVICE_TYPE_VALUE_SAPID;

aNameSpaceClassInfo[3].dwNameSpace = NS_SAP;

aNameSpaceClassInfo[3].dwValueType = REG_DWORD;

aNameSpaceClassInfo[3].dwValueSize = sizeof(DWORD);

aNameSpaceClassInfo[3].lpValue = &dwSapId;

WSAInstallServiceClass(&sci);

The first noticeable thing this example illustrates is to pick a GUID that this class will be registered

under. The services you are designing all belong to the class “Widget Server Class,” and this service

class describes the general attributes belonging to an instance of the service. In this example, we

chose to register this class with the NetWare SAP ID of 200. This is only for convenience. We could

have picked an arbitrary GUID or even the GUID based on the UDP port number. In addition, the

service can use the UDP protocol, in which case the clients are listening on port 5150.

The next step of note is setting the dwCount field of the WSASERVICECLASSINFO to 4. In this

example, you will register this service class with both the SAP name space (NS_SAP) and the

Windows NT domain space (NS_NTDS). The odd part you'll notice is that we use four

WSANSCLASSINFO structures even though we are registering the service class with only two name

spaces. This is because we define two attributes for each name space and each attribute requires a

separate WSANSCLASSINFO structure. For each name space, we define whether the service will be

connection-oriented. In this example, the name space is connectionless because we set the value for

SERVICE_TYPE_VALUE_CONN to be a Boolean 0. For the Windows NT domain space, we also set

the UDP port number this service normally runs under by using the service type

SERVICE_TYPE_VALUE_UDPPORT. For the SAP name space, we set the SAP ID of our service

with service type SERVICE_TYPE_VALUE_SAPID.

For every WSANSCLASSINFO entry, you must set the name space identifier that this service type

applies to, as well as the type and size of the value. Table 8-3 contains the types required for the

service types, which all turn out to be DWORD in the example. The last step is simply to call

WSAInstallServiceClass and pass the WSASERVICECLASSINFO structure as the parameter. If WSA-

InstallServiceClass is successful, the function returns 0; otherwise, it returns SOCKET_ERROR. If

WSASERVICECLASSINFO is invalid or improperly formed, WSAGetLastError returns WSAEINVAL. If

the service class already exists, then WSAGetLastError returns WSAEALREADY. In this case, a

service class can be removed by calling WSARemoveServiceClass, which is declared as

INT WSARemoveServiceClass(LPGUID lpServiceClassId);

This function's only parameter is a pointer to the GUID that defines the given service class.

Service Registration

Once you have a service class installed that describes the general attributes of your service, you can

register an instance of your service so that it is available for lookup by other clients on remote

machines. The Winsock function to register an instance of a service is WSASetService.

INT WSASetService (

 LPWSAQUERYSET lpqsRegInfo,

 WSAESETSERVICEOP essOperation,

 DWORD dwControlFlags

);

The first parameter, lpqsRegInfo, is a pointer to a WSAQUERYSET structure that defines the

particular service. We'll discuss what goes in this structure shortly. The essOperation parameter

specifies the action to take place, such as registration or deregistration. Table 8-4 describes the three

valid flags.

Table 8-4Set Service Flags

Operation Flag Meaning

RNRSERVICE_REGISTER

Register the service. For dynamic name providers, this means to

begin actively advertising the service. For persistent name

providers, this means updating the database. For static name

providers, this does nothing.

RNRSERVICE_DEREGISTER

Remove the entire service from the registry. For dynamic name

providers, this means to stop advertising the service. For persistent

name providers, this means removing the service from the

database. For static name providers, this does nothing.

RNRSERVICE_DELETE

Remove only the given instance of the service from the name

space. A service might be regist-ered that contains multiple

instances (using the SERVICE_MULTIPLE flag upon registration),

and this command removes only the given instance of the service

(as defined by a CSADDR_INFO structure). Again, this applies only

to dynamic and persistent name providers.

The third parameter, dwControlFlags, is either 0 or the flag SERVICE_ MULTIPLE. This flag is used if

multiple addresses will be registered under the given service instance. For example, say you have a

service that you want to run on five machines. The WSAQUERYSET structure passed into

WSASetService would reference five CSADDR_INFO structures, each describing the location of one

instance of the service. This requires the SERVICE_MULTIPLE flag to be set. In addition, at some

later point you can deregister a single instance of the service by using the RNRSERVICE_DELETE

service flag. Table 8-5 gives the possible combinations of the operation and control flags and

describes the result of the command, depending on whether the service already exists.

Table 8-5WSASetService Flag Combinations

RNRSERVICE_REGISTER

Flags
Meaning

If the Service Already Exists
If the Service Does Not

Exist

None
Overwrite the existing service

instance.

Add a new service entry on

the given address.

SERVICE_MULTIPLE
Update the service instance by

adding the new addresses.

Add a new service entry on

the given addresses.

RNRSERVICE_DEREGISTER

Flags
Meaning

If the Service Already Exists
If the Service Does Not

Exist

None

Remove all instances of the

service, but do not remove the

service. (Basically,

WSAQUERYSET remains, but the

number of CSADDR_INFO

structures is 0.)

This is an error, and

WSASERVICE_NOT_

FOUND is returned.

SERVICE_MULTIPLE

Update the service by removing

the given addresses. The service

remains registered, even if no

addresses remain.

This is an error, and

WSASERVICE_NOT_

FOUND is returned.

RNRSERVICE_DELETE Flags Meaning

If the Service Already Exists
If the Service Does Not

Exist

None
The service is removed completely

from the name space.

This is an error, and

WSASERVICE_NOT_

FOUND is returned.

SERVICE_MULTIPLE

Update the service by removing

the given addresses. If no

addresses remain, the service is

completely removed from the name

space.

This is an error, and

WSASERVICE_NOT_

FOUND is returned.

Now that you have an understanding of what WSASetService does, let's take a look at the

WSAQUERYSET structure that needs to be filled out and passed into the function. This structure is

defined as

typedef struct _WSAQuerySetW {

 DWORD dwSize;

 LPTSTR lpszServiceInstanceName;

 LPGUID lpServiceClassId;

 LPWSAVERSION lpVersion;

 LPTSTR lpszComment;

 DWORD dwNameSpace;

 LPGUID lpNSProviderId;

 LPTSTR lpszContext;

 DWORD dwNumberOfProtocols;

 LPAFPROTOCOLS lpafpProtocols;

 LPTSTR lpszQueryString;

 DWORD dwNumberOfCsAddrs;

 LPCSADDR_INFO lpcsaBuffer;

 DWORD dwOutputFlags;

 LPBLOB lpBlob;

} WSAQUERYSETW, *PWSAQUERYSETW, *LPWSAQUERYSETW;

The dwSize field should be set to the size of the WSAQUERYSET structure. The

lpszServiceInstanceName field contains a string identifier naming this instance of the server. The

lpServiceClassId field is the GUID for the service class that this service instance belongs to. The

lpVersion field is optional. You can use it to supply version information that could be useful when a

client queries for a service. The lpszComment field is also optional. You can specify any kind of

comment string here. The dwNameSpace field specifies the name spaces to register your service with.

If you're using only a single name space, use that value only; otherwise, use NS_ALL. It is possible to

reference a custom name space provider. (Writing your own name space is discussed in Chapter 12.)

For a custom name space provider, the dwNameSpace field is set to 0 and lpNSProviderId specifies

the GUID representing the custom provider. The lpszContext field specifies the starting point of the

query in a hierarchical name space such as NDS.

The dwNumberOfProtocols and lpafpProtocols fields are optional parameters used to narrow the

search to return only the supplied protocols. The dwNumberOfProtocols field references the number of

AFPROTOCOLS structures contained in the lpafpProtocols array. The structure is defined as

typedef struct _AFPROTOCOLS {

 INT iAddressFamily;

 INT iProtocol;

} AFPROTOCOLS, *PAFPROTOCOLS, *LPAFPROTOCOLS;

The first field, iAddressFamily, is the address family constant, such as AF_INET or AF_IPX. The

second field, iProtocol, is the protocol from the given address family, such as IPPROTO_TCP or

NSPROTO_IPX.

The next field in the WSAQUERYSET structure, lpszQueryString, is optional and used only by name

spaces supporting enriched Structured Query Language (SQL) queries such as Whois++. This

parameter is used to specify that string.

The next two fields are the most important when registering a service. The dwNumberOfCsAddrs field

simply provides the number of CSADDR_INFO structures passed in lpcsaBuffer. The CSADDR_INFO

structure defines the address family and the address where the service is located. If multiple structures

are present, multiple instances of the service are available. The structure is defined as

typedef struct _CSADDR_INFO {

 SOCKET_ADDRESS LocalAddr;

 SOCKET_ADDRESS RemoteAddr;

 INT iSocketType;

 INT iProtocol;

} CSADDR_INFO;

typedef struct _SOCKET_ADDRESS {

 LPSOCKADDR lpSockaddr;

 INT iSockaddrLength;

} SOCKET_ADDRESS, *PSOCKET_ADDRESS, FAR * LPSOCKET_ADDRESS;

In addition, the definition of SOCKET_ADDRESS is included. When registering a service, you can

specify the local and remote addresses. The local address field (LocalAddr) is used to specify the

address that an instance of this service should bind to, and the remote address field (RemoteAddr) is

the address a client should use in a connect or a sendto call. The other two fields, iSocketType and

iProtocol, specify the socket type (for example, SOCK_STREAM or SOCK_DGRAM) and the protocol

family (for example, AF_INET, AF_IPX) for the given addresses.

The last two fields of the WSAQUERYSET structure are dwOutputFlags and lpBlob. These two fields

are generally not needed for service registration; they are more useful when querying for a service

instance (covered in the next section). Only the name space provider can return a BLOB structure.

That is, when registering a service you cannot add your own BLOB structure to be returned in client

queries.

Table 8-6 lists the fields of the WSAQUERYSET structure and identifies which are required or optional

depending on whether a query or a registration is being performed.

Table 8-6WSAQUERYSET Fields

Field Query Registration

dwSize Required Required

lpszServiceInstanceName String or “*” required Required

lpServiceClassId Required Required

lpVersion Optional Optional

lpszComment Ignored Optional

dwNameSpace

lpNSProviderId

One of these two fields must be

specified

One of these two fields must be

specified

lpszContext Optional Optional

dwNumberOfProtocols Zero or more Zero or more

lpafpProtocols Optional Optional

lpszQueryString Optional Ignored

dwNumberOfCsAddrs Ignored Required

lpcsaBuffer Ignored Required

dwOutputFlags Ignored Optional

lpBlob
Ignored, can be returned by the

query
Ignored

Service Registration Example

In this section, we'll show you how to register your own service under both the SAP and NTDS name

spaces. The Windows NT domain space is quite powerful, which is why we want to include it in our

example. However, there are a few features to be aware of before you begin. First, the Windows NT

domain space requires Windows 2000 or Windows XP because it is based on the Active Directory

directory service. This also means that the Windows 2000 or Windows XP workstation on which you

hope to register and/or look up services must have a machine account in that domain in order to

access Active Directory. The other feature to note is that the Windows NT domain space is capable of

registering socket addresses from any protocol family. Your IP and IPX services can all be registered

in the same name space. Also, there is a dynamic way of adding and removing IP-based services. The

following code example illustrates the basic steps required to register an instance of a service. For

simplicity, no error checking is performed.

SOCKET socks[2];

WSAQUERYSET qs;

CSADDR_INFO lpCSAddr[2];

SOCKADDR_IN sa_in;

SOCKADDR_IPX sa_ipx;

IPX_ADDRESS_DATA ipx_data;

GUID guid = SVCID_NETWARE(200);

int ret, cb;

memset(&qs, 0, sizeof(WSAQUERYSET));

qs.dwSize = sizeof(WSAQUERYSET);

qs.lpszServiceInstanceName = (LPSTR)"Widget Server";

qs.lpServiceClassId = &guid;

qs.dwNameSpace = NS_ALL;

qs.lpNSProviderId = NULL;

qs.lpcsaBuffer = lpCSAddr;

qs.lpBlob = NULL;

//

// Set the IP address of our service

//

memset(&sa_in, 0, sizeof(sa_in));

sa_in.sin_family = AF_INET;

sa_in.sin_addr.s_addr = htonl(INADDR_ANY);

sa_in.sin_port = 5150;

socks[0] = socket(AF_INET, SOCK_DGRAM, IPPROTO_UDP);

ret = bind(socks[0], (SOCKADDR *)&sa_in, sizeof(sa_in));

cb = sizeof(sa_in);

getsockname(socks[0], (SOCKADDR *)&sa_in, &cb);

lpCSAddr[0].iSocketType = SOCK_DGRAM;

lpCSAddr[0].iProtocol = IPPROTO_UDP;

lpCSAddr[0].LocalAddr.lpSockaddr = (SOCKADDR *)&sa_in;

lpCSAddr[0].LocalAddr.iSockaddrLength = sizeof(sa_in);

lpCSAddr[0].RemoteAddr.lpSockaddr = (SOCKADDR *)&sa_in;

lpCSAddr[0].RemoteAddr.iSockaddrLength = sizeof(sa_in);

//

// Set up the IPX address for our service

//

memset(sa_ipx.sa_netnum, 0, sizeof(sa_ipx.sa_netnum));

memset(sa_ipx.sa_nodenum, 0, sizeof(sa_ipx.sa_nodenum));

sa_ipx.sa_family = AF_IPX;

sa_ipx.sa_socket = 0;

socks[1] = socket(AF_IPX, SOCK_DGRAM, NSPROTO_IPX);

ret = bind(socks[1], (SOCKADDR *)&sa_ipx, sizeof(sa_ipx));

cb = sizeof(IPX_ADDRESS_DATA);

memset (&ipx_data, 0, cb);

ipx_data.adapternum = 0;

ret = getsockopt(socks[1], NSPROTO_IPX, IPX_ADDRESS,

 (char *)&ipx_data, &cb);

cb = sizeof(SOCKADDR_IPX);

getsockname(socks[1], (SOCKADDR *)sa_ipx, &cb);

memcpy(sa_ipx.sa_netnum, ipx_data.netnum, sizeof(sa_ipx.sa_netnum));

memcpy(sa_ipx.sa_nodenum, ipx_data.nodenum, sizeof(sa_ipx.sa_nodenum));

lpCSAddr[1].iSocketType = SOCK_DGRAM;

lpCSAddr[1].iProtocol = NSPROTO_IPX;

lpCSAddr[1].LocalAddr.lpSockaddr = (struct sockaddr *)&sa_ipx;

lpCSAddr[1].LocalAddr.iSockaddrLength = sizeof(sa_ipx);

lpCSAddr[1].RemoteAddr.lpSockaddr = (struct sockaddr *)&sa_ipx;

lpCSAddr[1].RemoteAddr.iSockaddrLength = sizeof(sa_ipx);

qs.dwNumberOfCsAddrs = 2;

WSASetService(&qs, RNRSERVICE_REGISTER, 0L);

The example illustrates how to set an instance of a service so that a client of that service can find out

the address that it needs to communicate with the service. The first order of business is to initialize the

WSAQUERYSET structure. We also need to give a name to the instance of our service. In this case,

we simply call it “Widget Server.” The other critical step is to use the same GUID we used to register

our service class. Whenever you register an instance of a service, that service must belong to a

service class. In this case, we use the “Widget Service Class” (defined in the previous section), whose

GUID is SVCID_NETWARE(200). The next step is to set the name spaces that we are interested in.

Because our service runs over both IPX and UDP, we specify NS_ALL. Because we're specifying a

preexisting name space, lpNSProviderId must be set to NULL.

The next step is to set up the SOCKADDR structures within the CSADDR_INFO array that

WSASetService passes as the lpcsaBuffer field of the WSAQUERYSET structure. You'll notice that in

our example we actually create the sockets and bind them to a local address before we set up the

SOCKADDR structure. This is because we need to find the exact local address that clients need to

connect to. For example, when creating our UDP socket for the server, we bind to INADDR_ANY,

which doesn't give us the actual IP address until we call getsockname. Using the information returned

from getsockname, we can build a SOCKADDR_IN structure. Within the CSADDR_INFO structure, we

set the socket type and the protocol. The other two fields are the local and remote address

information. The local address is the address that a server should bind to, and the remote address is

the address that a client should use to connect to the service.

After setting up the SOCKADDR_IN structure for our UDP-based server, we set up the IPX-based

service. In Chapter 4, you saw that servers should bind to the internal network number by setting the

network and node number to 0. Again, this doesn't give you the address that clients need, so call the

socket option IPX_ADDRESS to get the actual address. In filling the CSADDR_INFO structure for IPX,

use SOCK_DGRAM and NSPROTO_IPX for the socket type and the protocol, respectively. The last

step is to set the dwNumberOfCsAddrs field in the WSAQUERYSET structure to 2 because there are

two addresses—UDP and IPX—that clients can use to establish a connection. Finally, call

WSASetService with our WSAQUERYSET structure, the RNRSERVICE_REGISTER flag, and no

control flags. You do not specify the SERVICE_MULTIPLE control flag so that if you choose to

deregister our service, all instances of the service (both the IPX and UDP addresses) will be

deregistered.

There is one consideration that the example does not take into account: multihomed machines. If you

create a UDP-based server that binds to INADDR_ANY on a multihomed machine, the client can

connect to the server on any of the available interfaces. With IP, getsockname is not sufficient; you

must obtain all of the local IP interfaces. There are a number of methods for getting this information,

depending on the platform you are on. One method common to all platforms is calling gethostbyname

to return a list of IP addresses for our name. Under Winsock 2, you can also call the ioctl command

SIO_GET_INTERFACE_LIST. For Windows 2000 and Windows XP, the ioctl

SIO_ADDRESS_LIST_QUERY is available. Finally, the IP helper functions discussed in Chapter 16

can be used as well. Simple TCP/IP name resolution and gethostbyname are presented in Chapter 3,

and ioctl commands are found in Chapter 7.

There is a full-fledged example that addresses multihomed machines in a file named

RNRCS.CPP on the companion CD.

Querying a Service

Now that you know how to register a service within a name space, let's look at how a client can query

the name space for a given service so it can get information about the service for communication

purposes. Name resolution is quite a bit simpler than service registration, even though name resolution

uses three functions for querying: WSALookupServiceBegin, WSALookupServiceNext, and

WSALookupServiceEnd.

The first step when performing a query is to call WSALookupServiceBegin, which initiates the query by

setting up the constraints within which the query will act. The function prototype is as follows:

INT WSALookupServiceBegin (

 LPWSAQUERYSET lpqsRestrictions,

 DWORD dwControlFlags,

 LPHANDLE lphLookup

);

The first parameter is a WSAQUERYSET structure that places constraints on the query, such as

limiting the name spaces to query. The second parameter, dwControlFlags, determines the depth of

the search. Table 8-7 contains the various possible flags and their meanings. These flags affect how

the query behaves as well as which data is returned from the query. The last parameter is of type

HANDLE and is initialized upon function return. The return value is 0 on success; otherwise,

SOCKET_ERROR is returned. If one or more parameters are invalid, WSAGetLastError returns

WSAEINVAL. If the name is found in the name space but no data matches the given restrictions, the

error is WSANO_DATA. If the given service does not exist, WSASERVICE_NOT_FOUND is the error.

Table 8-7Control Flags

Flag Meaning

LUP_DEEP In hierarchical name spaces, query deep as opposed to the first level.

LUP_CONTAINERS
Retrieve container objects only. This flag pertains to hierarchical name

spaces only.

LUP_NOCONTAINERS
Do not return any containers. This flag pertains to hierarchical name

spaces only.

LUP_FLUSHCACHE
Ignore cached information, and query the name space directly. Note

that not all name providers cache queries.

LUP_FLUSHPREVIOUS

Instruct the name provider to discard the information set previously

returned. This flag is typically used after WSALookupServiceNext

returns WSA_NOT_ENOUGH_MEMORY. The information that was

too big for the supplied buffer is discarded, and the next information set

is to be retrieved.

LUP_NEAREST

Retrieve the results in order of distance. Note that it is up to the name

provider to calculate this distance metric, as there is no specific

provision for this information when a service is registered. Name

providers are not required to support this concept.

LUP_RES_SERVICE
Specifies that the local address be returned in the CSADDR_INFO

structure

LUP_RETURN_ADDR Retrieve the addresses as lpcsaBuffer.

LUP_RETURN_ALIASES

Retrieve only alias information. Each alias is returned in successive

calls to WSALookupServiceNext and will have the RESULT_IS_ALIAS

flag set.

LUP_RETURN_ALL Retrieve all available information.

LUP_RETURN_BLOB Retrieve the private data as lpBlob.

LUP_RETURN_COMMENT Retrieve the comment as lpszComment.

LUP_RETURN_NAME Retrieve the name as lpszServiceInstanceName.

LUP_RETURN_TYPE Retrieve the type as lpServiceClassId.

LUP_RETURN_VERSION Retrieve the version as lpVersion.

When you make a call to WSALookupServiceBegin, a handle for the query is returned that you pass to

WSALookupServiceNext, which returns the data to you. The function is defined as

INT WSALookupServiceNext (

 HANDLE hLookup,

 DWORD dwControlFlags,

 LPDWORD lpdwBufferLength,

 LPWSAQUERYSET lpqsResults

);

The handle hLookup is returned from WSALookupServiceBegin. The dwControlFlags parameter has

the same meaning as in WSALookupServiceBegin except that only LUP_FLUSHPREVIOUS is

supported. The parameter lpdwBufferLength is the length of the buffer passed as lpqsResults.

Because the WSAQUERYSET structure could contain binary large object (BLOB) data, it is often

required that you pass a buffer larger than the structure itself. If the buffer size is insufficient for the

data to be returned, the function call fails with WSA_NOT_ENOUGH_MEMORY.

Once you have initiated the query with WSALookupServiceBegin, call WSALookupServiceNext until

the error WSA_E_NO_MORE (10110) is generated. Caution: in earlier implementations of Winsock,

the error code for no more data is WSAENOMORE (10102), so robust code should check for both

error codes. Once all the data has been returned or you have finished querying, call

WSALookupServiceEnd with the HANDLE variable used in the queries. The function is

INT WSALookupServiceEnd (HANDLE hLookup);

Forming a Query

Let's look at how you can query the service you registered in the previous section. The first thing to do

is set up a WSAQUERYSET structure that defines the query. Look at the following code.

WSAQUERYSET qs;

GUID guid = SVCID_NETWARE(200);

AFPROTOCOLS afp[2] = {{AF_IPX, NSPROTO_IPX}, {AF_INET, IPPROTO_UDP}};

HANDLE hLookup;

int ret;

memset(&qs, 0, sizeof(qs));

qs.dwSize = sizeof (WSAQUERYSET);

qs.lpszServiceInstanceName = "Widget Server";

qs.lpServiceClassId = &guid;

qs.dwNameSpace = NS_ALL;

qs.dwNumberOfProtocols = 2;

qs.lpafpProtocols = afp;

ret = WSALookupServiceBegin(&qs, LUP_RETURN_ADDR ¦ LUP_RETURN_NAME,

 &hLookup);

if (ret == SOCKET_ERROR)

 // Error

Remember that all service lookups are based on the service class GUID that the service you are

searching for is based on. The variable guid is set to the service class ID of our server. You first

initialize qs to 0 and set the dwSize field to the size of the structure. The next step is to give the name

of the service you are searching for. The service name can be the exact name of the server, or you

can specify a wildcard (*) that will return all services of the given service class GUID. Next, tell the

query to search all name spaces by using the NS_ALL constant. Last, set up the protocols that the

client is capable of connecting with, which are IPX and UDP/IP. This is done by using an array of two

AFPROTOCOLS structures.

To begin the query, you must call WSALookupServiceBegin. The first parameter is our

WSAQUERYSET structure, and the next parameters are flags defining which data should be returned

if a matching service is found. Here you specify that you want addressing information and the service

name by logically ORing the two flags LUP_RETURN_ADDR and LUP_RETURN_NAME. The flag

LUP_RETURN_NAME is necessary only if you're specifying the wildcard (*) for the service name;

otherwise, you already know the service name. The last parameter is a HANDLE variable that

identifies this particular query. It will be initialized upon successful return.

Once the query is successfully opened, you call WSALookupServiceNext until WSA_E_NO_MORE is

returned. Each successful call returns information about a service that matches our criteria. Here is

what the code looks like for this step:

char buff[sizeof(WSAQUERYSET) + 2000];

DWORD dwLength, dwErr;

WSAQUERYSET *pqs = NULL;

SOCKADDR *addr;

int i;

pqs = (WSAQUERYSET *)buff;

dwLength = sizeof(WSAQUERYSET) + 2000;

while (1)

{

 ret = WSALookupServiceNext(hLookup, 0, &dwLength, pqs);

 if (ret == SOCKET_ERROR)

 {

 if ((dwErr = WSAGetLastError()) == WSAEFAULT)

 {

 printf("Buffer too small; required size is: %d\n", dwLength);

 break;

 }

 else if ((dwErr == WSA_E_NO_MORE) ¦¦ (dwErr = WSAENOMORE))

 break;

 else

 {

 printf("Failed with error: %d\n", dwErr);

 break;

 }

 }

 for (i = 0; i < pqs->dwNumberOfCsAddrs; i++)

 {

 addr = (SOCKADDR *)pqs->lpcsaBuffer[i].RemoteAddr.lpSockaddr;

 if (addr->sa_family == AF_INET)

 {

 SOCKADDR_IN *ipaddr = (SOCKADDR_IN *)addr;

 printf("IP address:port = %s:%d\n",

 inet_ntoa(ipaddr->sin_addr),

 ipaddr->sin_port);

 }

 else if (addr->sa_family == AF_IPX)

 {

 CHAR IPXString[64];

 DWORD IPXStringSize = sizeof(IPXString);

 if (WSAAddressToString((LPSOCKADDR) addr,

 sizeof(SOCKADDR_IPX), NULL, IPXString,

 &IPXStringSize) == SOCKET_ERROR)

 printf("WSAAddressToString returned error %d\n",

 WSAGetLastError());

 else

 printf("IPX address: %s\n", IPXString);

 }

 }

 }

 WSALookupServiceEnd(hLookup);

The example code is straightforward, although a bit simplified. Calling WSALookupServiceNext

requires only a valid handle to a query, the length of the return buffer, and the return buffer. You don't

need to specify any control flags because the only valid flag for this function is

LUP_FLUSHPREVIOUS. If our supplied buffer is too small and this flag is set, the results from this call

are discarded. However, in this example we don't use LUP_FLUSHPREVIOUS, and if our buffer is too

small, the WSAEFAULT error is generated. If this occurs, lpdwBufferLength is set to the required size.

Our example uses a fixed-size buffer equal to the size of the WSAQUERYSET structure plus 2000

bytes. Because all you are asking for are service names and addresses, this should be a sufficient

size. Of course, in production code, your applications should be prepared to handle the WSAEFAULT

error.

Once you successfully call WSALookupServiceNext, the buffer is filled with a WSAQUERYSET

structure containing the results. In our query, you asked for names and addresses; the fields of

WSAQUERYSET that are of most interest are lpszServiceInstanceName and lpcsaBuffer. The former

contains the name of the service, the latter is an array of CSADDR_INFO structures that contains

addressing information for the service. The parameter dwNumberOfCsAddrs tells us exactly how

many addresses have been returned. In the example code, all we do is simply print out the addresses.

Check for only IPX and IP addresses to print because those are the only address families you

requested when you opened the query.

If our query used a wildcard (*) for the service name, each call to WSALookupServiceNext would

return a particular instance of that service running somewhere on the network—provided, of course,

that multiple instances are actually registered and running. Once all instances of the service have

been returned, the error WSA_E_NO_MORE is generated, and you break out of the loop. The last

thing you do is call WSALookupServiceEnd on the query handle. This releases any resources

allocated for the query.

Querying DNS

Previously we mentioned that the DNS name space is static, which means you cannot dynamically

register your service; however, you can still use the Winsock name resolution functions to perform a

DNS query. Performing a DNS query is actually a bit more complicated than performing a normal

query for a service that you have registered because the DNS name space provider returns the query

information as a BLOB. Why does it do this? Remember from the Chapter 3 discussion of

gethostbyname that a name lookup returns a HOSTENT structure that contains not only IP addresses

but also aliases. That information doesn't quite fit into the fields of the WSAQUERYSET structure.

The tricky aspect about BLOB data is that its data format is not well documented, which makes directly

querying DNS challenging. First, let's take a look at how to open the query. The file DNSQUERY.CPP

on the companion CD contains the entire example code for querying DNS directly; however, we'll take

a look at it piece by piece. The following code illustrates initializing the DNS query:

WSAQUERYSET qs;

AFPROTOCOLS afp [2] = {{AF_INET, IPPROTO_UDP},{AF_INET, IPPROTO_TCP}};

GUID hostnameguid = SVCID_INET_HOSTADDRBYNAME;

DWORD dwLength = sizeof(WSAQUERYSET) + sizeof(HOSTENT) + 2048;

char buff[dwLength];

HANDLE hQuery;

int ret;

qs = (WSAQUERYSET *)buff;

memset(&qs, 0, sizeof(qs));

qs.dwSize = sizeof(WSAQUERYSET);

qs.lpszServiceInstanceName = argv[1];

qs.lpServiceClassId = &hostnameguid;

qs.dwNameSpace = NS_DNS;

qs.dwNumberOfProtocols = 2;

qs.lpafpProtocols = afp;

ret = WSALookupServiceBegin(&qs, LUP_RETURN_NAME ¦ LUP_RETURN_BLOB,

 &hQuery);

if (ret == SOCKET_ERROR)

 // Error

Setting up the query is quite similar to our previous example. The most noticeable change is that we

use the predefined GUID SVCID_INET_ HOSTADDRBYNAME. This is the GUID that identifies host

name queries. The lpszServiceInstanceName is the host name that we want to resolve. Because we

are resolving host names through DNS, we need to specify only NS_DNS for dwNameSpace. Finally,

lpafProtocols is set to an array of two AFPROTOCOLS structures, which defines the TCP/IP and

UDP/IP protocols as those that our query is interested in.

Once you establish the query, you can call WSALookupServiceNext to return data.

char buff[sizeof(WSAQUERYSET) + sizeof(HOSTENT) + 2048];

DWORD dwLength = sizeof(WSAQUERYSET) + sizeof(HOSTENT) + 2048;

WSAQUERYSET *pqs;

HOSTENT *hostent;

pqs = (WSAQUERYSET *)buff;

pqs->dwSize = sizeof(WSAQUERYSET);

ret = WSALookupServiceNext(hQuery, 0, &dwLength, pqs);

if (ret == SOCKET_ERROR)

 // Error

WSALookupServiceEnd(hQuery);

hostent = (HOSTENT *) pqs->lpBlob->pBlobData;

Because a DNS name space provider returns the host information as a BLOB, you need to supply a

sufficiently large buffer. Use a buffer equal in size to a WSAQUERYSET structure, plus a HOSTENT

structure, plus 2048 bytes for good measure. Again, if this were insufficient, the call would fail with

WSAEFAULT. In a DNS query, the host information is returned within the HOSTENT structure, even if

a host name is associated with multiple IP addresses. That is why you don't need to call

WSALookupServiceNext multiple times.

Now comes the tricky part—decoding the BLOB structure that the query returns. From Chapter 3, you

know the HOSTENT structure is defined as

typedef struct hostent {

 char FAR * h_name;

 char FAR * FAR * h_aliases;

 short h_addrtype;

 short h_length;

 char FAR * FAR * h_addr_list;

} HOSTENT;

When the HOSTENT structure is returned as the BLOB data, the pointers within the structure are

actually offsets into memory where the data lies. The offsets are from the start of the BLOB data,

requiring you to fix up the pointers to reference the absolute memory location before you can access

the data. Figure 8-1 shows the HOSTENT structure and memory layout returned. The DNS query is

performed on the host name riven, which has a single IP address and no aliases. Each field in the

structure has the offset value. To correct this so the fields reference the right location, you need to add

the offset value to the address of the head of the HOSTENT structure. This needs to be performed on

the h_name, h_aliases, and h_addr_list fields. In addition, the h_aliases and h_addr_list fields are an

array of pointers. Once you obtain the correct pointer to the array of pointers, each 32-bit field in the

references location is made up of offsets. If you take a look at the h_addr_list field in Figure 8-1, you'll

see that the initial offset is 16 bytes, which references the byte after the end of the HOSTENT

structure. This is the array of pointers to the 4-byte IP address. However, the first pointer in the array is

an offset of 28 bytes. To reference the correct location, take the address of the HOSTENT structure

and add 28 bytes, which points to a 4-byte location with the data 0x9D36B9BA, which is the IP

address 157.54.185.186. You then take the 4 bytes after the entry with the offset of 28 bytes, which is

0. This signifies the end of the array of pointers. If multiple IP addresses were associated with this host

name, another offset would be present and you would fix the pointer exactly as in the first case. The

same procedure is done to fix the h_aliases pointer and the array of pointers it references. In this

example, there are no aliases for our host. The first entry in the array is 0, which indicates that you

don't have to do any further work for that field. The last field is the h_name field, which is easy to

correct; simply add the offset to the address of the HOSTENT structure and it points to the start of a

null-terminated string.

Figure 8-1 HOSTENT BLOB format

The code needed to fix these offsets into real addresses is simple, although quite a bit of pointer

arithmetic is involved. To fix the h_name field, a simple offset adjustment such as the following will do:

hostent->h_name = (PCHAR)((DWORD_PTR)hostent->h_name +

(PCHAR)hostent);

To fix the array of pointers, as in the h_aliases and h_addr_list fields, requires a bit more code, but

only to traverse the array and fix the references until a null entry is hit. The code looks like this:

PCHAR *addr;

if (hostent->h_aliases)

{

 addr = hostent->h_aliases =

 (PCHAR)((DWORD_PTR)hostent->h_aliases + (PCHAR)hostent);

 while (addr)

 {

 addr = (PCHAR)((DWORD_PTR)addr + (PCHAR *)hostent);

 addr++;

 }

}

The code simply steps through each array entry and adds the starting address of the HOSTENT

structure to the given offset, which becomes the value for that entry. Of course, once you hit an array

entry whose value is 0, you stop. The same process needs to be applied to the h_addr_list field as

well. Once the offsets are fixed, you can use the HOSTENT structure as you normally would.

Querying NLA

Windows XP offers a new name service called NLA which can help an application identify network

names and connection properties of all networks connected to a machine at any given time or when a

change has been made to the available network interfaces. For example, you might be developing an

application that must connect to the Internet; NLA can determine if or when an Internet connection

path becomes available. This is especially useful in the world of mobile computing, where network

interfaces come and go depending on the physical location of a computer, such as a laptop used at

home and work. Winsock allows you to query the NLA service through the name space provider

interface. Retrieving network name information requires calling WSALookupServiceBegin,

WSALookupServiceNext, and WSALookupServiceEnd.

To prepare for NLA queries, call WSALookupServiceBegin with the following restrictive

WSAQUERYSET parameters and guidelines. The dwSize field must be set to the size of a

WSAQUERYSET structure, dwNameSpace must be set to NS_NLA, and lpServiceClassId must be set

to the GUID define NLA_SERVICE_CLASS_GUID. The remaining fields—except

lpszServiceInstanceName—are ignored. You can optionally set lpszServiceInstanceName to restrict

the query to a particular network name. For example, suppose you have two networks available: a

home network and an Internet connection network by an ISP. Let's assume your ISP names your

Internet connection “MyDSLProvider”. You can limit the NLA query to a single network by specifying

the network name like “MyDSLProvider”. The following code fragment demonstrates how to prepare

for a query by setting up a restrictive WSAQUERYSET structure from our discussion so far.

WSAQUERYSET qs;

GUID NLANameSpaceGUID = NLA_SERVICE_CLASS_GUID;

// Required fields to begin a query

qs.dwSize = sizeof(WSAQUERYSET);

qs.dwNameSpace = NS_NLA;

qs.lpServiceClassId = &NLANameSpaceGUID;

// Optional field to restrict the query

qs.lpszServiceInstanceName = "MyDSLProvider";

Once you have the restrictive WSAQUERYSET established, you have to decide how to control the

query from the NLA service with the correct control flags for WSALookupServiceBegin. Table 8-8

describes the control flags that are used specifically in NLA queries. If you use either

LUP_RETURN_NAME or LUP_RETURN_COMMENT exclusively you will receive only a unique list of

network names. If you also include LUP_RETURN_BLOB, you will receive both network names and

network characteristics for each network identified. The LUP_DEEP flag allows you to receive the

maximum amount of information available; however, the queries will take longer to complete. The most

common way to start the query is to simply OR the LUP_RETURN_ALL and the LUP_DEEP flags as

follows:

LPHANDLE hNLA;

WSALookupServiceBegin(&qs, LUP_RETURN_ALL ¦ LUP_DEEP, &hNLA)

Once you successfully retrieve a lookup handle lphLookup from WSALookup-ServiceBegin, you are

ready to begin your NLA queries for available network names.

Table 8-8NLA Specific Control Flags

Flag Meaning

LUP_RETURN_ALL
Equates to using LUP_RETURN_NAME, LUP_RETURN_COMMENT,

and LUP_RETURN_BLOB

LUP_RETURN_NAME
Retrieves the network name in the WSAQUERYSET field

lpszServiceInstanceName

LUP_RETURN_COMMENT
Retrieves a friendly network name in the WSAQUERYSET field

lpszComment

LUP_RETURN_BLOB
Retrieves network characteristic information, such as connection

speed, adapter identification, and Internet connectivity.

LUP_DEEP Tells NLA to query for all characteristics for each network available

LUP_FLUSHPREVIOUS
Used only on calls to WSALookupServiceNext to skip over network

information that you can't handle/allocate memory for

Because the NLA name space provider is implemented as a service, it is designed to inform your

application any time a change has occurred to the available network names. When you first call

WSALookupServiceBegin, you can immediately query current network information using

WSALookupServiceNext in which each call will return a network name until the function fails with error

WSA_E_NO_MORE.

Depending on the control flags established in WSALookupServiceBegin, if you pass

LUP_RETURN_BLOB, you will need to pass a sufficient-sized buffer for the WSAQUERYSET passed

to WSALookupServiceNext; otherwise the function will fail with error WSAEFAULT.

LUP_RETURN_BLOB can allow the query to return with an array of NLA_BLOB data structures

containing specific network information such as speed and connectivity settings for each network

returned from WSALookupServiceNext.

An NLA_BLOB can consist of an array of zero or more NLA_BLOB data structures and is defined as

 typedef struct _NLA_BLOB {

 struct {

 NLA_BLOB_DATA_TYPE type;

 DWORD dwSize;

 DWORD nextOffset;

 } header;

 union {

 // header.type -> NLA_RAW_DATA

 CHAR rawData[1];

 // header.type -> NLA_INTERFACE

 struct {

 DWORD dwType;

 DWORD dwSpeed;

 CHAR adapterName[1];

 } interfaceData;

 // header.type -> NLA_802_1X_LOCATION

 struct {

 CHAR information[1];

 } locationData;

 // header.type -> NLA_CONNECTIVITY

 struct {

 NLA_CONNECTIVITY_TYPE type;

 NLA_INTERNET internet;

 } connectivity;

 // header.type -> NLA_ICS

 struct {

 struct {

 DWORD speed;

 DWORD type;

 DWORD state;

 WCHAR machineName[256];

 WCHAR sharedAdapterName[256];

 } remote;

 } ICS;

 } data;

} NLA_BLOB, *PNLA_BLOB, * FAR LPNLA_BLOB;

After successfully calling WSALookupServiceNext, you should first check if the WSAQUERYSET

lpBlob field is not NULL. If it isn't, then you can begin looking at the NLA_BLOB structure returned from

the call. As seen in the code above, an NLA_BLOB has two portions: header and data. The header

section describes which NLA type the data portion of the BLOB represents and if there are any more

NLA_BLOBs (through the nextOffset field) to be processed on the network name. Your application

should cycle through all the data BLOBs identified by the nextOffset field in every NLA_BLOB until the

field equals zero. Each NLA_BLOB found can have one of the following data types, which are defined

in Table 8-9.

Table 8-9NLA Data Types

NLA_BLOB Data

Types
Corresponding NLA_BLOB Data Section

NLA_802_1X_LOCATION Wireless network information stored in the locationData structure

NLA_CONNECTIVITY

Basic network connectivity information stored in connectivity

structure—there are two fields: type and Internet, which refer to NLA_

CONNECTIVITY_TYPE, NLA_INTERNET enumeration types,

respectively—see Tables 8-10 and 8-11 for descriptions of these types.

NLA_ICS An internal network sharing an Internet connection in the ICS structure

NLA_INTERFACE

General network information, such as media type, connection speed,

and adapter name, stored in the interfaceData structure. Possible media

types are defined in Ipifcons.h in the media types section.

NLA_RAW_DATA Refers to the rawData field and is not used.

Table 8-10NLA Connectivity Types

NLA_CONNECTIVITY_TYPE Meaning

NLA_NETWORK_AD_HOC Represents a private network not connected to any other network

NLA_NETWORK_MANAGED Represents a network that is managed with a domain controller

NLA_NETWORK_UNKNOWN
Represents the network that is the private (non-Internet) side of

an ICS connection

NLA_NETWORK_UNMANAGED The service cannot determine the connection characteristics

Table 8-11NLA Internet Types

NLA_INTERNET Data

Types
Meaning

NLA_INTERNET_NO Indicates that a path to the Internet is not available

NLA_INTERNET_UNKNOWN
Indicates that the service could not determine if there is a path to

the Internet

NLA_INTERNET_YES Indicates a path to the Internet is available

As you probably can tell, the NLA_INTERFACE and NLA_CONNECTIVITY NLA_BLOB data types

offer some of the most useful information about the available networks. For example, if you receive an

NLA_CONNECTIVITY data BLOB, you will be able to determine if you have a connection to the

Internet. The following code fragment demonstrates how to get each network name by calling

WSALookupServiceNext and cycle through the NLA_BLOB data found in each name.

char buff[16384];

DWORD BufferSize;

while (1)

{

 memset(qs, 0, sizeof(*qs));

 BufferSize = sizeof(buff);

 if (WSALookupServiceNext(hNLA, LUP_RETURN_ALL,

 &BufferSize, qs) == SOCKET_ERROR)

 {

 int Err = WSAGetLastError();

 if (Err == WSA_E_NO_MORE)

 {

 // There is no more data. Stop asking.

 //

 break;

 }

 printf("WSALookupServiceNext failed with error %d\n",

 WSAGetLastError());

 WSALookupServiceEnd(hNLA);

 return;

 }

 printf("\nNetwork Name: %s\n", qs->lpszServiceInstanceName);

 printf("Network Friendly Name: %s\n", qs->lpszComment);

 if (qs->lpBlob != NULL)

 {

 //

 // Cycle through BLOB data list

 //

 DWORD Offset = 0;

 PNLA_BLOB pNLA;

 do

 {

 pNLA = (PNLA_BLOB) &(qs->lpBlob->pBlobData[Offset]);

 switch (pNLA->header.type)

 {

 case NLA_RAW_DATA:

 printf("\tNLA Data Type: NLA_RAW_DATA\n");

 break;

 case NLA_INTERFACE:

 printf("\tNLA Data Type: NLA_INTERFACE\n");

 printf("\t\tType: %d\n",

 pNLA->data.interfaceData.dwType);

 printf("\t\tSpeed: %d\n",

 pNLA->data.interfaceData.dwSpeed);

 printf("\t\tAdapter Name: %s\n",

 pNLA->data.interfaceData.adapterName);

 break;

 case NLA_802_1X_LOCATION:

 printf("\tNLA Data Type: NLA_802_1X_LOCATION\n");

 printf("\t\tInformation: %s\n",

 pNLA->data.locationData.information);

 break;

 case NLA_CONNECTIVITY:

 printf("\tNLA Data Type: NLA_CONNECTIVITY\n");

 switch(pNLA->data.connectivity.type)

 {

 case NLA_NETWORK_AD_HOC:

 printf("\t\tNetwork Type: AD HOC\n");

 break;

 case NLA_NETWORK_MANAGED:

 printf("\t\tNetwork Type: Managed\n");

 break;

 case NLA_NETWORK_UNMANAGED:

 printf("\t\tNetwork Type: Unmanaged\n");

 break;

 case NLA_NETWORK_UNKNOWN:

 printf("\t\tNetwork Type: Unknown\n");

 }

 switch(pNLA->data.connectivity.internet)

 {

 case NLA_INTERNET_NO:

 printf("\t\tInternet connectivity: No\n");

 break;

 case NLA_INTERNET_YES:

 printf("\t\tInternet connectivity: Yes\n");

 break;

 case NLA_INTERNET_UNKNOWN:

 printf("\t\tInternet connectivity:

 Unknown\n");

 break;

 }

 break;

 case NLA_ICS:

 printf("\tNLA Data Type: NLA_ICS\n");

 printf("\t\tSpeed: %d\n",

 pNLA->data.ICS.remote.speed);

 printf("\t\tType: %d\n",

 pNLA->data.ICS.remote.type);

 printf("\t\tState: %d\n",

 pNLA->data.ICS.remote.state);

 printf("\t\tMachine Name: %S\n",

 pNLA->data.ICS.remote.machineName);

 printf("\t\tShared Adapter Name: %S\n",

 pNLA->data.ICS.remote.sharedAdapterName);

 break;

 default:

 printf("\tNLA Data Type: Unknown to this program\n");

 break;

 }

 Offset = pNLA->header.nextOffset;

 }

 while (Offset != 0);

 }

}

Once you have exhausted all the names and NLA_BLOB data returned from WSALookupServiceNext,

the NLA service offers the capability to inform your application of changes made to these interfaces

through the WSANSPIoctrl API. WSANSPIoctrl takes the lookup handle that WSALookupServiceBegin

returned and associates a completion method for your application to receive notification of changes.

WSANSPIoctl is defined as

int WSAAPI WSANSPIoctl(

 HANDLE hLookup,

 DWORD dwControlCode,

 LPVOID lpvInBuffer,

 DWORD cbInBuffer,

 LPVOID lpvOutBuffer,

 DWORD cbOutBuffer,

 LPDWORD lpcbBytesReturned,

 LPWSACOMPLETION lpCompletion

);

The hLookup parameter should be set to the handle that was originally returned from

WSALookupServiceBegin. The dwControlCode should be set to SIO_NSP_NOTIFY_CHANGE. NLA

does not use lpvInBuffer and lpvOutBuffer and they should be NULL. The cbInBuffer and cbOutBuffer

are also not used and should be set to zero. The lpcbBytesReturned is not useful but you have to

supply a buffer. The lpCompletion field allows you to specify an asynchronous wait method as

described in the Overlapped I/O model of Chapter 5. The following code fragment demonstrates how

to set up event-based notification for waiting on network changes.

WSAOverlap.hEvent = Event;

WSAComplete.Type = NSP_NOTIFY_EVENT;

WSAComplete.Parameters.Event.lpOverlapped = &WSAOverlap;

if (WSANSPIoctl(hNLA, SIO_NSP_NOTIFY_CHANGE, NULL, 0, NULL, 0,

 &BytesReturned, &WSAComplete) == SOCKET_ERROR)

{

 int Ret = WSAGetLastError();

 if (Ret != WSA_IO_PENDING)

 {

 printf("WSANSPIoctrl failed with error %d\n", Ret);

 return;

 }

}

if (WSAWaitForMultipleEvents(1, &Event, TRUE, WSA_INFINITE, FALSE) ==

 WSA_WAIT_FAILED)

{

 printf("WSAWaitForMultipleEvents failed with error %d\n",

 WSAGetLastError());

 return;

}

WSAResetEvent(Event);

// Query for all current network names available using the same

// lookup handle returned originally through WSALookupServiceBegin

On the companion CD, you will find a sample named NLAQUERY.CPP that

demonstrates how to query for NLA names from our discussion so far.

Finally, NLA will allow you to associate additional comment information with each network name

returned from a query using the WSASetService API. All you have to do is fill in a WSAQUERYSET

structure with a valid name in the lpszServiceInstanceName field and provide a new friendly name in

the lpszComment field. Once the fields are set, call WSASetService with the first parameter

(lpqsRegInfo) set to a pointer to your WSAQUERYSET structure, the second parameter

(essOperation) set to the flag RNRSERVICE_REGISTER, and the third parameter (dwControlFlags)

set to the value NLA_FRIENDLY_NAME.

Conclusion

The registration and name resolution (RNR) functions might seem overly complicated,

but they offer great flexibility in writing client/server applications. The real limitation of

name registration lies with the name space. It's rather amazing that even with the

popularity of TCP/IP, the only name resolution method available is been DNS, which

is not very flexible. With the Windows 2000, Windows XP, and Windows NT domain

spaces, a persistent, protocol-independent method of name resolution is available,

offering the necessary flexibility to write robust applications. In addition, other name

spaces (such as SAP) are available for IPX/SPX-based applications, offering many of

the same capabilities of the Windows NT domain space (except for protocol

independence).

Chapter 9

Multicasting

Multicasting technology (or point-to-multipoint as it's sometimes called) allows data to

be sent from one group member and then replicated to many others without creating a

network traffic nightmare. This technology was developed as an alternative to

broadcasting, which can negatively impact network bandwidth if used extensively.

Multicast data is replicated to a network only if processes running on workstations in

that network are interested in that data. Not all protocols support the notion of

multicasting—on Windows platforms, only two protocols are multicast capable: IP and

ATM. IP multicasting includes both IPv4 and IPv6. In addition, there are different types

of IP multicasting. For example, Windows XP supports source multicasting for IPv4 as

well as a reliable multicast provider that uses IP multicasting but adds reliability and

session-oriented semantics. This chapter presents the information necessary to

understand multicasting in general as well as how multicasting applies specifically to

these protocols.

First, we will cover the basic semantics of multipoint networking, which includes the

various possible types of multicasting as well as basic characteristics of IP and ATM

multicasting. Then we will present the specifics of IP and ATM in their own sections. In

each section, we will discuss how the Winsock API is used to access each protocol's

multicast features.

All Windows platforms support one or more multicasting protocols. IPv4 multicasting is

available on all Windows platforms (Windows CE requires version 2.1 or greater). IPv6

multicasting is available in Windows XP as well as in Windows 2000 with the IPv6

technology preview and in Windows NT 4.0 with the Microsoft Research IPv6 stack.

Reliable multicasting is available in Windows XP if the Microsoft Message Queue

(MSMQ) component is installed. Finally, native ATM multicasting is available in

Windows 98, Windows Me, Windows 2000, and Windows XP.

Multicast Semantics

Multicasting has two important properties: the control plane and the data plane. The control plane defines

the way that group membership is organized. The data plane refers to the way that data is propagated among

the members. Either one of these properties can be rooted or non-rooted. In a rooted control plane, there is a

special member of the multicast group known as the c_root. Each of the remaining group members is known

as a c_leaf. In most cases, the c_root establishes the multipoint group by initiating connections to any number

of c_leafs. In some cases, a c_leaf might request membership to a given multipoint group at a later time. Note

that there can be only one root node for a given group. The ATM protocol is an example of a rooted control

plane.

A non-rooted control plane allows anyone to join a group without exception. In this situation, all group

members are c_leaf nodes. Each member has the power to join a multipoint group. You can impose your own

group membership scheme in a non-rooted control plane (this will in effect make one node a c_root) by

implementing your own group membership protocol. However, your group membership scheme is still built

upon a non-rooted control plane. All forms of IP multicasting and reliable multicasting are examples of a

non-rooted control plane. Figure 9-1 illustrates the difference between rooted and non-rooted control planes.

In the rooted control plane on the left side of the figure, the c_root must explicitly ask each c_leaf to join the

group, while in the non-rooted scheme on the right anyone can join the group.

Figure 9-1 Rooted and non-rooted control planes

The data plane also can be rooted or non-rooted. A rooted data plane has a participant called the d_root. The

transfer of data occurs only between d_root and all other members of the multipoint session, who are each

referred to as a d_leaf. The traffic can be either unidirectional or bidirectional, but a rooted data plane implies

that data sent from one d_leaf will be received by only the d_root, and data sent from the d_root will be

received by each d_leaf. ATM and reliable multicasting are examples of a rooted data plane. Figure 9-2

illustrates the difference between rooted and non-rooted data planes. In the rooted data plane on the left of

the figure, data abc from the d_root is propagated to every d_leaf. Data xyz sent from a d_leaf is received by

only the d_root. This contrasts with the non-rooted example on the right, in which data abc and xyz are

propagated to every member, no matter who sent the data.

Figure 9-2 Rooted and non-rooted data planes

Finally, in a non-rooted data plane all group members can send data to all other members of the group. A

block of data sent from a group member is delivered to all other members, and all recipients can send data

back. There are no restrictions on who can receive or send data. Again, IP multicasting is non-rooted in the

data plane.

So we see that ATM multicasting is rooted in the control and data planes, and IP multicasting is non-rooted in

both planes. Reliable multicasting is an example of a non-rooted control plane but a rooted data plane.

Finding Multicast Properties

In Chapter 2, we discussed how to enumerate protocol entries and determine their properties. All of the

pertinent multipoint information about a protocol is also available from the protocol's entry in the catalog. The

dwServiceFlags1 entry in the WSAPROTOCOL_INFO structure returned by WSAEnumProtocols contains

several bits we're interested in. If the XP1_SUPPORT_MULTIPOINT bit is set, the protocol entry supports

multicasting. Then, if the XP1_MULTIPOINT_CONTROL_PLANE bit is set, the protocol supports a rooted

control plane; otherwise, it is non-rooted. If the XP1_MULTIPOINT_DATA_PLANE bit is set, the protocol

supports a rooted data plane. Likewise, if the bit is 0, the protocol supports only a non-rooted data plane.

IP Multicasting

IP multicasting relies on a special group of addresses known as multicast addresses. It is this group

address that names a given group. For example, if five nodes all want to communicate with one

another via IP multicast, they all join the same group address. Once they are joined, any data that one

node sends is replicated to every member of the group, including the node that sent the data. A

multicast IPv4 address is a class D IP address in the range 224.0.0.0 through 239.255.255.255 and

IPv6 multicast addresses begin with the prefix FF (1111 1111), as we discussed in Chapter 3. A

number of these addresses are reserved for special purposes. For a comprehensive list of reserved

addresses, take a look at RFCs 1700 and 2375. The IANA maintains this list. Table 9-1 lists a few of

the IPv4 addresses currently marked as reserved. Actually, you can use any address except for the

first three reserved multicast addresses because they are used by routers on the network. Refer to

RFC 1700 for the exact multicast address assignments.

Table 9-1Reserved IPv4 Multicast Addresses

Multicast Address Use

224.0.0.0 Base address (reserved)

224.0.0.1 All nodes on this subnet

224.0.0.2 All routers on this subnet

224.0.1.1 Network time protocol

224.0.0.9 RIP version 2 group address

224.0.1.24 WINS server group address

IPv6 multicasting also sets aside certain multicast addresses for specific purposes, some of which are

listed in Table 9-2. One difference between IPv4- and IPv6-reserved multicast addresses is that IPv6

offers different addresses depending on the desired scope, such as link-local and site-local.

Table 9-2IPv6 Multicast Addresses

Scope Multicast Address Use

Node-local FF01::1 All nodes address

Node-local FF01::2 All routers address

Link-local FF02::1 All nodes address

Link-local FF02::2 All routers address

Link-local FF02::9 RIP routers

Site-local FF05::2 All routers address

Site-local FF05::1:3 All DHCP servers

Site-local FF05::1:4 All DHCP relays

Because multicasting had not been envisioned when TCP/IP was developed, a number of

accommodations had to be made to allow IP to support it. For example, we have already discovered

that IP requires a set of special addresses to be set aside for multicast traffic. In addition, for IPv4, a

special protocol was introduced to manage multicast clients and their membership in a group. Imagine

if two workstations on separate subnets want to join a single multicast group. How is this implemented

over IP? You can't simply broadcast the data to the multicast address everywhere because the

network would become flooded with broadcast data in no time. IGMP was developed to signal routers

that a machine on the network is interested in data destined for a given group. The latest revision of

IGMP (version 3) adds support for limiting what sources data is accepted from. Note that the reliable

multicast provider still relies on IGMP to communicate group membership to network elements.

For IPv6, the ICMPv6 protocol rolls up the various support protocols, such as ICMP, ARP, and IGMP,

into one. Multicast membership is managed by MLD messages, which are a type of message sent

over the ICMPv6 protocol.

Support Protocols

Multicasting hosts use IGMP and MLD to notify routers that a computer on the router's subnet wants to

join a particular multicast group. IGMP is the backbone of IPv4 multicasting and MLD is its counterpart

for IPv6. For multicasting to work correctly, all routers between two multicasting nodes must support

the appropriate multicast support protocol. For example, in the case of IPv4, if machines A and B join

the multicast group 224.1.2.3, and there are three routers between the two, all three routers must be

IGMP-enabled for successful communication to occur. Any non-multicast-enabled router simply drops

received multicast data. When an application joins a multicast group, a “join” (or report) message is

sent to the all-routers address on the interface the group was joined. This command notifies the router

that it has clients interested in a particular multicast address. Thus, if the router receives data destined

for that multicast address, it forwards it to the network with the multicast client.

In addition, when an endpoint joins a multicast group, it specifies a TTL parameter that indicates how

many routers the endpoint's multicast application is willing to traverse to send and receive data. For

example, if you write an IP multicast application that joins group X with a TTL of 2, a join command is

sent to the all-routers group on the local subnet. The routers on that subnet pick up the command,

indicating that it should forward multicast data destined for that address. The router decrements the

TTL by 1 and passes the join command on to its neighboring networks. The routers on those networks

do the same upon receipt of the command. At this point, those routers decrement the TTL again,

which now makes the TTL value 0, and the command is no longer propagated. Because of this, TTL

limits how far multicast data will be replicated.

Once a router has one or more multicast groups registered by workstations, it periodically sends a

“group query” message to the all-hosts address for each multicast address that a join command

notified it of. If clients on that network are still using that multicast address, they respond with another

message so that the router knows to keep forwarding data related to that address; otherwise, the

router stops forwarding any data for that address. Also, both IGMP (version 2 and greater) and MLD

support the notion of a host explicitly leaving a group. That is, each interface maintains a reference

count of how many applications are joined to a particular multicast group. When the count goes to

zero, a leave (or “done”) message is sent. This notifies the routers to stop forwarding data for that

group. Note that for IGMPv1, there is no explicit leave message, so the router will continue forwarding

data even after the interested application(s) have exited, which can have undesired results. Only when

the IGMPv1 router sends a group query will it discover that no one is listening to that particular group.

Windows XP introduces support for IGMP version 3 for IPv4 multicasting, which allows applications to

join an IPv4 multicast group and list one or more sources from which to accept or deny data from. If

group X is joined, which specifies sources A and B as the only valid sources, then only data originating

from A or B will be propagated to the application. Likewise, if group X was joined and sources A and B

were excluded, then data sent to the multicast group from everyone except A and B will be

propagated to the application. For IGMPv3 to work properly, the routers on the network must also

support IGMPv3. If they don't, there is no real gain because the routers will propagate all data for the

joined multicast groups, not just from the source list specified. If a Windows XP host is on a network

that is not IGMPv3-enabled, it will fall back to the version of IGMP present.

Windows 98, Windows Me, and Windows 2000 natively support IGMP version 2. For Windows 95, the

latest Winsock 2 update also includes IGMP version 2. In Windows NT 4.0, Service Pack 4 includes

support for IGMP version 2. Previous Service Packs and the base OS supported only version 1.

Windows XP supports IGMPv3. If you want to read the complete specifications on IGMP version 1 or

version 2, consult RFC 1112 or RFC 2236, respectively. Currently, IGMP version 3 is an IETF draft:

draft-ietf-idmr-igmp-v3-07.txt.

Multicasting with Setsockopt

Originally, the only way to join or leave a multicast group was via the setsockopt API. Winsock 2

introduces a protocol-independent method of multicasting with the WSAJoinLeaf API (discussed in the

next section), but as we will soon see, the setsockopt method is much more flexible even though it is

more closely tied to the protocol being used.

IPv4

There are two socket options that control joining and leaving groups: IP_ADD_MEMBERSHIP and

IP_DROP_MEMBERSHIP. The socket option level is IPPROTO_IP. The input parameter is a struct

ip_mreq structure, which is defined as

struct ip_mreq {

 struct in_addr imr_multiaddr; /* IP multicast address of group */

 struct in_addr imr_interface; /* local IP address of interface */

};

The imr_multiaddr field is the 32-bit IPv4 address of the multicast group in network-byte order and

imr_interface is the 32-bit IPv4 address of the local interface on which to join the multicast group (also

specified in network-byte order). The following code snippet illustrates joining a multicast group.

SOCKET s;

SOCKADDR_IN localif;

struct ip_mreq mreq;

s = socket(AF_INET, SOCK_DGRAM, IPPROTO_UDP);

localif.sin_family = AF_INET;

localif.sin_port = htons(5150);

localif.sin_addr.s_addr = htonl(INADDR_ANY);

bind(s, (SOCKADDR *)&localif, sizeof(localif));

mreq.imr_interface.s_addr = inet_addr("157.124.22.104");

mreq.imr_multiaddr.s_addr = inet_addr("234.5.6.7");

setsockopt(s, IPPROTO_IP, IP_ADD_MEMBERSHIP, (char *)&mreq,

sizeof(mreq));

Note that the socket should be bound to the wildcard address (INADDR_ANY) before joining the

group. In this example, the socket is joined to the multicast group 234.5.6.7 on the local interface

157.124.22.104. Multiple groups may be joined on the same socket on the same or different interface.

Once one or more multicast groups are joined, the IP_DROP_MEMBERSHIP option is used to leave a

particular group. Again, the struct ip_mreq structure is the input parameter. The local interface and

multicast group to drop are the arguments of the structure. For example, given the code sample you

just saw, the following code drops the multicast group previously joined:

// Join the group as shown above

mreq.imr_interface.s_addr = inet_addr("157.124.22.104");

mreq.imr_multiaddr.s_addr = inet_addr("234.5.6.7");

setsockopt(s, IPPROTO_IP, IP_DROP_MEMBERSHIP, (char *)&mreq,

sizeof(mreq));

Finally, if the application exits or the socket is closed, any multicast groups joined by that process or

socket are cleaned up.

An IPv4 multicasting sample that uses setsockopt is provided on the companion CD in

the directory IP-SETSOCKOPT.

IPv4 with Multicast Sourcing

IP source multicasting is available on systems that support the IGMPv3 protocol and allows a socket to

join a multicast group on an interface while specifying a set of source addresses to accept data from.

There are two possible modes in which a socket may join a group. The first is the INCLUDE mode, in

which a socket joins a group specifying N number of valid source addresses to accept data from. The

other mode is EXCLUDE, in which a socket joins a group specifying to accept data from anyone

except the N source addresses listed. Depending on which mode is used, the socket options differ.

To join a multicast group while using the INCLUDE mode, the socket options are

IP_ADD_SOURCE_MEMBERSHIP and IP_DROP_SOURCE_MEMBERSHIP. The first step is to add

one or more sources. Both socket options take a struct ip_mreq_source structure, which is defined as

struct ip_mreq_source {

 struct in_addr imr_multiaddr; /* IP multicast address of group */

 struct in_addr imr_sourceaddr; /* IP address of source */

 struct in_addr imr_interface; /* local IP address of interface */

};

The imr_multiaddr and imr_interface fields are the same as in the struct ip_mreq structure. The new

field imr_sourceaddr specifies the 32-bit IP address of the source to accept data from. If there are

multiple valid sources, then the IP_ADD_SOURCE_MEMBERSHIP is called again with the same

multicast address and interface with the other valid source. The following code sample joins a

multicast group on a local interface with two valid sources:

SOCKET s;

SOCKADDR_IN localif;

struct ip_mreq_source mreqsrc;

s = socket(AF_INET, SOCK_DGRAM, IPPROTO_UDP);

localif.sin_family = AF_INET;

localif.sin_port = htons(5150);

localif.sin_addr.s_addr = htonl(INADDR_ANY);

bind(s, (SOCKADDR *)&localif, sizeof(localif));

mreqsrc.imr_interface.s_addr = inet_addr("157.124.22.104");

mreqsrc.imr_multiaddr.s_addr = inet_addr("234.5.6.7");

mreqsrc.imr_sourceaddr.s_addr = inet_addr("172.138.104.10");

setsockopt(s, IPPROTO_IP, IP_ADD_SOURCE_MEMBERSHIP,

 (char *)&mreqsrc, sizeof(mreqsrc));

mreqsrc.imr_sourceaddr.s_addr = inet_addr("172.141.87.101");

setsockopt(s, IPPROTO_IP, IP_ADD_SOURCE_MEMBERSHIP,

 (char *)&mreqsrc, sizeof(mreqsrc));

To remove a source from the INCLUDE set, the IP_DROP_SOURCE_ MEMBERSHIP is called with

the multicast group, local interface, and source to be removed.

To join a multicast group that excludes one or more sources, the multicast group is joined with

IP_ADD_MEMBERSHIP. Using IP_ADD_MEMBERSHIP to join a group is equivalent to joining a

group in the EXCLUDE mode except that no one is excluded. Data sent to the joined group is

accepted regardless of the source. Once the group is joined, then the IP_BLOCK_SOURCE option is

called to exclude the given source. Again, the struct ip_mreq_source structure is the input parameter

that specifies the source to block. The following example joins a group and then excludes a single

source:

SOCKET s;

SOCKADDR_IN localif;

struct ip_mreq mreq;

struct ip_mreq_source mreqsrc;

s = socket(AF_INET, SOCK_DGRAM, IPPROTO_UDP);

localif.sin_family = AF_INET;

localif.sin_port = htons(5150);

localif.sin_addr.s_addr = htonl(INADDR_ANY);

bind(s, (SOCKADDR *)&localif, sizeof(localif));

// Join a group - the filter is EXCLUDE none

mreq.imr_interface.s_addr = inet_addr("157.124.22.104");

mreq.imr_multiaddr.s_addr = inet_addr("234.5.6.7");

setsockopt(s, IPPROTO_IP, IP_ADD_MEMBERSHIP, (char *)&mreq,

 sizeof(mreq));

mreqsrc.imr_interface = mreq.imr_interface;

mreqsrc.imr_multiaddr = mreq.imr_multiaddr;

mreqsrc.imr_sourceaddr.s_addr = inet_addr("172.138.104.10");

setsockopt(s, IPPROTO_IP, IP_BLOCK_SOURCE, (char *)&mreqsrc,

 sizeof(mreqsrc));

If after some point, the application wishes to accept data from a source previously blocked, it may

remove that source from the exclude set by calling setsockopt with IP_UNBLOCK_SOURCE. A struct

ip_mreq_source is the input parameter that specifies the source to accept data from.

An IPv4 source multicasting sample that uses setsockopt is provided on the companion

CD in the directory IP-SOURCE.

IPv6

Multicasting with IPv6 is similar to IPv4 multicasting except that the socket options are named

differently and take slightly different input parameters. The options for IPv6 are

IPV6_ADD_MEMBERSHIP and IPV6_DROP_MEMBERSHIP. The option level is IPPROTO_IPV6.

The structure that specifies the multicast group and interface is a struct ipv6_mreq that is defined as

typedef struct ipv6_mreq {

 struct in6_addr ipv6mr_multiaddr; /* IPv6 multicast address */

 unsigned int ipv6mr_interface; /* Interface index */

} IPV6_MREQ;

The structure fields are equivalent to the IPv4 structure struct ip_mreq except that the local interface is

the interface index instead of the full IPv6 address. The easiest way to find the interface index of a

local IPv6 address is via the IP Helper API GetAdaptersAddresses covered in Chapter 16. Also, if the

link-local address is used as the local interface, the scope-ID of that link is the interface index. The

following code sample illustrates joining an IPv6 multicast group when the link-local address is given

for the local interface:

SOCKET s;

struct ipv6_mreq mreq6;

struct addrinfo *reslocal,

 *resmulti,

 hints;

s = socket(AF_INET6, SOCK_DGRAM, IPPROTO_UDP);

// Get the local wildcard address to bind to (i.e. "::")

memset(&hints, 0, sizeof(hints));

hints.ai_family = AF_INET6;

getaddrinfo(NULL, "5150", &hints, &reslocal);

bind(s, reslocal->ai_addr, reslocal->ai_addrlen);

freeaddrinfo(reslocal);

// Resolve the link-local interface

getaddrinfo("fe80::250:4ff:fe7c:7036%6", NULL, NULL, &reslocal);

// Resolve the multicast address

getaddrinfo("ff12::1", NULL, NULL, &resmulti);

// Join the multicast group

mreq6.ipv6mr_multiaddr =

 ((SOCKADDR_IN6 *)resmulti->ai_addr)->sin6_addr;

mreq6.ipv6mr_interface =

 ((SOCKADDR_IN6 *)reslocal->ai_addr)->sin6_scope_id;

setsockopt(s, IPPROTO_IPV6, IPV6_ADD_MEMBERSHIP,

 (char *)&mreq6, sizeof(mreq6));

freeaddrinfo(resmulti);

freeaddrinfo(reslocal);

As with IPv4, to leave the multicast group the same struct ipv6_mreq structure is passed into

setsockopt but with the IPV6_DROP_MEMBERSHIP option.

An IPv6 multicasting sample that uses setsockopt is provided on the companion CD in

the directory IP-SETSOCKOPT. This is the same sample as that for IPv4 multicasting

because it will figure out which address family is being used from the addresses

supplied on the command line (using the getaddrinfo API to make the sample IP version

independent as discussed in Chapter 3).

Sending Multicast Data with IPv4

The previous sections have shown how to join and leave multicast groups to receive data sent to that

group; however, an application need not join the group to send data to it. There is one issue to be

aware of: multihomed computers. If an application creates a UDP socket and calls sendto with a

destination address of “234.5.6.7”, which interface is the data sent on? Basically, the first interface

listed in the routing table is the interface the data is sent on. To override this behavior, applications

may use the IP_MULTICAST_IF socket option to specify the interface for outgoing data. The option

value is simply the 32-bit IPv4 address of the local interface. The following code sample sets the

outgoing interface on a socket.

SOCKET s;

SOCKADDR_IN dest;

ULONG localif;

char buf[1024];

int buflen=1024;

s = socket(AF_INET, SOCK_DGRAM, IPPROTO_UDP);

localif = inet_addr("157.124.22.104");

setsockopt(s, IPPROTO_IP, IP_MULTICAST_IF,

 (char *)&localif, sizeof(localif));

dest.sin_family = AF_INET;

dest.sin_port = htons(5150);

dest.sin_addr.s_addr = inet_addr("234.5.6.7");

sendto(s, buf, buflen, 0, (SOCKADDR *)&dest, sizeof(dest));

The multicasting sample code on the companion CD also illustrates using this socket

option.

Sending Multicast Data with IPv6

The same sending issue that applies to IPv4 is also present for IPv6 multicasting. The outgoing

interface for data sent to an IPv6 multicast group is specified with the IPV6_MULTICAST_IF option.

The input parameter is an integer that specifies the adapter interface index that outgoing data is sent

on. Also, if sendto or WSASendTo is used for sending data to the multicast group, the sin6_scope_id

of the SOCKADDR_IN6 structure given for the to address parameter should be zero.

The multicasting sample code on the companion CD also illustrates using this socket

option.

Multicasting with WSAIoctl

For IPv4 source multicasting, there is an ioctl that can specify one or more source addresses to

include or exclude with a single call. This is SIO_SET_MULTICAST_FILTER. The input parameter is a

struct ip_msfilter structure that is defined as

struct ip_msfilter {

 struct in_addr imsf_multiaddr; /* IP multicast address of group */

 struct in_addr imsf_interface; /* local IP address of interface */

 u_long imsf_fmode; /* filter mode - */

 /* INCLUDE or EXCLUDE */

 u_long imsf_numsrc; /* number of sources in src_list */

 struct in_addr imsf_slist[1];

};

The first two fields are self-explanatory. The third field, imsf_fmode, indicates whether the source

addresses listed in the imsf_slist array are sources that should be included or excluded from the

multicast group. To include the sources, the constant MCAST_INCLUDE is supplied; otherwise, to

exclude these sources MCAST_EXCLUDE is used. imsf_numsrc indicates the number of sources

supplied, and imsf_slist is the array of source addresses.

The following code sample illustrates using this ioctl:

SOCKET s;

char buf[1024];

struct ip_msfilter *msfilter;

DWORD bytes;

int filterlen;

s = socket(AF_INET, SOCK_DGRAM, IPPROTO_UDP);

// bind the socket to INADDR_ANY

msfilter = (struct ip_msfilter *)buf;

msfilter->imsf_multiaddr.s_addr = inet_addr("234.5.6.7");

msfilter->imsf_interface.s_addr = inet_addr("157.124.22.104");

msfilter->imsf_fmode = MCAST_INCLUDE;

msfilter->imsf_numsrc = 3;

msfilter->imsf_slist[0].s_addr = inet_addr("172.138.104.10");

msfilter->imsf_slist[1].s_addr = inet_addr("172.138.104.11");

msfilter->imsf_slist[2].s_addr = inet_addr("172.138.104.12");

filterlen = sizeof(struct ip_msfilter) +

 ((msfilter->imsf_numsrc - 1) * sizeof(struct in_addr));

WSAIoctl(s, SIO_SET_MULTICAST_FILTER, (void *)msfilter, filterlen,

 NULL, 0, &bytes, NULL, NULL);

This sample joins a multicast group and specifies three valid sources to accept data from. To retrieve

the multicast filter set, use the ioctl SIO_GET_MULTICAST_ FILTER. The input parameter must be a

struct ip_msfilter structure that contains the local interface and multicast group on which to obtain the

multicast state for. Upon success, a struct ip_msfilter structure is returned via the output parameter,

which contains the full set of sources for the group and interface. Note that you must specify a large

enough buffer to hold the filter plus all the sources.

An IPv4 source multicasting sample that uses WSAIoctl is provided on the companion

CD in the directory IP-SOURCE. This is the same sample that uses setsockopt for IP

source multicasting. The ‘-f' flag indicates to use SIO_SET_MULTICAST_FILTER

instead of the socket options.

Multicasting with WSAJoinLeaf

Winsock 2 introduces the WSAJoinLeaf API, which is designed to be protocol independent. The API is

defined as

SOCKET WSAJoinLeaf(

 IN SOCKET s,

 IN const struct sockaddr FAR * name,

 IN int namelen,

 IN LPWSABUF lpCallerData,

 OUT LPWSABUF lpCalleeData,

 IN LPQOS lpSQOS,

 IN LPQOS lpGQOS,

 IN DWORD dwFlags

);

In most respects, WSAJoinLeaf takes the same parameters as WSAConnect. The exceptions are that

name indicates the multicast address to join and dwFlags indicates whether the socket will be sending

or receiving data on the multicast socket. The valid flag values are JL_SENDER_ONLY,

JL_RECEIVER_ONLY, and JL_BOTH.

For IP multicasting, a UDP socket must be created by using the WSASocket API, and the flags

WSA_FLAG_MULTIPOINT_C_LEAF and WSA_FLAG_MULTIPOINT_D_LEAF must be specified. The

socket should then be bound to the specific interface on which the group is to be joined. Then

WSAJoinLeaf is invoked with the multicast address of the group to join. There are a couple of

differences here. First, instead of binding to the wildcard address, you should bind to the specific local

interface. Second, the outgoing (sending) interface does not have to be set. When the multicast group

is joined, the outgoing interface is automatically set to the interface the socket is bound to. Finally, only

a single multicast group can be joined on a socket. That is, unlike using setsockopt, WSAJoinLeaf can

be invoked only once on a socket and the multicast group is joined until the socket is closed—there is

no other way to leave the group.

An IP multicasting sample that uses WSAJoinLeaf is provided on the companion CD in

the directory IP-WSAJOINLEAF. The sample works over IPv4 and IPv6.

Reliable Multicasting

The reliable multicasting provider is available on Windows XP when the Microsoft

Message Queuing (MSMQ) component is installed. Reliable multicasting is a protocol

built over IPv4 multicasting. Currently, it does not support IPv6. The reliable multicast

implementation on Windows XP is based on the Pragmatic General Multicasting

(PGM) specification. The protocol is NAK-based, meaning that all receivers of the

data send notice to the sender only when it detects that a packet is missing. If the

protocol was acknowledgment-based, like TCP, you would have cases in which

hundreds or possibly thousands of receivers sent a packet to the sender indicating

they successfully received a packet, which would flood the sender's network. This

section provides only an overview of how the protocol is implemented so you can gain

a basic understanding of how reliable multicasting is provided. For a complete

specification of the PGM protocol, consult the IETF draft:

draft-speakman-pgm-spec-06.txt.

The reliable multicast protocol works by the sender caching data sent to the receivers

for a specified time period, which is known as the send window. This window is

periodically moved forward, discarding the oldest data within the window to make

room for new data the sender sends. There are three variables that make up the send

window: the send rate, the size of the window (in bytes), and the size of the window in

seconds (for example, how long the data remains in the window before being purged).

The reliable multicast driver establishes certain default values for the window size that

can be overridden (because the default values are rather low).

The protocol also contains a sequence number in the data packets so that if a

receiver detects that it has missed a particular sequence, it may send a NAK to the

sender, who will retransmit the missing data. Note that it is possible that a receiver

NAKs for data that was recently purged from the send window. In this case, the

receiver's “session” will be reset because of unrecoverable data loss—this is

analogous to a TCP session being reset due to an ACK timeout or similar error.

In terms of the Winsock provider for reliable multicasting, there are a couple of

important issues. First, there is a stream provider (SOCK_STREAM) as well as a

reliable datagram provider (SOCK_RDM). The protocol value that is passed to the

socket creation functions is IPPROTO_RM. The socket options specific to this

protocol are contained in WSRM.H.

In the following sections we will look at how to create a reliable multicast sender as

well as a receiver. A complete code sample is available on the companion CD in the

directory IP-RM.

Reliable Sender

Establishing the reliable multicast sender is a simple process. The following list

contains the necessary steps.

Create a reliable multicast socket.1.

Bind the socket to INADDR_ANY.2.

Set the outgoing interface using RM_SET_SEND_IF.3.

Connect the socket to the multicast group address that the data transmission is

to take place on.

4.

As with IP multicasting, it is necessary to set the outgoing interface in the case of a

multihomed computer. Also note that no real connection is taking place between the

sender and receiver. The connect that the sender called simply associates the

destination multicast address with the socket. The following code example illustrates

setting up a reliable multicast sender.

SOCKET s;

ULONG sendif;

SOCKADDR_IN localif,

 multi;

char buf[1024];

int buflen=1024;

s = socket(AF_INET, SOCK_RDM, IPPROTO_RM);

// Bind to INADDR_ANY

localif.sin_family = AF_INET;

localif.sin_port = htons(0);

localif.sin_addr.s_addr = htonl(INADDR_ANY);

bind(s, (SOCKADDR *)&localif, sizeof(localif));

// Set the outgoing interface

sendif = inet_addr("157.124.22.104");

setsockopt(s, IPPROTO_RM, RM_SET_SEND_IF, (char *)&sendif,

 sizeof(sendif));

// Connect the socket to the multicast destination

multi.sin_family = AF_INET;

multi.sin_port = htons(5150);

multi.sin_addr.s_addr = inet_addr("234.5.6.7");

connect(s, (SOCKADDR *)&multi, sizeof(multi));

// Send the data

send(s, buf, buflen, 0);

// Close up the session

closesocket(s);

In this example, we create a socket of type SOCK_RDM. This is similar to

SOCK_DGRAM because it provides message-oriented semantics but also implies

reliability. Also, the local port supplied to the bind call is not significant. After the

session is created, the sender may begin to send data.

Modifying the Window Size

By default, the reliable multicast driver sets up the default window size to buffer sent

data. At some interval, the window is advanced by an increment, discarding the oldest

data to make room for newer data. This window plays an important role in how reliable

the data is. For example, a high data rate sender may receive many NAKs for lost

data from receivers on a lower bandwidth or a congested network. As a result, if the

send window is fairly small, those receivers may not be able to keep up. To prevent

this, the sender may resize the send window to better suit the application's needs.

This is done via the RM_RATE_WINDOW_SIZE socket option. The input parameter is

a RM_SEND_WINDOW structure defined as

typedef struct _RM_SEND_WINDOW

{

 ULONG RateKbitsPerSec;

 ULONG WindowSizeInMSecs;

 ULONG WindowSizeInBytes;

} RM_SEND_WINDOW;

The RateKbitsPerSec specifies the data rate that the sender will be sending at. By

default, the send rate is 56 Kbps. WindowSizeInMSecs specifies how long (in

milliseconds) the data is to remain in the window before being purged to make room

for new data. The last field, WindowSizeInBytes, represents how many bytes can be

stored in the window before old data has to be purged to make room for new data.

When setting this option, the following equation must hold true: WindowSizeInBytes =

(RateKbitsPerSec/8) x WindowSizeInMSecs. This option must be set before

connecting the socket to the multicast destination address—all sender socket options

must be set before issuing the connect call.

FEC

FEC is a method by which H parity packets are created out of K original data packets

(for a total of N packets) so that the receiver can reconstruct the K original packets out

of any K packets out of N received. For example, if for each four original data packets

an additional four parity packets were created (for a total of eight packets), then the

receiver needs to receive only any four of the eight to reconstruct the original data.

The algorithm employs packet-level Reed Solomon Erasure correcting techniques.

This means that when FEC is enabled, more packets are hitting the wire as a number

of parity packets are generated in addition to the data, but receivers typically lose a

small number of packets at a time. If the receiver loses one packet out of the N

generated, it can still recover the original data packets, thus preventing a NAK for the

lost data and wait for the retransmission.

There are two operational modes in which FEC is enabled: pro-active and

on-demand. With pro-active, the sender always computes parity packets for all data

sent. The drawback is that computing parity packets can be a processor-intensive

calculation. The second mode is on-demand, which means the sender sends data

normally until a receiver sends a NAK, at which point the repair data is sent as a FEC

data. In general, pro-active FEC is used when a large number of receivers are on

lossy networks and the expected retransmission of lost data will become too large.

On-demand is a trade off between reliability and network overhead. It is useful when

several clients on the same network lose different packets belonging to the same FEC

group. In this case, each receiver NAKs for the lost packet, at which point the sender

will send a single FEC repair packet that will satisfy all of the clients' NAK request.

To enable FEC on a socket, the RM_USE_FEC socket option is used. This option

must be set before connecting the socket. The input parameter is an RM_FEC_INFO

structure that is defined as

typedef struct _RM_FEC_INFO

{

 USHORT FECBlockSize;

 USHORT FECProActivePackets;

 UCHAR FECGroupSize;

 BOOLEAN fFECOnDemandParityEnabled;

} RM_FEC_INFO;

The FECBlockSize field indicates the maximum number of packets generated. This

field is the N packets discussed earlier (for example, original data packets plus parity

packets). However, the current implementation ignores this field and instead relies on

the sum of the FECProActivePackets and FECGroupSize fields to determine the block

size. FECProActivePackets indicates the number of parity packets to be

generated—this is the H parity packets generated. FECGroupSize is the number of

original data packets used to generate parity information from—the original data

packets, K. Finally, fFECOnDemandParityEnabled indicates whether on-demand FEC

requests should be allowed.

Reliable Receiver

Setting up a reliable multicast receiver consists of the following five steps.

Create a reliable multicast socket.1.

Bind the socket specifying the multicast group address to join the session on.2.

If the receiver wishes to listen on specific interfaces (as opposed to listening on

all interfaces), call setsockopt and RM_ADD_RECEIVE_IF to add each

interface.

3.

Call listen().4.

Wait on an accept function.5.

There are a couple of important differences to note with the receiver. First, when

binding the socket, the local interface is not specified. Instead, the multicast group the

receiver wishes to join on is given. If the port number specified in the SOCKADDR_IN

structure is zero, any reliable multicast session for the specified multicast group is

accepted. Otherwise, if a specific port is given, then a reliable multicast session will be

joined only if it matches the multicast group and the port number.

The second difference is that the receiver must add which interfaces to listen for

incoming sessions on. Because the bind call is used to specify the multicast session to

join, it is necessary to indicate which local interfaces should listen on for incoming

sessions. By default, the socket will listen for incoming connections on any local

interface. If the application wishes to accept sessions from a specific interface it must

call RM_ADD_RECEIVE_IF for each local interface. Of course, this is important only

on multihomed computers. The argument to the RM_ADD_RECEIVE_IF is the 32-bit

network-byte order local interface to listen on. This option may be called multiple

times. The option RM_DEL_RECEIVE_IF can be used to remove an interface from

the listening set; however, it may be called only if RM_ADD_RECEIVE_IF has been

invoked previously.

When a receiver joins a reliable multicast session, it does not have to start receiving at

the beginning of the sender's data transmission. As a part of each session, the oldest

data that may be requested for repair is advertised. Therefore, if the client joins the

session after the sender has started transmitting data, the client may NAK for data

back to the advertised sequence number. This is known as a late join. The sender can

actually limit how much of its send window may be NAKed by late joiners (via the

RM_LATEJOIN option). Of course, this is totally transparent to the application. The

reliable multicast provider will automatically NAK for all available data when the

session is joined. Once the session is joined, if data is lost and cannot be repaired, the

session will be aborted. If, on the other hand, the sender closes the session, when all

the remaining data has been delivered to the application the next receive operation

will fail with the error WSEDISCONN.

The following code sample illustrates how to set up a reliable multicast receiver:

SOCKET s,

 ns;

SOCKADDR_IN multi,

 safrom;

ULONG localif;

char buf[1024];

int buflen=1024,

 fromlen,

 rc;

s = socket(AF_INET, SOCK_RDM, IPPROTO_RM);

multi.sin_family = AF_INET;

multi.sin_port = htons(5150);

multi.sin_addr.s_addr = inet_addr("234.5.6.7");

bind(s, (SOCKADDR *)&multi, sizeof(multi));

listen(s, 10);

localif = inet_addr("157.124.22.104");

setsockopt(s, IPPROTO_RM, RM_ADD_RECEIVE_IF,

 (char *)&localif, sizeof(localif));

fromlen = sizeof(safrom);

ns = accept(s, (SOCKADDR *)&safrom, &fromlen);

closesocket(s); // Don't need to listen anymore

// start receiving data . . .

while (1) {

 rc = recv(ns, buf, buflen, 0);

 if (rc == SOCKET_ERROR) {

 if (WSAGetLastError() == WSAEDISCON)

 break;

 else {

 // An unexpected error

 }

 }

}

closesocket(ns);

ATM Multipoint

Native ATM through Winsock also supports multicasting, which offers significantly different capabilities

than IP multicasting. Remember that ATM supports rooted control and data planes, so when a

multicast server, or c_root, is established, it has control over who is allowed to join the group as well as

how data is transmitted within the group.

One important distinction is that on an ATM network, IP over ATM can be enabled. This configuration

allows the ATM network to emulate an IP network by mapping IP addresses to ATM native addresses.

With IP over ATM enabled, you have a choice of using IP multicasting, which will be translated

appropriately to the ATM layer, or of using the native ATM multicasting capabilities, which we present

in this section. The behavior of IP multicasting on ATM when configured for IP over ATM should be the

same because it appears that you are on an IP network. The only exception is that IGMP is not present

because all multicast calls are translated into ATM native commands. In addition, it is possible to

configure an ATM network with one or more LAN emulation (LANE) networks. The purpose of a LANE

is to make the ATM appear as a “regular” network capable of multiple protocols such as IPX/SPX,

NetBEUI, TCP/IP, IGMP, and ICMP. In this situation, IP multicasting does look every bit like IP

multicasting on an Ethernet network, which means IGMP is present as well.

We mentioned that ATM supports rooted control planes and rooted data planes. Therefore, when you

create a multicast group, you establish a root node that “invites” leaf nodes to join the multicast group.

Currently, only root-initiated joins are supported, meaning that a leaf cannot request to be added to a

group. In addition, the root node (as a rooted data plane) sends data in one direction only, from the

root to the leaves.

One startling contrast between ATM and IP multicasting is that ATM needs no special addresses. All

that is required is that the root has knowledge of the addresses of each leaf that it will invite. Also, only

one root node can be in a multicast group. If another ATM endpoint starts inviting the same leaves,

this association becomes a separate group.

ATM Multipoint with WSAJoinLeaf

The WSAJoinLeaf API is the only method of using ATM multicasting. In addition, the semantics of

setting up an ATM multipoint session are client-server oriented but conceptually reversed. The server

creates a socket and then initiates a multipoint join with WSAJoinLeaf to each client it wishes to invite

into the multicast group. Each client creates a socket, listens, and waits on an accept call. If the server

invites the client, the accept call completes.

The next two sections describe the exact steps required for setting up an ATM leaf (client) node

followed by the root (server) node. An ATM multicast sample is provided on the companion CD in the

directory ATM.

ATM Leaf Node

Creating a leaf node in a multicast group is straightforward. On an ATM network, the leaf must listen

for an invitation from a root to join a group. Here are the four steps needed to do this:

Using the WSASocket function, create a socket of address family AF_ATM including the flags

WSA_FLAG_MULTIPOINT_C_LEAF and WSA_FLAG_MULTIPOINT_D_LEAF.

1.

Bind the socket to the local ATM address and port with the bind function.2.

Call listen.3.

Wait for an invitation by using accept, WSAAccept, or AcceptEx. Depending on the I/O model

you use, this will differ. (See Chapter 5 for a more thorough description of the Winsock I/O

models.)

4.

Once the connection is established, the leaf node can receive data sent from the root. Remember that

with ATM multicasting, the data flow is one way: from the root to the leaves.

Windows 98, Windows Me, Windows 2000, and Windows XP currently support only a

single ATM leaf node on the system at any given time. Only a single process on the

entire system can be a leaf member of any ATM point-to-multipoint session.

ATM Root Node

Creating a root node is even easier than creating an ATM leaf. The process includes two basic steps:

Using the WSASocket function, create a socket of address family AF_ATM including the flags

WSA_FLAG_MULTIPOINT_C_ROOT and WSA_FLAG_MULTIPOINT_D_ROOT.

1.

Call WSAJoinLeaf with the ATM address for each endpoint you want to invite.2.

A root node can invite as many endpoints as it wants, but it must issue a separate WSAJoinLeaf call

for each.

Conclusion

Multicasting offers a number of advantages for applications that need to communicate

with multiple endpoints without the overhead of broadcasting. In this chapter, we

defined multicasting and presented the different multicasting models. We then

discussed the different IP multicasting options, including IPv4 and IPv6 multicasting,

IPv4 source multicasting, and reliable multicasting. Finally, we covered ATM

point-to-multipoint communication.

Chapter 10

Generic Quality of Service

With the variety of multimedia applications available today, as well as the popularity of the Internet,

many networks are becoming saturated with the traffic of these bandwidth-hungry applications. This is

especially a problem on shared media networks—such as Ethernet—because all traffic is treated

equally and a single application can flood the network. QOS is a set of components that allows the

differentiation and preferential treatment of data on a network. A QOS-enabled network can be

configured to offer programmers the following capabilities:

Prevent non-adaptive protocols (such as UDP) from abusing network resources

Partition resources between “best-effort” traffic and higher-priority or lower-priority traffic

Reserve resources for entitled users

Prioritize access to resources based on the user

Generic Quality of Service (GQOS) is Microsoft's implementation of QOS. Currently, Microsoft supplies

a QOS-enabled TCP/IPv4 and UDP/IPv4 provider that is available in Windows 98, Windows Me,

Windows 2000, and Windows XP. However, in Windows XP, the IP QOS provider is scaled down and

does not offer full GQOS functionality, as we will describe later in the chapter. Note that QOS is not

available over IPv6 providers. Microsoft platforms also can access QOS using the ATM protocol

because QOS functionality is available natively in ATM.

This chapter covers QOS and how it is implemented on Windows platforms. We will begin with a

discussion of the components that need to be in place to allow preferential treatment of network traffic.

Then we'll examine how the Winsock interface exposes the capability to write a network application

that can take advantage of these components for time- and bandwidth-critical applications. The

majority of this chapter is dedicated to QOS on IP networks. At the end of this chapter, we will discuss

QOS on ATM networks, which is slightly different from QOS on IP networks.

Throughout the chapter, you can assume that when we refer to QOS, we are discussing

Microsoft's implementation of it.

Background

QOS requires three components to make it work:

Devices on the network—such as routers and switches—that are QOS aware

Local workstations that can prioritize traffic that they place on the network

The policy component: who is allowed to use the available bandwidth and how much they are

allowed to use

Before we begin discussing these components, we need to look at the RSVP, which is the signaling

protocol used between QOS senders and QOS receivers. RSVP plays a major role in QOS and the

integration of the three major components of QOS.

RSVP

RSVP is the glue that binds the network, application, and policy components into one cohesive unit.

RSVP carries resource reservation requests through the network, which can be composed of different

media. RSVP propagates a user's QOS requests to all RSVP-aware network devices along the data

path, allowing resources to be reserved from all RSVP-enabled devices. As a result, the network

nodes can indicate whether the network can meet the desired levels of service.

The RSVP protocol reserves network resources by establishing flows end to end through the network.

A flow is a network path associated with one or more senders, one or more receivers, and a specific

level of QOS. A sending host wanting to send data that requires a specific level of QOS issues a PATH

message toward the intended recipient or recipients. This PATH message contains the bandwidth

requirements. The relevant parameters are propagated along the path to the intended recipients.

A receiving host that is interested in this data reserves the resources for the flow (and the entire path

from the sender) by sending an RESV (reserve) message back toward the sender. As this occurs,

intermediate RSVP-enabled devices decide whether they can accommodate the requested bandwidth

requirements and ensure that the user requesting resources has the permission to do so. If the

requested bandwidth is available and the user's policy settings indicate the user has the right to the

request, each intermediate RSVP-enabled device commits the resources and propagates the RESV

message back toward the sender.

When the sender receives the RESV message, QOS data can begin to flow. Periodically, each

endpoint within the flow sends out PATH and RESV messages to reaffirm the reservation and to

provide network information in case the levels of available bandwidth change. Also, by periodically

refreshing PATH and RESV messages, the RSVP protocol remains dynamic. If a better (for example,

faster) route becomes available, these refresh messages can discover a new route. When we discuss

QOS from Winsock later in this chapter, we'll return to RSVP and how the Winsock API calls invoke it.

Be aware of one important aspect of the session setup and RSVP: It is a one-way reservation. This is

the case even if the application requests bandwidth requirements for both sending and receiving. One

session is initiated for the sending requirements and another session is started for the receiving

requirements. Later in this chapter, we will discuss the criteria required for initiating an RSVP session.

Network Components

For end-to-end QOS to work, the network devices between the two endpoints must also be able to

differentiate traffic priorities. This way they can route traffic in a manner that satisfies the QOS

guarantee that an application received. In addition, these network devices must be able to determine

whether enough bandwidth is available on the network when an application requests it. To support

these requirements, the following components have been created:

802.1p A standard for prioritizing packets in a subnet by setting three bits within the media access

control (MAC) header of packets

IP Precedence A method to establish priority for IP packets

Layer 2 signaling A mechanism for mapping RSVP objects to native WAN QOS components in a

network's OSI Layer 2

Subnet Bandwidth Manager (SBM) A component that manages shared media network bandwidth

RSVP A protocol that carries QOS requests and information to QOS-aware network devices along

the path between a sender and one or more receivers

802.1p

A major part of enforcing QOS provisions and avoiding treating all packets equally lies on hubs and

switches within the network. Hubs and switches lie within Layer 2 of the OSI reference model and as a

result are aware of fields only within the MAC header at the beginning of each packet.

802.1p is a standard that prioritizes network packets by setting a 3-bit precedence value in the MAC

header. When a subnet becomes congested on non-802.1p networks, switches and routers are unable

to keep up with the amount of traffic and a delay is introduced. On the other hand, switches and

routers on 802.1p networks can begin prioritizing incoming traffic based on the precedence bits and

give the higher-priority packets preferential treatment.

Implementing 802.1p for QOS requires special hardware capable of recognizing this 3-bit field.

Network interface cards (NIC), network drivers, and network switches all must be 802.1p-aware.

IP Precedence

IP Precedence is a method of specifying precedence values at a higher level than 802.1p. This method

allows packets passing through OSI Layer 3 devices—such as routers—to have their relative priorities

differentiated. IP Precedence is implemented by using the TOS field within the IP header to establish

varying levels of priority. Based on these bits, routers can establish priority queues to service the

different priority levels, so higher priority traffic receives better service from routers.

As with 802.1p, for IP Precedence to work, all Layer 3 devices on the network must be able to

understand the significance of the IP Precedence bits and handle traffic accordingly.

Layer 2 Signaling

Layer 2 signaling is necessary when traffic traverses a WAN. Typically, a WAN links several networks

over a variety of communications hardware. Thus, a WAN can manipulate Layer 1, Layer 2, and Layer

3 information as data is transmitted. To guarantee end-to-end QOS, the WAN link must understand the

prioritization of QOS traffic. To accomplish this understanding, QOS provides a method for mapping

RSVP and other QOS parameters to the WAN's native underlying Layer 2 signaling method—the

means by which WAN technologies implement their own native QOS.

SBM

The SBM manages the resources on a given shared media network, such as Ethernet. The SBM is

also responsible for handling policy-based admission control for QOS applications. An SBM is

necessary on shared media networks because when an endpoint requests QOS for an application,

each network device admits or rejects the request based on the allocation of the network device's

private resources. The network devices are not aware of the available resources on the shared media.

The SBM solves this problem by becoming a broker for these devices. The SBM is also closely tied to

the Admission Control Service (ACS) that is a part of the policy component. The SBM must check to

ensure that an application (or user) requesting bandwidth has the privileges to do so. Note that the

SBM for a network can be a host running Windows 2000 Server.

Application Components

You now have a good idea of network requirements for supporting QOS. We must consider how the

local system prioritizes data based on the QOS levels that an application has requested. For the local

system to support QOS, the following components are necessary:

GQOS service provider A service provider that invokes other QOS components

Traffic Control (TC) module The module that controls the traffic leaving the computer. (This module

includes the Generic Packet Classifier (GPC), the Packet Scheduler, and the Packet Shaper.)

RSVP The protocol that is invoked by the GQOS service provider and that carries the reservation

request across the network

GQOS API The programmatic interface to GQOS, such as Winsock

TC API The programmatic interface to the TC components regulating traffic on the local host

GQOS Service Provider

The GQOS service provider is the GQOS component that invokes nearly all resulting QOS facilities.

The GQOS service provider initiates TC functionality (if appropriate) and implements, maintains, and

handles RSVP signaling for all GQOS functionality.

To find the QOS-enabled service provider(s) on your host, you can query the provider catalog with

WSAEnumProtocols. The flag to check whether a provider is QOS-enabled is within the

WSAPROTOCOL_INFO structure returned from WSAEnumProtocols. The field of interest is

dwServiceFlags1, and the flag to check for is XP1_QOS_SUPPORTED. For more information about

WSAEnumProtocols, consult Chapter 2.

TC Module

TC plays a significant and central role in QOS. Within TC, packets are prioritized both within and

outside the network node on which TC is enabled. The effects of this preferential treatment of packets

as they flow through the system and through the network reach across the entire network and

therefore directly affect QOS characteristics. The TC module is implemented through three modules:

the Generic Packet Classifier, the Packet Scheduler, and the Packet Shaper.

GPC

The duty of the GPC is to classify and prioritize packets within network components. The GPC

performs this prioritization for activities such as CPU time or transmission onto the network.

The GPC accomplishes this prioritization by creating lookup tables and classification services within

the network stack. This becomes the first step in the prioritization process for network traffic.

Packet Scheduler

Packet scheduling controls the way data transmission is performed, which is a key function of QOS.

The Packet Scheduler is the TC module that regulates how much data an application, or flow, is

allowed, essentially enforcing QOS parameters set for a particular flow.

The Packet Scheduler takes the prioritization scheme that the GPC provides and offers different levels

of service to the various priority levels. For example, data that has been classified by the GPC as high

priority receives preferential treatment within the Packet Scheduler.

Packet Shaper

The purpose of the Packet Shaper is to regulate the transmission of data from data flows onto the

network. Most applications read and write data in bursts; however, many QOS applications need a

particular data rate for sent data. Therefore, the Packet Shaper schedules the transmission of data

over a period of time, smoothing out network usage and resulting in a more evenly loaded network.

TC API

The TC API is the interface to the components that regulate network traffic on the local host. This

includes methods for manipulating the GPC, the Packet Scheduler, and the Packet Shaper. Some TC

functions are implicitly invoked through calls made to Winsock GQOS–enabled functions that are

serviced by the GQOS Service Provider. However, applications that need to manipulate the TC

components directly can do so with the TC API functions. These functions are beyond the scope of this

book. (Consult the Platform Software Development Kit (SDK) for more information.) We will cover the

Winsock GQOS API later in this chapter.

Policy Components

Policy, the third and final component of GQOS, controls the allocation of resources to QOS-enabled

applications. Policy components are of most interest to system administrators who want to control the

allocation of resources based on users or on the class of application requesting bandwidth. Policy

components include the following:

ACS A Windows 2000 Server service that intercepts RSVP PATH and RESV messages to control

access of QOS-enabled clients to the various levels of guarantees that QOS offers

Local Policy Module (LPM) Provides resource-access decisions based on policies configured

through ACS for the SBM

Policy Element (PE) Resides on the client and provides authentication information to facilitate

reservation requests

ACS

The ACS regulates network usage for QOS-enabled applications. This is done through the RSVP

protocol. The ACS intercepts both PATH and RESV messages to verify that the requesting application

has sufficient privileges. Once an RSVP message is intercepted, it is passed to the LPM, which

performs the actual authentication.

The ACS resides on a Windows 2000 machine and can be configured by the system administrator,

who can set resource limits on users, applications, or groups.

LPM

The LPM is closely related to the ACS in that the ACS intercepts RSVP messages, inserts user

information, and passes the messages to the LPM. At this point, the LPM looks the user up in Active

Directory to verify policy information. If network resources are available (as determined by the SBM),

and if the authentication check succeeds, the RSVP message that the ACS intercepts is sent to the

next hop. Of course, if the user does not have the necessary permissions to request a certain level of

QOS, an error indicating this is generated and returned within the RSVP message.

For policy checks to succeed, users must be part of a Windows 2000 domain.

Policy Element

This component contains the policy information that the LPM requests. These data structures are not

covered in this book because they deal mainly with administration of network resources, which is not

the focus of this book.

QOS and Winsock

In the previous section, we discussed the various components required for the success of an

end-to-end QOS network. Now we'll turn our attention to Winsock 2, which is the API you use to

programmatically access QOS from an application. First, we'll take a look at the top-level QOS

structures that the majority of Winsock calls need. Next, we'll cover the Winsock functions capable of

invoking QOS on a socket, as well as how to terminate QOS once it has been enabled on a socket.

The last thing we'll do is cover the provider-specific objects that can be used to affect the behavior

of—or return information from—the QOS service provider.

It might seem a bit out of order to jump from a discussion of the major QOS structures to QOS

functions and then back to provider-specific structures. However, we want to give a thorough,

high-level overview of how the major structures interact with the Winsock API calls before delving into

the details of the provider-specific options.

QOS Structures

The central structure in QOS programming is the QOS structure. This structure consists of

A FLOWSPEC structure used to describe the QOS levels that your application will use for sending

data

A FLOWSPEC structure used to describe the QOS levels that your application will use to receive

data

A service provider–specific buffer to allow the specification of provider-specific QOS characteristics

(We will discuss these characteristics in the provider-specific section.)

QOS

The QOS structure specifies the QOS parameters for both sending and receiving traffic. It is defined as

typedef struct _QualityOfService

{

 FLOWSPEC SendingFlowspec;

 FLOWSPEC ReceivingFlowspec;

 WSABUF ProviderSpecific;

} QOS, FAR * LPQOS;

The FLOWSPEC structures define the traffic characteristics and requirements for each traffic direction,

while the ProviderSpecific field is used to return information and to change the behavior of QOS.

These provider-specific options are covered in detail a little later in this chapter.

FLOWSPEC

FLOWSPEC is the basic structure that describes a single flow. Remember that a flow describes data

traveling in a single direction. The structure is defined as

typedef struct _flowspec

{

 ULONG TokenRate;

 ULONG TokenBucketSize;

 ULONG PeakBandwidth;

 ULONG Latency;

 ULONG DelayVariation;

 SERVICETYPE ServiceType;

 ULONG MaxSduSize;

 ULONG MinimumPolicedSize;

} FLOWSPEC, *PFLOWSPEC, FAR *LPFLOWSPEC;

Let's take a look at the meaning of each of the FLOWSPEC structure fields.

TokenRate

The TokenRate field specifies the rate of transmission for data that is given in bytes per second. An

application can transmit data at this rate, but if for some reason it transmits data at a lower rate, the

application can accrue extra tokens so that more data can be transmitted later. However, the number

of tokens that an application can accrue is bound by PeakBandwidth. This accumulation of token

credits is limited by the TokenBucketSize field. By limiting the total number of tokens, we avoid a

situation of inactive flows that have accrued many tokens, which could lead to flooding the available

bandwidth. Because flows can accrue transmission credits over time (at their TokenRate value) only

up to the maximum of their TokenBucketSize, and they are limited in “burst transmissions” to their

PeakBandwidth, TC and network-device resource integrity are maintained. TC is maintained because

flows cannot send too much data at once, and network-device resource integrity is maintained

because such devices are spared high-traffic bursts.

Because of these limitations, an application can transmit only when sufficient credits have accrued. If

the required number of credits are not available, the application must either wait until sufficient credits

have accrued to send the data or discard the data altogether. The TC module determines what

happens to data queued too long without being sent. Therefore, applications should take care to base

their TokenRate requests on reasonable amounts.

If an application does not require scheduling of transmission rates, this field can be set to

QOS_NOT_SPECIFIED (-1).

TokenBucketSize

As we discussed earlier, the TokenBucketSize field limits the number of credits that can accrue for a

given flow. For example, video applications would set this field to the frame size being transmitted

because it is desirable to have single video frames being transmitted one at a time. Applications

requiring a constant data rate should set this field to allow for some variation. Like the TokenRate field,

TokenBucketSize is expressed in bytes per second.

PeakBandwidth

PeakBandwidth specifies the maximum amount of data transmitted in a given period of time. In effect,

this value specifies the maximum amount of burst data. This is an important value because it prevents

applications that have accrued a significant number of transmission tokens from flooding the network

all at once. PeakBandwidth is expressed in bytes per second.

Latency

The Latency field specifies the maximum acceptable delay between the transmission of a bit and its

receipt by the intended recipient or recipients. How this value is interpreted depends on the level of

service requested in the ServiceType field. Latency is expressed in microseconds.

DelayVariation

DelayVariation specifies the difference between the minimum and maximum delay that a packet can

experience. Typically, an application uses this value to determine the amount of buffer space required

to receive the data and still maintain the original data transmission pattern. DelayVariation is

expressed in microseconds.

ServiceType

The ServiceType field specifies the level of service that the data flow requires. The following service

types can be specified:

SERVICETYPE_NOTRAFFIC indicates that no data is being transmitted in this direction.

SERVICETYPE_BESTEFFORT indicates that the parameters specified in FLOWSPEC are

guidelines and that the system will make a reasonable effort to maintain that service level; however,

there are no guarantees of packet delivery.

SERVICETYPE_CONTROLLEDLOAD indicates that data transmission will closely approximate

transmission quality provided by best-effort service on a network with non-loaded traffic conditions.

This really breaks down into two conditions. First, packet loss will approximate the normal error rate

of the transmission medium; and second, transmission delay will not greatly exceed the minimum

delay that delivered packets experience.

SERVICETYPE_GUARANTEED guarantees data transmission at the rate specified by the

TokenRate field over the lifetime of the connection. However, if the data transmission rate exceeds

TokenRate, data might be delayed or discarded (depending on how TC is configured). In addition, if

TokenRate is not exceeded, Latency is also guaranteed.

SERVICETYPE_QUALITATIVE behaves similarly to SERVICETYPE_ BESTEFFORT.

SERVICETYPE_NETWORK_CONTROL has the highest priority and is typically used only for

controlling the network. In general, you should not use this level.

In addition to these six service types, several other flags provide information that can be returned to an

application. These informational flags can be ORed with any valid ServiceType flag. Table 10-1 lists

these information flags.

Table 10-1Service Type Modifier Flags

Value Meaning

SERVICETYPE_NETWORK_UNAVAILABLE
Indicates a loss of service in either the sending or the

receiving direction.

SERVICETYPE_GENERAL_INFORMATION
Indicates that all service types are supported for a

flow.

SERVICETYPE_NOCHANGE

Indicates that there is no change in the requested

QOS service level. This flag can be returned from a

Winsock call or an application can specify this flag

when renegotiating QOS to indicate no change in the

QOS levels for the given direction.

SERVICETYPE_NONCONFORMING This flag is not used.

SERVICE_NO_TRAFFIC_CONTROL
This flag can be ORed with other ServiceType flags to

disable TC altogether.

SERVICE_NO_QOS_SIGNALING

This flag prevents any RSVP signaling messages

from being sent. Local TC will be invoked, but no

RSVP Path messages will be sent. This flag can also

be used in conjunction with a receiving FLOWSPEC

structure to suppress the automatic generation of an

RESV message. The application receives notification

that a PATH message has arrived and then needs to

alter the QOS by issuing WSAIoctl (SIO_SET_QOS)

to unset this flag and thereby cause RESV messages

to go out.

MaxSduSize

The MaxSduSize field indicates the maximum packet size for data transmitted in the given flow.

MaxSduSize is expressed in bytes.

MinimumPolicedSize

The MinimumPolicedSize field indicates the minimum packet size that can be transmitted in the given

flow. MinimumPolicedSize is expressed in bytes.

QOS-Invoking Functions

Let's say you want your application to make a request on the network for certain bandwidth

requirements. Four functions initiate the process. Once an RSVP session has begun, an application

can register for FD_QOS events. QOS status information and error codes are conveyed to

applications as FD_QOS events. Applications can register to receive these events in the usual way: by

including the FD_QOS flag in the event field of either the WSAAsyncSelect function or the

WSAEventSelect function.

The FD_QOS notification is especially relevant if a connection is established that uses FLOWSPEC

structures that specify default values (QOS_NOT_SPECIFIED). Once the application has made the

request for QOS, the underlying provider will periodically update the FLOWSPEC structure to indicate

current network conditions and will notify the application by posting an FD_QOS event. With this

information, applications can request or modify QOS levels to reflect the amount of available

bandwidth. Keep in mind that the updated information is an indication of the locally available

bandwidth only and does not necessarily indicate the end-to-end bandwidth.

Once a flow is established, available network bandwidth might change or a single party taking part in

an established flow might decide to change the requested QOS service level. A renegotiation of

allocated resources generates an FD_QOS event to indicate the change to the application. At this

point, the application should call SIO_GET_QOS to obtain the new resource levels. We'll revisit QOS

event signaling and status information in the section on programming QOS later in this chapter.

WSAConnect

A client uses the WSAConnect function to initiate a unicast QOS connection to a server. WSAConnect

is defined as follows:

int WSAConnect (

 SOCKET s,

 const struct sockaddr FAR *name,

 int namelen,

 LPWSABUF lpCallerData,

 LPWSABUF lpCalleeData,

 LPQOS lpSQOS,

 LPQOS lpGQOS

);

The requested QOS values are passed as the lpSQOS parameters. Currently, group QOS is not

supported or implemented; a null value should be passed for lpGQOS.

The WSAConnect call can be used with connection-oriented or connectionless sockets. With a

connection-oriented socket, this function establishes the connection and also generates the

appropriate PATH and/or RESV messages. For connectionless sockets, you must associate an

endpoint's address with the socket so that the service provider knows where to send PATH and RESV

messages. The caveat with using WSAConnect on a connectionless socket is that only data sent to

that destination address will be shaped by the system according to the QOS levels associated with

that socket. In other words, if WSAConnect is used to associate an endpoint on a connectionless

socket, data can be transferred only between those two endpoints for the lifetime of the socket. If you

need to send data with QOS guarantees to multiple endpoints, use WSAIoctl and SIO_SET_QOS to

specify each new endpoint.

WSAAccept

The WSAAccept function accepts a client connection that can be QOS-enabled. The prototype for the

function is as follows:

SOCKET WSAAccept(

 SOCKET s,

 struct sockaddr FAR *addr,

 LPINT addrlen,

 LPCONDITIONPROC lpfnCondition,

 DWORD dwCallbackData

);

If you want to supply a conditional function, you must prototype it as

int CALLBACK ConditionalFunc(

 LPWSABUF lpCallerId,

 LPWSABUF lpCallerData,

 LPQOS lpSQOS,

 LPQOS lpGQOS,

 LPWSABUF lpCalleeId,

 LPWSABUF lpCalleeData,

 GROUP FAR *g,

 DWORD dwCallbackData

);

The drawback is that the QOS service provider does not guarantee to return the actual QOS values

that the client requests as the lpSQOS parameter, so to enable QOS on the client socket, WSAIoctl

with SIO_SET_QOS must be called before or after WSAAccept. If QOS is set on the listening socket,

those values will be copied over to the client socket by default.

Unfortunately, the QOS service provider will not pass valid QOS parameters into the conditional

function even if a PATH message has already arrived. Basically, don't use the WSAAccept condition

function.

There is one issue to be aware of when using WSAAccept in Windows 98 and Windows

Me. If you use a conditional function with WSAAccept and the lpSQOS parameter is not

null, you must set QOS (using SIO_SET_QOS), or WSAAccept will fail.

WSAJoinLeaf

WSAJoinLeaf is used for multipoint communications. Chapter 9 discusses multicasting in great detail.

The function is defined as

SOCKET WSAJoinLeaf(

 SOCKET s,

 const struct sockaddr FAR *name,

 int namelen,

 LPWSABUF lpCallerData,

 LPWSABUF lpCalleeData,

 LPQOS lpSQOS,

 LPQOS lpGQOS,

 DWORD dwFlags

);

For an application to join a multicast session, it must create a socket that has the appropriate flags

(WSA_FLAG_MULTIPOINT_C_ROOT, WSA_FLAG_MULTIPOINT_C_LEAF,

WSA_FLAG_MULTIPOINT_D_ROOT, and WSA_FLAG_MULTIPOINT_D_LEAF). When the

application sets up multipoint communications, it specifies QOS parameters in the lpSQOS parameter.

When you use WSAJoinLeaf to join IP multicast groups, the operation of joining a multicast group is

separate from the QOS RSVP session setup. In fact, joining a multicast group is likely to succeed. The

function returns without the reservation request completing. At some later time, you will receive an

FD_QOS event that will notify you of either a success or a failure in allocating the requested

resources.

Keep in mind the TTL set on multicast data. If you plan on setting the TTL with either

SIO_MULTICAST_SCOPE or IP_MULTICAST_TTL, it must be set prior to calling WSAJoinLeaf or

calling the SIO_SET_QOS ioctl command to set QOS on the socket. If the scope is set after the QOS

is already set, the TTL will not take effect until QOS is renegotiated through SIO_SET_QOS. The TTL

value set will also be carried by the RSVP request.

Setting the TTL before setting QOS on a socket is important because the multicast TTL set on the

socket also affects the TTL of the RSVP messages, which directly affects how many networks your

resource reservation request is propagated to. For example, if you want to set up several endpoints in

an IP multicast group that spans three networks, you ideally would set the TTL to 3 so that the network

traffic you generate is not propagated to networks beyond those interested in the data. If the TTL isn't

set before WSAJoinLeaf is called, RSVP messages are sent out with a default TTL of 63, which results

in the host attempting to reserve resources on far too many networks.

WSAIoctl

The WSAIoctl function with the ioctl option SIO_SET_QOS can be used either to request QOS for the

first time on either a connected or an unconnected socket or to renegotiate QOS requirements after an

initial QOS request. The one advantage to using WSAIoctl is that if the QOS request fails, more

detailed error information is returned via the provider-specific information. Chapter 7 covers the

WSAIoctl function and how it is called, along with SIO_SET_QOS and SIO_GET_QOS.

The SIO_SET_QOS option is used to set or modify QOS parameters on a socket. One feature of using

WSAIoctl with SIO_SET_QOS is the capability to specify provider-specific objects to further refine

QOS's behavior. The next section is dedicated to covering all of the provider-specific objects. In

particular, if an application using connectionless sockets does not want to use WSAConnect, it can call

WSAIoctl with SIO_SET_QOS and specify the destination address object in the provider-specific

buffer to associate an endpoint so that an RSVP session can be established. When setting QOS

parameters, pass the QOS structure as lpvInBuffer, with cbInBuffer indicating the amount of bytes

passed in.

The SIO_GET_QOS option is used upon receipt of an FD_QOS event. When an application receives

this event notification, a call to WSAIoctl with SIO_GET_QOS should be made to investigate the

reason. As we mentioned earlier, the FD_QOS event can be generated because of a change in the

available bandwidth on the network or by renegotiation by the peer. To obtain the QOS values for a

socket, pass a sufficiently large buffer as lpvOutBuffer, with cbOutBuffer indicating the size. The input

parameters can be NULL and 0. The one tricky part of calling SIO_GET_QOS is passing a buffer large

enough to hold the QOS structure, including the provider-specific objects. The ProviderSpecific

field—a WSABUF structure—is within the QOS structure. If the len field is set to zero and the buf field

is null, len will be updated with the necessary size upon return from WSAIoctl. In addition, if the call

fails because the buffer is too small, the len field will be updated with the correct size. Querying for the

buffer size is supported only in Windows 2000 and Windows XP. For Windows 98 and Windows Me,

you must always supply a large enough buffer—simply pick a large buffer size and stick with it.

Another ioctl command can be used with WSAIoctl: SIO_CHK_QOS. This command can be used to

query for the six values described in Table 10-2. When you call this command, the lpvInBuffer

parameter points to a DWORD that is set to one of the three flags. The lpvOutBuffer parameter should

also point to a DWORD, and upon return, the value requested is returned. The most commonly used

flag is ALLOWED_TO_SEND_DATA. This flag is used by senders who have initiated a PATH

message but have not received any RESV messages indicating successful allocation of the QOS

level. When senders use the SIO_CHK_QOS ioctl command with the ALLOWED_TO_SEND_DATA

flag, the network is queried to see whether the best-effort traffic currently available is sufficient for

sending the kind of data described in the QOS structure passed to a QOS-invoking function. For more

details, look at the entry for this ioctl command in Chapter 7.

Table 10-2SIO_CHK_QOS Flags

SIO_CHK_QOS Flag Description
Return

Value

ALLOWED_TO_SEND_DATA

Indicates whether sending data can begin immediately

or whether the application should wait for an RESV

message

BOOL

ABLE_TO_RECV_RSVP
Indicates to senders whether its interface is

RSVP-enabled
BOOL

LINE_RATE Returns the bandwidth capacity of the interface DWORD

LOCAL_TRAFFIC_CONTROL Returns whether TC is installed and available for use BOOL

LOCAL_QOSABILITY Returns whether QOS is available BOOL

END_TO_END_QOSABILITY
Determines whether end-to-end QOS is available on

the network
BOOL

The options listed in Table 10-2 that return BOOL values actually return 1 or 0 to indicate a yes or a no

answer, respectively. The last four options in the table can return the constant

INFO_NOT_AVAILABLE if the system cannot currently obtain the answer.

Terminating QOS

In the previous section, you learned how to invoke QOS on a socket. Next, we'll examine the

termination of QOS guarantees. Each of the following events causes a termination of RSVP and TC

processing for a socket.

Closing a socket via the closesocket function

Shutting down a socket via the shutdown function

Calling WSAConnect with a null peer address

Calling WSAIoctl and SIO_SET_QOS with the SERVICETYPE_ NOTRAFFIC or the

SERVICETYPE_BESTEFFORT service type

Except for the second item in the list, these events are self-explanatory. Remember that the shutdown

function can signal the cessation of either sending or receiving data, which will result in the termination

of the flow of data for only that direction. In other words, if shutdown is called with SD_SEND, QOS will

still be in effect for data being received.

Provider-Specific Objects

The provider-specific objects covered in this section are passed as part of the ProviderSpecific field of

the QOS structure. Either they return QOS information to your application via the FD_QOS event or

you can pass them along with the other QOS parameters to a WSAIoctl call with the SIO_SET_QOS

option to refine QOS's behavior.

Every provider-specific object contains a QOS_OBJECT_HDR structure as its first member. This

structure identifies the type of provider-specific object. This is necessary because these provider

objects are most commonly returned within the QOS structure after a call to SIO_GET_QOS. By using

the QOS_ OBJECT_HDR, your application can identify each object and decode its significance. The

object header is defined as

typedef struct

{

 ULONG ObjectType;

 ULONG ObjectLength;

} QOS_OBJECT_HDR, *LPQOS_OBJECT_HDR;

ObjectType identifies the type of preset provider-specific object, while ObjectLength tells how long the

entire object is, including the object header and the provider-specific object. An object type can be one

of the flags listed in Table 10-3.

Table 10-3Object Types

Provider Object Object Structure

QOS_OBJECT_SD_MODE QOS_SD_MODE

QOS_OBJECT_SHAPING_RATE QOS_SHAPING_RATE

QOS_OBJECT_DESTADDR QOS_DESTADDR

RSVP_OBJECT_STATUS_INFO RSVP_STATUS_INFO

RSVP_OBJECT_RESERVE_INFO RSVP_RESERVE_INFO

RSVP_OBJECT_ADSPEC RSVP_ADSPEC

RSVP_OBJECT_POLICY_INFO RSVP_POLICY_INFO

QOS_OBJECT_END_OF_LIST None. No more objects.

QOS Shape Discard Mode

This QOS object defines how the Packet Shaper element of TC processes the data of a given flow.

This property most often comes into play when dealing with flows that do not conform to the

parameters given in FLOWSPEC. That is, if an application is sending data at a rate faster than what is

specified in the TokenRate field of the sending FLOWSPEC, it is considered nonconforming. This

object defines how the local system handles this occurrence. The QOS_SD_MODE structure is

defined as

typedef struct _QOS_SD_MODE

{

 QOS_OBJECT_HDR ObjectHdr;

 ULONG ShapeDiscardMode;

} QOS_SD_MODE, *LPQOS_SD_MODE;

The ShapeDiscardMode field can be one of the values specified in Table 10-4.

Table 10-4 QOS Shape DiscardMode Flags

Flag Description

TC_NONCONF_BORROW

The flow receives the resources remaining after all higher-priority

flows have been serviced. Flows of this type are not subjected to

either the Shaper or the Sequencer. If a value for TokenRate is

specified, packets can be nonconforming and will be demoted to

less than best-effort priority.

TC_NONCONF_BORROW_PLUS
Similar to TC_NONCONF_BORROW, however, packets will not

be marked as nonconforming in the Shaper.

TC_NONCONF_SHAPE

A value for TokenRate must be specified. Nonconforming

packets will be retained in the Packet Shaper until they become

conforming.

TC_NONCONF_DISCARD
A value for TokenRate must be specified. Nonconforming

packets will be discarded.

You might wonder why you would want to use the TC_NONCONF_ DISCARD mode when it might

result in dropping data before it even gets sent on the wire. One such use is in sending audio or video

data. In most cases, the FLOWSPEC structure is set up to reflect sending a packet whose size is

equal to one frame of video or a small segment of audio. If for some reason the packet does not

conform, is it better for an application to wait until it does conform (as is the case with

TC_NONCONF_SHAPE), or should the application drop the packet altogether and move on to the next

one? For time-critical data such as video, it is often better to drop the frame and move on.

QOS Destination Address

The QOS_DESTADDR structure is used to specify the destination address for a connectionless

sending socket without using a WSAConnect call. No RSVP PATH or RESV messages will be sent

until the destination address of a connectionless socket is known. The destination address can be set

with the SIO_SET_QOS ioctl command. The structure is defined as

typedef struct _QOS_DESTADDR

{

 QOS_OBJECT_HDR ObjectHdr;

 const struct sockaddr *SocketAddress;

 ULONG SocketAddressLength;

} QOS_DESTADDR, *LPQOS_DESTADDR;

The SocketAddress field references the SOCKADDR structure that defines the endpoint's address for

the given protocol. SocketAddressLength is simply the size of the SOCKADDR structure.

RSVP Status Info

The RSVP status info object is used to return RSVP-specific error and status information. The

structure is defined as

typedef struct _RSVP_STATUS_INFO {

 QOS_OBJECT_HDR ObjectHdr;

 ULONG StatusCode;

 ULONG ExtendedStatus1;

 ULONG ExtendedStatus2;

} RSVP_STATUS_INFO, *LPRSVP_STATUS_INFO;

The StatusCode field is the RSVP message returned. The possible codes are described in Table 10-5.

The other two fields, ExtendedStatus1 and ExtendedStatus2, are reserved for provider-specific

information.

Table 10-5RSVP Status Info Codes

Flag Meaning

WSA_QOS_RECEIVERS At least one RESV message has arrived.

WSA_QOS_SENDERS At least one PATH message has arrived.

WSA_QOS_NO_RECEIVERS There are no receivers.

WSA_QOS_NO_SENDERS There are no senders.

WSA_QOS_REQUEST_CONFIRMED The reserve has been confirmed.

WSA_QOS_ADMISSION_FAILURE Request failed due to lack of resources.

WSA_QOS_POLICY_FAILURE
Request rejected for administrative reasons or bad

credentials.

WSA_QOS_BAD_STYLE Unknown or conflicting style.

WSA_QOS_BAD_OBJECT

There is a problem with some part of the

RSVP_FILTERSPEC structure or with the provider-specific

buffer in general. (This object will be discussed shortly.)

WSA_QOS_TRAFFIC_CTRL_ERROR
There is a problem with some part of the FLOWSPEC

structure.

WSA_QOS_GENERIC_ERROR General error.

ERROR_IO_PENDING Overlapped operation is canceled.

Typically, an application receives an FD_QOS event and calls SIO_ GET_QOS to obtain a QOS

structure containing an RSVP_STATUS_INFO object when an RSVP message is received. For

example, for a QOS-enabled UDP-based receiver, an FD_QOS event containing a

WSA_QOS_SENDERS message is generated to indicate that someone has requested the QOS

service to send data to the receiver.

RSVP Reserve Info

The RSVP reserve info object is used for storing RSVP-specific information for fine-tuning interactions

via the Winsock 2 QOS APIs and the provider-specific buffer. An RSVP_RESERVE_INFO object

overrides the default reservation style and is used by a QOS receiver. The object is defined as

typedef struct _RSVP_RESERVE_INFO

{

 QOS_OBJECT_HDR ObjectHdr;

 ULONG Style;

 ULONG ConfirmRequest;

 LPRSVP_POLICY_INFO PolicyElementList;

 ULONG NumFlowDesc;

 LPFLOWDESCRIPTOR FlowDescList;

} RSVP_RESERVE_INFO, *LPRSVP_RESERVE_INFO;

The Style field specifies the filter type that should be applied to this receiver. Table 10-6 lists the filter

types available and the default filter types that different types of receivers use.

Table 10-6Default Filter Styles

Filter Style Default Users

Fixed filter Unicast receivers; connected UDP receivers

Wildcard Multicast receivers; unconnected UDP receivers

Shared explicit None

Each filter style will be discussed in greater detail shortly. If the ConfirmRequest field is nonzero,

notification will be sent once the RESV request has been received for receiving applications.

NumPolicyElement is related to the PolicyElementList field. PolicyElementList is a list of

RSVP_POLICY objects that we define a little bit later in this chapter. Let's take a look at the different

filter styles and the characteristics of each.

RSVP_DEFAULT_STYLE

This flag tells the QOS service provider to use the default style. Table 10-6 lists the default styles for

the different possible receivers. Unicast receivers use fixed filter, whereas wildcard is for multicast

receivers. UDP receivers that call WSAConnect also use fixed filter.

RSVP_FIXED_FILTER_STYLE

Normally, this style establishes a single flow with QOS guarantees between the receiver and a single

source. This is the case for a unicast receiver and connected UDP receivers: NumFlowDesc is set to

1, and FlowDescList contains the sender's address. However, it is also possible to set up a multiple

fixed filter style that allows a receiver to reserve mutually exclusive flows from multiple, explicitly

identified sources. For example, if your receiver intends to receive data from three senders and needs

guaranteed bandwidth of 20 Kbps for each, use the multiple fixed filter style. In this example,

NumFlowDesc is set to 3, while FlowDescList contains three addresses, one for each FLOWSPEC. It

is also possible to assign varying levels of QOS to each sender; they do not all have to be equal. Note

that unicast receivers and connected UDP receivers cannot use multiple fixed filters. Figure 10-1

shows the relationship between FLOWDESCRIPTOR and RSVP_FILTERSPEC structures.

Figure 10-1 Multiple fixed filter style

RSVP_WILDCARD_STYLE

Multicast receivers and unconnected UDP receivers use the wildcard style. To use this style for TCP

connections or for connected UDP receivers, set NumFlowDesc to 0 and FlowDescList to NULL. This

is the default filter style for unconnected UDP receivers and multicast applications because the

sender's address is unknown.

RSVP_SHARED_EXPLICIT_STYLE

This style is somewhat similar to multiple fixed filter style except that network resources are shared

among all senders instead of being allocated for each sender. In this case, NumFlowDesc is 1 and

FlowDescList contains the list of sender addresses. Figure 10-2 illustrates this style.

Figure 10-2 Shared explicit style

We've introduced the last two fields, NumFlowDesc and FlowDescList, in our discussion of RSVP

styles. How you use these two fields depends on the style. NumFlowDesc defines the number of

FLOWDESCRIPTOR objects in the FlowDescList field. This structure is defined as

typedef struct _FLOWDESCRIPTOR

{

 FLOWSPEC FlowSpec;

 ULONG NumFilters;

 LPRSVP_FILTERSPEC FilterList;

} FLOWDESCRIPTOR, *LPFLOWDESCRIPTOR;

This object is used to define the types of filters per FLOWSPEC given by FlowSpec. Again, the

NumFilters field contains the number of RSVP_FILTERSPEC objects present in the FilterList array.

The RSVP_FILTERSPEC object is defined as

typedef struct _RSVP_FILTERSPEC {

 FilterType Type;

 union {

 RSVP_FILTERSPEC_V4 FilterSpecV4;

 RSVP_FILTERSPEC_V6 FilterSpecV6;

 RSVP_FILTERSPEC_V6_FLOW FilterSpecV6Flow;

 RSVP_FILTERSPEC_V4_GPI FilterSpecV4Gpi;

 RSVP_FILTERSPEC_V6_GPI FilterSpecV6Gpi;

 };

} RSVP_FILTERSPEC, *LPRSVP_FILTERSPEC;

The first field, Type, is a simple enumeration of the following values:

typedef enum {

 FILTERSPECV4 = 1,

 FILTERSPECV6,

 FILTERSPECV6_FLOW,

 FILTERSPECV4_GPI,

 FILTERSPECV6_GPI,

 FILTERSPEC_END

} FilterType;

This enumeration specifies the object present in the union. Each of these filter specs is defined as

follows:

typedef struct _RSVP_FILTERSPEC_V4 {

 IN_ADDR_IPV4 Address;

 USHORT Unused;

 USHORT Port;

} RSVP_FILTERSPEC_V4, *LPRSVP_FILTERSPEC_V4;

typedef struct _RSVP_FILTERSPEC_V6 {

 IN_ADDR_IPV6 Address;

 USHORT UnUsed;

 USHORT Port;

} RSVP_FILTERSPEC_V6, *LPRSVP_FILTERSPEC_V6;

typedef struct _RSVP_FILTERSPEC_V6_FLOW {

 IN_ADDR_IPV6 Address;

 UCHAR UnUsed;

 UCHAR FlowLabel[3];

} RSVP_FILTERSPEC_V6_FLOW, *LPRSVP_FILTERSPEC_V6_FLOW;

typedef struct _RSVP_FILTERSPEC_V4_GPI {

 IN_ADDR_IPV4 Address;

 ULONG GeneralPortId;

} RSVP_FILTERSPEC_V4_GPI, *LPRSVP_FILTERSPEC_V4_GPI;

typedef struct _RSVP_FILTERSPEC_V6_GPI {

 IN_ADDR_IPV6 Address;

 ULONG GeneralPortId;

} RSVP_FILTERSPEC_V6_GPI, *LPRSVP_FILTERSPEC_V6_GPI;

RSVP Adspec

The RSVP_ADSPEC object defines the information carried in the RSVP Adspec. This RSVP object

typically indicates which service types are available (controlled load or guaranteed), whether a

non-RSVP hop has been encountered by the PATH message, and the minimum MTU along the path.

The structure is defined as

typedef struct _RSVP_ADSPEC

{

 QOS_OBJECT_HDR ObjectHdr;

 AD_GENERAL_PARAMS GeneralParams;

 ULONG NumberOfServices;

 CONTROL_SERVICE Services[1];

} RSVP_ADSPEC, *LPRSVP_ADSPEC;

The first field of interest is GeneralParams, which is a structure of type AD_GENERAL_PARAMS. This

structure is exactly as it sounds—it defines some general characterization parameters. The definition

of this object is

typedef struct _AD_GENERAL_PARAMS

{

 ULONG IntServAwareHopCount;

 ULONG PathBandwidthEstimate;

 ULONG MinimumLatency;

 ULONG PathMTU;

 ULONG Flags;

} AD_GENERAL_PARAMS, *LPAD_GENERAL_PARAMS;

The IntServAwareHopCount is the number of hops that conform to Integrated Services (IntServ)

requirements. PathBandwidthEstimate is the minimum bandwidth available from sender to receiver.

MinimumLatency is the sum of minimum latencies, in microseconds, of the packet forwarding

processes in the routers. PathMTU is the maximum transmission unit—end-to-end—that will not incur

any fragmentation. The Flags field is not used anymore.

RSVP Policy Info

The last provider object we'll take a look at is the RSVP policy info. This object is rather nebulous—it

contains any number of policy elements from RSVP that are not defined. The structure is defined as

typedef struct _RSVP_POLICY_INFO {

 QOS_OBJECT_HDR ObjectHdr;

 ULONG NumPolicyElement;

 RSVP_POLICY PolicyElement[1];

} RSVP_POLICY_INFO, *LPRSVP_POLICY_INFO;

The NumPolicyElement field gives the number of RSVP_POLICY structures present in the

PolicyElement array. This structure is defined as

typedef struct _RSVP_POLICY {

 USHORT Len;

 USHORT Type;

 UCHAR Info[4];

} RSVP_POLICY, *LPRSVP_POLICY;

The RSVP_POLICY structure is data transported by RSVP on behalf of the policy component and is

not particularly relevant to our needs.

Programming QOS

The programming techniques described in this section apply primarily to the Windows 98, Windows

Me, and Windows 2000 platforms. As we mentioned, Windows XP does not feature a fully capable IP

QOS service provider. Therefore, the Windows XP platforms no longer feature a supported RSVP

signaling and admission control layer. The traffic control IP packet scheduler layer is still available and

the technique of setting up a FLOWSPEC still applies, but information regarding QOS notifications and

RSVP signaling does not apply.

Central to QOS is the initiation of an RSVP session. It's not until the RSVP PATH and RESV

messages have been sent and processed that bandwidth is reserved for the process. Knowing when

RSVP messages are generated is important to applications. For senders, three parameters must be

known before a PATH message is generated:

Sending FLOWSPEC member

Source IP address and port

Destination IP address, port, and protocol

The FLOWSPEC member is known whenever a QOS-enabled function is called, such as

WSAConnect, WSAJoinLeaf, or WSAIoctl (with the SIO_SET_QOS option). The source IP address

and port will not be known until the socket is bound locally, either implicitly (such as by connecting) or

explicitly by bind. Finally, the application needs the data's destination. This information is gathered

either through a connect call or, in the case of connectionless UDP, by setting the QOS_DESTADDR

object in the provider-specific data passed using the SIO_SET_QOS ioctl command.

Similarly, for an RSVP RESV message to be generated, three things must be known:

Receiving FLOWSPEC member

Address and port of each sender

Local address and port of the receiving socket

The receiving FLOWSPEC member is obtained from any of the QOS-enabled Winsock functions. The

address and port of each sender depend on the filter style, which can be set manually via the

RSVP_RESERVE_INFO provider-specific structure, discussed earlier. Otherwise, this information is

obtained from a PATH message. Of course, depending on the socket type, it is not always necessary

to have already received a PATH statement to get the sender's address to generate RESV messages.

The wildcard filter style used in multicasting is an example of this. The RESV message sent applies to

all senders in the session. The local address and port are self-explanatory for unicast and UDP

receivers but not for multicast receivers. With multicast receivers, the local address and port are the

multicast address and its corresponding port number.

In this section, we'll cover the different socket types and their interaction with the QOS service provider

and RSVP messages. Then we'll take a look at how the QOS service provider notifies applications of

certain events. Understanding these concepts is central to writing successful QOS-enabled

applications. Programming such applications is a matter of knowing how to obtain QOS guarantees as

well as knowing when those guarantees are put into effect and when and how they can change.

RSVP and Socket Types

You now have a basic understanding of how PATH and RESV RSVP messages are generated. In the

following sections, we'll look at the different types of sockets—UDP, TCP, and multicast UDP—and

how they interact with the QOS service provider to generate PATH and RESV messages.

Unicast UDP

Because you have the option of using either connected or unconnected UDP sockets, setting QOS on

unicast UDP sockets presents quite a few options. With the UDP sender, the sending FLOWSPEC is

obtained from one of the QOS-invoking functions. The local address and port are obtained either from

an explicit bind call or from an implicit bind done by WSAConnect. The last piece is the address and

port of the receiving application, which can be specified either in WSAConnect or via the

QOS_DESTADDR provider-specific structure passed through the SIO_SET_QOS option. Be aware

that if SIO_SET_QOS is used to set QOS, the socket must be bound beforehand.

For the UDP receiver, WSAConnect can be called to limit the receiving application to a single sender.

In addition, applications can specify a QOS_DESTADDR structure with the SIO_SET_QOS ioctl

command. Otherwise, the SIO_SET_QOS can be called without providing any kind of destination

address. In this case, an RESV message will be generated with the wildcard filter style. In fact,

specifying the destination address via WSAConnect or via the QOS_DESTADDR structure should be

done only if you want the application to receive data from only one sender who uses the fixed filter

style.

The UDP receiver can actually call both WSAConnect and the SIO_SET_QOS ioctl command in any

order. If SIO_SET_QOS is called before WSAConnect, an RESV message is created with the wildcard

filter first. Once the connect call is made, the previous RESV session is torn down and a new one is

generated with the fixed filter style. Alternatively, calling SIO_SET_QOS after WSAConnect and a

fixed filter RESV message does not negate the RSVP session and generate a wildcard filter style.

Instead, it simply updates the QOS parameters associated with the existing RSVP session.

Unicast TCP

TCP sessions have two possibilities. First, the sender can be the client who connects to the server and

sends data. The second possibility is that the server that the client connects to might be the sender.

With the client, QOS parameters can be specified directly in the WSAConnect call, which will result in

PATH messages being sent. The ioctl command SIO_SET_QOS can also be called before calling

connect, but until one of the connect calls knows the destination address, no PATH messages will be

generated.

When the sender is the server, the server calls WSAAccept to accept the client connection. This

function does not provide a means of setting QOS on the accepted socket. If QOS is set before a call

to WSAAccept by using SIO_SET_QOS, any accepted socket inherits the QOS levels set on the

listening socket. Note that if the sender uses the conditional function in WSAAccept, the function

should pass QOS values set on the connecting client. However, this is not the case. The QOS service

provider passes junk, which is the behavior in Windows 98, Windows Me, and Windows 2000. The

exception is that if the lpSQOS parameter is non-null under Windows 98 and Windows Me, some kind

of QOS values must be set via the SIO_SET_QOS ioctl command within the conditional function;

otherwise, the WSAAccept call fails even if CF_ACCEPT is returned. QOS can also be set on the

client socket after it has been accepted.

Let's look at receiving TCP applications. The first case calls WSAConnect with a receiving

FLOWSPEC. When this occurs, the QOS service provider creates an RESV request. If QOS

parameters are not supplied to WSAConnect, the SIO_SET_QOS ioctl command can be set at a later

time (resulting in an RESV message). The last combination is the server being the receiver, which is

similar to the sending case. QOS can be set on the listening socket before a WSAAccept call, in which

case the client socket inherits the same QOS levels. Otherwise, QOS can be set in the conditional

function or after the socket has been accepted. In either case, the QOS service provider generates an

RESV message as soon as a PATH message arrives.

Multicast

Multicast senders behave the same way as UDP senders except that WSAJoinLeaf is used to become

a member of the multicast group, as opposed to calling WSAConnect with the destination address.

QOS can be set with WSAJoinLeaf or separately through an SIO_SET_QOS call. The multicast

session address is used to compose the RSVP session object included in the RSVP PATH message.

With the multicast receiver, no RESV messages will be generated until the multicast address is

specified via the WSAJoinLeaf function. Because the multicast receiver doesn't specify a peer

address, the QOS provider generates RESV messages with the wildcard filter style. The QOS service

provider does not prohibit a socket from joining multiple multicast groups. In this case, the service

provider sends RESV messages for all groups that have a matching PATH message. The QOS

parameters supplied to each WSAJoinLeaf will be used in each RESV message, but if SIO_SET_QOS

is called on the socket after joining multiple groups, the new QOS parameters will be applied to all

multicast groups joined.

When a sender sends data to a multicast group, only data sent to the multicast group that the sender

joined results in QOS being applied to that data. In other words, if you join one multicast group and

use sendto/WSASendTo with any other multicast group as the destination, QOS is not applied to that

data. In addition, if a socket joins a multicast group specifying a particular direction (for example, using

JL_SENDER_ONLY or JL_RECEIVER_ONLY in the dwFlags parameter to WSAJoinLeaf), QOS is

applied accordingly. A socket set as a receiver only will not gain any QOS benefits for sent data.

QOS Notifications

Thus far, you have learned how to invoke QOS for TCP, UDP, and multicast UDP sockets and the

corresponding RSVP events that occur depending on whether you're sending or receiving. However,

the completion of these RSVP messages is not strictly tied to the API calls that invoke them. That is,

issuing a WSAConnect call for a TCP receiving socket generates an RESV message, but the RESV

message is independent of that API call because the call returns without any assurances that the

reservation is approved and network resources are allocated. Because of this, a new asynchronous

event has been added, FD_QOS, which is posted to a socket. Typically, an FD_QOS event notification

will be posted in the following events:

Notification of the acceptance or rejection of the application's QOS request

Significant changes in the QOS that is provided by the network (as opposed to previously negotiated

values)

Status regarding whether a QOS peer is ready to send or receive data for a particular flow

Registering for FD_QOS Notifications

To take advantage of these notifications, an application must register to be notified when an FD_QOS

event occurs. You can do this in two different ways. First, you can use either WSAEventSelect or

WSAAsyncSelect and include the FD_QOS flag in the bitwise ORing of event flags. However, an

application is eligible to receive the FD_QOS event only if a call has already been made to one of the

QOS–invoking functions. Note that in some cases an application might want to receive the FD_QOS

event without having to set QOS levels on a socket. This can be accomplished by setting up a QOS

structure whose sending and receiving FLOWSPEC members contain either the

QOS_NOT_SPECIFIED or the SERVICETYPE_NOTRAFFIC flag. The only catch is that the

SERVICE_NO_QOS_SIGNALING flag must be ORed with the SERVICETYPE_NOTRAFFIC flag for

the direction of QOS in which you want to receive event notification.

If you need exact information on how to call the two asynchronous select functions, consult Chapter 5,

which covers them in great detail. If you use WSAEventSelect once the event has been triggered, you

should call the WSAEnumNetworkEvents function to obtain additional status codes that might be

available. Simply pass the socket handle, the event handle, and a WSANETWORKEVENTS object into

the call, which will return and set event information into the supplied structure.

RSVP Notifications

We mentioned earlier that there are a couple of ways to receive QOS notifications. This information

actually ties into this section: obtaining the results of a QOS event. If you have registered to receive

FD_QOS notifications with either WSAAsyncSelect or WSAEventSelect and you actually receive an

FD_QOS event notification, you must perform a call to WSAIoctl with the SIO_GET_QOS ioctl option

to find out what triggered the event. You don't have to register for FD_QOS events—you can simply

call WSAIoctl with the SIO_GET_QOS command using overlapped I/O. This also requires that you

specify a completion routine, which is invoked once the QOS service provider detects a change in

QOS. Once the callback occurs, a QOS structure will be available in the output buffer.

In either case, once a change in QOS has occurred, your application can be notified of this change by

registering for FD_QOS or by using overlapped I/O and SIO_GET_QOS. If you register for FD_QOS,

call WSAIoctl with the SIO_GET_QOS ioctl command upon event notification. For both methods, the

QOS structure returned contains QOS information for only a single direction. That is, the FLOWSPEC

structure for the invalid direction has its ServiceType field set to SERVICETYPE_NOCHANGE. In

addition, more than one QOS event might have occurred, in which case you should call WSAIoctl and

SIO_GET_QOS in a loop until SOCKET_ERROR is returned and WSAGetLastError returns

WSAEWOULDBLOCK. The final concern when calling SIO_GET_QOS is the buffer size. When an

FD_QOS event has been triggered, it is possible that provider-specific objects will be returned. In fact,

the RSVP_STATUS_INFO structure will most often be returned, provided the buffer is large enough.

See the earlier entry on WSAIoctl for information about how to find the right-size buffer.

If your application uses one of the asynchronous event functions, a particularly important issue is that

once an FD_QOS event occurs, you must always perform an SIO_GET_QOS operation to re-enable

FD_QOS notifications.

You now know how to receive QOS event notifications and obtain new QOS parameters as a result of

these events, but what types of notifications will occur? The first and most obvious reason for a QOS

event is a change in the FLOWSPEC parameters for a given flow. For example, if you set up a socket

with best-effort service, periodically, the QOS service provider will send notification to your application

indicating the current conditions on the network. In addition, if you specify controlled load as well as

other parameters, the QOS parameters for token bucket size and token rate might change slightly from

what you requested once the reservation occurs. Your application should compare the FLOWSPEC

returned once a QOS notification occurs to what you originally requested to ensure that it is sufficient

for your application to continue. Also, remember that throughout the life of a QOS-enabled socket, you

can always perform a SIO_SET_QOS to change any of the parameters, which will result in a QOS

notification for the peer or peers associated with your current RSVP session. A robust application

should be able to handle these conditions.

In addition to updating QOS parameters, QOS event notification signals other occurrences, such as

notification of senders or receivers. The possible events are listed in Table 10-5. There are two ways

to obtain these status codes. The first is as a part of the RSVP_STATUS_INFO object. When a QOS

event occurs and a call is made to SIO_GET_QOS, it is possible that an RSVP_STATUS_INFO object

will be returned as part of the provider-specific buffer. Second, if you use WSAEventSelect to register

for events, these codes can be returned in the WSANETWORKEVENTS structure returned from

WSAEnumNetworkEvents. The codes defined in Table 10-5 can be found in the iErrorCode array,

indexed by FD_QOS_BIT. The first five codes listed are not error codes. They return valuable

information concerning the status of the QOS connection. The other status codes listed in the table are

QOS errors of concern, but they won't prevent you from sending and receiving data—they merely

indicate an error in the QOS session. Of course, data sent in this situation will not carry any of the

requested QOS guarantees.

WSA_QOS_RECEIVERS and WSA_QOS_NO_RECEIVERS

With unicast, after a sender starts up and receives the first RESV message, a

WSA_QOS_RECEIVERS is passed up to the application. If the receiver performs any steps to disable

QOS, the result is an RESV teardown message. Once the sender receives this,

WSA_QOS_NO_RECEIVERS is passed up to the application. Of course, with unicast many receivers

simply close the socket, generating both an FD_CLOSE event and the WSA_QOS_NO_RECEIVERS

event. In most cases, an application's response is simply to close the sending socket.

With multicast, the sending application receives WSA_QOS_RECEIVERS whenever the number of

receivers changes and is nonzero. A single multicast sender receives WSA_QOS_RECEIVERS every

time a QOS receiver joins the group, as well as every time a receiver drops out of a group—as long as

at least one receiver remains.

WSA_QOS_SENDERS and WSA_QOS_NO_SENDERS

The senders notification is similar to the receivers event except that it deals with the receipt of the

PATH message. For unicast receivers after startup, the receipt of the first PATH message generates

WSA_QOS_SENDERS, while the PATH teardown message initiates a WSA_QOS_NO_SENDERS

message.

Likewise, multicast receivers receive the WSA_QOS_SENDERS notification whenever the number of

senders decrements or increments and is nonzero. Once the number of senders reaches 0, the

WSA_QOS_NO_SENDERS message is passed to the application.

WSA_QOS_REQUEST_CONFIRMED

This last status message is issued to receiving QOS applications if they ask to be notified when a

reservation request has been confirmed. If it is set to nonzero, a field within the RSVP_STATUS_INFO

structure named ConfirmRequest informs the QOS service provider to notify the application when the

reservation request has been confirmed. This object is a provider-specific option that can be passed

along with a QOS structure to the SIO_SET_QOS ioctl command.

QOS Templates

Winsock provides several predefined QOS structures, referred to as templates, that an application can

query by name. These templates define the QOS parameters for some common audio and video

codecs, such as G711 and H263QCIF. The function WSAGetQOSByName is defined as

BOOL WSAGetQOSByName(

 SOCKET s,

 LPWSABUF lpQOSName,

 LPQOS lpQOS

);

If you don't know the name of the installed templates, you can use this function to first enumerate all

template names. To do this, provide a sufficiently large buffer in lpQOSName with its first character set

to the null character and pass a null pointer for lpQOS, as in the following code:

WSABUF wbuf;

char cbuf[1024];

cbuf[0] = '\0';

wbuf.buf = cbuf;

wbuf.len = 1024;

WSAGetQOSByName(s, &wbuf, NULL);

Upon return, the character buffer is filled with an array of strings separated by a null character, and the

entire list is terminated by another null character. As a result, the last string entry will have two

consecutive null characters. From here you can get the names of all of the installed templates and

query for a specific one. The following code looks up the G711 template:

QOS qos;

WSABUF wbuf;

wbuf.buf = "G711";

wbuf.len = 4;

WSAGetQOSByName(s, &wbuf, &qos);

If the requested QOS template does not exist, the lookup returns FALSE and the error is

WSAEINVAL. Upon success, the function returns TRUE.

The example TEMPLATE.CPP on the accompanying CD illustrates how to enumerate

the installed QOS templates.

In addition, you can install your own QOS template so that other applications can query for it by name.

Two functions do this: WSCInstallQOSTemplate and WSCRemoveQOSTemplate. The first one installs

a QOS template, and the second removes it. The prototypes are

BOOL WSCInstallQOSTemplate(

 const LPGUID lpProviderId,

 LPWSABUF lpQOSName,

 LPQOS lpQOS

);

BOOL WSCRemoveQOSTemplate(

 const LPGUID lpProviderId,

 LPWSABUF lpQOSName

);

These two functions are fairly self-explanatory. To install a template, call WSCInstallQOSTemplate

with a GUID, the name of the template, and the QOS parameters. The GUID is a unique identifier for

this template that utilities such as UUIDGEN.EXE can generate. To remove the template, simply

supply the template name along with the same GUID used in the installation process to

WSCRemoveQOSTemplate. Both functions return TRUE when successful.

Examples

In this section, we'll take a look at two programming examples of using QOS over TCP

and UDP. The first example, which uses TCP, will demonstrate how to set up a

FLOWSPEC and manage RSVP signaling on the Windows 98, Windows Me, and

Windows 2000 platforms. The second example describes UDP and is primarily

designed for Windows XP, which demonstrates only how to set up a FLOWSPEC to

invoke the IP packet scheduler. The examples rely on a couple of support routines,

PrintQos and FindProtocolInfo, which are defined in the files PRINTQOS.CPP and

PROVIDER.CPP, respectively, both of which can be found on the companion CD. The

former routine simply prints out the contents of a QOS structure, while the latter finds

a protocol from the provider catalog with the required attributes, such as QOS.

TCP

The code for the TCP example can be found in a file on the companion CD called

QOSTCP.CPP. The example is a bit long, but not particularly complicated. Most of the

code is nothing more than the usual WSAEventSelect code that we introduced in

Chapter 5. The only exception is what we do with an FD_QOS event. The main

function doesn't do anything out of the ordinary. The arguments are parsed, a socket

is created, and either the Server or the Client function is called—depending on

whether the application is called as the server or the client. Let's examine the client

connection first.

The sample has a command line parameter that tells the example to set QOS before

connection, during connection, after connection, or after the peer requests QOS to set

QOS locally. If QOS is selected to be set before connection (for the client), bind the

socket to a random port and then call SIO_SET_QOS with a sending QOS

FLOWSPEC. Note that it isn't really necessary to bind before calling SIO_SET_QOS

because the peer's address is not known until a connect call is made, and an RSVP

session cannot be initiated until the peer's address is known.

If the user elects to set QOS during connection, the example code passes the QOS

structure into the WSAConnect call. The following code demonstrates how the sample

optionally sets up QOS before or during the connection phase:

int iSetQos;

SOCKET s;

char szServerAddr[32];

. . .

const FLOWSPEC flowspec_notraffic = {QOS_NOT_SPECIFIED,

 QOS_NOT_SPECIFIED,

 QOS_NOT_SPECIFIED,

 QOS_NOT_SPECIFIED,

 QOS_NOT_SPECIFIED,

 SERVICETYPE_NOTRAFFIC,

 QOS_NOT_SPECIFIED,

 QOS_NOT_SPECIFIED};

const FLOWSPEC flowspec_g711 = {8500,

 680,

 17000,

 QOS_NOT_SPECIFIED,

 QOS_NOT_SPECIFIED,

 SERVICETYPE_CONTROLLEDLOAD,

 340,

 340};

QOS clientQos; // QOS client structure

QOS *lpqos;

SOCKADDR_IN server,

SOCKADDR_IN local;

DWORD dwBytes;

. . .

// Set up the client's QOS flowspec

clientQos.SendingFlowspec = flowspec_g711;

clientQos.ReceivingFlowspec = flowspec_notraffic;

clientQos.ProviderSpecific.buf = NULL;

clientQos.ProviderSpecific.len = 0;

if (iSetQos == SET_QOS_BEFORE)

{

 lpqos = NULL;

 // Bind to the local interface and provide a flowspec

 local.sin_family = AF_INET;

 local.sin_port = htons(0);

 local.sin_addr.s_addr = htonl(INADDR_ANY);

 bind(s, (SOCKADDR *)&local, sizeof(local));

 WSAIoctl(s, SIO_SET_QOS, &clientQos, sizeof(clientQos),

 NULL, 0, &dwBytes, NULL, NULL);

}

else if (iSetQos == SET_QOS_DURING)

{

 // Use the QOS structure during connect

 lpqos = &clientQos;

}

else if (iSetQos == SET_QOS_EVENT)

{

 lpqos = NULL;

 // Set QOS later when signaled from a peer

 clientQos.SendingFlowspec.ServiceType ¦= SERVICE_NO_QOS_SIGNALING;

 clientQos.ReceivingFlowspec.ServiceType ¦= SERVICE_NO_QOS_SIGNALING;

 WSAIoctl(s, SIO_SET_QOS, &clientQos, sizeof(clientQos), NULL, 0,

 &dwBytes, NULL, NULL);

}

server.sin_family = AF_INET;

server.sin_port = htons(5150);

server.sin_addr.s_addr = inet_addr(szServerAddr);

printf("Connecting to: %s\n", inet_ntoa(server.sin_addr));

WSAConnect(s, (SOCKADDR *)&server, sizeof(server), NULL, NULL,

 lpqos, NULL);

. . .

The WSAConnect call initiates an RSVP session and connects the client to the

specified server. Otherwise, the user specifies that the sample should wait for the peer

to set QOS, and no QOS structure is passed to WSAConnect. Instead, the code takes

the sending QOS structure, ORs in the SERVICE_NO_QOS_SIGNALING flag to the

ServiceType field in the FLOWSPEC structures, and calls WSAIoctl with the

SIO_SET_FLAG ioctl command. This tells the QOS service provider not to invoke TC

but to still look for RSVP messages.

After QOS is set, the events that the client wants to be notified of are registered,

including FD_QOS. Notice that QOS must be set on the socket beforehand for the

application to request receiving FD_QOS. Once this occurs, the client waits in a loop

on WSAWaitForMultipleEvents, which unblocks when one of the selected events is

signaled. Once an event occurs, the events are then enumerated along with any

errors in WSAEnumNetworkEvents. The following code fragment demonstrates how

the sample handles FD_QOS events through WSAEventSelect:

wbuf.buf = databuf;

wbuf.len = DATA_BUFFER_SZ;

memset(databuf, '#', DATA_BUFFER_SZ);

databuf[DATA_BUFFER_SZ-1] = 0;

while (1)

{

 ret = WSAWaitForMultipleEvents(1, &hEvent, FALSE,

 WSA_INFINITE, FALSE);

 if (ret == WSA_WAIT_FAILED)

 {

 printf("WSAWaitForMulipleEvents() failed: %d\n",

 WSAGetLastError());

 return;

 }

 WSAEnumNetworkEvents(s, hEvent, &ne);

 if (ne.lNetworkEvents & FD_READ)

 {

 // Read notification occurred

 }

 if (ne.lNetworkEvents & FD_WRITE)

 {

 if (ne.iErrorCode[FD_WRITE_BIT])

 printf("FD_WRITE error: %d\n", ne.iErrorCode[FD_WRITE_BIT]);

 else

 printf("FD_WRITE\n");

 if (!bWaitToSend)

 {

 wbuf.buf = databuf;

 wbuf.len = DATA_BUFFER_SZ;

 //

 // If the network can't support the bandwidth don't send

 //

 if (!AbleToSend(s))

 {

 printf("Network is unable to provide "

 "sufficient best effort bandwidth\n");

 printf("before the reservation "

 "request is approved\n");

 }

 WSASend(s, &wbuf, 1, &dwBytesSent, 0, NULL, NULL);

 printf("Sent: %d bytes\n", dwBytesSent);

 }

 }

 if (ne.lNetworkEvents & FD_CLOSE)

 {

 // Close notification occurred

 }

 if (ne.lNetworkEvents & FD_QOS)

 {

 char buf[QOS_BUFFER_SZ];

 QOS *lpqos = NULL;

 DWORD dwBytes;

 BOOL bRecvRESV = FALSE;

 if (ne.iErrorCode[FD_QOS_BIT])

 {

 printf("FD_QOS error: %d\n", ne.iErrorCode[FD_QOS_BIT]);

 if (ne.iErrorCode[FD_QOS_BIT] == WSA_QOS_RECEIVERS)

 bRecvRESV = TRUE;

 }

 else

 printf("FD_QOS\n");

 lpqos = (QOS *)buf;

 WSAIoctl(s, SIO_GET_QOS, NULL, 0,

 buf, QOS_BUFFER_SZ, &dwBytes, NULL, NULL);

 //

 // Check to see if there is a status object returned

 // in the QOS structure which may also contain the

 // WSA_QOS_RECEIVERS flag

 //

 if (ChkForQosStatus(lpqos, WSA_QOS_RECEIVERS))

 bRecvRESV = TRUE;

 if (iSetQos == SET_QOS_EVENT)

 {

 lpqos->SendingFlowspec.ServiceType =

 clientQos.SendingFlowspec.ServiceType;

 WSAIoctl(s, SIO_SET_QOS, lpqos, dwBytes,

 NULL, 0, &dwBytes, NULL, NULL);

 //

 // Change iSetQos so we don't set QOS again if we

 // receive another FD_QOS event

 //

 iSetQos = SET_QOS_BEFORE;

 }

 if (bWaitToSend && bRecvRESV)

 {

 wbuf.buf = databuf;

 wbuf.len = DATA_BUFFER_SZ;

 WSASend(s, &wbuf, 1, &dwBytesSent, 0, NULL, NULL);

 printf("Sent: %d bytes\n", dwBytesSent);

 }

 }

 }

For the most part, QOSTCP.CPP handles the other events, such as FD_READ,

FD_WRITE, and FD_CLOSE, the same way as the WSAEventSelect example code in

Chapter 5. The only item of note is in the FD_WRITE event. One of the command line

options is to wait until an RSVP PATH message has been received before sending

the data. This is especially relevant if the data being transmitted is likely to exceed the

best-effort bandwidth available on the network. The AbleToSend function calls

SIO_CHK_QOS to determine if the QOS parameters requested are within the

available best-effort limits. If so, it should be OK to start sending data; otherwise, wait

for a confirmation to send data.

In our client's case, we want to receive the WSA_QOS_RECEIVERS message to

indicate the receipt of an RESV message. This can be indicated upon receipt of an

FD_QOS event. At this point, we call the SIO_CHK_QOS command to obtain status

information. This WSA_QOS_RECEIVERS flag can be returned in two ways. First, the

flag can be returned in the iErrorCode field of the WSANETWORKEVENTS structure

as the element indexed by FD_QOS_BIT. Second, an RSVP_STATUS_INFO

structure can be returned in the buffer passed to WSAIoctl using the SIO_GET_QOS

ioctl command. This structure also might contain the WSA_QOS_RECEIVERS flag in

its StatusCode field. If the wait to send flag has been specified, we check the error

field from WSANETWORKEVENTS to see if an RSVP_STATUS_INFO structure has

been returned. If the flag is present, we send data. That's all! The code necessary to

support QOS for the client is straightforward.

The server side of the example is a bit more complicated, but only because it needs to

manage zero or more client connections. The listening socket and the client sockets

are handled in a single array, sc. Array element 0 is the listening socket and the rest

are possible client connections. The global variable nConns contains the number of

current clients. Whenever a client connection finishes, all active sockets are

compacted toward the beginning of the socket array. There is also a corresponding

array of event handles.

The server first binds the listening socket and sets receiving QOS if the user chooses

to set QOS before accepting client connections. Any QOS parameters set on the

listening socket are copied to the client connection (unless the server is using

AcceptEx). The listening socket registers to receive only FD_ACCEPT events. The

rest of the server routine is a loop that waits for events on the array of socket handles.

At first, the only socket in the array is the listening socket, but as more client

connections are established there will be more sockets and their corresponding

events. If WSAWaitForMultipleEvents unblocks as a result of an event and indicates

the event handle in array element 0, the event is occurring on the listening socket. If

so, the code will call WSAEnumNetworkEvents to find out which event is occurring. If

the event is occurring on a client socket, the code calls the handler routine

HandleClientEvents.

On the listening socket, the event of interest is FD_ACCEPT. When this event

happens, WSAAccept is called with a conditional function. Remember that the QOS

parameters passed into the conditional function can't be trusted, and if the QOS

parameter is non-null in Windows 98 and Windows Me, some sort of QOS must be

set. Windows 2000 does not have that limitation—QOS can be set at any time. If the

user specifies that QOS be set during the accept call, this occurs within the conditional

function. Once the client socket is accepted, a corresponding event handle is created

and the appropriate events are registered for the socket.

The function HandleClientEvents handles any events occurring on the client sockets.

The read and write events are straightforward—the only exception is whether to wait

for the reservation confirmation before sending. If the user specifies to wait for the

reservation confirmation to arrive before sending data, the client waits for the

WSA_QOS_RECEIVERS message to be returned in an FD_QOS event. If the

message returns, the sending of the data doesn't occur until FD_QOS is received.

Usually, the most significant aspect of this example is setting QOS on the socket and

the FD_QOS handler.

UDP

The last sample provided, QOSUDP.CPP, demonstrates how to set up QOS over

UDP and invoke the IP packet scheduler service without using RSVP signaling. This

sample is written primarily for Windows XP (although it will work on other Windows

platforms that support QOS) because RSVP signaling is no longer available.

The sample is just a sender that transmits datagrams to a specified receiving host that

receives datagrams on port 5150. QOS is set up on the socket before datagrams are

transmitted by calling SIO_SET_QOS with a QOS_DESTADDR object. An important

part to note is the flag SERVICE_ NO_QOS_SIGNALING is ORed in with the

ServiceType FLOWSPEC field so this application will behave the same on all

Windows platforms regardless of whether RSVP signaling is available.

ATM and QOS

Windows 98 (with Service Pack 1), Windows Me, Windows 2000, and Windows XP

support ATM programming from Winsock. QOS is natively available on an ATM

network, which means that the network, application, and policy components that are

necessary for QOS over IP are not required over ATM. This includes the Admission

Control Service and the RSVP protocol. Instead, the ATM switch performs bandwidth

allocations and prevents over-allocation of bandwidth.

In addition to the differences we've already mentioned, the Winsock API functions

behave a bit differently with ATM QOS than they do with QOS over IP. The first major

difference is that the QOS bandwidth request is handled as part of the connection

request. This differs from QOS over IP in that the RSVP session is established

separately from the connection. Also, if the bandwidth request is rejected under ATM,

the connection will fail.

This leads to our next point: both of the native ATM providers are connection-oriented.

As a result, you don't have the problem of setting QOS levels for a connectionless

socket and then having to specify the endpoint for communication. The next major

difference is that only one side sets the QOS parameters for a connection. If the client

wants to set QOS on a connection, both the sending and receiving FLOWSPEC

structures are set within the QOS structure passed to WSAConnect. These values will

then be applied to the connection, in contrast to QOS over IP, in which the sender

requests certain QOS levels and the receiver then makes the reservation. In addition,

the listening socket might have QOS set using WSAIoctl and SIO_SET_QOS. These

values will be applied to any incoming connections. This also means that QOS must

be set during connection setup. You cannot set QOS on an established connection.

This leads us to our last point: once QOS is set for a connection, you cannot

renegotiate it by calling WSAIoctl and SIO_SET_QOS. When QOS is set on a

connection, it remains until the connection is closed.

Keep in mind that RSVP is not present and no signaling occurs. None of the status

flags in Table 10-5 are ever generated. QOS is set when establishing the connection,

and no further notifications or events occur until the connection is closed.

Conclusion

QOS offers powerful capabilities to applications that require a guaranteed level of

network service. Setting up a QOS connection is rather involved, but don't let this

scare you. The most important concept is learning how and when RSVP messages

are generated so that you can code your application accordingly. Although the future

of GQOS on Windows platforms is uncertain, there is still TC functionality in the latest

Windows XP platforms.

Chapter 11

Raw Sockets

A raw socket is one that allows access to the underlying transport protocol. This

chapter is dedicated to illustrating how raw sockets can be used to simulate IP utilities,

such as Traceroute and Ping. Raw sockets can also be used to manipulate IP header

information. This chapter is concerned with the IPv4 and IPv6 protocols only; we will

not address raw sockets with any other protocol because most protocols (except

ATM) do not support raw sockets. All raw sockets are created using the SOCK_RAW

socket type and are currently supported only under Winsock 2. Therefore, neither

Microsoft Windows CE nor Windows 95 (without the Winsock 2 update) can use raw

sockets.

In addition, using raw sockets requires substantial knowledge of the underlying

protocol structure, which is not the focus of this book. In this chapter, we will discuss

ICMP, ICMPv6, and UDP. ICMP (both versions) is used by the Ping utility, which can

detect whether a route to a host is valid and whether the host machine is responding.

Developers often need a programmatic method of determining whether a machine is

alive and reachable. We will also examine UDP in conjunction with the IP_HDRINCL

socket option to send completely fabricated IP packets. For all of these protocols, we

will cover only the aspects necessary to fully explain the code in this chapter and in

the example programs. For more detailed information, consult W. Richard Stevens's

book on IP, TCP/IP Illustrated, Volume 1 (Addison-Wesley, 1994) or the individual

RFCs for each protocol.

Raw Socket Creation

The first step in using raw sockets is creating the socket. You can use either socket or

WSASocket. Note that for Windows 95, Windows 98, and Windows Me, no catalog

entry in Winsock for IP has the SOCK_RAW socket type. However, this does not

prevent you from creating this type of socket. It just means that you cannot create a

raw socket using a WSAPROTOCOL_INFO structure. Refer back to Chapter 2 for

information about enumerating protocol entries with the WSAEnumProtocols function

and the WSAPROTOCOL_INFO structure. You must specify the SOCK_RAW flag

yourself in socket creation. The following code snippet illustrates the creation of a raw

socket using ICMP as the underlying IP protocol:

SOCKET s;

s = socket(AF_INET, SOCK_RAW, IPPROTO_ICMP);

// Or

s = WSASocket(AF_INET, SOCK_RAW, IPPROTO_ICMP, NULL, 0,

 WSA_FLAG_OVERLAPPED);

if (s == INVALID_SOCKET)

{

 // Socket creation failed

}

When creating a raw socket, the protocol parameter of the socket call becomes the

protocol value in the IP header. That is, if a raw AF_INET6 socket is created with the

protocol value 66, the IPv6 header for outgoing packets will contain the value 66 in the

next header field.

Because raw sockets offer the capability to manipulate the underlying transport, they

can be used for malicious purposes and are a security issue in Windows NT.

Therefore, only members of the Administrators group can create sockets of type

SOCK_RAW. Anyone can create a raw socket on Windows NT, but

non-Administrators will not be able to do anything with it because the bind API will fail

with WSAEACCES. Windows 95, Windows 98, and Windows Me do not impose any

kind of limitation.

To work around this limitation on Windows NT, you can disable the security check on

raw sockets by creating the following registry variable and setting its value to the

integer 1 as a DWORD type.

HKEY_LOCAL_MACHINE\System\CurrentControlSet

 \Services\Afd\Parameters\DisableRawSecurity

After the registry change, you need to reboot the machine.

In the socket creation code in the example, we used the ICMP protocol, but you can

also use IGMP, UDP, IP, or raw IP using the flags IPPROTO_IGMP, IPPROTO_UDP,

IPPROTO_IP, or IPPROTO_RAW, respectively. However, be aware that on Windows

95 (with Winsock 2), Windows 98, and Windows NT 4, you can use only IGMP and

ICMP when creating raw sockets. The protocol flags IPPROTO_UDP, IPPROTO_IP,

and IPPROTO_RAW require the use of the socket option IP_HDRINCL, which is not

supported on those platforms. Windows Me and Windows 2000 and later versions

support IP_HDRINCL, so it is possible to manipulate the IP header (IPPROTO_RAW),

the TCP header (IPPROTO_TCP), and the UDP header (IPPROTO_UDP).

Once the raw socket is created with the appropriate protocol flags, you can use the

socket handle in send and receive calls. When creating raw sockets, the IP header will

be included in the data returned upon any receive, regardless of whether the

IP_HDRINCL option is set. Applications will have to know the layout of the IP header

and have to determine the length of the IP header to find the payload data within the

received buffer.

ICMP

ICMP is used as a means of messaging between hosts. Also, there are two versions

of ICMP. The original ICMP is used with IPv4 to pass informational messages

between two hosts, usually relating to communications errors, such as destination

unreachable or TTL exceeded. With IPv6, a new version of ICMP was created:

ICMPv6. ICMPv6 includes the informational messages but also incorporates ND and

MLD. As we discussed in Chapter 3, ND is the IPv6 equivalent to ARP and MLD is

equivalent to IGMP. Our discussion of both versions of ICMP is limited to the

informational messages.

As we mentioned previously, ICMP uses IPv4 addressing because it is a protocol

encapsulated directly within an IPv4 datagram. Figure 11-1 illustrates the layout of an

ICMP message. ICMPv6 is encapsulated in an IPv6 datagram and is identical in

structure to the ICMP packet (as least in terms of the first four bytes).

Figure 11-1 ICMP header

The first field is the ICMP message type, which is typically classified as either a query

or an error. The code field further defines the type of query or message. The

checksum field is the 16-bit one's complement sum of the ICMP header. Note that the

checksum computation is different for IPv4 and IPv6. For IPv4, the checksum is

calculated over the ICMP header and its payload only, and for ICMPv6, the checksum

is calculated over the IPv6 pseudo-header followed by the ICMPv6 header and

payload. The IPv6 pseudo-header is comprised of the following fields:

128-bit IPv6 source address

128-bit IPv6 destination address

32-bit upper layer protocol packet length

24-bit zeroed field

8-bit next header protocol value

IPv6 requires this pseudo-header calculation for any checksum calculation by an

upper layer protocol that includes addresses from the IP header. This includes both

UDP and ICMPv6. If the upper layer protocol contains its own packet length field, that

value is used in the pseudo-header computation. Otherwise, the payload length from

the IPv6 header is used, minus the size of all IPv6 extension headers present. Figure

11-5, later in this chapter, illustrates the IPv6 pseudo-header along with the UDP

header and payload.

Finally, the ICMP contents depend on the ICMP type and code. Table 11-1 lists the

most common types and codes for ICMP, and Table 11-2 lists the common types and

codes for ICMPv6. The type and code of the ICMP packet dictates what is to follow

the ICMP header.

Table 11-1ICMP Message Types

Type
Query/Error (Error

Type)
Code Description

0 Query 0 Echo reply

3
Error: Destination

unreachable
0 Network unreachable

1 Host unreachable

2 Protocol unreachable

3 Port unreachable

4
Fragmentation needed, but the Don't

Fragment bit has been set

5 Source route failed

6 Destination network unknown

7 Destination host unknown

8 Source host isolated (obsolete)

3
Error: Destination

unreachable
9

Destination network administratively

prohibited

10 Destination host administratively prohibited

11 Network unreachable for TOS

12 Host unreachable for TOS

13
Communication administratively prohibited

by filtering

14 Host precedence violation

15 Precedence cutoff in effect

4 Error 0 Source quench

5 Error: Redirect 0 Redirect for network

1 Redirect for host

2 Redirect for TOS and network

3 Redirect for TOS and host

8 Query 0 Echo request

9 Query 0 Router advertisement

10 Query 0 Router solicitation

11 Error: Time exceeded 0 TTL equals 0 during transit

1 TTL equals 0 during reassembly

12
Error: Parameter

problem
0 IP header bad

Type
Query/Error (Error

Type)
Code Description

1 Required option missing

When an ICMP error message is generated, it always contains as much of the IP

header and IP payload that caused the error to occur without exceeding the MTU size.

This allows the host receiving the ICMP error to associate the message with one

particular protocol and process associated with that error. In our case, Ping relies on

the echo request and echo reply ICMP queries rather than on error messages. In the

next section, we will discuss how to use ICMP with a raw socket to generate a Ping

request by using the echo request and echo reply messages. If you require more

information about ICMP errors or the other types of ICMP queries, consult more

in-depth sources, such as Stevens's TCP/IP Illustrated, Volume 1. Also, see RFCs

792 and 2463 for more information on ICMP and ICMPv6, respectively.

Table 11-2ICMPv6 Message Types

Type
Query/Error (Error

Type)
Code Description

1
Error: Destination

unreachable
0 No route to destination

1
Communication with destination

administratively prohibited

3 Address unreachable

4 Port unreachable

2 Error: Packet too big 0
Packet is larger than MTU size and cannot

be forwarded

3 Error: Time exceeded 0 Hop limit exceeded in transit

1 Fragment reassembly time exceeded

4
Error: Parameter

problem
0 Erroneous header field encountered

1
Unrecognized Next Header type

encountered

2 Unrecognized IPv6 option encountered

128 Query: Echo request 0
Request the destination to echo back the

ICMP payload

129 Query: Echo reply 0 Reply to an echo request query

Ping Example

Ping is often used to determine whether a particular host is alive and reachable

through the network. By generating an ICMP echo request and directing it to the host

you are interested in, you can determine whether you can successfully reach that

machine. Of course, this does not guarantee that a socket client will be able to

connect to a process on that host (for example, a process on the remote server might

not be listening); it just means that the network layer of the remote host is responding

to network events. Finally, most operating systems offer the capability to turn off

responding to ICMP echo requests, which is often the case for machines running

firewalls. Essentially, the Ping example performs the following steps.

Creates a socket of address family AF_INET, type SOCK_RAW, and protocol

IPPROTO_ICMP. For IPv6, the address family is AF_INET6, type

SOCK_RAW, and protocol value 58.

1.

Creates and initializes the ICMP header.2.

Calls sendto or WSASendTo to send the ICMP request to the remote host.3.

Calls recvfrom or WSARecvFrom to receive any ICMP responses.4.

Initializing the ICMP header is a straightforward task. First, the ICMP header is

initialized with the type and code. Remember that the header is the same for ICMP

and ICMPv6 (as shown in Figure 11-1). Following the type and code header, the echo

request header must be supplied. This header is shown in Figure 11-2.

Figure 11-2 Echo request header

The first field is a 16-bit identifier, which is used to uniquely identify this request and is

used to correlate echo replies received to your request and not some other process's

request. Typically, the process identifier for the sending process is used. The next

field is the sequence number, which identifies a given request packet from another.

The 32-bit timestamp field is present only for ICMP requests (and not ICMPv6

requests). Following the request header is any payload. The following code sample

illustrates initializing and sending an ICMP echo request for IPv4:

// Define the ICMP header

typedef struct icmp_hdr

{

 unsigned char icmp_type;

 unsigned char icmp_code;

 unsigned short icmp_checksum;

 unsigned short icmp_id;

 unsigned short icmp_sequence;

 unsigned long icmp_timestamp;

} ICMP_HDR, *PICMP_HDR, FAR *LPICMP_HDR;

ICMP_HDR *icmp=NULL;

SOCKET s;

SOCKADDR_STORAGE dest;

char buf[sizeof(ICMP_HDR) + 32];

icmp = (ICMP_HDR *)buf;

icmp->icmp_type = 8; // echo request type

icmp->icmp_code = 0;

icmp->icmp_id = GetCurrentProcessId();

icmp->icmp_checksum = 0; // zero field before computing checksum

icmp->icmp_sequence = 0;

icmp->icmp_timestamp = GetTickCount();

// Fill in the payload with a random character

memset(&buf[sizeof(ICMP_HDR)], '@', 32);

// Compute the checksum over the ICMP header and payload

// The checksum() function computes the 16-bit one's

// complement on the specified buffer. See the Ping

// code sample on the companion CD for its implementation.

icmp->icmp_checksum = checksum(buf, sizeof(ICMP_HDR)+32);

s = socket(AF_INET, SOCK_RAW, IPPROTO_ICMP);

// Initialize the destination SOCKADDR_STORAGE

((SOCKADDR_IN *)&dest)->sin_family = AF_INET;

((SOCKADDR_IN *)&dest)->sin_port = htons(0);

// port is ignored for ICMP

((SOCKADDR_IN *)&dest)->sin_addr.s_addr = inet_addr("1.2.3.4");

sendto(s, buf, sizeof(ICMP_HDR)+32, 0, (SOCKADDR *)&dest,

 sizeof(dest));

The only other difference between ICMP and ICMPv6 echo requests is computing the

checksum contained in the ICMP header. For IPv4, the checksum is computed only

over the ICMP header and payload. However, for IPv6 it is more complicated because

IPv6 requires that the checksum include the IPv6 pseudo-header before the ICMPv6

header and payload. This means the Ping application must know the IPv6 source and

destination address that will be in the IPv6 header to compute the checksum for any

outgoing ICMPv6 requests. Because we are not building the IPv6 header by ourselves

(as the case would be with the IPV6_HDRINCL option), we have no control over what

goes into the IPv6 header. However, it is possible to query the transport for which

local interface will be used to reach a given destination. This is performed with the

SIO_ROUTING_INTERFACE_QUERY ioctl (see Chapter 7). Once this query is done,

we have all the necessary information to compute the pseudo-header checksum.

When you send the ICMP echo request, the remote machine intercepts it and sends

an echo reply message back to you. If for some reason the host is not reachable, the

appropriate ICMP error message—such as destination host unreachable—will be

returned by a router somewhere along the path to the intended recipient. If the

physical network connection to the host is good but the remote host is either down or

not responding to network events, you need to perform your own timeout to determine

this. Because the timestamp in the echo request is echoed, when the reply is received

the elapsed time is easily calculated. The PING.CPP example on the companion CD

illustrates how to create a socket capable of sending and receiving ICMP packets, as

well as how to use the IP_OPTIONS socket option to implement the record route

option (supported for IPv4 only).

One noticeable feature of the Ping example is its use of the IP_OPTIONS socket

option. We use the record route IPv4 option so that when the ICMP packet hits a

router, its IPv4 address is added into the IPv4 option header at the location indicated

by the offset field in the IPv4 option header. This offset is also incremented by four

each time a router adds its address. The increment value is based on the fact that an

IPv4 address is 4 bytes long. Once you receive the echo reply, decode the option

header and print the IP addresses and host names of the routers visited. See Chapter

7 for more information about the other types of IP options available.

Traceroute

Another valuable IP networking tool is the Traceroute utility. It allows you to determine

the IP addresses of the routers that are traversed to reach a certain host on the

network. With Ping, using the record route option in the IPv4 option header also allows

you to determine the IPv4 addresses of intermediary routers, but Ping is limited to

only 9 hops—the maximum space allocated for addresses in the option header. Also,

there is no equivalent option for IPv6. A hop occurs whenever an IP datagram must

pass through a router to traverse multiple physical networks.

The idea behind Traceroute is to send a UDP packet to the destination and

incrementally change the TTL value. Initially, the TTL value is 1, which means the

UDP packet will reach the first router, where the TTL will expire. The expiration will

cause the router to generate an ICMP time-exceeded packet. Then the initial TTL

value increases by 1, so the UDP packet gets one router farther and an ICMP

time-exceeded packet is sent from that router. Collecting each of the ICMP messages

gives you a clear path of the IP addresses traversed to reach the endpoint. Once the

TTL is incremented enough so that packets actually reach the endpoint, an ICMP

port-unreachable message is most likely returned because no process on the

recipient is waiting for this message.

Traceroute is a useful utility because it gives you a lot of information about the route to

a particular host, which is often a concern when you use multicasting or when you

experience routing problems. Fewer applications need to perform Traceroute

programmatically than Ping, but certain tasks might require Traceroute-like

capabilities.

Two methods can be used to implement the Traceroute program. First, you can use

UDP packets and send datagrams, incrementally changing the TTL. Each time the

TTL expires, an ICMP message will be returned to you. This method requires one

socket of UDP to send the messages and another socket of ICMP to read them. The

UDP socket is a normal UDP socket, as you saw in Chapter 1. The ICMP socket is a

raw socket, which we already discussed how to create. The TTL of the UDP socket

needs to be manipulated via the IP_TTL or IPV6_UNICAST_HOPS socket option.

Alternatively, you can create a UDP socket and use the IP_HDRINCL option

(discussed later in this chapter) to set the TTL manually within the IP header, but this

is quite a lot of work.

The other method is simply to send ICMP packets to the destination, also

incrementally changing the TTL. This also results in ICMP error messages being

returned when the TTL expires. This method resembles the Ping example because it

requires only one socket (of ICMP). Under the sample code folder on the companion

CD, you will find a Traceroute example using ICMP packets named TRACERT.CPP.

The traceroute is similar in structure and code to the Ping sample. The only difference

is that the TTL value is incremented with each send.

Using IP Header Include Option

The one limitation of raw sockets is that you can work only with certain protocols that are already defined,

such as ICMP and IGMP. You cannot create a raw socket with IPPROTO_UDP and manipulate the UDP

header; likewise with TCP. To manipulate the IP header as well as either the TCP or UDP header (or any

other protocol encapsulated in IP), you must use the IP_HDRINCL socket option with a raw socket. For IPv6,

the option is IPV6_HDRINCL. This option allows you to build your own IP header as well as other protocols'

headers.

In addition to manipulating well-known protocols such as UDP, using raw sockets with the header include

option allows you to implement your own protocol scheme that is encapsulated in IP. This is done by creating

a raw socket and using the IPPROTO_RAW value as the protocol. This allows you to set the protocol field in

the IP header manually and build your own custom protocol header. However, in this section we will take a

look at how to build your own UDP packets so that you can gain a good understanding of the steps involved.

Once you understand how to manipulate the UDP header, creating your own protocol header or manipulating

other protocols encapsulated in IP is fairly trivial.

Before getting into the details of using the header include option, you need to know one important difference

between using this option with IPv4 and IPv6. For IPv4, the stack still verifies some fields within the supplied

IPv4 header. For example, the IPv4 identification field is set by the stack and the stack will fragment the

packet if necessary. That is, if you create a raw IPv4 packet and set IP_HDRINCL and send a packet larger

than the MTU size, the stack will fragment the data into multiple packets for you. For IPv6, if the

IPV6_HDRINCL option is set, it is your responsibility to compute all the headers and fields necessary. If you

submit a send larger than the MTU size, your application must create the IPv6 fragment headers and compute

the offsets correctly; otherwise, the IPv6 stack will drop the packet without sending it.

When you use the header include option, you are required to fill in the IP header yourself for every send call,

as well as the headers of any other protocols wrapped within. Both IPv4 and IPv6 headers are shown in

Chapter 7 in Figures 7-3 and 7-4. The UDP header is quite a bit simpler than the IP header. It is only 8 bytes

long and contains only four fields, as shown in Figure 11-3. The first two fields are the source and destination

port numbers. They are 16 bits each. The third field is the UDP length, which is the length, in bytes, of the

UDP header and data. The fourth field is the checksum, which we will discuss shortly. The last part of the

UDP packet is the data.

Figure 11-3 UDP header format

Because UDP is an unreliable protocol, calculating the checksum is optional. Unlike the IPv4 checksum,

which covers only the IPv4 header, the UDP checksum covers the data and also includes part of the IPv4

header. The additional fields required to calculate the UDP checksum are known as a pseudo-header. The

IPv4 UDP pseudo-header is composed of the following items:

32-bit source IP address (IP header)

32-bit destination IP address (IP header)

8-bit field zeroed out

8-bit protocol

16-bit UDP length

Added to these items are the UDP header and data. The method of calculating the checksum is the 16-bit

one's complement sum. Because the data can be an odd number of bytes, it might be necessary to pad a zero

byte to the end of the data to calculate the checksum. This pad field is not transmitted as part of the data.

Figure 11-4 illustrates all of the fields required for the checksum calculation. The first three 32-bit words make

up the UDP pseudo-header. The UDP header and its data follows that. Notice that because the checksum is

calculated on 16-bit values, the data might need to be padded with a zero byte.

Figure 11-4 IPv4 pseudo-header with UDP packet and data

For IPv6, you have already seen how to calculate the IPv6 pseudo-header as is required to calculate the

checksum for ICMPv6 packets. The calculation is the same for UDP with the IPv6 pseudo-header coming first

and is followed by the UDP header and payload (zero padded to the next 16-bit boundary if necessary). The

IPv6 pseudo-header is shown in Figure 11-5.

Figure 11-5 IPv6 pseudo-header with UDP packet and data

The directory IPHDRINC on the companion CD contains a fully functional sample that creates

raw UDP packets over IPv4 and IPv6.

The following code snippet shows how to build an IPv4 and UDP header:

// IPv4 header

typedef struct ip_hdr

{

 unsigned char ip_verlen; // 4-bit IPv4 version

 // 4-bit header length (in

 // 32-bit words)

 unsigned char ip_tos; // IP type of service

 unsigned short ip_totallength; // Total length

 unsigned short ip_id; // Unique identifier

 unsigned short ip_offset; // Fragment offset field

 unsigned char ip_ttl; // Time to live

 unsigned char ip_protocol; // Protocol(TCP,UDP etc)

 unsigned short ip_checksum; // IP checksum

 unsigned int ip_srcaddr; // Source address

 unsigned int ip_destaddr; // Source address

} IPV4_HDR, *PIPV4_HDR, FAR * LPIPV4_HDR;

// Define the UDP header

typedef struct udp_hdr

{

 unsigned short src_portno; // Source port no.

 unsigned short dst_portno; // Dest. port no.

 unsigned short udp_length; // Udp packet length

 unsigned short udp_checksum; // Udp checksum (optional)

} UDP_HDR, *PUDP_HDR;

SOCKET s;

char buf[MAX_BUFFER], // large enough buffer

 *data=NULL;

IPV4_HDR *v4hdr=NULL;

UDP_HDR *udphdr=NULL;

USHORT sourceport=5000,

 Destport=5001;

int payload=512, // size of UDP data

 optval;

SOCKADDR_STORAGE dest;

// Initialize the IPv4 header

v4hdr = (IPV4_HDR *)buf;

v4hdr->ip_verlen = (4 << 4) ¦ (sizeof(IPV4_HDR) / sizeof(ULONG));

v4hdr->ip_tos = 0;

v4hdr->ip_totallength = htons(sizeof(IPV4_HDR) + sizeof(UDP_HDR) +

 payload);

v4hdr->ip_id = 0;

v4hdr->ip_offset = 0;

v4hdr->ip_ttl = 8; // Time-to-live is eight

v4hdr->ip_protocol = IPPROTO_UDP;

v4hdr->ip_checksum = 0;

v4hdr->ip_srcaddr = inet_addr("1.2.3.4");

v4hdr->ip_destaddr = inet_addr("157.32.159.101");

// Calculate checksum for IPv4 header

// The checksum() function computes the 16-bit one's

// complement on the specified buffer. See the IPHDRINC

// code sample on the companion CD for its implementation.

v4hdr->ip_checksum = checksum(v4hdr, sizeof(IPV4_HDR));

// Initialize the UDP header

udphdr = (UDP_HDR *)&buf[sizeof(IPV4_HDR)];

udphdr->src_portno = htons(sourceport);

udphdr->dst_portno = htons(destport);

udphdr->udp_length = htons(sizeof(UDP_HDR) + payload);

udphdr->udp_checksum = 0;

// Initialize the UDP payload to something

data = &buf[sizeof(IPV4_HDR) + sizeof(UDP_HDR)];

memset(data, '^', payload);

// Calculate the IPv4 and UDP pseudo-header checksum - this routine

// extracts all the necessary fields from the headers and calculates

// the checksum over it. See the iphdrinc sample for the implementation

// of Ipv4PseudoHeaderChecksum().

udphdr->udp_checksum = Ipv4PseudoHeaderChecksum(v4hdr, udphdr, data,

 sizeof(IPV4_HDR) + sizeof(UDP_HDR) + payload);

// Create the raw UDP socket

s = socket(AF_INET, SOCK_RAW, IPPROTO_UDP);

// Set the header include option

optval = 1;

setsockopt(s, IPPROTO_IP, IP_HDRINCL, (char *)&optval, sizeof(optval));

// Send the data

((SOCKADDR_IN *)&dest)->sin_family = AF_INET;

((SOCKADDR_IN *)&dest)->sin_port = htons(destport);

((SOCKADDR_IN *)&dest)->sin_addr.s_addr = inet_addr("157.32.159.101");

sendto(s, buf, sizeof(IPV4_HDR) + sizeof(UDP_HDR) + payload, 0,

 (SOCKADDR *)&dest, sizeof(dest));

This code is straightforward and easy to follow. The IPv4 header is initialized with valid entries. In this case, a

bogus source IPv4 address is used (1.2.3.4) but a valid destination address is supplied. Also, we set the TTL

value to 8. Lastly, the checksum is calculated for the IPv4 header only. After the IPv4 header is the UDP

header—as indicated by the ip_protocol field of the IPv4 header being set to IPPROTO_UDP. For that

header, the source and destination ports are set in addition to the length of the UDP header and its payload.

The last piece is to compute the pseudo-header checksum, which isn't shown but is an easy computation. The

necessary fields are extracted out of the various headers after which the checksum can be computed. The

code sample on the CD has a routine to compute the pseudo-header checksum for both IPv4 and IPv6.

As we mentioned previously, using the header include option for IPv4 is easy because the stack will perform

any fragmentation necessary. However, for IPv6 the stack will not, which means if your application needs to

send raw data with a payload that exceeds the MTU, it will have to fragment the packets manually before

sending them. This is accomplished by including the IPv6 fragmentation header after the IPv6 header but

before the remaining payload. To do this, the IPv6 header's next header value will indicate the IPv6

fragmentation header (whose value is 44). The next header value of the IPv6 fragmentation header will then

indicate IPPROTO_UDP. Also note that the UDP header occurs only once. The first fragment will contain the

IPv6 header, IPv6 fragmentation header, UDP header, and as much of the payload that will fit into the MTU.

The subsequent fragments will contain only the IPv6 header, the IPv6 fragmentation header, and the

remaining payload. Figure 11-6 illustrates this example. In this case, the MTU is 1500 bytes but a 2000 byte

payload is being sent.

Figure 11-6 IPv6 UDP packet with fragmentation

Again, the RAWUDP.CPP sample on the companion CD illustrates sending a fabricated UDP packet for both

IPv4 and IPv6. There are two routines of interest: PacketizeIpv4 and PacketizeIpv6. The v4 routine doesn't do

anything of interest because we know the stack will fragment the data if required. However, the v6 routine will

build the appropriate IPv6 header and fragmentation header for each fragment necessary.

Conclusion

Raw sockets are a powerful mechanism to manipulate the underlying protocol. This

chapter illustrated how you can use raw sockets to create ICMP and ICMPv6

applications through Winsock, but raw sockets can be used in a multitude of other

applications—too many to discuss in a single chapter. To take full advantage of the

capabilities of raw sockets and the header include option (IP_HDRINCL and

IPV6_HDRINCL), you must thoroughly understand the IP protocol as well as any

protocols encapsulated in it.

Chapter 12

The Winsock Service Provider Interface

The Winsock 2 Service Provider Interface (SPI) is the complement to the Winsock API we have been

discussing. As the name implies, the SPI is a service to applications and is not an application. It is written and

exposes itself to applications that can load the service either knowingly or unknowingly. The SPI is a part of

the Winsock 2 specification and therefore requires the Winsock 2 update if running in Windows 95. Figure

12-1 illustrates the relationship between Winsock applications and the SPI.

There are two parts to the SPI: transport service providers and name space providers. Each part provides

distinctly different functionalities. There are two types of transport service providers: layered and base. A

layered service provider installs itself into the Winsock catalog above base providers and possibly between

other layered providers and intercepts Winsock API calls from applications. A base provider exposes a

Winsock interface that directly implements a protocol such as the Microsoft TCP/IP provider. This chapter

discusses only layered service providers. When an application creates a socket that matches the

characteristics of the layered provider, that layered service provider is called and can intercept Winsock calls.

A name space provider is similar to a transport service provider except that it intercepts the name resolution

Winsock API calls, such as gethostbyname and WSALookupServiceBegin. A name space provider installs

itself within the name space catalog and is invoked when applications perform name resolution searches that

match that name space provider.

Figure 12-1 SPI architecture

Before getting into the specifics, we'll cover some of the basics that pertain to both layered and name space

providers. The Winsock Service Provider APIs are contained in the header file WS2SPI.H and SPI

applications link with WS2_32.LIB. In addition, there are four types of APIs defined in the SPI. Table 12-1 lists

the prefixes for each type as well as whether they belong to service providers or name space providers.

Table 12-1SPI Function Prefixes

API Prefix Description

WSC Installing, removing, or modifying layered and name space providers

WSP Layered service provider APIs

WPU Support functions that layered providers use

NSP Name space providers APIs

In this chapter we'll examine the layered provider interface followed by the name space provider interface.

Layered Service Provider

As we mentioned, a layered service provider (LSP) installs itself into the Winsock catalog so that an

application that creates a socket will call into it without necessarily having any awareness of the LSP.

This is useful for developing system components that modify or monitor any portion of the Winsock

API. For example, a secure socket provider that implements SSL can be implemented as a layered

service provider. In this example, the LSP would negotiate the SSL connection when the application

issues a connect as well as encrypting data sent via any Winsock send command while decrypting

data returned from the receive commands. Other possibilities include Winsock proxy clients and

content filtering.

An LSP accomplishes this by installing an entirely new Winsock provider that mimics or extends an

existing provider. For example, if you were developing an LSP that filters HTTP requests, you would

need to layer your provider over the Microsoft TCP provider because the HTTP protocol runs over

TCP. You would want this new provider to be virtually indistinguishable (at least from an application's

perspective) from the base Microsoft provider because you want any application that uses TCP to go

through your provider first. Of course, it is possible to create an LSP that implements an entirely

different protocol with different semantics on top of an existing Winsock provider.

In Chapter 2, you saw how Winsock selects the appropriate provider to load when a socket is created.

When an LSP is installed, it is placed in the catalog in a certain order. When an application creates a

socket, the catalog is enumerated in order until the best match is found, at which point the system

loads that provider. This allows a layered provider to be loaded instead of the default Microsoft

provider.

When an application that created a socket from the layered provider makes a Winsock call, the system

routes the call into the LSP. At that point, the LSP can perform its necessary tasks. It can also pass the

request to the provider below itself if further action is required. For example, in our HTTP content

filtering examples, we may want to intercept HTTP requests and modify them before actually making

the request. This would require the LSP to perform some action for any of the Winsock APIs that send

data. When the application calls any Winsock send function, the call is routed to the LSP, which

examines the send buffer and makes the appropriate modifications to it. Of course, the LSP doesn't

actually know how to send TCP data; it relies on the underlying TCP provider, which has a kernel

mode driver that implements the protocol. The LSP must know where it resides in the protocol chain to

pass the modified send request to the provider beneath it. In many cases, this will be the base provider

but an LSP can be installed over other LSPs. Eventually, the request will make it to a base provider,

which will perform the appropriate action. In the next section you'll see exactly how these protocol

chains are implemented because when an LSP is installed, these chains must be built. Figure 12-2

shows the relationship between applications, layered service providers, and base providers.

Figure 12-2 Layered provider architecture

Winsock LSPs are implemented as a standard Windows dynamic-link library into which you must

export a single function entry named WSPStartup. When the system invokes the layered provider's

WSPStartup, it must expose 30 additional SPI functions that make up the LSP via a function dispatch

table passed as a parameter. Table 12-2 lists those SPI functions that must be implemented within the

DLL.

Table 12-2Transport Provider Support Functions

API Function Maps to SPI Function

WSAAccept (accept also indirectly maps to WSPAccept) WSPAccept

WSAAddressToString WSPAddressToString

WSAAsyncSelect WSPAsyncSelect

Bind WSPBind

WSACancelBlockingCall WSPCancelBlockingCall

WSACleanup WSPCleanup

closesocket WSPCloseSocket

WSAConnect (connect also indirectly maps to WSPConnect) WSPConnect

WSADuplicateSocket WSPDuplicateSocket

WSAEnumNetworkEvents WSPEnumNetworkEvents

WSAEventSelect WSPEventSelect

WSAGetOverlappedResult WSPGetOverlappedResult

getpeername WSPGetPeerName

getsockname WSPGetSockName

getsockopt WSPGetSockOpt

WSAGetQOSByName WSPGetQOSByName

WSAIoctl WSPIoctl

WSAJoinLeaf WSPJoinLeaf

Listen WSPListen

WSARecv (recv also indirectly maps to WSPRecv) WSPRecv

WSARecvDisconnect WSPRecvDisconnect

WSARecvFrom (recvfrom also indirectly maps to WSPRecvFrom) WSPRecvFrom

Select WSPSelect

WSASend (send also indirectly maps to WSPSend) WSPSend

WSASendDisconnect WSPSendDisconnect

WSASendTo (sendto also indirectly maps to WSPSendTo) WSPSendTo

setsockopt WSPSetSockOpt

shutdown WSPShutdown

WSASocket (socket also indirectly maps to WSPSocket) WSPSocket

WSAStringToAddress WSPStringToAddress

In most cases, when an application calls a Winsock function, WS2_32.DLL calls a corresponding

Winsock SPI function to carry out the request using a specific service provider. For example, select

maps to WSPSelect, WSAConnect maps to WSPConnect, and WSAAccept maps to WSPAccept.

However, not all Winsock functions have a corresponding SPI function. The following list details these

exceptions.

Support functions such as htonl, htons, ntohl, and ntohs are implemented within WS2_32.DLL and

aren't passed down to a service provider. The same holds true for the WSA versions of these

functions.

IP conversion functions such as inet_addr and inet_ntoa are implemented only within WS2_32.DLL.

All of the IP specific name conversion and resolution functions (i.e., the WSAGetXbyY functions) as

well as WSACancelAsyncRequest and gethostname are implemented within WS2_32.DLL.

Winsock catalog functions and blocking hook-related functions are implemented within

WS2_32.DLL. Thus, WSAEnumProtocols, WSA-IsBlocking, WSASetBlockingHook, and

WSAUnhookBlockingHook do not have SPI equivalent functions.

Winsock error codes are managed within WS2_32.DLL and as such WSAGetLastError and

WSASetLastError are not mapped to service providers.

The event object manipulation and wait functions—including WSACreateEvent, WSACloseEvent,

WSASetEvent, WSAResetEvent, and WSAWaitForMultipleEvents—are mapped directly to native

Windows operating system calls and aren't present in the service provider.

Also, a sample LSP is included on the companion CD in the directory Lsp. This LSP is a pass-through

LSP. It doesn't modify any of the Winsock API calls, it simply passes the call down to the lower layer.

Throughout our discussion of layered providers, we'll refer to the sample code to illustrate various

points.

Before getting into the details of installing and implementing an LSP, we should discuss error handling.

Winsock applications often use WSAGetLastError and sometimes WSASetLastError. However, as we

have pointed out, there is no SPI equivalent to these functions. Instead, each of the SPI functions an

LSP must implement (listed in Table 12-2) are exact mirrors of their API equivalents in terms of

parameters except for an additional parameter, lpErrno. Those APIs that can be called in an

overlapped manner have one additional parameter in addition to lpErrno the thread ID for the calling

thread (which is discussed in the “Handling I/O” section). This is a pointer to an integer that should be

set to the correct error code in case the LSP function fails. To indicate a failure, the LSP function

should return SOCKET_ERROR and set lpErrno. For success, NO_ERROR is returned and the

lpErrno value is ignored. The only exception is WSPStartup, which either returns NO_ERROR or the

actual error code that caused startup to fail.

Installing an LSP

Before we talk about implementing an LSP, the first step is installing the layered provider into the

Winsock catalog, which can become very complicated in itself. In Chapter 2, you saw how an

application can enumerate the Winsock catalog as well as provide a code sample illustrating that.

Installing an LSP consists of installing a WSAPROTOCOL_INFOW structure defining the

characteristics of the layered provider as well as how the LSP fits into the “chain.” As the name

“layered service provider” implies, providers are layered on top of one another to form a protocol chain

that is defined as

typedef struct _WSAPROTOCOLCHAIN {

 int ChainLen;

 DWORD ChainEntries[MAX_PROTOCOL_CHAIN];

} WSAPROTOCOLCHAIN, FAR * LPWSAPROTOCOLCHAIN;

The ChainLen field is important because it indicates the type of provider the entry is. Table 12-3 lists

the possible values. When ChainLen is zero or 1, the data contained in the ChainEntries array is

meaningless. The value of one indicates a base provider, such as the Microsoft TCP and UDP

providers. Typically, a base provider has a kernel mode protocol driver associated with it. For example,

the Microsoft TCP and UPD providers require the TCP/IP driver TCPIP.SYS to ultimately function. It is

also possible to develop your own base providers, but that is beyond the scope of this book. For more

information about base providers, consult the Windows Driver Development Kit (DDK).

Table 12-3Chain Length and Type of Provider

ChainLen Value Description

0 Layered provider entry

1 Base provider

2 or more Layered chain entry

Layered providers use a chain length of zero or greater than 1. Entries whose chain length is zero are

special. When a layered provider is installed, the protocol chain must be constructed that describes

where the layered provider resides. This is done by filling in the ChainEntries array with the catalog IDs

for each protocol in the chain. The catalog ID is the dwCatalogEntryId contained in the

WSAPROTOCOL_INFOW structure.

Let's look at a quick example before going any further. Say we're developing an LSP that will be

layered over the base Microsoft TCP provider. This will require us to install a single provider whose

ChainLen will be two. The ChainEntries array will contain two entries: first is the layered provider

catalog ID and second is the Microsoft TCP provider catalog ID. The problem is the value to use for

the layered provider's catalog ID. When constructing the WSAPROTOCOL_INFOW structure that

describes the layered chain for our LSP, the dwCatalogEntryId is not initialized and we cannot simply

make one up. A catalog ID is assigned only when a provider is installed via WSCInstallProvider. To

solve this problem, a dummy provider entry is installed first whose ChainLen is zero. Once this dummy

provider (also known as the layered provider) is installed, the system assigns the catalog ID, which we

can then use to install the actual layered chain entry.

The dummy layered provider's WSAPROTOCOL_INFOW structure contains meaningless data (except

for the path to the provider's DLL, which will be discussed later). Furthermore, an application that calls

WSAEnumProtocols will not see any entry with a chain length of zero; only WSCEnumProtocols will

return these entries (along with all other entries). When writing the install (and remove) code for

service provider, you want to use WSCEnumProtocols or you'll never see the layered provider dummy

entries, only base and layered chain entries.

Getting back to our example LSP, first the dummy LSP entry is installed, after which the catalog is

enumerated so we can find the provider ID of the dummy entry. Then we build the

WSAPROTOCOL_INFOW structure, which describes our layered chain. In this structure the ChainLen

is 2; ChainEntries contains two values. The first value is the catalog entry ID of the dummy entry just

installed and the second array index contains the catalog entry ID of the base TCP provider. Figure

12-3 illustrates three WSAPROTOCOL_INFOW structures. The structure on the left is the default

Microsoft TCP provider. The structure in the middle is the dummy LSP entry, and the structure on the

right is the layered chain entry for the LSP provider. Notice that the protocol chain for the LSP provider

contains two entries. Also notice that the figure illustrates only the first four protocol chain entries while

the WSAPROTOCOL_INFOW structure actually contains MAX_PROTOCOL_CHAIN entries (which is

seven).

Figure 12-3 Example LSP layered over the base Microsoft TCP Provider

Installing a Provider Entry

Now that we've covered the basics, let's look at the API used to install a Winsock provider,

WSCInstallProvider. The API is defined as

 int WSPAPI

 WSCInstallProvider(

 IN LPGUID lpProviderId,

 IN const WCHAR FAR *lpszProviderDllPath,

 IN const LPWSAPROTOCOL_INFOW lpProtocolInfoList,

 IN DWORD dwNumberOfEntries,

 OUT LPINT lpErrno

);

The first thing to notice is this API comes in only a UNICODE version. The parameter list is almost

self-explanatory. Each provider installed requires a GUID to uniquely identify that provider entry. A

GUID can be generated by the command line utility UUIDGEN.EXE or programmatically by

UuidCreate. One GUID is required for the dummy layered provider entry and one (or more) is required

for the layered chain entry or entries. The lpszProviderDllPath parameter is a UNICODE string that

contains the path to the DLL that implements the layered provider. The DLL path can contain

environment variables such as %SYSTEMROOT%. This provider path should be correct for both the

layered provider entries and layered chain entries. Lastly, note that only members of the

Administrators group can install (and remove) Winsock catalog entries.

The lpProtocolInfoList is an array of WSAPROTOCOL_INFOW structures. Each entry in the array is a

separate provider entry to be installed. dwNumberOfEntries indicates the number of entries in the

array. If the provider being installed is layered over multiple providers, they may be installed all at once

or one at a time—which is an issue to consider as we will find out later. Of course, the dummy layered

provider entry must be installed first by itself to obtain a catalog ID entry used by the layered protocol

entries. The last parameter returns the error code in case of a failure, at which point the API returns

SOCKET_ERROR.

As we have already mentioned, the layered provider entry is meaningless and is installed only to

obtain a catalog ID. For layered protocol entries, the WSAPROTOCOL_INFOW structure is typically

copied from the provider that is to be layered over with two exceptions. First, the szProtocol field is

modified to contain the name of the new provider. Second, the flag XP1_IFS_HANDLES is removed

from the dwServiceFlags1 field if present. When this flag is set, it indicates that the socket handles that

this provider returns are true operating system handles and may be passed interchangeably to APIs

that don't specifically take SOCKET handles (such as ReadFile and WriteFile) without taking a

performance penalty. For a layered provider to return IFS handles there must be an associated kernel

mode component that creates these handles such as what TCPIP.SYS does for the Microsoft TCP

and UDP providers. We'll discuss socket handles in more detail later in this chapter.

Of course, if the LSP being developed is a completely new protocol, the install application must set the

proper flags and fields within the WSAPROTOCOL_INFOW structure to accurately describe the

behavior that the provider exposes. See Chapter 2 for a full description of the protocol structure.

Finally, when installing new provider entries, the entries by default appear at the end of the Winsock

catalog when enumerated. If your LSP mimics a TCP/IP provider, it will never be called by default

because the system will always match socket creation calls to the MSAFD TCP/IP provider that

appears before your LSP's entry in the enumeration (see Chapter 2 for more information on how the

system finds the appropriate Winsock provider to load). As a result, it may be necessary to reorder the

catalog so that the newly install LSP entries appear first. This is done with the API

WSCWriteProviderOrder defined as

int WSPAPI WSCWriteProviderOrder(

 IN LPDWORD lpdwCatalogEntryId,

 IN DWORD dwNumberOfEntries

);

The first parameter is an array of DWORD, which contains the catalog entry IDs for every provider in

the catalog in the order in which they should be written. For example, if there are 20 entries in the

Winsock catalog (as returned from WSCEnumProtocols), the array should contain 20 entries, each

with the catalog ID of an existing provider. After the API is called, the catalog will be reordered in the

sequence specified. The array should not contain any duplicates. Note that this API is defined in the

header file SPORDER.H and in the library SPORDER.LIB. On recent Platform SDK releases, the

definition of this function has been moved into WS2_32.LIB, and SPORDER.LIB simply contains a

forward to that definition.

After successfully installing an LSP it is a good idea to reboot the machine. Many of the system

services, such as Local Security Authentication Server System (LSASS), create only the majority of

their sockets upon bootup and create additional sockets as time goes on. The problem is that after an

LSP is installed over the providers they are using, these services now have a mixed set of sockets

from multiple providers. This can be problematic if these applications use the select API.

To summarize, installing a provider requires the installation of the “dummy” layered provider entry with

a chain length of zero. This is necessary to obtain a catalog ID that the layered chain entries can later

reference. After the layered provider is installed, each layered chain is installed that references the

catalog ID of the layered dummy provider as its first chain entry. The subsequent chain entries are the

catalog IDs of the providers layered under this one. Then, in most cases, the Winsock catalog needs to

be reordered so that most applications will call into the LSP rather than into the base providers.

Note that special consideration must be taken when manipulating the Winsock catalog on 64-bit

Windows. In order for 32-bit applications to run on 64-bit Windows, two separate Winsock catalogs are

maintained—one for 32-bit applications and one for 64-bit native applications. To manipulate the

catalog, several new WSC functions have been introduced. There is a new API for each WSC function

that has the string “32” appended to the function name. Note that the parameters remain the same.

For example, the function WSCInstallProvider has a corresponding function WSCInstallProvider32.

The “normal” function (i.e., not ending in 32) operates on the Winsock catalog for the platform the

install application is compiled for. That is, if our LSP install program is compiled for 64-bit Windows,

the WSCInstallProvider function installs the LSP into the 64-bit catalog. Likewise, if it was compiled for

32-bit Windows, the LSP would be installed into the 32-bit catalog. The new functions ending in 32 can

be used by a native 64-bit application to manipulate the 32-bit catalog.

The only problem is what to do if an LSP needs to be installed into both the 32-bit and 64-bit catalog.

When we build the protocol chain, the same catalog ID for the dummy provider is present in the chain.

To solve this problem, there is another version of the install function, WSCInstallProvider64_32. This

function installs the provider into both catalogs so that the same catalog ID is assigned to the 32-bit

and 64-bit entries. Also note that when installing into both catalogs, two versions of the LSP's DLL

need to be present. The native 64-bit compiled version goes in %SYSTEMROOT%\system32, while

the 32-bit version is placed in %SYSTEMROOT%\syswow64. Note that it still requires two separate

calls to remove the LSP once installed into both catalogs—i.e., there is no equivalent uninstall routine

that operates on both catalogs.

Finally, the Winsock catalog functions (the WSC variation) also have a new version ending in 32 that

follows the same rules discussed above. If a native 64-bit application needs to enumerate both the

32-bit and 64-bit catalogs, it must call WSCEnumProtocols to obtain the 64-bit catalog followed by

WSCEnumProtocols32 to obtain the 32-bit catalog. There is no method for a 32-bit application to

obtain the 64-bit catalog, which is true for all 32-bit applications (i.e., a 32-bit application has no way of

manipulating the 64-bit catalog).

Removing an LSP

Once an LSP is installed into the Winsock catalog, removing the provider is, in most cases, an easy

process. The function WSCDeinstallProvider will remove all the catalog entries associated with the

given GUID. This API is defined as

int WSPAPI WSCDeinstallProvider(

 IN LPGUID lpProviderId,

 OUT LPINT lpErrno

);

In the simple case, an LSP will require two GUIDs: one for the dummy entry and one for all of the

layered chain entries. To completely remove the LSP in this case, call WSCDeinstallProvider once for

each GUID. Of course, if the layered chain providers were installed using multiple GUIDs, the uninstall

code will have to call WSCDeinstallProvider on each one.

Uninstalling an LSP becomes extremely complicated if after your LSP is installed, another LSP is

installed over it. The second LSP's chain entries will contain references to your LSP's catalog IDs. If

your LSP is blindly uninstalled, the second LSP is broken. If the second LSP is exposing itself as a

TCP/IP and UDP/IP provider, most likely the system won't boot or will have no network access.

In this situation, the uninstall code for your LSP must check for any other Winsock entries that

reference your LSP's catalog IDs within its protocol chain. If it finds other entries, the uninstaller must

copy them, uninstall them, remove your LSP's entry from its protocol chain, and install it back into the

catalog. For example, consider the case illustrated in Table 12-4. There are two LSPs in this example.

LSP1 is installed over the base TCP/IP and UDP/IP providers, and LSP2 is installed over LSP1's

TCP/IP and UDP/IP providers. To remove LSP1, we must also fix LSP2's entries so that they no

longer reference catalog ID's 1010 and 1011. To do this, the uninstaller for LSP1 must find all entries

that reference any of LSP1's catalog Ids, which in this case are entries 1021 and 1022. These entries

should be saved off and uninstalled. Then the saved entries should be modified so that their chain

lengths are 2 and any reference to 1010 or 1011 in their protocol chains are removed. Finally, these

entries should be installed under the same GUID as before. The entry for 1021 should have a protocol

chain of 1020 followed by 1001 and the entry for 1022 should be 1020 and 1002. Note that after

re-installing the provider, the entry will appear at the end of the catalog when enumerated. It may be

necessary to reorder the catalog to put the LSP2 entries back to their original locations.

Table 12-4Winsock Catalog with Multiple LSPs

Catalog

ID
Description

Address

Family/Protocol

Chain

Length
Protocol Chain

1021 LSP2 TCP/IP 3
1020 —> 1010 —>

1001

1022 LSP2 UDP/IP 3
1020 —> 1011 —>

1002

1020 LSP2 Dummy N/A 0 N/A

1010 LSP1 TCP/IP 2 1009 —> 1001

1011 LSP1 UDP/IP 2 1009 —> 1002

1009 LSP1 Dummy N/A 0 N/A

1001 MSAFD TCP/IP TCP/IP 1 N/A

1002
MSAFD

UDP/IP
UDP/IP 1 N/A

Modifying LSP Entries

As you can see, uninstalling a provider when other providers have layered over it is a horrendous

task—especially in the complicated cases in which the second provider layered over yours is layered

over many other providers and all installed with the same GUID! As a result, Windows XP introduces a

new API designed to ease the pain of uninstalling providers. This API allows you to modify an existing

provider without uninstalling it. This function is WSCUpdateProvider and is defined as

int WSPAPI WSCUpdateProvider(

 IN LPGUID lpProviderId,

 IN const WCHAR FAR *lpszProviderDllPath,

 IN const LPWSAPROTOCOL_INFOW lpProtocolInfoList,

 IN DWORD dwNumberOfEntries,

 OUT LPINT lpErrno

);

The parameter list is the same as for WSCInstallProvider except that instead of installing a new

provider in the catalog, this API updates the providers referenced by the supplied GUID. With this API

you can update any of the fields within an existing provider's entry except for its provider ID (GUID). So

for the example given in Table 12-4, this makes fixing LSP2 almost trivial because all that needs to be

modified are the protocol chains and chain length.

Writing the Layered Provider

As we mentioned previously, an LSP is implemented in a DLL. There are three important parts to

layered providers: the WSPStartup function, tracking socket handles, and handling the various I/O

models (such as select, WSAEventSelect, WSAAsyncSelect, overlapped, and completion ports). Of

course, this doesn't include the difficulty of implementing the functionality that the LSP provides (such

as HTTP proxy, and SSL sockets).

In addition to the three important tasks there is the matter of handling the Microsoft-specific Winsock

extensions such as AcceptEx and TransmitFile. This topic is covered after the main three tasks.

Finally, there are a few minor tasks that an LSP must implement to achieve 100 percent compatibility.

The last few sections discuss these tasks in detail.

Initializing the Provider

Each LSP must implement and export the WSPStartup function. The function is prototyped as

int WSPAPI WSPStartup(

 WORD wVersion,

 LPWSPDATA lpWSPData,

 LPWSAPROTOCOL_INFOW lpProtocolInfo,

 WSPUPCALLTABLE UpCallTable,

 LPWSPPROC_TABLE lpProcTable

);

The first parameter is the Winsock version that the application requested. The lpWSPData parameter

is a WSPDATA structure, which is a subset of the WSADATA structure seen in Chapter 1. The LSP

must fill in the WSPDATA structure provider to indicate the Winsock version supported. The

lpProtocolInfo structure is a WSAPROTOCOL_INFOW structure corresponding to the provider being

loaded. With an LSP, this is one of the protocol structures of our LSP. The UpCallTable parameter is

an input parameter that contains function pointers to various Winsock support routines which we will

discuss later. Finally, the lpProcTable is a structure of function pointers to those Winsock provider

functions that the LSP implemented that it must completely fill in before returning.

Before getting into the specifics of initializing a layered service provider, let's look at what happens

when the system invokes an LSP's WSPStartup function. When an application calls WSAStartup, the

system takes no action and it's not until the application actually creates a socket that a provider's

WSPStartup is called. When the application creates the socket, the system searches the Winsock

catalog for a matching entry as described in Chapter 2. When the matching entry is found, the system

loads the provider's DLL and invokes its WSPStartup function.

The second issue is how many times you can expect your LSP's WSPStartup to be invoked, which

depends on how the LSP is installed. For example, consider a system with two layered protocol

entries, as shown in Figure 12-4. Two layered protocol entries are on the left side of the diagram: one

layered over the MSAFD TCP/IP provider and the other layered over the MSAFD IPX provider. Note

that both of these entries were installed in the same call to WSCInstallProvider because they both

contain the same provider GUID. If an application creates a TCP/IP socket, at that point the system

loads the LSP and calls its WSPStartup function. Afterward, if the application creates an IPX socket,

the system will not invoke the WSPStartup function again as it has already been invoked for the

provider with GUID A. Also, any further TCP/IP or IPX sockets created will not invoke additional calls

to WSPStartup.

Figure 12-4 WSPStartup calling behavior

However, if the layered protocol entries for TCP/IP and IPX were installed separately with two calls to

WSCInstallProvider (and therefore two different GUIDs), when the application creates the first TCP/IP

socket the LSP's WSPStartup is invoked. Then when the application creates an IPX socket the system

invokes the WSPStartup function once more as the provider corresponding to GUID B has not been

initialized yet.

This is an important consideration because it dictates how much initialization overhead is required. For

example, consider the LSP that layers over every installed protocol—such as a content filter. In this

case, there could be multiple protocols and multiple provider entries for each protocol. If the LSP's

layered protocol entries are installed all at once under the same GUID, the LSP's WSPStartup will be

called no more than once when the application creates a socket. However, most applications tend to

create sockets from a single address family that corresponds to two or three provider entries (for

example, IPv4 has three entries: TCP/IP, UDP/IP, and RAW/IP). In this case, the LSP may require

setting up multiple internal data structures for each provider: IPv4, IPv6, IPX/SPX, NetBIOS,

AppleTalk, and IrDA. However, if the LSP's layered protocol entries are installed in groups

corresponding to the different address families, the necessary internal data structure can be allocated

only when the calling application decides to use that particular protocol. The decision to install under a

single or multiple GUIDs is completely up to the LSP implementer, but it is a good idea to know how

often WSPStartup will be invoked.

Getting back to the initialization steps, here are the three tasks an LSP must perform within its

WSPStartup function:

Keep track of how many times WSPStartup has been invoked.1.

Initialize the lpWSPData and lpProcTable parameters.2.

Find its location within the protocol chain and initialize the lower layer(s).3.

The first requirement is fairly simple. The LSP should keep track of how many times WSPStartup has

been called so that each time it is invoked a simple reference count should be incremented. A provider

may need to initialize some internal data structures, which will most likely occur on the first call to

WSPStartup. Likewise, an LSP must implement WSPCleanup, at which point the reference count

should be decremented. Once the count reaches zero, any internal data structures and all other

dynamically allocated resources should be freed.

The second requirement is also simple. The LSP must initialize the WSPDATA and

WSPPROC_TABLE parameters. For the WSPDATA structure, the LSP can either verify that the

Winsock version is correct itself or it may pass the lpWSPData parameter into the lower provider's

WSPStartup function when initializing the lower layers (discussed next) if the LSP does not want to

validate the parameters. The WSPPROC_TABLE is a giant structure containing function pointers for

all the functions implemented in the LSP. The layered service provider must initialize every pointer.

The third requirement is a bit more complex. The layered provider needs to “load” the providers

appearing beneath it in the protocol chain. If the LSP is layered above multiple lower layers, load the

provider underneath each of the LSP's provider entries. How does the LSP find where it resides within

the chain? The lpProtocolInfo parameter passed to WSPStartup is the provider entry for one of the

LSP's protocol chain entries. As we touched on previously, this will match one of the LSP's providers

depending on the type of socket the application created first.

As we mentioned, the system passes a WSAPROTOCOL_INFOW structure of the layered provider

corresponding to the socket that the application is creating from one of the LSP's layered protocol

entries. The first entry within the protocol chain array is the catalog ID for the LSP. Given this value,

the Winsock catalog can be enumerated and the remaining layered chain providers can be found. The

second index of the chain array of each LSP entry contains the catalog ID of the underlying provider

that needs to be loaded.

Loading the underlying provider is a simple process. For each underlying provider, call

WSCGetProviderPath to obtain the location of the DLL implementing that provider. This function is

prototyped as

int WSCGetProviderPath(

 LPGUID lpProviderId,

 LPWSTR lpszProviderDllPath,

 LPINT lpProviderDllPathLen,

 LPINT lpErrno

);

After obtaining the provider's DLL path, LoadLibrary is called on it, followed by GetProcAddress for

that DLL's WSPStartup function. Initializing the lower layer is simply calling that DLL's WSPStartup.

Again, the lpWSPData passed to your LSP's WSPStartup can be passed to the lower provider's

WSPStartup call so that it can verify the version requested is correct.

For Windows 95, Windows 98, and Windows Me, a provider's DLL path is always

returned as a UNICODE string so that it must be converted to ANSI and LoadLibraryA

must be used.

Each lower provider initialized by calling its WSPStartup must follow the same rules that are applied to

your LSP's WSPStartup. You must pass in a WSPDATA structure as well as the

WSAPROTOCOL_INFOW structure for that provider's entry regardless of whether it is a base provider

or another layered provider. For example, if the underlying provider is the MSAFD TCP/IP provider, the

WSAPROTOCOL_INFOW structure passed is the MSAFD TCP/IP provider and not the LSP's layered

protocol entry. Each lower provider will initialize the WSPPROC_TABLE passed into it with a list of its

function pointers. The LSP must save off this function table. When an application makes a Winsock

call into your LSP, your LSP must eventually call the lower provider's corresponding Winsock function

(unless the LSP's purpose is to prevent or prohibit that action).

In the sample LSP provided on the companion CD, the following structure is allocated for each layered

chain entry that comprises our LSP:

typedef struct _PROVIDER {

 WSAPROTOCOL_INFOW NextProvider,

 LayeredProvider;

 WSPPROC_TABLE NextProcTable;

 EXT_WSPPROC_TABLE NextProcTableExt;

 WCHAR ProviderPathW[MAX_PATH],

 LibraryPathW[MAX_PATH];

 char ProviderPathA[MAX_PATH],

 LibraryPathA[MAX_PATH];

 int ProviderPathLen;

 HINSTANCE hProvider;

 LPWSPSTARTUP lpWSPStartup;

 SOCK_INFO *SocketList;

} PROVIDER;

This structure keeps track of a layered chain entries' protocol structure (LayeredProvider) as well as

the underlying provider's protocol structure (Next-Provider). The underlying provider's procedure table

is stored in NextProcTable and NextProcTableExt is our own structure of Microsoft-specific Winsock

functions that the lower provider exposes. We'll discuss these entries in detail later. In addition, both

the UNICODE and ANSI versions of the provider's path are saved (ProviderPath). The LibraryPath

fields contain the same data as the ProviderPath field except that all system variables are expanded

via the ExpandEnvironmentStrings API. hProvider saves off the handle returned from LoadLibrary and

lpWSPStartup contains the address for that DLL's WSPStartup function. Lastly, SocketList is a linked

list of all sockets this provider created. This field will become important later.

Before going any farther, let's summarize the steps involved in initializing an LSP:

Verify the correct Winsock version requested.1.

Increment the reference count.2.

Save the WSPUPCALLTABLE passed in.3.

Find the Winsock providers layered underneath this LSP's providers. (Note that this may be a

subset if this LSP's layered protocol entries were installed under separate GUIDs.)

4.

Allocate a PROVIDER structure for each layered entry.5.

Load each underlying provider's DLL and invoke its WSPStartup.6.

Save the WSPPROC_TABLE returned from each underlying provider.7.

If any one of these steps fails, the LSP's WSPStartup should return an error. There are several

relevant Winsock error codes usually associated with startup, which are

WSAEINVALIDPROCTABLE Indicates the lower layer returned an invalid proc table (for example,

one or more entries are NULL).

WSAEPROVIDERFAILEDINIT Indicates the LSP encountered an error that prevents it from

initializing properly.

Of course, if there is a more specific Winsock error code for the type of error encountered, that should

be used. For example, if during startup the LSP dynamically allocates memory but that call fails,

WSAENOBUFS should be returned.

Creating Sockets

The next important task of layered service providers is creating socket handles. The sequence of

events covered so far is the application creates a socket whose parameters match an entry of our

LSP. Next, the system loads our LSP by calling its WSPStartup, and obtains the LSP's function

dispatch table, and calls our LSP's WSPSocket function to create a socket to return to the application.

Because we are dealing with layered providers and not transport providers, the LSP has no way of

creating true operating system handles. As a result, the “real” socket handle is obtained by calling the

underlying provider's WSPSocket function. Remember that we obtained the lower provider's

WSPPROC_TABLE when it was loaded by our LSP's WSPStartup.

Within your LSP's WSPSocket function, it must validate the address family, socket type, and protocol

parameters, and find which underlying provider should be used—assuming your LSP is installed over

multiple entries. Keep in mind that for some transport protocols it is valid for the protocol parameter to

the socket creation API call to be zero. For example, if our LSP is layered over MSAFD TCP/IP and

MSAFD UDP/IP and the application makes the following socket call: s = socket(AF_INET,

SOCK_STREAM, 0); our LSP's WSPSocket function will be called with those same parameters. The

LSP must then determine that this matches the LSP's entry layered over MSAFD TCP/IP. Then we

must find the function table returned from our startup call to the DLL implementing MSAFD TCP/IP, at

which point its WSPSocket can be called. In addition, the calling application may pass in the

WSAPROTOCOL_INFO structure, which will belong to the LSP. Before creating a socket from the

lower provider, its WSAPROTOCOL_INFO structure should be substituted.

Once a socket is created from the underlying provider, there are two options. The first is to simply

return that socket handle. The problem with this is there will be no way to modify or monitor data sent

or received on that socket. In the next section, we will go into detail on why this is the case. The

second option is to return a “dummy” handle. The LSP then associates this dummy handle with the

handle that the lower provider returned. Now whenever the application calls a Winsock API with our

dummy handle, it is routed into our LSP, at which point the LSP finds the lower provider's handle

associated with the dummy handle and calls the same Winsock API of the lower provider with the

lower provider handle.

These dummy handles are created by calling WPUCreateSocketHandle. Note that the LSP cannot call

this API directly. Instead, the function pointer to this API is provided in the WSPUPCALLTABLE

passed into the LSP's WSPStartup routine. The prototype is

SOCKET WPUCreateSocketHandle(

 DWORD dwCatalogEntryId,

 DWORD_PTR dwContext,

 LPINT lpErrno

);

The first parameter is the catalog ID of the LSP's layered protocol chain. The second parameter is any

data blob that you wish to associate with the SOCKET handle returned. The last parameter indicates

the error code in case this API call fails.

Typically, the LSP creates a socket from the lower provider and then allocates a data structure that

contains context information for this socket. In the sample LSP the following context structure is used:

typedef struct _SOCK_INFO

{

 SOCKET ProviderSocket; // Lower provider socket handle

 SOCKET LayeredSocket; // App's socket handle

 DWORD dwOutstandingAsync; // Count of outstanding async operations

 BOOL bClosing; // Has the app closed the socket?

 volatile LONG RefCount; // Reference count

 DWORD BytesSent; // Byte counts

 DWORD BytesRecv;

 HANDLE hIocp; // Associated with an IOCP?

 HWND hWnd; // Window (if any) associated with socket

 UINT uMsg; // Message for socket events

 CRITICAL_SECTION SockCritSec; // Protect access to this object

 struct _PROVIDER *Provider;// Which provider this belongs to?

 struct _SOCK_INFO *prev, // Used to link these structures together

 *next;

} SOCK_INFO;

This is a lot of information but it is necessary for a robust LSP. The first field is the socket handle that

the underlying provider returned. The second field is the handle returned from

WPUCreateSocketHandle. When we call WPUCreateSocketHandle we pass the address of a

SOCK_INFO structure as the context information. The majority of the remaining fields deal with

handling socket I/O, which is discussed in the next section.

We can now construct the basic outline of the LSP's WSPSocket API. It would look like the following

example:

SOCKET WSPAPI WSPSocket(

 int af,

 int type,

 int protocol,

 LPWSAPROTOCOL_INFOW lpProtocolInfo,

 GROUP g,

 DWORD dwFlags,

 LPINT lpErrno)

{

 PROVIDER *Provider=NULL;

 SOCK_INFO *Context;

 SOCKET ProviderSocket,

 LayeredSocket;

 // Validate the arguments first

 // Find the PROVIDER structure for the layered protocol entry

 // that matches the given arguments - set as Provider

 // Substitute lpProtocolInfo with the lower provider's if it

 // is supplied.

 ProviderSocket = Provider->NextProcTable.lpWSPSocket(

 af,

 type,

 protocol,

 lpProtocolInfo,

 g,

 dwFlags,

 pErrno

);

 if (ProviderSocket != INVALID_SOCKET) {

 Context = AllocateContext(); // Allocate a SOCK_INFO struct

 LayeredSocket = MainUpCallTable.lpWPUCreateSocketHandle(

 Provider->LayeredProvider.ProtocolChain.ChainEntries[0],

 (DWORD_PTR) Context,

 lpErrno

);

 if (LayeredSocket == INVALID_SOCKET) {

 // Handle failure

 }

 Context->LayeredSocket = LayeredSocket;

 Context->ProviderSocket = ProviderSocket;

 }

 return LayeredSocket;

}

There are a couple of significant fields in the SOCK_INFO structure that should be discussed. The

bClosing field indicates whether the application has called WSPCloseSocket on the dummy socket

handle. If there are any outstanding I/O operations, then the LSP must not free the socket's context

information until all the I/O has completed (most likely with errors). Also, a reference count is

maintained (via RefCount) so that if the calling application is multi-threaded and one thread is using

the socket and another thread closes the socket, the LSP will not free the SOCK_INFO structure

underneath the first thread (and cause an access violation).

The LSP must implement each of the SPI functions listed in Table 12-2. For those functions that do not

create socket handles (for example, everything but WSPSocket, WSPAccept, and WSPJoinLeaf) but

take a socket handle as a parameter, it is necessary to translate the application's socket handle into

the underlying handle. Remember that a SOCK_INFO structure was associated with each dummy

socket handle. This context information can be retrieved by calling WPUQuerySocketHandleContext.

Again, this function is found in the WSPUPCALLTABLE structure. This API is defined as

int WSPAPI WPUQuerySocketHandleContext(

 SOCKET s,

 LPDWORD_PTR lpContext,

 LPINT lpErrno

);

For example, let's take a look at how an LSP might implement the WSPGetSockOpt function.

int WSPAPI WSPGetSockOpt(

 SOCKET s,

 int level,

 int optname,

 char FAR *optval,

 LPINT optlen,

 LPINT lpErrno

)

{

 SOCK_INFO *lpContext=NULL;

 int rc=NO_ERROR;

 rc = MainUpCallTable.lpWPUQuerySocketHandleContext(

 s,

 (LPDWORD_PTR)&lpContext,

 &err

);

 if (rc == SOCKET_ERROR) {

 *lpErrno = WSAENOTSOCK;

 }

 else

 {

 rc = lpContext->Provider->NextProcTable.lpWSPGetSockOpt(

 lpContext->ProviderSocket,

 level,

 optname,

 optval,

 optlen,

 &lpErrno

);

 }

 return rc;

}

In this example, we first query for the context information. If it cannot be found, we return the error

WSAENOTSOCK. Otherwise, we simply call the underlying provider's WSPGetSockOpt function with

the correct socket handle. Note that in a real implementation when the socket context is looked up, the

reference count would be incremented and before returning from the SPI function the reference count

would be decremented. In the sample LSP, two helper routines are defined to do this. They are

FindAndLockSocketContext and UnlockSocketContext, which are listed below.

SOCK_INFO *FindAndLockSocketContext(SOCKET s, int *lpErrno)

{

 SOCK_INFO *SocketContext=NULL;

 int ret;

 EnterCriticalSection(&gCriticalSection);

 ret = MainUpCallTable.lpWPUQuerySocketHandleContext(

 s,

 (PDWORD_PTR) &SocketContext,

 lpErrno

);

 if (ret == SOCKET_ERROR)

 {

 SocketContext = NULL;

 }

 else

 {

 InterlockedIncrement(&SocketContext->RefCount);

 }

 LeaveCriticalSection(&gCriticalSection);

 return SocketContext;

}

void UnlockSocketContext(SOCK_INFO *context)

{

 EnterCriticalSection(&gCriticalSection);

 InterlockedDecrement(&context->RefCount);

 LeaveCriticalSection(&gCriticalSection);

}

In this code sample, gCriticalSection is a global CRITICAL_SECTION object for the entire DLL. By

calling FindAndLockSocketContext before using any socket within an SPI function (for any WSP

function or any support function that needs to query for the socket context), we ensure that

multi-threaded applications that close sockets in the middle of other operations will not cause an

access violation. Of course, it is important to ensure that a corresponding call to UnlockSocketContext

occurs before returning from the SPI function.

The last consideration for socket creation comes when the application closes a socket handle. First,

query for the socket context of the supplied handle. Note that this action will cause the socket's

reference count to be incremented by one (meaning that if the reference count is greater than one,

another thread is accessing the structure). The next step is to close the underlying provider's socket

handle, which is contained in the ProviderSocket field of the SOCK_INFO structure. This is necessary

so that any outstanding I/O operations will complete with the proper error (discussed in the next

section).

However, if the socket context does indicate that there is outstanding asynchronous I/O (indicated via

the dwOutstandingAsync field of the context information) or if the reference count is greater than zero,

then we cannot close the dummy socket handle yet. Instead, we mark the socket context structure as

closing (by setting bClosing to TRUE). If we didn't, then if the application created another socket, the

handle value could be re-used, which can cause subtle and hard-to-find problems. For example,

consider the case in which two threads are accessing a socket whose handle value is 0x300. If one

thread closes the socket and the second thread is about to access it, the socket is closed and the

context information removed. Then a third thread creates a new socket and is assigned the handle

value 0x300. The thread that was about to access the socket now looks up the context and is returned

this new socket's context. At this point, the new socket may be in the wrong state (for example, not

connected when it should) or could even be a socket of the wrong protocol. Whatever API uses this

socket will most likely fail with a very unexpected error code such as WSAENOTCONN or

WSAEOPNOTSUPP.

Only when the reference count indicates no other thread is accessing the socket context information

and the outstanding operation count is zero can the dummy socket be closed and the context

information be freed. After asynchronous I/O has completed and when the reference count is

decremented, the bClosing field of the socket context should be checked. If it is TRUE, it indicates that

the application has closed the socket and the dummy handle needs to be closed when it is safe to do

so.

Once it is determined safe to close the socket, this is done with the WPUCloseSocketHandle API,

which is another function contained in the WSPUPCALLTABLE structure. This function is defined as

int WSPAPI WPUCloseSocketHandle(

 IN SOCKET s,

 OUT LPINT lpErrno

);

Finally, remember that the functions WSPAccept and WSPJoinLeaf also return socket handles and the

same steps just described for WSPSocket apply. Once a new socket handle is returned from the lower

provider, an application socket is created with WPUCreateSocketHandle, context information is

associated with it, and this application socket is returned to the caller. However, in some instances the

WSPJoinLeaf SPI function does not create a new socket (more on this later).

Handling I/O

The last major task to creating an LSP is handling the various types of I/O an application might initiate

on a socket. Remember from Chapter 5 that there are a number of I/O models an application may use:

blocking sockets, select, WSAAsyncSelect, WSAEventSelect, overlapped I/O, and completion ports.

As we mentioned previously, if an LSP wishes to modify or monitor data send or received, it must

create its own socket handles with WPUCreateSocketHandle and must handle all possible types of I/O

that may occur on the socket. In this section we'll look at each of the I/O models and discuss what

steps must be made for each to work.

Before getting into each of the I/O models, it is worthwhile to mention some common rules that apply

to all types of I/O. First, if an LSP needs to modify the send buffers, it should not modify the data within

the application's buffer—it should make its own copy. Also, LSPs should not behave contrary to the

type of I/O initiated. If an application has put a socket into non-blocking mode, the LSP should not

block when handling operations that would normally fail with WSAEWOULDBLOCK.

Blocking and Non-blocking

For the most basic I/O blocking and non-blocking sockets there really isn't much to do. For those SPI

functions that send and receive data, all the LSP needs to do is translate the socket handle to the

provider's socket handle and call the lower provider's function. For example, the WSPSend function for

an LSP would look like the following code:

int WSPAPI WSPSend(

 SOCKET s,

 LPWSABUF lpBuffers,

 DWORD dwBufferCount,

 LPDWORD lpNumberOfBytesSent,

 DWORD dwFlags,

 LPWSAOVERLAPPED lpOverlapped,

 LPWSAOVERLAPPED_COMPLETION_ROUTINE lpCompletionRoutine,

 LPWSATHREADID lpThreadId,

 LPINT lpErrno

)

{

 SOCK_INFO *SocketContext=NULL;

 int ret;

 // Get the context info

 SocketContext = FindAndLockSocketContext(s, lpErrno);

 if (lpOverlapped == NULL) // Make sure this is not overlapped

{

 SetBlockingProvider(SocketContext->Provider);

 ret = SocketContext->Provider->NextProcTable.lpWSPSend(

 SocketContext->ProviderSocket,

 lpBuffers,

 dwBufferCount,

 lpNumberOfBytesSent,

 dwFlags,

 NULL,

 NULL,

 lpThreadId,

 lpErrno

);

 SetBlockingProvider(NULL);

 }

 UnlockSocketContext(SocketContext);

 return ret;

}

This is a very straightforward process: find the socket context and call the lower provider. For

compatibility with 16-bit Winsock, we do have to keep track of which provider is blocking in case the

application calls WSACancelBlockingCall, which is what the SetBlockingProvider function does. It

saves off the address of our PROVIDER structure, which is currently issuing a blocking call for that

thread. If the application calls WSACancelBlockingCall, all we have to do is call the blocking lower

layer's WSPCancelBlockingCall. The SetBlockingProvider routine uses thread local storage to save

the pointer to the current PROVIDER issuing a blocking call.

Select and WSPSelect

When an application uses the select API to wait for events on a set of sockets, things get a bit

complicated. The select API will map to the SPI function WSPSelect and requires some work before

passing the call down to the lower provider. There are three FD_SET structures passed in that

reference the layered sockets and not the underlying provider's sockets. Because of this, the socket

context for each socket contained in the FD_SETs must be obtained and a new FD_SET built that

contains the lower provider's sockets.

The following code shows how to translate the fdread FD_SET passed into WSPSelect.

int WSPAPI WSPSelect(

 int nfds,

 fd_set FAR * readfds,

 fd_set FAR * writefds,

 fd_set FAR * exceptfds,

 const struct timeval FAR * timeout,

 LPINT lpErrno)

{

FD_SET ReadFds, WriteFds, ExceptFds,

int ret, HandleCount, count;

// Simple structure to quickly map LSP sockets to provider sockets

struct {

 SOCKET LayeredSocket;

 SOCKET ProviderSocket;

} Read[FD_SETSIZE], Write[FD_SETSIZE], Except[FD_SETSIZE];

// Translate LSP handles into provider handles

if (readfds) {

 FD_ZERO(&ReadFds);

 for(i=0; i < readfds->fd_count ;i++) {

 SocketContext = FindAndLockSocketContext(

 (Read[i].LayeredSocket = readfds->fd_array[i]),

 lpErrno

);

 Read[i].ProviderSocket = SocketContext->ProviderSocket;

 FD_SET(Read[i].ProviderSocket, &ReadFds);

 UnlockSocketContext(SocketContext);

 }

 }

 // Do the same for writefds

 // Do the same for exceptfds

 SetBlockingProvider(SocketContext->Provider);

 ret = SocketContext->Provider->NextProcTable.lpWSPSelect(

 nfds,

 (readfds ? &ReadFds : NULL),

 (writefds ? &WriteFds : NULL),

 (exceptfds ? &ExceptFds : NULL),

 timeout,

 lpErrno

);

 SetBlockingProvider(NULL);

 HandleCount = ret;

 // Map the signaled provider handles back to the LSP handles

if (readfds) {

 count = readfds->fd_count;

 FD_ZERO(&readfds);

 for(i=0; (i < count) && HandleCount ;i++) {

 5 if (MainUpCallTable.lpWPUFDIsSet(

 Read[i].ProviderSocket,

 &ReadFds)) {

 FD_SET(Read[i].LayeredSocket, readfds);

 HandleCount--;

 }

 }

 }

 // Do the same for writefds

 // Do the same for exceptfds

}

For this to work, a mapping is maintained between the layered sockets passed into select and its

corresponding provider socket. This is necessary because after the lower provider's WSPSelect is

called, the LSP has to return only those layered provider sockets that were signaled.

The first step is to go through each handle in the FD_SET and find its context information. The

mapping of the provider socket to the layered socket is maintained in the Read array. We then have a

second FD_SET, ReadFds, which contains the underlying provider's socket handles, which we then

pass into the lower provider's WSPSelect function. Upon return, we know how many handles were

signaled with the return value. Then it is a process of seeing which provider handles passed were

signaled. This is done by calling the helper function WPUFDIsSet function for each provider socket

passed in. If it is set, we take the associated layered socket and set it into the readfds FD_SET passed

into the function so that upon return from the LSP's WSPSelect the application has the correct handles

signaled. This same process has to be performed for writefds and exceptfds. Of course, the sample

does not perform error handling, nor does it handle the case when a timeout value is supplied. See the

sample LSP for the full implementation.

The WPUFDIsSet function is another helper function passed to the LSP in the WSPUPCALLTABLE

structure. The function is defined as

int WSPAPI WPUFDIsSet(

 IN SOCKET s,

 IN fd_set FAR *fdset

);

This function behaves exactly as the FD_ISSET macro seen in Chapter 5.

There is one major issue frequently encountered when implementing an LSP's WSPSelect: what to do

if one of the event handles passed in an FD_SET is unknown. If the LSP queries for the socket context

of a given handle and it fails, should the LSP indicate an error (such as WSAENOTSOCK) or simply

pass that event handle to the lower provider unmodified? The unique problem with the WSPSelect API

is that it is the only Winsock function that can take multiple socket handles in a single call. For all other

Winsock functions, the system knows exactly which provider should handle that API call because there

is just one socket handle passed as a parameter.

Even though the Winsock specification explicitly states that only sockets from the same provider may

be passed into select, many applications ignore this (including Microsoft Internet Explorer) and

frequently pass down both TCP and UDP handles together. The base Microsoft providers do not verify

that all socket handles are from the same provider. In addition, the Microsoft providers will correctly

handle sockets from multiple providers in a single select call. This is a problem with LSPs because an

LSP may be layered over just a single entry such as TCP. In this case, the LSP's WSPSelect is

invoked with FD_SETs that contain their own sockets plus sockets from other providers (such as a

UDP socket from the Microsoft provider). When the LSP is translating the socket handles and comes

upon the UDP handle, the context query will fail. At this point, it may return an error (WSAENOTSOCK)

or pass the socket down unmodified. If an error is returned, then for the case of an LSP layered only

over UDP/IPv4 (or TCP/IPv4), Internet Explorer will no longer function. A workaround is to always

install the LSP over all providers for a given address family (such as for IPv4, install over TCP/IPv4,

UDP/IPv4, and RAW/IPv4). No Microsoft application or service currently passes socket handles from

multiple address families into a single select call, although LSASS on Windows NT 4.0 used to pass

IPX and IPv4 sockets together (this has been fixed in the latest service packs for Windows NT 4.0).

WSAAsyncSelect

Handling sockets that register for event notification via WSAAsyncSelect also require some additional

help. As you recall from Chapter 5, an application registers for notification on certain events that will be

posted to the given window. The problem here is that the WPARAM parameter posted to the

application's window contains the socket handle. This is bad because the LSP will translate the handle

passed into its WSPAsyncSelect and call the lower provider's function with the translated socket and

the remaining parameters. As a result, when an event is posted, it is posted directly to the application's

window handler and the WPARAM parameter contains the lower provider's socket and not the

LSP-created socket.

To handle this case correctly, the LSP must create its own hidden window on which to receive events

from the lower provider. Then within the LSP's window handler, the socket can be translated back to

the application socket and posted to the application's window handler. The LSP's WSPAsyncSelect

must save the window handle and message that is associated with the application socket. This

information is saved in the socket context (for example, the SOCK_INFO structure of the sample LSP).

The following code shows how this is handled:

int WSPAPI WSPAsyncSelect (

 SOCKET s,

 HWND hWnd,

 unsigned int wMsg,

 long lEvent,

 LPINT lpErrno)

{

 SOCK_INFO *SocketContext;

 int ret;

 SocketContext = FindAndLockSocketContext(s, lpErrno);

 if (SocketContext != NULL)

 {

 SocketContext->hWnd = hWnd;

 SocketContext->uMsg = wMsg;

 // Get the handle to our hidden window

 if ((hWorkerWindow = GetWorkerWindow()) != NULL)

 {

 SetBlockingProvider(SocketContext->Provider);

 ret = SocketContext->Provider->NextProcTable.lpWSPAsyncSelect(

 SocketContext->ProviderSocket,

 hWorkerWindow,

 WM_SOCKET,

 lEvent,

 lpErrno);

 SetBlockingProvider(NULL);

 }

 }

 UnlockSocketContext(SocketContext);

 return ret;

}

In this code, the socket context is found and the window handle and message is saved. Then the

hidden asynchronous window that the LSP created is returned via the GetWorkerWindow call. This

routine simply creates the window and thread to handle the events (see ASYNCSELECT.CPP for the

full implementation). Then the lower provider is called with the lower provider socket, except that we

supply the window handle of our LSP helper window instead.

The code for our hidden window handler is simple:

static LRESULT CALLBACK AsyncWndProc(

 HWND hWnd,

 UINT uMsg,

 WPARAM wParam,

 LPARAM lParam)

{

 SOCK_INFO *si;

 if (uMsg == WM_SOCKET)

 {

 if (si = GetCallerSocket(NULL, wParam))

 {

 MainUpCallTable.lpWPUPostMessage(

 si->hWnd,

 si->uMsg,

 si->LayeredSocket,

 lParam);

 return 0;

 }

 }

 return DefWindowProc(hWnd, uMsg, wParam, lParam);

}

Here we look for only the socket notifications. The only challenge is to map the provider socket

(indicated as wParam) back to the LSP-created socket, which is what the GetCallerSocket function

does (defined in SOCKINFO.CPP). As you recall, the PROVIDER structure contains a linked list of all

the SOCK_INFO each provider created. The GetCallerSocket searches all the linked lists in search of

the SOCK_INFO that contains the given lower provider socket handle. This is necessary because

there is no other convenient way of mapping provider sockets back to LSP sockets.

Once that is found, the helper function WPUPostMessage is called to post the event to the

application's window with the correct socket handle. Remember, the window handle and message

were saved earlier when the application called WSAAsyncSelect on the handle. This function is

located in the WSPUPCALLTABLE and is defined as

BOOL WSPAPI WPUPostMessage(

 IN HWND hWnd,

 IN UINT Msg,

 IN WPARAM wParam,

 IN LPARAM lParam

);

WSAEventSelect

This socket model requires no work on the LSP's part. When the select events are signaled, a simple

event handle is used—no socket handles are returned, so no extra socket translation is needed. For

example, the application calls WSAEventSelect with a socket, event, and event mask. Within the LSP's

WSPEventSelect, the handle is translated and passed to the lower provider with the same event and

event mask. When a requested event occurs on the socket, the lower provider sets the application's

event to be signaled, after which the application calls a send or receive function as described

previously in the section “Blocking and Non-blocking.”

Unless the LSP is required to intercept these event notifications (as determined by the LSP's actual

purpose), there is no need to substitute our own event handle to wait for notification from the lower

layer. If you did, once your substituted event was signaled, the LSP would perform the necessary

computation and then signal the application's event (which must be saved in the socket context) with

WSASetEvent.

Overlapped I/O

Handling overlapped I/O is another complicated issue that depends on what platforms the LSP is to be

installed on. The easiest and most elegant method is to handle all application-initiated overlapped I/O

by using a I/O completion port regardless of whether the application is using events, callbacks, or

completion ports. However, if the LSP is to be run on Windows 95, Windows 98, or Windows Me, this

is impossible. The sample LSP provider handles both cases.

In the case of Windows NT and I/O completion ports, the LSP creates a completion port and a worker

thread that services the completion notifications by calling GetQueuedCompletionStatus. When an

application makes an overlapped I/O call, the LSP first checks to see if the lower provider handle has

been associated with the LSP's completion port yet. This information is contained in the socket context

information as the hIocp field. If the lower provider socket has been associated, this field is non-NULL;

otherwise, it contains the handle of the LSP's completion port.

Once the provider socket is associated with the LSP's completion port, the I/O is posted on the lower

provider's socket handle. Once it has completed, the LSP worker thread will receive the notification

and the LSP can complete the application's request. After the LSP receives completion notification, the

application's overlapped I/O is completed so that the application will receive notification either via

event, asynchronous procedure call, or its own completion port.

Each Winsock SPI function that can be made in an overlapped fashion (including Microsoft extension

functions) requires special handling. First, the LSP must keep track of the WSAOVERLAPPED

structure the application passed into the function. It maintains useful information such as indicating I/O

in progress, error codes, and bytes transferred. To perform this function, the LSP defines its own

WSAOVERLAPPED structure to maintain information about each overlapped I/O operation posted to

the lower provider's socket. This structure is defined as

typedef struct _WSAOVERLAPPEDPLUS

{

 WSAOVERLAPPED ProviderOverlapped; // passed to lower provider

 PROVIDER *Provider; // lower provider info

 SOCK_INFO *SockInfo; // socket info for this op

 SOCKET CallerSocket; // app (LSP) socket

 SOCKET ProviderSocket; // lower provider socket

 HANDLE Iocp; // LSP completion port

 int Error; // error code?

 union // Arguments to operation

 {

 ACCEPTEXARGS AcceptExArgs;

 TRANSMITFILEARGS TransmitFileArgs;

 CONNECTEXARGS ConnectExArgs;

 TRANSMITPACKETSARGS TransmitPacketsArgs;

 DISCONNECTEXARGS DisconnectExArgs;

 WSARECVMSGARGS WSARecvMsgArgs;

 RECVARGS RecvArgs;

 RECVFROMARGS RecvFromArgs;

 SENDARGS SendArgs;

 SENDTOARGS SendToArgs;

 IOCTLARGS IoctlArgs;

 };

#define LSP_OP_IOCTL 1 // WSPIoctl

#define LSP_OP_RECV 2 // WSPRecv

#define LSP_OP_RECVFROM 3 // WSPRecvFrom

#define LSP_OP_SEND 4 // WSPSend

#define LSP_OP_SENDTO 5 // WSPSendTo

#define LSP_OP_TRANSMITFILE 6 // TransmitFile

#define LSP_OP_ACCEPTEX 7 // AcceptEx

#define LSP_OP_CONNECTEX 8 // ConnectEx

#define LSP_OP_DISCONNECTEX 9 // DisconnectEx

#define LSP_OP_TRANSMITPACKETS 10 // TransmitPackets

#define LSP_OP_WSARECVMSG 11 // WSARecvMsg

 int Operation; // Type of operation this is

 LPWSATHREADID lpCallerThreadId; // Caller thread

 LPWSAOVERLAPPED lpCallerOverlapped; // App's WSAOVERLAPPED struct

 LPWSAOVERLAPPED_COMPLETION_ROUTINE lpCallerCompletionRoutine;

 _WSAOVERLAPPEDPLUS *next;

} WSAOVERLAPPEDPLUS, * LPWSAOVERLAPPEDPLUS;

As you can see, there is a lot of information maintained for each overlapped operation that the

application initiates. We won't go into detail about all of these fields because many of them are self

explanatory. Instead, let's walk through what needs to occur when handling an overlapped call. The

steps are:

Allocate an LSP-overlapped context structure (for example, the WSA-OVERLAPPEDPLUS

object shown in the last listing).

1.

Save the caller's WSAOVERLAPPED pointer in the lpCallerOverlapped structure.2.

If a completion routine is supplied, save it as lpCallerCompletionRoutine.3.

Mark the caller's WSAOVERLAPPED structure as pending by setting the Internal field to

WSS_OPERATION_IN_PROGRESS (defined in WS2SPI.H).

4.

Make sure the lower provider's socket is associated with the LSP's completion port.5.

Call the same SPI function in the lower provider with the lower provider's socket and the

ProviderOverlapped field of the WSAOVERLAPPEDPLUS structure for this operation.

6.

Return SOCKET_ERROR and set the error code to WSA_IO_PENDING.7.

This lists the minimum steps required. The sample LSP does a few extra steps. First, it saves the

caller's parameters, such as buffer pointers and flags. These are saved in the unnamed union within

the WSAOVERLAPPEDPLUS structure. The union contains a structure for each overlapped enabled

Winsock function—each containing fields corresponding to their respective Winsock functions'

parameter lists. The sample LSP doesn't use the saved parameters but it may be necessary to do so

for an LSP that performs a specific task. One important item to note is that some of the pointer

parameters supplied can be stack-based and therefore the LSP cannot just capture the pointer

values. For example, WSASend, WSASendTo, WSARecv, and WSARecvFrom take an array of

WSABUF structures that contain the send or receive buffers. This array can be stack-based, which

means as soon as the application calls the Winsock function it may return from the calling function or

free that memory (if dynamically allocated). The LSP must copy the buffer pointers into its own

allocated WSABUF structures.

Once the overlapped I/O has been posted to the lower provider, it's simply a matter of waiting for the

LSP's completion thread to receive notification for that operation. When the completion thread receives

notification, the pointer to the WSAOVERLAPPED structure for the operation returned from

GetQueuedCompletionStatus is actually our WSAOVERLAPPEDPLUS structure. The following three

steps need to be performed to finish this operation.

Call the lower provider's WSPGetOverlappedResult to get bytes transferred, flags, and the

appropriate error code in case of a failure.

1.

Update the caller's WSAOVERLAPPED structure with Offset equal to the error (if any),

OffsetHigh to the flags returned (if any), and InternalHigh to the bytes transferred.

2.

Complete the application's overlapped request using either WPUQueueApc or

WPUCompleteOverlappedRequest depending on whether a completion function was supplied.

3.

The last step is what notifies the application that its I/O operation has completed. If a completion

routine was supplied, the LSP needs to execute that function. This is performed by the

WPUQueueApc function, which is a field of the WSPUCALLTABLE structure and is defined as

int WSPAPI WPUQueueApc(

 IN LPWSATHREADID lpThreadId,

 IN LPWSAUSERAPC lpfnUserApc,

 IN DWORD_PTR dwContext,

 OUT LPINT lpErrno

);

The first parameter is the thread ID of the application's thread that initiated this I/O because the

completion routine must fire within the context of that thread. If you recall, this is one of the parameters

saved in the WSAOVERLAPPEDPLUS structure when the application initiated the I/O. The second

parameter is the application's completion function to call. The dwContext is the caller's original

WSAOVERLAPPED structure, and lpErrno returns an error if WPUQueueApc fails.

If the application did not specify a completion routine and supplied only a WSAOVERLAPPED

structure, the LSP completes the I/O with WPUComplete-OverlappedRequest. It's curious to note that

this function is not a member of the WSPUPCALLTABLE. Instead it is contained in WS2_32.DLL and

is called normally. This function is defined as

int WSPAPI WPUCompleteOverlappedRequest (

 SOCKET s,

 LPWSAOVERLAPPED lpOverlapped,

 DWORD dwError,

 DWORD cbTransferred,

 LPINT lpErrno

);

The parameter list is easy. The SOCKET parameter is the application's socket and lpOverlapped is its

WSAOVERLAPPED structure. dwError is the error if the call failed (otherwise, it should be

NO_ERROR). cbTransferred is the number of bytes transferred in the operation. The lpErrno

parameter returns the error code if the WPUCompleteOverlappedRequest call fails.

You will notice that an overlapped operation that the LSP handles automatically fails with

WSA_IO_PENDING even though it is possible that when the LSP makes the call to the lower provider,

that overlapped operation could succeed immediately. The LSP does not do this because regardless

of whether the operation succeeds immediately, notification will always be posted to the completion

queue. The code is a bit cleaner by always processing completion notifications in the worker thread in

addition to being perfectly legal according to the Winsock specification. Care must be taken to ensure

that the calling application receives only one notification per I/O operation. The sample LSP provided

always returns pending and waits for the completion thread to receive the notification before

completing the request.

Handling overlapped I/O on Windows 95, Windows 98, and Windows Me is a bit more challenging.

There are two possible approaches. First, the LSP can issue the overlapped I/O to the lower layer and

use events for completion notification. The drawback to this, as we saw in Chapter 5, is a single thread

can only wait on MAXIMUM_WAIT_OBJECTS event handles (which is currently 64). The other method

is to use completion functions, which is easier to implement.

When the calling application issues an overlapped request, the LSP builds a

WSAOVERLAPPEDPLUS structure as we described earlier and then this object is placed in a queue.

For this model, we still use a worker thread whose purpose is to wait for overlapped requests to be

placed in the queue. Once the worker thread is notified of available work items, it removes an item

from the queue and actually makes the requested overlapped operation (by calling the lower provider).

It is important that these overlapped operations are executed in the context of the LSP thread and not

an application thread. The calling thread must be in an alertable wait state for the completion functions

to execute. Because the calling application should not have to be aware if the Winsock provider is

layered, it most likely will not go into an alertable wait unless the application is using completion

functions (which it may). As a result, the LSP's worker thread executes the overlapped requested and

when not servicing work items, it remains in an alertable wait state.

Note that when the LSP issues the overlapped I/O with a completion function, the completion function

supplied is the LSP's, not the application's. Once the LSP's completion function fires, the LSP will post

the completion to the application via whatever notification mechanism the application supplied (such

as signaling the event or firing the completion function).

Winsock Extension Functions

For LSPs that create their own sockets, they must also handle the Winsock-specific extension

functions that take socket handles as parameters. This includes AcceptEx, TransmitFile, ConnectEx,

DisconnectEx, TransmitPackets, and WSARecvMsg. This is done within the LSP's WSPIoctl function.

When an application loads a Microsoft-specific function, it will call WSAIoctl with the ioctl code

SIO_GET_EXTENSION_FUNCTION_POINTER. The LSP simply has to determine which function is

being loaded via the InBuffer parameter, which contains the GUID for the requested function. Once

that is done, the LSP returns the address of its own extension function. This extension function will

then translate all the socket handles and load the extension function of the lower layer, which will be

invoked by the LSP. This works even if the application uses the TransmitFile and AcceptEx functions

exported directly from MSWSOCK.DLL because those functions simply end up calling WSAIoctl with

SIO_GET_EXTENSION_FUNCTION_POINTER.

The sample LSP will then implement its own extension functions in EXTENSION.CPP. The

implementation of these functions is the same that it is for the other SPI functions. The LSP must

translate the handle, validate arguments as necessary, and handle the possibility of overlapped I/O.

The code for WSPIoctl is contained in SPI.CPP and you'll notice that the first step done is check to see

if the ioctl code is SIO_GET_EXTENSION_FUNCTION_POINTER.

Miscellaneous Requirements

This section is devoted to the miscellaneous tasks that an LSP must perform to behave properly. In

this section, we'll cover each service provider API in which an LSP must perform a special action.

WSPGetSockOpt

When the calling application calls the LSP's WSPGetSockOpt with SO_PROTOCOL_INFOA or

SO_PROTOCOL_INFOW, the LSP should return its own protocol info structure and not translate the

handle to pass to the lower provider. If that were the case, the call would return the lower provider's

WSAPROTOCOL_INFO structure instead of the LSP's. Note that both the ANSI and UNICODE

versions must be supported, so the LSP may have to perform the appropriate string conversions on

the returned structure.

WSPSetSockOpt

After an application calls AcceptEx, it typically calls setsockopt with

SO_UPDATE_ACCEPT_CONTEXT. The argument passed to WSPSetSockOpt is the socket handle

of the accepted socket. The LSP must translate that handle as well as the listening socket handle

before passing the call to the lower provider.

WSPIoctl

There are a couple of ioctl codes that an LSP must handle differently. We've already mentioned that if

an LSP is implementing its own extension functions (which it must if returning its own handles), it must

capture the SIO_GET_EXTENSION_FUNCTION_POINTER command. In addition, it must capture the

SIO_QUERY_TARGET_PNP_HANDLE. The handles WPUCreateSocketHandle created are not true

plug-and-play handles and cannot receive notifications. As a result, applications can use

SIO_QUERY_TARGET_PNP_ HANDLE to obtain the base provider's socket handle. The LSP should

return the lower provider's socket handle in the return buffer.

WSPJoinLeaf

The WSAJoinLeaf function is a bit odd. Depending on the protocol, the return value is either a new

socket handle (as in ATM) or the same handle passed in as the s parameter (as in IP multicasting).

See Chapter 9 for more information about WSAJoinLeaf and its behavior with the various multicast

enabled protocols. Currently, Ipv4 and Ipv6 are the only protocols that do not create new socket

handles when WSAJoinLeaf is called. If your LSP is to be layered over IP, it should take this into

account. Otherwise, if it did create new handles including the context information, these structures

would be leaked because the calling application will call closesocket on just one of the handles.

WSPAddressToString and WSPStringToAddress

These functions are unique because they do not take a socket parameter. Instead, the

WSAPROTOCOL_ INFOW structure of the LSP entry that matches the given address is passed in.

The LSP should find the provider layered beneath the supplied WSAPROTOCOL_INFOW structure

and call that provider's corresponding SPI function. The only rule is if the underlying provider is not a

base provider, the WSAPROTOCOL_INFOW structure should be passed unmodified. Otherwise, if the

underlying provider is a base provider, the LSP should substitute the base provider's

WSAPROTOCOL_INFOW structure.

Debugging an LSP

Developing an LSP is a complicated task in which one mistake will probably break all applications

accessing Winsock for the protocols the LSP is layered over. In the event of IP, critical services such

as LSASS will fail. If this does happen, booting into safe mode and uninstalling the LSP will return the

Winsock catalog back to normal. Also, it is a good idea to smoke test the LSP before rebooting the

system. Internet Explorer is always a good test application (when the LSP is layered over IP).

Otherwise, it may be necessary to write a small suite of test applications to verify the LSP's

functionality.

For tracking down minor problems with applications, printing debug messages to the debugger can be

invaluable. The sample LSP we've provided uses OutputDebugString in several places; it also has the

ability to turn on verbose debugging by defining DEBUG and DEBUGSPEW for the project. Using

message boxes for debug messages is a bad idea because during the boot process several system

services can load the DLL before the user interface subsystem is fully initialized, which will cause the

LSP DLL to fail during load.

For especially difficult problems, it is often necessary to use a debugger to determine the point of

failure. For interactive user applications, the Visual Studio debugger, as well as the NT Symbolic

Debugger (NTSD)—a text-mode debugger available with the Platform SDK—are both excellent

choices. In general tracing the steps of socket creation through the various APIs called on that socket

will track down the problem. For NTSD, this is accomplished by enabling “break on load” (for example,

the NTSD command is sxeld) for each DLL loaded until the LSP DLL is loaded. At this point,

breakpoints may be set for the LSP's functions of interest (such as WSPStartup, WSPSocket, and

WSPConnect).

If problems occur with system services such as LSASS during boot, debugging is much more

complicated. This requires a kernel mode debugger to be attached to the machine running the LSP.

Then it is possible to attach NTSD to the failing system service and pipe the NTSD console to the

kernel debugger running on the second machine. For information about using and setting up the

various types of debuggers, consult the Microsoft Developer Network (MSDN) online at

http://msdn.microsoft.com.

LSP Sample

Throughout this discussion we have referred to the sample LSP on the CD in the directory LSP. In this

section, we'll briefly describe each file of the project as well as how to install the LSP. The following is

a list of files and what they implement.

ASYNCSELECT.CPP Implements helper routines used for handling WSAAsyncSelect. This includes

creating the hidden window for receiving events from the lower provider as well as the window

procedure that services those notifications.

EXTENSION.CPP Implements all of the Microsoft-specific Winsock extensions available, such as

AcceptEx, TransmitFile, TransmitPackets, ConnectEx, DisconnectEx, and WSARecvMsg.

INSTLSP.CPP Implements the installation and removal code. This file is compiled into an .EXE that

will install and/or remove the LSP from the Winsock catalog.

OVERLAP.CPP Implements handling overlapped I/O for the LSP. For Windows NT, this includes

creating the completion port as well as the worker thread for handling completion notifications. For

Windows 95, Windows 98, and Windows Me, this includes establishing a work item queue and a

worker thread that services I/O placed within the queue.

PROVIDER.CPP Implements common routines for enumerating the Winsock catalog as well as

defining the GUID under which the LSP is installed. These routines are used by both the LSP DLL

and the installation utility (INSTLSP.CPP).

SOCKINFO.CPP Implements common routines for looking up associated socket context structures

for sockets that the LSP creates. This file also contains functions for allocating and freeing

SOCK_INFO structures in addition to inserting and deleting them from the PROVIDER structures

(which maintain a list of all sockets that provider created).

SPI.CPP This is the “guts” of the LSP. It defines all of the WSP* functions, including WSPStartup.

http://msdn.microsoft.com

Name Space Providers

In Chapter 8, we showed you how an application can register and resolve services within a name space,

which is an especially powerful feature for services that might be dynamically created on the network.

Unfortunately, the existing name spaces available are limited in their usefulness. The Winsock 2 specification,

however, provides a method for creating your own name spaces in which you can handle name registration

and resolution in whatever manner you prefer.

This is accomplished by creating a DLL that implements the nine name space functions. These functions all

begin with the NSP prefix and are companions to the RNR functions from Chapter 8. For example, the name

space function equivalent to WSASetService is NSPSetService. After the DLL is created, it is then installed

into the system catalog with a GUID that identifies the name space. Once this is done, applications can

register and query services in your name space.

With Windows XP, a new registration and name resolution function was added: WSANSPIoctl. This new

function allows for applications to initiate a lookup via the WSALookupService APIs and then use the returned

handle in a call to WSANSPIoctl to receive information about that request. Name space providers are not

required to implement their own NSPIoctl but can do so if they wish. Throughout our discussion, we will focus

on the nine NSP functions that must be implemented but will cover NSPIoctl later.

In this section, we'll first present how to install a name space provider, and then we'll describe the functions a

name space provider must implement. Finally, we'll present a sample name space provider as well as a

sample application that registers and resolves services.

Installing a Name Space Provider

A name space provider is simply a DLL that implements the name space provider functions. Before

applications can use a name space, you must make the system aware of it via the WSCInstallNameSpace

function. Conversely, once a provider is installed, you can either disable it or remove it altogether from the

system catalog using the functions WSAEnableNSProvider and WSAUnInstall-NameSpace, respectively. We

will describe each of these functions next.

WSCInstallNameSpace

This function is used to install a provider into the system catalog and is declared as

int WSCInstallNameSpace (

 LPWSTR lpszIdentifier,

 LPWSTR lpszPathName,

 DWORD dwNameSpace,

 DWORD dwVersion,

 LPGUID lpProviderId

);

The first thing that you will notice is that all string parameters are wide character strings. Actually, all name

space providers are implemented using wide character strings. We'll talk more about this later. The

lpszIdentifier parameter is the name of the name space provider. This is the name that is enumerated when

you call WSAEnumNameSpaceProviders, which we saw in Chapter 8. The lpszPathName parameter is the

location of the DLL. The string can include environment variables, such as %SystemRoot%. The

dwNameSpace parameter is a numeric identifier for the name space. For example, the header file NSPAPI.H

defines constants for other well-known name spaces, such as NS_SAP for IPX SAP. The dwVersion

parameter sets the version number for the name space. Finally, lpProviderId is a GUID that identifies the

name space provider.

Upon success, WSCInstallNameSpace returns 0; upon failure, the function returns SOCKET_ERROR. The

most common failures are WSAEINVAL, which indicates that a name space with that GUID already exists;

and WSAEACCESS, which indicates that the calling process does not have sufficient privilege. Only

Administrators group users can install a name space.

WSCEnableNSProvider

This function is used to modify the state of a name space provider. It can be used to enable or disable the

provider. The function is declared as

int WSCEnableNSProvider (

 LPGUID lpProviderId,

 BOOL fEnable

);

The lpProviderId parameter is the GUID identifier for the name space that you want to modify. The fEnable

parameter is a Boolean value indicating that you should either enable or disable the provider. A disabled

provider is unable to process queries or registrations.

Upon success, WSCEnableNSProvider returns 0; upon failure, the function returns SOCKET_ERROR. If the

provider GUID is invalid, WSAEINVAL is returned.

WSCUnInstallNameSpace

This function removes a name space provider from the catalog. The function is defined as

int WSCUnInstallNameSpace (LPGUID lpProviderId);

The lpProviderId parameter is the GUID for the name space to remove. If the GUID is invalid, the function

fails with WSAEINVAL.

Implementing a Name Space

A name space must implement all nine name space functions that map to the RNR functions covered in

Chapter 8. In addition to implementing these functions, you must also develop a method for persisting the

data. That is, you must maintain the data beyond the instance of the DLL. Every process that loads the DLL

receives its own data segment, which means that data stored within the DLL cannot be shared between

instances. (Actually, it is possible to share information between multiple applications that have loaded the

DLL, but this practice is discouraged.) For more information about DLLs, see Programming Applications for

Microsoft Windows, 4th Edition, by Jeffrey Richter (Microsoft Press, 1999). Remember from Chapter 8 that

there are three types of name spaces: dynamic, persistent, and static. Obviously, implementing a static name

space might not be a good idea because it disallows programmatic registration of services. Later in this

chapter, we'll present some ideas about how to maintain the data that the name space needs to persist.

You must also understand the importance of using wide character strings in all name space provider

functions. This not only includes string parameters to functions but also strings within the RNR structures,

such as WSAQUERYSET and WSASERVICECLASSINFO. You might be wondering how this is possible

because when an application registers or resolves a name it can use either the normal (ASCII) or the wide

character (UNICODE) version of the RNR functions and structure. Either version works because all ASCII

calls go through an intermediate layer that converts all strings to wide character strings. This is true on

function call and return. That is, if WSAQUERYSET is returned to the calling application—as with

WSALookupServiceNext—any data that the name space provider returns is originally UNICODE and is

converted to ASCII before returning from the function call. You can see that if your application uses RNR

functions, calling the wide character versions will be faster because no conversions are required.

Of the nine functions that a name space provider must implement, only seven map to Winsock 2 RNR

functions, as shown in Table 12-5. The remaining two functions are for initialization and cleanup. Once the

name space is installed into the system, applications can use it by specifying either the GUID under which the

name space was installed or the name space identifier that is also specified during installation. An application

then makes calls to the standard Winsock 2 RNR function, as described in Chapter 8. When one of these

functions is called, the equivalent name space provider function is invoked. For example, when an application

calls WSAInstallServiceClass, which references the GUID for a custom name space, the function

NSPInstallServiceClass for that provider is invoked. In the next section, we'll cover each of the name space

functions.

Table 12-5Mapping RNR Functions to NSP Functions

Winsock Function Equivalent Name Space Provider Function

WSAInstallServiceClass NSPInstallServiceClass

WSARemoveServiceClass NSPRemoveServiceClass

WSAGetServiceClassInfo NSPGetServiceClassInfo

WSASetService NSPSetService

WSALookupServiceBegin NSPLookupServiceBegin

WSALookupServiceNext NSPLookupServiceNext

WSALookupServiceEnd NSPLookupServiceEnd

WSANSPIoctl NSPIoctl

NSPStartup

The NSPStartup function is called whenever the name space provider DLL is loaded. Your name space

implementation must include this function, and it must be exported from the DLL. Any per-DLL data structures

required for the provider to operate can be allocated when this function is called. NSPStartup is prototyped as

int NSPStartup (

 LPGUID lpProviderId,

 LPNSP_ROUTINE lpnspRoutines

);

The first parameter, lpProviderId, is the GUID for this name space provider. The lpnspRoutines parameter is

an NSP_ROUTINE structure that your implementation of this function must fill out. This structure provides

function pointers to the other eight name space functions that belong to your provider. The NSP_ROUTINE

object is defined as

typedef struct _NSP_ROUTINE

{

 DWORD cbSize;

 DWORD dwMajorVersion;

 DWORD dwMinorVersion;

 LPNSPCLEANUP NSPCleanup;

 LPNSPLOOKUPSERVICEBEGIN NSPLookupServiceBegin;

 LPNSPLOOKUPSERVICENEXT NSPLookupServiceNext;

 LPNSPLOOKUPSERVICEEND NSPLookupServiceEnd;

 LPNSPSETSERVICE NSPSetService;

 LPNSPINSTALLSERVICECLASS NSPInstallServiceClass;

 LPNSPREMOVESERVICECLASS NSPRemoveServiceClass;

 LPNSPGETSERVICECLASSINFO NSPGetServiceClassInfo;

 // NSPIoctl is a new API added in Windows XP

 LPNSPIOCTL NSPIoctl;

} NSP_ROUTINE, FAR * LPNSP_ROUTINE;

The first field, cbSize, indicates the size of the NSP_ROUTINE structure. The next two fields, dwMajorVersion

and dwMinorVersion, are included for versioning your provider. The versioning is arbitrary and serves no

other purpose. The provider sets the rest of the entries to their respective function pointers. For example, the

provider assigns its NSPSetService function address (no matter what it is named) to the NSPSetService field.

The names of your provider functions can be arbitrary, but their parameters and return types must match the

provider definition.

The only action required of an NSPStartup implementation is filling in the NSP_ROUTINE structure. Once the

provider completes this and any other initialization routines of its own, it returns NO_ERROR if everything is

successful. If an error occurs, the NSPStartup implementation returns SOCKET_ERROR and sets the

Winsock error code. For example, if a provider attempts and fails to allocate memory, it calls

WSASetLastError with WSAENOBUFS as the parameter and then returns SOCKET_ERROR.

This might be a good time to discuss error handling in your provider's DLL. All of the functions you must

implement for a provider return NO_ERROR upon success and SOCKET_ERROR upon failure. If you

determine that the call fails, set the appropriate Winsock error code before returning. If you fail to do this, any

application attempting to register or query services using your name space provider will report the failure of an

RNR function but WSAGetLastError will return 0. This will cause tremendous trouble for applications that

attempt to handle errors gracefully; 0 is certainly not an expected return value upon error.

NSPCleanup

This routine is called when the provider's DLL is unloaded. Within this function, you can free any memory

allocated in the NSPStartup routine. This routine is defined as

int NSPCleanup (LPGUID lpProviderId);

The only parameter is your name space provider's GUID. Other than cleaning up any dynamically allocated

memory, you're not required to do anything in this function.

NSPInstallServiceClass

The NSPInstallServiceClass function maps to WSAInstallServiceClass and is responsible for registering a

service class. NSPInstallServiceClass is defined as

int NSPInstallServiceClass (

 LPGUID lpProviderId,

 LPWSASERVICECLASSINFOW lpServiceClassInfo

);

The first parameter is the provider's GUID. The lpServiceClassInfo parameter is the

WSASERVICECLASSINFOW structure that is being registered. Your provider has to maintain a list of service

classes and has to ensure that a service class doesn't already exist using the same GUID within the

WSASERVICECLASSINFOW structure. If the GUID is already in use, the provider must return the error

WSAEALREADY. Otherwise, the provider should maintain this service class so that other RNR operations

can refer to it.

The majority of the remaining name space provider functions refer to an installed service class.

NSPRemoveServiceClass

This function is the complement of the NSPInstallServiceClass function and removes the specified service

class. This name space function maps to WSARemoveServiceClass. The function is declared as

int NSPRemoveServiceClass (

 LPGUID lpProviderId,

 LPGUID lpServiceClassId

);

As in the previous function, the first parameter is the provider's GUID. The second parameter,

lpServiceClassId, is the service class GUID that is to be removed. The provider must remove the given

service class from its storage. If the service class specified by lpServiceClassId is not found, the provider

must generate the error WSATYPE_NOT_FOUND.

NSPGetServiceClassInfo

The NSPGetServiceClassInfo function maps to the WSAGetServiceClassInfo function. It retrieves the

WSANAMESPACE_INFOW structure associated with a GUID. The function is defined as

int NSPGetServiceClassInfo (

 LPGUID lpProviderId,

 LPDWORD lpdwBufSize,

 LPWSASERVICECLASSINFOW lpServiceClassInfo

);

Again, the first parameter is the provider's GUID. The lpdwBufSize parameter indicates the number of bytes

contained in the third parameter, lpServiceClassInfo. On input, the third parameter is a

WSASERVICECLASSINFOW structure that contains the search criteria specifying which service class to

return. This structure can contain either a service class name or the GUID for the service class to return. If the

provider finds a match, it must return the WSASERVICECLASSINFOW structure in lpServiceClassInfo and

should update lpdwBufSize to indicate the number of bytes being returned.

If, given the criteria, no service classes are found, the call should fail and set WSATYPE_NOT_FOUND as

the error. In addition, if a service class does match but the supplied buffer is too small, the provider should

update the lpdwBufSize parameter to indicate the correct number of bytes required and the error

WSAEFAULT should be set.

NSPSetService

The NSPSetService function maps to WSASetService and either registers or removes services from the

name space. The function is defined as

int NSPSetService (

 LPGUID lpProviderId,

 LPWSASERVICECLASSINFOW lpServiceClassInfo,

 LPWSAQUERYSETW lpqsRegInfo,

 WSAESETSERVICEOP essOperation,

 DWORD dwControlFlags

);

The first parameter is the provider's GUID. The lpServiceClassInfo parameter is the

WSASERVICECLASSINFOW structure to which this service belongs. The lpqsRegInfo parameter is the

service to either register or delete depending on the operation specified in the fourth parameter, essOperation.

The last parameter, dwControlFlags, might specify the flag SERVICE_MULTIPLE that can modify the

specified operation. See Tables 8-4 and 8-5 in Chapter 8 for a description of the possible essOperation and

dwControlFlags values.

The name space provider first verifies that the supplied service class does exist. Then, depending on which

operation is specified, appropriate action is taken. For a full description of valid essOperation values as well

as the effect of dwControlFlags on them, see the section on service registration in Chapter 8, which discusses

WSASetService. Your provider's NSPSetService function handles these flags accordingly.

If your service provider is updating or deleting a service that cannot be found, the error

WSASERVICE_NOT_FOUND is set. If the provider is registering a service and the WSAQUERYSETW

structure is invalid or incomplete, the provider generates the WSAEINVAL error.

This function is one of the most complicated name space provider functions to implement (next to

NSPLookupServiceNext). The provider must maintain a scheme for persisting the services that can be

registered and must allow the NSPSetService function to update this data.

NSPLookupServiceBegin

The NSPLookupServiceBegin function is associated with the NSPLookupServiceNext and

NSPLookupServiceEnd functions and is used to initiate a query of your name space. This function maps to

WSALookupServiceBegin and establishes the criteria for your search. This function is prototyped as

int NSPLookupServiceBegin (

 LPGUID lpProviderId,

 (continued) LPWSAQUERYSETW lpqsRestrictions,

 LPWSASERVICECLASSINFOW lpServiceClassInfo,

 DWORD dwControlFlags,

 LPHANDLE lphLookup

);

As with previous functions in this section, the first parameter is the provider's GUID. The lpqsRestrictions

parameter is the WSAQUERYSETW structure that defines the parameters for the query. The third parameter,

lpServiceClassInfo, is the WSASERVICECLASSINFOW structure containing the schema information for the

service class in which the query is to take place. The dwControlFlags parameter takes zero or more flags that

affect how the query is performed. Again, for information on WSALookupServiceBegin and the different flags

that can be used, refer to Chapter 8. Note that not all of the flags make sense for every provider. For example,

if your name space does not support the notion of container objects, you don't have to worry about those flags

dealing with containers. (A container is simply a way of conceptually organizing the services—what

constitutes a container is open to interpretation.) Finally, lphLookup is an output parameter, which is a handle

that defines this particular query. The handle is used in the subsequent calls to WSALookupServiceNext and

WSALookupServiceEnd.

When implementing NSPLookupServiceBegin, keep in mind that the operation cannot be canceled, and it

should complete as quickly as possible. Therefore, if you need to initiate a network query, a response should

not be required to return successfully.

The provider should save the query parameters and associate a unique handle with the query for later

reference. In addition to saving the handle and the query, the provider should maintain state information. We'll

explore the significance of this in our discussion of the next function, NSPLookupServiceNext.

NSPLookupServiceNext

Once a query has been initiated with WSALookupServiceBegin, an application calls WSALookupServiceNext,

which in turn calls the name space provider function NSPLookupServiceNext. This call is what actually

searches for results that match the search criteria registered for this query. The function is defined as

int NSPAPI WSALookupServiceNext (

 HANDLE hLookup,

 DWORD dwControlFlags,

 LPDWORD lpdwBufferLength,

 LPWSAQUERYSET lpqsResults

);

The first parameter, hLookup, is the query handle returned from WSALookupServiceBegin. The

dwControlFlags parameter can be the flag LUP_ FLUSHPREVIOUS, which indicates that the provider should

discard the last result set and move to the next one. Typically, an application requests that the last result set

be discarded when the application cannot supply a large enough buffer for the results. The next parameter,

lpdwBufferLength, indicates the size of the buffer passed as the last parameter, lpqsResults.

When NSPLookupServiceNext is triggered, the provider should look up the query parameters identified by the

handle hLookup. Once the query parameters are retrieved, a search should be initiated for all registered

services within the service class specified by the query that match the supplied criteria. As we mentioned in

the section on NSPLookupServiceBegin, the state of the query should be saved. If there are multiple matching

entries, a calling process calls WSALookupServiceNext multiple times, and with each call your provider needs

to return a data set. When there are no more matches, the provider returns the error WSA_E_NO_MORE. It is

also possible to cancel a query in progress if the application makes a call to WSALookupServiceEnd from

another thread while a call to WSALookupServiceNext is in progress. In this event, NSPLookupService-Next

should fail with the error WSA_E_CANCELLED.

NSPLookupServiceEnd

After a query has been completed, NSPLookupServiceEnd is called to end the query and release any

underlying resources. This function is defined as

int NSPLookupServiceEnd (HANDLE hLookup);

The single parameter to the function is hLookup, which is the handle to the query that is to be closed. If the

given handle cannot be found (for example, if it's an invalid handle), the call must fail with the error

WSA_INVALID_HANDLE.

NSPIoctl

The last function is NSPIoctl, which is not required to develop a name space provider. If a NSP decides not to

implement this function, the cbSize field of the NSP_ROUTINE should be set to the size of the structure

without the LPNSPIOCTL pointer. This can be done with the following code:

lpnspRoutine->cbSize = FIELD_OFFSET(NSP_ROUTINE, NSPIoctl));

As we saw in Chapter 8, the WSANSPIoctl API is new to Windows XP and is currently used only by the NLA

name space, which provides notification when information about the current network changes.

The function definition for the NSP equivalent NSPIoctl is

INT NSPIoctl(

 HANDLE hLookup,

 DWORD dwControlCode,

 LPVOID lpvInBuffer,

 DWORD cbInBuffer,

 LPVOID lpvOutBuffer,

 DWORD cbOutBuffer,

 LPDWORD lpcbBytesReturned,

 LPWSACOMPLETION lpCompletion,

 LPWSATHREADID lpThreadId

);

This function provides a method for exposing miscellaneous commands from the name space, and it is

completely up to the name space developer to determine how the input and output parameters work. For

example, if an NSP wanted to expose some statistics, such as number of entities registered or number of

queries performed, it could do this by implementing NSPIoctl and allowing applications to query it via

WSANSPIoctl with its own defined ioctl code and output buffer structure.

The other benefit to this function is that it allows asynchronous notification through the lpCompletion

parameter. This structure allows the calling application to specify an overlapped structure, completion routine,

window, or completion port to receive notification of completion. Again, it's up to the NSP developer to

determine what information is being registered for notification, but this function could allow asynchronous

name resolution—something that cannot be done via the WSALookupService functions. In Chapter 8, you

saw how an application can register to receive notifications when the local network information changes.

If a name space chooses to implement this function, it must save the input and output buffers as well as the

WSACOMPLETION information. Then when the ioctl completes (either immediately or at some later point),

the output information should be copied to the supplied buffer (or an error returned if it's not large enough),

and the notification routine (if supplied) should be signaled.

Depending on how the service is implemented, there are several ways to process these asynchronous

completion events. If the NSP is notifying the application from the DLL, it is simple. To send a message to a

window, use PostMessage. To queue an APC, QueueUserApc is used. To signal an event, SetEvent is called.

Lastly, to notify a completion port, PostQueuedCompletionStatus is used. These functions are regular

Windows APIs and more information about them can be found in the Platform SDK.

The situation becomes more difficult if the application is notified from a service or separate process that

persists the name space data. Services often operate under a different user group and may not have access

to certain resources. Writing Windows services is beyond the scope of this book. For more information,

consult the Platform SDK or Programming Server-Side Applications for Windows 2000 by Jeffrey Richter

and Jason D. Clark (Microsoft Press, 2000). In the next section, we'll discuss the sample NSP, which is

implemented as a separate process but does not expose the NSPIoctl function.

Name Space Provider Example

In the previous sections, we covered the steps for creating your own name space and touched on some of the

important name space creation issues, such as methods for data persistence. However, developing an entire

name space provider can be complicated, and the rest of this chapter will be devoted to our example name

space provider. Although the example is not the fastest or most optimized code, it illustrates the topics that

require the most attention. In addition, we kept it simple so it's easy to follow and understand.

The example provider is located on the companion CD in the NSP directory in the files MYNSP.H,

MYNSP.CPP, and MYNSP.DEF. These three files make up the name space DLL. In addition to the DLL, you'll

find the name space service that is a Winsock server responsible for handling requests from the DLL. This

server, which maintains the service registration data, is found in the file MYNSPSVC.CPP. Two additional

files, NSPSVC.CPP and PRINTOBJ.CPP, are used by both the DLL and the service and contain support

routines for marshaling and demarshaling data sent on a socket between the service and the DLL. Marshaling

and demarshaling data will be explained later in this section. In addition to these two files, you'll find their

accompanying header files, NSPSVC.H and PRINTOBJ.H, which contain the function prototypes for the

support routines. Finally, the file RNRCS.C is a modified sample from Chapter 8 that registers and looks up

services in our custom name space. Note that when we refer to the name space provider as a service, we are

not implying that the sample code is a true Windows service.

In the following sections, we will discuss how our name space is implemented. First, we'll give an overview of

the method we chose to persist the data. This overview will be followed by an examination of how the actual

name space DLL is structured as well as how to install the name space. Then we'll cover the implementation

of the name space service. Finally, we'll look at how an application performs service registrations and queries

to our custom name space.

Data Persistence

For our name space, we chose a separate Winsock application to maintain the name space information. In

each of the name space functions implemented in the DLL, a connection is made to this process and data is

transacted to complete the operation. For simplicity, this process runs locally (the service listens on the

loopback address 127.0.0.1). In an actual implementation, our name space service's IP address would be

accessible via the Registry or some other means so that when an application invoked the name space, it

could connect to the service wherever it was running. For example, with DNS, the IP address of the DNS

server is either set statically or obtained during a DHCP request.

Of course, writing a service to maintain the information is not the only option available. You could maintain a

file on the network that keeps the necessary information; however, this is probably not the best option

because performance is then bound by disk operations. One performance limitation of our sample name

space is that it establishes TCP connections to the service. A production-quality implementation is more likely

to use a connectionless datagram protocol such as UDP to improve performance. Of course, this would

involve additional programming requirements—such as ensuring that dropped packets are retransmitted—but

the overall performance gains would be considerable.

Name Space DLL

Before we look at how the name space service is implemented, let's take a look at the name space DLL. Each

name space provider requires a unique GUID, and ours is defined in MYNSP.H. In addition to the unique

identifier, we need a simple integer identifier for our name space. This identifier can be used in the

dwNameSpace field of the WSAQUERYSET structure, as you saw in Chapter 8. The GUID and name space

identifier are

GUID MY_NAMESPACE_GUID = {0x55a2bd9e,0xbb30,0x11d2,

 {0x91,0x66,0x00,0xa0,0xc9,0xa7,0x86,0xe8}

 };

#define NS_MYNSP 66

These values are important because applications that want to use this name space must specify these values

in their Winsock calls. Of course, an application's developer can specify these values directly or retrieve them

with a WSAEnumNameSpaceProviders call. (See Chapter 8 for more information.) Also, be aware that if an

application performs an operation specifying the NS_ALL name provider, the operation occurs on all installed

name providers. You should keep this in mind because several Windows applications, such as Internet

Explorer, perform queries on all installed name providers. Be very careful, therefore, when testing a name

provider. A poorly written name provider can cause system-wide problems. In addition, the GUID and name

space identifier values are important because they are required to install the name provider.

Now let's take a look at the NSP functions implemented in MYNSP.CPP. For the most part, these functions

are quite similar except for the startup and cleanup functions, NSPStartup and NSPCleanup. The startup

function simply initializes the NSP_ROUTINE structure with our custom name space functions. The cleanup

routine does nothing because no cleanup is necessary.

The rest of the functions require interaction with our service to either query or register data. When

communication with the service is necessary, follow these steps:

Connect to the service (via the MyNspConnect function).1.

Write a 1-byte action code. This indicates to the service which action is about to take place (such as

service registration, service deletion, and query).

2.

Marshal parameters and send them to the service. The type of parameters sent will depend on the

operation. For example, NSPLookupServiceNext sends the query handle to the service so that it can

resume the query, whereas NSPSetService sends an entire WSAQUERYSET structure.

3.

Read the return code. Once the service has the necessary parameters to perform the requested

operation, the return code (success or failure) of the operation is returned. The file MYNSP.H defines

two constants for this purpose: MYNSP_SUCCESS and MYNSP_ERROR.

4.

If the requested operation was a query and the return code was success, read and demarshal the

results. For example, NSPLookup- ServiceNext returns a WSAQUERYSET structure if a matching

service is found.

5.

As you can see, implementing the DLL is not overly complicated. The NSP functions must take the

parameters and process them, which in our case is to pass this information to the name space service. After

this, it is up to the service to perform the requested operation. However, we have glossed over one difficult

operation that must be performed: sending data over a socket. Normally, there aren't any special

requirements for sending data, but when sending entire data structures, there are. Most of the name space

functions take either a WSAQUERYSET or a WSASERVICECLASSINFO structure as a parameter. This

object must be sent or received on the socket connection to the service. This presents some difficulty

because these structures aren't contiguous blocks of memory. They contain pointers to strings and other

structures that can be located anywhere in memory, as illustrated in Figure 12-5. You need to take all of these

pieces of memory—wherever they are—and copy them into a single buffer one after another. This is known

as marshaling data. On the receiving end, this process has to be reversed. The data read needs to be

reassembled into the original structure, and the pointers have to be “fixed” so that they point to valid memory

locations on the recipient's machine.

Figure 12-5 Marshaling data

For our name space provider, we provide functions to marshal and demarshal both the

WSANAMESPACEINFO and WSAQUERYSET structures. These functions are located in NSPSVC.CPP and

are used by both the name space DLL and the name space service (because both sides need the capability

to marshal and demarshal these structures). All four functions are self-explanatory—we won't cover them in

depth here.

Installing the Name Space

Installing a name space provider is the most trivial step in the entire process. The file NSPINSTALL.C is a

simple installation program. The following code installs our provider:

ret = WSCInstallNameSpace(L"Custom Name Space Provider",

 L"%SystemRoot%\\System32\\Mynsp.dll", NS_MYNSP, 1,

 &MY_NAMESPACE_GUID);

if (ret == SOCKET_ERROR)

{

 printf("Failed to install name space provider: %d\n",

 WSAGetLastError());

}

The only parameters to the call are the provider's name, the DLL's location, the integer identifier, the version,

and the GUID. After installation, the only requirement is to make sure that the name space DLL is located

where you say it is. The only error that's a real possibility is trying to install a name provider with a GUID that's

already in use by another provider.

Removing a name space provider is even easier. The following code snippet from our installation program

removes our provider:

ret = WSCUnInstallNameSpace(&MY_NAMESPACE_GUID);

if (ret == SOCKET_ERROR)

{

 printf("Failed to remove provider: %d\n", WSAGetLastError());

}

Name Space Service

The name space service is the real guts of the name provider. This service keeps track of all registered

service classes and service instances. When a user's application triggers the name space DLL, it connects to

the name space service to perform the operation. The service is simple. Within the main function, a listening

socket is established. Then, within a loop, connections are accepted from instances of the name space DLL.

For simplicity, only a single connection is handled at a time. This also prevents you from having to

synchronize access to the data structures that maintain the name space information. Again, a real provider

would not do this because it degrades performance, but it does make the example easier to understand.

Once a connection is accepted, the service reads a single byte from the name space DLL that identifies the

action to follow.

Within the loop, the action is decoded and parameters are passed from the name space DLL to the service.

From there, the requested actions are performed. These actions aren't complicated. The code is easy to

follow, and by examining the steps for each possible action you can determine how the service works—we

don't need to go into detail here. However, we will examine the structures that maintain the information. There

are only two data types that name space providers are concerned about: the WSASERVICECLASSINFO and

WSAQUERYSET structures. As you have seen, the majority of the RNR functions reference one or the other

of these two structures in their parameters. As a result, we maintain two global arrays—one for each structure

type—along with a counter for each.

When the DLL requests to install a service class, the name service provider's main function first calls

LookupServiceClass, a support routine defined in MYNSPSVC.CPP. This function iterates through the array

of WSASERVICECLASSINFO structures, ServiceClasses. If a service class is found with the same GUID, it

returns an error (which the DLL translates as WSAEALREADY). Otherwise, the new service class is added to

the end of the array and the dwNumServiceClasses counter is incremented.

During the deletion of a service class (as when installing a service class), the main function calls

LookupServiceClass. In this case, however, if the service class is found, the code moves the last service

class in the array to the location of the deleted class. The code then decrements the counter. One aspect that

is not specifically covered in the Winsock 2 specification for name space providers is what happens when a

service class is to be deleted but there are still services registered that refer to it. How you choose to handle

this is up to you. Our example name space won't allow the removal of a service class if there are services

registered that reference it.

The same principle that's used for maintaining WSASERVICECLASSINFO structures is also used for keeping

track of WSAQUERYSET structures. There is an array of these structures named Services, as well as a

counter named dwNumServices. The addition and deletion of services is handled in the same manner that it is

for service classes.

The last bits of information that the service must maintain are for queries. When an application initiates a

query, the query parameters must be maintained for the life of the query and assigned a unique handle. This

is necessary because WSALookupServiceNext refers to the query by the handle only. The other piece of

information that must be kept is the state of the query. Each call to WSALookupServiceNext can return a

single information set. The code must remember the last position within the Services array where data was

returned so that subsequent calls to WSALookupServiceNext begin where the previous call left off.

Querying the Name Space

The last part of our name space sample is the file RNRCS.C. This is a modified version of the name

registration and resolution example presented in Chapter 8. We've made only a few changes to make the

example as simple as possible. The first change causes the code to enumerate the installed name space

providers but to return only the NS_MYNSP provider. Second, when registering a service, RNRCS.C

enumerates only the local IP interfaces to use as the address of our service. Our service provider supports

the registration of any SOCKADDR type. Finally, for service registration, this example does not create an

instance of the service; it just registers the name. Otherwise, this example behaves like the Chapter 8

example.

Running the Example

Once all the examples have been compiled, installing and using the provider is simple. The following

command installs the provider:

Nspinstall.exe install

Of course, don't forget to copy MYNSP.DLL to %SystemRoot%\System32. Once the name space is installed,

an instance of the service must be running to query and register services. This is done by the following

command:

Mynspsvc.exe

Now you can query and register services using RNRCS.EXE. Table 12-6 shows some commands that you

should execute and the order you should follow. This sequence of commands registers two services and then

performs a wildcard query and a specific query. Then the command sequence queries for each of the two

services and deletes them. Finally, we perform a wildcard query to illustrate that the services have been

deleted.

Table 12-6Running the Sample Name Space

Command Meaning

RNRCS.EXE -s:ASERVICE Register the service ASERVICE.

RNRCS.EXE -s:BSERVICE Register the service BSERVICE.

RNRCS.EXE -c:* Query for all registered services.

RNRCS.EXE -c:BSERVICE Query only for services named BSERVICE.

RNRCS.EXE -c:ASERVICE -d Query only for services named ASERVICE, and delete them if found.

RNRCS.EXE -c:BSERVICE -d Query only for services named BSERVICE, and delete them if found.

RNRCS.EXE -c:* Query for all registered services.

Conclusion

The Winsock 2 SPI offers software developers a method of extending the capabilities

of Winsock 2 by developing a service provider. In this chapter, we explained the

details of how to develop an LSP and a name space provider. This chapter concludes

our discussion of the Winsock networking technology. The next few chapters discuss

accessing Winsock functionality from two other programming languages: Visual Basic

and C#.

Chapter 13

.NET Sockets Programming Using C#

Microsoft has introduced a new programming interface called .NET Application

Frameworks version 1, which is a large collection of object-oriented classes that

allows applications to work better in a highly distributed environment such as the

Internet. .NET Frameworks provides a myriad amount of functionality from drawing

graphics on a screen to processing Extensible Markup Language (XML) data. This

chapter primarily focuses on one of the .NET Framework classes, .NET Sockets,

which allows a .NET application to take advantage of the Winsock programming

interface in a new object oriented fashion. The .NET Sockets programming interface is

actually known as the System.Net.Sockets namespace that is included in the new

.NET Framework SDK. The .NET Frameworks version 1 can be installed on Windows

98, Windows Me, Windows NT 4.0, Windows 2000, and Windows XP.

The .NET Framework classes can be accessed from Visual Basic, Visual C++, and a

new language named C# (pronounced C sharp). This chapter is intended to introduce

you to the new .NET Sockets namespace, providing basic information about how to

use the methods and properties available in the library to perform Winsock

communication. Our discussion will demonstrate .NET Sockets using primarily the

IPv4 protocol to perform simple TCP and UDP communication over a socket. We also

will describe IPv6 in a limited fashion. The information is presented using the C#

programming language. This chapter does not detail all of the methods available to

make every Winsock call, functionality, or protocol and assumes you have familiarity

with C# and Winsock programming techniques.

Overview

Programming .NET Sockets applications is similar to developing a Winsock

application in C/C++ because the interface uses methods that have nearly the same

name and parameters as the Winsock API. The basic design centers around creating

a Socket object and using methods included in that object. The Socket methods mimic

the standard Winsock 1.1 calls that we described previously in this book; internally,

however, the calls use Winsock 1 and 2 functionality. Although the methods are

similar to the Winsock API, one of the most noticeable programming differences is

that you don't have startup Winsock (by calling WSAStartup) to use the Sockets

namespace as you do when writing a Winsock application. Instead, once you create a

Socket object the startup feature is handled within the interface.

Creating a Socket object is simple: Create a new System.Net.Sockets.Socket object.

The constructor for this object is defined as

System.Net.Sockets.Socket(

 System.Net.Sockets.AddressFamily AddressFamily,

 System.Net.Sockets.SocketType SocketType,

 System.Net.Sockets.ProtocolType ProtocolType

);

The socket constructor method takes System.Net.Sockets enumeration type

parameters AddressFamily, SocketType, and ProtocolType to create the socket.

These three enumerations types have values that are similar to the Winsock 1 socket

parameter types. Table 13-1 contains all of the enumerated types that all of the

objects in the Sockets namespace use. Once you have successfully created a Socket

object, you can begin developing a client or server application using the available

methods defined in Table 13-2.

Table 13-1Useful Enumerations in the .NET Sockets Namespace

Property Description

AddressFamily
Similar to Address Families in Winsock—use InterNetwork for

IPv4 addresses and InterNetworkV6 for IPv6 addresses.

ProtocolFamily Identifies which protocol to use in the Winsock catalog.

ProtocolType
Similar to protocol types in Winsock—use IP for Internet

Protocol.

SelectMode Used for polling on attributes on a Socket.

SocketFlags
Similar to socket flags in Winsock used for Send and Receive

methods.

SocketOptionLevel
Available socket option levels for GetSocketOption and

SetSocketOption methods.

SocketOptionName
Available socket options for GetSocketOption and

SetSocketOption methods.

SocketShutdown Similar to Winsock shutdown parameters.

SocketType
Similar to socket types in Winsock—use Stream for TCP

sockets.

Table 13-2Available Methods in the .NET Sockets Socket Class

Method Description

Accept, BeginAccept,

EndAccept

Same as Winsock Accept; in addition, there is an

asynchronous BeginAccept and EndAccept pair. We

will describe aynchronous .NET Sockets later in the

chapter.

Bind Same as Winsock bind.

Close Same as Winsock closesocket.

Connect, BeginConnect,

EndConnect

Same as Winsock connect; in addition, there is an

asynchronous BeginConnect and EndConnect pair.

GetSocketOption Similar to Winsock getsockopt.

IOControl Similar to Winsock ioctlsocket.

Listen Same as Winsock listen.

Poll
Can be used to determine the status of a socket, such

as if data is available to be read.

Receive, BeginReceive,

EndReceive

Similar to Winsock recv; in addition, there is an

asynchronous BeginReceive and EndReceive pair.

ReceiveFrom,

BeginReceiveFrom,

EndReceiveFrom

Similar to Winsock recvfrom; in addition, there is an

asynchronous BeginReceiveFrom and

EndReceiveFrom pair.

Select Similar to Winsock select.

Send, BeginSend, EndSend
Similar to Winsock send; in addition, there is an

asynchronous BeginSend and EndSend pair.

SendTo, BeginSendTo,

EndSendTo

Similar to Winsock sendto; in addition, there is an

asynchronous BeginSendTo and EndSendTo pair.

SetSocketOption Similar to Winsock setsockopt.

Shutdown Similar to Winsock shutdown.

The following C# code demonstrates how to create a stream socket to communicate

over TCP using IPv4:

using System;

namespace MySocketApplication

{

 class MySocketClass

 {

 static void Main(string[] args)

 {

 System.Net.Sockets.Socket MySocket = new System.Net.Sockets.Socket(

 System.Net.Sockets.AddressFamily.InterNetwork,

 System.Net.Sockets.SocketType.Stream,

 System.Net.Sockets.ProtocolType.IP

);

 }

 }

}

Addressing Protocols

Once you have created a Socket you have to address (or name) one to start

communication over a protocol. Addressing protocols in .NET Sockets is done through

the System.Net.Endpoint class. The Endpoint class is derived from a

System.Net.SocketAddress class, which is similar to a Winsock sockaddr structure

because all protocol address families can be addressed from its base class through

inheritance. In .NET Frameworks version 1, there is currently only one available

derived address Endpoint class that will support IPv4 addressing:

System.Net.IPEndPoint. Because of this, in the chapter samples we primarily use

IPv4; however, we also have derived a new Endpoint class to support IPv6, called

IPv6EndPoint. In future versions of the .NET Application Frameworks there will

eventually be more built-in support to address other protocols, such as IPv6. If you

understand the Winsock sockaddr structure, you can technically address other

protocols such as IPX by creating your own derived EndPoint class.

Because IPv4 support is built-in, we will describe IPEndPoint. There are two

IPEndPoint constructor functions that are defined as

public IPEndPoint(

 IPAddress address,

 int port

);

public IPEndPoint(

 long address,

 int port

);

The first constructor accepts an IP address as a System.Net.IPAddress class that is

used to manage an IPv4 address. The other constructor takes an IP address as a

numeric value. Both functions accept a port as a numeric value. The

System.Net.IPAddress class provides convenient methods (similar to Winsock 1) that

are used to manage and manipulate an IPv4 address. The constructor of this class is

defined as

public IPAddress(

 long newAddress

);

The constructor can take an IPv4 address as a numeric value, however, the real

benefit of this class is the methods available to construct an IP address, as described

in Table 13-3.

Table 13-3 Convenient IP Address Methods for IPv4 Address Manipulation

Method Description

HostToNetworkOrder Similar to Winsock htonl

IsLoopback Determines if an IP address is a loopback address

NetworkToHostOrder Similar to Winsock ntohl

Parse
Converts an IP address represented as a string to an

IPAddress object instance

Equals Allow comparing two IPAddresses

ToString Converts an IP address to the string format x.x.x.x.

The following code fragment demonstrates how to construct an IPEndPoint using the

IPAddress class.

System.Net.IPAddress MyAddress =

 System.Net.IPAddress.Parse("136.149.3.29");

System.Net.IPEndPoint MyEndPoint = new

 System.Net.IPEndPoint(MyAddress, 5150);

At this point, you can use the MyEndPoint in the Bind, Connect, SendTo, and

ReceiveFrom methods of System.Net.Sockets.Socket class to address an IPv4

socket.

Name Resolution

As you saw in Chapter 1, Winsock provides a convenient function, gethostbyname, which allows you

to resolve a hostname to an IPv4 address using name resolution techniques in Windows such as DNS.

The .NET Application Frameworks version 1 provides the System.Net.DNS class to support domain

name resolution functionality for IPv4 addresses. Table 13-4 describes the available methods in this

class.

Table 13-4Available Methods for the System.Net.DNS Class

Method Winsock Equivalent

GetHostByAddress gethostbyaddr

GetHostByName, BeginGetHostByName, EndGetHostByName gethostbyname

GetHostName gethostname

Resolve, BeginResolve, EndResolve gethostbyname

The System.Net.DNS class relies on the System.Net.IPHostEntry class to store IPv4 addresses that a

DNS query returns. The DNS.GetHostByName method will return a list of host IPv4 addresses to an

IPHostEntry container. This method can take a string representing both a name and even an IPv4

address in dot notation. The following code fragment demonstrates how to use DNS to resolve IPv4

addresses. It also demonstrates how you can set up an IPEndpoint to name a socket from the

information we have described so far.

// Resolve a host name to an IPv4 address

System.Net.IPHostEntry IPHost =

 System.Net.Dns.GetHostByName("www.Microsoft.com");

// Set up an IPEndPoint using the first address in our IPHostEntry list

System.Net.IPEndPoint ServerEndPoint = new

 System.Net.IPEndPoint(IPHost.AddressList[0], Port);

IPv6 DNS name resolution is not available in the .NET Frameworks version 1.

Therefore, it is not yet possible to develop agnostic C# socket applications (as described

in Chapter 3) to transparently handle both IPv4 and IPv6 name resolution. IPv6 DNS

name resolution is expected in the next version of the Frameworks.

Sending and Receiving Data

Sending and receiving data in .NET sockets is really simple. Once you have created a Socket object,

you can use the Send, SendTo, Receive, and ReceiveFrom methods, which are similar to the send,

sendto, recv, and recvfrom Winsock 1 APIs. There are several overloaded versions of these send and

receive methods. Each one sends and receives data using a simple byte type array.

I/O Methods

.NET Sockets has three basic I/O methods to manage data and connections on a socket: blocking,

select, and asynchronous. These resemble some of the I/O methods described in Chapter 5.

Blocking I/O

Blocking I/O is the simplest model to use. Anytime you call an I/O-bound .NET Sockets method, such

as Receive, when there is no data pending on the receiving socket, the call will do just that—block. If

you need your application to do other things or to service additional socket requests, you will have to

create additional threads in your application. If your application is just a simple client handling one

connection, blocking sockets is a good I/O model to use. The following code fragment demonstrates

how to develop a simple client application that can connect to a server and send a simple string using

blocking I/O on the Connect and Send calls. This sample can be found on the companion CD in the

TCPClient directory.

System.Net.IPAddress ServerAddress =

 System.Net.IPAddress.Parse("136.149.3.29");

System.Net.IPEndPoint ServerEndPoint = new

 System.Net.IPEndPoint(ServerAddress, 5150);

System.Net.Sockets.Socket MySocket = new Socket(

 AddressFamily.InterNetwork,

 SocketType.Stream,

 ProtocolType.IP);

MySocket.Connect(ServerEndPoint);

String s = "Hello - This is a test";

Byte[] buf = System.Text.Encoding.ASCII.GetBytes(s.ToCharArray());

int BytesSent = MySocket.Send(buf);

System.Console.WriteLine("Successfully sent " +

 BytesSent.ToString() + " byte(s)");

MySocket.Shutdown(System.Net.Sockets.SocketShutdown.Both);

MySocket.Close();

If you plan to develop an application that manages multiple sockets, we suggest using one of our next

two models, Select or Asynchronous, instead of creating multiple threads.

Select I/O

With the limitations of blocking I/O for managing multiple sockets, .NET Sockets features a Select

method that is similar to the Select Winsock 1 API that allows managing multiple socket I/O from one

execution thread. Essentially, you can provide Select with a list of sockets to test for readability,

writeabilty, and OOB data. The following code fragment demonstrates how to test sockets for

readability:

// Assume we have 2 connected sockets - Socket1 and Socket2

Socket[] ReadList = new Socket[2];

ReadList[0] = Socket1;

ReadList[1] = Socket2;

Socket.Select(ReadList, null, null, 100000);

// When Select returns either by our timeout

// value 100000 or if data is pending on one

// of our sockets, the ReadList will contain

// only those sockets that need to be read.

for (int i = 0; i < ReadList.Length; i++)

{

 byte [] Buffer = new byte[1024];

 // Receive data from the returned socket;

 ReadList[i].Receive(Buffer);

}

Although Select can manage multiple sockets from a single thread, we highly recommend using our

next model—asynchronous—especially if you are developing a high-performance server. For more

information about using the Winsock select API, see Chapter 5.

Asynchronous I/O

The asynchronous model in .NET sockets is the best way to manage I/O from one or more sockets. It

is the most efficient model of the three because its design is similar to the I/O completion ports model

(described in Chapter 5) and on Windows NT–based systems it will use the completion port I/O model

internally. Because of this, you can potentially develop a high-performance, scalable Winsock server in

C# and even possibly in Visual Basic. For a complete discussion of how to develop a

high-performance, scalable Winsock application, see Chapter 6.

In Table 13-2 we described several methods that may be used to process I/O asynchronously:

BeginAccept, EndAccept, BeginConnect, EndConnect, BeginReceive, EndReceive, BeginSend,

EndSend, BeginSendTo, and EndSendTo. Notice how each one of these methods has a

“BeginXXX”-“EndXXX” pair for each of the major I/O-bound socket methods—Accept, Connect,

Receive, Send, and SendTo.

To call one of the I/O socket methods asynchronously, you must call the “BeginXXX” method

counterpart and supply a delegate (or callback) method in the “BeginXXX” call. When the “BeginXXX”

call completes, your calling thread may continue processing other things while your supplied delegate

method internally waits for I/O to complete. When the socket has completed your I/O operation, your

delegate method is called to process the completed I/O results. Inside your delegate method, you can

retrieve the completed I/O results using the EndXXX counterpart method.

For example, let's describe how to process a Receive call asynchronously. We chose Receive

because it is one of the most common methods that can cause your application to block when you wait

for data to arrive on a socket. To call Receive asynchronously, you must call BeginReceive, which is

defined as

public IAsyncResult BeginReceive(

 byte[] buffer,

 int offset,

 int size,

 SocketFlags socketFlags,

 AsyncCallback callback,

 object state

);

Most of the parameters are similar to the Winsock recv API except for the callback and state

parameters. The callback parameter accepts a delegate method that is used to handle the completed

results of the asynchronous BeginReceive. The delegate method must have the following form:

public delegate void AsyncCallback(

 IAsyncResult ar

);

The ar parameter is an input parameter that receives an IAsyncResult object, which you can pass to

the EndReceive counterpart method (alternatively, you can use the IAsyncResult object that is

returned from the originating BeginReceive call). Also, IAsyncResult contains an important member

variable, AsyncState, which contains per-I/O data that was originally passed in the state parameter of

the originating BeginReceive call. Typically, you will use this per-I/O data object to pass buffer and

socket information that is related to the receive call.

Once your delegate method is called after BeginReceive has completed, you should call EndReceive

to retrieve the results of the asynchronous Receive, which is defined as

public int EndReceive(

 IAsyncResult asyncResult

);

EndReceive returns the number of bytes received in the buffer that was originally passed to

BeginReceive. Once you have the completed results, you can begin processing the data received in

the buffer.

When you call BeginReceive, BeginReceiveFrom, BeginSend, or BeginSendTo, you are

not allowed to access the supplied buffer until your delegate method has been called

indicating that the asynchronous method has completed.

The following code fragment demonstrates how to call Receive asynchronously using BeginReceive

and EndReceive. On the companion CD we have provided a sample called TCPServer that

demonstrates how to call Accept, Receive, and Send asynchronously on a TCP socket.

// Assume we have a connected socket named MySocket

PerIOData PData;

PData.s = MySocket;

public AsyncCallback AsyncReceiveCallback = new

AsyncCallback(ProcessReceiveResults);

MySocket.BeginReceive(PData.Buffer, 0, PData.Buffer.Length,

 SocketFlags.None, AsyncReceiveCallback, PData);

public static void ProcessReceiveResults(IAsyncResult ar)

{

 PerIOData PData = (PerIOData) ar.AsyncState;

 int BytesReceived = PData.s.EndReceive(ar);

 // Do something about your received results

 . . .

}

public class PerIOData

{

 // Put whatever data you need here for the delegate method.

 // Most applications will probably define the data buffer

 // here for the received data.

 byte [] Buffer = new byte[4096];

 Socket s;

 . . .

}

Exception Handling

By now you are probably wondering how to handle socket errors. In traditional

Winsock, handling errors requires checking the return code of every Winsock call that

is made in your application. In .NET Sockets using C#, this is not quite true. C# is

designed to handle errors through exception handling in which you can wrap one or

more .NET Sockets calls in a try-catch block of code. Most of the .NET Sockets calls

raise a System.Net.Sockets.SocketException when a socket error occurs. When the

exception is raised, your catch block can receive

System.Net.Sockets.SocketException object. The SocketException object has two

important properties: ErrorCode and Message. The ErrorCode property contains the

actual Winsock error code that occurred on the socket. The Message property is an

error message related to the Winsock error code. The following code fragment

demonstrates how to handle a SocketException error from the Receive method.

try

{

 MySocket.Receive(Buffer);

}

catch (SocketException err)

{

 Console.WriteLine("The Winsock error code is " + err.ErrorCode);

 Console.WriteLine("The related error message is " + err.Message);

}

Another exception worth mentioning is that you can also receive a System.

ObjectDisposedException if your application closes a socket and you continue to

perform methods in the Socket class, such as receiving data on a socket. This can

happen when you post several asynchronous calls, such as BeginReceive, and you

close your socket for whatever reason. When your outstanding BeginReceive calls

complete because of socket closure, they typically call EndReceive to retrieve results.

Because the socket is closed, EndReceive will raise an ObjectDisposedException

exception.

There are more exceptions that can be handled on each of the .NET Sockets

methods. We highly recommend reviewing the .NET Application Frameworks SDK for

more information.

Samples

Four samples are available on the companion CD: TCPCLIENT, TCPSERVER,

UDPSENDER, and UDPRECEIVER. TCPCLIENT, UDPSENDER, and

UDPRECEIVER are simple applications that handle TCP and UDP sockets using

simple blocking calls. The TCPSERVER application handles numerous TCP socket

connections demonstrating asynchronous IO methods. The TCP samples support

both the IPv4 and IPv6 protocols and the UDP samples support the IPv4 protocol

only.

As we mentioned earlier, .NET Frameworks version 1 does not natively supply an

EndPoint class to support IPv6. Each TCP sample includes new IPv6EndPoint and

IPv6Address classes that support IPv6 addressing. At some point, a future version of

.NET Application Frameworks may have native classes that are similar to the one we

provide.

Conclusion

.NET Sockets offers an exciting new way to develop a Winsock application in a new

managed code environment of the .NET Application Frameworks. One of its biggest

benefits is that you can develop one simple network application that will run on many

platforms. Another strong point is that you can use the available methods in the same

manner regardless of the programming language used. This chapter introduced you to

the basics of network programming in .NET Application Frameworks using C#. You

can also easily use the available .NET Sockets methods in Visual C++ and Visual

Basic. Chapter 14 describes Winsock programming using Visual Basic.

Chapter 14

The Microsoft Visual Basic Winsock Control

This chapter describes the Visual Basic Winsock control, whose purpose is to simplify

the Winsock interface into an easy-to-use interface natively available from Visual

Basic. Before the control was available, the only option for Winsock network

programming from Visual Basic was to import all of the Winsock functions from the

DLL and redefine the many necessary structures. This process was extremely

time-consuming and prone to numerous errors, such as mismatching the type

declarations. However, if you need the extra flexibility offered by directly importing

Winsock into Visual Basic, take a look at the Visual Basic examples that are available

in Chapter 1. Each example contains a file, WINSOCK.BAS, which imports the

necessary constants and functions. With the release of .NET Application Frameworks

version 1 and Visual Studio .NET, there is a new, much more flexible Winsock

interface called .NET Sockets, which we described in Chapter 13. It is capable of

supporting most of the Winsock functionality from a Visual Basic application in an

efficient managed environment. We highly recommend that Visual Basic applications

start using the new .NET Sockets interface for all Winsock programming tasks.

However, this chapter focuses only on the Visual Basic Winsock control. We'll first

cover the properties and methods of the control and then present several examples

that use it.

The first Winsock control was introduced with Visual Basic 5. A revised version of the

control became available with the release of Visual Studio Service Pack 2. Visual

Basic 6 includes the latest version of the Winsock control. The various version

differences are discussed toward the end of this chapter.

The Winsock control provides only a basic interface to the Winsock APIs. Unlike

Winsock, which is a protocol-independent interface, the Winsock control can use only

the IPv4 transport. In addition, it is based on the Winsock 1.1 specification. The

control supports both TCP and UDP, but in a rather limited sense. The control itself is

not able to access any socket options, which means that features such as multicasting

and broadcasting aren't available. Basically, the Winsock control is useful only if you

require basic data networking capabilities. It does not provide the best performance

because it buffers data within the control before it passes it to the system, thus adding

a bit of overhead and uncertainty.

Properties

Now that you have an idea of what functionality the Winsock control provides, let's

look at the properties it exposes. Table 14-1 contains a list of the properties available

for affecting the control's behavior and for obtaining information about the control's

state.

Table 14-1Winsock Control Properties

Property

Name

Return

Value
Read-Only? Description

BytesReceived Long Yes

Returns the number of bytes pending in

the receive buffer. Use the GetData

method to retrieve the data.

LocalHostName String Yes Returns the local machine name.

LocalIP String Yes
Returns a string of the dotted decimal IP

address of the local machine.

LocalPort Long No

Returns or sets the local port to use.

Specifying 0 for the port tells the system

to randomly choose an available port. In

general, only a client uses 0.

Protocol Long No

Returns or sets the protocol for the

control, which supports either TCP or

UDP. The constant values to set are

sckTCPProtocol and sckUDPProtocol,

which correspond to 0 and 1,

respectively.

RemoteHost String No

Returns or sets the remote machine

name. You can use either the string host

name or the dotted decimal string

representation.

RemoteHostIP String Yes

Returns the remote machine's IP

address. For TCP connections, this field

is set upon a successful connection. For

UDP operations, this field is set upon the

DataArrival event, which then contains

the sending machine's IP address.

RemotePort Long No
Returns or sets the remote port to

connect to.

SocketHandle Long Yes
Returns a value that corresponds to the

socket handle.

State Integer Yes

Returns the state of the control, which is

an enumerated type. See Table 14-2 for

the socket state constants.

After reading Chapter 1, you should be familiar with these basic properties. They are

clearly analogous to the basic Winsock functions presented in the client/server

examples discussed in that chapter. A few properties that don't relate well to the

Winsock API do need to be set to use the control properly. First, the Protocol property

needs to be set to tell the control which type of socket you're looking

for—SOCK_STREAM or SOCK_DGRAM. The control performs the actual socket

creation under the hood, and this property is the only control you have over it. The

SocketHandle property can be read after a connection succeeds or after a server

binds to wait for connections. This is useful if you want to pass the handle to other

Winsock API functions imported from a DLL. The State property can be used to get

information about what the control is currently doing. This is important because the

control is asynchronous, and events can be fired at any time. Use this property to

make sure that the socket is in a valid state for any subsequent operations. Table 14-2

contains the possible socket states and their meanings.

Table 14-2Socket States

Constant Value Meaning

sckClosed 0 Default. Closed.

sckOpen 1 Open.

sckListening 2 Listening for connections.

sckConnectionPending 3
Connection request has arrived but has not

completed yet.

sckResolvingHost 4 Host name is being resolved.

sckHostResolved 5 Host name resolution has completed.

sckConnecting 6 Connection request started but has not completed.

sckConnected 7 Connection completed.

sckClosing 8 Peer has initiated a close.

sckError 9 An error has occurred.

Methods

The Winsock control has only a handful of methods. With a couple of exceptions, most

of the method names mirror their Winsock equivalents. The method to read pending

data is named GetData. Usually, you would call the GetData method once the

DataArrival event is triggered, notifying you that data has arrived. The method for

sending data is named SendData. In addition, a method named PeekData is similar to

calling the Winsock recv function with the MSG_PEEK option. As always, message

peeking is evil and should be avoided at all costs. Table 14-3 lists the available

methods with their parameters. The methods will be discussed in more detail in the

client and server example sections later in this chapter.

Table 14-3Winsock Control Methods

Method Parameters
Return

Value
Description

Accept RequestID Void

For TCP connections only. Use this method to

accept incoming connections when handling a

ConnectionRequest event.

Bind
LocalPort

LocalIP
Void

Binds the socket to the given local port and IP.

Use Bind if you have multiple network adapters.

Bind must be called before Listen.

Close None Void Closes the connection or the listening socket.

Connect
RemoteHost

RemotePort
Void

Establishes a TCP connection to the given

RemoteHost on the given RemotePort number.

GetData

Data

Type

MaxLen

Void

Retrieves the current data pending. The Type

and MaxLen parameters are optional. The Type

parameter defines the type of data to be read.

The MaxLen parameter specifies how many

bytes or characters to retrieve. GetData ignores

the MaxLen parameter for types other than byte

array and string.

Listen None Void
Creates a socket and places it in listen mode.

Listen is used for TCP connections only.

PeekData

Data

Type

MaxLen

Void
Behaves exactly like GetData except that the

data is not removed from the system's buffer.

SendData Data Void

Sends data to the remote computer. If a

UNICODE string is passed, it will be converted

to an ANSI string first. Always use a byte array

for binary data.

Events

Events are asynchronous routines that get called upon a specific event. In your Visual

Basic application, you must handle the various events that the Winsock control might

generate to use the control successfully. In general, these events are triggered by

actions that the peer initiates. For example, the TCP half-close is triggered when one

side of a TCP connection closes the socket. The side initiating the close generates a

FIN, and the peer responds with an ACK to acknowledge the close request. The peer

receiving the FIN has the Close event triggered. This tells your Winsock application

that the other side is no longer sending data. Your application then reads any

remaining data and calls the Close method on your end to completely shut down the

connection. Table 14-4 lists all possible Winsock events that can be triggered, along

with a description of each event.

Table 14-4Winsock Control Events

Event Arguments Description

Close None
Occurs when the remote computer closes

the connection

Connect None
Occurs after the Connect method completes

successfully

ConnectionRequest RequestID
Occurs when a remote machine requests a

connection

DataArrival bytesTotal Occurs when new data arrives

Error

Number

Description

Scode

Source

HelpFile

HelpContext

CancelDisplay

Occurs whenever a Winsock error is

generated

SendComplete None Occurs upon completion of a send operation

SendProgress
bytesSent

bytesRemaining
Occurs while data is being sent

UDP Example

Let's examine a sample UDP application. Look at the sample Visual Basic project SOCKUDP.VBP in the

Chapter 14 samples directory on the CD. When the project is compiled and run, you will see a dialog similar to

the one illustrated in Figure 14-1.

This sample application both sends and receives UDP messages, so you can use just one instance to send

and receive messages. In addition, all the code behind the form, buttons, and Winsock controls is given in the

following sample:

Figure 14-1 Sample UDP application

Option Explicit

Private Sub cmdExit_Click()

 Unload Me

End Sub

Private Sub cmdSendDgram_Click()

 ' If the socket state is closed, we need to bind to a

 ' local port and also to the remote host's IP address and port

 If (sockSend.State = sckClosed) Then

 sockSend.RemoteHost = txtRecipientIP.Text

 sockSend.RemotePort = CInt(txtSendRemotePort.Text)

 sockSend.Bind CInt(txtSendLocalPort.Text)

 cmdCloseSend.Enabled = True

 End If

 '

 ' Now we can send the data

 '

 sockSend.SendData txtSendData.Text

End Sub

Private Sub cmdListen_Click()

 ' Bind to the local port

 '

 sockRecv.Bind CInt(txtRecvLocalPort.Text)

 '

 ' Disable this button because it would be an error to bind

 ' twice (a close needs to be done before rebinding occurs)

 '

 cmdListen.Enabled = False

 cmdCloseListen.Enabled = True

End Sub

Private Sub cmdCloseSend_Click()

 ' Close the sending socket, and disable the Close button

 '

 sockSend.Close

 cmdCloseSend.Enabled = False

End Sub

Private Sub cmdCloseListen_Click()

 ' Close the listening socket

 '

 sockRecv.Close

 ' Enable the right buttons

 '

 cmdListen.Enabled = True

 cmdCloseListen.Enabled = False

 lstRecvData.Clear

End Sub

Private Sub Form_Load()

 ' Initialize the socket protocols, and set up some default

 ' labels and values

 '

 sockSend.Protocol = sckUDPProtocol

 sockRecv.Protocol = sckUDPProtocol

 lblHostName.Caption = sockSend.LocalHostName

 lblLocalIP.Caption = sockSend.LocalIP

 cmdCloseListen.Enabled = False

 cmdCloseSend.Enabled = False

 Timer1.Interval = 500

 Timer1.Enabled = True

End Sub

Private Sub sockSend_Error(ByVal Number As Integer, _

 Description As String, ByVal Scode As Long, _

 ByVal Source As String, ByVal HelpFile As String, _

 ByVal HelpContext As Long, CancelDisplay As Boolean)

 MsgBox Description

End Sub

Private Sub sockRecv_DataArrival(ByVal bytesTotal As Long)

 Dim data As String

 ' Allocate a string of sufficient size, and get the data;

 ' then add it to the list box

 data = String(bytesTotal + 2, Chr$(0))

 sockRecv.GetData data, , bytesTotal

 lstRecvData.AddItem data

 ' Update the remote IP and port labels

 '

 lblRemoteIP.Caption = sockRecv.RemoteHostIP

 lblRemotePort.Caption = sockRecv.RemotePort

End Sub

Private Sub sockRecv_Error(ByVal Number As Integer, _

 Description As String, ByVal Scode As Long, _

 ByVal Source As String, ByVal HelpFile As String, _

 ByVal HelpContext As Long, CancelDisplay As Boolean)

 MsgBox Description

End Sub

Private Sub Timer1_Timer()

 ' When the timer goes off, update the socket status labels

 '

 Select Case sockSend.State

 Case sckClosed

 lblSenderState.Caption = "sckClosed"

 Case sckOpen

 lblSenderState.Caption = "sckOpen"

 Case sckListening

 lblSenderState.Caption = "sckListening"

 Case sckConnectionPending

 lblSenderState.Caption = "sckConnectionPending"

 Case sckResolvingHost

 lblSenderState.Caption = "sckResolvingHost"

 Case sckHostResolved

 lblSenderState.Caption = "sckHostResolved"

 Case sckConnecting

 lblSenderState.Caption = "sckConnecting"

 Case sckClosing

 lblSenderState.Caption = "sckClosing"

 Case sckError

 lblSenderState.Caption = "sckError"

 Case Else

 lblSenderState.Caption = "unknown"

 End Select

 Select Case sockRecv.State

 Case sckClosed

 lblReceiverState.Caption = "sckClosed"

 Case sckOpen

 lblReceiverState.Caption = "sckOpen"

 Case sckListening

 lblReceiverState.Caption = "sckListening"

 Case sckConnectionPending

 lblReceiverState.Caption = "sckConnectionPending"

 Case sckResolvingHost

 lblReceiverState.Caption = "sckResolvingHost"

 Case sckHostResolved

 lblReceiverState.Caption = "sckHostResolved"

 Case sckConnecting

 lblReceiverState.Caption = "sckConnecting"

 Case sckClosing

 lblReceiverState.Caption = "sckClosing"

 Case sckError

 lblReceiverState.Caption = "sckError"

 Case Else

 lblReceiverState.Caption = "unknown"

 End Select

End Sub

When you look at the form, you see two Winsock controls. One of them sends datagrams, and the other

receives them. You can also see three group boxes: one for the sender, one for the receiver, and one for

general Winsock information. For the sender, you need to put the recipient's host name or IP address

somewhere. When you set the RemoteHost property, you can use either the machine's textual name or a

string representation of the dotted-decimal numeric IP address. The control resolves the name if needed. You

also need the remote port to which you will send the UDP packets. Also, notice the text box for the local port,

txtSendLocalPort. For the sender, it doesn't really matter which local port you send the data on, only which

port you're sending to. If you leave the local port set to 0, the system will assign an unused port. The last text

box, txtSendData, is for the string data to be sent. In addition, there are two command buttons: one for

sending the data and one for closing the socket. To send datagrams, you must bind the Winsock control to a

remote address, a remote port, and a local port before you can send any data. If you want to change any one

of these three parameters, you need to close the socket first and then rebind to the new parameters. That is

why the form has a Close Socket button.

Sending UDP Messages

Now that you know the sender's general capabilities, let's look at the code behind the scenes. First, look at the

Form_Load routine. The first step is to set the Protocol property of the sockSend Winsock control to UDP by

using the sckUDPProtocol enumerated type. The other commands in this routine don't apply to the sending

functionality except for disabling the cmdCloseSend command button. We do this for completeness because

calling the Close method on an already closed control does nothing. Note that the default state of the Winsock

control is closed.

Next, look at the cmdSendDgram_Click routine, which is triggered by clicking the Send Data button. This is

the heart of sending a UDP message. The first step in the code is to check the socket's state. If the socket is

in the closed state, the code binds the socket to a remote address, a remote port, and a local port. Once the

code binds a UDP Winsock control with these parameters, the state of the control changes from sckClosed to

sckOpen. If the code doesn't perform this check and attempts to bind the socket on every send, the run-time

error 40020, “Invalid operation at current state,” will be generated. Once a socket is bound, it remains bound

until it is closed. This is why the code enables the Close Socket button for the sending socket once the control

is bound. The last step is to call the SendData method with the data the user wants to send. When the

SendData method returns, the code has finished sending data.

Only two other subroutines are associated with sending UDP messages. The first is cmdCloseSend, which, as

its name implies, closes the sending socket, allowing the user to change the remote host, remote port, or local

port parameter before sending data again. The other routine is sockSend_Error, which is a Winsock event.

This event is triggered whenever a Winsock error is generated. Because UDP is unreliable, few errors will be

generated. If an error does occur, the code simply prints out the error's description. The only message a user

might see in this application is a destination unreachable message.

Receiving UDP Messages

As you can see, sending a UDP packet with the Winsock control is simple and straightforward. Receiving

UDP packets is even easier. Let's go back to the Form_Load routine to see what needs to be done to receive

a UDP message. As you saw with the sending Winsock control, the code sets the Protocol property to UDP.

The code also disables the Close Listen button. Again, closing an already closed socket won't hurt, but the

code does it for the sake of completeness. Also, it's always a good idea to think, “What could happen if I call

method X?” at different points in the program. This is the source of most of the problems developers

encounter with the control: calling a method when the state of control is invalid. An example of this is calling

the Connect method on a Winsock control that is already connected.

To listen for incoming UDP packets, let's look at the cmdListen_Click routine. This is the handler for the Listen

button. The only necessary step is to call the Bind method on the receiving Winsock control, passing the local

port on which the user wants to listen for incoming UDP datagrams. When listening for incoming UDP

packets, the code needs only the local port—the remote port on which the data was sent is not relevant. After

the code binds the control, it disables the cmdListen button—this prevents the possibility of the user clicking

the Listen button twice. Trying to bind an already bound control will cause a run-time error.

At this point, the sockRecv control is registered to receive UDP data. When the control receives UDP data on

the port it's bound to, the DataArrival event is triggered. This event is implemented in the

sockRecv_DataArrival routine. The parameter passed into the event, bytesTotal, is the number of bytes

available to be read. The code allocates a string slightly larger than the amount of data being read. Then it

calls the GetData method, passing the allocated string as the first parameter. The second parameter defaults

to the Visual Basic type vbString, and the third parameter specifies the number of bytes that need to be read,

which, in this example is the value bytesTotal. If the code requests to read a smaller number of bytes than that

specified by the bytesTotal parameter, a run-time error is generated. Once the data is read into the character

buffer, the code adds it to the list box of messages read. The last few steps in this subroutine set the label

captions for the remote host's IP address and port number. Upon receipt of each UDP packet, the

RemoteHostIP and RemotePort properties are set to the remote host's IP address and port number for the

packet just received. Therefore, if the program receives multiple UDP packets from several hosts, the values

of these properties will change often.

The last two subroutines that are associated with receiving UDP messages are cmdCloseListen_Click and

sockRecv_Error. The user invokes the cmdCloseListen_Click handler by clicking the Close Listen button. The

routine simply calls the Close method on the Winsock control. Closing a UDP control frees the underlying

socket descriptor. The sockRecv_Error event is called whenever a Winsock error is generated. As we

mentioned previously in the UDP send section, few UDP errors are generated to begin with because of their

unreliable nature.

Obtaining Winsock Information

The last part of our UDP example is the Winsock Information group box. The local name and local IP labels

are set at form load time. As soon as the form loads and Winsock controls are instantiated, the properties

LocalHostName and LocalIP are set to the host name and IP address of the host machine and can be read at

any time. The next two labels, Sender state and Receiver state, display the current state of the two Winsock

controls that the application uses. The state information is updated every half second. This is where the Timer

control comes in. Every 500 milliseconds, the Timer control triggers the Timer handler, which queries the

socket states and updates the labels. We print the socket states for informative purposes only. The last two

labels, Remote IP and Remote Port, are set whenever a UDP message is received, as discussed in the

previous paragraph.

Running the UDP Example

Now that you understand how to send and receive UDP messages, let's take a look at the example as it runs.

The best way to test it is to run an instance of the application on three separate machines. On one of the

applications, click the Listen button. On the other two, set the Recipient's Name/IP field to the name of the

machine on which the first application is running. This can be either a host name or an IP address. Now click

the Send Datagram button a few times, and the messages should appear in the receiver's message window.

Upon receipt of each message, the Winsock Information fields should be updated with the sender's IP address

and the port number on which the message was sent. You can even use the Sender commands on the same

application as the receiver to send messages on the same machine.

Another interesting test is using either subnet-directed broadcasts or broadcast datagrams. Assuming that

you're testing all three machines on the same subnet, you can send a datagram to a specified subnet and all

listening applications receive the message. For example, on our test machines we have two single-homed

machines with IP addresses 157.54.185.186 and 157.54.185.224. The last machine is multihomed, with the IP

addresses 169.254.26.113 and 157.54.185.206. As you can see, all three machines share the subnet

157.54.185.255.

Let's digress for a moment to discuss an important detail. If you want to receive UDP messages, you must

implicitly bind to the first IP address stored in the network bindings when you call the Bind method. This is

sufficient if your machine has only one network card. In some cases, however, a machine has more than one

network interface and therefore more than one IP address. In these cases, the second parameter to the Bind

method is the IP address on which to bind. Unfortunately, the Winsock control property LocalIP returns only

one IP address, and the control provides no other method for obtaining other IP addresses associated with the

local machine.

Now let's try some broadcasting. Close each sending or listening socket on each of the instances running. On

the two single-homed machines, click the Listen button so that each machine can receive datagram

messages. We don't use the multihomed machine because we aren't binding to any particular IP address in

the code. On the third machine, enter the recipient's address as 157.54.185.255 and click the Send Data

button a few times. You should see the message being received by both listening applications. If your sending

machine is also multihomed, you might be wondering how it knows which network interface to send the

datagram over. It is one of the routing table's functions to determine the best interface to send the message

over, given the message's destination address and the address of each interface on the local machine. If you

would like to learn more about subnets and routing, consult a book on TCP/IP such as TCP/IP Illustrated,

Volume 1, by W. Richard Stevens (Addison-Wesley, 1994), or TCP/IP: Architecture, Protocols, and

Implementation with IPv6 and IP Security, by Dr. Sidnie Feit (McGraw-Hill, 1996). The last test to try is to

close the sender's socket on the third machine, enter the recipient's address as 255.255.255.255, and click

the Send Datagram button a few times. The results should be the same: the other two listening programs

should receive the message. However, the only difference on a multihomed machine is that the UDP message

is being broadcast on each network attached to the machine.

UDP States

You might be a bit confused by the order in which method calls should be made to successfully send or

receive datagrams. As mentioned previously, the most common mistake when programming the Winsock

control is to call a method whose operation is not valid for the current state of the control. To help prevent this

kind of mistake, look at Figure 14-2, which is a state diagram of the socket states when you are using UDP

messages. Notice that the default starting state is always sckClosed, and no errors are generated for invalid

host names.

Figure 14-2 UDP state diagram

TCP Example

Using a Winsock control with the TCP protocol is a bit more involved and complex than using the control with

its UDP counterpart. As we did with UDP, we will present a sample TCP application and go over its specifics

in order to gain an understanding of the steps necessary to successfully use a TCP connection. Figure 14-3

shows the application running.

Figure 14-3 Sample TCP application

Let's take a look at the form in Figure 14-3 to gain an understanding of this application's capabilities. Again,

you'll notice three group boxes: TCP Server, TCP Client, and Winsock Information. First, we'll discuss the

TCP Server portion of the application. The server has a text box, txtServerPort, for the local port that the

server will be bound to in order to listen for incoming client connections. Also, the server has two buttons, one

to put the server in listening mode and the other to shut down the server and stop accepting incoming

connections. Finally, the server has a single Winsock control named sockServer. If you take a look at the

properties page, you'll see that the Index property has been set to 0. The control is actually an array capable

of holding many instances of the Winsock control. The 0 signifies that at form load time only one instance

(element 0 of the array) will be created. At any time we can dynamically load another instance of a Winsock

control into an element of the array.

The Winsock control array is the basis of our server capabilities. Remember that a single Winsock control has

only one socket handle associated with it. In Chapter 1, you learned that when a server accepts an incoming

connection, a new socket is created to handle that connection. Our application is designed to dynamically load

additional Winsock controls on a client connection so that the connection can be passed to the newly loaded

control without interrupting the server socket to handle the connection. Another way to accomplish this is to

put x number of Winsock controls on the form at design time. However, this is wasteful and does not scale

well. When the application begins, a great deal of time will be spent loading all the resources necessary for

every control; there is also the issue of how many controls to use. By placing x number of controls, you limit

yourself to x number of concurrent clients. If your application requirements allow for only a fixed number of

concurrent connections, placing a fixed number of Winsock controls on the form will work and is probably a bit

simpler than using an array. For most applications, however, an array of Winsock controls is the best way to

go.

The following is the code sample for this section. You can find the code for this Visual Basic project on the

companion CD in a file called SOCKTCP.VBP.

Option Explicit

' The index value of the last Winsock control dynamically loaded

' in the sockServer array

Private ServerIndex As Long

Private Sub cmdCloseListen_Click()

 Dim itemx As Object

 ' Close the server's listening socket. No more

 ' clients will be allowed to connect.

 '

 sockServer(0).Close

 cmdListen.Enabled = True

 cmdCloseListen.Enabled = False

 Set itemx = lstStates.ListItems.Item(2)

 itemx.SubItems(2) = "-1"

End Sub

Private Sub cmdConnect_Click()

 ' Have the client control attempt to connect to the

 ' specified server on the given port number

 '

 sockClient.LocalPort = 0

 sockClient.RemoteHost = txtServerName.Text

 sockClient.RemotePort = CInt(txtPort.Text)

 sockClient.Connect

 cmdConnect.Enabled = False

End Sub

Private Sub cmdDisconnect_Click()

 Dim itemx As Object

 ' Close the client's connection and set up the command

 ' buttons for subsequent connections

 '

 sockClient.Close

 cmdConnect.Enabled = True

 cmdSendData.Enabled = False

 cmdDisconnect.Enabled = False

 ' Set the port number to -1 to indicate no connection

 '

 Set itemx = lstStates.ListItems.Item(1)

 itemx.SubItems(2) = "-1"

End Sub

Private Sub cmdExit_Click()

 Unload Me

End Sub

Private Sub cmdListen_Click()

 Dim itemx As Object

 ' Put the server control into listening mode on the given

 ' port number

 '

 sockServer(0).LocalPort = CInt(txtServerPort.Text)

 sockServer(0).Listen

 Set itemx = lstStates.ListItems.Item(2)

 itemx.SubItems(2) = sockServer(0).LocalPort

 cmdCloseListen.Enabled = True

 cmdListen.Enabled = False

End Sub

Private Sub cmdSendData_Click()

 ' If we're connected, send the given data to the server

 '

 If (sockClient.State = sckConnected) Then

 sockClient.SendData txtSendData.Text

 Else

 MsgBox "Unexpected error! Connection closed"

 Call cmdDisconnect_Click

 End If

End Sub

Private Sub Form_Load()

 Dim itemx As Object

 lblLocalHostname.Caption = sockServer(0).LocalHostName

 lblLocalHostIP.Caption = sockServer(0).LocalIP

 ' Initialize the Protocol property to TCP because that's

 ' all we'll be using

 '

 ServerIndex = 0

 sockServer(0).Protocol = sckTCPProtocol

 sockClient.Protocol = sckTCPProtocol

 ' Set up the buttons

 '

 cmdDisconnect.Enabled = False

 cmdSendData.Enabled = False

 cmdCloseListen.Enabled = False

 ' Initialize the ListView control that contains the

 ' current state of all Winsock controls created (not

 ' necessarily connected or being used)

 '

 Set itemx = lstStates.ListItems.Add(1, , "Local Client")

 itemx.SubItems(1) = "sckClosed"

 itemx.SubItems(2) = "-1"

 Set itemx = lstStates.ListItems.Add(2, , "Local Server")

 itemx.SubItems(1) = "sckClosed"

 itemx.SubItems(2) = "-1"

 ' Initialize the timer, which controls the rate of refresh

 ' on the socket states above

 '

 Timer1.Interval = 500

 Timer1.Enabled = True

End Sub

Private Sub sockClient_Close()

 sockClient.Close

End Sub

Private Sub sockClient_Connect()

 Dim itemx As Object

 ' The connection was successful: enable the transfer data

 ' buttons

 cmdSendData.Enabled = True

 cmdDisconnect.Enabled = True

 Set itemx = lstStates.ListItems.Item(1)

 itemx.SubItems(2) = sockClient.LocalPort

End Sub

Private Sub sockClient_Error(ByVal Number As Integer, _

 Description As String, ByVal Scode As Long, _

 ByVal Source As String, ByVal HelpFile As String, _

 ByVal HelpContext As Long, CancelDisplay As Boolean)

 ' An error occurred on the Client control: print a message,

 ' and close the control. An error puts the control in the

 ' sckError state, which is cleared only when the Close

 ' method is called.

 MsgBox Description

 sockClient.Close

 cmdConnect.Enabled = True

End Sub

Private Sub sockServer_Close(index As Integer)

 Dim itemx As Object

 ' Close the given Winsock control

 '

 sockServer(index).Close

 Set itemx = lstStates.ListItems.Item(index + 2)

 lstStates.ListItems.Item(index + 2).Text = "---.---.---.---"

 itemx.SubItems(2) = "-1"

End Sub

Private Sub sockServer_ConnectionRequest(index As Integer, _

 ByVal requestID As Long)

 Dim i As Long, place As Long, freeSock As Long, itemx As Object

 ' Search through the array to see whether there is a closed

 ' control that we can reuse

 freeSock = 0

 For i = 1 To ServerIndex

 If sockServer(i).State = sckClosed Then

 freeSock = i

 Exit For

 End If

 Next i

 ' If freeSock is still 0, there are no free controls

 ' so load a new one

 '

 If freeSock = 0 Then

 ServerIndex = ServerIndex + 1

 Load sockServer(ServerIndex)

 sockServer(ServerIndex).Accept requestID

 place = ServerIndex

 Else

 sockServer(freeSock).Accept requestID

 place = freeSock

 End If

 ' If no free controls were found, we added one above.

 ' Create an entry in the ListView control for the new

 ' control. In either case, set the state of the new

 ' connection to sckConnected.

 '

 If freeSock = 0 Then

 Set itemx = lstStates.ListItems.Add(, , _

 sockServer(ServerIndex).RemoteHostIP)

 Else

 Set itemx = lstStates.ListItems.Item(freeSock + 2)

 lstStates.ListItems.Item(freeSock + 2).Text = _

 sockServer(freeSock).RemoteHostIP

 End If

 itemx.SubItems(2) = sockServer(place).RemotePort

End Sub

Private Sub sockServer_DataArrival(index As Integer, _

 ByVal bytesTotal As Long)

 Dim data As String, entry As String

 ' Allocate a large enough string buffer and get the

 ' data

 '

 data = String(bytesTotal + 2, Chr$(0))

 sockServer(index).GetData data, vbString, bytesTotal

 ' Add the client's IP address to the beginning of the

 ' message and add the message to the list box

 '

 entry = sockServer(index).RemoteHostIP & ": " & data

 lstMessages.AddItem entry

End Sub

Private Sub sockServer_Error(index As Integer, _

 ByVal Number As Integer, Description As String, _

 ByVal Scode As Long, ByVal Source As String, _

 ByVal HelpFile As String, ByVal HelpContext As Long, _

 CancelDisplay As Boolean)

 ' Print the error message and close the specified control.

 ' An error puts the control in the sckError state, which

 ' is cleared only when the Close method is called.

 MsgBox Description

 sockServer(index).Close

End Sub

Private Sub Timer1_Timer()

 Dim i As Long, index As Long, itemx As Object

 ' Set the state of the local client Winsock control

 '

 Set itemx = lstStates.ListItems.Item(1)

 Select Case sockClient.State

 Case sckClosed

 itemx.SubItems(1) = "sckClosed"

 Case sckOpen

 itemx.SubItems(1) = "sckOpen"

 Case sckListening

 itemx.SubItems(1) = "sckListening"

 Case sckConnectionPending

 itemx.SubItems(1) = "sckConnectionPending"

 Case sckResolvingHost

 itemx.SubItems(1) = "sckResolvingHost"

 Case sckHostResolved

 itemx.SubItems(1) = "sckHostResolved"

 Case sckConnecting

 itemx.SubItems(1) = "sckConnecting"

 Case sckConnected

 itemx.SubItems(1) = "sckConnected"

 Case sckClosing

 itemx.SubItems(1) = "sckClosing"

 Case sckError

 itemx.SubItems(1) = "sckError"

 Case Else

 itemx.SubItems(1) = "unknown: " & sockClient.State

 End Select

 ' Now set the states for the listening server control as

 ' well as any connected clients

 '

 index = 0

 For i = 2 To ServerIndex + 2

 Set itemx = lstStates.ListItems.Item(i)

 Select Case sockServer(index).State

 Case sckClosed

 itemx.SubItems(1) = "sckClosed"

 Case sckOpen

 itemx.SubItems(1) = "sckOpen"

 Case sckListening

 itemx.SubItems(1) = "sckListening"

 Case sckConnectionPending

 itemx.SubItems(1) = "sckConnectionPending"

 Case sckResolvingHost

 itemx.SubItems(1) = "sckResolvingHost"

 Case sckHostResolved

 itemx.SubItems(1) = "sckHostResolved"

 Case sckConnecting

 itemx.SubItems(1) = "sckConnecting"

 Case sckConnected

 itemx.SubItems(1) = "sckConnected"

 Case sckClosing

 itemx.SubItems(1) = "sckClosing"

 Case sckError

 itemx.SubItems(1) = "sckError"

 Case Else

 itemx.SubItems(1) = "unknown"

 End Select

 index = index + 1

 Next i

End Sub

TCP Server

Now we'll examine the code behind the form. Take a look at the Form_Load procedure in the previous code

sample. The first two statements simply set two labels to the local machine's host name and IP address.

These labels are in the Winsock Information group box, which serves the same purpose as the informational

box in the UDP example. Next, you'll see the initialization of the server control, sockServer, to the TCP

protocol. Element 0 of the Winsock control array is always the listening socket. After this, the procedure

disables the Close Listen button, which is enabled again later when the server starts to listen for clients. The

last part of the procedure sets up the ListView control, lstStates. This control is used to display the current

state of every Winsock control in use. The code adds entries for the client and server controls so that they are

elements 1 and 2, respectively. Any other dynamically loaded Winsock controls will be added after these two.

The entry for the server control is named “Local Server.” As in the UDP example, the procedure sets a timer

to regulate how often the socket states are updated. By default, the timer triggers the update every half

second.

From here, let's take a look at the two buttons that the server uses. The first is the Listen button, whose

function is simple. The handler for the Listen button, cmdListen, sets the LocalPort property to the value the

user entered in the txtServerPort text box. The local port is the most important field to a listening socket. This

is the port all clients attempt to connect to in order to establish a connection. After setting the LocalPort

property, all the code needs to do is call the Listen method. Once the Listen button's handler puts the

sockServer control in listening mode, the program waits for the ConnectionRequest event to be fired on our

sockServer control to indicate a client connection. The user can click the other button, Close Listen, to shut

down the sockServer control. The Close Listen button's handler calls the Close method on sockServer(0),

preventing any additional client connections.

The most important event for a TCP server is the ConnectionRequest event, which handles incoming client

requests. When a client requests a connection, two options exist for handling the request. First, you can use

the server socket to handle the client. The drawback of this method is that it will close the listening socket and

prevent any other connections from being serviced. This method is accomplished by simply calling the Accept

method on the server control with the requestID that is passed into the event handler. The other way to handle

a client's connection request is to pass the connection to a separate control. This is what the companion CD

example SockTCP.VBP does. Remember that you have an array of Winsock controls, and element 0 is the

listening socket. The first thing to do is search through the array for a control whose state is closed (for

example, query the State property for the value sckClosed). Of course, there are no free controls for the first

loop because none are loaded. In this case, the first loop you see is not executed and the variable freeSock is

still 0, indicating that no free controls were found. The next steps dynamically load a new Winsock control by

incrementing the ServerIndex counter (the place in the array in which to load the control) and then executing

the following statement:

Load sockServer(ServerIndex)

Now that a new Winsock control is loaded, the procedure can call the Accept method with the given request

ID. The remaining statements add a new entry in the lstStates ListView control so that the program can

display the current state of the new Winsock control.

With an already loaded Winsock control whose state is closed, the procedure simply would have reused that

control by calling the Accept method on it. Continually loading and unloading controls is a bad idea because it

decreases performance. The load and unload processes are expensive. There is also a memory leak when

the Winsock control is unloaded, which we will discuss in detail later in this chapter.

The remaining server-side functions are straightforward. The sockServer_Close event is triggered whenever

the client calls the Close method on its end. All the server does is close the socket on this side and clear the

IP address entry in the ListView control by setting it to “---.---.---.---” and setting the entry's port to -1. The

sockServer_DataArrival function allocates a buffer to receive the data and then calls the GetData method to

perform the read. Afterward, the message is added to the lstMessages list box. The last server function is the

Error event handler. Upon an error, the handler displays the text message and closes the control.

TCP Client

Now that you have seen how the server is implemented, let's examine the client. The only initialization that the

client performs in the Form_Load procedure is setting the protocol of sockClient to TCP. Other than the

initialization code, three command button handlers belong to the client and several event handlers. The first

button is Connect, and its handler is named cmdConnect_Click. LocalPort is set to 0 because it doesn't matter

what the local system assigns because the port number is on our machine. RemoteHost and RemotePort are

set according to the values in the txtServerName and txtPort fields, respectively. That's all the information

required to establish a TCP connection to a server. The only task left is to call the Connect method. After that,

the control's state is in the process of either resolving the name or connecting (the control's state will be

sckResolvingHost, sckResolved, or sckConnecting). When the connection finally is established, the state

changes to sckConnected and the Connect event is triggered. The next section covers the various states and

the transitions among them.

Once the connection is established, the handler sockClient_Connect is called. This handler simply enables the

Send Data and Disconnect buttons. In addition, the port number on which the connection is established on the

local machine is updated for the Local Client entry in the lstStates ListView control. Now you can send and

receive data. There are two other event handlers: sockClient_Close and sockClient_Error. The

sockClient_Close event handler simply closes the client Winsock control, and the sockClient_Error event

handler displays a message box with the error description and then closes the control.

The last two pieces to the client are the remaining command buttons: Send Data and Disconnect. The

subroutine cmdSendData_Click handles the Send Data button. If the Winsock control is connected, the routine

calls the SendData method with the string in the txtSendData text box. Finally, the Disconnect button is

handled by cmdDisconnect_Click. This handler simply closes the client control, resets a number of buttons to

their initial state, and updates the Local Client entry in the lstStates ListView control.

Obtaining Winsock Information

The last part of the TCP example is the Winsock Information section. We have already explained this a bit, but

we'll briefly present it here for clarity. As with the UDP example, a timer triggers an update on the current

socket states of all loaded Winsock controls. The default refresh rate is set to 500 milliseconds. Upon load,

two entries are added to the lstStates Listview control. The first is the Local Client label that corresponds to

the client Winsock control, sockClient. The second entry is Local Server, which refers to the listening socket.

Whenever a new client connection is established, a new Winsock control is dynamically loaded and a new

entry is added to the sckStates control; the name of the entry is the client's IP address. When a client

disconnects, the entry is set to the default state with the IP address “---.---.---.---” and port number equal to -1.

Of course, if another client connects, it reuses any unused controls in the server array. The local machine's IP

address and host name are also displayed.

Running the TCP Example

Again, running the TCP example is a straightforward process. Start three instances of the application, each on

a separate machine. With TCP, it doesn't matter if any of the machines are multihomed because the routing

table decides which interface is more appropriate for any given TCP connection. On one of the TCP

examples, start the listening socket by clicking the Listen button. You'll notice that the Local Server entry in the

State Information ListView control changes from sckClosed to sckListening and the port number is listed as

5150. The server is now ready to accept client connections.

On one of the clients, set the Server Name field to the name of the machine running the first instance of the

application (the listening server) and then click the Connect button. On the client application, the Local Client

entry in the State Information list is now in the sckConnected state and the local port on which the connection

was made is updated to a non-negative number. In addition, on the server side, an entry is added to the State

Information list whose name is the IP address of the client that just connected. The new entry's state is

sckConnected and also contains the port number on the server side on which the connection was established.

Now you can type text into the Message text field on the client and click the Send Data button a few times.

You will see the messages appearing in the Messages list box on the server side. Next, disconnect the client

by clicking the Disconnect button. On the client side, the Local Client entry in the State Information list is set

back to sckClosed and the port number value to -1. For the server, the entry corresponding to the client is not

removed; it is simply marked as unused with the name set to a dashed IP address, the state to sckClosed,

and the port to -1.

On the third machine, enter the name of the listening server in the Server Name text box and make a client

connection. The results are similar to those for the first client except that the server uses the same Winsock

control to handle this client as it did for the first. If a Winsock control is in the closed state, it can be used to

accept any incoming connection. The final step you might want to try is using the client on the server

application to make a connection locally. After you make the connection, a new entry is added to the Socket

Information list, as in the earlier examples. The only difference is that the IP listed is the same as the IP

address of the server. Play with the clients and server a bit to get a feel for how they interact and what results

each command triggers.

TCP States

Using the Winsock control with the TCP protocol is much more complicated than using UDP sockets because

many more socket states are possible. Figure 14-4 is a state diagram for a TCP socket. The default start state

is sckClosed. The transitions are straightforward and they don't require explanation except for the sckClosing

state. Because of the TCP half-close, there are two transition paths from this state for the SendData method.

Once one side of the TCP connection issues a Close method, that side can't send any more data. The other

side of the connection receives the Close event and enters the sckClosing state but can still send data. This is

why there are two paths out of sckClosing for the SendData method. If the side that issued the Close tries to

call SendData, an error is generated and the state moves to sckError. The side that receives the Close event

can freely send data and receive any remaining data.

Figure 14-4 TCP state diagram

Limitations

The Winsock control is clearly useful and easy to use; unfortunately, a few bugs make

the control unusable for mission-critical applications. The bugs discussed in this

section apply to the latest version of the control for Visual Basic 5, which is the

updated control from Service Pack 2.

The first bug is relatively minor and deals with dynamically loading and unloading the

control. A memory leak is incurred when unloading a previously loaded control. This is

why we don't load and unload the controls as clients connect and disconnect in our

server example. Once the control is loaded in memory, we leave it for possible use by

other clients.

The second bug involves closing a socket connection before all data queued is sent

on the wire. In some cases, calling the Close method after the SendData event (when

Close is processed before SendData) causes data to be lost, at least from the

receiver's point of view. You can get around this problem by catching the

SendComplete event (which is triggered when SendData has finished putting the data

on the wire). Alternatively, you could arrange the send/receive transactions so that the

receiver issues the Close command first, when it has received all the data expected.

This would then trigger the Close event on the sender, which would then signal that all

the data sent has been received, and that it's now OK to shut down the connection

completely.

The last and most severe bug is the dropping of data when a large buffer is submitted

for transfer. If a large enough block of data is queued up for network transmission, the

control's internal buffers get messed up and some data is dropped. Unfortunately,

there is no completely perfect workaround for this problem. The best method is to

submit data in chunks less than 1000 bytes. Once a buffer is submitted, wait for the

SendComplete event to fire before submitting the next buffer. This is a hassle, but it's

still the best way to make the control as reliable as possible.

The latest Winsock control shipping in Visual Basic 6 has fixed these bugs except for

the second one. If you issue a Close command after calling SendData, the socket

closes immediately without sending all the data. Although it would have been

wonderful to have all the bugs fixed, the remaining problem is perhaps the least

severe of the three and the easiest to work around.

Common Errors

As you saw in Chapters 1 through 12, an application can encounter quite a few

Winsock errors. We won't go into all of them here. However, in the following two

sections we will discuss the errors that are most commonly encountered by

applications using the Winsock control: “Local address in use” and “Invalid operation

at current state.”

Local Address in Use

The “Local address in use” error occurs when you bind to a local port, either through

the Bind method or the Connect method, but find that the port is already in use. This is

most often encountered in the TCP server that always binds to a specific port so

clients can locate the service. If a socket is not properly closed before an application

using that socket exits, the socket goes into the TIME_WAIT state for a short time to

ensure that all data has been sent or received on that port. If an attempt is made to

bind to that port, the “Local address in use” error is generated. A common mistake on

the client side also results in this error. If the LocalPort property is set to 0 and a

connection is established, LocalPort is updated to the port number on which the client

connection was made locally. If you plan to reuse the same control to make a

subsequent connection, be sure you reset the LocalPort value to 0. Otherwise, if the

previous connection was not properly shut down, you might run into this error.

Invalid Operation at Current State Run-Time Error

The “Invalid operation at current state” error is probably the most frequently seen

error. It occurs when a Winsock control method is called but the current state of the

control prohibits that action. Take a look at Figures 14-2 and 14-4 for the state

diagrams for UDP and TCP sockets. To write robust code, always check the socket's

state before calling a method.

Winsock errors will be generated through the Error event. These are the same errors

as those from straight Winsock programming. For a more detailed description of

Winsock errors, refer to Chapter 1, which covers the most common errors

encountered, or consult Chapter 21, which lists all possible Winsock error codes.

The Windows CE Winsock Control

The Visual Basic Toolkit for Windows CE (VBCE) contains a Winsock control that

provides many of the same capabilities offered by the “regular” Visual Basic Winsock

control. The major difference is that while UDP is unsupported, the Windows CE

Winsock control offers the IrDA protocol. Also, some minor differences between the

two controls require some programmatic changes from what you have seen with the

non–Windows CE Winsock control.

As you read in Chapter 1, Windows CE does not offer the asynchronous Winsock

model. The Windows CE Winsock control is no exception. The main difference in

programming is that the Connect method is blocking. There is no Connect event. Once

you attempt a connection by calling Connect, the call will block until a connection is

made or an error is returned.

In addition, VBCE 1 does not support control arrays, which means you will have to

change your server design from that presented in the sample TCP application shown

earlier in the chapter. As a result, the only way to handle multiple connections is to

place a number of Windows CE Winsock controls onto the form. This limits the

maximum number of concurrent client connections that you can handle because this

solution does not scale at all.

Finally, the ConnectionRequest event doesn't have a RequestID parameter, which

might seem a bit strange. The result is that you must call the Accept method on the

control to which the connection will be handed off. The connection request that

triggers the ConnectionRequest event is handled by the control that receives the

connection request.

Windows CE Winsock Example

In this section, we'll briefly introduce a sample application using the Windows CE

Winsock control. The same principles apply to the Windows CE control as to the

desktop Winsock control except for the differences noted previously. The following

sample shows the code behind the Windows CE Winsock control:

Option Explicit

' This global variable is used to retain the current value

' of the radio buttons. 0 corresponds to TCP, and 2 means

' IrDA (infrared). Note that UDP is not currently supported by the

' control.

Public SocketType

Private Sub cmdCloseListen_Click()

' Close the listening socket, and set the other buttons

' back to the start state

 WinSock1.Close

 cmdConnect.Enabled = True

 cmdListen.Enabled = True

 cmdDisconnect.Enabled = False

 cmdSendData.Enabled = False

 cmdCloseListen.Enabled = False

End Sub

Private Sub cmdConnect_Click()

' Check which type of socket type was chosen, and initiate

' the given connection

 If SocketType = 0 Then

 ' Set the protocol and the remote host name and port

 '

 WinSock1.Protocol = 0

 WinSock1.RemoteHost = txtServerName.Text

 WinSock1.RemotePort = CInt(txtPort.Text)

 WinSock1.LocalPort = 0

 WinSock1.Connect

 ElseIf SocketType = 2 Then

 ' Set the protocol to IrDA, and set the service name

 '

 WinSock1.Protocol = 2

 'WinSock1.LocalPort = 0

 'WinSock1.ServiceName = txtServerName.Text

 WinSock1.RemoteHost = txtServerName.Text

 WinSock1.Connect

 End If

 ' Make sure the connection was successful; if so,

 ' enable/disable some commands

 '

 MsgBox WinSock1.State

 If (WinSock1.State = 7) Then

 cmdConnect.Enabled = False

 cmdListen.Enabled = False

 cmdDisconnect.Enabled = True

 cmdSendData.Enabled = True

 Else

 MsgBox "Connect failed"

 WinSock1.Close

 End If

End Sub

Private Sub cmdDisconnect_Click()

' Close the current client connection, and reset the

' buttons to the start state

 WinSock1.Close

 cmdConnect.Enabled = True

 cmdListen.Enabled = True

 cmdDisconnect.Enabled = False

 cmdSendData.Enabled = False

 cmdCloseListen.Enabled = False

End Sub

Private Sub cmdListen_Click()

' Set the socket to listening mode for the given protocol

' type

'

 If SocketType = 0 Then

 WinSock1.Protocol = 0

 WinSock1.LocalPort = CInt(txtLocalPort.Text)

 WinSock1.Listen

 ElseIf SocketType = 2 Then

 WinSock1.Protocol = 2

 WinSock1.ServiceName = txtServerName.Text

 WinSock1.Listen

 End If

 ' If we're not in listening mode now, something

 ' went wrong

 '

 If (WinSock1.State = 2) Then

 cmdConnect.Enabled = False

 cmdListen.Enabled = False

 cmdCloseListen.Enabled = True

 Else

 MsgBox "Unable to listen!"

 End If

End Sub

Private Sub cmdSendData_Click()

' Send the data in the box on the current connection

'

 WinSock1.SendData txtSendData.Text

End Sub

Private Sub Form_Load()

' Set the initial values for the buttons, the timer, etc.

'

 optTCP.Value = True

 SocketType = 0

 Timer1.Interval = 750

 Timer1.Enabled = True

 cmdConnect.Enabled = True

 cmdListen.Enabled = True

 cmdDisconnect.Enabled = False

 cmdSendData.Enabled = False

 cmdCloseListen.Enabled = False

 lblLocalIP.Caption = WinSock1.LocalIP

End Sub

Private Sub optIRDA_Click()

' Set the socket type to IrDA

'

 optIRDA.Value = True

 SocketType = 2

End Sub

Private Sub optTCP_Click()

' Set the socket type to TCP

'

 optTCP.Value = True

 SocketType = 0

 cmdConnect.Caption = "Connect"

End Sub

Private Sub Timer1_Timer()

' This is the event that gets called each time the

' timer expires. Update the socket state label.

'

 Select Case WinSock1.State

 Case 0

 lblState.Caption = "sckClosed"

 Case 1

 lblState.Caption = "sckOpen"

 Case 2

 lblState.Caption = "sckListening"

 Case 3

 lblState.Caption = "sckConnectionPending"

 Case 4

 lblState.Caption = "sckResolvingHost"

 Case 5

 lblState.Caption = "sckHostResolved"

 Case 6

 lblState.Caption = "sckConnecting"

 Case 7

 lblState.Caption = "sckConnected"

 Case 8

 lblState.Caption = "sckClosing"

 Case 9

 lblState.Caption = "sckError"

 End Select

End Sub

Private Sub WinSock1_Close()

' The other side initiated a close, so we'll close our end.

' Reset the buttons to their initial state.

'

 WinSock1.Close

 cmdConnect.Enabled = True

 cmdListen.Enabled = True

 cmdDisconnect.Enabled = False

 cmdSendData.Enabled = False

 cmdCloseListen.Enabled = False

End Sub

Private Sub WinSock1_ConnectionRequest()

' We got a client connection; accept it on the listening

' socket

'

 WinSock1.Accept

End Sub

Private Sub WinSock1_DataArrival(ByVal bytesTotal)

' This is the event for data arrival. Get the data, and

' add it to the list box.

'

 Dim rdata

 WinSock1.GetData rdata

 List1.AddItem rdata

End Sub

Private Sub WinSock1_Error(ByVal number, ByVal description)

' An error occurred; display the message, and close the socket

'

 MsgBox description

 Call WinSock1_Close

End Sub

We won't go into the specifics of this sample code because it is similar to the

SockTCP example shown in the sample TCP application. The only differences

between the two are the known limitations mentioned in the previous section. You will

probably notice that the Windows CE Winsock control is a bare-bones control. It isn't

as well polished as the desktop version. The type libraries aren't fully

implemented—you must differentiate the protocol type with a simple integer as

opposed to an enumerated type. In addition, there is the problem with the socket state

enumerated type mentioned in the next section, “Known Problems.”

Handling infrared connections is not that different from handling TCP connections.

The one exception occurs when a listening socket is established over the infrared port.

An infrared server is known by its service name, which is discussed in detail in the

IrDA addressing section of Chapter 3. The Windows CE Winsock control has an

additional property named ServiceName. You set this property to the text string that

clients attempt to connect to. For example, the following code snippet puts the

Windows CE Winsock control CeWinsock into listening mode under the name

“MyServer”:

CeWinsock.Protocol = 2 ' Protocol 2 is IrSock

CeWinsock.ServiceName = "MyServer"

CeWinsock.Listen

There are no other requirements for publishing a service under infrared sockets. You

need to specify only the service name.

Known Problems

The one rather strange problem we encounter with the VBCE Winsock control is the

use of the enumerated values for the Winsock states. For some odd reason, these

values are defined in the development environment, but on the remote device the

following error message pops up every time you reference a sck enumerated value in

your code: “An error was encountered while running this program.” If you replace the

enumerations with their constant equivalents, these errors go away. This has been

marked as a bug and will be corrected in a future release of the toolkit.

Conclusion

The Visual Basic Winsock control is useful for simple, non-critical applications that

require network communication. A few problems with the Visual Basic 5 version of the

control make successfully programming the control difficult, but most of the major

problems have been corrected in the latest version of Visual Basic. The control offers

the capability to add simple network communication to a Visual Basic application with

relatively little effort. Of course, the control is limited in its overall capabilities, and

applications that require a great deal of interaction with Winsock should consider

either manually importing the necessary functions and constants from the Winsock

DLL or use the new .NET Application Frameworks interface. As we mentioned earlier,

we have provided some Winsock Visual Basic examples throughout the Winsock

chapters that do in fact import Winsock functions from WS2_32.DLL. For examples,

see the TCPClient, TCPServer, UDPSender, and UDPReceiver applications under the

Chapter 1 Visual Basic directories of samples and their WINSOCK.BAS file.

Chapter 15

Remote Access Service

So far, this book has described the Winsock API available in Microsoft Windows that

allows you to develop applications capable of communicating over a local network.

This chapter describes an important service named Remote Access Service (RAS),

which allows users to connect their computer to a remote network such as an ISP or a

corporate network. Once connected, you can use the network functions described

throughout this book as though your computer were connected directly to a remote

network.

RAS Client

All Microsoft Windows platforms feature a RAS client, which allows you to connect

your computer from a remote location to another computer network featuring a remote

access server component. Typically, a RAS client will do this by using a serial

communication device such as a modem that connects to a telephone line and calls

the remote network by dialing a telephone number. Because of this, the RAS client is

sometimes referred to as a dial-up networking (DUN) client. RAS also supports

connecting to a remote network by tunneling connections securely over an IP network

such as the Internet, which is known as Virtual Private Networking (VPN).

On the remote network, you must have a RAS server awaiting your DUN or VPN

connections. A RAS client is capable of establishing a communication link with several

types of remote access servers. RAS does this by using industry standard serial

framing and IP tunneling protocols. The following protocols are serial framing, where

data communication proceeds over a serial device such as a modem:

Point-to-Point Protocol (PPP) Can transmit IP, IPX, and NetBEUI communication

protocols

Serial Line Internet Protocol (SLIP) Can transmit the IP communication protocol only

Asynchronous NetBEUI (Microsoft Windows NT 3.1, Microsoft Windows for

Workgroups 3.11) Can transmit the NetBEUI communication protocol only

RAS uses the following IP tunneling protocols where data communication proceeds

over an existing IP connection:

Point-to-Point Tunneling Protocol (PPTP) Can securely transmit IP and IPX

communication protocols

Layer 2 Tunneling Protocol (L2TP) Can securely transmit IP and IPX

communication protocol

The framing and tunneling protocols describe how data is transmitted over a RAS

communication link and dictate which network communication protocols (such as

TCP/IP or IPX) can communicate over the link. If a RAS server supports one of the

framing protocols defined in the previous list, a RAS client can establish a connection.

All Windows 95, Windows 98, Windows Me, and Windows NT platforms feature a

RAS server component capable of supporting the serial framing protocols listed.

Windows Me and all Windows NT platforms also support the IP tunneling protocols.

Once a connection between a RAS client and server is established, network protocol

stacks (depending on the framing or tunneling protocol used) can communicate over

the RAS connection to the remote network as if the computers were connected

directly over a LAN. Of course, the data communication rate of most RAS connections

is typically slower than for a direct LAN connection.

When a RAS server accepts a serial framing or an IP tunneling connection, it first

establishes communication with your client by negotiating one of the framing or

tunneling protocols in the previous list. Once the protocol connection is established,

the RAS server attempts to authenticate the user making the connection. The RAS

API functions this chapter describes allow a RAS client to specify a user name, a

password, and domain logon credentials to the RAS server. When a Windows

NT–based RAS server receives this information, it validates these logon credentials

using Windows NT domain security access control. Note that the RAS server does not

log your client on to a Windows NT domain; instead, it uses the client credentials to

verify that a user is allowed to make a RAS connection. The RAS connection process

is not the same as the Windows NT domain logon process. After a RAS connection is

successfully established, your computer can log on to a Windows NT domain. On

Windows 95, Windows 98, Windows Me, Windows XP, and Windows .NET Server,

RAS can automatically log a machine on to a domain after a RAS connection is

authenticated through options available in a phonebook entry, as we will discuss later

in this chapter.

For serial communications, RAS relies on the Telephony Application Programming

Interface (TAPI) to set up and control serial communication devices such as modems

on your computer. TAPI controls the hardware settings of these dialing devices. When

you set up a RAS connection using a modem, TAPI turns on the modem and sends

dialing information from RAS to the modem. As a result, RAS views modems as

simple TAPI modem ports that are capable of dialing and making a phone connection

to a remote server. As you will see later in this chapter, some of the RAS API

functions refer to TAPI modem ports when you set up RAS connection information.

This chapter will explain how you can use RAS programmatically to establish remote

network communication. We will begin by describing the header and library files you

need to build your application. Next, we will describe the basics of dialing—how you

actually establish a remote connection over a serial device. Then we'll describe how

you can set up RAS phonebook entries to define detailed communication properties of

a RAS connection. Once we've explained the basics of setting up communication,

we'll show you how to manage established connections. Finally, we'll describe how to

set up a VPN connection.

Compiling and Linking

When you develop a RAS application, you need to include the following header and

library files to build your application:

RAS.H Contains the function prototypes and data structures RAS API functions use

RASERROR.H Contains predefined error codes used in RAS API functions when

they fail

RASAPI32.LIB Library of all RAS API functions

RASERROR.H lists quite a few predefined error codes. In this file, you will notice an

error description string associated with each error code used in RAS. RAS features a

useful function named RasGetErrorString that allows you to programmatically retrieve

the error strings associated with specific RAS error codes. RasGetErrorString is

defined as

DWORD RasGetErrorString(

 UINT uErrorValue,

 LPTSTR lpszErrorString,

 DWORD cBufSize

);

The uErrorValue parameter receives a specific RAS error code returned from a RAS

function. The lpszErrorString parameter is an application-supplied buffer that will

receive the error string associated with the error code in uErrorValue. You should

make your buffer large enough to hold an error string; otherwise, this function will fail

with error ERROR_INSUFFICIENT_BUFFER. We recommend setting your buffer size

to at least 256 characters, which should accommodate any RAS error string available

today. The final parameter, cBufSize, is the size of the buffer you supplied as

lpszErrorString.

Data Structures and Platform Compatibility
Issues

When you compile and build your application, you will find that some of the data

structures the RAS functions use have extra data fields included or excluded, based

on the value of the define WINVER. However, the Windows CE SDK does not define

WINVER, so this information does not apply to Windows CE. RAS data structures

also have a dwSize field that you must set to the byte size of the RAS structure you

are using. This affects the behavior of the RAS functions that use these structures

because they are targeted for a specific platform. The following WINVER rules apply

to the Windows 95, Windows 98, Windows Me, and Windows NT platforms:

WINVER = 0x400 Indicates that your RAS application is targeted for Windows 95,

Windows 98, or Windows NT 4.0 with no service pack

WINVER = 0x401 Indicates that your RAS application is targeted for Windows NT 4

with any service pack

WINVER = 0x500 Indicates that your RAS application is targeted for Windows 2000

WINVER = 0x501 Indicates that your RAS application is targeted for Windows XP

and Windows .NET Server

RAS does not lend itself well to having a single executable that can run on all

platforms because the RAS data structures will be sized differently during program

compilation based on WINVER values. Through careful programming, it is possible to

support all platforms (except Windows CE, of course) using a single executable.

However, we highly recommend targeting a specific platform when you build your

RAS applications.

DUN 1.3 Upgrade and Windows 95

A number of Windows 95 releases occurred between the original release and the

OSR 2 release. The OSR 2 release was not a retail product; instead, it was available

only for original equipment manufacturers (OEMs) to install on a new computer. Each

release features a different flavor of the RAS API functionality. Because of this, we

recommend on Windows 95 platforms that you install the latest RAS upgrade

package—DUN 1.3—to raise RAS to the current functionality level of newer platforms.

You can obtain the DUN 1.3 upgrade for Windows 95 at

http://www.microsoft.com/support. This chapter assumes that you have installed at

least the DUN 1.3 upgrade; we will not address RAS issues from earlier DUN

versions.

http://www.microsoft.com/support

RasDial

When a RAS client application is ready to make a connection to a remote network, it must call the

RasDial function. RasDial is quite complex, offering many call parameters that are used for dialing,

authenticating, and establishing a remote connection to a RAS server. RasDial is defined as

DWORD RasDial(

 LPRASDIALEXTENSIONS lpRasDialExtensions,

 LPCTSTR lpszPhonebook,

 LPRASDIALPARAMS lpRasDialParams,

 DWORD dwNotifierType,

 LPVOID lpvNotifier,

 LPHRASCONN lphRasConn

);

Based on values of the lpvNotifier parameter, RasDial can execute in two operating modes:

synchronous and asynchronous. In synchronous mode, RasDial blocks until it either completes a

connection or fails to do so. In asynchronous mode, RasDial completes a connection immediately,

allowing your application to perform other actions while connecting.

Synchronous Mode

If the lpvNotifier parameter of RasDial is set to NULL, RasDial will operate synchronously. When the

lpvNotifier parameter is NULL, the dwNotifierType parameter is ignored. Calling RasDial synchronously

is the easiest way to use this function; however, you won't be able to monitor the connection progress

like you can in asynchronous mode, which we will describe in a moment. The following code sample

demonstrates how to call RasDial synchronously:

RASDIALPARAMS RasDialParams;

HRASCONN hRasConn;

DWORD Ret;

// Always set the size of the RASDIALPARAMS structure

RasDialParams.dwSize = sizeof(RASDIALPARAMS);

hRasConn = NULL;

// Setting this field to an empty string will allow

// RasDial to use default dialing properties

lstrcpy(RasDialParams.szEntryName, "");

lstrcpy(RasDialParams.szPhoneNumber, "867-5309");

lstrcpy(RasDialParams.szUserName, "jenny");

lstrcpy(RasDialParams.szPassword, "mypassword");

lstrcpy(RasDialParams.szDomain, "mydomain");

// Call RasDial synchronously (the fifth parameter

// is set to NULL)

Ret = RasDial(NULL, NULL, &RasDialParams, 0, NULL, &hRasConn);

if (Ret != 0)

{

 printf("RasDial failed: Error = %d\n", Ret);

}

The sample calls RasDial by filling fields of the lpRasDialParams parameter. The lpRasDialParams

parameter is a RASDIALPARAMS structure pointer that defines dialing and user authentication

parameters that the RasDial function uses to establish a remote connection. It's defined as

typedef struct _RASDIALPARAMS {

 DWORD dwSize;

 TCHAR szEntryName[RAS_MaxEntryName + 1];

 TCHAR szPhoneNumber[RAS_MaxPhoneNumber + 1];

 TCHAR szCallbackNumber[RAS_MaxCallbackNumber + 1];

 TCHAR szUserName[UNLEN + 1];

 TCHAR szPassword[PWLEN + 1];

 TCHAR szDomain[DNLEN + 1] ;

#if (WINVER >= 0x401)

 DWORD dwSubEntry;

 DWORD dwCallbackId;

#endif

} RASDIALPARAMS;

The fields of RASDIALPARAMS provide the basics for setting up a RAS connection and are described

as

dwSize Should be set to the size (in bytes) of a RASDIALPARAMS structure. This allows RAS to

internally determine which WINVER version you compiled with.

szEntryName A string that allows you to identify a phonebook entry contained in the phonebook

file listed in the lpszPhonebook parameter of RasDial. This is an important parameter because

phonebook entries enable you to fine-tune RAS connection properties, such as selecting a modem

or selecting a framing protocol. However, specifying a phonebook entry to use RasDial is optional. If

this field is an empty string (“”), RasDial will select the first available modem installed on your system

and will rely on the next parameter, szPhoneNumber, to dial a connection. We will describe

phonebook entries in more detail later.

szPhoneNumber A string representing a phone number that overrides the number contained in the

phonebook entry specified in the szEntryName field.

szCallbackNumber Allows you to specify a phone number the RAS server can call you back on. If

the RAS server permits you to have a callback number, the server will terminate your original

connection and call back your client using the callback number you specified. This is a nice feature

because it lets your server know where a user is connecting from.

szUserName A string that identifies a logon name used to authenticate a user on a RAS server.

szPassword A string that identifies the password used to authenticate a user on a RAS server.

szDomain Identifies the Windows NT domain where the user account is located.

dwSubEntry Optionally allows you to specify the initial phonebook subentry to dial for a RAS

multilink connection. We don't describe the multilink feature in this chapter.

dwCallbackId Allows you to pass an application-defined value to a RasDialFunc2 callback function

(which we'll also describe later). If you're not using a RasDialFunc2 callback function, this field is not

used.

The previous sample fills in a RASDIALPARAMS with a number to dial, user name, password, and

domain information for a RAS connection. The RASDIALPARAMS structure is then passed into the

RasDial function, which will synchronously make the remote connection.

Asynchronous Mode

Calling RasDial asynchronously is a lot more complicated than calling this function in synchronous

mode, but it offers greater flexibility when establishing a connection. If the lpvNotifier parameter of

RasDial is not set to NULL, RasDial will operate asynchronously—the call returns immediately but the

connection proceeds. Calling RasDial asynchronously is the preferred method for making a RAS

connection because you can monitor the connection's progress. The lpvNotifier parameter can be

either a pointer to a function that is called from RasDial when a connection activity occurs in RasDial or

a window handle that receives progress notification via Windows messages. The dwNotifierType

parameter of RasDial determines the type of function or window handle that is passed into lpvNotifier.

Table 15-1 describes the values that you can specify in dwNotifierType.

Table 15-1RasDial Asynchronous Notification Methods

Notifier

Type
Meaning

0
The lpvNotifier parameter causes RasDial to use the RasDialFunc function pointer

to manage connection events.

1
The lpvNotifier parameter causes RasDial to use the RasDialFunc1 function pointer

to manage connection events.

2
The lpvNotifier parameter causes RasDial to use the RasDialFunc2 function pointer

to manage connection events.

0xFFFFFFFF
The lpvNotifier parameter makes RasDial send a window message during

connection events.

Table 15-1 also describes the three callback function prototypes you supply to RasDial in the

lpvNotifier parameter that is called for receiving notification of connection events: RasDialFunc,

RasDialFunc1, and RasDialFunc2. The first one, RasDialFunc, is prototyped as

VOID WINAPI RasDialFunc(

 UINT unMsg,

 RASCONNSTATE rasconnstate,

 DWORD dwError

);

The unMsg parameter receives the type of event that has occurred. Currently, this event can be only

WM_RASDIALEVENT, which means that this parameter is not useful. The rasconnstate parameter

receives the connection activity that the RasDial function is about to start. Table 15-2 defines the

possible connection activities. The dwError parameter receives a RAS error code if one of the

connection activities experiences failure.

Table 15-2Asynchronous RasDial Operating States

Activity State Description

RASCS_OpenPort Running A communication port is about to be opened.

RASCS_PortOpened Running The communication port is open.

RASCS_ConnectDevice Running A device is about to be connected.

RASCS_DeviceConnected Running The device has connected successfully.

RASCS_AllDevicesConnected Running A physical link has been established.

RASCS_Authenticate Running The RAS authentication process has started.

RASCS_AuthNotify Running An authentication event has occurred.

RASCS_AuthRetry Running The client has requested another authentication attempt.

RASCS_AuthCallback Running The server has requested a callback number.

RASCS_AuthChangePassword Running
The client has requested to change the password on the

RAS account.

RASCS_AuthProject Running
The protocol projection is starting. (We'll describe RAS

protocol projections later.)

RASCS_AuthLinkSpeed Running The link speed is being calculated.

RASCS_AuthAck Running An authentication request is being acknowledged.

RASCS_ReAuthenticate Running The authentication process after a callback is starting.

RASCS_Authenticated Running
The client has completed the authentication

successfully.

RASCS_PrepareForCallback Running The line is about to disconnect to prepare for a callback.

RASCS_WaitForModemReset Running
The client is waiting for the modem to reset before

preparing for a callback.

RASCS_WaitForCallback Running The client is waiting for an incoming call from the server.

RASCS_Projected Running The protocol projection is complete.

RASCS_StartAuthentication Running

User authentication is being started or retried. (This

applies to Windows 95, Windows 98, and Windows Me

only.)

Activity State Description

RASCS_CallbackComplete Running
The client has been called back. (This applies to

Windows 95, Windows 98, and Windows Me only.)

RASCS_LogonNetwork Running

The client is logging on to a remote network. (This

applies to Windows 95, Windows 98, and Windows Me

only.)

RASCS_SubEntryConnected Running

A subentry of a multilink phonebook entry has

connected. The dwSubEntry parameter of RasDialFunc2

will contain an index of the subentry connected.

RASCS_SubEntryDisconnected Running

A subentry of a multilink phone- book entry has

disconnected. The dwSubEntry parameter of

RasDialFunc2 will contain an index of the subentry

disconnected.

RASCS_RetryAuthentication Paused RasDial is awaiting new user credentials.

RASCS_CallbackSetByCaller Paused RasDial is awaiting a callback number from the client.

RASCS_PasswordExpired Paused RasDial expects the user to supply a new password.

RASCS_InvokeEapUI Paused
On Windows NT platforms, RasDial is awaiting a custom

user interface to obtain user authentication information.

RASCS_Connected Terminal The RAS connection succeeded and is active.

RASCS_Disconnected Terminal The RAS connection failed or is inactive.

Table 15-2 shows the three operating states associated with connection activities in an asynchronous

RasDial call: running, paused, and terminal. The running state indicates that the RasDial call is still in

progress, and each running-state activity offers progress status information.

The paused state indicates that RasDial needs more information to establish the connection. By

default, the paused state is disabled. On Windows NT–based operating systems, you can enable

paused state notification by setting the RDEOPT_PausedStates option flag in the lpRasDialExtensions

structure parameter of RasDial. When a paused state activity occurs, it indicates one of the following

conditions:

The user needs to supply new logon credentials because the authentication failed.

The user needs to provide a new password because his or hers has expired.

The user needs to provide a callback number.

These activities pertain to information supplied in the RASDIALPARAMS structure described earlier in

this chapter. When a paused state activity occurs, RasDial will notify your callback function (or window

procedure). If the paused state is disabled, RAS will send an error to your notification function and

RasDial will fail. If enabled, the RasDial function will be in a paused state that allows your application

to supply the necessary information through a RASDIALPARAMS structure. When RasDial is paused,

you can resume by calling it again with the original call's connection handle (lphRasConn) and

notification function (lpvNotifier), or you can simply end the paused operation by calling RasHangUp

(described later in this chapter). If you resume the paused connection, you will have to supply the

necessary user input via the RASDIALPARAMS structure passed to the resumed RasDial call.

Do not resume the paused state by calling RasDial directly from a notification handler

function such as RasDialFunc. RasDial is not designed to handle this situation, so you

should resume RasDial directly from your application thread.

The final state—terminal—indicates that the RasDial connection has either succeeded or failed. It can

also indicate that the RasHangUp function closed the connection.

Now that you have a basic understanding of how you can monitor the connection of an asynchronous

RasDial call, we'll demonstrate how to set up a simple program that calls RasDial asynchronously. The

following code shows this procedure. You'll also find an asynchronous RasDial example on the

companion CD.

void main(void)

{

 DWORD Ret;

 RASDIALPARAMS RasDialParams;

 HRASCONN hRasConn;

 // Fill in the RASDIALPARAMS structure with call parameters

 // as was done in the synchronous example

 ...

 if ((Ret = RasDial(NULL, NULL, &RasDialParams, 0,

 &RasDialFunc, &hRasConn)) != 0)

 {

 printf("RasDial failed with error %d\n", Ret);

 return;

 }

 // If RasDial succeeds, it will complete immediately,

 // leaving you the chance to perform other tasks while

 // RasDial is processing

 ...

}

// Callback function RasDialFunc()

void WINAPI RasDialFunc(UINT unMsg, RASCONNSTATE rasconnstate,

 DWORD dwError)

{

 char szRasString[256]; // Buffer for error string

 if (dwError)

 {

 RasGetErrorString((UINT)dwError, szRasString, 256);

 printf("Error: %d - %s\n",dwError, szRasString);

 return;

 }

 // Map each of the RasDial states and display on the

 // screen the next state that RasDial is entering

 switch (rasconnstate)

 {

 case RASCS_ConnectDevice:

 printf ("Connecting device...\n");

 break;

 case RASCS_DeviceConnected:

 printf ("Device connected.\n");

 break;

 // Add other connection activities here

 ...

 default:

 printf ("Unmonitored RAS activity.\n");

 break;

 }

}

RAS also features a stand-alone function named RasConnectionNotification that allows your

application to determine when an asynchronous RAS connection has been created or terminated.

RasConnectionNotification is defined as

DWORD RasConnectionNotification(

 HRASCONN hrasconn,

 HANDLE hEvent,

 DWORD dwFlags

);

The hrasconn parameter is the connection handle returned from RasDial. The hEvent parameter is an

event handle that your application creates using the CreateEvent function. The dwFlags parameter

can be set to a combination of several activity flags. The most useful ones are

RASCN_Connection Notifies you that a RAS connection has been created. If the hrasconn

parameter is set to INVALID_HANDLE_VALUE, the event is signaled when any RAS connection

occurs.

RASCN_Disconnection Notifies you that a RAS connection has been terminated. If the hrasconn

parameter is set to INVALID_HANDLE_ VALUE, the event is signaled when any connection ends.

Note that these flags function the same way as the connection activity flags described in Table 15-2. If

any of these activities occur during your connection, your event will become signaled. Your application

should use operating system wait functions, such as WaitForSingleObject, to determine when the

object becomes signaled.

Closing a Connection

Closing a connection established by RasDial is simple. All you have to do is call RasHangUp, which is

defined as

DWORD RasHangUp(

 HRASCONN hrasconn

);

The hrasconn parameter is a handle that is returned from RasDial. Although this function is easy to

use, you have to consider how connections are managed internally in RAS. A serial connection uses a

modem port, and it takes time for the port to reset internally when a connection shuts down. Therefore,

you should wait until the port connection closes completely. To do this, you can call

RasGetConnectStatus to determine when your connection is reset. RasGetConnectStatus is defined

as

DWORD RasGetConnectStatus(

 HRASCONN hrasconn,

 LPRASCONNSTATUS lprasconnstatus

);

The hrasconn parameter is a handle that is returned from RasDial. The lprasconnstatus parameter is a

RASCONNSTATUS structure that receives the current connection status. A RASCONNSTATUS

structure is defined as

typedef struct _RASCONNSTATUS

{

 DWORD dwSize;

 RASCONNSTATE rasconnstate;

 DWORD dwError;

 TCHAR szDeviceType[RAS_MaxDeviceType + 1];

 TCHAR szDeviceName[RAS_MaxDeviceName + 1];

} RASCONNSTATUS;

These fields are defined as

dwSize Should be set to the size (in bytes) of RASCONNSTATUS

rasconnstate Receives one of the connection activities defined in Table 15-2

dwError Gets a specific RAS error code if RasGetConnectStatus does not return 0

szDeviceType Receives a string representing the type of device used on the connection

szDeviceName Receives the name of the current device

We recommend that you check the state of your connection until you receive the

RASCS_Disconnected activity status. Obviously, you might have to call RasGetConnectStatus several

times until the connection is reset. Once the connection is reset, you can exit your application or make

another connection.

Now that we have described the basics of setting up a RAS connection, we will describe how to set up

phonebook entries that allow you to set up advanced communication properties for establishing a RAS

connection.

Phonebook

A RAS phonebook is nothing more than a collection of RASENTRY structures (or

phonebook entries) that contain phone numbers, data rates, user authentication

information, VPN strategies, and other connection information. On Windows 95,

Windows 98, Windows Me, and Windows CE systems, the phonebook is stored in the

system Registry. On Windows NT systems, the phonebook is stored in files that

typically have the file extension .PBK. A RASENTRY structure is defined as

typedef struct tagRASENTRY

{

 DWORD dwSize;

 DWORD dwfOptions;

 DWORD dwCountryID;

 DWORD dwCountryCode;

 TCHAR szAreaCode[RAS_MaxAreaCode + 1];

 TCHAR szLocalPhoneNumber[RAS_MaxPhoneNumber + 1];

 DWORD dwAlternateOffset;

 RASIPADDR ipaddr;

 RASIPADDR ipaddrDns;

 RASIPADDR ipaddrDnsAlt;

 RASIPADDR ipaddrWins;

 RASIPADDR ipaddrWinsAlt;

 DWORD dwFrameSize;

 DWORD dwfNetProtocols;

 DWORD dwFramingProtocol;

 TCHAR szScript[MAX_PATH];

 TCHAR szAutodialDll[MAX_PATH];

 TCHAR szAutodialFunc[MAX_PATH];

 TCHAR szDeviceType[RAS_MaxDeviceType + 1];

 TCHAR szDeviceName[RAS_MaxDeviceName + 1];

 TCHAR szX25PadType[RAS_MaxPadType + 1];

 TCHAR szX25Address[RAS_MaxX25Address + 1];

 TCHAR szX25Facilities[RAS_MaxFacilities + 1];

 TCHAR szX25UserData[RAS_MaxUserData + 1];

 DWORD dwChannels;

 DWORD dwReserved1;

 DWORD dwReserved2;

#if (WINVER >= 0x401)

 DWORD dwSubEntries;

 DWORD dwDialMode;

 DWORD dwDialExtraPercent;

 DWORD dwDialExtraSampleSeconds;

 DWORD dwHangUpExtraPercent;

 DWORD dwHangUpExtraSampleSeconds;

 DWORD dwIdleDisconnectSeconds;

#endif

#if (WINVER >= 0x500)

 DWORD dwType;

 DWORD dwEncryptionType;

 DWORD dwCustomAuthKey;

 GUID guidId;

 TCHAR szCustomDialDll[MAX_PATH];

 DWORD dwVpnStrategy;

#endif

#if (WINVER >= 0x501)

 DWORD dwfOptions2;

 DWORD dwfOptions3;

 WCHAR szDnsSuffix[RAS_MaxDnsSuffix];

 DWORD dwTcpWindowSize;

 WCHAR szPrerequisitePbk[MAX_PATH];

 WCHAR szPrerequisiteEntry[RAS_MaxEntryName + 1];

 DWORD dwRedialCount;

 DWORD dwRedialPause;

#endif

} RASENTRY;

As you can see, many fields make up this structure and we will not describe them

here. For a complete description of all the fields, consult the Platform SDK.

When you call any RAS API that takes a phonebook file as a parameter

(lpszPhonebook), you can identify the path to a phonebook file. As we mentioned

earlier, this parameter must be NULL on Windows 95, Windows 98, Windows Me, and

Windows CE systems because phonebook entries are stored in the system Registry.

On Windows NT systems, this can be a path to a phonebook file. Typically, this

phonebook file will have the extension .PBK. Also, the system default phonebook on

Windows NT systems is located under

%SystemRoot%\System32\Ras\Rasphone.pbk. If you specify NULL as the

phonebook, you will use the system default phonebook file.

Adding Phonebook Entries

RAS provides four functions that allow you to programmatically manage phonebook

RASENTRY structures: RasSetEntryProperties, RasGetEntryProperties,

Ras-RenameEntry, and RasDeleteEntry. You can use the RasSetEntryProperties

function to create a new entry or modify an existing entry. This function is defined as

DWORD RasSetEntryProperties(

 LPCTSTR lpszPhonebook,

 LPCTSTR lpszEntry,

 LPRASENTRY lpRasEntry,

 DWORD dwEntryInfoSize,

 LPBYTE lpbDeviceInfo,

 DWORD dwDeviceInfoSize

);

The lpszPhonebook parameter is a pointer to a phonebook file name. The lpszEntry

parameter is a pointer to a string used to identify an existing or new entry. If a

RASENTRY structure exists with this name, the properties are modified; otherwise, a

new entry is created in the phonebook. The lpRasEntry parameter is a pointer to a

RASENTRY structure. You can place a list of null-terminated strings after the

RASENTRY structure defining alternate phone numbers. The last string is terminated

by two consecutive null characters. The dwEntryInfoSize parameter is the size (in

bytes) of the structure in the lpRasEntry parameter. The lpbDeviceInfo parameter is a

pointer to a buffer that contains TAPI device configuration information. On Windows

2000 and Windows NT, this parameter is not used and should be set to NULL. The

final parameter, dwDeviceInfoSize, represents the size (in bytes) of the lpbDeviceInfo

buffer.

The RasGetEntryProperties function, defined below, can be used to retrieve the

properties of an existing phonebook entry or the default values for a new phonebook

entry.

DWORD RasGetEntryProperties(

 LPCTSTR lpszPhonebook,

 LPCTSTR lpszEntry,

 LPRASENTRY lpRasEntry,

 LPDWORD lpdwEntryInfoSize,

 LPBYTE lpbDeviceInfo,

 LPDWORD lpdwDeviceInfoSize

);

The lpszPhonebook parameter is a pointer to the name of a phonebook file. The

lpszEntry parameter is a pointer to a string identifying an existing phonebook entry. If

you set this parameter to NULL, the lpRasEntry and lpbDeviceInfo parameters will

receive default values of a phonebook entry. Retrieving the default values is quite

useful: when you need to create a new RAS phonebook entry, you can populate the

lpRasEntry and lpbDeviceInfo fields with correct information about your system before

you call the RasSetEntryProperties function.

The lpRasEntry parameter is a pointer to a buffer that your application supplies to

receive a RASENTRY structure. As we described in our discussion of the

RasSetEntryProperties function, this structure can be followed by an array of

null-terminated strings identifying alternate phone numbers for the requested

phonebook entry. Therefore, the size of your receiving buffer should be larger than a

RASENTRY structure. If you pass a NULL pointer, the lpdwEntryInfoSize parameter

will receive the total number of bytes needed to store all the elements of a

RASENTRY structure plus any alternate phone numbers. The lpdw-EntryInfoSize

parameter is a pointer to a DWORD containing the number of bytes that are in the

receiving buffer your application supplies to the lpRasEntry parameter. When this

function completes, it will update lpdwEntryInfoSize to the number of bytes actually

received in lpRasEntry. We highly recommend calling this function with lpRasEntry set

to NULL and lpdwEntryInfoSize set to 0 to obtain buffer sizing information. Once you

have the appropriate size, you can call this function again and retrieve all the

information without error.

The lpbDeviceInfo parameter is a pointer to an application-supplied buffer that

receives TAPI device–specific information for this phonebook entry. If this parameter

is set to NULL, the lpdwDeviceInfoSize parameter will receive the number of bytes

needed to retrieve this information. If you are using Windows 2000, Windows NT, or

Windows XP, lpbDeviceInfo should be set to NULL. The final parameter,

lpdwDeviceInfoSize, is a pointer to a DWORD that should be set to the number of

bytes contained in the buffer supplied to lpbDeviceInfo. When RasGetEntryProperties

returns, lpdwDeviceInfoSize will return the number of bytes that are returned in the

lpbDeviceInfo buffer.

The following code sample demonstrates how an application should use

RasGetEntryProperties and RasSetEntryProperties to create a new phonebook entry:

#include <windows.h>

#include <ras.h>

#include <raserror.h>

#include <stdio.h>

void main(void)

{

 DWORD EntryInfoSize = 0;

 DWORD DeviceInfoSize = 0;

 DWORD Ret;

 LPRASENTRY lpRasEntry;

 LPBYTE lpDeviceInfo;

 // Get buffer sizing information for a default phonebook entry

 if ((Ret = RasGetEntryProperties(NULL, "", NULL,

 &EntryInfoSize, NULL, &DeviceInfoSize)) != 0)

 {

 if (Ret != ERROR_BUFFER_TOO_SMALL)

 {

 printf("RasGetEntryProperties sizing failed "

 "with error %d\n", Ret);

 return;

 }

 }

 lpRasEntry = (LPRASENTRY) GlobalAlloc(GPTR, EntryInfoSize);

 if (DeviceInfoSize == 0)

 lpDeviceInfo = NULL;

 else

 lpDeviceInfo = (LPBYTE) GlobalAlloc(GPTR, DeviceInfoSize);

 // Get default phonebook entry

 lpRasEntry->dwSize = sizeof(RASENTRY);

 if ((Ret = RasGetEntryProperties(NULL, "", lpRasEntry,

 &EntryInfoSize, lpDeviceInfo, &DeviceInfoSize)) != 0)

 {

 printf("RasGetEntryProperties failed with error %d\n",

 Ret);

 return;

 }

 // Validate new phonebook name "Testentry"

 if ((Ret = RasValidateEntryName(NULL, "Testentry")) !=

 ERROR_SUCCESS)

 {

 printf("RasValidateEntryName failed with error %d\n",

 Ret);

 return;

 }

 // Install a new phonebook entry, "Testentry", using

 // default properties

 if ((Ret = RasSetEntryProperties(NULL, "Testentry",

 lpRasEntry, EntryInfoSize, lpDeviceInfo,

 DeviceInfoSize)) != 0)

 {

 printf("RasSetEntryProperties failed with error %d\n",

 Ret);

 return;

 }

}

Deleting Phonebook Entries

Deleting phonebook entries is easy. To do so, you simply call the RasDeleteEntry

function, which is defined as

DWORD RasDeleteEntry(

 LPCTSTR lpszPhonebook,

 LPCTSTR lpszEntry

);

The lpszPhonebook parameter is a pointer to a phonebook file name. The lpszEntry

parameter is a string representing an existing phonebook entry. If this function

succeeds, it returns ERROR_SUCCESS; otherwise, it returns ERROR_

INVALID_NAME.

Managing User Credentials

When a RAS client makes a connection using a phonebook entry through RasDial, it

can save the user's security credentials and associates them with the phonebook

entry. The functions RasGetCredentials, RasSetCredentials, RasGetEntryDialParams,

and RasSetEntryDialParams allow you to man- age user security credentials

associated with a phonebook entry. The RasGetCredentials and RasSetCredentials

functions were introduced in Windows NT 4. (They are also available on all Windows

NT systems.) These two functions supersede RasGetEntryDialParams and

RasSetEntryDialParams. Because RasGetCredentials and RasSetCredentials are not

available on Windows 95, Windows 98, Windows Me, and Windows CE systems, you

can use Ras-GetEntryDialParams and RasSetEntryDialParams for this purpose on all

platforms.

The RasGetCredentials function retrieves user credentials associated with a

phonebook entry and is defined as

DWORD RasGetCredentials(

 LPCTSTR lpszPhonebook,

 LPCTSTR lpszEntry,

 LPRASCREDENTIALS lpCredentials

);

The lpszPhonebook parameter is a pointer to a phonebook filename. The lpszEntry

parameter is a string representing an existing phonebook entry. The lpCredentials

parameter, defined below, is a pointer to a RASCREDENTIALS structure that can

receive the user name, password, and domain associated with the phonebook entry:

typedef struct {

 DWORD dwSize;

 DWORD dwMask;

 TCHAR szUserName[UNLEN + 1];

 TCHAR szPassword[PWLEN + 1];

 TCHAR szDomain[DNLEN + 1];

} RASCREDENTIALS, *LPRASCREDENTIALS;

The fields of this structure are defined as

dwSize Specifies the size (in bytes) of a RASCREDENTIALS structure. You should

always set this field to the structure size.

dwMask Is a bitmask field that identifies which of the next three fields in the

structure are valid by using predefined flags. The flag RASCM_UserName applies to

szUserName, RASCM_Password applies to szPassword, and RASCM_Domain

applies to szDomain. There are more dwMask flags, but we will not describe them

here.

szUserName Is a null-terminated string that contains a user's logon name.

szPassword Is a null-terminated string that contains a user's password.

szDomain Is a null-terminated string that contains a user's logon domain.

If RasGetCredentials succeeds, it returns 0. Your application can determine which

security credentials are set based on the flags set in the dwMask field of the

lpCredentials structure.

The RasSetCredentials function is similar to RasGetCredentials except that it lets you

change security credentials associated with a phonebook entry. The parameters are

the same except that RasSetCredentials features an additional parameter:

fClearCredentials. RasSetCredentials is defined as

DWORD RasSetCredentials(

 LPCTSTR lpszPhonebook,

 LPCTSTR lpszEntry,

 LPRASCREDENTIALS lpCredentials,

 BOOL fClearCredentials

);

The fClearCredentials parameter is a Boolean operator that, if set to TRUE, causes

RasSetCredentials to change credentials identified in the dwMask field of the

lpCredentials structure to an empty string (“”) value. For example, if dwMask contains

the RASCM_Password flag, the password stored is replaced with an empty string. If

the RasSetCredentials function succeeds, it returns 0.

You can also use RasGetEntryDialParams and RasSetEntryDialParams to manage

user security credentials associated with phonebook entries. Ras-GetEntryDialParams

is defined as

DWORD RasGetEntryDialParams(

 LPCTSTR lpszPhonebook,

 LPRASDIALPARAMS lprasdialparams,

 LPBOOL lpfPassword

);

The lpszPhonebook parameter is a pointer to a phonebook file name. The

lprasdialparams parameter is a pointer to a RASDIALPARAMS structure. The

lpfPassword parameter is a Boolean flag that returns TRUE if the user's password was

retrieved in the lprasdialparams structure.

The RasSetEntryDialParams function changes the connection information that was

last set by the RasDial call on a particular phonebook entry. RasSet-EntryDialParams

is defined as

DWORD RasSetEntryDialParams(

 LPCTSTR lpszPhonebook,

 LPRASDIALPARAMS lprasdialparams,

 BOOL fRemovePassword

);

The lpszPhonebook and lprasdialparams parameters are exactly the same as the first

two parameters in RasGetEntryDialParams. The fRemovePassword parameter is a

Boolean flag that, if set to TRUE, tells RasSetEntryDialParams to remove the

password associated with the phonebook entry identified in the lprasdialparams

structure.

Connection Management

RAS has two useful functions that allow you to retrieve the properties of connections

established on your system: RasEnumConnections and RasGetProjectionInfo.

RasEnumConnections can retrieve all the available active RAS connections on your

system. This is useful when you need to obtain connection specific information about

a RAS connection on your system using RasGetProjectionInfo, as you will see later in

this chapter. The RasEnumConnections is defined as

DWORD RasEnumConnections(

 LPRASCONN lprasconn,

 LPDWORD lpcb,

 LPDWORD lpcConnections

);

The lprasconn parameter is an application buffer that will receive an array of

RASCONN structures. A RASCONN structure is defined as

typedef struct _RASCONN

{

 DWORD dwSize;

 HRASCONN hrasconn;

 TCHAR szEntryName[RAS_MaxEntryName + 1];

#if (WINVER >= 0x400)

 TCHAR szDeviceType[RAS_MaxDeviceType + 1];

 TCHAR szDeviceName[RAS_MaxDeviceName + 1];

#endif

#if (WINVER >= 0x401)

 TCHAR szPhonebook[MAX_PATH];

 DWORD dwSubEntry;

#endif

#if (WINVER >= 0x500)

 GUID guidEntry;

#endif

#if (WINVER >= 0x501)

 DWORD dwSessionId;

 DWORD dwFlags;

 LUID luid;

#endif

} RASCONN;

The most useful field in the RASCONN structure is the hrasconn, which receives the

connection handle that RasDial originally created. You can use this handle to retrieve

more connection information from RasGetProjectionInfo, which is described later. You

need to pass to RasEnumConnections a large enough buffer to hold several

RASCONN structures; otherwise, this function will fail with the error

ERROR_BUFFER_TOO_SMALL. Also, the first RASCONN structure in your buffer

must have the dwSize field set to the byte size of a RASCONN structure. The next

parameter, lpcb, is a pointer to a variable that you must set to the size (in bytes) of

your lprasconn array. When this function returns, lpcb will contain the number of bytes

required to enumerate all connections. If you don't supply a large enough buffer, you

can always try again with the correct buffer size returned in lpcb. The lpcConnections

parameter is a pointer to a variable that receives a count of the number of RASCONN

structures written to lprasconn.

With the RAS connection handles you receive from RasEnumConnections, you can

obtain network protocol–specific information that is used over an established RAS

connection. This is known as projection information. A remote access server uses

projection information to represent a remote client on the network. For example, when

you make a RAS connection that uses IP over a framing protocol, IP configuration

information (such as an assigned IP address) is established from the RAS to your

client. You can retrieve projection information for the protocols that travel over the

PPP framing protocol by calling the RasGetProjectionInfo function, which is defined as

DWORD RasGetProjectionInfo(

 HRASCONN hrasconn,

 RASPROJECTION rasprojection,

 LPVOID lpprojection,

 LPDWORD lpcb

);

The hrasconn parameter is a RAS connection handle. The rasprojection parameter is

a RASPROJECTION enumeration type that allows you to specify a protocol to receive

connection information for. The lpprojection parameter receives a data structure that is

associated with the enumeration type specified in rasprojection. The final parameter,

lpcb, is a pointer to a variable that you must set to the size of your lpprojection

structure. When this function completes, this variable will contain the size of the buffer

needed to obtain the projection information.

The following RASPROJECTION enumeration types allow you to receive connection

information:

RASP_Amb

RASP_PppCcp

RASP_PppNbf

RASP_PppIp

RASP_PppIpx

RASP_PppLcp

RASP_Slip

To retrieve IP address information for a PPP framing protocol connection, you must

specify the RASP_PppIp enumeration type. When you specify a RASP_PppIp, you

will receive a RASPPPIP structure that is defined as

typedef struct _RASPPPIP {

 DWORD dwSize;

 DWORD dwError;

 TCHAR szIpAddress[RAS_MaxIpAddress + 1];

#ifndef WINNT35COMPATIBLE

 TCHAR szServerIpAddress[RAS_MaxIpAddress + 1];

#endif

#if (WINVER >= 0x500)

 DWORD dwOptions;

 DWORD dwServerOptions;

#endif

} RASPPPIP;

The fields are defined as

dwSize Should be set to the size (in bytes) of a RASPPPIP structure

dwError Receives an error code from the PPP negotiation process

szIpAddress Receives a string representing the client's IP address

szServerIpAddress Receives a string representing the server's IP address

dwOptions Compression options for the local host

dwServerOptions Compression options for the remote host

The following code demonstrates how to call RasGetProjectionInfo to retrieve the IP

addresses assigned to a client when a PPP connection is made over RAS:

lpProjection = (RASPPPIP *) GlobalAlloc(GPTR, cb);

lpProjection->dwSize = sizeof(RASPPPIP);

cb = sizeof(RASPPPIP);

Ret = RasGetProjectionInfo(hRasConn, RASP_PppIp,

 lpProjection, &cb);

if (Ret != ERROR_SUCCESS)

{

 printf("RasGetProjectionInfo failed with error %d", Ret);

 return;

}

 else

{

 printf("\nRas Client IP address: %s\n",

 lpProjection->szIpAddress);

 printf("Ras Server IP address: %s\n",

 lpProjection->szServerIpAddress);

}

VPN

As we mentioned previously, RAS can also be used to form secure VPN connections

over an IP network. You can do this as long as you have IP connectivity established

on your computer either through RAS or through a network adapter. Today some

computers have IP connectivity established either through Digital Subscriber Line

(DSL) or cable modems and do not use RAS serial devices to connect to the Internet.

If you do not have IP connectivity established, you can use RasDial first to establish IP

connectivity over a serial device, as we have already described. Once IP connectivity

is established either through RAS or through a network adapter, you can use RasDial

to establish a secure link to your remote network over the existing IP connection.

Using the RAS client to establish a VPN connection requires building a phonebook

entry that contains the remote VPN server's IP address information on the remote

network instead of telephone dialing information. In a phonebook RASENTRY

structure you must set the szDeviceType field to the string “RASDT_Vpn”. Once this

field is set, the szLocalPhoneNumber field can be used to specify either a DNS name

or an IP address string of the remote VPN server instead of a phone number. After the

phonebook entry is established, RasDial can be called using the phonebook entry to

establish the VPN link.

Conclusion

This chapter presented the basics of using RAS to extend your computer's networking

capability. We described how to call the RasDial function to communicate with remote

networks. We also discussed how to maximize RAS's capabilities by creating

phonebook entries.

Chapter 16

IP Helper Functions

This chapter will introduce you to API functions that allow you to query and manage IP

characteristics on your computer. The functions are designed to help you

programmatically achieve the functionality that is available in the following standard IP

utilities:

IPCONFIG.EXE (or WINIPCFG.EXE in Microsoft Windows 95, Windows 98, and

Windows Me) Displays IPv4 configuration information and permits you to release

and renew DHCP-assigned IPv4 addresses.

IPV6.EXE A new API has been introduced that enumerates IPv6 addresses similar

to the IPV6.EXE or NETSH.EXE commands. This utility will simply be entitled

IPCONFIGV6.EXE.

NETSTAT.EXE Displays the TCP connection table, the UDP listener table, and the

IPv4 protocol statistics.

ROUTE.EXE Displays and manipulates IPv4 routing tables.

ARP.EXE Displays and modifies the IPv4-to-physical address translation tables that

ARP uses.

The functions described in this chapter are available mainly in Windows 98, Windows

Me, Windows 2000, and Windows XP. Several are also available in Windows NT 4.0

Service Pack 4 or later; however, none are available in Windows 95. We will point out

platform specifics as we discuss each function. The prototypes for all of the functions

described in this chapter are defined in IPHLPAPI.H. In addition, many of the data

structures are defined in IPTYPES.H. When you are building your application, you

must link it to the library file IPHLPAPI.LIB.

The samples provided for this chapter, which mimic the well-known system utilities,

are located in the directory SAMPLES\CHAPTER16.

Note that the IP Helper APIs were developed before the availability of IPv6 on the

Windows platforms. Therefore, all of the APIs return information about IPv4 only

except for a single new IP Helper API GetAdaptersAddresses, which is discussed in

the next section.

Ipconfig

The IPCONFIG.EXE utility presents two pieces of information: IPv4 configuration

information and IPv4 configuration parameters specific to each network adapter

installed on your machine. To retrieve IP configuration information, use the

GetNetworkParams function, which is defined as

DWORD GetNetworkParams(

 PFIXED_INFO pFixedInfo,

 PULONG pOutBufLen

);

The pFixedInfo parameter receives a pointer to a buffer that receives a FIXED_INFO

data structure your application must provide to retrieve the IPv4 configuration

information. The pOutBufLen parameter is a pointer to a variable that specifies the

size of the buffer you passed in the pFixedInfo parameter. If your buffer is not large

enough, GetNetworkParams returns ERROR_BUFFER_ OVERFLOW and sets the

pOutBufLen parameter to the required buffer size.

The FIXED_INFO structure used in GetNetworkParams is defined as

typedef struct

{

 char HostName[MAX_HOSTNAME_LEN + 4] ;

 char DomainName[MAX_DOMAIN_NAME_LEN + 4];

 PIP_ADDR_STRING CurrentDnsServer;

 IP_ADDR_STRING DnsServerList;

 UINT NodeType;

 char ScopeId[MAX_SCOPE_ID_LEN + 4];

 UINT EnableRouting;

 UINT EnableProxy;

 UINT EnableDns;

} FIXED_INFO, *PFIXED_INFO;

The fields are defined as follows:

HostName Represents your computer's name as recognized by DNS.

DomainName Specifies the DNS domain your computer belongs to.

CurrentDnsServer Contains the current DNS server's IPv4 address.

DnsServerList Is a linked list containing the DNS servers that your machine uses.

NodeType Specifies how the system resolves NetBIOS names over an IPv4

network. Table 16-1 contains the possible values.

ScopeId Identifies a string value that is appended to a NetBIOS name to logically

group two or more computers for NetBIOS communication over TCP/IP.

EnableRouting Specifies whether the system will route IPv4 packets between the

networks it is connected to.

EnableProxy Specifies whether the system will act as a WINS proxy agent on a

network. A WINS proxy agent answers broadcast queries for names that it has

resolved through WINS and allows a network of b-node computers to connect to

servers on other subnets registered with WINS.

EnableDns Specifies whether NetBIOS will query DNS for names that cannot be

resolved by WINS, broadcast, or the LMHOSTS file.

Table 16-1Possible Node Type Values

Value Description

BROADCAST_NODETYPE

Known as b-node NetBIOS name resolution, in

which the system uses IP broadcasting to perform

NetBIOS name registration and name resolution.

PEER_TO_PEER_NODETYPE

Known as p-node NetBIOS name resolution, in

which the system uses point-to-point

communication with a NetBIOS name server (such

as WINS) to register and resolve computer names

to IP addresses.

MIXED_NODETYPE

Known as m-node (mixed node) NetBIOS name

resolution, in which the system uses both the

b-node and p-node techniques. The b-node

method is used first; if it fails, the p-node method is

used.

HYBRID_NODETYPE

Known as h-node (hybrid node) NetBIOS name

resolution, in which the system uses both the

b-node and p-node techniques. The p-node

method is used first; if it fails, the b-node method is

used next.

The DnsServerList field of a FIXED_INFO structure is an IP_ADDR_STRING structure

that represents the beginning of a linked list of IPv4 addresses. This field is defined as

typedef struct _IP_ADDR_STRING

{

 struct _IP_ADDR_STRING* Next;

 IP_ADDRESS_STRING IpAddress;

 IP_MASK_STRING IpMask;

 DWORD Context;

} IP_ADDR_STRING, *PIP_ADDR_STRING;

The Next field identifies the next DNS server IPv4 address in the list. If Next is set to

NULL, it indicates the end of the list. The IpAddress field is a string of characters that

represents an IPv4 address as a dotted decimal string. The IpMask field is a string of

characters that represents the subnet mask associated with the IPv4 address listed in

IpAddress. The final field, Context, identifies the IPv4 address with a unique value on

the system.

The IPCONFIG.EXE utility is also capable of retrieving IP configuration information

specific to a network interface. A network interface can be a hardware Ethernet

adapter or even a RAS dial-up adapter. You can retrieve adapter information by

calling GetAdaptersInfo, which is defined as

 DWORD GetAdaptersInfo (

 PIP_ADAPTER_INFO pAdapterInfo,

 PULONG pOutBufLen

);

Use the pAdapterInfo parameter to pass a pointer to an application-provided buffer

that receives an ADAPTER_INFO data structure with the adapter configuration

information. The pOutBufLen parameter is a pointer to a variable that specifies the

size of the buffer you passed in the pAdapterInfo parameter. If your buffer is not large

enough, GetAdaptersInfo returns ERROR_BUFFER_ OVERFLOW and sets the

pOutBufLen parameter to the required buffer size.

The IP_ADAPTER_INFO structure is actually a list of structures containing IPv4

configuration information specific to every network adapter available on your machine.

IP_ADAPTER_INFO is defined as

typedef struct _IP_ADAPTER_INFO

{

 struct _IP_ADAPTER_INFO* Next;

 DWORD ComboIndex;

 char AdapterName[MAX_ADAPTER_NAME_LENGTH + 4];

 char Description[MAX_ADAPTER_DESCRIPTION_LENGTH + 4];

 UINT AddressLength;

 BYTE Address[MAX_ADAPTER_ADDRESS_LENGTH];

 DWORD Index;

 UINT Type;

 UINT DhcpEnabled;

 PIP_ADDR_STRING CurrentIpAddress;

 IP_ADDR_STRING IpAddressList;

 IP_ADDR_STRING GatewayList;

 IP_ADDR_STRING DhcpServer;

 BOOL HaveWins;

 IP_ADDR_STRING PrimaryWinsServer;

 IP_ADDR_STRING SecondaryWinsServer;

 time_t LeaseObtained;

 time_t LeaseExpires;

} IP_ADAPTER_INFO, *PIP_ADAPTER_INFO;

The fields of the structure are defined as follows:

Next Identifies the next adapter in the buffer. A NULL value indicates the end of the

list.

ComboIndex Is not used and will be set to 0.

AdapterName Identifies the name of the adapter.

Description Is a simple description of the adapter.

AddressLength Identifies how many bytes make up the physical address of the

adapter in the Address field.

Address Identifies the physical address of the adapter.

Index Identifies a unique internal index number of the network interface that this

adapter is assigned to.

Type Specifies the type of the adapter as a numeric value. Table 16-2 defines the

most common adapter types. A full listing of the supported adapter types can be

found in IPIFCONS.H.

Table 16-2Adapter Types

Adapter Type Value Description

MIB_IF_TYPE_ETHERNET Ethernet adapter

MIB_IF_TYPE_FDDI Fiber Distributed Data Interface (FDDI) adapter

MIB_IF_TYPE_LOOPBACK Loopback adapter

MIB_IF_TYPE_OTHER Other type of adapter

MIB_IF_TYPE_PPP PPP adapter

MIB_IF_TYPE_SLIP Slip adapter

MIB_IF_TYPE_TOKENRING Token Ring adapter

DhcpEnabled Specifies whether DHCP is enabled on this adapter.

CurrentIpAddress Is not used and will be set to a NULL value.

IpAddressList Specifies a list of IPv4 addresses assigned to the adapter.

GatewayList Specifies a list of IPv4 addresses representing the default gateway.

DhcpServer Specifies a list with only one element representing the IPv4 address of

the DHCP server used.

HaveWins Specifies whether the adapter uses a WINS server.

PrimaryWinsServer Specifies a list with only one element representing the IPv4

address of the primary WINS server used.

SecondaryWinsServer Specifies a list with only one element representing the IPv4

address of the secondary WINS server used.

LeaseObtained Identifies when the lease for the IPv4 address was obtained from a

DHCP server.

LeaseExpires Identifies when the lease on the IPv4 address obtained from DHCP

expires.

The GetAdaptersInfo returns a great deal of information about the physical adapter

and the IPv4 addresses assigned to it, but it does not return any IPv6 information.

Instead, a new API GetAdaptersAddresses has been introduced to fill this gap as it

returns address information for both IPv4 and IPv6. The API is declared as

DWORD WINAPI GetAdaptersAddresses(

 ULONG Family,

 DWORD Flags,

 PVOID Reserved,

 PIP_ADAPTER_ADDRESSES pAdapterAddresses,

 PULONG pOutBufLen

);

The Family parameter indicates which address family should be enumerated. The

valid values are: AF_INET, AF_INET6, or AF_UNSPEC, depending on whether you

want IPv4, IPv6, or all IP information. The Flags parameter controls the type of

addresses returned. Table 16-3 lists the possible values and their meaning. Note that

more than one flag can be specified by ORing multiple flags together. By default, all

addresses are returned. The last two parameters are the buffer that the IP information

is returned in and the length of the buffer.

Table 16-3GetAdaptersAddresses Flag

Flag Description

GAA_FLAG_SKIP_UNICAST Exclude unicast addresses.

GAA_FLAG_SKIP_ANYCAST Exclude anycast addresses.

GAA_FLAG_SKIP_MULTICAST Exclude multicast addresses.

GAA_FLAG_SKIP_DNS_SERVER Exclude DNS server addresses.

The IP information is returned in the form of an IP_ADAPTER_ADDRESSES

structure. This structure is defined as

typedef struct _IP_ADAPTER_ADDRESSES {

 union {

 ULONGLONG Alignment;

 struct {

 ULONG Length;

 DWORD IfIndex;

 }

 }

 struct _IP_ADAPTER_ADDRESSES *Next;

 PCHAR AdapterName;

 PIP_ADAPTER_UNICAST_ADDRESS FirstUnicastAddress;

 PIP_ADAPTER_ANYCAST_ADDRESS FirstAnycastAddress;

 PIP_ADAPTER_MULTICAST_ADDRESS FirstMulticastAddress;

 PIP_ADAPTER_DNS_SERVER_ADDRESS FirstDnsServerAddress;

 PWCHAR DnsSuffix;

 PWCHAR Description;

 PWCHAR FriendlyName;

 BYTE PhysicalAddress[MAX_ADAPTER_ADDRESS_LENGTH];

 DWORD PhysicalAddressLength;

 DWORD Flags;

 DWORD Mtu;

 DWORD IfType;

 IF_OPER_STATUS OperStatus;

 DWORD Ipv6IfIndex;

 DWORD ZoneIndices[16];

 PIP_ADAPTER_PREFIX FirstPrefix;

} IP_ADAPTER_ADDRESSES, *PIP_ADAPTER_ADDRESSES;

Length Specifies the length of the structure.

IfIndex Specifies the interface index that can be cross-referenced with the interface

indices that GetAdaptersInfo returns.

Next Specifies the next IP_ADAPTER_ADDRESSES structure returned.

AdapterName Specifies the adapter name these addresses are assigned to.

FirstUnicastAddress Pointer to a list of IP_ADAPER_UNICAST_ ADDRESS

structures that contain information about each unicast address assigned to this

adapter.

FirstAnycastAddress Pointer to a list of IP_ADAPTER_ANYCAST_ ADDRESS

structures that contain information about each anycast address assigned to this

adapter.

FirstMulticastAddress Pointer to a list of IP_ADAPTER_MULTICAST_ ADDRESS

structures that contain information about each multicast address assigned to this

adapter. This is extremely useful because it lists each multicast address joined on

each physical interface.

FirstDnsServerAddress Pointer to a list of IP_ADAPTER_DNS_

SERVER_ADDRESS structures that contain information about each DNS server

assigned to this adapter.

DnsSuffix Specifies the Unicode DNS suffix string associated with this adapter.

Description Contains a Unicode string description of the adapter.

FriendlyName Contains a Unicode string description of the adapter that is usually

more easily human readable than the Description field.

PhysicalAddress Specifies the physical address of the adapter in an array of

bytes. For an Ethernet adapter, this would specify the MAC address.

PhysicalAddressLength Specifies the number of bytes that comprise the physical

address contained in the PhysicalAddress field.

Flags Indicates the state of the adapter with respect to DDNS, DNS, and DHCP.

Table 16-4 lists the possible flags.

Table 16-4IP_ADAPTERS_ADDRESSES Flags

Flag Description

IP_ADAPTER_DDNS_ENABLED
Dynamic DNS is enabled on

this adapter.

IP_ADAPTER_REGISTER_ADAPTER_SUFFIX
The DNS suffix for this

adapter is registered.

IP_ADAPTER_DHCP_ENABLED
DHCP is enabled on this

adapter.

IP_ADAPTER_RECEIVE_ONLY
The interface is capable of

receiving data only.

IP_ADAPTER_NO_MULTICAST
The interface is not capable

of receiving multicast data.

IP_ADAPTER_IPV6_OTHER_STATEFUL_CONFIG

Indicates the “O” bit in the

most recently received IPv6

router advertisement was

set. This indicates the

presence of stateful

configuration information

such as DHCPv6.

Mtu Specifies the maximum transmission unit support on this adapter.

IfType Specifies the type of adapter; see Table 16-2 for the possible values.

OperStatus Specifies the operational status of the adapter. For more information

about this field, see RFC 2863.

Ipv6IfIndex Specifies the interface index of the adapter for the IPv6 addresses

assigned to this interface. Note that this field should be used with IPv6 addresses

and not the IfIndex field.

ZoneIndices Specifies the scope-IDs for the 16 different scope levels. The most

popular scope levels are defined in the enumerated type SCOPE_LEVEL. Consult

RFC2373 for more information.

FirstPrefix A linked list of IP_ADAPTER_PREFIX structures which contain the

subnet prefixes which are on-link for this interface.

The last piece of the IP_ADAPTERS_ADDRESSES structure is the adapter

structures. These four structures are very similar and for the most part contain the

same kind of information. We'll discuss only the unicast version of the structure

because the remaining address structures can be inferred from this one. The unicast

structure is defined as

typedef struct _IP_ADAPTER_UNICAST_ADDRESS {

 union {

 ULONGLONG Alignment;

 struct {

 ULONG Length;

 DWORD Flags;

 };

 };

 struct _IP_ADAPTER_UNICAST_ADDRESS *Next;

 SOCKET_ADDRESS Address;

 IP_PREFIX_ORIGIN PrefixOrigin;

 IP_SUFFIX_ORIGIN SuffixOrigin;

 IP_DAD_STATE DadState;

 ULONG ValidLifetime;

 ULONG PreferredLifeTime;

 ULONG LeaseLifeTime;

} IP_ADAPTER_UNICAST_ADDRESS, *PIP_ADAPTER_UNICAST_ADDRESS;

Length Specifies the length of this structure in bytes.

Flags Specifies the type of address. Table 16-5 contains the possible flag values.

Table 16-5Per Address Flags

Per Address Flags Description

IP_ADAPTER_ADDRESS_DNS_ELIGIBLE
Address can be registered with DNS

(such as DHCP or RA assigned).

IP_ADAPTER_ADDRESS_TRANSIENT
Address is not a permanent address

(such as IPv6 privacy address).

Next Specifies the next address structure in the link list.

PrefixOrigin Specifies how the network prefix was obtained. Table 16-6 lists the

possible values, which are an enumerated type defined in IPTYPES.H.

Table 16-6Prefix Origin Values

Prefix Origin Value Description

IpPrefixOriginOther
Prefix obtained from source other than those

listed in this table.

IpPrefixOriginManual
Prefix was manually configured—for example,

assigning a static IPv4 address.

IpPrefixOriginWellKnown
Prefix is a well-known address—for example,

the loopback address.

IpPrefixOriginDhcp Prefix is assigned by DHCP.

IpPrefixOriginRouterAdvertisement

Prefix is assigned by a router

advertisement—for example, an IPv6 site

local or global address.

SuffixOrigin Specifies how the host portion of the address was obtained. Table

16-7 lists these values, which are also an enumerated type.

Table 16-7Suffix Origin Values

Suffix Origin Value Description

IpSuffixOriginOther
Suffix obtained from a source other than those

listed in this table.

IpSuffixOriginManual
Suffix was configured manually—for example, a

statically assigned IP address.

IpSuffixOriginWellKnown
Suffix is a well-known address—for example, the

loopback adapter.

IpSuffixOriginDhcp Suffix is assigned by DHCP.

IpSuffixOriginLinkLayerAddress
Suffix is obtained from the lower network layer.

For example, IPv6 link local addresses.

IpSuffixOriginRandom
Suffix is a randomly assigned value. For

example, IPv6 privacy addresses.

DadState Indicates the state of the address. Duplicate address detection (DAD) is

the process by which an address is validated. Table 16-8 lists the values and their

meanings.

Table 16-8Address States

Address State Description

IpDadStateInvalid Address is in the process of being deleted.

IpDadStateTentative Duplicate address detection is in progress.

IpDadStateDuplicate A duplicate address has been detected.

IpDadStateDeprecated Address is no longer preferred for new connections.

IpDatStatePreferred Address is the preferred address.

ValidLifeTime Specifies in seconds how long the address is valid. A value of

0xFFFFFFFF indicates the address does not expire.

PreferredLifetime Specifies in seconds how long the address is the preferred

address. After the preferred lifetime expires, the address goes into the deprecated

state. A value of 0xFFFFFFFF indicates the address does not expire.

LeaseLifeTime Specifies in seconds how long the DHCP lease is valid. A value of

0xFFFFFFFF indicates the lease does not expire.

Releasing and Renewing IPv4 Addresses

The IPCONFIG.EXE utility also features the ability to release and renew IPv4

addresses obtained from the DHCP server by specifying the /release and /renew

command line parameters. If you want to programmatically release an IPv4 address,

you can call the IPReleaseAddress function, which is defined as

DWORD IpReleaseAddress (

 PIP_ADAPTER_INDEX_MAP AdapterInfo

);

If you want to renew an IP address, you can call the IPRenewAddress function, which

is defined as

DWORD IpRenewAddress (

 PIP_ADAPTER_INDEX_MAP AdapterInfo

);

Each of these two functions features an AdapterInfo parameter that is an

IP_ADAPTER_INDEX_MAP structure, which identifies the adapter to release or

renew the address for. The IP_ADAPTER_INDEX_MAP structure is defined as

typedef struct _IP_ADAPTER_INDEX_MAP

{

 ULONG Index;

 WCHAR Name[MAX_ADAPTER_NAME];

}IP_ADAPTER_INDEX_MAP, *PIP_ADAPTER_INDEX_MAP;

The fields of this structure are defined as follows:

Index Identifies the internal index of the network interface that the adapter is

assigned to.

Name Identifies the name of the adapter.

You can retrieve the IP_ADAPTER_INDEX_MAP structure for a particular adapter by

calling the GetInterfaceInfo function, which is defined as

DWORD GetInterfaceInfo (

 IN PIP_INTERFACE_INFO pIfTable,

 OUT PULONG dwOutBufLen

);

The pIfTable parameter is a pointer to an IP_INTERFACE_INFO application buffer

that will receive interface information. The dwOutBufLen parameter is a pointer to a

variable that specifies the size of the buffer you passed in the pIfTable parameter. If

the buffer is not large enough to hold the interface information, GetInterfaceInfo

returns the error ERROR_INSUFFICIENT_BUFFER and sets the dwOutBufLen

parameter to the required buffer size.

The IP_INTERFACE_INFO structure is defined as

typedef struct _IP_INTERFACE_INFO

{

 LONG NumAdapters;

 IP_ADAPTER_INDEX_MAP Adapter[1];

} IP_INTERFACE_INFO,*PIP_INTERFACE_INFO;

Its fields are defined as follows:

NumAdapters Identifies the number of adapters in the Adapter field.

Adapter Is an array of IP_ADAPTER_INDEX_MAP structures, defined on the

preceding page.

Once you have obtained the IP_ADAPTER_INDEX_MAP structure for a particular

adapter, you can release or renew the DHCP-assigned IPv4 address using the

IPReleaseAddress and IPRenewAddress functions we just described.

Changing IPv4 Addresses

The IPCONFIG.EXE utility does not allow you to change an IP address for a network

adapter (except in the case of DHCP). However, two functions will allow you to add or

delete an IP address for a particular adapter: the AddIpAddress and DeleteIpAddress

IP Helper functions. These require you to understand adapter index numbers and IP

context numbers. In Windows, every network adapter has a unique index ID (which

we described earlier), and every IP address has a unique context ID. Adapter index

IDs and IP context numbers can be retrieved using GetAdaptersInfo. The

AddIpAddress function is defined as

DWORD AddIPAddress (

 IPAddr Address,

 IPMask IpMask,

 DWORD IfIndex,

 PULONG NTEContext,

 PULONG NTEInstance

);

The Address parameter specifies the IPv4 address to add as an unsigned long value.

The IpMask parameter specifies the subnet mask for the IPv4 address as an unsigned

long value. The IfIndex parameter specifies the adapter index to add the address to.

The NTEContext parameter receives the context value associated with the IPv4

address added. The NTEInstance parameter receives an instance value associated

with an IPv4 address.

If you want to programmatically delete an IPv4 address for an adapter, you can call

DeleteIpAddress, which is defined as

 DWORD DeleteIPAddress (

 ULONG NTEContext

);

The NTEContext parameter identifies a context value associated with an IPv4

address. This value can be obtained from GetAdaptersInfo, which we described

earlier in the chapter.

Note that IPv4 addresses added via the AddIpAddress function are persistent only

until reboot.

Netstat

The NETSTAT.EXE utility displays the TCP connection table, the UDP listener table,

and the IPv4 protocol statistics on your computer. The functions used to retrieve this

information work with Windows NT 4.0 (Service Pack 4 and later), Windows 98, and

Windows Me.

Retrieving the TCP Connection Table

The GetTcpTable function retrieves the TCP connection table. This is the same

information you see when you execute NETSTAT.EXE with the -p tcp -a options.

GetTcpTable is defined as

DWORD GetTcpTable(

 PMIB_TCPTABLE pTcpTable,

 PDWORD pdwSize,

 BOOL bOrder

);

The pTcpTable parameter is a pointer to an MIB_TCPTABLE application buffer that

will receive the TCP connection information. The pdwSize parameter is a pointer to a

variable that specifies the size of the buffer you passed in the pTcpTable parameter. If

the buffer is not large enough to hold the TCP information, the function sets this

parameter to the required buffer size. The bOrder parameter specifies whether the

returned information should be sorted.

The MIB_TCPTABLE structure returned from GetTcpTable is defined as

typedef struct _MIB_TCPTABLE

{

 DWORD dwNumEntries;

 MIB_TCPROW table[ANY_SIZE];

} MIB_TCPTABLE, *PMIB_TCPTABLE;

The fields of this structure are defined as follows:

dwNumEntries Specifies how many entries are in the table field.

table Is a pointer to an array of MIB_TCPROW structures that contain TCP

connection information.

The MIB_TCPROW structure contains the IPv4 address pair that comprises a TCP

connection. This structure is defined as

typedef struct _MIB_TCPROW

{

 DWORD dwState;

 DWORD dwLocalAddr;

 DWORD dwLocalPort;

 DWORD dwRemoteAddr;

 DWORD dwRemotePort;

} MIB_TCPROW, *PMIB_TCPROW;

Its fields are defined as follows:

dwState Specifies the state of the TCP connection, as defined in Table 16-9. See

Chapter 1 for information about TCP states.

Table 16-9TCP Connection States

Connection State RFC 793 Description

MIB_TCP_STATE_CLOSED Known as the “CLOSED” state

MIB_TCP_STATE_CLOSING Known as the “CLOSING” state

MIB_TCP_STATE_CLOSE_WAIT Known as the “CLOSE WAIT” state

MIB_TCP_STATE_DELETE_TCB Known as the “DELETE” state

MIB_TCP_STATE_ESTAB Known as the “ESTABLISHED” state

MIB_TCP_STATE_FIN_WAIT1 Known as the “FIN WAIT1” state

MIB_TCP_STATE_FIN_WAIT2 Known as the “FIN WAIT2” state

MIB_TCP_STATE_LAST_ACK Known as the “LAST ACK” state

MIB_TCP_STATE_LISTEN Known as the “LISTENING” state

MIB_TCP_STATE_SYN_RCVD Known as the “SYN RCVD” state

MIB_TCP_STATE_SYN_SENT Known as the “SYN SENT” state

MIB_TCP_STATE_TIME_WAIT Known as the “TIME WAIT” state

dwLocalAddr Specifies a local IPv4 address for the connection.

dwLocalPort Specifies a local port for the connection.

dwRemoteAddr Specifies the remote IPv4 address for the connection.

dwRemotePort Specifies the remote port for the connection.

Retrieving the UDP Listener Table

The GetUdpTable function retrieves the UDP listener table. This is the same

information you see if you execute NETSTAT.EXE with the -p udp -a options.

GetUdpTable is defined as

DWORD GetUdpTable(

 PMIB_UDPTABLE pUdpTable,

 PDWORD pdwSize,

 BOOL bOrder

);

The pUdpTable parameter is a pointer to an MIB_UDPTABLE application buffer that

will receive the UDP listener information. The pdwSize parameter is a pointer to a

variable that specifies the size of the buffer you passed in the pUdpTable parameter. If

the buffer is not large enough to hold the UDP information, the function sets this

parameter to the required buffer size. The bOrder parameter specifies whether the

returned information should be sorted.

The MIB_UDPTABLE structure returned from GetUdpTable is defined as

typedef struct _MIB_UDPTABLE

{

 DWORD dwNumEntries;

 MIB_UDPROW table[ANY_SIZE];

} MIB_UDPTABLE, * PMIB_UDPTABLE;

The fields of this structure are defined as follows:

dwNumEntries Specifies how many entries are in the table field.

table Is a pointer to an array of MIB_UDPROW structures that contain UDP listener

information.

The MIB_UDPROW structure contains the IPv4 address in which UDP is listening for

datagrams. This structure is defined as

typedef struct _MIB_UDPROW

{

 DWORD dwLocalAddr;

 DWORD dwLocalPort;

} MIB_UDPROW, * PMIB_UDPROW;

Its fields are defined as follows:

dwLocalAddr Specifies the local IPv4 address.

dwLocalPort Specifies the local port.

Retrieving IPv4 Protocol Statistics

Four functions are available for receiving IPv4 statistics: GetIpStatistics,

GetIcmpStatistics, GetTcpStatistics, and GetUdpStatistics. These functions produce

the same information that is returned from NETSTAT.EXE when you call it with the -s

parameter. The first statistics function, GetIpStatistics, retrieves the IPv4 statistics for

the current computer and is defined as

DWORD GetIpStatistics(

 PMIB_IPSTATS pStats

);

The pStats parameter is a pointer to an MIB_IPSTATS structure that receives the

current IPv4 statistics for your computer. The MIB_IPSTATS structure is defined as

typedef struct _MIB_IPSTATS

{

 DWORD dwForwarding;

 DWORD dwDefaultTTL;

 DWORD dwInReceives;

 DWORD dwInHdrErrors;

 DWORD dwInAddrErrors;

 DWORD dwForwDatagrams;

 DWORD dwInUnknownProtos;

 DWORD dwInDiscards;

 DWORD dwInDelivers;

 DWORD dwOutRequests;

 DWORD dwRoutingDiscards;

 DWORD dwOutDiscards;

 DWORD dwOutNoRoutes;

 DWORD dwReasmTimeout;

 DWORD dwReasmReqds;

 DWORD dwReasmOks;

 DWORD dwReasmFails;

 DWORD dwFragOks;

 DWORD dwFragFails;

 DWORD dwFragCreates;

 DWORD dwNumIf;

 DWORD dwNumAddr;

 DWORD dwNumRoutes;

} MIB_IPSTATS, *PMIB_IPSTATS;

The fields of this structure are defined as follows:

dwForwarding Specifies whether IPv4 forwarding is enabled or disabled on your

computer.

dwDefaultTTL Specifies the initial TTL value for datagrams originating on your

computer.

dwInReceives Specifies the number of datagrams received.

dwInHdrErrors Specifies the number of datagrams received with bad headers.

dwInAddrErrors Specifies the number of datagrams received with bad addresses.

dwForwDatagrams Specifies the number of datagrams forwarded.

dwInUnknownProtos Specifies the number of datagrams received with an

unknown protocol.

dwInDiscards Specifies the number of datagrams received that were discarded.

dwInDelivers Specifies the number of datagrams received that were delivered.

dwOutRequests Specifies the number of datagrams that IPv4 has requested to

transmit.

dwRoutingDiscards Specifies the number of outgoing datagrams discarded.

dwOutDiscards Specifies the number of transmitted datagrams discarded.

dwOutNoRoutes Specifies the number of datagrams that did not have a routing

destination.

dwReasmTimeout Specifies the maximum amount of time for a fragmented

datagram to arrive.

dwReasmReqds Specifies the number of datagrams that require assembly.

dwReasmOks Specifies the number of datagrams that were successfully

reassembled.

dwFragFails Specifies the number of datagrams that could not be fragmented.

dwFragCreates Specifies the number of datagrams that were fragmented.

dwNumIf Specifies the number of IPv4 interfaces available on your computer.

dwNumAddr Specifies the number of IPv4 addresses identified on your computer.

dwNumRoutes Specifies the number of routes available in the routing table.

The second statistics function, GetIcmpStatistics, retrieves ICMP statistics and is

defined as

DWORD GetIcmpStatistics(

 PMIB_ICMP pStats

);

The pStats parameter is a pointer to an MIB_ICMP structure that receives the current

ICMP statistics for your computer. The MIB_ICMP structure is defined as

typedef struct _MIB_ICMP

{

 MIBICMPINFO stats;

} MIB_ICMP,*PMIB_ICMP;

As you can see, MIB_ICMP is a structure containing a MIBICMPINFO structure that is

defined as

typedef struct _MIBICMPINFO

{

 MIBICMPSTATS icmpInStats;

 MIBICMPSTATS icmpOutStats;

} MIBICMPINFO;

The MIBICMPINFO structure receives incoming or outgoing ICMP information through

an MIBICMPSTATS structure. The icmpInStats parameter receives incoming data and

icmpOutStats receives outgoing data. The MIBICMPSTATS structure is defined as

typedef struct _MIBICMPSTATS

{

 DWORD dwMsgs;

 DWORD dwErrors;

 DWORD dwDestUnreachs;

 DWORD dwTimeExcds;

 DWORD dwParmProbs;

 DWORD dwSrcQuenchs;

 DWORD dwRedirects;

 DWORD dwEchos;

 DWORD dwEchoReps;

 DWORD dwTimestamps;

 DWORD dwTimestampReps;

 DWORD dwAddrMasks;

 DWORD dwAddrMaskReps;

} MIBICMPSTATS;

The fields of this structure are defined as follows:

dwMsgs Specifies the number of messages sent or received.

dwErrors Specifies the number of errors sent or received.

dwDestUnreachs Specifies the number of “destination unreachable” messages

sent or received.

dwTimeExcds Specifies the number of TTL-exceeded messages sent or received.

dwParmProbs Specifies the number of messages sent or received that indicate a

datagram contains bad IPv4 information.

dwSrcQuenchs Specifies the number of source quench messages sent or

received.

dwRedirects Specifies the number of redirection messages sent or received.

dwEchos Specifies the number of ICMP echo requests sent or received.

dwEchoReps Specifies the number of ICMP echo replies sent or received.

dwTimestamps Specifies the number of timestamp requests sent or received.

dwTimestampReps Specifies the number of timestamp replies sent or received.

dwAddrMasks Specifies the number of address masks sent or received.

dwAddrMaskReps Specifies the number of address mask replies sent or received.

The third statistics function, GetTcpStatistics, retrieves TCP statistics on your

computer and is defined as

DWORD GetTcpStatistics(

 PMIB_TCPSTATS pStats

);

The pStats parameter is a pointer to an MIB_TCPSTATS structure that receives the

current IP statistics for your computer. The MIB_TCPSTATS structure is defined as

typedef struct _MIB_TCPSTATS

{

 DWORD dwRtoAlgorithm;

 DWORD dwRtoMin;

 DWORD dwRtoMax;

 DWORD dwMaxConn;

 DWORD dwActiveOpens;

 DWORD dwPassiveOpens;

 DWORD dwAttemptFails;

 DWORD dwEstabResets;

 DWORD dwCurrEstab;

 DWORD dwInSegs;

 DWORD dwOutSegs;

 DWORD dwRetransSegs;

 DWORD dwInErrs;

 DWORD dwOutRsts;

 DWORD dwNumConns;

} MIB_TCPSTATS, *PMIB_TCPSTATS;

The fields of this structure are defined as follows:

dwRtoAlgorithm Specifies which retransmission algorithm is being used. The valid

values are MIB_TCP_RTO_CONSTANT, MIB_TCP_ RTO_RSRE,

MIB_TCP_RTO_VANJ, and MIB_TCP_RTO_OTHER, which is for other types.

dwRtoMin Specifies the minimum retransmission timeout in milliseconds.

dwRtoMax Specifies the maximum retransmission timeout in milliseconds.

dwMaxConn Specifies the maximum number of connections allowed.

dwActiveOpens Specifies how many times the machine is initiating a connection

with a server.

dwPassiveOpens Specifies how many times the machine is listening for a

connection from a client.

dwAttemptFails Specifies how many connection attempts have failed.

dwEstabResets Specifies the number of established connections that have been

reset.

dwCurrEstab Specifies the number of connections that are currently established.

dwInSegs Specifies the number of segments received.

dwOutSegs Specifies the number of segments transmitted (excluding segments

that have been retransmitted).

dwRetransSegs Specifies the number of segments retransmitted.

dwInErrs Specifies the number of errors received.

dwOutRsts Specifies the number of segments transmitted with the reset flag set.

dwNumConns Specifies the total number of connections.

The last statistics function, GetUdpStatistics, retrieves UDP statistics on your

computer and is defined as

DWORD GetUdpStatistics(

 PMIB_UDPSTATS pStats

);

The pStats parameter is a pointer to an MIB_UDPSTATS structure that receives the

current IPv4 statistics for your computer. The MIB_UDPSTATS structure is defined as

typedef struct _MIB_UDPSTATS

{

 DWORD dwInDatagrams;

 DWORD dwNoPorts;

 DWORD dwInErrors;

 DWORD dwOutDatagrams;

 DWORD dwNumAddrs;

} MIB_UDPSTATS,*PMIB_UDPSTATS;

This structure's fields are defined as follows:

dwInDatagrams Specifies the number of datagrams received.

dwNoPorts Specifies the number of datagrams discarded because the port number

was bad.

dwInErrors Specifies the number of erroneous datagrams received (excluding the

datagrams counted in dwNoPorts).

dwOutDatagrams Specifies the number of datagrams transmitted.

dwNumAddrs Specifies the total number of UDP entries in the listener table.

Route

The ROUTE.EXE command allows you to print and modify the routing table. The

routing table determines which IPv4 interface a connection request or a datagram

occurs on. The IP Helper library offers several functions for manipulating the routing

table. All of the functions related to routing are available in Windows 98, Windows Me,

and Windows NT 4.0 (Service Pack 4 or later).

First, let's discuss the ROUTE.EXE command's capabilities. Its most basic function is

to print the routing table. A route consists of a destination address, a netmask, a

gateway, a local IP interface, and a metric. You also have the ability to add and delete

a route. To add a route, you must specify all the parameters we just described. To

delete a route, you must specify the destination address only. In this section, we'll look

at the IP Helper functions that print the routing table. Then we'll discuss adding and

deleting a route.

Getting the Routing Table

The most basic action that ROUTE.EXE performs is printing the table. This is

accomplished with the GetIpForwardTable function, which is defined as

DWORD GetIpForwardTable (

 PMIB_IPFORWARDTABLE pIpForwardTable,

 PULONG pdwSize,

 BOOL bOrder

);

The first parameter, pIpForwardTable, contains the routing table information upon

return. When you call the function, this parameter should point to a buffer of sufficient

size. If you call the function with pIpForwardTable equal to NULL (or if the buffer size

is insufficient to begin with), the pdwSize parameter returns the length of the buffer

needed for the call to complete successfully. The last parameter, bOrder, indicates

whether the results should be sorted upon return. The default sorting order is

Destination address1.

Protocol that generated the route2.

Multipath routing policy3.

Next-hop address4.

The routing information is returned in the form of the MIB_IPFORWARDTABLE

structure, which is defined as

typedef struct _MIB_IPFORWARDTABLE

{

 DWORD dwNumEntries;

 MIB_IPFORWARDROW table[ANY_SIZE];

} MIB_IPFORWARDTABLE, *PMIB_IPFORWARDTABLE;

This structure is a wrapper for an array of MIB_IPFORWARDROW structures. The

dwNumEntries field indicates the number of these structures present in the array. The

MIB_IPFORWARDROW structure is defined as

 typedef struct _MIB_IPFORWARDROW

{

 DWORD dwForwardDest;

 DWORD dwForwardMask;

 DWORD dwForwardPolicy;

 DWORD dwForwardNextHop;

 DWORD dwForwardIfIndex;

 DWORD dwForwardType;

 DWORD dwForwardProto;

 DWORD dwForwardAge;

 DWORD dwForwardNextHopAS;

 DWORD dwForwardMetric1;

 DWORD dwForwardMetric2;

 DWORD dwForwardMetric3;

 DWORD dwForwardMetric4;

 DWORD dwForwardMetric5;

} MIB_IPFORWARDROW, *PMIB_IPFORWARDROW;

The fields of this structure are defined as follows:

dwForwardDest Is the IPv4 address of the destination host.

dwForwardMask Is the subnet mask for the destination host.

dwForwardPolicy Specifies a set of conditions that would cause the selection of a

multipath route. Usually these conditions are in the form of IP TOS. For more

information about TOS, see Chapter 7 and the IP_TOS option. For more information

about multipath routing, see RFC 1354.

dwForwardNextHop Is the IPv4 address for the next hop in the route.

dwForwardIfIndex Indicates the index of the interface for this route.

dwForwardType Indicates the route type as defined in RFC 1354. Table 16-10 lists

the possible values and meanings for this field.

dwForwardProto Is the protocol that generated the route. Table 16-11 lists the

possible values for this field. The values for IPX protocols are defined in

ROUTPROT.H, and the IP entries are included in IPRTRMIB.H.

dwForwardAge Indicates the age of the route in seconds.

dwForwardNextHopAS Is the autonomous system number of the next hop.

dwForwardMetric1 Is a routing protocol–specific metric value. For more

information, see RFC 1354. The field contains the route metric value that you

normally see when executing the ROUTE.EXE print command. For this and the

following four fields, if the entry is unused, the value is

MIB_IPROUTE_METRIC_UNUSED (-1).

dwForwardMetric2 Is a routing protocol–specific metric value. For more

information, see RFC 1354.

dwForwardMetric3 Is a routing protocol–specific metric value. For more

information, see RFC 1354.

dwForwardMetric4 Is a routing protocol–specific metric value. For more

information, see RFC 1354.

dwForwardMetric5 Is a routing protocol–specific metric value. For more

information, see RFC 1354.

Table 16-10Possible Route Types for a Routing Table Entry

Forward Type Description

MIB_IPROUTE_TYPE_INDIRECT
Next hop is not the final destination (remote

route)

MIB_IPROUTE_TYPE_DIRECT Next hop is the final destination (local route)

MIB_IPROUTE_TYPE_INVALID Route is invalid

MIB_IPROUTE_TYPE_OTHER Other route

Table 16-11Forward Protocols

Protocol Identifier Description

MIB_IPPROTO_OTHER Protocol not listed

MIB_IPPROTO_LOCAL Route generated by the stack

MIB_IPPROTO_NETMGMT Route added by ROUTE.EXE utility or SNMP

MIB_IPPROTO_ICMP Route from ICMP redirects

MIB_IPPROTO_EGP Exterior Gateway Protocol

MIB_IPPROTO_GGP Gateway Gateway Protocol

MIB_IPPROTO_HELLO HELLO routing protocol

MIB_IPPROTO_RIP Routing Information Protocol

MIB_IPPROTO_IS_IS
IP Intermediate System to Intermediate

System Protocol

MIB_IPPROTO_ES_IS
IP End System to Intermediate System

Protocol

MIB_IPPROTO_CISCO IP Cisco protocol

MIB_IPPROTO_BBN BBN protocol

MIB_IPPROTO_OSPF Open Shortest Path First routing protocol

MIB_IPPROTO_BGP Border Gateway Protocol

MIB_IPPROTO_NT_AUTOSTATIC
Routes that were originally added by a

routing protocol but are not static

MIB_IPPROTO_NT_STATIC
Routes added by the routing user interface or

the ROUTEMON.EXE utility

MIB_IPPROTO_STATIC_NON_DOD

Identical to PROTO_IP_NT_STATIC except

that these routes will not cause Dial on

Demand (DOD)

IPX_PROTOCOL_RIP Routing Information Protocol for IPX

IPX_PROTOCOL_SAP Service Advertisement Protocol

IPX_PROTOCOL_NLSP Netware Link Services Protocol

Adding a Route

The next function of the route command is adding a route. Remember that to add a

route, the destination IPv4 address, netmask, gateway, local IPv4 interface, and

metric must be specified. When adding a route, you should verify that the given local

IPv4 interface is valid. In addition, when adding a route you will need to refer to the

local IPv4 interface on which the route is based by its internal index value. You can

obtain this information by calling the GetIpAddrTable function, which is defined as

DWORD GetIpAddrTable (

 PMIB_IPADDRTABLE pIpAddrTable,

 PULONG pdwSize,

 BOOL bOrder

);

The first parameter, pIpAddrTable, is a buffer of sufficient size that will return an

MIB_IPADDRTABLE structure. The pdwSize parameter is the size of the buffer

passed as the first parameter. The last parameter, bOrder, specifies whether to return

the local IPv4 interfaces by ascending IP addresses. To find out the required buffer

size, you can pass NULL for pIpAddrTable. Upon return, pdwSize will indicate the

required buffer size. The MIB_IPADDRTABLE structure is defined as

 typedef struct _MIB_IPADDRTABLE

{

 DWORD dwNumEntries

 MIB_IPADDRROW table[ANY_SIZE];

} MIB_IPADDRTABLE, *PMIB_IPADDRTABLE;

This structure is a wrapper for an array of MIB_IPADDRROW structures. The

dwNumEntries field indicates how many MIB_IPADDRROW entries are present in the

table field array. The MIB_IPADDRROW structure is defined as

typedef struct _MIB_IPADDRROW

{

 DWORD dwAddr;

 DWORD dwIndex;

 DWORD dwMask;

 DWORD dwBCastAddr;

 DWORD dwReasmSize;

 unsigned short unused1;

 unsigned short unused2;

} MIB_IPADDRROW, *PMIB_IPADDRROW;

The fields of this structure are defined as follows:

dwAddr Is the IPv4 address for a given interface.

dwIndex Is the index of the interface associated with the IPv4 address.

dwMask Is the subnet mask for the IPv4 address.

dwBCastAddr Is the broadcast address.

dwReasmSize Is the maximum reassembly size for datagrams received.

unused1 and unused2 Are not currently used.

Using GetIpAddrTable, you can verify that the local IPv4 interface for the given route

is valid. The function for adding the route to the routing table is SetIpForwardEntry,

which is defined as

DWORD SetIpForwardEntry (

 PMIB_IPFORWARDROW pRoute

);

The only parameter is pRoute, which is a pointer to an MIB_IPFORWARDROW

structure. This structure defines the elements needed to establish a new route. We

have already discussed this structure and its member fields. To add a route, the

values must be specified for the fields dwForwardIfIndex, dwForwardDest,

dwForwardMask, dwForwardNextHop, and dwForwardPolicy.

Deleting a Route

The last action for the route utility is deleting a route, which is the easiest command to

implement. When invoking the route command to delete a route, you must specify the

destination address to delete. Then you can search for the MIB_IPFORWARDROW

structure returned from GetIpForwardTable that corresponds to the destination

address. The MIB_IPFORWARDROW structure can then be passed to the

DeleteIpForwardEntry function to remove the given entry. This function is defined as

DWORD DeleteIpForwardEntry (

 PMIB_IPFORWARDROW pRoute

);

Alternatively, you can specify the fields of pRoute yourself. The fields that are required

to remove a route are dwForwardIfIndex, dwForwardDest, dwForwardMask,

dwForwardNextHop, and dwForwardPolicy.

ARP

The ARP.EXE utility is used to view and manipulate the ARP cache. The Platform

SDK sample that emulates ARP.EXE by using the IP Helper functions is named

IPARP.EXE. ARP (which, as you'll recall, stands for address resolution protocol) is

responsible for resolving an IPv4 address to a physical MAC address. Machines

cache this information for performance reasons, and it is possible to access it through

the ARP.EXE utility. Using this utility, you can display the ARP table with the -a option,

delete an entry with the -d option, or add an entry with the -s option. In the next

section, we will describe how to print the ARP cache, add an entry to the ARP table,

and delete ARP entries.

All of the IP Helper functions discussed in this section are available in Windows 98,

Windows Me, and Windows NT 4.0 (Service Pack 4 or later).

The simplest function is obtaining the ARP table. The IP Helper function that obtains

this table is GetIpNetTable, which is defined as

DWORD GetIpNetTable (

 PMIB_IPNETTABLE pIpNetTable,

 PULONG pdwSize,

 BOOL bOrder

);

The first parameter, pIpNetTable, is a pointer to an MIB_IPNETTABLE structure that

returns the ARP information. You must supply a sufficiently large buffer when calling

this function. As with most other IP Helper functions, passing NULL for this parameter

will return the buffer size needed as the parameter pdwSize and the error

ERROR_INSUFFICIENT_BUFFER. Otherwise, pdwSize indicates the size of the

buffer passed as pIpNetTable. The last parameter, bOrder, indicates whether the

returned IPv4 entries should be sorted in ascending IPv4 order.

The MIB_IPNETTABLE structure is a wrapper for an array of MIB_IPNETROW

structures and is defined as

typedef struct _MIB_IPNETTABLE

{

 DWORD dwNumEntries;

 MIB_IPNETROW table[ANY_SIZE];

} MIB_IPNETTABLE, *PMIB_IPNETTABLE;

The dwNumEntries field indicates the number of array entries present in the table field.

The MIB_IPNETROW structure contains the actual ARP entry information and is

defined as

typedef struct _MIB_IPNETROW {

 DWORD dwIndex;

 DWORD dwPhysAddrLen;

 BYTE bPhysAddr[MAXLEN_PHYSADDR];

 DWORD dwAddr;

 DWORD dwType;

} MIB_IPNETROW, *PMIB_IPNETROW;

The fields of this structure are as follows:

dwIndex Specifies the index of the adapter.

dwPhysAddrLen Indicates the length, in bytes, of the physical address contained

in the bPhysAddr field.

bPhysAddr Is an array of bytes that contains the physical (MAC) address of the

adapter.

dwAddr Specifies the IP address of the adapter.

dwType Indicates the type of the ARP entry. Table 16-12 shows the possible values

for this field.

Table 16-12Possible ARP Entry Types

ARP Type Meaning

MIB_IPNET_TYPE_STATIC Static entry

MIB_IPNET_TYPE_DYNAMIC Dynamic entry

MIB_IPNET_TYPE_INVALID Invalid entry

MIB_IPNET_TYPE_OTHER Other entry

Adding an ARP Entry

The next function of ARP is adding an entry to the ARP cache, which is another

relatively simple operation. The IP Helper function to add an ARP entry is

SetIpNetEntry and is defined as

DWORD SetIpNetEntry (

 PMIB_IPNETROW pArpEntry

);

The only argument is the MIB_IPNETROW structure, which we covered in the

previous section. To add an ARP entry, simply fill in the structure with the new ARP

information. First, you need to set the dwIndex field to the index of a local IPv4

address that indicates the network on which the ARP entry applies. Remember that if

you are given the IP address, you can map the IP to the index with the

GetIpAddrTable function. The next field, dwPhysAddrLen, is typically set to 6. (Most

physical addresses, such as ETHERNET MAC addresses, are 6 bytes long.) The

bPhysAddr byte array must be set to the physical address. Most MAC addresses are

represented as 12 characters—for example, 00-A0-C9-A7-86-E8. These characters

need to be encoded into the proper byte array locations of the bPhysAddr field. For

example, the sample MAC address would be encoded into the following bytes:

00000000 10100000 11001001 10100111 10000110 11101000

The encoding method is the same used for encoding IPX and ATM addresses. (See

Chapter 4 for more information.) The dwAddr field must be set to the IP address that

belongs to the remote host and the specified MAC address. The last field, dwType, is

set to one of the ARP entry types listed in Table 16-12. Once the structure is filled, call

SetIpNetEntry to add the ARP entry to the cache. Upon success, NO_ERROR is

returned.

Deleting an ARP Entry

Deleting an ARP entry is similar to adding one except that the only information

required is the interface index, dwIndex, and the IPv4 address of the ARP entry to

delete, dwAddr. The function to remove an ARP entry is DeleteIpNetEntry, which is

defined as

DWORD DeleteIpNetEntry (

 PMIB_IPNETROW pArpEntry

);

Again, the only parameter is an MIB_IPNETROW structure, and the only information

necessary for removing an ARP entry is the local IPv4 index and the IPv4 address of

the entry to delete. Remember that the index number to a local IPv4 interface can be

obtained with the function GetIpAddrTable. Upon success, NO_ERROR is returned.

Sending an ARP Request

It is sometimes useful to send an ARP request to populate the ARP cache with the

physical address of a destination. For example, sending a UDP datagram larger than

the link MTU to a destination that is not in the ARP cache will always fail; on IPv4 it will

fail silently and IPv6 will indicate an error. The SendArp function will attempt to resolve

the given IPv4 address to its MAC address. There is no IPv6 equivalent function but at

least IPv6 will indicate that an error has occurred so that the application can retransmit

the packet once the physical address has been resolved. The function is declared as

DWORD SendArp(

 IPAddr DestIP,

 IPAddr SrcIP,

 PULONG pMacAddr,

 PULONG PhyAddrLen

);

The DestIP indicates the IPv4 destination address that ARP will attempt to resolve.

SrcIP is the optional local IPv4 interface to send the ARP request on. If zero, the

routing table will determine which local interface to use. pMacAddr is a data buffer that

receives the destination's physical address. Lastly, PHyAddrLen will indicate the

length of the physical address returned in the pMacAddr buffer.

Conclusion

This chapter introduced the IP Helper APIs in terms of several well-known system

utilities. This allows you to easily see how to programmatically obtain useful

information from the IPv4 network stack. The IP Helper APIs currently enumerate only

IPv4 information except for the new IP Helper API GetAdaptersAddresses, which

obtains IPv6 addressing information.

Chapter 17

NetBIOS

Network Basic Input/Output System (NetBIOS) is a standard application programming interface (API)

developed for IBM in 1983 by Sytek Corporation. NetBIOS defines a programming interface for

network communication but doesn't detail how the physical frames are transmitted over a network. In

1985, IBM created the NetBIOS Extended User Interface (NetBEUI), which was integrated with the

NetBIOS interface to form an exact protocol. The NetBIOS interface became popular enough that

vendors started implementing the NetBIOS programming interface on other protocols such as TCP/IP

and IPX/SPX. Platforms and applications throughout the world rely on NetBIOS to this day, including

many components of Microsoft Windows NT, Windows 2000, Windows 95, and Windows 98.

Microsoft Windows CE does not support the NetBIOS API, even though it supports

TCP/IP as a transport protocol and NetBIOS names and name resolution.

The Windows NetBIOS interface offers backward compatibility with older applications. This chapter

discusses the fundamentals of NetBIOS programming. First we cover the NetBIOS basics, beginning

with a discussion of NetBIOS names and LANA numbers. We'll follow this with a discussion of basic

services offered by NetBIOS, such as session-oriented and connectionless (datagram)

communications. In each section, we present a simple client and server example. We'll wrap up this

chapter with some common pitfalls and bugs that programmers often run into. Chapter 22 provides a

command reference that summarizes each NetBIOS command with its required parameters and a

short description of its behavior.

The OSI Network Model

The Open Systems Interconnection (OSI) model offers a high-level representation of

network systems. The OSI model contains seven layers that fully describe

fundamental network concepts from the application down to the physical method of

data transmissions. Figure 17-1 illustrates the seven layers of the OSI model.

Figure 17-1 The OSI network model

Relative to the OSI model, NetBIOS fits primarily into the session and transport layers.

Microsoft NetBIOS

As we mentioned, NetBIOS API implementations exist for numerous network

protocols, making the interface protocol-independent. In other words, if you develop

your application according to the NetBIOS specification, the application can run over

TCP/IP, NetBEUI, or even IPX/SPX. This is a useful feature because it allows a

well-written NetBIOS application to run on almost any machine, regardless of the

machine's physical network. However, there are a few considerations. For two

NetBIOS applications to communicate with each other over the network, they must be

running on workstations that have at least one transport protocol in common. For

example, if Joe's machine has only TCP/IP installed and Mary's machine has only

NetBEUI, NetBIOS applications on Joe's machine won't be able to communicate with

applications on Mary's machine.

Additionally, only certain protocols implement a NetBIOS interface. Microsoft TCP/IP

and NetBEUI offer a NetBIOS interface by default; however, IPX/SPX does not.

Therefore Microsoft provides a version of IPX/SPX that does implement the interface,

which is something to keep in mind when designing a network. When installing

protocols, the NetBIOS-capable IPX/SPX protocol usually states something to that

effect. For example, Windows 2000 offers the protocol NWLink IPX/SPX/NetBIOS

Compatible Transport Protocol. In Windows 95 and Windows 98, the IPX/SPX

protocol Properties dialog box has a check box that enables NetBIOS over IPX/SPX.

One other important bit of information is that NetBEUI is not a routable protocol. If

there is a router between the client machine and the server machine, applications on

those machines will not be able to communicate. The router will drop the packets as it

receives them. TCP/IP and IPX/SPX are both routable protocols and do not suffer

from this limitation. Keep in mind that if you plan to use NetBIOS heavily, you might

want to build your networks with at least one of the routable transport protocols. For

more information on protocol characteristics and considerations, see Chapter 2.

LANA Numbers

You might be wondering how transport protocols relate to NetBIOS from the

programming aspect. The answer is LAN Adapter (LANA) numbers, which are the key

to understanding NetBIOS. In the original implementations of NetBIOS, each physical

network card was assigned a unique value: a LANA number. Under Windows this

becomes a bit more problematic, as a workstation can have multiple network protocols

installed as well as multiple network interface cards.

A LANA number corresponds to the unique pairings of network adapter with transport

protocol. For example, if a workstation has two network cards and two

NetBIOS-capable transports (such as TCP/IP and NetBEUI), there will be four LANA

numbers. The numbers might correspond to the pairings as follows:

TCP/IP—Network Card 11.

NetBEUI—Network Card 12.

TCP/IP—Network Card 23.

NetBEUI—Network Card 2

Figure 17-2 NetBIOS Configuration dialog box. This machine is multihomed

with two network cards and three transport protocols: TCP/IP (NetBT),

NetBEUI (Nbf), and IPX/SPX (NwlnkNb).

4.

NetBIOS Names

Now that we know what LANA numbers are, let's move on to NetBIOS names. A

process—or application, if you prefer—registers a name on each LANA number that it

wants to communicate with. A NetBIOS name is 16 characters long, with the 16th

character reserved for special use. When adding a name to the name table, you

should initialize the name buffer to spaces. In the Windows environment, each

process has a NetBIOS name table for each available LANA number. Adding a name

to LANA 0 means that your application is available to clients connecting on your LANA

0 only. The maximum number of names that can be added to each LANA is 254, with

numbering from 1 to 254 (0 and 255 are reserved for the system); however, each

operating system sets a default maximum number less than 254 that you can change

when resetting each LANA number.

Additionally, there are two types of NetBIOS names: unique and group. A unique

name is exactly that: no other process on the network can have that name registered.

If another machine does have the name registered, you will receive a duplicate name

error. As you might know, machine names in Microsoft networks are NetBIOS names.

When a machine boots, it registers its name with the local Windows Internet Naming

Service (WINS) server, which reports an error if another machine has that name in

use. A WINS server maintains a list of all registered NetBIOS names. Additionally,

protocol-specific information can be kept along with the name. For example, on

TCP/IP networks, WINS maintains a pairing of NetBIOS names with the IP address

that registered the name. If the network is configured without a WINS server,

machines perform duplicate name checking by broadcasting a message on the

network. If no other machine challenges the message, the network allows the sender

to use that name. On the other hand, group names are used to send data to multiple

recipients or, conversely, receive data destined for multiple recipients. A group name

need not be unique. Group names are used for multicast data transmissions.

The 16th character in NetBIOS names distinguishes most Microsoft networking

services. Various networking service and group names are registered with a WINS

server by direct name registration from WINS-enabled computers or by broadcast on

the local subnet by non-WINS-enabled computers. The Nbtstat command is a utility

that you can use to obtain information about NetBIOS names that are registered on

the local (or remote) computer. In the example shown in Table 17-1, the Nbtstat -n

command produced this list of registered NetBIOS names for user Davemac logged

on to a computer configured as a primary domain controller and running Windows NT

Server with Microsoft Internet Information Services (IIS).

Table 17-1NetBIOS Name Table

Name 16th Byte Name Type Service

DAVEMAC1 <00> Unique Workstation service name

DAVEMAC1 <20> Unique Server services name

DAVEMACD <00> Group Domain name

DAVEMACD <1C> Group Domain controller name

DAVEMACD <1B> Unique Master browser name

DAVEMAC1 <03> Unique Messenger name

Inet~Services <1C> Group IIS group name

IS~DAVEMAC1 <00> Unique IIS unique name

DAVEMAC1 <BF> Unique Network monitor name

The Nbtstat command is installed only when TCP/IP is an installed protocol. This utility

can also query name tables of remote machines by using the -a parameter followed by

the remote machine's name, or by using the -A parameter followed by the remote

machine's IP address.

Table 17-2 lists the default 16th byte value appended to unique NetBIOS computer

names by various Microsoft networking services.

Table 17-2Unique Name Qualifiers

16th

Byte
Identifies

<00> Workstation service name. In general, this is the NetBIOS computer name.

<03>

Messenger service name used when receiving and sending messages. This

is the name that is registered with the WINS server as the messenger

service on the WINS client and is usually added to the computer name and

to the name of the user currently logged on to the computer.

<1B>

Domain master browser name. This name identifies the primary domain

controller and indicates which clients and other browsers to use to contact

the domain master browser.

<06> Remote Access Service (RAS) server service.

<1F> Network Dynamic Data Exchange (NetDDE) service.

<20> Server service name used to provide share points for file sharing.

<21> RAS client.

<BE> Network Monitor Agent.

<BF> Network Monitor utility.

Table 17-3 lists the default 16th byte character added to commonly used NetBIOS

group names.

Table 17-3Group Name Qualifiers

16th Byte Identifies

<1C>

A domain group name that contains a list of the specific addresses

of computers that have registered the domain name. The domain

controller registers this name. WINS treats this as a domain group:

each member of the group must renew its name individually or be

released. The domain group is limited to 25 names. When a static

1C name is replicated that clashes with a dynamic 1C name on

another WINS server, a union of the members is added, and the

record is marked as static. If the record is static, members of the

group do not have to renew their IP addresses.

<1D>

The master browser name used by clients to access the master

browser. There is one master browser on a subnet. WINS servers

return a positive response to domain name registrations but do not

store the domain name in their databases. If a computer sends a

domain name query to the WINS server, the WINS server returns a

negative response. If the computer that sent the domain name

query is configured as h-node or m-node, it will then broadcast the

name query to resolve the name. The node type refers to how the

client attempts to resolve a name. Clients configured for b-node

resolution send broadcast packets to advertise and resolve

NetBIOS names. The p-node resolution uses point-to-point

communication to a WINS server. The m-node resolution is a mix

of b-node and p-node in which b-node is used first and then, if

necessary, p-node is used. The last resolution method is h-node,

or hybrid node. It always attempts to use p-node registration and

resolution first, falling back on b-node only on failure. Windows

installations default to h-node.

<1E>

A normal group name. Browsers can broadcast to this name and

listen on it to elect a master browser. These broadcasts are for the

local subnet and should not cross routers.

<20>

An Internet group name. This type of name is registered with WINS

servers to identify groups of computers for administrative

purposes. For example, printersg could be a registered group

name used to identify an administrative group of print servers.

MSBROWSE
Instead of a single appended 16th character, _MSBROWSE_ is

appended to a domain name and broadcast on the local subnet to

16th Byte Identifies

announce the domain to other master browsers.

So many qualifiers might seem overwhelming. Think of them as a reference. You

probably shouldn't be using them in your NetBIOS names. To prevent accidental

name collisions with your NetBIOS names, you should avoid using the unique name

qualifiers. You should be even more careful with group names—no error will be

generated if your name collides with an existing group name. If this happens, you

might start receiving data intended for someone else.

NetBIOS Features

NetBIOS offers both connection-oriented services and connectionless (datagram)

services. A connection-oriented service allows two entities to establish a session, or

virtual circuit, between them. A session is a two-way communication stream whereby

each entity can send the other one messages. Session-oriented services provide

guaranteed delivery of any data flowing between the two endpoints. In

session-oriented services, a server usually registers itself under a certain known

name. Clients look for this name to communicate with the server. In NetBIOS terms,

the server process adds its name to the name table for each LANA it wants to

communicate over. Clients on other machines resolve a service name to a machine

name and then ask to connect to the server process. As you can see, a few steps are

necessary to establish this circuit, and some overhead is involved in initially setting up

the connection. Session-oriented communication guarantees reliability and packet

ordering; however, it is still message-based. That is, if a connected client issues a

read command, the server will return only one packet of data on the stream, even if

the client supplies a buffer large enough for several packets.

On the other hand, there are also connectionless, or datagram, services. In this case a

server does register itself under a particular name, but the client simply gathers data

and sends it to the network without setting up any connection beforehand. The client

addresses the data to the NetBIOS name of the server process. This type of service

offers no guarantees, but it offers better performance than connection-oriented

services. Furthermore, with datagram services no overhead is involved in setting up a

connection. For example, a client might quickly send thousands of bytes of data to a

server that crashed two days earlier. The client will never receive any error

notifications unless it relies on responses from the server (in which case, it could

deduce that something was amiss after not receiving any response for some period of

time). Datagram services do not guarantee reliability, nor do they preserve message

order.

NetBIOS Programming Basics

Now that we have gone over some of the basic concepts of NetBIOS, we will discuss

the NetBIOS API set, which is easy because only one function exists:

UCHAR Netbios(PNCB pNCB);

All the function declarations, constants, and so on for NetBIOS are defined in the

header file NB30.H. The only library necessary for linking NetBIOS applications is

NETAPI32.LIB. The most important feature of this function is the parameter pNCB,

which is a pointer to a network control block (NCB). This is a pointer to an NCB

structure that contains all the information that the required Netbios function needs to

execute a NetBIOS command. The definition of this structure is as follows:

typedef struct _NCB

{

 UCHAR ncb_command;

 UCHAR ncb_retcode;

 UCHAR ncb_lsn;

 UCHAR ncb_num;

 PUCHAR ncb_buffer;

 WORD ncb_length;

 UCHAR ncb_callname[NCBNAMSZ];

 UCHAR ncb_name[NCBNAMSZ];

 UCHAR ncb_rto;

 UCHAR ncb_sto;

 void (*ncb_post) (struct _NCB *);

 UCHAR ncb_lana_num;

 UCHAR ncb_cmd_cplt;

 UCHAR ncb_reserve[10];

 HANDLE ncb_event;

} * PNCB, NCB;

Not all members of the structure will be used in every call to NetBIOS; some of the

data fields are output parameters (in other words, set on the return from the Netbios

call). It is always a good idea to zero out the NCB structure before filling in members

prior to a Netbios call. Take a look at Table 17-4, which describes the usage of each

field. Additionally, the command reference in Chapter 22 contains a detailed summary

of each NetBIOS command and its required (and optional) fields in an NCB structure.

Table 17-4NCB Structure Members

Field Definition

ncb_command

Specifies the NetBIOS command to execute. Many commands can

be executed synchronously or asynchronously by bitwise ORing the

ASYNCH (0x80) flag and the command.

ncb_retcode

Specifies the return code for the operation. The function sets this

value to NRC_PENDING while an asynchronous operation is in

progress.

ncb_lsn

Identifies the local session number that uniquely identifies a session

within the current environment. The function returns a new session

number after a successful NCBCALL or NCBLISTEN command.

ncb_num

Specifies the number of the local network name. A new number is

returned for each call with an NCBADDNAME or NCBADDGRNAME

command. You must use a valid number on all datagram

commands.

ncb_buffer

Points to the data buffer. For commands that send data, this buffer

is the data to send. For commands that receive data, this buffer will

hold the data on the return from the Netbios function. For other

commands, such as NCBENUM, the buffer will be the predefined

structure LANA_ENUM.

ncb_length

Specifies the length of the buffer in bytes. For receive commands,

Netbios sets this value to the number of bytes received. If the

specified buffer is not large enough, Netbios returns the error

NRC_BUFLEN.

ncb_callname Specifies the name of the remote application.

ncb_name Specifies the name by which the application is known.

ncb_rto

Specifies the timeout period for receive operations. This value is

specified as a multiple of 500-millisecond units. The value 0 implies

no timeout. This value is set for NCBCALL and NCBLISTEN

commands that affect subsequent NCBRECV commands.

ncb_sto

Specifies the timeout period for send operations in 500- millisecond

units. The value 0 implies no timeout. This value is set for

NCBCALL and NCBLISTEN commands that affect subsequent

NCBSEND and NCBCHAINSEND commands.

ncb_post

Specifies the address of the post routine to call on completion of the

asynchronous command. The function is defined as void CALLBACK

PostRoutine(PNCB pncb); where pncb points to the NCB of the

Field Definition

completed command.

ncb_lana_num Specifies the LANA number to execute the command on.

ncb_cmd_cplt
Specifies the return code for the operation. Netbios sets this value to

NRC_PENDING while an asynchronous operation is in progress.

ncb_reserve Reserved; must be 0.

ncb_event

Specifies a handle to a Windows event object set to the nonsignaled

state. When an asynchronous command is completed, the event is

set to its signaled state. Only manual reset events should be used.

This field must be 0 if ncb_command does not have the ASYNCH

flag set or if ncb_post is not 0; otherwise, Netbios returns the error

NRC_ILLCMD.

Synchronous vs. Asynchronous

When calling the Netbios function, you have the option of making the call synchronous

or asynchronous. All NetBIOS commands by themselves are synchronous, which

means the call to Netbios blocks until the command completes. For an NCBLISTEN

command, the call to Netbios does not return until a client establishes a connection or

until an error of some kind occurs. To make a command asynchronous, perform a

logical OR of the NetBIOS command with the flag ASYNCH. If you specify the

ASYNCH flag, you must specify either a post routine in the ncb_post field or an event

handle in the ncb_event field. When an asynchronous command is executed, the

value returned from Netbios is NRC_GOODRET (0x00) but the ncb_cmd_cplt field is

set to NRC_PENDING (0xFF). Additionally, the Netbios function sets the

ncb_cmd_cplt field of the NCB structure to NRC_PENDING until the command

completes. After the command completes, the ncb_cmd_cplt field is set to the return

value of the command. Netbios also sets the ncb_retcode field to the return value of

the command on completion.

Common NetBIOS Routines

In this section, we examine a basic server NetBIOS application. We examine the server first because

the design of the server dictates how the client should act. Because most servers are designed to

handle multiple clients simultaneously, the asynchronous NetBIOS model fits best. We present server

samples using both the asynchronous callback routines and the event model. However, we first

introduce source code that implements some common functions necessary to most NetBIOS

applications. The following example is from file NBCOMMON.C, which you'll find on the companion

CD.

// Nbcommon.c

#include <windows.h>

#include <stdio.h>

#include <stdlib.h>

#include "nbcommon.h"

//

// Enumerate all LANA numbers

//

int LanaEnum(LANA_ENUM *lenum)

{

 NCB ncb;

 ZeroMemory(&ncb, sizeof(NCB));

 ncb.ncb_command = NCBENUM;

 ncb.ncb_buffer = (PUCHAR)lenum;

 ncb.ncb_length = sizeof(LANA_ENUM);

 if (Netbios(&ncb) != NRC_GOODRET)

 {

 printf("ERROR: Netbios: NCBENUM: %d\n", ncb.ncb_retcode);

 return ncb.ncb_retcode;

 }

 return NRC_GOODRET;

}

//

// Reset each LANA listed in the LANA_ENUM structure. Also, set

// the NetBIOS environment (max sessions, max name table size),

// and use the first NetBIOS name.

//

int ResetAll(LANA_ENUM *lenum, UCHAR ucMaxSession,

 UCHAR ucMaxName, BOOL bFirstName)

{

 NCB ncb;

 int i;

 ZeroMemory(&ncb, sizeof(NCB));

 ncb.ncb_command = NCBRESET;

 ncb.ncb_callname[0] = ucMaxSession;

 ncb.ncb_callname[2] = ucMaxName;

 ncb.ncb_callname[3] = (UCHAR)bFirstName;

 for(i = 0; i < lenum->length; i++)

 {

 ncb.ncb_lana_num = lenum->lana[i];

 if (Netbios(&ncb) != NRC_GOODRET)

 {

 printf("ERROR: Netbios: NCBRESET[%d]: %d\n",

 ncb.ncb_lana_num, ncb.ncb_retcode);

 return ncb.ncb_retcode;

 }

 }

 return NRC_GOODRET;

}

//

// Add the given name to the given LANA number. Return the name

// number for the registered name.

//

int AddName(int lana, char *name, int *num)

{

 NCB ncb;

 ZeroMemory(&ncb, sizeof(NCB));

 ncb.ncb_command = NCBADDNAME;

 ncb.ncb_lana_num = lana;

 memset(ncb.ncb_name, ' ', NCBNAMSZ);

 strncpy(ncb.ncb_name, name, strlen(name));

 if (Netbios(&ncb) != NRC_GOODRET)

 {

 printf("ERROR: Netbios: NCBADDNAME[lana=%d;name=%s]: %d\n",

 lana, name, ncb.ncb_retcode);

 return ncb.ncb_retcode;

 }

 *num = ncb.ncb_num;

 return NRC_GOODRET;

}

//

// Add the given NetBIOS group name to the given LANA

// number. Return the name number for the added name.

//

int AddGroupName(int lana, char *name, int *num)

{

 NCB ncb;

 ZeroMemory(&ncb, sizeof(NCB));

 ncb.ncb_command = NCBADDGRNAME;

 ncb.ncb_lana_num = lana;

 memset(ncb.ncb_name, ' ', NCBNAMSZ);

 strncpy(ncb.ncb_name, name, strlen(name));

 if (Netbios(&ncb) != NRC_GOODRET)

 {

 printf("ERROR: Netbios: NCBADDGRNAME[lana=%d;name=%s]: %d\n",

 lana, name, ncb.ncb_retcode);

 return ncb.ncb_retcode;

 }

 *num = ncb.ncb_num;

 return NRC_GOODRET;

}

//

// Delete the given NetBIOS name from the name table associated

// with the LANA number

//

int DelName(int lana, char *name)

{

 NCB ncb;

 ZeroMemory(&ncb, sizeof(NCB));

 ncb.ncb_command = NCBDELNAME;

 ncb.ncb_lana_num = lana;

 memset(ncb.ncb_name, ' ', NCBNAMSZ);

 strncpy(ncb.ncb_name, name, strlen(name));

 if (Netbios(&ncb) != NRC_GOODRET)

 {

 printf("ERROR: Netbios: NCBADDNAME[lana=%d;name=%s]: %d\n",

 lana, name, ncb.ncb_retcode);

 return ncb.ncb_retcode;

 }

 return NRC_GOODRET;

}

//

// Send len bytes from the data buffer on the given session (lsn)

// and lana number

//

int Send(int lana, int lsn, char *data, DWORD len)

{

 NCB ncb;

 int retcode;

 ZeroMemory(&ncb, sizeof(NCB));

 ncb.ncb_command = NCBSEND;

 ncb.ncb_buffer = (PUCHAR)data;

 ncb.ncb_length = len;

 ncb.ncb_lana_num = lana;

 ncb.ncb_lsn = lsn;

 retcode = Netbios(&ncb);

 return retcode;

}

//

// Receive up to len bytes into the data buffer on the given session

// (lsn) and lana number

//

int Recv(int lana, int lsn, char *buffer, DWORD *len)

{

 NCB ncb;

 ZeroMemory(&ncb, sizeof(NCB));

 ncb.ncb_command = NCBRECV;

 ncb.ncb_buffer = (PUCHAR)buffer;

 ncb.ncb_length = *len;

 ncb.ncb_lana_num = lana;

 ncb.ncb_lsn = lsn;

 if (Netbios(&ncb) != NRC_GOODRET)

 {

 *len = -1;

 return ncb.ncb_retcode;

 }

 *len = ncb.ncb_length;

 return NRC_GOODRET;

}

//

// Disconnect the given session on the given lana number

//

int Hangup(int lana, int lsn)

{

 NCB ncb;

 int retcode;

 ZeroMemory(&ncb, sizeof(NCB));

 ncb.ncb_command = NCBHANGUP;

 ncb.ncb_lsn = lsn;

 ncb.ncb_lana_num = lana;

 retcode = Netbios(&ncb);

 return retcode;

}

//

// Cancel the given asynchronous command denoted in the NCB

// structure parameter

//

int Cancel(PNCB pncb)

{

 NCB ncb;

 ZeroMemory(&ncb, sizeof(NCB));

 ncb.ncb_command = NCBCANCEL;

 ncb.ncb_buffer = (PUCHAR)pncb;

 ncb.ncb_lana_num = pncb->ncb_lana_num;

 if (Netbios(&ncb) != NRC_GOODRET)

 {

 printf("ERROR: NetBIOS: NCBCANCEL: %d\n", ncb.ncb_retcode);

 return ncb.ncb_retcode;

 }

 return NRC_GOODRET;

}

//

// Format the given NetBIOS name so that it is printable. Any

// unprintable characters are replaced by a period. The outname

// buffer is the returned string, which is assumed to be at least

// NCBNAMSZ + 1 characters in length.

//

int FormatNetbiosName(char *nbname, char *outname)

{

 int i;

 strncpy(outname, nbname, NCBNAMSZ);

 outname[NCBNAMSZ - 1] = '\0';

 for(i = 0; i < NCBNAMSZ - 1; i++)

 {

 // If the character isn't printable, replace it with a "."

 //

 if (!((outname[i] >= 32) && (outname[i] <= 126)))

 outname[i] = '.';

 }

 return NRC_GOODRET;

}

The first of the common routines in NBCOMMON.C is LanaEnum. This is the most basic routine that

almost all NetBIOS applications use. This function enumerates the available LANA numbers on a

given system. The function initializes an NCB structure to 0, sets the ncb_command field to

NCBENUM, assigns a LANA_ENUM structure to the ncb_buffer field, and sets the ncb_length field to

the size of the LANA_ENUM structure. With the NCB structure correctly initialized, the only action that

the LanaEnum function needs to take to invoke the NCBENUM command is to call the Netbios

function. As you can see, executing a NetBIOS command is fairly easy. For synchronous commands,

the return value from Netbios will tell you whether the command succeeded. The constant

NRC_GOODRET always indicates success.

A successful NetBIOS call fills the supplied LANA_ENUM structure with the count of LANA numbers

on the current machine as well as the actual LANA numbers. The LANA_ENUM structure is defined as

follows:

typedef struct LANA_ENUM

{

 UCHAR length;

 UCHAR lana[MAX_LANA + 1];

} LANA_ENUM, *PLANA_ENUM;

The length member indicates how many LANA numbers the local machine has. The lana field is the

array of actual LANA numbers. The value of length corresponds to how many elements of the lana

array will be filled with LANA numbers.

The next function is ResetAll. Again, this function is used in all NetBIOS applications. A well-written

NetBIOS program should reset each LANA number that it plans to use. Once you have a

LANA_ENUM structure with LANA numbers from LanaEnum, you can reset them by calling the

NCBRESET command on each LANA number in the structure. That's exactly what ResetAll does; the

function's first parameter is a LANA_ENUM structure. A reset requires only that the function set

ncb_command to NCBRESET and ncb_lana_num to the LANA it needs to reset. Although some

platforms, such as Windows 95, do not require you to reset each LANA number that you use, it is good

practice to do so. Windows NT requires you to reset each LANA number prior to use; otherwise, any

other calls to Netbios will return Error 52 (NRC_ENVNOTDEF).

Additionally, when resetting a LANA number, you can set certain NetBIOS environment settings via the

character fields of ncb_callname. ResetAll's other parameters correspond to these environmental

settings. The function uses the ucMaxSession parameter to set character 0 of ncb_callname, which

specifies the maximum number of concurrent sessions. Normally, the operating system imposes a

default that is less than the maximum. For example, Windows NT 4.0 defaults to 64 concurrent

sessions. ResetAll sets character 2 of ncb_callname (which specifies the maximum number of

NetBIOS names that can be added to each LANA) to the value of the ucMaxName parameter. Again,

the operating system imposes a default maximum. Finally, ResetAll sets character 3, used for

NetBIOS clients, to the value of its bFirstName parameter. By setting this parameter to TRUE, a client

uses the machine name as its NetBIOS process name. As a result, a client can connect to a server

and send data without allowing any incoming connections. This option is used to save on initialization

time because adding a NetBIOS name to the local name table can be costly.

Adding a name to the local name table is another common function. This is what AddName does. The

parameters are simply the name to add and which LANA number to add it to. Remember that a name

table is on a per-LANA basis, and if your application wants to communicate on every available LANA,

you need to add the name of the process to every LANA. The command for adding a unique name is

NCBADDNAME. The other required fields are the LANA number to add the name to and the name to

add, which must be copied into ncb_name. AddName initializes the ncb_name buffer to spaces first

and assumes that the name parameter points to a null-terminated string. After adding a name

successfully, Netbios returns the NetBIOS name number associated with the newly added name in the

ncb_num field. You use this value with datagrams to identify the originating NetBIOS process. We

discuss datagrams in greater detail later in this chapter. The most common error encountered when

adding a unique name is NRC_DUPNAME, which occurs when the name is already in use by another

process on the network.

AddGroupName works the same way as AddName, except that it issues the command

NCBADDGRNAME and never causes the NRC_DUPNAME error.

DelName, another related function, deletes a NetBIOS name from the name table. It requires only the

LANA number you want to remove the name from and the name itself.

The next two functions shown in the file NBCOMMON.C, Send and Recv, are for sending and

receiving data in a connected session. These functions are almost identical except for the

ncb_command field setting. The command field is set to either NCBSEND or NCBRECV. The LANA

number on which to send the data and the session number are both required parameters. A

successful NCBCALL or NCBLISTEN command returns the session number. Clients use the

NCBCALL command to connect to a known service, and servers use NCBLISTEN to “wait” for

incoming client connections. When either of these commands succeeds, the NetBIOS interface

establishes a session with a unique integer identifier. Send and Recv also require parameters that

map to ncb_buffer and ncb_length. When sending data, ncb_buffer points to the buffer containing the

data to send. The length field is the number of characters in the buffer that should be sent. When

receiving data, the buffer field points to the block of memory that incoming data is copied to. The length

field is the size of the memory chunk. When the Netbios function returns, it updates the length field

with the number of bytes successfully received. One important aspect of sending data in a

session-oriented connection is that a call to the Send function will wait until the receiver has posted a

Recv function. This means that if the sender is pushing a great deal of data and the receiver is not

reading it, a lot of resources are being used to buffer the data locally. Therefore, it's a good idea to

issue only a few NCBSEND or NCBCHAINSEND commands simultaneously. To circumvent this

problem, use the Netbios commands NCBSENDNA and NCBCHAINSENDNA. With these commands,

the sending of the data is performed without waiting for an acknowledgment of receipt from the

receiver.

The last two functions near the end of this sample, Hangup and Cancel, are for closing established

sessions or canceling an outstanding command. You can call the NetBIOS command NCBHANGUP to

gracefully shut down an established session. When you execute this command, all outstanding receive

calls for the given session terminate and return with the session-closed error, NRC_SCLOSED (0x0A).

If any send commands are outstanding, the hangup command blocks until they complete. This delay

occurs whether the commands are transferring data or are waiting for the remote side to issue a

receive command.

Session Server: Asynchronous Callback Model

Now that we have the basic NetBIOS functions out of the way, we can look at the server that will listen

for incoming client connections. Our server will be a simple echo server; it will send back any data that

it receives from a connected client. The following sample contains server code that uses asynchronous

callback functions. The code is also available as file CBNBSVR.C on the companion CD. If you look at

the function main, you will see that first we enumerate the available LANA numbers with LanaEnum,

and then we reset each LANA with ResetAll. Remember that these two steps are generally required of

all NetBIOS applications.

// Cbnbsvr.c

#include <windows.h>

#include <stdio.h>

#include <stdlib.h>

#include "..\Common\nbcommon.h"

#define MAX_BUFFER 2048

#define SERVER_NAME "TEST-SERVER-1"

DWORD WINAPI ClientThread(PVOID lpParam);

//

// Function: ListenCallback

//

// Description:

// This function is called when an asynchronous listen completes.

// If no error occurred, create a thread to handle the client.

// Also, post another listen for other client connections.

//

void CALLBACK ListenCallback(PNCB pncb)

{

 HANDLE hThread;

 DWORD dwThreadId;

 if (pncb->ncb_retcode != NRC_GOODRET)

 {

 printf("ERROR: ListenCallback: %d\n", pncb->ncb_retcode);

 return;

 }

 Listen(pncb->ncb_lana_num, SERVER_NAME);

 hThread = CreateThread(NULL, 0, ClientThread, (PVOID)pncb, 0,

 &dwThreadId);

 if (hThread == NULL)

 {

 printf("ERROR: CreateThread: %d\n", GetLastError());

 return;

 }

 CloseHandle(hThread);

 return;

}

//

// Function: ClientThread

//

// Description:

// The client thread blocks for data sent from clients and

// simply sends it back to them. This is a continuous loop

// until the session is closed or an error occurs. If

// the read or write fails with NRC_SCLOSED, the session

// has closed gracefully--so exit the loop.

//

DWORD WINAPI ClientThread(PVOID lpParam)

{

 PNCB pncb = (PNCB)lpParam;

 NCB ncb;

 char szRecvBuff[MAX_BUFFER];

 DWORD dwBufferLen = MAX_BUFFER,

 dwRetVal = NRC_GOODRET;

 char szClientName[NCBNAMSZ+1];

 FormatNetbiosName(pncb->ncb_callname, szClientName);

 while (1)

 {

 dwBufferLen = MAX_BUFFER;

 dwRetVal = Recv(pncb->ncb_lana_num, pncb->ncb_lsn,

 szRecvBuff, &dwBufferLen);

 if (dwRetVal != NRC_GOODRET)

 break;

 szRecvBuff[dwBufferLen] = 0;

 printf("READ [LANA=%d]: '%s'\n", pncb->ncb_lana_num,

 szRecvBuff);

 dwRetVal = Send(pncb->ncb_lana_num, pncb->ncb_lsn,

 szRecvBuff, dwBufferLen);

 if (dwRetVal != NRC_GOODRET)

 break;

 }

 printf("Client '%s' on LANA %d disconnected\n", szClientName,

 pncb->ncb_lana_num);

 if (dwRetVal != NRC_SCLOSED)

 {

 // Some other error occurred; hang up the connection

 //

 ZeroMemory(&ncb, sizeof(NCB));

 ncb.ncb_command = NCBHANGUP;

 ncb.ncb_lsn = pncb->ncb_lsn;

 ncb.ncb_lana_num = pncb->ncb_lana_num;

 if (Netbios(&ncb) != NRC_GOODRET)

 {

 printf("ERROR: Netbios: NCBHANGUP: %d\n", ncb.ncb_retcode);

 dwRetVal = ncb.ncb_retcode;

 }

 GlobalFree(pncb);

 return dwRetVal;

 }

 GlobalFree(pncb);

 return NRC_GOODRET;

}

//

// Function: Listen

//

// Description:

// Post an asynchronous listen with a callback function. Create

// an NCB structure for use by the callback (since it needs a

// global scope).

//

int Listen(int lana, char *name)

{

 PNCB pncb = NULL;

 pncb = (PNCB)GlobalAlloc(GMEM_FIXED ¦ GMEM_ZEROINIT, sizeof(NCB));

 pncb->ncb_command = NCBLISTEN ¦ ASYNCH;

 pncb->ncb_lana_num = lana;

 pncb->ncb_post = ListenCallback;

 //

 // This is the name clients will connect to

 //

 memset(pncb->ncb_name, ' ', NCBNAMSZ);

 strncpy(pncb->ncb_name, name, strlen(name));

 //

 // An '*' means we'll take a client connection from anyone. By

 // specifying an actual name here, we restrict connections to

 // clients with that name only.

 //

 memset(pncb->ncb_callname, ' ', NCBNAMSZ);

 pncb->ncb_callname[0] = '*';

 if (Netbios(pncb) != NRC_GOODRET)

 {

 printf("ERROR: Netbios: NCBLISTEN: %d\n", pncb->ncb_retcode);

 return pncb->ncb_retcode;

 }

 return NRC_GOODRET;

}

//

// Function: main

//

// Description:

// Initialize the NetBIOS interface, allocate some resources, add

// the server name to each LANA, and post an asynch NCBLISTEN on

// each LANA with the appropriate callback. Then wait for incoming

// client connections, at which time, spawn a worker thread to

// handle them. The main thread simply waits while the server

// threads are handling client requests. You wouldn't do this in a

// real application, but this sample is for illustrative purposes

// only.

//

int main(int argc, char **argv)

{

 LANA_ENUM lenum;

 int i,

 num;

 // Enumerate all LANAs and reset each one

 //

 if (LanaEnum(&lenum) != NRC_GOODRET)

 return 1;

 if (ResetAll(&lenum, 254, 254, FALSE) != NRC_GOODRET)

 return 1;

 //

 // Add the server name to each LANA, and issue a listen on each

 //

 for(i = 0; i < lenum.length; i++)

 {

 AddName(lenum.lana[i], SERVER_NAME, &num);

 Listen(lenum.lana[i], SERVER_NAME);

 }

 while (1)

 {

 Sleep(5000);

 }

}

The next thing that the function main does is add your process's name to each LANA number on which

you want to accept connections. The server adds its process name, TEST-SERVER-1, to each LANA

number in a loop. This is the name the clients will use to connect to our server (padded with spaces, of

course). Every character in a NetBIOS name is significant when trying to establish or accept a

connection. We can't stress this point enough. Most problems encountered when coding NetBIOS

clients and servers involve mismatched names. Be consistent in padding names either with spaces or

with some other character. Spaces are the most popular pad character because when they are

enumerated and printed out, they are human-readable.

The last and most crucial step for a server is to post a number of NCBLISTEN commands. The Listen

function first allocates an NCB structure. When you use asynchronous NetBIOS calls, the NCB

structure that you submit must persist from the time you issue the call until the call completes. This

requires that you either dynamically allocate each NCB structure before issuing the command or

maintain a global pool of NCB structures for use in asynchronous calls. For NCBLISTEN, set the LANA

number that you want the call to apply to. Note that the code listing in the file NBCOMMON.C logically

ORs the NCBLISTEN command with the ASYNCH command. When specifying the ASYNCH

command, you must make either the ncb_post field or the ncb_event field nonzero; if you don't, the

Netbios call will fail with NRC_ILLCMD. In the file CBNBSVR.C, the Listen function sets the ncb_post

field to our callback function, ListenCallback. Next, Listen sets the ncb_name field to the name of the

server process. This is the name that clients will connect to. The function also sets the first character of

the ncb_callname field to an asterisk (*), signifying that the server will accept a connection from any

client. Alternatively, you could place a specific name in the ncb_callname field, which would allow only

the client who registered that specific name to connect to the server. Finally, Listen makes a call to

Netbios. The call completes immediately, and the Netbios function sets the ncb_cmd_cplt field of the

submitted NCB structure to NRC_PENDING (0xFF) until the command has completed.

Once main resets and posts an NCBLISTEN command to each LANA number, the main thread goes

into a continuous loop.

Because this server is only a sample, the design is very basic. When writing your own

NetBIOS servers, you can do other processing in the main loop or post a synchronous

NCBLISTEN in the main loop for one of the LANA numbers.

The callback function executes only when an incoming connection is accepted on a LANA number.

When the NCBLISTEN command accepts a connection, it calls the function in the ncb_post field with

the originating NCB structure as a parameter. The ncb_retcode is set to the return code. Always check

this value to see whether the client connection succeeded. A successful connection will result in an

ncb_retcode of NRC_GOODRET (0x00).

If the connection was successful, post another NCBLISTEN on the same LANA number. This is

necessary because once the original listen succeeds, the server stops listening for client connections

on that LANA until another NCBLISTEN is submitted. Thus, if your servers require a high availability,

you can post multiple NCBLISTEN commands on the same LANA so that connections from multiple

clients can be accepted simultaneously. Finally, the callback function creates a thread that will service

the client. In this example, the thread simply loops and calls a blocking read (NCBRECV) followed by a

blocking send (NCBSEND). The server implements an echo server, which reads messages from

connected clients and echoes them back. The client thread loops until the client breaks the

connection, at which point the client thread issues an NCBHANGUP command to close the connection

on its end. From there the client thread frees the NCB structure and exits.

For connection-oriented sessions, data is buffered by the underlying protocols, so it is not necessary to

always have outstanding receive calls. When a receive command is posted, the Netbios function

immediately transfers available data to the supplied buffer and the call returns. If no data is available,

the receive call blocks until data is present or until the session is disconnected. The same is true for

the send command: if the network stack is able either to send data immediately on the wire or to buffer

the data in the stack for transmission, the call returns immediately. If the system does not have the

buffer space to send the data immediately, the send call blocks until the buffer space becomes

available. To circumvent this blocking, you can use the ASYNCH command on sends and receives.

The buffer supplied to asynchronous sends and receives must have a scope that extends beyond the

calling procedure. Another way around blocking sends and receives is using the ncb_sto and ncb_rto

fields. The ncb_sto field is for send timeouts. By specifying a nonzero value, you set an upper limit for

how long a send will block before returning. This number is specified in 500-millisecond units. If a

command times out, the data is not sent. The same is true of the receive timeout: if no data arrives

within the prescribed amount of time, the call returns with no data transferred into the buffers.

Session Server: Asynchronous Event Model

The following code sample illustrates an echo server that is similar to the one in CBNBSVR.C but uses

Windows events as the signaling mechanism for completion. The event model is similar to the callback

model. The only difference is that with the callback model, the system executes your code when the

asynchronous operation completes, whereas with the event model, your application has to check for

the completion of the operation by checking the event status. Because these are standard Windows

events, you can use any of the synchronization routines available, such as WaitForSingleEvent and

WaitForMultipleEvents. The event model is more efficient because it forces the programmer to

structure the program to consciously check for completion.

// Evnbsvr.c

#include <windows.h>

#include <stdio.h>

#include <stdlib.h>

#include "..\Common\nbcommon.h"

#define MAX_SESSIONS 254

#define MAX_NAMES 254

#define MAX_BUFFER 2048

#define SERVER_NAME "TEST-SERVER-1"

NCB *g_Clients=NULL; // Global NCB structure for clients

//

// Function: ClientThread

//

// Description:

// This thread takes the NCB structure of a connected session

// and waits for incoming data, which it then sends back to the

// client until the session is closed

//

DWORD WINAPI ClientThread(PVOID lpParam)

{

 PNCB pncb = (PNCB)lpParam;

 NCB ncb;

 char szRecvBuff[MAX_BUFFER],

 szClientName[NCBNAMSZ + 1];

 DWORD dwBufferLen = MAX_BUFFER,

 dwRetVal = NRC_GOODRET;

 // Send and receive messages until the session is closed

 //

 FormatNetbiosName(pncb->ncb_callname, szClientName);

 while (1)

 {

 dwBufferLen = MAX_BUFFER;

 dwRetVal = Recv(pncb->ncb_lana_num, pncb->ncb_lsn,

 szRecvBuff, &dwBufferLen);

 if (dwRetVal != NRC_GOODRET)

 break;

 szRecvBuff[dwBufferLen] = 0;

 printf("READ [LANA=%d]: '%s'\n", pncb->ncb_lana_num,

 szRecvBuff);

 dwRetVal = Send(pncb->ncb_lana_num, pncb->ncb_lsn,

 szRecvBuff, dwBufferLen);

 if (dwRetVal != NRC_GOODRET)

 break;

 }

 printf("Client '%s' on LANA %d disconnected\n", szClientName,

 pncb->ncb_lana_num);

 //

 // If the error returned from a read or a write is NRC_SCLOSED,

 // all is well; otherwise, some other error occurred, so hang up

 // the connection from this side

 //

 if (dwRetVal != NRC_SCLOSED)

 {

 ZeroMemory(&ncb, sizeof(NCB));

 ncb.ncb_command = NCBHANGUP;

 ncb.ncb_lsn = pncb->ncb_lsn;

 ncb.ncb_lana_num = pncb->ncb_lana_num;

 if (Netbios(&ncb) != NRC_GOODRET)

 {

 printf("ERROR: Netbios: NCBHANGUP: %d\n",

 ncb.ncb_retcode);

 GlobalFree(pncb);

 dwRetVal = ncb.ncb_retcode;

 }

 }

 // The NCB structure passed in is dynamically allocated, so

 // delete it before we go

 //

 GlobalFree(pncb);

 return NRC_GOODRET;

}

//

// Function: Listen

//

// Description:

// Post an asynchronous listen on the given LANA number.

// The NCB structure passed in already has its ncb_event

// field set to a valid Windows event handle.

//

int Listen(PNCB pncb, int lana, char *name)

{

 pncb->ncb_command = NCBLISTEN ¦ ASYNCH;

 pncb->ncb_lana_num = lana;

 //

 // This is the name clients will connect to

 //

 memset(pncb->ncb_name, ' ', NCBNAMSZ);

 strncpy(pncb->ncb_name, name, strlen(name));

 //

 // An '*' means we'll accept connections from anyone.

 // We can specify a specific name, which means that only a

 // client with the specified name will be allowed to connect.

 //

 memset(pncb->ncb_callname, ' ', NCBNAMSZ);

 pncb->ncb_callname[0] = '*';

 if (Netbios(pncb) != NRC_GOODRET)

 {

 printf("ERROR: Netbios: NCBLISTEN: %d\n", pncb->ncb_retcode);

 return pncb->ncb_retcode;

 }

 return NRC_GOODRET;

}

//

// Function: main

//

// Description:

// Initialize the NetBIOS interface, allocate some resources, and

// post asynchronous listens on each LANA using events. Wait for

// an event to be triggered, and then handle the client

// connection.

//

int main(int argc, char **argv)

{

 PNCB pncb=NULL;

 HANDLE hArray[64],

 hThread;

 DWORD dwHandleCount=0,

 dwRet,

 dwThreadId;

 int i,

 num;

 LANA_ENUM lenum;

 // Enumerate all LANAs and reset each one

 //

 if (LanaEnum(&lenum) != NRC_GOODRET)

 return 1;

 if (ResetAll(&lenum, (UCHAR)MAX_SESSIONS, (UCHAR)MAX_NAMES,

 FALSE) != NRC_GOODRET)

 return 1;

 //

 // Allocate an array of NCB structures (one for each LANA)

 //

 g_Clients = (PNCB)GlobalAlloc(GMEM_FIXED ¦ GMEM_ZEROINIT,

 sizeof(NCB) * lenum.length);

 //

 // Create the events, add the server name to each LANA, and issue

 // the asynchronous listens on each LANA.

 //

 for(i = 0; i < lenum.length; i++)

 {

 hArray[i] = g_Clients[i].ncb_event = CreateEvent(NULL, TRUE,

 FALSE, NULL);

 AddName(lenum.lana[i], SERVER_NAME, &num);

 Listen(&g_Clients[i], lenum.lana[i], SERVER_NAME);

 }

 while (1)

 {

 // Wait until a client connects

 //

 dwRet = WaitForMultipleObjects(lenum.length, hArray, FALSE,

 INFINITE);

 if (dwRet == WAIT_FAILED)

 {

 printf("ERROR: WaitForMultipleObjects: %d\n",

 GetLastError());

 break;

 }

 // Go through all the NCB structures to see whether more

 // than one succeeded. If ncb_cmd_plt is not NRC_PENDING,

 // there is a client; create a thread, and hand off a

 // new NCB structure to the thread. We need to reuse

 // the original NCB for other client connections.

 //

 for(i = 0; i < lenum.length; i++)

 {

 if (g_Clients[i].ncb_cmd_cplt != NRC_PENDING)

 {

 pncb = (PNCB)GlobalAlloc(GMEM_FIXED, sizeof(NCB));

 memcpy(pncb, &g_Clients[i], sizeof(NCB));

 pncb->ncb_event = 0;

 hThread = CreateThread(NULL, 0, ClientThread,

 (LPVOID)pncb, 0, &dwThreadId);

 CloseHandle(hThread);

 //

 // Reset the handle, and post another listen

 //

 ResetEvent(hArray[i]);

 Listen(&g_Clients[i], lenum.lana[i], SERVER_NAME);

 }

 }

 }

 // Clean up

 //

 for(i = 0; i < lenum.length; i++)

 {

 DelName(lenum.lana[i], SERVER_NAME);

 CloseHandle(hArray[i]);

 }

 GlobalFree(g_Clients);

 return 0;

}

Our event-model server starts out exactly the same as the callback server, with the following steps:

Enumerate the LANA numbers.1.

Reset each LANA.2.

Add the server's name to each LANA.3.

Post a listen on each LANA.4.

The only difference is that you need to keep track of all outstanding listen commands because you

must associate event completion with the respective NCB blocks that initiate a particular command.

This code allocates an array of NCB structures equal to the number of LANA numbers (as you want to

post one NCBLISTEN command on each number). Additionally, the code creates an event for each of

the NCB structures for signaling the command's completion. The Listen function takes one of the NCB

structures from the array as a parameter.

The main function's first loop cycles through the available LANA numbers, adding the server name and

posting the NCBLISTEN command to each LANA number, and building an array of event handles.

Next, call WaitForMultipleObjects, which blocks until at least one of the handles becomes signaled.

Once one or more of the handles in the event-handle array is in a signaled state,

WaitForMultipleObjects completes and the code spawns a thread to read incoming messages and

send them back to the client. The code creates a copy of the signaled NCB structure to pass into the

client thread. This is because you want to reuse the original NCB to post another NCBLISTEN, which

you can do by resetting the event and calling Listen again on that structure. Note that you don't

necessarily have to copy the whole structure. In reality you need only the local session number

(ncb_lsn) and the LANA number (ncb_lana_num). However, the NCB structure is a nice container for

holding both values to pass into the single parameter of the thread. The client thread used by the

event model is the same as the callback model except for the GlobalFree statement.

Asynchronous Server Strategies

Notice that with both servers the possibility exists of a client being denied service. Once the

NCBLISTEN completes, there is a slight delay until either the callback function is called or the event

gets signaled. The servers don't post another NCBLISTEN until a few statements later. If the server

accepted a client on LANA 2, for example, and then another client attempted a connection before the

server issued another NCBLISTEN on that LANA, the client would receive the error NRC_NOCALL

(0x14), meaning that the given name had no NCBLISTEN posted on it. To avoid this, the server could

post multiple NCBLISTEN commands on each LANA.

From these two server samples, you can see how easy it is to issue asynchronous commands. The

ASYNCH flag can be applied to just about any NetBIOS command. Just remember that the NCB

structure that you pass to Netbios must have a global scope.

NetBIOS Session Client

The NetBIOS client is similar in design to the asynchronous event server. The following sample

contains example code for the client. The client performs the familiar routine initialization steps by

name. It adds its own name to the name table of each LANA number and then issues an

asynchronous connect command. The main loop waits for one of the events to be signaled. At that

point, the code cycles through all the NCB structures that correspond to the connect commands it

issued, one for each LANA. It checks the ncb_cmd_cplt status. If it is NRC_PENDING, the code

cancels the asynchronous command; if the command is completed (that is, connected) and the NCB

doesn't correspond to the NCB that was signaled (as specified by the return value from

WaitForMultipleObjects), the code hangs up the connection. If the server is listening on each LANA on

its side and the client attempts connections on each of its LANAs, it is possible that more than one

connection can succeed. The code simply closes extra connections with the NCBHANGUP

command—it needs to communicate over only one channel. By attempting to establish a connection

using every LANA on both sides, you allow for the greatest possibility of a successful connection.

// Nbclient.c

#include <windows.h>

#include <stdio.h>

#include <stdlib.h>

#include "..\Common\nbcommon.h"

#define MAX_SESSIONS 254

#define MAX_NAMES 254

#define MAX_BUFFER 1024

char szServerName[NCBNAMSZ];

//

// Function: Connect

//

// Description:

// Post an asynchronous connect on the given LANA number to

// the server. The NCB structure passed in already has the

// ncb_event field set to a valid Windows event handle. Just

// fill in the blanks and make the call.

//

int Connect(PNCB pncb, int lana, char *server, char *client)

{

 pncb->ncb_command = NCBCALL ¦ ASYNCH;

 pncb->ncb_lana_num = lana;

 memset(pncb->ncb_name, ' ', NCBNAMSZ);

 strncpy(pncb->ncb_name, client, strlen(client));

 memset(pncb->ncb_callname, ' ', NCBNAMSZ);

 strncpy(pncb->ncb_callname, server, strlen(server));

 if (Netbios(pncb) != NRC_GOODRET)

 {

 printf("ERROR: Netbios: NCBCONNECT: %d\n",

 pncb->ncb_retcode);

 return pncb->ncb_retcode;

 }

 return NRC_GOODRET;

}

//

// Function: main

//

// Description:

// Initialize the NetBIOS interface, allocate some resources

// (event handles, a send buffer, and so on), and issue an

// NCBCALL for each LANA to the given server. Once a connection

// has been made, cancel or hang up any other outstanding

// connections. Then send/receive the data. Finally, clean

// things up.

//

int main(int argc, char **argv)

{

 HANDLE *hArray;

 NCB *pncb;

 char szSendBuff[MAX_BUFFER];

 DWORD dwBufferLen,

 dwRet,

 dwIndex,

 dwNum;

 LANA_ENUM lenum;

 int i;

 if (argc != 3)

 {

 printf("usage: nbclient CLIENT-NAME SERVER-NAME\n");

 return 1;

 }

 // Enumerate all LANAs and reset each one

 //

 if (LanaEnum(&lenum) != NRC_GOODRET)

 return 1;

 if (ResetAll(&lenum, (UCHAR)MAX_SESSIONS, (UCHAR)MAX_NAMES,

 FALSE) != NRC_GOODRET)

 return 1;

 strcpy(szServerName, argv[2]);

 //

 // Allocate an array of handles to use for asynchronous events.

 // Also allocate an array of NCB structures. We need one handle

 // and one NCB for each LANA number.

 //

 hArray = (HANDLE *)GlobalAlloc(GMEM_FIXED,

 sizeof(HANDLE) * lenum.length);

 pncb = (NCB *)GlobalAlloc(GMEM_FIXED ¦ GMEM_ZEROINIT,

 sizeof(NCB) * lenum.length);

 //

 // Create an event, assign it into the corresponding NCB

 // structure, and issue an asynchronous connect (NCBCALL).

 // Additionally, don't forget to add the client's name to each

 // LANA it wants to connect over.

 //

 for(i = 0; i < lenum.length; i++)

 {

 hArray[i] = CreateEvent(NULL, TRUE, FALSE, NULL);

 pncb[i].ncb_event = hArray[i];

 AddName(lenum.lana[i], argv[1], &dwNum);

 Connect(&pncb[i], lenum.lana[i], szServerName, argv[1]);

 }

 // Wait for at least one connection to succeed

 //

 dwIndex = WaitForMultipleObjects(lenum.length, hArray, FALSE,

 INFINITE);

 if (dwIndex == WAIT_FAILED)

 {

 printf("ERROR: WaitForMultipleObjects: %d\n",

 GetLastError());

 }

 else

 {

 // If more than one connection succeeds, hang up the extra

 // connection. We'll use the connection that was returned

 // by WaitForMultipleObjects. Otherwise, if it's still

 // pending, cancel it.

 //

 for(i = 0; i < lenum.length; i++)

 {

 if (i != dwIndex)

 {

 if (pncb[i].ncb_cmd_cplt == NRC_PENDING)

 Cancel(&pncb[i]);

 else

 Hangup(pncb[i].ncb_lana_num, pncb[i].ncb_lsn);

 }

 }

 printf("Connected on LANA: %d\n", pncb[dwIndex].ncb_lana_num);

 //

 // Send and receive the messages

 //

 for(i = 0; i < 20; i++)

 {

 wsprintf(szSendBuff, "Test message %03d", i);

 dwRet = Send(pncb[dwIndex].ncb_lana_num,

 pncb[dwIndex].ncb_lsn, szSendBuff,

 strlen(szSendBuff));

 if (dwRet != NRC_GOODRET)

 break;

 dwBufferLen = MAX_BUFFER;

 dwRet = Recv(pncb[dwIndex].ncb_lana_num,

 pncb[dwIndex].ncb_lsn, szSendBuff, &dwBufferLen);

 if (dwRet != NRC_GOODRET)

 break;

 szSendBuff[dwBufferLen] = 0;

 printf("Read: '%s'\n", szSendBuff);

 }

 Hangup(pncb[dwIndex].ncb_lana_num, pncb[dwIndex].ncb_lsn);

 }

 // Clean things up

 //

 for(i = 0; i < lenum.length; i++)

 {

 DelName(lenum.lana[i], argv[1]);

 CloseHandle(hArray[i]);

 }

 GlobalFree(hArray);

 GlobalFree(pncb);

 return 0;

}

Datagram Operations

Datagrams are connectionless methods of communication. A sender merely

addresses each packet with its destination NetBIOS name and sends it on its way. No

checking is performed to ensure data integrity, order of arrival, or reliability.

There are three ways to send a datagram. The first is to direct the datagram at a

specific (unique or group) name. This means that only the process that registered the

destination name can receive that datagram. The second method is to send a

datagram to a group name. Only those processes that registered the given group

name will be able to receive the message. Finally, the third way to send a datagram is

to broadcast it to the entire network. Any process on any workstation on the LAN can

receive the datagram. Sending a datagram to either a unique or a group name uses

the NCBDGSEND command, whereas broadcasts use the NCBDGSENDBC

command.

Using any of the datagram send commands is a simple process. Set the ncb_num

field to the name number returned from an NCBADDNAME command or using events.

For each LANA, the code posts an asynchronous NCBDGRECV (or

NCBDGRECVBC) and waits until one succeeds, at which point it checks all posted

commands, prints the messages for those that succeed, and cancels those

commands that are still pending. The following example provides functions for both

directed and broadcast sends and receives. The program can be compiled into a

sample application that can be configured to send or receive datagrams. The program

accepts several command-line parameters that allow the user to specify the number

of datagrams to send or receive, the delay between sends, the use of broadcasts

instead of directed datagrams, the receipt of datagrams for any name, and so on.

// Nbdgram.c

#include <windows.h>

#include <stdio.h>

#include <stdlib.h>

#include "..\Common\nbcommon.h"

#define MAX_SESSIONS 254

#define MAX_NAMES 254

#define MAX_DATAGRAM_SIZE 512

BOOL bSender = FALSE, // Send or receive datagrams

 bRecvAny = FALSE, // Receive for any name

 bUniqueName = TRUE, // Register my name as unique?

 bBroadcast = FALSE, // Use broadcast datagrams?

 bOneLana = FALSE; // Use all LANAs or just one?

char szLocalName[NCBNAMSZ + 1], // Local NetBIOS name

 szRecipientName[NCBNAMSZ + 1]; // Recipient's NetBIOS name

DWORD dwNumDatagrams = 25, // Number of datagrams to send

 dwOneLana, // If using one LANA, which one?

 dwDelay = 0; // Delay between datagram sends

//

// Function: ValidateArgs

//

// Description:

// This function parses the command line arguments

// and sets various global flags indicating the selections

//

void ValidateArgs(int argc, char **argv)

{

 int i;

 for(i = 1; i < argc; i++)

 {

 if (strlen(argv[i]) < 2)

 continue;

 if ((argv[i][0] == '-') ¦¦ (argv[i][0] == '/'))

 {

 switch (tolower(argv[i][1]))

 {

 case 'n': // Use a unique name

 bUniqueName = TRUE;

 if (strlen(argv[i]) > 2)

 strcpy(szLocalName, &argv[i][3]);

 break;

 case 'g': // Use a group name

 bUniqueName = FALSE;

 if (strlen(argv[i]) > 2)

 strcpy(szLocalName, &argv[i][3]);

 break;

 case 's': // Send datagrams

 bSender = TRUE;

 break;

 case 'c': // # of datagrams to send or receive

 if (strlen(argv[i]) > 2)

 dwNumDatagrams = atoi(&argv[i][3]);

 break;

 case 'r': // Recipient's name for datagrams

 if (strlen(argv[i]) > 2)

 strcpy(szRecipientName, &argv[i][3]);

 break;

 case 'b': // Use broadcast datagrams

 bBroadcast = TRUE;

 break;

 case 'a': // Receive datagrams on any name

 bRecvAny = TRUE;

 break;

 case 'l': // Operate on this LANA only

 bOneLana = TRUE;

 if (strlen(argv[i]) > 2)

 dwOneLana = atoi(&argv[i][3]);

 break;

 case 'd': // Delay (millisecs) between sends

 if (strlen(argv[i]) > 2)

 dwDelay = atoi(&argv[i][3]);

 break;

 default:

 printf("usage: nbdgram ?\n");

 break;

 }

 }

 }

 return;

}

//

// Function: DatagramSend

//

// Description:

// Send a directed datagram to the specified recipient on the

// specified LANA number from the given name number to the

// specified recipient. Also specified is the data buffer and

// the number of bytes to send.

//

int DatagramSend(int lana, int num, char *recipient,

 char *buffer, int buflen)

{

 NCB ncb;

 ZeroMemory(&ncb, sizeof(NCB));

 ncb.ncb_command = NCBDGSEND;

 ncb.ncb_lana_num = lana;

 ncb.ncb_num = num;

 ncb.ncb_buffer = (PUCHAR)buffer;

 ncb.ncb_length = buflen;

 memset(ncb.ncb_callname, ' ', NCBNAMSZ);

 strncpy(ncb.ncb_callname, recipient, strlen(recipient));

 if (Netbios(&ncb) != NRC_GOODRET)

 {

 printf("Netbios: NCBDGSEND failed: %d\n", ncb.ncb_retcode);

 return ncb.ncb_retcode;

 }

 return NRC_GOODRET;

}

//

// Function: DatagramSendBC

//

// Description:

// Send a broadcast datagram on the specified LANA number from the

// given name number. Also specified is the data buffer and the number

// of bytes to send.

//

int DatagramSendBC(int lana, int num, char *buffer, int buflen)

{

 NCB ncb;

 ZeroMemory(&ncb, sizeof(NCB));

 ncb.ncb_command = NCBDGSENDBC;

 ncb.ncb_lana_num = lana;

 ncb.ncb_num = num;

 ncb.ncb_buffer = (PUCHAR)buffer;

 ncb.ncb_length = buflen;

 if (Netbios(&ncb) != NRC_GOODRET)

 {

 printf("Netbios: NCBDGSENDBC failed: %d\n", ncb.ncb_retcode);

 return ncb.ncb_retcode;

 }

 return NRC_GOODRET;

}

//

// Function: DatagramRecv

//

// Description:

// Receive a datagram on the given LANA number directed toward the

// name represented by num. Data is copied into the supplied buffer.

// If hEvent is not 0, the receive call is made asynchronously

// with the supplied event handle. If num is 0xFF, listen for a

// datagram destined for any NetBIOS name registered by the process.

//

int DatagramRecv(PNCB pncb, int lana, int num, char *buffer,

 int buflen, HANDLE hEvent)

{

 ZeroMemory(pncb, sizeof(NCB));

 if (hEvent)

 {

 pncb->ncb_command = NCBDGRECV ¦ ASYNCH;

 pncb->ncb_event = hEvent;

 }

 else

 pncb->ncb_command = NCBDGRECV;

 pncb->ncb_lana_num = lana;

 pncb->ncb_num = num;

 pncb->ncb_buffer = (PUCHAR)buffer;

 pncb->ncb_length = buflen;

 if (Netbios(pncb) != NRC_GOODRET)

 {

 printf("Netbos: NCBDGRECV failed: %d\n", pncb->ncb_retcode);

 return pncb->ncb_retcode;

 }

 return NRC_GOODRET;

}

//

// Function: DatagramRecvBC

//

// Description:

// Receive a broadcast datagram on the given LANA number.

// Data is copied into the supplied buffer. If hEvent is not 0,

// the receive call is made asynchronously with the supplied

// event handle.

//

int DatagramRecvBC(PNCB pncb, int lana, int num, char *buffer,

 int buflen, HANDLE hEvent)

{

 ZeroMemory(pncb, sizeof(NCB));

 if (hEvent)

 {

 pncb->ncb_command = NCBDGRECVBC ¦ ASYNCH;

 pncb->ncb_event = hEvent;

 }

 else

 pncb->ncb_command = NCBDGRECVBC;

 pncb->ncb_lana_num = lana;

 pncb->ncb_num = num;

 pncb->ncb_buffer = (PUCHAR)buffer;

 pncb->ncb_length = buflen;

 if (Netbios(pncb) != NRC_GOODRET)

 {

 printf("Netbios: NCBDGRECVBC failed: %d\n",

 pncb->ncb_retcode);

 return pncb->ncb_retcode;

 }

 return NRC_GOODRET;

}

//

// Function: main

//

// Description:

// Initialize the NetBIOS interface, allocate resources, and then

// send or receive datagrams according to the user's options

//

int main(int argc, char **argv)

{

 LANA_ENUM lenum;

 int i, j;

 char szMessage[MAX_DATAGRAM_SIZE],

 szSender[NCBNAMSZ + 1];

 DWORD *dwNum = NULL,

 dwBytesRead,

 dwErr;

 ValidateArgs(argc, argv);

 //

 // Enumerate and reset the LANA numbers

 //

 if ((dwErr = LanaEnum(&lenum)) != NRC_GOODRET)

 {

 printf("LanaEnum failed: %d\n", dwErr);

 return 1;

 }

 if ((dwErr = ResetAll(&lenum, (UCHAR)MAX_SESSIONS,

 (UCHAR)MAX_NAMES, FALSE)) != NRC_GOODRET)

 {

 printf("ResetAll failed: %d\n", dwErr);

 return 1;

 }

 //

 // This buffer holds the name number for the NetBIOS name added

 // to each LANA

 //

 dwNum = (DWORD *)GlobalAlloc(GMEM_FIXED ¦ GMEM_ZEROINIT,

 sizeof(DWORD) * lenum.length);

 if (dwNum == NULL)

 {

 printf("out of memory\n");

 return 1;

 }

 //

 // If we're going to operate on only one LANA, register the name

 // on only that specified LANA; otherwise, register it on all

 // LANAs

 //

 if (bOneLana)

 {

 if (bUniqueName)

 AddName(dwOneLana, szLocalName, &dwNum[0]);

 else

 AddGroupName(dwOneLana, szLocalName, &dwNum[0]);

 }

 else

 {

 for(i = 0; i < lenum.length; i++)

 {

 if (bUniqueName)

 AddName(lenum.lana[i], szLocalName, &dwNum[i]);

 else

 AddGroupName(lenum.lana[i], szLocalName, &dwNum[i]);

 }

 }

 // We are sending datagrams

 //

 if (bSender)

 {

 // Broadcast sender

 //

 if (bBroadcast)

 {

 if (bOneLana)

 {

 // Broadcast the message on the one LANA only

 //

 for(j = 0; j < dwNumDatagrams; j++)

 {

 wsprintf(szMessage,

 "[%03d] Test broadcast datagram", j);

 if (DatagramSendBC(dwOneLana, dwNum[0],

 szMessage, strlen(szMessage))

 != NRC_GOODRET)

 return 1;

 Sleep(dwDelay);

 }

 }

 else

 {

 // Broadcast the message on every LANA on the local

 // machine

 //

 for(j = 0; j < dwNumDatagrams; j++)

 {

 for(i = 0; i < lenum.length; i++)

 {

 wsprintf(szMessage,

 "[%03d] Test broadcast datagram", j);

 if (DatagramSendBC(lenum.lana[i], dwNum[i],

 szMessage, strlen(szMessage))

 != NRC_GOODRET)

 return 1;

 }

 Sleep(dwDelay);

 }

 }

 }

 else

 {

 if (bOneLana)

 {

 // Send a directed message to the one LANA specified

 //

 for(j = 0; j < dwNumDatagrams; j++)

 {

 wsprintf(szMessage,

 "[%03d] Test directed datagram", j);

 if (DatagramSend(dwOneLana, dwNum[0],

 szRecipientName, szMessage,

 strlen(szMessage)) != NRC_GOODRET)

 return 1;

 Sleep(dwDelay);

 }

 }

 else

 {

 // Send a directed message to each LANA on the

 // local machine

 //

 for(j = 0; j < dwNumDatagrams; j++)

 {

 for(i = 0; i < lenum.length; i++)

 {

 wsprintf(szMessage,

 "[%03d] Test directed datagram", j);

 printf("count: %d.%d\n", j,i);

 if (DatagramSend(lenum.lana[i], dwNum[i],

 szRecipientName, szMessage,

 strlen(szMessage)) != NRC_GOODRET)

 return 1;

 }

 Sleep(dwDelay);

 }

 }

 }

 }

 else // We are receiving datagrams

 {

 NCB *ncb=NULL;

 char **szMessageArray = NULL;

 HANDLE *hEvent=NULL;

 DWORD dwRet;

 // Allocate an array of NCB structure to submit to each recv

 // on each LANA

 //

 ncb = (NCB *)GlobalAlloc(GMEM_FIXED ¦ GMEM_ZEROINIT,

 sizeof(NCB) * lenum.length);

 //

 // Allocate an array of incoming data buffers

 //

 szMessageArray = (char **)GlobalAlloc(GMEM_FIXED,

 sizeof(char *) * lenum.length);

 for(i = 0; i < lenum.length; i++)

 szMessageArray[i] = (char *)GlobalAlloc(GMEM_FIXED,

 MAX_DATAGRAM_SIZE);

 //

 // Allocate an array of event handles for

 // asynchronous receives

 //

 hEvent = (HANDLE *)GlobalAlloc(GMEM_FIXED ¦ GMEM_ZEROINIT,

 sizeof(HANDLE) * lenum.length);

 for(i = 0; i < lenum.length; i++)

 hEvent[i] = CreateEvent(0, TRUE, FALSE, 0);

 if (bBroadcast)

 {

 if (bOneLana)

 {

 // Post synchronous broadcast receives on

 // the one LANA specified

 //

 for(j = 0; j < dwNumDatagrams; j++)

 {

 if (DatagramRecvBC(&ncb[0], dwOneLana, dwNum[0],

 szMessageArray[0], MAX_DATAGRAM_SIZE,

 NULL) != NRC_GOODRET)

 return 1;

 FormatNetbiosName(ncb[0].ncb_callname, szSender);

 printf("%03d [LANA %d] Message: '%s' "

 "received from: %s\n", j,

 ncb[0].ncb_lana_num, szMessageArray[0],

 szSender);

 }

 }

 else

 {

 // Post asynchronous broadcast receives on each LANA

 // number available. For each command that succeeded,

 // print the message; otherwise, cancel the command.

 //

 for(j = 0; j < dwNumDatagrams; j++)

 {

 for(i = 0; i < lenum.length; i++)

 {

 dwBytesRead = MAX_DATAGRAM_SIZE;

 if (DatagramRecvBC(&ncb[i], lenum.lana[i],

 dwNum[i], szMessageArray[i],

 MAX_DATAGRAM_SIZE, hEvent[i])

 != NRC_GOODRET)

 return 1;

 }

 dwRet = WaitForMultipleObjects(lenum.length,

 hEvent, FALSE, INFINITE);

 if (dwRet == WAIT_FAILED)

 {

 printf("WaitForMultipleObjects failed: %d\n",

 GetLastError());

 return 1;

 }

 for(i = 0; i < lenum.length; i++)

 {

 if (ncb[i].ncb_cmd_cplt == NRC_PENDING)

 Cancel(&ncb[i]);

 else

 {

 ncb[i].ncb_buffer[ncb[i].ncb_length] = 0;

 FormatNetbiosName(ncb[i].ncb_callname,

 szSender);

 printf("%03d [LANA %d] Message: '%s' "

 "received from: %s\n", j,

 ncb[i].ncb_lana_num,

 szMessageArray[i], szSender);

 }

 ResetEvent(hEvent[i]);

 }

 }

 }

 }

 else

 {

 if (bOneLana)

 {

 // Make a blocking datagram receive on the specified

 // LANA number

 //

 for(j = 0; j < dwNumDatagrams; j++)

 {

 if (bRecvAny)

 {

 // Receive data destined for any NetBIOS name

 // in this process's name table

 //

 if (DatagramRecv(&ncb[0], dwOneLana, 0xFF,

 szMessageArray[0], MAX_DATAGRAM_SIZE,

 NULL) != NRC_GOODRET)

 return 1;

 }

 else

 {

 if (DatagramRecv(&ncb[0], dwOneLana,

 dwNum[0], szMessageArray[0],

 MAX_DATAGRAM_SIZE, NULL)

 != NRC_GOODRET)

 return 1;

 }

 FormatNetbiosName(ncb[0].ncb_callname, szSender);

 printf("%03d [LANA %d] Message: '%s' "

 "received from: %s\n", j,

 ncb[0].ncb_lana_num, szMessageArray[0],

 szSender);

 }

 }

 else

 {

 // Post asynchronous datagram receives on each LANA

 // available. For all those commands that succeeded,

 // print the data; otherwise, cancel the command.

 //

 for(j = 0; j < dwNumDatagrams; j++)

 {

 for(i = 0; i < lenum.length; i++)

 {

 if (bRecvAny)

 {

 // Receive data destined for any NetBIOS

 // name in this process's name table

 //

 if (DatagramRecv(&ncb[i], lenum.lana[i],

 0xFF, szMessageArray[i],

 MAX_DATAGRAM_SIZE, hEvent[i])

 != NRC_GOODRET)

 return 1;

 }

 else

 {

 if (DatagramRecv(&ncb[i], lenum.lana[i],

 dwNum[i], szMessageArray[i],

 MAX_DATAGRAM_SIZE, hEvent[i])

 != NRC_GOODRET)

 return 1;

 }

 }

 dwRet = WaitForMultipleObjects(lenum.length,

 hEvent, FALSE, INFINITE);

 if (dwRet == WAIT_FAILED)

 {

 printf("WaitForMultipleObjects failed: %d\n",

 GetLastError());

 return 1;

 }

 for(i = 0; i < lenum.length; i++)

 {

 if (ncb[i].ncb_cmd_cplt == NRC_PENDING)

 Cancel(&ncb[i]);

 else

 {

 ncb[i].ncb_buffer[ncb[i].ncb_length] = 0;

 FormatNetbiosName(ncb[i].ncb_callname,

 szSender);

 printf("%03d [LANA %d] Message: '%s' "

 "from: %s\n", j, ncb[i].ncb_lana_num,

 szMessageArray[i], szSender);

 }

 ResetEvent(hEvent[i]);

 }

 }

 }

 }

 // Clean up

 //

 for(i = 0; i < lenum.length; i++)

 {

 CloseHandle(hEvent[i]);

 GlobalFree(szMessageArray[i]);

 }

 GlobalFree(hEvent);

 GlobalFree(szMessageArray);

 }

 // Clean things up

 //

 if (bOneLana)

 DelName(dwOneLana, szLocalName);

 else

 {

 for(i = 0; i < lenum.length; i++)

 DelName(lenum.lana[i], szLocalName);

 }

 GlobalFree(dwNum);

 return 0;

}

Once you've compiled the example, run the following tests to get an idea of how

datagrams work. For learning purposes, you should run two instances of the

applications, but on separate machines. If you run them on the same machine, they'll

work, but this hides some important concepts. When run on the same machine, the

LANA numbers for each side correspond to the same protocol. It's more interesting

when they don't. Table 17-5 lists some commands to try, and Table 17-6 lists all the

command-line options available for use with the sample program.

Table 17-5NBDGRAM.C Commands

Client Command Server Command

Nbdgram /n:CLIENT01 Nbdgram /s /n:SERVER01 /r:CLIENT01

Nbdgram /n:CLIENT01 /b Nbdgram /s /n:SERVER01 /b

Nbdgram /g:CLIENTGROUP Nbdgram /s /r:CLIENTGROUP

Table 17-6Command Parameters for NBDGRAM.C

Flag Meaning

/n:my-name Register the unique name my-name.

/g:group-name Register the group name group-name.

/s Send datagrams (by default, the sample receives datagrams).

/c:n Send or receive n number of datagrams.

/r:receiver Specify the NetBIOS name to send the datagrams to.

/b Use broadcast datagrams.

/a Post receives for any NetBIOS name (set ncb_num to 0xFF).

/l:n
Perform all operations on LANA n only (by default, all sends and

receives are posted on each LANA).

/d:n Wait n milliseconds between sends.

For the third command in Table 17-5, run several clients on various machines. This

illustrates one server sending one message to a group, and each member of the

group waiting for data will receive the message. Also, try various combinations of the

listed commands with the /l:x command-line option, where x is a valid LANA number.

This command-line option switches the program's mode from performing the

commands on all LANAs to performing the commands on the listed LANA only. For

example, the command Nbdgram /n:CLIENT01 /l:0 makes the application listen only

for incoming datagrams on LANA 0 and ignore any data arriving on any other LANA.

Additionally, option /a is meaningful only to the clients. This flag causes the receive

command to pick up incoming datagrams destined for any NetBIOS name registered

by the process. In our example, this isn't very meaningful because the client registers

only one name, but you can at least see how this would be coded. You might want to

try modifying the code so that it registers a name for every /n:name option in the

command line. Start up the server with the recipient flag set to only one of the names

that the client registered. The client will receive the data, even though the

NCBDGRECV command does not specifically refer to a particular name.

Miscellaneous NetBIOS Commands

All of the commands discussed so far deal in some way with setting up a session,

sending or receiving data through a session or a datagram, and related subjects. A

few commands deal exclusively in getting information. These commands are the

adapter status command (NCBASTAT) and the find name command

(NCBFINDNAME), which are discussed in the following sections. The final section

deals with matching LANA numbers to their protocols in a programmatic fashion. (This

is not actually a NetBIOS function; we discuss it because it can gather useful NetBIOS

information for you.)

Adapter Status (NCBASTAT)

The adapter status command is useful for obtaining information about the local

computer and its LANA numbers. Using this command is also the only way to

programmatically find the machine's MAC address from Windows 95 and Windows

NT 4.0. With the advent of the IP Helper functions for Windows 2000 and Windows 98

(discussed in Chapter 22), there is a more generic interface for finding the Media

Access Control (MAC) address; however, for the other Windows platforms, using the

adapter status command is your only valid option.

The command and its syntax are fairly easy to understand, but two ways of calling the

function affect what data is returned. The adapter status command returns an

ADAPTER_STATUS structure followed by a number of NAME_BUFFER structures.

The structures are defined as follows:

typedef struct _ADAPTER_STATUS {

 UCHAR adapter_address[6];

 UCHAR rev_major;

 UCHAR reserved0;

 UCHAR adapter_type;

 UCHAR rev_minor;

 WORD duration;

 WORD frmr_recv;

 WORD frmr_xmit;

 WORD iframe_recv_err;

 WORD xmit_aborts;

 DWORD xmit_success;

 DWORD recv_success;

 WORD iframe_xmit_err;

 WORD recv_buff_unavail;

 WORD t1_timeouts;

 WORD ti_timeouts;

 DWORD reserved1;

 WORD free_ncbs;

 WORD max_cfg_ncbs;

 WORD max_ncbs;

 WORD xmit_buf_unavail;

 WORD max_dgram_size;

 WORD pending_sess;

 WORD max_cfg_sess;

 WORD max_sess;

 WORD max_sess_pkt_size;

 WORD name_count;

} ADAPTER_STATUS, *PADAPTER_STATUS;

typedef struct _NAME_BUFFER {

 UCHAR name[NCBNAMSZ];

 UCHAR name_num;

 UCHAR name_flags;

} NAME_BUFFER, *PNAME_BUFFER;

The fields of most interest are MAC address (adapter_address), maximum datagram

size (max_dgram_size), and maximum number of sessions (max_sess). Also, the

name_count field tells you how many NAME_BUFFER structures were returned. The

maximum number of NetBIOS names per LANA is 254, so you have a choice of

providing a buffer large enough for all names or calling the adapter status command

once with ncb_length equal to 0. When the Netbios function returns, it provides the

necessary buffer size.

 UCHAR unique_group;

} FIND_NAME_HEADER, *PFIND_NAME_HEADER;

typedef struct _FIND_NAME_BUFFER {

 UCHAR length;

 UCHAR access_control;

 UCHAR frame_control;

 UCHAR destination_addr[6];

 UCHAR source_addr[6];

 UCHAR routing_info[18];

} FIND_NAME_BUFFER, *PFIND_NAME_BUFFER;

As with the adapter status command, if the NCBFINDNAME command is executed

with a buffer length of 0, the Netbios function returns the required length with the error

NRC_BUFLEN.

The FIND_NAME_HEADER structure that a successful query returns indicates

whether the name is registered as a unique name or a group name. If the field

unique_group is 0, it is a unique name. The value 1 indicates a group name. The

node_count field indicates how many FIND_NAME_BUFFER structures were

returned. The FIND_NAME_BUFFER structure returns quite a bit of information, most

of which is useful at the protocol level. However, we're interested in the fields

destination_addr and source_addr. The source_addr field contains the MAC address

of the network adapter that has registered the name, and the destination_addr field

contains the MAC address of the adapter that performed the query.

A find name query can be issued on any LANA number on the local machine. The

data returned should be identical on all valid LANA numbers for the local network. (For

example, you can execute a find name command on a RAS connection to determine

whether a name is registered on the remote network.) Using Windows NT 4.0, you will

find the following bug: when a find name query is executed over TCP/IP, Netbios

returns bogus information. Therefore, if you plan to use this query with Windows NT

4.0, be sure to pick a LANA corresponding to a transport other than TCP/IP.

Matching Transports to LANA Numbers

This last section discusses matching transport protocols such as TCP/IP and NetBEUI

to their LANA numbers. Because there are different potential problems to deal with

depending on which transport your application is using, it's nice to be able to find

these transports programmatically. This isn't possible with a native NetBIOS call, but it

is possible with Winsock 2 under Windows NT 4.0 and Windows 2000. The Winsock 2

function WSAEnumProtocols returns information about available transport protocols.

(See Chapters 5 and 6 for more information about WSAEnumProtocols.) Although

Winsock 2 is available on Windows 95 and by default on Windows 98, the protocol

information stored on these platforms does not contain any NetBIOS information,

which is what we're looking for.

We won't discuss Winsock 2 in great detail, as this was the subject of Part II of this

book. The basic steps involved are loading Winsock 2 through the WSAStartup

function, calling WSAEnumProtocols, and inspecting the WSAPROTOCOL_INFO

structures returned from the call. The sample file NBPROTO.C on this book's

companion CD contains code for performing this query.

The WSAEnumProtocols function takes a buffer to a block of data and a buffer-length

parameter. First call the function with a null buffer address and 0 for the length. The

call will fail, but the buffer-length parameter will contain the size of the buffer required.

Once you have the proper size, call the function again. WSAEnumProtocols returns

the number of protocols it found. The WSAPROTOCOL_INFO structure is large and

contains a lot of fields, but the ones we're interested in are szProtocol,

iAddressFamily, and iProtocol. If iAddressFamily is equal to AF_NETBIOS, the

absolute value of iProtocol is the LANA number for the protocol given in the string

szProtocol. In addition, the ProviderId GUID can be used to match the returned

protocol to certain predefined GUIDs for protocols.

There is only one “gotcha” with this method. Under Windows NT and Windows 2000,

the iProtocol field for any protocol installed on LANA 0 is the value 0x80000000

because protocol 0 is reserved for special use. Any protocol assigned LANA 0 will

always have the value 0x80000000, so it is a matter of simply checking for this value.

Platform Considerations

Keep these limitations in mind when implementing NetBIOS with the following

platforms.

Windows CE

The NetBIOS interface is not available on Windows CE. Although the redirector

supports NetBIOS names and name resolution, there is no programming interface

support.

Windows 95 and Windows 98

There are several bugs to watch out for in Windows 95 and Windows 98. On either of

these two platforms, you must reset all LANA numbers before adding any NetBIOS

name to any LANA. This is because resetting one LANA corrupts the name tables of

the others; therefore, you want to avoid code similar to the following:

 LANA_ENUM lenum;

// Enumerate the LANAs

for(i = 0; i < lenum.length; i++)

{

 Reset(lenum.lana[i]);

 AddName(lenum.lana[i], MY_NETBIOS_NAME);

}

In addition, with Windows 95, do not attempt to perform an asynchronous NCBRESET

command on the LANA corresponding to the TCP/IP protocol. To begin with, you

shouldn't issue this command asynchronously because a reset has to complete before

you can do anything with that LANA anyway. If you do decide to execute an

NCBRESET command asynchronously, your application will cause a fatal error in the

NetBIOS TCP/IP virtual device driver (VXD), and you will have to reboot your

computer.

General

When performing session-oriented communications, one side can send as much data

as it wants; however, the sender really buffers the data it sends until the receiver

acknowledges receiving the data by posting a receive command. The NetBIOS

commands NCBSENDNA and NCBCHAINSENDNA are the “no acknowledgment

required” versions of the send commands. You can use these commands if you

specifically don't want your send commands to wait for acknowledgment from the

receiver. Because TCP/IP provides its own acknowledgment scheme in the underlying

protocol, these versions of the send commands (versions that don't require

acknowledgment from the receiver) behave exactly like the versions that do require

acknowledgment.

Conclusion

The NetBIOS interface is a powerful but outdated application interface. One of its

strengths is its protocol independence—applications can run over TCP/IP, NetBEUI,

and IPX/SPX. NetBIOS offers both connection-oriented and connectionless

communication. One major advantage the NetBIOS interface has over the Winsock

interface is a unified name resolution and registration method. That is, a NetBIOS

application only needs a NetBIOS name to operate, whereas a Winsock application

that utilizes different protocols needs to be aware of each protocol's addressing

scheme (as you learned in Part II of this book). Chapter 18 introduces the redirector,

which is an integral part of mailslots and named pipes, which you'll learn about in

Chapters 19 and 20.

Chapter 18

The Redirector

Microsoft Windows offers applications the capability to communicate over a network

using built-in file system services. This is sometimes referred to as the network

operating system (NOS) capability. This chapter explores these networking

capabilities using Windows file system components available in Windows 95,

Windows 98, Windows Me, Windows NT, and Windows CE. The purpose of this

chapter is to provide an understanding of these capabilities as they relate to the

mailslot and named pipe networking technologies, which are covered in greater detail

in Chapters 19 and 20, respectively.

When applications want to access files on a local system, they rely on the operating

system to service I/O requests. This is typically referred to as local I/O. For example,

when an application opens or closes a file, the operating system determines how to

access a device that contains the contents of the specified file. Once the device is

found, the I/O request is forwarded to a local device driver. The same operating

principle is also available for accessing devices over a network. However, the I/O

request must be forwarded over a network to the remote device. This is referred to as

I/O redirection. For example, Windows allows you to map or redirect a local disk

identifier—such as E:—to a directory share point on a remote computer. When

applications reference E:, the operating system redirects the I/O to a device called a

redirector. The redirector forms a communication channel to a remote computer to

access the desired remote directory. This functionality allows applications to use

common file system API functions, such as ReadFile and WriteFile, to access remote

files across a network.

This chapter discusses how the redirector is used to redirect I/O requests to remote

devices. This is important information—it is the foundation for communication in the

mailslot and named pipe technologies. First we cover how files can be referenced

over a network with the UNC using the MUP resource locator. This is followed by an

explanation of how MUP calls a network provider, which exposes a redirector to form

communications among computers using the SMB protocol. Finally, we describe

network security considerations when accessing files over a network using basic file

I/O operations.

Universal Naming Convention

UNC paths provide a standardized way of accessing files and devices over a network without

specifying or referencing a local drive letter that has been mapped to a remote file system. This is

important because it allows applications to become drive-letter–independent and work seamlessly in a

network environment. UNC names are better than names that reference a local drive letter because

you don't have to worry about running out of drive letters when forming connections to access server

shares. Drive letters also operate on a per-user basis—processes that are not running in your user

context cannot access your drive mappings.

UNC names are specified as follows:

\\[server]\[share]\[path]

The first portion, \\[server], starts with two backslashes followed by a server name. The server name

represents a remote server in which an application wants to reference a remote file. The second

portion, \[share], represents a share point on the remote server. A share point is simply a directory in a

file system that is identified on a network as shared for network user access. The third portion, \[path],

represents a directory path to a file in a file system. For example, suppose you have a server named

Myserver that contains a directory on a local drive named D:\Myfiles\CoolMusic that is shared out as

Myshare. Let's also assume the shared directory contains a file named SAMPLE.MP3. If you would

like to reference SAMPLE.MP3 from a remote machine, simply specify the UNC name

\\Myserver\Myshare\Sample.mp3. As you can see, it's much easier to reference a file across a network

than it is to map a local drive to the shared directory Myshare.

Referencing files over a network using UNC names hides the details of forming a connection over a

network from an application. This is great—a system can easily locate network server directory shares

and file paths with UNC names, even over a modem connection. All of the network communication

details are handled by a network provider's redirector, which we discuss later in this chapter. As

discussed in Chapters 19 and 20, the mailslot and named pipe technologies depend solely on the use

of UNC names for identification.

Figure 18-1 illustrates the common components that form UNC connections on the NOS in Windows.

The figure also shows how the data flows among client and server NOS components. Using the UNC

path \\Myserver\ Myshare\Sample.mp3 described earlier, the remainder of this chapter describes each

component and demonstrates what happens when we open this file across a network.

Figure 18-1 Redirector components

Multiple UNC Provider

MUP is a resource locator responsible for selecting a network provider to service UNC

connections. A network provider is a service that can use network hardware to access

resources—such as files and printers—located on a remote computer. MUP uses a

network provider to form communications on all UNC-name–based I/O requests for

files and printers. We discuss the details of a network provider later in this chapter.

Windows 95, Windows 98, and Windows NT platforms are all capable of having

multiple network providers installed. For example, Windows platforms provide a

network provider named Client for Microsoft Networks. It is also possible to install

other third-party network providers, such as Novell's Novell Client version 3.01 for

Windows. Thus, more than one network provider might be able to service a single

UNC request at a time. On the other hand, Windows CE can have only one network

provider, Client for Microsoft Networks.

The primary role of MUP is to decide which network provider should service a UNC

request. MUP makes this decision by sending the UNC names in the request to each

installed provider (in parallel). If a network provider indicates that it can service a

request involving the UNC names, MUP sends the rest of the request to the provider.

If more than one provider is capable of servicing a UNC request, MUP chooses the

network provider with the most priority. Network provider priority is determined by the

order in which providers are installed on your system. In Windows 95, Windows 98,

and Windows NT, the priority can be managed by modifying the registry key

ProviderOrder in the following directory in the Windows registry:

\HKEY_LOCAL_MACHINE

 \SYSTEM

 \CurrentControlSet

 \Control

 \NetworkProvider

 \Order

The installed providers are listed first to last in order of priority. Because Windows CE

can have only one provider, it does not use MUP to resolve UNC names. Instead, the

UNC requests go directly to its single provider.

Network Providers

As mentioned earlier, a network provider is a service that uses network hardware to

access files and printers located on a remote computer. This is considered to be the

core function of a NOS. One of a provider's main capabilities is redirecting a local disk

identifier—such as E:—to a disk directory located on a remote computer. Providers

must also be able to service UNC connection requests. In Windows, network

providers do this by exposing a redirector to the operating system.

Windows features a network provider named Client for Microsoft Networks, formally

known as the Microsoft Networking Provider (MSNP). The MSNP enables

communications among Windows 95, Windows 98, Windows NT, and Windows CE

platforms. Windows CE, however, does not support multiple network providers and

provides only built-in client-side support for the MSNP.

Redirector

A redirector is a component exposed by a network provider to an operating system

that accepts and processes remote I/O service requests by formulating service

request messages and sending them to a remote computer's redirector server

service. The remote computer's redirector server service receives the request and

services it by making local I/O requests. Because a redirector provides I/O services to

higher level services such as MUP, a redirector hides the details of the network layer

from applications so that applications don't have to supply protocol-specific

parameters to a redirector. Thus, a network provider is protocol-independent:

applications can operate in almost any network configuration.

The MSNP provides a redirector that works directly with the networking transport layer

and NetBIOS to form communication between a client and a server. The NetBIOS API

discussed in Chapter 17 provides a programming interface with these same

transports. This redirector provided by MSNP is often referred to as the LAN manager

redirector because it is designed around the old Microsoft LAN manager software that

provided NOS capability to MS-DOS applications in the past. (For more detailed

information about the NetBIOS programming interface, see Chapter 17.) The NetBIOS

interface is capable of communicating over numerous network protocols. This makes

the MSNP redirector protocol-independent: your application does not have to concern

itself with the specific details of a network protocol. When your application uses the

MSNP redirector, it can communicate over TCP/IP, NetBEUI, or even IPX/SPX. This

is a helpful feature because it allows applications to communicate no matter what the

physical network comprises. However, one important detail needs to be considered.

For two applications to communicate with each other over the network, the two

workstations must have at least one transport protocol in common. For example, if

Workstation A has only TCP/IP installed and Workstation B has only IPX installed, the

MSNP redirector will not be able to establish communication between the two

workstations over a network.

The MSNP redirector communicates with other workstations by sending messages to

a remote workstation's redirector server service. These messages are set up in a

well-defined structure known as SMB. The actual protocol for how the redirector

sends and receives messages to a remote workstation is known as the Server

Message Block File Sharing Protocol, or simply the SMB protocol.

Server Message Block

The SMB protocol was originally developed by Microsoft and Intel in the late 1980s to

allow remote file systems to be transparently accessed by MS-DOS applications.

Today this protocol simply allows a Windows MSNP redirector to communicate with a

remote workstation's MSNP server service using an SMB data structure. An SMB data

structure contains three basic components: a command code, command-specific

parameters, and user data.

The SMB protocol is centered on a simple client request and server response

messaging model. An MSNP redirector client creates an SMB structure with a specific

request indicated in the command code field. If the command requires sending data,

such as an SMB Write instruction, data accompanies the request. The SMB structure

is then sent over a transport protocol such as TCP/IP to a remote workstation's server

service. This server service processes the client's request and transmits an SMB

response data structure back to the client.

Now that we've covered the basics of the components used in forming communication

through the MSNP redirector, let's follow how each component communicates when

we try to open \\Myserver\Myshare\Sample.mp3 across a network. It does so by

following these steps:

An application submits a request to the local operating system to open

\\Myserver\Myshare\Sample.mp3 using the CreateFile API function.

1.

The local operating system's file system determines that the I/O request is

destined for a remote machine named \\Myserver based on the UNC path

description, so it passes the request to MUP.

2.

MUP determines that this I/O request is destined for the MSNP provider

because the MSNP provider finds \\Myserver on the network using NetBIOS

name resolution.

3.

The I/O request is passed to the MSNP provider's redirector.4.

The redirector formats the I/O request as an SMB message to open the file

SAMPLE.MP3 that is contained in the remote \Myshare directory.

5.

The formatted SMB message is transmitted over a network transport protocol.6.

The server named \\Myserver receives the SMB request from the network and

passes the request to the server's MSNP redirector server service.

7.

The server's redirector server service submits a local I/O request to open the

SAMPLE.MP3 file that is located on the \Myshare share point.

8.

The server's redirector server service formats an SMB response message

regarding the success or failure of the local file open I/O request.

9.

The server's SMB response message is sent back to the client over a network

transport protocol.

10.

The MSNP redirector receives the server's SMB response and passes a return

code back to the local operating system.

11.

The local operating system returns the return code to the application

CreateFile API request.

12.

As you can see, the MSNP redirector must go through quite a few steps to grant

applications access to remote resources. The MSNP redirector also provides access

control to resources on a network as a form of network security.

Security

Our discussion of security focuses on accessing resources over a network. However, before we can discuss

how security is enforced on resources over a network, we need to discuss security basics on a local machine.

Windows NT platforms provide the capability to locally and remotely control access to system resources such

as files and directories. These resources are considered securable objects. When an application attempts to

access a securable object, the operating system checks whether an application has access rights to that

object. The three basic access types are read, write, and execute privileges. Windows NT systems

accomplish access control through security descriptors and access tokens.

Security Descriptors

All securable objects contain a security descriptor that defines their access control information. A security

descriptor consists of a SECURITY_DESCRIPTOR structure and its associated security information, which

includes the following items:

Owner Security Identifier (SID). Represents the owner of the object.

Group SID. Represents the primary group owner of the object.

Discretionary Access Control List (DACL). Specifies who has what type of access to the object. Access

types include read, write, and execute privileges.

System Access Control List (SACL). Specifies the types of access attempts that generate audit records for

the object.

Applications cannot directly manipulate the contents of a security descriptor structure. A descriptor can,

however, be manipulated indirectly through Windows security APIs that provide functions for setting and

retrieving the security information. We demonstrate this at the end of this chapter.

Access Control Lists and Access Control Entities

The DACL and SACL fields of a security descriptor are access control lists (ACLs) that contain zero or more

access control entities (ACEs). Each ACE controls or monitors access to an object by a specified user or

group. An ACE contains the following types of access control information:

A SID that identifies the user or the group that the ACE applies to

A mask that specifies access rights such as read, write, and execute privileges

A flag that indicates ACE type (allow-access, deny-access, or system-audit)

Note that system audit ACE types are used only in SACLs, whereas allow-access and deny-access ACE

types are used in DACLs. Figure 18-2 shows a file object with an associated DACL.

Figure 18-2 File object with an associated DACL

If a secured object does not have a DACL (its DACL has been set to a null value using the

SetSecurityDescriptorDacl API function), the system allows everyone full access. If an object has a DACL, the

system allows only the access that is explicitly allowed by the ACEs in the DACL. If there are no ACEs in the

DACL, the system does not allow access to anyone. Similarly, if a DACL has some allow-access ACEs, the

system implicitly denies access to all users and groups not included in the ACEs.

In most cases, you need to specify only allow-access ACEs, with the following exception: if you include an

allow-access ACE for a group, you might have to use deny-access ACEs to exclude members of that

particular group. To do this, you must place a user's deny-access ACE ahead of a group's allow-access ACE.

Note that the order of the ACL is important because the system reads the ACEs in sequence until access is

granted or denied. The user's access-denied ACE must appear first; otherwise, when the system reads the

group's access-allowed ACE, it will grant access to the restricted user.

Figure 18-2 shows how to set up a DACL that grants read access to a group named Net Team. Let's assume

that the Net Team group consists of Anthony, Jim, and Gary, and we want to grant read access to everyone in

the group except Anthony. To do this, we must have a deny-access ACE for Anthony set before the

allow-access ACE for the Net Team. Figure 18-2 also includes an allow-access ACE to grant Jim write

access. Remember that applications do not directly manipulate ACLs; instead, they use security APIs to

perform these transactions.

Security Identifiers

We have noted that security descriptors and ACEs for securable objects include a SID, which is a unique

value used to identify a user account, group account, or logon session. A security authority, such as a

Windows NT server domain, maintains SID information in a security account database. When a user logs on,

the system retrieves the user's SID from the database and places it in a user's access token. The system then

uses the SID in the user's access token to identify the user in all subsequent interactions with Windows NT

security.

Access Tokens

When a user logs on to a Windows NT system, the system authenticates the user's account name and

password, which are known together as login credentials. If a user logs on successfully, the system creates an

access token and assigns it the user's SID. Every process executed on behalf of this user will have a copy of

this access token. When a process attempts to access a secured object, the SID in the access token is

compared with access rights assigned to SIDs in DACLs.

Network Security

Now that we've briefly explained how security is enforced on a local machine, we are ready to look at security when

accessing secured objects over a network. As we saw earlier, the MSNP redirector is responsible for accessing

resources among computers. The MSNP redirector is also responsible for establishing a secure link between a client

and a server by creating user session credentials.

Session Credentials

There are two types of user credentials: primary login and session credentials. When a user sitting in front of a

workstation logs on to the machine, the user name and the password presented by the user become the primary set

of credentials and are stored in an access token. Only one set of primary credentials exists at any given time. When a

user attempts to establish a connection (either mapping a drive or connecting through UNC names) to a remote

resource, the user's primary credentials are used to validate access to the remote resource. Note that with Windows

NT systems, the user has the option of supplying a different set of credentials to be used in validating with the remote

resource. If the user's credentials are valid, the MSNP redirector establishes a session between the user's computer

and the remote resource. The redirector associates the session with session credentials, which consist of a copy of

the credentials the user's computer used to validate the connection with the remote resource. Only one set of session

credentials can be established at a time between a user's computer and a remote server. If Machine B has two share

points, \Hack and \Slash, and if the user of Machine A maps \Hack to G and \Slash to H, both sessions share the

same session credentials because they both refer to the same remote server.

The MSNP redirector server service handles security access control on a remote server. When the MSNP redirector

server attempts to access a secured object, it uses the session credentials to create a remote access token. From

there, security is managed as if the access were made locally. Figure 18-3 demonstrates how the MSNP redirector

establishes security credentials using Windows NT domain security.

Figure 18-3. Security credentials demonstration

A Practical Example

Windows applications can use the CreateFile, ReadFile, and WriteFile API functions to

create, access, and modify files over a network using the MSNP redirector. Windows

NT systems are the only platforms that support Windows security. The following

sample demonstrates how to write a simple application that will create a file over a

UNC connection. You will find a file with this code called FILEIO.CPP on the

companion CD.

#include <windows.h>

#include <stdio.h>

void main(void)

{

 HANDLE FileHandle;

 DWORD BytesWritten;

 // Open a handle to file \\Myserver\Myshare\Sample.txt

 if ((FileHandle = CreateFile("\\\\Myserver\\Myshare\\Sample.txt",

 GENERIC_WRITE ¦ GENERIC_READ,

 FILE_SHARE_READ ¦ FILE_SHARE_WRITE, NULL,

 CREATE_ALWAYS, FILE_ATTRIBUTE_NORMAL, NULL))

 == INVALID_HANDLE_VALUE)

 {

 printf("CreateFile failed with error %d\n", GetLastError());

 return;

 }

 // Write 14 bytes to our new file

 if (WriteFile(FileHandle, "This is a test", 14,

 &BytesWritten, NULL) == 0)

 {

 printf("WriteFile failed with error %d\n", GetLastError());

 return;

 }

 if (CloseHandle(FileHandle) == 0)

 {

 printf("CloseHandle failed with error %d\n", GetLastError());

 return;

 }

}

Conclusion

This chapter introduced you to the Windows redirector, which enables an application

to access Windows file system resources over a network. We explained the

fundamental way in which the redirector communicates over a network, followed by a

discussion of security features offered by Windows NT systems when applications use

the redirector. The next two chapters cover the mailslot and named pipe technologies,

which depend solely on the redirector for all network communications.

Chapter 19

Mailslots

Microsoft Windows NT, Windows 95, Windows 98, and Windows Me platforms (but

not Windows CE) include a simple one-way interprocess communication (IPC)

mechanism known as mailslots. In simplest terms, mailslots allow a client process to

transmit or broadcast messages to one or more server processes. Mailslots can assist

transmission of messages among processes on the same computer or among

processes on different computers across a network. Developing applications using

mailslots is simple, requiring no formal knowledge of underlying network transport

protocols such as TCP/IP or IPX. Because mailslots are designed around a broadcast

architecture, you can't expect reliable data transmissions using mailslots. They can be

useful, nevertheless, in certain types of network programming situations in which

delivery of data isn't mission-critical.

One possible scenario for using mailslots is developing a messaging system that

includes everyone in your office. Imagine that your office environment has a large

number of workstations. The office is suffering from a soda shortage, and every

workstation user in your office is interested in knowing every few minutes how many

sodas are available in the vending machine. Mailslots lend themselves well to this

type of situation. You can easily implement a mailslot client application that monitors

the soda count and broadcasts to every interested workstation user the total number

of available sodas at five-minute intervals. Because mailslots don't guarantee delivery

of a broadcast message, some workstation users might not receive all updates. A few

transmission failures won't be a problem in this case because messages sent at

five-minute intervals with occasional misses are still frequent enough to keep the

workstation users well informed.

The major limitation of mailslots is that they permit only unreliable one-way data

communication from a client to a server. The biggest advantage of mailslots is that

they allow a client application to easily send broadcast messages to one or more

server applications.

This chapter explains how to develop a mailslot client/server application. We'll

describe mailslot naming conventions before we address the message sizing

considerations that control the overall behavior of mailslots. Next we'll show you the

details of developing a basic client/server application. At the end of this chapter, we'll

tell you about known problems and limitations of mailslots and offer workaround

solutions.

Mailslot Implementation Details

Mailslots are designed around the Windows file system interface. Client and server applications use

standard Win32 file system I/O functions, such as ReadFile and WriteFile, to send and receive data on

a mailslot and take advantage of Win32 file system naming conventions. Mailslots rely on the Windows

redirector to create and identify mailslots using a file system named the Mailslot File System (MSFS).

Chapter 18 described the Windows redirector in greater detail.

Mailslot Names

Mailslots use the following naming convention for identification:

\\server\Mailslot\[path]name

This string is divided into three portions: \\server, \Mailslot, and \[path]name. The first string portion,

\\server, represents the name of the server on which a mailslot is created and on which a server

application is running. The second portion, \Mailslot, is a hard-coded mandatory string for notifying the

system that this filename belongs to MSFS. The third portion, \[path]name, allows applications to

uniquely define and identify a mailslot name; the path portion might specify multiple levels of

directories. For example, the following types of names are legal for identifying a mailslot:

\\Oreo\Mailslot\Mymailslot

\\Testserver\Mailslot\Cooldirectory\Funtest\Anothermailslot

\\.\Mailslot\Easymailslot

*\Mailslot\Myslot

The server string portion can be represented as a dot (.), an asterisk (*), a domain name, or a server

name. A domain is simply a group of workstations and servers that share a common group name.

We'll examine mailslot names in greater detail later in this chapter, when we cover implementation

details of a simple client.

Because mailslots rely on the Windows file system services for creation and transferring data over a

network, the interface protocol is independent. When creating your application, you don't have to worry

about the details of underlying network transport protocols to form communications among processes

across a network. When mailslots communicate remotely to computers across a network, the Windows

file system services rely on the Windows redirector to send data from a client to a server using the

SMB protocol. Messages are typically sent via connectionless transfers, but you can force the

Windows redirector to use connection-oriented transfers on the Windows NT platform, depending on

the size of your message.

Message Sizing

Mailslots normally use datagrams to transmit messages over a network. Datagrams are small packets

of data that are transmitted over a network in a connectionless manner. Connectionless transmission

means that each data packet is sent to a recipient without packet acknowledgment. This is unreliable

data transmission, so you cannot guarantee message delivery. However, connectionless transmission

does give you the capability to broadcast a message from one client to many servers. The exception

to this occurs on Windows NT platforms when messages exceed 424 bytes.

On Windows NT platforms, messages larger than 426 bytes are transferred using a

connection-oriented protocol over an SMB session instead of using datagrams. This allows large

messages to be transferred reliably and efficiently. However, you lose the ability to broadcast a

message from a client to many servers. Connection-oriented transfers are limited to one-to-one

communication: one client to one server. Connection-oriented transfers normally provide reliable

guaranteed delivery of data between processes, but the mailslot interface on Windows NT platforms

does not guarantee that a message will actually be written to a mailslot. For example, if you send a

large message from a client to a server that does not exist on a network, the mailslot interface does

not tell your client application that it failed to submit data to the server. Because Windows NT platforms

change their transmission method based on message size, an interoperability problem occurs when

you send large messages between a machine running Windows NT and a machine running Windows

95, Windows 98, or Windows Me.

Windows 95, Windows 98, and Windows Me platforms deliver messages using datagrams only,

regardless of message size. If a client running one of these operating systems attempts to send a

message larger than 424 bytes to a Windows NT platform, Windows NT will accept the first 424 bytes

and truncate the remaining data. Windows NT expects larger messages to be sent over a

connection-oriented SMB session. A similar problem exists in transferring messages from a Windows

NT client to a Windows 95, Windows 98, or Windows Me server. Remember that Windows 95,

Windows 98, and Windows Me receive data via datagrams only. Because Windows NT transfers data

via datagrams for messages 426 bytes or smaller, Windows 95, Windows 98, and Windows Me cannot

receive messages larger than 426 bytes from such clients. Table 19-1 outlines these message size

limitations in detail.

Windows CE was intentionally left out of Table 19-1 because the mailslot-programming

interface is not available. Also note that messages sized 425 to 426 bytes are not listed

in this table due to a Windows NT redirector limitation.

Table 19-1Mailslot Message Size Limitations

Transfer Direction
Connectionless Transfer Using

Datagrams

Connection- Oriented

Transfer

Windows 95,

Windows 98,

Windows Me ->

Windows 95,

Windows 98,

Windows Me

Message size up to 64 KB. Not supported.

Transfer Direction
Connectionless Transfer Using

Datagrams

Connection- Oriented

Transfer

Windows NT -> Windows NT Messages must be 424 bytes or less.
Messages must be

greater than 426 bytes.

Windows NT -> Windows 95,

Windows 98, Windows Me
Messages must be 424 bytes or less. Not supported.

Windows 95, Windows 98,

Windows Me -> Windows NT

Messages must be 424 bytes or less;

otherwise, the message is truncated.
Not supported.

Another limitation of Windows NT platforms is worth discussion because it affects datagram data

transmissions. The Windows NT redirector cannot send or receive a complete datagram message of

425 or 426 bytes. For example, if you send out a message from a Windows NT client to a Windows

95, Windows 98, Windows Me, or Windows NT server, the Windows NT redirector truncates the

message to 424 bytes before sending it to the destination server.

To accomplish total interoperability among all Windows platforms, we strongly recommend limiting

message sizes to 424 bytes or less. If you are looking for connection-oriented transfers, consider using

named pipes instead of mailslots. Named pipes are covered in Chapter 20.

Compiling Applications

When you build a mailslot client or server application using Microsoft Visual C++, your application

must include the WINBASE.H include file in your program files. If you include WINDOWS.H (as most

applications do) you can omit WINBASE.H. Your application is also responsible for linking with

KERNEL32.LIB, which is typically configured with the Visual C++ linker flags.

Error Codes

All Win32 API functions that are used in developing mailslot client and server applications (except for

CreateFile and CreateMailslot) return the value 0 when they fail. The CreateFile and CreateMailslot

API functions return INVALID_HANDLE_VALUE. When these API functions fail, applications should

call the GetLastError function to retrieve specific information about the failure. For a complete list of

error codes, see the standard Windows error codes in Chapter 21 or consult the header file

WINERROR.H.

Basic Client/Server

As we mentioned earlier, mailslots feature a simple client/server design architecture in

which data can flow only from a client to a server. The data communication model is

one-way, or unidirectional. The server is responsible for creating a mailslot and is the

only process that can read data from it. Mailslot clients are processes that open

instances of mailslots and are the only processes that can write data to them.

Mailslot Server Details

Implementing a mailslot requires developing a server application to create a mailslot.

The following steps describe how to write a basic server application:

Create a mailslot handle using the CreateMailslot API function.1.

Receive data from any client by calling the ReadFile API function using the

mailslot handle.

2.

Close the mailslot handle using the CloseHandle API function.3.

As you can see, very few API calls are needed to develop a mailslot server

application.

Server processes create mailslots using the CreateMailslot API call, which is defined

as follows:

HANDLE CreateMailslot(

 LPCTSTR lpName,

 DWORD nMaxMessageSize,

 DWORD lReadTimeout,

 LPSECURITY_ATTRIBUTES lpSecurityAttributes

);

The first parameter, lpName, specifies the name of the mailslot. The name must have

the following form:

\\.\Mailslot\[path]name

Notice that the server name is represented as a dot, which represents the local

machine. This is required because you cannot create a mailslot on a remote

computer. In the lpName parameter, name must represent a unique name. This might

simply be a name, or a full directory path might precede it.

The nMaxMessageSize parameter defines the maximum size—in bytes—of a

message that can be written to a mailslot. If a client writes more than

nMaxMessageSize bytes, the server doesn't see the message. Specifying the value 0

allows the server to accept a message of any size.

Read operations can operate in blocking or nonblocking mode on a mailslot,

depending on the lReadTimeout parameter, which determines the amount of time in

milliseconds that read operations wait for incoming messages. Specifying the value

MAILSLOT_WAIT_FOREVER allows read operations to block and wait indefinitely

until incoming data is available to be read. If you specify 0, read operations return

immediately. We discuss details of reading later in this chapter. The

lpSecurityAttributes parameter determines access control rights to a mailslot. Using

Windows 95, Windows 98, or Windows Me, this parameter must be NULL because

you cannot apply security to objects. Using the Windows NT platform, this parameter

is only partially implemented, so you should also specify a NULL parameter. The only

security that you can enforce on a mailslot is for local I/O, in which a client attempts to

open a mailslot with a dot (.) for the server name. A client can get around this security

by specifying the server's actual name instead of a dot (.), as when making a remote

I/O call. The lpSecurityAttributes parameter is not implemented for remote I/O on the

Windows NT platform because of the extreme inefficiency of forming an authenticated

session between the client and the server every time a message is sent. Mailslots,

therefore, only partially follow the Windows NT security model found in the standard

file systems. As a consequence, any mailslot client on your network can send data to

your server.

After a mailslot is created with a valid handle, you can begin reading data. The server

is the only process that can read data from a mailslot. The server should use the

Win32 ReadFile function to accomplish this. ReadFile is defined as follows:

BOOL ReadFile(

 HANDLE hFile,

 LPVOID lpBuffer,

 DWORD nNumberOfBytesToRead,

 LPDWORD lpNumberOfBytesRead,

 LPOVERLAPPED lpOverlapped

);

CreateMailslot returns the handle hFile. The lpBuffer and nNumberOfBytesToRead

parameters determine how much data can be read off a mailslot. It is important to

make the size of this buffer greater than the nMaxMessageSize parameter from the

CreateMailslot API call. Additionally, the buffer must be larger than incoming

messages on the mailslot; if it is not larger, ReadFile will fail with the error

ERROR_INSUFFICIENT_BUFFER. The lpNumberOfBytesRead parameter reports

the actual number of bytes read when the ReadFile operation completes.

The lpOverlapped parameter provides a way to read data asynchronously off a

mailslot. This parameter uses the Win32 overlapped I/O mechanism, which we

describe in greater detail in Chapter 20. By default, the ReadFile operation blocks

(waits) on I/O until data is available for reading. Overlapped I/O can be accomplished

only on the Windows NT platform; you should specify NULL for this parameter when

using Windows 95, Windows 98, or Windows Me. The following code further

demonstrates how to write a simple mailslot server application.

// Server1.cpp

#include <windows.h>

#include <stdio.h>

void main(void)

{

 HANDLE Mailslot;

 char buffer[256];

 DWORD NumberOfBytesRead;

 // Create the mailslot

 if ((Mailslot = CreateMailslot("\\\\.\\Mailslot\\Myslot", 0,

 MAILSLOT_WAIT_FOREVER, NULL)) == INVALID_HANDLE_VALUE)

 {

 printf("Failed to create a mailslot %d\n", GetLastError());

 return;

 }

 // Read data from the mailslot forever!

 while(ReadFile(Mailslot, buffer, 256, &NumberOfBytesRead,

 NULL) != 0)

 {

 printf("%.*s\n", NumberOfBytesRead, buffer);

 }

}

Mailslot Client Details

Implementing a client requires developing an application to reference and write to an

existing mailslot. The following steps describe how to write a basic client application:

Open a reference handle to the mailslot we want to send data to using the

CreateFile API.

1.

Write data to the mailslot by calling the WriteFile API.2.

Once you are finished writing data, close the mailslot handle using the

CloseHandle API.

3.

As we described earlier, mailslot clients communicate to mailslot servers in a

connectionless manner. When a client opens a reference handle to a mailslot, the

client does not form a connection to the mailslot server. Mailslots are referenced using

the CreateFile API call, which is defined as follows:

HANDLE CreateFile(

 LPCTSTR lpFileName,

 DWORD dwDesiredAccess,

 DWORD dwShareMode,

 LPSECURITY_ATTRIBUTES lpSecurityAttributes,

 DWORD dwCreationDisposition,

 DWORD dwFlagsAndAttributes,

 HANDLE hTemplateFile

);

The lpFileName parameter describes one or more mailslots that can be written to

using the mailslot name format described earlier. Table 19-2 describes mailslot

naming conventions in greater detail. The dwDesiredAccess parameter must be set to

GENERIC_WRITE because a client can only write data to the server. The

dwShareMode parameter must be set to FILE_SHARE_READ, allowing the server to

open and perform read operations on the mailslot. The lpSecurityAttributes parameter

has no effect on mailslots and should be set to NULL. The dwCreationDisposition flag

should be set to OPEN_EXISTING. This setting is useful when a client and a server

are operating on the same machine: If the server has not created the mailslot, the

CreateFile API function fails. The dwCreationDisposition parameter has no effect if the

server is operating remotely. The dwFlagsAndAttributes parameter should be defined

as FILE_ATTRIBUTE_NORMAL. The hTemplateFile parameter should be set to

NULL.

Table 19-2Mailslot Name Types

Name Format Description

\\.\mailslot\name Identifies a local mailslot on the same machine

\\servername\mailslot\name Identifies a remote mailslot server named servername

\\domainname\mailslot\name
Identifies all mailslots of a particular name in the

specified domain

*\mailslot\name
Identifies all mailslots of a particular name in the

system's primary domain

After a handle has been successfully created, you can begin writing data to a mailslot.

Remember, a client can only write data to the mailslot. This can be accomplished

using the Win32 WriteFile function, defined as follows:

BOOL WriteFile(

 HANDLE hFile,

 LPCVOID lpBuffer,

 DWORD nNumberOfBytesToWrite,

 LPDWORD lpNumberOfBytesWritten,

 LPOVERLAPPED lpOverlapped

);

The hFile parameter is the reference handle that CreateFile returns. The lpBuffer and

nNumberOfBytesToWrite parameters determine how many bytes will be sent from the

client to the server. The maximum size of a message is 64 KB. If the mailslot handle

was created using a domain or asterisk format, the message size is limited to 424

bytes on Windows NT and 64 KB on Windows 95, Windows 98, and Windows Me. If a

client attempts to send a message that exceeds those limits, the WriteFile function

fails and the GetLastError function returns ERROR_BAD_NETPATH. This happens

because the message is sent as a broadcast datagram to all servers on the network.

The lpNumberOfBytesWritten parameter returns the number of bytes sent to a server

when the WriteFile operation completes.

The lpOverlapped parameter provides a way to write data asynchronously to a

mailslot. Because mailslots feature connectionless data transfer, the WriteFile function

is not subject to blocking on I/O calls. This parameter should be set to NULL on the

client. The following code further demonstrates how to write a simple mailslot client

application.

// Client.cpp

#include <windows.h>

#include <stdio.h>

void main(int argc, char *argv[])

{

 HANDLE Mailslot;

 DWORD BytesWritten;

 CHAR ServerName[256];

 // Accept a command line argument for the server to send

 // a message to

 if (argc < 2)

 {

 printf("Usage: client <server name>\n");

 return;

 }

 sprintf(ServerName, "\\\\%s\\Mailslot\\Myslot", argv[1]);

 if ((Mailslot = CreateFile(ServerName, GENERIC_WRITE,

 FILE_SHARE_READ, NULL, OPEN_EXISTING, FILE_ATTRIBUTE_NORMAL,

 NULL)) == INVALID_HANDLE_VALUE)

 {

 printf("CreateFile failed with error %d\n", GetLastError());

 return;

 }

 if (WriteFile(Mailslot, "This is a test", 14, &BytesWritten,

 NULL) == 0)

 {

 printf("WriteFile failed with error %d\n", GetLastError());

 return;

 }

 printf("Wrote %d bytes\n", BytesWritten);

 CloseHandle(Mailslot);

}

Additional Mailslot APIs

A mailslot server application can use two additional API functions to interact with a

mailslot: GetMailslotInfo and SetMailslotInfo. The GetMailslotInfo function retrieves

message sizing information when messages become available on a mailslot.

Applications can use this to dynamically adjust their buffers for incoming messages of

varying length. GetMailslotInfo can also be used to poll for incoming data.

GetMailslotInfo is defined as follows:

BOOL GetMailslotInfo(

 HANDLE hMailslot,

 LPDWORD lpMaxMessageSize,

 LPDWORD lpNextSize,

 LPDWORD lpMessageCount,

 LPDWORD lpReadTimeout

);

The hMailslot parameter identifies a mailslot returned from the CreateMailslot API call.

The lpMaxMessageSize parameter points to how large a message (in bytes) can be

written to the mailslot. The lpNextSize parameter points to the size in bytes of the next

message. GetMailslotInfo might return the value MAILSLOT_NO_MESSAGE,

indicating that no message is currently waiting to be received on the mailslot. A server

can potentially use this parameter to poll the mailslot for incoming data, preventing

your application from blocking on a ReadFile function call. Polling for data using this

mechanism is not a good programming approach. Your application will continuously

use the computer's CPU to check for incoming data—even when no messages are

being processed—resulting in a slower overall performance by the computer. If you

want to prevent the ReadFile function from blocking, we recommend using Win32

overlapped I/O. The lpMesssageCount parameter points to a buffer that receives the

total number of messages waiting to be read. You can use this parameter for polling

purposes, too. The lpReadTimeout parameter points to a buffer that returns the

amount of time in milliseconds that a read operation can wait for a message to be

written to the mailslot before a timeout occurs.

The SetMailslotInfo API function sets the timeout values on a mailslot for how long

read operations wait for incoming messages. Thus the application has the ability to

change the read behavior from blocking to nonblocking mode or vice versa.

SetMailslotInfo is defined as follows:

BOOL SetMailslotInfo(

 HANDLE hMailslot,

 DWORD lReadTimeout

);

The hMailslot parameter identifies a mailslot that is returned from the CreateMailslot

API call. The lReadTimeout parameter specifies the amount of time in milliseconds

that a read operation can wait for a message to be written to the mailslot before a

timeout occurs. If you specify 0, read operations will return immediately if no message

is present. If you specify MAILSLOT_WAIT_FOREVER, read operations will wait

forever.

Platform and Performance Considerations

Mailslots on Windows 95, Windows 98, and Windows Me platforms have three

limitations that you should be aware of: 8.3-character name limits, inability to cancel

blocking I/O requests, and timeout memory leaks.

8.3-Character Name Limits

Windows 95, Windows 98, and Windows Me platforms silently limit mailslot names to

an 8.3-character name format. This causes interoperability problems between

Windows 95, Windows 98, Windows Me, and Windows NT. For example, if you create

or open a mailslot with the name \\.\Mailslot\Mymailslot, Windows 95, Windows 98,

and Windows Me will actually create and reference the mailslot as

\\.\Mailslot\Mymailsl. The CreateMailslot and CreateFile functions succeed even

though name truncation occurs. If a message is sent from Windows NT to Windows

95, Windows 98, or Windows Me, or vice versa, the message will not be received

because the mailslot names do not match. If both the client and the server are running

on Windows 95, Windows 98, or Windows Me machines, there isn't a problem—the

name is truncated on both the client and the server. An easy way to prevent

interoperability problems is to limit mailslot names to eight characters or less.

Inability to Cancel Blocking I/O Requests

Windows 95, Windows 98, and Windows Me platforms also have a problem with

canceling blocking I/O requests. Mailslot servers use the ReadFile function to receive

data. If a mailslot is created with the MAILSLOT_WAIT_FOREVER flag, read requests

block indefinitely until data is available. If a server application is terminated when

there is an outstanding ReadFile request, the application hangs forever. The only way

to cancel the application is to reboot Windows. A possible solution is to have the

server open a handle to its own mailslot in a separate thread and send data to break

the blocking read request. The following code demonstrates this solution in detail:

// Server2.cpp

#include <windows.h>

#include <stdio.h>

#include <conio.h>

BOOL StopProcessing;

DWORD WINAPI ServeMailslot(LPVOID lpParameter);

void SendMessageToMailslot(void);

void main(void) {

 DWORD ThreadId;

 HANDLE MailslotThread;

 StopProcessing = FALSE;

 MailslotThread = CreateThread(NULL, 0, ServeMailslot, NULL,

 0, &ThreadId);

 printf("Press a key to stop the server\n");

 _getch();

 // Mark the StopProcessing flag to TRUE so that when ReadFile

 // breaks, our server thread will end

 StopProcessing = TRUE;

 // Send a message to our mailslot to break the ReadFile call

 // in our server

 SendMessageToMailslot();

 // Wait for our server thread to complete

 if (WaitForSingleObject(MailslotThread, INFINITE) == WAIT_FAILED)

 {

 printf("WaitForSingleObject failed with error %d\n",

 GetLastError());

 return;

 }

}

//

// Function: ServeMailslot

//

// Description:

// This function is the mailslot server worker function to

// process all incoming mailslot I/O

//

DWORD WINAPI ServeMailslot(LPVOID lpParameter)

{

 char buffer[2048];

 DWORD NumberOfBytesRead;

 DWORD Ret;

 HANDLE Mailslot;

 if ((Mailslot = CreateMailslot("\\\\.\\mailslot\\myslot", 2048,

 MAILSLOT_WAIT_FOREVER, NULL)) == INVALID_HANDLE_VALUE)

 {

 printf("Failed to create a MailSlot %d\n", GetLastError());

 return 0;

 }

 while((Ret = ReadFile(Mailslot, buffer, 2048,

 &NumberOfBytesRead, NULL)) != 0)

 {

 if (StopProcessing)

 break;

 printf("Received %d bytes\n", NumberOfBytesRead);

 }

 CloseHandle(Mailslot);

 return 0;

}

//

// Function: SendMessageToMailslot

//

// Description:

// The SendMessageToMailslot function is designed to send a

// simple message to our server so we can break the blocking

// ReadFile API call

//

void SendMessageToMailslot(void)

{

 HANDLE Mailslot;

 DWORD BytesWritten;

 if ((Mailslot = CreateFile("\\\\.\\mailslot\\myslot",

 GENERIC_WRITE, FILE_SHARE_READ, NULL, OPEN_EXISTING,

 FILE_ATTRIBUTE_NORMAL, NULL)) == INVALID_HANDLE_VALUE)

 {

 printf("CreateFile failed with error %d\n", GetLastError());

 return;

 }

 if (WriteFile(Mailslot, "STOP", 4, &BytesWritten, NULL) == 0)

 {

 printf("WriteFile failed with error %d\n", GetLastError());

 return;

 }

 CloseHandle(Mailslot);

}

Timeout Memory Leaks

The final problem with Windows 95, Windows 98, and Windows Me platforms worth

mentioning is memory leaks, which can occur when you're using timeout values on

mailslots. When you create a mailslot using the CreateMailslot function with a timeout

value greater than 0, the ReadFile function leaks memory when the timeout expires

and the function returns FALSE. After many calls to the ReadFile function, the system

becomes unstable and subsequent ReadFile calls with timers that expire start

returning TRUE. As a result, the system is no longer able to execute other MS-DOS

applications. To work around this, create the mailslot with a timeout value of either 0

or MAILSLOT_WAIT_FOREVER. This prevents an application from using the timeout

mechanism, which causes the actual memory leak.

The Microsoft knowledge base documents the following problems and limitations. You

can access the knowledge base at http://support.microsoft.com/support/search. We

briefly describe each issue here.

Q139715 ReadFile Returns Wrong Error Code for Mailslots

If a server opens a mailslot using CreateMailslot, specifies a timeout, and then uses

ReadFile to receive data, the ReadFile fails if no data is available. GetLastError

returns an error code of 5 (access denied).

Q192276 GetMailslotInfo Returns Incorrect lpNextSize Value

If you call the API function GetMailslotInfo under Windows 95 OEM Service Release

2 (OSR2) or Windows 98 without a network client component installed, you receive

an incorrect value (usually in the millions) or a negative number for the lpNextSize

parameter. If you repeatedly call the function, it usually returns the correct value.

Q170581 Mailslot Created on Win95 Allows Only 4093 Bytes

If you call the WriteFile API function to write more than 4093 bytes to a mailslot that

http://support.microsoft.com/support/search

has been created on a Windows 95 workstation, it fails.

Q131493 CreateFile and Mailslots

The documentation for the CreateFile API function incorrectly describes the possible

values that CreateFile returns when opening a client end of a mailslot.

Conclusion

This chapter introduced the mailslot networking technology, which provides an

application with simple one-way interprocess data communication using the Windows

redirector. One of the most useful features of mailslots is that they allow you to

broadcast a message to one or more computers over a network. However, because of

the broadcast capability, mailslots do not provide reliable data transmission. If you

want reliable data communication using the Windows redirector, consider using

named pipes—the focus of our next chapter.

Chapter 20

Named Pipes

Named pipes are a simple interprocess communication (IPC) mechanism included in

Microsoft Windows NT, and Windows 95, Windows 98, and Windows Me platforms

(but not Windows CE). Named pipes provide reliable one-way and two-way data

communications among processes on the same computer or among processes on

different computers across a network. Developing applications using named pipes is

actually quite simple and requires no formal knowledge of underlying network

transport protocols (such as TCP/IP or IPX). This is because named pipes use the

Microsoft Network Provider (MSNP) redirector to form communication among

processes over a network, thus hiding network protocol details from the application.

One of the best reasons for using named pipes as a networking communication

solution is that they take advantage of security features built into the Windows NT

platform.

One possible scenario for using named pipes is developing a data management

system that allows only a select group of people to perform transactions. Imagine an

office setting in which you have a computer that contains company secrets. You need

to have these secrets accessed and maintained by management personnel only. Let's

say every employee can see the computer on the network from his or her workstation.

However, you do not want regular employees to obtain access to the confidential

records. Named pipes work well in this situation because you can develop a server

application that, based on requests from clients, safely performs transactions on the

company secrets. The server can easily limit client access to management personnel

by using security features of the Windows NT platform.

What's important to remember when using named pipes as a network programming

solution is that they feature a simple client/server data communication architecture

that reliably transmits data. This chapter explains how to develop named pipe client

and server applications. We start by explaining named pipe naming conventions,

followed by basic pipe types. We'll then show how to implement a basic server

application, followed by advanced server programming details. Next we discuss how

to develop a basic client application. By the chapter's end, we uncover the known

problems and limitations of named pipes.

Named Pipe Implementation Details

Named pipes are designed around the Windows file system using the Named Pipe File System (NPFS)

interface. As a result, client and server applications use standard Windows file system API functions such as

ReadFile and WriteFile to send and receive data. Using these API functions allows applications to take

advantage of Windows file system naming conventions and Windows NT file system security. NPFS relies on

the MSNP redirector to send and receive named pipe data over a network. This makes the interface

protocol-independent: when developing an application that uses named pipes to form communications among

processes across a network, so a programmer does not have to worry about the details of underlying network

transport protocols, such as TCP and IPX. Named pipes are identified to NPFS using the Universal Naming

Convention. Chapter 18 describes the UNC, the Windows redirector, and security in greater detail.

Named Pipe Naming Conventions

Named pipes are identified using the following UNC format:

\\server\Pipe\[path]name

This string is divided into three parts: \\server, \Pipe, and \[path]name. The first string part, \\server, represents

the server name in which a named pipe is created and the server that listens for incoming connections. The

second part, \Pipe, is a hard-coded mandatory string requirement for identifying that this filename belongs to

NPFS. The third part, \[path]name, allows applications to uniquely define and identify a named pipe name,

and it can have multiple levels of directories. For example, the following name types are legal for identifying a

named pipe:

\\myserver\PIPE\mypipe

\\Testserver\pipe\cooldirectory\funtest\jim

\\.\Pipe\Easynamedpipe

The server string portion can be represented as a dot (.) or a server name.

Byte Mode and Message Mode

Named pipes offer two basic communication modes: byte mode and message mode. In byte mode, messages

travel as a continuous stream of bytes between the client and the server. This means that a client application

and a server application do not know precisely how many bytes are being read from or written to a pipe at any

given moment. Therefore a write on one side will not always result in a same-size read on the other. This

allows a client and a server to transfer data without regard to the contents of the data. In message mode, the

client and the server send and receive data in discrete units. Every time a message is sent on the pipe, it must

be read as a complete message. Figure 20-1 compares the two pipe modes.

Figure 20-1 Byte mode and message mode

Compiling Applications

When you build a named pipe client or server application using Microsoft Visual C++, your application must

include the WINBASE.H file in your program files. If your application includes WINDOWS.H—as most

do—you can omit WINBASE.H. Your application is also responsible for linking with KERNEL32.LIB, which

typically is configured with the Visual C++ linker flags.

Error Codes

All Windows API functions (except CreateFile and CreateNamedPipe) that are used in developing named pipe

client and server applications return the value 0 when they fail. CreateFile and CreateNamedPipe return

INVALID_HANDLE_VALUE. When either of these functions fails, applications should call the GetLastError

function to retrieve specific information about the failure. For a complete list of error codes, consult the header

file WINERROR.H.

Basic Server and Client

Named pipes feature a simple client/server design architecture in which data can flow in both a

unidirectional and a bidirectional manner between a client and server. This is useful because it allows

you to send and receive data whether your application is a client or a server. The main difference

between a named pipe server and a client application is that a named pipe server is the only process

capable of creating a named pipe and accepting pipe client connections. A client application is capable

only of connecting to an existing named pipe server. Once a connection is formed between a client

application and a server application, both processes are capable of reading and writing data on a pipe

using standard Windows functions such as ReadFile and WriteFile. Note that a named pipe server

application can operate only on the Windows NT platform—Windows 95, Windows 98, and Windows

Me systems do not permit applications to create a named pipe. This limitation makes it impossible to

form communications directly between two Windows 95, Windows 98, or Windows Me computers.

However, Windows 95, Windows 98, and Windows Me clients can form connections to Windows

NT–based computers.

Server Details

Implementing a named pipe server requires developing an application to create one or more named

pipe instances, which can be accessed by clients. To a server, a pipe instance is nothing more than a

handle used to accept a connection from a local or remote client application. The following steps

describe how to write a basic server application:

Create a named pipe instance handle using the CreateNamedPipe API function.1.

Use the ConnectNamedPipe API function to listen for a client connection on the named pipe

instance.

2.

Receive data from and send data to the client using the ReadFile and WriteFile API functions.3.

Close down the named pipe connection using the DisconnectNamed Pipe API function.4.

Close the named pipe instance handle using the CloseHandle API function.5.

First, your server process needs to create a named pipe instance using the CreateNamedPipe API

call, which is defined as follows:

HANDLE CreateNamedPipe(

 LPCTSTR lpName,

 DWORD dwOpenMode,

 DWORD dwPipeMode,

 DWORD nMaxInstances,

 DWORD nOutBufferSize,

 DWORD nInBufferSize,

 DWORD nDefaultTimeOut,

 LPSECURITY_ATTRIBUTES lpSecurityAttributes

);

The first parameter, lpName, specifies the name of a named pipe. The name must have the following

UNC form:

\\.\Pipe\[path]name

Notice that the server name is represented as a dot, which represents the local machine. You cannot

create a named pipe on a remote computer. The [path]name part of the parameter must represent a

unique name. This might simply be a filename, or it might be a full directory path followed by a

filename.

The dwOpenMode parameter describes the directional, I/O control, and security modes of a pipe when

it is created. Table 20-1 describes all the available flags that can be used. A pipe can be created using

a combination of these flags by ORing them together.

Table 20-1Named Pipe Open Mode Flags

Open

Mode
Flags Description

Directional PIPE_ACCESS_DUPLEX
The pipe is bidirectional: Both the server and client

processes can read from and write data to the pipe.

PIPE_ACCESS_OUTBOUND
The flow of data in the pipe goes from server to

client only.

PIPE_ACCESS_INBOUND
The flow of data in the pipe goes from client to

server only.

I/O Control FILE_FLAG_WRITE_THROUGH

Works only for byte-mode pipes. Functions writing to

a named pipe do not return until the data written is

transmitted across the network and is in the pipe's

buffer on the remote computer.

I/O control FILE_FLAG_OVERLAPPED
Allows functions that perform read, write, and

connect operations to use overlapped I/O.

Security WRITE_DAC
Allows your application to have write access to the

named pipe's DACL.

Security ACCESS_SYSTEM_SECURITY
Allows your application to have write access to the

named pipe's SACL.

WRITE_OWNER
Allows your application to have write access to the

named pipe's owner and group SID.

The PIPE_ACCESS_ flags determine flow direction on a pipe between a client and a server. A pipe

can be opened as bidirectional (two-way) using the PIPE_ACCESS_DUPLEX flag: Data can flow in

both directions between the client and the server. In addition, you can also control the direction of data

flow by opening the pipe as unidirectional (one-way) using the flag PIPE_ACCESS_INBOUND or

PIPE_ACCESS_OUTBOUND: data can flow only one way from the client to the server or vice versa.

Figure 20-2 describes the flag combinations further and shows the flow of data between a client and a

server.

Figure 20-2 Mode flags and flow direction

The next set of dwOpenMode flags controls I/O behavior on a named pipe from the server's

perspective. The FILE_FLAG_WRITE_THROUGH flag controls the write operations so that functions

writing to a named pipe do not return until the data written is transmitted across the network and is in

the pipe's buffer on the remote computer. This flag works only for byte-mode named pipes when the

client and the server are on different computers. The FILE_FLAG_OVERLAPPED flag allows functions

performing read, write, and connect operations to return immediately, even if those functions take

significant time to complete. We discuss the details of overlapped I/O when we develop an advanced

server later in this chapter.

The last set of dwOpenMode flags described in Table 20-1 controls the server's ability to access the

security descriptor that is created by a named pipe. If your application needs to modify or update the

pipe's security descriptor after the pipe is created, you should set these flags accordingly to permit

access. The WRITE_DAC flag allows your application to update the pipe's DACL, whereas

ACCESS_SYSTEM_SECURITY allows access to the pipe's SACL. The WRITE_OWNER flag allows

you to change the pipe's owner and group SID. For example, if you want to deny access to a particular

user who has access rights to your pipe, you can modify the pipe's DACL using security API functions.

Chapter 18 discusses DACLs, SACLs, and SIDs in greater detail.

CreateNamedPipe's dwPipeMode parameter specifies the read, write, and wait operating modes of a

pipe. Table 20-2 describes all the available mode flags that can be used. The flags can be issued by

ORing one flag from each mode category. If a pipe is opened as byte-oriented using the

PIPE_READMODE_BYTE | PIPE_TYPE_BYTE mode flags, data can be read and written only as a

stream of bytes. This means that when you read and write data to a pipe, you do not have to balance

each read and write because your data does not have any message boundaries. For example, if a

sender writes 500 bytes to a pipe, a receiver might want to read 100 bytes at a time until it receives all

of the data. To establish clear boundaries around messages, place the pipe in message-oriented

mode using the flags PIPE_READMODE_MESSAGE | PIPE_TYPE_MESSAGE, meaning each read

and write must be balanced. For example, if a sender writes a 500-byte message to a pipe, the

receiver must provide the ReadFile function a 500-byte or larger buffer when reading data. If the

receiver fails to do so, ReadFile will fail with error ERROR_MORE_DATA. You can also combine

PIPE_TYPE_MESSAGE with PIPE_READMODE_BYTE, allowing a sender to write messages to a

pipe and the receiver to read an arbitrary amount of bytes at a time. The message delimiters will be

ignored in the data stream. You cannot mix the PIPE_TYPE_BYTE flag with the

PIPE_READMODE_MESSAGE flag. Doing so will cause the CreateNamedPipe function to fail with

the error ERROR_INVALID_PARAMETER because no message delimiters are in the I/O stream when

data is written into the pipe as bytes. The PIPE_WAIT or PIPE_NOWAIT flag can also be combined

with read and write mode flags. The PIPE_WAIT flag places a pipe in blocking mode and the

PIPE_NOWAIT flag places a pipe in nonblocking mode. In blocking mode, I/O operations such as

ReadFile block until the I/O request is complete. This is the default behavior if you do not specify any

flags. The nonblocking mode flag PIPE_NOWAIT is designed to allow I/O operations to return

immediately. However, it should not be used to achieve asynchronous I/O in Windows applications. It

is included to provide backward compatibility with older Microsoft LAN Manager 2.0 applications. The

ReadFile and WriteFile functions allow applications to accomplish asynchronous I/O using Windows

overlapped I/O, which is demonstrated later in this chapter.

Table 20-2Named Pipe Read/Write Mode Flags

Mode Flags Description

Write PIPE_TYPE_BYTE Data is written to the pipe as a stream of bytes.

PIPE_TYPE_MESSAGE Data is written to the pipe as a stream of messages.

Read PIPE_READMODE_BYTE Data is read from the pipe as a stream of bytes.

PIPE_READMODE_MESSAGE Data is read from the pipe as a stream of messages.

Wait PIPE_WAIT Blocking mode is enabled.

PIPE_NOWAIT Nonblocking mode is enabled.

The PIPE_NOWAIT flag is obsolete and should not be used in Windows environments

to accomplish asynchronous I/O. It is included in this book to provide backward

compatibility with older Microsoft LAN Manager 2.0 software.

The nMaxInstances parameter specifies how many instances or pipe handles can be created for a

named pipe. A pipe instance is a connection from a local or remote client application to a server

application that created the named pipe. Acceptable values are in the range 1 through

PIPE_UNLIMITED_INSTANCES. For example, if you want to develop a server that can service only

five client connections at a time, set this parameter to 5. If you set this parameter to

PIPE_UNLIMITED_INSTANCES, the number of pipe instances that can be created is limited only by

the availability of system resources.

CreateNamedPipe's nOutBufferSize and nInBufferSize parameters represent the number of bytes to

reserve for internal input and output buffer sizes. These sizes are advisory in that every time a named

pipe instance is created, the system sets up inbound and/or outbound buffers using the nonpaged pool

(the physical memory used by the operating system). The buffer size specified should be reasonable

(not too large) so that your system will not run out of nonpaged pool memory, but it should also be

large enough to accommodate typical I/O requests. If an application attempts to write data that is

larger than the buffer sizes specified, the system tries to automatically expand the buffers to

accommodate the data using nonpaged pool memory. For practical purposes, applications should size

these internal buffers to match the size of the application's send and receive buffers used when calling

ReadFile and WriteFile.

The nDefaultTimeOut parameter specifies the default timeout value (how long a client will wait to

connect to a named pipe) in milliseconds. This affects only client applications that use the

WaitNamedPipe function to determine when an instance of a named pipe is available to accept

connections. We discuss this concept in greater detail later in this chapter, when we develop a named

pipe client application.

The lpSecurityAttributes parameter allows the application to specify a security descriptor for a named

pipe and determines whether a child process can inherit the newly created handle. If this parameter is

specified as NULL, the named pipe gets a default security descriptor and the handle cannot be

inherited. A default security descriptor grants the named pipe the same security limits and access

controls as the process that created it following the Windows NT platform security model described in

Chapter 18. An application can apply access control restrictions to a pipe by setting access privileges

for particular users and groups in a SECURITY_DESCRIPTOR structure using security API functions.

If a server wants to open access to any client, you should assign a null DACL to the

SECURITY_DESCRIPTOR structure.

After you successfully receive a handle from CreateNamedPipe, which is known as a pipe instance,

you have to wait for a connection from a named pipe client. This connection can be made through the

ConnectNamedPipe API function, which is defined as follows:

BOOL ConnectNamedPipe(

 HANDLE hNamedPipe,

 LPOVERLAPPED lpOverlapped

);

The hNamedPipe parameter represents the pipe instance handle returned from CreateNamedPipe.

The lpOverlapped parameter allows this API function to operate asynchronously, or in nonblocking

mode, if the pipe was created using the FILE_FLAG_OVERLAPPED flag, which is known as Windows

overlapped I/O. If this parameter is specified as NULL, ConnectNamedPipe blocks until a client forms

a connection to the server. We discuss overlapped I/O in greater detail when you learn to create a

more advanced named pipe server later in this chapter.

Once a named pipe client successfully connects to your server, the ConnectNamedPipe API call

completes. The server is then free to send data to a client using the WriteFile API function and to

receive data from the client using ReadFile. Once the server has finished communicating with a client,

it should call DisconnectNamedPipe to close the communication session. The following sample

demonstrates how to write a simple server application that can communicate with one client.

// Server.cpp

#include <windows.h>

#include <stdio.h>

void main(void)

{

 HANDLE PipeHandle;

 DWORD BytesRead;

 CHAR buffer[256];

 if ((PipeHandle = CreateNamedPipe("\\\\.\\Pipe\\Jim",

 PIPE_ACCESS_DUPLEX, PIPE_TYPE_BYTE ¦ PIPE_READMODE_BYTE, 1,e

 0, 0, 1000, NULL)) == INVALID_HANDLE_VALUE)

 {

 printf("CreateNamedPipe failed with error %d\n",

 GetLastError());

 return;

 }

 printf("Server is now running\n");

 if (ConnectNamedPipe(PipeHandle, NULL) == 0)

 {

 printf("ConnectNamedPipe failed with error %d\n",

 GetLastError());

 CloseHandle(PipeHandle);

 return;

 }

 if (ReadFile(PipeHandle, buffer, sizeof(buffer),

 &BytesRead, NULL) <= 0)

 {

 printf("ReadFile failed with error %d\n", GetLastError());

 CloseHandle(PipeHandle);

 return;

 }

 printf("%.*s\n", BytesRead, buffer);

 if (DisconnectNamedPipe(PipeHandle) == 0)

 {

 printf("DisconnectNamedPipe failed with error %d\n",

 GetLastError());

 return;

 }

 CloseHandle(PipeHandle);

}

Building Null DACLs

When applications create securable objects such as files and named pipes on the Windows NT

platform using Windows API functions, the operating system grants the applications the ability to set

up access control rights by specifying a SECURITY_ATTRIBUTES structure, defined as follows:

typedef struct _SECURITY_ATTRIBUTES {

 DWORD nLength;

 LPVOID lpSecurityDescriptor;

 BOOL bInheritHandle

} SECURITY_ATTRIBUTES;

The lpSecurityDescriptor field defines the access rights for an object in a SECURITY_DESCRIPTOR

structure. A SECURITY_DESCRIPTOR structure contains a DACL field that defines which users and

groups can access the object. If you set this field to NULL, any user or group can access your

resource.

Applications cannot directly access a SECURITY_DESCRIPTOR structure and must use Windows

security API functions to do so. If you want to assign a null DACL to a SECURITY_DESCRIPTOR

structure, you must do the following:

Create and initialize a SECURITY_DESCRIPTOR structure by calling the

InitializeSecurityDescriptor API function.

1.

Assign a null DACL to the SECURITY_DESCRIPTOR structure by calling the

SetSecurityDescriptorDacl API function.

2.

After you successfully build a new SECURITY_DESCRIPTOR structure, you must assign it to the

SECURITY_ATTRIBUTES structure. Now you are ready to begin calling Windows functions such as

CreateNamedPipe with your new SECURITY_ATTRIBUTES structure, which contains a null DACL.

The following code fragment demonstrates how to call the security API functions needed to accomplish

this:

// Create new SECURITY_ATTRIBUTES and SECURITY_DESCRIPTOR

// structure objects

SECURITY_ATTRIBUTES sa;

SECURITY_DESCRIPTOR sd;

// Initialize the new SECURITY_DESCRIPTOR object to empty values

if (InitializeSecurityDescriptor(&sd, SECURITY_DESCRIPTOR_REVISION)

 == 0)

{

 printf("InitializeSecurityDescriptor failed with error %d\n",

 GetLastError());

 return;

}

// Set the DACL field in the SECURITY_DESCRIPTOR object to NULL

if (SetSecurityDescriptorDacl(&sd, TRUE, NULL, FALSE) == 0)

{

 printf("SetSecurityDescriptorDacl failed with error %d\n",

 GetLastError());

 return;

}

// Assign the new SECURITY_DESCRIPTOR object to the

// SECURITY_ATTRIBUTES object

sa.nLength = sizeof(SECURITY_ATTRIBUTES);

sa.lpSecurityDescriptor = &sd;

sa.bInheritHandle = TRUE;

Advanced Server

The previous sample demonstrates how to develop a named pipe server application that handles only

a single pipe instance. All of the API calls operate in a synchronous mode in which each call waits until

an I/O request is complete. A named pipe server is also capable of having multiple pipe instances so

that clients can form two or more connections to the server; the number of pipe instances is limited by

the number specified in the nMaxInstances parameter of the CreateNamedPipe API call. To handle

more than one pipe instance, a server must consider using multiple threads or asynchronous Windows

I/O mechanisms—such as overlapped I/O and completion ports—to service each pipe instance.

Asynchronous I/O mechanisms allow a server to service all pipe instances simultaneously from a

single application thread. Our discussion demonstrates how to develop advanced servers using

threads and overlapped I/O. See Chapter 5 for more information on completion ports as they apply to

Windows sockets.

Threads

Developing an advanced server that can support more than one pipe instance using threads is simple.

All you need to do is create one thread for each pipe instance and service each instance using the

techniques we described earlier for the simple server. The following sample demonstrates a server

that is capable of serving five pipe instances. The application is an echo server that reads data from a

client and echoes the data back.

// Threads.cpp

#include <windows.h>

#include <stdio.h>

#include <conio.h>

#define NUM_PIPES 5

DWORD WINAPI PipeInstanceProc(LPVOID lpParameter);

void main(void)

{

 HANDLE ThreadHandle;

 INT i;

 DWORD ThreadId;

 for(i = 0; i < NUM_PIPES; i++)

 {

 // Create a thread to serve each pipe instance

 if ((ThreadHandle = CreateThread(NULL, 0, PipeInstanceProc,

 NULL, 0, &ThreadId)) == NULL)

 {

 printf("CreateThread failed with error %\n",

 GetLastError());

 return;

 }

 CloseHandle(ThreadHandle);

 }

 printf("Press a key to stop the server\n");

 _getch();

}

//

// Function: PipeInstanceProc

//

// Description:

// This function handles the communication details of a single

// named pipe instance

//

DWORD WINAPI PipeInstanceProc(LPVOID lpParameter)

{

 HANDLE PipeHandle;

 DWORD BytesRead;

 DWORD BytesWritten;

 CHAR Buffer[256];

 if ((PipeHandle = CreateNamedPipe("\\\\.\\PIPE\\jim",

 PIPE_ACCESS_DUPLEX, PIPE_TYPE_BYTE ¦ PIPE_READMODE_BYTE,

 NUM_PIPES, 0, 0, 1000, NULL)) == INVALID_HANDLE_VALUE)

 {

 printf("CreateNamedPipe failed with error %d\n",

 GetLastError());

 return 0;

 }

 // Serve client connections forever

 while(1)

 {

 if (ConnectNamedPipe(PipeHandle, NULL) == 0)

 {

 printf("ConnectNamedPipe failed with error %d\n",

 GetLastError());

 break;

 }

 // Read data from and echo data to the client until

 // the client is ready to stop

 while(ReadFile(PipeHandle, Buffer, sizeof(Buffer),

 &BytesRead, NULL) > 0)

 {

 printf("Echo %d bytes to client\n", BytesRead);

 if (WriteFile(PipeHandle, Buffer, BytesRead,

 &BytesWritten, NULL) == 0)

 {

 printf("WriteFile failed with error %d\n",

 GetLastError());

 break;

 }

 }

 if (DisconnectNamedPipe(PipeHandle) == 0)

 {

 printf("DisconnectNamedPipe failed with error %d\n",

 GetLastError());

 break;

 }

 }

 CloseHandle(PipeHandle);

 return 0;

}

To develop your server to handle five pipe instances, start by calling the CreateThread API function.

CreateThread starts five execution threads, all of which execute the PipeInstanceProc function

simultaneously. The PipeInstanceProc function operates exactly like the basic server application (the

previous sample) except that it reuses a named pipe handle by calling the DisconnectNamedPipe API

function, which closes a client's session to the server. Once an application calls

DisconnectNamedPipe, it is free to service another client by calling the ConnectNamedPipe function

with the same pipe instance handle.

Overlapped I/O

Overlapped I/O is a mechanism that allows Windows API functions such as ReadFile and WriteFile to

operate asynchronously when I/O requests are made. This is accomplished by passing an

OVERLAPPED structure to these API functions and later retrieving the results of an I/O request

through the original OVERLAPPED structure using the GetOverlappedResult API function. When a

Windows API function is invoked with an overlapped structure, the call returns immediately.

To develop an advanced named pipe server that can manage more than one named pipe instance

using overlapped I/O, you need to call CreateNamedPipe with the nMaxInstances parameter set to a

value greater than 1. You also must set the dwOpenMode flag to FILE_FLAG_OVERLAPPED. The

next sample demonstrates how to develop this advanced named pipe server. The application is an

echo server that reads data from a client and writes the data back.

// Overlap.cpp

#include <windows.h>

#include <stdio.h>

#define NUM_PIPES 5

#define BUFFER_SIZE 256

void main(void)

{

 HANDLE PipeHandles[NUM_PIPES];

 DWORD BytesTransferred;

 CHAR Buffer[NUM_PIPES][BUFFER_SIZE];

 INT i;

 OVERLAPPED Ovlap[NUM_PIPES];

 HANDLE Event[NUM_PIPES];

 // For each pipe handle instance, the code must maintain the

 // pipes' current state, which determines if a ReadFile or

 // WriteFile is posted on the named pipe. This is done using

 // the DataRead variable array. By knowing each pipe's

 // current state, the code can determine what the next I/O

 // operation should be.

 BOOL DataRead[NUM_PIPES];

 DWORD Ret;

 DWORD Pipe;

 for(i = 0; i < NUM_PIPES; i++)

 {

 // Create a named pipe instance

 if ((PipeHandles[i] = CreateNamedPipe("\\\\.\\PIPE\\jim",

 PIPE_ACCESS_DUPLEX ¦ FILE_FLAG_OVERLAPPED,

 PIPE_TYPE_BYTE ¦ PIPE_READMODE_BYTE, NUM_PIPES,

 0, 0, 1000, NULL)) == INVALID_HANDLE_VALUE)

 {

 printf("CreateNamedPipe for pipe %d failed "

 "with error %d\n", i, GetLastError());

 return;

 }

 // Create an event handle for each pipe instance. This

 // will be used to monitor overlapped I/O activity on

 // each pipe.

 if ((Event[i] = CreateEvent(NULL, TRUE, FALSE, NULL))

 == NULL)

 {

 printf("CreateEvent for pipe %d failed with error %d\n",

 i, GetLastError());

 continue;

 }

 // Maintain a state flag for each pipe to determine when data

 // is to be read from or written to the pipe

 DataRead[i] = FALSE;

 ZeroMemory(&Ovlap[i], sizeof(OVERLAPPED));

 Ovlap[i].hEvent = Event[i];

 // Listen for client connections using ConnectNamedPipe()

 if (ConnectNamedPipe(PipeHandles[i], &Ovlap[i]) == 0)

 {

 if (GetLastError() != ERROR_IO_PENDING)

 {

 printf("ConnectNamedPipe for pipe %d failed with"

 " error %d\n", i, GetLastError());

 CloseHandle(PipeHandles[i]);

 return;

 }

 }

 }

 printf("Server is now running\n");

 // Read and echo data back to Named Pipe clients forever

 while(1)

 {

 if ((Ret = WaitForMultipleObjects(NUM_PIPES, Event,

 FALSE, INFINITE)) == WAIT_FAILED)

 {

 printf("WaitForMultipleObjects failed with error %d\n",

 GetLastError());

 return;

 }

 Pipe = Ret - WAIT_OBJECT_0;

 ResetEvent(Event[Pipe]);

 // Check overlapped results, and if they fail, reestablish

 // communication for a new client; otherwise, process read

 // and write operations with the client

 if (GetOverlappedResult(PipeHandles[Pipe], &Ovlap[Pipe],

 &BytesTransferred, TRUE) == 0)

 {

 printf("GetOverlapped result failed %d start over\n",

 GetLastError());

 if (DisconnectNamedPipe(PipeHandles[Pipe]) == 0)

 {

 printf("DisconnectNamedPipe failed with error %d\n",

 GetLastError());

 return;

 }

 if (ConnectNamedPipe(PipeHandles[Pipe],

 &Ovlap[Pipe]) == 0)

 {

 if (GetLastError() != ERROR_IO_PENDING)

 {

 // Severe error on pipe. Close this

 // handle forever.

 printf("ConnectNamedPipe for pipe %d failed with"

 " error %d\n", i, GetLastError());

 CloseHandle(PipeHandles[Pipe]);

 }

 }

 DataRead[Pipe] = FALSE;

 }

 else

 {

 // Check the state of the pipe. If DataRead equals

 // FALSE, post a read on the pipe for incoming data.

 // If DataRead equals TRUE, then prepare to echo data

 // back to the client.

 if (DataRead[Pipe] == FALSE)

 {

 // Prepare to read data from a client by posting a

 // ReadFile operation

 ZeroMemory(&Ovlap[Pipe], sizeof(OVERLAPPED));

 Ovlap[Pipe].hEvent = Event[Pipe];

 if (ReadFile(PipeHandles[Pipe], Buffer[Pipe],

 BUFFER_SIZE, NULL, &Ovlap[Pipe]) == 0)

 {

 if (GetLastError() != ERROR_IO_PENDING)

 {

 printf("ReadFile failed with error %d\n",

 GetLastError());

 }

 }

 DataRead[Pipe] = TRUE;

 }

 else

 {

 // Write received data back to the client by

 // posting a WriteFile operation

 printf("Received %d bytes, echo bytes back\n",

 BytesTransferred);

 ZeroMemory(&Ovlap[Pipe], sizeof(OVERLAPPED));

 Ovlap[Pipe].hEvent = Event[Pipe];

 if (WriteFile(PipeHandles[Pipe], Buffer[Pipe],

 BytesTransferred, NULL, &Ovlap[Pipe]) == 0)

 {

 if (GetLastError() != ERROR_IO_PENDING)

 {

 printf("WriteFile failed with error %d\n",

 GetLastError());

 }

 }

 DataRead[Pipe] = FALSE;

 }

 }

 }

}

For the server application to service five pipe instances at a time, it must call CreateNamedPipe five

times to retrieve an instance handle for each pipe. After the server retrieves all the instance handles, it

begins to listen for clients by calling ConnectNamedPipe asynchronously five times using an

overlapped I/O structure for each pipe. As clients form connections to the server, all I/O is processed

asynchronously. When clients disconnect, the server reuses each pipe instance handle by calling

DisconnectNamedPipe and reissuing a ConnectNamedPipe call.

Security Impersonation

One of the best reasons for using named pipes as a network programming solution is that they rely on

Windows NT platform security features to control access when clients attempt to form communication

to a server. Windows NT security offers security impersonation, which allows a named pipe server

application to execute in the security context of a client. When a named pipe server executes, it

normally operates at the security context permission level of the process that starts the application.

For example, if a person with administrator privileges starts up a named pipe server, the server has the

ability to access almost every resource on a Windows NT system. Such security access for a named

pipe server is bad if the SECURITY_DESCRIPTOR structure specified in CreateNamedPipe allows all

users to access your named pipe.

When a server accepts a client connection using the ConnectNamedPipe function, it can make its

execution thread operate in the security context of the client by calling the

ImpersonateNamedPipeClient API function, which is defined as follows:

BOOL ImpersonateNamedPipeClient(

 HANDLE hNamedPipe

);

The hNamedPipe parameter represents the pipe instance handle that is returned from

CreateNamedPipe. When this function is called, the operating system changes the thread security

context of the server to the security context of the client. This is quite handy: If your server is designed

to access resources such as files, it will do so using the client's access rights, thereby allowing your

server to preserve access control to resources regardless of who started the process.

When a server thread executes in a client's security context, it does so through a security

impersonation level. There are four basic impersonation levels: anonymous, identification,

impersonation, and delegation. Security impersonation levels govern the degree to which a server can

act on behalf of a client. We discuss these impersonation levels in greater detail when we develop a

client application later in this chapter. After the server finishes processing a client's session, it should

call RevertToSelf to return to its original thread execution security context. The RevertToSelfAPI

function is defined as follows:

BOOL RevertToSelf(VOID);

This function does not have any parameters.

Client Details

Implementing a named pipe client requires developing an application that forms a connection to a

named pipe server. Clients cannot create named pipe instances. However, clients do open handles to

preexisting instances from a server. The following steps describe how to write a basic client

application:

Wait for a named pipe instance to become available using the WaitNamedPipe API function.1.

Connect to the named pipe using the CreateFile API function.2.

Send data to and receive data from the server using the WriteFile and ReadFile API functions.3.

Close the named pipe session using the CloseHandle API function.4.

Before forming a connection, clients need to check for the existence of a named pipe instance using

the WaitNamedPipe function, which is defined as follows:

BOOL WaitNamedPipe(

 LPCTSTR lpNamedPipeName,

 DWORD nTimeOut

);

The lpNamedPipeName parameter represents the named pipe you are trying to connect to. The

nTimeOut parameter represents how long a client is willing to wait for a pipe's server process to have

a pending ConnectNamedPipe operation on the pipe.

After WaitNamedPipe successfully completes, the client needs to open a handle to the server's named

pipe instance using the CreateFile API function. CreateFile is defined as follows:

HANDLE CreateFile(

 LPCTSTR lpFileName,

 DWORD dwDesiredAccess,

 DWORD dwShareMode,

 LPSECURITY_ATTRIBUTES lpSecurityAttributes,

 DWORD dwCreationDisposition,

 DWORD dwFlagsAndAttributes,

 HANDLE hTemplateFile

);

The lpFileName parameter is the name of the pipe you are trying to open; the name must conform to

the named pipe naming conventions mentioned earlier in this chapter.

The dwDesiredAccess parameter defines the access mode and should be set to GENERIC_READ for

reading data off the pipe and GENERIC_WRITE for writing data to the pipe. These flags can also be

specified together by ORing both flags. The access mode must be compatible with how the pipe was

created in the server. Match the mode specified in the dwOpenMode parameter of CreateNamedPipe,

as described earlier. For example, if the server creates a pipe with PIPE_ACCESS_INBOUND, the

client should specify GENERIC_WRITE.

The dwShareMode parameter should be set to 0 because only one client is capable of accessing a

pipe instance at a time. The lpSecurityAttributes parameter should be set to NULL unless you need a

child process to inherit the client's handle. This parameter is incapable of specifying security controls

because CreateFile is not capable of creating named pipe instances. The dwCreationDisposition

parameter should be set to OPEN_EXISTING, which means that the CreateFile function will fail if the

named pipe does not exist.

The dwFlagsAndAttributes parameter should always be set to FILE_ATTRIBUTE_NORMAL.

Optionally, you can specify the FILE_FLAG_WRITE_THROUGH, FILE_FLAG_OVERLAPPED, and

SECURITY_SQOS_PRESENT flags by ORing them with the FILE_ATTRIBUTE_NORMAL flag. The

FILE_FLAG_WRITE_THROUGH and FILE_FLAG_OVERLAPPED flags behave like the server's mode

flags described earlier in this chapter. The SECURITY_SQOS_PRESENT flag controls client

impersonation security levels in a named pipe server. Security impersonation levels govern the degree

to which a server process can act on behalf of a client process. A client can specify this information

when it connects to a server. When the client specifies the SECURITY_SQOS_PRESENT flag, it must

use one or more of the following security flags:

SECURITY_ANONYMOUS. Specifies to impersonate the client at the anonymous impersonation

security level. The server process cannot obtain identification information about the client, and it

cannot execute in the security context of the client.

SECURITY_IDENTIFICATION. Specifies to impersonate the client at the identification

impersonation security level. The server process can obtain information about the client, such as

security identifiers and privileges, but it cannot execute in the security context of the client. This is

useful for named pipe clients that want to allow the server to identify the client but not to act as the

client.

SECURITY_IMPERSONATION. Specifies to impersonate the client at the impersonation security

level. The client wants to allow the server process to obtain information about the client and execute

in the client's security context on the local system. Using this flag, the client allows the server to

access any local resource on the server as the client. The server, however, cannot impersonate the

client on remote systems.

SECURITY_DELEGATION. Specifies to impersonate the client at the delegation impersonation

security level. The server process can obtain information about the client and execute in the client's

security context on its local system and on remote systems.

SECURITY_DELEGATION works only if the server process is running on Windows

2000 and Windows XP. Windows NT 4.0 does not implement security delegation.

SECURITY_CONTEXT_TRACKING. Specifies that the security-tracking mode is dynamic. If this

flag is not specified, security-tracking mode is static.

SECURTIY_EFFECTIVE_ONLY. Specifies that only the enabled aspects of the client's security

context are available to the server. If you do not specify this flag, all aspects of the client's security

context are available.

Named pipe security impersonation is described earlier in this chapter in the section entitled “Server

Details.”

The final parameter of CreateFile, hTemplateFile, does not apply to named pipes and should be

specified as NULL. If CreateFile completes without an error, the client application can begin to send

and receive data on the named pipe using the ReadFile and WriteFile functions. Once the application

is finished processing data, it can close down the connection using the CloseHandle function.

The next program listing is a simple named pipe client that demonstrates the API calls needed to

successfully develop a basic named pipe client application. When this application successfully

connects to a named pipe, it writes the message “This is a test” to the server.

// Client.cpp

#include <windows.h>

#include <stdio.h>

#define PIPE_NAME "\\\\.\\Pipe\\jim"

void main(void)

{

 HANDLE PipeHandle;

 DWORD BytesWritten;

 if (WaitNamedPipe(PIPE_NAME, NMPWAIT_WAIT_FOREVER) == 0)

 {

 printf("WaitNamedPipe failed with error %d\n",

 GetLastError());

 return;

 }

 // Create the named pipe file handle

 if ((PipeHandle = CreateFile(PIPE_NAME,

 GENERIC_READ ¦ GENERIC_WRITE, 0,

 (LPSECURITY_ATTRIBUTES) NULL, OPEN_EXISTING,

 FILE_ATTRIBUTE_NORMAL,

 (HANDLE) NULL)) == INVALID_HANDLE_VALUE)

 {

 printf("CreateFile failed with error %d\n", GetLastError());

 return;

 }

 if (WriteFile(PipeHandle, "This is a test", 14, &BytesWritten,

 NULL) == 0)

 {

 printf("WriteFile failed with error %d\n", GetLastError());

 CloseHandle(PipeHandle);

 return;

 }

 printf("Wrote %d bytes", BytesWritten);

 CloseHandle(PipeHandle);

}

Other API Calls

There are several additional named pipe functions that we haven't touched on yet.

The first set of these API functions—CallNamedPipe and TransactNamedPipe—is

designed to reduce coding complexity in an application. Both functions perform a write

and read operation in one call. The CallNamedPipe function allows a client application

to connect to a message-type pipe (and waits if an instance of the pipe is not

available), writes to and reads from the pipe, and then closes the pipe. This is

practically an entire client application written in one call. CallNamedPipe is defined as

follows:

BOOL CallNamedPipe(

 LPCTSTR lpNamedPipeName,

 LPVOID lpInBuffer,

 DWORD nInBufferSize,

 LPVOID lpOutBuffer,

 DWORD nOutBufferSize,

 LPDWORD lpBytesRead,

 DWORD nTimeOut

);

The lpNamedPipeName parameter is a string that represents the named pipe in UNC

form. The lpInBuffer and nInBufferSize parameters represent the address and the size

of the buffer that the application uses to write data to the server. The lpOutBuffer and

nOutBufferSize parameters represent the address and the size of the buffer that the

application uses to retrieve data from the server. The lpBytesRead parameter receives

the number of bytes read from the pipe. The nTimeOut parameter specifies how many

milliseconds to wait for the named pipe to be available.

The TransactNamedPipe function can be used in both a client and a server

application. It is designed to combine read and write operations in one API call, thus

optimizing network I/O by reducing send and receive transactions in the MSNP

redirector. TransactNamedPipe is defined as follows:

BOOL TransactNamedPipe(

 HANDLE hNamedPipe,

 LPVOID lpInBuffer,

 DWORD nInBufferSize,

 LPVOID lpOutBuffer,

 DWORD nOutBufferSize,

 LPDWORD lpBytesRead,

 LPOVERLAPPED lpOverlapped

);

The hNamedPipe parameter identifies the named pipe returned by the

CreateNamedPipe or CreateFile API functions. The lpInBuffer and nInBufferSize

parameters represent the address and the size of the buffer that the application uses

to write data to the pipe. The lpOutBuffer and nOutBufferSize parameters represent

the address and the size of the buffer that the application uses to retrieve data from

the pipe. The lpBytesRead parameter receives the number of bytes read from the

pipe. The lpOverlapped parameter allows this TransactNamedPipe to operate

asynchronously using overlapped I/O.

The next set of functions—GetNamedPipeHandleState, SetNamedPipeHandleState,

and GetNamedPipeInfo—are designed to make named pipe client and server

communication more flexible at run time. For example, you can use these functions to

change the operating mode of a pipe at run time from message mode to byte mode

and vice versa. GetNamedPipeHandleState retrieves information such as the

operating mode (message mode and byte mode), pipe instance count, and buffer

caching information about a specified named pipe. The information that

GetNamedPipeHandleState returns can vary during the lifetime of an instance of the

named pipe. GetNamedPipeHandleState is defined as follows:

BOOL GetNamedPipeHandleState(

 HANDLE hNamedPipe,

 LPDWORD lpState,

 LPDWORD lpCurInstances,

 LPDWORD lpMaxCollectionCount,

 LPDWORD lpCollectDataTimeout,

 LPTSTR lpUserName,

 DWORD nMaxUserNameSize

);

The hNamedPipe parameter identifies the named pipe returned by the

CreateNamedPipe or CreateFile function. The lpState parameter is a pointer to a

variable that receives the current operating mode of the pipe handle. The lpState

parameter can return the value PIPE_NOWAIT or the value

PIPE_READMODE_MESSAGE. The lpCurInstances parameter is a pointer to a

variable that receives the number of current pipe instances. The

lpMaxCollectionCount parameter receives the maximum number of bytes to be

collected on the client's computer before transmission to the server. The

lpCollectDataTimeout parameter receives the maximum time in milliseconds that can

pass before a remote named pipe transfers information over a network. The

lpUserName and nMaxUserNameSize parameters represent a buffer that receives a

null-terminated string containing the user name string of the client application.

The SetNamedPipeHandleState function allows you to change the pipe characteristics

retrieved with GetNamedPipeHandleState. SetNamedPipeHandleState is defined as

follows:

BOOL SetNamedPipeHandleState(

 HANDLE hNamedPipe,

 LPDWORD lpMode,

 LPDWORD lpMaxCollectionCount,

 LPDWORD lpCollectDataTimeout

);

The hNamedPipe parameter identifies the named pipe returned by CreateNamedPipe

or CreateFile. The lpMode parameter sets the operating mode of a pipe. The

lpMaxCollectionCount parameter specifies the maximum number of bytes collected on

the client computer before data is transmitted to the server. The lpCollectDataTimeout

parameter specifies the maximum time in milliseconds that can pass before a remote

named pipe client transfers information over the network.

The GetNamedPipeInfo API function is used to retrieve buffer size and maximum pipe

instance information. GetNamedPipeInfo is defined as follows:

BOOL GetNamedPipeInfo(

 HANDLE hNamedPipe,

 LPDWORD lpFlags,

 LPDWORD lpOutBufferSize,

 LPDWORD lpInBufferSize,

 LPDWORD lpMaxInstances

);

The hNamedPipe parameter identifies the named pipe returned by Create-NamedPipe

or CreateFile. The lpFlags parameter retrieves the type of the named pipe and

determines whether it is a server or a client and whether the pipe is in byte mode or

message mode. The lpOutBufferSize parameter determines the size in bytes of the

internal buffer for outgoing data. The lpInBufferSize parameter receives the size of the

internal buffer for incoming data. The lpMaxInstance parameter receives the maximum

number of pipe instances that can be created.

The final API function, PeekNamedPipe, allows an application to look at the data in a

named pipe without removing it from the pipe's internal buffer. This function is useful if

an application wants to poll for incoming data to avoid blocking on the ReadFile API

call. The function can also be useful for applications that need to examine data before

they actually receive it. For example, an application might want to adjust its application

buffers based on the size of incoming messages. PeekNamedPipe is defined as

follows:

BOOL PeekNamedPipe(

 HANDLE hNamedPipe,

 LPVOID lpBuffer,

 DWORD nBufferSize,

 LPDWORD lpBytesRead,

 LPDWORD lpTotalBytesAvail,

 LPDWORD lpBytesLeftThisMessage

);

The hNamedPipe parameter identifies the named pipe returned by Create-NamedPipe

or CreateFile. The lpBuffer and nBufferSize parameters represent the receiving buffer

along with the receiving buffer size to retrieve data from the pipe. The lpBytesRead

parameter receives the number of bytes read from the pipe into the lpBuffer

parameter. The lpTotalBytesAvail parameter receives the total number of bytes that

are available to be read from the pipe. The lpBytesLeftThisMessage parameter

receives the number of bytes remaining in a message if a pipe is opened in message

mode. If a message cannot fit in the lpBuffer parameter, the remaining bytes in a

message are returned. This parameter always returns 0 for byte-mode named pipes.

Platform and Performance Considerations

The Microsoft Knowledge Base documents the following problems and limitations.

You can access the Knowledge Base at http://support.microsoft.com/support. The

following are brief descriptions of each issue.

Q100291 Restriction on Named-Pipe Names

If a pipe named \\.\Pipe\Mypipes is created, it is not possible to subsequently create

a pipe named \\.\Pipe\Mypipes\Pipe1, because \\.\Pipe\Mypipes is already a pipe

name and cannot be used as a subdirectory.

Q119218 Named Pipe Write Limited to 64K

The WriteFile API function returns FALSE and GetLastError returns

ERROR_MORE_DATA when WriteFile writes to a message-mode named pipe

using a buffer greater than 64 KB.

Q110148 ERROR_INVALID_PARAMETER from WriteFile or ReadFile

The WriteFile or ReadFile function call can fail with the error

ERROR_INVALID_PARAMETER if you are operating on a named pipe and using

overlapped I/O. A possible cause for the failure is that the Offset and OffsetHigh

members of the OVERLAPPED structure are not set to 0.

Q180222 WaitNamedPipe and Error 253 in Windows 95

In Windows 95, when WaitNamedPipe fails because of an invalid pipe name passed

as the first parameter, GetLastError returns Error 253, which is not listed as a

possible error code for this function. When you run the same code on Windows NT

4, the error code 161 (ERROR_BAD_PATHNAME) appears. To work around the

problem, resolve Error 253 the same way as Error 161, ERROR_BAD_PATHNAME.

Q141709 Limit of 49 Named Pipe Connections from a Single Workstation

If a named pipe server creates more than 49 distinctly named pipes, a single client

on a remote computer cannot connect more than 49 pipes on the named pipe

server.

Q126645 Access Denied When Opening a Named Pipe from a Service

If a service running in the Local System account attempts to open a named pipe on

a computer running Windows NT, the operation can fail with an Access Denied error

http://support.microsoft.com/support

(Error 5).

Conclusion

This chapter introduced the named pipe networking technology, which provides a

simple client/server data-communication architecture that reliably transmits data. The

interface relies on the Windows redirector to transmit data over a network. A major

benefit of named pipes is that it takes advantage of Windows NT platform security

features—an advantage offered by no other networking technology described in this

book.

Chapter 21

Winsock Error Codes

This chapter lists Winsock error codes by error number. The list does not include the

Winsock errors marked BSD-specific or undocumented. In addition, the Winsock

errors that map directly to Windows errors appear toward the end of the chapter.

10004—WSAEINTR
Interrupted function call. This error indicates that a blocking call was interrupted by a

call to WSACancelBlockingCall.

10009—WSAEBADF
Bad file handle. This error means that the supplied file handle is invalid. Under

Microsoft Windows CE, it is possible for the socket function to return this error, which

indicates that the shared serial port is busy.

10013—WSAEACCES
Permission denied. An attempt was made to manipulate the socket, which is

forbidden. This error most commonly occurs when attempting to use a broadcast

address in sendto or WSASendTo, in which broadcast permission has not been set

with setsockopt and the SO_BROADCAST option.

10014—WSAEFAULT
Invalid address. The pointer address passed into the Winsock function is invalid. This

error is also generated when the specified buffer is too small.

10022—WSAEINVAL

Invalid argument. An invalid argument was specified. For example, specifying an

invalid control code to WSAIoctl generates this error. This code can also indicate an

error with the current state of a socket—for example, calling accept or WSAAccept on

a socket that is not listening.

10024—WSAEMFILE
Too many open files. Too many sockets are open. Typically, Microsoft providers are

limited only by the amount of resources available on the system.

10035—WSAEWOULDBLOCK
Resource temporarily unavailable. This error is most commonly returned on

nonblocking sockets in which the requested operation cannot complete immediately.

For example, calling connect on a nonblocking socket returns this error because the

connection request cannot be completed immediately.

10036—WSAEINPROGRESS
Operation now in progress. A blocking operation is currently executing. Typically, you

do not see this error unless you are developing 16-bit Winsock applications.

10037—WSAEALREADY
Operation already in progress. This error typically occurs when an operation that is

already in progress is attempted on a nonblocking socket—for example, calling

connect or WSAConnect a second time on a nonblocking socket already in the

process of connecting. This error can also occur when a service provider is in the

process of executing a callback function (for those Winsock functions that support

callback routines).

10038—WSAENOTSOCK
Socket operation on an invalid socket. This error can be returned from any Winsock

function that takes a SOCKET handle as a parameter. This error indicates that the

supplied socket handle is not valid.

10039—WSAEDESTADDRREQ
Destination address required. This error indicates that the supplied address was

omitted. For instance, calling sendto with the destination address INADDR_ANY

returns this error.

10040—WSAEMSGSIZE
Message too long. This error can mean a number of things. If a message is sent on a

datagram socket that is too large for the internal buffer, this error occurs. It also occurs

if the message is too large because of a network limitation. Finally, if on receiving a

datagram the buffer is too small to receive the message, this error is generated.

10041—WSAEPROTOTYPE
Wrong protocol type for socket. A protocol was specified in a call to socket or

WSASocket that does not support the semantics of the given socket type. For

example, requesting the creation of an IP socket of type SOCK_STREAM and

protocol IPPROTO_UDP generates this error.

10042—WSAENOPROTOOPT
Bad protocol option. An unknown, unsupported, or invalid socket option or level was

specified in a call to getsockopt or setsockopt.

10043—WSAEPROTONOSUPPORT

Protocol not supported. Either the requested protocol is not installed on the system or

no implementation exists for it. For example, if TCP/IP is not installed on the system,

attempting to create either a TCP or UDP socket generates this error.

10044—WSAESOCKTNOSUPPORT
Socket type not supported. Support for the specified socket type does not exist for the

given address family. For example, requesting a socket of type SOCK_RAW for a

protocol that does not support raw sockets generates this error.

10045—WSAEOPNOTSUPP
Operation not supported. The attempted operation is not supported for the referenced

object. Typically, this occurs when trying to call a Winsock function on a socket that

does not support that operation. For example, calling accept or WSAAccept on a

datagram socket causes this error.

10046—WSAEPFNOSUPPORT
Protocol family not supported. The requested protocol family does not exist or is not

installed on the system. In most cases, this error is interchangeable with

WSAEAFNOSUPPORT, which occurs more often.

10047—WSAEAFNOSUPPORT
Address family does not support requested operation. This error occurs when

attempting to perform an operation that is not supported by the socket type. For

example, trying to call sendto or WSASendTo with a socket of type SOCK_STREAM

generates this error. This error can also occur when calling socket or WSASocket and

requesting an invalid combination of address family, socket type, and protocol.

10048—WSAEADDRINUSE
Address already in use. Under normal circumstances, only one socket is permitted to

use each socket address. (For example, an IP socket address consists of the local IP

address and port number.) This error is usually associated with the bind, connect, and

WSAConnect functions. The socket option SO_REUSEADDR can be set with the

setsockopt function to allow multiple sockets access to the same local IP address and

port. (For more information, see Chapter 7.)

10049—WSAEADDRNOTAVAIL
Cannot assign requested address. This error occurs when the address specified in an

API call is not valid for that function. For example, specifying an IP address in bind

that does not correspond to a local IP interface generates this error. This error can

also occur when specifying port 0 for the remote machine to connect to with connect,

WSAConnect, sendto, WSASendTo, and WSAJoinLeaf.

10050—WSAENETDOWN
Network is down. The operation encountered a dead network. This could indicate the

failure of the network stack, the network interface, or the local network.

10051—WSAENETUNREACH
Network is unreachable. An operation was attempted to an unreachable network. This

indicates that the local host does not know how to reach the remote host—in other

words, no known route to the destination exists.

10052—WSAENETRESET
Network dropped the connection on reset. The connection has been broken because

keepalives have detected a failure. This error can also occur when attempting to set

the SO_KEEPALIVE option with setsockopt on a connection that has already failed.

10053—WSAECONNABORTED
Software caused the connection to abort. An established connection was aborted due

to a software error. Typically, this means the connection was aborted due to a

protocol or timeout error.

10054—WSAECONNRESET
Connection reset by peer. The remote host forcibly closed an established connection.

This error can occur if the remote process is abnormally terminated (as in memory

violation or hardware failure) or if a hard close was performed on the socket. A socket

can be configured for a hard close using the SO_LINGER socket option and

setsockopt. (For more information, see Chapter 7.)

10055—WSAENOBUFS
No buffer space available. The requested operation could not be performed because

the system lacked sufficient buffer space.

10056—WSAEISCONN
Socket is already connected. A connection is being attempted on a socket that is

already connected. This can occur on both datagram and stream sockets. When using

datagram sockets, if connect or WSAConnect has been called to associate an

endpoint's address for datagram communication, attempting to call either sendto or

WSASendTo generates this error.

10057—WSAENOTCONN
Socket is not connected. This error occurs when a request is made to send or receive

data on a connection-oriented socket that is not currently connected.

10058—WSAESHUTDOWN
Cannot send after socket shutdown. The socket has already been partially closed by a

call to shutdown, and either a send or a receive operation is being requested. Note

that this occurs only on the data-flow direction that has been shut down. For example,

after calling shutdown on sends, any call to send data generates this error.

10060—WSAETIMEDOUT
Connection timed out. This error occurs when a connection request has been made

and the remote computer fails to properly respond (or doesn't respond at all) after a

specified length of time. This error is typically seen when the socket options

SO_SNDTIMEO and SO_RCVTIMEO are set on a socket as well as when the

connect and WSAConnect functions are called. For more information on setting

SO_SNDTIMEO and SO_RCVTIMEO on a socket, see Chapter 7.

10061—WSAECONNREFUSED
Connection refused. The connection could not be established because the target

machine refused it. This error usually occurs because no application on the remote

machine is servicing connections on that address.

10064—WSAEHOSTDOWN
Host is down. This error indicates that the operation has failed because the

destination host is down; however, an application is more likely to receive the error

WSAETIMEDOUT because it typically occurs when attempting to establish a

connection.

10065—WSAEHOSTUNREACH
No route to host. An operation was attempted to an unreachable host. This error is

similar to WSAENETUNREACH.

10067—WSAEPROCLIM
Too many processes. Some Winsock service providers set a limit on the number of

processes that can simultaneously access them.

10091—WSASYSNOTREADY
Network subsystem is unavailable. This error is returned when calling WSAStartup,

and the provider cannot function because the underlying system that provides

services is unavailable.

10092—WSAVERNOTSUPPORTED
Winsock.dll version out of range. The requested version of the Winsock provider is not

supported.

10093—WSANOTINITIALISED
Winsock has not been initialized. A successful call to WSAStartup has not yet been

performed.

10101—WSAEDISCON
Graceful shutdown in progress. WSARecv and WSARecvFrom return this error to

indicate that the remote party has initiated a graceful shutdown. This error occurs on

message-oriented protocols such as ATM.

10102—WSAENOMORE

No more records found. WSALookupServiceNext returns this record to indicate that no

additional records are left. This error is interchangeable with WSA_E_NO_MORE.

Applications should check for both this error and WSA_E_NO_MORE.

10103—WSAECANCELLED
Operation canceled. This error indicates that a call to WSALookupServiceEnd was

made while a call to WSALookupServiceNext was still processing.

WSALookupServiceNext returns this error. This code is interchangeable with

WSA_E_CANCELLED. Applications should check for both this error and

WSA_E_CANCELLED.

10104—WSAEINVALIDPROCTABLE
The procedure call table is invalid. A service provider typically returns this error when

the procedure table contains invalid entries. For more information on service

providers, see Chapter 12.

10105—WSAEINVALIDPROVIDER
Invalid service provider. This error is associated with service providers, and it occurs

when the provider cannot establish the correct Winsock version needed to function

correctly.

10106—WSAEPROVIDERFAILEDINIT
The provider failed to initialize. This error is associated with service providers, and it is

typically seen when the provider cannot load the necessary DLLs.

10107—WSASYSCALLFAILURE
System call failure. A system call that should never fail has failed.

10108—WSASERVICE_NOT_FOUND
No such service found. This error is normally associated with registration and name

resolution functions when querying for services. (See Chapter 8 for more information

about these functions.) This error indicates that the requested service could not be

found in the given namespace.

10109—WSATYPE_NOT_FOUND
Class type not found. This error is also associated with the registration and name

resolution functions when manipulating service classes. When an instance of a

service is registered, it must reference a service class that was previously installed

with WSAInstallServiceClass.

10110—WSA_E_NO_MORE
No more records found. This error is returned from WSALookupServiceNext to

indicate that no additional records are left. It is interchangeable with WSAENOMORE.

Applications should check for both this error and WSAENOMORE.

10111—WSA_E_CANCELLED
Operation canceled. This error indicates that a call to WSALookupServiceEnd was

made while a call to WSALookupServiceNext was still processing.

WSALookupServiceNext returns this error. This code is interchangeable with

WSAECANCELLED. Applications should check for both this error and

WSAECANCELLED.

10112—WSAEREFUSED
Query refused. A database query failed because it was actively refused.

11001—WSAHOST_NOT_FOUND
Host not found. This error occurs with gethostbyname and gethostbyaddr to indicate

that an authoritative answer host was not found.

11002—WSATRY_AGAIN
Nonauthoritative host not found. This error is also associated with gethostbyname and

gethostbyaddr, and it indicates that either the nonauthoritative host was not found or a

server failure occurred.

11003—WSANO_RECOVERY
A nonrecoverable error occurred. This error is also associated with gethostbyname

and gethostbyaddr. It indicates that a nonrecoverable error has occurred and the

operation should be tried again.

11004—WSANO_DATA
No data record of the requested type found. This error is also associated with

gethostbyname and gethostbyaddr. It indicates that the supplied name was valid but

no data record of the requested type was found with it.

11005—WSA_QOS_RECEIVERS
At least one reserve message has arrived. This value is associated with IP Quality of

Service (QOS) and is not an error per se. (See Chapter 10 for more on QOS.) It

indicates that at least one process on the network is interested in receiving QOS

traffic.

11006—WSA_QOS_SENDERS
At least one path message has arrived. This value is associated with QOS and is

more of a status message. This value indicates that at least one process on the

network is interested in sending QOS traffic.

11007—WSA_QOS_NO_SENDERS
No QOS senders. This value is associated with QOS and indicates that there are no

longer any processes interested in sending QOS data. See Chapter 10 for a more

complete description of when this error occurs.

11008—WSA_QOS_NO_RECEIVERS
No QOS receivers. This value is associated with QOS and indicates that there are no

longer any processes interested in receiving QOS data. See Chapter 10 for a more

complete description of this error.

11009—WSA_QOS_REQUEST_CONFIRMED
Reservation request has been confirmed. QOS applications can request that they be

notified when their reservation request for network bandwidth has been approved.

When such a request is made, this is the message generated. See Chapter 10 for a

more complete description.

11010—WSA_QOS_ADMISSION_FAILURE
Error due to lack of resources. Insufficient resources were available to satisfy the QOS

bandwidth request.

11011—WSA_QOS_POLICY_FAILURE
Invalid credentials. Either the user did not possess the correct privileges or the

supplied credentials were invalid when making a QOS reservation request.

11012—WSA_QOS_BAD_STYLE
Unknown or conflicting style. QOS applications can establish different filter styles for a

given session. This error indicates either unknown or conflicting style types. See

Chapter 10 for a description of filter styles.

11013—WSA_QOS_BAD_OBJECT
Invalid FILTERSPEC structure or provider-specific object. This error occurs if either

the FLOWSPEC structures or the provider-specific buffers of a QOS object are invalid.

See Chapter 10 for more details.

11014—WSA_QOS_TRAFFIC_CTRL_ERROR
Problem with a FLOWSPEC. This error occurs if the traffic control component has a

problem with the supplied FLOWSPEC parameters that are passed as a member of a

QOS object.

11015—WSA_QOS_GENERIC_ERROR
General QOS error. This is a catch-all error that is returned when the other QOS

errors do not apply.

6—WSA_INVALID_HANDLE
Specified event object invalid. This Windows error is seen when using Winsock

functions that map to Win32 functions. This particular error occurs when a handle

passed to WSAWaitForMultipleEvents is invalid.

8—WSA_NOT_ENOUGH_MEMORY
Insufficient memory available. This Windows error indicates that insufficient memory is

available to complete the operation.

87—WSA_INVALID_PARAMETER
One or more parameters are invalid. This Windows error indicates that a parameter

passed into the function is invalid. This error also occurs with

WSAWaitForMultipleEvents when the event count parameter is not valid.

258—WSA_WAIT_TIMEOUT
Operation timed out. This Windows error indicates that the overlapped operation did

not complete in the specified time.

995—WSA_OPERATION_ABORTED
Overlapped operation aborted. This Windows error indicates that an overlapped I/O

operation was canceled because of the closure of a socket. In addition, this error can

occur when executing the SIO_FLUSH ioctl command.

996—WSA_IO_INCOMPLETE
Overlapped I/O event object is not in a signaled state. This Windows error is also

associated with overlapped I/O. It is seen when calling WSAGetOverlappedResults

and indicates that the overlapped I/O operation has not yet completed.

997—WSA_IO_PENDING
Overlapped operations will complete later. When making an overlapped I/O call with a

Winsock function, this Windows error is returned to indicate that the operation is

pending and will complete later. See Chapter 5 for a discussion of overlapped I/O.

Chapter 22

NetBIOS Command Reference

This chapter lists and describes the valid commands for the ncb_command field of the

NCB structure that you must pass to the Netbios function. Each command description

includes a table that indicates which fields of the NCB structure you must set for that

command and which fields the Netbios function sets prior to returning. Each table

contains two columns. The first column indicates whether the given field of the NCB

structure is an input or output parameter. The second column indicates whether the

field must be set when making a NetBIOS call. If this column is marked with an X, a

value must be provided. Otherwise, if the field is an input parameter and no X is

present, providing a value is optional. Please refer to Chapter 17 for an in-depth

discussion of the Netbios function.

NCBADDGRNAME

This command adds a group name to the local name table. This name cannot collide

with a unique name, but anyone else can use it as a group name. Group names are

most often used as recipients of datagrams. A name number is returned in the

ncb_num field that is used in datagram operations. Table 22-1 describes the

characteristics of the NCBADDGRNAME command.

Table 22-1NCBADDGRNAME

Field In/Out Required

ncb_command In X

ncb_retcode Out

ncb_lsn

ncb_num Out

ncb_buffer

ncb_length

ncb_callname

ncb_name In X

ncb_rto

ncb_sto

ncb_post In

ncb_lana_num In X

ncb_cmd_cplt Out

ncb_event In

NCBADDNAME

This command adds a unique name to the local name table. This name must be

unique across the network, or an error is returned. A name number is returned in the

ncb_num field that is used in datagram operations. Table 22-2 describes the

characteristics of the NCBADDNAME command.

Table 22-2NCBADDNAME

Field In/Out Required

ncb_command In X

ncb_retcode Out

ncb_lsn

ncb_num Out

ncb_buffer

ncb_length

ncb_callname

ncb_name In X

ncb_rto

ncb_sto

ncb_post In

ncb_lana_num In X

ncb_cmd_cplt Out

ncb_event In

NCBASTAT

This command retrieves the status of a local or remote adapter. When you call this

command, set ncb_buffer to point to a buffer that has an ADAPTER_STATUS

structure followed by an array of NAME_BUFFER structures. Table 22-3 describes the

characteristics of the NCBASTAT command.

Table 22-3NCBASTAT

Field In/Out Required

ncb_command In X

ncb_retcode Out

ncb_lsn

ncb_num

ncb_buffer In/Out X

ncb_length In/Out X

ncb_callname In X

ncb_name

ncb_rto

ncb_sto

ncb_post In

ncb_lana_num In X

ncb_cmd_cplt Out

ncb_event In

NCBCALL

This command connects (opens) a session to another process that you indicate in the

ncb_name field. Table 22-4 describes the characteristics of the NCBCALL command.

Table 22-4NCBCALL

Field In/Out Required

ncb_command In X

ncb_retcode Out

ncb_lsn Out

ncb_num

ncb_buffer

ncb_length

ncb_callname In X

ncb_name In X

ncb_rto In

ncb_sto In

ncb_post In

ncb_lana_num In X

ncb_cmd_cplt Out

ncb_event In

NCBCANCEL

This command cancels a previous outstanding command. The ncb_buffer field points

to the NCB structure with the operation that you want canceled. Canceling an

NCBSEND or NCBCHAINSEND command aborts the session; however, aborting their

no-ack variants does not cancel their respective sessions. The following commands

cannot be canceled: NCBADDGRNAME, NCBADDNAME, NCBCANCEL,

NCBDELNAME, NCBRESET, NCBDGSEND, NCBDGSENDBC, and NCBSSTAT.

Table 22-5 describes the characteristics of the NCBCANCEL command.

Table 22-5NCBCANCEL

Field In/Out Required

ncb_command In X

ncb_retcode Out

ncb_lsn

ncb_num

ncb_buffer In X

ncb_length

ncb_callname

ncb_name

ncb_rto

ncb_sto

ncb_post

ncb_lana_num In X

ncb_cmd_cplt Out

ncb_event

NCBCHAINSEND

This command sends the contents of two buffers to the specified receiver. The

maximum amount of data that can be sent is 128 KB (a maximum of 64 KB in each

buffer). Use ncb_buffer and ncb_length to point to the first buffer and specify its

length. Use bytes 0–1 of ncb_callname to specify the length of the second buffer, and

use bytes 2–5 to point to it. Table 22-6 describes the characteristics of the

NCBCHAINSEND command.

Table 22-6NCBCHAINSEND

Field In/Out Required

ncb_command In X

ncb_retcode Out

ncb_lsn In X

ncb_num

ncb_buffer In X

ncb_length In X

ncb_callname In X

ncb_name

ncb_rto

ncb_sto

ncb_post In

ncb_lana_num In X

ncb_cmd_cplt Out

ncb_event In

NCBCHAINSENDNA

This command sends the contents of two buffers to the specified receiver and does

not wait for any acknowledgment from the receiver. The maximum amount of data that

can be sent is 128 KB (a maximum of 64 KB in each buffer). Specify the first buffer

and its length in ncb_buffer and ncb_length, respectively. Use bytes 0–1 of

ncb_callname to specify the length of the second buffer, and use bytes 2–5 to point to

it. Table 22-7 describes the characteristics of the NCBCHAINSENDNA command.

Table 22-7NCBCHAINSENDNA

Field In/Out Required

ncb_command In X

ncb_retcode Out

ncb_lsn In X

ncb_num

ncb_buffer In X

ncb_length In X

ncb_callname In X

ncb_name

ncb_rto

ncb_sto

ncb_post In

ncb_lana_num In X

ncb_cmd_cplt Out

ncb_event In

NCBDELNAME

This command deletes a name from the local name table. If the name to be deleted is

associated with active sessions, the error NRC_ACTSES (0x0F) is returned. If any

nonactive session commands are outstanding, they receive the error NRC_NAMERR

(0x17). Table 22-8 describes the characteristics of the NCBDELNAME command.

Table 22-8NCBDELNAME

Field In/Out Required

ncb_command In X

ncb_retcode Out

ncb_lsn

ncb_num

ncb_buffer

ncb_length

ncb_callname

ncb_name In X

ncb_rto

ncb_sto

ncb_post In

ncb_lana_num In X

ncb_cmd_cplt Out

ncb_event In

NCBDGRECV

This command receives a datagram directed to the local name associated with the

ncb_num value. If ncb_num is 0xFF, this command receives datagrams directed to

any local name. The local name can be either a group name or a unique name. If no

receive datagram command is pending when a datagram is sent, the data is lost. If the

supplied buffer is too small, an “incomplete error” message, NRC_INCOMP (0x06),

occurs and the data is truncated to fill the buffer. Table 22-9 describes the

characteristics of the NCBDGRECV command.

Table 22-9NCBDGRECV

Field In/Out Required

ncb_command In X

ncb_retcode Out

ncb_lsn

ncb_num In X

ncb_buffer In X

ncb_length In/Out X

ncb_callname Out

ncb_name

ncb_rto

ncb_sto

ncb_post In

ncb_lana_num In X

ncb_cmd_cplt Out

ncb_event In

NCBDGRECVBC

This command receives a broadcast datagram from any name issuing a command to

send broadcast datagrams. An “incomplete error” message, NRC_INCOMP (0x06),

occurs if the supplied buffer is not large enough, and the data is truncated to fill the

buffer. Table 22-10 describes the characteristics of the NCBDGRECVBC command.

Table 22-10NCBDGRECVBC

Field In/Out Required

ncb_command In X

ncb_retcode Out

ncb_lsn

ncb_num In X

ncb_buffer In X

ncb_length In/Out X

ncb_callname Out

ncb_name

ncb_rto

ncb_sto

ncb_post In

ncb_lana_num In X

ncb_cmd_cplt Out

ncb_event In

NCBDGSEND

This command sends a datagram to a specified name. The name can be either a

unique name or a group name. If an adapter has a pending receive datagram

command for the same name, the adapter receives its own message. The maximum

datagram size depends on the underlying protocol. To find the maximum datagram

size, you can perform a local NCBASTAT command. The ADAPTER_STATUS

structure that is returned gives the maximum datagram size for the underlying

transport protocol. Table 22-11 describes the characteristics of the NCBDGSEND

command.

Table 22-11NCBDGSEND

Field In/Out Required

ncb_command In X

ncb_retcode Out

ncb_lsn

ncb_num In X

ncb_buffer In X

ncb_length In X

ncb_callname In X

ncb_name

ncb_rto

ncb_sto

ncb_post In

ncb_lana_num In X

ncb_cmd_cplt Out

ncb_event In

NCBDGSENDBC

This command sends a broadcast datagram to every host on the LAN. Only those

machines with an outstanding receive datagram command get the message. Also, if

the local adapter has a pending receive datagram command, it receives its own

message. Broadcast datagrams have the same size limitation mentioned in the

NCBDGSEND entry. Table 22-12 describes the characteristics of the

NCBDGSENDBC command.

Table 22-12NCBDGSENDBC

Field In/Out Required

ncb_command In X

ncb_retcode Out

ncb_lsn

ncb_num In X

ncb_buffer In X

ncb_length In X

ncb_callname

ncb_name

ncb_rto

ncb_sto

ncb_post In

ncb_lana_num In X

ncb_cmd_cplt Out

ncb_event In

NCBENUM

This command enumerates LANA numbers. When you issue this command, set

ncb_buffer to a LANA_ENUM structure. On return, the length field of LANA_ENUM

returns the number of LANA numbers on the local machine. The lana field of

LANA_ENUM is filled with the LANA numbers. Table 22-13 describes the

characteristics of the NCBENUM command.

Table 22-13NCBENUM

Field In/Out Required

ncb_command In X

ncb_retcode Out

ncb_lsn

ncb_num

ncb_buffer In X

ncb_length In X

ncb_callname

ncb_name

ncb_rto

ncb_sto

ncb_post

ncb_lana_num In X

ncb_cmd_cplt Out

ncb_event

NCBFINDNAME

This command finds the location (machine name) of a name on the network. When

this command is issued, ncb_buffer is filled with a FIND_NAME_HEADER structure,

followed by one or more FIND_NAME_BUFFER structures. This command is

Microsoft Windows NT–specific and is not supported on any other Windows platforms.

Table 22-14 describes the characteristics of the NCBFINDNAME command.

Table 22-14NCBFINDNAME

Field In/Out Required

ncb_command In X

ncb_retcode Out

ncb_lsn

ncb_num

ncb_buffer In/Out X

ncb_length In X

ncb_callname In X

ncb_name

ncb_rto

ncb_sto

ncb_post In

ncb_lana_num In X

ncb_cmd_cplt Out

ncb_event In

NCBHANGUP

This command closes a specified connected session. All pending receive commands

for the session are terminated and return the “session closed” error message,

NRC_SCLOSED (0x0A). If either send or chain send commands are outstanding, the

hang up command delays until the command completes. This delay occurs whether

the commands are transferring data or waiting for the remote side to issue a receive

command. Additionally, if multiple outstanding NCBRECVANY commands exist, only

one of them returns an error code when the session is closed. For any other receive

command, each outstanding receive returns an error. Table 22-15 describes the

characteristics of the NCBHANGUP command.

Table 22-15NCBHANGUP

Field In/Out Required

ncb_command In X

ncb_retcode Out

ncb_lsn In X

ncb_num

ncb_buffer

ncb_length

ncb_callname

ncb_name

ncb_rto

ncb_sto

ncb_post In

ncb_lana_num In X

ncb_cmd_cplt Out

ncb_event In

NCBLANSTALERT

This is a Windows NT–only command that notifies the user of LAN failures that last for

more than one minute. However, in testing, this command did nothing in response to

several common LAN failures, such as disconnected network cables. Table 22-16

describes the characteristics of the NCBLANSTALERT command.

Table 22-16NCBLANSTALERT

Field In/Out Required

ncb_command In X

ncb_retcode Out

ncb_lsn

ncb_num

ncb_buffer

ncb_length

ncb_callname

ncb_name

ncb_rto

ncb_sto

ncb_post

ncb_lana_num In X

ncb_cmd_cplt Out

ncb_event

NCBLISTEN

This command listens for a connection from another process, local or remote. If the

first character of ncb_callname is an asterisk (*), a session is established with any

network adapter that issues an NCBCALL to the local name. The name making the

NCBCALL is returned in the ncb_callname field. If either a send or receive timeout is

specified, these timeout values are applied to all send and receive calls made on the

new session. Table 22-17 describes the characteristics of the NCBLISTEN command.

Table 22-17NCBLISTEN

Field In/Out Required

ncb_command In X

ncb_retcode Out

ncb_lsn Out

ncb_num

ncb_buffer

ncb_length

ncb_callname In/Out X

ncb_name In X

ncb_rto In

ncb_sto In

ncb_post In

ncb_lana_num In X

ncb_cmd_cplt Out

ncb_event In

NCBRECV

This command receives data from the specified session name. If more than one

command capable of receiving data is pending, they are processed in the following

order:

Receive (NCBRECV)1.

Receive-any for a specified name (NCBRECVANY)2.

Receive-any for any name (NCBRECVANY)3.

All commands with the same precedence are processed in first-in, first-out (FIFO)

order. If the buffer passed is not large enough to hold the data, the error

NRC_INCOMP (0x06) is returned. If this occurs, issue another receive command with

a larger buffer unless the send command was issued with either a timeout that expired

or a no-ack—in which case the data is lost. The ncb_length field is set to the amount

of data actually read on return. Table 22-18 describes the characteristics of the

NCBRECV command.

Table 22-18NCBRECV

Field In/Out Required

ncb_command In X

ncb_retcode Out

ncb_lsn In X

ncb_num In X

ncb_buffer In X

ncb_length In/Out X

ncb_callname

ncb_name

ncb_rto

ncb_sto

ncb_post In

ncb_lana_num In X

ncb_cmd_cplt Out

ncb_event In

NCBRECVANY

This command receives data from any session corresponding to the specified name.

This command can also be used to receive data destined for any local name by

setting the ncb_num field to 0xFF. Otherwise, simply set ncb_num to the network

number returned from adding a name to the local name table. Then any data pending

for that particular name will be picked up by this command. Also, a precedence order

exists for when multiple receive commands are outstanding. See the entry for

NCBRECV for more details.

When a session is closed by a local session close command, by the remote side

closing the session, or by a session abort command, any outstanding NRCRECVANY

commands for the specified name complete with the error NRC_SCLOSED (0x0A);

the ncb_lsn field of the NCB structure is set to the local session number that was

terminated. If no NCBRECVANY commands for that closed session are pending for

the specified name and an outstanding NCBRECVANY command exists for any

session (ncb_num is 0xFF), that command completes with the error NRC_SCLOSED

and with the ncb_lsn field set to the corresponding session number. Table 22-19

describes the characteristics of the NCBRECVANY command.

Table 22-19NCBRECVANY

Field In/Out Required

ncb_command In X

ncb_retcode Out

ncb_lsn Out

ncb_num In/Out X

ncb_buffer In X

ncb_length In/Out X

ncb_callname

ncb_name

ncb_rto

ncb_sto

ncb_post In

ncb_lana_num In X

ncb_cmd_cplt Out

ncb_event In

NCBRESET

This command resets the specified LANA number and affects certain environment

resources as follows:

If ncb_lsn is not 0, all resources associated with ncb_lana_num are freed.

If ncb_lsn is 0, all resources associated with ncb_lana_num are freed and new

resources are allocated. The ncb_callname[0] byte specifies the maximum number

of sessions, the ncb_callname[2] byte specifies the maximum number of names,

and the ncb_callname[3] byte requests that the application use the computer's

name (which has the name number 1).

Table 22-20 describes the characteristics of the NCBRESET command.

Table 22-20NCBRESET

Field In/Out Required

ncb_command In X

ncb_retcode Out

ncb_lsn In X

ncb_num In X

ncb_buffer

ncb_length

ncb_callname

ncb_name

ncb_rto

ncb_sto

ncb_post

ncb_lana_num In X

ncb_cmd_cplt Out

ncb_event

NCBSEND

This command sends data to the specified session partner. The maximum data size

that can be transmitted is 65,536 bytes (64 KB). If the remote side issues a hang up

command, all pending sends return the “session closed” error, NRC_SCLOSED

(0x0A). If more than one send command is pending, they are processed in FIFO

order. Table 22-21 describes the characteristics of the NCBSEND command.

Table 22-21NCBSEND

Field In/Out Required

ncb_command In X

ncb_retcode Out

ncb_lsn In X

ncb_num

ncb_buffer In X

ncb_length In X

ncb_callname

ncb_name

ncb_rto

ncb_sto

ncb_post In

ncb_lana_num In X

ncb_cmd_cplt Out

ncb_event In

NCBSENDNA

This command sends data to a specified session and does not wait for

acknowledgment from the session partner. Otherwise, the behavior of this command

is the same as that of NCBSEND. Table 22-22 describes the characteristics of the

NCBSENDNA command.

Table 22-22NCBSENDNA

Field In/Out Required

ncb_command In

ncb_retcode Out

ncb_lsn In X

ncb_num

ncb_buffer In X

ncb_length In X

ncb_callname

ncb_name

ncb_rto

ncb_sto

ncb_post In

ncb_lana_num In X

ncb_cmd_cplt Out

ncb_event In

NCBSSTAT

This command retrieves the status of a session. When calling this command,

ncb_buffer is set to a block of memory that is filled with a SESSION_HEADER

structure followed by one or more SESSION_BUFFER structures. If the first byte of

ncb_name is an asterisk (*), this command obtains the status for all sessions

associated with all names in the local name table. If the supplied buffer is too small,

the error NRC_INCOMP (0x06) is returned. If the buffer length is less than 4, the error

returned is NRC_BUFLEN (0x01). Table 22-23 describes the characteristics of the

NCBSSTAT command.

Table 22-23NCBSSTAT

Field In/Out Required

ncb_command In X

ncb_retcode Out

ncb_lsn

ncb_num Out

ncb_buffer In X

ncb_length In X

ncb_callname

ncb_name In X

ncb_rto

ncb_sto

ncb_post In

ncb_lana_num In X

ncb_cmd_cplt Out

ncb_event In

NCBUNLINK

This command unlinks the adapter and is provided for compatibility with earlier

versions of NetBIOS. It has no effect on Windows platforms.

About the Authors

Anthony Jones

Anthony Jones was born in San Antonio, Texas, and graduated with honors from the

University of Texas at San Antonio in 1996 with a bachelor's degree in computer

science. His undergraduate thesis was based upon optimizing the Icon compiler.

After graduation, Anthony worked for Southwest Research Institute, a nonprofit

contract research company in San Antonio. There he worked on a variety of projects,

including real-time embedded control systems and visualization and simulation

software, for customers ranging from the U.S. Air Force to the Weather Channel. In

1997, he moved to Washington State to work for Microsoft Developer Support on the

NetAPI team. Anthony recently moved to the Windows 2000 Core Networking

department, where he is a tester on the Winsock team.

In his spare time, Anthony enjoys mountain biking, skiing, hiking, photography, and

watching Futurama and The X-Files.

Jim Ohlund

Jim Ohlund works as a software design engineer for Microsoft's Internet Security and

Acceleration (ISA) Server test team in Redmond, Washington. He has worked in

many areas of the computer industry, from systems programming to developer

support to software testing.

In 1990, Jim received a bachelor's degree in computer science from the University of

Texas at San Antonio. Jim began his computer career while still in college by

developing personnel systems for the United States Department of Defense. He

expanded his working knowledge of computer networks and network programming in

1994 by developing terminal emulation software for Windows platforms. In 1996, Jim

joined Microsoft's Developer Support Networking API team, helping software

developers use many of the networking APIs described in this book.

When Jim is not working with computers, he likes to ski, snowboard, bicycle, and hike

in the beautiful Pacific Northwest.

	Cover
	LOC

	Dedication
	Acknowledgments
	Introduction
	Introduction to Winsock
	Winsock Headers and Libraries
	Initializing Winsock
	Error Checking and Handling
	Addressing a Protocol
	Creating a Socket
	Connection-Oriented Communication
	Connectionless Communication
	Miscellaneous APIs
	Windows CE
	Conclusion

	Winsock Design
	System Architecture
	Protocol Characteristics
	Winsock Catalog
	Conclusion

	Internet Protocol
	IPv4
	IPv6
	Address and Name Resolution
	Writing IP Version-Independent Programs
	Conclusion

	Other Supported Protocols
	Infrared Sockets
	IPX/SPX
	NetBIOS
	AppleTalk
	ATM
	Conclusion

	Winsock I/O Methods
	Socket Modes
	Socket I/O Models
	I/O Model Consideration
	Conclusion

	Scalable Winsock Applications
	APIs and Scalability
	Scalable Server Architecture
	Resource Management
	Server Strategies
	Winsock Direct and Sockets Direct Protocol
	Conclusion

	Socket Options and Ioctls
	Socket Options
	Ioctlsocket, WSAIoctl, and WSANSPIoctl
	Conclusion

	Registration and Name Resolution
	Background
	Name Space Models
	Registering a Service
	Querying a Service
	Conclusion

	Multicasting
	Multicast Semantics
	IP Multicasting
	Reliable Multicasting
	ATM Multipoint
	Conclusion

	Generic Quality of Service
	Background
	QOS and Winsock
	Terminating QOS
	Programming QOS
	Examples
	ATM and QOS
	Conclusion

	Raw Sockets
	Raw Socket Creation
	ICMP
	Using IP Header Include Option
	Conclusion

	The Winsock Service Provider Interface
	Layered Service Provider
	Name Space Providers
	Conclusion

	.NET Sockets Programming Using C#
	Overview
	Addressing Protocols
	Name Resolution
	Sending and Receiving Data
	Exception Handling
	Samples
	Conclusion

	The Microsoft Visual Basic Winsock Control
	Properties
	Methods
	Events
	UDP Example
	TCP Example
	Limitations
	Common Errors
	The Windows CE Winsock Control
	Conclusion

	Remote Access Service
	RAS Client
	Compiling and Linking
	Data Structures and Platform Compatibility Issues
	DUN 1.3 Upgrade and Windows 95
	RasDial
	Phonebook
	Connection Management
	VPN
	Conclusion

	IP Helper Functions
	Ipconfig
	Netstat
	Route
	ARP
	Conclusion

	NetBIOS
	The OSI Network Model
	Microsoft NetBIOS
	NetBIOS Programming Basics
	Common NetBIOS Routines
	Datagram Operations
	Miscellaneous NetBIOS Commands
	Platform Considerations
	Conclusion

	The Redirector
	Universal Naming Convention
	Multiple UNC Provider
	Network Providers
	Redirector
	Server Message Block
	Security
	Network Security
	A Practical Example
	Conclusion

	Mailslots
	Mailslot Implementation Details
	Basic Client/Server
	Additional Mailslot APIs
	Platform and Performance Considerations
	Conclusion

	Named Pipes
	Named Pipe Implementation Details
	Basic Server and Client
	Other API Calls
	Platform and Performance Considerations
	Conclusion

	Winsock Error Codes
	NetBIOS Command Reference
	NCBADDGRNAME
	NCBADDNAME
	NCBASTAT
	NCBCALL
	NCBCANCEL
	NCBCHAINSEND
	NCBCHAINSENDNA
	NCBDELNAME
	NCBDGRECV
	NCBDGRECVBC
	NCBDGSEND
	NCBDGSENDBC
	NCBENUM
	NCBFINDNAME
	NCBHANGUP
	NCBLANSTALERT
	NCBLISTEN
	NCBRECV
	NCBRECVANY
	NCBRESET
	NCBSEND
	NCBSENDNA
	NCBSSTAT
	NCBUNLINK

	About the Authors

