
Lab Manual - OS8 File System

1

Unit OS8: File System

8.6. Lab Manual

Lab Manual - OS8 File System

2

2

Copyright Notice
© 2000-2005 David A. Solomon and Mark Russinovich

These materials are part of the Windows Operating
System Internals Curriculum Development Kit,
developed by David A. Solomon and Mark E.
Russinovich with Andreas Polze

Microsoft has licensed these materials from David
Solomon Expert Seminars, Inc. for distribution to
academic organizations solely for use in academic
environments (and not for commercial use)

Lab Manual - OS8 File System

3

3

Roadmap for Section 8.6.

Lab Lab objective:s investigating:

List of registered file systems

System restore filter driver

Idle system I/O activity with Filemon

Multiple data streams on NTFS files

Hard and symbolic links (Junctions) on NTFS

Viewing the Master File Table (MFT)

NTFS information

This LabManual includes Lab objective:s investigating the the file system mechanisms
and concepts implemented inside the Windows operating system. Students are
expected to carry out Labs in addition to studying the learning materials in Unit OS8.

A thorough understanding of the concepts presented in Unit OS8: File System is a
prerequisite for these Labs.

Lab Manual - OS8 File System

4

4

List of Registered File Systems Lab

When I/O manager loads driver, it typically
names driver object according to file system

Not all driver objects of type file system driver
represent local/remote file systems

I.e.; Npfs (Named Pipe File System) is a network
API driver

WinObj and the System Information viewer
reveal list of registered file systems

(MMC snap-in on W2K, Msinfo32 on Server 2003)

Lab objective: Viewing the List of Registered File Systems

When the I/O manager loads a device driver into memory, it typically names the driver
object it creates to represent the driver so that it’s placed in the \Drivers object manager
directory. The driver objects for any driver the I/O manager loads that have a Type
attribute value of SERVICE_FILE_SYSTEM_DRIVER (2) are placed in the \FileSystem
directory by the I/O manager. Thus, using a tool such as Winobj (from
www.sysinternals.com), you can see the file systems that have registered on a system,
as shown in the following screen shot. (Note that some file system drivers also place
device objects in the \FileSystem directory.)

Lab Manual - OS8 File System

5

5

System Restore Lab

System Restore provides a way to restore a Windows
XP system to a previously known point

Not available on Windows 2000 or Server 2003

XP-compatible Setup may create a “restore point” before
installation begins

Restore works on per-volume basis

System restore filter driver attaches filter device objects
to FAT and NTFS objects (volumes)

Platform SDK provides SRSetRestorePoint and
SRRemoveRestorePoint APIs for installation programs

Lab investigates restore filter driver objects using kernel
debugger

Lab objective: Looking at System Restore Filter Device Objects

To monitor changes to files and directories, the System Restore filter driver must attach
filter device objects to the FAT and NTFS device objects representing volumes. In
addition, it attaches a filter device object to the device objects representing file system
drivers so that it can become aware of new volumes as they are mounted by the file
system and then subsequently attach filter device objects to them. You can see
System Restore’s device objects with a kernel debugger:
lkd> !drvobj\filesystem\sr
Driverobject(81543850) is for:
 \FileSystem\sr
DriverExtensionList: (id ,addr)
DeviceObjectlist:
 814ee370 81542dd0 81543728

In this sample output, the System Restore driver has three device objects. The first and
second objects are attached to NTFS file system device objects. The last one in the list
is named SystemRestore, so it serves as the interface to which the user-mode
components of System Restore direct commands. Let us further examine the first
device object:
lkd>!devobj814ee370
Device object (814ee370) is for:
 \FileSystem\sr DriverObject 81543850
Current Irp 00000000 RefCount 0 Type 00000008 Flags 00000000
DevExt 814ee428 DevObjExt 814ee570
ExtensionFlags (0x80000000) DOE_DESIGNATED_FDO
AttachedTo (Lower) 81532020 \FileSystem\Ntfs
Device queue is not busy.

Lab Manual - OS8 File System

6

6

Filemon Idle System Lab

Filemon shows all file activity as it occurs
ideal tool for troubleshooting file system–related
system and application failures

Filemon requires Load Driver and Debug privileges

Basic mode vs. advanced mode

I/O operations (IRPs) are tagged with friendly names

Access to NTFS metadata, paging I/O, System and
filemon process activity, fast I/O failures are reported
only in advanced mode

Lab uses filemon to examine file system activity
on idle system

Lab objective: Viewing File System Activity on an Idle System

 Windows file system drivers implement support for file change notification, which
enables applications to request notification of file system changes without polling for
them. The Windows functions for doing so include ReadDirectoryChangesW() and the
FindFirstChangeNotification(), FindNextChangeNofification() pair.

When you run Filemon on a system that’s idle, you should therefore not see the
repeated accesses to files or directories because that activity unnecessarily negatively
affects a system’s overall performance. Run Filemon, and after several seconds
examine the output log to see whether you can spot polling behavior. Right-click on an
output line associated with polling and choose Process Properties from the context
menu to view details of the process performing the activity.

Lab Manual - OS8 File System

7

7

Filemon App Error Lab

Applications sometimes present error messages
in response to an error condition that do not
reveal the root cause of the error.

These error messages can be frustrating because
they might lead you to spend time diagnosing or
resolving problems that do not exist.

If the error message is related to a file system issue,
Filemon will show what underlying errors might
have occurred prior to the appearance of an error
message.

Lab objective: Seeing an Error’s Root Cause with Filemon

In this Lab objective:, you’ll set permission on a directory and then perform a file save
operation in Notepad that results in a misleading error message. Filemon’s trace shows
the actual error and the source of the message displayed in Notepad’s error dialog box.

1.Run Filemon, and set the include filter to “notepad.exe”.

2.Open Explorer, and create a directory named “Test” in a directory on an NTFS
volume. (In this example, the root directory was used.)

3. Edit the security permissions on the Test directory to remove all access. This might
require you to open the Advanced Security Settings dialog box and use the settings on
the Permissions tab to remove inherited security. When you apply the modified security,
Explorer should warn you that no one will have access to the folder.

4.Run Notepad, and enter some text into its window. Then select the Save entry in the
File menu. In the File Name field of the Save dialog box, enter c:\test\test.txt (assuming
the folder you created is on the volume C:).

5.Notepad will display the error message “c:\\test\test.txt - Path does not exist”, implying
that C:\\test does not exist.

Filemon shows that Notepad tried to open C:\Test and got an access-denied error.
Immediately, it tried to open the C:\Test\Test.txt directory and received a file-not-found
error because the directory does not exist.

The error message Notepad displays, “Path does not exist”, is consistent with a file-
not-found error, not an access-denied error. So it appears that Notepad first tried to
open the directory, and when that failed it assumed for some reason that the name
C:\Test\Test.txt was the name of a directory instead of a file. When it couldn’t open that
directory, Notepad presented the error message, but the root cause, which Filemon
reveals, is the access denied error.

Lab Manual - OS8 File System

8

8

NTFS Streams Lab

An NTFS has a default, unnamed data stream

Applications can create additional streams

Each stream has different allocation size, actual
size, and valid data length

Windows Explorer uses streams to store summary
information for files (right-click -> properties)

Server for Macintosh stores resource fork in a
separate stream

Streams are named <file>”:”<stream>

Lab objective: Looking at Streams

 Most Windows applications aren’t designed to work with alternate named streams, but
both the echo and more commands are. Thus, a simple way to view streams in action is
to create a named stream using echo and then display it using more. The following
command sequence creates a file named test with a stream named stream:

C:\>echo hello > test:stream
C:\>more < test:stream
hello
C:\>

If you perform a directory listing, test’s file size doesn’t reflect the data stored in the
alternate stream because NTFS returns the size of only the unnamed data stream for
file query operations, including directory listings.

C:\>dir test
 Volume in drive C is WINDOWS
 Volume Serial Number is3991-3040

 Directory of C:\ 08/01/00 02:37p 0 test
1 File(s) 0 bytes 112,558,080 bytes free

You can determine what files and directories on your system have alternate data
streams with the Streams utility from www.sysinternals.com.

Lab Manual - OS8 File System

9

9

Hard links and Junctions - Lab

A hard link allows multiple paths to refer to the
same file

Created via CreateHardLink() or ln() functions

ln file file1 creates a new name for file

NTFS also supports Junctions (symbolic links)

Redirect file/pathname translation to another dir

Based on NTFS reparse points

No API functions to create reparse points (must use
DeviceIoControl() or Linkd.exe / Junction.exe)

Linkd \etc C:\Windows\system32 creates a new
name for the Windows system32 directory

Lab objective: Creating a Junction

Windows doesn’t include any tools for creating junctions, but you can create a junction
with either the Junction tool from www.sysinternals.com (which includes source code)
or the Windows resource kits tool Linkd. The Linkd tool also lets you view the definition
of existing junctions, and Junction lets you view information about junctions and other
reparse point tags.

C:> Linkd.exe \etc C:\Windows\system32

With the Posix subsystem installed, ln.exe becomes available that allows for creation of
hard links:

C:> echo “hello again” > file
C:> ln.exe file file1
C:> more < file1
hello again
C:>

Lab Manual - OS8 File System

10

10

Viewing the MFT

In NTFS, all data on a volume is stored in files,
data structures used to locate and retrieve files,

bootstrap data,

the bitmap that records the allocation state of the entire
volume (the NTFS metadata).

The MFT is the heart of an NTFS volume
implemented as an array of file records.

The size of each file record is fixed at 1 KB, regardless of
cluster size.

Logically, the MFT contains one record for each file on the
volume, including a record for the MFT itself.

MFT can be inspected - it is only a file
Nfi.exe utility from OEM Support Tools

Lab objective: Viewing the MFT

The Nfi utility included in the OEM Support Tools (part of the Windows debugging tools
and available for download at support.microsoft.com/support/kb/articles/Q253/0/66.asp)
allows you to dump the contents of an NTFS volume’s MFT as well as to translate a
volume cluster number or physical-disk sector number (on non-RAID volumes only) to
the file that contains it, if it’s part of a file. The first 16 entries of the MFT are reserved
for metadata files, but optional metadata files (which are present only if a volume uses
an associated feature) fall outside this area: \$Extend\$Quota, \$Extend\$ObjId,
\$Extend\$UsnJrnl, and \$Extend\$Reparse.
C:\>nfi G:\
NTFS File Sector Information Utility.
Copyright(C) Microsoft Corporation 1999.All rightsreserved.

File 0 Master File Table ($Mft)
 $STANDARD_INFORMATION (resident)
 $FILE_NAME (resident)
 $DATA(nonresident)

 logical sectors32-52447 (0x20-0xccdf)
 $BITMAP (nonresident)

 logical sectors16-23 (0x10-0x17)

File 1 MasterFile Table Mirror ($MftMirr)
 $STANDARD_INFORMATION (resident)
 $FILE_NAME (resident)
 $DATA(nonresident)

 logical sectors2048728-2048735 (0x1f42d8-0x1f42df)

File 2 LogFile ($LogFile)
 $STANDARD_INFORMATION (resident)
 $FILE_NAME (resident)
 $DATA(nonresident)

 logical sectors2048736-2073343 (0x1f42e0-0x1fa2ff)

Lab Manual - OS8 File System

11

11

View NTFS Information

When it first accesses a volume, NTFS must mount it
 read metadata from the disk

construct internal data structures so that it can process
application file system accesses.

To mount the volume, NTFS looks in the boot sector to
find the physical disk address of the MFT.

The MFT’s own file record is the first entry in the table;

The second file record points to a file located in the middle of
the disk called the MFT mirror (filename $MftMirr) that
contains a copy of the first few rows of the MFT.

NTFSInfo.exe and Fsutil.exe tools reveal crucial
information about MFT placement

Lab objective: Viewing NTFS Information

 In Windows 2000, you can use the NTFSInfo tool from www.sysinternals.com to view
information about an NTFS volume, including the placement and size of the MFT and
MFT zone; and in Windows XP and Windows Server 2003, you can use the built-in
Fsutil.exe command-line program:
C:\Windows\System32>fsutil fsinfo ntfsinfoc:

NTFS Volume Serial Number : 0xe82828e72828b68a
Version : 3.1
NumberSectors : 0x0000000001e461b7
TotalClusters : 0x00000000003c8c36
Free Clusters : 0x00000000000164c8
TotalReserved : 0x00000000000001b0
BytesPerSector : 512
BytesPerCluster: 4096
BytesPerFileRecordSegment : 1024
Clusters PerFileRecordSegment: 0
MftValidData Length : 0x0000000006413800
MftStartLcn : 0x00000000000c5294
Mft2 StartLcn : 0x000000000002f427
MftZone Start : 0x00000000003bf7e0
MftZone End : 0x00000000003bf800

