
Lab Manual - OS6 Device Management

1

Windows Operating System Internals - by David A. Solomon and Mark E. Russinovich with Andreas Polze

Unit OS6: Device Management

6.4. Lab Manual



Lab Manual - OS6 Device Management

2

2

Copyright Notice
© 2000-2005 David A. Solomon and Mark Russinovich

These materials are part of the Windows Operating
System Internals Curriculum Development Kit,
developed by David A. Solomon and Mark E.
Russinovich with Andreas Polze

Microsoft has licensed these materials from David
Solomon Expert Seminars, Inc. for distribution to
academic organizations solely for use in academic
environments (and not for commercial use)



Lab Manual - OS6 Device Management

3

3

Roadmap for Section 6.4.

Lab experiments investigating:

Viewing Security Processes

Looking at the SAM

Viewing Access Tokens

Looking at Security Identifiers (SIDs)

Viewing a Security Descriptor structure

Investigating ordering of Access Control Entries (ACEs)

Investigating Privileges

This Lab Manual includes experiments investigating the the I/O system mechanisms
and concepts implemented inside the Windows operating system. Students are
expected to carry out Labs in addition to studying the learning materials in Unit OS6.

A thorough understanding of the concepts presented in Unit OS6: Device Management
is a prerequisite for these Labs.



Lab Manual - OS6 Device Management

4

4

Lab: Viewing the Installed Driver
List

View the list of System Drivers in the Software
Environment section of the Windows Information
utility (Msinfo32.exe)

Note: the distinction between File System Drivers
and Kernel Drivers is from the Type value in the
driver’s Registry key. This distinction is
meaningless.

Lab objective: Viewing the Loaded Driver List

You can see a list of registered drivers on a Windows 2000 system by going to the
Drivers section of the Computer Management Microsoft Management Console (MMC)
snapin or by right-clicking the My Computer icon on the desktop and selecting Manage
from  the context menu. (The Computer Management snap-in is in the Programs/
Administrative Tools folder of the Start menu.) Navigate to the Drivers section within
Computer  Management by expanding System Tools, System Information, Software
Environment  and selecting Drivers.

In Windows XP and Windows Server 2003, you can obtain the identical information as
reported by the Windows 2000 Computer Management MMC snap-in by executing the
Msinfo32.exe utility from the Run dialog box of the Start menu. Select the System
Drivers entry under Software Environment to see the list of drivers configured on the
system. Those that are loaded have the text “Yes” in the Started column.

You can also view the list of loaded kernel-mode drivers with Process Explorer from
www.sysinternals.com. Run Process Explorer, select the System process, and select
DLLs  from the Lower Pane menu entry in the View menu. Process Explorer lists the
loaded  drivers, their names, version information including company and description,
and load  address (assuming you have configured Process Explorer to display the
corresponding  columns).



Lab Manual - OS6 Device Management

5

5

Lab: Viewing Installed Drivers

Open a command prompt
and type “set
devmgr_show_nonpresent
_devices=1”

Then enter
“devmgmt.msc”

Select “show hidden
devices” in the view menu

Lab Objective: Viewing Installed Drivers

This lab presents the installed drivers from the viewpoint of the Plug and Play database.
The first set of devices are plug and play devices.  The non-plug and play devices are
listed afterwards.  Setting the environment variable devmgr_show_nonpresent_devices
to 1 causes all devices that have ever been installed on the system to be shown (vs just
devices that are currently present).



Lab Manual - OS6 Device Management

6

6

Lab: Viewing Loaded Drivers

List the loaded drivers with Drivers.exe from the
Resource Kit

List the loaded drivers “lm kv” in the kernel
debugger

Lab objective: Viewing the Loaded Driver List

If you’re looking at a crash dump (or live system) with the kernel debugger, you  can get
a similar display with the kernel debugger lm kv command:
kd>lmkv
start end module name
804d4000 806aa280 nt (pdbsymbols) c:\Symbols\ntoskrnl.pdb\
FB1EDACE71FB4812A5D5132819D72E523\ntoskrnl.pdb
  Loaded symbol image file: ntoskrnl.exe
  Image path: ntoskrnl.exe
  Timestamp: Thu Apr 24 10:57:43 2003 (3EA80977) Checksum: 001E311B
  ImageSize: 001D6280
  File version: 5.1.2600.1151
  Product version: 5.1.2600.1151
  File flags: 0(Mask 3F)
  File OS: 40004 NT Windows
  File type: 1.0 App
  File date: 00000000.00000000
  Translations: 0409.04b0
  CompanyName: MicrosoftCorporation
  ProductName: Microsoft" Windows«Operating System
  InternalName: ntoskrnl.exe
  OriginalFilename: ntoskrnl.exe
  ProductVersion: 5.1.2600.1151
  FileVersion: 5.1.2600.1151 (xpsp2.030422-1633)
  FileDescription: NTKernel& System
  LegalCopyright: Microsoft Corporation. All rights reserved.
806ab000806bde80 hal (deferred)
  Imagepath:halacpi.dll
  Timestamp: Thu Aug29 03:05:022002 (3D6DD5AE) Checksum: 000203BD
  ImageSize :00012E80
  Translations: 0000.04b0 0000.04e00409.04b00409.04e0
a8b8e000a8bb4e80 kmixer (deferred)
  Imagepath:\SystemRoot\system32\drivers\kmixer.sys
  Timestamp: Thu Aug29 03:32:282002 (3D6DDC1C) Checksum: 00032574
  ImageSize :00026E80
  Translations: 0000.04b0 0000.04e00409.04b00409.04e0



Lab Manual - OS6 Device Management

7

7

Lab: Driver Verifier

Enable verification for all drivers with all options

Reboot

Does the system still boot?

If not, use Last Known Good to reboot

After 7 minutes low resource simulation will
begin

Reboot again and within 7 minutes turn off
verification and reboot again!

Lab objective: Driver Verifier
The Driver Verifier includes several options that check  the correctness of I/O-related operations.

• I/O Verification When this option is selected, the I/O manager allocates IRPs for verified drivers from a
special pool and their usage is tracked. In addition, the Verifier  crashes the system when an IRP is
completed that contains an invalid status and when  an invalid device object is passed to the I/O
manager. (In Windows 2000, this is called  I/O Verification Level 1).

• I/O Verification Level 2 This option exists only in Windows 2000 and results in more  rigorous testing of
IRP completion operations and stack usage.

• Enhanced I/O Verification This option was introduced in Windows XP, and it monitors  all IRPs to
ensure that drivers mark them correctly when completing them asynchronously, that they manage
device stack locations correctly, and that they delete device  objects only once. In addition, the Verifier
randomly stresses drivers by sending them  fake power management and WMI IRPs, changing the
order that devices are enumerated, and adjusting the status of PnP and power IRPs when they
complete to test for  drivers that return incorrect status from their dispatch routines.

• DMA Checking DMA – Direct Memory Access This is a hardware-supported mechanism  that allows
devices to transfer data to or from physical memory without involving the  CPU. The I/O manager
provides a number of functions that drivers use to schedule and  control DMA operations, and this
option enables checks for correct use of the functions  and for the buffers that the I/O manager supplies
for DMA operations.

• Disk Integrity Verification When you enable this option, which is available only in Windows Server 2003,
the Verifier monitors disk read and write operations and checksums  the associated data. When disk
reads complete, it checks to see whether it has a previously stored checksum and crashes the system
if the new and old checksum don’t  match, because that would indicate corruption of the disk at the
hardware level.

• SCSI Verification This was introduced in Windows XP and is not visible in the Driver  Verifier option
dialog box. However, it is enabled when you select a SCSI miniport driver  for verification and enable at
least one of the other options.



Lab Manual - OS6 Device Management

8

8

Lab: Viewing \Device Directory

Use Winobj to view driver objects in the \Device directory

Lab objective: Looking at the \Device Directory

You can use the Winobj tool from www.sysinternals.com or the !object kernel debugger
command to view the device names under \Device in the object manager namespace.
The following screen shot shows an I/O manager–assigned symbolic link that points to
a device object in \Device with an autogenerated name.

When you run the !object kernel debugger command and specify the \Device directory,
you should see output similar to the following:

kd> !object \device

Object: e100c4a0 Type:(8a4f3178)Directory
ObjectHeader: e100c488
HandleCount:0 PointerCount:301
Directory Object: e10011e8 Name:Device
65535symbolic links snapped through this directory

Hash Address Type Name
----- ------ ---- ----
00 8a437398 Device KsecDD

8a4a56f0 Device Ndis
8a0ed5c0 Device ProcExp
8a1ddb40 Device Beep
8a336d38 Device 0000008e
8a4ed730 Device 00000032
8a4ee4f0 Device 00000025
8a4b5030 Device 00000019



Lab Manual - OS6 Device Management

9

9

Lab: Device Name Mappings

Use Winobj to view symbolic links that define the Windows device
namespace

Lab objective: Viewing Windows Device Name to Windows  Device Name Mappings

You can examine the symbolic links that define the Windows device namespace with
the Winobj utility from www.sysinternals.com. Run Winobj, and click on the \??
Directory on Windows 2000 or \Global?? on Windows XP or Windows Server 2003.

Notice the symbolic links on the right. Try double-clicking on the device C:

C: is a symbolic link to the internal device named \Device\HarddiskVolume1, or the  first
volume on the first hard drive in the system. The COM1 entry in Winobj is a symbolic
link to \Device\Serial0, and so forth. Try creating your own links with the subst
command at a command prompt.



Lab Manual - OS6 Device Management

10

10

Lab: Viewing Defined Driver Objects

Use Winobj to view driver objects in the \Drivers and \FileSystem
directories

Drivers in the FileSystem directory are those that were marked as file
system drivers in their Registry key’s Type value

Lab objective: Displaying Driver and Device Objects

You can display driver and device objects with the kernel debugger !drvobj and !devobj
commands, respectively. In the following example, the driver object for the keyboard
class driver is examined, and its lone device object viewed:
kd> !drvobj kbdclass
Driver object (81869cb0) is for:
\Driver\Kbdclass
Driver ExtensionList:(id, addr)

Device Object list: 81869310
kd> !devobj 81869310
Device object (81869310) is for:
KeyboardClass0 \Driver\Kbdclass DriverObject 81869cb0
Current Irp a57a0e90 RefCount 0 Type 0000000b Flags 00002044
DevExt 818693c8 DevObjExt 818694b8
ExtensionFlags (0000000000)  AttachedDevice (Upper) 818691e0 \Driver\Ctrl2cap
AttachedTo (Lower) 81869500 \Driver\i8042prt
Device queue is busy -- Queueempty.

Notice that the !devobj command also shows you the addresses and names of any
device  objects that the object you’re viewing is layered over (the AttachedTo line) as
well as the  device objects layered on top of the object specified (the AttachedDevice
line)



Lab Manual - OS6 Device Management

11

11

Lab: Viewing the TCP/IP Driver
Object and its Device Objects

In the kernel debugger type “!drvobj tcpip 7”
Note the DriverEntry function, which the I/O
Manager calls to start the driver

Note the I/O command dispatch function table

Find the device objects for TCP, UDP and IP
Type “!devobj <address>” with the address of each
of the listed device objects

Find the TCPIP driver object in Winobj

Find the TCP device object in Winobj

Lab objective: Looking at TCP/IP’s Device Objects

Using the kernel debugger to look at a live system, you can examine TCP/IP’s device
objects. After performing the !drvobj command to see the addresses of each of the
driver’s device objects, execute !devobj to view the name and other details about the
device object.
lkd>.reload tcpip.sys

lkd>!drvobj tcpip 7

Driver object (8a01ada0) is for:
  \Driver\Tcpip
  Driver ExtensionList:(id, addr)

Device Object list:
8a0dbc88 8a0dc958 8a0dcd80 8a0eff18  8a0f32a0

lkd>!devobj 8a0dbc88
Device object (8a0dbc88) is for:
  RawIp \Driver\Tcpip DriverObject 8a01ada0
Current Irp 00000000 RefCount 3 Type 00000012 Flags 00000050
Dacl e100d19c DevExt 00000000 DevObjExt 8a0dbd40
ExtensionFlags (0000000000)
Device queue is not busy.

lkd>!devobj 8a0dc958
Device object (8a0dc958) is for:
  Udp \Driver\Tcpip DriverObject 8a01ada0
Current Irp00000000 RefCount 41 Type 00000012 Flags 00000050
Dacl e100d19c DevExt 00000000 DevObjExt 8a0dca10
ExtensionFlags (0000000000)
Device queue is not busy.

(..output shortened due to limited space..)



Lab Manual - OS6 Device Management

12

12

Lab: Viewing Device Handles

Any process that has an open handle to a device will have a
corresponding file object in its handle table

Can be display with Process Explorer

Lab objective: Viewing Device Handles

Any process that has an open handle to a device will have a file object in its handle
table  corresponding to the open instance. You can view these handles with Process
Explorer  from www.sysinternals.com by selecting a process, checking Show Lower
Pane in the  View menu and Handles in the Lower Pane View submenu of the View
menu. Sort by  the Type column and scroll to where you see the handles that represent
file objects,  which are labeled as “File”.

In this example the Csrss process has handles open to file objects that represent open
instances of devices with autogenerated names as well as ones that belong to the
Terminal Server Driver. You can look at the specific file object in the kernel debugger
by first  identifying the address of the object.

 The following command reports information on  the highlighted handle (handle value
0xB8) in the preceding screen shot, which is in the  Csrss.exe process that has a
process ID of 2332 (0x91c): 0:
kd> !handle b8 f91c
processor number 0
Searching for Process with Cid==91c
PROCESS 86a6c020 SessionId: 0 Cid: 091c Peb: 7ffde000 ParentCid:028c  
    DirBase: 1158a000 ObjectTable: e1b5d080 HandleCount: 643.
    Image: csrss.exe
New version of handle table at e2b44000 with 643 Entries in use
00B8: Object: 866ae9e8 GrantedAccess: 0012019f
Object: 866ae9e8 Type:(86fe8ad0) File
  ObjectHeader: 866ae9d0
    HandleCount:1 PointerCount:3

Because the object is a file object, you can get information about it with the !fileobj
command:  0:kd>!fileobj 866ae9e8



Lab Manual - OS6 Device Management

13

13

Lab: Looking at a file object

Open the handle view in Process Explorer and
look at handles of type “file”

Identify ones that represent real devices

Type “dt _FILE_OBJECT” in the kernel
debugger

You can look at an actual file object with !fileobj

Lab objective: Viewing the File Object Data Structure

You can view the contents of the kernel-mode file object data structure with the kernel
debugger’s dt command:
kd> dt nt!_file_object
nt!_FILE_OBJECT

+0x000 Type : Int2B
+0x002 Size : Int2B
+0x004 DeviceObject : Ptr32_DEVICE_OBJECT
+0x008 Vpb : Ptr32_VPB
+0x00c FsContext : Ptr32Void
+0x010 FsContext2 : Ptr32Void
+0x014 SectionObjectPointer: Ptr32_SECTION_OBJECT_POINTERS
+0x018 PrivateCacheMap : Ptr32Void
+0x01c FinalStatus : Int4B
+0x020 RelatedFileObject:Ptr32 _FILE_OBJECT
+0x024 LockOperation : UChar
+0x025 DeletePending : UChar
+0x026 ReadAccess : UChar
+0x027 WriteAccess : UChar
+0x028 DeleteAccess : UChar
+0x029 SharedRead : UChar
+0x02a SharedWrite : UChar
+0x02b SharedDelete : UChar
+0x02c Flags : Uint4B
+0x030 FileName : _UNICODE_STRING
+0x038 CurrentByteOffset:_LARGE_INTEGER
+0x040 Waiters : Uint4B
+0x044 Busy : Uint4B
+0x048 LastLock : Ptr32Void
+0x04c Lock : _KEVENT
+0x05c Event : _KEVENT
+0x06c CompletionContext:Ptr32 _IO_COMPLETION_CONTEXT



Lab Manual - OS6 Device Management

14

14

Lab: Looking at Driver’s Dispatch
Routines

Most drivers specify dispatch routines to handle
only a subset of possible major function  codes

create (open), read, write, device I/O control, power,
Plug and Play, System  (for WMI commands), and
close

File system drivers are an example of a driver type
that often fills in  most or all of its dispatch entry
points with functions

The I/O manager sets any dispatch  entry points
that a driver doesn’t fill to point to its own
IopInvalidDeviceRequest

Lab objective: Looking at Driver Dispatch Routines
You can obtain a listing of the functions a driver has defined for its dispatch routines by  entering a 7 after
the driver object’s name (or address) in the !drvobj kernel debugger  command. The following output
shows that drivers support 28 IRP types.
kd> !drvobj kbdclass 7
Driver object (8a238900) is for:
  \Driver\Kbdclass  Driver ExtensionList:(id, addr)
Device Object list:
  8a189030 8a2501f8

DriverEntry: f7822d22kbdclass!DriverEntry
DriverStartIo: 00000000
DriverUnload:  00000000
Dispatchroutines:
[00]IRP_MJ_CREATE f781fd3b kbdclass!KeyboardClassCreate
[01]IRP_MJ_CREATE_NAMED_PIPE 804eef8e nt!IopInvalidDeviceRequest
[02]IRP_MJ_CLOSE f781ff4c kbdclass!KeyboardClassClose
[03]IRP_MJ_READ f7820ba5 kbdclass!KeyboardClassRead
[04]IRP_MJ_WRITE 804eef8e nt!IopInvalidDeviceRequest
[05]IRP_MJ_QUERY_INFORMATION 804eef8e nt!IopInvalidDeviceRequest
[06]IRP_MJ_SET_INFORMATION 804eef8e nt!IopInvalidDeviceRequest
[07]IRP_MJ_QUERY_EA 804eef8e nt!IopInvalidDeviceRequest
[08]IRP_MJ_SET_EA 804eef8e nt!IopInvalidDeviceRequest
[09]IRP_MJ_FLUSH_BUFFERS f781fcbe kbdclass!KeyboardClassFlush
[0a]IRP_MJ_QUERY_VOLUME_INFORMATION 804eef8e nt!IopInvalidDeviceRequest
[0b] IRP_MJ_SET_VOLUME_INFORMATION 804eef8e nt!IopInvalidDeviceRequest
[0c] IRP_MJ_DIRECTORY_CONTROL 804eef8e nt!IopInvalidDeviceRequest
[0d] IRP_MJ_FILE_SYSTEM_CONTROL 804eef8e nt!IopInvalidDeviceRequest
[0e] IRP_MJ_DEVICE_CONTROL f7821829 kbdclass!KeyboardClassDevice Control
[0f] IRP_MJ_INTERNAL_DEVICE_CONTROL f7821200 kbdclass!KeyboardClassPass Through
[10] IRP_MJ_SHUTDOWN 804eef8e nt!IopInvalidDeviceRequest
[11] IRP_MJ_LOCK_CONTROL 804eef8e nt!IopInvalidDeviceRequest
[12] IRP_MJ_CLEANUP f781fc84 kbdclass!KeyboardClassCleanup
[13] IRP_MJ_CREATE_MAILSLOT 804eef8e nt!IopInvalidDeviceRequest
[14] IRP_MJ_QUERY_SECURITY 804eef8e nt!IopInvalidDeviceRequest
[15] IRP_MJ_SET_SECURITY 804eef8e nt!IopInvalidDeviceRequest
[16] IRP_MJ_POWER f7821f51 kbdclass!KeyboardClassPower
[17] IRP_MJ_SYSTEM_CONTROL f7821649 kbdclass!KeyboardClassSystem Control
[18] IRP_MJ_DEVICE_CHANGE 804eef8e nt!IopInvalidDeviceRequest
[19] IRP_MJ_QUERY_QUOTA 804eef8e nt!IopInvalidDeviceRequest
[1a] IRP_MJ_SET_QUOTA 804eef8e nt!IopInvalidDeviceRequest
[1b] IRP_MJ_PNP f78206c1 kbdclass!KeyboardPnP



Lab Manual - OS6 Device Management

15

15

Lab: Examine Interrupt Intervals

Peripheral Device
Controller

CPU Interrupt
Controller

CPU Interrupt
Service Table

0

2

3

n

ISR Address

Spin Lock

Dispatch
Code

Interrupt
Object

Read from device

Acknowledge-
Interrupt

Request DPC

Driver ISR

Raise IRQL

Lower IRQL

KiInterruptDispatch

Grab Spinlock

Drop Spinlock

Lab objective: Examining Interrupt Internals

Using the kernel debugger, you can view details of an interrupt object, including its
IRQL, ISR address, and custom interrupt dispatching code. First, execute the !idt
command and locate the entry that includes a reference to
I8042KeyboardInterruptService,  the ISR routine for the PS2 keyboard device:
31: 8a39dc3ci8042prt!I8042KeyboardInterruptService(KINTERRUPT 8a39dc00)

To view the contents of the interrupt object associated with the interrupt, execute dt
nt!_kinterrupt with the address following KINTERRUPT:
kd> dt nt!_kinterrupt 8a39dc00

nt!_KINTERRUPT
+0x000Type : 22
+0x002Size : 484
+0x004InterruptListEntry :_LIST_ENTRY [0x8a39dc04- 0x8a39dc04 ]
+0x00cServiceRoutine : 0xba7e74a2 i8042prt!I8042KeyboardInterruptService+0
+0x010ServiceContext : 0x8a067898
+0x014SpinLock : 0
+0x018TickCount : 0xffffffff
+0x01cActualLock : 0x8a067958 -> 0
+0x020DispatchAddress : 0x80531140 nt!KiInterruptDispatch+0
+0x024Vector : 0x31  +0x028Irql : 0x1a’’
+0x029SynchronizeIrql : 0x1a’’
+0x02aFloatingSave : 0’’

…

In this example, the IRQL Windows assigned to the interrupt is 0x1a (which is 26 in
decimal). Because this output is from a uniprocessor x86 system, we calculate that the
IRQ is 1, because IRQLs on x86 uniprocessors are calculated by subtracting the IRQ
from 27. We can verify this by opening the Device Manager, locating the PS/2 keyboard
device, and viewing its  resource assignments.



Lab Manual - OS6 Device Management

16

16

Lab: Find an IRP

Type “!irpfind” in the kernel debugger

Locate an IRP aimed at the TCP/IP driver

Type “!irp <address>” on the IRP

Look at the command type the active stack location (the one with the
“>” symbol)

Correlate that against the TCP/IP driver’s dispatch table: “!drvobj
\driver\tcpip 7”

Type “!devobj <address>” to view the device object

Type “!fileobj <address>” to view the file object

>[  c, 2]   1  1 86fb2488 861a4a40 00000000-00000000    pending

       \Driver\Tcpip

Lab objective: Examining IRPs

In this experiment, you’ll find an uncompleted IRP on the system, and you’ll determine
the IRP type, the device at which it’s directed, the driver that manages the device, the
thread that issued the IRP, and what process the thread belongs to. At any point in time,
there are at least a few uncompleted IRPs on a system. This is  because there are
many devices to which applications can issue IRPs that a driver will  only complete
when a particular event occurs, such as data becoming available. One  example is a
blocking read from a network endpoint. You can see the outstanding IRPs  on a system
with the !irpfind kernel debugger command:
kd>!irpfind  unable to get large pool allocationtable - either wrong symbols
or pool tagging  is disabled

Searching NonPaged pool (82502000 :8a502000) for Tag: Irp?

  Irp     [Thread]  irpStack: (Mj,Mn) DevObj [Driver]
89695868 [00000000] Irp is complete (CurrentLocation4 >StackCount3)
0x43776f56
89712008 [8a29d7c0] irpStack: (e,9) 8a19e208 [\Driver\AFD]
89716008 [8a29d7c0] irpStack: (e,9) 8a19e208 [\Driver\AFD]
  ... 89cb3928 [8a3acbc0] irpStack: (3, 0) 8a09a030 [ \Driver\Kbdclass]
89cb3c88 [89cb1da8]irpStack: (c,2) 8a436020 [\FileSystem\Ntfs]
89cb4640 [8a165498]irpStack: (e,9) 8a19e208 [\Driver\AFD]

The highlighted entry in the output describes an IRP that is directed at the Kbdclass
driver, so it is likely the IRP that was issued by the Windows subsystem raw input
thread  that reads keyboard input. Next step is examining the IRP with the !irp
command:
kd>!irp 8a1716f0



Lab Manual - OS6 Device Management

17

17

Lab: Find an IRP

Look at the issuing thread and process:

Open Process Explorer and go to the threads
tab of the owning process

Look at the stack of the thread to determine what its
purpose is

Irp is active with 3 stacks 1 is current Mdl = 809d45c8 
Associated Irp = 80988e68 Thread 80987da0: Irp stack trace. 

Lab objective: Looking at a Thread’s Outstanding IRPs
When you use the !thread command, it prints any IRPs associated with the thread. Run  the kernel
debugger with live debugging, and locate the Service Control Manager process (Services.exe) in the
output generated by the !process command:
lkd> !process 0 0
  **** NT ACTIVE PROCESS DUMP****
...
PROCESS 8a238da8 SessionId:0 Cid: 02a8 Peb:7ffdf000 ParentCid:027c
  DirBase:14fac000 ObjectTable:e1c3e008 HandleCount: 365.
  Image:SERVICES.EXE
...

Then dump the threads for the process by executing the !process command on the process object. You
should see many threads, with most of them having IRPs reported in  the IRP List area of the threads:
kd>!process 8a238da8
PROCESS 8a238da8 SessionId:0 Cid: 02a8 Peb:7ffdf000 ParentCid:027c
  DirBase:14fac000 ObjectTable:e1c3e008 HandleCount: 365.
  Image:SERVICES.EXE
  VadRoot 8a1be328 Vads 88 Clone 0 Private 346. Modified 37. Locked 0.
  DeviceMape10087c0
…
THREAD 8a124870 Cid 02a8.0338 Teb:7ffd8000 Win32Thread:00000000 WAIT:
(WrQueue) UserModeNon-Alertable

8a2dc620 Unknown
8a124960 NotificationTimer

                     IRP List:  8a2c2c00: (0006,0094) Flags:00000900 Mdl: 00000000
8a20f770: (0006,0094) Flags:00000900 Mdl:00000000
8a437780: (0006,0094)Flags:00000900 Mdl:00000000

Choose an IRP, and examine it with the !irp command:
lkd>!irp 8a2c2c00
Irp is active with 1stacks1is current(= 0x8a2c2c70)
No Mdl Thread 8a124870: Irpstack trace.
cmd flg   cl Device File Completion-Context
 >[ 3, 0] 0     1 8a0e5680 8a26e4b8 00000000-00000000 pending
\Driver\Npfs  Args: 00000400 00000000 00000000 00000000



Lab Manual - OS6 Device Management

18

18

Lab: Looking at a Device Stack

Use the !devstack command to look at a driver stack

0: kd> !devstack keyboardclass0

  !DevObj   !DrvObj            !DevExt   ObjectName

  86e40530  \Driver\Ctrl2cap   86e405e8

> 86e42160  \Driver\Kbdclass   86e42218  KeyboardClass0

  86e3f020  \Driver\i8042prt   86e3f0d8

  86fc9650  \Driver\ACPI       86fccea0  0000006b

!DevNode 86fc85e8 :

  DeviceInst is "ACPI\PNP0303\4&11876118&0"

  ServiceName is "i8042prt"

Lab objective: Viewing a Device Stack

The kernel debugger command !devstack shows you the device stack of layered device
objects associated with a specified device object. This example shows the device stack
associated with a device object, \device\keyboardclass0, which is owned by the
keyboard class driver:

lkd> !devstack keyboardclass0
  !DevObj !DrvObj !DevExt ObjectName
   8a266d28 \Driver\Ctrl2cap 8a266de0
>  8a09a030 \Driver\Kbdclass 8a09a0e8 KeyboardClass0
   8a2672b0 \Driver\nmfilter 8a267368 0000008c
   8a09ba78 \Driver\i8042prt 8a09bb30
   8a4adce0 \Driver\ACPI a4ab9c8 0000006b
!DevNode 8a4acee8:
  DeviceInstis "ACPI\PNP0303\4&61f3b4b&0"
  ServiceNameis "i8042prt"

The output highlights the entry associated with KeyboardClass0 with the “>“ prefix. The
entries above that line are drivers layered above the keyboard class driver, and those
below  are layered beneath it. In general, IRPs flow from the top of the stack to the
bottom.



Lab Manual - OS6 Device Management

19

19

Lab: See the volsnap.sys driver

Using Winobj see what device corresponds to
\Global??\C:

In the kernel debugger look at that device object
e.g. “!devstack \device\harddiskvolume1”

Note the volsnap.sys device object attached above
the volume device

Lab objective: Viewing Windows Device Name to Windows  Device Name Mappings

You can examine the symbolic links that define the Windows device namespace with
the Winobj utility from www.sysinternals.com. Run Winobj, and click on the \??
Directory on Windows 2000 or \Global?? on Windows XP or Windows Server 2003.

Notice the symbolic links on the right. Try double-clicking on the device C:

C: is a symbolic link to the internal device named \Device\HarddiskVolume1, or the  first
volume on the first hard drive in the system. The COM1 entry in Winobj is a symbolic
link to \Device\Serial0, and so forth. Try creating your own links with the subst
command at a command prompt.



Lab Manual - OS6 Device Management

20

20

Lab: Viewing the Device Tree

Use View->Devices by Connection in the
Hardware Manager to see a system’s device
tree

In the kernel debugger use “!devnode 0 7” to
see the internal representation of the device tree

Lab objective: Dumping the Device Tree

A more detailed way to view the device tree than using Device Manager is to use the
!devnode kernel debugger command. Specifying 0 1 as command options dumps the
internal device tree devnode structures, indenting entries to show the hierarchy:
lkd>!devnode 01
Dumping IopRootDeviceNode (= 0x8a4b7ee8)
DevNode 0x8a4b7ee8 for PDO0x8a4b7020
  InstancePath is “HTREE\ROOT\0"
  State =DeviceNodeStarted(0x308)
  Previous State= DeviceNodeEnumerateCompletion(0x30d)
  DevNode0x8a4b7a50 for PDO 0x8a4b7b98
    InstancePathis “Root\ACPI_HAL\0000"
    State=DeviceNodeStarted(0x308)
    PreviousState =DeviceNodeEnumerateCompletion (0x30d)
    DevNode0x8a4af448 for PDO 0x8a4eb2c8
      InstancePath is “ACPI_HAL\PNP0C08\0"
      ServiceName is “ACPI"
      State= DeviceNodeStarted (0x308)
      Previous State=DeviceNodeEnumerateCompletion(0x30d)
      DevNode 0x8a4af198 for PDO 0x8a4b1350
        InstancePathis “ACPI\GenuineIntel_-_x86_Family_6_Model_9\_0"
        ServiceNameis “gv3"
        State =DeviceNodeStarted(0x308)
        PreviousState= DeviceNodeEnumerateCompletion(0x30d)
      DevNode 0x8a4e8008 for PDO 0x8a4a8950
        InstancePathis “ACPI\ThermalZone\THM_"
        State =DeviceNodeStarted(0x308)
        PreviousState= DeviceNodeEnumerateCompletion(0x30d)
      DevNode 0x8a4e82b8 for PDO 0x8a4eb640
        InstancePathis “ACPI\ACPI0003\2&daba3ff&0"
        ServiceNameis “CmBatt"



Lab Manual - OS6 Device Management

21

21

Lab: Viewing Devnode Information

Windows XP and Server 2003 Device Manager can display details tab

Shows devnode’s device instance ID, hardware ID, service names,
filters, and power capabilities

Run: set devmgr_show_details=1
devmgmt.msc

Lab objective: Viewing Detailed Devnode Information in Device  Manager

By default, the Device Manager applet that you can access from the Hardware tab of
the  System control panel application doesn’t show detailed information about a device
node. However, in Windows XP and Windows Server 2003 you can enable a tab called
Details by creating and setting the devmgr_show_details environment variable to a
value  of 1. The tab allows you to view an assortment of fields including the devnode’s
device  instance ID, hardware ID, service name, filters, and power capabilities.

The simplest way to launch the Device Manager with the Details tab is to open a
command prompt and execute the following:

C:\>set devmgr_show_details=1
C:\>devmgmt.msc

The screen shot shows the selection combo box of the Details tab expanded to reveal
the types of information you can access.



Lab Manual - OS6 Device Management

22

22

Lab: View the system power policy

Use !popolicy to see the active power policy
lkd> !popolicy

SYSTEM_POWER_POLICY (R.1) @ 0x80544020

  PowerButton:          None  Flags: 00000003   Event: 00000010   Query UI

  SleepButton:         Sleep  Flags: 00000003   Event: 00000000   Query UI

  LidClose:            Sleep  Flags: 00000001   Event: 00000000   Query

  Idle:                Sleep  Flags: 00000001   Event: 00000000   Query

  OverThrottled:       Sleep  Flags: c0000004   Event: 00000000   Override NoWakes Critical

  IdleTimeout:             0  IdleSensitivity:        50%

  MinSleep:               S1  MaxSleep:               S1

  LidOpenWake:            S0  FastSleep:              S1

  WinLogonFlags:           1  S4Timeout:               0

  VideoTimeout:         1200  VideoDim:               56

  SpinTimeout:             0  OptForPower:             0

  FanTolerance:          100% ForcedThrottle:        100%

  MinThrottle:            20% DyanmicThrottle:      None (0)

Lab objective: Viewing the System Power Capabilities and Policy

You can view a computer’s system power capabilities by using the !pocaps kernel
debugger command. Here’s the output of the command when run on an ACPI-
compliant laptop running Windows Professional:

kd>!pocaps
PopCapabilities @0x8046adc0
  MiscSupportedFeatures: PwrButtonSlpButton Lid S1 S3 S4S5

HiberFileFullWake
  Processor Features: ThermalThrottle (MinThrottle =03,Scale =08)
  DiskFeatures: SpinDown
  BatteryFeatures: BatteriesPresent
    Battery 0- Capacity: 00000000 Granularity:00000000
    Battery 1- Capacity: 00000000 Granularity:00000000
    Battery 2- Capacity: 00000000 Granularity:00000000
  WakeCaps
    AcOnLineWake: Sx
    Soft LidWake: Sx
    RTC Wake: S3
    Min Device Wake: Sx
    Default Wake: Sx

The Misc Supported Features line reports that, in addition to S0 (fully on), the system
supports system power states S1, S3, S4, and S5 (it doesn’t implement S2) and has a
valid hibernation file to which it can save system memory when it hibernates (state S4).



Lab Manual - OS6 Device Management

23

23

Lab: Looking at a Device’s Power
Mapping

Open a command prompt
and type “set
devmgr_show_details=1”

Then enter
“devmgmt.msc”

Go to the “Details” page
on a device’s properties
page and look at “Power
State Mapping”

Lab objective: Viewing a Driver’s Power Mappings

In Windows XP and Windows Server 2003, you can see a driver’s system power state
to  driver power state mappings with Device Manager. Open the Properties dialog box
for a  device, and choose the Power State Mappings entry in the drop-down list of the
Details  tab to see the mappings.

In Windows XP and Windows Server 2003 you can enable a tab called  Details by
creating and setting the devmgr_show_details environment variable to a value  of 1.
The tab allows you to view an assortment of fields including the devnode’s device
instance ID, hardware ID, service name, filters, and power capabilities.

The mappings for a disk driver show that besides fully on (D0) and fully off (D3), it
supports an intermediate state, D1, for S1. This likely represents the disk spin-down
power state.



Lab Manual - OS6 Device Management

24

24

Lab: Using Filemon to Trace File I/O

1. Run Filemon

2. Set filter to only include Notepad.exe

3. Run Notepad

4. Type some text

5. Save file as “test.txt”

6. Go back to Filemon

7. Stop logging

8. Set highlight to “test.txt”

9. Find line representing creation of new file

 Hint: look for create operation

Lab objective: Examine File I/O with Filemon

The purpose of this lab is to examine the low level I/O activity involved in creating a file
with Notepad. Filemon can be useful to check the efficiency of application file I/O.

For example, tracing the file I/O for creating a file with Notepad reveals that it first
attempts to open the name as a folder, then as a file, to ensure there is no conflict.  It
then creates the file, then deletes the file, then checks if the file is there (twice), then re-
creates the file and writes the data.



Lab Manual - OS6 Device Management

25

25

Lab: Seeing An Error’s Root Cause
with Filemon

Many applications don’t report access denied
errors well

1. In Explorer, create a folder c:\noaccess

2. Remove all rights to the folder

3. Run Notepad & type some text

4. Run Filemon – set filter to Notepad.exe

5. In Notepad, File->Save As to
c:\noaccess\test.txt

6. Look at Filemon trace and find Access Denied

Lab objective: Seeing an Error’s Root Cause with Filemon

Applications sometimes present error messages in response to an error condition that do
not reveal the root cause of the error. These error messages can be frustrating because
they might lead you to spend time diagnosing or resolving problems that do not exist. If the
error message is related to a file system issue, Filemon will show you what underlying errors
might have occurred prior to the appearance of an error message.

In this experiment, you’ll set permission on a directory and then perform a file save
operation in Notepad that results in a misleading error message. Filemon’s trace shows the
actual error and the source of the message displayed in Notepad’s error dialog box.

1.Run Filemon, and set the include filter to “notepad.exe”.

2.Open Explorer, and create a directory named c:\noaccess on an NTFS volume.

3.Edit the security permissions on the directory to remove all access. This might require you
to open the Advanced Security Settings dialog box and use the settings on the Permissions
tab to remove inherited security.

When you apply the modified security, Explorer should warn you that no one will have
access to the folder.

4.Run Notepad, and enter some text into its window. Then select the Save entry in the File
menu. In the File Name field of the Save dialog box, enter c:\noaccess\test.txt

5.Notepad will display an error message.

6.The message implies that C:\Noaccess does not exist.

7.The Filemon trace shows that in fact, the folder does exist but Notepad got an Access
Denied trying to open it.

The error message Notepad displays, “Path does not exist”, is consistent with a file-not-
found error, not an access-denied error. So it appears that Notepad first tried to open the
directory, and when that failed it assumed for some reason that the name
C:\Noaccess\Test.txt was the name of a directory instead of a file. When it couldn’t open
that directory, Notepad presented the error message, but the root cause, which Filemon
reveals, is the access denied error.


