
Lab Manual - OS4 Scheduling and Dispatch

1

Windows Operating System Internals - by David A. Solomon and Mark E. Russinovich with Andreas Polze

Unit OS4: Scheduling and Dispatch

4.6. Lab Manual

Lab Manual - OS4 Scheduling and Dispatch

2

2

Copyright Notice
© 2000-2005 David A. Solomon and Mark Russinovich

These materials are part of the Windows Operating
System Internals Curriculum Development Kit,
developed by David A. Solomon and Mark E.
Russinovich with Andreas Polze

Microsoft has licensed these materials from David
Solomon Expert Seminars, Inc. for distribution to
academic organizations solely for use in academic
environments (and not for commercial use)

Lab Manual - OS4 Scheduling and Dispatch

3

3

Roadmap for Section 4.6.

Monitoring Processes with TaskManager

Process Explorer and Thread Monitoring

PsTools for gathering process information

Kernel debugger !process and !thread

Watching the scheduler: CPU boosts

Monitoring starvation avoidance

This LabManual includes experiments investigating the algorithms for
scheduling and process/thread control implemented inside the Windows
operating system. Students are expected to carry out Labs in addition to
studying the learning materials in Unit OS4.

A thorough understanding of the concepts presented in Unit OS4: Scheduling
and Displatch is a prerequisite for these Labs.

These concepts are explained in Chapter 6 of Windows Internals 4th edition.

Lab Manual - OS4 Scheduling and Dispatch

4

4

Task Manager: Processes vs
Applications Tabs

Processes tab: List of
processes

“Running” means
waiting for window
messages

Applications tab: List of top
level visible windows

Right-click on a
window and select
“Go to process”

Lab objective: Understand Task Manager’s Processes and Applications Tabs

The built-in Windows Task Manager provides a quick list of the processes running
on the system. You can start Task Manager in one of three ways: (1) press
Ctrl+Shift+Esc, (2) right-click on the taskbar and select Task Manager, or (3)
press Ctrl+Alt+Delete and click the Task Manager button. Once Task Manager
has started, click the Processes tab to see the list of running processes. Notice
that processes are identified by the name of the image of which they are an
instance. Unlike some objects in Windows, processes can’t be given global names.
To display additional details, choose Select Columns from the View menu and
select additional columns to be added.

Lab Manual - OS4 Scheduling and Dispatch

5

5

Understand Task Managers “Applications”

A meaningless term at the OS level

Not a list of processes

Not a list of “tasks” (another
meaningless term)

It’s a list of top level visible windows in
your session that meet certain criteria

What does the status column mean?

Running:

Windows don’t run—threads do

Running displayed only when
owning thread is waiting for a
window message (e.g. not running!)

Not Responding: not waiting for window
messages

To map a window to a process, right-
click on a window and select “Go to
process”

Lab objective: Understand Task Managers “Applications”
Although what you see in the Task Manager Processes tab is clearly a list of
processes, what the Applications tab displays isn’t as obvious. The Applications tab
lists the top-level visible windows on all the desktops in the interactive window
station. (By default, there are two desktop objects—you can create more by using
the Windows CreateDesktop function.) The Status column indicates whether or not
the thread that owns the window is in a Windows message wait state. “Running”
means the thread is waiting for windowing input; “Not Responding” means the
thread isn’t waiting for windowing input (for example, the thread might be running or
waiting for I/O or some Windows synchronization object). From the Applications tab,
you can match a task to the process that owns the thread that owns the task
window by right-clicking on the task name and choosing Go To Process.

Lab Manual - OS4 Scheduling and Dispatch

6

6

Process Explorer (Sysinternals)

“Super Task Manager”

Shows full image path, command line, environment variables,
parent process, security access token, open handles, loaded DLLs
& mapped files

Lab objective: Experiment with Process Explorer

Process Explorer, from www.sysinternals.com, shows more details about processes
and threads than any other available tool, which is why you will see it used in a
number of experiments throughout the book. The following are some of the unique
things that Process Explorer shows or enables:

• Full path name for the image being executed
• Process security token (list of groups and privileges)
• Highlighting to show changes in the process and thread list
• List of services inside service-hosting processes, including display name and

description
• Processes that are part of a job and job details
• Processes running .NET/WinFX applications and.NET-specific details (such as the

list of appdomains and CLR performance counters)
• Start time for processes and threads
• Complete list of memory mapped files (not just DLLs)
• Ability to suspend a process
• Ability to kill an individual thread
• Easy identification of which processes were consuming the most CPU time over a

period of time (The Performance Tool can display process CPU utilization for a
given set of processes, but it won’t automatically show processes created after the
performance monitoring session has started.)

Lab Manual - OS4 Scheduling and Dispatch

7

7

Process Explorer’s Process List

1. Run Process Explorer & maximize window

2. Run Task Manager – click on Processes tab

3. Arrange windows so you can see both

4. Notice process tree vs flat list in Task Manager

- If parent has exited, process is left justified

5. Sort on first column (“Process”) and note tree view disappears

6. Click on View->Show Process Tree (or CTRL+T) to bring it back

7. Notice description and company name columns

8. Hover mouse over image to see full path of image

9. Right click on a process and choose “Google”

Lab objective: Investigate Process Explorer’s Process List

Process Explorer also provides easy access to information available through other
tools from one central place, such as:

• Process tree (with ability to collapse parts of the tree)
• Open handles in a process without prior setup (The Microsoft tools to show open

handles require the setting of a systemwide flag and a reboot before they can be
used.)

• List of DLLs (and memory-mapped files) in a process
• Thread activity within a process
• User-mode thread stacks (including mapping of addresses to names using the

debugging tools’ symbol engine)
• Kernel-mode thread stacks for system threads (including mapping of addresses to

names using the debugging tools’ symbol engine)
• Context switch delta

(a better representation of CPU activity, as explained in Chapter 6)
• Kernel memory (paged and nonpaged pool) limits (other tools show only current

size)

The first time you run it, you will receive a message that symbols are not currently
configured. If properly configured, Process Explorer can access symbol information
to display the symbolic name of the thread start function and functions on its call
stack (available by double-clicking on a process and clicking on the Threads tab).
This is useful for identifying what threads are doing within a process. To access
symbols, you must have the Debugging Tools installed (described later in this
chapter). Then click on Options, choose Configure Symbols, and fill in the
appropriate Symbols path. For more information on configuring use of the symbol
server, see http://www.microsoft.com/whdc/ddk/debugging/symbols.mspx.

Lab Manual - OS4 Scheduling and Dispatch

8

8

Process Performance

• Click on Performance Tab of process properties
 Note: all these numbers can be configured as columns

Lab objective: Use Process Explorer’s performance tab to investigate process
behavior
Where is full path.What if process gets same pid as previous process? DO first
process’ children get forcibly adopted? No.

Do “notepad fred” to show command-line arguments. Shortcut might pass arguments.

Names used in performance tab much more logical than task manager.

Security: useful for telling what groups the process belongs to. Definitive list.

Explain privileges. Example: change system time. Double click on time applet and look
at it in process explorer. See rundll32.exe. If double-click on it and look at command-
line, last argument is timedate.cpl. Look at security and find that the time privilege is
on.

Environment tab: sometimes input to scripts or apps. PATH is one of the more
important. Inherited from parent. Set DAVID=brilliant. Run paintbrush and look at it’s
environment. But not in others.

Lab Manual - OS4 Scheduling and Dispatch

9

9

Thread Details

Process Explorer
“Threads” tab shows
which thread(s) are
running

Start address represents
where the thread began
running (not where it is
now)

Click Module to get details
on module containing
thread start address

Lab objective: Investigate thread details
Process Explorer provides easy access to thread activity within a process. This is
especially important if you are trying to determine why a process is running that is
hosting multiple services (such as Svchost.exe, Dllhost.exe, Inetinfo.exe, or the
System process) or why a process is hung.

To view the threads in a process, select a process and open the process properties
(double-click on the process or click on the Process, Properties menu item). Then click
on the Threads tab. This tab shows a list of the threads in the process. For each
thread it shows the percentage of CPU consumed (based on the refresh interval
configured), the number of context switches to the thread, and the thread start address.
You can sort by any of these three columns.

New threads that are created are highlighted in green, and threads that exit are
highlighted in red. (The highlight duration can be configured with the Options,
Configure Highlighting menu item.) This might be helpful to discover unnecessary
thread creation occurring in a process. (In general, threads should be created at
process startup, not every time a request is processed inside a process.)

As you select each thread in the list, Process Explorer displays the thread ID, start
time, state, CPU time counters, number of context switches, and the base and current
priority. There is a Kill button, which will terminate an individual thread, but this should
be used with extreme care.

The context switch delta represents the number of times that thread began running in
between the refreshes configured for Process Explorer. It provides a different way to
determine thread activity than using the percentage of CPU consumed. In some ways
it is better because many threads run for such a short amount of time that they are
seldom (if ever) the currently running thread when the interval clock timer interrupt
occurs, and therefore, are not charged for their CPU time.

Lab Manual - OS4 Scheduling and Dispatch

10

10

Thread Start Functions

Process Explorer can map the addresses within a module to
the names of functions

This can help identify which component within a process is
responsible for CPU usage

Requires access to:

Symbol file for that module

Proper version of Dbghelp.dll

By default, Process Explorer looks for:

Dbghelp.dll: in the default Windows Debugging Tools install
directory

Symbols: _NT_SYMBOL_PATH environment variable

Can also specify with Options->Configure Symbols

Lab objective: Investigate Thread Start Functions

The thread start address is displayed in the form “module!function”, where module is
the name of the .exe or .dll. The function name relies on access to symbol files for the
module. (See “Lab objective: Viewing Process Details with Process Explorer” in
Chapter 1.) If you are unsure what the module is, press the Module button. This opens
an Explorer file properties window for the module containing the thread’s start address
(for example, the .exe or .dll).

Note_For threads created by the Windows CreateThread function, Process Explorer
displays the function passed to CreateThread, not the actual thread start function. That
is because all Windows threads start at a common process or thread startup wrapper
function (BaseProcessStart or BaseThreadStart in Kernel32.dll). If Process Explorer
showed the actual start address, most threads in processes would appear to have
started at the same address, which would not be helpful in trying to understand what
code the thread was executing.

If properly configured, Process Explorer can access symbol information to display the
symbolic name of the thread start function and functions on its call stack (available by
double-clicking on a process and clicking on the Threads tab). This is useful for
identifying what threads are doing within a process. To access symbols, you must
have the Debugging Tools installed (described later in this chapter). Then click on
Options, choose Configure Symbols, and fill in the appropriate Symbols path. For
more information on configuring use of the symbol server, see
http://www.microsoft.com/whdc/ddk/debugging/symbols.mspx.

Lab Manual - OS4 Scheduling and Dispatch

11

11

Process Explorer Lab:
Environment Variables

Click on Environment Tab of process properties

Lab objective: Monitor Environment Variables with Process Explorer

• Open a command prompt

• Run Notepadexe from command prompt

• Type “set abc=xyz”

• In ProcExp, hit F5 and examine environment variables for Cmd.exe and
Notepad.exe

• Notice Notepad.exe does not know about the environment variable abc

Lab Manual - OS4 Scheduling and Dispatch

12

12

Identify Jobs used by WMI

Jobs are used by WMI

Example: run Psinfo (Sysinternals) and pause output

Lab objective: Identify Jobs used by WMI (Windows Management
Instrumentation)

1. From a command prompt, run Psinfo (from www.sysinternals.com)

2. Notice in Process Explorer two WMI (Windows Management
Instrumentation) provider processes that are part of a job object
(highlighted above)
(for a description of WMI, see Windows Internals, 4th edition p.237)

3. Double click on either Wmiprvse.exe process and click on the Job tab.

4. Notice the limits set for the job (per-process and job-wide private virtual
memory and total active process count)

Lab Manual - OS4 Scheduling and Dispatch

13

13

Jobs created by RUNAS
1. In a command prompt:

RUNAS /USER:xxx CMD
(where xxx is some other local account)

2. In ProcExp, find newly created cmd.exe process

Who is the father?

3. Run Notepad from new CMD window

4. Double click on newly highlighted process & click on Job tab

Lab objective: Investigate Jobs created by RUNAS

The RUNAS command permits launching processes under alternate credentials. The
service behind the RUNAS command (called the Secondary Logon service) uses a
job object to contain the process(es) it creates. This is so that at logoff, the service
can terminate all processes that were created by RUNAS and any processes
created by these processes, even if the parent/child relationships have been
broken.

To view the job object created when RUNAS is used, perform the following steps:

1. From the command prompt, use the runas command to create a process running
the command prompt (Cmd.exe). For example, type runas /user:<domain>\<
username> cmd. You’ll be prompted for your password. Enter your password,
and a command prompt window will appear. The Windows service that executes
runas commands creates an unnamed job to contain all processes (so that it can
terminate these processes at logoff time).

2. From the command prompt, run Notepad.exe.

3. Then run Process Explorer and notice that the Cmd.exe and Notepad.exe
processes are highlighted as part of a job.

4. Double-click either the Cmd.exe or Notepad.exe process to bring up the process
properties. You will see a Job tab on the process properties dialog box.

5. Click the Job tab to view the details about the job. In this case, there are no quotas
associated with the job, but there are two member processes.

Lab Manual - OS4 Scheduling and Dispatch

14

14

Process Block (!process)

PROCESS ff704020 Cid: 0075 Peb: 7ffdf000 ParentCid: 005d
 DirBase: 0063c000 ObjectTable: ff7063c8 TableSize: 70.
 Image: Explorer.exe
 VadRoot ff70d6e8 Clone 0 Private 229. Modified 236. Locked 0.
 FF7041DC MutantState Signalled OwningThread 0
 Token e1462030
 ElapsedTime 0:01:19.0874
 UserTime 0:00:00.0991
 KernelTime 0:00:02.0613
 QuotaPoolUsage[PagedPool] 18317
 QuotaPoolUsage[NonPagedPool] 3824
 Working Set Sizes (now,min,max) (727, 20, 45) (2908KB, 80KB, 180KB)
 PeakWorkingSetSize 757
 VirtualSize 29 Mb
 PeakVirtualSize 31 Mb
 PageFaultCount 1396
 MemoryPriority FOREGROUND
 BasePriority 8
 CommitCharge 250

EPROCESS address Process ID Address of
 process environment block

Process ID of
parent process

Time the process
has been running,
divided into User
and Kernel time

Physical address
of Page Directory

root of the process’s
Virtual Address
Descriptor tree

Lab objective: Using the Kernel Debugger !process Command

The kernel debugger !process command displays a subset of the information in an
EPROCESS block. This output is arranged in two parts for each process. First you see
the information about the process, as shown here (when you don’t specify a process
address or ID, !process lists information for the active process on the current CPU):
lkd> !process

PROCESS 8575f030 SessionId:0 Cid: 08d0 Peb:7ffdf000 ParentCid:0360
DirBase:1a81b000 ObjectTable:e12bd418 HandleCount: 65.

Image:windbg.exe
VadRoot 857f05e0Vads 71Clone0 Private 1152. Modified98.Locked1.
DeviceMape1e96c88
Token e1f5b8a8
ElapsedTime 1:23:06.0219
UserTime 0:00:11.0897
KernelTime 0:00:07.0450
QuotaPoolUsage[PagedPool] 38068
QuotaPoolUsage[NonPagedPool] 2840
Working Set Sizes (now,min,max) (2552, 50, 345)(10208KB,200KB, 1380KB)
PeakWorkingSetSize 2715
VirtualSize 41 Mb
PeakVirtualSize 41 Mb
PageFaultCount 3658
MemoryPriority BACKGROUND
BasePriority 8
CommitCharge 1566

After the basic process output comes a list of the threads in the process. Other
commands that display process information include !handle, which dumps the process
handle table .

Lab Manual - OS4 Scheduling and Dispatch

15

15

Thread Block (!thread)

 THREAD 83160f60 Cid 9f.3d Teb: 7ffdc000 Win32Thread: e153d2c8
WAIT: (WrUserRequest) UserMode Non-Alertable
 808e9d60 SynchronizationEvent
 Not impersonating
 Owning Process 81b44880
 WaitTime (seconds) 953945
 Context Switch Count 2697 LargeStack
 UserTime 0:00:00.0289
 KernelTime 0:00:04.0664
 Start Address kernel32!BaseProcessStart (0x77e8f268)
 Win32 Start Address 0x020d9d98
 Stack Init f7818000 Current f7817bb0 Base f7818000 Limit f7812000 Call 0
 Priority 14 BasePriority 8 PriorityDecrement 6 DecrementCount 13
Kernel stack not resident.

 ChildEBP RetAddr Args to Child
 f7817bb0 8008f430 00000001 00000000 00000000 ntoskrnl!KiSwapThreadExit
 f7817c50 de0119ec 00000001 00000000 00000000 ntoskrnl!KeWaitForSingleObject+0x2a0
 f7817cc0 de0123f4 00000001 00000000 00000000 win32k!xxxSleepThread+0x23c
 f7817d10 de01f2f0 00000001 00000000 00000000 win32k!xxxInternalGetMessage+0x504
 f7817d80 800bab58 00000001 00000000 00000000 win32k!NtUserGetMessage+0x58
 f7817df0 77d887d0 00000001 00000000 00000000 ntoskrnl!KiSystemServiceEndAddress+0x4
 0012fef0 00000000 00000001 00000000 00000000 user32!GetMessageW+0x30

Address of ETHREAD

Thread ID

Address of thread
environment block

Objects being
waited on

Thread
state

Address of system
service dispatch table

Priority Information

Actual thread start address

Stack trace

Address of user thread function

Process ID

Lab objective: Using the Kernel Debugger !thread Command

The kernel debugger !thread command dumps a subset of the information in the
thread data structures. Some key elements of the information the kernel debugger
displays can’t be displayed by any utility: internal structure addresses; priority details;
stack information; the pending I/O request list; and, for threads in a wait state, the list
of objects the thread is waiting for. To display thread information, use either the
!process command (which displays all the thread blocks after displaying the process
block) or the !thread command to dump a specific thread. The output of the thread
information, along with some annotations of key fields, is shown above.

Lab Manual - OS4 Scheduling and Dispatch

16

16

lkd> dt nt!_EPROCESS
 +0x000 Pcb : _KPROCESS
 +0x06c ProcessLock : _EX_PUSH_LOCK
 +0x070 CreateTime : _LARGE_INTEGER
 +0x078 ExitTime : _LARGE_INTEGER
 +0x080 RundownProtect : _EX_RUNDOWN_REF
 +0x084 UniqueProcessId : Ptr32 Void
 +0x088 ActiveProcessLinks : _LIST_ENTRY
 +0x090 QuotaUsage : [3] Uint4B
 +0x09c QuotaPeak : [3] Uint4B
 +0x0a8 CommitCharge : Uint4B
 +0x0ac PeakVirtualSize : Uint4B
 +0x0b0 VirtualSize : Uint4B

.

.

Process Block Layout

 NOTE: Add “-r” to recurse through substructures

Lab objective: Displaying the Format of an EPROCESS Block

For a list of the fields that make up an EPROCESS block and their offsets in
hexadecimal, type dt _eprocess in the kernel debugger. The output (truncated for the
sake of space) looks like this:
lkd> dt _eprocess
nt!_EPROCESS

+0x000Pcb :_KPROCESS
+0x06cProcessLock :_EX_PUSH_LOCK
+0x070CreateTime :_LARGE_INTEGER
+0x078ExitTime :_LARGE_INTEGER
+0x080RundownProtect :_EX_RUNDOWN_REF
+0x084UniqueProcessId :Ptr32Void
+0x088ActiveProcessLinks:_LIST_ENTRY
+0x090QuotaUsage :[3] Uint4B
+0x09cQuotaPeak :[3] Uint4B
+0x0a8CommitCharge :Uint4B
+0x0acPeakVirtualSize :Uint4B
+0x0b0VirtualSize :Uint4B
+0x0b4SessionProcessLinks :_LIST_ENTRY
+0x0bcDebugPort :Ptr32Void
+0x0c0ExceptionPort :Ptr32Void
+0x0c4ObjectTable :Ptr32_HANDLE_TABLE
+0x0c8Token : _EX_FAST_REF
+0x0ccWorkingSetLock : _FAST_MUTEX
+0x0ecWorkingSetPage : Uint4B
+0x0f0AddressCreationLock: _FAST_MUTEX
+0x110HyperSpaceLock : Uint4B
+0x114ForkInProgress : Ptr32_ETHREAD
+0x118HardwareTrigger : Uint4B

Note that the first field (Pcb) is actually a substructure, the kernel process block
(KPROCESS), which is where scheduling-related information is stored. To display the
format of the kernel process block, type kt_kprocess.

Lab Manual - OS4 Scheduling and Dispatch

17

17

Thread Block (!strct ethread)

lkd> dt nt!_ETHREAD
 +0x000 Tcb : _KTHREAD
 +0x1c0 CreateTime : _LARGE_INTEGER
 +0x1c0 NestedFaultCount : Pos 0, 2 Bits
 +0x1c0 ApcNeeded : Pos 2, 1 Bit
 +0x1c8 ExitTime : _LARGE_INTEGER
 +0x1c8 LpcReplyChain : _LIST_ENTRY
 +0x1c8 KeyedWaitChain : _LIST_ENTRY
 +0x1d0 ExitStatus : Int4B
 +0x1d0 OfsChain : Ptr32 Void
 +0x1d4 PostBlockList : _LIST_ENTRY
 +0x1dc TerminationPort : Ptr32 _TERMINATION_PORT
 +0x1dc ReaperLink : Ptr32 _ETHREAD

 NOTE: Add “-r” to recurse through substructures

Lab objective: Displaying ETHREAD and KTHREAD Structures

The ETHREAD and KTHREAD structures can be displayed with the dt command in
the kernel debugger. The following output shows the format of an ETHREAD:
lkd>dt nt!_ethread
nt!_ETHREAD

+0x000Tcb : _KTHREAD
+0x1c0CreateTime : _LARGE_INTEGER
+0x1c0NestedFaultCount: Pos 0, 2Bits
+0x1c0ApcNeeded : Pos 2, 1Bit
+0x1c8ExitTime : _LARGE_INTEGER
+0x1c8LpcReplyChain : _LIST_ENTRY
+0x1c8KeyedWaitChain : _LIST_ENTRY
+0x1d0ExitStatus : Int4B
+0x1d0OfsChain : Ptr32Void
+0x1d4PostBlockList : _LIST_ENTRY
+0x1dcTerminationPort : Ptr32_TERMINATION_PORT
+0x1dcReaperLink : Ptr32_ETHREAD
+0x1dcKeyedWaitValue : Ptr32Void
+0x1e0ActiveTimerListLock: Uint4B
+0x1e4ActiveTimerListHead: _LIST_ENTRY
+0x1ecCid : _CLIENT_ID
+0x1f4LpcReplySemaphore:_KSEMAPHORE
+0x1f4KeyedWaitSemaphore :_KSEMAPHORE
+0x208LpcReplyMessage : Ptr32Void
+0x208LpcWaitingOnPort: Ptr32Void
+0x20cImpersonationInfo:Ptr32 _PS_IMPERSONATION_INFORMATION
+0x210IrpList : _LIST_ENTRY
+0x218TopLevelIrp : Uint4B
+0x21cDeviceToVerify : Ptr32_DEVICE_OBJECT

+0x220ThreadsProcess : Ptr32_EPROCESS ………

The KTHREAD can be displayed with the similar command nt !_kthread.

Lab Manual - OS4 Scheduling and Dispatch

18

18

Watching the Scheduler
Performance Monitor - Options | Chart

Screen snapshot from: Performance Monitor
Options menu | Chart command

Set chart maximum
vertical scale to 16

Set update interval to
0.1 seconds or less

Lab objective: Thread-Scheduling State Changes

You can watch thread-scheduling state changes with the Performance tool in Windows.
This utility can be useful when you’re debugging a multithreaded application if
you’re unsure about the state of the threads running in the process. To watch
thread-scheduling state changes by using the Performance tool, follow these steps:

1. Run the Microsoft Notepad utility (Notepad.exe).

2. Start the Performance tool by selecting Programs from the Start menu and then
selecting Performance from the Adminstrative Tools menu.

3. Select chart view if you’re in some other view.

4. Right-click on the graph, and choose Properties.

5. Click the Graph tab, and change the chart vertical scale maximum to 7. (As you’ll
see from the explanation text for the performance counter, thread states are
numbered from 0 through 7.) Click OK.

6. Click the Add button on the toolbar to bring up the Add Counters dialog box.

7. Select the Thread performance object, and then select the Thread State counter.
Click the Explain button to see the definition of the values.

8. In the Instances box, scroll down until you see the Notepad process (notepad/0);
select it, and click the Add button.

Lab Manual - OS4 Scheduling and Dispatch

19

19

Watching the Scheduler (contd.)
Performance Monitor

Screen snapshot from:
PerfMon main window, setup from previous slide

Thread states are
indicated by numbers
(see thread state
transition diagram on
previous slide, or
Perfmon Explain
display for Thread State
counter)

5 = waiting
2 = running
1 = ready

9. Scroll back up in the Instances box to the Mmc process (the Microsoft
Management Console process running the System Monitor), select all the threads
(mmc/ 0, mmc/1, and so on), and add them to the chart by clicking the Add button.

10.Now close the Add Counters dialog box by clicking Close.

11.You should see the state of the Notepad thread (the very top line in the following
figure) as a 5, which, as shown in the explanation text you saw under step 5,
represents the waiting state (because the thread is waiting for GUI input):

12.Notice that one thread in the Mmc process (running the Performance tool snapin) is
in the running state (number 2). This is the thread that’s querying the thread states,
so it’s always displayed in the running state.

13.You’ll never see Notepad in the running state (unless you’re on a multiprocessor
system) because Mmc is always in the running state when it gathers the state of
the threads you’re monitoring.

Lab Manual - OS4 Scheduling and Dispatch

20

20

Watching
Forground Priority
Boosts

Run: cpustres.exe
(Resource Kit)

Screen snapshot from:
Run… cpustres

Lab objective: Watching Foreground Priority Boosts and Decays

Using the CPU Stress tool (in the resource kit and the Platform SDK), you can watch
priority boosts in action. Take the following steps:

1. Open the System utility in Control Panel (or right-click My Computer and select
Properties), click the Advanced tab, and click the Performance Options button.
Select the Applications option. This causes PsPrioritySeparation to get a value of 2.

2. Run Cpustres.exe.

3. Run the Windows NT 4 Performance Monitor (Perfmon4.exe in the Windows 2000
resource kits). This older version of the Performance tool is needed for this
experiment because it can query performance counter values at a frequency faster
than the Windows Performance tool (which has a maximum interval of once per
second).

4. Click the Add Counter toolbar button (or press Ctrl+I) to bring up the Add To Chart
dialog box.

5. Select the Thread object, and then select the Priority Current counter.

6. In the Instance box, scroll down the list until you see the cpustres process. Select
the second thread (thread 1). (The first thread is the GUI thread.)

7. Click the Add button, and then click the Done button.

8. Select Chart from the Options menu. Change the Vertical Maximum to 16 and the
Interval to 0.010, as follows, and click OK.

Lab Manual - OS4 Scheduling and Dispatch

21

21

Priority Boost and Decay (contd.)
Demo with CpuStres and PerfMon

CpuStres settings:

two active threads

activity level = busy (about 25%
wait time)

normal process priority class,
normal thread priorities

Usually only visible in PerfMon if
target app owns foreground
window (hence longer quantum)

These are showing +2 boost
(from 8 to 10) for foreground
apps after wait completion

9. Now bring the Cpustres process to the foreground. You should see the priority of
the Cpustres thread being boosted by 2 and then decaying back to the base
priority.

10.The reason Cpustres receives a boost of 2 periodically is because the thread
you’re monitoring is sleeping about 75 percent of the time and then waking
up—the boost is applied when the thread wakes up. To see the thread get boosted
more frequently, increase the Activity level from Low to Medium to Busy. If you set
the Activity level to Maximum, you won’t see any boosts because Maximum in
Cpustres puts the thread into an infinite loop. Therefore, the thread doesn’t invoke
any wait functions and therefore doesn’t receive any boosts.

11.When you’ve finished, exit Performance Monitor and CPU Stress.

Lab Manual - OS4 Scheduling and Dispatch

22

22

Priority Boosts on GUI Threads

Threads that own windows receive an additional
boost of 2 when they wake up because of
windowing activity, such as the arrival of window
messages.

The windowing system (Win32k.sys) applies
this boost when it calls KeSetEvent to set an
event used to wake up a GUI thread.

The reason for this boost is similar to the
previous one—to favor interactive applications.

Lab objective: Watching Priority Boosts on GUI Threads

You can also see the windowing system apply its boost of 2 for GUI threads that
wake up to process window messages by monitoring the current priority of a GUI
application and moving the mouse across the window. Just follow these steps:

1. Open the System utility in Control Panel, click the Advanced tab, and click the
Performance Options button. If you’re running Windows XP or Windows Server
2003 select the Advanced tab and ensure that the Programs option is selected; if
you’re running Windows 2000 ensure that the Applications option is selected. This
causes PsPrioritySeparation to get a value of 2.

2. Run Notepad from the Start menu by selecting Programs/Accessories/Notepad.

3. Run the Windows NT 4 Performance Monitor (Perfmon4.exe in the Windows 2000
resource kits). This older version of the Performance tool is needed for this
experiment because it can query performance counter values at a faster frequency.
(The Windows Performance tool has a maximum interval of once per second.) 4

4. Click the Add Counter toolbar button to bring up the Add To Chart dialog box.

5. Select the Thread object, and then select the Priority Current counter.

6. In the Instance box, scroll down the list until you see Notepad thread 0. Click it,
click the Add button, and then click the Done button.

7. As in the previous experiment, select Chart from the Options menu. Change the
Vertical Maximum to 16 and the Interval to 0.010, and click OK.

8. You should see the priority of thread 0 in Notepad at 8, 9, or 10. Because Notepad
entered a wait state shortly after it received the boost of 2 that threads in the
foreground process receive, it might not yet have decayed from 10 to 9 and to 8.

Lab Manual - OS4 Scheduling and Dispatch

23

23

CPU Starvation Resolution

CpuStres with two compute-bound
threads (“maximum” activity level)

One is at lower priority than the other

Lab objective: Watching Priority Boosts for CPU Starvation

Using the CPU Stress tool (in the resource kit and the Platform SDK), you can watch
priority boosts in action. In this experiment, we’ll see CPU usage change when a
thread’s priority is boosted. Take the following steps:

1. Run Cpustres.exe. Change the activity level of the active thread (by default, Thread
1) from Low to Maximum. Change the thread priority from Normal to Below Normal.

2. Run the Windows NT 4 Performance Monitor (Perfmon4.exe in the Windows 2000
resource kits). Again, you need the older version for this experiment because it
can query performance counter values at a frequency faster than once per second.

3. Click the Add Counter toolbar button (or press Ctrl+I) to bring up the Add To Chart
dialog box.

4. Select the Thread object, and then select the % Processor Time counter.

5. In the Instance box, scroll down the list until you see the cpustres process. Select
the second thread (thread 1). (The first thread is the GUI thread.)

6. Click the Add button, and then click the Done button.

7. Raise the priority of Performance Monitor to real-time by running Task Manager,
clicking the Processes tab, and selecting the Perfmon4.exe process. Right-click the
process, select Set Priority, and then select Realtime.

8. Run another copy of CPU Stress. In this copy, change the activity level of Thread 1
from Low to Maximum.

9. Now switch back to Performance Monitor. You should see CPU activity every 4 or
so seconds because the thread is boosted to priority 15.

