

 Institution Saint Joseph

Les API WIN32

Auteur : J. ALVAREZ
Catégorie : Cours
Département : IRIST

2

Sujet : Langage (V

 413, avenue de Boufflers
 54524 LAXOU-NANCY
Les API WIN3
Email : jalvarez@instit-st-jo.asso.fr

 2)

Refs : CLngAPIWIN32

URL : www.instit-st-jo.asso.fr
m.a.j : 17/10/2002 18:17

Les API WIN32

1 PR

1.1
1.2
1.3
1.4
1.5
1.6

2 U

2.1
2.2
2.3

3 SY

3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8

4 E

4.1
4.2
4.3
4.4
4.5
4.6

 Institut
 413, av
 54524
SOMMAIRE

OCESSES AND THREADS .. 3

ABOUT PROCESSES AND THREADS .. 3
MULTITASKING .. 3
SCHEDULING .. 5
MULTIPLE THREADS .. 5
CHILD PROCESSES.. 10
JOB OBJECTS .. 16

SING PROCESSES AND THREADS... 17
CREATING A CHILD PROCESS WITH REDIRECTED INPUT AND OUTPUT ... 17
CHANGING ENVIRONMENT VARIABLES... 21
USING THREAD LOCAL STORAGE .. 22

NCHRONIZATION OBJECTS .. 25
EVENT OBJECTS ... 26
MUTEX OBJECTS .. 29
SEMAPHORE OBJECTS .. 30
WAITABLE TIMER OBJECTS ... 32
TIMER QUEUES... 33
CRITICAL SECTION OBJECTS.. 35
INTERLOCKED VARIABLE ACCESS... 36
WAIT FUNCTIONS... 37

RROR HANDLING .. 39
ABOUT ERROR HANDLING ... 39
USING ERROR HANDLING .. 40
ERROR HANDLING REFERENCE.. 40
BEEP ... 40
GETLASTERROR... 41
SETLASTERROR ... 42

ion Saint Joseph Email : jalvarez@instit-st-jo.asso.fr
enue de Boufflers URL : www.instit-st-jo.asso.fr
 LAXOU-NANCY m.a.j : 17/10/2002 18:17

 3

Les API WIN32

1 PROCESSES AND THREADS
An application consists of one or more processes. A process, in the simplest terms, is an executing
program. One or more threads run in the context of the process. A thread is the basic unit to which
the operating system allocates processor time. A thread can execute any part of the process code,
including parts currently being executed by another thread. A fiber is a unit of execution that must
be manually scheduled by the application. Fibers run in the context of the threads that schedule
them.
A job object allows groups of processes to be managed as a unit. Job objects are namable,
securable, sharable objects that control attributes of the processes associated with them.
Operations performed on the job object affect all processes associated with the job object.

1.1 ABOUT PROCESSES AND THREADS

Each process provides the resources needed to execute a program. A process has a virtual address
space, executable code, data, object handles, environment variables, a base priority, and minimum
and maximum working set sizes. Each process is started with a single thread, often called the
primary thread, but can create additional threads from any of its threads.
All threads of a process share its virtual address space and system resources. In addition, each
thread maintains exception handlers, a scheduling priority, and a set of structures the system will
use to save the thread context until it is scheduled. The thread context includes the thread's set of
machine registers, the kernel stack, a thread environment block, and a user stack in the address
space of the thread's process.
Windows NT supports preemptive multitasking, which creates the effect of simultaneous execution
of multiple threads from multiple processes. On a multiprocessor computer, Windows NT can
simultaneously execute as many threads as there are processors on the computer.

1.2 MULTITASKING

A multitasking operating system divides the available processor time among the processes or
threads that need it. The system is designed for preemptive multitasking; it allocates a processor
time slice to each thread it executes. The currently executing thread is suspended when its time slice
elapses, allowing another thread to run. When the system switches from one thread to another, it
saves the context of the preempted thread and restores the saved context of the next thread in the
queue.
The length of the time slice depends on the operating system and the processor. Because each time
slice is small (approximately 20 milliseconds), multiple threads appear to be executing at the same
time. This is actually the case on multiprocessor systems, where the executable threads are
distributed among the available processors. However, you must use caution when using multiple
threads in an application, because system performance can decrease if there are too many threads.

1.2.1 ADVANTAGES OF MULTITASKING
To the user, the advantage of multitasking is the ability to have several applications open and
working at the same time. For example, a user can edit a file with one application while another
application is recalculating a spreadsheet.
To the application developer, the advantage of multitasking is the ability to create applications that
use more than one process and to create processes that use more than one thread of execution. For
example, a process can have a user interface thread that manages interactions with the user
(keyboard and mouse input), and worker threads that perform other tasks while the user interface
thread waits for user input. If you give the user interface thread a higher priority, the application will
be more responsive to the user, while the worker threads use the processor efficiently during the
times when there is no user input.

 Institution Saint Joseph Email : jalvarez@instit-st-jo.asso.fr
 413, avenue de Boufflers URL : www.instit-st-jo.asso.fr
 54524 LAXOU-NANCY m.a.j : 17/10/2002 18:17

 4

Les API WIN32

1.2.2 WHEN TO USE MULTITASKING
There are two ways to implement multitasking: as a single process with multiple threads or as
multiple processes, each with one or more threads. An application can put each thread that requires
a private address space and private resources into its own process, to protect it from the activities of
other process threads.
A multithreaded process can manage mutually exclusive tasks with threads, such as providing a
user interface and performing background calculations. Creating a multithreaded process can also
be a convenient way to structure a program that performs several similar or identical tasks
concurrently. For example, a named pipe server can create a thread for each client process that
attaches to the pipe. This thread manages the communication between the server and the client.
Your process could use multiple threads to accomplish the following tasks:

• Manage input for multiple windows.

• Manage input from several communications devices.

• Distinguish tasks of varying priority. For example, a high-priority thread manages time-critical tasks,
and a low-priority thread performs other tasks.

• Allow the user interface to remain responsive, while allocating time to background tasks.
It is typically more efficient for an application to implement multitasking by creating a single,
multithreaded process, rather than creating multiple processes, for the following reasons:

• The system can perform a context switch more quickly for threads than processes, because a process
has more overhead than a thread does (the process context is larger than the thread context).

• All threads of a process share the same address space and can access the process's global variables,
which can simplify communication between threads.

• All threads of a process can share open handles to resources, such as files and pipes.
There are other techniques you can use in the place of multithreading. The most significant of these
are as follows: asynchronous input and output (I/O), I/O completion ports, asynchronous procedure
calls (APC), and the ability to wait for multiple events.
A single thread can initiate multiple time-consuming I/O requests that can run concurrently using
asynchronous I/O. Asynchronous I/O can be performed on files, pipes, and serial communication
devices. For more information, see Synchronization and Overlapped Input and Output.
A single thread can block its own execution while waiting for any one or all of several events to
occur. This is more efficient than using multiple threads, each waiting for a single event, and more
efficient than using a single thread that consumes processor time by continually checking for events
to occur. For more information, see Wait Functions.

1.2.3 MULTITASKING CONSIDERATIONS
The recommended guideline is to use as few threads as possible, thereby minimizing the use of
system resources. This improves performance. Multitasking has resource requirements and
potential conflicts to be considered when designing your application. The resource requirements are
as follows:

• The system consumes memory for the context information required by both processes and threads.
Therefore, the number of processes and threads that can be created is limited by available memory.

• Keeping track of a large number of threads consumes significant processor time. If there are too
many threads, most of them will not be able to make significant progress. If most of the current
threads are in one process, threads in other processes are scheduled less frequently.

Providing shared access to resources can create conflicts. To avoid them, you must synchronize
access to shared resources. This is true for system resources (such as communications ports),
resources shared by multiple processes (such as file handles), or the resources of a single process

 Institution Saint Joseph Email : jalvarez@instit-st-jo.asso.fr
 413, avenue de Boufflers URL : www.instit-st-jo.asso.fr
 54524 LAXOU-NANCY m.a.j : 17/10/2002 18:17

 5

Les API WIN32

(such as global variables) accessed by multiple threads. Failure to synchronize access properly (in
the same or in different processes) can lead to problems such as deadlock and race conditions. The
synchronization objects and functions you can use to coordinate resource sharing among multiple
threads. For more information about synchronization, see Synchronizing Execution of Multiple
Threads. Reducing the number of threads makes it easier and more effective to synchronize
resources.
A good design for a multithreaded application is the pipeline server. In this design, you create one
thread per processor and build queues of requests for which the application maintains the context
information. A thread would process all requests in a queue before processing requests in the next
queue.

1.3 SCHEDULING

The system scheduler controls multitasking by determining which of the competing threads receives
the next processor time slice. The scheduler determines which thread runs next using its scheduling
priority.

1.4 MULTIPLE THREADS

Each process is started with a single thread, but can create additional threads from any of its
threads.

1.4.1 CREATING THREADS
The CreateThread function creates a new thread for a process. The creating thread must specify the
starting address of the code that the new thread is to execute. Typically, the starting address is the
name of a function defined in the program code. This function takes a single parameter and returns a
DWORD value. A process can have multiple threads simultaneously executing the same function.
The following example demonstrates how to create a new thread that executes the locally defined
function, ThreadFunc.
#include <windows.h>
#include <conio.h>

DWORD WINAPI ThreadFunc(LPVOID lpParam)
{
 char szMsg[80];

 wsprintf(szMsg, "Parameter = %d.", *(DWORD*)lpParam);
 MessageBox(NULL, szMsg, "ThreadFunc", MB_OK);

 return 0;
}

VOID main(VOID)
{
 DWORD dwThreadId, dwThrdParam = 1;
 HANDLE hThread;
 char szMsg[80];

 hThread = CreateThread(
 NULL, // no security attributes
 0, // use default stack size
 ThreadFunc, // thread function
 &dwThrdParam, // argument to thread function
 0, // use default creation flags
 &dwThreadId); // returns the thread identifier

 // Check the return value for success.

 if (hThread == NULL)
 {

 Institution Saint Joseph Email : jalvarez@instit-st-jo.asso.fr
 413, avenue de Boufflers URL : www.instit-st-jo.asso.fr
 54524 LAXOU-NANCY m.a.j : 17/10/2002 18:17

 6

Les API WIN32

 wsprintf(szMsg, "CreateThread failed.");
 MessageBox(NULL, szMsg, "main", MB_OK);
 }
 else
 {
 _getch();
 CloseHandle(hThread);
 }
}
For simplicity, this example passes a pointer to a value as an argument to the thread function. This
could be a pointer to any type of data or structure, or it could be omitted altogether by passing a
NULL pointer and deleting the references to the parameter in ThreadFunc.
It is risky to pass the address of a local variable if the creating thread exits before the new thread,
because the pointer becomes invalid. Instead, either pass a pointer to dynamically allocated memory
or make the creating thread wait for the new thread to terminate. Data can also be passed from the
creating thread to the new thread using global variables. With global variables, it is usually
necessary to synchronize access by multiple threads. For more information about synchronization,
see Synchronizing Execution of Multiple Threads.
In processes where a thread might create multiple threads to execute the same code, it is
inconvenient to use global variables. For example, a process that enables the user to open several
files at the same time can create a new thread for each file, with each of the threads executing the
same thread function. The creating thread can pass the unique information (such as the file name)
required by each instance of the thread function as an argument. You cannot use a single global
variable for this purpose, but you could use a dynamically allocated string buffer.
The creating thread can use the arguments to CreateThread to specify the following:

• The security attributes for the handle to the new thread. These security attributes include an
inheritance flag that determines whether the handle can be inherited by child processes. The security
attributes also include a security descriptor, which the system uses to perform access checks on all
subsequent uses of the thread's handle before access is granted.

• The initial stack size of the new thread. The thread's stack is allocated automatically in the memory
space of the process; the system increases the stack as needed and frees it when the thread
terminates.

• A creation flag that enables you to create the thread in a suspended state. When suspended, the
thread does not run until the ResumeThread function is called.

You can also create a thread by calling the CreateRemoteThread function. This function is used by
debugger processes to create a thread that runs in the address space of the process being
debugged.

1.4.2 THREAD STACK SIZE
Each new thread receives its own stack space, consisting of both committed and reserved memory.
The system will commit one page blocks from the reserved stack memory as needed, until the stack
cannot grow any farther.
The default size for committed and reserved memory is specified in the executable file header. To
specify a different default stack size, use the STACKSIZE statement in the module definition (.DEF)
file. Your linker may also support a command-line option for setting the stack size. For more
information, see the documentation included with your linker.
To increase the amount of stack space which is to be initially committed for a thread, specify the
value in the dwStackSize parameter of the CreateThread or CreateRemoteThread function. This value
is rounded to the nearest page. The call to create the thread fails if there is not enough memory to
commit or reserve the number of bytes requested. If dwStackSize is smaller than the default reserve
size, the new thread uses the default reserve size. If dwStackSize is larger than the default reserve
size, the reserve size is rounded up to the nearest multiple of 1 MB.

 Institution Saint Joseph Email : jalvarez@instit-st-jo.asso.fr
 413, avenue de Boufflers URL : www.instit-st-jo.asso.fr
 54524 LAXOU-NANCY m.a.j : 17/10/2002 18:17

 7

Les API WIN32

Windows XP: If the dwCreationFlags parameter of CreateThread or CreateRemoteThread is
STACK_SIZE_PARAM_IS_A_RESERVATION, the dwStackSize parameter specifies the amount of
stack space which is to be initially reserved for the thread.
The stack is freed when the thread terminates.

1.4.3 THREAD HANDLES AND IDENTIFIERS
When a new thread is created by the CreateThread or CreateRemoteThread function, a handle to the
thread is returned. By default, this handle has full access rights, and — subject to security access
checking — can be used in any of the functions that accept a thread handle. This handle can be
inherited by child processes, depending on the inheritance flag specified when it is created. The
handle can be duplicated by DuplicateHandle, which enables you to create a thread handle with a
subset of the access rights. The handle is valid until closed, even after the thread it represents has
been terminated.
The CreateThread and CreateRemoteThread functions also return an identifier that uniquely
identifies the thread throughout the system. A thread can use the GetCurrentThreadId function to get
its own thread identifier. The identifiers are valid from the time the thread is created until the thread
has been terminated.
Windows Me, Windows 2000/XP: If you have a thread identifier, you can get the thread handle by
calling the OpenThread function. OpenThread enables you to specify the handle's access rights and
whether it can be inherited.
Windows NT 4.0 and earlier, Windows 95/98/Me: There is no way to get the thread handle from the
thread identifier. If the handles were made available this way, the owning process could fail because
another process unexpectedly performed an operation on one of its threads, such as suspending it,
resuming it, adjusting its priority, or terminating it. Instead, you must request the handle from the
thread creator or the thread itself.
A thread can use the GetCurrentThread function to retrieve a pseudo handle to its own thread object.
This pseudo handle is valid only for the calling process; it cannot be inherited or duplicated for use
by other processes. To get the real handle to the thread, given a pseudo handle, use the
DuplicateHandle function.

1.4.4 SUSPENDING THREAD EXECUTION
A thread can suspend and resume the execution of another thread using the SuspendThread and
ResumeThread functions. While a thread is suspended, it is not scheduled for time on the processor.
The SuspendThread function is not particularly useful for synchronization because it does not
control the point in the code at which the thread's execution is suspended. However, you might want
to suspend a thread in a situation where you are waiting for user input that could cancel the work the
thread is performing. If the user input cancels the work, have the thread exit; otherwise, call
ResumeThread.
If a thread is created in a suspended state (with the CREATE_SUSPENDED flag), it does not begin to
execute until another thread calls ResumeThread with a handle to the suspended thread. This can be
useful for initializing the thread's state before it begins to execute. Suspending a thread at creation
can be useful for one-time synchronization, because this ensures that the suspended thread will
execute the starting point of its code when you call ResumeThread.
A thread can temporarily yield its execution for a specified interval by calling the Sleep or SleepEx
functions This is useful particularly in cases where the thread responds to user interaction, because
it can delay execution long enough to allow users to observe the results of their actions. During the
sleep interval, the thread is not scheduled for time on the processor.
The SwitchToThread function is similar to Sleep and SleepEx, except that you cannot specify the
interval. SwitchToThread allows the thread to give up its time slice.

1.4.5 SYNCHRONIZING EXECUTION OF MULTIPLE THREADS
To avoid race conditions and deadlocks, it is necessary to synchronize access by multiple threads to
shared resources. Synchronization is also necessary to ensure that interdependent code is executed
in the proper sequence.

 Institution Saint Joseph Email : jalvarez@instit-st-jo.asso.fr
 413, avenue de Boufflers URL : www.instit-st-jo.asso.fr
 54524 LAXOU-NANCY m.a.j : 17/10/2002 18:17

 8

Les API WIN32

There are a number of objects whose handles can be used to synchronize multiple threads. These
objects include:

• Console input buffers

• Events

• Mutexes

• Processes

• Semaphores

• Threads

• Timers
The state of each of these objects is either signaled or not signaled. When you specify a handle to
any of these objects in a call to one of the wait functions, the execution of the calling thread is
blocked until the state of the specified object becomes signaled.
Some of these objects are useful in blocking a thread until some event occurs. For example, a
console input buffer handle is signaled when there is unread input, such as a keystroke or mouse
button click. Process and thread handles are signaled when the process or thread terminates. This
allows a process, for example, to create a child process and then block its own execution until the
new process has terminated.
Other objects are useful in protecting shared resources from simultaneous access. For example,
multiple threads can each have a handle to a mutex object. Before accessing a shared resource, the
threads must call one of the wait functions to wait for the state of the mutex to be signaled. When the
mutex becomes signaled, only one waiting thread is released to access the resource. The state of
the mutex is immediately reset to not signaled so any other waiting threads remain blocked. When
the thread is finished with the resource, it must set the state of the mutex to signaled to allow other
threads to access the resource.
For the threads of a single process, critical-section objects provide a more efficient means of
synchronization than mutexes. A critical section is used like a mutex to enable one thread at a time
to use the protected resource. A thread can use the EnterCriticalSection function to request
ownership of a critical section. If it is already owned by another thread, the requesting thread is
blocked. A thread can use the TryEnterCriticalSection function to request ownership of a critical
section, without blocking upon failure to obtain the critical section. After it receives ownership, the
thread is free to use the protected resource. The execution of the other threads of the process is not
affected unless they attempt to enter the same critical section.
The WaitForInputIdle function makes a thread wait until a specified process is initialized and waiting
for user input with no input pending. Calling WaitForInputIdle can be useful for synchronizing parent
and child processes, because CreateProcess returns without waiting for the child process to
complete its initialization.
For more information, see Synchronization.

1.4.6 TERMINATING A THREAD
A thread executes until one of the following events occurs:

• The thread calls the ExitThread function.

• Any thread of the process calls the ExitProcess function.

• The thread function returns.

• Any thread calls the TerminateThread function with a handle to the thread.

• Any thread calls the TerminateProcess function with a handle to the process.

 Institution Saint Joseph Email : jalvarez@instit-st-jo.asso.fr
 413, avenue de Boufflers URL : www.instit-st-jo.asso.fr
 54524 LAXOU-NANCY m.a.j : 17/10/2002 18:17

 9

Les API WIN32

The GetExitCodeThread function returns the termination status of a thread. While a thread is
executing, its termination status is STILL_ACTIVE. When a thread terminates, its termination status
changes from STILL_ACTIVE to the exit code of the thread. The exit code is either the value specified
in the call to ExitThread, ExitProcess, TerminateThread, or TerminateProcess, or the value returned
by the thread function.
When a thread terminates, the state of the thread object changes to signaled, releasing any other
threads that had been waiting for the thread to terminate. For more about synchronization, see
Synchronizing Execution of Multiple Threads.
If a thread is terminated by ExitThread, the system calls the entry-point function of each attached DLL
with a value indicating that the thread is detaching from the DLL (unless you call the
DisableThreadLibraryCalls function). If a thread is terminated by ExitProcess, the DLL entry-point
functions are invoked once, to indicate that the process is detaching. DLLs are not notified when a
thread is terminated by TerminateThread or TerminateProcess. For more information about DLLs, see
Dynamic-Link Libraries.
Warning The TerminateThread and TerminateProcess functions should be used only in extreme
circumstances, since they do not allow threads to clean up, do not notify attached DLLs, and do not
free the initial stack. The following steps provide a better solution:

• Create an event object using the CreateEvent function.

• Create the threads.

• Each thread monitors the event state by calling the WaitForSingleObject function. Use a wait time-
out interval of zero.

• Each thread terminates its own execution when the event is set to the signaled state
(WaitForSingleObject returns WAIT_OBJECT_0).

1.4.7 THREAD TIMES
The GetThreadTimes function obtains timing information for a thread. It returns the thread creation
time, how much time the thread has been executing in kernel mode, and how much time the thread
has been executing in user mode. These times do not include time spent executing system threads
or waiting in a suspended or blocked state. If the thread has exited, GetThreadTimes returns the
thread exit time.

1.4.8 THREAD SECURITY AND ACCESS RIGHTS
The Windows NT security model enables you to control access to thread objects. For more
information about security, see Access-Control Model.
You can specify a security descriptor for a thread when you call the CreateProcess,
CreateProcessAsUser, CreateProcessWithLogonW, CreateThread, or CreateRemoteThread function. To
retrieve a thread's security descriptor, call the GetSecurityInfo function. To change a thread's security
descriptor, call the SetSecurityInfo function.
The handle returned by the CreateThread function has THREAD_ALL_ACCESS access to the thread
object. When you call the GetCurrentThread function, the system returns a pseudohandle with the
maximum access that the thread's security descriptor allows the caller.
The valid access rights for thread objects include the DELETE, READ_CONTROL, SYNCHRONIZE,
WRITE_DAC, and WRITE_OWNER standard access rights, in addition to the following thread-specific
access rights.

Value Meaning
SYNCHRONIZE A standard right required to wait for the thread to exit.
THREAD_ALL_ACCESS Specifies all possible access rights for a thread object.
THREAD_DIRECT_IMPERSONATION Required for a server thread that impersonates a client.
THREAD_GET_CONTEXT Required to read the context of a thread using

 Institution Saint Joseph Email : jalvarez@instit-st-jo.asso.fr
 413, avenue de Boufflers URL : www.instit-st-jo.asso.fr
 54524 LAXOU-NANCY m.a.j : 17/10/2002 18:17

 10

Les API WIN32

GetThreadContext.
THREAD_IMPERSONATE Required to use a thread's security information directly

without calling it by using a communication mechanism
that provides impersonation services.

THREAD_QUERY_INFORMATION Required to read certain information from the thread
object.

THREAD_SET_CONTEXT Required to write the context of a thread.
THREAD_SET_INFORMATION Required to set certain information in the thread object.
THREAD_SET_THREAD_TOKEN Required to set the impersonation token for a thread.
THREAD_SUSPEND_RESUME Required to suspend or resume a thread.
THREAD_TERMINATE Required to terminate a thread.

You can request the ACCESS_SYSTEM_SECURITY access right to a thread object if you want to
read or write the object's SACL. For more information, see Access-Control Lists (ACLs) and SACL
Access Right.

1.5 CHILD PROCESSES

A child process is a process that is created by another process, called the parent process

1.5.1 CREATING PROCESSES
The CreateProcess function creates a new process, which runs independently of the creating
process. However, for simplicity, the relationship is referred to as a parent-child relationship.
The following code fragment demonstrates how to create a process.
void main(VOID)
{
 STARTUPINFO si;
 PROCESS_INFORMATION pi;

 ZeroMemory(&si, sizeof(si));
 si.cb = sizeof(si);
 ZeroMemory(&pi, sizeof(pi));

 // Start the child process.
 if(!CreateProcess(NULL, // No module name (use command line).
 "MyChildProcess", // Command line.
 NULL, // Process handle not inheritable.
 NULL, // Thread handle not inheritable.
 FALSE, // Set handle inheritance to FALSE.
 0, // No creation flags.
 NULL, // Use parent's environment block.
 NULL, // Use parent's starting directory.
 &si, // Pointer to STARTUPINFO structure.
 &pi) // Pointer to PROCESS_INFORMATION structure.
)
 {
 ErrorExit("CreateProcess failed.");
 }

 // Wait until child process exits.
 WaitForSingleObject(pi.hProcess, INFINITE);

 // Close process and thread handles.
 CloseHandle(pi.hProcess);
 CloseHandle(pi.hThread);
}

 Institution Saint Joseph Email : jalvarez@instit-st-jo.asso.fr
 413, avenue de Boufflers URL : www.instit-st-jo.asso.fr
 54524 LAXOU-NANCY m.a.j : 17/10/2002 18:17

 11

Les API WIN32

If CreateProcess succeeds, it returns a PROCESS_INFORMATION structure containing handles and
identifiers for the new process and its primary thread. The thread and process handles are created
with full access rights, although access can be restricted if you specify security descriptors. When
you no longer need these handles, close them by using the CloseHandle function.
You can also create a process using the CreateProcessAsUser function. This function allows you to
specify the security context of the user account in which the process will execute.

1.5.2 SETTING WINDOW PROPERTIES USING STARTUPINFO
A parent process can specify properties associated with the main window of its child process. The
CreateProcess function takes a pointer to a STARTUPINFO structure as one of its parameters. Use
the members of this structure to specify characteristics of the child process's main window. The
dwFlags member contains a bit field that determines which other members of the structure are used.
This allows you to specify values for any subset of the window properties. The system uses default
values for the properties you do not specify. The dwFlags member can also force a feedback cursor
to be displayed during the initialization of the new process.
For GUI processes, the STARTUPINFO structure specifies the default values to be used the first time
the new process calls the CreateWindow and ShowWindow functions to create and display an
overlapped window. The following default values can be specified:

• The width and height, in pixels, of the window created by CreateWindow.

• The location, in screen coordinates of the window created by CreateWindow.

• The nCmdShow parameter of ShowWindow.
For console processes, use the STARTUPINFO structure to specify window properties only when
creating a new console (either using CreateProcess with CREATE_NEW_CONSOLE or with the
AllocConsole function). The STARTUPINFO structure can be used to specify the following console
window properties:

• The size of the new console window, in character cells.

• The location of the new console window, in screen coordinates.

• The size, in character cells, of the new console's screen buffer.

• The text and background color attributes of the new console's screen buffer.

• The title of the new console's window.

1.5.3 PROCESS HANDLES AND IDENTIFIERS
When a new process is created by the CreateProcess function, handles of the new process and its
primary thread are returned. These handles are created with full access rights, and — subject to
security access checking — can be used in any of the functions that accept thread or process
handles. These handles can be inherited by child processes, depending on the inheritance flag
specified when they are created. The handles are valid until closed, even after the process or thread
they represent has been terminated.
The CreateProcess function also returns an identifier that uniquely identifies the process throughout
the system. A process can use the GetCurrentProcessId function to get its own process identifier. The
identifier is valid from the time the process is created until the process has been terminated.
If you have a process identifier, you can get the process handle by calling the OpenProcess function.
OpenProcess enables you to specify the handle's access rights and whether it can be inherited.
A process can use the GetCurrentProcess function to retrieve a pseudo handle to its own process
object. This pseudo handle is valid only for the calling process; it cannot be inherited or duplicated
for use by other processes. To get the real handle to the process, call the DuplicateHandle function.

 Institution Saint Joseph Email : jalvarez@instit-st-jo.asso.fr
 413, avenue de Boufflers URL : www.instit-st-jo.asso.fr
 54524 LAXOU-NANCY m.a.j : 17/10/2002 18:17

 12

Les API WIN32

1.5.4 OBTAINING ADDITIONAL PROCESS INFORMATION
There are a variety of functions for obtaining information about processes. Some of these functions
can be used only for the calling process, because they do not take a process handle as a parameter.
You can use functions that take a process handle to obtain information about other processes.

• To obtain the command-line string for the current process, use the GetCommandLine function.

• To parse a Unicode command-line string obtained from the Unicode version of GetCommandLine,
use the CommandLineToArgvW function.

• To retrieve the STARTUPINFO structure specified when the current process was created, use the
GetStartupInfo function.

• To obtain the version information from the executable header, use the GetProcessVersion function.

• To obtain the full path and file name for the executable file containing the process code, use the
GetModuleFileName function.

• To obtain the count of handles to graphical user interface (GUI) objects in use, use the
GetGuiResources function.

• To determine whether a process is being debugged, use the IsDebuggerPresent function.

• To retrieve accounting information for all I/O operations performed by the process, use the
GetProcessIoCounters function.

1.5.5 INHERITANCE
A child process can inherit several properties and resources from its parent process. You can also
prevent a child process from inheriting properties from its parent process. The following can be
inherited:

• Open handles returned by the CreateFile function. This includes handles to files, console input
buffers, console screen buffers, named pipes, serial communication devices, and mailslots.

• Open handles to process, thread, mutex, event, semaphore, named-pipe, anonymous-pipe, and file-
mapping objects.

• Environment variables.

• The current directory.

• The console, unless the process is detached or a new console is created. A child console process also
inherits the parent's standard handles, as well as access to the input buffer and the active screen
buffer.

The child process does not inherit the following:
• Priority class.

• Handles returned by LocalAlloc, GlobalAlloc, HeapCreate, and HeapAlloc.

• Pseudo handles, as in the handles returned by the GetCurrentProcess or GetCurrentThread
function. These handles are valid only for the calling process.

• DLL module handles returned by the LoadLibrary function.

• GDI or USER handles, such as HBITMAP or HMENU.

 Institution Saint Joseph Email : jalvarez@instit-st-jo.asso.fr
 413, avenue de Boufflers URL : www.instit-st-jo.asso.fr
 54524 LAXOU-NANCY m.a.j : 17/10/2002 18:17

 13

Les API WIN32

1.5.5.1 INHERITING HANDLES
To cause a handle to be inherited, you must do two things:

• Specify that the handle is to be inherited when you create, open, or duplicate the handle.

• Specify that inheritable handles are to be inherited when you call the CreateProcess function.
This allows a child process to inherit some of its parent's handles, but not inherit others. For
example, creation functions such as CreateProcess and CreateFile take a security attributes
argument that determines whether the handle can be inherited. Open functions such as OpenMutex
and OpenEvent take a handle inheritance flag that determines whether the handle can be inherited.
The DuplicateHandle function takes a handle inheritance flag that determines whether the handle can
be inherited.
When a child process is created, the fInheritHandles parameter of CreateProcess determines whether
the inheritable handles of the parent process are inherited by the child process. An inherited handle
refers to the same object in the child process as it does in the parent process. It also has the same
value and access privileges. Therefore, when one process changes the state of the object, the
change affects both processes. To use a handle, the child process must retrieve the handle value
and "know" the object to which it refers. Usually, the parent process communicates this information
to the child process through its command line, environment block, or some form of interprocess
communication.
The DuplicateHandle function is useful if a process has an inheritable open handle that you do not
want to be inherited by the child process. In this case, use DuplicateHandle to open a duplicate of
the handle that cannot be inherited, then use the CloseHandle function to close the inheritable
handle. You can also use the DuplicateHandle function to open an inheritable duplicate of a handle
that cannot be inherited.

1.5.5.2 INHERITING ENVIRONMENT VARIABLES
A child process inherits the environment variables of its parent process by default. However,
CreateProcess enables the parent process to specify a different block of environment variables. For
more information, see Environment Variables.

1.5.5.3 INHERITING THE CURRENT DIRECTORY
The GetCurrentDirectory function retrieves the current directory of the calling process. A child
process inherits the current directory of its parent process by default. However, CreateProcess
enables the parent process to specify a different current directory for the child process. To change
the current directory of the calling process, use the SetCurrentDirectory function.

1.5.6 ENVIRONMENT VARIABLES
Every process has an environment block that contains a set of environment variables and their
values. The command processor provides the set command to display its environment block or to
create new environment variables. Programs started by the command processor inherit the
command processor's environment variables.
By default, a child process inherits the environment variables of its parent process. However, you
can specify a different environment for the child process by creating a new environment block and
passing a pointer to it as a parameter to the CreateProcess function.
The GetEnvironmentStrings function returns a pointer to the environment block of the calling process.
This should be treated as a read-only block; do not modify it directly. Instead, use the
SetEnvironmentVariable function to change an environment variable. When you are finished with the
environment block obtained from GetEnvironmentStrings, call the FreeEnvironmentStrings function to
free the block.
The GetEnvironmentVariable function determines whether a specified variable is defined in the
environment of the calling process, and, if so, what its value is.
For more information, see the examples in Changing Environment Variables.

 Institution Saint Joseph Email : jalvarez@instit-st-jo.asso.fr
 413, avenue de Boufflers URL : www.instit-st-jo.asso.fr
 54524 LAXOU-NANCY m.a.j : 17/10/2002 18:17

 14

Les API WIN32

1.5.7 TERMINATING A PROCESS
A process executes until one of the following events occurs:

• Any thread of the process calls the ExitProcess function. This terminates all threads of the process.

• The primary thread of the process returns. The primary thread can avoid terminating other threads by
explicitly calling ExitThread before it returns. One of the remaining threads can still call
ExitProcess to ensure that all threads are terminated.

• The last thread of the process terminates.

• Any thread calls the TerminateProcess function with a handle to the process. This terminates all
threads of the process, without allowing them to clean up or save data.

• For console processes, the default handler function calls ExitProcess when the console receives a
CTRL+C or CTRL+BREAK signal. All console processes attached to the console receive these
signals. Detached processes and GUI processes are not affected by CTRL+C or CTRL+BREAK
signals. For more information, see SetConsoleCtrlHandler.

• The user shuts down the system or logs off. Use the SetProcessShutdownParameters function to
specify shutdown parameters, such as when a process should terminate relative to the other processes
in the system. The GetProcessShutdownParameters function retrieves the current shutdown
priority of the process and other shutdown flags.

When a process is terminated, all threads of the process are terminated immediately with no chance
to run additional code. This means that the process does not execute code in termination handler
blocks. For more information, see Structured Exception Handling.
The GetExitCodeProcess function returns the termination status of a process. While a process is
executing, its termination status is STILL_ACTIVE. When a process terminates, its termination status
changes from STILL_ACTIVE to the exit code of the process. The exit code is either the value
specified in the call to ExitProcess or TerminateProcess, or the value returned by the main or WinMain
function of the process. If a process is terminated due to a fatal exception, the exit code is the value
of the exception that caused the termination. In addition, this value is used as the exit code for all the
threads that were executing when the exception occurred.
When a process terminates, the state of the process object becomes signaled, releasing any threads
that had been waiting for the process to terminate. For more about synchronization, see
Synchronizing Execution of Multiple Threads.
Open handles to files or other resources are closed automatically when a process terminates.
However, the objects themselves exist until all open handles to them are closed. This means that an
object remains valid after a process closes, if another process has a handle to it.
If a process is terminated by ExitProcess, the system calls the entry-point function of each attached
DLL with a value indicating that the process is detaching from the DLL. DLLs are not notified when a
process is terminated by TerminateProcess. For more information about DLLs, see Dynamic-Link
Libraries.
The execution of the ExitProcess, ExitThread, CreateThread, CreateRemoteThread, and CreateProcess
functions is serialized within an address space. The following restrictions apply:

• During process startup and DLL initialization routines, new threads can be created, but they do not
begin execution until DLL initialization is finished for the process.

• Only one thread at a time can be in a DLL initialization or detach routine.

• The ExitProcess function does not return until there are no threads are in their DLL initialization or
detach routines.

Warning The TerminateProcess function should be used only in extreme circumstances, since it
does not allow threads to clean up or save data and does not notify attached DLLs. If you need to
have one process terminate another process, the following steps provide a better solution:

 Institution Saint Joseph Email : jalvarez@instit-st-jo.asso.fr
 413, avenue de Boufflers URL : www.instit-st-jo.asso.fr
 54524 LAXOU-NANCY m.a.j : 17/10/2002 18:17

 15

Les API WIN32

• Have both processes call the RegisterWindowMessage function to create a private message.

• One process can terminate the other process by broadcasting the private message using the
BroadcastSystemMessage function as follows:

• BroadcastSystemMessage(
• BSF_IGNORECURRENTTASK, // do not send message to this process
• BSM_APPLICATIONS, // broadcast only to applications
• private message, // message registered in previous step
• wParam, // message-specific value
• lParam); // message-specific value

• The process receiving the private message calls ExitProcess to terminate its execution.

Note When the system is terminating a process, it does not terminate any child processes

that the process has created.

1.5.8 PROCESS TIMES
The GetProcessTimes function obtains timing information for a process. It returns the process
creation time, how much time the process has been executing in kernel mode, and how much time
the process has been executing in user mode. These times do not include time spent executing
system threads or waiting in a suspended or blocked state. If the process has exited,
GetProcessTimes returns the process exit time.

1.5.9 PROCESS SECURITY AND ACCESS RIGHTS
The Windows NT security model enables you to control access to process objects. For more
information about security, see Access-Control Model.
You can specify a security descriptor for a process when you call the CreateProcess,
CreateProcessAsUser, or CreateProcessWithLogonW function. To retrieve a process's security
descriptor, call the GetSecurityInfo function. To change a process's security descriptor, call the
SetSecurityInfo function.
The handle returned by the CreateProcess function has PROCESS_ALL_ACCESS access to the
process object. When you call the OpenProcess function, the system checks the requested access
rights against the DACL in the process's security descriptor. When you call the GetCurrentProcess
function, the system returns a pseudohandle with the maximum access that the DACL allows to the
caller.
The valid access rights for process objects include the DELETE, READ_CONTROL, SYNCHRONIZE,
WRITE_DAC, and WRITE_OWNER standard access rights, in addition to the following process-
specific access rights.

Value Meaning
PROCESS_ALL_ACCESS Specifies all possible access rights for a process object.
PROCESS_CREATE_PROCESS Required to create a process.
PROCESS_CREATE_THREAD Required to create a thread.
PROCESS_DUP_HANDLE Required to duplicate a handle.
PROCESS_QUERY_INFORMATION Required to retrieve certain information about a

process, such as its priority class.
PROCESS_SET_QUOTA Required to set memory limits.
PROCESS_SET_INFORMATION Required to set certain information about a process,

such as its priority class.

 Institution Saint Joseph Email : jalvarez@instit-st-jo.asso.fr
 413, avenue de Boufflers URL : www.instit-st-jo.asso.fr
 54524 LAXOU-NANCY m.a.j : 17/10/2002 18:17

 16

Les API WIN32

PROCESS_TERMINATE Required to terminate a process.
PROCESS_VM_OPERATION Required to perform an operation on the address space

of a process.
PROCESS_VM_READ Required to read memory in a process.
PROCESS_VM_WRITE Required to write to memory in a process.
SYNCHRONIZE A standard right required to wait for the process to

terminate.

You can request the ACCESS_SYSTEM_SECURITY access right to a process object if you want to
read or write the object's SACL. For more information, see Access-Control Lists (ACLs) and SACL
Access Right.

1.6 JOB OBJECTS

A job object allows groups of processes to be managed as a unit. Job objects are namable,
securable, sharable objects that control attributes of the processes associated with them.
Operations performed on the job object affect all processes associated with the job object.
To create a job object, use the CreateJobObject function. When the job is created, there are no
associated processes. To associate a process with a job, use the AssignProcessToJobObject function.
After you associate a process with a job, the association cannot be broken. By default, processes
created by a process associated with a job (child processes) are associated with the job. If the job
has the extended limit JOB_OBJECT_LIMIT_BREAKAWAY_OK and the process was created with the
CREATE_BREAKAWAY_FROM_JOB flag, its child processess are not associated with the job. If the
job has the extended limit JOB_OBJECT_LIMIT_SILENT_BREAKAWAY_OK, no child processes are
associated with the job.
To determine if a process is running in a job, use the IsProcessInJob function.
A job can enforce limits on each associated process, such as the working set size, process priority,
end-of-job time limit, and so on. To set limits for a job object, use the SetInformationJobObject
function. If a process associated with a job attempts to increase its working set size or process
priority, the function calls are silently ignored.
The job object also records basic accounting information for all its associated processes, including
those that have terminated. To retrieve this accounting information, use the
QueryInformationJobObject function.
To terminate all processes currently associated with a job object, use the TerminateJobObject
function.
To close a job object handle, use the CloseHandle function. The job object is destroyed when its last
handle has been closed. If there are running processes still associated with the job when it is
destroyed, they will continue to run even after the job is destroyed.
If a tool is to manage a process tree that uses job objects, both the tool and the members of the
process tree must cooperate. Use one of the following options:

1. The tool could use the JOB_OBJECT_LIMIT_SILENT_BREAKAWAY_OK limit. If the tool uses
this limit, it cannot monitor an entire process tree. The tool can monitor only the processes it adds to
the job. If these processes create child processes, they are not associated with the job. In this option,
child processes can be associated with other job objects.

2. The tool could use the JOB_OBJECT_LIMIT_BREAKAWAY_OK limit. If the tool uses this limit,
it can monitor the entire process tree, except for those processes that any member of the tree
explicitly breaks away from the tree. A member of the tree can create a child process in a new job
object by calling the CreateProcess function with the CREATE_BREAKAWAY_FROM_JOB flag,
then calling the AssignProcessToJobObject function. Otherwise, the member must handle cases in
which AssignProcessToJobObject fails.

 Institution Saint Joseph Email : jalvarez@instit-st-jo.asso.fr
 413, avenue de Boufflers URL : www.instit-st-jo.asso.fr
 54524 LAXOU-NANCY m.a.j : 17/10/2002 18:17

 17

Les API WIN32

The CREATE_BREAKAWAY_FROM_JOB flag has no effect if the tree is not being monitored by the
tool. Therefore, this is the preferred option, but it requires advance knowledge of the processes
being monitored.

3. The tool could prevent breakaways of any kind. In this option, the tool can monitor the entire
process tree. However, if a process associated with the job tries to call AssignProcessToJobObject,
the call will fail. If the process was not designed to be associated with a job, this failure may be
unexpected.

2 USING PROCESSES AND THREADS

2.1 CREATING A CHILD PROCESS WITH REDIRECTED INPUT AND OUTPUT

The example in this topic demonstrates how to create a child process from a console process. It also
demonstrates a technique for using anonymous pipes to redirect the child process's standard input
and output handles.
The CreatePipe function uses the SECURITY_ATTRIBUTES structure to create inheritable handles to
the read and write ends of two pipes. The read end of one pipe serves as standard input for the child
process, and the write end of the other pipe is the standard output for the child process. These pipe
handles are specified in the SetStdHandle function, which makes them the standard handles inherited
by the child process. After the child process is created, SetStdHandle is used again to restore the
original standard handles for the parent process.
The parent process uses the other ends of the pipes to write to the child process's input and read
the child process's output. The handles to these ends of the pipe are also inheritable. However, the
handle must not be inherited. Before creating the child process, the parent process must use
DuplicateHandle to create a duplicate of the application-defined hChildStdinWr global variable that
cannot be inherited. It then uses CloseHandle to close the inheritable handle. For more information,
see Pipes.
The following is the parent process.

#include <stdio.h>
#include <windows.h>

#define BUFSIZE 4096

HANDLE hChildStdinRd, hChildStdinWr, hChildStdinWrDup,
 hChildStdoutRd, hChildStdoutWr, hChildStdoutRdDup,
 hInputFile, hSaveStdin, hSaveStdout;

BOOL CreateChildProcess(VOID);
VOID WriteToPipe(VOID);
VOID ReadFromPipe(VOID);
VOID ErrorExit(LPTSTR);
VOID ErrMsg(LPTSTR, BOOL);

DWORD main(int argc, char *argv[])
{
 SECURITY_ATTRIBUTES saAttr;
 BOOL fSuccess;

// Set the bInheritHandle flag so pipe handles are inherited.

 saAttr.nLength = sizeof(SECURITY_ATTRIBUTES);
 saAttr.bInheritHandle = TRUE;
 saAttr.lpSecurityDescriptor = NULL;

 // The steps for redirecting child process's STDOUT:

 Institution Saint Joseph Email : jalvarez@instit-st-jo.asso.fr
 413, avenue de Boufflers URL : www.instit-st-jo.asso.fr
 54524 LAXOU-NANCY m.a.j : 17/10/2002 18:17

 18

Les API WIN32

 // 1. Save current STDOUT, to be restored later.
 // 2. Create anonymous pipe to be STDOUT for child process.
 // 3. Set STDOUT of the parent process to be write handle to
 // the pipe, so it is inherited by the child process.
 // 4. Create a noninheritable duplicate of the read handle and
 // close the inheritable read handle.

// Save the handle to the current STDOUT.

 hSaveStdout = GetStdHandle(STD_OUTPUT_HANDLE);

// Create a pipe for the child process's STDOUT.

 if (! CreatePipe(&hChildStdoutRd, &hChildStdoutWr, &saAttr, 0))
 ErrorExit("Stdout pipe creation failed\n");

// Set a write handle to the pipe to be STDOUT.

 if (! SetStdHandle(STD_OUTPUT_HANDLE, hChildStdoutWr))
 ErrorExit("Redirecting STDOUT failed");

// Create noninheritable read handle and close the inheritable read
// handle.

 fSuccess = DuplicateHandle(GetCurrentProcess(), hChildStdoutRd,
 GetCurrentProcess(), &hChildStdoutRdDup , 0,
 FALSE,
 DUPLICATE_SAME_ACCESS);
 if(!fSuccess)
 ErrorExit("DuplicateHandle failed");
 CloseHandle(hChildStdoutRd);

 // The steps for redirecting child process's STDIN:
 // 1. Save current STDIN, to be restored later.
 // 2. Create anonymous pipe to be STDIN for child process.
 // 3. Set STDIN of the parent to be the read handle to the
 // pipe, so it is inherited by the child process.
 // 4. Create a noninheritable duplicate of the write handle,
 // and close the inheritable write handle.

// Save the handle to the current STDIN.

 hSaveStdin = GetStdHandle(STD_INPUT_HANDLE);

// Create a pipe for the child process's STDIN.

 if (! CreatePipe(&hChildStdinRd, &hChildStdinWr, &saAttr, 0))
 ErrorExit("Stdin pipe creation failed\n");

// Set a read handle to the pipe to be STDIN.

 if (! SetStdHandle(STD_INPUT_HANDLE, hChildStdinRd))
 ErrorExit("Redirecting Stdin failed");

// Duplicate the write handle to the pipe so it is not inherited.

 fSuccess = DuplicateHandle(GetCurrentProcess(), hChildStdinWr,
 GetCurrentProcess(), &hChildStdinWrDup, 0,
 FALSE, // not inherited
 DUPLICATE_SAME_ACCESS);
 if (! fSuccess)
 ErrorExit("DuplicateHandle failed");

 CloseHandle(hChildStdinWr);

 Institution Saint Joseph Email : jalvarez@instit-st-jo.asso.fr
 413, avenue de Boufflers URL : www.instit-st-jo.asso.fr
 54524 LAXOU-NANCY m.a.j : 17/10/2002 18:17

 19

Les API WIN32

// Now create the child process.

 if (! CreateChildProcess())
 ErrorExit("Create process failed");

// After process creation, restore the saved STDIN and STDOUT.

 if (! SetStdHandle(STD_INPUT_HANDLE, hSaveStdin))
 ErrorExit("Re-redirecting Stdin failed\n");

 if (! SetStdHandle(STD_OUTPUT_HANDLE, hSaveStdout))
 ErrorExit("Re-redirecting Stdout failed\n");

// Get a handle to the parent's input file.

 if (argc > 1)
 hInputFile = CreateFile(argv[1], GENERIC_READ, 0, NULL,
 OPEN_EXISTING, FILE_ATTRIBUTE_READONLY, NULL);
 else
 hInputFile = hSaveStdin;

 if (hInputFile == INVALID_HANDLE_VALUE)
 ErrorExit("no input file\n");

// Write to pipe that is the standard input for a child process.

 WriteToPipe();

// Read from pipe that is the standard output for child process.

 ReadFromPipe();

 return 0;
}

BOOL CreateChildProcess()
{
 PROCESS_INFORMATION piProcInfo;
 STARTUPINFO siStartInfo;

// Set up members of the PROCESS_INFORMATION structure.

 ZeroMemory(&piProcInfo, sizeof(PROCESS_INFORMATION));

// Set up members of the STARTUPINFO structure.

 ZeroMemory(&siStartInfo, sizeof(STARTUPINFO));
 siStartInfo.cb = sizeof(STARTUPINFO);

// Create the child process.

 return CreateProcess(NULL,
 "child", // command line
 NULL, // process security attributes
 NULL, // primary thread security attributes
 TRUE, // handles are inherited
 0, // creation flags
 NULL, // use parent's environment
 NULL, // use parent's current directory
 &siStartInfo, // STARTUPINFO pointer
 &piProcInfo); // receives PROCESS_INFORMATION
}

 Institution Saint Joseph Email : jalvarez@instit-st-jo.asso.fr
 413, avenue de Boufflers URL : www.instit-st-jo.asso.fr
 54524 LAXOU-NANCY m.a.j : 17/10/2002 18:17

 20

Les API WIN32

VOID WriteToPipe(VOID)
{
 DWORD dwRead, dwWritten;
 CHAR chBuf[BUFSIZE];

// Read from a file and write its contents to a pipe.

 for (;;)
 {
 if (! ReadFile(hInputFile, chBuf, BUFSIZE, &dwRead, NULL) ||
 dwRead == 0) break;
 if (! WriteFile(hChildStdinWrDup, chBuf, dwRead,
 &dwWritten, NULL)) break;
 }

// Close the pipe handle so the child process stops reading.

 if (! CloseHandle(hChildStdinWrDup))
 ErrorExit("Close pipe failed\n");
}

VOID ReadFromPipe(VOID)
{
 DWORD dwRead, dwWritten;
 CHAR chBuf[BUFSIZE];
 HANDLE hStdout = GetStdHandle(STD_OUTPUT_HANDLE);

// Close the write end of the pipe before reading from the
// read end of the pipe.

 if (!CloseHandle(hChildStdoutWr))
 ErrorExit("Closing handle failed");

// Read output from the child process, and write to parent's STDOUT.

 for (;;)
 {
 if(!ReadFile(hChildStdoutRdDup, chBuf, BUFSIZE, &dwRead,
 NULL) || dwRead == 0) break;
 if (! WriteFile(hSaveStdout, chBuf, dwRead, &dwWritten, NULL))
 break;
 }
}

VOID ErrorExit (LPTSTR lpszMessage)
{
 fprintf(stderr, "%s\n", lpszMessage);
 ExitProcess(0);
}

// The code for the child process.

#include <windows.h>
#define BUFSIZE 4096

VOID main(VOID)
{
 CHAR chBuf[BUFSIZE];
 DWORD dwRead, dwWritten;
 HANDLE hStdin, hStdout;
 BOOL fSuccess;

 hStdout = GetStdHandle(STD_OUTPUT_HANDLE);
 hStdin = GetStdHandle(STD_INPUT_HANDLE);

 Institution Saint Joseph Email : jalvarez@instit-st-jo.asso.fr
 413, avenue de Boufflers URL : www.instit-st-jo.asso.fr
 54524 LAXOU-NANCY m.a.j : 17/10/2002 18:17

 21

Les API WIN32

 if ((hStdout == INVALID_HANDLE_VALUE) ||
 (hStdin == INVALID_HANDLE_VALUE))
 ExitProcess(1);

 for (;;)
 {
 // Read from standard input.
 fSuccess = ReadFile(hStdin, chBuf, BUFSIZE, &dwRead, NULL);
 if (! fSuccess || dwRead == 0)
 break;

 // Write to standard output.
 fSuccess = WriteFile(hStdout, chBuf, dwRead, &dwWritten, NULL);
 if (! fSuccess)
 break;
 }
}

2.2 CHANGING ENVIRONMENT VARIABLES

Each process has an environment block associated with it. The environment block consists of a null-
terminated block of null-terminated strings (meaning there are two null bytes at the end of the block),
where each string is in the form:
name=value
All strings in the environment block must be sorted alphabetically by name. The sort is case-
insensitive, Unicode order, without regard to locale. Because the equal sign is a separator, it must
not be used in the name of an environment variable.
By default, a child process inherits a copy of the environment block of the parent process. The
following example demonstrates how to create a new environment block to pass to a child process.
LPTSTR lpszCurrentVariable;
BOOL fSuccess;

// Copy environment strings into an environment block.

lpszCurrentVariable = tchNewEnv;
if (lstrcpy(lpszCurrentVariable, "MyVersion=2") == NULL)
 ErrorExit("lstrcpy failed");

lpszCurrentVariable += lstrlen(lpszCurrentVariable) + 1;
if (lstrcpy(lpszCurrentVariable, "MySetting=A") == NULL)
 ErrorExit("lstrcpy failed");

// Terminate the block with a NULL byte.

lpszCurrentVariable += lstrlen(lpszCurrentVariable) + 1;
*lpszCurrentVariable = '\0';

// Create the child process, specifying a new environment block.

fSuccess = CreateProcess(NULL, "childenv", NULL, NULL, TRUE, 0,
 (LPVOID) tchNewEnv, // new environment block
 NULL, &siStartInfo, &piProcInfo);

if (! fSuccess)
 ErrorExit("CreateProcess failed");
If you want the child process to inherit most of the parent's environment with only a few changes,
save the current values, make changes for the child process to inherit, create the child process, and
then restore the saved values, as shown following.
LPTSTR lpszOldValue;
TCHAR tchBuf[BUFSIZE];
BOOL fSuccess;

 Institution Saint Joseph Email : jalvarez@instit-st-jo.asso.fr
 413, avenue de Boufflers URL : www.instit-st-jo.asso.fr
 54524 LAXOU-NANCY m.a.j : 17/10/2002 18:17

 22

Les API WIN32

// lpszOldValue gets current value of "varname", or NULL if "varname"
// environment variable does not exist. Set "varname" to new value,
// create child process, then use SetEnvironmentVariable to restore
// original value of "varname". If lpszOldValue is NULL, the "varname"
// variable will be deleted.

lpszOldValue = ((GetEnvironmentVariable("varname",
 tchBuf, BUFSIZE) > 0) ? tchBuf : NULL);

// Set a value for the child process to inherit.

if (! SetEnvironmentVariable("varname", "newvalue"))
 ErrorExit("SetEnvironmentVariable failed");

// Create a child process.

fSuccess = CreateProcess(NULL, "childenv", NULL, NULL, TRUE, 0,
 NULL, // inherit parent's environment
 NULL, &siStartInfo, &piProcInfo);
if (! fSuccess)
 ErrorExit("CreateProcess failed");

// Restore the parent's environment.

if (! SetEnvironmentVariable("varname", lpszOldValue))
 ErrorExit("SetEnvironmentVariable failed");
The following example, taken from a console process, prints the contents of the process's
environment block.
LPTSTR lpszVariable;
LPVOID lpvEnv;

// Get a pointer to the environment block.

lpvEnv = GetEnvironmentStrings();

// Variable strings are separated by NULL byte, and the block is
// terminated by a NULL byte.

for (lpszVariable = (LPTSTR) lpvEnv; *lpszVariable; lpszVariable++)
{
 while (*lpszVariable)
 putchar(*lpszVariable++);
 putchar('\n');
}

2.3 USING THREAD LOCAL STORAGE

Thread local storage (TLS) enables multiple threads of the same process to use an index allocated
by the TlsAlloc function to store and retrieve a value that is local to the thread. In this example, an
index is allocated when the process starts. When each thread starts, it allocates a block of dynamic
memory and stores a pointer to this memory by using the TLS index. The TLS index is used by the
locally defined CommonFunc function to access the data local to the calling thread. Before each
thread terminates, it releases its dynamic memory.
#include <stdio.h>
#include <windows.h>

#define THREADCOUNT 4
DWORD dwTlsIndex;

VOID ErrorExit(LPTSTR);

VOID CommonFunc(VOID)

 Institution Saint Joseph Email : jalvarez@instit-st-jo.asso.fr
 413, avenue de Boufflers URL : www.instit-st-jo.asso.fr
 54524 LAXOU-NANCY m.a.j : 17/10/2002 18:17

 23

Les API WIN32

{
 LPVOID lpvData;

// Retrieve a data pointer for the current thread.

 lpvData = TlsGetValue(dwTlsIndex);
 if ((lpvData == 0) && (GetLastError() != 0))
 ErrorExit("TlsGetValue error");

// Use the data stored for the current thread.

 printf("common: thread %d: lpvData=%lx\n",
 GetCurrentThreadId(), lpvData);

 Sleep(5000);
}

DWORD WINAPI ThreadFunc(VOID)
{
 LPVOID lpvData;

// Initialize the TLS index for this thread.

 lpvData = (LPVOID) LocalAlloc(LPTR, 256);
 if (! TlsSetValue(dwTlsIndex, lpvData))
 ErrorExit("TlsSetValue error");

 printf("thread %d: lpvData=%lx\n", GetCurrentThreadId(), lpvData);

 CommonFunc();

// Release the dynamic memory before the thread returns.

 lpvData = TlsGetValue(dwTlsIndex);
 if (lpvData != 0)
 LocalFree((HLOCAL) lpvData);

 return 0;
}

DWORD main(VOID)
{
 DWORD IDThread;
 HANDLE hThread[THREADCOUNT];
 int i;

// Allocate a TLS index.

 if ((dwTlsIndex = TlsAlloc()) == -1)
 ErrorExit("TlsAlloc failed");

// Create multiple threads.

 for (i = 0; i < THREADCOUNT; i++)
 {
 hThread[i] = CreateThread(NULL, // no security attributes
 0, // use default stack size
 (LPTHREAD_START_ROUTINE) ThreadFunc, // thread function
 NULL, // no thread function argument
 0, // use default creation flags
 &IDThread); // returns thread identifier

 // Check the return value for success.
 if (hThread[i] == NULL)

 Institution Saint Joseph Email : jalvarez@instit-st-jo.asso.fr
 413, avenue de Boufflers URL : www.instit-st-jo.asso.fr
 54524 LAXOU-NANCY m.a.j : 17/10/2002 18:17

 24

Les API WIN32

 ErrorExit("CreateThread error\n");
 }

 for (i = 0; i < THREADCOUNT; i++)
 WaitForSingleObject(hThread[i], INFINITE);

 return 0;
}

VOID ErrorExit (LPTSTR lpszMessage)
{
 fprintf(stderr, "%s\n", lpszMessage);
 ExitProcess(0);
}

 Institution Saint Joseph Email : jalvarez@instit-st-jo.asso.fr
 413, avenue de Boufflers URL : www.instit-st-jo.asso.fr
 54524 LAXOU-NANCY m.a.j : 17/10/2002 18:17

 25

Les API WIN32

3 SYNCHRONIZATION OBJECTS
A synchronization object is an object whose handle can be specified in one of the wait functions to
coordinate the execution of multiple threads. More than one process can have a handle to the same
synchronization object, making interprocess synchronization possible.
The following object types are provided exclusively for synchronization.
Type Description
Event Notifies one or more waiting threads that an event has occurred. For more

information, see Event Objects.
Mutex Can be owned by only one thread at a time, enabling threads to coordinate mutually

exclusive access to a shared resource. For more information, see Mutex Objects.
Semaphore Maintains a count between zero and some maximum value, limiting the number of

threads that are simultaneously accessing a shared resource. For more information,
see Semaphore Objects.

Waitable timer Notifies one or more waiting threads that a specified time has arrived. For more
information, see Waitable Timer Objects.

Though available for other uses, the following objects can also be used for synchronization.
Object Description
Change notification Created by the FindFirstChangeNotification function, its state is set to signaled

when a specified type of change occurs within a specified directory or directory tree.
For more information, see File I/O.

Console input Created when a console is created. The handle to console input is returned by the
CreateFile function when CONIN$ is specified, or by the GetStdHandle function.
Its state is set to signaled when there is unread input in the console's input buffer,
and set to nonsignaled when the input buffer is empty. For more information about
consoles, see Character-Mode Applications

Job Created by calling the CreateJobObject function. The state of a job object is set to
signaled when all its processes are terminated because the specified end-of-job time
limit has been exceeded. For more information about job objects, see Job Objects.

Process Created by calling the CreateProcess function. Its state is set to nonsignaled while
the process is running, and set to signaled when the process terminates. For more
information about processes, see Processes and Threads.

Thread Created when a new thread is created by calling the CreateProcess, CreateThread,
or CreateRemoteThread function. Its state is set to nonsignaled while the thread is
running, and set to signaled when the thread terminates. For more information about
threads, see Processes and Threads.

In some circumstances, you can also use a file, named pipe, or communications device as a
synchronization object; however, their use for this purpose is discouraged. Instead, use
asynchronous I/O and wait on the event object set in the OVERLAPPED structure. It is safer to use
the event object because of the confusion that can occur when multiple simultaneous overlapped
operations are performed on the same file, named pipe, or communications device. In this situation,
there is no way to know which operation caused the object's state to be signaled.
For additional information about I/O operations on files, named pipes, or communications, see
Synchronization and Overlapped Input and Output.

 Institution Saint Joseph Email : jalvarez@instit-st-jo.asso.fr
 413, avenue de Boufflers URL : www.instit-st-jo.asso.fr
 54524 LAXOU-NANCY m.a.j : 17/10/2002 18:17

 26

Les API WIN32

3.1 EVENT OBJECTS

An event object is a synchronization object whose state can be explicitly set to signaled by use of
the SetEvent or PulseEvent function. Following are the two types of event object.
Object Description
Manual-reset event An event object whose state remains signaled until it is explicitly reset to

nonsignaled by the ResetEvent function. While it is signaled, any number of
waiting threads, or threads that subsequently specify the same event object in
one of the wait functions, can be released.

Auto-reset event An event object whose state remains signaled until a single waiting thread is
released, at which time the system automatically sets the state to nonsignaled.
If no threads are waiting, the event object's state remains signaled.

The event object is useful in sending a signal to a thread indicating that a particular event has
occurred. For example, in overlapped input and output, the system sets a specified event object to
the signaled state when the overlapped operation has been completed. A single thread can specify
different event objects in several simultaneous overlapped operations, then use one of the multiple-
object wait functions to wait for the state of any one of the event objects to be signaled.
A thread uses the CreateEvent function to create an event object. The creating thread specifies the
initial state of the object and whether it is a manual-reset or auto-reset event object. The creating
thread can also specify a name for the event object. Threads in other processes can open a handle to
an existing event object by specifying its name in a call to the OpenEvent function. For additional
information about names for mutex, event, semaphore, and timer objects, see Interprocess
Synchronization.
A thread can use the PulseEvent function to set the state of an event object to signaled and then
reset it to nonsignaled after releasing the appropriate number of waiting threads. For a manual-reset
event object, all waiting threads are released. For an auto-reset event object, the function releases
only a single waiting thread, even if multiple threads are waiting. If no threads are waiting,
PulseEvent simply sets the state of the event object to nonsignaled and returns.

Using Event Objects
Applications use event objects in a number of situations to notify a waiting thread of the occurrence
of an event. For example, overlapped I/O operations on files, named pipes, and communications
devices use an event object to signal their completion. For more information about the use of event
objects in overlapped I/O operations, see Synchronization and Overlapped Input and Output.
In the following example, an application uses event objects to prevent several threads from reading
from a shared memory buffer while a master thread is writing to that buffer. First, the master thread
uses the CreateEvent function to create a manual-reset event object. The master thread sets the
event object to nonsignaled when it is writing to the buffer and then resets the object to signaled
when it has finished writing. Then it creates several reader threads and an auto-reset event object for
each thread. Each reader thread sets its event object to signaled when it is not reading from the
buffer.
#define NUMTHREADS 4

HANDLE hGlobalWriteEvent;

void CreateEventsAndThreads(void)
{
 HANDLE hReadEvents[NUMTHREADS], hThread;
 DWORD i, IDThread;

 // Create a manual-reset event object. The master thread sets
 // this to nonsignaled when it writes to the shared buffer.

 Institution Saint Joseph Email : jalvarez@instit-st-jo.asso.fr
 413, avenue de Boufflers URL : www.instit-st-jo.asso.fr
 54524 LAXOU-NANCY m.a.j : 17/10/2002 18:17

 27

Les API WIN32

 hGlobalWriteEvent = CreateEvent(
 NULL, // no security attributes
 TRUE, // manual-reset event
 TRUE, // initial state is signaled
 "WriteEvent" // object name
);

 if (hGlobalWriteEvent == NULL) {
 // error exit
 }

 // Create multiple threads and an auto-reset event object
 // for each thread. Each thread sets its event object to
 // signaled when it is not reading from the shared buffer.

 for(i = 1; i <= NUMTHREADS; i++)
 {
 // Create the auto-reset event.
 hReadEvents[i] = CreateEvent(
 NULL, // no security attributes
 FALSE, // auto-reset event
 TRUE, // initial state is signaled
 NULL); // object not named

 if (hReadEvents[i] == NULL)
 {
 // Error exit.
 }

 hThread = CreateThread(NULL, 0,
 (LPTHREAD_START_ROUTINE) ThreadFunction,
 &hReadEvents[i], // pass event handle
 0, &IDThread);
 if (hThread == NULL)
 {
 // Error exit.
 }
 }
}
Before the master thread writes to the shared buffer, it uses the ResetEvent function to set the state
of hGlobalWriteEvent (an application-defined global variable) to nonsignaled. This blocks the reader
threads from starting a read operation. The master then uses the WaitForMultipleObjects function to
wait for all reader threads to finish any current read operations. When WaitForMultipleObjects
returns, the master thread can safely write to the buffer. After it has finished, it sets
hGlobalWriteEvent and all the reader-thread events to signaled, enabling the reader threads to resume
their read operations.
VOID WriteToBuffer(VOID)
{
 DWORD dwWaitResult, i;

 // Reset hGlobalWriteEvent to nonsignaled, to block readers.

 if (! ResetEvent(hGlobalWriteEvent))
 {
 // Error exit.
 }

 // Wait for all reading threads to finish reading.

 dwWaitResult = WaitForMultipleObjects(
 NUMTHREADS, // number of handles in array

 Institution Saint Joseph Email : jalvarez@instit-st-jo.asso.fr
 413, avenue de Boufflers URL : www.instit-st-jo.asso.fr
 54524 LAXOU-NANCY m.a.j : 17/10/2002 18:17

 28

Les API WIN32

 hReadEvents, // array of read-event handles
 TRUE, // wait until all are signaled
 INFINITE); // indefinite wait

 switch (dwWaitResult)
 {
 // All read-event objects were signaled.
 case WAIT_OBJECT_0:
 // Write to the shared buffer.
 break;

 // An error occurred.
 default:
 printf("Wait error: %d\n", GetLastError());
 ExitProcess(0);
 }

 // Set hGlobalWriteEvent to signaled.

 if (! SetEvent(hGlobalWriteEvent))
 {
 // Error exit.
 }

 // Set all read events to signaled.
 for(i = 1; i <= NUMTHREADS; i++)
 if (! SetEvent(hReadEvents[i])) {
 // Error exit.
 }
}
Before starting a read operation, each reader thread uses WaitForMultipleObjects to wait for the
application-defined global variable hGlobalWriteEvent and its own read event to be signaled. When
WaitForMultipleObjects returns, the reader thread's auto-reset event has been reset to nonsignaled.
This blocks the master thread from writing to the buffer until the reader thread uses the SetEvent
function to set the event's state back to signaled.
VOID ThreadFunction(LPVOID lpParam)
{
 DWORD dwWaitResult;
 HANDLE hEvents[2];

 hEvents[0] = *(HANDLE*)lpParam; // thread's read event
 hEvents[1] = hGlobalWriteEvent;

 dwWaitResult = WaitForMultipleObjects(
 2, // number of handles in array
 hEvents, // array of event handles
 TRUE, // wait till all are signaled
 INFINITE); // indefinite wait

 switch (dwWaitResult)
 {
 // Both event objects were signaled.
 case WAIT_OBJECT_0:
 // Read from the shared buffer.
 break;
 // An error occurred.
 default:
 printf("Wait error: %d\n", GetLastError());
 ExitThread(0);
 }
 // Set the read event to signaled.
 if (! SetEvent(hEvents[0]))
 {

 Institution Saint Joseph Email : jalvarez@instit-st-jo.asso.fr
 413, avenue de Boufflers URL : www.instit-st-jo.asso.fr
 54524 LAXOU-NANCY m.a.j : 17/10/2002 18:17

 29

Les API WIN32

 // Error exit.
 }
}

3.2 MUTEX OBJECTS

A mutex object is a synchronization object whose state is set to signaled when it is not owned by
any thread, and nonsignaled when it is owned. Only one thread at a time can own a mutex object,
whose name comes from the fact that it is useful in coordinating mutually exclusive access to a
shared resource. For example, to prevent two threads from writing to shared memory at the same
time, each thread waits for ownership of a mutex object before executing the code that accesses the
memory. After writing to the shared memory, the thread releases the mutex object.
A thread uses the CreateMutex function to create a mutex object. The creating thread can request
immediate ownership of the mutex object and can also specify a name for the mutex object. Threads
in other processes can open a handle to an existing mutex object by specifying its name in a call to
the OpenMutex function. For additional information about names for mutex, event, semaphore, and
timer objects, see Interprocess Synchronization.
Any thread with a handle to a mutex object can use one of the wait functions to request ownership of
the mutex object. If the mutex object is owned by another thread, the wait function blocks the
requesting thread until the owning thread releases the mutex object using the ReleaseMutex
function. The return value of the wait function indicates whether the function returned for some
reason other than the state of the mutex being set to signaled.
Threads that are waiting for ownership of a mutex are placed in a first in, first out (FIFO) queue.
Therefore, the first thread to wait on the mutex will be the first to receive ownership of the mutex,
regardless of thread priority. However, kernel-mode APCs and events that suspend a thread will
cause the system to remove the thread from the queue. When the thread resumes its wait for the
mutex, it is placed at the end of the queue.
After a thread obtains ownership of a mutex, it can specify the same mutex in repeated calls to the
wait-functions without blocking its execution. This prevents a thread from deadlocking itself while
waiting for a mutex that it already owns. To release its ownership under such circumstances, the
thread must call ReleaseMutex once for each time that the mutex satisfied the conditions of a wait
function.
If a thread terminates without releasing its ownership of a mutex object, the mutex object is
considered to be abandoned. A waiting thread can acquire ownership of an abandoned mutex object,
but the wait function's return value indicates that the mutex object is abandoned. It is best to assume
that an abandoned mutex object indicates that an error has occurred and that any shared resource
being protected by the mutex object is in an undefined state. If the thread proceeds as though the
mutex object had not been abandoned, its "abandoned" flag is cleared when the thread releases its
ownership. This restores normal behavior if a handle to the mutex object is subsequently specified
in a wait function.

Using Mutex Objects
You can use a mutex object to protect a shared resource from simultaneous access by multiple
threads or processes. Each thread must wait for ownership of the mutex before it can execute the
code that accesses the shared resource. For example, if several threads share access to a database,
the threads can use a mutex object to permit only one thread at a time to write to the database.
In the following example, a process uses the CreateMutex function to create a named mutex object or
open a handle to an existing mutex object.
HANDLE hMutex;

// Create a mutex with no initial owner.

hMutex = CreateMutex(
 NULL, // no security attributes
 FALSE, // initially not owned
 "MutexToProtectDatabase"); // name of mutex

if (hMutex == NULL)

 Institution Saint Joseph Email : jalvarez@instit-st-jo.asso.fr
 413, avenue de Boufflers URL : www.instit-st-jo.asso.fr
 54524 LAXOU-NANCY m.a.j : 17/10/2002 18:17

 30

Les API WIN32

{
 // Check for error.
}
When a thread of this process writes to the database, as in the next example, it first requests
ownership of the mutex. If it gets ownership, the thread writes to the database and then releases its
ownership.
The example uses structured exception-handling syntax to ensure that the thread properly releases
the mutex object. The __finally block of code is executed no matter how the __try block terminates
(unless the __try block includes a call to the TerminateThread function). This prevents the mutex
object from being abandoned inadvertently.
BOOL FunctionToWriteToDatabase(HANDLE hMutex)
{
 DWORD dwWaitResult;

 // Request ownership of mutex.

 dwWaitResult = WaitForSingleObject(
 hMutex, // handle to mutex
 5000L); // five-second time-out interval

 switch (dwWaitResult)
 {
 // The thread got mutex ownership.
 case WAIT_OBJECT_0:
 __try {
 // Write to the database.
 }

 __finally {
 // Release ownership of the mutex object.
 if (! ReleaseMutex(hMutex)) {
 // Deal with error.
 }

 break;
 }

 // Cannot get mutex ownership due to time-out.
 case WAIT_TIMEOUT:
 return FALSE;

 // Got ownership of the abandoned mutex object.
 case WAIT_ABANDONED:
 return FALSE;
 }

 return TRUE;
}

3.3 SEMAPHORE OBJECTS

A semaphore object is a synchronization object that maintains a count between zero and a specified
maximum value. The count is decremented each time a thread completes a wait for the semaphore
object and incremented each time a thread releases the semaphore. When the count reaches zero,
no more threads can successfully wait for the semaphore object state to become signaled. The state
of a semaphore is set to signaled when its count is greater than zero, and nonsignaled when its
count is zero.
The semaphore object is useful in controlling a shared resource that can support a limited number of
users. It acts as a gate that limits the number of threads sharing the resource to a specified
maximum number. For example, an application might place a limit on the number of windows that it
creates. It uses a semaphore with a maximum count equal to the window limit, decrementing the

 Institution Saint Joseph Email : jalvarez@instit-st-jo.asso.fr
 413, avenue de Boufflers URL : www.instit-st-jo.asso.fr
 54524 LAXOU-NANCY m.a.j : 17/10/2002 18:17

 31

Les API WIN32

count whenever a window is created and incrementing it whenever a window is closed. The
application specifies the semaphore object in call to one of the wait functions before each window is
created. When the count is zero — indicating that the window limit has been reached — the wait
function blocks execution of the window-creation code.
A thread uses the CreateSemaphore function to create a semaphore object. The creating thread
specifies the initial count and the maximum value of the count for the object. The initial count must
be neither less than zero nor greater than the maximum value. The creating thread can also specify a
name for the semaphore object. Threads in other processes can open a handle to an existing
semaphore object by specifying its name in a call to the OpenSemaphore function. For additional
information about names for mutex, event, semaphore, and timer objects, see Interprocess
Synchronization.
Threads that are waiting for a semaphore are placed in a first in, first out (FIFO) queue. Therefore, the
first thread to wait on the semaphore will be the first to successfully complete the wait, regardless of
thread priority. However, kernel-mode APCs and events that suspend a thread from waiting will
cause the system to remove the thread from the queue. When the thread resumes its wait for the
semaphore, it is placed at the end of the queue.
Each time one of the wait functions returns because the state of a semaphore was set to signaled,
the count of the semaphore is decreased by one. The ReleaseSemaphore function increases a
semaphore's count by a specified amount. The count can never be less than zero or greater than the
maximum value.
The initial count of a semaphore is typically set to the maximum value. The count is then
decremented from that level as the protected resource is consumed. Alternatively, you can create a
semaphore with an initial count of zero to block access to the protected resource while the
application is being initialized. After initialization, you can use ReleaseSemaphore to increment the
count to the maximum value.
A thread that owns a mutex object can wait repeatedly for the same mutex object to become signaled
without its execution becoming blocked. A thread that waits repeatedly for the same semaphore
object, however, decrements the semaphore's count each time a wait operation is completed; the
thread is blocked when the count gets to zero. Similarly, only the thread that owns a mutex can
successfully call the ReleaseMutex function, though any thread can use ReleaseSemaphore to
increase the count of a semaphore object.
A thread can decrement a semaphore's count more than once by repeatedly specifying the same
semaphore object in calls to any of the wait functions. However, calling one of the multiple-object
wait functions with an array that contains multiple handles of the same semaphore does not result in
multiple decrements.

Using Semaphore Objects
In the following example, a process uses a semaphore object to limit the number of windows it
creates. First, it uses the CreateSemaphore function to create the semaphore and to specify initial
and maximum counts.
HANDLE hSemaphore;
LONG cMax = 10;
LONG cPreviousCount;

// Create a semaphore with initial and max. counts of 10.

hSemaphore = CreateSemaphore(
 NULL, // no security attributes
 cMax, // initial count
 cMax, // maximum count
 NULL); // unnamed semaphore

if (hSemaphore == NULL)
{
 // Check for error.
}
Before any thread of the process creates a new window, it uses the WaitForSingleObject function to
determine whether the semaphore's current count permits the creation of additional windows. The

 Institution Saint Joseph Email : jalvarez@instit-st-jo.asso.fr
 413, avenue de Boufflers URL : www.instit-st-jo.asso.fr
 54524 LAXOU-NANCY m.a.j : 17/10/2002 18:17

 32

Les API WIN32

wait function's time-out parameter is set to zero, so the function returns immediately if the
semaphore is nonsignaled.
DWORD dwWaitResult;

// Try to enter the semaphore gate.

dwWaitResult = WaitForSingleObject(
 hSemaphore, // handle to semaphore
 0L); // zero-second time-out interval

switch (dwWaitResult) {

 // The semaphore object was signaled.
 case WAIT_OBJECT_0:
 // OK to open another window.
 break;

 // Semaphore was nonsignaled, so a time-out occurred.
 case WAIT_TIMEOUT:
 // Cannot open another window.
 break;
}
When a thread closes a window, it uses the ReleaseSemaphore function to increment the
semaphore's count.
// Increment the count of the semaphore.

if (!ReleaseSemaphore(
 hSemaphore, // handle to semaphore
 1, // increase count by one
 NULL)) // not interested in previous count
{
 // Deal with the error.
}

3.4 WAITABLE TIMER OBJECTS

A waitable timer object is a synchronization object whose state is set to signaled when the specified
due time arrives. There are two types of waitable timers that can be created: manual-reset and
synchronization. A timer of either type can also be a periodic timer.
Object Description
manual-reset timer A timer whose state remains signaled until SetWaitableTimer is called to

establish a new due time.
synchronization timer A timer whose state remains signaled until a thread completes a wait

operation on the timer object.
periodic timer A timer that is reactivated each time the specified period expires, until the

timer is reset or canceled. A periodic timer is either a periodic manual-
reset timer or a periodic synchronization timer.

A thread uses the CreateWaitableTimer function to create a timer object. Specify TRUE for the
bManualReset parameter to create a manual-reset timer and FALSE to create a synchronization
timer. The creating thread can specify a name for the timer object in the lpTimerName parameter.
Threads in other processes can open a handle to an existing timer by specifying its name in a call to
the OpenWaitableTimer function. Any thread with a handle to a timer object can use one of the wait
functions to wait for the timer state to be set to signaled.

• The thread calls the SetWaitableTimer function to activate the timer. Note the use of the following
parameters for SetWaitableTimer:

 Institution Saint Joseph Email : jalvarez@instit-st-jo.asso.fr
 413, avenue de Boufflers URL : www.instit-st-jo.asso.fr
 54524 LAXOU-NANCY m.a.j : 17/10/2002 18:17

 33

Les API WIN32

• Use the lpDueTime parameter to specify the time at which the timer is to be set to the signaled state.
When a manual-reset timer is set to the signaled state, it remains in this state until
SetWaitableTimer establishes a new due time. When a synchronization timer is set to the signaled
state, it remains in this state until a thread completes a wait operation on the timer object.

• Use the lPeriod parameter of the SetWaitableTimer function to specify the timer period. If the
period is not zero, the timer is a periodic timer; it is reactivated each time the period expires, until the
timer is reset or canceled. If the period is zero, the timer is not a periodic timer; it is signaled once
and then deactivated.

A thread can use the CancelWaitableTimer function to set the timer to the inactive state. To reset the
timer, call SetWaitableTimer. When you are finished with the timer object, call CloseHandle to close
the handle to the timer object.

Using Waitable Timer Objects
The following example creates a timer that will be signaled after a 10 second delay. First, the code
uses the CreateWaitableTimer function to create a waitable timer object. Then it uses the
SetWaitableTimer function to set the timer. The code uses the WaitForSingleObject function to
determine when the timer has been signaled.
#include <windows.h>
#include <stdio.h>

int main()
{
 HANDLE hTimer = NULL;
 LARGE_INTEGER liDueTime;

 liDueTime.QuadPart=-100000000;

 // Create a waitable timer.
 hTimer = CreateWaitableTimer(NULL, TRUE, "WaitableTimer");
 if (!hTimer)
 {
 printf("CreateWaitableTimer failed (%d)\n", GetLastError());
 return 1;
 }

 printf("Waiting for 10 seconds...\n");

 // Set a timer to wait for 10 seconds.
 if (!SetWaitableTimer(
 hTimer, &liDueTime, 0, NULL, NULL, 0))
 {
 printf("SetWaitableTimer failed (%d)\n", GetLastError());
 return 2;
 }

 // Wait for the timer.

 if (WaitForSingleObject(hTimer, INFINITE) != WAIT_OBJECT_0)
 printf("WaitForSingleObject failed (%d)\n", GetLastError());
 else printf("Timer was signaled.\n");

 return 0;
}

3.5 TIMER QUEUES

 Institution Saint Joseph Email : jalvarez@instit-st-jo.asso.fr
 413, avenue de Boufflers URL : www.instit-st-jo.asso.fr
 54524 LAXOU-NANCY m.a.j : 17/10/2002 18:17

 34

Les API WIN32

The CreateTimerQueue function creates a queue for timers. Timers in this queue, known as timer-
queue timers, are lightweight objects that enable you to specify a callback function to be called when
the specified due time arrives. The wait operation is performed by a thread in the thread pool.
To add a timer to the queue, call the CreateTimerQueueTimer function. To update a timer-queue timer,
call the ChangeTimerQueueTimer function. You can specify a callback function to be executed by a
worker thread from the thread pool when the timer expires.
To cancel a pending timer, call the DeleteTimerQueueTimer function. When you are finished with the
queue of timers, call the DeleteTimerQueueEx function to delete the timer queue. Any pending timers
in the queue are canceled and deleted.

Using Timer Queues
The following example creates a timer routine that will be executed by a timer-queue thread after a 10
second delay. First, the code uses the CreateEvent function to create an event object that is signaled
when the timer-queue thread completes. Then it creates a timer queue and a timer-queue timer,
using the CreateTimerQueue and CreateTimerQueueTimer functions, respectively. The code uses the
WaitForSingleObject function to determine when the timer routine has completed. Finally, the code
calls DeleteTimerQueue to clean up.
For more information on the timer routine, see WaitOrTimerCallback.
#include <windows.h>
#include <stdio.h>

HANDLE gDoneEvent;

VOID CALLBACK TimerRoutine(PVOID lpParam, BOOL TimerOrWaitFired)
{
 if (lpParam == NULL)
 {
 printf("TimerRoutine lpParam is NULL\n");
 }
 else
 {
 // lpParam points to the argument; in this case it is an int

 printf("Timer routine called. Parameter is %d.\n",
 (int)lpParam);
 }

 SetEvent(gDoneEvent);
}

int main()
{
 HANDLE hTimer = NULL;
 HANDLE hTimerQueue = NULL;
 int arg = 123;

 // Use an event object to track the TimerRoutine execution
 gDoneEvent = CreateEvent(NULL, TRUE, FALSE, NULL);
 if (!gDoneEvent)
 {
 printf("CreateEvent failed (%d)\n", GetLastError());
 return 1;
 }

 // Create the timer queue.
 hTimerQueue = CreateTimerQueue();
 if (!hTimerQueue)
 {
 printf("CreateTimerQueue failed (%d)\n", GetLastError());

 Institution Saint Joseph Email : jalvarez@instit-st-jo.asso.fr
 413, avenue de Boufflers URL : www.instit-st-jo.asso.fr
 54524 LAXOU-NANCY m.a.j : 17/10/2002 18:17

 35

Les API WIN32

 return 2;
 }

 // Set a timer to call the timer routine in 10 seconds.
 if (!CreateTimerQueueTimer(
 &hTimer, hTimerQueue, TimerRoutine, &arg , 10000, 0, 0))
 {
 printf("CreateTimerQueueTimer failed (%d)\n", GetLastError());
 return 3;
 }

 // Do other useful work here

 printf("Call timer routine in 10 seconds...\n");

 // Wait for the timer-queue thread to complete using an event
 // object. The thread will signal the event at that time.

 if (WaitForSingleObject(gDoneEvent, INFINITE) != WAIT_OBJECT_0)
 printf("WaitForSingleObject failed (%d)\n", GetLastError());

 // Delete all timers in the timer queue.
 if (!DeleteTimerQueue(hTimerQueue))
 printf("DeleteTimerQueue failed (%d)\n", GetLastError());

 return 0;
}

3.6 CRITICAL SECTION OBJECTS

Critical section objects provide synchronization similar to that provided by mutex objects, except
that critical section objects can be used only by the threads of a single process. Event, mutex, and
semaphore objects can also be used in a single-process application, but critical section objects
provide a slightly faster, more efficient mechanism for mutual-exclusion synchronization. Like a
mutex object, a critical section object can be owned by only one thread at a time, which makes it
useful for protecting a shared resource from simultaneous access. There is no guarantee about the
order in which threads will obtain ownership of the critical section, however, the system will be fair
to all threads.
The process is responsible for allocating the memory used by a critical section. Typically, this is
done by simply declaring a variable of type CRITICAL_SECTION. Before the threads of the process
can use it, initialize the critical section by using the InitializeCriticalSection or
InitializeCriticalSectionAndSpinCount function.
A thread uses the EnterCriticalSection or TryEnterCriticalSection function to request ownership of a
critical section. It uses the LeaveCriticalSection function to release ownership of a critical section. If
the critical section object is currently owned by another thread, EnterCriticalSection waits
indefinitely for ownership. In contrast, when a mutex object is used for mutual exclusion, the wait
functions accept a specified time-out interval. The TryEnterCriticalSection function attempts to enter
a critical section without blocking the calling thread.
Once a thread owns a critical section, it can make additional calls to EnterCriticalSection or
TryEnterCriticalSection without blocking its execution. This prevents a thread from deadlocking
itself while waiting for a critical section that it already owns. To release its ownership, the thread
must call LeaveCriticalSection once for each time that it entered the critical section.
A thread uses the InitializeCriticalSectionAndSpinCount or SetCriticalSectionSpinCount function to
specify a spin count for the critical section object. On single-processor systems, the spin count is
ignored and the critical section spin count is set to 0. On multiprocessor systems, if the critical
section is unavailable, the calling thread will spin dwSpinCount times before performing a wait
operation on a semaphore associated with the critical section. If the critical section becomes free
during the spin operation, the calling thread avoids the wait operation.

 Institution Saint Joseph Email : jalvarez@instit-st-jo.asso.fr
 413, avenue de Boufflers URL : www.instit-st-jo.asso.fr
 54524 LAXOU-NANCY m.a.j : 17/10/2002 18:17

 36

Les API WIN32

Any thread of the process can use the DeleteCriticalSection function to release the system resources
that were allocated when the critical section object was initialized. After this function has been
called, the critical section object can no longer be used for synchronization.
When a critical section object is owned, the only other threads affected are those waiting for
ownership in a call to EnterCriticalSection. Threads that are not waiting are free to continue running.

Using Critical Section Objects
The following example shows how a thread initializes, enters, and leaves a critical section. As with
the mutex example (see Using Mutex Objects), this example uses structured exception-handling
syntax to ensure that the thread calls the LeaveCriticalSection function to release its ownership of the
critical section object.
// Global variable
CRITICAL_SECTION CriticalSection;

void main()
{
 ...

 // Initialize the critical section one time only.
 InitializeCriticalSection(&CriticalSection);

 ...

 // Release resources used by the critical section object.
 DeleteCriticalSection(&CriticalSection)
}

DWORD WINAPI ThreadProc(LPVOID lpParameter)
{
 ...

 // Request ownership of the critical section.
 __try
 {
 EnterCriticalSection(&CriticalSection);

 // Access the shared resource.
 }
 __finally
 {
 // Release ownership of the critical section.
 LeaveCriticalSection(&CriticalSection);
 }

 ...

}

3.7 INTERLOCKED VARIABLE ACCESS

The interlocked functions provide a simple mechanism for synchronizing access to a variable that is
shared by multiple threads. The threads of different processes can use this mechanism if the
variable is in shared memory.
Simple reads and writes to properly-aligned 32-bit variables are atomic. In other words, when one
thread is updating a 32-bit variable, you will not end up with only one portion of the variable updated;
all 32 bits are updated in an atomic fashion. However, access is not guaranteed to be synchronized.
If two threads are reading and writing from the same variable, you cannot determine if one thread will
perform its read operation before the other performs its write operation.

 Institution Saint Joseph Email : jalvarez@instit-st-jo.asso.fr
 413, avenue de Boufflers URL : www.instit-st-jo.asso.fr
 54524 LAXOU-NANCY m.a.j : 17/10/2002 18:17

 37

Les API WIN32

Simple reads and writes to properly-aligned 64-bit variables are atomic on 64-bit Windows. Reads
and writes to 64-bit values are not guaranteed to be atomic on 32-bit Windows. Reads and writes to
variables of other sizes are not guaranteed to be atomic on any platform.
The interlocked functions should be used to perform complex operations in an atomic manner. The
InterlockedIncrement and InterlockedDecrement functions combine the operations of incrementing or
decrementing the variable and checking the resulting value. This atomic operation is useful in a
multitasking operating system, in which the system can interrupt one thread's execution to grant a
slice of processor time to another thread. Without such synchronization, one thread could increment
a variable but be interrupted by the system before it can check the resulting value of the variable. A
second thread could then increment the same variable. When the first thread receives its next time
slice, it will check the value of the variable, which has now been incremented not once but twice. The
interlocked variable-access functions protect against this kind of error.
The InterlockedExchangePointer function atomically exchanges the values of the specified variables.
The InterlockedExchangeAdd function combines two operations: adding two variables together and
storing the result in one of the variables.
The InterlockedCompareExchangePointer function combines two operations: comparing two values
and storing a third value in one of the variables, based on the outcome of the comparison.

3.8 WAIT FUNCTIONS

The wait functions to allow a thread to block its own execution. The wait functions do not return until
the specified criteria have been met. The type of wait function determines the set of criteria used.
When a wait function is called, it checks whether the wait criteria have been met. If the criteria have
not been met, the calling thread enters the wait state. It uses no processor time while waiting for the
criteria to be met.
There are four types of wait functions:

• single-object

• multiple-object

• alertable

• registered

3.8.1 SINGLE-OBJECT WAIT FUNCTIONS
The SignalObjectAndWait, WaitForSingleObject, and WaitForSingleObjectEx functions require a handle
to one synchronization object. These functions return when one of the following occurs:

• The specified object is in the signaled state.

• The time-out interval elapses. The time-out interval can be set to INFINITE to specify that the wait
will not time out.

The SignalObjectAndWait function enables the calling thread to atomically set the state of an object
to signaled and wait for the state of another object to be set to signaled.

3.8.2 MULTIPLE-OBJECT WAIT FUNCTIONS
The WaitForMultipleObjects, WaitForMultipleObjectsEx, MsgWaitForMultipleObjects, and
MsgWaitForMultipleObjectsEx functions enable the calling thread to specify an array containing one or
more synchronization object handles. These functions return when one of the following occurs:

• The state of any one of the specified objects is set to signaled or the states of all objects have been
set to signaled. You control whether one or all of the states will be used in the function call.

• The time-out interval elapses. The time-out interval can be set to INFINITE to specify that the wait
will not time out.

 Institution Saint Joseph Email : jalvarez@instit-st-jo.asso.fr
 413, avenue de Boufflers URL : www.instit-st-jo.asso.fr
 54524 LAXOU-NANCY m.a.j : 17/10/2002 18:17

 38

Les API WIN32

The MsgWaitForMultipleObjects and MsgWaitForMultipleObjectsEx function allow you to specify input
event objects in the object handle array. This is done when you specify the type of input to wait for in
the thread's input queue.
For example, a thread could use MsgWaitForMultipleObjects to block its execution until the state of a
specified object has been set to signaled and there is mouse input available in the thread's input
queue. The thread can use the GetMessage or PeekMessage function to retrieve the input.
When waiting for the states of all objects to be set to signaled, these multiple-object functions do not
modify the states of the specified objects until the states of all objects have been set signaled. For
example, the state of a mutex object can be signaled, but the calling thread does not get ownership
until the states of the other objects specified in the array have also been set to signaled. In the
meantime, some other thread may get ownership of the mutex object, thereby setting its state to
nonsignaled.

3.8.3 ALERTABLE WAIT FUNCTIONS
The MsgWaitForMultipleObjectsEx, SignalObjectAndWait, WaitForMultipleObjectsEx, and
WaitForSingleObjectEx functions differ from the other wait functions in that they can optionally
perform an alertable wait operation. In an alertable wait operation, the function can return when the
specified conditions are met, but it can also return if the system queues an I/O completion routine or
an APC for execution by the waiting thread. For more information about alertable wait operations
and I/O completion routines, see Synchronization and Overlapped Input and Output. For more
information about APCs, see Asynchronous Procedure Calls.

3.8.4 REGISTERED WAIT FUNCTIONS
The RegisterWaitForSingleObject function differs from the other wait functions in that the wait
operation is performed by a thread from the thread pool. When the specified conditions are met, the
callback function is executed by a worker thread from the thread pool.
By default, a registered wait operation is a multiple-wait operation. The system resets the timer every
time the event is signaled (or the time-out interval elapses) until you call the UnregisterWaitEx
function to cancel the operation. To specify that a wait operation should be executed only once, set
the dwFlags parameter of RegisterWaitForSingleObject to WT_EXECUTEONLYONCE.

3.8.5 WAIT FUNCTIONS AND SYNCHRONIZATION OBJECTS
The wait functions can modify the states of some types of synchronization objects. Modification
occurs only for the object or objects whose signaled state caused the function to return. Wait
functions can modify the states of synchronization objects as follows:

• The count of a semaphore object decreases by one, and the state of the semaphore is set to
nonsignaled if its count is zero.

• The states of mutex, auto-reset event, and change-notification objects are set to nonsignaled.

• The state of a synchronization timer is set to nonsignaled.

• The states of manual-reset event, manual-reset timer, process, thread, and console input objects are
not affected by a wait function.

3.8.6 WAIT FUNCTIONS AND CREATING WINDOWS
You have to be careful when using the wait functions and code that directly or indirectly creates
windows. If a thread creates any windows, it must process messages. Message broadcasts are sent
to all windows in the system. If you have a thread that uses a wait function with no time-out interval,
the system will deadlock. Two examples of code that indirectly creates windows are DDE and COM
CoInitialize. Therefore, if you have a thread that creates windows, use MsgWaitForMultipleObjects or
MsgWaitForMultipleObjectsEx, rather than the other wait functions.

 Institution Saint Joseph Email : jalvarez@instit-st-jo.asso.fr
 413, avenue de Boufflers URL : www.instit-st-jo.asso.fr
 54524 LAXOU-NANCY m.a.j : 17/10/2002 18:17

 39

Les API WIN32

4 ERROR HANDLING
Well-written applications include error-handling code that allows them to recover gracefully from
unexpected errors. When an error occurs, the application may need to request user intervention, or it
may be able to recover on its own. In extreme cases, the application may log the user off or shut
down the system.

4.1 ABOUT ERROR HANDLING

The error handling functions enable you to receive and display error information for your application.
For more information, see the following topics:

4.1.1 PROCESS ERROR MODE
Each process has an associated error mode that indicates to the system how the application is
going to respond to serious errors. Serious errors include disk failure, drive-not-ready errors, data
misalignment, and unhandled exceptions. An application can let the system display a message box
informing the user that an error has occurred, or it can handle the errors. To handle these errors
without user intervention, use the SetErrorMode function. After calling SetErrorMode and specifying
appropriate flags, the system will not display the corresponding error message boxes.

4.1.2 LAST-ERROR CODE
When an error occurs, most functions return an error code, usually zero, NULL, or –1. Many
functions also set an internal error code called the last-error code. When a function succeeds, the
last-error code is not reset. The error code is maintained separately for each running thread; an error
in one thread does not overwrite the last-error code in another thread. An application can retrieve the
last-error code by using the GetLastError function; the error code may tell more about what actually
occurred to make the function fail.
The SetLastError function sets the error code for the current thread. The SetLastErrorEx function also
allows the caller to set an error type indicating the severity of the error. These functions are intended
primarily for dynamic-link libraries (DLL), so they can provide information to the calling application.
The system defines a set of error codes that can be set as last-error codes or be returned by these
functions. Error codes are 32-bit values (bit 31 is the most significant bit). Bit 29 is reserved for
application-defined error codes; no system error code has this bit set. If you define error codes for
your application, set this bit to indicate that the error code has been defined by an application and to
ensure that the error codes do not conflict with any system-defined error codes. For more
information, see WinError.h and System Error Codes.

4.1.3 NOTIFYING THE USER
To notify the user that some kind of error has occurred, many applications simply produce a sound
by using the Beep or MessageBeep function or flash the window by using the FlashWindow or
FlashWindowEx function. An application can also use these functions to call attention to an error and
then display a message box or an error message containing details about the error.

4.1.4 MESSAGE TABLES
Message tables are special string resources used when displaying error messages. They are
declared in a resource file using the MESSAGETABLE resource-definition statement. To access the
message strings, use the FormatMessage function.
The system provides a message table for the system error codes. To retrieve the string that
corresponds to the error code, call FormatMessage with the FORMAT_MESSAGE_FROM_SYSTEM
flag.
To provide a message table for your application, follow the instructions in About Message Text Files.
To retrieve strings from your message table, call FormatMessage with the
FORMAT_MESSAGE_FROM_HMODULE flag.

 Institution Saint Joseph Email : jalvarez@instit-st-jo.asso.fr
 413, avenue de Boufflers URL : www.instit-st-jo.asso.fr
 54524 LAXOU-NANCY m.a.j : 17/10/2002 18:17

 40

Les API WIN32

4.1.5 FATAL APPLICATION EXIT
The FatalAppExit function displays a message box and terminates the application when the user
closes the message box. This function should only be used as a last resort, because it may not free
the memory or files owned by the application.

4.2 USING ERROR HANDLING

4.2.1 NOTIFYING THE USER OF ERRORS
The following example uses FlashWindow to flash a window and MessageBeep to play the system
exclamation sound.
FlashWindow(hwnd, TRUE); // invert the title bar
Sleep(500); // wait a bit
FlashWindow(hwnd, TRUE); // invert again

// Play the system exclamation sound.

MessageBeep(MB_ICONEXCLAMATION);

4.2.2 RETRIEVING THE LAST-ERROR CODE
When many system functions fail, they set the last-error code. If your application needs more details
about an error, it can retrieve the last-error code using the GetLastError function.
The following example shows an error-handling function.
void error(LPSTR lpszFunction)
{
 CHAR szBuf[80];
 DWORD dw = GetLastError();

 sprintf(szBuf, "%s failed: GetLastError returned %u\n",
 lpszFunction, dw);

 MessageBox(NULL, szBuf, "Error", MB_OK);
 ExitProcess(dw);
}

4.3 ERROR HANDLING REFERENCE

4.4 BEEP

The Beep function generates simple tones on the speaker. The function is synchronous; it does not
return control to its caller until the sound finishes.
BOOL Beep(
 DWORD dwFreq, // sound frequency
 DWORD dwDuration // sound duration
);

Parameters

dwFreq
[in] Specifies the frequency, in hertz, of the sound. This parameter must be in the range 37 through
32,767 (0x25 through 0x7FFF).

Windows 95/98/Me: The Beep function ignores this parameter.
dwDuration

[in] Specifies the duration, in milliseconds, of the sound.
Windows 95/98/Me: The Beep function ignores this parameter.

 Institution Saint Joseph Email : jalvarez@instit-st-jo.asso.fr
 413, avenue de Boufflers URL : www.instit-st-jo.asso.fr
 54524 LAXOU-NANCY m.a.j : 17/10/2002 18:17

http://www.buginword.com
http://www.buginword.com

 41

Les API WIN32

Return Values
If the function succeeds, the return value is nonzero.
If the function fails, the return value is zero. To get extended error information, call GetLastError.

Remarks
Terminal Services: The beep is redirected to the client.
Windows 95/98/Me: On computers with a sound card, the function plays the default sound event. On
computers without a sound card, the function plays the standard system beep.

Example Code
For an example, see Registering a Control Handler Function.

Requirements
 Windows NT/2000/XP: Included in Windows NT 3.1 and later.
 Windows 95/98/Me: Included in Windows 95 and later.
 Header: Declared in Winbase.h; include Windows.h.
 Library: Use Kernel32.lib.

See Also
Error Handling Overview, Error Handling Functions, MessageBeep

4.5 GETLASTERROR

The GetLastError function retrieves the calling thread's last-error code value. The last-error code is
maintained on a per-thread basis. Multiple threads do not overwrite each other's last-error code.
DWORD GetLastError(VOID);

Parameters
This function has no parameters.

Return Values
The return value is the calling thread's last-error code value. Functions set this value by calling the
SetLastError function. The Return Value section of each reference page notes the conditions under
which the function sets the last-error code.
Windows 95/98/Me: Functions that are actually implemented in 16-bit code do not set the last-error
code. You should ignore the last-error code when you call these functions. They include window
management functions, GDI functions, and Multimedia functions.

Remarks
To obtain an error string for system error codes, use the FormatMessage function. For a complete list
of error codes, see System Error Codes.
You should call the GetLastError function immediately when a function's return value indicates that
such a call will return useful data. That is because some functions call SetLastError with a zero when
they succeed, wiping out the error code set by the most recently failed function.
Most functions that set the thread's last error code value set it when they fail; a few functions set it
when they succeed. Function failure is typically indicated by a return value error code such as zero,
NULL, or –1. Some functions call SetLastError under conditions of success; those cases are noted in
each function's reference page.
Error codes are 32-bit values (bit 31 is the most significant bit). Bit 29 is reserved for application-
defined error codes; no system error code has this bit set. If you are defining an error code for your

 Institution Saint Joseph Email : jalvarez@instit-st-jo.asso.fr
 413, avenue de Boufflers URL : www.instit-st-jo.asso.fr
 54524 LAXOU-NANCY m.a.j : 17/10/2002 18:17

 42

Les API WIN32

application, set this bit to one. That indicates that the error code has been defined by an application,
and ensures that your error code does not conflict with any error codes defined by the system.

Example Code
For an example, see Retrieving the Last-Error Code.

Requirements

 Windows NT/2000/XP: Included in Windows NT 3.1 and later.

 Windows 95/98/Me: Included in Windows 95 and later.

 Header: Declared in Winbase.h; include Windows.h.

 Library: Use Kernel32.lib.

See Also
Error Handling Overview, Error Handling Functions, FormatMessage, SetLastError, SetLastErrorEx

4.6 SETLASTERROR

The SetLastError function sets the last-error code for the calling thread.
VOID SetLastError(
 DWORD dwErrCode // per-thread error code
);

Parameters

dwErrCode
[in] Specifies the last-error code for the thread.

Return Values
This function does not return a value.

Remarks
Error codes are 32-bit values (bit 31 is the most significant bit). Bit 29 is reserved for application-
defined error codes; no system error code has this bit set. If you are defining an error code for your
application, set this bit to indicate that the error code has been defined by your application and to
ensure that your error code does not conflict with any system-defined error codes.
This function is intended primarily for dynamic-link libraries (DLL). Calling this function after an error
occurs lets the DLL notify the calling application.
Most functions call SetLastError when they fail. Function failure is typically indicated by a return
value error code such as zero, NULL, or –1. Some functions call SetLastError under conditions of
success; those cases are noted in each function's reference topic.
Applications can retrieve the value saved by this function by using the GetLastError function. The use
of GetLastError is optional; an application can call it to find out the specific reason for a function
failure.
The last-error code is kept in thread local storage so that multiple threads do not overwrite each
other's values.

Example Code
For an example, see Displaying the User for an Event.

 Institution Saint Joseph Email : jalvarez@instit-st-jo.asso.fr
 413, avenue de Boufflers URL : www.instit-st-jo.asso.fr
 54524 LAXOU-NANCY m.a.j : 17/10/2002 18:17

http://www.buginword.com

 43

Les API WIN32

Requirements
 Windows NT/2000/XP: Included in Windows NT 3.1 and later.
 Windows 95/98/Me: Included in Windows 95 and later.
 Header: Declared in Winbase.h; include Windows.h.
 Library: Use Kernel32.lib.

See Also
Error Handling Overview, Error Handling Functions, GetLastError, SetLastErrorEx

 Institution Saint Joseph Email : jalvarez@instit-st-jo.asso.fr
 413, avenue de Boufflers URL : www.instit-st-jo.asso.fr
 54524 LAXOU-NANCY m.a.j : 17/10/2002 18:17

 44

Les API WIN32

ANNEXE 1

Reinitialiser Placer dans la file
des tâches "PRÊTES"

Création et Initialisation
de l'objet Thread

Objet à l'état signalé

Exécution terminée

Le thread attend le
 handle d'un objet

Préemption
(ou quantum de temps terminé)

Ressources
valides

Ressources
non valides

Préemption
Sélectionné

pour l'exécution

Allocation du temps CPU
commutation de contexte

(dispatching)

Jeudi 17 octobre 2002

Page 1

INSIDE WINDOWS NT

Les états d'un Thread

INITIALIZED

WAITING

TRANSITION

READY

STANDBY
RUNNING

TERMINATED

 Institution Saint Joseph Email : jalvarez@instit-st-jo.asso.fr
 413, avenue de Boufflers URL : www.instit-st-jo.asso.fr
 54524 LAXOU-NANCY m.a.j : 17/10/2002 18:17

	Processes and Threads
	About Processes and Threads
	Multitasking
	Advantages of Multitasking
	When to Use Multitasking
	Multitasking Considerations

	Scheduling
	Multiple Threads
	Creating Threads
	Thread Stack Size
	Thread Handles and Identifiers
	Suspending Thread Execution
	Synchronizing Execution of Multiple Threads
	Terminating a Thread
	Thread Times
	Thread Security and Access Rights

	Child Processes
	Creating Processes
	Setting Window Properties Using STARTUPINFO
	Process Handles and Identifiers
	Obtaining Additional Process Information
	Inheritance
	Inheriting Handles
	Inheriting Environment Variables
	Inheriting the Current Directory

	Environment Variables
	Terminating a Process
	Process Times
	Process Security and Access Rights

	Job Objects

	Using Processes and Threads
	Creating a Child Process with Redirected Input and Output
	Changing Environment Variables
	Using Thread Local Storage

	Synchronization Objects
	Event Objects
	Mutex Objects
	Semaphore Objects
	Waitable Timer Objects
	Timer Queues
	Critical Section Objects
	Interlocked Variable Access
	Wait Functions
	Single-object Wait Functions
	Multiple-object Wait Functions
	Alertable Wait Functions
	Registered Wait Functions
	Wait Functions and Synchronization Objects
	Wait Functions and Creating Windows

	Error Handling
	About Error Handling
	Process Error Mode
	Last-Error Code
	Notifying the User
	Message Tables
	Fatal Application Exit

	Using Error Handling
	Notifying the User of Errors
	Retrieving the Last-Error Code

	Error Handling Reference
	Beep
	GetLastError
	SetLastError

