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Preface

OBJECTIVE

Py

The main objective of a first course in operating systems is to develop an
understanding of the fundamental concepts and techniques of operating systems.
Most of the students are already exposed to diverse information on operating sys-
tems as a result of practical exposure to operating systems and literature on the
Internet; such students have a lot of information but few concepts about oper-
ating systems. This situation makes teaching of operating systems concepts a
challenging task because it is necessary to retrofit some concepts to the informa-
tion possessed by these students without boring them, yet do it in a manner that
introduces concepts to first-time learners of operating systems without intimi-
dating them. This book presents operating system concepts and techniques in a
manner that incorporates these requirements.

GENERAL APPROACH

Xvi

The book begins by building a core knowledge of what makes an operating system
tick. It presents an operating system as an intermediary between a computer
system and users that provides good service to users and also achieves efficient
use of the computer system. A discussion of interactions of an operating system
with the computer on one hand and with user computations on the other hand
consolidates this view and adds practical details to it. This approach demystifies
an operating system for a new reader, and also relates to the background of an
experienced reader. It also emphasizes key features of computer architecture that
are essential for a study of operating systems.

The rest of the book follows an analogous approach. Each chapter identi-
fies fundamental concepts involved in some functionality of an operating system,
describes relevant features in computer architecture, discusses relevant operat-
ing system techniques, and illustrates their operation through examples. The
highlights of this approach are:

Fundamental concepts are introduced in simple terms.

The associations between techniques and concepts are readily established.
Numerous examples are included to illustrate concepts and techniques.
Implementation details and case studies are organized as small capsules
spread throughout the text.



e Optional sections are devoted to advanced topics such as deadlock char-
acterization, kernel memory allocation, synchronization and scheduling in
multiprocessor systems, file sharing semantics, and file system reliability.

The key benefit of this approach is that concepts, techniques, and case studies
are well integrated, so many design and implementation details look “obvious” by
the time the reader encounters them. It emphasizes the most important message
an operating systems text can give to students: A concept-based study of operating
systems equips a computer professional to comprehend diverse operating system
techniques readily.

PEDAGOGICAL FEATURES

Preface

Xvii

Preview of the Book The last section of the first chapter is a brief preview of the
book that motivates study of each chapter by describing its importance within
the overall scheme of the operating system, the topics covered in the chapter, and
its relationships with other chapters of the book.

Part Introduction Each part of the book begins with an introduction that des-
cribes its contents and provides a road map of the chapters in the part.

Chapter Introduction The chapter introduction motivates the reader by des-
cribing the objectives of the chapter and the topics covered in it.

Figures and Tables Each chapter has concept-based figures that illustrate fun-
damental concepts and techniques of a specific OS functionality. These figures
are a vital part of the book’s pedagogy. Other figures are used for traditional pur-
poses such as depicting practical arrangements or stepwise operation of specific
techniques. Tables play a crucial role in the pedagogy by providing overviews and
summaries of specific topics.

Examples Examples demonstrate the key issues concerning concepts and tech-
niques being discussed. Examples are typeset in a different style to set them apart
from the main body of the text, so a reader can skip an example if he does not
want the flow of ideas to be interrupted, especially while reading a chapter for
the first time.

Program Code Program code is presented in an easy-to-understand pseudocode
form.

Snapshots of Concurrent Systems Students have difficulty visualizing concur-
rent activities in a software system, which leads to an inadequate understanding
of process synchronization. A snapshot depicts the state of different activities and
their data to provide a holistic view of activities in a concurrent system.

Case Studies Case studies are included in a chapter to emphasize practical
issues, arrangements, and trade-offs in the design and implementation of a specific
OS functionality. We draw freely from operating systems of the Unix, Linux,
Solaris, and Windows families—we refer to them simply as Unix, Linux, Solaris,
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and Windows, respectively, except when features of a specific version such as
Linux 2.6 or Windows Vista are being discussed.

Tests of Concepts A set of objective and multiple-choice questions is provided at
the end of each chapter so that the reader can test his grasp of concepts presented
in the chapter.

Exercises Exercises are included at the end of each chapter. These include
numerical problems based on material covered in the text, as well as challenging
conceptual questions that test understanding and also provide deeper insights.

Summaries The summary included at the end of each chapter highlights the
key topics covered and their interrelationships.

Instructor Resources A detailed solutions manual and slides for classroom
usage are provided.

ORGANIZATION OF THE BOOK

The study of conventional operating systems is organized into four parts. The
fifth part is devoted to distributed operating systems. The structure of the first
four parts and interdependency between chapters is shown overleaf. Details of
the parts are described in the following.

e Part1:Overview Part I consists of four chapters. The introduction discusses
how user convenience, efficient use of resources, and security and protection
are the fundamental concerns of an operating system and describes the tasks
involved in implementing them. It also contains a preview of the entire book.
Chapter 2 describes how an OS uses features in a computer’s hardware to
organize execution of user programs and handle requests made by them.
Chapter 3 describes the different classes of operating systems, discusses the
fundamental concepts and techniques used by each of them, and lists those
of their techniques that are employed in modern operating systems as well.
Chapter 4 describes operating system design methodologies that enable an OS
to adapt to changes in computer architecture and the computing environment
in which it is used.

¢ Part 2: Process Management An operating system uses the concepts of
process and thread to manage execution of programs—informally, both pro-
cess and thread represent an execution of a program. The OS contains many
processes at any time and services them in an overlapped manner to provide
good user service and achieve efficient use of resources. Part 2 consists of six
chapters describing issues relating to management of processes and threads.
Chapter 5 describes how processes and threads are created, how they interact
with one another to jointly achieve a goal, and how they are controlled by
the operating system. The remaining five chapters deal with specifics in pro-
cess management—process synchronization, scheduling, deadlocks, message
passing, and synchronization and scheduling in multiprocessor operating
systems.
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e Part 3: Memory Management Two chapters are devoted to allocation and
sharing of memory between processes. Chapter 11 deals with the funda-
mentals of memory management—the problem of memory fragmentation,
which is a situation in which an area of memory is unusable because it is
too small, and techniques that address memory fragmentation. Chapter 12
discusses implementation of virtual memory, which overcomes the problem
of memory fragmentation and also supports execution of large programs.
Part 4: File Systems This part consists of three chapters. Chapter 13
describes facilities for creation, access, sharing and reliable storage of files.
Chapter 14 discusses 1/O devices and describes how operations on files are
implemented in an efficient manner. Chapter 15 discusses how security and
file protection techniques together prevent illegal forms of access to files.
Part 5: Distributed Operating Systems A distributed operating system
differs from a conventional one in that the resources, processes and con-
trol operations of the OS are spread across individual computer systems
contained in the distributed system. This difference gives rise to a host of
issues concerning performance, reliability, and security of computations and
the OS itself. Part 5 contains six chapters that discuss these issues.

File Systems
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USING THIS BOOK

Apart from an introduction to computing, this book does not assume the reader
to possess any specific background, so instructors and students are likely to find
that it contains a lot of introductory material that students already know. This
material has been included for one very important reason: As mentioned at the
start of the preface, students know many things on their own, but often lack
concepts. So it is useful for students to read even familiar topics that are presented
in a concept-based manner. For the same reason, it is essential for instructors to
cover Chapters 2 and 3, particularly the following topics, in class:

e Section 2.2: Memory hierarchy, input/output and interrupts

e Section 2.3: Interrupt servicing and system calls

¢ Section 3.5: Multiprogramming systems, particularly program mix and
priority.

All topics included in this text cannot be covered in a quarter or semester
length course on operating systems. An instructor may wish to omit some of the
advanced topics or the chapters on structure of operating systems, message pass-
ing, and synchronization and scheduling in multiprocessor operating systems,
and some of the chapters devoted to distributed operating systems.
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Overview

as CPUs, memory, and I/O devices to meet computational requirements

of its users. Users expect convenience, quality of service, and a guaran-
tee that other persons will not be able to interfere with their activities; whereas
system administrators expect efficient use of the computer’s resources and good
performance in executing user programs. These diverse expectations can be char-
acterized as user convenience, efficient use, and security and protection; they form
the primary goals of an operating system. The extent to which an operating system
provides user convenience or efficient use depends on its computing environment,
i.e., the computer system’s hardware, its interfaces with other computers, and the
nature of computations performed by its users.

Different classes of operating systems were developed for different computing
environments. We discuss the fundamental concepts and techniques used in each
class of operating systems, and the flavor of user convenience and efficient use
provided by it. A modern operating system has elements of several classes of
operating systems, so most of these concepts and techniques are found in modern
operating systems as well.

! n operating system controls use of a computer system’s resources such

Road Map for Part 1

Introduction l

The OS, the
Computer, and
User Programs

Overview of Structure of
Operating Operating
Systems Systems

Schematic diagram showing the order in which chapters of this part should be covered in
a course.
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A modern operating system has to be used on computer systems with dif-
ferent architectures; it also has to keep pace with evolution of its computing
environment. We discuss operating system design methodologies that enable an
operating system to be implemented on different computer architectures, and to
evolve with its computing environment.

Chapter 1: Introduction

This chapter discusses how users perceive user convenience, how an operating sys-
tem achieves efficient use of resources, and how it ensures security and protection.
It introduces the notion of effective utilization of a computer system as the com-
bination of user convenience and efficient use that best suits a specific computing
environment. It also describes the fundamental tasks involved in management of
programs and resources, and in implementing security and protection. The last
section of this chapter is a preview of the entire book that describes the concepts
and techniques discussed in each chapter and their importance in the operating
system.

Chapter 2: The 0S, the Computer, and User Programs

This chapter presents hardware features of a computer system that are relevant
for operation and performance of an operating system (OS). It describes how
an OS uses some of the hardware features to control execution of user programs
and perform I/O operations in them, and how user programs use features in the
hardware to interact with the OS and obtain the services they need.

Chapter 3: Overview of Operating Systems

This chapter deals with the fundamental principles of an operating system,; it is
a key chapter in the book. It discusses the nature of computations in different
kinds of computing environments and features of operating systems used in these
environments, and follows up this discussion with the notions of efficiency, sys-
tem performance, and user service. Later sections discuss five classes of operating
systems—abatch processing, multiprogramming, time-sharing, real-time, and dis-
tributed operating systems—and describe the principal concepts and techniques
they use to meet their goals. The last section discusses how a modern OS draws
upon the concepts and techniques used in these operating systems.

Chapter 4: Structure of Operating Systems

The structure of an operating system has two kinds of features—those that
contribute to simplicity of coding and efficiency of operation; and those that
contribute to the ease with which an OS can be implemented on different com-
puter systems, or can be enhanced to incorporate new functionalities. This chapter
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discusses three methods of structuring an operating system. The layered structure
of operating systems simplifies coding, the kernel-based structure provides ease of
implementation on different computer systems, and the microkernel-based struc-
ture permits modification of an operating system’s features to adapt to changes in
the computing environment and also provides ease of implementation on different
computer systems.
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you expect from your computer system. Each user has his own personal

thoughts on what the computer system is for. In technical language, we
would say that an individual user has an abstract view of the computer system, a
view that takes in only those features that the user considers important.

The operating system, or OS, as we will often call it, is the intermediary
between users and the computer system. It provides the services and fea-
tures present in abstract views of all its users through the computer system.
It also enables the services and features to evolve over time as users’ needs
change.

People who design operating systems have to deal with three issues: effi-
cient use of the computer system’s resources, the convenience of users, and
prevention of interference with users’ activities. Efficient use is more impor-
tant when a computer system is dedicated to specific applications, and user
convenience is more important in personal computers, while both are equally
important when a computer system is shared by several users. Hence, the designer
aims for the right combination of efficient use and user convenience for the
operating system’s environment. Prevention of interference is mandatory in all
environments.

We will now take a broad look at what makes an operating system work—
we will see how its functions of program management and resource management
help to ensure efficient use of resources and user convenience, and how the
functions of security and protection prevent interference with programs and
resources.

T he way you would define an operating system probably depends on what

1.1 ABSTRACT VIEWS OF AN OPERATING SYSTEM

A question such as “What is an OS?” is likely to evoke different answers, depend-
ing on the user’s interest. For example,
¢ To a school or college student, the OS is the software that permits access to
the Internet.
¢ To a programmer, the OS is the software that makes it possible to develop
programs on a computer system.

A

o/
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e To a user of an application package, the OS is simply the software that makes
it possible to use the package.

¢ To a technician in, say, a computerized chemical plant, the OS is the invisible
component of a computer system that controls the plant.

A user perceives an OS as simply a means of achieving an intended use of
a computer system. For the student, the sole purpose of the computer system is
to get onto the Internet; the OS helps in achieving this. Hence the student thinks
of the operating system as the means for Internet browsing. The programmer,
the user of a package, and the technician similarly identify the OS with their
particular purposes in using the computer. Since their purposes are different,
their perceptions of the OS are also different.

Figure 1.1 illustrates the four views of an OS we have just considered. They
are abstract views, because each focuses on those characteristics considered essen-
tial from the perspective of the individual viewer—it includes some elements of
reality but ignores other elements. The student, the application user, and the tech-
nician are end users of the OS; their views do not contain any features of the OS.
The programmer’s view is that of a software developer. It includes features of the
OS for software development.

An OS designer has his own abstract view of the OS, which shows the struc-
ture of an OS and the relationship between its component parts. Figure 1.2

(b)

Stock quotes

(c) (d)

Figure 1.1 Abstract views of an OS: a student’s, a programmer’s, an application user’s and a
technician’s.
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Figure 1.2 A designer’s abstract view of an OS.

illustrates this view. Each part consists of a number of routines. The typical
functionalities of these parts are as follows:

e User interface: The user interface accepts commands to execute programs
and use resources and services provided by the operating system. It is either
a command line interface, as in Unix or Linux, which displays a command
prompt to the user and accepts a user command, or is a graphical user inter-
face (GUI), as in the Windows operating system, which interprets mouse
clicks on icons as user commands.

o Nonkernel routines: These routines implement user commands concerning
execution of programs and use of the computer’s resources; they are invoked
by the user interface.

o Kernel: The kernel is the core of the OS. It controls operation of the computer
and provides a set of functions and services to use the CPU, memory, and
other resources of the computer. The functions and services of the kernel are
invoked by the nonkernel routines and by user programs.

Two features of an OS emerge from the designer’s view of an OS shown in
Figure 1.2. The OS is actually a collection of routines that facilitate execution of
user programs and use of resources in a computer system. It contains a hierar-
chical arrangement of layers in which routines in a higher layer use the facilities
provided by routines in the layer below it. In fact, each layer takes an abstract
view of the layer below it, in which the next lower layer is a machine that can
understand certain commands. The fact that the lower layer is a set of routines
rather than a whole computer system makes no difference to the higher layer.
Each higher layer acts as a more capable machine than the layer below it. To the
user, the user interface appears like a machine that understands commands in the
command language of the OS.

Throughout this book, we will use abstract views to present the design of OS
components. This has two key benefits:

® Managing complexity: An abstract view of a system contains only selected
features of the system. This property is useful in managing complexity during
design or study of a system. For example, an abstract view of how an OS

Introduction
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organizes execution of user programs (Figure 1.3 illustrates such a view later
in this chapter), focuses only on handling of programs; it simplifies a study
of this aspect of the OS by not showing how the OS handles other resources
like memory or I/O devices.

e Presenting a generic scheme: An abstraction is used to present a generic
scheme that has many variants in practice. We see two examples of this use
in the designer’s abstract view of Figure 1.2. The user interface is an abstrac-
tion, with a command line interface and a graphical user interface (GUI) as
two of its many variants. The kernel typically presents an abstraction of the
computer system to the nonkernel routines so that the diversity of hardware,
e.g., different models of CPUs and different ways of organizing and accessing
data in disks, is hidden from view of the nonkernel routines.

1.2 GOALS OF AN 0S

The fundamental goals of an operating system are:

e [Efficient use: Ensure efficient use of a computer’s resources.
e User convenience: Provide convenient methods of using a computer system.
e Noninterference: Prevent interference in the activities of its users.

The goals of efficient use and user convenience sometimes conflict. For exam-
ple, emphasis on quick service could mean that resources like memory have to
remain allocated to a program even when the program is not in execution; how-
ever, it would lead to inefficient use of resources. When such conflicts arise, the
designer has to make a trade-off to obtain the combination of efficient use and
user convenience that best suits the environment. This is the notion of effective
utilization of the computer system. We find a large number of operating systems
in use because each one of them provides a different flavor of effective utilization.
At one extreme we have OSs that provide fast service required by command and
control applications, at the other extreme we have OSs that make efficient use of
computer resources to provide low-cost computing, while in the middle we have
OS:s that provide different combinations of the two.

Interference with a user’s activities may take the form of illegal use or mod-
ification of a user’s programs or data, or denial of resources and services to a
user. Such interference could be caused by both users and nonusers, and every
OS must incorporate measures to prevent it.

In the following, we discuss important aspects of these fundamental goals.

1.2.1 Efficient Use

An operating system must ensure efficient use of the fundamental computer sys-
tem resources of memory, CPU, and I/O devices such as disks and printers. Poor
efficiency can result if a program does not use a resource allocated to it, e.g.,
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if memory or I/O devices allocated to a program remain idle. Such a situation
may have a snowballing effect: Since the resource is allocated to a program, it
is denied to other programs that need it. These programs cannot execute, hence
resources allocated to them also remain idle. In addition, the OS itself consumes
some CPU and memory resources during its own operation, and this consump-
tion of resources constitutes an overhead that also reduces the resources available
to user programs. To achieve good efficiency, the OS must minimize the waste of
resources by programs and also minimize its own overhead.

Efficient use of resources can be obtained by monitoring use of resources
and performing corrective actions when necessary. However, monitoring use of
resources increases the overhead, which lowers efficiency of use. In practice, oper-
ating systems that emphasize efficient use limit their overhead by either restricting
their focus to efficiency of a few important resources, like the CPU and the mem-
ory, or by not monitoring the use of resources at all, and instead handling user
programs and resources in a manner that guarantees high efficiency.

1.2.2 User Convenience

User convenience has many facets, as Table 1.1 indicates. In the early days of
computing, user convenience was synonymous with bare necessity—the mere
ability to execute a program written in a higher level language was considered
adequate. Experience with early operating systems led to demands for better
service, which in those days meant only fast response to a user request.

Other facets of user convenience evolved with the use of computers in new
fields. Early operating systems had command-line interfaces, which required a
user to type in a command and specify values of its parameters. Users needed
substantial training to learn use of the commands, which was acceptable because
most users were scientists or computer professionals. However, simpler inter-
faces were needed to facilitate use of computers by new classes of users. Hence
graphical user interfaces (GUIs) were evolved. These interfaces used icons on
a screen to represent programs and files and interpreted mouse clicks on the
icons and associated menus as commands concerning them. In many ways, this
move can be compared to the spread of car driving skills in the first half of

Table 1.1 Facets of User Convenience

Facet Examples

Fulfillment of necessity Ability to execute programs, use the file system

Good Service Speedy response to computational requests

User friendly interfaces Easy-to-use commands, graphical user interface (GUI)

New programming model ~ Concurrent programming
Web-oriented features Means to set up Web-enabled servers
Evolution Add new features, use new computer technologies

Introduction
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the twentieth century. Over a period of time, driving became less of a spe-
cialty and more of a skill that could be acquired with limited training and
experience.

Computer users attacked new problems as computing power increased. New
models were proposed for developing cost-effective solutions to new classes of
problems. Some of these models could be supported by the compiler technology
and required little support from the OS; modular and object-oriented program
design are two such models. Other models like the concurrent programming
model required specific support features in the OS. Advent of the Internet moti-
vated setting up of Web-enabled servers, which required networking support and
an ability to scale up or scale down the performance of a server in response to
the amount of load directed at it.

Users and their organizations invest considerable time and effort in setting
up their applications through an operating system. This investment must be
protected when new application areas and new computer technologies develop,
so operating systems need to evolve to provide new features and support new
application areas through new computer technologies.

1.2.3 Noninterference

A computer user can face different kinds of interference in his computational
activities. Execution of his program can be disrupted by actions of other persons,
or the OS services which he wishes to use can be disrupted in a similar manner.
The OS prevents such interference by allocating resources for exclusive use of
programs and OS services, and preventing illegal accesses to resources. Another
form of interference concerns programs and data stored in user files.

A computer user may collaborate with some other users in the development
or use of a computer application, so he may wish to share some of his files with
them. Attempts by any other person to access his files are illegal and constitute
interference. To prevent this form of interference, an OS has to know which files
of a user can be accessed by which persons. It is achieved through the act of
authorization, whereby a user specifies which collaborators can access what files.
The OS uses this information to prevent illegal accesses to files.

1.3 OPERATION OF AN 0S

The primary concerns of an OS during its operation are execution of programs,
use of resources, and prevention of interference with programs and resources.
Accordingly, its three principal functions are:

e Program management.: The OS initiates programs, arranges their execution
on the CPU, and terminates them when they complete their execution. Since
many programs exist in the system at any time, the OS performs a function
called scheduling to select a program for execution.
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o Resource management: The OS allocates resources like memory and I/O
devices when a program needs them. When the program terminates, it deal-
locates these resources and allocates them to other programs that need
them.

e Security and protection: The OS implements noninterference in users’ activ-
ities through joint actions of the security and protection functions. As an
example, consider how the OS prevents illegal accesses to a file. The secu-
rity function prevents nonusers from utilizing the services and resources in
the computer system, hence none of them can access the file. The protection
function prevents users other than the file owner or users authorized by him,
from accessing the file.

Table 1.2 describes the tasks commonly performed by an operating system.
When a computer system is switched on, it automatically loads a program stored
on a reserved part of an I/O device, typically a disk, and starts executing the
program. This program follows a software technique known as bootstrapping to
load the software called the boot procedure in memory—the program initially
loaded in memory loads some other programs in memory, which load other
programs, and so on until the complete boot procedure is loaded. The boot
procedure makes a list of all hardware resources in the system, and hands over
control of the computer system to the OS.

A system administrator specifies which persons are registered as users of the
system. The OS permits only these persons to log in to use its resources and
services. A user authorizes his collaborators to access some programs and data.
The OS notes this information and uses it to implement protection. The OS also
performs a set of functions to implement its notion of effective utilization. These
functions include scheduling of programs and keeping track of resource status
and resource usage information.

Table 1.2 Common Tasks Performed by Operating Systems

Task ‘When performed

Construct a list of resources During booting

Maintain information for security While registering new users

Verify identity of a user At login time

Initiate execution of programs At user commands

Maintain authorization information When a user specifies which collaborators
can acces what programs or data

Perform resource allocation When requested by users or programs

Maintain current status of resources During resource allocation/deallocation

Maintain current status of programs Continually during OS operation

and perform scheduling

Introduction
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The following sections are a brief overview of OS responsibilities in managing
programs and resources and in implementing security and protection.

1.3.1 Program Management

Modern CPUs have the capability to execute program instructions at a very high
rate, so it is possible for an OS to interleave execution of several programs on a
CPU and yet provide good user service. The key function in achieving interleaved
execution of programs is scheduling, which decides which program should be
given the CPU at any time. Figure 1.3 shows an abstract view of scheduling. The
scheduler, which is an OS routine that performs scheduling, maintains a list of
programs waiting to execute on the CPU, and selects one program for execution.
In operating systems that provide fair service to all programs, the scheduler also
specifies how long the program can be allowed to use the CPU. The OS takes
away the CPU from a program after it has executed for the specified period of
time, and gives it to another program. This action is called preemption. A program
that loses the CPU because of preemption is put back into the list of programs
waiting to execute on the CPU.

The scheduling policy employed by an OS can influence both efficient use of
the CPU and user service. If a program is preempted after it has executed for only
a short period of time, the overhead of scheduling actions would be high because
of frequent preemption. However, each program would suffer only a short delay
before it gets an opportunity to use the CPU, which would result in good user
service. If preemption is performed after a program has executed for a longer
period of time, scheduling overhead would be lesser but programs would suffer
longer delays, so user service would be poorer.

1.3.2 Resource Management

Resource allocations and deallocations can be performed by using a resource
table. Each entry in the table contains the name and address of a resource unit
and its present status, indicating whether it is free or allocated to some program.
Table 1.3 is such a table for management of I/0 devices. It is constructed by the
boot procedure by sensing the presence of 1/O devices in the system, and updated
by the operating system to reflect the allocations and deallocations made by it.
Since any part of a disk can be accessed directly, it is possible to treat different parts

Preempted program

pr’:gel’Nam é -+ [J[]—>{ Scheduler g C;'r'gg::thed
Programs waiting !

for the CPU Selected
program

Figure 1.3 A schematic of scheduling.
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Table 1.3 Resource Table for I/0 Devices

Resource name Class Address Allocation status
printerl Printer 101 Allocated to Py
printer2 Printer 102 Free

printer3 Printer 103 Free

disk1 Disk 201 Allocated to Py

disk2 Disk 202 Allocated to Py

cdwl CD writer 301 Free

of a disk as independent devices. Thus the devices disk1 and disk2 in Table 1.3
could be two parts of the same disk.

Two resource allocation strategies are popular. In the resource partitioning
approach, the OS decides a priori what resources should be allocated to each
user program, for example, it may decide that a program should be allocated
1 MB of memory, 1000 disk blocks, and a monitor. It divides the resources in the
system into many resource partitions, or simply partitions; each partition includes
1 MB of memory, 1000 disk blocks, and a monitor. It allocates one resource
partition to each user program when its execution is to be initiated. To facilitate
resource allocation, the resource table contains entries for resource partitions
rather than for individual resources as in Table 1.3. Resource partitioning is
simple to implement, hence it incurs less overhead; however, it lacks flexibility.
Resources are wasted if a resource partition contains more resources than what a
program needs. Also, the OS cannot execute a program if its requirements exceed
the resources available in a resource partition. This is true even if free resources
exist in another partition.

In the pool-based approach to resource management, the OS allocates
resources from a common pool of resources. It consults the resource table when
a program makes a request for a resource, and allocates the resource if it is free.
It incurs the overhead of allocating and deallocating resources when requested.
However, it avoids both problems faced by the resource partitioning approach—
an allocated resource is not wasted, and a resource requirement can be met if a
free resource exists.

Virtual Resources A virtual resource is a fictitious resource—it is an illusion
supported by an OS through use of a real resource. An OS may use the same real
resource to support several virtual resources. This way, it can give the impression
of having a larger number of resources than it actually does. Each use of a virtual
resource results in the use of an appropriate real resource. In that sense, a virtual
resource is an abstract view of a resource taken by a program.

Use of virtual resources started with the use of virtual devices. To prevent
mutual interference between programs, it was a good idea to allocate a device
exclusively for use by one program. However, a computer system did not possess
many real devices, so virtual devices were used. An OS would create a virtual
device when a user needed an I/O device; e.g., the disks called disk1 and disk2 in

Introduction
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Table 1.3 could be two virtual disks based on the real disk, which are allocated
to programs Py and P», respectively. Virtual devices are used in contemporary
operating systems as well. A print server is a common example of a virtual device.
When a program wishes to print a file, the print server simply copies the file into the
print queue. The program requesting the print goes on with its operation as if the
printing had been performed. The print server continuously examines the print
queue and prints the files it finds in the queue. Most operating systems provide
a virtual resource called virtual memory, which is an illusion of a memory that is
larger in size than the real memory of a computer. Its use enables a programmer
to execute a program whose size may exceed the size of real memory.

Some operating systems create virtual machines (VMs) so that each machine
can be allocated to a user. The advantage of this approach is twofold. Allocation
of a virtual machine to each user eliminates mutual interference between users. It
also allows each user to select an OS of his choice to operate his virtual machine.
In effect, this arrangement permits users to use different operating systems on
the same computer system simultaneously (see Section 4.5).

1.3.3 Security and Protection

As mentioned in Section 1.2.3, an OS must ensure that no person can illegally
use programs and resources in the system, or interfere with them in any manner.
The security function counters threats of illegal use or interference that are posed
by persons or programs outside the control of an operating system, whereas
the protection function counters similar threats posed by its users. Figure 1.4
illustrates how security and protection threats arise in an OS.

In a classical stand-alone environment, a computer system functions in com-
plete isolation. In such a system, the security and protection issues can be handled
easily. Recall that an OS maintains information that helps in implementing the
security and protection functions (see Table 1.2). The identity of a person wish-
ing to use a computer system is verified through a password when the person
logs in. This action, which is called authentication, ensures that no person other

Computer system
Security RESOUICES
threats
Intruder /i\ | |
Protection
threats
Internet \‘ ‘ .
Programs
Authentication .-./ \ /i\ Users

Figure 1.4 Overview of security and protection threats.
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than a registered user can use a computer system. Consequently, security threats
do not arise in the system if the authentication procedure is foolproof. In this
environment, the forms of interference mentioned earlier in Section 1.2.3 are all
protection threats. The OS thwarts disruption of program executions and OS
services with the help of hardware features such as memory protection. It thwarts
interference with files by allowing a user to access a file only if he owns it or has
been authorized by the file’s owner to access it.

When a computer system is connected to the Internet, and a user downloads
a program from the Internet, there is a danger that the downloaded program
may interfere with other programs or resources in the system. This is a security
threat because the interference is caused by some person outside the system,
called an intruder, who either wrote the downloaded program, or modified it,
so that it would interfere with other programs. Such security threats are posed
either through a Trojan horse, which is a program that has a known legitimate
function and a well-disguised malicious function, or a virus, which is a piece
of code with a malicious function that attaches itself to other programs in the
system and spreads to other systems when such programs are copied. Another
class of security threats is posed by programs called worms, which replicate by
themselves through holes in security setups of operating systems. Worms can
replicate at unimaginably high rates and cause widespread havoc. The Code Red
worm of 2001 spread to a quarter of a million computer systems in 9 hours.

Operating systems address security threats through a variety of means—by
using sophisticated authentication techniques, by plugging security holes when
they are discovered, by ensuring that programs cannot be modified while they are
copied over the Internet, and by using Internet firewalls to filter out unwanted
Internet traffic through a computer system. Users are expected to contribute to
security by using passwords that are impossible to guess and by exercising caution
while downloading programs from the Internet.

1.4 PREVIEW OF THE BOOK
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A computer system, the services it provides to its users and their programs, and its
interfaces with other systems all make up the computing environment. Operating
systems are designed to provide effective utilization of a computer system in its
computing environment, which is the appropriate combination of efficient use
of resources and good user service in the computing environment, and to ensure
noninterference in the activities of its users. Parts 1-4 of this book primarily dis-
cuss operating systems for conventional computing environments characterized
by use of a single computer system having a single CPU; only Chapter 10 discusses
operating systems for the multiprocessor computing environment. Operating sys-
tems for the distributed computing environment are discussed in the chapters of
Part 5.

All through this book, we will use abstract views to present the design and
implementation of operating systems because, as discussed in Section 1.1, abstract
views help in managing complexity and presenting generic concepts or ideas.
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1.4.1 Introduction to Operating Systems

Part 1 of the book consists of Chapters 1-4, of which the present chapter is
Chapter 1. We begin the study of operating systems in Chapter 2 with a discussion
of how an operating system interacts with the computer and with user programs.

Events and Interrupts An OS interleaves execution of several user programs on
the CPU. While a user program is in execution, some situations concerning its
own activity, or concerning activities in other programs, may require attention
of the OS. Hence, occurrence of an event, which is any situation that requires
attention of the OS, causes control of the CPU to be passed to the operating
system. The operating system uses the CPU to execute instructions that analyze
the event and perform appropriate actions. When an event has been attended to,
the OS schedules a user program for execution on the CPU. Hence operation of
the OS is said to be event driven. For example, if an I/O operation ends, the OS
informs the program that had requested the I/O operation and starts another /O
operation on the device, if one is pending; if a program requests a resource, the
OS allocates the resource if it is available. In either case, it performs scheduling to
select the program to be executed next. Figure 1.5 is an abstract view, also called
a logical view, of the functioning of an operating system.

The end of an I/O operation or the making of a resource request by a program
actually causes an interrupt in the computer system. The CPU is designed to
recognize an interrupt and divert itself to the OS. This physical view, which is the
foundation for a study of operating systems, is developed in Chapter 2.

Effective Utilization of a Computer System Computing environments evolved in
response to advances in computer architecture and new requirements of computer
users. Each computing environment had a different notion of effective utilization,
so its OS used a different set of techniques to realize it. A modern comput-
ing environment contains features of several classical computing environments,
such as noninteractive, time-sharing, and distributed computing environments,
so techniques employed in these environments are used in modern OSs as well.
Chapter 3 discusses these techniques to form the background for a detailed study
of operating systems.

4 N

Operating
system

Event ﬁ ﬁ Event

Computer User I

system programs

- /

Computing environment

Figure 1.5 An operating system in its computing environment.
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Portability and Extensibility of Operating Systems FEarly operating systems
were developed for specific computer systems, so they were tightly integrated
with architectures of specific computer systems. Modern operating systems
such as Unix and Windows pose two new requirements—the operating sys-
tem has to be portable, that is, it should be possible to implement it on many
computer architectures, and it should be extensible so that it can meet new
requirements arising from changes in the nature of its computing environment.
Chapter 4 discusses the operating system design techniques for portability and
extensibility.

1.4.2 Managing User Computations

Chapters 5—10, which constitute Part 2 of the book, discuss various facets of the
program management function. Chapter 5 lays the foundation of this study by
discussing how the operating system handles execution of programs.

Processes and Threads A process is an execution of a program. An OS uses
a process as a unit of computational work—it allocates resources to a process
and schedules it for servicing by the CPU. It performs process switching when it
decides to preempt a process and schedule another one for servicing by the CPU
(see Figure 1.3). Process switching involves saving information concerning the
preempted process and accessing information concerning the newly scheduled
process; it consumes some CPU time and constitutes overhead of the operat-
ing system. The notion of a thread is introduced to reduce the OS overhead.
Switching between threads requires much less information to be stored and
accessed compared with switching between processes. However, processes and
threads are similar in other respects, so we use the term process as a generic term
for both a process and a thread, except while discussing the implementation of
threads.

Process Synchronization Processes that have a common goal must coordinate
their activities so that they can perform their actions in a desired order. This
requirement is called process synchronization. Figure 1.6 illustrates two kinds of
process synchronization. Figure 1.6(a) shows processes named credit and debit
that access the balance in a bank account. Their results may be incorrect if both
processes update the balance at the same time, so they must perform their updates
strictly one after another. Figure 1.6(b) shows a process named generate that

Credit Debit

I Q 0 I Generate Analyze
— @->—-~
Balance Sample

(@) (b)

Figure 1.6 Two kinds of process synchronization.
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produces some data and puts it into a variable named sample, and the process
named analyze that performs analysis on the data contained in variable sam-
ple. Here, process analyze should not perform analysis until process generate has
deposited the next lot of data in sample, and process generate should not produce
the next lot of data until process analyze has analyzed the previous data. Program-
ming languages and operating systems provide several facilities that processes may
use for performing synchronization. Chapter 6 describes these facilities, their use
by processess and their implementation in an OS.

Message Passing Processes may also interact through message passing. When
a process sends some information in a message to another process, the operating
system stores the message in its own data structures until the destination process
makes a request to receive a message. Unlike the situation in Figure 1.6(b), syn-
chronization of sender and destination processes is performed by the operating
system—it makes the destination process wait if no message has been sent to it
by the time it makes a request to receive a message. Details of message passing
are described in Chapter 9.

Scheduling The nature of a computing environment decides whether effective
utilization of a computer system implies efficient use of its resources, high user
convenience, or a suitable combination of both. An OS realizes effective utiliza-
tion through a scheduling policy that shares the CPU among several processes.
This way, many processes make progress at the same time, which contributes to
quick service for all users, and hence to high user convenience. The manner in
which the CPU is shared among processes governs the use of resources allocated
to processes, so it governs efficient use of the computer system. In Chapter 7, we
discuss the classical scheduling policies, which aimed either at efficient use of a
computer system, or at high user convenience, and scheduling policies used in
modern operating systems, which aim at suitable combinations of efficient use
and user convenience.

Deadlocks User processes share a computer system’s resources. If a resource
requested by some process P; is currently allocated to process P;, P; has to wait
until P; releases the resource. Such waits sometimes cause a deadlock, which
is a situation in which processes wait for other processes’ actions indefinitely.
Figure 1.7 illustrates such a situation. The arrow drawn from process P; to P;
indicates that process P; is waiting because it requested a resource that is cur-
rently allocated to process P;. Processes P; and Py similarly wait for resources
that are currently allocated to processes Py and P;, respectively. Hence the three
processes are in a deadlock. A deadlock adversely affects performance of a sys-
tem because processes involved in the deadlock cannot make any progress and
resources allocated to them are wasted. We discuss deadlock handling techniques
used in operating systems in Chapter 8.

Multiprocessor Operating Systems A multiprocessor computer system can
provide high performance because its CPUs can service several processes simulta-
neously. It can also speed up operation of a computer application if its processes
are scheduled simultaneously on several CPUs. To realize these advantages, the
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Figure 1.7 A deadlock involving three processes.

operating system has to use special scheduling and synchronization techniques
to ensure that processes can operate efficiently and harmoniously on the CPUs.
We discuss these techniques in Chapter 10.

1.4.3 Management of Memory

Memory management involves efficient allocation, release and reuse of memory
to meet requests of processes. In the classical model of memory allocation, a single
contiguous area of memory is allocated to a process. This model does not support
reuse of a memory area that is not large enough to accommodate a new process,
so the kernel has to use the technique of compaction to combine several free areas
of memory into one large free area of memory; it incurs substantial overhead. The
noncontiguous memory allocation model allows many disjoint areas of memory
to be allocated to a process, which enables direct reuse of several small areas of
memory. We describe memory reuse techniques and the model of noncontiguous
memory allocation in Chapter 11. The kernel uses special techniques to meet its
own memory requirements efficiently. These techniques are also discussed in this
chapter.

Virtual Memory Modern operating systems provide virtual memory, which is a
storage capability that is larger than the actual memory of a computer system.
The OS achieves it by storing the code and data of a process on a disk, and
loading only some portions of the code and data in memory. This way, a process
can operate even if its size exceeds the size of memory.

The operating system employs the noncontiguous memory allocation model
to implement virtual memory. It maintains a table of memory allocation infor-
mation to indicate which portions of the code and data of a process are present in
memory, and what their memory addresses are. During operation of the process,
the CPU passes each instruction address or data address used by it to a spe-
cial hardware unit called the memory management unit (MMU), which consults
the memory allocation information for the process and computes the address in
memory where the instruction or data actually resides. If the required instruction
or data does not exist in memory, the MMU causes a “missing from memory”
interrupt. The operating system now loads the portion that contains the required
instruction or data in memory—for which it might have to remove some other
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Figure 1.8 A schematic of virtual memory operation.
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Figure 1.9 An overview of file system and input output control system (IOCS).

portion from memory—and resumes operation of the process. Figure 1.8 is a
schematic diagram of virtual memory when a process P; is in operation.

A “missing from memory” interrupt slows down progress of a process, so
the operating system has to make two key decisions to ensure a low rate of these
interrupts: iow many and which portions of the code and data of a process should
it keep in memory. The techniques used in making these decisions are described
in Chapter 12.

1.4.4 Management of Files and 1/0 Devices

A file system has to meet several expectations of its users—provide fast access
to a file, protect the file against access by unauthorized persons, and provide
reliable operation in the presence of faults such as faulty I/O media or power
outages—and also ensure efficient use of I/O devices. A file system uses a layered
organization to separate the various issues involved in fulfilling these expecta-
tions; Figure 1.9 shows an abstract view. The upper layer, which is the file system
itself, permits a user to share his files with some other users, implements file
protection and provides reliability. To implement an operation on a file, the file
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system invokes the lower layer, which contains the input output control system
(IOCS). This layer ensures fast access to files by a process, and efficient use of I/O
devices.

File System The file system provides each user with a logical view in which the
user has a home directory at an appropriate place in the directory structure of
the file system. The user can create directories, or folders, as they are called in
the Windows operating system, in his home directory, and other directories or
folders in these directories, and so on. A user can authorize some collaborators
to access a file by informing the file system of the names of collaborators and the
name of the file. The file system uses this information to implement file protection.
To ensure reliability, the file system prevents damage to the data in a file, and to
its own data such as a directory, which is called the metadata, due to faults like
faulty I/0O media or power outages. All these features of file systems are discussed
in Chapter 13.

Input Output Control System (I0CS) The IOCS implements a file operation by
transferring data between a process and a file that is recorded on an /O device.
It ensures efficient implementation of file operations through three means—by
reducing the time required to implement a data transfer between a process and an
I/0 device, by reducing the number of times data has to be transferred between a
process and an I/O device, and by maximizing the number of I/O operations that
an I/O device can complete in a given period of time. Its techniques are discussed
in Chapter 14.

Security and Protection Security and protection threats, and the arrangement
used to implement security and protection, were described earlier in Section 1.3.3.
The OS encrypts the password data through an encryption function known only
to itself. Encryption strengthens the security arrangement because an intruder
cannot obtain passwords of users except through an exhaustive search, which
would involve trying out every possible string as a password. Various security
and protection threats, the technique of encryption, and various methods used
to implement protection are described in Chapter 15.

1.4.5 Distributed Operating Systems

A distributed computer system consists of several computer systems, each with its
own memory, connected through networking hardware and software. Each com-
puter system in it is called a node. Use of a distributed computer system provides
three key advantages: speeding up of a computer application by scheduling its
processes in different nodes of the system simultaneously, high reliability through
redundancy of computer systems and their resources, and resource sharing across
node boundaries. To realize these advantages, a distributed OS must tackle the
following fundamental issues:

¢ Networking causes delays in the transfer of data between nodes of a dis-
tributed system. Such delays may lead to an inconsistent view of data located
in different nodes, and make it difficult to know the chronological order in
which events occurred in the system.
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¢ Control functions like scheduling, resource allocation, and deadlock detec-
tion have to be performed in several nodes to achieve computation speedup
and provide reliable operation when computers or networking compo-
nents fail.

e Messages exchanged by processes present in different nodes may travel over
public networks and pass through computer systems that are not controlled
by the distributed operating system. An intruder may exploit this feature
to tamper with messages, or create fake messages to fool the authentication
procedure and masquerade as a user of the system (see Figure 1.4).

The chapters of part 5 present various facets of a distributed operating
system. Chapter 16 discusses the model of a distributed computer system, net-
working hardware and software, and distributed computation paradigms, which
permit parts of a computation to be performed in different nodes. Chapter 17 dis-
cusses the theoretical issues that arise from networking delays, and the methods
of tackling them. Chapter 18 discusses how the OS performs its control func-
tions in a distributed manner. Chapter 19 describes the reliability techniques of
fault tolerance and recovery, which enable a distributed system to provide conti-
nuity of operation when failures occur. Chapter 20 describes the reliability and
performance improvement techniques employed in distributed file systems, while
Chapter 21 discusses the security issues in distributed systems and the techniques

employed to address them.

1.5 SUMMARY

A computer user’s requirements are determined by
a computer’s role in fulfilling his need. For some
users, computing is merely a means to fulfilling a
need like Internet browsing or sending of e-mails,
whereas for some others it directly satisfies their
needs like running programs to perform data pro-
cessing or scientific computations. An operating
system has to meet the needs of a// its users, so it
has diverse functionalities.

A modern computer has an abundance of
resources like memory and disk space, and it also
has a powerful CPU. To ensure that computer
users benefit from this abundance, the operating
system services many programs simultaneously by
distributing its resources among them and inter-
leaving their execution on the CPU. The OS has to
satisfy three requirements to ensure effectiveness
of computing:

e Efficient use: Ensure efficient use of a com-
puter’s resources.

e User convenience: Provide convenient methods
of using a computer system.

* Noninterference: Prevent interference in the
activities of its users.

An operating system meets these requirements
by performing three primary functions during its
operation—management of programs, manage-
ment of resources, and security and protection. An
OS is a complex software system that may con-
tain millions of lines of code, so we use abstraction
to master the complexity of studying its design.
Abstraction helps us to focus on a specific aspect
of a system, whether a hardware system like a com-
puter, a software system like an operating system,
or a real-life system like the urban transportation
network, and ignore details that are not relevant
to this aspect. We will use abstraction throughout
the book to study different aspects of design and
operation of operating systems.



The plan of the book is as follows: We begin
by discussing how an operating system interacts
with a computer system to control its operation.
We then study how the operating system man-
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and use of files by programs and ensures secu-
rity and protection. This is followed by the study
of distributed operating systems, which control
operation of several computer systems that are

ages execution of programs, allocation of memory, networked.
TEST YOUR CONCEPTS
1.1 Classify each of the following statements as true and (ii)) efficient use of a computer
or false: system:

1.2

a. The boot procedure is used to initiate a user
program.

b. The technique of preemption is employed to
share the CPU among user programs.

¢. Resources may be wasted if an OS employs
pool-based resource allocation.

d. Assignment of virtual resources to processes
prevents mutual interference between them.

e. Threats posed by an authenticated user are
security threats.

Indicate whether each of the following techni-

ques/arrangements provides (i) user convenience

EXERCISES

1.3

a. Virtual memory

b. File protection

c. Noncontiguous memory allocation

Classify the following into security lapses and

protection lapses:

a. Scribbling your password on a piece of paper

b. Authorizing everybody to perform read and
write operations on your file

c. Leaving your monitor unattended in the mid-
dle of a session

d. Downloading a program that is known to
contain a virus

1.1

1.2

1.3

A computer can operate under two operating
systems, OS| and OS,. A program P always exe-
cutes successfully under OS;. When executed
under OS,, it is sometimes aborted with the
error “insufficient resources to continue execu-
tion,” but executes successfully at other times.
What is the reason for this behavior of pro-
gram P? Can it be cured? If so, explain how,
and describe its consequences. (Hint: Think of
resource management policies.)

A time-sharing operating system uses the fol-
lowing scheduling policy: A program is given
a limited amount of CPU time, called the time
slice, each time it is selected for execution. It is
preempted at the end of the time slice, and it
is considered for execution only after all other
programs that wish to use the CPU have been
given an opportunity to use the CPU. Comment
on (a) user service and (b) efficiency of use, in a
time-sharing system.

If a computer has a very fast CPU but a small
memory, few computer programs can fit into

14

1.5

1.6

its memory at any time and consequently the
CPU is often idle because of lack of work.
Swapping is a technique of removing an inactive
program from memory and loading a program
that requires use of the CPU in its place so that
the CPU can service it. Does swapping improve
(a) user service and (b) efficiency of use? What
is its effect on OS overhead?

Comment on validity of the following state-
ment: “Partitioned resource allocation provides
more user convenience but may provide poor
efficiency.”

A program is in a dormant state if it is not
engaged in any activity (e.g., it may be waiting for
an action by a user). What resources does a dor-
mant program consume? How can this resource
consumption be reduced?

An OS creates virtual devices when it is
short of real devices. Does creation of virtual
devices improve (a) user service, (b) efficiency
of use?



24 Part1 Overview

1.7 Can deadlocks arise in the following situa-
tions?
a. A system performs partitioned allocation of
resources to programs.
b. A set of programs communicate through
message passing during their execution.
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The 0S, the Computer,
and User Programs

program initiation and resource allocation repetitively. We call each of

these tasks a control function. Since the operating system is a collection
of routines, and not a hardware unit, it performs control functions by executing
instructions on the CPU. Thus, the CPU services both user programs and the
operating system. A key aspect of understanding how an operating system works
is knowing how it interacts with the computer system and with user programs—
what the arrangement is by which it gets control of the CPU when it needs to
perform a control function, and how it passes control to a user program.

We use the term switching of the CPU for an action that forces the CPU to stop
executing one program and start executing another program. When the kernel
needs to perform a control function, the CPU must be switched to execution of the
kernel. After completing the control function, the CPU is switched to execution
of a user program.

We begin this chapter with an overview of relevant features of a computer,
particularly how an interrupt switches the CPU to execution of the kernel when
the kernel needs to perform a control function. In a later section we discuss how
interrupt servicing and the operating system concept of system calls facilitate
interaction of the operating system with user programs.

! s we saw in Chapter 1, the operating system performs many tasks like

2.1 FUNDAMENTAL PRINCIPLES OF 0S OPERATION

Before we discuss features of operating systems in Chapter 3, and their design in
later chapters, it is important to have a functional understanding of the operation
of an OS—what features of a modern computer system are important from the
OS viewpoint, how the OS uses these features during its operation to control user
programs and resources and implement security and protection, and how user
programs obtain services from the OS.

As discussed in Section 1.1, the kernel of the operating system is the collec-
tion of routines that form the core of the operating system. It controls operation
of the computer by implementing the tasks discussed in Section 1.3, hence we

)
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call each of these tasks a control function. It also offers a set of services to user
programs. The kernel exists in memory during operation of the OS, and executes
instructions on the CPU to implement its control functions and services. Thus,
the CPU is used by both user programs and the kernel.

For efficient use of a computer, the CPU should be executing user programs
most of the time. However, it has to be diverted to execution of the kernel code
whenever a situation requiring the kernel’s attention arises in the system, e.g.,
when an I/O operation ends or a timer interrupt occurs, or when a program
requires some service of the kernel. In Section 1.4, we used the term event for such
asituation. Accordingly, we need to grasp the following details to understand how
the OS operates:

e How the kernel controls operation of the computer.
¢ How the CPU is diverted to execution of kernel code when an event occurs.
e How a user program uses services offered by the kernel.
How the kernel ensures an absence of mutual interference among user
programs and between a user program and the OS.

In this chapter we discuss elements of computer system architecture and
describe how the kernel uses features of computer architecture to control oper-
ation of a computer. We then discuss how the notion of an interrupt is used to
divert the CPU to execution of the kernel code, and describe how a special kind
of interrupt called a software interrupt is used by programs to communicate their
requests to the kernel.

The absence of mutual interference among user programs and between a
user program and the OS is ensured by having two modes of operation of the
CPU. When the CPU is in the kernel mode, it can execute all instructions of the
computer. The kernel operates with the CPU in this mode so that it can control
operations of the computer. When the CPU is in the user mode, it cannot execute
those instructions that have the potential to interfere with other programs or
with the OS if used indiscriminately. The CPU is put in this mode to execute user
programs. A key issue in understanding how an OS operates is knowing how the
CPU is put in the kernel mode to execute kernel code, and how it is put in the
user mode to execute user programs.

2.2 THE COMPUTER

Py

Figure 2.1 is a schematic of a computer showing the functional units that are
relevant from the viewpoint of an operating system. The CPU and memory are
directly connected to the bus, while the I/O devices are connected to the bus
through device controllers and the DMA. If the CPU and I/O devices try to
access the memory at the same time, the bus permits only one of them to proceed.
The other accesses are delayed until this access completes. We describe impor-
tant details of the functional units in the next few sections. In a later section,
we discuss how the OS uses features of a computer to control the operation of
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Figure 2.1 Schematic of a computer.

the computer and execution of user programs on it. Discussions in this chapter
are restricted to computers with a single CPU; features of multiprocessor and
distributed computer systems are described in later chapters.

2.2.1 The CPU

General-Purpose Registers (GPRs) and the Program Status Word (PSW) Two
features of the CPU are visible to user programs or the operating system. The
first is those registers that are used to hold data, addresses, index values, or the
stack pointer during execution of a program. These registers are variously called
general-purpose registers (GPRs) or program-accessible registers; we prefer to call
them GPRs. The other feature is a set of control registers, which contain infor-
mation that controls or influences operation of the CPU. For simplicity, we will
call the collection of control registers the program status word (PSW), and refer
to an individual control register as a field of the PSW.

Figure 2.2 describes the fields of the PSW. Two fields of the PSW are com-
monly known to programmers: The program counter (PC) contains the address
of the next instruction to be executed by the CPU. The condition code (CC) con-
tains a code describing some characteristics of the last arithmetic or logical result
computed by the CPU (e.g., whether the result of an arithmetic operation is 0, or
the result of a comparison is “not equal”). These characteristics are often stored
in a set of discrete flags; however, we will view them collectively as the condition
code field or a field called flags. Contents and uses of other control registers are
described later in this section.
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Program Condition Memory protection | Interrupt | Interrupt
Mode . .
counter code M) information mask code
(PC) (CC) (MPI) (IM) IC)

Field Description
Program counter ~ Contains address of the next instruction to be executed.
Condition code Indicates some characteristics of the result of the last arithmetic or
(flags) logical instruction, e.g., whether the result of an arithmetic instruction

was < 0, = 0, or > 0. This code is used in execution of a conditional
branch instruction.

Mode Indicates whether the CPU is executing in kernel mode or user mode.
We assume a single-bit field with the value O to indicate that the
CPU is in kernel mode and 1 to indicate that it is in user mode.

Memory protection Memory protection information for the currently executing program.

information This field consists of subfields that contain the base register and size
register.

Interrupt mask Indicates which interrupts are enabled (that is, which interrupts can
occur at present) and which ones are masked off.

Interrupt code Describes the condition or event that caused the last interrupt. This

code is used by an interrupt servicing routine.

Figure 2.2 Important fields of the program status word (PSW).

Kernel and User Modes of CPU Operation The CPU can operate in two modes,
called user mode and kernel mode. The CPU can execute certain instructions only
when it is in the kernel mode. These instructions, called privileged instructions,
implement special operations whose execution by user programs would inter-
fere with the functioning of the OS or activities of other user programs; e.g., an
instruction that changes contents of the memory protection information (MPI)
field of the PSW could be used to undermine memory protection in the system
(Section 2.2.3 contains an example). The OS puts the CPU in kernel mode when
it is executing instructions in the kernel, so that the kernel can execute special
operations, and puts it in user mode when a user program is in execution, so that
the user program cannot interfere with the OS or other user programs. We assume
the mode (M) field of the PSW to be a single-bit field that contains a 0 when the
CPU is in kernel mode and a 1 when it is in user mode.

State of the CPU The general-purpose registers and the PSW together contain
all the information needed to know what the CPU is doing; we say that this
information constitutes the state of the CPU. As discussed in Section 1.3.1, the
kernel may preempt the program that is currently using the CPU (see Figure 1.3).
To ensure that the program can resume its execution correctly when scheduled in
future, the kernel saves the state of the CPU when it takes away the CPU from the
program, and simply reloads the saved CPU state into the GPRs and the PSW
when execution of the program is to be resumed. Example 2.1 illustrates how
saving and restoring the state of the CPU suffices to correctly resume execution
of a program.
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Figure 2.3(a) shows an assembly language program for a hypothetical com-
puter whose CPU has two data registers A and B, an index register X, and the
stack pointer register SP. Each assembly language instruction in this program
corresponds to either an instruction in the CPU or a directive to the assembler;
e.g., the last statement declares ALPHA to be a memory location that contains
the value 1. The first instruction moves the value of ALPHA into register A.
The second instruction compares the value in register A with the value 1; this
comparison sets an appropriate value in the condition code field (also called
the flags field). The third instruction, which has the operation code BEQ, is a
conditional branch instruction that transfers control to the instruction with
label NEXT if the result of the comparison is “equal.” We assume that the
result of the COMPARE instruction was “equal,” and that condition code 00
corresponds to this result.

If the kernel decides to take away the CPU from the program after the
program has executed the COVPARE instruction, it saves the state of the CPU,
which is shown in Figure 2.3(b). The state consists of the contents of the
PSW, and the registers A, B, X, and SP. The PC contains 150, which is the
address of the next instruction to be executed. The condition code field con-
tains 00 to indicate that the values that were compared were equal. The MPI
field contains memory protection information for the program, which we shall
discuss in Section 2.2.3. If this CPU state is loaded back into the CPU, the
program will resume its execution at the BEQ instruction that exists in the
memory location with the address 150. Since the condition code field con-
tains 00, implying “equal,” the BEQ instruction will transfer control to the
instruction labeled NEXT. Thus, the program would execute correctly when
resumed.

PC CC M
. 0150 [ 001
Address Instruction PSW | |
0142 MOVE A, ALPHA MPI IM IC
0146 COVPARE A 1
0150 BEQ NEXT A
L. Registers [ | B
0192 NEXT |:| X
0210  ALPHA DCL_CONST 1 L Isp
(@ (b)

Figure 2.3 (a) Listing of an assembly language program showing address assigned to each
instruction or data; (b) state of the CPU after executing the COVPARE instruction.

Example 2.1
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2.2.2 Memory Management Unit (MMU)

As mentioned in Section 1.3.2, virtual memory is an illusion of a memory that
may be larger that the real memory of a computer. As described in Section 1.4.3,
an OS implements virtual memory by using noncontiguous memory allocation
and the MMU (Figure 1.8). The OS allocates a set of memory areas to a program,
and stores information concerning these areas in a table of memory allocation
information. During the execution of the program, the CPU passes the address
of a data or instruction used in the current instruction to the MMU. This address
is called a logical address. The MMU uses the memory allocation information
to find the address in memory where the required data or instruction actually
resides. This address is called the physical address, and the process of obtaining
it from a logical address is called address translation. In the interest of simplic-
ity, we do not describe details of address translation here; they are described in
Chapter 12.

2.2.3 Memory Hierarchy

A computer system should ideally contain a large enough and fast enough mem-
ory, so that memory accessing will not slow down the CPU. However, fast memory
is expensive, so something that can provide the same service as a large and fast
memory but at a lower cost is desirable. The solution is a memory hierarchy
containing a number of memory units with differing speeds. The fastest memory
in the hierarchy is the smallest in size; slower memories are larger in size. The
CPU accesses only the fastest memory. If the data (or instruction) needed by it
is present in the fastest memory, it is used straightaway; otherwise the required
data is copied into the fastest memory from a slower memory, and then used. The
data remains in the fastest memory until it is removed to make place for other
data. This arrangement helps to speed up accesses to repeatedly used data. Other
levels in the memory hierarchy are used analogously—if data is not present in a
faster memory, it is copied there from a slower memory, and so on. The effective
memory access time depends on how frequently this situation arises in a faster
memory.

Figure 2.4 shows a schematic of a simple memory hierarchy. The hierarchy
contains three memory units. The cache memory is fast and small. Main memory,
which is also called random access memory (RAM), is slow and large; we will
simply call it memory. The disk is the slowest and largest unit in the hierarchy. We
discuss operation of this memory hierarchy before discussing memory hierarchies
in modern computers.

Cache Memory The cache memory holds some instructions and data values that
were recently accessed by the CPU. To enhance cache performance, the memory
hardware does not transfer a single byte from memory into the cache; it always
loads a block of memory with a standard size into an area of the cache called
a cache block or cache line. This way, access to a byte in close proximity of a
recently accessed byte can be implemented without accessing memory. When the
CPU writes a new value into a byte, the changed byte is written into the cache.
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Figure 2.4 Operation of a memory hierarchy.

Memory
hierarchy

Sooner or later it also has to be written into the memory. Different schemes
have been used for writing a byte into memory; a simple one is to write the byte
into the cache and the memory at the same time. It is called the write-through

scheme.

For every data or instruction required during execution of a program, the
CPU performs a cache lookup by comparing addresses of the required bytes with
addresses of bytes in memory blocks that are present in the cache. A hit is scored if
the required bytes are present in memory, in which case the bytes can be accessed
straightaway; otherwise, a miss is scored and the bytes have to be loaded into the
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cache from memory. The hit ratio (h) of the cache is the fraction of bytes accessed
by the CPU that score a hit in the cache. High hit ratios are obtained in practice as
aresult of an empirical law called locality—programs tend to access bytes located
in close proximity of recently accessed bytes, which is called spatial locality, and
access some data and instructions repeatedly, which is called remporal locality.
Effective memory access time of a memory hierarchy consisting of a cache and
memory is given by the formula

fema = N X teache + (1 — h) X (tra + tcache)
= feache + (1 — /1) X fira (2.1)

where fema = effective memory access time,
teache = access time of cache, and
ta = time taken to transfer a cache block from memory to cache.

Larger cache blocks are needed to ensure a high hit ratio through spa-
tial locality. However, a large cache block would increase #,, hence advanced
memory organizations are used to reduce ty4, and the cache block size that
provides the best combination of the hit ratio and #y4 is chosen. The Intel
Pentium processor uses a cache block size of 128 bytes and a memory organiza-
tion that makes i, only about 10 times the memory access time. If we consider
teache = 10 ns, and a memory that is 10 times slower than the cache, we have
tira = 10 x (10 x 10) ns = 1000 ns. With a cache hit ratio of 0.97, this organi-
zation provides fema = 40ns, which is 40 percent of the access time of memory.
Note that the hit ratio in a cache is poor at the start of execution of a program
because few of its instructions or data have been transferred to the cache. The hit
ratio is higher when the program has been in execution for some time.

Memory hierarchies in modern computers differ from that shown in
Figure 2.4 in the number of cache memories and the placement of the MMU.
Because of the large mismatch in the speeds of memory and the cache, a hierarchy
of cache memories is used to reduce the effective memory access time instead of
the single cache shown in Figure 2.4. As shown in Figure 2.1, an L1 cache—that
is, a level 1 cache—is incorporated into the CPU chip itself. The CPU chip may
also contain another cache called the level 2 or L2 cache which is slower but larger
than the L1 cache. A much larger and slower L3 cache is typically external to the
CPU. We show it to be associated with memory as in Figure 2.1. All these cache
levels help to improve the effective memory access time. To determine how much,
just substitute the transfer time of a block from the lower cache level in place of
tira n Eq. (2.1), and use the equation analogously to account for a cache miss in
the lower cache level during the transfer (see Exercise 2.9). Another difference is
that the MMU is replaced by a parallel configuration of the MMU and the L1
cache. This way, a logical address is sent to the L1 cache, rather than a physical
address. It eliminates the need for address translation before looking up the L1
cache, which speeds up access to the data if a hit is scored in the L1 cache. It also
permits address translation performed by the MMU to overlap with lookup in
the L1 cache, which saves time if a cache miss occurs in the L1 cache.
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Memory As a part of the memory hierarchy, operation of memory is analogous
to operation of a cache. The similarities are in transferring a block of bytes—
typically called a page—from the disk to memory when a program refers to some
byte in the block, and transferring it from memory to the disk to make place
for other blocks that are needed in memory. The difference lies in the fact that
the management of memory and transfer of blocks between memory and the
disk are performed by the software, unlike in the cache, where it is performed by
the hardware. The memory hierarchy comprising the memory management unit
(MMU), memory, and the disk is called the virtual memory. Virtual memory is
discussed in Chapter 12; elsewhere in the book, for simplicity, we ignore the role
of the MMU and disks.

Memory Protection Many programs coexist in a computer’s memory, so it is
necessary to prevent one program from reading or destroying the contents of
memory used by another program. This requirement is called memory protection;
it is implemented by checking whether a memory address used by a program lies
outside the memory area allocated to it.

Two control registers are used to implement memory protection. The base
register contains the start address of the memory area allocated to a program,
while the size register (also called the /imit register) contains the size of memory
allocated to the program. Accordingly, the last byte of memory allocated to a
program has the address

Address of last byte = <base> + <size> — 1

where <base> and <size> indicate contents of the base register and size register,
respectively. Before making any memory access, say access to a memory location
with address aaa, the memory protection hardware checks whether aaa lies out-
side the range of addresses defined by contents of the base and size registers. If so,
the hardware generates an interrupt to signal a memory protection violation and
abandons the memory access. As described in a later section, the kernel aborts the
erring program in response to the interrupt. The memory protection information
(MPI) field of the PSW (see Figure 2.2) contains the base and size registers. This
way the memory protection information also becomes a part of the CPU state and
gets saved or restored when the program is preempted or resumed, respectively.

33

Fundamentals of Memory Protection

Program P; is allocated the 5000-byte memory area 20000 to 24999 by the
kernel. Figure 2.5 illustrates memory protection for this program using the
base and size registers. The start address of the allocated area (i.e., 20000)
is loaded in the base register, while the number 5000 is loaded in the size
register. A memory protection violation interrupt would be generated if the
instruction being executed by the CPU uses an address that lies outside the
range 20000-24999, say, the address 28252.

Example 2.2
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Figure 2.5 Memory protection using the base and size registers.

A program could undermine the memory protection scheme by loading infor-
mation of its choice in the base and size registers. For example, program P; could
load the address 0 in the base register and the size of the computer’s memory in
the size register and thereby get itself a capability of modifying contents of any
part of memory, which would enable it to interfere with the OS or other user pro-
grams. To prevent this, instructions to load values into the base and size registers
are made privileged instructions. Since the CPU is in the user mode while execut-
ing a user program, this arrangement prevents a user program from undermining
the memory protection scheme.

Memory protection in a cache memory is more complex. Recall from the
earlier discussion that the L1 cache is accessed by using logical addresses. A
program of size n bytes typically uses logical addresses 0, ...,n — 1. Thus, many
programs may use the same logical addresses, so a check based on a logical
address cannot be used to decide whether a program may access a value that
exists in the cache memory. A simple approach to memory protection would be
to flush the cache, i.e., to erase contents of the entire cache, whenever execution
of a program is initiated or resumed. This way, the cache would not hold contents
of memory areas allocated to other programs. However, any parts of the program
that were loaded in the cache during its execution in the past would also be erased.
Hence, execution performance of the program would suffer initially because of
a poor cache hit ratio. In an alternative scheme, the id of the program whose
instructions or data are loaded in a cache block is remembered, and only that
program is permitted to access contents of the cache block. It is implemented as
follows: When a program generates a logical address that is covered by contents
of a cache block, a cache hit occurs only if the program’s id matches the id of the
program whose instructions or data are loaded in the cache block. This scheme
is preferred because it does not require flushing of the cache and does not affect
execution performance of programs.

2.2.4 Input/Output

An /O operation requires participation of the CPU, memory, and an I/O device.
The manner in which the data transfer between memory and the I/O device
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Table 2.1 Modes of Performing I/O Operations

/O mode Description

Programmed I/O Data transfer between the I/O device and memory takes
place through the CPU. The CPU cannot execute any
other instructions while an I/O operation is in progress.

Interrupt I/0 The CPU is free to execute other instructions after
executing the I/O instruction. However, an interrupt is
raised when a data byte is to be transferred between the
1/0 device and memory, and the CPU executes an
interrupt servicing routine, which performs transfer of the
byte. This sequence of operations is repeated until all
bytes get transferred.

Direct memory access  Data transfer between the I/0 device and memory takes

(DMA)-based I/O place directly over the bus. The CPU is not involved in
data transfer. The DMA controller raises an interrupt
when transfer of all bytes is complete.

is implemented determines the data transfer rates and the extent of the CPU’s
involvement in the I/O operation. The I/O organization we find in modern
computers has evolved through a sequence of steps directed at reducing the
involvement of the CPU in an I/O operation. Apart from providing higher data
transfer rates, it also frees the CPU to perform other activities while an 1/O
operation is in progress.

We assume that operands of an I/O instruction indicate the address of
an I/O device and details of I/O operations to be performed. Execution of
the I/O instruction by the CPU initiates the I/O operation on the indicated
device. The 1/O operation is performed in one of the three modes described
in Table 2.1. In the programmed 1/O mode, data transfer is performed through
the CPU. Hence data transfer is slow and the CPU is fully occupied with it.
Consequently, only one I/O operation can be performed at a time. The inter-
rupt mode is also slow as it performs a byte-by-byte transfer of data with the
CPU’s assistance. However, it frees the CPU between byte transfers. The direct
memory access (DMA) mode can transfer a block of data between memory and
an I/O device without involving the CPU, hence it achieves high data transfer
rates and supports concurrent operation of the CPU and I/O devices. The inter-
rupt and DMA modes permit I/O operations on several devices to be performed
simultaneously.

DMA operations are actually performed by the DM A controller, which is a
special-purpose processor dedicated to performing I/O operations; however, for
simplicity we will not maintain this distinction in this chapter, and refer to both
simply as DMA. In Figure 2.1, the I/O organization employs a DMA. Several
I/0 devices of the same class are connected to a device controller; a few device
controllers are connected to the DMA. When an I/O instruction is executed, say
a read instruction on device d, the CPU transfers details of the I/O operation to
the DMA. The CPU is not involved in the I/O operation beyond this point; it
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is free to execute instructions while the I/O operation is in progress. The DMA
passes on details of the I/O operation to the device controller, which initiates the
read operation on device d. The device transfers the data to the device controller;
transfer of data between the device controller and memory is organized by the
DMA. Thus the CPU and the I/O subsystem can operate concurrently. At the
end of the data transfer, the DMA generates an 1/O interrupt. As described in
the next section, the CPU switches to execution of the kernel when it notices the
interrupt. The kernel analyzes the cause of the interrupt and realizes that the I/O
operation is complete.

2.2.5 Interrupts

An event is any situation that requires the operating system’s attention. The com-
puter designer associates an interrupt with each event, whose sole purpose is to
report the occurrence of the event to the operating system and enable it to per-
form appropriate event handling actions. It is implemented using the following
arrangement: In the instruction execution cycle of the CPU, it performs four steps
repeatedly—fetching the instruction whose address is contained in the program
counter (PC), decoding it, executing it, and checking whether an interrupt has
occurred during its execution. If an interrupt has occurred, the CPU performs
an interrupt action that saves the CPU state, that is, contents of the PSW and the
GPRs, and loads new contents into the PSW and the GPRs, so that the CPU starts
executing instructions of an interrupt servicing routine, often called ISR, in the
kernel. Sometime in the future, the kernel can resume execution of the interrupted
program simply by loading back the saved CPU state into the PSW and GPRs
(see Example 2.1). The computer designer associates a numeric priority with each
interrupt. If several interrupts occur at the same time, the CPU selects the highest-
priority interrupt for servicing. Other interrupts remain pending until they are
selected.

Classes of Interrupts Table 2.2 describes three classes of interrupts that are
important during normal operation of an OS. An I/O interrupt indicates the
end of an I/O operation, or occurrence of exceptional conditions during the I/O
operation. A timer interrupt is provided to implement a timekeeping arrangement
in an operating system. It is used as follows: A clock tick is defined as a specific
fraction of a second. Now, an interrupt can be raised either periodically, i.e., after
a predefined number of ticks, or after a programmable interval of time, i.e., after
occurrence of the number of ticks specified in a special timer register, which can
be loaded through a privileged instruction.

A program interrupt, also called a trap or an exception, is provided for two
purposes. The computer hardware uses the program interrupt to indicate occur-
rence of an exceptional condition during the execution of an instruction, e.g., an
overflow during arithmetic, or a memory protection violation (see Section 2.2.3).
User programs use the program interrupt to make requests to the kernel for
resources or services that they are not allowed to provide for themselves. They
achieve it by using a special instruction provided in the computer whose sole
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Table 2.2 Classes of Interrupts

Class Description

I/O interrupt Caused by conditions like I/O completion and malfunctioning
of I/O devices.

Timer interrupt Raised at fixed intervals or when a specified interval of time
elapses.

Program (1) Caused by exceptional conditions that arise during the

interrupt execution of an instruction, e.g., arithmetic exceptions like
overflow, addressing exceptions, and memory protection
violations.

(2) Caused by execution of a special instruction called the
software interrupt instruction, whose sole purpose is to cause an
interrupt.

purpose is to raise a program interrupt so that control gets transferred to the ker-
nel. The operation code of this instruction machine-specific, e.g., it is called i nt
in the Intel Pentium, t r ap in Motorola 68000, and syscal | in MIPS R3000.
Generically, we assume that a computer provides an instruction called a software
interrupt instruction with the operation code SI, and call the interrupt raised by
it a software interrupt.

Interrupt Code When an interrupt of some class occurs, the hardware sets an
interrupt code in the interrupt code (1C) field of the PSW to indicate which specific
interrupt within that class of interrupts has occurred. This information is useful
for knowing the cause of the interrupt. For example, if a program interrupt occurs,
the interrupt code would help to decide whether it was caused by an overflow
condition during arithmetic or by a memory protection violation.

Interrupt codes are machine-specific. For an I/O interrupt, the interrupt code
is typically the address of the I/O device that caused the interrupt. For a program
interrupt, a computer assigns distinct codes for exceptional conditions such as
overflow and memory protection violation, and reserves a set of interrupt codes
for software interrupts. Typically, the software interrupt instruction (SI instruc-
tion) has a small integer as an operand; it is treated as the interrupt code when
the interrupt occurs. If a computer does not provide an operand in the SI instruc-
tion, an operating system has to evolve its own arrangement, e.g., it may require
a program to push a software interrupt number on the stack before executing the
SI instruction to cause a software interrupt.

Interrupt Masking The interrupt mask (IM) field of the PSW indicates which
interrupts are permitted to occur at the present moment of time. The IM field
may contain an integer m to indicate that only interrupts with priority > m are
permitted to occur. Alternatively, it may contain a bit-encoded value, where each
bit in the value indicates whether a specific kind of interrupt is permitted to occur.
Interrupts that are permitted to occur are said to be enabled, and others are said

37



38 Part1 Overview

i Interrupt
PC | [M vectors

CPU
pSw @/ | H\jl | area
ddd | ’

[ TiC
A

\ — Saved PSW
0 @ | [ ]

| IC information
area

/N

Step Description

1. Set interrupt code The interrupt hardware forms a code describing the cause
of the interrupt. This code is stored in the interrupt code
(IC) field of the PSW.

2. Save the PSW The PSW is copied into the saved PSW information area. In
some computers, this action also saves the general-purpose
registers.

3. Load interrupt vector The interrupt vector corresponding to the interrupt class is
accessed. Information from the interrupt vector is loaded
into the corresponding fields of the PSW. This action
switches the CPU to the appropriate interrupt servicing
routine of the kernel.

Figure 2.6 The interrupt action.

to be masked or masked off . If an event corresponding to a masked interrupt
occurs, the interrupt caused by it is not lost; it remains pending until it is enabled
and can occur.

Interrupt Action After executing every instruction, the CPU checks for occur-
rence of an interrupt. If an interrupt has occurred, the CPU performs the interrupt
action, which saves the state of the CPU in memory and switches the CPU to an
interrupt servicing routine in the kernel.

As shown in the schematic of Figure 2.6, the interrupt action consists of
three steps. Step 1 sets the interrupt code in the interrupt code (IC) field of the
PSW according to the cause of the interrupt. Step 2 of the interrupt action saves
contents of the PSW in memory so that the kernel can form the CPU state of
the interrupted program (see Figure 2.3), which it can use to resume execution
of the program at a later time. The saved PSW information area, where the PSW
of the interrupted program is stored, is either a reserved area in memory or an
area on the stack. Step 3 of the interrupt action switches the CPU to execution of
the appropriate interrupt servicing routine in the kernel as follows: The interrupt
vectors area contains several interrupt vectors; each interrupt vector is used to
control interrupt servicing for one class of interrupts. Depending on which class
an interrupt belongs to, the interrupt action chooses the correct interrupt vector
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and loads its contents into PSW fields. An interrupt vector contains the following
information:

1. Address of an interrupt servicing routine.

2. An interrupt mask indicating which other interrupts can occur while this
interrupt is being processed.

3. A 0 or 1 to indicate whether the CPU should be in kernel or user mode,
respectively, while executing the interrupt servicing routine. Typically 0 is
chosen so that the interrupt servicing routine, which is a part of the kernel,
can use privileged instructions.

For simplicity, we assume that an interrupt vector has the same format as a PSW
and contains these three items of information in the program counter (PC), inter-
rupt mask (IM), and mode (M) fields, respectively. Thus, Step 3 of the interrupt
action loads information from the relevant interrupt vector into the program
counter, interrupt mask and mode fields of the PSW, which puts the CPU in the
kernel mode and switches it to the interrupt servicing routine.

2.3 0S INTERACTION WITH THE COMPUTER
AND USER PROGRAMS
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To respond readily to events, an OS uses an arrangement in which every event
causes an interrupt. In this section, we discuss how the OS interacts with the
computer to ensure that the state of an interrupted program is saved, so that its
execution can be resumed at a later time, and how an interrupt servicing routine
obtains information concerning the event that had caused an interrupt, so that
it can perform appropriate actions. We also discuss how a program invokes the
services of the OS through a software interrupt. A system call is the term used
for this method of invoking OS services.

2.3.1 Controlling Execution of Programs

To control execution of user programs, the OS has to ensure that various fields of
the PSW contain appropriate information at all times when user programs are in
execution, which includes the time when a new program’s execution is initiated,
and also times when its execution is resumed after an interruption. From the
discussion in Section 2.2, the key points in this function are:

1. At the start of execution of a user program, the PSW should contain the
following information:
a. The program counter field (PC field) should contain the address of the first
instruction in the program.
b. The mode field (M field) should contain a 1 such that the CPU is in the
user mode.
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¢. The memory protection information field (MPI field) should contain infor-
mation about the start address and size of the memory area allocated to
the program.

d. The interrupt mask field (IM field) should be set so as to enable all
interrupts.

2. When a user program’s execution is interrupted, the CPU state—which con-
sists of the contents of the PSW and the general-purpose registers—should
be saved.

3. When execution of an interrupted program is to be resumed, the saved CPU
state should be loaded into the PSW and the general-purpose registers.

The OS maintains a table to contain information relevant to this function.
For now, we will use the generic name program table for it—in later chapters
we will discuss specific methods of organizing this information such as the pro-
cess control block (PCB). Each entry in the table contains information pertaining
to one user program. One field in this entry is used to store information about
the CPU state. The kernel puts information mentioned in item 1 into this field
when the program’s execution is to be initiated, and saves the CPU state into this
field when the program’s execution is interrupted—it achieves this by copying
information from the saved PSW information area when the program is inter-
rupted. Information stored in this field is used while resuming operation of the
program. Effectively, relevant fields of the PSW would contain the information
mentioned in items 1(b)—1(d) whenever the CPU is executing instructions of the
program.

2.3.2 Interrupt Servicing

As mentioned in Section 2.2.5, for simplicity, we assume that an interrupt vec-
tor has the same format as the PSW. The kernel forms the interrupt vectors for
various classes of interrupts when the operating system is booted. Each inter-
rupt vector contains the following information: a 0 in the mode (M) field to
indicate that the CPU should be put in the kernel mode, the address of the
first instruction of the interrupt servicing routine in the program counter (PC)
field, a 0 and the size of memory in the memory protection information (MPI)
field—so that the interrupt servicing routine would have access to the entire
memory—and an interrupt mask in the interrupt mask (IM) field that either
disables other interrupts from occurring or enables only higher-priority inter-
rupts to occur, in accordance with the philosophy of nested interrupt servicing
employed in the operating system (we discuss details of this philosophy later in this
section).

Figure 2.7 contains a schematic of operation of the kernel—it gets control
only when an interrupt occurs, so its operation is said to be interrupt-driven. The
interrupt action actually transfers control to an appropriate interrupt servicing
routine, also called an ISR, which perform the actions shown in the dashed box.
It first saves information about the interrupted program in the program table, for
use when the program is scheduled again. This information consists of the PSW
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Figure 2.7 Interrupt-driven operation of the kernel.

Table 2.3 Event Handling Actions of the Kernel

Interrupt Event handling action

Arithmetic exception Abort the program.

Memory protection violation Abort the program.

Software interrupt Satisfy the program’s request if possible; otherwise,
note it for future action.

End of I/O operation Find which program had initiated the I/O

operation and note that it can now be considered
for scheduling on the CPU. Initiate a pending I/O
operation, if any, on the device.

Timer interrupt (1) Update the time of the day. (2) Take appropriate
action if a specified time interval has elapsed.

saved by the interrupt action, contents of GPRs, and information concerning
memory and resources used by the program. It is called the execution context,
or simply context, of a program; the action that saves it is called the context save
action. The interrupt servicing routine now takes actions appropriate to the event
that had caused the interrupt. As mentioned in Section 2.2.5, the interrupt code
field of the saved PSW provides useful information for this purpose. Table 2.3
summarizes these actions, which we call the event handling actions of the kernel.

The scheduling routine selects a program and switches the CPU to its exe-
cution by loading the saved PSW and GPRs of the program into the CPU.
Depending on the event that caused the interrupt and the state of other programs,
it may be the same program that was executing when the interrupt occurred, or
it may be a different program.

1
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Example 2.3 illustrates interrupt servicing and scheduling when an interrupt
occurs signaling the end of an I/O operation.

Example 2.3

Interrupt Servicing in a Hypothetical Kernel

Figure 2.8(a) shows the arrangement of interrupt vectors and interrupt ser-
vicing routines in memory, while Figure 2.8(b) shows contents of the PSW at
various times during servicing of an I/O interrupt. The interrupt vectors are
formed by the OS boot procedure. Each interrupt vector contains the address
of an interrupt servicing routine, an interrupt mask and a 0 in the mode field.
A user program is about to execute the instruction that exists at the address
ddd in memory when an interrupt occurs signaling the end of an I/O operation
on device d;. The leftmost part of Figure 2.8(b) shows the PSW contents at
this time.

Step 1 of the interrupt action puts ; in the IC field of the PSW and saves
the PSW in the saved PSW information area. The saved PSW contains a 1
in the mode field, ddd in the PC field, and d; in the IC field. The contents
of the interrupt vector for the I/O completion interrupt are loaded into the
PSW. Effectively, the CPU is put in the kernel mode of operation, and control
is transferred to the routine that has the start address bbb, which is the I/0
interrupt servicing routine (see the arrow marked @) in Figure 2.8(a), and the
PSW contents shown in Figure 2.8(b)).

The I/O interrupt servicing routine saves the PSW and contents of the
GPRs in the program table. It now examines the IC field of the saved PSW,
finds that device d; has completed its I/O operation, and notes that the program
that had initiated the I/O operation can be considered for scheduling. It now
transfers control to the scheduler (see the arrow marked (B) in Figure 2.8(a)).
The scheduler happens to select the interrupted program itself for execution, so
the kernel switches the CPU to execution of the program by loading back the
saved contents of the PSW and GPRs (see arrow marked (O in Figure 2.8(a)).
The Program would resume execution at the instruction with the address ddd
(see the PSW contents in the rightmost part of Figure 2.8(b)).

Nested Interrupt Servicing Figure 2.9(a) diagrams the interrupt servicing ac-
tions of Example 2.3 in the simplest form: interrupt servicing routine “a” handles
the interrupt and the scheduler selects the interrupted program itself for execu-
tion. If another interrupt occurs, however, while interrupt servicing routine “a”
is servicing the first interrupt, it will lead to identical actions in the hardware and
software. This time, execution of interrupt servicing routine “a” is the “program”
that will be interrupted; the CPU will be switched to execution of another inter-
rupt servicing routine, say, interrupt servicing routine “b” (see Figure 2.9(b)). This

situation delays servicing of the first interrupt, and it also requires careful coding
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Figure 2.8 Servicing of an I/O interrupt and return to the same user program.

of the kernel to avoid a mix-up if the same kind of interrupt were to arise again
(also see Exercise 2.6). However, it enables the kernel to respond to high-priority
interrupts readily.

Operating systems have used two approaches to nested interrupt servicing.
Some operating systems use the interrupt mask (IM) field in the interrupt vector
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Figure 2.9 Simple and nested interrupt servicing.

to mask off all interrupts while an interrupt servicing routine is executing (see
Figure 2.8). This approach makes the kernel noninterruptible, which simplifies
its design because the kernel would be engaged in servicing only one interrupt
at any time. However, noninterruptibility of the kernel may delay servicing of
high-priority interrupts. In an alternative approach, the kernel sets the interrupt
mask in each interrupt vector to mask off less critical interrupts; it services more
critical interrupts in a nested manner. Such a kernel is called an interruptible kernel
or a preemptible kernel. Data consistency problems would arise if two or more
interrupt servicing routines activated in a nested manner update the same kernel
data, so the kernel must use a locking scheme to ensure that only one interrupt
processing routine can access such data at any time.

User Program Preemption In the scheme of Figure 2.7, preemption of a user
program occurs implicitly when an interrupt arises during its execution and the
kernel decides to switch the CPU to some other program’s execution. Recall from
Example 2.3 that the interrupted program’s context is stored in the program table,
so there is no difficulty in resuming execution of a preempted program when it is
scheduled again.

2.3.3 System Calls

A program needs to use computer resources like I/O devices during its execution.
However, resources are shared among user programs, so it is necessary to prevent
mutual interference in their use. To facilitate it, the instructions that allocate or
access critical resources are made privileged instructions in a computer’s archi-
tecture. This way, these instructions cannot be executed unless the CPU is in the
kernel mode, so user programs cannot access resources directly; they must make
requests to the kernel, and the kernel must access resources on their behalf. The
kernel provides a set of services for this purpose.

In a programmer view, a program uses a computer’s resources through state-
ments of a programming language. The compiler of a programming language
implements the programmer view as follows: While compiling a program, it
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Figure 2.10 A schematic of system calls: (a) a program and (b) an execution time
arrangement.

replaces statements concerning use of computer resources by calls on library
functions that implement use of the resources. These library functions are then
linked with the user program. During execution, the user program calls a library
function and the library function actually uses the resource through a kernel ser-
vice. We still need a method by which a library function can invoke the kernel
to utilize one of its services. We will use system call as a generic term for such
methods.

Figure 2.10 shows a schematic of this arrangement. The program shown
in Figure 2.10(a) opens file i nf 0 and reads some data from it. The compiled
program has the form shown in Figure 2.10(b). It calls a library function to open
the file; this call is shown by the arrow marked (I). The library function invokes
the kernel service for opening a file through a system call (see the arrow marked
(). The kernel service returns to the library function after opening the file, which
returns to the user program. The program reads the file analogously through a
call on a library function, which leads to a system call (see arrows marked (3)
and ).

A system call is actually implemented through the interrupt action described
earlier, hence we define it as follows:

Definition 2.1 System Call A request that a program makes to the kernel
through a software interrupt.

We assume that the software interrupt instruction mentioned in Section 2.2.5
has the format

SI <int_code>

45
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where the value of <int_code>, which is typically an integer in the range 0-255,
indicates which service of the kernel is being requested. A program interrupt
occurs when a program executes this instruction, and Step | of the interrupt
action as shown in Figure 2.6 copies <int_code> into the interrupt code (1C) field
of the PSW. The interrupt servicing routine for program interrupts analyzes the
interrupt code field in the saved PSW information area to know the request made
by the program.

A system call may take parameters that provide relevant information for the
invoked kernel service, e.g., the system call to open a file in Figure 2.10 would take
the filename i nf 0 as a parameter, and the system call to read data would take
parameters that indicate the filename, number of bytes of data to be read, and the
address in memory where data is to be delivered, etc. Several different methods
can be used to pass parameters—parameters can be loaded into registers before
the system call is made, they can be pushed on the stack, or they can be stored
in an area of memory and the start address of the memory area can be passed
through a register or the stack.

The next example describes execution of a system call to obtain the current
time of day.

Example 2.4

System Call in a Hypothetical 0S

A hypothetical OS provides a system call for obtaining the current time. Let
the code for this time-of-day service be 78. When a program wishes to know
the time, it executes the instruction SI 78, which causes a software interrupt.
78 is entered in the interrupt code field of the PSW before the PSW is saved
in the saved PSW information area. Thus the value d; in the IC field of the
saved PSW in Figure 2.8 would be 78. As shown in Figure 2.8, the interrupt
vector for program interrupts contains aaa in its PC field. Hence the CPU is
switched to execution of the routine with the start address aaa. It finds that the
interrupt code is 78 and realizes that the program wishes to know the time of
the day. According to the conventions defined in the OS, the time information
is to be returned to the program in a standard location, typically in a data
register. Hence the kernel stores this value in the entry of the program table
where the contents of the data register were saved when the interrupt occurred.
This value would be loaded into the data register when the CPU is switched
back to execution of the interrupted program.

In accordance with the schematic of Figure 2.10, we will assume that a pro-
gram written in a programming language like C, C++, or Java calls a library
function when it needs a service from the OS, and that the library function actu-
ally makes a system call to request the service. We will use the convention that
the name of the library function is also the name of the system call. For example,
in Example 2.4, a C program would call a library function get t i meof day to
obtain the time of day, and this function would make the system call gettimeofday
through the instruction SI 78 as described in Example 2.4.
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Table 2.4 Some Linux System Calls

Call number Call name Description
1 exit Terminate execution of this program
3 read Read data from a file
4 write Write data into a file
5 open Open a file
6 close Close a file
7 waitpid Wait for a program’s execution to terminate
11 execve Execute a program
12 chdir Change working directory
14 chmod Change file permissions
39 mkdir Make a new directory
74 sethostname Set hostname of the computer system
78 gettimeofday Get time of day
79 settimeofday Set time of day

An operating system provides system calls for various purposes like initia-
tion and termination of programs, program synchronization, file operations, and
obtaining information about the system. The Linux operating system provides
close to 200 system calls; some of these calls are listed in Table 2.4. These sys-
tem calls can also be invoked in a C or C++ program through the call names
mentioned in Table 2.4; an assembly language program can invoke them directly

through the SI instruction.

2.4 SUMMARY

Py

As mentioned in the first chapter, a modern OS can
service several user programs simultaneously. The
OS achieves it by interacting with the computer
and user programs to perform several control func-
tions. In this chapter we described relevant features
of a computer and discussed how they are used by
the OS and user programs.

The operating system is a collection of rou-
tines. The instructions in its routines must be exe-
cuted on the CPU to realize its control functions.
Thus the CPU should execute instructions in the
OS when a situation that requires the operating sys-
tem’s attention occurs, whereas it should execute

instructions in user programs at other times. It
is achieved by sending a special signal, called an
interrupt, to the CPU. Interrupts are sent at the
occurrence of a situation such as completion of an
I/O operation, or a failure of some sort. A software
interrupt known as a system call is sent when a
program wishes to use a kernel service such as
allocation of a resource or opening of a file.

The CPU contains a set of control registers
whose contents govern its functioning. The pro-
gram status word (PSW) is the collection of control
registers of the CPU; we refer to each control
register as a field of the PSW. A program whose
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execution was interrupted should be resumed at a
later time. To facilitate this, the kernel saves the
CPU state when an interrupt occurs. The CPU
state consists of the PSW and program-accessible
registers, which we call general-purpose registers
(GPRs). Operation of the interrupted program is
resumed by loading back the saved CPU state into
the PSW and GPRs.

The CPU has two modes of operation con-
trolled by the mode (M) field of the PSW. When
the CPU is in the user mode, it cannot execute
sensitive instructions like those that load informa-
tion into PSW fields like the mode field, whereas
it can execute all instructions when it is in the
kernel mode. The OS puts the CPU in the user
mode while it is executing a user program, and
puts the CPU in the kernel mode while it is execut-
ing instructions in the kernel. This arrangement
prevents a program from executing instructions
that might interfere with other programs in the
system.

The memory hierarchy of a computer pro-
vides the same effect as a fast and large memory,
though at a low cost. It contains a very fast
and small memory called a cache, a slower and

TEST YOUR CONCEPTS

larger random access memory (RAM)—which we
will simply call memory—and a disk. The CPU
accesses only the cache. However, the cache con-
tains only some parts of a program’s instructions
and data. The other parts reside in memory; the
hardware associated with the cache loads them into
the cache whenever the CPU tries to access them.
The effective memory access time depends on what
fraction of instructions and data accessed by the
CPU was found in the cache; this fraction is called
the hit ratio.

The input-output system is the slowest unit
of a computer; the CPU can execute millions of
instructions in the amount of time required to
perform an I/O operation. Some methods of per-
forming an I/O operation require participation of
the CPU, which wastes valuable CPU time. Hence
the input-output system of a computer uses direct
memory access (DMA) technology to permit the
CPU and the I/O system to operate independently.
The operating system exploits this feature to let the
CPU execute instructions in a program while I/0O
operations of the same or different programs are
in progress. This technique reduces CPU idle time
and improves system performance.

2.1 Classify each of the following statements as true
or false:

a. The condition code (i.e., flags) set by an
instruction is not a part of the CPU
state.

b. The state of the CPU changes when a pro-
gram executes a no-op (i.e., no operation)
instruction.

c. The software interrupt (SI) instruction
changes the mode of the CPU to kernel mode.

d. Branch instructions in a program may lead
to low spatial locality, but may provide high
temporal locality.

e. When a DMA is used, the CPU is involved in
data transfers to an I/O device during an I/O
operation.

f. A memory protection violation leads to a
program interrupt.

g. The kernel becomes aware that an I/O opera-
tion has completed when a program makes a
system call to inform it that the I/O operation
has ended.

2.2 Which of the following should be privileged in-
structions? Explain why.

a. Put the CPU in kernel mode

b. Load the size register

c. Load a value in a general-purpose register

d. Mask off some interrupts

e. Forcibly terminate an I/O operation
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EXERCISES

2.1 What use does the kernel make of the interrupt
code field in the PSW?

2.2 The CPU should be in the kernel mode while
executing the kernel code and in the user mode
while executing a user program. Explain how it
is achieved during operation of an OS.

2.3 The kernel of an OS masks off all interrupts dur-
ing interrupt servicing. Discuss the advantages
and disadvantages of such masking.

2.4 A computer system has the clock-tick-based
timer arrangement described in Section 2.2.5.
Explain how this arrangement can be used to
maintain the time of day. What are the limita-
tions of this approach?

2.5 An OS supports a system call sleep, which puts
the program making the call to sleep for the
number of seconds indicated in the argument
of the sleep call. Explain how this system call
is implemented.

2.6 A computer system organizes the saved PSW
information area as a stack. It pushes con-
tents of the PSW onto this stack during Step 2
of the interrupt action (see Figure 2.6). Ex-
plain the advantages of a stack for interrupt
servicing.

2.7 If the request made by a program through a
system call cannot be satisfied straightaway, the
kernel informs the scheduling component that
the program should not be selected for execu-
tion until its request is met. Give examples of
such requests.

2.8 A hypothetical OS provides a system call for
requesting allocation of memory. An experi-
enced programmer offers the following advice:
“If your program contains many requests for
memory, you can speed up its execution by com-
bining all these requests and making a single
system call.” Explain why this is so.
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Overview of
Operating Systems

both the computer system and its users: How is the computer system

built? How is it installed to work with other systems? What are the
services it provides to its users? All these features of a computing environment
influence the design of an operating system because the OS has to provide a
suitable combination of efficient use of the computer’s resources and convenience
of'its users—what we called the notion of effective utilization of a computer system
in Chapter 1—and also prevent interference in the activities of its users.

Throughout the history of computing, computing environments have
changed as computer architecture and users’ expectations have changed. New
notions of effective utilization emerged with each new computing environment,
so a new class of operating systems was developed, which used new concepts and
techniques to achieve effective utilization.

Modern computing environments support diverse applications, so they pos-
sess features of several of the classical computing environments. Consequently,
many of the concepts and techniques of the classical computing environments
can be found in the strategies modern operating systems employ. To simplify the
study of modern operating systems, in this chapter we present an overview of
the concepts and techniques of the classical computing environments and discuss
which of them find a place in a modern operating system.

‘ x ’ hen we want to describe a computing environment, we need to look at

3.1 COMPUTING ENVIRONMENTS AND
NATURE OF COMPUTATIONS

A computing environment consists of a computer system, its interfaces with other
systems, and the services provided by its operating system to its users and their
programs. Computing environments evolve continuously to provide better quality
of service to users; however, the operating system has to perform more com-
plex tasks as computer systems become more powerful, their interfaces with I/0
devices and with other computer systems become more complex, and its users
demand new services.

e
o/
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The nature of computations in a computing environment, and the manner in
which users realize them, depends on features of the computing environment.
In a typical modern computing environment, a user initiates diverse activi-
ties simultaneously; e.g., he may run a mail handler, edit a few files, initiate
computations, listen to music or watch a video, and browse the Internet at
the same time. The operating system has to provide the resources required by
each of these activities, such as the CPU and memory, and I/O devices located
either within the same computer system or in another computer system that
can be accessed over the Internet, so that the activities progress to the user’s
satisfaction.

We will begin the discussion of operating systems by taking a quick look at
how computing environments evolved to their present form.

Noninteractive Computing Environments These are the carliest forms of com-
puting environments. In these environments, a user submits both a computation
in the form of a program and its data together to the operating system. The com-
putation is performed by the operating system and its results are presented back
to the user. The user has no contact with the computation during its execution.
Hence these computations can be viewed as passive entities, to be interpreted
and realized by the operating system. Examples of noninteractive computations
are scientific computations involving number crunching and database updates
performed overnight. In these computing environments, the operating system
focuses on efficient use of resources.

Computations used in a noninteractive environment are in the form of a
program or a job. A program is a set of functions or modules that can be exe-
cuted by itself. A job is a sequence of programs that together achieve a desired
goal; a program in a job is executed only if previous programs in the job have
executed successfully. For example, consider compilation, linking, and execution
of a C++ program. A job to achieve these actions would consist of execution
of a C++ compiler, followed by execution of a linker to link the program with
functions from libraries, followed by execution of the linked program. Here, link-
ing is meaningful only if the program is compiled successfully, and execution is
meaningful only if linking is successful.

Interactive Computing Environments In these computing environments, a user
may interact with a computation while it is in progress. The nature of an inter-
action between a user and his computation depends on how the computation is
coded; e.g., a user may input the name of a data file to a computation during its
execution, or may directly input some data to it, and the computation may display
a result after processing the data. The operating system focuses on reducing the
average amount of time required to implement an interaction between a user and
his computation.

A user also interacts with the OS to initiate a computation, typically each user
command to the OS calls for separate execution of a program. Here the notion
of a job is not important because a user would himself consider the dependence
of programs while issuing the next command. For example, if a C++ program
is to be compiled, linked, and executed, a user would attempt linking only if
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Table 3.1 Computations in an OS

Computation Description

Program A program is a set of functions or modules, including some
functions or modules obtained from libraries.

Job A job is a sequence of programs that together achieve a
common goal. It is not meaningful to execute a program in a
job unless previous programs in the job have been executed

successfully.
Process A process is an execution of a program.
Subrequest A subrequest is the presentation of a computational

requirement by a user to a process. Each subrequest produces a
single response, which consists of a set of results or actions.

the program had compiled successfully. Hence operating systems for interactive
environments deal exclusively with execution of programs, not jobs. OS literature
uses the term process for an execution of a program in an interactive environment.
In principle, the term process is applicable in both noninteractive and interactive
environments. However, we will follow the convention and use it only in the
context of interactive computing environments.

A user’sinteraction with a process consists of presentation of a computational
requirement—a subrequest—Dby the user to the process, and a response by the
process. Depending on the nature of a subrequest, the response may be in the form
of a set of results, or a set of actions such as file operations or database updates.
Table 3.1 describes the program, job, process, and subrequest computations.

Real-Time, Distributed, and Embedded Environments Some computations have
special requirements, hence special computing environments are developed to
service them. A real-time computation is one that works under specific time con-
straints, so its actions are effective only if they are completed within a specified
interval of time. For example, a computation that periodically samples the data
from an instrument and stores the samples in a file must finish storing a sam-
ple before it is due to take the next sample. The operating system in a real-time
environment uses special techniques to ensure that computations are completed
within their time constraints. The distributed computing environment enables a
computation to use resources located in several computer systems through a net-
work. In the embedded computing environment, the computer system is a part of
a specific hardware system, such as a household appliance, a subsystem of an
automobile, or a handheld device such as a personal digital assistant (PDA), and
runs computations that effectively control the system. The computer is typically
an inexpensive one with a minimal configuration; its OS has to meet the time
constraints arising from the nature of the system being controlled.

Modern Computing Environments To support diverse applications, the comput-
ing environment of a modern computer has features of several of the computing
environments described earlier. Consequently, its operating system has to employ
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complex strategies to manage user computations and resources; e.g., it has to
reduce the average amount of time required to implement an interaction between
a user and a computation, and also ensure efficient use of resources.

We study the strategies used in modern operating systems in two stages:
In this chapter, we first study the operating system strategies used in each of the
computing environments mentioned earlier, and then see which of them are useful
in a modern computing environment. In later chapters, we discuss the design of
the strategies used in modern operating systems.

3.2 CLASSES OF OPERATING SYSTEMS

Classes of operating systems have evolved over time as computer systems and
users’ expectations of them have developed; i.e., as computing environments have
evolved. As we study some of the earlier classes of operating systems, we need
to understand that each was designed to work with computer systems of its own
historical period; thus we will have to look at architectural features representative
of computer systems of the period.

Table 3.2 lists five fundamental classes of operating systems that are named
according to their defining features. The table shows when operating systems of
each class first came into widespread use; what fundamental effectiveness crite-
rion, or prime concern, motivated its development; and what key concepts were
developed to address that prime concern.

Computing hardware was expensive in the early days of computing, so
the batch processing and multiprogramming operating systems focused on effi-
cient use of the CPU and other resources in the computer system. Computing
environments were noninteractive in this era. In the 1970s, computer hardware
became cheaper, so efficient use of a computer was no longer the prime concern
and the focus shifted to productivity of computer users. Interactive comput-
ing environments were developed and time-sharing operating systems facilitated

Table 3.2 Key Features of Classes of Operating Systems

OS class Period Prime concern Key concepts
Batch processing 1960s CPU idle time Automate transition
between jobs

Multiprogramming 1960s Resource Program priorities,
utilization preemption

Time-sharing 1970s Good response Time slice, round-robin
time scheduling

Real time 1980s Meeting time Real-time scheduling
constraints

Distributed 1990s Resource sharing Distributed control,

transparency
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better productivity by providing quick response to subrequests made to processes.
The 1980s saw emergence of real-time applications for controlling or tracking of
real-world activities, so operating systems had to focus on meeting the time con-
straints of such applications. In the 1990s, further declines in hardware costs led
to development of distributed systems, in which several computer systems, with
varying sophistication of resources, facilitated sharing of resources across their
boundaries through networking.

The following paragraphs elaborate on key concepts of the five classes of
operating systems mentioned in Table 3.2.

Batch Processing Systems In a batch processing operating system, the prime
concern is CPU efficiency. The batch processing system operates in a strict one-
job-at-a-time manner; within a job, it executes the programs one after another.
Thus only one program is under execution at any time. The opportunity to
enhance CPU efficiency is limited to efficiently initiating the next program when
one program ends, and the next job when one job ends, so that the CPU does not
remain idle.

Multiprogramming Systems A multiprogramming operating system focuses on
efficient use of both the CPU and I/O devices. The system has several programs
in a state of partial completion at any time. The OS uses program priorities and
gives the CPU to the highest-priority program that needs it. It switches the CPU
to a low-priority program when a high-priority program starts an I/O operation,
and switches it back to the high-priority program at the end of the I/O operation.
These actions achieve simultaneous use of I/O devices and the CPU.

Time-Sharing Systems A time-sharing operating system focuses on facilitating
quick response to subrequests made by all processes, which provides a tangible
benefit to users. It is achieved by giving a fair execution opportunity to each
process through two means: The OS services all processes by turn, which is called
round-robin scheduling. It also prevents a process from using too much CPU time
when scheduled to execute, which is called time-slicing. The combination of these
two techniques ensures that no process has to wait long for CPU attention.

Real-Time Systems A real-time operating system is used to implement a
computer application for controlling or tracking of real-world activities. The
application needs to complete its computational tasks in a timely manner to keep
abreast of external events in the activity that it controls. To facilitate this, the
OS permits a user to create several processes within an application program, and
uses real-time scheduling to interleave the execution of processes such that the
application can complete its execution within its time constraint.

Distributed Systems A distributed operating system permits a user to access
resources located in other computer systems conveniently and reliably. To enhance
convenience, it does not expect a user to know the location of resources in the
system, which is called transparency. To enhance efficiency, it may execute parts of
a computation in different computer systems at the same time. It uses distributed
control; i.e., it spreads its decision-making actions across different computers in
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the system so that failures of individual computers or the network does not cripple
its operation.

In Sections 3.4-3.8, we will examine each of the five fundamental OS classes
in greater detail.

3.3 EFFICIENCY, SYSTEM PERFORMANCE,
AND USER SERVICE

Measurement provides a method of assessing selected aspects of an operating sys-
tem’s functioning. In Chapter 1, we defined efficiency of use and user convenience
as two of the fundamental goals of an OS. However, to a system administrator
the performance of a system in its environment is more important than merely
efficiency of use, hence in this section we discuss measures of efficiency, system
performance, and user service. Table 3.3 summarizes these measures.

Efficiency The way to evaluate efficiency of use of a resource is to see how
much of the resource is unused or wasted, and, in the amount of resource that is
used, check how much of it is put to productive use. As an example of efficiency,
consider use of the CPU. Some amount of CPU time is wasted because the CPU
does not have enough work to do. This happens when all user processes in the
system are either performing I/O operations or waiting for the users to supply
data. Of the CPU time that is used, some amount of time is used by the OS itself
in performing interrupt servicing and scheduling. This constitutes the overhiead
of OS operation. The remaining CPU time is used for executing user processes.
To evaluate efficiency of CPU use, we should consider what fraction or percentage
of the total CPU time is used for executing user processes. Efficiency of use of other
resources such as memory and I/O devices can be similarly determined: Deduct
the amount of unused resource and the OS overhead from the total resource and
consider what fraction or percentage the result is of the total resource.

Using the notion of efficiency of use, we briefly discuss the fundamental
trade-off between efficiency of use and user convenience: A multiprogramming
system has several user programs at any time and switches between them to
obtain efficient use of both the CPU and I/O devices. The CPU is given to the

Table 3.3 Measures of Efficiency, System Performance,
and User Service

Aspect Measure Description

Efficiency of use CPU efficiency Percent utilization of the CPU
Memory efficiency Percent utilization of memory

System performance Throughput Amount of work done per unit time

User service Turnaround time Time to complete a job or a process

Response time Time to implement one subrequest
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highest-priority program in the system whenever it wants, and it can use the CPU
for as long as it wants. A time-sharing system, however, restricts the amount
of CPU time a scheduled process can use. It preempts a process that uses too
much CPU time and schedules another process. The preempted process may
be scheduled again sometime in future. This feature increases the OS overhead
in interrupt servicing and scheduling, thereby affecting efficiency of CPU use.
However, it provides good response times to all processes, which is a feature
desired by users of the OS.

System Performance Once we decide on the suitable combination of CPU effi-
ciency and user service, it is important to know how well the OS is performing.
The notion of performance depends on the computing environment and indicates
the rate at which a computer system accomplishes work during its operation.

An operating system typically uses a measure of efficiency to tune its func-
tioning for better performance. For example, if memory efficiency is low, the
operating system may load more user programs in memory. In turn, it may lead
to better performance of the system by increasing the rate at which the system
completes user computations. If CPU efficiency is low, the operating system may
investigate its causes—either too few programs in memory or programs spending
too much time in waiting for I/O to complete—and take corrective actions where
possible.

System performance is characterized as the amount of work done per unit
time. It is typically measured as throughput.

Definition 3.1 Throughput The average number of jobs, programs, processes,
or subrequests completed by a system in unit time.

The unit of work used for measuring throughput depends on the computing
environment. In a noninteractive environment, throughput of an OS is measured
in terms of the number of jobs or programs completed per unit time. In an inter-
active environment, it may be measured in terms of the number of subrequests
completed per unit time. In a specialized computing environment, performance
may be measured in terms meaningful to the application; for example, in a bank-
ingenvironment, it could be the number of transactions per unit time. Throughput
can also be used as a measure of performance for I/O devices. For example, the
throughput of a disk can be measured as the number of I/O operations completed
per unit time or the number of bytes transferred per unit time.

User Service Some aspects of user convenience are intangible and thus impos-
sible to measure numerically; e.g., a feature like user friendly interfaces cannot be
quantified. However, there are some measurable aspects of user convenience, So
we can define appropriate measures for them. User service, which indicates how
quickly a user’s computation has been completed by the OS, is one such aspect.
We define two measures of user service—turnaround time, in noninteractive com-
puting environments, and response time, in interactive computing environments.
A smaller turnaround time or response time implies better user service.
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Definition 3.2 Turnaround Time The time from submission of a job, program,
or process by a user to the time its results become available to the user.

Definition 3.3 Response Time The time from submission of a subrequest by
a user to the time a process responds to it.

Specialized measures of user service may be defined for use in specific
computing environments. Two such examples are deadline overrun in a real-time
operating system and computation speedup in a distributed operating system.
Deadline overrun indicates by how much time the OS was late in completing the
execution of a computation with time constraints, so a negative deadline overrun
indicates good user service. Computation speedup indicates by what factor the
execution of an application was speeded up because its processes were executed
at the same time in different computers of a distributed system; a larger value of
computation speedup implies better user service.

3.4 BATCH PROCESSING SYSTEMS

Computer systems of the 1960s were noninteractive. Punched cards were the pri-
mary input medium, so a job and its data consisted of a deck of cards. A computer
operator would load the cards into the card reader to set up the execution of a
job. This action wasted precious CPU time; batch processing was introduced to
prevent this wastage.

A batch is a sequence of user jobs formed for processing by the operating
system. A computer operator formed a batch by arranging a few user jobs in a
sequence and inserting special marker cards to indicate the start and end of the
batch. When the operator gave a command to initiate processing of a batch, the
batching kernel set up the processing of the first job of the batch. At the end of
the job, it initiated execution of the next job, and so on, until the end of the batch.
Thus the operator had to intervene only at the start and end of a batch.

Card readers and printers were a performance bottleneck in the 1960s,
so batch processing systems employed the notion of virtual card readers and
printers (described in Section 1.3.2) through magnetic tapes, to improve the
system’s throughput. A batch of jobs was first recorded on a magnetic tape, using
a less powerful and cheap computer. The batch processing system processed these
jobs from the tape, which was faster than processing them from cards, and wrote
their results on another magnetic tape. These were later printed and released to
users. Figure 3.1 shows the factors that make up the turnaround time of a job.

User jobs could not interfere with each other’s execution directly because
they did not coexist in a computer’s memory. However, since the card reader
was the only input device available to users, commands, user programs, and data
were all derived from the card reader, so if a program in a job tried to read more
data than provided in the job, it would read a few cards of the following job! To
protect against such interference between jobs, a batch processing system required
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Figure 3.1 Turnaround time in a batch processing system.
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Figure 3.2 Control statements in IBM 360/370 systems.

a user to insert a set of control statements in the deck of cards constituting a job.
The command interpreter, which was a component of the batching kernel, read
a card when the currently executing program in the job wanted the next card.
If the card contained a control statement, it analyzed the control statement and
performed appropriate actions; otherwise, it passed the card to the currently
executing program. Figure 3.2 shows a simplified set of control statements used
to compile and execute a Fortran program. If a program tried to read more data
than provided, the command interpreter would read the / *, /& and // JOB
cards. On seeing one of these cards, it would realize that the program was trying
to read more cards than provided, so it would abort the job.

A modern OS would not be designed for batch processing, but the tech-
nique is still useful in financial and scientific computation where the same kind
of processing or analysis is to be performed on several sets of data. Use of batch
processing in such environments would eliminate time-consuming initialization
of the financial or scientific analysis separately for each set of data.

3.5 MULTIPROGRAMMING SYSTEMS
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Multiprogramming operating systems were developed to provide efficient
resource utilization in a noninteractive environment. A multiprogramming OS
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Figure 3.3 Operation of a multiprogramming system: (a) program, is in execution while program is performing an 1/0
operation; (b) programs initiates an 1/O operation, programs is scheduled; (c) program+’s 1/O operation completes and it is
scheduled.

has many user programs in the memory of the computer at any time, hence the
name multiprogramming. It employs the DMA mode of I/O (see Section 2.2.4),
so it can perform /O operations of some program(s) while using the CPU to
execute some other program. This arrangement makes efficient use of both the
CPU and I/O devices. The I/O and computational activities in several programs
are in progress at any time, so it also leads to high system performance. We discuss
this aspect in Section 3.5.1.

Figure 3.3 illustrates operation of a multiprogramming OS. The memory
contains three programs. An I/O operation is in progress for program,, while the
CPU is executing program;. The CPU is switched to programs when program,
initiates an I/O operation, and it is switched to program; when program;’s 1/0
operation completes. The multiprogramming kernel performs scheduling, mem-
ory management and I/O management. It uses a simple scheduling policy, which
we will discuss in Section 3.5.1, and performs simple partitioned or pool-based
allocation of memory and I/O devices. Since several programs are in memory at
the same time, the instructions, data, and I/O operations of a program should be
protected against interference by other programs. We shall shortly see how it is
achieved.

A computer must possess the features summarized in Table 3.4 to support
multiprogramming (see Section 2.2). The DMA makes multiprogramming fea-
sible by permitting concurrent operation of the CPU and I/O devices. Memory
protection prevents a program from accessing memory locations that lie outside
the range of addresses defined by contents of the base register and size register
of the CPU. The kernel and user modes of the CPU provide an effective method
of preventing interference between programs. Recall from Section 2.2 that the
OS puts the CPU in the user mode while executing user programs, and that
instructions that load an address into the base register and a number into the
size register of the CPU, respectively, are privileged instructions. If a program
tries to undermine memory protection by changing contents of the base and size
registers through these instructions, a program interrupt would be raised because
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Table 3.4 Architectural Support for Multiprogramming

Feature Description

DMA The CPU initiates an I/O operation when an I/O instruction
is executed. The DMA implements the data transfer
involved in the I/O operation without involving the CPU
and raises an I/O interrupt when the data transfer completes.

Memory protection A program can access only the part of memory defined by
contents of the base register and size register.

Kernel and user Certain instructions, called privileged instructions, can be

modes of CPU performed only when the CPU is in the kernel mode. A
program interrupt is raised if a program tries to execute a
privileged instruction when the CPU is in the user mode.

the CPU is in the user mode; the kernel would abort the program while servicing
this interrupt.

The turnaround time of a program is the appropriate measure of user service
in a multiprogramming system. It depends on the total number of programs in
the system, the manner in which the kernel shares the CPU between programs,
and the program’s own execution requirements.

3.5.1 Priority of Programs

An appropriate measure of performance of a multiprogramming OS is through-
put, which is the ratio of the number of programs processed and the total time
taken to process them. Throughput of a multiprogramming OS that processes n
programs in the interval between times 79 and 7 is n/(# — to). It may be larger
than the throughput of a batch processing system because activities in several
programs may take place simultaneously—one program may execute instruc-
tions on the CPU, while some other programs perform I/O operations. However,
actual throughput depends on the nature of programs being processed, i.e., how
much computation and how much 1/O they perform, and how well the kernel can
overlap their activities in time.

The OS keeps a sufficient number of programs in memory at all times, so that
the CPU and I/O devices will have sufficient work to perform. This number is
called the degree of multiprogramming. However, merely a high degree of multi-
programming cannot guarantee good utilization of both the CPU and 1/0O devices,
because the CPU would be idle if each of the programs performed I/O operations
most of the time, or the I/O devices would be idle if each of the programs per-
formed computations most of the time. So the multiprogramming OS employs the
two techniques described in Table 3.5 to ensure an overlap of CPU and I/O activ-
ities in programs: It uses an appropriate program mix, which ensures that some
of the programs in memory are CPU-bound programs, which are programs that
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Table 3.5 Techniques of Multiprogramming

Technique Description
Appropriate The kernel keeps a mix of CPU-bound and I/O-bound programs
program mix in memory, where

® A CPU-bound program is a program involving a lot of
computation and very little I/O. It uses the CPU in long
bursts—that is, it uses the CPU for a long time before
starting an I/O operation.

® An I/O-bound program involves very little computation and a
lot of I/O. It uses the CPU in small bursts.

Priority-based Every program is assigned a priority. The CPU is always

preemptive allocated to the highest-priority program that wishes to use it.

scheduling A low-priority program executing on the CPU is preempted if a
higher-priority program wishes to use the CPU.

involve a lot of computation but few I/O operations, and others are I/ O-bound pro-
grams, which contain very little computation but perform more I/O operations.
This way, the programs being serviced have the potential to keep the CPU and I/O
devices busy simultaneously. The OS uses the notion of priority-based preemptive
scheduling to share the CPU among programs in a manner that would ensure
good overlap of their CPU and I/O activities. We explain this technique in the
following.

Definition 3.4 Priority A tie-breaking criterion under which a scheduler
decides which request should be scheduled when many requests await
service.

The kernel assigns numeric priorities to programs. We assume that priorities
are positive integers and a large value implies a high priority. When many pro-
grams need the CPU at the same time, the kernel gives the CPU to the program
with the highest priority. It uses priority in a preemptive manner; i.e., it preempts
a low-priority program executing on the CPU if a high-priority program needs
the CPU. This way, the CPU is always executing the highest-priority program
that needs it. To understand implications of priority-based preemptive schedul-
ing, consider what would happen if a high-priority program is performing an I/O
operation, a low-priority program is executing on the CPU, and the I/O operation
of the high-priority program completes—the kernel would immediately switch the
CPU to the high-priority program.

Assignment of priorities to programs is a crucial decision that can influence
system throughput. Multiprogramming systems use the following priority assign-
ment rule: An I/O-bound program should have a higher priority than a CPU-bound
program. Example 3.1 illustrates operation of this rule.
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Execution of Programs in a Multiprogramming System Example 3.1

A multiprogramming system has prog;,», an I/O-bound program, and prog.s,
a CPU-bound program. Its operation starts at time 0. In Figure 3.4, the CPU
and I/O activities of these programs are plotted in the form of a timing chart in
which the x axis shows time and the y axis shows CPU and I/O activities of the
two programs. Cumulative CPU and I/O activities are shown at the bottom of
the chart. Note that the chart is not to scale; the CPU activity of prog;,, has
been exaggerated for clarity.

Program prog;,; is the higher priority program. Hence it starts executing
at time 0. After a short burst of CPU activity, it initiates an I/O operation (time
instant 71). The CPU is now switched to prog.,. Execution of prog., is thus
concurrent with the I/O operation of prog;,;. Being a CPU-bound program,
prog., keeps the CPU busy until prog;,;’s I/O completes at #,, at which time
prog.p is preempted because prog;,, has a higher priority. This sequence of
events repeats in the period 0-7¢. Deviations from this behavior occur when
prog.p initiates an I/O operation. Now both programs are engaged in I/O
operations, which go on simultaneously because the programs use different
I/0 devices, and the CPU remains idle until one of them completes its 1/O
operation. This explains the CPU-idle periods 74—¢7 and f3—t9 in the cumulative
CPU activity. I/O-idle periods occur whenever prog;,, executes on the CPU
and progp is not performing 1/O (see intervals 0 — ¢1, to—13, and #4—15). But
the CPU and the I/O subsystem are concurrently busy in the intervals #1113,
t3—t4, ts—tg, and t7—1g.
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Progiob | Lo Lo
/0 activity + | ; 1 1
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CPU activity + +—r +——o — | | —
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Figure 3.4 Timing chart when 1/0-bound program has higher priority.
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Table 3.6 Effect of Increasing the Degree of Multiprogramming

Action Effect
Add a CPU-bound A CPU-bound program (say, progs) can be
program introduced to utilize some of the CPU time that was

wasted in Example 3.1 (e.g., the intervals zg—#7 and
tg—tg). progz would have the lowest priority. Hence
its presence would not affect the progress of prog.;,

and prog;,p-
Add an I/O-bound An I/O-bound program (say, progs) can be
program introduced. Its priority would be between the

priorities of prog;,p and prog.;. Presence of progy
would improve I/O utilization. It would not affect
the progress of prog;,p at all, since prog;,p has the
highest priority, and it would affect the progress of
prog.p, only marginally, since progq does not use a
significant amount of CPU time.

We can make a few observations from Example 3.1: The CPU utilization
is good. The I/O utilization is also good; however, I/O idling would exist if
the system contained many devices capable of operating in the DMA mode.
Periods of concurrent CPU and I/O activities are frequent. prog;,, makes
very good progress because it is the highest-priority program. It makes very
light use of the CPU, and so prog. also makes very good progress. The
throughput is thus substantially higher than if the programs were executed
one after another as in a batch processing system. Another important fea-
ture of this priority assignment is that system throughput can be improved
by adding more programs. Table 3.6 describes how addition of a CPU-bound
program can reduce CPU idling without affecting execution of other pro-
grams, while addition of an I/O-bound program can improve I/O utilization
while marginally affecting execution of CPU-bound programs. The kernel can
judiciously add CPU-bound or I/O-bound programs to ensure efficient use of
resources.

When an appropriate program mix is maintained, we can expect that an
increase in the degree of multiprogramming would result in an increase in
throughput. Figure 3.5 shows how the throughput of a system actually varies
with the degree of multiprogramming. When the degree of multiprogramming
is 1, the throughput is dictated by the elapsed time of the lone program in the
system. When more programs exist in the system, lower-priority programs also
contribute to throughput. However, their contribution is limited by their oppor-
tunity to use the CPU. Throughput stagnates with increasing values of the degree
of multiprogramming if low-priority programs do not get any opportunity to
execute.
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Figure 3.6 A schematic of round-robin scheduling with time-slicing.

3.6 TIME-SHARING SYSTEMS

65

In an interactive computing environment, a user submits a computational
requirement—a subrequest—to a process and examines its response on the mon-
itor screen. A time-sharing operating system is designed to provide a quick
response to subrequests made by users. It achieves this goal by sharing the CPU
time among processes in such a way that each process to which a subrequest has
been made would get a turn on the CPU without much delay.

The scheduling technique used by a time-sharing kernel is called round-robin
scheduling with time-slicing. It works as follows (see Figure 3.6): The kernel main-
tains a scheduling queue of processes that wish to use the CPU:; it always schedules
the process at the head of the queue. When a scheduled process completes ser-
vicing of a subrequest, or starts an I/O operation, the kernel removes it from
the queue and schedules another process. Such a process would be added at the
end of the queue when it receives a new subrequest, or when its I/O operation
completes. This arrangement ensures that all processes would suffer comparable
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delays before getting to use the CPU. However, response times of processes would
degrade if a process consumes too much CPU time in servicing its subrequest.
The kernel uses the notion of a time slice to avoid this situation. We use the
notation § for the time slice.

Definition 3.5 Time Slice The largest amount of CPU time any time-shared
process can consume when scheduled to execute on the CPU.

If the time slice elapses before the process completes servicing of a subrequest,
the kernel preempts the process, moves it to the end of the scheduling queue, and
schedules another process. The preempted process would be rescheduled when it
reaches the head of the queue once again. Thus, a process may have to be scheduled
several times before it completes servicing of a subrequest. The kernel employs a
timer interrupt to implement time-slicing (see Section 2.2.5 and Table 2.2).

The appropriate measure of user service in a time-sharing system is the time
taken to service a subrequest, i.e., the response time (r7). It can be estimated
in the following manner: Let the number of users using the system at any time
be n. Let the complete servicing of each user subrequest require exactly § CPU
seconds, and let o be the scheduling overhead, i.e., the CPU time consumed by
the kernel to perform scheduling. If we assume that an I/O operation completes
instantaneously and a user submits the next subrequest immediately after receiv-
ing a response to the previous subrequest, the response time (rf) and the CPU
efficiency (n) are given by

rt=nx(8+o0) 3.1)
8
T=5% +o (3-2)

The actual response time may be different from the value of r¢ predicted by
Eq. (3.1), for two reasons. First, all users may not have made subrequests to their
processes. Hence rf would not be influenced by n, the total number of users in the
system; it would be actually influenced by the number of active users. Second,
user subrequests do not require exactly § CPU seconds to produce a response.
Hence the relationship of v and n with 8 is more complex than shown in Egs. (3.1)
and (3.2).

Example 3.2 illustrates round-robin scheduling with time-slicing, and how it
results in interleaved operation of processes.

Example 3.2

Operation of Processes in a Time-Sharing System

Processes P1 and P; follow a cyclic behavior pattern. Each cycle contains a
burst of CPU activity to service a subrequest and a burst of I/O activity to
report its result, followed by a wait until the next subrequest is submitted to it.
The CPU bursts of processes P; and P, are 15 and 30 ms, respectively, while
the I/0O bursts are 100 and 60 ms, respectively.
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Figure 3.7 shows operation of the processes in a time-sharing system using
atime slice of 10 ms. The table in the top half of Figure 3.7 shows the scheduling
, list and scheduling decisions of the kernel, assuming scheduling overhead to
be negligible, while the timing chart shows the CPU and I/O activities of the
processes. Both processes have to be scheduled a few times before they can
complete the CPU bursts of their execution cycle and start I/O. Process P; uses
the CPU from time 0 to 10 ms and P> uses the CPU from 10 to 20 ms without
completing the CPU bursts of their execution cycles. P; is scheduled once again
at 20 ms and starts an I/O operation at 25 ms. Now P; gets two consecutive
time slices. However, these time slices are separated by the scheduling overhead
because the OS preempts process P, at 35 ms and schedules it again, since no
other process in the system needs the CPU. Py’s I/O operation completes at
125 ms. P; starts an I/O operation at 45 ms, which completes at 105 ms. Thus,
the response times are 125 ms and 105 ms, respectively.

3.6.1 Swapping of Programs

Throughput of subrequests is the appropriate measure of performance of a time-
sharing operating system. The time-sharing OS of Example 3.2 completes two
subrequests in 125 ms, hence its throughput is 8 subrequests per second over the
period 0 to 125 ms. However, the throughput would drop after 125 ms if users
do not make the next subrequests to these processes immediately. The CPU is

Scheduling Scheduled
Time list program Remarks
0 Py, Py Py Py is preempted at 10 ms
10 Py, Py Py P is preempted at 20 ms
20 Py, Py Py Py starts I/O at 25 ms
25 Py Py P5 is preempted at 35 ms
35 Py Py P, starts I/O at 45 ms
45 - - CPU is idle
CPU activity {ﬁ‘
2 —_—
N Pt
1/O activity P,
0 20 40 60 80 100 120

Time —

Figure 3.7 Operation of processes P¢ and P in a time-sharing system.

67



68

Part 1

Overview

Kernel Kernel Kernel Kernel
Py Py Py Py
Py P3 P3 P3

(a) (b) (©) (d)

Figure 3.8 Swapping: (a) processes in memory between 0 and 105 ms; (b) Ps is replaced by
P35 at 105 ms; (c) P4 is replaced by P4 at 125 ms; (d) P1 is swapped in to service the next
subrequest made to it.

idle after 45 ms because it has no work to perform. It could have serviced a few
more subrequests, had more processes been present in the system. But what if
only two processes could fit in the computer’s memory? The system throughput
would be low and response times of processes other than P; and P> would suffer.
The technique of swapping is employed to service a larger number of processes
than can fit into the computer’s memory. It has the potential to improve both
system performance and response times of processes.

Definition 3.6 Swapping The technique of temporarily removing a process
from the memory of a computer system.

The kernel performs a swap-out operation on a process that is not likely to get
scheduled in the near future by copying its instructions and data onto a disk. This
operation frees the area of memory that was allocated to the process. The kernel
now loads another process in this area of memory through a swap-in operation.
The kernel would overlap the swap-out and swap-in operations with servicing of
other processes on the CPU, and a swapped-in process would itself get scheduled
in due course of time. This way, the kernel can service more processes than can
fit into the computer’s memory. Figure 3.8 illustrates how the kernel employs
swapping. Initially, processes P; and P, exist in memory. These processes are
swapped out when they complete handling of the subrequests made to them, and
they are replaced by processes P3 and P4, respectively. The processes could also
have been swapped out when they were preempted. A swapped-out process is
swapped back into memory before it is due to be scheduled again, i.e., when it
nears the head of the scheduling queue in Figure 3.6.

3.7 REAL-TIME OPERATING SYSTEMS

In a class of applications called real-time applications, users need the computer to
perform some actions in a timely manner to control the activities in an external
system, or to participate in them. The timeliness of actions is determined by
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the time constraints of the external system. Accordingly, we define a real-time
application as follows:

Definition 3.7 Real-Time Application A program that responds to activities in
an external system within a maximum time determined by the external system.

If the application takes too long to respond to an activity, a failure can
occur in the external system. We use the term response requirement of a system
to indicate the largest value of response time for which the system can function
perfectly; a timely response is one whose response time is not larger than the
response requirement of the system.

Consider a system that logs data received from a satellite remote sensor.
The satellite sends digitized samples to the earth station at the rate of 500 samples
per second. The application process is required to simply store these samples in
a file. Since a new sample arrives every two thousandth of a second, i.e., every
2 ms, the computer must respond to every “store the sample” request in less than
2 ms, or the arrival of a new sample would wipe out the previous sample in the
computer’s memory. This system is a real-time application because a sample must
be stored in less than 2 ms to prevent a failure. Its response requirement is 1.99 ms.
The deadline of an action in a real-time application is the time by which the action
should be performed. In the current example, if a new sample is received from
the satellite at time ¢, the deadline for storing it on disk is 7 + 1.99 ms.

Examples of real-time applications can be found in missile guidance, com-
mand and control applications like process control and air traffic control, data
sampling and data acquisition systems like display systems in automobiles, multi-
media systems, and applications like reservation and banking systems that employ
large databases. The response requirements of these systems vary from a few
microseconds or milliseconds for guidance and control systems to a few seconds
for reservation and banking systems.

3.7.1 Hard and Soft Real-Time Systems

To take advantage of the features of real-time systems while achieving maximum
cost-effectiveness, two kinds of real-time systems have evolved. A hard real-time
system is typically dedicated to processing real-time applications, and provably
meets the response requirement of an application under all conditions. A soft
real-time system makes the best effort to meet the response requirement of a
real-time application but cannot guarantee that it will be able to meet it under
all conditions. Typically, it meets the response requirements in some probabilistic
manner, say, 98 percent of the time. Guidance and control applications fail if they
cannot meet the response requirement, hence they are serviced by hard real-time
systems. Applications that aim at providing good quality of service, e.g., multi-
media applications and applications like reservation and banking, do not have a
notion of failure, so they may be serviced by soft real-time systems—the picture
quality provided by a video-on-demand system may deteriorate occasionally, but
one can still watch the video!
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3.7.2 Features of a Real-Time Operating System

A real-time OS provides the features summarized in Table 3.7. The first three
features help an application in meeting the response requirement of a system
as follows: A real-time application can be coded such that the OS can execute
its parts concurrently, i.e., as separate processes. When these parts are assigned
priorities and priority-based scheduling is used, we have a situation analogous
to multiprogramming within the application—if one part of the application ini-
tiates an 1/O operation, the OS would schedule another part of the application.
Thus, CPU and I/O activities of the application can be overlapped with one
another, which helps in reducing the duration of an application, i.e., its running
time. Deadline-aware scheduling is a technique used in the kernel that schedules
processes in such a manner that they may meet their deadlines.

Ability to specify domain-specific events and event handling actions enables
a real-time application to respond to special conditions in the external system
promptly. Predictability of policies and overhead of the OS enables an applica-
tion developer to calculate the worst-case running time of the application and
decide whether the response requirement of the external system can be met. The
predictability requirement forces a hard real-time OS to shun features such as vir-
tual memory whose performance cannot be predicted precisely (see Chapter 12).
The OS would also avoid shared use of resources by processes, because it can lead
to delays that are hard to predict and unbounded, i.e., arbitrarily large.

A real-time OS employs two techniques to ensure continuity of operation
when faults occur—fault tolerance and graceful degradation. A fault-tolerant
computer system uses redundancy of resources to ensure that the system will
keep functioning even if a fault occurs; e.g., it may have two disks even though
the application actually needs only one disk. Graceful degradation is the ability
of a system to fall back to a reduced level of service when a fault occurs and
to revert to normal operations when the fault is rectified. The programmer can

Table 3.7 Essential Features of a Real-Time Operating System

Feature Explanation

Concurrency A programmer can indicate that some parts of an application

within an should be executed concurrently with one another. The OS

application considers execution of each such part as a process.

Process priorities A programmer can assign priorities to processes.

Scheduling The OS uses priority-based or deadline-aware scheduling.

Domain-specific A programmer can define special situations within the external

events, interrupts system as events, associate interrupts with them, and specify
event handling actions for them.

Predictability Policies and overhead of the OS should be predictable.

Reliability The OS ensures that an application can continue to function

even when faults occur in the computer.
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assign high priorities to crucial functions so that they would be performed in a
timely manner even when the system operates in a degraded mode.

3.8 DISTRIBUTED OPERATING SYSTEMS
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A distributed computer system consists of several individual computer systems
connected through a network. Each computer system could be a PC, a mul-
tiprocessor system (see Chapter 10), or a cluster, which is itself a group of
computers that work together in an integrated manner (see Section 16.2). Thus,
many resources of a kind, e.g., many memories, CPUs and I/O devices, exist in
the distributed system. A distributed operating system exploits the multiplicity
of resources and the presence of a network to provide the benefits summarized in
Table 3.8. However, the possibility of network faults or faults in individual com-
puter systems complicates functioning of the operating system and necessitates
use of special techniques in its design. Users also need to use special techniques
to access resources over the network. We discuss these aspects in Section 3.8.1.

Resource sharing has been the traditional motivation for distributed operat-
ing systems. A user of a PC or workstation can use resources such as printers
over a local area network (LAN), and access specialized hardware or software
resources of a geographically distant computer system over a wide area network
(WAN).

A distributed operating system provides reliability through redundancy of
computer systems, resources, and communication paths—if a computer system
or a resource used in an application fails, the OS can switch the application to
another computer system or resource, and if a path to a resource fails, it can utilize
another path to the resource. Reliability can be used to offer high availability of
resources and services, which is defined as the fraction of time a resource or service
is operable. High availability of a data resource, e.g., a file, can be provided by
keeping copies of the file in various parts of the system.

Computation speedup implies a reduction in the duration of an application,
i.e., in its running time. It is achieved by dispersing processes of an application

Table 3.8 Benefits of Distributed Operating Systems

Benefit Description

Resource sharing Resources can be utilized across boundaries of individual
computer systems.

Reliability The OS continues to function even when computer
systems or resources in it fail.

Computation speedup Processes of an application can be executed in different
computer systems to speed up its completion.

Communication Users can communicate among themselves irrespective of
their locations in the system.
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to different computers in the distributed system, so that they can execute at the
same time and finish earlier than if they were to be executed in a conventional OS.

Users of a distributed operating system have user ids and passwords that
are valid throughout the system. This feature greatly facilitates communication
between users in two ways. First, communication through user ids automatically
invokes the security mechanisms of the OS and thus ensures authenticity of com-
munication. Second, users can be mobile within the distributed system and still
be able to communicate with other users through the system.

3.8.1 Special Techniques of Distributed Operating Systems

A distributed system is more than a mere collection of computers connected to
a network—functioning of individual computers must be integrated to achieve
the benefits summarized in Table 3.8. It is achieved through participation of
all computers in the control functions of the operating system. Accordingly, we
define a distributed system as follows:

Definition 3.8 Distributed System A system consisting of two or more nodes,
where each node is a computer system with its own clock and memory, some
networking hardware, and a capability of performing some of the control
functions of an OS.

Table 3.9 summarizes three key concepts and techniques used in a distributed
OS. Distributed control is the opposite of centralized control—it implies that the
control functions of the distributed system are performed by several computers
in the system in the manner of Definition 3.8, instead of being performed by
a single computer. Distributed control is essential for ensuring that failure of a
single computer, or a group of computers, does not halt operation of the entire
system. Transparency of a resource or service implies that a user should be able to
access it without having to know which node in the distributed system contains
it. This feature enables the OS to change the position of a software resource or
service to optimize its use by applications. For example, in a system providing

Table 3.9 Key Concepts and Techniques Used in a Distributed OS

Concept/Technique Description

Distributed control A control function is performed through participation of
several nodes, possibly a// nodes, in a distributed system.

Transparency A resource or service can be accessed without having to
know its location in the distributed system.

Remote procedure A process calls a procedure that is located in a different

call (RPC) computer system. The RPC is analogous to a procedure or

function call in a programming language, except that the OS
passes parameters to the remote procedure over the network
and returns its results over the network.
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transparency, a distributed file system could move a file to the node that contains
a computation using the file, so that the delays involved in accessing the file over
the network would be eliminated. The remote procedure call (RPC) invokes a
procedure that executes in another computer in the distributed system. An appli-
cation may employ the RPC feature to either perform a part of its computation in
another computer, which would contribute to computation speedup, or to access
a resource located in that computer.

3.9 MODERN OPERATING SYSTEMS
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Users engage in diverse activities in a modern computing environment. Hence a
modern operating system cannot use a uniform strategy for all processes; it must
use a strategy that is appropriate for each individual process. For example, as
mentioned in Section 3.1, a user may open a mail handler, edit a few files, execute
some programs, including some programs in the background mode, and watch a
video at the same time. Here, operation of some of the programs may be inter-
active or may involve activities in other nodes of a distributed computer system,
whereas rendering of a video is a soft real-time activity. Hence the OS must use
round-robin scheduling for program executions, use priority-based scheduling for
processes of the video application, and implement remote procedure calls (RPC)
to support activities in another node. Thus, a modern OS uses most concepts and
techniques that we discussed in connection with the batch processing, multipro-
gramming, time-sharing, real-time, and distributed operating systems. Table 3.10
shows typical examples of how the earlier concepts are drawn upon.

To handle diverse activities effectively, the OS employs strategies that adapt
to the situations encountered during their operation. Some examples of such
strategies are:

¢ The kernel employs priority-based scheduling; however, instead of assigning
fixed priorities to all processes as in a multiprogramming system, it assigns
fixed high priorities only to processes with real-time constraints, and changes
current priorities of other processes to suit their recent behavior—increases
the priority of a process if it has been engaged in an interaction or an I/O
operation recently, and reduces its priority if it has not been.

¢ A modern OS typically uses the feature called virtual memory, whereby only
some of the parts of a process are held in memory at any time and other
parts are loaded when needed. The kernel considers the recent behavior of
a process to decide how much memory it should allocate to the process—it
allocates less memory if the process had used only a few of its parts recently,
and allocates more memory if the process had used several of its parts.

¢ The kernel provides a plug-and-play capability whereby 1/O devices could be
connected to the computer at any time during its operation, and the kernel
would select appropriate methods of handling them.

We will see several instances of adaptive strategies in the following chapters.
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Table 3.10 Use of Classical OS Concepts in Modern
Computing Environments

Concept

Typical example of use

Batch processing

Priority-based
preemptive scheduling

Time-slicing

Swapping

To avoid time-consuming initializations for each use of a
resource; e.g., database transactions are batch-processed
in the back office and scientific computations are
batch-processed in research organizations and clinical
laboratories.

To provide a favored treatment to high-priority
applications, and to achieve efficient use of resources by
assigning high priorities to interactive processes and low
priorities to noninteractive processes.

To prevent a process from monopolizing the CPU; it helps
in providing good response times.

To increase the number of processes that can be serviced
simultaneously; it helps in improving system performance

and response times of processes.

Creating multiple
processes in an
application
Resource sharing

To reduce the duration of an application; it is most
effective when the application contains substantial CPU
and I/O activities.

To share resources such as laser printers or services such

as file servers in a LAN environment.

3.10 SUMMARY

A computing environment consists of a computer
system, its interfaces with other systems, and
the services provided by its operating system to
its users and their programs. Computing envi-
ronments evolved with advances in computer
technology and computer applications. Each envi-
ronment desired a different combination of effi-
cient use and user service, so it was serviced by a
separate class of operating systems that employed
its own concepts and techniques. In this chapter,
we discussed the concepts and techniques used in
the fundamental classes of operating systems.
The batch processing operating systems
focused on automating processing of a collection of
programs, which reduced CPU idle times between
programs. Development of the direct memory
access (DMA) technology enabled the CPU to

execute instructions while an I/O operation was
in progress. Operating systems exploited this fea-
ture to service several programs simultaneously by
overlapping an I/O operation within one program
with execution of instructions in another program.
A multiprogramming operating system assigned
high priorities to 1/0O-bound programs and per-
formed priority-based scheduling to achieve good
system performance.

User convenience became important when the
cost of computing hardware declined. Accord-
ingly, the time-sharing operating systems focused
on providing fast response to user programs. It
was achieved through round-robin scheduling with
time-slicing, which serviced all programs by turn
and limited the amount of CPU time a program
could use when it was its turn to use the CPU.



A real-time computer application has to
satisfy time constraints specified by an external
system. Hard real-time systems such as mission
control systems require their time constraints to
be satisfied in a guaranteed manner, whereas
soft real-time systems such as multimedia systems
can tolerate occasional failure to meet their time
constraints. Real-time operating systems support
concurrency within an application program and
employ techniques such as priority-based schedul-
ing and deadline-aware scheduling to help meet the
time constraints.

A distributed operating system controls a
group of computer systems that are networked; it
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performs its control functions in several of these
computers. It achieves efficient use of resources of
all computers by letting programs share them over
the network, speeds up execution of a program by
running its parts in different computers at the same
time, and provides reliability through redundancy
of resources and services.

A modern operating system controls a diverse
computing environment that has elements of all
the classic computing environments, so it has to
use different techniques for different applications.
It employs an adaptive strategy that selects the
most appropriate techniques for each application
according to its nature.

Py

3.1 Programs A, B, C, and D have similar
structure—each of them consists of a single loop
that contains n statements that perform some
processing on each element of a single dimen-
sioned array Z. Other features of these programs
are as follows:

Program A: n =4 and Z is a huge array.

Program B: n = 100 and Z is a huge array.

Program C: n =4 and Z is a small array.

Program D: n = 100 and Z is a small

array.

These programs are executed in a batch process-
ing system. List these programs in the descend-
ing order by cache hit ratio.

3.2 A multiprogramming system is used to execute
a collection of programs C. The system has
enough memory to accommodate a large num-
ber of programs. The programs in C are executed
several times, each time with a different degree of
multiprogramming, and throughput of the sys-
tem and CPU efficiency are plotted against the
degree of multiprogramming. In each of the fol-
lowing cases, what inference can you draw about
the nature of programs in C?

a. Throughput changes only marginally with
the degree of multiprogramming

b. Throughput increases almost linearly with
the degree of multiprogramming

c. CPU efficiency changes only marginally with
the degree of multiprogramming

d. CPU efficiency increases linearly with the
degree of multiprogramming

3.3 Classify each of the following statements as true
or false:

a. Because of presence of the cache memory,
a program requires more CPU time to exe-
cute in a multiprogramming or time-sharing
system than it would require if it were to be
executed in a batch processing system.

b. To achieve high throughput, a multipro-
gramming OS assigns a higher priority to
CPU-bound programs.

c. If a multiprogramming kernel finds that the
CPU efficiency is low, it should remove an
I/0-bound program from memory.

d. If the time slice in a time-sharing system is
too large, processes will complete their oper-
ation in the same order in which they were
initiated.

e. Two persons using the same time-sharing sys-
tem at the same time might receive widely
different response times.

f. It is incorrect to use masking of interrupts in
a real-time operating system.



76

Part 1 Overview

EXERCISES

3.1

3.2

33

34

35

3.6

A systemis described as overloaded if more work
is directed at it than its capacity to perform
work. It is considered underloaded if some of
its capacity is going to waste. The following pol-
icy is proposed to improve the throughput of a
batch processing system: Classify jobs into small
jobs and long jobs depending on their CPU time
requirements. Form separate batches of short
and long jobs. Execute a batch of long jobs only
if no batches of short jobs exist. Does this policy
improve the throughput of a batch processing
system that is: (a) underloaded? (b) overloaded?
The kernel of a multiprogramming system classi-
fies a program as CPU-bound or I/0-bound and
assigns an appropriate priority to it. What would
be the consequence of a wrong classification of
programs for throughput and turnaround times
in a multiprogramming system? What would be
the effect of a wrong classification on the plot of
throughput versus degree of multiprogramming
of Figure 3.5?7
The CPU of a multiprogramming system is exe-
cuting a high-priority program when an inter-
rupt signaling completion of an I/O operation
occurs. Show all actions and activities in the OS
following the interrupt if
a. The I/O operation was started by a lower-
priority program
b. The I/O operation was started by a higher-
priority program.
Illustrate each case with the help of a timing
chart.
A multiprogramming OS has programs prog;,
and prog., in memory, with prog., having a
higher priority. Draw a timing chart for the sys-
tem analogous to Figure 3.4, and show that
the throughput is less than for the system of
Figure 3.4.
Draw a timing chart for a system containing two
CPU-bound programs and two I/O-bound pro-
grams when (a) CPU-bound programs have a
higher priority, (b) I/O-bound programs have a
higher priority.
A program consists of a single loop that executes
50 times. The loop contains a computation that
consumes 50 ms of CPU time, followed by an I/O

3.7

3.8

3.9

3.10

operation that lasts for 200 ms. The program is

executed in a multiprogramming OS with negli-

gible overhead. Prepare a timing chart showing
the CPU and I/O activities of the program and
compute its elapsed time in the following cases:

a. The program has the highest priority in the
system.

b. The program is multiprogrammed with »
other programs with identical characteristics
and has the lowest priority. Consider cases
(i)n=3,({)n=4,and (ii)n =5.

A multiprogramming operating system has a

negligible overhead. It services programs that

are identical in size. Each program contains a

loop that has n iterations, where each itera-

tion contains computations that consume 7, ms
of CPU time, followed by I/O operations that
require ¢;, ms. The programs are of two classes;
values of n, t., and ¢;, for these two classes are:

Class n t. tj
A 5 15 100
B 6 200 80

The system has sufficient memory to accommo-
date only two programs. Ten programs arrive in
the system at time 0, five each of classes A and B.
Draw a timing chart showing operation of pro-
grams in the system until two programs complete
their operation. Find their turnaround times.

A program is said to “make progress” if either
the CPU is executing its instructions or its I/O
operation is in progress. The progress coefficient
of a program is the fraction of its lifetime in the
system during which it makes progress. Com-
pute progress coefficients of the programs in
Exercise 3.6(b).

Comment on the validity of the following state-
ment: “A CPU-bound program always has a very
low progress coefficient in a multiprogramming
system.”

A multiprogramming system uses a degree of
multiprogramming (m) > 1. It is proposed to
double the throughput of the system by augmen-
tation/replacement of its hardware components.
Would any of the following three proposals
achieve the desired result?



3.11

3.12

3.13

3.14

3.15

a. Replace the CPU by a CPU with twice the
speed.

b. Expand the memory to twice its present size.

c. Replace the CPU by a CPU with twice the
speed and expand the memory to twice its
present size.

Programs being serviced in a multiprogram-

ming system are named Pq,..., Py, where m

is the degree of multiprogramming, such that

priority of program P; > priority of program

Pi41. All programs are cyclic in nature, with

each cycle containing a burst of CPU activity

and a burst of I/O activity. Let bi,pu and bf , be
the CPU and I/O bursts of program P;. Com-
ment on the validity of each of the following

statements: .

a. CPU idling occurs if bf’o > Ej#h(bgpu), where
Py, is the highest-priority program.

b. Program P, is guaranteed to receive
CPU time if b}, < (b4} + biF1) and b >
Zi:iﬂ___m(b{.pu) for all values of i = 1,...,
m—1,

A program is said to starve if it does not receive

any CPU time. Which of the following condi-

tions implies starvation of the lowest-priority
program in a multiprogramming system? (The

notation is the same as in Exercise 3.11.)

a. Forsome program Pi,bﬁo < Ej=l~+1mm(bépu),

b. For some program P;, bl < S 1 m(blpu)
a}nd bépu > b}'/o forallj > l . .

A time-sharing system contains » identical pro-

cesses, each executing a loop that contains a

computation requiring z, CPU seconds and an

I/O operation requiring t;, seconds. Draw a

graph depicting variation of response time with

values of the time slice 8. (Hint: Consider cases
forty <6,8 <tp <2x48,andtp >2x8.)

Comment on the validity of the following state-

ment: “Operation of a time-sharing system is

identical with operation of a multiprogramming
system executing the same programs if § exceeds
the CPU burst of every program.”

Answer the following with full justifications:

a. Does swapping improve or degrade the effi-
ciency of system utilization?

b. Can swapping be used in a multiprogram-
ming system?
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3.16

3.17

3.18

3.19

3.20
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A computer is operated under a time-sharing
OS. It is proposed to add a second CPU to
the computer to improve its throughput. Under
what conditions would addition of the sec-
ond CPU improve throughput only if mem-
ory is increased? Under what conditions would
it improve throughput even if memory is not
increased?

A time-sharing system uses swapping as the fun-
damental memory management technique. It
uses the following lists to govern its actions:
a scheduling list, a swapped-out list contain-
ing processes that are swapped out, a being-
swapped-out list containing processes to be
swapped out, and a being-swapped-in list con-
taining processes to be swapped in. Explain
when and why the time-sharing kernel should
put processes in the being-swapped-out and
being-swapped-in lists.

A time-sharing system uses a time slice of 100 ms.
Each process has a cyclic behavior pattern. In
each cycle, it requires an average of 50 ms of
CPU time to compute the result of a subrequest
and an average of 150 ms to print it on the user’s
screen. A process receives a new subrequest 1 sec-
ond after it has finished printing results of the
previous subrequest. The operating system can
accommodate 10 processes in memory at any
time; however, it has enough I/O devices for 25
processes. The swap-in and swap-out times of
each process are ¢ ms each. Calculate the aver-
age throughput of the system over a 10-second
period in each of the following cases:

a. The operating system contains 10 processes.

b. The operating system contains 20 processes
and 7 is 750 ms.

c. The operating system contains 20 processes
and 7 is 250 ms.

A real-time application requires a response time
of 2 seconds. Discuss the feasibility of using a
time-sharing system for the real-time application
if the average response time in the time-sharing
system is (a) 20 seconds, (b) 2 seconds, or (c) 0.2
seconds.

A time-sharing system services n processes. It
uses a time slice of § CPU seconds, and requires
ty CPU seconds to switch between processes. A
real-time application requires ¢, seconds of CPU
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time, followed by an I/O operation that lasts
for t;, seconds, and has to produce a response
within 7; seconds. What is the largest value of
8 for which the time-sharing system can sat-
isfy the response requirements of the real time
application?

3.21 An application program is being developed for
a microprocessor-based controller for an auto-
mobile. The application is required to perform
the following functions:

i. Monitor and display the speed of the auto-
mobile
ii. Monitor the fuel level and raise an alarm, if
necessary
iii. Display the fuel efficiency, i.e., miles/gallon
at current speed
iv. Monitor the engine condition and raise an
alarm if an unusual condition arises
v. Periodically record some auxiliary informa-
tion like speed and fuel level (i.e., implement
a “black box” as in an airliner.)
Answer the following questions concerning the
application:
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to take place in computer systems and computing environments. To

adapt an operating system to these changes, it should be easy to imple-
ment the OS on a new computer system, and to add new functionalities to it.
These requirements are called portability and extensibility of an operating system,
respectively.

Early operating systems were tightly integrated with the architecture of a
specific computer system. This feature affected their portability. Modern oper-
ating systems implement the core of an operating system in the form of a kernel
or a microkernel, and build the rest of the operating system by using the services
offered by the core. This structure restricts architecture dependencies to the core
of the operating system, hence portability of an operating system is determined
by the properties of its kernel or microkernel. Extensibility of an OS is determined
by the nature of services offered by the core.

The structure of an operating system concerns the nature of the OS core
and other parts of the operating system, and their interactions with one another.
We describe different philosophies concerning the structure of an operating sys-
tem and discuss their influence on portability and extensibility of operating
systems.

D uring the lifetime of an operating system, we can expect several changes

4.1 OPERATION OF AN 0S

When a computer is switched on, the boot procedure analyzes its configuration—
CPU type, memory size, I/O devices, and details of other hardware connected
to the computer (see Section 1.3). It then loads a part of the OS in memory,
initializes its data structures with this information, and hands over control of the
computer system to it.

Figure 4.1 is a schematic diagram of OS operation (see Section 2.3). An
event like I/O completion or end of a time slice causes an interrupt. When a
process makes a system call, e.g., to request resources or start an I/O oper-
ation, it too leads to an interrupt called a software interrupt. The interrupt
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A conditionin A request by a
hardware causes a process causes a
hardware interrupt software interrupt
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v
CPU is switched to
the scheduled process

Figure 4.1 Overview of OS operation.

Table 4.1 Functions of an OS

Function

Description

Process management
Memory management

I/0 management

File management
Security and protection
Network management

Initiation and termination of processes, scheduling

Allocation and deallocation of memory, swapping,
virtual memory management

I/0 interrupt servicing, initiation of I/O operations,
optimization of I/O device performance

Creation, storage and access of files
Preventing interference with processes and resources
Sending and receiving of data over the network

action switches the CPU to an interrupt servicing routine. The interrupt servicing
routine performs a context save action to save information about the inter-
rupted program and activates an event handler, which takes appropriate actions
to handle the event. The scheduler then selects a process and switches the CPU
to it. CPU switching occurs twice during the processing of an event—first to
the kernel to perform event handling and then to the process selected by the

scheduler.

The functions of an OS are thus implemented by event handlers when they are
activated by interrupt servicing routines. Table 4.1 summarizes these functions,
which primarily concern management of processes and resources, and prevention

of interference with them.
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4.2 STRUCTURE OF AN OPERATING SYSTEM

4.2.1 Policies and Mechanisms

In determining how an operating system is to perform one of its functions, the
OS designer needs to think at two distinct levels:

e Policy: A policy is the guiding principle under which the operating system
will perform the function.
e Mechanism: A mechanism is a specific action needed to implement a policy.

A policy decides what should be done, while a mechanism determines /sow
something should be done and actually does it. A policy is implemented as a
decision-making module that decides which mechanism modules to call under
what conditions. A mechanism is implemented as a module that performs a
specific action. The following example identifies policies and mechanisms in
round-robin scheduling.

Example 4.1

Policies and Mechanisms in Round-Robin Scheduling

In scheduling, we would consider the round-robin technique (Section 3.6) to
be a policy. The following mechanisms would be needed to implement the
round-robin scheduling policy:

Maintain a queue of ready processes
Switch the CPU to execution of the selected process (this action is called
dispatching).

The priority-based scheduling policy, which is used in multiprogramming
systems (see Section 3.5.1), would also require a mechanism for maintaining infor-
mation about ready processes; however, it would be different from the mechanism
used in round-robin scheduling because it would organize information according
to process priority. The dispatching mechanism, however, would be common to
all scheduling policies.

Apart from mechanisms for implementing specific process or resource
management policies, the OS also has mechanisms for performing housekeep-
ing actions. The context save action mentioned in Section 4.1 is implemented as
a mechanism.

4.2.2 Portability and Extensibility of Operating Systems

The design and implementation of operating systems involves huge financial
investments. To protect these investments, an operating system design should have
a lifetime of more than a decade. Since several changes will take place in com-
puter architecture, I/O device technology, and application environments during
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this time, it should be possible to adapt an OS to these changes. Two features are
important in this context—portability and extensibility.

Porting is the act of adapting software for use in a new computer system.
Portability refers to the ease with which a software program can be ported—it is
inversely proportional to the porting effort. Extensibility refers to the ease with
which new functionalities can be added to a software system.

Porting of an OS implies changing parts of its code that are architecture-
dependent so that the OS can work with new hardware. Some examples of
architecture-dependent data and instructions in an OS are:

¢ An interrupt vector contains information that should be loaded in various
fields of the PSW to switch the CPU to an interrupt servicing routine (see
Section 2.2.5). This information is architecture-specific.

e Information concerning memory protection and information to be pro-
vided to the memory management unit (MMU) is architecture-specific (see
Sections 2.2.2 and 2.2.3).

¢ [/O instructions used to perform an I/O operation are architecture-specific.

The architecture-dependent part of an operating system’s code is typically asso-
ciated with mechanisms rather than with policies. An OS would have high porta-
bility if its architecture-dependent code is small in size, and its complete code is
structured such that the porting effort is determined by the size of the architecture-
dependent code, rather than by the size of its complete code. Hence the issue
of OS portability is addressed by separating the architecture-dependent and
architecture-independent parts of an OS and providing well-defined interfaces
between the two parts.

Extensibility of an OS is needed for two purposes: for incorporating new
hardware in a computer system—typically new I/O devices or network adapters—
and for providing new functionalities in response to new user expectations. Early
operating systems did not provide either kind of extensibility. Hence even addi-
tion of a new I/O device required modifications to the OS. Later operating systems
solved this problem by adding a functionality to the boot procedure. It would
check for hardware that was not present when the OS was last booted, and either
prompt the user to select appropriate software to handle the new hardware, typ-
ically a set of routines called a device driver that handled the new device, or itself
select such software. The new software was then loaded and integrated with the
kernel so that it would be invoked and used appropriately. Modern operating
systems go a step further by providing a plug-and-play capability, whereby new
hardware can be added even while an OS is in operation. The OS handles the
interrupt caused by addition of new hardware, selects the appropriate software,
and integrates it with the kernel.

Lack of extensibility leads to difficulties in adapting an OS to new user
expectations. Several examples of such difficulties can be found in the history
of operating systems. In 1980s and 1990s, PC users desired a new feature for
setting up several sessions with an operating system at the same time. Several well-
known operating systems of that time, e¢.g., MS-DOS, had difficulties providing
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it because they lacked sufficient extensibility. A similar difficulty was experienced
by the Unix operating system while supporting multiprocessor computer systems.
We discuss provisions for extensibility in Section 4.7.

4.3 OPERATING SYSTEMS WITH MONOLITHIC STRUCTURE

An OS is a complex software that has a large number of functionalities and may
contain millions of instructions. It is designed to consist of a set of software
modules, where each module has a well-defined interface that must be used to
access any of its functions or data. Such a design has the property that a mod-
ule cannot “see” inner details of functioning of other modules. This property
simplifies design, coding and testing of an OS.

Early operating systems had a monolithic structure, whereby the OS formed
a single software layer between the user and the bare machine, i.e., the computer
system’s hardware (see Figure 4.2). The user interface was provided by a com-
mand interpreter. The command interpreter organized creation of user processes.
Both the command interpreter and user processes invoked OS functionalities and
services through system calls.

Two kinds of problems with the monolithic structure were realized over a
period of time. The sole OS layer had an interface with the bare machine. Hence
architecture-dependent code was spread throughout the OS, and so there was
poor portability. It also made testing and debugging difficult, leading to high
costs of maintenance and enhancement. These problems led to the search for
alternative ways to structure an OS. In the following sections we discuss three
methods of structuring an OS that have been implemented as solutions to these
problems.

e Layered structure: The layered structure attacks the complexity and cost of
developing and maintaining an OS by structuring it into a number of layers
(see Section 4.4). The THE multiprogramming system of the 1960s is a well-
known example of a layered OS.

e Kernel-based structure: The kernel-based structure confines architecture
dependence to a small section of the OS code that constitutes the kernel (see
Section 4.6), so that portability is increased. The Unix OS has a kernel-based
structure.

User User
interface process

OS layer

Bare machine

Figure 4.2 Monolithic OS.
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* Microkernel-based OS structure: The microkernel provides a minimal set of
facilities and services for implementing an OS. Its use provides portability.
It also provides extensibility because changes can be made to the OS without
requiring changes in the microkernel (see Section 4.7).

4.4 LAYERED DESIGN OF OPERATING SYSTEMS

85

The monolithic OS structure suffered from the problem that all OS components
had to be able to work with the bare machine. This feature increased the cost
and effort in developing an OS because of the large semantic gap between the
operating system and the bare machine.

Definition 4.1 Semantic Gap The mismatch between the nature of opera-
tions needed in the application and the nature of operations provided in the
machine.

The semantic gap can be illustrated as follows: A machine instruction imple-
ments a machine-level primitive operation like arithmetic or logical manipulation
of operands. An OS module may contain an algorithm, say, that uses OS-level
primitive operations like saving the context of a process and initiating an I/O
operation. These operations are more complex than the machine-level primi-
tive operations. This difference leads to a large semantic gap, which has to be
bridged through programming. Each operation desired by the OS now becomes
a sequence of instructions, possibly a routine (see Figure 4.3). It leads to high
programming costs.

The semantic gap between an OS and the machine on which it operates can
be reduced by either using a more capable machine—a machine that provides
instructions to perform some (or all) operations that operating systems have to
perform—or by simulating a more capable machine in the software. The former
approach is expensive. In the latter approach, however, the simulator, which is a

system management management

Semantic

gap / / ; \

Bare Arithmetic Logical 1/10
machine instructions instructions instructions

Figure 4.3 Semantic gap.
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program, executes on the bare machine and mimics a more powerful machine that
has many features desired by the OS. This new “machine” is called an extended
machine, and its simulator is called the extended machine software. Now the
OS interfaces with the extended machine rather than with the bare machine;
the extended machine software forms a layer between the OS and the bare
machine.

The basic discipline in designing a layered OS is that the routines of one
layer must use only the facilities of the layer directly below it—that is, no layer
in the structure can be bypassed. Further, access to routines of a lower layer
must take place strictly through the interface between layers. Thus, a routine
situated in one layer does not “know” addresses of data structures or instruc-
tions in the lower layer—it only knows how to invoke a routine of the lower
layer. This property, which we will call information hiding, prevents misuse or
corruption of one layer’s data by routines situated in other layers of the OS.
During debugging, localization of errors becomes easy since the cause of an
error in a layer, e.g., an incorrect value in its data element, must lie within that
layer itself. Information hiding also implies that an OS layer may be modified
without affecting other layers. These features simplify testing and debugging
of an OS.

Figure 4.4 illustrates a two-layered OS. The extended machine provides
operations like context save, dispatching, swapping, and I/O initiation. The
operating system layer is located on top of the extended machine layer. This
arrangement considerably simplifies the coding and testing of OS modules by
separating the algorithm of a function from the implementation of its prim-
itive operations. It is now easier to test, debug, and modify an OS module
than in a monolithic OS. We say that the lower layer provides an abstraction
that is the extended machine. We call the operating system layer the top layer
of the OS.

The layered structures of operating systems have been evolved in various
ways—using different abstractions and a different number of layers. Example 4.2
describes the THE multiprogramming OS, which uses a multilayered structure
and provides a process as an abstraction in the lowest layer.

system management management

Semantic
gap R S A T Tt R
Y \ \
Extended Context Dispatch Perform
machine save aprocess 110
y 4 y
Bare machine

Figure 4.4 Layered OS design.
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Structure of the THE Multiprogramming System

The THE multiprogramming system was developed at Technische Hogeschool
Eindhoven in the Netherlands by Dijkstra and others using a layered design.
Table 4.2 shows the hierarchy of layers in the THE system.

Layer 0 of the system handles processor allocation to implement multi-
programming. This function involves keeping track of process states and
switching between processes, using priority-based scheduling. Layers above
layer 0 need not concern themselves with these issues. In fact, they can be
oblivious to the presence of multiple processes in the system.

Layer 1 performs memory management. It implements a memory hierar-
chy consisting of the memory and a drum, which is a secondary storage device
(see Section 2.2.3). Details of transfer between the memory and the drum need
not concern the rest of the OS.

Layer 2 implements communication between a process and the opera-
tor’s console by allocating a virtual console to each process. Layer 3 performs
I/0 management. Intricacies of I/O programming (see Section 14.4) are thus
hidden from layer 4, which is occupied by user processes.

The layered approach to OS design suffers from three problems. The
operation of a system may be slowed down by the layered structure. Recall that
each layer can interact only with adjoining layers. It implies that a request for OS
service made by a user process must move down from the highest numbered layer
to the lowest numbered layer before the required action is performed by the bare
machine. This feature leads to high overhead.

The second problem concerns difficulties in developing a layered design.
Since a layer can access only the immediately lower layer, all features and facilities
needed by it must be available in lower layers. This requirement poses a problem
in the ordering of layers that require each other’s services. This problem is often
solved by splitting a layer into two and putting other layers between the two halves.
For example, a designer may wish to put process handling functions in one layer
and memory management in the next higher layer. However, memory allocation
is required as a part of process creation. To overcome this difficulty, process han-
dling can be split into two layers. One layer would perform process management
functions like context save, switching, scheduling, and process synchronization.

Table 4.2 Layers in the THE Multiprogramming System

Layer Description

Layer 0 Processor allocation and multiprogramming
Layer 1 Memory and drum management

Layer 2 Operator—process communication

Layer 3 I/O management

Layer 4 User processes

Example 4.2
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This layer would continue to be lower than the memory management layer. The
other layer would perform process creation. [t would be located above the memory
management layer.

The third problem concerns stratification of OS functionalities. Stratification
occurs because each functionality has to be divided into parts that fit into different
layers of a layered OS. These parts must use interfaces between the various layers
to communicate with one another. For example, consider a certain functionality
F of the OS that consists of two modules, F}, and F},, belonging to layers /; and />
respectively. If layer /5 can be entered only through an interrupt, F;, must cause
an interrupt to communicate with F,. This fact can lead to a complex design
and a loss of execution efficiency. Stratification also leads to poor extensibility
because addition of a new functionality requires new code to be added in many
layers of the OS, which, in turn, may require changes in the layer interfaces.

It may be noted that the design of a multilayered OS does not focus on
separating architecture-dependent parts of OS code; for example, four out of the
five layers of the THE multiprogramming system described in Table 4.2 contain
architecture-dependent parts. Thus, a layered structure does not guarantee high
portability.

4.5 VIRTUAL MACHINE OPERATING SYSTEMS

Different classes of users need different kinds of user service. Hence running a sin-
gle OS on a computer system can disappoint many users. Operating the computer
under different OSs during different periods is not a satisfactory solution because
it would make accessible services offered under only one of the operating systems
at any time. This problem is solved by using a virtual machine operating sys-
tem (VM OS) to control the computer system. The VM OS creates several virtual
machines. Each virtual machine is allocated to one user, who can use any OS of his
own choice on the virtual machine and run his programs under this OS. This way
users of the computer system can use different operating systems at the same time.
We call each of these operating systems a guest OS and call the virtual machine
OS the host OS. The computer used by the VM OS is called the host machine.
A virtual machine is a virtual resource (see Section 1.3.2). Let us consider a
virtual machine that has the same architecture as the host machine;i.e., it has a vir-
tual CPU capable of executing the same instructions, and similar memory and I/O
devices. It may, however, differ from the host machine in terms of some elements
of its configuration like memory size and I/O devices. Because of the identical
architectures of the virtual and host machines, no semantic gap exists between
them, so operation of a virtual machine does not introduce any performance loss
(contrast this with the use of the extended machine layer described in Section 4.4);
software intervention is also not needed to run a guest OS on a virtual machine.
The VM OS achieves concurrent operation of guest operating systems
through an action that resembles process scheduling—it selects a virtual machine
and arranges to let the guest OS running on it execute its instructions on the CPU.
The guest OS in operation enjoys complete control over the host machine’s
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environment, including interrupt servicing. The absence of a software layer
between the host machine and guest OS ensures efficient use of the host machine.
A guest OS remains in control of the host machine until the VM OS decides
to switch to another virtual machine, which typically happens in response to
an interrupt. The VM OS can employ the timer to implement time-slicing and
round-robin scheduling of guest OSs.

A somewhat complex arrangement is needed to handle interrupts that arise
when a guest OS is in operation. Some of the interrupts would arise in its own
domain, e.g., an I/O interrupt from a device included in its own virtual machine,
while others would arise in the domains of other guest OSs. The VM OS can
arrange to get control when an interrupt occurs, find the guest OS whose domain
the interrupt belongs to, and “schedule” that guest OS to handle it. However, this
arrangement incurs high overhead because of two context switch operations—the
first context switch passes control to the VM OS, and the second passes control
to the correct guest OS. Hence the VM OS may use an arrangement in which the
guest OS in operation would be invoked directly by interrupts arising in its own
domain. It is implemented as follows: While passing control to a guest operating
system, the VM OS replaces its own interrupt vectors (see Section 2.2.5) by those
defined in the guest OS. This action ensures that an interrupt would switch the
CPU to an interrupt servicing routine of the guest OS. If the guest OS finds that
the interrupt did not occur in its own domain, it passes control to the VM OS
by making a special system call “invoke VM OS.” The VM OS now arranges to
pass the interrupt to the appropriate guest OS. When a large number of virtual
machines exists, interrupt processing can cause excessive shuffling between virtual
machines, hence the VM OS may not immediately activate the guest OS in whose
domain an interrupt occurred—it may simply note occurrence of interrupts that
occurred in the domain of a guest OS and provide this information to the guest
OS the next time it is “scheduled.”

Example 4.3 describes how IBM VM/370—a well-known VM OS of the
1970s—operates.

89

Structure of VM/370

Figure 4.5 shows three of the guest OSs supported by VM/370. The
Conversational Monitor System (CMS) is a single-user operating system, while
the OS/370 and DOS/370 are multiprogramming operating systems. A user
process is unaware of the presence of the VM/370—it sees only the guest OS
that it uses. To prevent interference between the guest OSs, the CPU is put in
the user mode while executing a guest OS. Initiation of I/O operations, which
involves use of privileged instructions, is handled as follows: When the kernel
of a guest OS executes an I/O instruction, it appears as an attempt to execute a
privileged instruction while the CPU is in the user mode, so it causes a program
interrupt. The interrupt is directed to the VM/370 rather than to the guest OS.
The VM/370 now initiates the I/O operation by executing the I/O instruction
that had caused the interrupt.

Example 4.3
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CMS 0S/370

VM/370

Figure 4.5 Virtual machine operating system VM/370.

Distinction between kernel and user modes of the CPU causes some diffi-
culties in the use of a VM OS. The VM OS must protect itself from guest OSs,
so it must run guest OSs with the CPU in the user mode. However, this way
both a guest OS and user processes under it run in the user mode, which makes
the guest OS vulnerable to corruption by a user process. The Intel 80x86 family
of computers has a feature that provides a way out of this difficulty. The 80x86
computers support four execution modes of the CPU. Hence the host OS can
run with the CPU in the kernel mode, a guest OS can execute processes running
under it with the CPU in the user mode but can itself run with the CPU in one
of the intermediate modes.

Virtualization is the process of mapping the interfaces and resources of a
virtual machine into the interfaces and resources of the host machine. Full virtu-
alization would imply that the host machine and a virtual machine have identical
capabilities, hence an OS can operate identically while running on a bare machine
and on a virtual machine supported by a VM OS. However, full virtualization
may weaken security. In Example 4.3, we saw how VM/370 lets a guest OS execute
a privileged instruction, but its execution causes an interrupt and VM/370 itself
executes the instruction on behalf of the guest OS. This arrangement is insecure
because VM/370 cannot determine whether use of the privileged instruction is
legitimate—it would be legitimate if a guest OS used it, but illegitimate if a user
process used it.

Modern virtual machine environments employ the technique of paravirtual-
ization to overcome the problems faced in full virtualization. Paravirtualization
replaces a nonvirtualizable instruction, i.e., an instruction that cannot be made
available in a VM, by easily virtualized instructions. For example, the security
issue in VM/370 could be resolved through paravirtualization as follows: The
privileged instructions would not be included in a virtual machine. Instead, the
virtual machine would provide a special instruction for use by a guest OS that
wished to execute a privileged instruction. The special instruction would cause
a software interrupt and pass information about the privileged instruction the
guest OS wished to execute to the VM OS, and the VM OS would execute the
privileged instruction on behalf of the guest OS. The host OS, guest OS, and user
processes would use different execution modes of the CPU so that the host OS
would know whether the special instruction in the virtual machine was used by
a guest OS or by a user process—the latter usage would be considered illegal.
Paravirtualization has also been used to enhance performance of a host OS.
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The kernel of an OS typically puts the CPU into an idle loop when none of
the user processes in the OS wishes to use the CPU. However, CPU time of
the host machine would be wasted when a guest OS enters into an idle loop.
Hence paravirtualization could be employed to provide a special instruction
in the virtual machine to notify this condition to the host OS, so that the
host OS could take away the CPU from the guest OS for a specified period
of time.

Use of paravirtualization implies that a virtual machine would differ from the
host machine, so the code of a guest OS would have to be modified to avoid use
of nonvirtualizable instructions. It can be done by porting a guest OS to operate
under the VM OS. Alternatively, it can be achieved by employing the technique
of dynamic binary translation for the kernel of a guest OS, which replaces a por-
tion of kernel code that contains nonvirtualizable instructions by code that does
not contain such instructions. To reduce the overhead of this arrangement, the
modified kernel code is cached so that binary translation does not have to be
repeated often.

Virtual machines are employed for diverse purposes:

¢ To use an existing server for a new application that requires use of a different
operating system. This is called workload consolidation; it reduces the hard-
ware and operational cost of computing by reducing the number of servers
needed in an organization.

e To provide security and reliability for applications that use the same host
and the same OS. This benefit arises from the fact that virtual machines of
different applications cannot access each other’s resources.

¢ To test a modified OS (or a new version of application code) on a server
concurrently with production runs of that OS.

e To provide disaster management capabilities by transferring a virtual
machine from a server that has to shut down because of an emergency to
another server available on the network.

A VM OS is large, complex and expensive. To make the benefits of virtual
machines available widely at a lower cost, virtual machines are also used without
a VM OS. Two such arrangements are described in the following.

Virtual Machine Monitors (VMMs) A VMM, also called a hypervisor, is a soft-
ware layer that operates on top of a host OS. It virtualizes the resources of the
host computer and supports concurrent operation of many virtual machines.
When a guest OS is run in each virtual machine provided by a VMM, the host
OS and the VMM together provide a capability that is equivalent of a VM OS.
VMware and XEN are two VMMs that aim at implementing hundreds of guest
OSs on a host computer while ensuring that a guest OS suffers only a marginal
performance degradation when compared to its implementation on a bare
machine.

Programming Language Virtual Machines Programming languages have used
virtual machines to obtain some of the benefits discussed earlier. In the 1970s, the
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Pascal programming language employed a virtual machine to provide portability.
The virtual machine had instructions called P-code instructions that were well-
suited to execution of Pascal programs. It was implemented in the software
in the form of an interpreter for P-code instructions. A compiler converted
a Pascal program into a sequence of P-code instructions, and these could be
executed on any computer that had a P-code interpreter. The virtual machine
had a small number of instructions, so the interpreter was compact and eas-
ily portable. This feature facilitated widespread use of Pascal in the 1970s.
However, use of the VM incurred a substantial performance penalty due to
the semantic gap between P-code instructions and instructions in the host
computer.

The Java programming language employs a virtual machine to provide secu-
rity and reliability. A Java program consists of objects, whose structure and
behavior is specified in classes. Each class is compiled into a bytecode form,
where the bytecode is a sequence of instructions for the Java virtual machine
(JVM). During execution of an application coded in Java, the class loader is
activated whenever an object of a new class is encountered. The loader fetches
the bytecode form of the class, either from a library or from the Internet, and
verifies that the class conforms to the security and reliability standards—that
it has a valid digital signature (see Section 21.3.2), and does not use features
such as pointer arithmetic. The application would be aborted if a class file
fails any of these checks. If several Java applications run on the same host,
each of them would execute in its own virtual machine, hence their opera-
tion cannot cause mutual interference. The performance penalty implicit in
use of the virtual machine can be offset by implementing the JVM in the
hardware.

4.6 KERNEL-BASED OPERATING SYSTEMS

Figure4.6is an abstract view of a kernel-based OS. The kernel is the core of the OS;
it provides a set of functions and services to support various OS functionalities.
The rest of the OS is organized as a set of nonkernel routines, which implement
operations on processes and resources that are of interest to users, and a user

User interface l

Nonkernel routines l

Kernel l

Bare machine

Figure 4.6 Structure of a kernel-based OS.
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interface. Recall from Section 4.1 and Figure 4.1 that the operation of the kernel
is interrupt-driven. The kernel gets control when an interrupt such as a timer
interrupt or an I/O completion interrupt notifies occurrence of an event to it, or
when the software-interrupt instruction is executed to make a system call. When
the interrupt occurs, an interrupt servicing routine performs the context save
function and invokes an appropriate event handler, which is a nonkernel routine
of the OS.

A system call may be made by the user interface to implement a user
command, by a process to invoke a service in the kernel, or by a nonkernel routine
to invoke a function of the kernel. For example, when a user issues a command to
execute the program stored in some file, say file al pha, the user interface makes
a system call, and the interrupt servicing routine invokes a nonkernel routine
to set up execution of the program. The nonkernel routine would make system
calls to allocate memory for the program’s execution, open file al pha, and load
its contents into the allocated memory area, followed by another system call to
initiate operation of the process that represents execution of the program. If a
process wishes to create a child process to execute the program in file alpha, it,
too, would make a system call and identical actions would follow.

The historical motivations for the kernel-based OS structure were portabil-
ity of the OS and convenience in the design and coding of nonkernel routines.
Portability of the OS is achieved by putting architecture-dependent parts of
OS code—which typically consist of mechanisms—in the kernel and keeping
architecture-independent parts of code outside it, so that the porting effort is
limited only to porting of the kernel. The kernel is typically monolithic to ensure
efficiency; the nonkernel part of an OS may be monolithic, or it may be further
structured into layers.

Table 4.3 contains a sample list of functions and services offered by the kernel
to support various OS functionalities. These functions and services provide a set
of abstractions to the nonkernel routines; their use simplifies design and coding of
nonkernel routines by reducing the semantic gap faced by them (see Section 4.4).
For example, the I/O functions of Table 4.3 collectively implement the abstraction
of virtual devices (see Section 1.3.2). A process is another abstraction provided
by the kernel.

A kernel-based design may suffer from stratification analogous to the layered
OS design (see Section 4.4) because the code to implement an OS command
may contain an architecture-dependent part, which is typically a mechanism that
would be included in the kernel, and an architecture-independent part, which
is typically the implementation of a policy that would be kept outside the ker-
nel. These parts would have to communicate with one another through system
calls, which would add to OS overhead because of interrupt servicing actions.
Consider the command to initiate execution of the program in a file named
alpha. Asdiscussed earlier, the nonkernel routine that implements the command
would make four system calls to allocate memory, open file al pha, load the pro-
gram contained in it into memory, and initiate its execution, which would incur
considerable overhead. Some operating system designs reduce OS overhead by
including the architecture-independent part of a function’s code also in the kernel.
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Table 4.3 Typical Functions and Services Offered by the Kernel

OS functionality Examples of kernel functions and services

Process management Save context of the interrupted program, dispatch a
process, manipulate scheduling lists

Process communication Send and receive interprocess messages

Memory management Set memory protection information, swap-in/

swap-out, handle page fault (that is, “missing from
memory” interrupt of Section 1.4)

I/O management Initiate I/O, process I/O completion interrupt,
recover from 1/O errors

File management Open a file, read/write data

Security and protection Add authentication information for a new user,

maintain information for file protection
Network management Send/receive data through a message

Thus, the nonkernel routine that initiated execution of a program would become
a part of the kernel. Other such examples are process scheduling policies,
I/0 scheduling policies of device drivers, and memory management policies.
These inclusions reduce OS overhead; however, they also reduce portability of
the OS.

Kernel-based operating systems have poor extensibility because addition of
a new functionality to the OS may require changes in the functions and services
offered by the kernel.

4.6.1 Evolution of Kernel-Based Structure
of Operating Systems

The structure of kernel-based operating systems evolved to offset some of its
drawbacks. Two steps in this evolution were dynamically loadable kernel modules
and user-level device drivers.

To provide dynamically loadable kernel modules, the kernel is designed as a
set of modules that interact among themselves through well-specified interfaces.
A base kernel consisting of a core set of modules is loaded when the system is
booted. Other modules, which conform to interfaces of the base kernel, are loaded
when their functionalities are needed, and are removed from memory when they
are no longer needed. Use of loadable modules conserves memory during OS
operation because only required modules of the kernel are in memory at any
time. It also provides extensibility, as kernel modules can be modified separately
and new modules can be added to the kernel easily. Use of loadable kernel modules
has a few drawbacks too. Loading and removal of modules fragments memory,
so the kernel has to perform memory management actions to reduce its memory
requirement. A buggy module can also crash a system. Loadable kernel modules
are used to implement device drivers for new I/O devices, network adapters, or
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new file systems, which are simply device drivers in many operating systems;
and to add new system calls to the kernel. The Linux and Solaris systems have
incorporated support for dynamically loadable kernel modules (see Sections 4.8.2
and 4.8.3).

A device driver handles a specific class of 1/0O devices. Device drivers consti-
tute the most dynamically changing part of an OS as a result of rapid changes
in the I/O device interfaces, hence the ease with which they could be tested
and added to an OS would determine the reliability and extensibility of the
OS. Dynamic loading of device drivers enhances both these aspects; however,
it is not adequate because a device driver would operate with the privileges
of the kernel, so a buggy device driver could disrupt operation of the OS and
cause frequent boot-ups. Enabling a device driver to operate in the user mode
would overcome this difficulty. Such a device driver is called a user-level device
driver.

User-level device drivers provide ease of development, debugging, and
deployment and robustness, since both the code of the kernel and its oper-
ation are unaffected by presence of the user-level driver. However, they pose
performance problems. Early user-level drivers were found to cause a drop in
the I/O throughput or an increase in the CPU time consumed by I/O opera-
tions. Both of these resulted from the large number of system calls needed to
implement an I/O operation, e.g., the device driver had to make system calls
to set up and dismantle the DMA for the I/O operation, to wake up the user
process waiting for the I/O operation to complete, and to return control to
the kernel at the end of its operation. Later hardware and software develop-
ments have overcome the performance problems through a variety of means.
The setting up and dismantling actions have been simplified by presence of the
IOMMU unit, and system calls have been speeded up through fast system call
support.

4.7 MICROKERNEL-BASED OPERATING SYSTEMS
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Putting all architecture-dependent code of the OS into the kernel provides
good portability. However, in practice, kernels also include some architecture-
independent code. This feature leads to several problems. It leads to a large
kernel size, which detracts from the goal of portability. It may also necessitate
kernel modification to incorporate new features, which causes low extensibil-
ity. A large kernel supports a large number of system calls. Some of these
calls may be used rarely, and so their implementations across different ver-
sions of the kernel may not be tested thoroughly. This compromises reliability of
the OS.

The microkernel was developed in the early 1990s to overcome the problems
concerning portability, extensibility, and reliability of kernels. A microkernel is
an essential core of OS code, thus it contains only a subset of the mechanisms
typically included in a kernel and supports only a small number of system calls,
which are heavily tested and used. This feature enhances portability and reliability
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Figure 4.7 Structure of microkernel-based operating systems.

of the microkernel. Less essential parts of OS code are outside the microkernel
and use its services, hence these parts could be modified without affecting the
kernel; in principle, these modifications could be made without having to reboot
the OS! The services provided in a microkernel are not biased toward any specific
features or policies in an OS, so new functionalities and features could be added
to the OS to suit specific operating environments.

Figure 4.7 illustrates the structure of a microkernel-based OS. The micro-
kernel includes mechanisms for process scheduling and memory management,
etc., but does not include a scheduler or memory handler. These functions are
implemented as servers, which are simply processes that never terminate. The
servers and user processes operate on top of the microkernel, which merely per-
forms interrupt handling and provides communication between the servers and
user processes.

The small size and extensibility of microkernels are valuable properties for
the embedded systems environment, because operating systems need to be both
small and fine-tuned to the requirements of an embedded application. Exten-
sibility of microkernels also conjures the vision of using the same microkernel
for a wide spectrum of computer systems, from palm-held systems to large
parallel and distributed systems. This vision has been realized to some extent.
The Mach microkernel has been used to implement several different versions
of Unix. The distributed operating system Amoeba uses an identical micro-
kernel on all computers in a distributed system ranging from workstations to
large multiprocessors.

Just what is the “essential core of OS code” has been a matter of some debate,
and as a result considerable variation exists in the services included in a micro-
kernel. For example, IBM’s implementation of the Mach microkernel leaves the
process scheduling policy and device drivers outside the kernel—these functions
run as servers. The QNX microkernel includes interrupt servicing routines, pro-
cess scheduling, interprocess communication, and core network services. The L4
microkernel includes memory management and supports only seven system calls.
Both QNX and L4 are only 32 KB in size, where 1 KB is 1024 bytes. Despite such
variation, it can be argued that certain services must be provided by a microker-
nel. These include memory management support, interprocess communication
and interrupt servicing. Memory management and interprocess communication
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would be invoked by higher-level modules in the OS code that exist outside the
microkernel. The interrupt servicing routine would accept interrupts and pass
them to higher-level modules for processing.

Operating systems using first-generation microkernels suffered up to 50
percent degradation in throughput compared to operating systems that did not
use microkernels. This problem has its origin in the fact that some functionalities
of a conventional kernel are split between a microkernel and an OS implemented
by using the microkernel—the familiar stratification problem again. For exam-
ple, a kernel includes the complete process management function, which performs
creation, scheduling, and dispatching of processes, whereas a microkernel might
include only process creation and dispatching, and process scheduling might run
as a server under the microkernel. Communication between the two parts would
require use of the interprocess communication (IPC) facility. Researchers found
that up to 73 percent of the performance penalty was due to IPC. The L4 micro-
kernel, which is a second-generation microkernel, made IPC more efficient by
eliminating validity and rights checking by default, and by tuning the microker-
nel to the hardware being used. These actions made IPC 20 times faster than
in the first-generation microkernels. Paging activities related to virtual memory
management were also moved out of the microkernel and into the operating sys-
tem built by using the microkernel. After these improvements, microkernel-based
operating systems were found to suffer only 5 percent degradation in throughput
compared to operating systems that did not use a microkernel.

The exokernel uses a radically different philosophy of structuring an OS to
reduce performance degradation: Resource management need not be centralized;
it can be performed by applications themselves in a distributed manner. Accord-
ingly, an exokernel merely provides efficient multiplexing of hardware resources,
but does not provide any abstractions. Thus an application process sees a resource
in the computer system in its raw form. This approach results in extremely fast
primitive operations, 10-100 times faster than when a monolithic Unix kernel is
used. For example, data that is read off an I/O device passes directly to the process
that requested it; it does not go through the exokernel, whereas it would have gone
through the Unix kernel. Since traditional OS functionalities are implemented at
the application level, an application can select and use an OS from a library of
operating systems. The OS executes as a process in the nonkernel mode and uses
features of the Exokernel.

4.8 CASE STUDIES
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Previous sections discussed the structure of an operating system, that is, arrange-
ment of its parts, and properties of these arrangements. In this section, we discuss
both structure and architecture of some modern operating systems, where archi-
tecture concerns the structure of the operating system as well as functionalities
of its components and relationships between them. Design and implementation
features of specific OS components are described in relevant chapters of Parts 2—4
of this text.
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4.8.1 Architecture of Unix

Unix is a kernel-based operating system. Figure 4.8 is a schematic diagram of the
Unix kernel. It consists of two main components—process management and file
management. The process management component consists of a module for inter-
process communication, which implements communication and synchronization
between processes, and the memory management and scheduling modules. The
file management component performs I/O through device drivers. Each device
driver handles a specific class of I/O devices and uses techniques like disk schedul-
ing to ensure good throughput of an I/O device. The buffer cache is used to reduce
both the time required to implement a data transfer between a process and an
I/0 device, and the number of I/O operations performed on devices like disks (see
Section 1.4.4).

The process management and file management components of the kernel are
activated through interrupts raised in the hardware, and system calls made by
processes and nonkernel routines of the OS. The user interface of the OS is a
command interpreter, called a shell, that runs as a user process. The Unix kernel
cannot be interrupted at any arbitrary moment of time; it can be interrupted only
when a process executing kernel code exits, or when its execution reaches a point
at which it can be safely interrupted. This feature ensures that the kernel data
structures are not in an inconsistent state when an interrupt occurs and another
process starts executing the kernel code, which considerably simplifies coding of
the kernel (see Section 2.3.2).

The Unix kernel has a long history of over four decades. The original kernel
was small and simple. It provided a small set of abstractions, simple but power-
ful features like the pipe mechanism, which enabled users to execute several
programs concurrently, and a small file system that supported only one file
organization called the byte stream organization. All devices were represented
as files, which unified the management of I/O devices and files. The kernel was
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Figure 4.8 Kernel of the Unix operating system.
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written in the C language and had a size of less than 100 KB. Hence it was easily
portable.

However, the Unix kernel was monolithic and not very extensible. So it
had to be modified as new computing environments, like the client—server
environment, evolved. Interprocess communication and threads were added to
support client-server computing. Networking support similarly required kernel
modification.

A major strength of Unix was its use of open standards. It enabled a large
number of organizations ranging from the academia to the industry to partic-
ipate in its development, which led to widespread use of Unix, but also led
to the development of a large number of variants because of concurrent and
uncoordinated development. The kernel became bulky, growing to a few million
bytes in size, which affected its portability. Around this time, a feature was added
to dynamically load kernel modules in memory. It enabled kernel modules to be
loaded only when needed. This feature reduced the memory requirement of the
kernel, but not its code size. Hence it did not enhance its portability.

Several efforts have been made to redesign the Unix kernel to make it modular
and extensible. The Mach kernel, which has a specific emphasis on multiprocessor
systems, is an example of this trend. Later Mach developed into a microkernel-
based operating system.

4.8.2 The Kernel of Linux

The Linux operating system provides the functionalities of Unix System V
and Unix BSD; it is also compliant with the POSIX standard. It was initially
implemented on the Intel 80386 and has since been implemented on later Intel
processors and several other architectures.

Linux has a monolithic kernel. The kernel is designed to consist of a set of
individually loadable modules. Each module has a well-specified interface that
indicates how its functionalities can be invoked and its data can be accessed by
other modules. Conversely, the interface also indicates the functions and data
of other modules that are used by this module. Each module can be individu-
ally loaded into memory, or removed from it, depending on whether it is likely
to be used in near future. In principle, any component of the kernel can be
structured as a loadable module, but typically device drivers become separate
modules.

A few kernel modules are loaded when the system is booted. A new kernel
module is loaded dynamically when needed; however, it has to be integrated
with the kernel modules that already existed in memory so that the modules
can collectively function as a monolithic kernel. This integration is performed as
follows: The kernel maintains a table in which it records the addresses of functions
and data that are defined in the modules existing in memory. While loading a new
module, the kernel analyzes its interface and finds which functions and data of
other modules it uses, obtains their addresses from the table, and inserts them in
appropriate instructions of the new module. At the end of this step, the kernel
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updates its table by adding the addresses of functions and data defined in the new
module.

Use of kernel modules with well-specified interfaces provides several advan-
tages. Existence of the module interface simplifies testing and maintenance of
the kernel. An individual module can be modified to provide new functionalities
or enhance existing ones. This feature overcomes the poor extensibility typically
associated with monolithic kernels. Use of loadable modules also limits the mem-
ory requirement of the kernel, because some modules may not be loaded during
an operation of the system. To enhance this advantage, the kernel has a feature
to automatically remove unwanted modules from memory—it produces an inter-
rupt periodically and checks which of its modules in memory have not been used
since the last such interrupt. These modules are delinked from the kernel and
removed from memory. Alternatively, modules can be individually loaded and
removed from memory through system calls.

The Linux 2.6 kernel, which was released in 2003, removed many of the
limitations of the Linux 2.5 kernel and also enhanced its capabilities in several
ways. Two of the most prominent improvements were in making the system more
responsive and capable of supporting embedded systems. Kernels up to Linux 2.5
were non-preemptible, so if the kernel was engaged in performing a low-priority
task, higher-priority tasks of the kernel were delayed. The Linux 2.6 kernel is
preemptible, which makes it more responsive to users and application programs.
However, the kernel should not be preempted when it is difficult to save its state,
or when it is performing sensitive operations, so the kernel disables and enables
its own preemptibility through special functions. The Linux 2.6 kernel can also
support architectures that do not possess a memory management unit (MMU),
which makes it suitable for embedded systems. Thus, the same kernel can now be
used in embedded systems, desktops and servers. The other notable feature in the
Linux 2.6 kernel is better scalability through an improved model of threads, an
improved scheduler, and fast synchronization between processes; these features
are described in later chapters.

4.8.3 The Kernel of Solaris

Early operating systems for Sun computer systems were based on BSD Unix;
however, later development was based on Unix SVR4. The pre-SVR4 versions
of the OS are called SunOS, while the SVR4-based and later versions are called
Solaris. Since the 1980s, Sun has focused on networking and distributed com-
puting; several networking and distributed computing features of its operating
systems have become industry standards, e.g., remote procedure calls (RPC), and
a file system for distributed environments (NFS). Later, Sun also focused on mul-
tiprocessor systems, which resulted in an emphasis on multithreading the kernel,
making it preemptible (see Section 2.3.2), and employing fast synchronization
techniques in the kernel.

The Solaris kernel has an abstract machine layer that supports a wide range
of processor architectures of the SPARC and Intel 80x86 family, including multi-
processor architectures. The kernel is fully preemptible and provides real-time
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capabilities. Solaris 7 employs the kernel-design methodology of dynamically
loadable kernel modules (see Section 4.6.1). The kernel has a core module that
is always loaded; it contains interrupt servicing routines, system calls, process
and memory management, and a virtual file system framework that can sup-
port different file systems concurrently. Other kernel modules are loaded and
unloaded dynamically. Each module contains information about other modules
on which it depends and about other modules that depend on it. The ker-
nel maintains a symbol table containing information about symbols defined
in currently loaded kernel modules. This information is used while loading
and linking a new module. New information is added to the symbol table
after a module is loaded and some information is deleted after a module is
deleted.
The Solaris kernel supports seven types of loadable modules:

Scheduler classes

File systems

Loadable system calls

Loaders for different formats of executable files
Streams modules

Bus controllers and device drivers
Miscellaneous modules

Use of loadable kernel modules provides easy extensibility. Thus, new file
systems, new formats of executable files, new system calls, and new kinds of buses
and devices can be added easily. An interesting feature in the kernel is that when a
new module is to be loaded, the kernel creates a new thread for loading, linking,
and initializing working of the new module. This arrangement permits module
loading to be performed concurrently with normal operation of the kernel. It also
permits loading of several modules to be performed concurrently.

4.8.4 Architecture of Windows

Figure 4.9 shows architecture of the Windows OS. The hardware abstraction layer
(HAL) interfaces with the bare machine and provides abstractions of the I/O
interfaces, interrupt controllers, and interprocessor communication mechanisms
in a multiprocessor system. The kernel uses the abstractions provided by the
HAL to provide basic services such as interrupt processing and multiprocessor
synchronization. This way, the kernel is shielded from peculiarities of a specific
architecture, which enhances its portability. The HAL and the kernel are together
equivalent to a conventional kernel (see Figure 4.6). A device driver also uses the
abstractions provided by the HAL to manage I/O operations on a class of devices.

The kernel performs the process synchronization and scheduling functions.
The executive comprises nonkernel routines of the OS; its code uses facilities in
the kernel to provide services such as process creation and termination, virtual
memory management, an interprocess message passing facility for client-server
communication called the local procedure call (LPC), I/O management and a file
cache to provide efficient file I/O, and a security reference monitor that performs

101



102 Part1 Overview
User
Environment application
subsystem Subsystem
DLL
A
Y v
Executive
1/0
Manager | Kernel | | Device drivers |
| Hardware abstraction layer (HAL) |

Bare machine

Figure 4.9 Architecture of Windows.

file access validation. The I/O manager uses device drivers, which are loaded
dynamically when needed. Many functions of the executive operate in the kernel
mode, thus avoiding frequent context switches when the executive interacts with
the kernel; it has obvious performance benefits.

The environment subsystems provide support for execution of programs
developed for other operating systems like MS-DOS, Win32, and OS/2. Effec-
tively, an environment subsystem is analogous to a guest operating system within
a virtual machine OS (see Section 4.5). It operates as a process that keeps track of
the state of user applications that use its services. To implement the interface of
a guest OS, each environment subsystem provides a dynamic link library (DLL)
and expects a user application to invoke the DLL when it needs a specific system
service. The DLL either implements the required service itself, passes the request
for service to the executive, or sends a message to the environment subsystem
process to provide the service.

4.9 SUMMARY

Portability of an operating system refers to the ease
with which the OS can be implemented on a com-
puter having a different architecture. Extensibility
of an operating system refers to the ease with which
its functionalities can be modified or enhanced
to adapt it to a new computing environment.

Portability and extensibility have become crucial
requirements because of long life-spans of mod-
ern operating systems. In this chapter we discussed
different ways of structuring operating systems to
meet these requirements.



An OS functionality typically contains a pol-
icy, which specifies the principle that is to be used
to perform the functionality, and a few mechanisms
that perform actions to implement the functional-
ity. Mechanisms such as dispatching and context
save interact closely with the computer, so their
code is inherently architecture-dependent; poli-
cies are architecture-independent. Hence porta-
bility and extensibility of an OS depends on
how the code of its policies and mechanisms is
structured.

Early operating systems had a monolithic
structure. These operating systems had poor porta-
bility because architecture-dependent code was
spread throughout the OS. They also suffered
from high design complexity. The layered design
of operating systems used the principle of abstrac-
tion to control complexity of designing the OS.
It viewed the OS as a hierarchy of layers, in
which each layer provided a set of services to
the layer above it, and itself used the services
in the layer below it. Architecture dependencies
were often restricted to lower layers in the hier-
archy; however, the design methodology did not
guarantee it.
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The virtual machine operating system (VM OS)
supported operation of several operating systems
on a computer simultaneously, by creating a virtual
machine for each user and permitting the user to
run an OS of his choice in the virtual machine.
The VM OS interleaved operation of the users’
virtual machines on the host computer through
a procedure analogous to scheduling. When a
virtual machine was scheduled, its OS would
organize execution of user applications running
under it.

In a kernel-based design of operating systems,
the kernel is the core of the operating system, which
invokes the nonkernel routines to implement opera-
tions on processes and resources. The architecture-
dependent code in an OS typically resides in the
kernel; this feature enhances portability of the
operating system.

A microkernel is the essential core of OS code.
It is small in size, contains a few mechanisms,
and does not contain any policies. Policy mod-
ules are implemented as server processes; they
can be changed or replaced without affecting the
microkernel, thus providing high extensibility of
the OS.

4.1 Classify each of the following statements as true
or false:

a. Mechanisms of the OS are
architecture-independent.

b. A layered OS organization reduces the sem-
antic gap between the top layer of the OS and
the bare machine.

¢. In a virtual machine OS, each user can run
an OS of his choice.

d. A kernel-based OS
extensibility.

e. In a microkernel-based OS, the process
scheduler may run as a user process.

4.2 Classify each of the following functions per-
formed by an OS as a policy or a mechanism

typically

structure provides

(refer to relevant sections of Chapters 1 and 3):

a. Preempting a program

b. Priority-based scheduling used in multipro-
gramming systems

c. Loading a swapped-out
memory

d. Checking whether a user program can be
permitted to access a file

4.3 Which of the following operating systems has

the highest portability?

a. An OS with a monolithic structure.

b. An OS with a layered structure.

c. A virtual machine OS.

d. A kernel-based OS.

program into
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EXERCISES

4.1 The scheduling mechanism “manipulate sch-
eduling lists” (see Table 4.3) is invoked to modify
scheduling lists in response to events in the sys-
tem and actions of the scheduler. Describe the
functions this mechanism should perform for (a)
round-robin scheduling and (b) priority-based
scheduling (as used in a multiprogramming OS).

4.2 Justify the following statement: “Secure oper-
ation of a virtual machine operating system
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Process Management

to have many processes that operate concurrently and interact among
themselves to jointly achieve a goal. This way, the application may be
able to provide a quicker response to the user.

An OS contains a large number of processes at any time. Process management
involves creating processes, fulfilling their resource requirements, scheduling them
for use of a CPU, implementing process synchronization to control their interac-
tions, avoiding deadlocks so that they do not wait for each other indefinitely,
and terminating them when they complete their operation. The manner in which
an OS schedules processes for use of a CPU determines the response times of
processes, resource efficiency, and system performance.

A thread uses the resources of a process but resembles a process in all other
respects. An OS incurs less overhead in managing threads than in managing
processes. We use the term process as generic to both processes and threads.

! process is an execution of a program. An application may be designed

Road Map for Part 2

Processes
and Threads

Process

Synchronization St iy

Message Synchronization
Deadlocks Passing and Scheduling in
& Multiprocessor OSs

Schematic diagram showing the order in which chapters of this part should be covered in a
course.
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Chapter 5: Processes and Threads

This chapter begins by discussing how an application creates processes through
system calls and how the presence of many processes achieves concurrency and
parallelism within the application. It then describes how the operating system
manages a process—how it uses the notion of process state to keep track of
what a process is doing and how it reflects the effect of an event on states of
affected processes. The chapter also introduces the notion of threads, describes
their benefits, and illustrates their features.

Chapter 6: Process Synchronization

Processes of an application work toward a common goal by sharing data and
coordinating with one another. The key concepts in process synchronization are
the use of mutual exclusion to safeguard consistency of shared data and the use of
indivisible operations in coordinating activities of processes. This chapter discusses
the synchronization requirements of some classic problems in process synchro-
nization and discusses how they can be met by using synchronization features such
as semaphores and monitors provided in programming languages and operating
systems.

Chapter 7: Scheduling

Scheduling is the act of selecting the next process to be serviced by a CPU. This
chapter discusses how a scheduler uses the fundamental techniques of priority-
based scheduling, reordering of requests, and variation of time slice to achieve
a suitable combination of user service, efficient use of resources, and system
performance. It describes different scheduling policies and their properties.

Chapter 8: Deadlocks

A deadlock is a situation in which processes wait for one another indefinitely due
to resource sharing or synchronization. This chapter discusses how deadlocks can
arise and how an OS performs deadlock handling to ensure an absence of dead-
locks, either through detection and resolution of deadlocks, or through resource
allocation policies that perform deadlock prevention or deadlock avoidance.

Chapter 9: Message Passing

Processes exchange information by sending interprocess messages. This chapter
discusses the semantics of message passing, and OS responsibilities in buffering
and delivery of interprocess messages. It also discusses how message passing is
employed in higher-level protocols for providing electronic mail facility and in
providing intertask communication in parallel or distributed programs.
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Chapter 10: Synchronization and Scheduling
in Multiprocessor 0Ss

Presence of many CPUs in a multiprocessor computer system holds the promise
of high throughput and fast response to applications. This chapter discusses dif-
ferent kinds of multiprocessor systems, and describes how the OS achieves high
throughput and fast response by using special techniques of structuring its ker-
nel, so that many CPUs can execute kernel code in parallel, and of synchronizing
and scheduling processes.
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Processes and Threads

r I Y he concept of a process helps us understand how programs execute in an
operating system. A process is an execution of a program using a set of
resources. We emphasize “an” because several executions of the same pro-

gram may be present in the operating system at the same time; these executions

constitute different processes. That happens when users initiate independent exe-
cutions of the program, each on its own data. It also happens when a program
that is coded with concurrent programming techniques is being executed. The
kernel allocates resources to processes and schedules them for use of the CPU.

This way, it realizes execution of sequential and concurrent programs uniformly.

A thread is also an execution of a program but it functions in the environment
of a process—that is, it uses the code, data, and resources of a process. It is possible
for many threads to function in the environment of the same process; they share its
code, data, and resources. Switching between such threads requires less overhead
than switching between processes.

In this chapter, we discuss how the kernel controls processes and threads—
how it keeps track of their states, and how it uses the state information to organize
their operation. We also discuss how a program may create concurrent processes
or threads, and how they may interact with one another to achieve a common
goal.

5.1 PROCESSES AND PROGRAMS

A program is a passive entity that does not perform any actions by itself; it has to
be executed if the actions it calls for are to take place. A process is an execution of
a program. It actually performs the actions specified in a program. An operating
system shares the CPU among processes. This is how it gets user programs to
execute.

5.1.1 What Is a Process?

To understand what is a process, let us discuss how the OS executes a program.
Program P shown in Figure 5.1(a) contains declarations of a file info and a
variable 1tem, and statements that read values from info, use them to perform
some calculations, and print a result before coming to a halt. During execution,

NS
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Program P

file info;
int item; Address space
open (info, "read"); . of P
while not info

end-of-file (info) Instructions,

read (info, item); data area and )
R CPU E> stack of P Printer
print ...;
stop;
(a) (b)

Figure 5.1 A program and an abstract view of its execution.

instructions of this program use values in its data area and the stack to perform
the intended calculations. Figure 5.1(b) shows an abstract view of its execution.
The instructions, data, and stack of program P constitute its address space. To
realize execution of P, the OS allocates memory to accommodate P’s address
space, allocates a printer to print its results, sets up an arrangement through
which P can access file info, and schedules P for execution. The CPU is shown
as a lightly shaded box because it is not always executing instructions of P—the
OS shares the CPU between execution of P and executions of other programs.
Following the above discussion, we can define a process as follows:

Definition 5.1 Process An execution of a program using resources allocated
to it.

When a user initiates execution of a program, the OS creates a new process
and assigns a unique id to it. It now allocates some resources to the process—
sufficient memory to accommodate the address space of the program, and some
devices such as a keyboard and a monitor to facilitate interaction with the user.
The process may make system calls during its operation to request additional
resources such as files. We refer to the address space of the program and resources
allocated to it as the address space and resources of the process, respectively.

Accordingly, a process comprises six components:

(id, code, data, stack, resources, CPU state) (5.1

where id is the unique id assigned by the OS
code is the code of the program (it is also called the text of a program)
data is the data used in the execution of the program, including data
from files
stack contains parameters of functions and procedures called during
execution of the program, and their return addresses
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resources is the set of resources allocated by the OS

CPU state is composed of contents of the PSW and the general-purpose
registers (GPRs) of the CPU (we assume that the stack pointer is
maintained in a GPR)

The CPU state (Section 2.2.1) contains information that indicates which
instruction in the code would be executed next, and other information—such
as contents of the condition code field (also called the flags field) of the PSW—
that may influence its execution. The CPU state changes as the execution of the
program progresses. We use the term operation of a process for execution of a
program. Thus a process operates when it is scheduled.

5.1.2 Relationships between Processes and Programs

A program consists of a set of functions and procedures. During its execution,
control flows between the functions and procedures according to the logic of the
program. Is an execution of a function or procedure a process? This doubt leads to
the obvious question: what is the relationship between processes and programs?

The OS does not know anything about the nature of a program, including
functions and procedures in its code. It knows only what it is told through system
calls. The rest is under control of the program. Thus functions of a program may
be separate processes, or they may constitute the code part of a single process.
We discuss examples of these situations in the following.

Table 5.1 shows two kinds of relationships that can exist between pro-
cesses and programs. A one-to-one relationship exists when a single execution
of a sequential program is in progress, for example, execution of program P in
Figure 5.1. A many-to-one relationship exists between many processes and a
program in two cases: Many executions of a program may be in progress at the
same time; processes representing these executions have a many-to-one relation-
ship with the program. During execution, a program may make a system call to
request that a specific part of its code should be executed concurrently, i.e., as
a separate activity occurring at the same time. The kernel sets up execution of
the specified part of the code and treats it as a separate process. The new pro-
cess and the process representing execution of the program have a many-to-one
relationship with the program. We call such a program a concurrent program.

Processes that coexist in the system at some time are called concurrent pro-
cesses. Concurrent processes may share their code, data and resources with other

Table 5.1 Relationships between Processes and Programs

Relationship Examples
One-to-one A single execution of a sequential program.
Many-to-one Many simultaneous executions of a program,

execution of a concurrent program.
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processes; they have opportunities to interact with one another during their
execution.

5.1.3 Child Processes

The kernel initiates an execution of a program by creating a process for it. For
lack of a technical term for this process, we will call it the primary process for the
program execution. The primary process may make system calls as described in
the previous section to create other processes—these processes become its child
processes, and the primary process becomes their parent. A child process may itself
create other processes, and so on. The parent—child relationships between these
processes can be represented in the form of a process tree, which has the primary
process as its root. A child process may inherit some of the resources of its parent;
it could obtain additional resources during its operation through system calls.

Typically, a process creates one or more child processes and delegates some
of its work to each of them. It is called multitasking within an application. It
has the three benefits summarized in Table 5.2. Creation of child processes has
the same benefits as the use of multiprogramming in an OS—the kernel may
be able to interleave operation of I/0-bound and CPU-bound processes in the
application, which may lead to a reduction in the duration, i.e., running time, of
an application. It is called computation speedup. Most operating systems permit
a parent process to assign priorities to child processes. A real-time application
can assign a high priority to a child process that performs a critical function to
ensure that its response requirement is met. We shall elaborate on this aspect later
in Example 5.1.

The third benefit, namely, guarding a parent process against errors in a child
process, arises as follows: Consider a process that has to invoke an untrusted code.

Table 5.2 Benefits of Child Processes

Benefit Explanation

Computation speedup Actions that the primary process of an
application would have performed sequentially if
it did not create child processes, would be
performed concurrently when it creates child
processes. It may reduce the duration, i.e.,
running time, of the application.

Priority for critical A child process that performs a critical function

functions may be assigned a high priority; it may help to
meet the real-time requirements of an
application.

Guarding a parent process The kernel aborts a child process if an error

against errors arises during its operation. The parent process is

not affected by the error; it may be able to
perform a recovery action.
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If the untrusted code were to be included in the code of the process, an error in
the untrusted code would compel the kernel to abort the process; however, if the
process were to create a child process to execute the untrusted code, the same error
would lead to the abort of the child process, so the parent process would not come
to any harm. The OS command interpreter uses this feature to advantage. The
command interpreter itself runs as a process, and creates a child process whenever
it has to execute a user program. This way, its own operation is not harmed by
malfunctions in the user program.

Example 5.1 illustrates how the data logging system of Section 3.7 benefits
from use of child processes.

115

Child Processes in a Real-Time Application

The real-time data logging application of Section 3.7 receives data samples
from a satellite at the rate of 500 samples per second and stores them in
a file. We assume that each sample arriving from the satellite is put into
a special register of the computer. The primary process of the application,
which we will call the data_logger process, has to perform the following three
functions:

1. Copy the sample from the special register into memory.

2. Copy the sample from memory into a file.

3. Perform some analysis of a sample and record its results into another file
used for future processing.

It creates three child processes named copy_sample, record_sample, and
housekeeping, leading to the process tree shown in Figure 5.2(a). Note that a
process is depicted by a circle and a parent—child relationship is depicted by
an arrow. As shown in Figure 5.2(b), copy_sample copies the sample from the
register into a memory area named buffer_area that can hold, say, 50 samples.
record_sample writes a sample from buffer_area into a file. housekeeping ana-
lyzes a sample from buffer_area and records its results in another file. Arrival
of a new sample causes an interrupt, and a programmer-defined interrupt ser-
vicing routine is associated with this interrupt. The kernel executes this routine
whenever a new sample arrives. It activates copy_sample.

Operation of the three processes can overlap as follows: copy_sample can
copy a sample into buffer_area, record_sample can write a previous sample
to the file, while housekeeping can analyze it and write its results into the
other file. This arrangement provides a smaller worst-case response time of
the application than if these functions were to be executed sequentially. So
long as buffer_area has some free space, only copy_sample has to complete
before the next sample arrives. The other processes can be executed later. This
possibility is exploited by assigning the highest priority to copy_sample.

Example 5.1
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register

data_
logger

copy_ record_ h keepi
sample sample ousekeeping

Memory
(a) (b)

Figure 5.2 Real-time application of Section 3.7: (a) process tree; (b) processes.

To facilitate use of child processes, the kernel provides operations for:

1. Creating a child process and assigning a priority to it

2. Terminating a child process

3. Determining the status of a child process

4. Sharing, communication, and synchronization between processes

Their use can be described as follows: In Example 5.1, the data_logger
process creates three child processes. The copy_sample and record_sample pro-
cesses share buffer_area. They need to synchronize their operation such that
process record_sample would copy a sample out of buffer_area only after process
copy_sample has written it there. The data_logger process could be programmed
to either terminate its child processes before itself terminating, or terminate itself
only after it finds that all its child processes have terminated.

5.1.4 Concurrency and Parallelism

Parallelism is the quality of occurring at the same time. Two events are parallel
if they occur at the same time, and two tasks are parallel if they are performed
at the same time. Concurrency is an illusion of parallelism. Thus, two tasks are
concurrent if there is an illusion that they are being performed in parallel, whereas,
in reality, only one of them may be performed at any time.

In an OS, concurrency is obtained by interleaving operation of processes
on the CPU, which creates the illusion that these processes are operating at the
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same time. Parallelism is obtained by using multiple CPUs, as in a multiprocessor
system, and operating different processes on these CPUs.

How does mere concurrency provide any benefits? We have seen several
examples of this earlier in Chapter 3. In Section 3.5 we discussed how the through-
put of a multiprogramming OS increases by interleaving operation of processes
on a CPU, because an I/O operation in one process overlaps with a computational
activity of another process. In Section 3.6, we saw how interleaved operation of
processes created by different users in a time-sharing system makes each user
think that he has a computer to himself, although it is slower than the real com-
puter being used. In Section 5.1.2 and in Example 5.1, we saw that interleaving
of processes may lead to computation speedup.

Parallelism can provide better throughput in an obvious way because pro-
cesses can operate on multiple CPUs. It can also provide computation speedup;
however, the computation speedup provided by it is qualitatively different from
that provided through concurrency—when concurrency is employed, speedup is
obtained by overlapping I/O activities of one process with CPU activities of
other processes, whereas when parallelism is employed, CPU and I/O activ-
ities in one process can overlap with the CPU and /O activities of other
processes.

Computation speedup of an application through concurrency and paral-
lelism would depend on several factors:

o [nherent parallelism within the application: Does the application have activi-
ties that can progress independently of one another?

o Overhead of concurrency and parallelism: The overhead of setting up and
managing concurrency should not predominate over the benefits of per-
forming activities concurrently, e.g., if the chunks of work sought to be
performed concurrently are too small, the overhead of concurrency may
swamp its contributions to computation speedup.

® Model of concurrency and parallelism supported by the OS: How much over-
head does the model incur, and how much of the inherent parallelism within
an application can be exploited through it.

We have so far discussed one model of concurrency and parallelism, namely
the process model. In Section 5.3, we introduce an alternative model called the
thread model, and discuss its properties.

5.2 IMPLEMENTING PROCESSES

117

In the operating system’s view, a process is a unit of computational work. Hence
the kernel’s primary task is to control operation of processes to provide effective
utilization of the computer system. Accordingly, the kernel allocates resources
to a process, protects the process and its resources from interference by other
processes, and ensures that the process gets to use the CPU until it completes its
operation.
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Event
v

Context save
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Event handling

17
Scheduling

v
Dispatching

Exit from kernel

Figure 5.3 Fundamental functions of the kernel for controlling processes.

The kernel is activated when an event, which is a situation that requires
the kernel’s attention, leads to either a hardware interrupt or a system call
(see Section 2.3). The kernel now performs four fundamental functions to control
operation of processes (see Figure 5.3):

1. Context save: Saving CPU state and information concerning resources of
the process whose operation is interrupted.

2. Event handling: Analyzing the condition that led to an interrupt, or the
request by a process that led to a system call, and taking appropriate actions.

3. Scheduling: Selecting the process to be executed next on the CPU.

4. Dispatching: Setting up access to resources of the scheduled process
and loading its saved CPU state in the CPU to begin or resume its
operation.

The kernel performs the context save function to save information concern-
ing the interrupted process. It is followed by execution of an appropriate event
handling routine, which may inhibit further operation of the interrupted pro-
cess, e.g., if this process has made a system call to start an I/O operation, or
may enable operation of some other process, e.g., if the interrupt was caused
by completion of its I/O operation. The kernel now performs the scheduling
function to select a process and the dispatching function to begin or resume its
operation.

As discussed earlier in Sections 3.5.1 and 3.6, to perform scheduling an
operating system must know which processes require the CPU at any moment.
Hence the key to controlling operation of processes is to monitor all processes
and know what each process is doing at any moment of time—whether execut-
ing on the CPU, waiting for the CPU to be allocated to it, waiting for an I/O
operation to complete, or waiting to be swapped into memory. The operating
system monitors the process state to keep track of what a process is doing at any
moment.
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Here in Section 5.2, we will see what is meant by a process state, and we
will look at the different states of a process; and the arrangements by which the
operating system maintains information about the state of a process. We do not
discuss scheduling in this chapter. It is discussed later in Chapter 7.

5.2.1 Process States and State Transitions

An operating system uses the notion of a process state to keep track of what a
process is doing at any moment.

Definition 5.2 Process state The indicator that describes the nature of the
current activity of a process.

The kernel uses process states to simplify its own functioning, so the num-
ber of process states and their names may vary across OSs. However, most OSs
use the four fundamental states described in Table 5.3. The kernel considers
a process to be in the blocked state if it has made a resource request and the
request is yet to be granted, or if it is waiting for some event to occur. A CPU
should not be allocated to such a process until its wait is complete. The ker-
nel would change the state of the process to ready when the request is granted
or the event for which it is waiting occurs. Such a process can be considered
for scheduling. The kernel would change the state of the process to running
when it is dispatched. The state would be changed to terminated when exe-
cution of the process completes or when it is aborted by the kernel for some
reason.

A conventional computer system contains only one CPU, and so at most
one process can be in the running state. There can be any number of processes
in the blocked, ready, and terminated states. An OS may define more process
states to simplify its own functioning or to support additional functionalities like
swapping. We discuss this aspect in Section 5.2.1.1.

Table 5.3 Fundamental Process States

State Description
Running A CPU is currently executing instructions in the process code.
Blocked The process has to wait until a resource request made by it is granted,

or it wishes to wait until a specific event occurs.

Ready The process wishes to use the CPU to continue its operation;
however, it has not been dispatched.

Terminated The operation of the process, i.e., the execution of the program
represented by it, has completed normally, or the OS has aborted it.
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Process State Transitions A state transition for a process P; is a change in its
state. A state transition is caused by the occurrence of some event such as the
start or end of an I/O operation. When the event occurs, the kernel determines
its influence on activities in processes, and accordingly changes the state of an
affected process.

When a process P; in the running state makes an I/0 request, its state has to
be changed to blocked until its I/O operation completes. At the end of the I/O
operation, P;’s state is changed from blocked to ready because it now wishes to use
the CPU. Similar state changes are made when a process makes some request that
cannot immediately be satisfied by the OS. The process state is changed to blocked
when the request is made, i.e., when the request event occurs, and it is changed
to ready when the request is satisfied. The state of a ready process is changed to
running when it is dispatched, and the state of a running process is changed to
ready when it is preempted either because a higher-priority process became ready
or because its time slice elapsed (see Sections 3.5.1 and 3.6). Table 5.4 summarizes
causes of state transitions.

Figure 5.4 diagrams the fundamental state transitions for a process. A new
process is put in the ready state after resources required by it have been allocated.
It may enter the running, blocked, and ready states a number of times as a result
of events described in Table 5.4. Eventually it enters the terminated state.

Example 5.2

Process State Transitions

Consider the time-sharing system of Example 3.2, which uses a time slice of
10 ms. It contains two processes P; and P,. P; has a CPU burst of 15 ms
followed by an I/O operation that lasts for 100 ms, while P, has a CPU burst
of 30 ms followed by an I/O operation that lasts for 60 ms. Execution of P; and
P, was described in Figure 3.7. Table 5.5 illustrates the state transitions during
operation of the system. Actual execution of programs proceeds as follows:
System operation starts with both processes in the ready state at time 0. The
scheduler selects process P; for execution and changes its state to running. At
10 ms, P; is preempted and P, is dispatched. Hence P;’s state is changed to
ready and P;’s state is changed to running. At 20 ms, P; is preempted and Pj is
dispatched. Pp enters the blocked state at 25 ms because of an I/O operation.
P; is dispatched because it is in the ready state. At 35 ms, P, is preempted
because its time slice elapses; however, it is dispatched again since no other
process is in the ready state. P, initiates an I/O operation at 45 ms. Now both
processes are in the blocked state.

5.2.1.1 Suspended Processes

A kernel needs additional states to describe the nature of the activity of a process
that is not in one of the four fundamental states described earlier. Consider a
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Table 5.4 Causes of Fundamental State Transitions for a Process

State transition

Description

ready — running
blocked — ready

running — ready

running — blocked

running — terminated

The process is dispatched. The CPU begins or resumes
execution of its instructions.

A request made by the process is granted or an event for
which it was waiting occurs.

The process is preempted because the kernel decides to
schedule some other process. This transition occurs either
because a higher-priority process becomes ready, or
because the time slice of the process elapses.

The process in operation makes a system call to indicate
that it wishes to wait until some resource request made by
it is granted, or until a specific event occurs in the system.
Five major causes of blocking are:

Process requests an 1/O operation

Process requests a resource

Process wishes to wait for a specified interval of time
Process waits for a message from another process
Process waits for some action by another process.

Execution of the program is completed. Five primary
reasons for process termination are:

® Self-termination: The process in operation either
completes its task or realizes that it cannot operate
meaningfully and makes a “terminate me” system call.
Examples of the latter condition are incorrect or
inconsistent data, or inability to access data in a
desired manner, e.g., incorrect file access privileges.

® Termination by a parent: A process makes a
“terminate P;” system call to terminate a child process
P;, when it finds that execution of the child process is
no longer necessary or meaningful.

® Exceeding resource utilization: An OS may limit the
resources that a process may consume. A process
exceeding a resource limit would be aborted by the
kernel.

® Abnormal conditions during operation: The kernel
aborts a process if an abnormal condition arises due
to the instruction being executed, e.g., execution of an
invalid instruction, execution of a privileged
instruction, arithmetic conditions like overflow, or
memory protection violation.

® [ncorrect interaction with other processes: The kernel
may abort a process if it gets involved in a deadlock.
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Figure 5.4 Fundamental state transitions for a process.

Table 5.5 Process State Transitions in a Time-Sharing System

New states
Time Event Remarks Py Py
0 Py is scheduled running ready
10 Py is preempted P> is scheduled ready running
20 P> is preempted Pq is scheduled running ready
25 Py starts I/O P> is scheduled blocked running
35 P» is preempted — blocked ready
P is scheduled blocked running
45 P, starts I/O — blocked blocked

process that was in the ready or the blocked state when it got swapped out of
memory. The process needs to be swapped back into memory before it can resume
its activity. Hence it is no longer in the ready or blocked state; the kernel must
define a new state for it. We call such a process a suspended process. If a user
indicates that his process should not be considered for scheduling for a specific
period of time, it, too, would become a suspended process. When a suspended
process is to resume its old activity, it should go back to the state it was in when
it was suspended. To facilitate this state transition, the kernel may define many
suspend states and put a suspended process into the appropriate suspend state.
We restrict the discussion of suspended processes to swapped processes and
use two suspend states called ready swapped and blocked swapped. Accordingly,
Figure 5.5 shows process states and state transitions. The transition ready —
ready swapped or blocked — blocked swapped is caused by a swap-out action.
The reverse state transition takes place when the process is swapped back into
memory. The blocked swapped — ready swapped transition takes place if the
request for which the process was waiting is granted even while the process is in a
suspended state, for example, if a resource for which it was blocked is granted to it.
However, the process continues to be swapped out. When it is swapped back into
memory, its state changes to ready and it competes with other ready processes for
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Figure 5.5 Process states and state transitions using two swapped states.

the CPU. A new process is put either in the ready state or in the ready swapped
state depending on availability of memory.

5.2.2 Process Context and the Process Control Block

The kernel allocates resources to a process and schedules it for use of the CPU.
Accordingly, the kernel’s view of a process consists of two parts:

¢ Code, data, and stack of the process, and information concerning memory
and other resources, such as files, allocated to it.

¢ Information concerning execution of a program, such as the process state, the
CPU state including the stack pointer, and some other items of information
described later in this section.

These two parts of the kernel’s view are contained in the process context and
the process control block (PCB), respectively (see Figure 5.6). This arrange-
ment enables different OS modules to access relevant process-related information
conveniently and efficiently.

Process Context The process context consists of the following:

1. Address space of the process: The code, data, and stack components of the
process (see Definition 5.1).

2. Memory allocation information: Information concerning memory areas allo-
cated to a process. This information is used by the memory management unit
(MMU) during operation of the process (see Section 2.2.2).

3. Status of file processing activities: Information about files being used, such
as current positions in the files.
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Figure 5.6 Kernel’s view of a process.

4. Process interaction information: Information necessary to control interac-
tion of the process with other processes, e.g.,1ds of parent and child processes,
and interprocess messages sent to it that have not yet been delivered to it.

5. Resource information: Information concerning resources allocated to the
process.

6. Miscellaneous information: Miscellaneous information needed for operation
of a process.

The OS creates a process context by allocating memory to the process, loading
the process code in the allocated memory and setting up its data space. Informa-
tion concerning resources allocated to the process and its interaction with other
processes is maintained in the process context throughout the life of the pro-
cess. This information changes as a result of actions like file open and close and
creation and destruction of data by the process during its operation.

Process Control Block (PCB) The process control block (PCB) of a process
contains three kinds of information concerning the process—identification infor-
mation such as the process id, id of its parent process, and id of the user who
created it; process state information such as its state, and the contents of the
PSW and the general-purpose registers (GPRs); and information that is useful
in controlling its operation, such as its priority, and its interaction with other
processes. It also contains a pointer field that is used by the kernel to form PCB
lists for scheduling, e.g., a list of ready processes. Table 5.6 describes the fields of
the PCB data structure.

The priority and state information is used by the scheduler. It passes the id
of the selected process to the dispatcher. For a process that is not in the running
state, the PSW and GPRs fields together contain the CPU state of the process
when it last got blocked or was preempted (see Section 2.2.1). Operation of the
process can be resumed by simply loading this information from its PCB into the
CPU. This action would be performed when this process is to be dispatched.

When a process becomes blocked, it is important to remember the reason.
It is done by noting the cause of blocking, such as a resource request or an
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Table 5.6 Fields of the Process Control Block (PCB)

PCB field Contents
Process id The unique id assigned to the process at its creation.
Parent, child ids These ids are used for process synchronization, typically for

a process to check if a child process has terminated.

Priority The priority is typically a numeric value. A process is
assigned a priority at its creation. The kernel may change
the priority dynamically depending on the nature of the
process (whether CPU-bound or I/0-bound), its age, and
the resources consumed by it (typically CPU time).

Process state The current state of the process.

PSW This is a snapshot, i.e., an image, of the PSW when the
process last got blocked or was preempted. Loading this
snapshot back into the PSW would resume operation of the
process. (See Fig. 2.2 for fields of the PSW.)

GPRs Contents of the general-purpose registers when the process
last got blocked or was preempted.

Event information For a process in the blocked state, this field contains
information concerning the event for which the process is
waiting.

Signal information Information concerning locations of signal handlers (see
Section 5.2.6).

PCB pointer This field is used to form a list of PCBs for scheduling
purposes.

1/O operation, in the event information field of the PCB. Consider a process P;
that is blocked on an I/O operation on device d. The event information field in
P;’s PCB indicates that it awaits end of an I/O operation on device d. When the
I/O operation on device d completes, the kernel uses this information to make
the transition blocked — ready for process P;.

5.2.3 Context Save, Scheduling, and Dispatching

The context save function performs housekeeping whenever an event occurs. It
saves the CPU state of the interrupted process in its PCB, and saves information
concerning its context (see Section 5.2.2). Recall that the interrupted process
would have been in the running state before the event occurred. The context
save function changes its state to ready. The event handler may later change the
interrupted process’s state to blocked, e.g., if the current event was a request for
I/0 initiation by the interrupted process itself.

The scheduling function uses the process state information from PCBs to
select a ready process for execution and passes its id to the dispatching function.
The dispatching function sets up the context of the selected process, changes its
state to running, and loads the saved CPU state from its PCB into the CPU.
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To prevent loss of protection, it flushes the address translation buffers used by
the memory management unit (MMU). Example 5.3 illustrates the context save,
scheduling, and dispatching functions in an OS using priority-based scheduling.

Example 5.3

Context Save, Scheduling, and Dispatching

An OS contains two processes P and P>, with P, having a higher priority
than Pj. Let P> be blocked on an 1/O operation and let P; be running. The
following actions take place when the I/O completion event occurs for the I/O
operation of P;:

1. The context save function is performed for P; and its state is changed
to ready.

2. Using the event information field of PCBs, the event handler finds that
the I/O operation was initiated by P, so it changes the state of P, from
blocked to ready.

3. Scheduling is performed. P, is selected because it is the highest-priority
ready process.

4. Py’s state is changed to running and it is dispatched.

Process Switching Functions 1, 3, and 4 of Example 5.3 collectively perform
switching between processes P and P,. Switching between processes also occurs
when a running process becomes blocked as a result of a request or gets preempted
at the end of a time slice. An event does not lead to switching between processes if
occurrence of the event either (1) causes a state transition only in a process whose
priority is lower than that of the process whose operation is interrupted by the
event or (2) does not cause any state transition, e.g., if the event is caused by a
request that is immediately satisfied. In the former case, the scheduling function
selects the interrupted process itself for dispatching. In the latter case, scheduling
need not be performed at all; the dispatching function could simply change the
state of the interrupted process back to running and dispatch it.

Switching between processes involves more than saving the CPU state of
one process and loading the CPU state of another process. The process context
needs to be switched as well. We use the term state information of a process to
refer to all the information that needs to be saved and restored during process
switching. Process switching overhead depends on the size of the state information
of a process. Some computer systems provide special instructions to reduce the
process switching overhead, e.g., instructions that save or load the PSW and all
general-purpose registers, or flush the address translation buffers used by the
memory management unit (MMU).

Process switching has some indirect overhead as well. The newly sched-
uled process may not have any part of its address space in the cache, and so
it may perform poorly until it builds sufficient information in the cache (see
Section 2.2.3). Virtual memory operation is also poorer initially because address



Chapter 5 Processes and Threads

translation buffers in the MMU do not contain any information relevant to the
newly scheduled process.

5.2.4 Event Handling

The following events occur during the operation of an OS:

1. Process creation event: A new process is created.

. Process termination event: A process completes its operation.

. Timer event: The timer interrupt occurs.

. Resource request event: Process makes a resource request.

. Resource release event: A process releases a resource.

. 110 initiation request event: Process wishes to initiate an I/O operation.

. 110 completion event: An 1/O operation completes.

. Message send event: A message is sent by one process to another.

9. Message receive event: A message is received by a process.

10. Signal send event: A signal is sent by one process to another.

11. Signal receive event: A signal is received by a process.

12. A program interrupt: The current instruction in the rumning process
malfunctions.

13. A hardware malfunction event: A unit in the computer’s hardware
malfunctions.

IS WN

The timer, I/O completion, and hardware malfunction events are caused by
situations that are external to the running process. All other events are caused
by actions in the running process. We group events 1-9 into two broad classes for
discussing actions of event handlers, and discuss events 10 and 11 in Section 5.2.6.
The kernel performs a standard action like aborting the running process when
events 12 or 13 occur.

Events Pertaining to Process Creation, Termination, and Preemption When a
user issues a command to execute a program, the command interpreter of the user
interface makes a create_ process system call with the name of the program as a
parameter. When a process wishes to create a child process to execute a program,
it itself makes a create_process system call with the name of the program as a
parameter.

The event handling routine for the create_ process system call creates a PCB
for the new process, assigns a unique process id and a priority to it, and puts this
information and id of the parent process into relevant fields of the PCB. It now
determines the amount of memory required to accommodate the address space
of the process, i.e., the code and data of the program to be executed and its stack,
and arranges to allocate this much memory to the process (memory allocation
techniques are discussed later in Chapters 11 and 12). In most operating systems,
some standard resources are associated with each process, e.g., a keyboard, and
standard input and output files; the kernel allocates these standard resources to
the process at this time. It now enters information about allocated memory and
resources into the context of the new process. After completing these chores,

127



128

Part 2 Process Management

it sets the state of the process to ready in its PCB and enters this process in an
appropriate PCB list.

When a process makes a system call to terminate itself or terminate a child
process, the kernel delays termination until the I/O operations that were initiated
by the process are completed. It now releases the memory and resources allocated
to it. This function is performed by using the information in appropriate fields of
the process context. The kernel now changes the state of the process to terminated.
The parent of the process may wish to check its status sometime in future, so the
PCB of the terminated process is not destroyed now; it will be done sometime after
the parent process has checked its status or has itself terminated. If the parent
of the process is already waiting for its termination, the kernel must activate
the parent process. To perform this action, the kernel takes the id of the parent
process from the PCB of the terminated process, and checks the event information
field of the parent process’s PCB to find whether the parent process is waiting for
termination of the child process (see Section 5.2.2).

The process in the running state should be preempted if its time slice elapses.
The context save function would have already changed the state of the running
process to ready before invoking the event handler for timer interrupts, so the
event handler simply moves the PCB of the process to an appropriate scheduling
list. Preemption should also occur when a higher-priority process becomes ready,
but that is realized implicitly when the higher-priority process is scheduled so an
event handler need not perform any explicit action for it.

Events Pertaining to Resource Utilization When a process requests a resource
through a system call, the kernel may be able to allocate the resource immediately,
in which case event handling does not cause any process state transitions, so the
kernel can skip scheduling and directly invoke the dispatching function to resume
operation of the interrupted process. If the resource cannot be allocated, the event
handler changes the state of the interrupted process to blocked and notes the id
of the required resource in the event information field of the PCB. When a process
releases a resource through a system call, the event handler need not change the
state of the process that made the system call. However, it should check whether
any other processes were blocked because they needed the resource, and, if so, it
should allocate the resource to one of the blocked processes and change its state
to ready. This action requires a special arrangement that we will discuss shortly.

A system call to request initiation of an I/O operation and an interrupt
signaling end of the I/O operation lead to analogous event handling actions.
The state of the process is changed to blocked when the 1/O operation is initiated
and the cause of blocking is noted in the event information field of its PCB; its state
is changed back to ready when the I/O operation completes. A request to receive a
message from another process and a request to send a message to another process
also lead to analogous actions.

Event Control Block (ECB) When an event occurs, the kernel must find the
process whose state is affected by it. For example, when an I/O completion
interrupt occurs, the kernel must identify the process awaiting its completion.
It can achieve this by searching the event information field of the PCBs of all
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Figure 5.7 Event control block (ECB).

processes. This search is expensive, so operating systems use various schemes to
speed it up. We discuss a scheme that uses event control blocks (ECBs).

As shown in Figure 5.7, an ECB contains three fields. The event description
field describes an event, and the process id field contains the id of the process
awaiting the event. When a process P; gets blocked for occurrence of an event
e;, the kernel forms an ECB and puts relevant information concerning ¢; and P;
into it. The kernel can maintain a separate ECB list for each class of events like
interprocess messages or I/O operations, so the ECB pointer field is used to enter
the newly created ECB into an appropriate list of ECBs.

When an event occurs, the kernel scans the appropriate list of ECBs to find an
ECB with a matching event description. The process id field of the ECB indicates
which process is waiting for the event to occur. The state of this process is changed
to reflect the occurrence of the event. The following example illustrates use of
ECB:s for handling an I/O completion event; their use in handling interprocess
messages is described in Section 9.2.2. The event information field of the PCB now
appears redundant; however, we retain it because the kernel may need to know
which event a process is blocked on, for example, while aborting the process.
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Use of ECB for Handling 1/0 Completion

The actions of the kernel when process P; requests an I/O operation on some
device d, and when the I/O operation completes, are as follows:

1. The kernel creates an ECB, and initializes it as follows:
a. Event description := end of I/O on device d.
b. Process awaiting the event := P;.
. The newly created ECB (let us call it ECB ) is added to a list of ECBs.
3. The state of P; is changed to blocked and the address of ECB; is put into
the “Event information” field of P;’s PCB (see Figure 5.8).
4. When the interrupt ‘End of 1/O on device d” occurs, ECB; is located by
searching for an ECB with a matching event description field.
5. The id of the affected process, i.e., P;, is extracted from ECB ;. The PCB of
P; is located and its state is changed to read)y.

[

Summary of Event Handling Figure 5.9 illustrates event handling actions of the
kernel described earlier. The block action always changes the state of the pro-
cess that made a system call from ready to blocked. The unblock action finds a
process whose request can be fulfilled now and changes its state from blocked

Example 5.4
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Figure 5.9 Event handling actions of the kernel.

to ready. A system call for requesting a resource leads to a block action if the
resource cannot be allocated to the requesting process. This action is followed
by scheduling and dispatching because another process has to be selected for use
of the CPU. The block action is not performed if the resource can be allocated
straightaway. In this case, the interrupted process is simply dispatched again.
When a process releases a resource, an unblock action is performed if some other
process is waiting for the released resource, followed by scheduling and dispatch-
ing because the unblocked process may have a higher priority than the process
that released the resource. Again, scheduling is skipped if no process is unblocked
because of the event.
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5.2.5 Sharing, Communication, and Synchronization
Between Processes

Processes of an application need to interact with one another because they work
toward a common goal. Table 5.7 describes four kinds of process interaction. We
summarize their important features in the following.

Data Sharing A shared variable may get inconsistent values if many processes
update it concurrently. For example, if two processes concurrently execute the
statement a:= a+1, where a is a shared variable, the result may depend on the
way the kernel interleaves their execution—the value of a may be incremented
by only 1! (We discuss this problem later in Section 6.2.) To avoid this problem,
only one process should access shared data at any time, so a data access in one
process may have to be delayed if another process is accessing the data. This is
called mutual exclusion. Thus, data sharing by concurrent processes incurs the
overhead of mutual exclusion.

Message Passing A process may send some information to another process in
the form of a message. The other process can copy the information into its own
data structures and use it. Both the sender and the receiver process must anticipate
the information exchange, i.e., a process must know when it is expected to send or
receive a message, so the information exchange becomes a part of the convention
or protocol between processes.

Synchronization The logic of a program may require that an action a; should
be performed only after some action a; has been performed. Synchroniza-
tion between processes is required if these actions are performed in different
processes—the process that wishes to perform action g; is made to wait until
another process performs action a;.

Signals A signal is used to convey an exceptional situation to a process so
that it may handle the situation through appropriate actions. The code that a
process wishes to execute on receiving a signal is called a signal handler. The
signal mechanism is modeled along the lines of interrupts. Thus, when a signal

Table 5.7 Four Kinds of Process Interaction

Kind of interaction Description

Data sharing Shared data may become inconsistent if several processes modify
the data at the same time. Hence processes must interact to
decide when it is safe for a process to modify or use shared data.

Message passing Processes exchange information by sending messages to one
another.

Synchronization To fulfill a common goal, processes must coordinate their
activities and perform their actions in a desired order.

Signals A signal is used to convey occurrence of an exceptional situation
to a process.
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is sent to a process, the kernel interrupts operation of the process and executes a
signal handler, if one has been specified by the process; otherwise, it may perform
a default action. Operating systems differ in the way they resume a process after
executing a signal handler.

Example 5.5 illustrates sharing, communication, and synchronization
between processes in the real-time application of Example 5.1. Implementation
of signals is described in Section 5.2.6.

Example 5.5

Process Interaction in a Real-time Data Logging Application

In the real-time data logging application of Example 5.1, buffer_area is shared
by processes copy_sample and record_sample. 1If a variable no_of _samples
_in_buffer is used to indicate how many samples are currently in the buffer,
both these processes would need to update no_of_samples_in_buffer, so its
consistency should be protected by delaying a process that wishes to update
it if another process is accessing it. These processes also need to synchronize
their activities such that a new sample is moved into an entry in buffer_area
only after the previous sample contained in the entry is written into the file,
and contents of a buffer entry are written into the file only after a new sample
is moved into it.

These processes also need to know the size of the buffer, i.e., how many
samples it can hold. Like no_of_samples_in_buffer, a variable size could be
used as shared data. However, use as shared data would incur the overhead of
mutual exclusion, which is not justified because the buffer size is not updated
regularly; it changes only in exceptional situations. Hence these processes could
be coded to use the size of the buffer as a local data item buf _size. Its value
would be sent to them by the process data_logger through messages. Process
data_logger would also need to send signals to these processes if the size of the
buffer has to be changed.

5.2.6 Signals

A signal is used to notify an exceptional situation to a process and enable it
to attend to it immediately. A list of exceptional situations and associated signal
names or signal numbers are defined in an OS, e.g., CPU conditions like overflows,
and conditions related to child processes, resource utilization, or emergency com-
munications from a user to a process. The kernel sends a signal to a process when
the corresponding exceptional situation occurs. Some kinds of signals may also be
sent by processes. A signal sent to a process because of a condition in its own activ-
ity, such as an overflow condition in the CPU, is said to be a synchronous signal,
whereas that sent because of some other condition is said to be an asynchronous
signal.

To utilize signals, a process makes a register_handler system call specifying a
routine that should be executed when a specific signal is sent to it; this routine is
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called a signal handler. If a process does not specify a signal handler for a signal,
the kernel executes a default handler that performs some standard actions like
dumping the address space of the process and aborting it.

A process P; wishing to send a signal to another process F; invokes the
library function signal with two parameters: id of the destination process, i.e.,
P, and the signal number. This function uses the software interrupt instruction
<SI _instrn> <interrupt_code> to make a system call named signal. The event
handling routine for the signal call extracts the parameters to find the signal
number. It now makes a provision to pass the signal to F; and returns. It does not
make any change in the state of the sender process, i.e., P;.

Signal handling in a process is implemented along the same lines as inter-
rupt handling in an OS. In Section 2.2 we described how the interrupt hardware
employs one interrupt vector for each class of interrupts, which contains the
address of a routine that handles interrupts of that class. A similar arrangement
can be used in each process. The signal vectors area would contain a signal vector
for each kind of signal, which would contain the address of a signal handler. When
a signal is sent to a process, the kernel accesses its signal vectors area to check
whether it has specified a signal handler for that signal. If so, it would arrange to
pass control to the handler; otherwise, it would execute its own default handler
for that signal.

Signal handling becomes complicated if the process to which a signal is sent
is in the blocked state. The kernel would have to change its state temporarily to
ready so that it could execute a signal handler, after which it would have to change
the state back to blocked. Some operating systems prefer a simpler approach that
merely notes the arrival of a signal if the destination process is in the blocked
state, and arranges to execute the signal handler when the process becomes ready
and gets scheduled.

Example 5.6 illustrates how a signal is handled by a process.
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Signal Handling

Figure 5.10 illustrates the arrangement used for handling signals. The code
of process P; contains a function named shl, whose last instruction is a
“return from function” instruction, which pops an address off the stack and
passes control to the instruction with this address. Process P; makes a library
call register_handler(sigl,shl) to register shl as the signal han-
dler for signal sigl. The library routine register_handler makes the
system call register_handler. While handling this call, the kernel accesses the
PCB of P;, obtains the start address of the signal vectors area, and enters
the address shl in the signal vector of signal sigl. Control now returns
to P;. The solid arrows in Figure 5.10(a) indicate addresses in the kernel’s
data structures, while the dashed arrows indicate how the CPU is switched
to the kernel when the system call is made and how it is switched back
y to P;.

Example 5.6
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Figure 5.10 Signal handling by process P;: (a) registering a signal handler; (b) invoking a
signal handler.

Let process P; get preempted when it was about to execute the instruction
with address b1. A little later, some process P; makes the system call signal
(P;, sigl). The kernel locates the PCB of P;, obtains the address of its signal
vectors area and locates the signal vector for sigl. It now arranges for process
P; toexecute the signal handler starting at address sh1 before resuming normal
execution as follows: It obtains the address contained in the program counter
(PC) field of the saved state of P;, which is the address b1 because P; was about
to execute the instruction with this address. It pushes this address on P;’s stack,
and puts the address sh1l in the program counter field of the saved state of P;.
This way, when process P; is scheduled, it would execute the signal handler
function with the start address shl. The last instruction of shl would pop
the address b1 off the stack and pass control to the instruction with address
b1, which would resume normal operation of process P;. In effect, as shown
by the broken arrows in Figure 5.10(b), P;’s execution would be diverted to
the signal handler starting at address sh1l, and it would be resumed after the
signal handler is executed.

5.3 THREADS

Applications use concurrent processes to speed up their operation. However,
switching between processes within an application incurs high process switch-
ing overhead because the size of the process state information is large (see
Section 5.2.3), so operating system designers developed an alternative model of
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execution of a program, called a t/hread, that could provide concurrency within
an application with less overhead.

To understand the notion of threads, let us analyze process switching over-
head and see where a saving can be made. Process switching overhead has two
components:

e Execution related overhead: The CPU state of the running process has to be
saved and the CPU state of the new process has to be loaded in the CPU.
This overhead is unavoidable.

® Resource-use related overhead: The process context also has to be switched.
It involves switching of the information about resources allocated to the
process, such as memory and files, and interaction of the process with other
processes. The large size of this information adds to the process switching
overhead.

Consider child processes P; and P; of the primary process of an application.
These processes inherit the context of their parent process. If none of these pro-
cesses have allocated any resources of their own, their context is identical; their
state information differs only in their CPU states and contents of their stacks.
Consequently, while switching between P; and P;, much of the saving and loading
of process state information is redundant. Threads exploit this feature to reduce
the switching overhead.

Definition 5.3 Thread An execution of a program that uses the resources of
a process.

A process creates a thread through a system call. The thread does not have
resources of its own, so it does not have a context; it operates by using the context
of the process, and accesses the resources of the process through it. We use the
phrases “thread(s) of a process” and “parent process of a thread” to describe the
relationship between a thread and the process whose context it uses. Note that
threads are not a substitute for child processes; an application would create child
processes to execute different parts of its code, and each child process can create
threads to achieve concurrency.

Figure 5.11 illustrates the relationship between threads and processes. In the
abstract view of Figure 5.11(a), process P; has three threads, which are represented
by wavy lines inside the circle representing process P;. Figure 5.11(b) shows an
implementation arrangement. Process P; has a context and a PCB. Each thread
of P; is an execution of a program, so it has its own stack and a thread control
block (TCB), which is analogous to the PCB and stores the following information:

1. Thread scheduling information—thread id, priority and state.

2. CPU state, i.e., contents of the PSW and GPRs.

3. Pointer to PCB of parent process.

4. TCB pointer, which is used to make lists of TCBs for scheduling.

Use of threads effectively splits the process state into two parts—the resource
state remains with the process while an execution state, which is the CPU state, is
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Figure 5.11 Threads in process P;: (a) concept; (b) implementation.

associated with a thread. The cost of concurrency within the context of a process
is now merely replication of the execution state for each thread. The execution
states need to be switched during switching between threads. The resource state is
neither replicated nor switched during switching between threads of the process.

Thread States and State Transitions Barring the difference that threads do not
have resources allocated to them, threads and processes are analogous. Hence
thread states and thread state transitions are analogous to process states and pro-
cess state transitions. When a thread is created, it is put in the ready state because
its parent process already has the necessary resources allocated to it. It enters the
running state when it is dispatched. It does not enter the blocked state because
of resource requests, because it does not make any resource requests; however,
it can enter the blocked state because of process synchronization requirements.
For example, if threads were used in the real-time data logging application of
Example 5.1, thread record_sample would have to enter the blocked state if no
data samples exist in buffer_area.

Advantages of Threads over Processes Table 5.8 summarizes the advantages
of threads over processes, of which we have already discussed the advantage of
lower overhead of thread creation and switching. Unlike child processes, threads
share the address space of the parent process, so they can communicate through
shared data rather than through messages, thereby eliminating the overhead of
system calls.

Applications that service requests received from users, such as airline reser-
vation systems or banking systems, are called servers; their users are called clients.
(Client—server computing is discussed in Section 16.5.1.) Performance of servers
can be improved through concurrency or parallelism (see Section 5.1.4), i.e.,
either through interleaving of requests that involve I/O operations or through use
of many CPUs to service different requests. Use of threads simplifies their design;
we discuss it with the help of Figure 5.12.

Figure 5.12(a) is a view of an airline reservation server. The server enters
requests made by its clients in a queue and serves them one after another. If
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Table 5.8 Advantages of Threads over Processes

Advantage Explanation
Lower overhead of creation Thread state consists only of the state of a
and switching computation. Resource allocation state and

communication state are not a part of the thread
state, so creation of threads and switching between
them incurs a lower overhead.

More efficient communication  Threads of a process can communicate with one
another through shared data, thus avoiding the
overhead of system calls for communication.

Simplification of design Use of threads can simplify design and coding of
applications that service requests concurrently.

Server Server Server
© Rs s
e [NENEEN] O IIZI O IIEIEIII\

Pending —, /< | ~ Pending

requests I;I I;I I;I I;I I;I I;I I;/I Iil I\\;I requests
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(a) (b) ()

Figure 5.12 Use of threads in structuring a server: (a) server using sequential code;
(b) multithreaded server; (c) server using a thread pool.

several requests are to be serviced concurrently, the server would have to employ
advanced I/O techniques such as asynchronous I/O, and use complex logic to
switch between the processing of requests. By contrast, a multithreaded server
could create a new thread to service each new request it receives, and terminate
the thread after servicing the request. This server would not have to employ any
special techniques for concurrency because concurrency is implicit in its creation
of threads. Figure 5.12(b) shows a multithreaded server, which has created three
threads because it has received three requests.

Creation and termination of threads is more efficient than creation and ter-
mination of processes; however, its overhead can affect performance of the server
if clients make requests at a very high rate. An arrangement called thread pool
is used to avoid this overhead by reusing threads instead of destroying them
after servicing requests. The thread pool consists of one primary thread that per-
forms housekeeping tasks and a few worker threads that are used repetitively.
The primary thread maintains a list of pending requests and a list of idle worker
threads. When a new request is made, it assigns the request to an idle worker
thread, if one exists; otherwise, it enters the request in the list of pending requests.
When a worker thread completes servicing of a request, the primary thread either
assigns a new request to the worker thread to service, or enters it in the list of idle
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worker threads. Figure 5.12(c) illustrates a server using a thread pool. It contains
three worker threads that are busy servicing three service requests, while three ser-
vice requests are pending. If the thread pool facility is implemented in the OS, the
OS would provide the primary thread for the pool, which would simplify coding
of the server because it would not have to handle concurrency explicitly. The OS
could also vary the number of worker threads dynamically to provide adequate
concurrency in the application, and also reduce commitment of OS resources to
idle worker threads.

Coding for Use of Threads Threads should ensure correctness of data sharing
and synchronization (see Section 5.2.5). Section 5.3.1 describes features in the
POSIX threads standard that can be used for this purpose. Correctness of data
sharing also has another facet. Functions or subroutines that use static or global
data to carry values across their successive activations may produce incorrect
results when invoked concurrently, because the invocations effectively share the
global or static data concurrently without mutual exclusion. Such routines are
said to be thread unsafe. An application that uses threads must be coded in a
thread safe manner and must invoke routines only from a thread safe library.

Signal handling requires special attention in a multithreaded applica-
tion. Recall that the kernel permits a process to specify signal handlers (see
Section 5.2.6). When several threads are created in a process, which thread should
handle a signal? There are several possibilities. The kernel may select one of the
threads for signal handling. This choice can be made either statically, e.g., either
the first or the last thread created in the process, or dynamically, e.g., the highest-
priority thread. Alternatively, the kernel may permit an application to specify
which thread should handle signals at any time.

A synchronous signal arises as a result of the activity of a thread, so it is
best that the thread itself handles it. Ideally, each thread should be able to specify
which synchronous signals it is interested in handling. However, to provide this
feature, the kernel would have to replicate the signal handling arrangement of
Figure 5.6 for each thread, so few operating systems provide it. An asynchronous
signal can be handled by any thread in a process. To ensure prompt attention to
the condition that caused the signal, the highest-priority thread should handle
such a signal.

5.3.1 POSIX Threads

The ANSI/IEEE Portable Operating System Interface (POSIX) standard defines
the pthreads application program interface for use by C language programs.
Popularly called POSIX threads, this interface provides 60 routines that perform
the following tasks:

e Thread management: Threads are managed through calls on thread library
routines for creation of threads, querying status of threads, normal or
abnormal termination of threads, waiting for termination of a thread, setting
of scheduling attributes, and specifying thread stack size.

e Assistance for data sharing: Data shared by threads may attain incorrect
values if two or more threads update it concurrently. A feature called mutex is
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provided to ensure mutual exclusion between threads while accessing shared
data, i.e., to ensure that only one thread is accessing shared data at any time.
Routines are provided to begin use of shared data in a thread and indicate end
of use of shared data. If threads are used in Example 5.5, threads copy_sample
and record_sample would use a mutex to ensure that they do not access and
update no_of _samples_in_buffer concurrently.

o Assistance for synchronization: Condition variables are provided to facilitate
coordination between threads so that they perform their actions in the desired
order. If threads are used in Example 5.5, condition variables would be used
to ensure that thread copy_sample would copy a sample into buffer_area
before record_sample would write it from there into the file.

Figure 5.13 illustrates use of pthreads in the real-time data logging application
of Example 5.1. A pthread is created through the call

pthread_create(< data structure >, < attributes >,

< start routine >, < arguments >)

where the thread data structure becomes the de facto thread id, and attributes
indicate scheduling priority and synchronization options. A thread terminates
through a pthread_exit call which takes a thread status as a parameter. Syn-
chronization between the parent thread and a child thread is performed through
the pthread_join call, which takes a thread id and some attributes as param-
eters. On issuing this call, the parent thread is blocked until the thread indicated
in the call has terminated; an error is raised if the termination status of the thread
does not match the attributes indicated in the pthread_join call. Some thread
implementations require a thread to be created with the attribute “joinable” to
qualify for such synchronization. The code in Figure 5.13 creates three threads
to perform the functions performed by processes in Example 5.1. As mentioned
above, and indicated through comments in Figure 5.13, the threads would use the
mutex buf_mutex to ensure mutually exclusive access to the buffer