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PREFACE

This book does not pretend to be a comprehensive record; but it aims
at helping to disentangle from an immense mass of material the crucial
issues and cardinal decisions. Throughout I have set myself to explain
faithfully and to the best of my ability.

— THE WORLD CRISIS, WINSTON CHURCHILL

OBJECTIVES

This book is about the concepts, structure, and mechanisms of operating systems.
Its purpose is to present, as clearly and completely as possible, the nature and char-
acteristics of modern-day operating systems.

This task is challenging for several reasons. First, there is a tremendous range
and variety of computer systems for which operating systems are designed. These
include embedded systems, smart phones, single-user workstations and personal
computers, medium-sized shared systems, large mainframe and supercomputers,
and specialized machines such as real-time systems. The variety is not just in the
capacity and speed of machines, but in applications and system support require-
ments as well. Second, the rapid pace of change that has always characterized com-
puter systems continues with no letup. A number of key areas in operating system
design are of recent origin, and research into these and other new areas continues.

In spite of this variety and pace of change, certain fundamental concepts apply
consistently throughout. To be sure, the application of these concepts depends on
the current state of technology and the particular application requirements. The
intent of this book is to provide a thorough discussion of the fundamentals of oper-
ating system design and to relate these to contemporary design issues and to current
directions in the development of operating systems.

EXAMPLE SYSTEMS

This text is intended to acquaint the reader with the design principles and implemen-
tation issues of contemporary operating systems. Accordingly, a purely conceptual
or theoretical treatment would be inadequate. To illustrate the concepts and to tie
them to real-world design choices that must be made, three operating systems have
been chosen as running examples:

e Windows 7: A multitasking operating system for personal computers, work-
stations, and servers. This operating system incorporates many of the latest
developments in operating system technology. In addition, Windows is
one of the first important commercial operating systems to rely heavily on

X1
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xii PREFACE

object-oriented design principles. This book covers the technology used in
the most recent version of Windows, known as Windows 7.

e UNIX: A multiuser operating system, originally intended for minicomput-
ers, but implemented on a wide range of machines from powerful microcom-
puters to supercomputers. Several flavors of UNIX are included as examples.
FreeBSD is a widely used system that incorporates many state-of-the-art fea-
tures. Solaris is a widely used commercial version of UNIX.

¢ Linux: An open-source version of UNIX that is now widely used.

These systems were chosen because of their relevance and representativeness.
The discussion of the example systems is distributed throughout the text rather than
assembled as a single chapter or appendix. Thus, during the discussion of concur-
rency, the concurrency mechanisms of each example system are described, and the
motivation for the individual design choices is discussed. With this approach, the
design concepts discussed in a given chapter are immediately reinforced with real-
world examples.

INTENDED AUDIENCE

The book is intended for both an academic and a professional audience. As a text-
book, it is intended as a one-semester undergraduate course in operating systems
for computer science, computer engineering, and electrical engineering majors.
It covers all of the core topics and most of the elective topics recommended in
Computer Science Curriculum 2008, from the Joint Task Force on Computing
Curricula of the IEEE Computer Society and the ACM, for the Undergraduate
Program in Computer Science. The book also covers the operating systems top-
ics recommended in the Guidelines for Associate-Degree Curricula in Computer
Science 2002, also from the Joint Task Force on Computing Curricula of the IEEE
Computer Society and the ACM. The book also serves as a basic reference volume
and is suitable for self-study.

PLAN OF THE TEXT

The book is divided into eight parts (see Chapter 0 for an overview):

e Background

* Processes

e Memory

¢ Scheduling

¢ Input/output and files
¢ Embedded systems

e Security

¢ Distributed systems

Operating Systems: Internals and Design Principles, Seventh Edition, by William Stallings. Published by Prentice Hall. Copyright © 2012 by Pearson Education, Inc.



PREFACE Xiii

The book includes a number of pedagogic features, including the use of ani-
mations and numerous figures and tables to clarify the discussion. Each chapter
includes a list of key words, review questions, homework problems, suggestions for
further reading, and recommended Web sites. The book also includes an extensive
glossary, a list of frequently used acronyms, and a bibliography. In addition, a test
bank is available to instructors.

WHAT’S NEW IN THE SEVENTH EDITION

In the 3 years since the sixth edition of this book was published, the field has seen
continued innovations and improvements. In this new edition, I try to capture these
changes while maintaining a broad and comprehensive coverage of the entire field.
To begin the process of revision, the sixth edition of this book was extensively
reviewed by a number of professors who teach the subject and by professionals
working in the field. The result is that, in many places, the narrative has been clari-
fied and tightened, and illustrations have been improved. Also, a number of new
“field-tested” homework problems have been added.

Beyond these refinements to improve pedagogy and user friendliness, the
technical content of the book has been updated throughout, to reflect the ongo-
ing changes in this exciting field, and the instructor and student support has been
expanded. The most noteworthy changes are as follows:

* Windows 7: Windows 7 is Microsoft’s latest OS offering for PCs, worksta-
tions, and servers. The seventh edition provides details on Windows 7
internals in all of the key technology areas covered in this book, including
process/thread management, scheduling, memory management, security,
file systems, and I/O.

* Multicore operating system issues: The seventh edition now includes cover-
age of what has become the most prevalent new development in computer
systems: the use of multiple processors on a single chip. At appropriate points
in the book, operating system issues related to the use of a multicore organiza-
tion are explored.

¢ Virtual machines: Chapter 2 now includes a section on virtual machines, which
outlines the various approaches that have been implemented commercially.

¢ New scheduling examples: Chapter 10 now includes a discussion of the
FreeBSD scheduling algorithm, designed for use with multiprocessor and
multicore systems, and Linux VServer scheduling for a virtual machine
environment.

e Service-oriented architecture (SOA): SOA is a form of client/server archi-
tecture that now enjoys widespread use in enterprise systems. SOA is now
covered in Chapter 16.

¢ Probability, statistics, and queueing analysis: Two new chapters review key
topics in these areas to provide background for OS performance analysis.

e B-trees: This is a technique for organizing indexes into files and databases
that is commonly used in OS file systems, including those supported by
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Mac OS X, Windows, and several Linux file systems. B-trees are now cov-
ered in Chapter 12.

e Student study aids: Each chapter now begins with a list of learning objec-
tives. In addition, a chapter-by-chapter set of review outlines highlights key
concepts that the student should concentrate on in each chapter.

e 0S/161: OS/161 is an educational operating system that is becoming increas-
ingly recognized as the teaching platform of choice. This new edition provides
support for using OS/161 as an active learning component. See later in this
Preface for details.

e Sample syllabus: The text contains more material than can be conveniently covered
in one semester. Accordingly, instructors are provided with several sample syllabi
that guide the use of the text within limited time (e.g., 16 weeks or 12 weeks). These
samples are based on real-world experience by professors with the sixth edition.

With each new edition, it is a struggle to maintain a reasonable page count while
adding new material. In part, this objective is realized by eliminating obsolete material
and tightening the narrative. For this edition, chapters and appendices that are of less
general interest have been moved online, as individual PDF files. This has allowed an
expansion of material without the corresponding increase in size and price.

STUDENT RESOURCES

For this new edition, a tremendous amount of original supporting material has been
made available online, in the following categories

The Companion Web site and student resource material can be reached through
the Publisher’s Web site www.pearsonhighered.com/stallings or by clicking on
the button labeled “Book Info and More Instructor Resources” at the book’s
Companion Web site WilliamStallings.com/OS/OS7e.html. For this new edition, a
tremendous amount of original supporting material has been made available online,
in the following categories:

* Homework problems and solutions: To aid the student in understanding the
material, a separate set of homework problems with solutions are available.
These enable the students to test their understanding of the text.

¢ Programming projects: Two major programming projects, one to build a
shell (or command line interpreter) and one to build a process dispatcher, are
described.

¢ Key papers: Several dozen papers from the professional literature, many hard
to find, are provided for further reading.

¢ Supporting documents: A variety of other useful documents are referenced in
the text and provided online.

Premium Web Content
Purchasing this textbook new grants the reader 6 months of access to this online
material. See the access card in the front of this book for details.
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PREFACE XV

* Online chapters: To limit the size and cost of the book, four chapters of the
book are provided in PDF format. The chapters are listed in this book’s table
of contents.

¢ Online appendices: There are numerous interesting topics that support mate-
rial found in the text but whose inclusion is not warranted in the printed text.
A total of 13 appendices cover these topics for the interested student. The
appendices are listed in this book’s table of contents.

INSTRUCTOR SUPPORT MATERIALS

Support materials are available at the Instructor Resource Center (IRC)
for this textbook, which can be reached through the Publisher’s Web site
www.pearsonhighered.com/stallings or by clicking on the button labeled “Book
Info and More Instructor Resources” at this book’s Companion Web site
WilliamStallings.com/OS/OS7e.html. To gain access to the IRC, please contact
your local Pearson sales representative via pearsonhighered.com/educator/replo-
cator/requestSalesRep.page or call Pearson Faculty Services at 1-800-526-0485.
To support instructors, the following materials are provided:

¢ Solutions manual: Solutions to end-of-chapter Review Questions and
Problems.

¢ Projects manual: Suggested project assignments for all of the project categories
listed in the next section.

* PowerPoint slides: A set of slides covering all chapters, suitable for use in
lecturing.

¢ PDF files: Reproductions of all figures and tables from the book.
e Test bank: A chapter-by-chapter set of questions.
¢ Links to Web sites for other courses being taught using this book.

¢ An Internet mailing list has been set up so that instructors using this book can
exchange information, suggestions, and questions with each other and with
the author. As soon as typos or other errors are discovered, an errata list for
this book will be available at WilliamStallings.com. Sign-up information for
this Internet mailing list.

e Computer science student resource list: A list of helpful links for computer
science students and professionals is provided at ComputerScienceStudent.com,
which provides documents, information, and useful links for computer science
students and professionals.

¢ Programming projects: Two major programming projects, one to build a
shell (or command line interpreter) and one to build a process dispatcher,
are described in the online portion of this textbook. The IRC provides fur-
ther information and step-by-step exercises for developing the programs. As
an alternative, the instructor can assign a more extensive series of projects
that cover many of the principles in the book. The student is provided with

Operating Systems: Internals and Design Principles, Seventh Edition, by William Stallings. Published by Prentice Hall. Copyright © 2012 by Pearson Education, Inc.



Xvi PREFACE

detailed instructions for doing each of the projects. In addition, there is a set of
homework problems, which involve questions related to each project for the
student to answer.

Projects and Other Student Exercises

For many instructors, an important component of an OS course is a project or set
of projects by which the student gets hands-on experience to reinforce concepts
from the text. This book provides an unparalleled degree of support for including
a projects component in the course. In the online portion of the text, two major
programming projects are defined. In addition, the instructor support materials
available through Pearson not only include guidance on how to assign and structure
the various projects but also includes a set of user’s manuals for various project
types plus specific assignments, all written especially for this book. Instructors can
assign work in the following areas:

¢ 08S/161 projects: Described below.
¢ Simulation projects: Described below.
¢ Programming projects: Described below.

¢ Research projects: A series of research assignments that instruct the student
to research a particular topic on the Internet and write a report.

¢ Reading/report assignments: A list of papers that can be assigned for reading
and writing a report, plus suggested assignment wording.

e Writing assignments: A list of writing assignments to facilitate learning the
material.

¢ Discussion topics: These topics can be used in a classroom, chat room, or mes-
sage board environment to explore certain areas in greater depth and to foster
student collaboration.

In addition, information is provided on a software package known as BACI that
serves as a framework for studying concurrency mechanisms.

This diverse set of projects and other student exercises enables the instructor to
use the book as one component in a rich and varied learning experience and to tailor a
course plan to meet the specific needs of the instructor and students. See Appendix B
in this book for details.

0OS/161

New to this edition is support for an active learning component based on OS/161.
OS/161 is an educational operating system that is becoming increasingly recog-
nized as the preferred teaching platform for OS internals. It aims to strike a bal-
ance between giving students experience in working on a real operating system and
potentially overwhelming students with the complexity that exists in a fully fledged
operating system, such as Linux. Compared to most deployed operating systems,
0OS/161 is quite small (approximately 20,000 lines of code and comments), and there-
fore it is much easier to develop an understanding of the entire code base.
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The IRC includes:

1. A packaged set of html files that the instructor can upload to a course server
for student access.

2. A getting-started manual to be handed out to students to help them begin
using OS/161.

3. A set of exercises using OS/161, to be handed out to students.
4. Model solutions to each exercise for the instructor’s use.

5. All of this will be cross-referenced with appropriate sections in the book, so
that the student can read the textbook material and then do the corresponding
OS/161 project.

Simulations for Students and Instructors

The IRC provides support for assigning projects based on a set of seven simulations
that cover key areas of OS design. The student can use a set of simulation packages
to analyze OS design features. The simulators are all written in Java and can be run
either locally as a Java application or online through a browser. The IRC includes
specific assignments to give to students, telling them specifically what they are to do
and what results are expected.

Animations for Students and Instructors

This edition also incorporates animations. Animations provide a powerful tool for
understanding the complex mechanisms of a modern OS. A total of 53 animations
are used to illustrate key functions and algorithms in OS design. The animations are
used for Chapters 3, 5, 6,7, 8,9, and 11. For access to the animations, click on the
rotating globe at this book’s Web site at WilliamStallings.com/OS/OS7e.html.
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These delightful records should have been my constant study.

THE IMPORTANCE OF BEING EARNEST, OSCAR WILDE

This book, with its accompanying Web site, covers a lot of material. Here we give
the reader some basic background information.

0.1 OUTLINE OF THIS BOOK

The book is organized in eight parts:

Part One. Background: Provides an overview of computer architecture and
organization, with emphasis on topics that relate to operating system (OS)
design, plus an overview of the OS topics in remainder of the book.

Part Two. Processes: Presents a detailed analysis of processes, multithreading,
symmetric multiprocessing (SMP), and microkernels. This part also examines
the key aspects of concurrency on a single system, with emphasis on issues of
mutual exclusion and deadlock.

Part Three. Memory: Provides a comprehensive survey of techniques for mem-
ory management, including virtual memory.

Part Four. Scheduling: Provides a comparative discussion of various approaches
to process scheduling. Thread scheduling, SMP scheduling, and real-time
scheduling are also examined.

Part Five. Input/Output and Files: Examines the issues involved in OS control
of the I/O function. Special attention is devoted to disk I/O, which is the key to
system performance. Also provides an overview of file management.

Part Six. Embedded Systems: Embedded systems far outnumber general-
purpose computing systems and present a number of unique OS challenges.
The chapter includes a discussion of common principles plus coverage of two
example systems: TinyOS and eCos.

Part Seven. Security: Provides a survey of threats and mechanisms for provid-
ing computer and network security.

Part Eight. Distributed Systems: Examines the major trends in the networking
of computer systems, including TCP/IP, client/server computing, and clusters.
Also describes some of the key design areas in the development of distributed
operating systems.

A number of online chapters and appendices cover additional topics relevant
to the book.

0.2 EXAMPLE SYSTEMS

This text is intended to acquaint the reader with the design principles and implemen-
tation issues of contemporary operating systems. Accordingly, a purely conceptual
or theoretical treatment would be inadequate. To illustrate the concepts and to tie
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them to real-world design choices that must be made, two operating systems have
been chosen as running examples:

¢ Windows: A multitasking operating system designed to run on a variety of PCs,
workstations, and servers. It is one of the few recent commercial operating
systems that have essentially been designed from scratch. As such, it is in a posi-
tion to incorporate in a clean fashion the latest developments in operating
system technology. The current version, presented in this book, is Windows 7.

e UNIX: A multitasking operating system originally intended for minicomputers
but implemented on a wide range of machines from powerful microcomputers
to supercomputers. Included under this topic is Linux.

The discussion of the example systems is distributed throughout the text rather
than assembled as a single chapter or appendix. Thus, during the discussion of con-
currency, the concurrency mechanisms of each example system are described, and
the motivation for the individual design choices is discussed. With this approach,
the design concepts discussed in a given chapter are immediately reinforced with
real-world examples.

The book also makes use of other example systems where appropriate,
particularly in the chapter on embedded systems.

0.3 A ROADMAP FOR READERS AND INSTRUCTORS

It would be natural for the reader to question the particular ordering of topics pre-
sented in this book. For example, the topic of scheduling (Chapters 9 and 10) is
closely related to those of concurrency (Chapters 5 and 6) and the general topic of
processes (Chapter 3) and might reasonably be covered immediately after those
topics.

The difficulty is that the various topics are highly interrelated. For example, in
discussing virtual memory, it is useful to refer to the scheduling issues related to a
page fault. Of course, it is also useful to refer to some memory management issues
when discussing scheduling decisions. This type of example can be repeated end-
lessly: A discussion of scheduling requires some understanding of I/O management
and vice versa.

Figure 0.1 suggests some of the important interrelationships between topics.
The solid lines indicate very strong relationships, from the point of view of design
and implementation decisions. Based on this diagram, it makes sense to begin with
a basic discussion of processes, which we do in Chapter 3. After that, the order is
somewhat arbitrary. Many treatments of operating systems bunch all of the mate-
rial on processes at the beginning and then deal with other topics. This is certainly
valid. However, the central significance of memory management, which I believe
1s of equal importance to process management, has led to a decision to present this
material prior to an in-depth look at scheduling.

The ideal solution is for the student, after completing Chapters 1 through
3 in series, to read and absorb the following chapters in parallel: 4 followed by
(optional) 5; 6 followed by 7; 8 followed by (optional) 9; 10. The remaining parts can
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Process
Jescription

cheduling

Figure 0.1 OS Topics

be done in any order. However, although the human brain may engage in parallel
processing, the human student finds it impossible (and expensive) to work success-
fully with four copies of the same book simultaneously open to four different chap-
ters. Given the necessity for a linear ordering, I think that the ordering used in this
book is the most effective.

A final word. Chapter 2, especially Section 2.3, provides a top-level view of
all of the key concepts covered in later chapters. Thus, after reading Chapter 2,
there is considerable flexibility in choosing the order in which to read the remaining
chapters.

0.4 INTERNET AND WEB RESOURCES

There are a number of resources available on the Internet and the Web to support
this book and for keeping up with developments in this field.

Web Sites for This Book

Three Web sites provide additional resources for students and instructors. A special
Web page for this book is maintained at WilliamStallings.com/OS/OS7e.html. For
students, this Web site includes a list of relevant links, organized by chapter, an
errata sheet for the book, and links to the animations used throughout the book.
For access to the animations, click on the rotating globe. There are also documents
that introduce the C programming language for students who are not familiar with
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or need a refresher on this language For instructors, this Web site links to course
pages by professors teaching from this book and provides a number of other useful
documents and links.

There is also an access-controlled Web site, referred to as Premium Content,
that provides a wealth of supporting material, including additional online chapters,
additional online appendices, a set of homework problems with solutions, copies of
a number of key papers in this field, and a number of other supporting documents.
See the card at the front of this book for access information. Of particular note are
the following online documents:

e Pseudocode: For those readers not comfortable with C, all of the algorithms
are also reproduced in a Pascal-like pseudocode. This pseudocode language is
intuitive and particularly easy to follow.

e Windows 7, UNIX, and Linux descriptions: As was mentioned, Windows and
various flavors of UNIX are used as running case studies, with the discussion
distributed throughout the text rather than assembled as a single chapter or
appendix. Some readers would like to have all of this material in one place as
a reference. Accordingly, all of the Windows, UNIX, and Linux material from
the book is reproduced in three documents at the Web site.

Finally, additional material for instructors is available at the Instructor
Resource Center (IRC) for this book. See Preface for details and access information.

As soon as any typos or other errors are discovered, an errata list for this book
will be available at the Web site. Please report any errors that you spot. Errata
sheets for my other books are at WilliamStallings.com.

I also maintain the Computer Science Student Resource Site, at
ComputerScienceStudent.com. The purpose of this site is to provide documents,
information, and links for computer science students and professionals. Links and
documents are organized into six categories:

e Math: Includes a basic math refresher, a queueing analysis primer, a number
system primer, and links to numerous math sites.

* How-to: Advice and guidance for solving homework problems, writing techni-
cal reports, and preparing technical presentations.

* Research resources: Links to important collections of papers, technical
reports, and bibliographies.

e Miscellaneous: A variety of useful documents and links.

e Computer science careers: Useful links and documents for those considering a
career in computer science.

* Humor and other diversions: You have to take your mind off your work once
in a while.

Other Web Sites

There are numerous Web sites that provide information related to the topics of
this book. In subsequent chapters, pointers to specific Web sites can be found
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in the Recommended Reading and Web Sites section. Because the URL for a
particular Web site may change, I have not included URLSs in the book. For all of
the Web sites listed in the book, the appropriate link can be found at this book’s
Web site. Other links not mentioned in this book will be added to the Web site
over time.

USENET Newsgroups

A number of USENET newsgroups are devoted to some aspect of operating sys-
tems or to a particular operating system. As with virtually all USENET groups,
there is a high noise-to-signal ratio, but it is worth experimenting to see if any meet
your needs. The most relevant are as follows:

e comp.os.research: The best group to follow. This is a moderated newsgroup
that deals with research topics.
e comp.os.misc: A general discussion of OS topics.

e comp.os.linux.development.system: Linux discussion for developers.
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No artifact designed by man is so convenient for this kind of functional
description as a digital computer. Almost the only ones of its properties
that are detectable in its behavior are the organizational properties.
Almost no interesting statement that one can make about on operating
computer bears any particular relation to the specific nature of the hard-
ware. A computer is an organization of elementary functional components
in which, to a high approximation, only the function performed by those
components is relevant to the behavior of the whole system.

THE SCIENCES OF THE ARTIFICIAL, HERBERT SIMON

LEARNING OBJECTIVES

After studying this chapter, you should be able to:

¢ Describe the basic elements of a computer system and their interrelationship.
¢ Explain the steps taken by a processor to execute an instruction.

e Understand the concept of interrupts and how and why a processor uses
interrupts.

e List and describe the levels of a typical computer memory hierarchy.

¢ Explain the basic characteristics of multiprocessor and multicore organizations.

e Discuss the concept of locality and analyze the performance of a multilevel
memory hierarchy.

e Understand the operation of a stack and its use to support procedure call and
return.

An operating system (OS) exploits the hardware resources of one or more proces-
sors to provide a set of services to system users. The OS also manages secondary
memory and I/O (input/output) devices on behalf of its users. Accordingly, it is
important to have some understanding of the underlying computer system hardware
before we begin our examination of operating systems.

This chapter provides an overview of computer system hardware. In most
areas, the survey is brief, as it is assumed that the reader is familiar with this subject.
However, several areas are covered in some detail because of their importance to
topics covered later in the book. Further topics are covered in Appendix C.

1.1 BASIC ELEMENTS

At atop level, a computer consists of processor, memory, and I/O components, with
one or more modules of each type. These components are interconnected in some
fashion to achieve the main function of the computer, which is to execute programs.
Thus, there are four main structural elements:

* Processor: Controls the operation of the computer and performs its data pro-
cessing functions. When there is only one processor, it is often referred to as
the central processing unit (CPU).
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¢ Main memory: Stores data and programs. This memory is typically volatile; that
is, when the computer is shut down, the contents of the memory are lost. In
contrast, the contents of disk memory are retained even when the computer
system is shut down. Main memory is also referred to as real memory or primary
memory.

¢ I/0 modules: Move data between the computer and its external environment.
The external environment consists of a variety of devices, including secondary
memory devices (e.g., disks), communications equipment, and terminals.

e System bus: Provides for communication among processors, main memory,
and I/O modules.

Figure 1.1 depicts these top-level components. One of the processor’s func-
tions is to exchange data with memory. For this purpose, it typically makes use of
two internal (to the processor) registers: a memory address register (MAR), which
specifies the address in memory for the next read or write; and a memory buffer reg-
ister (MBR), which contains the data to be written into memory or which receives

CPU Main memory
System . 0
bus . 2
PC MAR : .
Instruction °
Instruction .
IR MBR Instr:lction
I/O AR *
Data
I/O BR
Data
Data
I/0O module . n—2
n—1
m PC = Program counter
. IR = Instruction register
: MAR = Memory address register
Buffers MBR = Memory buffer register

I/0 AR = Input/output address register
I/0 BR = Input/output buffer register

Figure 1.1 Computer Components: Top-Level View
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the data read from memory. Similarly, an I/O address register (I/OAR) specifies a
particular I/O device. An I/O buffer register (I/OBR) is used for the exchange of
data between an I/O module and the processor.

A memory module consists of a set of locations, defined by sequentially num-
bered addresses. Each location contains a bit pattern that can be interpreted as
either an instruction or data. An I/O module transfers data from external devices to
processor and memory, and vice versa. It contains internal buffers for temporarily
holding data until they can be sent on.

1.2 EVOLUTION OF THE MICROPROCESSOR

The hardware revolution that brought about desktop and handheld computing was
the invention of the microprocessor, which contained a processor on a single chip.
Though originally much slower than multichip processors, microprocessors have
continually evolved to the point that they are now much faster for most computa-
tions due to the physics involved in moving information around in sub-nanosecond
timeframes.

Not only have microprocessors become the fastest general purpose processors
available, they are now multiprocessors; each chip (called a socket) contains multi-
ple processors (called cores), each with multiple levels of large memory caches, and
multiple logical processors sharing the execution units of each core. As of 2010, it is
not unusual for even a laptop to have 2 or 4 cores, each with 2 hardware threads, for
a total of 4 or 8 logical processors.

Although processors provide very good performance for most forms of
computing, there is increasing demand for numerical computation. Graphical
Processing Units (GPUs) provide efficient computation on arrays of data using
Single-Instruction Multiple Data (SIMD) techniques pioneered in supercomput-
ers. GPUs are no longer used just for rendering advanced graphics, but they are
also used for general numerical processing, such as physics simulations for games
or computations on large spreadsheets. Simultaneously, the CPUs themselves are
gaining the capability of operating on arrays of data—with increasingly power-
ful vector units integrated into the processor architecture of the x86 and AMD64
families.

Processors and GPUs are not the end of the computational story for the
modern PC. Digital Signal Processors (DSPs) are also present, for dealing with
streaming signals—such as audio or video. DSPs used to be embedded in I/O
devices, like modems, but they are now becoming first-class computational devices,
especially in handhelds. Other specialized computational devices (fixed function
units) co-exist with the CPU to support other standard computations, such as
encoding/decoding speech and video (codecs), or providing support for encryption
and security.

To satisfy the requirements of handheld devices, the classic microprocessor
is giving way to the System on a Chip (SoC), where not just the CPUs and caches
are on the same chip, but also many of the other components of the system, such as
DSPs, GPUs, I/O devices (such as radios and codecs), and main memory.
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1.3 INSTRUCTION EXECUTION

A program to be executed by a processor consists of a set of instructions stored
in memory. In its simplest form, instruction processing consists of two steps: The
processor reads (fetches) instructions from memory one at a time and executes each
instruction. Program execution consists of repeating the process of instruction fetch
and instruction execution. Instruction execution may involve several operations and
depends on the nature of the instruction.

The processing required for a single instruction is called an instruction cycle.
Using a simplified two-step description, the instruction cycle is depicted in Figure 1.2.
The two steps are referred to as the fetch stage and the execute stage. Program execu-
tion halts only if the processor is turned off, some sort of unrecoverable error occurs,
or a program instruction that halts the processor is encountered.

At the beginning of each instruction cycle, the processor fetches an instruc-
tion from memory. Typically, the program counter (PC) holds the address of the
next instruction to be fetched. Unless instructed otherwise, the processor always
increments the PC after each instruction fetch so that it will fetch the next instruc-
tion in sequence (i.e., the instruction located at the next higher memory address).
For example, consider a simplified computer in which each instruction occupies one
16-bit word of memory. Assume that the program counter is set to location 300.
The processor will next fetch the instruction at location 300. On succeeding instruc-
tion cycles, it will fetch instructions from locations 301, 302, 303, and so on. This
sequence may be altered, as explained subsequently.

The fetched instruction is loaded into the instruction register (IR). The
instruction contains bits that specify the action the processor is to take. The proces-
sor interprets the instruction and performs the required action. In general, these
actions fall into four categories:

* Processor-memory: Data may be transferred from processor to memory or
from memory to processor.

* Processor-I/0: Data may be transferred to or from a peripheral device by
transferring between the processor and an I/O module.

e Data processing: The processor may perform some arithmetic or logic opera-
tion on data.

¢ Control: An instruction may specify that the sequence of execution be altered.
For example, the processor may fetch an instruction from location 149, which

Fetch stage Execute stage

L Z
START > _Fetch nfext ‘ Execuye HALT
instruction instruction

Figure 1.2 Basic Instruction Cycle
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Opcode | Address

(a) Instruction format

0 1 15
| S | Magnitude

(b) Integer format

Program counter (PC) = Address of instruction
Instruction register (IR) = Instruction being executed
Accumulator (AC) = Temporary storage

(c) Internal CPU registers

0001 = Load AC from memory
0010 = Store AC to memory
0101 = Add to AC from memory

(d) Partial list of opcodes

Figure 1.3 Characteristics of a Hypothetical Machine

specifies that the next instruction will be from location 182. The processor sets
the program counter to 182. Thus, on the next fetch stage, the instruction will
be fetched from location 182 rather than 150.

An instruction’s execution may involve a combination of these actions.

Consider a simple example using a hypothetical processor that includes
the characteristics listed in Figure 1.3. The processor contains a single data reg-
ister, called the accumulator (AC). Both instructions and data are 16 bits long,
and memory is organized as a sequence of 16-bit words. The instruction format
provides 4 bits for the opcode, allowing as many as 2* = 16 different opcodes (rep-
resented by a single hexadecimal® digit). The opcode defines the operation the
processor is to perform. With the remaining 12 bits of the instruction format, up to
212 = 4,096 (4K) words of memory (denoted by three hexadecimal digits) can be
directly addressed.

Figure 1.4 illustrates a partial program execution, showing the relevant
portions of memory and processor registers. The program fragment shown adds the
contents of the memory word at address 940 to the contents of the memory word at
address 941 and stores the result in the latter location. Three instructions, which can
be described as three fetch and three execute stages, are required:

1. The PC contains 300, the address of the first instruction. This instruction (the
value 1940 in hexadecimal) is loaded into the IR and the PC is incremented.
Note that this process involves the use of a memory address register (MAR)

A basic refresher on number systems (decimal, binary, hexadecimal) can be found at the Computer
Science Student Resource Site at ComputerScienceStudent.com.
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Fetch stage Execute stage

Memory CPU registers Memory CPU registers
30001 9 40 3 0 0]PC 30001 9 40 3 0 1]PC
30159411> AC|301(5 9 4 1 000 3[AC
30212 9 41 1 940|IR|302(2 9 4 1 1 94 0|IR
940|/0 0 0 3 94010 0 0 3

94110 0 0 2 94110 0 0 2

Step 1 Step 2

Memory CPU registers Memory CPU registers
300(1 9 4 30 1]PC 30001 9 4 3 0 2|PC

0 0
301(59 41 000 3|AC|301|59 41 000 5|AC
30229411594IIR3022941<5941->IR

940|/0 0 0 3 94010 0 0 3 3+2=5
941[0. 0 0 2 941[0 0 0 2—"

Step 3 Step 4

Memory CPU registers Memory CPU registers
30001 9 40 3 0 2|PC 30001 940 3 0 3]PC
30115 9 41 000 S5|AC[301[59 41 000 5|AC
30212 9 4 129 4 1|IR|302]2 9 41 2 94 1[|IR
940{0 0 0 3 940{0 0 0 3

94110 0 0 2 94110 0 0 5

Step 5 Step 6

Figure 1.4 Example of Program Execution (contents
of memory and registers in hexadecimal)

and a memory buffer register (MBR). For simplicity, these intermediate regis-
ters are not shown.

2. The first 4 bits (first hexadecimal digit) in the IR indicate that the AC is to be
loaded from memory. The remaining 12 bits (three hexadecimal digits) specify
the address, which is 940.

3. The next instruction (5941) is fetched from location 301 and the PC is
incremented.

4. The old contents of the AC and the contents of location 941 are added and the
result is stored in the AC.

5. The next instruction (2941) is fetched from location 302 and the PC is
incremented.

6. The contents of the AC are stored in location 941.

In this example, three instruction cycles, each consisting of a fetch stage and
an execute stage, are needed to add the contents of location 940 to the contents
of 941. With a more complex set of instructions, fewer instruction cycles would be
needed. Most modern processors include instructions that contain more than one
address. Thus the execution stage for a particular instruction may involve more than
one reference to memory. Also, instead of memory references, an instruction may
specify an I/O operation.
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1.4 INTERRUPTS

Virtually all computers provide a mechanism by which other modules (I/O, mem-
ory) may interrupt the normal sequencing of the processor. Table 1.1 lists the most
common classes of interrupts.

Interrupts are provided primarily as a way to improve processor utilization.
For example, most I/O devices are much slower than the processor. Suppose that
the processor is transferring data to a printer using the instruction cycle scheme of
Figure 1.2. After each write operation, the processor must pause and remain idle
until the printer catches up. The length of this pause may be on the order of many
thousands or even millions of instruction cycles. Clearly, this is a very wasteful use
of the processor.

To give a specific example, consider a PC that operates at 1 GHz, which would
allow roughly 10° instructions per second.” A typical hard disk has a rotational
speed of 7200 revolutions per minute for a half-track rotation time of 4 ms, which is
4 million times slower than the processor.

Figure 1.5a illustrates this state of affairs. The user program performs a series of
WRITE calls interleaved with processing. The solid vertical lines represent segments
of code in a program. Code segments 1, 2, and 3 refer to sequences of instructions that
do not involve I/O. The WRITE calls are to an I/O routine that is a system utility and
that will perform the actual I/O operation. The I/O program consists of three sections:

e A sequence of instructions, labeled 4 in the figure, to prepare for the actual
I/O operation. This may include copying the data to be output into a special
buffer and preparing the parameters for a device command.

e The actual I/O command. Without the use of interrupts, once this command
is issued, the program must wait for the I/O device to perform the requested
function (or periodically check the status, or poll, the I/O device). The program
might wait by simply repeatedly performing a test operation to determine if
the I/O operation is done.

* A sequence of instructions, labeled 5 in the figure, to complete the operation.
This may include setting a flag indicating the success or failure of the operation.

Table 1.1 Classes of Interrupts

Program Generated by some condition that occurs as a result of an instruction execution, such as
arithmetic overflow, division by zero, attempt to execute an illegal machine instruction,
and reference outside a user’s allowed memory space.

Timer Generated by a timer within the processor. This allows the operating system to perform
certain functions on a regular basis.

/O Generated by an I/O controller, to signal normal completion of an operation or to signal
a variety of error conditions.

Hardware failure | Generated by a failure, such as power failure or memory parity error.

2A discussion of the uses of numerical prefixes, such as giga and tera, is contained in a supporting docu-
ment at the Computer Science Student Resource Site at ComputerScienceStudent.com.
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Figure 1.5 Program Flow of Control without and with Interrupts

The dashed line represents the path of execution followed by the processor;
that is, this line shows the sequence in which instructions are executed. Thus, after
the first WRITE instruction is encountered, the user program is interrupted and
execution continues with the I/O program. After the I/O program execution is com-
plete, execution resumes in the user program immediately following the WRITE
instruction.

Because the I/O operation may take a relatively long time to complete, the I/O
program is hung up waiting for the operation to complete; hence, the user program
is stopped at the point of the WRITE call for some considerable period of time.

Interrupts and the Instruction Cycle

With interrupts, the processor can be engaged in executing other instructions while
an I/O operation is in progress. Consider the flow of control in Figure 1.5b. As
before, the user program reaches a point at which it makes a system call in the form
of a WRITE call. The I/O program that is invoked in this case consists only of the
preparation code and the actual I/O command. After these few instructions have
been executed, control returns to the user program. Meanwhile, the external device
is busy accepting data from computer memory and printing it. This I/O operation is
conducted concurrently with the execution of instructions in the user program.
When the external device becomes ready to be serviced, that is, when it is
ready to accept more data from the processor, the I/O module for that external
device sends an interrupt request signal to the processor. The processor responds by
suspending operation of the current program; branching off to a routine to service
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User program Interrupt handler
1 !
2
° °
° °
° °
Interrupt ——- !
occurs here i+1
°
°
°
M

Figure 1.6 Transfer of Control via Interrupts

that particular I/O device, known as an interrupt handler; and resuming the original
execution after the device is serviced. The points at which such interrupts occur are
indicated by ¥ in Figure 1.5b. Note that an interrupt can occur at any point in the
main program, not just at one specific instruction.

For the user program, an interrupt suspends the normal sequence of execu-
tion. When the interrupt processing is completed, execution resumes (Figure 1.6).
Thus, the user program does not have to contain any special code to accommodate
interrupts; the processor and the OS are responsible for suspending the user pro-
gram and then resuming it at the same point.

To accommodate interrupts, an interrupt stage is added to the instruction cycle,
as shown in Figure 1.7 (compare Figure 1.2). In the interrupt stage, the processor
checks to see if any interrupts have occurred, indicated by the presence of an inter-
rupt signal. If no interrupts are pending, the processor proceeds to the fetch stage
and fetches the next instruction of the current program. If an interrupt is pending,

Fetch stage Execute stage Interrupt stage
< Interrupts
disabled
Check for
( START > > Fetch next > _ Exeche |  interrupt;
instruction instruction Interrupts | initiate interrupt
enabled handler

( HALT )

Figure 1.7 Instruction Cycle with Interrupts
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the processor suspends execution of the current program and executes an interrupt-
handler routine. The interrupt-handler routine is generally part of the OS. Typically,
this routine determines the nature of the interrupt and performs whatever actions
are needed. In the example we have been using, the handler determines which 1/O
module generated the interrupt and may branch to a program that will write more
data out to that I/O module. When the interrupt-handler routine is completed, the
processor can resume execution of the user program at the point of interruption.

It is clear that there is some overhead involved in this process. Extra instruc-
tions must be executed (in the interrupt handler) to determine the nature of the
interrupt and to decide on the appropriate action. Nevertheless, because of the
relatively large amount of time that would be wasted by simply waiting on an I/O
operation, the processor can be employed much more efficiently with the use of
interrupts.

To appreciate the gain in efficiency, consider Figure 1.8, which is a timing dia-
gram based on the flow of control in Figures 1.5a and 1.5b. Figures 1.5b and 1.8

Time

o

Processor 1/0
wait operation

/0
operation

@\@\@

/0
operation

Processor /0
wait operation

o|eje|e|e|e|e|e|o

(b) With interrupts
(circled numbers refer
to numbers in Figure 1.5b)

@\@

(a) Without interrupts
(circled numbers refer
to numbers in Figure 1.5a)

Figure 1.8 Program Timing: Short I/0 Wait
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assume that the time required for the I/O operation is relatively short: less than the
time to complete the execution of instructions between write operations in the user
program. The more typical case, especially for a slow device such as a printer, is
that the I/O operation will take much more time than executing a sequence of user
instructions. Figure 1.5c indicates this state of affairs. In this case, the user program
reaches the second WRITE call before the I/O operation spawned by the first call is
complete. The result is that the user program is hung up at that point. When the pre-
ceding I/O operation is completed, this new WRITE call may be processed, and a
new I/O operation may be started. Figure 1.9 shows the timing for this situation with
and without the use of interrupts. We can see that there is still a gain in efficiency
because part of the time during which the I/O operation is underway overlaps with
the execution of user instructions.

o o
9 @
Processor 1/0 @

wait operation

Time

1/0
operation
Processor
@ wait
1/0
Proce.ssor I/O. operation
wait operation
Processor
wait
@ (b) With interrupts
(circled numbers refer

to numbers in Figure 1.5¢)

(a) Without interrupts
(circled numbers refer
to numbers in Figure 1.5a)

Figure 1.9 Program Timing: Long I/0 Wait
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Interrupt Processing

An interrupt triggers a number of events, both in the processor hardware and in
software. Figure 1.10 shows a typical sequence. When an 1/O device completes an
I/0O operation, the following sequence of hardware events occurs:

1. The device issues an interrupt signal to the processor.

2. The processor finishes execution of the current instruction before responding
to the interrupt, as indicated in Figure 1.7.

3. The processor tests for a pending interrupt request, determines that there is
one, and sends an acknowledgment signal to the device that issued the inter-
rupt. The acknowledgment allows the device to remove its interrupt signal.

4. The processor next needs to prepare to transfer control to the interrupt rou-
tine. To begin, it saves information needed to resume the current program at
the point of interrupt. The minimum information required is the program sta-
tus word® (PSW) and the location of the next instruction to be executed, which

Hardware Software
N N

Device controller or
other system hardware
issues an interrupt

Y

Save remainder of
process state
information

Y

Processor finishes
execution of current
instruction

Process interrupt

Processor signals
acknowledgment
of interrupt Y
Restore process state
information
Processor pushes PSW
and PC onto control
stack Y
Restore old PSW
Y and PC

Processor loads new
PC value based on
interrupt

Figure 1.10 Simple Interrupt Processing

3The PSW contains status information about the currently running process, including memory usage
information, condition codes, and other status information, such as an interrupt enable/disable bit and a
kernel/user mode bit. See Appendix C for further discussion.
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is contained in the program counter (PC). These can be pushed onto a control
stack (see Appendix P).

5. The processor then loads the program counter with the entry location of the
interrupt-handling routine that will respond to this interrupt. Depending on
the computer architecture and OS design, there may be a single program,
one for each type of interrupt, or one for each device and each type of inter-
rupt. If there is more than one interrupt-handling routine, the processor must
determine which one to invoke. This information may have been included in
the original interrupt signal, or the processor may have to issue a request to
the device that issued the interrupt to get a response that contains the needed
information.

Once the program counter has been loaded, the processor proceeds to the next
instruction cycle, which begins with an instruction fetch. Because the instruction
fetch is determined by the contents of the program counter, control is transferred to
the interrupt-handler program. The execution of this program results in the follow-
ing operations:

6. At this point, the program counter and PSW relating to the interrupted
program have been saved on the control stack. However, there is other in-
formation that is considered part of the state of the executing program. In
particular, the contents of the processor registers need to be saved, because
these registers may be used by the interrupt handler. So all of these values,
plus any other state information, need to be saved. Typically, the interrupt
handler will begin by saving the contents of all registers on the stack. Other
state information that must be saved is discussed in Chapter 3. Figure 1.11a
shows a simple example. In this case, a user program is interrupted after the
instruction at location N. The contents of all of the registers plus the address
of the next instruction (N + 1), a total of M words, are pushed onto the control
stack. The stack pointer is updated to point to the new top of stack, and the
program counter is updated to point to the beginning of the interrupt service
routine.

7. The interrupt handler may now proceed to process the interrupt. This includes
an examination of status information relating to the I/O operation or other
event that caused an interrupt. It may also involve sending additional com-
mands or acknowledgments to the I/O device.

8. When interrupt processing is complete, the saved register values are retrieved
from the stack and restored to the registers (e.g., see Figure 1.11b).

9. The final act is to restore the PSW and program counter values from the stack.
As a result, the next instruction to be executed will be from the previously
interrupted program.

It is important to save all of the state information about the interrupted pro-
gram for later resumption. This is because the interrupt is not a routine called from
the program. Rather, the interrupt can occur at any time and therefore at any point
in the execution of a user program. Its occurrence is unpredictable.
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(a) Interrupt occurs after instruction (b) Return from interrupt

at location N

Figure 1.11 Changes in Memory and Registers for an Interrupt

Multiple Interrupts

So far, we have discussed the occurrence of a single interrupt. Suppose, however,
that one or more interrupts can occur while an interrupt is being processed. For
example, a program may be receiving data from a communications line and print-
ing results at the same time. The printer will generate an interrupt every time that
it completes a print operation. The communication line controller will generate an
interrupt every time a unit of data arrives. The unit could either be a single character
or a block, depending on the nature of the communications discipline. In any case, it
is possible for a communications interrupt to occur while a printer interrupt is being
processed.
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Two approaches can be taken to dealing with multiple interrupts. The first
is to disable interrupts while an interrupt is being processed. A disabled interrupt
simply means that the processor ignores any new interrupt request signal. If an
interrupt occurs during this time, it generally remains pending and will be checked
by the processor after the processor has reenabled interrupts. Thus, if an interrupt
occurs when a user program is executing, then interrupts are disabled immediately.
After the interrupt-handler routine completes, interrupts are reenabled before
resuming the user program, and the processor checks to see if additional interrupts
have occurred. This approach is simple, as interrupts are handled in strict sequential
order (Figure 1.12a).

Interrupt

User program handler X

7 _

\

\

|

Interrupt
handler Y

>

N—
(a) Sequential interrupt processing
Interrupt
User program handler X
/ =
\\:
Interrupt
handler Y

III|III|II||IIlllllllllllfl\llllllll

4IIIIIIIIII’

(b) Nested interrupt processing

Figure 1.12 Transfer of Control with Multiple Interrupts
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The drawback to the preceding approach is that it does not take into account
relative priority or time-critical needs. For example, when input arrives from the
communications line, it may need to be absorbed rapidly to make room for more
input. If the first batch of input has not been processed before the second batch
arrives, data may be lost because the buffer on the I/O device may fill and overflow.

A second approach is to define priorities for interrupts and to allow an inter-
rupt of higher priority to cause a lower-priority interrupt handler to be interrupted
(Figure 1.12b). As an example of this second approach, consider a system with three
I/O devices: a printer, a disk, and a communications line, with increasing priorities of
2,4, and 5, respectively. Figure 1.13, based on an example in [TANEO06], illustrates
a possible sequence. A user program begins at t = 0. At ¢ = 10, a printer interrupt
occurs; user information is placed on the control stack and execution continues at
the printer interrupt service routine (ISR). While this routine is still executing, at
t = 15 a communications interrupt occurs. Because the communications line has
higher priority than the printer, the interrupt request is honored. The printer ISR is
interrupted, its state is pushed onto the stack, and execution continues at the com-
munications ISR. While this routine is executing, a disk interrupt occurs (¢ = 20).
Because this interrupt is of lower priority, it is simply held, and the communications
ISR runs to completion.

When the communications ISR is complete (¢t = 25), the previous processor
state is restored, which is the execution of the printer ISR. However, before even a
single instruction in that routine can be executed, the processor honors the higher-
priority disk interrupt and transfers control to the disk ISR. Only when that routine
is complete (¢ = 35) is the printer ISR resumed. When that routine completes
(t = 40), control finally returns to the user program.

Printer Communication
User program . . . . . .
1nterrupt service routine 1nterrupt service routine
—r=0 - /_
- z 5 z
— N — N > —
= 7 = =
—_— " — —
~/ N2 | -
— — L=
i — .
= 7w —_ 7~ 25 ) DlSl.( )
_ 0 — interrupt service routine
= N— ~

{

Figure 1.13 Example Time Sequence of Multiple Interrupts
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1.5 THE MEMORY HIERARCHY

The design constraints on a computer’s memory can be summed up by three ques-
tions: How much? How fast? How expensive?

The question of how much is somewhat open ended. If the capacity is there,
applications will likely be developed to use it. The question of how fast is, in a sense,
easier to answer. To achieve greatest performance, the memory must be able to
keep up with the processor. That is, as the processor is executing instructions, we
would not want it to have to pause waiting for instructions or operands. The final
question must also be considered. For a practical system, the cost of memory must
be reasonable in relationship to other components.

As might be expected, there is a trade-off among the three key characteristics
of memory: namely, capacity, access time, and cost. A variety of technologies are
used to implement memory systems, and across this spectrum of technologies, the
following relationships hold:

e Faster access time, greater cost per bit
e QGreater capacity, smaller cost per bit
e QGreater capacity, slower access speed

The dilemma facing the designer is clear. The designer would like to use
memory technologies that provide for large-capacity memory, both because the
capacity is needed and because the cost per bit is low. However, to meet perform-
ance requirements, the designer needs to use expensive, relatively lower-capacity
memories with fast access times.

The way out of this dilemma is to not rely on a single memory component or
technology, but to employ a memory hierarchy. A typical hierarchy is illustrated in
Figure 1.14. As one goes down the hierarchy, the following occur:

Decreasing cost per bit
Increasing capacity
Increasing access time

0 F P

Decreasing frequency of access to the memory by the processor

Thus, smaller, more expensive, faster memories are supplemented by larger,
cheaper, slower memories. The key to the success of this organization is the decreas-
ing frequency of access at lower levels. We will examine this concept in greater
detail later in this chapter, when we discuss the cache, and when we discuss virtual
memory later in this book. A brief explanation is provided at this point.

Suppose that the processor has access to two levels of memory. Level 1 con-
tains 1,000 bytes and has an access time of 0.1 ps; level 2 contains 100,000 bytes and
has an access time of 1 us. Assume that if a byte to be accessed is in level 1, then
the processor accesses it directly. If it is in level 2, then the byte is first transferred
to level 1 and then accessed by the processor. For simplicity, we ignore the time
required for the processor to determine whether the byte is in level 1 or level 2.
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Figure 1.14 The Memory Hierarchy

Figure 1.15 shows the general shape of the curve that models this situation. The
figure shows the average access time to a two-level memory as a function of the hit
ratio /1, where H is defined as the fraction of all memory accesses that are found
in the faster memory (e.g., the cache), 77 is the access time to level 1, and 7 is the
access time to level 2.* As can be seen, for high percentages of level 1 access, the
average total access time is much closer to that of level 1 than that of level 2.

In our example, suppose 95% of the memory accesses are found in the cache
(H = 0.95). Then the average time to access a byte can be expressed as

(0.95) (0.1 ps) + (0.05) (0.1 us + 1 ps) = 0.095 + 0.055 = 0.15 ps

The result is close to the access time of the faster memory. So the strategy
of using two memory levels works in principle, but only if conditions (a) through
(d) in the preceding list apply. By employing a variety of technologies, a spectrum of

“If the accessed word is found in the faster memory, that is defined as a hit. A miss occurs if the accessed
word is not found in the faster memory.
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Figure 1.15 Performance of a Simple Two-Level
Memory

memory systems exists that satisfies conditions (a) through (c). Fortunately, condi-
tion (d) is also generally valid.

The basis for the validity of condition (d) is a principle known as locality of
reference [DENNG6S]. During the course of execution of a program, memory refer-
ences by the processor, for both instructions and data, tend to cluster. Programs
typically contain a number of iterative loops and subroutines. Once a loop or subrou-
tine is entered, there are repeated references to a small set of instructions. Similarly,
operations on tables and arrays involve access to a clustered set of data bytes. Over
a long period of time, the clusters in use change, but over a short period of time, the
processor is primarily working with fixed clusters of memory references.

Accordingly, it is possible to organize data across the hierarchy such that the
percentage of accesses to each successively lower level is substantially less than that of
the level above. Consider the two-level example already presented. Let level 2 mem-
ory contain all program instructions and data. The current clusters can be temporarily
placed in level 1. From time to time, one of the clusters in level 1 will have to be
swapped back to level 2 to make room for a new cluster coming in to level 1. On aver-
age, however, most references will be to instructions and data contained in level 1.

This principle can be applied across more than two levels of memory. The
fastest, smallest, and most expensive type of memory consists of the registers inter-
nal to the processor. Typically, a processor will contain a few dozen such registers,
although some processors contain hundreds of registers. Skipping down two levels,
main memory is the principal internal memory system of the computer. Each loca-
tion in main memory has a unique address, and most machine instructions refer
to one or more main memory addresses. Main memory is usually extended with a
higher-speed, smaller cache. The cache is not usually visible to the programmer or,
indeed, to the processor. It is a device for staging the movement of data between
main memory and processor registers to improve performance.
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The three forms of memory just described are, typically, volatile and employ
semiconductor technology. The use of three levels exploits the fact that semicon-
ductor memory comes in a variety of types, which differ in speed and cost. Data are
stored more permanently on external mass storage devices, of which the most com-
mon are hard disk and removable media, such as removable disk, tape, and optical
storage. External, nonvolatile memory is also referred to as secondary memory or
auxiliary memory. These are used to store program and data files, and are usually
visible to the programmer only in terms of files and records, as opposed to individ-
ual bytes or words. A hard disk is also used to provide an extension to main memory
known as virtual memory, which is discussed in Chapter 8.

Additional levels can be effectively added to the hierarchy in software. For
example, a portion of main memory can be used as a buffer to temporarily hold data
that are to be read out to disk. Such a technique, sometimes referred to as a disk
cache (examined in detail in Chapter 11), improves performance in two ways:

e Disk writes are clustered. Instead of many small transfers of data, we have a
few large transfers of data. This improves disk performance and minimizes
processor involvement.

e Some data destined for write-out may be referenced by a program before the
next dump to disk. In that case, the data are retrieved rapidly from the soft-
ware cache rather than slowly from the disk.

Appendix 1A examines the performance implications of multilevel memory
structures.

1.6 CACHE MEMORY

Although cache memory is invisible to the OS, it interacts with other memory man-
agement hardware. Furthermore, many of the principles used in virtual memory
schemes (discussed in Chapter 8) are also applied in cache memory.

Motivation

On all instruction cycles, the processor accesses memory at least once, to fetch
the instruction, and often one or more additional times, to fetch operands and/
or store results. The rate at which the processor can execute instructions is clearly
limited by the memory cycle time (the time it takes to read one word from or write
one word to memory). This limitation has been a significant problem because of
the persistent mismatch between processor and main memory speeds: Over the
years, processor speed has consistently increased more rapidly than memory access
speed. We are faced with a trade-off among speed, cost, and size. Ideally, main
memory should be built with the same technology as that of the processor registers,
giving memory cycle times comparable to processor cycle times. This has always
been too expensive a strategy. The solution is to exploit the principle of locality by
providing a small, fast memory between the processor and main memory, namely
the cache.
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Figure 1.16 Cache and Main Memory

Cache Principles

Cache memory is intended to provide memory access time approaching that of the
fastest memories available and at the same time support a large memory size that has
the price of less expensive types of semiconductor memories. The concept is illus-
trated in Figure 1.16a. There is a relatively large and slow main memory together
with a smaller, faster cache memory. The cache contains a copy of a portion of main
memory. When the processor attempts to read a byte or word of memory, a check
is made to determine if the byte or word is in the cache. If so, the byte or word is
delivered to the processor. If not, a block of main memory, consisting of some fixed
number of bytes, is read into the cache and then the byte or word is delivered to
the processor. Because of the phenomenon of locality of reference, when a block of
data is fetched into the cache to satisfy a single memory reference, it is likely that
many of the near-future memory references will be to other bytes in the block.

Figure 1.16b depicts the use of multiple levels of cache. The L2 cache is slower
and typically larger than the L1 cache, and the L3 cache is slower and typically
larger than the L2 cache.

Figure 1.17 depicts the structure of a cache/main memory system. Main mem-
ory consists of up to 2" addressable words, with each word having a unique n-bit
address. For mapping purposes, this memory is considered to consist of a number of
fixed-length blocks of K words each. That is, there are M = 2"'/K blocks. Cache con-
sists of C slots (also referred to as /ines) of K words each, and the number of slots is
considerably less than the number of main memory blocks (C<<M).> Some subset
of the blocks of main memory resides in the slots of the cache. If a word in a block

SThe symbol << means much less than. Similarly, the symbol >> means much greater than.
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Figure 1.17 Cache/Main-Memory Structure

of memory that is not in the cache is read, that block is transferred to one of the
slots of the cache. Because there are more blocks than slots, an individual slot can-
not be uniquely and permanently dedicated to a particular block. Therefore, each
slot includes a tag that identifies which particular block is currently being stored.
The tag is usually some number of higher-order bits of the address and refers to all
addresses that begin with that sequence of bits.

As a simple example, suppose that we have a 6-bit address and a 2-bit tag. The
tag 01 refers to the block of locations with the following addresses: 010000, 010001,
010010, 010011, 010100, 010101, 010110, 010111, 011000, 011001, 011010, 011011,
011100, 011101, 011110, 011111.

Figure 1.18 illustrates the read operation. The processor generates the address,
RA, of a word to be read. If the word is contained in the cache, it is delivered to the
processor. Otherwise, the block containing that word is loaded into the cache and
the word is delivered to the processor.

Cache Design

A detailed discussion of cache design is beyond the scope of this book. Key
elements are briefly summarized here. We will see that similar design issues must be
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Figure 1.18 Cache Read Operation

addressed in dealing with virtual memory and disk cache design. They fall into the
following categories:

e Cache size

¢ Block size

* Mapping function

e Replacement algorithm
e Write policy

e Number of cache levels

We have already dealt with the issue of cache size. It turns out that reason-
ably small caches can have a significant impact on performance. Another size issue
is that of block size: the unit of data exchanged between cache and main memory.
As the block size increases from very small to larger sizes, the hit ratio will at first
increase because of the principle of locality: the high probability that data in the
vicinity of a referenced word are likely to be referenced in the near future. As the
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block size increases, more useful data are brought into the cache. The hit ratio will
begin to decrease, however, as the block becomes even bigger and the probability of
using the newly fetched data becomes less than the probability of reusing the data
that have to be moved out of the cache to make room for the new block.

When a new block of data is read into the cache, the mapping function deter-
mines which cache location the block will occupy. Two constraints affect the design
of the mapping function. First, when one block is read in, another may have to be
replaced. We would like to do this in such a way as to minimize the probability that
we will replace a block that will be needed in the near future. The more flexible the
mapping function, the more scope we have to design a replacement algorithm to
maximize the hit ratio. Second, the more flexible the mapping function, the more
complex is the circuitry required to search the cache to determine if a given block
1s in the cache.

The replacement algorithm chooses, within the constraints of the mapping
function, which block to replace when a new block is to be loaded into the cache and
the cache already has all slots filled with other blocks. We would like to replace the
block that is least likely to be needed again in the near future. Although it is impos-
sible to identify such a block, a reasonably effective strategy is to replace the block
that has been in the cache longest with no reference to it. This policy is referred to
as the least-recently-used (LRU) algorithm. Hardware mechanisms are needed to
identify the least-recently-used block.

If the contents of a block in the cache are altered, then it is necessary to write it
back to main memory before replacing it. The write policy dictates when the mem-
ory write operation takes place. At one extreme, the writing can occur every time
that the block is updated. At the other extreme, the writing occurs only when the
block is replaced. The latter policy minimizes memory write operations but leaves
main memory in an obsolete state. This can interfere with multiple-processor opera-
tion and with direct memory access by I/0O hardware modules.

Finally, it is now commonplace to have multiple levels of cache, labeled L1
(cache closest to the processor), L2, and in many cases a third level L3. A discus-
sion of the performance benefits of multiple cache levels is beyond our scope; see
[STAL10] for a discussion.

1.7 DIRECT MEMORY ACCESS

Three techniques are possible for I/O operations: programmed I/O, interrupt-driven
I/O, and direct memory access (DMA). Before discussing DMA, we briefly define
the other two techniques; see Appendix C for more detail.

When the processor is executing a program and encounters an instruction
relating to 1/O, it executes that instruction by issuing a command to the appro-
priate I/O module. In the case of programmed I/0, the I/O module performs the
requested action and then sets the appropriate bits in the I/O status register but
takes no further action to alert the processor. In particular, it does not interrupt the
processor. Thus, after the I/O instruction is invoked, the processor must take some
active role in determining when the I/O instruction is completed. For this purpose,
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the processor periodically checks the status of the I/O module until it finds that the
operation is complete.

With programmed 1/O, the processor has to wait a long time for the I/O mod-
ule of concern to be ready for either reception or transmission of more data. The
processor, while waiting, must repeatedly interrogate the status of the I/O module.
As a result, the performance level of the entire system is severely degraded.

An alternative, known as interrupt-driven 1/0, is for the processor to issue
an I/O command to a module and then go on to do some other useful work. The
I/0O module will then interrupt the processor to request service when it is ready to
exchange data with the processor. The processor then executes the data transfer, as
before, and then resumes its former processing.

Interrupt-driven I/O, though more efficient than simple programmed I/O, still
requires the active intervention of the processor to transfer data between memory
and an I/O module, and any data transfer must traverse a path through the proces-
sor. Thus, both of these forms of 1/O suffer from two inherent drawbacks:

1. The I/O transfer rate is limited by the speed with which the processor can test
and service a device.

2. The processor is tied up in managing an I/O transfer; a number of instructions
must be executed for each I/O transfer.

When large volumes of data are to be moved, a more efficient technique is
required: direct memory access (DMA). The DMA function can be performed by
a separate module on the system bus or it can be incorporated into an I/O module.
In either case, the technique works as follows. When the processor wishes to read
or write a block of data, it issues a command to the DMA module, by sending to the
DMA module the following information:

e Whether a read or write is requested

e The address of the I/O device involved

e The starting location in memory to read data from or write data to
* The number of words to be read or written

The processor then continues with other work. It has delegated this I/O opera-
tion to the DMA module, and that module will take care of it. The DMA module
transfers the entire block of data, one word at a time, directly to or from memory
without going through the processor. When the transfer is complete, the DMA
module sends an interrupt signal to the processor. Thus, the processor is involved
only at the beginning and end of the transfer.

The DMA module needs to take control of the bus to transfer data to and from
memory. Because of this competition for bus usage, there may be times when the
processor needs the bus and must wait for the DMA module. Note that this is not
an interrupt; the processor does not save a context and do something else. Rather,
the processor pauses for one bus cycle (the time it takes to transfer one word across
the bus). The overall effect is to cause the processor to execute more slowly during
a DMA transfer when processor access to the bus is required. Nevertheless, for a
multiple-word I/O transfer, DMA is far more efficient than interrupt-driven or
programmed I/O.
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1.8 MULTIPROCESSOR AND MULTICORE ORGANIZATION

Traditionally, the computer has been viewed as a sequential machine. Most com-
puter programming languages require the programmer to specify algorithms as
sequences of instructions. A processor executes programs by executing machine
instructions in sequence and one at a time. Each instruction is executed in a sequence
of operations (fetch instruction, fetch operands, perform operation, store results).

This view of the computer has never been entirely true. At the micro-operation
level, multiple control signals are generated at the same time. Instruction pipelining,
at least to the extent of overlapping fetch and execute operations, has been around
for a long time. Both of these are examples of performing functions in parallel.

As computer technology has evolved and as the cost of computer hardware
has dropped, computer designers have sought more and more opportunities for par-
allelism, usually to improve performance and, in some cases, to improve reliability.
In this book, we examine the three most popular approaches to providing parallel-
ism by replicating processors: symmetric multiprocessors (SMPs), multicore com-
puters, and clusters. SMPs and multicore computers are discussed in this section;
clusters are examined in Chapter 16.

Symmetric Multiprocessors

DErFINITION  An SMP can be defined as a stand-alone computer system with the
following characteristics:

1. There are two or more similar processors of comparable capability.

2. These processors share the same main memory and I/O facilities and are inter-
connected by a bus or other internal connection scheme, such that memory
access time is approximately the same for each processor.

3. All processors share access to I/O devices, either through the same channels
or through different channels that provide paths to the same device.

4. All processors can perform the same functions (hence the term symmetric).

5. The system is controlled by an integrated operating system that provides
interaction between processors and their programs at the job, task, file, and
data element levels.

Points 1 to 4 should be self-explanatory. Point 5 illustrates one of the contrasts
with a loosely coupled multiprocessing system, such as a cluster. In the latter, the
physical unit of interaction is usually a message or complete file. In an SMP, indi-
vidual data elements can constitute the level of interaction, and there can be a high
degree of cooperation between processes.

An SMP organization has a number of potential advantages over a uniproces-
sor organization, including the following:

¢ Performance: If the work to be done by a computer can be organized so that
some portions of the work can be done in parallel, then a system with multiple
processors will yield greater performance than one with a single processor of
the same type.
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e Availability: In a symmetric multiprocessor, because all processors can per-
form the same functions, the failure of a single processor does not halt the
machine. Instead, the system can continue to function at reduced performance.

e Incremental growth: A user can enhance the performance of a system by
adding an additional processor.

e Scaling: Vendors can offer a range of products with different price and
performance characteristics based on the number of processors configured in
the system.

It is important to note that these are potential, rather than guaranteed, benefits.
The operating system must provide tools and functions to exploit the parallelism in
an SMP system.

An attractive feature of an SMP is that the existence of multiple processors is
transparent to the user. The operating system takes care of scheduling of tasks on
individual processors and of synchronization among processors.

ORGANIZATION Figure 1.19 illustrates the general organization of an SMP. There
are multiple processors, each of which contains its own control unit, arithmetic-
logic unit, and registers. Each processor has access to a shared main memory and
the I/O devices through some form of interconnection mechanism; a shared bus
i1s a common facility. The processors can communicate with each other through
memory (messages and status information left in shared address spaces). It may

Processor Processor Processor

L1 cache L1 cache L1 cache
L2 cache L2 cache L2 cache

System bus

. I/0

litm e} adapter
memory
subsystem

/0
adapter

/0
adapter

Figure 1.19 Symmetric Multiprocessor Organization
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also be possible for processors to exchange signals directly. The memory is often
organized so that multiple simultaneous accesses to separate blocks of memory are
possible.

In modern computers, processors generally have at least one level of cache
memory that is private to the processor. This use of cache introduces some new
design considerations. Because each local cache contains an image of a portion of
main memory, if a word is altered in one cache, it could conceivably invalidate a
word in another cache. To prevent this, the other processors must be alerted that an
update has taken place. This problem is known as the cache coherence problem and
is typically addressed in hardware rather than by the OS.°

Multicore Computers

A multicore computer, also known as a chip multiprocessor, combines two or more
processors (called cores) on a single piece of silicon (called a die). Typically, each
core consists of all of the components of an independent processor, such as registers,
ALU, pipeline hardware, and control unit, plus L1 instruction and data caches. In
addition to the multiple cores, contemporary multicore chips also include L2 cache
and, in some cases, L3 cache.

The motivation for the development of multicore computers can be summed
up as follows. For decades, microprocessor systems have experienced a steady, usu-
ally exponential, increase in performance. This is partly due to hardware trends,
such as an increase in clock frequency and the ability to put cache memory closer
to the processor because of the increasing miniaturization of microcomputer
components. Performance has also been improved by the increased complexity of
processor design to exploit parallelism in instruction execution and memory access.
In brief, designers have come up against practical limits in the ability to achieve
greater performance by means of more complex processors. Designers have found
that the best way to improve performance to take advantage of advances in hard-
ware is to put multiple processors and a substantial amount of cache memory on a
single chip. A detailed discussion of the rationale for this trend is beyond our scope,
but is summarized in Appendix C.

An example of a multicore system is the Intel Core 17, which includes four x86
processors, each with a dedicated L2 cache, and with a shared L3 cache (Figure 1.20).
One mechanism Intel uses to make its caches more effective is prefetching, in which
the hardware examines memory access patterns and attempts to fill the caches spec-
ulatively with data that’s likely to be requested soon.

The Core 17 chip supports two forms of external communications to other
chips. The DDR3 memory controller brings the memory controller for the DDR
(double data rate) main memory onto the chip. The interface supports three chan-
nels that are 8 bytes wide for a total bus width of 192 bits, for an aggregate data
rate of up to 32 GB/s. With the memory controller on the chip, the Front Side Bus
is eliminated. The QuickPath Interconnect (QPI) is a point-to-point link electri-
cal interconnect specification. It enables high-speed communications among con-
nected processor chips. The QPI link operates at 6.4 GT/s (transfers per second).

®A description of hardware-based cache coherency schemes is provided in [STAL10].
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Figure 1.20 Intel Core i7 Block Diagram

At 16 bits per transfer, that adds up to 12.8 GB/s; and since QPI links involve dedi-
cated bidirectional pairs, the total bandwidth is 25.6 GB/s.

1.9 RECOMMENDED READING AND WEB SITES

[STAL10] covers the topics of this chapter in detail. In addition, there are many other
texts on computer organization and architecture. Among the more worthwhile texts
are the following. [PATT09] is a comprehensive survey; [HENNO7], by the same
authors, is a more advanced text that emphasizes quantitative aspects of design.

[DENNOS] looks at the history of the development and application of the
locality principle, making for fascinating reading.

DENNO5 Denning, P. “The Locality Principle.” Communications of the ACM, July 2005.

HENNO07 Hennessy, J., and Patterson, D. Computer Architecture: A Quantitative
Approach. San Mateo, CA: Morgan Kaufmann, 2007.

PATTO09 Patterson, D., and Hennessy, J. Computer Organization and Design: The
Hardware/Software Interface. San Mateo, CA: Morgan Kaufmann, 20009.

STAL10 Stallings, W. Computer Organization and Architecture, S8th ed. Upper Saddle
River, NJ: Prentice Hall, 2010.

R
w Recommended Web sites:

° WWW Computer Architecture Home Page: A comprehensive index to information
relevant to computer architecture researchers, including architecture groups and proj-
ects, technical organizations, literature, employment, and commercial information

e CPU Info Center: Information on specific processors, including technical papers, prod-
uct information, and latest announcements
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1.10 KEY TERMS, REVIEW QUESTIONS, AND PROBLEMS

Key Terms
address register instruction register program counter
cache memory interrupt programmed I/O
cache slot interrupt-driven I/O reentrant procedure
central processing unit I/O module register
data register locality secondary memory
direct memory access main memory spatial locality
hit ratio multicore stack
input/output multiprocessor system bus
instruction processor temporal locality
instruction cycle

Review Questions

1.1. List and briefly define the four main elements of a computer.
1.2. Define the two main categories of processor registers.
1.3. In general terms, what are the four distinct actions that a machine instruction can
specify?
1.4. What is an interrupt?
1.5. How are multiple interrupts dealt with?
1.6. What characteristics distinguish the various elements of a memory hierarchy?
1.7.  What is cache memory?
1.8. What is the difference between a multiprocessor and a multicore system?
1.9. What is the distinction between spatial locality and temporal locality?
1.10. In general, what are the strategies for exploiting spatial locality and temporal locality?

Problems

1.1. Suppose the hypothetical processor of Figure 1.3 also has two I/O instructions:
0011 = Load AC from IO
0111 = Store AC to I/O
In these cases, the 12-bit address identifies a particular external device. Show the pro-
gram execution (using format of Figure 1.4) for the following program:
1. Load AC from device 5.
2. Add contents of memory location 940.
3. Store AC to device 6.
Assume that the next value retrieved from device 5 is 3 and that location 940 contains
a value of 2.

1.2. The program execution of Figure 1.4 is described in the text using six steps. Expand
this description to show the use of the MAR and MBR.

1.3. Consider a hypothetical 32-bit microprocessor having 32-bit instructions composed of
two fields. The first byte contains the opcode and the remainder an immediate oper-
and or an operand address.
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a. What is the maximum directly addressable memory capacity (in bytes)?
b. Discuss the impact on the system speed if the microprocessor bus has
1. a 32-bit local address bus and a 16-bit local data bus, or
2. al6-bit local address bus and a 16-bit local data bus.
¢. How many bits are needed for the program counter and the instruction register?

1.4. Consider a hypothetical microprocessor generating a 16-bit address (e.g., assume that
the program counter and the address registers are 16 bits wide) and having a 16-bit
data bus.

a. Whatis the maximum memory address space that the processor can access directly
if it is connected to a “16-bit memory”?

b. What is the maximum memory address space that the processor can access directly
if it is connected to an “8-bit memory”?

¢. What architectural features will allow this microprocessor to access a separate
“1/O space”?

d. If an input and an output instruction can specify an 8-bit I/O port number, how
many 8-bit I/O ports can the microprocessor support? How many 16-bit I/O ports?
Explain.

1.5. Consider a 32-bit microprocessor, with a 16-bit external data bus, driven by an 8-MHz
input clock. Assume that this microprocessor has a bus cycle whose minimum dura-
tion equals four input clock cycles. What is the maximum data transfer rate across
the bus that this microprocessor can sustain in bytes/s? To increase its performance,
would it be better to make its external data bus 32 bits or to double the external clock
frequency supplied to the microprocessor? State any other assumptions you make and
explain. Hint: Determine the number of bytes that can be transferred per bus cycle.

1.6. Consider a computer system that contains an I/O module controlling a simple
keyboard/printer Teletype. The following registers are contained in the CPU and con-
nected directly to the system bus:

INPR: Input Register, 8 bits
OUTR: Output Register, 8 bits
FGI: Input Flag,1 bit

FGO: Output Flag, 1 bit

IEN: Interrupt Enable, 1 bit

Keystroke input from the Teletype and output to the printer are controlled by the I/O

module. The Teletype is able to encode an alphanumeric symbol to an 8-bit word and

decode an 8-bit word into an alphanumeric symbol. The Input flag is set when an 8-bit

word enters the input register from the Teletype. The Output flag is set when a word

is printed.

a. Describe how the CPU, using the first four registers listed in this problem, can
achieve I/O with the Teletype.

b. Describe how the function can be performed more efficiently by also employing
IEN.

1.7. In virtually all systems that include DMA modules, DMA access to main memory is
given higher priority than processor access to main memory. Why?

1.8. A DMA module is transferring characters to main memory from an external device
transmitting at 9600 bits per second (bps). The processor can fetch instructions at the
rate of 1 million instructions per second. By how much will the processor be slowed
down due to the DMA activity?

1.9. A computer consists of a CPU and an I/O device D connected to main memory M via
a shared bus with a data bus width of one word. The CPU can execute a maximum
of 106 instructions per second. An average instruction requires five processor cycles,
three of which use the memory bus. A memory read or write operation uses one
processor cycle. Suppose that the CPU is continuously executing “background” pro-
grams that require 95% of its instruction execution rate but not any I/O instructions.
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Assume that one processor cycle equals one bus cycle. Now suppose that very large

blocks of data are to be transferred between M and D.

a. If programmed I/O is used and each one-word I/O transfer requires the CPU to
execute two instructions, estimate the maximum I/O data transfer rate, in words
per second, possible through D.

b. Estimate the same rate if DMA transfer is used.

1.10. Consider the following code:
for (i = 0;1 < 20;i++)
for (j = 0;j < 10;j++)
ali] = ali] *
a. Give one example of the spatial locality in the code.
b. Give one example of the temporal locality in the code.

1.11. Generalize Equations (1.1) and (1.2) in Appendix 1A to n-level memory hierarchies.
1.12. Consider a memory system with the following parameters:

Tc =100ns Cc = 0.01 cents/bit
Tm = 1200ns Cm = 0.001 cents/bit

a. What is the cost of 1 MByte of main memory?

b. What is the cost of 1 MByte of main memory using cache memory technology?

c. If the effective access time is 10% greater than the cache access time, what is the
hit ratio H?

1.13. A computer has a cache, main memory, and a disk used for virtual memory. If a refer-
enced word is in the cache, 20 ns are required to access it. If it is in main memory but
not in the cache, 60 ns are needed to load it into the cache (this includes the time to
originally check the cache), and then the reference is started again. If the word is not
in main memory, 12 ms are required to fetch the word from disk, followed by 60 ns to
copy it to the cache, and then the reference is started again. The cache hit ratio is 0.9
and the main-memory hit ratio is 0.6. What is the average time in ns required to access
a referenced word on this system?

1.14. Suppose a stack is to be used by the processor to manage procedure calls and returns.

Can the program counter be eliminated by using the top of the stack as a program
counter?

APPENDIX 1A PERFORMANCE CHARACTERISTICS

OF TWO-LEVEL MEMORIES

In this chapter, reference is made to a cache that acts as a buffer between main
memory and processor, creating a two-level internal memory. This two-level archi-
tecture exploits a property known as locality to provide improved performance over
a comparable one-level memory.

The main memory cache mechanism is part of the computer architecture,
implemented in hardware and typically invisible to the OS. Accordingly, this
mechanism is not pursued in this book. However, there are two other instances
of a two-level memory approach that also exploit the property of locality and that
are, at least partially, implemented in the OS: virtual memory and the disk cache
(Table 1.2). These two topics are explored in Chapters 8 and 11, respectively. In this
appendix, we look at some of the performance characteristics of two-level memo-
ries that are common to all three approaches.
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Table 1.2 Characteristics of Two-Level Memories

Main Memory Virtual Memory
Cache (Paging) Disk Cache

Typical access time ratios 5:1 10%: 1 10%: 1
Memory management Implemented by Combination of hardware System software
system special hardware and system software
Typical block size 4 to 128 bytes 64 to 4096 bytes 64 to 4096 bytes
Access of processor to Direct access Indirect access Indirect access
second level

Locality

The basis for the performance advantage of a two-level memory is the principle of
locality, referred to in Section 1.5. This principle states that memory references tend
to cluster. Over a long period of time, the clusters in use change; but over a short
period of time, the processor is primarily working with fixed clusters of memory
references.

Intuitively, the principle of locality makes sense. Consider the following line
of reasoning:

1. Except for branch and call instructions, which constitute only a small fraction
of all program instructions, program execution is sequential. Hence, in most
cases, the next instruction to be fetched immediately follows the last instruc-
tion fetched.

2. It is rare to have a long uninterrupted sequence of procedure calls followed
by the corresponding sequence of returns. Rather, a program remains con-
fined to a rather narrow window of procedure-invocation depth. Thus, over
a short period of time references to instructions tend to be localized to a few
procedures.

3. Most iterative constructs consist of a relatively small number of instructions
repeated many times. For the duration of the iteration, computation is there-
fore confined to a small contiguous portion of a program.

4. In many programs, much of the computation involves processing data struc-
tures, such as arrays or sequences of records. In many cases, successive
references to these data structures will be to closely located data items.

This line of reasoning has been confirmed in many studies. With reference to
point (1), a variety of studies have analyzed the behavior of high-level language
programs. Table 1.3 includes key results, measuring the appearance of various
statement types during execution, from the following studies. The earliest study of
programming language behavior, performed by Knuth [KNUT71], examined a col-
lection of FORTRAN programs used as student exercises. Tanenbaum [TANE78]
published measurements collected from over 300 procedures used in OS programs
and written in a language that supports structured programming (SAL). Patterson
and Sequin [PATTS82] analyzed a set of measurements taken from compilers
and programs for typesetting, computer-aided design (CAD), sorting, and file
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Table 1.3 Relative Dynamic Frequency of High-Level Language Operations

41

Study
Language
Workload

[HUCKS3]
Pascal
Scientific

[KNUT71]
FORTRAN
Student

[PATTS2]

Pascal
System

C
System

[TANE78]
SAL
System

Assign
Loop
Call

IF
GOTO
Other

74
4
1

20
2

67
3
3

11
9
7

45

5
15
29

6

38
3
12
43
3
1

42

4
12
36

6

comparison. The programming languages C and Pascal were studied. Huck
[HUCKS3] analyzed four programs intended to represent a mix of general-purpose
scientific computing, including fast Fourier transform and the integration of systems
of differential equations. There is good agreement in the results of this mixture of
languages and applications that branching and call instructions represent only a
fraction of statements executed during the lifetime of a program. Thus, these
studies confirm assertion (1), from the preceding list.

With respect to assertion (2), studies reported in [PATT85] provide confirma-
tion. This is illustrated in Figure 1.21, which shows call-return behavior. Each call is
represented by the line moving down and to the right, and each return by the line
moving up and to the right. In the figure, a window with depth equal to 5 is defined.
Only a sequence of calls and returns with a net movement of 6 in either direction
causes the window to move. As can be seen, the executing program can remain
within a stationary window for long periods of time. A study by the same analysts of
C and Pascal programs showed that a window of depth 8 would only need to shift on
less than 1% of the calls or returns [TAMIS&3].

Time
(in units of calls/returns)
Lot rrrrr e IIIIIIIII|IIIIIIIII|IIIIIIIII|IIIIIIIII|IIIIIIII|||IIIIIIII Ll

I I
t=33

Return
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Figure 1.21 Example Call-Return Behavior of a Program
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A distinction is made in the literature between spatial locality and temporal
locality. Spatial locality refers to the tendency of execution to involve a number of
memory locations that are clustered. This reflects the tendency of a processor to
access instructions sequentially. Spatial location also reflects the tendency of a pro-
gram to access data locations sequentially, such as when processing a table of data.
Temporal locality refers to the tendency for a processor to access memory locations
that have been used recently. For example, when an iteration loop is executed, the
processor executes the same set of instructions repeatedly.

Traditionally, temporal locality is exploited by keeping recently used
instruction and data values in cache memory and by exploiting a cache hierarchy.
Spatial locality is generally exploited by using larger cache blocks and by incor-
porating prefetching mechanisms (fetching items whose use is expected) into the
cache control logic. Recently, there has been considerable research on refining
these techniques to achieve greater performance, but the basic strategies remain
the same.

Operation of Two-Level Memory

The locality property can be exploited in the formation of a two-level memory. The
upper-level memory (M1) is smaller, faster, and more expensive (per bit) than the
lower-level memory (M2). M1 is used as a temporary store for part of the contents
of the larger M2. When a memory reference is made, an attempt is made to access
the item in M1. If this succeeds, then a quick access is made. If not, then a block of
memory locations is copied from M2 to M1 and the access then takes place via M1.
Because of locality, once a block is brought into M1, there should be a number of
accesses to locations in that block, resulting in fast overall service.

To express the average time to access an item, we must consider not only the
speeds of the two levels of memory but also the probability that a given reference
can be found in M1. We have

TS:HX T1+(1—H)X(T1+T2)
T+ (1 —-—H)XT, (1.1
where

T, = average (system) access time

T, = access time of M1 (e.g., cache, disk cache)

T, = access time of M2 (e.g., main memory, disk)

H = hit ratio (fraction of time reference is found in M1)

Figure 1.15 shows average access time as a function of hit ratio. As can be

seen, for a high percentage of hits, the average total access time is much closer to
that of M1 than M2.

Performance

Let us look at some of the parameters relevant to an assessment of a two-level
memory mechanism. First consider cost. We have

G5+ G5,

1.2
y S, + S, (1.2)
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where

C, = average cost per bit for the combined two-level memory

C; = average cost per bit of upper-level memory M1

C, = average cost per bit of lower-level memory M2

S = size of M1

S, = size of M2
We would like Cy = C,. Given that C; >> C,, this requires S; << S,. Figure 1.22
shows the relationship.’

Next, consider access time. For a two-level memory to provide a significant
performance improvement, we need to have T approximately equal to Ty T = T;.
Given that T is much less than 7, T, >> T, a hit ratio of close to 1 is needed.

So we would like M1 to be small to hold down cost, and large to improve the
hit ratio and therefore the performance. Is there a size of M1 that satisfies both
requirements to a reasonable extent? We can answer this question with a series of
subquestions:

e What value of hit ratio is needed to satisfy the performance requirement?

e What size of M1 will assure the needed hit ratio?
* Does this size satisfy the cost requirement?
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Relative size of two levels (S,/S;)

Figure 1.22 Relationship of Average Memory Cost to Relative Memory Size for a Two-Level
Memory

"Note that both axes use a log scale. A basic review of log scales is in the math refresher document at the
Computer Science Student Resource Site at ComputerScienceStudent.com.
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To get at this, consider the quantity 77/T;, which is referred to as the access effi-
ciency. It is a measure of how close average access time (7}) is to M1 access time
(T1). From Equation (1.1),

L ! (1.3)

T.
1+(1—H)?2
1

In Figure 1.23, we plot T7/T; as a function of the hit ratio H, with the quantity 75/T;
as a parameter. A hit ratio in the range of 0.8 to 0.9 would seem to be needed to
satisfy the performance requirement.

We can now phrase the question about relative memory size more exactly. Is
a hit ratio of 0.8 or higher reasonable for §; << §,? This will depend on a number
of factors, including the nature of the software being executed and the details of the
design of the two-level memory. The main determinant is, of course, the degree of
locality. Figure 1.24 suggests the effect of locality on the hit ratio. Clearly, if M1 is
the same size as M2, then the hit ratio will be 1.0: All of the items in M2 are always
stored also in M1. Now suppose that there is no locality; that is, references are com-
pletely random. In that case the hit ratio should be a strictly linear function of the
relative memory size. For example, if M1 is half the size of M2, then at any time half
of the items from M2 are also in M1 and the hit ratio will be 0.5. In practice, how-
ever, there is some degree of locality in the references. The effects of moderate and
strong locality are indicated in the figure.

So, if there is strong locality, it is possible to achieve high values of hit ratio
even with relatively small upper-level memory size. For example, numerous studies
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Figure 1.23 Access Efficiency as a Function of Hit Ratio (r = T,/T7)

Operating Systems: Internals and Design Principles, Seventh Edition, by William Stallings. Published by Prentice Hall. Copyright © 2012 by Pearson Education, Inc.



APPENDIX 1A / PERFORMANCE CHARACTERISTICS OF TWO-LEVEL MEMORIES 45

1.0
0.8 — Strong
locality
0.6 — Moderate
2 locality
E
5
047 No locality
0.2 —
0.0 | | | |
0.0 0.2 0.4 0.6 0.8 1.0

Relative memory size (S/S,)
Figure 1.24 Hit Ratio as a Function of Relative Memory Size

have shown that rather small cache sizes will yield a hit ratio above 0.75 regardless
of the size of main memory (e.g., [AGARS89], [PRZYS88], [STRES3], and [SMITS82]).
A cache in the range of 1K to 128K words is generally adequate, whereas main
memory is now typically in the gigabyte range. When we consider virtual mem-
ory and disk cache, we will cite other studies that confirm the same phenomenon,
namely that a relatively small M1 yields a high value of hit ratio because of locality.

This brings us to the last question listed earlier: Does the relative size of the
two memories satisfy the cost requirement? The answer is clearly yes. If we need
only a relatively small upper-level memory to achieve good performance, then the
average cost per bit of the two levels of memory will approach that of the cheaper
lower-level memory.
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Operating systems are those programs that interface the machine with
the applications programs. The main function of these systems is to
dynamically allocate the shared system resources to the executing
programs. As such, research in this area is clearly concerned with
the management and scheduling of memory, processes, and other
devices. But the interface with adjacent levels continues to shift with
time. Functions that were originally part of the operating system have
migrated to the hardware. On the other side, programmed functions
extraneous to the problems being solved by the application programs
are included in the operating system.

— WHAT CAN BE AUTOMATED?: THE COMPUTER SCIENCE AND
ENGINEERING RESEARCH STUDY, MIT PRESS, 1980

LEARNING OBJECTIVES
After studying this chapter, you should be able to:

e Summarize, at a top level, the key functions of an operating system (OS).

e Discuss the evolution of operating systems for early simple batch systems to
modern complex systems.

* Give a brief explanation of each of the major achievements in OS research,
as defined in Section 2.3.

e Discuss the key design areas that have been instrumental in the development
of modern operating systems.

e Define and discuss virtual machines and virtualization

e Understand the OS design issues raised by the introduction of multiprocessor
and multicore organization.

e Understand the basic structure of Windows 7.

e Describe the essential elements of a traditional UNIX system.
e Explain the new features found in modern UNIX systems.

e Discuss Linux and its relationship to UNIX.

We begin our study of operating systems (OSs) with a brief history. This history is
itself interesting and also serves the purpose of providing an overview of OS prin-
ciples. The first section examines the objectives and functions of operating systems.
Then we look at how operating systems have evolved from primitive batch systems
to sophisticated multitasking, multiuser systems. The remainder of the chapter looks
at the history and general characteristics of the two operating systems that serve as
examples throughout this book. All of the material in this chapter is covered in
greater depth later in the book.
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2.1 OPERATING SYSTEM OBJECTIVES AND FUNCTIONS

An OS is a program that controls the execution of application programs and acts as
an interface between applications and the computer hardware. It can be thought of
as having three objectives:

¢ Convenience: An OS makes a computer more convenient to use.

e Efficiency: An OS allows the computer system resources to be used in an effi-
cient manner.

* Ability to evolve: An OS should be constructed in such a way as to permit the
effective development, testing, and introduction of new system functions with-
out interfering with service.

Let us examine these three aspects of an OS in turn.

The Operating System as a User/Computer Interface

The hardware and software used in providing applications to a user can be viewed
in a layered or hierarchical fashion, as depicted in Figure 2.1. The user of those
applications, the end user, generally is not concerned with the details of computer
hardware. Thus, the end user views a computer system in terms of a set of applica-
tions. An application can be expressed in a programming language and is developed
by an application programmer. If one were to develop an application program as a
set of machine instructions that is completely responsible for controlling the com-
puter hardware, one would be faced with an overwhelmingly complex undertaking.
To ease this chore, a set of system programs is provided. Some of these programs
are referred to as utilities, or library programs. These implement frequently used
functions that assist in program creation, the management of files, and the control of

. Application programs
Application PP prog
programming interface L o
Application Libraries/utilities Software
binary interface
) Operating system
Instruction set
architecture
Execution hardware
) Memory
System interconnect translation Hardware
(bus)
I/O devices Main
o memor
networking y

Figure 2.1 Computer Hardware and Software Structure
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I/0O devices. A programmer will make use of these facilities in developing an appli-
cation, and the application, while it is running, will invoke the utilities to perform
certain functions. The most important collection of system programs comprises the
OS. The OS masks the details of the hardware from the programmer and provides
the programmer with a convenient interface for using the system. It acts as media-
tor, making it easier for the programmer and for application programs to access and
use those facilities and services.
Briefly, the OS typically provides services in the following areas:

* Program development: The OS provides a variety of facilities and services,
such as editors and debuggers, to assist the programmer in creating programs.
Typically, these services are in the form of utility programs that, while not
strictly part of the core of the OS, are supplied with the OS and are referred to
as application program development tools.

e Program execution: A number of steps need to be performed to execute a
program. Instructions and data must be loaded into main memory, I/O devices
and files must be initialized, and other resources must be prepared. The OS
handles these scheduling duties for the user.

e Access to I/0 devices: Each 1/O device requires its own peculiar set of instruc-
tions or control signals for operation. The OS provides a uniform interface
that hides these details so that programmers can access such devices using sim-
ple reads and writes.

e Controlled access to files: For file access, the OS must reflect a detailed under-
standing of not only the nature of the I/O device (disk drive, tape drive) but
also the structure of the data contained in the files on the storage medium.
In the case of a system with multiple users, the OS may provide protection
mechanisms to control access to the files.

e System access: For shared or public systems, the OS controls access to the
system as a whole and to specific system resources. The access function must
provide protection of resources and data from unauthorized users and must
resolve conflicts for resource contention.

e Error detection and response: A variety of errors can occur while a computer
system is running. These include internal and external hardware errors, such
as a memory error, or a device failure or malfunction; and various software
errors, such as division by zero, attempt to access forbidden memory location,
and inability of the OS to grant the request of an application. In each case,
the OS must provide a response that clears the error condition with the least
impact on running applications. The response may range from ending the pro-
gram that caused the error, to retrying the operation, to simply reporting the
error to the application.

e Accounting: A good OS will collect usage statistics for various resources and
monitor performance parameters such as response time. On any system, this
information is useful in anticipating the need for future enhancements and in
tuning the system to improve performance. On a multiuser system, the infor-
mation can be used for billing purposes.
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Figure 2.1 also indicates three key interfaces in a typical computer system:

¢ Instruction set architecture (ISA): The ISA defines the repertoire of machine
language instructions that a computer can follow. This interface is the bound-
ary between hardware and software. Note that both application programs
and utilities may access the ISA directly. For these programs, a subset of the
instruction repertoire is available (user ISA). The OS has access to additional
machine language instructions that deal with managing system resources
(system ISA).

e Application binary interface (ABI): The ABI defines a standard for binary
portability across programs. The ABI defines the system call interface to
the operating system and the hardware resources and services available in a
system through the user ISA.

e Application programming interface (API): The API gives a program access
to the hardware resources and services available in a system through the user
ISA supplemented with high-level language (HLL) library calls. Any system
calls are usually performed through libraries. Using an API enables applica-
tion software to be ported easily, through recompilation, to other systems that
support the same APL.

The Operating System as Resource Manager

A computer is a set of resources for the movement, storage, and processing of data
and for the control of these functions. The OS is responsible for managing these
resources.

Can we say that it is the OS that controls the movement, storage, and process-
ing of data? From one point of view, the answer is yes: By managing the computer’s
resources, the OS is in control of the computer’s basic functions. But this control is
exercised in a curious way. Normally, we think of a control mechanism as something
external to that which is controlled, or at least as something that is a distinct and
separate part of that which is controlled. (For example, a residential heating sys-
tem is controlled by a thermostat, which is separate from the heat-generation and
heat-distribution apparatus.) This is not the case with the OS, which as a control
mechanism is unusual in two respects:

e The OS functions in the same way as ordinary computer software; that is, it is
a program or suite of programs executed by the processor.

e The OS frequently relinquishes control and must depend on the processor to
allow it to regain control.

Like other computer programs, the OS provides instructions for the proces-
sor. The key difference is in the intent of the program. The OS directs the processor
in the use of the other system resources and in the timing of its execution of other
programs. But in order for the processor to do any of these things, it must cease
executing the OS program and execute other programs. Thus, the OS relinquishes
control for the processor to do some “useful” work and then resumes control long
enough to prepare the processor to do the next piece of work. The mechanisms
involved in all this should become clear as the chapter proceeds.
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Figure 2.2 The Operating System as Resource Manager

Figure 2.2 suggests the main resources that are managed by the OS. A portion
of the OS is in main memory. This includes the kernel, or nucleus, which contains
the most frequently used functions in the OS and, at a given time, other portions
of the OS currently in use. The remainder of main memory contains user programs
and data. The memory management hardware in the processor and the OS jointly
control the allocation of main memory, as we shall see. The OS decides when an I/O
device can be used by a program in execution and controls access to and use of files.
The processor itself is a resource, and the OS must determine how much processor
time is to be devoted to the execution of a particular user program. In the case of a
multiple-processor system, this decision must span all of the processors.

Ease of Evolution of an Operating System

A major OS will evolve over time for a number of reasons:

e Hardware upgrades plus new types of hardware: For example, early versions
of UNIX and the Macintosh OS did not employ a paging mechanism because
they were run on processors without paging hardware.! Subsequent versions
of these operating systems were modified to exploit paging capabilities. Also,

"Paging is introduced briefly later in this chapter and is discussed in detail in Chapter 7.
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the use of graphics terminals and page-mode terminals instead of line-at-a-
time scroll mode terminals affects OS design. For example, a graphics terminal
typically allows the user to view several applications at the same time through
“windows” on the screen. This requires more sophisticated support in the OS.

e New services: In response to user demand or in response to the needs of sys-
tem managers, the OS expands to offer new services. For example, if it is found
to be difficult to maintain good performance for users with existing tools, new
measurement and control tools may be added to the OS.

e Fixes: Any OS has faults. These are discovered over the course of time and
fixes are made. Of course, the fix may introduce new faults.

The need to change an OS regularly places certain requirements on its design.
An obvious statement is that the system should be modular in construction, with
clearly defined interfaces between the modules, and that it should be well docu-
mented. For large programs, such as the typical contemporary OS, what might be
referred to as straightforward modularization is inadequate [DENNGS&(Oa]. That is,
much more must be done than simply partitioning a program into modules. We
return to this topic later in this chapter.

2.2 THE EVOLUTION OF OPERATING SYSTEMS

In attempting to understand the key requirements for an OS and the significance
of the major features of a contemporary OS, it is useful to consider how operating
systems have evolved over the years.

Serial Processing

With the earliest computers, from the late 1940s to the mid-1950s, the programmer
interacted directly with the computer hardware; there was no OS. These computers
were run from a console consisting of display lights, toggle switches, some form of
input device, and a printer. Programs in machine code were loaded via the input
device (e.g., a card reader). If an error halted the program, the error condition was
indicated by the lights. If the program proceeded to a normal completion, the out-
put appeared on the printer.
These early systems presented two main problems:

¢ Scheduling: Most installations used a hardcopy sign-up sheet to reserve com-
puter time. Typically, a user could sign up for a block of time in multiples of a
half hour or so. A user might sign up for an hour and finish in 45 minutes; this
would result in wasted computer processing time. On the other hand, the user
might run into problems, not finish in the allotted time, and be forced to stop
before resolving the problem.

e Setup time: A single program, called a job, could involve loading the com-
piler plus the high-level language program (source program) into memory,
saving the compiled program (object program) and then loading and linking
together the object program and common functions. Each of these steps could
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involve mounting or dismounting tapes or setting up card decks. If an error
occurred, the hapless user typically had to go back to the beginning of the
setup sequence. Thus, a considerable amount of time was spent just in setting
up the program to run.

This mode of operation could be termed serial processing, reflecting the fact
that users have access to the computer in series. Over time, various system software
tools were developed to attempt to make serial processing more efficient. These
include libraries of common functions, linkers, loaders, debuggers, and I/O driver
routines that were available as common software for all users.

Simple Batch Systems

Early computers were very expensive, and therefore it was important to maxi-
mize processor utilization. The wasted time due to scheduling and setup time was
unacceptable.

To improve utilization, the concept of a batch OS was developed. It appears
that the first batch OS (and the first OS of any kind) was developed in the mid-1950s
by General Motors for use on an IBM 701 [WEIZ81]. The concept was subsequently
refined and implemented on the IBM 704 by a number of IBM customers. By the
early 1960s, a number of vendors had developed batch operating systems for their
computer systems. IBSYS, the IBM OS for the 7090/7094 computers, is particularly
notable because of its widespread influence on other systems.

The central idea behind the simple batch-processing scheme is the use of a
piece of software known as the monitor. With this type of OS, the user no longer has
direct access to the processor. Instead, the user submits the job on cards or tape to a
computer operator, who batches the jobs together sequentially and places the entire
batch on an input device, for use by the monitor. Each program is constructed to
branch back to the monitor when it completes processing, at which point the moni-
tor automatically begins loading the next program.

To understand how this scheme works, let us look at it from two points of
view: that of the monitor and that of the processor.

* Monitor point of view: The monitor controls the sequence of events. For this
to be so, much of the monitor must always be in main memory and available
for execution (Figure 2.3). That portion is referred to as the resident monitor.
The rest of the monitor consists of utilities and common functions that are
loaded as subroutines to the user program at the beginning of any job that
requires them. The monitor reads in jobs one at a time from the input device
(typically a card reader or magnetic tape drive). As it is read in, the current job
is placed in the user program area, and control is passed to this job. When the
job is completed, it returns control to the monitor, which immediately reads
in the next job. The results of each job are sent to an output device, such as a
printer, for delivery to the user.

e Processor point of view: At a certain point, the processor is executing instruc-
tions from the portion of main memory containing the monitor. These
instructions cause the next job to be read into another portion of main

Operating Systems: Internals and Design Principles, Seventh Edition, by William Stallings. Published by Prentice Hall. Copyright © 2012 by Pearson Education, Inc.



54 CHAPTER 2 / OPERATING SYSTEM OVERVIEW

Interrupt
processing

Device
drivers

Job
sequencing

Monitor

Control language
interpreter

Boundary >

User
program
area

Figure 2.3 Memory Layout for a
Resident Monitor

memory. Once a job has been read in, the processor will encounter a branch
instruction in the monitor that instructs the processor to continue execution
at the start of the user program. The processor will then execute the instruc-
tions in the user program until it encounters an ending or error condition.
Either event causes the processor to fetch its next instruction from the moni-
tor program. Thus the phrase “control is passed to a job” simply means that
the processor is now fetching and executing instructions in a user program,
and “control is returned to the monitor” means that the processor is now
fetching and executing instructions from the monitor program.

The monitor performs a scheduling function: A batch of jobs is queued up,
and jobs are executed as rapidly as possible, with no intervening idle time. The mon-
itor improves job setup time as well. With each job, instructions are included in a
primitive form of job control language (JCL). This is a special type of programming
language used to provide instructions to the monitor. A simple example is that of a
user submitting a program written in the programming language FORTRAN plus
some data to be used by the program. All FORTRAN instructions and data are on a
separate punched card or a separate record on tape. In addition to FORTRAN and
data lines, the job includes job control instructions, which are denoted by the begin-
ning $. The overall format of the job looks like this:

$SJOB
SFTN

° FORTRAN instructions
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$LOAD
SRUN

° Data

$END

To execute this job, the monitor reads the SFTN line and loads the appropri-
ate language compiler from its mass storage (usually tape). The compiler translates
the user’s program into object code, which is stored in memory or mass storage.
If it is stored in memory, the operation is referred to as “compile, load, and go.”
If it is stored on tape, then the SLOAD instruction is required. This instruction is
read by the monitor, which regains control after the compile operation. The moni-
tor invokes the loader, which loads the object program into memory (in place of
the compiler) and transfers control to it. In this manner, a large segment of main
memory can be shared among different subsystems, although only one such subsys-
tem could be executing at a time.

During the execution of the user program, any input instruction causes one
line of data to be read. The input instruction in the user program causes an input
routine that is part of the OS to be invoked. The input routine checks to make
sure that the program does not accidentally read in a JCL line. If this happens, an
error occurs and control transfers to the monitor. At the completion of the user
job, the monitor will scan the input lines until it encounters the next JCL instruc-
tion. Thus, the system is protected against a program with too many or too few
data lines.

The monitor, or batch OS, is simply a computer program. It relies on the abil-
ity of the processor to fetch instructions from various portions of main memory to
alternately seize and relinquish control. Certain other hardware features are also
desirable:

* Memory protection: While the user program is executing, it must not alter the
memory area containing the monitor. If such an attempt is made, the proces-
sor hardware should detect an error and transfer control to the monitor. The
monitor would then abort the job, print out an error message, and load in the
next job.

e Timer: A timer is used to prevent a single job from monopolizing the system.
The timer is set at the beginning of each job. If the timer expires, the user pro-
gram is stopped, and control returns to the monitor.

e Privileged instructions: Certain machine level instructions are designated priv-
ileged and can be executed only by the monitor. If the processor encounters
such an instruction while executing a user program, an error occurs causing
control to be transferred to the monitor. Among the privileged instructions
are I/O instructions, so that the monitor retains control of all I/O devices. This
prevents, for example, a user program from accidentally reading job control
instructions from the next job. If a user program wishes to perform I/O, it must
request that the monitor perform the operation for it.
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e Interrupts: Early computer models did not have this capability. This feature
gives the OS more flexibility in relinquishing control to and regaining control
from user programs.

Considerations of memory protection and privileged instructions lead to the
concept of modes of operation. A user program executes in a user mode, in which
certain areas of memory are protected from the user’s use and in which certain
instructions may not be executed. The monitor executes in a system mode, or what
has come to be called kernel mode, in which privileged instructions may be executed
and in which protected areas of memory may be accessed.

Of course, an OS can be built without these features. But computer vendors
quickly learned that the results were chaos, and so even relatively primitive batch
operating systems were provided with these hardware features.

With a batch OS, processor time alternates between execution of user pro-
grams and execution of the monitor. There have been two sacrifices: Some main
memory is now given over to the monitor and some processor time is consumed by
the monitor. Both of these are forms of overhead. Despite this overhead, the simple
batch system improves utilization of the computer.

Multiprogrammed Batch Systems

Even with the automatic job sequencing provided by a simple batch OS, the proces-
sor is often idle. The problem is that I/O devices are slow compared to the processor.
Figure 2.4 details a representative calculation. The calculation concerns a program
that processes a file of records and performs, on average, 100 machine instructions
per record. In this example, the computer spends over 96% of its time waiting for
I/O devices to finish transferring data to and from the file. Figure 2.5a illustrates this
situation, where we have a single program, referred to as uniprogramming. The pro-
cessor spends a certain amount of time executing, until it reaches an I/O instruction.
It must then wait until that I/O instruction concludes before proceeding.

This inefficiency is not necessary. We know that there must be enough
memory to hold the OS (resident monitor) and one user program. Suppose that
there is room for the OS and two user programs. When one job needs to wait for
I/O, the processor can switch to the other job, which is likely not waiting for 1/O
(Figure 2.5b). Furthermore, we might expand memory to hold three, four, or more
programs and switch among all of them (Figure 2.5c). The approach is known as
multiprogramming, or multitasking. It is the central theme of modern operating
systems.

Read one record from file 15 us
Execute 100 instructions 1 ws
Write one record to file 15 s
Total 31 ws

Percent CPU Utilization = ;—1 = 0.032 =32%

Figure 2.4 System Ultilization Example
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To illustrate the benefit of multiprogramming, we give a simple example.
Consider a computer with 250 Mbytes of available memory (not used by the OS),
a disk, a terminal, and a printer. Three programs, JOB1, JOB2, and JOB3, are
submitted for execution at the same time, with the attributes listed in Table 2.1.
We assume minimal processor requirements for JOB2 and JOB3 and continuous
disk and printer use by JOB3. For a simple batch environment, these jobs will be
executed in sequence. Thus, JOB1 completes in 5 minutes. JOB2 must wait until

Table 2.1 Sample Program Execution Attributes

JOB1 JOB2 JOB3
Type of job Heavy compute Heavy I/O Heavy I/0O
Duration 5 min 15 min 10 min
Memory required S0 M 100 M 75 M
Need disk? No No Yes
Need terminal? No Yes No
Need printer? No No Yes
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Table 2.2 Effects of Multiprogramming on Resource Utilization

Uniprogramming Multiprogramming

Processor use 20% 40%
Memory use 33% 67%

Disk use 33% 67%

Printer use 33% 67%

Elapsed time 30 min 15 min
Throughput 6 jobs/hr 12 jobs/hr
Mean response time 18 min 10 min

the 5 minutes are over and then completes 15 minutes after that. JOB3 begins after
20 minutes and completes at 30 minutes from the time it was initially submitted.
The average resource utilization, throughput, and response times are shown in the
uniprogramming column of Table 2.2. Device-by-device utilization is illustrated in
Figure 2.6a. It is evident that there is gross underutilization for all resources when
averaged over the required 30-minute time period.

Now suppose that the jobs are run concurrently under a multiprogramming
OS. Because there is little resource contention between the jobs, all three can run
in nearly minimum time while coexisting with the others in the computer (assum-
ing that JOB2 and JOB3 are allotted enough processor time to keep their input
and output operations active). JOB1 will still require S minutes to complete, but at
the end of that time, JOB2 will be one-third finished and JOB3 half finished. All
three jobs will have finished within 15 minutes. The improvement is evident when
examining the multiprogramming column of Table 2.2, obtained from the histogram
shown in Figure 2.6b.

As with a simple batch system, a multiprogramming batch system must rely
on certain computer hardware features. The most notable additional feature that
is useful for multiprogramming is the hardware that supports I/O interrupts and
DMA (direct memory access). With interrupt-driven I/O or DMA, the processor
can issue an I/O command for one job and proceed with the execution of another
job while the 1/O is carried out by the device controller. When the I/O operation is
complete, the processor is interrupted and control is passed to an interrupt-handling
program in the OS. The OS will then pass control to another job.

Multiprogramming operating systems are fairly sophisticated compared to
single-program, or uniprogramming, systems. To have several jobs ready to run,
they must be kept in main memory, requiring some form of memory management.
In addition, if several jobs are ready to run, the processor must decide which one
to run, this decision requires an algorithm for scheduling. These concepts are dis-
cussed later in this chapter.

Time-Sharing Systems

With the use of multiprogramming, batch processing can be quite efficient.
However, for many jobs, it is desirable to provide a mode in which the user interacts
directly with the computer. Indeed, for some jobs, such as transaction processing, an
interactive mode is essential.

Operating Systems: Internals and Design Principles, Seventh Edition, by William Stallings. Published by Prentice Hall. Copyright © 2012 by Pearson Education, Inc.



CPU

Memory
Disk
Terminal
Printer
T i T T T 0%
T T T T T
Job history | “5op 1 JOB2 JOB3
T T T T
0 5 10 15 20 25 30
minutes
time

(a) Uniprogramming

Figure 2.6 Utilization Histograms

CPU

Memory

Disk

Terminal

Printer

Job history

100%

0%

100%

0%

100%

0%

100%

100%
I I 0%
< 1 T
JOB1
JOB2
JOB3

T T

5 10 15
minutes time

(b) Multiprogramming

Operating Systems: Internals and Design Principles, Seventh Edition, by William Stallings. Published by Prentice Hall. Copyright © 2012 by Pearson Education, Inc.

59



60 CHAPTER 2 / OPERATING SYSTEM OVERVIEW

Today, the requirement for an interactive computing facility can be, and often
is, met by the use of a dedicated personal computer or workstation. That option was
not available in the 1960s, when most computers were big and costly. Instead, time
sharing was developed.

Just as multiprogramming allows the processor to handle multiple batch jobs
at a time, multiprogramming can also be used to handle multiple interactive jobs. In
this latter case, the technique is referred to as time sharing, because processor time is
shared among multiple users. In a time-sharing system, multiple users simultaneously
access the system through terminals, with the OS interleaving the execution of each
user program in a short burst or quantum of computation. Thus, if there are n users
actively requesting service at one time, each user will only see on the average 1/n
of the effective computer capacity, not counting OS overhead. However, given the
relatively slow human reaction time, the response time on a properly designed system
should be similar to that on a dedicated computer.

Both batch processing and time sharing use multiprogramming. The key
differences are listed in Table 2.3.

One of the first time-sharing operating systems to be developed was the
Compatible Time-Sharing System (CTSS) [CORB62], developed at MIT by a
group known as Project MAC (Machine-Aided Cognition, or Multiple-Access
Computers). The system was first developed for the IBM 709 in 1961 and later
transferred to an IBM 7094.

Compared to later systems, CTSS is primitive. The system ran on a computer
with 32,000 36-bit words of main memory, with the resident monitor consuming 5000
of that. When control was to be assigned to an interactive user, the user’s program
and data were loaded into the remaining 27,000 words of main memory. A pro-
gram was always loaded to start at the location of the 5000th word; this simplified
both the monitor and memory management. A system clock generated interrupts
at a rate of approximately one every 0.2 seconds. At each clock interrupt, the OS
regained control and could assign the processor to another user. This technique is
known as time slicing. Thus, at regular time intervals, the current user would be
preempted and another user loaded in. To preserve the old user program status for
later resumption, the old user programs and data were written out to disk before the
new user programs and data were read in. Subsequently, the old user program code
and data were restored in main memory when that program was next given a turn.

To minimize disk traffic, user memory was only written out when the incoming
program would overwrite it. This principle is illustrated in Figure 2.7. Assume that
there are four interactive users with the following memory requirements, in words:

e JOBI: 15,000
e JOB2: 20,000

Table 2.3 Batch Multiprogramming versus Time Sharing

Batch Multiprogramming Time Sharing
Principal objective Maximize processor use Minimize response time
Source of directives to Job control language commands Commands entered at the
operating system provided with the job terminal
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Figure 2.7 CTSS Operation

e JOB3: 5000
e JOB4: 10,000

Initially, the monitor loads JOB1 and transfers control to it (a). Later, the
monitor decides to transfer control to JOB2. Because JOB2 requires more mem-
ory than JOB1, JOB1 must be written out first, and then JOB2 can be loaded (b).
Next, JOB3 is loaded in to be run. However, because JOB3 is smaller than JOB2,
a portion of JOB2 can remain in memory, reducing disk write time (c). Later, the
monitor decides to transfer control back to JOB1. An additional portion of JOB2
must be written out when JOBI1 is loaded back into memory (d). When JOB4 is
loaded, part of JOB1 and the portion of JOB2 remaining in memory are retained
(e). At this point, if either JOB1 or JOB2 is activated, only a partial load will be
required. In this example, it is JOB2 that runs next. This requires that JOB4 and the
remaining resident portion of JOB1 be written out and that the missing portion of
JOB?2 be read in (f).

The CTSS approach is primitive compared to present-day time sharing, but
it was effective. It was extremely simple, which minimized the size of the monitor.
Because a job was always loaded into the same locations in memory, there was no
need for relocation techniques at load time (discussed subsequently). The technique
of only writing out what was necessary minimized disk activity. Running on the
7094, CTSS supported a maximum of 32 users.

Time sharing and multiprogramming raise a host of new problems for the OS.
If multiple jobs are in memory, then they must be protected from interfering with
each other by, for example, modifying each other’s data. With multiple interactive
users, the file system must be protected so that only authorized users have access
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to a particular file. The contention for resources, such as printers and mass storage
devices, must be handled. These and other problems, with possible solutions, will be
encountered throughout this text.

2.3 MAJOR ACHIEVEMENTS

Operating systems are among the most complex pieces of software ever devel-
oped. This reflects the challenge of trying to meet the difficult and in some cases
competing objectives of convenience, efficiency, and ability to evolve. [DENNS80a]
proposes that there have been four major theoretical advances in the development
of operating systems:

* Processes

* Memory management

e Information protection and security

e Scheduling and resource management

Each advance is characterized by principles, or abstractions, developed to
meet difficult practical problems. Taken together, these five areas span many of
the key design and implementation issues of modern operating systems. The brief
review of these five areas in this section serves as an overview of much of the rest
of the text.

The Process

Central to the design of operating systems is the concept of process. This term was
first used by the designers of Multics in the 1960s [DALEG68]. It is a somewhat
more general term than job. Many definitions have been given for the term process,
including

e A program in execution
* An instance of a program running on a computer
e The entity that can be assigned to and executed on a processor

* A unit of activity characterized by a single sequential thread of execution, a
current state, and an associated set of system resources

This concept should become clearer as we proceed.

Three major lines of computer system development created problems in timing
and synchronization that contributed to the development of the concept of the
process: multiprogramming batch operation, time sharing, and real-time transaction
systems. As we have seen, multiprogramming was designed to keep the processor
and I/O devices, including storage devices, simultaneously busy to achieve maxi-
mum efficiency. The key mechanism is this: In response to signals indicating the
completion of I/O transactions, the processor is switched among the various pro-
grams residing in main memory.
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A second line of development was general-purpose time sharing. Here, the
key design objective is to be responsive to the needs of the individual user and yet,
for cost reasons, be able to support many users simultaneously. These goals are
compatible because of the relatively slow reaction time of the user. For example,
if a typical user needs an average of 2 seconds of processing time per minute, then
close to 30 such users should be able to share the same system without noticeable
interference. Of course, OS overhead must be factored into such calculations.

A third important line of development has been real-time transaction process-
ing systems. In this case, a number of users are entering queries or updates against a
database. An example is an airline reservation system. The key difference between
the transaction processing system and the time-sharing system is that the former
is limited to one or a few applications, whereas users of a time-sharing system can
engage in program development, job execution, and the use of various applications.
In both cases, system response time is paramount.

The principal tool available to system programmers in developing the early
multiprogramming and multiuser interactive systems was the interrupt. The activity
of any job could be suspended by the occurrence of a defined event, such as an I/O
completion. The processor would save some sort of context (e.g., program coun-
ter and other registers) and branch to an interrupt-handling routine, which would
determine the nature of the interrupt, process the interrupt, and then resume user
processing with the interrupted job or some other job.

The design of the system software to coordinate these various activities turned
out to be remarkably difficult. With many jobs in progress at any one time, each of
which involved numerous steps to be performed in sequence, it became impossible
to analyze all of the possible combinations of sequences of events. In the absence of
some systematic means of coordination and cooperation among activities, program-
mers resorted to ad hoc methods based on their understanding of the environment
that the OS had to control. These efforts were vulnerable to subtle programming
errors whose effects could be observed only when certain relatively rare sequences
of actions occurred. These errors were difficult to diagnose because they needed to
be distinguished from application software errors and hardware errors. Even when
the error was detected, it was difficult to determine the cause, because the precise
conditions under which the errors appeared were very hard to reproduce. In general
terms, there are four main causes of such errors [DENNS8Oa]:

e Improper synchronization: It is often the case that a routine must be sus-
pended awaiting an event elsewhere in the system. For example, a program
that initiates an I/O read must wait until the data are available in a buffer
before proceeding. In such cases, a signal from some other routine is required.
Improper design of the signaling mechanism can result in signals being lost or
duplicate signals being received.

¢ Failed mutual exclusion: It is often the case that more than one user or pro-
gram will attempt to make use of a shared resource at the same time. For
example, two users may attempt to edit the same file at the same time. If
these accesses are not controlled, an error can occur. There must be some
sort of mutual exclusion mechanism that permits only one routine at a time
to perform an update against the file. The implementation of such mutual
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exclusion is difficult to verify as being correct under all possible sequences
of events.

* Nondeterminate program operation: The results of a particular program
normally should depend only on the input to that program and not on
the activities of other programs in a shared system. But when programs share
memory, and their execution is interleaved by the processor, they may inter-
fere with each other by overwriting common memory areas in unpredictable
ways. Thus, the order in which various programs are scheduled may affect the
outcome of any particular program.

e Deadlocks: It is possible for two or more programs to be hung up waiting for
each other. For example, two programs may each require two I/O devices to
perform some operation (e.g., disk to tape copy). One of the programs has
seized control of one of the devices and the other program has control of
the other device. Each is waiting for the other program to release the desired
resource. Such a deadlock may depend on the chance timing of resource
allocation and release.

What is needed to tackle these problems is a systematic way to monitor
and control the various programs executing on the processor. The concept of the
process provides the foundation. We can think of a process as consisting of three
components:

* An executable program
e The associated data needed by the program (variables, work space, buffers, etc.)
e The execution context of the program

This last element is essential. The execution context, or process state, is the
internal data by which the OS is able to supervise and control the process. This
internal information is separated from the process, because the OS has information
not permitted to the process. The context includes all of the information that the OS
needs to manage the process and that the processor needs to execute the process
properly. The context includes the contents of the various processor registers, such
as the program counter and data registers. It also includes information of use to the
OS, such as the priority of the process and whether the process is waiting for the
completion of a particular I/O event.

Figure 2.8 indicates a way in which processes may be managed. Two proc-
esses, A and B, exist in portions of main memory. That is, a block of memory is
allocated to each process that contains the program, data, and context information.
Each process is recorded in a process list built and maintained by the OS. The
process list contains one entry for each process, which includes a pointer to the
location of the block of memory that contains the process. The entry may also
include part or all of the execution context of the process. The remainder of the
execution context is stored elsewhere, perhaps with the process itself (as indicated
in Figure 2.8) or frequently in a separate region of memory. The process index
register contains the index into the process list of the process currently controlling
the processor. The program counter points to the next instruction in that process
to be executed. The base and limit registers define the region in memory occupied
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Figure 2.8 Typical Process Implementation

by the process: The base register is the starting address of the region of memory
and the limit is the size of the region (in bytes or words). The program counter and
all data references are interpreted relative to the base register and must not exceed
the value in the limit register. This prevents interprocess interference.

In Figure 2.8, the process index register indicates that process B is execut-
ing. Process A was previously executing but has been temporarily interrupted. The
contents of all the registers at the moment of A’s interruption were recorded in its
execution context. Later, the OS can perform a process switch and resume execution
of process A. The process switch consists of storing the context of B and restoring
the context of A. When the program counter is loaded with a value pointing into A’s
program area, process A will automatically resume execution.

Thus, the process is realized as a data structure. A process can either be
executing or awaiting execution. The entire state of the process at any instant is con-
tained in its context. This structure allows the development of powerful techniques
for ensuring coordination and cooperation among processes. New features can be
designed and incorporated into the OS (e.g., priority) by expanding the context to
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include any new information needed to support the feature. Throughout this book,
we will see a number of examples where this process structure is employed to solve
the problems raised by multiprogramming and resource sharing.

A final point, which we introduce briefly here, is the concept of thread. In
essence, a single process, which is assigned certain resources, can be broken up into
multiple, concurrent threads that execute cooperatively to perform the work of the
process. This introduces a new level of parallel activity to be managed by the hard-
ware and software.

Memory Management

The needs of users can be met best by a computing environment that supports
modular programming and the flexible use of data. System managers need efficient
and orderly control of storage allocation. The OS, to satisfy these requirements, has
five principal storage management responsibilities:

¢ Process isolation: The OS must prevent independent processes from interfer-
ing with each other’s memory, both data and instructions.

e Automatic allocation and management: Programs should be dynamically
allocated across the memory hierarchy as required. Allocation should be
transparent to the programmer. Thus, the programmer is relieved of concerns
relating to memory limitations, and the OS can achieve efficiency by assigning
memory to jobs only as needed.

¢ Support of modular programming: Programmers should be able to define pro-
gram modules, and to create, destroy, and alter the size of modules dynamically.

e Protection and access control: Sharing of memory, at any level of the memory
hierarchy, creates the potential for one program to address the memory space
of another. This is desirable when sharing is needed by particular applications.
At other times, it threatens the integrity of programs and even of the OS itself.
The OS must allow portions of memory to be accessible in various ways by
various users.

* Long-term storage: Many application programs require means for storing
information for extended periods of time, after the computer has been
powered down.

Typically, operating systems meet these requirements with virtual memory
and file system facilities. The file system implements a long-term store, with infor-
mation stored in named objects, called files. The file is a convenient concept for the
programmer and is a useful unit of access control and protection for the OS.

Virtual memory is a facility that allows programs to address memory from
a logical point of view, without regard to the amount of main memory physically
available. Virtual memory was conceived to meet the requirement of having multi-
ple user jobs reside in main memory concurrently, so that there would not be a hia-
tus between the execution of successive processes while one process was written out
to secondary store and the successor process was read in. Because processes vary
in size, if the processor switches among a number of processes it is difficult to pack
them compactly into main memory. Paging systems were introduced, which allow
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processes to be comprised of a number of fixed-size blocks, called pages. A pro-
gram references a word by means of a virtual address consisting of a page number
and an offset within the page. Each page of a process may be located anywhere
in main memory. The paging system pr