Contents

Foreword
Preface

Chapter 1 Introduction And Overview

i1 Use GF TCPAP]

1.2 Designing Applications For A Distributed Environment 2
i3 Standard And Nonstandard Application Protocols 2

.4 An Example Of Standard Application Protocol Use 2

1.5 An Example Connection 3

1.6 Using TEINET To Access An Alternative Service 4

1.7 Application Protocols And Software Flexibility 3§

1.8 Viewing Services From The Provider's Perspective 6

1.9 The Remainder Of The Text 7

110 Summary 7

Chapter 2 The Client Server Model And Software Design

2.1 Introduction 9
2.2 Motivation 10
2.3 Terminglogy And Concepts 10
2,31 Cliemts And Servers 10
2.32 Privilege And Complexity 11
2.3.3 Standard Vs. Nonstandard Client Software 11
2.34 Parameterization Qf Clients 12
235 Connectionless V5. Connection-Oriented Servers 1)
236 Stateless Vs. Stateful Servers 14
2.3.7 A Stateful File Server Example 14

xXxi

xxiil

2.4

2.3.8 Statelessness Is A Protocol Issue 16
2.3.0 Rervers As Clients 17
Summary 18

Chapter3 Concurrent Processing in Client-Server Software

31
32
3.3
34

3.5

3.6
3.7
3.8
KRY
3.70
301

Introduction 2]

Concurrency In Networks 22

Concurrency In Servers 23

Terminolapy And Concepts 24

34! The Process Concept 25

3.4.2 Threads 25

3.4.3 Programs vs. Threads 26

344 Procedure Calls 26

An Example Of Concurrent Thread Creation 27
351 A Seguential C Example 27

3.5.2 A Concurrent Version 28

3.5.3 Timeslicing 30

Diverging Threads 31

Context Switching And Protocol Software Design 32
Concurrency And Asynchronous /0 32
Concurrency Under UNIX 33

Executing A Separately Compited Program 34
Summary 35

Chapter 4 Program interface To Protocols

4.1
4.2

1.3
4.1
4.3
4.6
4.7
4.8
4.9

W

Imroduciion 37

Loosely Specified Protocol Saftware Interface 37
4.2.1 Advantages And Disadvamages 38

Interface Functionality 38

Conceptual Interface Specification 39

implemeniarion Of An API 39

Tweo Bastc Approaches Te Network Communication 4)
The Basic /O Functions Available In ANSIC 42
History Of The UNIX Socket API 43

Summary 44

Conteits

21

37

Contents

Chapter 5 The Socket API

5.r
5.2
5.3
3.4

3.5
5.6
5.7

5.8
5.9
.70
512

Introdiiction 47

The History OF Sockets 47

Specifying A Protocol Interface 48

The Socket Abstraction 49

5.4.1 Socket Descriptors 49

54.2 Sysiem Dara Structures For Sockets 30
343 Using Sockets 51

Specifying An Endpoint Address 51

A Generic Address Sirncture 52

Functions In The Socket API 53

371 The WSASrartup Function 53

3.7.2 The WSACleanup Function 54

3.72 The Socket Function 54

3.7.4 The Connect Function 54

5.7.5 The Send Funcrion 54

3.7.0 The Recv Function 55

5.7.7 The Closesocket Function 55

578 The Bind Function 55

3.7.% The Listen Function 55

5.7.10 The Accept Function 56

3.7 K Summary Of Socket Culls Used With TCP 56
Utiliry Routines For frnteger Conversion 56
Using Socket Calls In A Program 58

Svmbolic Constants For Socket Call Parameters 59
Summary 59

Chapter 6 Aigorithms And Issues In Client Software Design

6.1
6.2
6.3
.4
%]
6.6
6.7
5.8
6.9
6. 10
8.11
6.12

Introducrion 61

Learning Algorithms Instead Of Details 61
Client Architectiure 62

Identifying The Locaiion Of A Server 62
Parsing An Address Argumenr 64

Looking Up A Damain Name 63

Looking Up A Well-Known Port By Name 66
FPort Numbers And Netwark Byte Order 66
Looking Up A Proweol By Name 67

The TCF Client Algorithm 67

Allocating A Socker 68

Choosing A Local Protocol Port Number 69

LI . el

47

61

i

Contenis

6.13 A Fundamental Problem In Choosing A Local IP Address 09
6.14 Connecting A TCP Socket To A Server 70
0.15 Communicating Witk The Server Using TCP 70
6.16 Reading A Response From A TCP Connection 71
6.17 Closing A TCP Connection 72

6.17.1 The Need For Partial Close 72

6.17.2 A Partial Close Opevation 72
6.18 Programming A UDP Client 73
6.19 Connected And Unconnected UDP Sockets 73
620 Using Connect With UDP 74
6.21 Communicating With A Server Using UDP 74
6.22 Closing A Socker Thar Uses UDP 74
6.23 Partial Close For UDP 75
6.24 A Warning About UDP Unreliability 75
6.25 Summary 75

Chapter 7 Example Client Software 79
7.1 Introduciion 79
7.2 The Importance Of Small Exampies 79
7.3 Hiding Details B0
74 An Example Procedure Library For Client Programs 80
73 fmplementation Of ConTCFP Bt
7.6 Implementation Of ConUDFP 82
7.7 A Procedure That Forms Connections 82
7.8 Using The Example Library 85
7.9 The DAYTIME Service 85
7.10 Implementation Of A TCP Clienr For DAYTIME 86
7.11 Reading From A TCP Connection 87
7.12 The TIME Service BB
7.13 Accessing The TIME Service 88
7.14 Accurate Times And Netwark Delays 89
7.15 A UDP Client For The TIME Service 89
7.16 The ECHO Service 91
7.47 A TCP Client For The ECHO Service 92
7.18 A UDP Client For The ECHQ Service 94
7.19 Summary 96
Chapter 8 Algorithms And Issues In Server Software Design 99

8.1 Introduction 99
8.2 The Conceptual Server Algorithm 99

Wil

Contenis

&3 Concurrent V5. Iterative Servers 100

8.4 Connection-Oriented Vs. Connectionless Access 100
8.5 Connection-Oviented Servers 101

8.6 Connectionless Servers 101

8.7 Failure, Reliability, And Srarelessness 102

8.8 Optimizing Stateless Servers 103

5.9 Four Basic Types Of Servers 1035

8.10 Reguest Processing Time 106

811 Irerative Server Algorithms 106

812 An lterative, Connection-Oriented Server Algorithm 107
8.13 Binding To A Well-Known Address Using INADDR_ANY

8.14 Placing The Socket In Passive Mode 108

8.15 Accepting Connecrions And Using Them 108

816 An [lterative, Connectionless Server Algorithm 108
8.17 Forming A Reply Address In A Connectionless Server
8.18 Concurrent Server Algorithms 110

8.19 Master And Slave Threads 110

8.20 A Concurrent, Connectionless Server Algorithm 111
821 A Concurrent, Connection-Oriented Server Algorithm
8.22 Using Separate Programs As Slaves 112

823 Apparent Concurrency Using A Single Thread 113
8.24 When To Use Each Server Type 114

825 A Summary of Server Types 115

8.26 The Important Problem Of Server Deadlock 116
8.27 Alternative Implementations 116

828 Summary 117

Chapter 9 lterative, Connectionless Servers {UDFP)

9.1 Introduction 119

9.2 Creating A Passive Socker 119
2.3 Thread Structure 122

94 An Example TIME Server 123
0.5 Summary 125

Chapter 10 Iterative, Connection-Oriented Servers (TCP)

0.l Itroduction 127

10.2 Allocating A Passive TCP Socker 127
1603 A Server For The DAYTIME Service 128
{04 Thread Structure 128

105 An Example DAYTIME Server 119

onrd el g Lo e sk — " ="

119

127

IX

i0.6 Closing Connections 132

10.7 Conneciion Termination And Server Vulnerability 132

0.8 Summary 133

Chapter 11 Concurrent, Connection-Oriented Servers (TCP)

111 Introduction 135

1.2 Concurrent ECHO 135

113 lrerative Vs. Concurrent Implementations 136
i11.4 Thread Structure 136

11.5 An Example Concurrent ECHO Server 137
1.6 Summary 140

Chapter 12 Singiy-Threaded, Concurrent Servers {TCP)

2.1 Introduction 143

12.2 Data-driven Processing In A Server 143

12,3 Dara-Driven Processing With A Single Thread 144
124 Thread Structure Of A Singlv-Threaded Server 145
12.5 An Example Singly-Threaded ECHO Server 146
126 Summary 148

Chapter 13 Multiprotocol Servers (TCP, UDP)

i3l Imtroduction 151

13.2 The Motivarion For Reducing The Number Of Servers
13.3 Mulhiprotoco! Server Design 152

134 Thread Structure 152

13.5 An Example Multiprotocol DAYTIME Server. 153
13.6 The Concept Of Shared Code 157

137 Concurrent Multiprotocel Servers 157

13.8 Swwnmary 157

Chapter 14 Muitiservice Servers (TCP, UDP)

.1 Introduction 159

14.2 Consolidating Servers 159

4.3 A Connectionless, Multiservice Server Design 160
.4 A Connection-Oriented, Multiservice Server Design

151

161

145 A Concurrent, Connection-Oriented, Multiservice Server [62

Contenis

135

143

151

159

Contends

14.6 A Singly-Threaded Multiservice Server Implemeniation . 162
4.7 Invoking Separate Programs From A Multiservice Server 163
4.8 Muliservice, Multiprotocol Designs 164

14.9 An Example Multiservice Server 165

14.10 Static and Dynamic Server Configuration 171

I4. 11 An Example Super Server, Inetd 172

14.12 Summary 1M

Chapter 15 Uniform, Efficient Management Of Server Concurrency

I5.1 Introduction 177

13.2 Choosing Between An lterative And A Concurrent Design 177

15.3 Level Of Concurrency 178

15.4 Demand-Driven Concurrency 179

15.5 The Cost Of Concurrency 79

15.6 Overhead And Delay 179

15.7 Small Delays Can Matter 180

15.8 Thread Preallocation 181
15.8.1 Preallocation Techniques 182
15.82 Preallocation In A Connection-Oriented Server 182
15.8.3 Preallocation In A Connectioniess Server 183
I5.84 Preallocation, Bursty Traffic, And NFS 134
15.85 Preallocation On A Muiltiprocessor |85

159 Delayed Thread Allocation 185

1510 The Uniform Basis For Both Technigues 186

15,11 Combining Techniques 187

15,12 Summary 187

Chapter 16 Concurrency In Clients

16.1 Introduction 189

16.2 The Advamtages Of Concurrency 189

i6.3 The Motivation For Exercising Contro! 190
i6.4 Concurrent Contact With Muitiple Servers 191
i8.5 Implementing Concurreni Clients 191

16.6 Singly-Threaded Implementations 193

i16.7 An Example Concurrent Client That Uses ECHO 194
16.8 Execution Of The Concurrent Client 198

i6.9 Managing A Timer 199

16,10 Examplie Gutput 200

16.11 Concurrency in The Example Code 200

16.12 Summary 201

177

189

X

Contents

Chapter 17 Tunneling At The Transport And Application Levels 203

17.1
17.2
17.3
174
17,5
176
17.7
{7.8
i7.9

Introduction 203

Multiprotocol Environments 203

Mixing Network Technologies 205

Dynamic Circust Allocanion 206

Encapsulation And Tunneling 207

Tunneling Through An IP Internet 208

Application-Level Tunneling Between Clients And Servers 208
Tunneling, Encapsulation, And Dialup Phone Lines 209
Summary 210

Chapter 18 Application Level Gateways 213

i8.1
i8.2

153
i8.4
18.5
i18.6
187
i8.8
8.9
18,10
i8.11
i8.12
i18.12
i18.14
i8.15
18.16
18.17
18.18

Introduction 213

Clients And Servers In Constrained Environments 213
i8.2.1 The Reality Of Multiple Technologies 213

i18.22 Compuiers With Limited Functionality 214

i8.23 Connectivity Constraints That Arise From Security 214
Using Application Gatewayy 215

Interoperability Through A Mail Gateway 216
implementation OFf A Mail Gateway 217

A Comparison OFf Application Gateways And Tunneling 217
Application Gateways And Limited Funcrionality Systems 219
Application Gateways Used For Securityv 220

Application Gateways And The Extra Hop Problem 221

An Example Application Gateway 223

Details Of A Web-Based Application Gateway 224
Invoking A CGI Program 225

URLs For The RFC Application Gateway 226

A General-Purpose Application Gateway 226

Operation Of SLIRP 227

How SLIRP Handies Connections 227

IP Addressing And SLIRP 228

Swmmary 229

Chapter 19 External Data Representation (XDR} 231

Xii

191
19.2
193

Introduction 231
Representations For Data In Computers 231
The N-Sguared Conversion Probiem 232

e T A R R R an R PR = tes

Contents

19.4
19.5
19.6
19.7
19.8
99
1910
1911
19,12
19.13
i19.14

Nework Standard Byte Order 233

A De Fuacto Standard External Data Representation 234
XDR Dara Types 235

Implicit Types 230

Software Support For Using XDR 236

XDR Library Routines 236

Building A Message One Piece At A Time 236
Conversion Routines In The XDR Library 238

XDR Streams, /O, and TCP 240

Records, Record Boundaries, And Datagram 1/0 241
Surmmary 241

.

Chapter 20.. Remote Procedure Call Concept {(RPC)

20.1
20.2
20.3
20.4
20.5
20.6
20.7
20.8
209
20.10
20.1)
20.12
20.13
20.14
20.15
20.16
2017
20,18
20.19
20.20
2021
20,22
20.23
2024
20.25
20.26
2027

Introduction 243

Remote Procedure Call Model 243

Twe Paradigms For Building Distributed Programs 244

A Conceptual Model For Conventional Procedure Calls 245
An Extension Of the Procedural Model 245

Execution Of Conveniional Procedure Call And Return 246
The Procedurel Model In Disiributed Systems 247

Anatogy Berween Client-Server And RPC 248

Distributed Computation As A Program 249

Sun Microsystems' Remote Procedure Call Definition 250
Remote Programs And Procedures 250

Reducing The Number Of Arguments 251

Identifving Remote Programs And Procedures 251

Accommaodating Multiple Versions Of A Remote Program 252

Mutaal Exclusion For Procedures In A Remote Program 253
Communication Semaniics 254

At Least Once Semantics 254

RPC Rewransmission 255

Mapping A Remoie Program To A Protocol Port 255
Dynamic Port Mapping 256

RPC Port Mapper Algorithm 257

RPC Message Format 259

Marshaling Arguments For A Remote Procedure 260
Authenticarion 260

An Example Of RPC Message Representation 201
An Example OF An Authentication Field 262
Summary 2063

e R T, A e

243

Contents

Chapter 21 Distributed Program Generation (Rpcgen Concept) 267

2I.1
212
2i.3
2.4
21.5
21.6
A7
2i8
219
2110
2417
2112
2i.13

Introduction 267

Using Remote Procedure Calls 268

Programming Mechanisms To Support RFC 269
Dividing A Program Into Loca! And Remote Procedures 270
Adding Code For RPC 271

Stub Procedures 271

Multiple Remote Procedures And Dispatching 272
Name Of The Client-Side Stub Procedure 273

Using Rpcgen To Generate Distributed Programs 274
Rpcgen Output And Interjace Procedures 274

Rpcgen Inputr And Cutpnt 275

Using Rpcgen To Build A Client And Server 276
Summary 276

Chapter 22 Distributed Program Generation (Rpcgen Example) 279

22.7
22.2
22.3
22.4
22.5
22.6
22.7
22.8
22.9
22,10
22.11
22.12
22,13

22.14
2215
2276
22.17

X1V

Introduction 279

An Example To fllustrate Rpcgen 280

Dictionary Look Up 28D

Eight Steps To A Distributed Application 28]

Step 1 Build A Conventional Application Program 282
Step 2: Divide The Program Into Two Parts 286
Step 3: Create An Rpcgen Specification 292

Step 4: Run Rpcgen 294

The .h File Produced 8y Rpcgen 294

The XDR Conversion File Produced By Rpcgen 296
The Client Code Produced By Rpcgen 297

The Server Code Produced By Rpcgen 298

Step 5: Write Stub Iterface Pracedures 301

22.13.1 Client-Side Interface Routines 301

22.13.2 Server-Side Interface Rourines 304

Step 6: Compile And Link The Client Program 305
Step 7: Compile And Link The Server Program 39
Step 8: Start The Server And Execute The Client 311
Summary 311

L oM o el w4 e e el w1 R 4 L {ERAES ClAe L AL NS WALd. IR e rme—e =

Conlents

Chapter 23 Network Flle Systemn Concepts (NFS) Ha

23.1
23.2
23.3
234
23.5
23.6
23.7

23.8
23.9
2310

2111

23.12
23.13
2314
23.15
21,16
23.17
2118
2319
23.2{
232}
23.22
23.23
2324

Introduction 313

Remote File Access Vs. Transfer 313

Operations On Remote Files 314

File Access Among Heterogeneous Computers 314
Stateless Servers 315

NFN And UNIX File Semantics 315

Review Of The UNIX File System 315

23.7.1 Basic Definitions 315

23.7.2 A Byte Sequence Without Record Boundaries 316
23.7.3 A File’s Owner And Group Identifiers 316
23.74 Protection And Access 316

23.7.5 The UNIX Open-Read-Write-Close Paradigm 318
23.7.6 UNIX Data Transfer 319

23.7.7 Permission To Search A Directory 31%

23.7.8 UNIX Random Access 320}

2379 Seeking Beyond The End Of A UNIX File 320
23.7.10 UNIX File Posiiion And Concurrent Access 321
23.7.11 Semantics Of Write During Corcurrent Access 321
23.7.12 UUNIX File Names And Paths 322

23.7.13 The UNIX Inode: Information Stored With A File 323
23.7.14 The UNIX Stat Operation 324

23.7.15 The UNIX File Naming Mechanism 325
23.7.16 UUNIX File System Mounts 326

23.7.17 UNIX File Name Resolution 328

23.7.18 UNIX Symbolic Links 329

Filer Under NF§ 329

NFES File Types 330}

NFS File Modes 330

NFS File Antributes 331

NFS Client And Server 332

NFS Client Operation 333

NFS Cliemt And UNIX 334

NFS Mounts 335

File Handle 336

NFS Handles Replace Path Names 336

An NFS Client Under Windows 338

File Positioning With A Stateless Server 338

Operations On Directories 339

Reading A Directory Statelessly 339

Multiple Hierarchies In An NFS Server 340

The Mount Protocol 340

Surmmary 341

Contents

Chapter 24 Network Flle System Protocol (NFS, Mount) 343

24.1 Inproduction 343

242 Using RPC To Define A Protocol 343

24.3 Defining A Protocol With Data Structures And Procedures 344

244 NFS Constant, Type, And Data Declarations 345
24.4.1 NFS Constants 345
24.4.2 NFS Typedef Declarations 346
24.4.3 NFS Data Structures 36

245 NFN Procedures 348

246 Semantics Of NFS Operations 349
24.6.1 NFSPROC _NULL (Procedure 8} 350
24.6.2 NFESPROC _GETATIR (Procedure {1} 350
24.6,3 NFSPROC_SETATTR (Procedure 2) 350
24.6.4 NFSPROC_ROOT (Procedure 3) [Obsolete in NF5§31 350
24.6.5 NFSPROC_LOOKUP (Procedure 4) 3150
24.6.6 NFSPROC_READLINK {Procedure 5) 350
24.6.7 NFSPROC_READ {Procedure 6} 350
24.6.8 NFSPROC_WRITECACHE (Procedure 7) {Obsolete in NF52] 350
24.6.9 NFSPROC_WRITE {(Procedure 8) 35
24.6.10 NFSPROC_CREATE (Procedure %) 331
24.6.11 NFSPROC_REMOVE (Procedure I13) 351
24.6.12 NFSPROC_RENAME (Procedure 11} 351
24.6.13 NFSPROC_LINK (Procedure 12] 351
24.6. 14 NFSPROC_SYMLINK {Procedure 13} 351
24.6.1% NFSPROC_MKDIR {Procedure 14} 352
24.6.16 NFSPROC_RMDIR (Procedure 15) 352
246,17 NFSPROU _READDIR (Procedure 16) 352
24.6.18 NFSPROC _STATFN {Procedure 17) 352

24.7 The Mount Protocal 35}
24.7.1 Mount Constant Definitions 353
24.7.2 Mount Type Definitions 353
24.7.3 Mount Data Structures 354

24.8 Procedures In The Mournt Protocol 355

24.9 Semantics of Mount Operations 355
24.9.1 MNTPROC _NULL (Procedure () 355
24.9.2 MNTPROC _MNT (Procedure 1) 355
24.9.3 MNTPROC _DUMP (Procedure 2) 356
2494 MNTPROC_UMNT (Procedure 31 356
24.95 MNTPROC _UMNTALL (Procedure 4) 356
24.96 MNTPROC_EXPORT (Procedure 5) 356

24.10 NF5 And Mount Authentication 356

24.11 Changes iIn NFS Version 3 358

24.12 Summary 359

Contemts -~

Chapler 26 A T'E LNET Ciient (Program Structure)

2yl Mhredicton 361
25.2 Overview 362
25.2.1 The User's Terminal 362

25.2.2 Command And Control Information 362

25.2.3 Terminals, Windows, and Files 362
2524 The Need For Concurrency 363
25.25 A Thread Model For A TELNET Client
25.3 - A TELNET Client Algorithm 364
25.4 Keyboard /O In Windows 365
255 Global Variables Used For Keyboard Control
256 Initializing The Keyboard Thread 367
257 Finite Siate Machine Specification = 370

258 Embedding Commands In A TELNET Data Stream 370

25.9 Option Negotiation 371
25.10 Request/Offer Symmetry 372
23.11 TELNET Character Definitions 372

25.12 A Finite State Machine For Data From The Server

25.13 Transitions Among States 374
25.14 A Finite State Machine Implementation 376
25.15 A Compact FSM Representation 376

25.16 Keeping The Compact Representation At Run-Time

25.17 Implemeniation Of A Compact Representation
25.18 Building An FSM Transition Martrix 380}
25.19 The Socket Quiput Finite Sitate Machine 382
25.20 Definitions For The Socket Ouiput FSM 384
25.21 The Option Subnegotiation Finite State Machine
25.22 Definitions For The Option Subnegotiation FSM
25.23 FSM Initialization 387

25.24 Arguments For The TELNET Clien: 387
23.25 The Heart Of The TELNET Client 389

25.26 TELNET Synchromization 391

25.27 Handling A Severe Error 392

25.28 Implemeniation Of The Main FSM 393

25.29 A Procedure For Immediate Disconnection 394

23,30 Abort Procedure 395
25,31 Summary 395

- 361

X Vil

Coneents

Chapter 26 A TELNET Client (Implementation Details) 393
26.1 Introduction 399
26,2 The FSM Action Procedures 399
26.3 Recording The Tyvpe Of An Option Request 40}
26.4 Performing No Operation 401
26.5 Responding To WILL/'WONT For The Echo Option 401
26,6 Sending A Response 402
26.7 Responding Te WILL/WONT For Unsupported Options 403
26.8 Responding Te WILL/WONT For The No Go-Ahead Option 404
26.9 Generating DO/DONT For Binary Transmission 405
26.10 Responding To DO/DONT For Unsupperted Options 406
26.11 Responding To DO/DONT For Transmii Binary Option 406
26.12 Responding To DO/DONT For The Terminal Type Option 408
26.13 Option Subnegotiation 409
26.14 Sending Terminal Type Informarion 41}
26.15 Terminating Subnegotiation 412
26.16 Sending A Character To The Server 412
26.17 Displaving Incoming Duta On The User's Terminal 414
26.18 Writing A Block Of Data To The Server 417
2619 Interacting With The Local Client 418
26.20 Responding To Hlegal Commands 419
26.21 Scripting To A File 419
26.22 Implementation Of Scripting 420
26.23 Imitialization Of Scripting 420
26.24 Collecting Characters Of The Script File Name 421
26.25 Opening A Script File 422
26.26 Terminating Scripting 424
26.27 Printing Starus Information 425
26.28 Summary 426
Chapter 27 Porting Servers From UNIX To Windows 429
27.1 Mtroduction 426G
27.2 Operating In Background 429
27.3 Shared Descriptors And Irnheritance 431
27.4 The Contralling TTY 431
27.5 Working Directories 432
27.6 File Creation And Umask 432
27.7 Process Groupy 433
27.8 Descriptors For Standard 1/ 433
279 Mumal Exclusion For A Server 434

% wilk

—Onents

27.10
27. 1
27.12

27.13
27.14

Recording A Process ID 434

Waiting For A Child Process To Exit 435
Using A System Log Facility 435

27.12.1 Generaiing Log Messages 435
Miscellaneous Incompatibilities 437
Summary 438 :

Chapter 28 Deadlock And Starvation in Cllent-Server Systems

28.1
28.2
28.3
28.4
285
28.6
28.7
8.8
28.9
28.10
28.11
28.12
28.13

Introduction 441

Definition Of Deadlock 441

Difficulty Of Deadlock Deteciton 442
Deadlock Avoidance 443

Deadlock Between A Client And Server 443
Avoiding Deadlock In A Single Interaction 444
Starvation Among A Set Of Clients And A Server 444
Busy Connections And Starvation 445
Avoiding Blocking Operations 446

Threads, Connections, And Other Limits 446
Cycles Of Clients And Servers 447
Documenting Dependencies 447

Summary 448

Appendix 1 Functiona And Library Routines Used With Sockets

Appendix 2 Manipulation Of Windows Socket Descriptors

Bibliography

Index

441

451

485

489

499

XX

Introduction And Overview.

1.1 Use Of TCPAIP

In 1986, the TCP/IP Internet included a few thousand computers at sites concen-
trated primanly in North Ametica. By 1997, over 16,000,000 computer systems attach
to the Internet in over 83 countries spread across 7 continents; its size continues 10 dou-
ble every ten months. Many of the over 86,000 networks that comprise the Internet are
located outside the US.

In addition, most large corporations have chosen TCP/AP protecols for their privale
corporate intemets, many of which are now as large as the cennected Internet was
twelve years ago. TCP/IP accounts for a significant fraction of networking throughou!
the world. Its use is prowing rapidly in Europe, India, South America, and countries on
the Pacific rim. :

Besides quantitative growth, the past decade has witnessed an important change in
the way sites use TCP/IP. Early use focused on a few basic services like electronic
mail, file transfer, and remote login. More recently, browsing information on the World
Wide Web has replaced file transfer as the most popular global service; Uniform
Rescurce Locators used with Web browsers appear on hillboards and television shows.
In addition, many companies are designing application protocols and building private
application software. In fact, over one fifth of all traffic on the connected Internet ar-
ises from applications other than well-known services. New applications reily on
TCPAP to provide basic transport services. They add rich functionality that has
enhanced the Internet environment and has enabled new groups of users o benefit from
connectivity.

The variety of applications using TCP/P is staggering: it includes hotel reservation
systems, gpplications that monitor and control offshore oil platforms, warehouse inven-
tory control systems, applications that permit geographically disiributed machines 10

]

2 Introductiain And Overview Chap. |

share file access and display graphics, applications that transier images and manage
prinling presses, as well as teleconferencing and muliimedia systems. In addition, new
applications are emerging constantly.

As corporate intraneis mature, emphasis shifts frem building networks 1o using
them. As a resull, more programmers need 1o know the fundamental principles and
techniques used to design and implement distributed applications.

1.2 Designing Applications For A Distributed Environment

Programmers who build applications for a distributed computing environment fol-
low a simple guideline: they try 1o make each distributed application behave as much as
possible like the nondisiributed version of the program. In essence, the goal of distri-
buled computing is to provide an environment that hides the geographic location of
computers and services and makes them appear to be local.

For example, a conventional database system stores information on the same
machine as the application programs that access it. A distributed version of such a da-
tabase system permits users to access data from computers other than the one on which
the data resides. If the distributed database applications have been designed well, a user
will not know whether the data being accessed is local or remote.

1.3 Standard And Nonstandard Application Protocois

The TCP/IP protocol soite includes many application protocols, and new applica-
tion protocols appear daily. In fact, whenever a programmer devises a distributed pro-
gram that uses TCP/IP to communicate, the programmer has invented a new application
protocel. Of course, some application protocols have becn documented in RFCs and
adopted as part of the official TCP/IP prowcol snite. We refer o such protocols as
standard application protocols. Other protocols, invented by application programmers
for private use, are referred 10 as nonstandard application protocals.

Most network managers choose to use standard application protocols whenever
possible; one does not invent a new application protocol when an existing protocol suf-
fices. For example, the TCP/IP svite contains standard application protocols for ser-
vices like file transfer, remote login, and eleciranic mail. Thus, a programmer would
use a standard protocol for such services.,

1.4 An Example Of Standard Appiication Protocol Use

Remote login ranks among the most popular TCP/IP applications. Although a
given remote login session only generates data at the speed a human can type and only
receives data at the speed a humarn can read, remote login is the fourth highest source of
packets on the connected Intemet, exceeded by Web browsing, file transfer, and net-

Sec. 14 An Example OF Standard Application Protocol Use 3

work news. Many users rely on remote login as part of their working environment;
they do not have a direct connection w the machines that they use for most computa-
tion.

The TCPAP suite includes a standard application protoco! for remote login known
as TELNET., The TELNET protocol defines the format of data that an application pro-
gram must send to a remote machine to log onto that system and the format of mes-
sages the remote machine sends back, It specifies how character data should be encod-
ed for transmission and how one sends special messages to control the session or abort
a remote operation.

For most users, the internal details of how the TELNET protocol encodes data are
irrelevant; a user can invoke software that accesses a remote machine without knowing
or carmyg about the implementation. In fact, using a remote service is usually as gasy as
using a local one, For example, computer systems that man TCP/IP pretocols usually in-
clude a command that users invoke to run TELNET software. On Windows 95 sys-
tems, the comunand is named telner. To invoke i, a vser can type:

telnet machine

in an MS-DOS shell, where the asgument machine denotes the domain name of the
machine to which remote login access 1s desired. Thus, to form a TELNET connecticn
to machine nic.ddn mil a user types:

telnet nic.ddn.mil

From the user’'s point of view, running fefnet creates a window on the wser’s machine
that connects directly to the remote system. Once the connection has been established.
the zelnet application sends each character the user types to the remote machine, and
displays each character the remote machine emits on the user’s screen,

After a user invokes felner and connects toc a remote system, the remote system
displays a prompi that requests the user to type a login identifier and a password. The
prompt a machine presents to a remote user is identical to the prompt it presents to
users who login on local terminals. Thus, TELNET provides each remote user with the
illusion of being on a directly -connected terminal.

1.5 An Example Connection

As an example, consider what happens when a user invokes teines and connects to
machine cner. reston. va.is:

SmOS TNIX (CNRI)

login:

TP | LI T YOV FLL B TENNT SR .- BN - T e e e s pean R R

4 Introduction And Chverview Chap, |

feinet creates a new window for the login session. As soon as the connection has been
established, felner prints the lines above, telling the user that the connection attempt has
succeeded.

The lines of output come from the remote machine. They identify the operating
systern as SunOS. and provide a standard login prompt. The cursor stops after the fo-
gin: message, waiting for the user to type a valid login identifier. The user must have
an account on the remote machine for the TELNET session to continae. After the user
types a valid login identifier. the remote machine prompts for a password, and only per-
mits acegess if the login identifier and password are valid.

1.6 Using TELMET To Access An Alternative Service

TCP/IF uses protocol port nurnbers te identify application services on a given
machine. Software that implements a given service waits for requests at a . predeter-
mined (well-known) protocol pori. For example, the remote login service accessed with
the TELNET application protocol has been assigned port number 23. Thus, when a
user invokes the tefnet program, the program connects to port 23 on the specified

machine,

Interestingly, the TELNET protocol can be nsed to access services other than the
standard remote login service. To do so, a user must specify the protocol port number
of the desired service. The Windows felnet command uses an optional second argument
to allow the user to specify an allernative protocol port. If the user does not supply a
second argument, ielnef uses port 23. However, if the user supplies a pont number, tel-
net connects to that port number, For example, if a user types:

telnet cri.reston.va.us 1856

the relner program will form a connection to protocol port number 785 at machine
cnri.reston.va.us. The machine is owned by the Corporation For National Research In-
Hiatives (CNRI).

Port /85 on the machine at CWR! does aot supply remote login service. Instead, it
prints information about a recent change in the service offered, and then closes the con-
nection.

devke % % e A PJOT LR o ve ke e
The KIS client program has been moved fram this machine
to info.cul . regton.va.us (132.151.1.15) on port 1685,

Ak wAh Ak rkdiikk

Contacting port {85 on machine info.cari.restonva.us allows one to access the
Knowbot Information Service. After a conmection succeeds, the user receives informa-
tion about the service followed by a prompt for Knowbot commands:

Sec. 16 Using TELNET To Accest An Alternative Service 5

Erowdoot Information Service
FIS Client (VZ.0). Copyright OMRT 1990. 2All Rights Reserved.

KIS searches various Internet directory services to find
scmeane 's street address, email address and phone marber.

Type 'man’ at the propt for a camplete reference with
eamples. Type 'help' for a quick reference to commands.
wpe 'news' for information about recent changes.
Backspace characters are '"H' or DEL

Please enter youir amail address in our quest book. ..
{Your email adhess?) >

The output lines differ, and clearly show that the service available on port 185 is not a
remote login service. The greater-than symbol on the last line serves as the prompt for
Knowbot commands.

The Knowbot service searches well-known white pages directories to help a user
find information about another user. For example, suppose one wanted to know the e-
mail address for David Clark, a researcher at MIT. Typing clark in response to the
Knowbot prompt retrieves over 675 entries that each contain the name Clark. Most of
the entries correspond to individuals with a first or last name of Clark, but some
comespond to individuals with Clark in their affiliation (e.g., Clark College). Searching
through the retrieved information reveals only one entry for a David Clark at MIT:

Clark, Deavid D. (DDC) ddc@LOS . MIT. BT (517} 253-6003

1.7 Application Protocols And Software Flexibility

The example above shows how a single piece of software, in this instance the tel-
ret program, can be used o access more than one service. The design of the TELNET
protocol and its wse to sccess the Knowbot service illustrale two imporstant points.
First, the goal of all protocol design is to find fundamental abstractions that can be
reused in multiple applications. In practice, TELNET suffices for a wide variety of ser-
vices because it provides a basic interactive communication facility. Conceptuaily, the
protocol used to access a service remains separate from the service itself. Second, when
architects specify application services, they use standard application protocols whenever
possible. The Knowbot service described above can be accessed easily because it uses
the standard TELNET protocol for communication. Furthermore, because most TCP/IP
software includes an application program that users can invoke to mn TELNET, no ad-
ditional client software is needed to access the Knowbot service. Pesigners who invent
new Interactive applications can reuse sofiware if they choose TELNET for their access
protocol. The point can be summarized:

6 Intreduction And Overview Chap. |

The TELNET protocol provides incredible flexibility because it onfy
defines interactive communication and not the details of the service
accessed. TEINET can be used as the communication mechanism for
many intergctive services besides remote login.

1.8 Viewing Services From The Provider's Perspective

The examples of application services given above show how a service appears
from an individual user’s point of view. The user runs a program thal accesses a re-
mote service, and expects to receive a reply with little or no delay.

From the perspective of a computer that supplies a service, the situation appears
quite different. Users a1 multiple sites may choose to access a given service at the same
time. When they do, each user expects to receive a response without delay,

To provide gquick respenses and handle many requests, a computer system that sup-
plies an application service must use concurrent processing. That is, the provider can-
not keep a new user waiting while it handles requests for the previous user. Instead, the
software must process more than one request at a time,

Because application programmers do not often write concurrent programs, con-
current processing can seem like magic. A single application program must manage
multiple activities at the same time. Tn the case of TELNET, the program that provides
remote login service must allow multiple users to login to a given machine and must
manage multiple active login sessions. Communication for one login session must
proceed without interference from others.

The need lor concurtency complicates network software design, implementation,
and maintenance. It mandates new algenthms and new programming technigues.
Furthermore, because concurrency complicates debugging, programmers must be espe-
cialtly careful to decument their designs and to follow good programming practices. Fi-
nally, programmers must choose a level of corcusrency and consider whether their
software will exhibit higher thronghput if they increase or decrease the level of con-
CUITENCY.

This text helps application programmers understand the design, construction, and
optimization of network apphication software that uses concurrent processing. It
describes the fundamental algorithms for both sequential and concurrent implementa-
tions of application protocels and provides an exampile of each. Tt considers the trade-
offs and advantages of each design. Later chapters discuss the subtleties of concurrency
management and review techniques that permit a programmer 10 optimize throughput
automatically. To summarize:

Providing concurrent access to application services is important and
difficult; many chapters of this fext explain and discuss concurrent im-
plementations of applicration proracol software.

I I I T R

Sec. 1.8 Viewing Services From The Provider's Perspective 7

1.9 The Remainder Of The Text

This text describes how to design and build distributed applications. Although it
nses TCP/IP transport protocols to provide concrete examples, the discussion focuses on
principles, algorithms, and general purpose techniques thar apply to most network proto-
¢ols. Early chapters introduce the client-server model and socket interfage. Later
chapters present specific algorithms and implementation technigues used in clhient and
server software as well as interesting combinations of algorithms and techniques for
managing ¢AnGUETENcy.

In addition to its description of algorithms for client and server software, the text
presents general techniques like tuaneling, application-level gateways, and remote pro-
cedure calls. Finally, it examines a few standard application protocols like NFS and
TELNET.

Most chapters contain example sofiware that helps illustrate the principles dis-
cussed’. The software should Be considered part of the text. It shows clearly how all
the details fit together and how the concepts appear in working programs.

1. 70 Summary

Many programmers ate building distributed applications that use TCF/IP as a tran-
sport mechanism. Before programmers can design and- implement a distibuted applica-
tion, they need to understand the client-server madel of computing, the operating system
interface an application program uses to gicess protocol software, the fundamental algo-
rithms used to implement client and server software, and altemnatives to standard client-
server interaction including the use of application gateways.

Most network services perinit multipie users to acéess the service sithultaneously.
The technique of concurrent processing makes it possible to build an application pro-
gram that can handle multiple requests at the same time. Much of this 1ext focuses on
techniques for the concurrent implementation of application protocols and on the prob-
lem of managing concurrericy.

FOR FURTHER:STUDY

The manuals that vendors supply with their operating systetns contain information
on how 1o invoke commands that access services like TEENET. Many organizations
also purchase third-party software to augment thé standard applications. Check with
your site administrator to find our about software avatlable on your systém:

8 inrroduction And Qveniew Chap. |

EXERCISES

1.1 Use TELNET from vour local machine to jogin to another machine. How much delay. if
any, <o you experience when the second machine connects to the same local area network?
How much delay do you notice when connected to a remote machine?

1.2 Read the vendor’s manual to find out whether your lecal version of the TELNET software
permaits connection to a port on the remote machine other than the standard port used for re-
mote login.

1.3 Determine the set of TCP/IP services available on your local computer.

1.4 Use an FTP program 10 retrieve a file from a remote site, If the software does not provide
statistics, estimate the transfer rate for a large file. s the rate higher or lower than you ex-
pected?

T T L Tl T T LR

2

The Client Server Model
And Software Design

2.1 Introduction

From the viewpoint of an application, TCP/IP, Like most computer communication
protocols, merely provides basic mechanisims used to transicr data. In particular.
TCP/IP allows a programmer to establish communication between two applicaton pro-
grams and o pass data back and forth. Thus, we say that TCP/IP provides peer-to-peer
communicancn. The peer applications can execute on the same machine or on different
machines.

Although TCP/IP specifies the details of how data passes between a pair of com-
mumicaing applications, it does not dictate when or why peer applications interact, nor
does it specify how programmers should organize such application programs in a distn-
huted environment. In practice. one organizational method dominates the use of TCP/IP
[0 such an extent that almost all applicatons use it. The method is known as the
client-server paradigm. In facl, client-server interaction has become so fundamental in
peer-to-peer networking systems that it forms the basis for most computer communica-
tiom.

This texl uses the client-server paradigm (o Jescribe all application programming.
It considers the mativations behind the cliemti-server model, describes the functions of
the client and server components, and shows how to construct both client and server
software.

Before considering how to construct software, it 1s important (o define chent-server
concepts and lerminalogy. The next sections define terminology (hat is used throughaout
the text,

Ll AL LR A 8 Tt ke IR done . . dpptanet - oe

10 The Client Server Model And Software Desipn Chap. 2
2.2 Motivation

The fundamental motivation for the clienl-server paradigm arises from the problem
of rendezvous. To understand the problem, imagine a human trying to start Two pro-
grams on separale machines and have them communicate. Also remember that comput-
ers operate many orders of magnitude faster than humans. After the human initiates the
first program, the program begins execution and sends a message (o its peer. Within a
few milliseconds, it determines that the peer does nol yet exist, 50 it EMits an error mes-
sage and exits. Meanwhile, the human initiates the second program. Unfortunately,
when the second program starts execution, it finds that the peer has already ceased exe-
cution. Even if the two programs retry Lo communicate continually, they can each exe-
cute so quickly that the probability of them sending messages (0 one another simultane-
ously is low.

The client-server model solves the readezvous problem by asserting that 1o any
pair of communicating applications, one side must start execution and wait {indefinite-
ly) for the other side to contact it. The solution is important because TCPAP does not
respond 1o incoming communication requests on its own.

Because TCPAP does not provide any mechanising that autematically
cregte running programs when g message arrives, a program st be
waiting fo aceept communication before any requests arrive.

Thus. to ensure that computers are ready to communicate, most system administrators
arrange to have communication programs start automatically whenever the operating
system boots. Each program runs forever, wailing for the next request to arrive for the
service it offers.

2.3 Terminology And Concepts

The client-server paradigm divides communicating applications into two broad
categories, depending on whether the application waits for commurication or initiates 1.
This section provides a concise, comprehensive definition of the two categories, and re-
lies an later chapters to illustrate them and explain many of the subtleties,

2.3.1 Clients And Servers

The client-server paradigm uses the direction of initiation to categorize whether a
program 15 a client or server. [n general, an application that initiates peer-to-peer com-
munication 18 called a ¢lienz. End users usuaily mvoke chent software when they use a
network service. Most client software consists of conventional application programs.
Each time a client application executes, it contacts a server, sends a request, and awaits
a response. When the response armrives. the client continues processing. Clients arg
often easier to build than servers, and usually require no special system privileges o
operite.

EERTRP P LR e R R L TR e 1

Sec. 2.3 Terminoiogy And Concepis 1!

By comparison, a server is any program? that waits for incorning communication
requests from a client. The server receives a client’s request, performs the necessary
computation, and returns the result to the ciient.

2.3.2 Privilege And Complexity

Because servers often need W access data, computations, or protocol ports that the
operaling system protects, server software vsually requires special system privileges.
Because a server executes with special system privilege, care must be taken to ensure
that 1t dees not inadvertently pass pnivileges on to the clients that use it. For example, a
file server thalt operates as a privileged program must contain cede to check whether a
given file can be accessed by a given client. The server cannot rely on the usual operat-
ing system checks because its privileged status overrides them.

Servers must contain code that handles the ssues of:

o Authentication — verifying the dentity of the ¢hent

» Authorizution — determining whether a given client is permitted 0 access
the service the server supplies

s Data security — gnaranteeing that data is not unintentionally revealed or
compromised

» Privacy — keeping information about an individual from unauthorized access

s Protection - guaranteeing that network applicailons cannot abuse system
resouIces.

As we will see in later chapters, servers that perform ntcnse computation or handle
large volumes of data operate more efficiently if they handle requests concurrently. The
cormbination of special privileges and concurrent operation usually makes servers more
difficult e design and implement than clients. Later chapters provide many examples
that 1llustrate the differences between clients and servers,

2.3.3 Standard Vs. Nonstandard Client Software

Chapter I describes two broad classes of ciient application programs: those that in-
voke standard TCPIP services {e.g., electronic mail) and those that invoke services de-
fined by the site {e.g., an insulution’s privalc database system}. Stundard application
services consist of those services defined by TCP/IP and assigned well-known, univer-
sally recegnized protocel port identifiers; we consider all others to be locafly-defined
application services or nonstandard application services.

The distinction between standard services and others is only important whern com-
municating outside the local environment. Within a given environment, system ad-
ministrators usuall® arrange to define service names in such a way that psers cannot dis-
tinguish between local and standard services. Programmers who build network applhica-
tions that wiil be used at other siles must undersiand the distinetion, however, and must
be careful 10 avoid depending on services that are only available locatly.

+Technically, a server is z program and not a piece of hardwars. However, compuler users frequently
{mislapply the term to the computer responsible for running a particolar server program. For examgple, they
might say, “That computer is our file server,”” when they mean. *‘That computer uns our file server pro-
gram.”’

© ke R KL B R L T

12 The Client Server Model And Software Desigh Chap. 2

Although TCPAP defines many standard application protocois, most commercial
computer vendors supply only 2 handful of slandard application client programs with
their TCP/IP software. ‘For example, TCP/P software usually includes a remote iermi-
mad clieny that uses the standard TELNET protocol tor remote login, an electronic mail
cifenr that uses the standard SMTP protacol to transfer electronic mail to a remote sys-
tem, a fife transfer client that uses the standard FTP protocal to transfer files between
two machines, and a Web browser that uses the standard HTTP protocol te access Web
documents+.

Of course. many orzanizations build custormzed applications that use TCPIP to
communicate, Customized, nonstandard applications range from simple to complex,
and include such diverse services as image transmission and video teleconferencing,
vOige transmission, remote real-time data collection, hotel and other on-line reservation
systems, distnibuted database access. weather data distribution, and remote control of
ocean-based drilling platforms.

2.3 4 Parameterization Of Clients

Some client software provides more generality than others. In particular, some
clhient software allows the user to specily both the remote machine on which a server
operates and (he protocol port number at which the server s listening. For example,
Chapter / shows how standard application client software can use the TELNET protocol
to access services other than the convertional TELNET remote terminal service, as long
as the program allows the user o specify a destination protocol port as well as a remote
machine.

Conceptoally, soltware that allows a user to specify a protocol pert number has
more input parameters than other software, so we use the term fully parameterized
client o describe it. Many TEILNET client implementations interpret an optional
second argumenl as a port number. To specify only a remote machinge, the user supplies
the name of the remote machine:

telnet machine-name

Given on'y a machine name, the telnet program uses the well-known port for the TEL-
NET service. To specify both a remote machine and a port on that machine, the user
specifies both the machine name and the port number:

telnet machine-name port

Not all vendors provide full parameterization for their client application software.
Theretore, on some systems, it may be difficuit or impossible 1o use any port other than
the official TELNET port. In fact, it may be necessary to modify the vendor’s TEL-
NET client software or to write new TELNET cliert sofrware that accepts a por! argu-
ment and uses that port. Of course, when building client sefiware, full parameterization
15 recommended.

ESMTP ix the Simpie Mail Transfer Prowcol, FTF is the File Transfer Prowogel, and HTTE is the Hyper-
Text Transfer Protocol.

B R P T T I [EEIRTEEPEP

Sec, 23 Termunology And Corcepts 13

When designing client applicarion software. include parameters that
allow the user to fully specify the destinarion machine and destination
protocol port number,

Full parameterizauon is especially usetul when testing a new client or server be-
cause it allows testing to proceed independent of the existing software already in use.
For example, a programmer can build a TELNET client and scrver pair, invoke them
using ronstandard protocol ports, and proceed Lo lest the software without disturbing
standard services. Other users can continue to access the old TELNET service without
interference during the testing.

2.3.5 Connectionless Vs. Connection-Oriented Servers

When programmers design chent-server software, they st choose between two
types of interaction: a connectionfess style or a connection-oriented sivle. The two
styles of interaction correspond directly to the rwo major transport protocals that the
TCF/IP protocol suite supplies. If the client and server communicate using UDP, the
inleraction is connectionless; it they use TCP, the interaction is connection-oriented.

From the application programmer’s point of view, the distinction between connec-
tionless and connection-oriented inleractions is critical because i1 determines the level of
rehability that the underlying system provides. TCP provides all the reliability needed
to communicate across an internet, It verifies that data arrives, and automatically re-
transmits segments that do not. It computes a checksum over the data to guarantee that
it 15 not corrupted during transmission. It uses sequence numbers to ensure that the data
ammves in order. and awlomatically eliminates duplicate packets. It provides flow con-
trol to ensure that the sender does not transmit data faster than the receiver can consome
it. Finally, TCP informs both the client and server if the underlying network becomes
inoperable for any reason.

By contrast, clients and servers that use UDP do not have any guaraniees azbout re-
liable delivery. When a client sends requests, the reguests may be lost, duplicated. de-
layed, or delivered out of order. Similarly, responses the server sends back to a client
may be lost, duplicated, delayed, or delivered owt of order. The client and/or server ap-
plication programs must take appropriale actions to detect and correct such errors.

UDP can be deceiving because i1t provides best effort delivery. UDP does not in-
troduce errors — it mercly depends on the underlying IP internet to detiver packets. [P,
in rn, depends on the underlying hardware networks and intermediate gateways. From
a programmer’s point of view, the consequence of using UDP is that it works well if the
underlying internet works well. For example, UDP works well in a local environment
because local area networks seldom lase, duplicate, or reorder packets. Frrors usually
arise only when communication spans a2 wide area internet.

Programmers sometimes make the mistake of choosing connectionless transport
{i.e., UDP}, building an application that uses it, and then testing the application software
only on a locai area network. Because a local area network seldom or never delays

14 The Client Server Model And Soflware Design Chap. 2

packeis, dreps them, or delivers them out of order, the application software appears 1o
work well. However, if the same software is used across a wide area internet, it may
fail or produce incorrect resulis.

Beginners, as well as most experienced professionals, prefer to use the connection-
oriented style of interaction. A connection-oriented protocol makes programming
simpler, and relieves the programmer of the responsibility 10 detect and correct emors.
In fact, adding reliabnlity to a connectionless iniernet message protocol like UDP is a
nontrivial undertaking that usually requires considerable experience with protocol
design.

Usually, application programs only use UDP if: (1) the applicalion protoced speci-
fies that UDP must be used {(presumably, the application protocol has been designed to
handle errors that cause packets to be lost, duplicated, or reordered), (2) the application
protocel relies on hardware broadeast or multicast, or (3) the application cannot tolerate
the computational overhead or delay required to establish a TCP connection. We can
summarize:

When designing client-server applications, beginners are strengly ad-
viced to wse TCP because it provides reliable, connection-oriented
comnunication. Programs only use UDP if the applicarion protocol
hondles reliability, the application requires hardware broudcast or
multicast, or the application cannot tolerate virtual cireuit overhead.

2.3 6 Stateless Vs. Stateful Servers

Information that a server maintains abouwt the status ol ongoing interactions with
clients is called state infermation. Servers that do not keep any state information are
called stareless servers, others are called stateful servers.

The desire for efficicncy motivates designers to keep state information in servers.
Keeping a small amount of information in a server can reduce the size of messages that
the client and server exchange, and can alow the server 10 respond 1o requests quickly.
Essentially, state intormation allows a server tv remember what the client requesied pre-
vious'y and to compute an incremental response as each new request arrives. By con-
trast, the motivation for statelessness lies i protocol reliability: state information ino a
server can become incorrect if messages are lost, duphcated, or delivered out of order,
ot if the client computer crashes and reboots. If the server uses incorrect state informa-
ion when computing a response, it may respond incorrectiy.

2.3.7 A Stateful File Server Example

An exampie will help explain the distinction between staeless and stateful servers.
Consider a file server that allows clients 10 remotely access information kept in the files
on a local disk. The server operates as an application program. It waits for a client to
contact it over the network. The client sends one of two request types. 1t either sends a
request (0 extract data from a specified file or a request o store dala in a specified file.
The server performs the requested operation and replics to the client.

T T f e . _—

Ber. 23 Terminology And Concepis 15

On one hand, if the file server iz statgless, it maintains no information about the
transactions. Each message from a client that requests the server to extract data from a
file must specify the complete file name (the name could be quite lengthy), a position in
the file from which the data should be exiracted, and the number of bytes to extract.
Similarly, each message that requests the server to store data in a file must specify the
complewe file name, a position in the file at which the data should be stored, and the
data to store.

On 1the other hand, if the fite server maintains state information for its clients, 1
can eliminate the need to pass file names in each message. The server maintains a table
that holds state information about the file currently being accessed. Figure 2.1 shows
one possible arrangement of the siate infarmation.

Handle File Name _Current Position
1 test_program.cpp 0
2 icp_bhook.doc 456
3 dept_budget.ixt 38
q tetris.exe 128

Figure 2.1 Example lable of state information for a stateful file server. To
keep messages short, the server assigns a handie to each file. The
handle appears in messages instead of a file name,

When a client first opens a file, the server adds an entry to its state table that contains
the name of the file, a handle (a small integer used to identify the file), and a current
position in the file (initially zero). The server then sends the handle back 10 the client
for use in subsequent requests. Whenever the client wants to extract additional data
from the file, it sends a smail message that includes the bandle. The server uses the
handle 1o look up the file name and current file position in its state table. The server in-
crements the file position in the siate table, so the next request from the client will ex-
iract new data. Thus, the client can send repeated requests to move through the entire
file. When the client finishes using a file, it sends a message informing the server that
the file will no ionger be needed. In response, the server removes the stored state infor-
maticn. As long as all messages travel reliably between the client and server, a stateful
design makes the interaction more efficieat. The pomnt is:

In an ideal world, where networks deliver all messages reliably and
compiiters never crash, having a server maintain o small amount of
state information for each ongoing imteraciion can make messages
smaller and processing simpler.

Although state information can improve efficiency, it can alse be difficuls or im-
possible 10 maintain correctly if the underlying network duplicates, delays, or delivers
messages out of order (e.g., if the client and server use UDP to communicate). Censid-

1h The Clicnt Server Model And Software Desipn Chap. 1

er what happens W cur file server example it the network duplicates a read request.
Rccall that the server maintains & notion of file position in s state information. As-
sume that the server updates its nonon of file pesition each time a client extracts data
from 4 file. If the network duplicates a read request. the server will receive 1wo copies.
When the first copy arrives, the server extracis dala from Lhe ftile, updates the file posi-
tion in its state information, and returns the result to the client. When the second copy
armves, the server extracts additional data. updates the file position again. and requrng
the new dala to the client. The client may view the second response as 2 duphcate and
discard it, or it may report an error because it received two diffcrent responses to a sin-
gle request. In either casc, the state information at the server can hecome incorrect be-
cause it disagrees with the client’s notion of the true siate.

When computers reboot, state information can also become incorrect. 1 a client
crashes alter pertorming an operation that creates additional stale information, the server
may never receive messages that allow it to discard the information. Eventually, the ac-
cumulated siate information exhausts the server’s memory, 1In our file sefver example.
if a client opens 707 files and then crashes. the server will maintain /64 useless entrics
in its state table forever.

A stateful server may also become confused (or cespond incorrectly} if a new client
begins operation after a reboot using the same protocol port numbers as the previous
chent that was operating when the system crashed. It may secm that this problen: can
be overcome easily by having the server erase previous information from a client when-
ever 4 new request for mteraction armves, Remember, however, that the underiving in-
ternet may duplicate and delay messages, so any solution to the problem of nzw clients
reusing protocol ports after & reboot must also handle the case where a chient starts nor-
mally, but its first message to a server becomes duplicated and one copy s delayed.

In general. the problems of maintaiting correct state can only be solved with com-
plex protocols that accommodate the problems of unrcliable delivery and computer sys-
temn restart. To summarize:

fn a real internet, where machines crash and rebool, and messages
cen be lost, deleved, duplicated, or delivered out of order, stateful
designs lead o complex application protocols that are difficult o
design, wnderstand, and program corvectiv.

2.3.8 Statelessness Is A Protocol Issue

Although we have discussed statelessness in the context of servers, the yuestion of
whether a server is slateless or statetul centers on the application protocol more than the
inplementation. 1f the application protocol specifies that the meaning of a particular
message depends in sorme way on previous messages, 1l may be impossible o provide a
stateless interaction.

In essence, the issue of sitatelessness focuses on whether the application protoco!
assumes the responsibility for reliable delivery. To aveid probloms and make the -
leraction reliable, ar applicabon protocal designer must ensure that cach message 1s
completely unambiguous. That 1s. 4 inessage cannot depend an being delivered in ord-

T LRI HAH | ML D RO AMIRET e Do - wore . ce mmn =

Sec, 2.3 Terminilugy And Concepts |7

er, nor can it depend on previous messages having been delivered. In essence, the pro-
tocol designer must build the interaction so the server gives the samc respoase no
matter when or how many (imes a request arrives. Mathematicians use the term idem-
potent 10 refer to & mathernatical operation that always produces the same result. We
use the term to reter to proteceds that arrange for a server to give the same response to a
given message no matter how many Limes 1t arfives.

in an internet where the underlving network can duplicate, delay or
deliver messages ol of order or whers computers running cfient ap-
plications can crash unexpectediy, the server should be stateless. The
server can onhy be stateless if the application protocol 15 designed 1
make operations idempotent.

2.3.9 Servers As Clients

Programs do not always fit exactly mnio the definition of client or server. A server
program may need 10 access network services that reguire it to act as a client. For ex-
ample, suppose our file server program needs to obtain the time of day so it can stamp
files with the time of access. Also suppose that the system on which it operates does
not have a time-of-day clock. To obtain the time, the server acts as a client by sending
a request to a2 time-of-day server as Figure 2.2 shows.

internet

Rirrhe file

SErVEr

£
3
"\1/"

client

Figure 2.2 A {ilz scrver program acting as @ client 10 a time server. When
the time server replies. the file server will fimish i1 compuwarion
and teturn the resull Lo the original client.

Sk emt e tar YRl . ek et Lk el l-TEAESS L - TS P T T e I L T e Y E T P

I8 The Client Server Model And Software Desipn Chap. 2

in a network environment that has many available servers, it is not unusual o find
a server for one application acting as a client for another. Of course, designers must be
careful to avoid circular dependencies among servers.

2.4 Summary

The client-server paradigm classifies a communicating application program as ei-
ther a ciient or a server depending on whether it initiates communication. In addition 1o
client and server software for standard applications, many TCP/IP users build client and
server soltware for nonstandard applications that they define locally.

Beginners and most experienced programmers use TCP 1o transport messapges
between the client and server because it provides the reliability needed in an interuet en-
vironment. Programmers only resort to UDP if TCP cannot solve the problem.

Keeping state information in the server can improve efficiency. However, if
clients crash unexpeciedly or the underlying transport system allows duplication, delay,
or packel loss, state informauon can consume resources or become incorrect. Thus,
most application protocol designers try o mimmize stale information. A stateless im-
plementation may not be possible if the application protocol fails to make operations
wlempotent.

Programs cannot be divided easily into client and 'server categories because many
programs perform both functions. A program that acts as a server for one service can
acl as 4 client 1o access other services. '

FOR FURTHER STUDY

Stevens [1990] briefly describes the client-server model and gives UNIX examples.
Berson [1993] descrnibes ¢lient-server architectures, and Sinha [1992] reviews the tech-
nology. Other examples can be found by consulting applications that accompany vari-
ous vendors’ operating systems.

EXERCISES

2.1 Which of your local implementations of standard application clients are fully parameter-
ized? Why is full parameterization needed?

2.2 Are standard application protocols like TELNET, FTP, SMTP, and NFS {(MNetweork File Sys-
tern) connectionless or connection-oriented?

2.3 What does TCPTP specify should happen if no server exists when a clienl request arrives?
(Hint: look at [ICMP) What happens on vour local svstern?

LR p o aVe el s B TR LTkl AR Do s et [T T

2.4

2.6

2.7

Exercises 19

Write down the daa structures and message formnats needed for a stateless file server.
What happens if lwo or more clients access the same file? What happens if a client crashes
before closing a file?

Wrile down the data structures and message formats needed for a statefui file server, Use
the operations open, read. write, and close to access files. Arrange for epen to returm an in-
teger wsed to access the file in read and write operations. How do you distinguish dupli-
cate open requests from a client that sends an open. crashes, reboots, and sends an open
agam?

In the previous exercise, what happens in your design if two or more clients access the
same file? What happens if a client crashes before closing a file?

Examine the NFS remote file access protocol carefully o identify which operations are
idempotent. What errors can result if messages are tost, duplicated, or delayed?

e b e ma L YA TR - e 4 AT e

B L e al]

B L]

= et Sl b

3

Concurrent Processing In
Client-Server Software

3.1 Introduction

The previous chapter defines the client-server paradigm. This chapter extends the
notion of clicni-server interaction by discussing concurrency, a concept that provides
much of the power behind client-server interactions but also makes the software diffi-
cult 1o design and build. The notion of concurrency also pervades later chapters, which
explain in detail how servers provide concurrenl access.

In addition to discussing the general concept of concurrency, this chapter also re-
views the facilities thal an operating system supplies to support concurrent execution. It
is impoertant to understand the functions described in this chapter because they appear in
many of the server implementations in later chapters.

Because an operating system supplies the fundammental facibites needed for con-
current execution, the details of techniques used to make clients and servers concurrent
depend on the operating system being used. After describing the general concept of
concurrency, the chapter explains the facilities available to an application running unde;
Windows 95 or Windows NT. A later section contrasts the mechanisms with those
available under UNIX. Although an understanding of UNEX is not essennal for build-
ing concurrent applications under Windows, it is imporant for anyone who is porung
software from a UNIEX system.

21

B B LI R T N T

22 Concurent Processing 1 Clent-Server Software Chap. 3
3.2 Concurrency In Networks

The term concurrency refers (o real or apparent simultancous computing. For ex-
ample, a mult-user computer system can achieve concurrency by time-sharing, a design
that arranges to switch a single processor among moltiple computations quickly enough
to give the appearance of simultancous progress: or by multiprocessing, a design in
which multiple precessors perform multiple computations simultaneously,

Concurrent processing is fundamental to distributed computing and occurs (n many
forms. Among machines on a single network., many pairs of application programs can
comununicate concurrently, sharing the network that interconnects them. For example.
application A on one machine may communicate with application B on another
machine, while application C on a third machime commuomicates with apphcation > on a
fourth. Although thcy ull share a single network, the applications appear to proceed as
if they operate independently. The network hardware enforces access rules that allow
gach pair of communicating machines to exchange messages. The access mies prevent
a given pair of applications from excluding others by consuming all the network
bandwidth.

Concwrtency can also occur within a given computer system. For example, multi-
ple users on a timesharing svstemn can each invoke a client application thal communi-
cates with an application on anather miachine. One user can (ransler a fite. while anoth-
cr user conducts a remote login session. From a vser’s point of view, Il appears Lhat all
client programs proceed simoitaneously.

In addition to concurrency among clients on a single machine, the set of all clienis
on a sel of machines can execute cencurmently. Figure 3.1 illustrates concurrency
among clienl programs running on several machines.

Client soltware does not usually reguire any special altention or eftort on the part
of the programmer to make it usable concumvently. The application programmer designs
and constructs each clienl program without regard to concurment execulion; CoNCUITENCY
among mulaple client programs occurs automatically because the operating system al-
lows multiple users to each invoke a client concurrenily. Thus, the individual clients
operaie much like any conventiona! program. To summarize:

Most client software achieves covcurrent operation because the
underlying pperating svsiem ailows users fo execule cfient progroms
concarrently or because users on many machines each execute olient
software simulianeousty, An individual client program operatey like
wny contvertional program: it does not meanage concarrency explicitly.

Sec, 3.2 Concurrency In Networks 23

@ - internet - @

Figure 3.1 Concurrency among client programs occurs when users execute
them: on multiple machines simultaneously or when a multitasking
operating system allows multiple copies to execute concurrently
on a single computer.

3.3 Concurrency In Servers

In contrast 10 concurrent client soltware, concurrency within a server requires con-
siderable effort. As Figure 3.2 shows, a single server program must handle mcoming
requests concurrently.

To understand why concurrency is umporilani, consider server operations that re-
quire substantial computation or communication. For example, think of a remote login
server. If it operates with no concurrency, it can handle only one remote login at a
time. Once a client contacts the server, the server must ignore or refuse subsequent re-
guests uniid the first user finishes. Clearly, such a design limits the utility of the server,
and prevents multiple remote users from accessing a given machine at the same time.

24 Concurrent Processing In Clent-Servier Software Chap. 3

Chapter & discusses algorithims and design issucs for concurrent servers, showing
how they operate in principle. Chapters % through /3 each illustrate one of the algo-
rithms, describing the design in more detail and showing code for a working server.
The remainder of this chapter concentrates on tertminology and basic concepts used

throughout the texi.
internet

@ server

L"’
N

Figure 3.2 Server saltware must be explicitly programmed 1o hancle con-
current requests because multiple Caenis coMact a server using ity
single, well-known protecol port,

C,

3.4 Terminology And Concepts

Because few application programmers have expenience with the design of con-
current programs, understanding concurrency in servers can be challenging. This scc-
tion explains the basic concept of concurrenl processing and shows how un operating
system supplies it 1t gives examples tha: iflustrate concorrency, and delines lerminoio-
oy used in fater chapters.

B ormacenmabl o A IR e T R e B ca e EECEEI

Sec. ad Termenotogy And Conceprs 25
3.4.1 The Process Concept

In some concurrent processing systems, the process abstraction defines the funda-
mental unit of computationt. The most essential information associated with a process
i an instruction pornter that specifies the address at which the process is execnting.
Orther information associated with a process includes the identity of the user that owns
il. ihe compiled program that it is executing, and the memory locations of the process’
program text and Jdata areas.

A process differs from a program because the process concepl includes only the ac-
tfive execution of a computation, nol the code. Afier the code has been loaded into a
computer. the operating system allows one or more processes o execute it. In particu-
lar. a concurrent processing system allows multiple processes to execute the same piece
al code *‘at the same time.”” This means thal multiple processes may each be executing
at some point in the code. Each process proceeds at its own rate, and each may begin
or finish at an arbitrary time. Because each has a separate instruction pointer that speci-
fies which mstruction it will execute next and its own copy of variables, there is never
any confusion. .

Of course, on a uniprocessor architecture, the smgle CPU can only execue one
process at any instant in time. The operating system makes the computer appear 10 per-
form more than one computation at a tine by switching the CPU amang all executing
processes rapidly. From a human observer’s point of view, many processes appear to
proceed simultanecusly. In fact, one process proceeds for a short time, then another
process proceeds for a short time, and so on. We use the term concurrent execuiion to
capture the idea. It mcans ‘‘apparently simultaneous execution.”” On a uniprocessor.
the operating system handles concurrency, while on a multiprocessar, each CPU can ex-
ceute a process sunultaneously with other CPUs.

The important concept is:

Le

Application programmers build programs for a concurrent environ-
ment without knowing whether the wnderiving hardware consists of a
uniprocessor or a mulliprocesser.

3.4.2 Threads

Some operabing systems, ingcluding Windows 95 and Windows NT, provide a
second form of concurrent execution known as fhreads of executiont. Similar to the
process concept described above. a thread has its own instruction pointer and copy of
local variables. and it executes independently of other threads. A thread mechanism
differs trom a process mechanism, however, because each thread must be associated
with a single process. Although each thread i a process has its own copy of local vari-
ables, all threads in a process share access to a single copy of global varables. More
important, all threads 1 a process share resources that the operating system allocates 1o
the process, including the descriptors used for network communication. Thus, in a mul-
tithreaded program, if one thread opens a file and obtains a descriptor, other threads can

“Some syslems use Lhe erins Lk or jor instead of process,
:The term is often abbreviated threads. which are someatimes catled fighhaeight procexyes because they
incur less system overhead than conventional processcs.

o= e S e e B T T e e s I D

28 Concurent Processing In Clieni-Server Software Chap. 3

use the descriptor 1o access the file. Similarly, if one thread closes a descriptor, none of
the other threads can continue to use it. We will see that shared descriptors are espe-
cially important when a multithreaded program interacts over a network.

A concurrent programn can be written either to create separate processes or (o create
multiple threads within a single process. Each has advantages and disadvantages; the
optimal design may depend on the details of the operating system bemg used. One of
the potential disadvantages of a multithreaded design is interference — a thread that mai-
functions can interfere with other threads by releasing resources or changing the con-
tents of global variables. Inierference can be difficult to debug because it may nat be
obvious which thread has caused the problem. Thus, programmers who write mul-
tithreaded code must be especially careful when creating the program.

3.43 Programs vs. Threads

In a concurrent processing system, a conventional application program 15 merely a
special case: it consists of a piece of code that is executed by exactly one thread al a
time. The notion of thread differs from the conventional notion of progrem in other
ways. For example, most application programmers think of the set of variables defined
in the program as being associated with the code. However, if more than one thread ex-
ecutes the code concurrently, it is essential that each thread has its own copy of the lo-
cal variables. To undersiand why, consider the following sepment of C code thar prints
the integers from f to fi:

for { i=1 ; i <= 10 ; i++)
printf (*%d\n", i);

The ileration uses an index variable, , usually declared 10 be a local variable. In a con-
ventional program, the programmer thinks of storage for varniable /i as being allocated
with the code. However, if two or more threads execule the code segment concurrently,
one of them may be on the sixth ueration when the other starts the first iteration. Each
must have a different value for . Thus, cach thread must have its own copy of vanable
i or confusion will result. To sumimarize:

When multiple threads execure a piece of code concurrenily, each
thread has its own, independent copy of the local variabies associated
with the code.

3.4.4 Procedure Calls

In a procedure-oriented language, ke Pascal or C, executed code can coniain calls
to subprograms (procedures or functions). Subprograms accept arguments, compute a
result, and then return just after the point of the call. [f multiple threads execute code
concurrently, they can each be at a differenl peint in the sequence. of procedure calls.
One thread, A, can begin execution, call a procedure, and then call a second-level pro-
ceduore before another thread, B, begins. Thread B may retum from a first-level pro-
cedure call just as thread A returns from a second-level call.

R TR R el . L]

Ser. 3.4 Terninology And Concepls 7

The run-time system for procedure-ooented programming languages uses a stack
mechanism i handle procedure calls. The run-titne system pushes a procedure activa-
rion record on the stack whenever it makes a procedure call. Among other things, the
activation record stores information about the location in the code at which the pro-
cedure call occurs. When the procedure fimshes execution, the ron-ime system pops
the activation record from the top of the stack and returns to the procedure from which
the call occurred. Analogous to the rule for variables, concurrent programming systems
provide separation among procedure calls in executing threads:

When multiple threads execute a piece of code concurrently, each has
its own run-time stack of procedure activation records.

3.5 An Example Of Concurrent Thread Creation
3.5.1 A Sequerttial C Example

The following example illnstrates concurrent processing. As with most computa-
lional concepts, the programming language syntax is trivial; it occupies only a fow lines
of code. For example, the following code is a conventional T program that prnints the
integers from [to 5 along with their sum:

/* sum.cpp -~ A conventional C program that sums integers 1 to 5 *7
#include «stdlib h-

#include <stdioc. .l

#inclnde <process. b

int addem{int) ;

inc
main{int arge, char *argv[])
{
addem () ;
return 0;
J
int
ackder {int ooimty
{
int i, =um; /* these are local variables*/
asur = O;

for (i=1 ; i<=coumt ; i++) { /= iterate 1 from 1 to caunkt */
printf ("The value of i is A", i);

28 Concurrent Processing In Clieot-Server Software Chap. 3

fflush (stdoat) ; /* flush the kbuffer */
San += 1;

}

printf(*The sum is %d\n”, sum);

fflush {stdouat) ;

return 0; /* terminate the program %/

1

When executed, the program emits six lines of output:

The value of 1 is 1
e value of i is
The value of 1 is
The value of i is
The value of i is
The =um is 15

o e ba

3.5.2 A Concurrent Verslon

To create a new thread in Windows, a program calls the operating system function
_beginthread. To a programmer, the call 1o _beginthread looks like an ordinary func-
rion call in €. However, instead of calling a conventional function, _beginthread passes
control to the operating system, which creates a new thread and allows both threads to
continue executing. We use the term parent to refer to the original thread, and caifd to
refer to the newly created thread. The parent continues executing after the call 10 _be-
gintaread (i.e., exactly as if the function call returned). The child begins executing at
whichever function was passed as an argument 10 _beginthread. For example, the fol-
lowing modified version of the example above calls _beginthread (o create a new
thread. Note that although the introduction of concurrency changes the functonality of
the program completely, the call o _beginthread occupies only a single line of code:

/* casum.cpp ~ A conourrent © program that suns integers 1 to 5 *®/
#include «<stdlib h»

#include <stdio. I

#include <process.h>

int addem (int) ;

int

main{int arge, char *argv[]}

{
_beginttread { (void (*)] {wvoid {()laddan, 0, (void *}5}:
addemih}
return 0;

T EEMBITALAG) A W FMARRC U] SRS lu T8 ELLL =t RRTRe SEr er 1 e ek AT er e ey i e s s

Sec. 3.5 An Example OF Concurrant Thread Creation 29

int
adden({int count)
{
int i, sum; /* these are local variables*/
sum = 0;
for (1=1 ; i<=coumt ; i++} { J* iterate 1 from 1 to coumb */
printf ("The value of i is W, i);
fflush (stdout) ; /* flush the buffer */
sum += i;
}
printf{"The sum is %4\n*, sum);
ff1ush {stdeat) ;
return Q; /* terminzte the program */
}

Whet a user executes the concurrent version of the program, the application kegins
execution with a single thread executing the code. When execution reaches the call o
_beginthread, the system allocates a run-time stack for the newly created thread, and al-
lows both the original thread and the new thread to execute. In fact, the easiest way to
envision what happens in this example is to imagine that the system creates a second
application pregram, and initializes the second program to start running procedure ad-
dem. Then imagine that both applications run simultaneously (just as if two vsers had
both simultaneously executed the program). To summarize:

To understand thread execution, imagine that _beginthread causes the
opergting system to siart another application program executing at a
specified procedure and allows both 1o run at the same tHme.

On one particuiar uniprocessor system, the exccution of our example concurrent
program produced the following twelve lines of gutput:

The value of 1 is 1
The value of i is 2
The vwalue of i is 1
The value of i is 3
The value of i is 4
The value of i iz 2
The value of 1 18 3
The value of i is 4
The value of 1 is 5

The sum is 15
The value of 1 iz §
The sum ig 16

At e M, mdm eetd REE S CTE) WDt Dl L br e et LRWERe T B F i n = b AW e e mke o st e

i Concument Processing In Clhient-Server Software Chap. 3

The program ran quickly; the entire execution, including the creation of a second
thread, compieted in less than a second. Furthermore, the operating system overhead
incurred 1n switching between threads and handling system caills, including the call o
_beginthread and the calls required to write the output, accounted for less than 20% of
the total time.

3.5.3 Timeslicing

The output from the example above shows an interesting pattern: instead of all out-
put from one thread being followed by zll output from the other, output from the two
threads are intermixed. [n general, the mixture occurs because the two threads compete
for the processor, with the operating systern allocating the avaitable CPU power to each
thread for a short lime befors moving on to the next. We use the term timeslicing to
describe systems that share available CPU among several threads concurrently. For ex-
ample, if a timeshcing systemn has only one CPU and a program divides into two
threads, one of the threads will execute for a while, then the second will execute for a
while, then the first will execute again, and so on.

A tmeslicing mechanism attemnpts to allocate the avatlabte processing equally
among all available threads. If only two threads are eligible to execute and the comput-
er has a single processor, each receives approximately 50% of the CPU. If more than
twa threads are ready to run, the system will run each thread for a short time before
running any of them again. Thus, if ¥ threads are eligible on a computer with a single
processor, each receives approximately 1/A of the CPU. From a human’s perspective,
all threads appear to proceed at an equal rate, no matter how many threads execuie.
With many threads execoting, the rate is low; with few, the rate is high.

The effects of timeslicing can be seen by comparing how a concurrent program
performs on different timesharing computer systems. For exampie, the program above
can be modified to iterate 10,00 times instead of 5 times:

/* consamm.cpp - A cngurrent. C program that sums integers 1 to 10000 */
#include «<stdlib. h>

#includs <stdio.h>

#inclwle <process. h>

int addemiint) ;

int

main{int arge, char *argv(])

{
baginthiresd((void (*) (void () jat3em, O, {(void *)10000);
addem (10000} ;
return {;

©omwrnib R LIE U r. SR WA . PR ichakly b T as L L e E Ll et = AR ECm e oMkl RS A ER o M

Sec. 3.5 An Example Of Concurrent Thread Creation 3

int
addamiint coumt)
{
int i, suamn; /* these are local variakles*/
sum = §;
for (i=1 ; i<=comt ; i++] { /* iterate i fram 1 to count */
printf{"The value of i is %", i);
Eflush {stdout) ; /* flush the huffer */
| += i
}
printf {*The =m is &%\n", =um);
friush{stdouk)
retwrn O: /* temminate the program */
}

When the resulting concurrent program is executed, it always emits 20,002 lines of
output. However, the order depends on the operating system. On one systemn, the first
thread iterated 74 tmes before the second thread executed at sll. Then the second
thread iterated 632 tumes before the sysiemn switched back to the first thread. On subse-
quent timeslices, the threads each received enough CPU service to iterate between &0
and 90 times. Of course, the two threads compete with all other threads executing on
the same computer, so the apparent rate of execution varies slightly depending on the
mix of programs running.

3.6 Diverging Threads

In the examples above, both the parent and child threads execute the same pro-
cedure: addem. In practice, multiple threads in a concurrent program seldom execute a
single procedure. Instead, they usually diverge, with each thread executing its own pro-
cedure., :

How can threads diverge? The answer is that the second argument to _beginthread
specifies a procedure for the newly created thread to execute. Meanwhile, the parent
continues executicn at the point feliowing the call to _beginthread. Thus, divergence is
straightforward. For example, consider the two lines of code:

_beginthread| (void {*) {void {))addam, 0, (void *)5);
proc2 (] ;

The parent thread first calls _beginthread and then calls proc2. The child thread begins
executing addem with an argument of 5. That is, the child thread is created to call

addem(5) ;

If the call to addern returns, the thread ceases execution.

SR M A AL A AL r e e e W e

32 Concurent Processing In Client-Server Software Chap. 3
3.7 Context Switching And Protocol Software Design

Although the concurrent processing tacilities that operating systems provide make
programs more powerful and easier to understand, they do have computational cost.
We said that o ensure that ail threads proceed concurrently, the operating system uses
timeslicing, switching the CPU (or CPUs) among threads so fast that it appears to a hu-
iman that the threads execute simuitangously.

When the operating system temporarily stops executing one thread and switches to
another, a context ywitch has occurred. Swiiching context requires use of the CFU, and
while the CPU is busy switching, none of the application threads receives any service.
Thus, we view conlexl switching as the overhead needed to support concurrent process-
ingt.

To avoid unnccessary overhead, protocol software should be designed o minimize
contex!l switching. In particolar, programmers must always be carefu! to ensure that the
benefits of introducing concurrency intc a server cutweigh the cost of switching context
among the concorrent threads. Later chapters discuss the use of concurrency 1n server
software, present gonconcurrent designs as well as concurrent ones, and describe cir-
cumstances that justify the use of each.

3.8 Concurrency And Asynchronous 1/O

In addition to providing support for concurrent use of the CPU. some operating
syslems allow a single application program to initiate and control concurrent input and
output aperations. In Windows, the sefecs socket function provides a fundamental
operation that programmers use to manage concurrent /O, In principle, sefect 1s easy to
understand: it aliows a program to ask the operating system which source of 1/O is
ready for use.

As an example, imagine an application program that peeds to provide network
cominunication hetween two remote users. Assume the program runs on computer A
and the users are on computers B and C. Further assume that either user can enter keys-
trokes, which are sent across the network to the program for transmission to the other
USEr.

The program cannot know which user will touch their keyboard first; they might
both type at the same time, or one might choose 1o sit idle for a long peniod. Unfor-
wnately, conventional network /0 operations are blockingi in the sense that when an
applicalion attempts to receive data from a network, the system blocks the appiication
until data arrives. On one hand, if the program aterpts 10 receive data from the con-
nection leading to 8, the program will block until the user on B types. On the other
hand, if the program attempts to receive data from the connection leading e A, the pro-
gram wiil block until the user on A types. The problem is that the application cannot
know whether input will arrive first from the conmection with A or from the connection
with B. To solve the dilemma, a Windows program calls seiect. In doing so, it asks the
operating system to let it know which source of input becomes available first. The call

TBecause swilchitg context between threads incurs less overhead than swilching confext between
processes, threads are often called Lighhweight processes,
iBlocking 1K is also called svnchronons IO,

Sec, 3.4 Concarrency And Asvachronous [0 33

returns as seon as a source is ready, and the program reads from that source. For now,
it is only important o undersiand the idea behind selecr; later chapters present the de-
teils and illustrate its use.

3.9 Concurrency Under UNIX

We said that cach operating system offers a function that a program can call w0
siart concurrent exgcution. Although the exampies in this text use the thread mechan-
ism available in Windows, other systems offer shightly different mechanisms. This sec-
lion examines the concurrency mechanism in the UNIX timesharmg system Under-
standing UNIX concurrency is helpful in two ways. First, because the source code for
many UNIX network apphceations is available publicly, Windows programmers often
use UNIX code as an example. Seccond, because professional programmers are often
asked to develop a version of an application that runs on many systems, knowledge of
UNIX can help programmers to accommodate both styles.

instead of the thread mechanism awvailable in Windows, UNIX offers a process
abstraction. When an application program begins runmng, UNIX creates a single pro-
cess to run the program. To become concurrent, a UNEX application calls the system
function fork.

Like _beginthread in Windows, fork is pant of the operating system. Unlike the
_beginthread function, however, fork does not l1ake any arguments. When invoked, fork
creates another process executing at @xactly the same location as the original. In fact,
the new child process begins with a complete copy of the parent’s run-time stack. -
cluding all the procedure calls and variables (boih local and global). In each process,
execulton continues after the call to fork

Creating a truly identical copy of a running program is neither interesting nor use-
ful because it means that both copies perform exactly the same computation. 1In prac-
tice, 4 new process 1s nol absolutely identical o the original. The processes differ in
one small detail; the value that the fork function returns. In the newly created process,
the fork relurns zero; in the onginal process, fork returns a small positive integer that
identifies the newly created process. Technically, the value returned is called a process
identifier or process idft.

Concurrent programs running under UNIX use the value returned by the fork tunc-
tion to decide how to proceed. In the most common case, the code contains a condi-
tional stalement that tests 1o see if the value returned is nonzerof:

tinciude <stdiib.he
#include <stdio b
int £m;

mainint argeo, char *argv(]) {
int pid:

ThMany programmers ubbrevisle praocess i as pid.
tProduction code also checks o see il fork relurns a value less than zero, which indicates that an crror
oeCuTred.

kL Concurrent Processing In Clieni-Server Software Chap. 3

sum = 0;
pid = fork():
if (pid 1= 0) { /* original process ks

printf{*The original process prints this.\n"};
} else { /* newly created process */
printf(~the new process prints this.\n");

}
exit{0};

In the example code, variable pid records the value returned by the call to fork.
Remeinber that each process has its own copy of all variables, and that fork will either
return zero (in the newly created process) or nonzerc (in the original process). Follow-
ing the call to fork, the if statement checks variable pid 10 see whether the original or
the newly created process is executing. The two processes each print an identifying
message and exit. When the program runs, two messages appear: ong from the original
process and one from the newly created process. Te summarize:

i
The value returned by the UNIX fork function differs in the original
and newly created processes; concurrent programs tse the difference
to allow the new process to execuie different code than the original
Process.

3.10 Executing A Separately Compiled Program

In addition to fork, both Windows and UNIX provide a mechanism that allows any
process to stop executing one application and begin executing an independent program
that has been compiled separately and stored on disk. The mechanism consists of a
family of operating system functions named exect. Arguments to exec specify the
name of a disk file that contains an executable program, a list of argumenis t0 pass to
the program, and a specification of environment variables the program will inherit.

Exec replaces the currently executing process completely. The code and all vari-
ables are replaced by the code and variabies from the program on disk; the run-time
stack is replaced by a newly created run-time stack for the new program. Under UNIX,
a process must call both ferk and exec to create a new process that executes the object
code from a file. Under Windows, a single function, Create Process, handles both tasks.

Servers thai handle many services can use exec to simplify the server program and
allow services to change independently. The code for each service is placed in a
separate program. For example, when a UNIX server needs to handle a particutar ser-

¥There are several variants of exec that differ in small details such as the exact formal of arguments.

Sec. 310 Execuring A Scparately Compiled Program 35

vice, it calls fork and exec to create a process that runs the appropriate program. The
chief advantage of using a separate program for the service lies in ease of mantenance:
the program for a particular service can be modified and recompiled without recompil-
ing the main server. In fact, the central server can continue to execute while the pro-
gram for an individual service is changed and installed.

3.11 Summary

Concurrency is fundamental to TCP/IP applicahons because it allows users to ac-
cess services without waiting for one another. Concurrency in clients arises easily be-
causg multiple users can execute client application software at the same time. Con-
currency in servers is much more difficult to achieve because server software must be
programmed explicitly to handle requests concurrently.

In Windows, the primary mechanism used for concurrency is a thread of execution.
A conventional application consists of a program executed by a single thread. At any
time, an executing program can call the function _beginthread 1o create an additional
thread of execution. Arguments o _beginthread specify a procedure at which the new
thread should begin execution, and a list of arguments (o be passed to that procedure,

After a call 10 _beginthread, both threads appear to execute simultaneously. In
fact, only one thread can be executing at any time on a computer that has a single CPL:.
To achieve apparent concurrency, the operating system switches the CPU rapidly among
the threads, executing one for a short time before moving on o the next. To a human,
switching among threads occurs so rapidly that they all appear to execute.

Concurrency is not free. When an operating system switches context {rom one
thread to another, the system uvses the CPl]l. Programmers who introduce concurrency
into server designs must ensure that the benefits of a concurrent design outweigh the ad-
ditional overhead introduced by context switching.

The select call permits a single thread 10 manage concurrent network [/(). A thread
calls sefect to wait for a set of network O sources; seflect informs the thread as soon as
any of the sources becomes ready.

FOR FURTHER STUDY

Many texts on operating systems describe concurrent processing. Beveridge and
Weiner [1997] describes threads in Windows. Peterson and Silberschatz [1985] covers
the peneral topic. Comer [1984] discusses the implementation of processes, message
passing, and process coordination mechanisms.

[e T LR YO ool e T T e F LA L R L L

26 Concurrent Processing In Client-Server Software Chap. 3

EXERCISES

31 Run the example programs on your local compoier system. Approximately how many
iterations of the output loop can a thread make in 2 single imeslice?

3.2 Write a concurrent program that starts five threads. Arrange for each thread to print 2 few

lines of output and then halt. [s output from the threads intermixed? Explain.

A3 Find out about the mechanisms that systems other than Windows use to create concurrent
Programs.

34 Rzad more about the UNIX fork function. What information does the newly created nro-
cess share with the original process?

3.5 Wnte a program that uses select (o read texl from two network connections, and displays
each line of text on a screen with a label that identifies the source.

3.6 Rewrite the program in the previous exercise so it does not use sefecs. Which version is

easier lo understand? more efficient? easier to terminate cleanly?

4

Program Interface To
Protocols

4.1 Introduction

Previous chapters descnibe the client-server model of interaction for communtcat-
ing programs and discuss the relationship between concurrency and communication.
This chapter considers general properties ot the interface an application program uses lo
communicate in the client-server model. The follovang chapter illustrates these proper-
nies by giving details of a specific imerface.

4.2 Loosely Specified Protocol Software Interface

In most impiementatous, TCP/AP protocol software is part of the compater’s sys-
tern software. Thus, whenever an application program uvses TCPAIP to communicate, it
must interact with the system software to request service. From a programmer’s poind
of view, the set of tacilities that the system supplies defines an Application Program in-
terface or AP

TCP/IP was designed to operate in a multi-vendor environment. Te remain com-
patible with a wide variety of machines, TCP/IP designers carefully aveided choosing
any vendor's internal data representation. In addition, the TCP/AP standards carefully
avoid specifying an API that uses features available only on a single vendor's computer
system. Thus, the interface between TCP/IP and applications that use it has been ioose-
}y specified. In other words:

=TT vETE P e e = aem

38 Program Interface To Pootocols Chap. 4

The TCPAP standards do not specify the details of how application
software interfaces with TOP/AP protocol software; they only suggest
the required functionality, and allow system desighers o choose the
details when creating an API.

4.2.1 Advantages And Disadvantages

Using a loose specification for the protocol interface has advantages and disadvan-
tages. On the positive side, il provides flexibility and tolerance. It allows designers to
implement TCPAP using operating systems that range from the simplest systems avail-
abie on personal computers to the sophisticated systems used on supercomputers. More
important, it means designers can use either a procedural or message-passing inierface
stvle of API {whichever style the system software supports).

On the negative side, a loose speciiication means thal designers can makc the inter-
face deiails different for cach operating system. As vendors add new interfaces thar
differ from existing inlerfaces, application programming becomes more difficull and ap-
plications become less portable across machines. Thus, while system designers favor a
loose specilication. application programmery desire a restricled specification because it
means spplications can be compled for new machines without change.

In practice, only a few AFIs have been devcloped for use with TCP/AP. The
University of California at Berkeley defined an API for the Berkeley UNEX operating
system that has become known as the socker interface, or sockets. AT&T defined an in-
terface for System vV UNIX known by the acronym LI, Others adapted (he socket in-
terface for use with Microsoft's systems software; the resolt is known as the Windows
Sockets fnterface, and 15 often abbreviated WINSOCOK. A few other interfaces have
been defined, but it seems urlikely that they will gain wide acceptance.

4.3 Interface Functionality

Although TCPAP docs not define details of an APIL, lhe standards do suggest the
functionality needed. An interface must support the following concepual opcrations:

* Allocate local resources for communication

s Specify local and remote communication endpoints
+ [nitiate a connection (client side}

« Wait for an incoming connection (server side)

« Send or reccive data

+ Determine when data amves

» Generate urgent data

Handle incoming urgen! data

* Terminate a connection gracefully

» Handle connection termination from the remole site
& Abort communication

+T11 stands for Frunsport Layer fnredace,

T e T I L T S PNsT e FEERETEE e T Lo ann = et e Cm . g aMesse oF FT1IE memETebe—E E OV .S s

Sec. 4.3 Imerface Functionalicy 39

» Handle error conditions or a connection abort
» Release local resources when communication finishes

4.4 Conceptual Interface Specification

The TCPAP standards do not leave implementors without any guidance. They
specify a eonceptual interface for TCP/IP that serves as an illustrative example. Be-
cause most operating systems use a procedural mechanism to transfer control from an
application program into the systern, the standard defines the conceptual interface as a
sel of procedures and functions. The standard suggests the parameters that each pro-
cedure or fonction requires as well as the semantics of the operation it perferms. For
example, the TCP standard discusses a SEND procedure, and lists the arguments an ap-
plication needs to supply to send dala on an existing TCP connection.

The point of defining conceptual operations is simple:

The conceptual interface defined by the TCPAFP standards does not
specify data representations or programming details, it merely pro-
vides an example of one possible Interface that am operating system
can offer to application progrants that use TCFP/IP.

Thus, the conceptual interface loosely illustrales how applications interact with
TCP. Because it does not prescribe exact details, operating system designers are free to
choose alternative procedure names or paramelers as long as they offer equivalent func-
tionality.

4.5 Implementation Of An API

All implementations of a particular API appear the same 0 programmers: the API
merely consists of a set of procedures {or functions) that an applicatidn program can
call to establish communication or to send and receive data. In practice, however, the
implementation of the APl depends on the underlying system. For example, early
software systems designed for personal computers did nat include an operating system
in the conventional sense. On such systems, procedures in the APL were handled like
any other library procedures — a copy of API procedures that an application called were
linked into the applicstion program along with the TCP/IP code that was needed. Such
a scheme makes sense on a computer that can only run one application at a given ume
because all the code that the application needs is loaded intc memory along with the ap-
plication.

More sophisticated computer systems can load more than one application inio
memory simultaneously. On such systemns, linking' a separate copy of networking code
into each application does not make sense. Instead, a single copy of the code is placed
in memory, where it is shared by all applications. The exact implementation of sharing

4 Fropram Loterface To Protacols Chap. 4

depends on the computer’'s soflware system. The code might reside in the computer’'s
oparating systern, or it might reside in a region of memory devoted to shared lbraries.

For example, Windows 95 uses a shared library scheme known as a Dynamic
Linked Library (DLL). The socket API procedures are located in one DLL. while the
TCP/IP code is placed in another. Nene of the networking codez is loaded into memory
until an applicalion uses the network. At that time, a copy of the DLL is loaded. If
another application uses the network, it shares the copy of the DLL already in memory.
Figure 4.1 illustrates the relationship among multiple applications and a single copy of a
DLL.

tion,)™ " Application
JPrOgrants
DLL containing socket inteHace prncedures] - Socket AF]
DLL ¢ontaining TCP/P software - TOCF/AP functions
opearating system functions ~— {0 functions

Figure 4.1 The organization of the socket AP and TCPIP code in a Dynamic
[inked Library under Windows 95, One copy of a DLL 15 loaded
intc memory when needed: all applications share the capy.

In contrast to the implementation used in Windows 95, Windows NT uses a hybnd
scheme that includes both a DLL and resident code. The code to implement TCP/IP 15
linked into the operating system. Thus, TCP/P code is loaded into memory when the
operating system first begins, and remains resident until the operating sysiem ler-
minates. However. procedures in the socket APl are not part of the operating system.
Instead, such procedures reside in a DLL. A copy of the socket DLL is loaded when an
application vses the network, the copy i1s shared by all applications, and the DLL is re-
moved when no application needs access. Figure 4.2 illustrates the implementation.

B P Py R P B R P LT A, P T P P am i m mwear M e e s bl RRE R T TAT 3t

Sec. 4.5 lmplementation CFf An AP1 41

applica- a .
K Application
programs
OLL containing aocket intarface procadures - Socker API
TCPAP functions
operating systems and /O functions

Figure 4.2 The organization of the socket API and TCWIP code under Win-
dows NT. Although code for TCP/AP is part of the operating sys-
tem, procedures for the socket APl are part of a DLL.

Other implementations are possible. In particular, some computer systems do not
support dynamic libraries. On others, a program does not have sufficient privilege to
perform input or owtput operations unless the program uses an operaling system func-
tion. In such systems, all the procedures in the API are part of the operating system.

From a programmer’s point of view, the exact implementation of an API does not
matter:

A programmer can create an application program that uses the socket
API without knowing how the API is implemented. The programmer
makes pracedure calls, which may invoke procedures that are linked
into the application, procedures in a dynamic linked library, or pro-
cedires in the aperaling sysiem.

4.6 Two Basic Approaches To Network Communication

Designers must choose the exact set of procedures used to access TCP/IP protocols
when they create an APL. Implementations follow one of two approaches:

* The designer invents entirely new procedure calls that applications use o
access TCP/IP.
* The designer attempts (o use conventional [fO calls 10 access TCP/P.

In the first approach, the designer makes a list of all conceptual operations, invents

names and paramelers for each, and implements each as a system function. Windows
uses this approach. In the second approach, the designer uses conventional IO primi-

L P e R T

) Progrum Interlzee Ta Protocels Chup. 4

tives but averloads them so they work with network protocols as well as conventional
/O devices. OF course, some designers choose a hybrid approach that uses basic /O
functions whenever possible, hut adds additional functons [or those operaticns that can-
not be expressed convemently.

4.7 The Basic I/0 Functions Available In ANSI C

Although the Windows Sockets APl does not allow a programmer 1o use basic [/0
functions for network 10, the onginal socket API does. The distinction is especially
importan for programmers who need to port application programs from the UNIX sock-
et API to the Windows socket APl T'o understand how o port socket applications from
UNIX to Windows, consider the six functions ANS] C uses for input/foutput. The table
in Flgure 4.3 lists the operations and their conventional meanings.

Operation Meaning

open Prepare a device or z file for input or output operations

close Terminate use of a previously opened device or file

read Obtain data from an input device or file, and place it in the
application program’s memory

write Transmit data from the application program’s memory to an
putput device or file

Iseek Move to a specific position in a file or device (this operation
only applies to files or devices like disks)

ioctit Control a device or the software used to access it
{e.q., specify the size of a buffer or change the character
set mapping)

Figure 4.3 The basic I4) operations available in ANSI €. The informatior is
important for programmers who need to port applications from
the LNIX socket APT to the Windows Sockets APIL

When an application program calls open 0 initiate input or output, the system re-
tums 2 small integer called a file descripsor that the application uses in further 1/0
operations. The call to open takes three arguments: the name of a file or device to
open, a set ol it {lags that controls special cases such as whether to create the file if it
does not exist, and an access moede that specifics read/write protections for newly creat-
ed files. For example, the code scgment:

tioct! stands Tor Inpur Cutpur ConTrel.

Sce 4.7 The Basic KO Functions Available In ANSIC 43
int desc;
desc = cpen{"filename*, O FDOAR, 0)

opens an existing file, filename, with a mode that allows both reading and writing.
After obtaining the imeger descriptor, desc, the application uses it in further I/O opera-
tions on the file. For example, the statement:

read (dese, uffer, 128);

reads 728 bytes of data from the file 1ntc array buffer.
Finally, when an application Bnishes using a file, it calls cfose to deallocate the
descriptor and release associated resources (e.g., inernal buffers):

close {desac) ;

4.8 History Of The UNIX Socket API

When designers added TCP/IP protocols to UNIX and created the socket AP, they
extended the conventional A0 facilities. First, they extended the set of file descriptors
and made it possible for applications to create descriptors used for network communica-
tion. Second, they extended the read and wrire functions so they worked with the new
network descriptors as well as with conventional file descriptors. Thus, when a UNIX
application needs to send data across a TCP connection, it creates the appropriate
descriptor, and then uses write to transfer data.

However. not all network communication fits easily into UNIX's apen-read-write-
close paradigm. An application must specify the local and remote protocel ports and
the remote 1P address it will use, whether it will use TCP or UDP, and whether it will
initiale transfer or wait for an incoming connection {i.e., whether it wants to beliave as a
client or server). [f it is a server, it must specify how many incoming connection re-
quests the operating sysiem should engueuve before rejecting them. Furthermore, if an
application chooses to use UDP, it must be able to transfer UDP datagrams, not merely
a stream of bytes, The designers of Berkeley UNIX added new procedures to the UNIX
AP to accornmodate these special cases. In addition, the designers inciuded procedures
that make it unnecessary 1o use conventional O primitives; the Windows Sockets API
uses the new procedures and does not gencrally use conventional HO fonctions. The
next chapler describes the Windows Sockets APL in detail.

44 Program Interface To Protocols Chap. 4

4.9 Summary

Because TCP/P i1s designed for a multi-vendor environmenti, the protocol standards
loosely specify the interface that application programs use, allowing operating system
designers freedom in choosing how to impiement it. The standards do discuss a con-
ceptual interface, but it is intended only as an illustrative example. Although the stan-
dards present the conceptual interface as a set of procedures, designers are free to
choose different procedures or to use an entirely different style of interaction (e.g., mes-
sage passing).

The set of procedures available to an application defines an Application Program
Intesface {(APE. The API used to access TCP/IP protocol software is known as the
socket APL. The socket APl was originally defined as part of the Berkeley UNIX
operating system. The version defined for use with Windows operating systems is
known as the Windows Sockets interface or WINSOCK.

The original socket API used with UNIX and the socket API used with Windows
operating systems differ in an important way: the UNIX version allows an application
o mux conveational YO functions with socket functions. Thus, a programmer who
ports a socket application from UNIX to Windows needs to understand the semantics of
Q) functions such as read, write, and close.

A variety of APl implementalions are possible. Under older microcomputer sys-
tems, both the socket functions and TCP/IP code are Iinked into each application.
Under Windows 95, both the socket API and TCP/P reside in shared libraries known as
DLLs; under Windows NT, TCP/IP resides in the operating system kernel, while the
socket API resides in a DLL. On some UNIX systems, both the socket functions and
TCPAIP code are part of the operating systern. From a programmer’s point of view, the
implementation details are irrelevant — applications call procedures in the API without
knowing how the API is implemented.

FOR FURTHER STUDY

Hall et. al. [1993] contains the original standard for Windows Sockets. It describes
each of the socket functions, related database functions, and extensions that must be
present in a sockets implementation to make it compliant with the standard. For each
function, the decument describes the semantics, lists the types of the arpuments and re-
turn value, and Msts the ervor codes that the function can return. Hall et. al. [1996]
describes version 2.

Exercises a5

EXERCISES

4.1 Examine a message-passing operating system. How would you extend the application pro-
gram interface (¢ accommeodate network communication?

4.2 Compare the Windows Sockets Interface with the Fransporr Layer interface (TLI) trom
ATE&T. What are the major differences? How are the two simitar? What reasons could
designers have for choosing one design aver the other?

4.3 On some computers, the hardware architecture limits the nuraber of functions built into the
operating system 1o a small number (g.g.. 64 or 128). It can be difficult to add socket func-
tions to such systerns. How many functions are altowed in your local operating system”?

4.4 Think about the hardware limit on operating system functions discussed in the previous ex-
ercise. How can an operating system designer add additional functiens wihoust changing
the hardware?

4.5 Find ol how the Kom shell uses /deviiep 1o allow UNIX shell scripts to communicate with
TCP. Is the same functionality needed in Windows systems? Why or why not?

4.6 Investigate the interpretive language Perd. How many socket functsons are available (o a
Perl script? Which are not?

4.7 Find oul when Windows 95 loads a DLL into memory. Does the operation oocur when the
application starts or when the application first calls one of the procedures in the DLL?

4.8 Read about DELs in the vendor™s manuoal. Can a DLL be unloaded once it has been load-
ed? Explain.

P T TPRERPTL PN

LT T TTEEr P L e e ae . Latrme. me o e s

5

The Socket AP/

5.1 introduction

The previous chapler describes the mechanisms used to provide communication
between an apphcatton program and TCP/IP software. The chapter describes how an
application invokes lhibrary routines, which then interact with TCP/AIFP protocols.

This chapter describes the details of the specific set of functions in the Windows
Sockets AP1 and explains how an application uses the functions to communicarte. [t
covers concepls in 2eneral, and gives the intended use of each call. Later chapters show
how clients and servers use these functions, and provide examples that illustrate many
of the details.

5.2 The History Of Sockets

In the early !980s, the Advanced Resecarch Prajects Agency (ARPA) funded a
group at the University of Califomia at Berkeley to ansport TCP/IP software to the
UNIX operating system and 10 make the resulting software available to other sites. As
part of the project, the designera created an interface that applicanons use lor network
communicaticn, When necessary, they extended the UNIX nperating sysiem by adding
new procedures to allow applications to access TCP/IP protocols. Becanse the operat-
ing system was known as Berkeley UNIX or BSD [UNIX, and the interface used an
absiraction known as a seckei, the APl became known as the Berkelev socker interfacer.
or simply the secket AP

Because many computer vendors, especially workstation manufacturers hke Sun
Microsysterns Incorporated, Tektronix Incorporated, and Digital Equipment Corpora-
tion, adopted the Berkeley UNIX operating system, the socket interface became avaii-

tThe socket interface is sometimes called the Berkeley socket interfice.

47

4% The Socker API Chap. 5

able on many machines. Subsequenily, Microsoft chose the socket interface as the pn-
mary network API for its operating systems. Thus, the socket interface has become a
de facto standard throughout the compuier industry.

5.3 Specifying A Protocol interface

When designers consider how to add functions 1o an operating system that provide
application programs access to TCP/IP protocol software, they must choose names for
the funchiens and must specify the parameters thal each function accepts. 1n so doing,
they decide the scope of services that the functions supply and the style in which appli-
cations use them. Designers must alse consider whether to make the interface specific
to the TCP/IP protocois or whether to plan for additionat protocols. Thus, the designers
must choose one of two broad approaches:

* Define functions specifically to support TCP/AP communication.
+ Define functions that support network communijcation in general, and use
parameters to make TCP/P communication a special case.

Differences between the two approaches are easiest to understand by their impact
on the names of system functions and the parameters that the functions require. For
example, in the first approach, a designer might choose to have a system function
named mukelcpconnection, while in the second, a designer might choose 1o create a
general function makeconnection and vse a parameter to specify the TCP protocol.

Because the designers at Berkeley wanted to accommodate multiple sets of com-
munication protocols, they used the second approach. In fact, throughout the design,
they provided for generality far beyond TCP/IP. They allowed for multiple famiiies of
protocols, with all TCP/IP protocols represenied as a single family (family PF_INET).
They also decided 10 have applications specify operations using a rype of service re-
quired instead of specifying the protocol name. Thus, instead of specifying that it wants
g TCP connection, an application requests the stream transfer type of service using the
Internet family of protocols. We can summarize:

The socket interface provides generalized functions thar support net-
work communication using many possible prortecols. Socket functions
refer to all TCP/IP protocols as a single protocol family. The fune-
tions wllow the programmer to specify the type of service required
rather than the name of a specific protocol.

The overall design of the socket API and the generality it provides have been de-
bated since its inception. Some computer scientists argue that generality is unnecessary
and merely makes application programs difficuit to read. Others argue that having pro-
grammers specify the type of service instead of the specific protocol makes it easier o
program because it frees the programmer from understanding the details of each proto-

R o 1 T B S o R

Sec. 5.3 Specifying A Protocol nterface 449

col family. Finally, sorme commercial vendors of TCP/IP software have argued in favor
of alternative interfaces because adding the socket APl to a computer can require
changes to the operating system, which usually requires a speciai license agreement and
source code.

5.4 The Socket Abstraction
5.4.1 Socket Descriptors

In most operating systems, an application that needs to perform /O asks the
operaiing system o open a file. The system responds by creating a file descriptor that
the application uses to access the file. From an apphcation’s point of view, a file
descriptor 15 an integer that the application uses when reading or writing the file. Fig-
ure 5.1 illustrates how an operating system can implement file descriptors as an array of
pointers to internal data structures.

Operating System
dascriptor table

(one per process) | - internal data structure for fila 0

0 -——
1 . = internal data structure for file 1

2 -—
T = intarnal data structure for file 2

3 —

\ intarnal data structure for fite 3

Figure 5.1 The per-process Ale descriptor table in UNIX. The operating sys-
tern uses a process’ descriptor table to store pointers o internal
data structures for files thal the process has opened. The process
(application) uses the descriptor when refernng Lo the file.

The operating sysiem has a separate table for each program. To be precise, the
system maintains one file descnptor table for each running process. When a process
apens a file, the systern places a pointer (o the internal data structures for that file in the
process’ file descriptor table and returns the table index to the caller. The application
program only needs to remember the descriptor and o vse it in subsequent calls that re-

P T AT B L T I TR Y PO UL i = e A e e

50 The Socket APl Chap. §

quest operations on (he file. The operating system uses the descriptor as an index into
the process’ descriptor table, and follows the pointer to the data structures that hold all
information about the file.

The socket interface adds a new abstraction for network cormmunicazion, the sock-
et. Like files, each active socket is identified by an integer called its socket descriptor.
The Windows operaling system keeps a separate lable of socket desciriptors for each
process. Thus, an application can have both a file descriptor and a socket descriptor
with the same value.

The socket APIL contains a function, secker, that an application calls to create a
socket. The general idea underlying sockets is that a single system call is sufficient to
create any socket because a socket is quite general. Once the socket has been created,
an application must make additional calls to specify the details of its exact use. The
paradigm will become clear after we examine the data structures the systern maintains.

5.4.2 System Data Structures For Sockets

The easiest way to understand Lhe sockel abstraction is (o envision the data struc-
tures in the operating system. When an application calls socket, the operating sysiem
allocates a new data structure to hold the infermaton needed for communication, and
fills in a new entry in the process’ socket descripior table with a pointer to the data
structure. For example, Figure 5.2 illustrales a process’ socket descriptor table after a
call to sockert. In the exampie, arguments to the socket call have specified protocol
family PF_INET and type of service SOCK_STREAM.

Operating System
socket descriptor table

{one per process) data structure for a socket

0: . = *1 famlly: PF_INET
LE L e sorvice; SOCK_STREAM
2 U pointers to Local IP:

other socket = P
3 ™ structures emote [P:
4 — | Local port:

Remote port:

Figure 5.2 Conceptual operaling system data structures after five calls to
socket. The system keeps a separate socket descriptor table for
cach process: threads in the process share the table.

TAciual data simctures are more complex than shown in Fipure 5.2: the diagram illustrites the concepl,
nol the details.

AR L T g e S R AT ARRIA T & e dh o SRR LS 1 A PR R L W S b Rt bt ke £ R A T

Sec. 5.4 The Socket Abstraction 51

Although the internal data structure for a socket contains many fields, the system
leaves most of them unfilled when 1t creates the socket. As we will see, the application
that creates the socket must make addittonal procedure calls to fill in information in the
socket data structure before the socket can be used.

5.4.3 Using Sockets

Once a socket has been created, it can be used to wait for an incoming connection
Or to initiate a connection. A socket used by a server 1o wait for an mcoming connec-
tion is called a passive socker, while a socket used by a client 1o imifiate a connection is
called an active sockei. The only difference between active and passive sockets lies in
how applications use them; the sockets are created the same way imitially.

5.5 Specifying An Endpoint Address

When a socket is created, it does nol contain detailed information about how it will
be used. In particular, the socket does not contain information about the addresses of
either the local machine or the remote machine. Before an appiication uses a socket, it
must specify one or both of these addresses.

TCP/AP protocols define a corununicarion endpoint to consist of an IP address and
a protocol port number. Other protocol families define their endpoint addresses in other
ways. Because the socket abstraction accommodates multipie families of protocols, it
does not specify how to define endpoint addresses nor does it define a particular proto-
col address format. Instead, it allows each protocol family 10 specify endpoints howey-
er it likes.

To allow protocol families the freedom to chouse representations for their® ad-
dresses the socket abstraction defines an address family for each type of address. A
proweol family can use one or more address families to define address representations.
The TCF/IP protocols all use & single address representation, with the address family
denoted by the symbolic constant AF_INET.

In practice, much confusion arises between the TCP/IP protocol family, denoted
PF_INET, and the address family it uses, denoted AF_INET. The chief problem is that
both symbaolic constants have the same numeric value (2), so programs that inadvertent-
ly use one in place of the other operate comectly. Even the original Berkeley UNIX
source code contains examples of misuse. Programmers should observe the distinction,
however, because it helps clarify the meaning of variables and makes programs more
portablc.

52 : The Suckel API Chap. 5

5.6 A Generic Address Structure

Application programs may need to manipulate protocol addresses without knowing
the details of how every protocol family defines its address representation. For exam-
ple, it may be necessary to write a procedure that accepis an arbitrary protocol endpoint
specification as an argument and chooses one of several possible actions depending on
the address type. To accommodate such programs, the socket system defines a general-
ized format that all endpoint addresses pse. The generalized format consists of a pair:

(address family, endpoint address in that family)

where the address family field conmtains a constant that denotes one of the preassigned
address types, and the endpoint address field contains an endpoint address using the
standard representation for the specified address type.

In practice, the socket API provides declarations of predefined data types for ad-
dress endpoints. Application programs use the predefined data types when they need to
declare variables that store endpoint addresses or when they need to use an overlay to
locate fields in a structure. The most general structure is known as a sockaddr stric-
mere. 1t contains a 2-byte address famity tdentifier and a 14-byte array to held an ad-
dresst:

atruct sockaddr | /* struct to haold an atkhess */
u_short sa family: /* type of address */
char za _data[l14]; /* value of address */
};

Unfortunately, not all address families define endpoints that fit into the sockaddr struc-
ture. For example, the Berkeley UNIX operating system also defines an AF UNIX ad-
dress family to specify what UNIX programmers think of as a named pipe. Endpoint
addresses in the AF_UNIX family consist of UNIX path names that can be much longer
than 14 bytes. Therefore, application programs should not use sockaddr in variable de-
clarations because a variable declared to be of type sockaddr is not large enough to hold
all possibie endpoint addresses.

Confusion often arises in practice because the sockaddr structure accomimodates
addresses in the AF_INET family. Thus, TCP/AP software works correctly even if the
programmet declares variables to be of type sockaddr. However, to keep programs
portable and maintainable, TCP/IP code should not use the sockaddr structure in de-
clarations. Instead, sockaddr should be used only as an overlay, and code should refer-
ence only the sa_family field in it

Each protocol family that uses sockets defines the exact representation of its end-
point addresses, and the socket software provides cotresponding structure declarations.
Each TCP/IP endpoim address consists of a 2-byte field thal identifies the address type
{it must contain AF_fNET), a 2-byie pont number field, a 4-byte IP address fieid, and an
8-byte field that remains unused. Predefined structure sockaddr_in specifies the formart:

+This 1ext describes the simocture as defined in the Windews Sockels APE; more recent versions of the
sockaddr sinucture include an 8-bit sa_fen field that contains the 101al length.

S3ec. 5.6 A Geperic Address Structure s

struct sockaddr in (/* atruct to hold an address
u_short sin family; /* type of adkiress{alweys AF TNET}
1 short sin port; /* protoool port marber

struct in addr sin addr;: /* IP address (declared to be
% u_loryr o sane systemns)
char sin _zero[8]; S amsed (set to zero)
1:

An application that uses TCP/AP protocols exclusively can use structure
sockaddr_in exclusively: it never needs o use the sockaddr structuret. Thus,

Wher representing a TCFAP communication erdpaoint, an application
program ases structure sockaddr_in, which contains both an [P ud-
dress and a protocel port number. Programmers must be careful
when writing programs that use a mixture of protocols because some
non-TCPAP endpoint addresses require a larger structure. -

5.7 Functions In The Socket API

Socket calls can be separated into two groups: primary socket functions that pro-
vide access to the underlying functionality and other library routines that help the pro-
grammer. This section describes the procedures (hat provide the primary functionality
needed by chient and server applications.

The detaiis of socket system cails, their parameters, and their semantics can seem
overwhelming. Much of the complexity arises because sockets have paramelters that al-
low programs te use them in many ways. A socket can be used by a chent or by a
server, for stream transfer (e.g., TCP) or datagram {e.g., UDP) communication, with a
specific remaote endpoint address (usually needed by a client) or with an unspecified re-
mote endpoint address (usuvally needed by a server).

To help understand sockets, we will begin by examining the primary socket calls
and describing how a straightforward client and server use them to communicale with
TCP. Later chapiers each discuss one way to use sockets, and iHustrate many of the de-
tails and subtleties not covered here.

5.7.1 The WSAStartup Function

Programs using Windows Sockets must call WSASiarrup before using sockets. The
call requires two arguments. The program vses the first 10 specify the version of Win-
dows Sockets that is requested; the operating system uses the second to return informa-
tion about the version of Windows Sockets actually used. The first argument 1s an 1n-
teger that gives the version number in hexadecimal (e.g., the bex constant ¢xJ02 speci-
fies version 2.7). The second argument points to a WSADATA structure into which the
operating system writes version information.

TSructare sockaddr is used o cast {i.e., change the type of) pointers of the results of system functions (o
make programs pass strict type checking.

>y
*
*/
*/
*f
*/

54 The Sacket API Chap. 5

WSHSIarIup is needed with the Windows operating systems because the system
uses dynamicatly linked libraries (DLis). Thus, instead of hardwiring code into the
operating system, sech sysitems bind to a version of the code at run-time. When a pro-
gram calls WSASrartup, the system searches for an appropnaie library and binds to it.

5.7.2 The WSACleanup Function

Once an application finishes using and closing sockets, the application calls WS5A-
Cleanup to deallocate all data structures and socket bindings. A program usuvally calls
WSACIeunup only when it is completely finished and ready to exit.

5.7.3 The Socket Function

An application calls secker to create 2 new socket thal can be vsed for network
communication. The call returns a descriptor for the newly created socket. Arguments
to the call specify the protocol family that the application will use (e.g., PF_INET for
TCP!/IP} and the pretocol or type of service 1t needs (ie., siveam oy datagram}. For a
socket that uses the Internet protocel family, the protocol or type of service argument
determines whether the socket will use TCP or UDP.

5.7.4 The Connect Function

After creating a socket, a client calls connect to establish an active connection to a
remote server. An argument to connect allows the client to specify the remote endpoint,
which includes the remote machine’s [P address and protocol port number, Once a con-
nection has been made, a client can transfer data across it

5.7.5 The Send Function

Both clients and servers use send to send data across a TCP connection. Clients
usually use send to transmit requests, while servers use it ta fransmit replies. & call o
send requires four arguments. The application passes the descriptor of a socket (o
which the data should be sent, the address of the data to be senl, the Iength of the data,
and hits that control transmission. Usually, send copies outgoing data into buffers in
the operating system kemel, and allows the application to continue execution while it
transmits the data across the aetwork. 1f the system buffers become (ull, the call w
send may block temporarily unlil TCP can send data across the network and make space
in the buifer for new data.

Reg. 87 Functions In The Socket API 55
5.76 The Reev Function

Both clients and servers use recy to receive data from a TCP connection. Usually.
after a connection has been established, the server uses recv to receive a request that the
client sends by calling send. After sending ils request, the client uses recv to receive a
reply.

To receive data from a connection, an application calls recv with four argurnents.
The hrst specifies the socker descriptor to use, the second specifies the address of a
buffer, the third specifies the length of the buffer, and the fourth contains hits that con-
trol reception. Recv extracts data bytes that have arrived at the specified sockst, and
copies them to the user’s bufter area. If no data has arrived, the call to recv blocks until
it does. If more data has armived than fits into the buffer, recv only extracts encugh to
fill the buffer. If less data has armived than fits into the buffer, recv extracts all the data
and returns the number of bytes it found.

Clients and servers can also use recv to receive messages from sockels that use
UDP. As with the connectivn-oriented case, the caller supplies four arguments that
identify a socket descriplor, the address of a buffer into which the data should be
placed, the size ol the buffer, and contral bits. Each call to reev cxtracts one incoming
UDF message (i.e., onc user datagram). If the buffer cannnt hold the entire message,
recy fills the buffer. discards the remander of the message, and returns an emor code.

5.7.7 The Closesocket Function

Once a client or server finishes using a sockel. 1 calls clesesocker o deallocate il
Il only one process is using the socket. cfosesocker immediately terminates the connec-
uon and deallocates the socketv. [IF several processes share a socket, cfosevocker decre-
ments & refercnce count and deallocates the socket when the reference count reaches
oo,

5.7.8 The Bind Function

When a socke 1s first created, it bas no cndpoint addresses (neither the local nor
remote addresses are assigned). An apglication calls pind to specify the local endpoint
address for a sockel, The call rakes arguments that specify a socket descriptor and an
endpoint address. For TCPAP protocols, the endpoint address uses the sockaddr_in
structure, which ineludes both an IP address and a prolocel por number. Primarly,
servers use bind to specily the well-known port at which they will await connections.

5.7.9 The Listen Function

When a socket is created, the socket s neither active (i.e., ready for use by a
client} nor passive {i.e., rcady for use by a server? until the application takes further ac-
tion, Connection-oriented servers call disternt 1o place a socket i passive mode and make
i ready 0 accepl IMTOmIng connechons.

iThere s no socket reference count for the threads wilhin a process; if one thread inoa process closes a
socket, the deseriptor is deallocated for all threads in the process.

P T T o T T LI TR L 3 U L

56 The Socke: AFI Chap. 5

Most servers consist of an infinite loop that accepts the next incoming connection,
handles it, and then retums to accept the next conneciion. Even if handling a given
connecticn takes only a few milliseconds. it may happen that a new connection request
arrives during the time the server is busy handling an existing request. To ensure that
ne cennection request is lost, a server musi pass MNster two arguments that tetl the
operating system 10 engueune cohnection requesis for a socket. One argument 10 the
listen call specifies a socket to be placed in passive mode, and the other specifies the
size of the quene to be used for that socket.

5.7.10 The Accept Functicn

For TCP sockets, after a server calls socker to create a socket, bind o specify a lo-
cal endpoint address, and listen to place 1t in passive mode, the server calls gecept 1o
extract the next incoming connection request. An argument to accept specifies the
socket from which a connection should be accepted.

Accept creates a new socket for cach new connection request, and returns the
descriptor of the new socket to 115 caller. The server uses the new socket only for the
new cennection; it uses the original socket to accepl additonal connection requests,
Once it has accepted a connection, the server can use the new socket to transfer data.
After it finishes using the new socket, the server closes it.

5.7.11 Summary Of Socket Calls Uised With TCP

The table in Figure 5.3 provides a brief summary of the funciions in the Windows
Sockets APL.

5.8 Utility Routines For Integer Conversion

TCPAP specifies a standard representation for binary integers used in profocol
headers, The representation, known as nerwork bvie order, represents integers with the
most significant byte first.

Although the protocol software hides most values used in headers from application
programs, a programiner must be aware of the standard becanse some socket routines
require arguments to be stored in network byte order. For example, the protocol port
field of a sockaddr_in structure uses network byte order.

The socket routines include several functions that convert between network byte
order and the local host’s byte order. Programs should always call the conversion rou-
tines even if the local machine’s byte order is the same as the network byte order be-
cause doing so makes the source code portable to an arbitrary architecture.

The conversion routines are divided into short and long sels o operate on 16-bit
integers and 32-bit integers. Functions Arons (host to neiwork short) and ntohs (network
to host short) convert a short integer from the host’s native byte order to the netwerk

Sec 5B Uiility Rowtines For Tereger Conversion 5%

byte order, and vice versa. Simularly, roni and ntoh! convert long integers from the
host’s native byte order to network byte order and vice versa. To summarize:

Software that uses TCPAP calls functions htons, ntohs, htonl and
miohl i convert binary integers beiween the host’s native byte order
and nrerwork standard byte order. Doing so makes the source code
partable te any machine, regardless of its narive bvte order.

Function
Name Meaning

WSAStartup Initialize the socket library (Windows only)

WSACleanup | Terminate use of socket library (Windows only}

socket Create a descriptor for use In network communication

connect Connect to a remote peer {client)

closesocket Terminate communication and deallocate a descriptor

bind Bind a locat IP address and protocol port to a socket

listen Place the socket in passive mode and set the number
of incoming TCP connections the system will
enqueue (server)

accept Accept the next incoming connection (server)

recy Acquire incoming data from a stream connection or
the next incoming message

recvirom Receive the next incoming datagram and record
its source endpoint addreas

select Wait until the first of a specified set of sockets
becomes ready for VO

send Send outgoing data or a message

gendio Send an outgoing datagram to a specified endpoint
address

shutdown Terminate a TCP connection In one or both directions

getpearname | After a connection arrives, obtain the remote
machine’s endpcint address from a socket

getsockopt Obtain the current options for a socket

setsockopt Change the options for a socket

Flpgure 5.3 A summary of functions in the Windows Sockets API and the

meaning of each.

58 The Socket AFI Chap. 5

5.9 Using Socket Calls In A Program

Figure 5.4 illustrates a sequence of calls made by a chient and a server using TCP.

CLIENT SIDE SERVER SIDE
WSAStartup WSAStartup
¥ '
socket soc ket
Y ¥
conhect bind

' Y
send {isten

' \
recv accept ﬁ

' '
closesocket recv
1 Y
WSACleanup send
Y
closesocket—/
Y
WSACleanup

Figure 5.4 An cxample scquence of socket system calls made by a elient and
server using TCP. The server runs forever. It waits for a new
connection on the well-known port. accepts the conncction, in-
teracts with the chent, and then closes the connection,

The client creates a socket, calls connect to connect to the server, and then interacts us-
ing send 10 send requests and recv to receive replies. When it finishes using the con-
nection, it calls closesocket. A server uses bind to specify the local {well-known} proto-
col port it will use, calls listern 10 set the length of the connection queue, and then cnters
a loap. Inside the loop, the server calls accepr to wait until the next connection request
arrives, uses recv and sead 1o interact with the cliem, and finally uses ciosesocket 10 ter-
minsgte the connection. The server then returns 1o the accepr call, where 1t waits [or the
next connaction,

Sec. 510 Symbolic Constants For Socket Call Farameters 59
5.10 Symbolic Constants For Socket Call Parameters

In addition to the system functicns that implement sockets, most implementations
of the socket API provide a set of predefined symbolic constants and data structure de-
clarations that applications use to declare data and to specify arguments. For example,
when specifying whether to use dalagram service or stream service, an application pro-
gram uses symbolic constants SOCK_DGRAM or SOCK_STREAM. To do so0, the pro-
gram must incorporate the appropriate definitions into each program. For example. in
the C programming language, one uses the C preprocessor include statement. Usually,
include statements appear at the beginning of a source file; they must appear before any
use of the constants they define. The include staternent needed for sockets under Win-
dows has the form:

#inciude <winsock b

We will assume throughout the remainder of this texr chat applications always begin
with the necessary include stalement, even if it 15 not shown explicitly in the examples.
To summarize:

Most implemeniations of the socket API supply predefined symbolic
constants and data structure declarations wused with the socket func-
tions. O programs that use predefined constants must begin with
preprocessor include statements that reference the files in which the
definitiony appeur.

5.11 Summary

The socker abstraction was introduced by the BSD UNIX operating system as a
mechanism that allows application programs o interface with protocol soflware. Be-
cause many vendors have adopted seckets, they have become a de facre standard.

A program calls secket 1o create a socket and obtain a descriptor for it. Arguments
1o the socket call specify the protocol family 10 be uscd and the type of service required.
All TCPAP protocols are part of the Internet family, specificd with symbolic constant
PF_INET. The systern creates an internal data structure [or the socket. fills in the pro-
tocol family, and uses the type of service argument to select a specific protocel {vsually
either UDIP or TCP).

Additional system calls allow the application o specify a local endpoint address
{bind), to force the socket into passive mode for use by a server (listen), or o force the
socket into active mode for use by a client (conneer). Servers can make further calls to
obtain incoming connection requesis (accepd), and boih clients and servers can send or
receive iformation (recy and senef). Finally, both clients and servers can deallocate a
socket once they have finished using it {cfosesocker).

G0 The Socker API Chap. 5

The socket structure allows each protocol family to define one or more address
representations. All TCP/IP protocols use the Internct address family, AF_INET, which
specifies that an endpoint address comains both an IP address and a protocol port
number. When an application specifies a communication endpoint t¢ a socket function,
it uses predefined structure sockaddr in. If a client specifies that it needs an arbitrary,
unused local protocol port, the TCP/IP software will select one.

Befare an application program wrilten in C can use the predefined structures and
symbolic constants associated with sockets, it must include a file that defines them. In
particular, we assume that all C programs begin with a statement that includes file
<winsock h>.

FOR FURTHER STUDY

Hall et. al. [1993] specifies each of the functions available with the Windows
Sockets standard, including an exact descoiption of arguments and retum codes. Hall et
al. [1996] contains the same descriptions for version 2. Appendix 1 summarizes the in-
formation for the major functions used with sockets.

Leffler er. al. [1989] describes the Berkeley Software Distribution {(BSD) socket
system from which Windows Sockets was derived. Presotto and Ritchie [June 199(]
describes an alternative to sockets that vses a file system hamespace.

EXERCISES

5.1 Look at the include file for sockets (i.e., the file <winsock.h>). What socket types are al-
lowed? Dwoes the file specify any socket types 111 do not makes sense for TCP/1P proto-
cols?

5.2 If your systern has a clock with at least microsecond accuracy, measure how long it takes o
execule each of the socket system calls. Why de some calls require orders of magnitude
more time than cihers?

5.3 Read the manual pages for connect carefully. What network wraffic is geperated if one calls
connect on a socket of iype SCMCK_DGRAM?

54 Amange to moniter your local network while an application executes connect for the first
time on a socket of 1ype SOCK_STREAM. How many packets do you see?

BLI = E R VT =

6

Algorithms And Issues In
Client Software Design

6.1 Introduction

Previous chapiers consider the socket abstraction that applications use to interface
with TCPAP software, and review the basic functions n the Windows Sockets APL
This chapter discusses the basic algorithms underlying client software. [t shows how
applications become clicnts by initiating communication, how they use TCP or UDP
protocols to contact a server, and how they use socket cafls w imeract with those proto-
cols. The next chapter continues the discussion, and shows complete client programs
that implement the ideas discussed here,

6.2 Learning Algorithms Instead Of Details

Because TCPAP provides rich functionality that allows programs to communicalte
in a variety of ways, an application thal uses TCP/IP must specify many details about
the desired communication. For example, the application must specily whether it
wishes to act as a client or a server, the endpoint address (or addreesses) it will use,
whether it will communicate with a connectionless or connection-oriented protocol, how
it will enforce authorization and protection tules, and details such as the size of the
buffers it will need.

So far, we have examined the set of operations available to an application without
discussing how applications should use them. Unfortunately, knowing the low-level de-
tails of all passible socket functions and their exact parameters does not provide pro-

61

B TR R g LT L L R B

62 Algorithms And Essues In Client Sofiware Design Chap. &

grammers with an understanding of how to build well-designed, distnbuted programs.
In fact, while a general vnderstanding of the functions used for network communication
is important, few programmers remember all the details. Instead, they leam and
remember the possible ways in which programs can interact across a network, and they
uvnderstand the trade-offs of each possible design. In essence, programmers know
enough about the algorithms underiying distributed computing to make design decisions
and to choose among alternative algorithms guickly. They then consult a programming
manual to find the details needed to write a program that implements a particular algo-
rithm on a particular system. The paint is that if the programmer knows what a pro-
gram should do, finding out how to do it is straightforward.

Although programmers need to understand the concepiual capabilities
of the protocol interface, they should concenirate on learning about
ways to structire communicating programs instead of memorizing the
details of a particular interface.

6.3 Client Architecture

Applications that act as clients are conceptually simpler than applications that act
as servers for several reasons. First, most client sofiware does not explicitly handle
concurrent interactions with multiple servers. Second, most client software executes as
a conventional application program. Unlike server software, client software does not
usually require special privilege because 1t does not vsvally access privileged protocol
ports. Third, most client software does not need 1o enforce protections. Instead, client
pragrams can rely on the operating system to enforce protections automatically. In fact,
designing and implementing client software is so straightforward that experienced appli-
cation prograrmmers can learn to write basic client applications guickly. The next sec-
tions discuss client software in general; later sections will focus on the differences
between clients that use TCP and those that use UDP.

6.4 ldentifying The Location Of A Server

Chent software can use one of several methods 10 find a server’s IP address and
protoco] port number. A client can:

s have the server’s demain name or IP address specified as a constant when
the program is compiled,

* require the user to identify the server when invoking the prograt,

*+ obtain information about the server from stable storage {(e.g., from a file on

a local disk), or
* use a separate protocol to find a server (e.g., multicast or broadcast a mes-
sage to which all servers respond).

T ke AR Vo L Lohima e i g Db R clema ey ge ime ap TRt 4 = AR g eerTa A e

Sec. 6.4 ldentifying The Location OF A Server a3

Specifying the server’s address as a constant makes the client software faster and
less dependent on a particular local computing environment. However, it also means
that the client must be recompiled if the server is moved. More important, it means that
the client cannot be used with an aliernative server, even temporarily for testing. As a
compromise, some clients fix a machine name instead of an IP address. Fixing the
name instead of an address delays the binding until run-time. ke allows a site 1o choose
a gencric name for the server and add an alias to the domain name system for that
name. lsing aliases permits a site manager 10 change the Jocation of a server without
changing client sofiware. To move the server, the manager needs 10 change only the
alias. For example, it 18 possible to add an alias for mailitast in the local domain and to
arrange for alt clients to look up the string “‘mailhost’ instead of a specific machine.
Because all clients reference the generic name insiead of a specific machine, the system
manager ¢an change the location of the mail hast without recompiling client software.

Storing the server's address in a file makes the cliemt more flexible, but it means
that the clicnl program cannot execute unless the file is available. Thus, the client
software cannot be transported (10 another machine easily.

While using a broadcast protocol to find servers works in a small, local environ-
ment, 11 does not scale well to large interncts. Furthermore, use of a dynamic search
mechanism introdoces additional complexity for both clients and servers. and adds addi-
tional hroadcast traffic to the network.

To avoid unnecessary complexity and dependence on the compuling environment.
most clients solve the problem of server specification in a2 simple manner: they require
the user to supply an argument thar identifies the server when invoking the client pro-
gram. Building client software to accept the server address as an argument makes the
client software general and eliminates dependency on the compuling envirenment.

Allowing the user to specify a server address when invoking client
saftware makes the chient program more general and makes it possi-
ble to change verver locations.

An mmportant point o note is that using an argument to specify the server’'s address
resutts in the most flexibility. A program that accepts an address argument can be com-
bincd with other programs that extract the server address from disk, find the address us-
ing a remote nameserver, ur search for 1t with 2 broadeast protacol. Thus,

Building client software that accepts a server address as an argumeni
makes it easy to build extended versions of the software thar use other
ways to find the server address (e.g.. read the address from g file on
disk).

Some services reguire an explicit server, whilc others can use any available server.
For example, when a user invokes a remote login client, the user has a specific target
machine in mind: logging into another machine usually does not make sense. However,
if the user merely wants (o find the current time of day, the user does not care which

TTOIMA R mLA — e AR R TEROTT e B | A I T e e e ama ke adaliArCogEsTRER | Wt - o m Lt

4 Algorihms Aod lssues Tn Cliens Software Design Chap.

server responds. To accommodate such services, the designer can modify any of the
server look-up methods discussed above so they supply a set of server names instead of
a single name. Clients must also be changed so they try each server in a set until they
find one that responds.

6.5 Parsing An Address Argument

On computer systems that use a textual interface, a user specifies arguments on the
comiand line when invoking a clien program. On compater systems that use a graphi-
cal user interface, the system presents a window that asks a user to fill in arguments. In
most cases the arguments are stored in character strings; the client program uses an
argtiment’s syntax to interpret its meaning. For example, most client software requires
the user to enter the domain name of the machine on which the server operates:

merlin.cs. purdue. edu
or an IP address in dotted decimal notation:
128, 10.2.3

To determine whether the user has specified a name or an address, the client scans the
argument. If it contains alphabetic characters, the client interprets the argument as a
name. If it contains only digits and decimal points, the client assumes the argument i$ a
dotted decimat address and parses it accordingily.

Of course, client programs sometimes need additional information beyond the
server’s machine name or IP address. In particular, {ully parameierized client software
allows a user to specify a protocol port as well as a machine.]t is possible to vse an
additional argument or to encode such information in a single string. For example, 10
specify the protocol port associated with the smip service on machine with name
meriin.cs.purdue.edu, the client could accept two arguments:

merlin. cs.purdue.edu smip
or could combine both the maching name and protocaol port inte a single argument:
merlin.cs. purdue.edu: smip

Although each client can choase the details of its argument syntax independently, hav-
ing many clients with their own syntax can be confusing. From the user’s point of
view, consistency is always important. Thus, programmerts are advised to follow whas-
ever conventions their local system uses for client software. For example, if most appli-
cations require a user to specify the server’s machine and protocol port sepafately, new
client software should use two arguments instead of one.

e Ny e S e S S T T I Cr . PR SR T R R o

Sec.6.6 Looking Up A Domain Name 65
6.6 Looking Up A Domain Name

A client must specify the address of a server using structure sockaddr in. Doing
SO means converting an address in dotted decimal notation {or a domain name in text
form) into a 32-bit IP address represented in binary. Converting from dotted decimal
notation to binary is trivial. Converting from a domain name, however, requires consid-
erably more effort. The socket interface includes functions, inet_addr and gethost-
byname, that perform the conversicns, ine!_addr takes an ASCIL string that comains a
dotted decimal address and returns the equivalent TP address in binary. Gethostbyname
takes an ASCII string that contains the domain name for a machine. It returns the ad-
dress of a hostent structure that contains, among other things, the host’s 1P address in
binary. The hesrent structure is declared in include file winsock. b

struct hostent |

char FAR* h_name; /* official host name */
char FAR* FAR* h_aliases; /* other aliases *f
shert h addrtype; /* adidress type K/
short h length; /* address length */

char FAR* FAR* h addr list; /* list of addresses */
¥:
#¥define h addr h ad¥ list[0]

Fields that contain names and addresses must be lists because hosts that have multipie
interfaces also have multipte names and addresses. For compatibility with earlier ver-
sions, the file also defines the identifier A_addr 1o refer to the first location in the host
address list. Thus, a program can use k_addr as if it were a field of the structure.

Consider a simple example of name conversion. Suppose a client has been passed
the domain name meriin.cs.purdue.edn in suing form and needs to obtain the 1P ad-
dress. The client can call gethostbyname as in;

struct hostent *lptr;
char *aorplenam = "merlin.cs.purdue. exhe”;

if { hptr = gethostbyname | escamplenam) {

/* IF address is now in Iptr-»>h addr */
} else {

/* error in name - hardle it */
}

If the call is successful, geshosthyrame retumns a pointer 1o a valid kostenr structure. I7
the name cannot be mapped into an IP address, the call returns a NULL pointer. Thus,
the client examines the value that gerhostbyname returns io determine if an error oc-
curred.

L L L i I B P L LR I B T T

6 Algorithms And Issnes Lo Client Software Design Chap. ©

6.7 Looking Up A Well-Known Port By Name

Most client programs must look up the prowcol port for the specific service they
wish to invoke. For example, a chient of an SMTP mail server needs o look up the
weil-known port assigned to SMTP. To do so, the client invokes library function
getservbyname, which tukes lwo arguments: a string that specifies the desired service
and a string that specifies the protocol being used. 1t returns a pointer to a structure of
type servent, also defined in include file winsock. k.

struct servent {

char FAR* 5_name; /* official service name */
char FAR* FAR* & aliases; /* other aliases *f
short 5 port; /* port for this service */
char FAR* s_proto; /* protocol ko use *f

| ¥

" If a TCP client needs to look up the official protocol port number for SMTP, it
calls gerservbyngme, as in the following example:

struct servent *spt-;

if (sptr = getsexrviwvneame("amtp®, "top M o{

/* port mmmber is now in sptr->s port */
} else {

f* error ocourred - handle it */
}

6.8 Port Numbers And Network Byte Order

Function getservbyname returns the protocol port for the service in network byte
order. Chapter 5 explains the concept of network byte order, and describes library rou-
tines that convent from network byte order to the byie order used on the local machine.
It is sufficiem to understand that gerservbyname retumns the port value in exactly the
form needed for use in the sockaddr in structure, but the representation may not agree
with the local machine’s usval! representation. Thus, if a program prints gut the value
that getservbyname relums without converting to local byte order, it may appear to be
INCOTTECt.

B R I o L I N T R L - LI EP IR A S Y PR IRt S PR T aar SRR PP S M

Sca. 659 Looking Up A Protocol By Name &7
6.9 Locking Up A Protocol By Name

The socket interface provides a mechanism that allows a client or server 10 map a
protocol pame to the integer constant assigned to that protocol. Library function ger-
protobyname performs the look-up. A call passes the protocol name in a string argu-
ment, and getprotobyname returns the address of a structure of type proteent. If getpro-
tobyname cannol access the database or if the specified name does not exist, it retums a
NULL poeinter. The database of protocol names allows a site to define aliases for each
name. The protoent structure has a field for the official protocol name as well as a field
that points 1o the list of aliases. The C include file winsock .k contains the structure de-

claration:

struct protoent {

char FAR* p_name /* official protocol name */
char FAR* FAR* p aliases; /* list of aliases allowed >/
short p proto; /* official protoccl rmmber */

b;

If a client needs 10 look up the official protocol number for UDP, it calls gerproio-
byrame, as in the following example:

struct protoent *ptr:

1f {pptr = getprotolwyrame{ "udpt V) {

/* official protocol radher is now in pptr->p _proto */
> elee {

/* error ocourred - handle it */

6.10 The TCP Client Algorithm

Building client software is usually easier than building server software. Because
TCP handles all reliability and flow control problems. building a client that uses TCP is
the most straightforward of all network programming tasks. A TCP client {ollows Al-
gorithm 6.1 to form a connection 10 a server and communicate with it. The sections
following the alporithm discuss each of 1ts steps in more detail.

= e L T WA - CRRG T e eE s B R A P L e LT R

68

Algorithms And lssues In Client Software Design

Chap. 1

w P

bl

6.

Algorithm 6.1

. Find the |P address and protocol port number of the server

with which communication is desired.

Allocate a socket.

Specify that the connection needs an arbitrary, unused proto-
col port on the local machine, and allow TCP to choose one.
Connect the socket to the server.

Communicate with the server using the application-level pro-
tocol {this usually involves sending requests and awaiting re-
plies).

Close the connection.

Algorithm 6.1 A connectior-oriented cliem. The client application allocates

a socket and connects it to a server. It then sends requests
across the connection and receives replies back

6.11 Allocating A Socket

Previous sections have already discussed the methods used to find the server’s IP
address and the socker function used to allocate a communication socket. Clients that
use TCF must specify protocol family PF_INET and service SOCK_STREAM. A pro-
gram begins with an include statement that references a file that contains the defiritions
of symbolic constants used in the call and a dectaration of the variable used to hold the
socket descriptor. If more than one protocol in the family, specified by the first argu-
ment, offers the service requested by the second argument, the third argument to the
socket call identifies a panicular protocel. In the case of the Internet protwcol family,
only TCP offers the SOCK_STREAM service. Thus, the third argument is irrelevant-
zero should be used.

#include <awinsock.h>
S0CKET g;

8 = gsockat (PF_TNET, SOCK_STREAM, 0);:

Sec. 6,12 Choosing A Local Protocol Port Number L
6.12 Choosing A Local Protocol Port Number

An application needs to specify remote and local endpoint addresses for a socket
before it can be used in communication. A server operates at a well-known protocol
port address, which all clients must know. However, a TCP client does not operate on a
preassigned port. Instead, it must select a tocal protocol port to vse for its endpoint ad-
dress. In general, the client does not care which port it uses as long as: (1) the port
does not conflict with the ports that other applications on the machine are allrean:l'_t,»r using
and (2) the port has not been assigned to a well-known service.

Of course, when a client needs a local protoco! port, it could choose an arbitrary
port at random antil it finds one that meets the criteria given above. However, the
socket interface makes choosing a client port much simpler because it provides 2 way
that the client can allow TCP to choose a local port automatically. The choice of a lo-
cal port that meets the criteria listed above happens as a side-effect of the connect call.

6.13 A Fundamental Problem In Choosing A Local IP Address

When forming a connection endpoint, a client must cheose 2 local IP address as
well as a local protocol port number. For a host that atiaches to one network, the
choice of a local TP address is trivial. However, because gateways (routers) or multi-
homed hosts have multipte IP addresses, making the choice can be difficult.

In general, the difficulty in choosing an IP address arises because the correct
choice depends on routing and applicaticns seldom have access to routing information.
To understand why, imagine a computer with multiple network interfaces and, therefore,
multiple IP addresses. Before an application can use TCP, it must have an éndpoint ad-
dress for the connection. When TCP communicates with a foreign destination, it encap-
sulates each TCP segment in an IP datagram and passes the datagram to the IP
software. TP uses the remote destination address and its routing table to select a next-
hop address and a network interface that it can use to reach the next hop.

Herein lies the problem: the IP source address in an outgoing datagram should
match the IP address of the network interface -ever which IP routes the datagram. How-
ever, if an application chooses one of the machine's IP addresses at random, it might
select an address that does not match that of the interface over which 1P routes the traff-
ic.

In practice, a client may appear to work even if the programmer chooses an in-
correct address because packets may travel back to the client by a different route than
they travel to the server. However, using an incorrect address violates the specification,
makes network management difficult and confusing, and makes the program less reli-
able.

To solve the problem, the socket functions make it possible for an application to
leave the locai [P address field unfilled and to allow TCP/IP software to choose a local
[P address automatically at the time the client connects to a server.

0 Algorithms And Issces In Clicn Software Desipn Char ©

Because choosing the correct local 1P address requires the applica-
tion to interact with IP routing software, TCP client software usually
feaves the loval endpoint address unfilled, and allows TCPAP
software to select the correct locul 1P address and an unused local
protocol port number automatically.

6.14 Connecting A TCP Socket To A Server

The connect function allows a TCP client to initiate a connection. In terms of the
underlying protocol, connect forces the initial TCP 3-way handshake. The call to con-
nect does not return vntil a TCP connection has been established or TCP reaches a
timeout thresheld and gives up. The call returns @ if the conmection attempt succeeds or
SOCKET_ERROR if it fails. Connect takes three arguments:

retoode = comert{s, ramaddr, raemddrien)

where s is the descriptor for a socket, remaddr is the address of a structure of type
sockaddr_in that specifies the remote endpoint to which a connection 1s desired, and
remaddrien is the length (in bytes) of the second argument.

Connect performs four tasks. First, it tests to ensurc that the specified sockel 15
valid and that it has not already been connected. Second, it fills in the remote endpoint
address in the socket from the second argument. Third, it chooses a local endpoint -ad-
dress for the connection {IP address and protocal port number) if the socket does not
have one. Fourth, it initiates a TCP connection, and retumns a value to tell the caller
whether the connection succeeded.

6.15 Communicating With The Server Using TCP

Assuming the connect call succeeds in establishing a connection, the client can use
the connection to communicate with the server. Usually, the application protocol speci-
fies a request-response interaction in which the client sends a scquence of reguests and
wails for a response 1o cach.

Usually, a client calls send to transmit each request and recv o await a response.
For the simpiest application protocols. the clienl sends only a stngle request and re-
ceives only a single response. More complicated application protocols require the client
to iterate, sending a request and waiting for a response before sending the next request.
The following code illustrates the request-response ineracrion by showing how a pro-
gram wriles a simple request over a TCP connection and reads a response:

Scc. el Communicating With The Server Usivg TCF 71
/* EBaEmple code seovent */
¥define BLEN 120 /* buffer length to use */

chax *reg = "regquest of some sort™;
char baf [BIEN]; /* affer for answer w/

char *ptr: /* pointer to uaffer */
int n; £* morber of ytes read */
int uflen; /* space left in kuffer */
otr = hat;

bhuflen = BLEN;

/* gend request */

sexrxd(s, reqg, strlenireg), 0):

/* read response {ingy oane in merry pieces} */

n = recwi{s, ptr, uflen, 4};

while (n != SOCKET ERROR &k nn 1= 0) {
Iotr += n;
buflan -= =7;
n = recwis, ptr, uflen, 0);

6.16 Reading A Response From A TCP Connection

The code in the previous example shows a client thal sends a small message 1o a
server and expects a small response (less than 720 bytes). The code contains a single
call 1o send, but makes repeated calls o recy. As long as the call to recy returns data.
the code decrements the count of space available in the buffer and moves the buffer
pointer forward past the data read. [teration is necessary on input, even if the applica-
tom at the other end of the connecction sends only a small amount of data because TCP
15 nol a block-onented protocol. Instead. TCP is stream-oriented: it puarantees to
deliver the sequence of bytes that the sender writes, but it does not guarantee to deliver
thern in the same grouping as they were written, TCP may choose to break a block of
data inte preces and transmit each pmece in a separate scgment (e.g., it may choose to
divide the data such that each piece fills the maximum sized segment. or it may need to
send a small piece if the receiver does not have sufficient buffer space for a large anc).
Alternatively, TCP may choose to accumulate many byles in its output buffer before
sending a segment (e.g., to fill a datagram). As a result, the recciving application may
receive data in small chunks, even if the sending application passes it to TCP in a single
call to send. Or, the receiving application may receive data in a large chunk, even if the

12 Algorithms And Issues In Cliene Software Design Chap. 6

sending application passes it to TCP in a series of calls to send. The idea is fundamen-
tal 10 programming with TCP:

Because TCF does not preserve recard bourdaries, any program that
reads from a TCP connection must be prepared to accept data o few
bytes at a time. This rule holds even if the sending application writes
data in larpe blocks.

6.17 Closing A TCP Connection
6.17.1 The Need For Partial Close

When an application finishes using a connection completely, it can call clpsesocket
to terminate the connection gracefully and deallocate the socket. However, closing a
connection is seldom simple because TCP allows two-way communication, Thus, clos-
ing a conneclion vsvally requires coordination among the client and server,

To understand the problem, consider a client and server that use the request-
response interaction described above. The client software repeatedly issues reguests to
which the server responds. On one hand, the server cannot terminate the connection be-
cause it cannot know whether the cliemt will send additienal requests. On the other
hand, while the client knows when it has no more requests to send, it may not know
whether all data has arrived from the server. The latter is especially impornant for appli-
cation protocols that transfer arbitrary amounts of data in response 1o a request (e.g., the
response to a database query).

6.17.2 A Partial Close Operation

To resolve the connection shutdown problem, most implementations of the socket
interface include an additional primitive that permits applicatioas to shut down a TCP
connection in one direction. The shutdown function takes two arguments, a socket
descriptor and a direction specification, and shuts down the socket in the specified
direction:

errcacke = shutdown (s, direction);

The direction argument is an integer. If it contains 0, no further input is allowed. If it
contains /, no further output is allowed. Finally, if the value is 2, the connection is
shutdown in both directions.

The advantage of a partial ¢lose should now be clear: when a client finishes send-
ing requests, it can use shwrdown to specify that it has no further data to send without
deallocating the socket. The underlying protocol reports the shutdown to the remote
machine, where the server application program receives an end-gf-fife signal. Once the
server detects an end-of-file, it knows no more requests will amive. After sending its
last response, the server can close the connection. To summarize:

Sec. 6.17 Closing A TCP Caonneclion 73

The partial close mechanism removes ambiguiry for applicarion proto-
cols thar transmit arbitrary amounts of information in response 1o a
reguest. In such cases, the client issues g partial close after its fast
request; the server then closes the comnection after s {ast response.

6.18 Programming A UDP Client

At first glance, programming a UDP client seems like an easy task. Algonthm 6.2
shows that the basic UDP client algorithm' is similar © the client algorithm tor TCP
{Algorithm 6.1).

Algorithm 6.2

1. Find the IP address and protocol port number of the server
with which communication is desired.

. Allocate a socket.

Specify that the communication needs an arbitrary, unused

pratocol port on the local machine, and allow UDP to choose

one.

. Specify the server to which messages must be sent.

. Communicale with the server using the application-teve! pro-
tocol (this usually involves sending reguests and awaiting re-
plies}.

6. Close the socket.

W N

(R

Algorithm 6.2 A coanectionless client. The sending program creates a con-
necled socket and wses il 1o send one or more requests itera-
tively., This algorithm ignores the issue of reliability.

The first few steps of the UDP client algorithm are much like the corresponding
steps of the TCP client algorithm. A UDP client obtains the server address and protocol
port nurber, and then allocates a socket for communication.

6.19 Connected And Unconnected UDP Sockets

{Client applications can use UDP in one of two basic modes: connected and uncon-
nected. In connected mode, the client uses the connect call to specify a remote endpoint
address (i.e., the server’s IP address and protocol port number). Once it has specified
the remote endpoint, the client can send and receive messages much like a TCP client
does. In unconnected mode, the client does not connect the socket to a specfic remote

74 Algorithms And Issues In Client Software Design Chap. 6

endpoint. Instead, it specifics the remote destnation each time it sends a message. The
chief advantage of connected UDP sockets lies in their convenience for conventional
client software that interacts with only one server at a time: the application oniy needs
to specify the server once no matter how many datagrams it sends. The chief advantage
of unconnected sockets lies i their flexibihity; the client can wait to decide which
server to conlacl until 1t bas a request o send. Furthermore, the client can easily send
gach request o a different server.

UDE sockets can be connected, making 1t convenient to inleraet with
& specific server, or they can be unconnecled, making It necessary for
the application to specify the server's address each time it sends a
MIENSUGE.

6.20 Using Connect With UDP

Although a client can connect a socket of type 3OCK DGRAM, the connect call
does not initiate any packet exclange, nor does it test the validity of the remote end-
point address. Imstead, it merely records the remote endpoint information in the socket
datz structure for later use. Thus, when applied o SOCK_DGRAM sockets, connect
only stores an address. Even if the connect call succeeds, Ui dees not mean that the re-
mole endpoint address is valid or that the server is reachable. .

6.21 Communicating With A Server Using UDP

After a UDP ciient calls connect, it can use send to send a message or recy 10 rg-
ceive a response. Unlike TCP, UDP provides message transfer. Each time the client
calls send, UDP sends a single message (o the server. The message contains ail the data
passed to send. Similarly, each call to recv retums vne complele message. Assuming
the chient has specified a sufficiently large bufter, the recyv call returns all the data from
the next message. Therefore, a UTYP client does not need to make repeated calls to recy
lo chlain a single message.

6.22 Closing A Socket That Uses UDP

A UDP client calls closesocket 10 cluse a socket and reiease the resources assotiat-
gd with 1. Once a socket has been closed, the UDP software wall reject further mes-
sages that arrive addressed to the protocol port that the socket had allocated. However,
the machine on which the closesocker occurs does not inform the remote endpomt that
the socket ts closed. Therefore, an application that uses connectionleéss (ranspor must
be designed so the remote side knows how long to retain a secket before closing 1.

Bec. 523 Partiz] Close For UDP 15
6.23 Partial Close For UDP

Shutdown can be used with a connccied UDP socket to stop further transmission in
a given direction. Unforunately, unlike the partial close on a TCP connection, when
applied to a UDP socket, shurdown does not send any messages to the other side. In-
stead, 1t merely marks the local socket as unwilling to wansfer data in the direction(s)
specified. Thus, if a client shuts down further output on its socket, the server will not
receive any indication thal the communication has ceased.

6.24 A Warning About UDP Unreliability

Our simplistic UD¥P client algorithm ignores a fundamental aspect of UDP: name-
ty, that it provides unreliable datagram delivery. While a simplistic UDP client can
work well on local networks that exhibit low loss, low delay, and no packet reordering,
clients that follow our algorithm will not work across a complex internel. To work in
an internet envirenment, a clienl must implement reliability through timeout and re-
transmission. It musl alse handle the probiems of duplicate or out-of-order packets.
Adding reliability can be difficult, and requires expertise in protocol design.

Client software thar wses UDP must implement reliability with tech-
figues ltke packet seguencing, ncknowledgements, tmeouts, and re-
fransmission. Designing protocels that are correct, reliable, and effi-
cient for an internet environment requires considerable expertise,

6.25 Summary

Client programs arc among the most simple network programs. The client must
obtain the server’s P address and protocol port number before it can communicate; to
increase flexibility, client programs often require the user to identify the server when in-
voking the client. The client then converls the server's address from dotied decimal no-
tation mnto binary, or uses the domain name system to convert from a texeual machine
narme inlo an [P address.

The TCP client algorithm 1s straightforward: a TCP client allocates a socket and
connects it to a server. The chent wscs send 1o send requests 1o the server and recy o
receive replies. Once it finishes using a connection, either the chent or scrver invokes
closesocket 1 terTINALE 1L,

Although a client must explicitly specify the endpoint address of the server with
which it wishes to communicate, it can allow TCP/P software to choose an unused pro-
ocol port number and to fill in the correct local [P address. Doing so avoids the prob-
lem that can arise on a gateway {router} or multi-homed host when a client inadvertent-
ly chooses an IP address that differs from the [P address of the interdace over which [P
routcs the traffic.

16 Alporithms And Issues In Chent Software Design Chap. 6

The clhient uses connect to specify a remote endpoint address for a socket. When
used with TCP, connect initiates a 3-way handshake and ensures that communication is
possible. When used with UDP, connect merely records the server’s endpoint address
for later uge.

Connection shutdown can be difficult if neither the client nor the server know ex-
actly when cemmunicaiion has ended. To solve the problem, the socket interface sup-
plies the shutdown primitive that causes a partjial close and lets the other side know that
no more data will armive. A client uses siwtdown to close the path leading to the server;
the server receives an end-of-file signal on the connection that indicates the client has
finished. Afier the server finishes sending its last response, it uses clesesecket to ter-
minate the connection.

FOR FURTHER STUDY

Many RFCs that define protocols also suggest algorithms or implementation tech-
nigues for client code. Umar [1997b] discusses object-oriented client-server architec-
tures.

EXERCISES

6.1 Read about the sendio and recvfrom socket calls. Do they work with sockets using TCP or
sockels using UDP?

6.2 When the domain name system resolves a machine name, it returns a set of ane or more [P
addresses. Why?

6.3 Build client software that uses gerhostbyname to look up machine names at your site and
print all information returped. Which official names, if any, surprised you? Do vou tend o
use official machine names or sliases? Describe the circumstances, if any, when aliasas
may not work correctly.

6.4 Measure the time required to look up a2 machine name {gethostbyname). Repeat the test for
both valid and invalid names. Does a look-up for an invalid name take substantially longer
than for a valid one? Explain any differences you observe.

6.5 WUse a network meniter 10 watch the network traffic your computer generates when you
look up an IP address name using gethosthyname, Run the experiment more than one time
for ¢ach machine name you resolve. Expiain the differences in network traffic between
look-ups.

6.6 To test whether your machine’s local byte order is the same as the network byte order,
wrile a program that uses gerservbyname to look up the ECHO service for UDP and then
prints the resulting protocol porl value. If the local byte order and network byte order
agree, the value will be 7.

Exerciscs L

6.7 Write a prograi that allocates a local protocol port, closes the sockel, delays a lew
seconds, and allocates another local port. Run the program on an idle machine and on a
busy nmeshanng system. Which port values did your program receive on cach system? 1If
they arg not the same, explain.

6.8 Under what circumstances can a client program use closesockes instead of shutdown?
6.9 Should a client use the same protocol port pumber each time it begins? Why or why not?

6.10 [f a client program contains multiple threads, can each use the same protocol port number
te form connections to different servers? The same server? Explain.

R nr e Bt WEE . U TReIR e e e e crhm s 0 rar B e L LR TR . - P P E B IR

B

-

/

Example Client Software

7.1 Introduction

The previous chapter discusses the basic algorithms underlying client applications
as well as specific techniques used to implement those algorithms. This chapter gives
examples of complete, working client programs that illustrate the concepts in mors de-
tail. The examples use UDP as well as TCP. Most important, the chapter shows how «
programmer can build a library of procedures that hide the details of socket calls and
make it easier to construct client software that is portable and maintainable.

7.2 The Importance Of Small Examples

TCP/IP defines a myriad of services and the standard application protocols for ac-
cessing them. The services range in complexity from the trivial (e.g., a character gen-
erator service used only for testing protocol software) to the complex fe.g., a file
transfer service that provides awthenticanion and protection). The examples in this
chapter and the next few chapters concentrate on implementations of client-server
software for simiple services. Later chapters review client-server applications for several
of the complex services.

While it may seem that the protecois used in the examples do not offer interesting
or useful services, studying them is imporiant. First, because the services themselves
require littie code, the ¢lient and server software that implements them is easy to under-
stand. More important, the small program size highlights fundamental algorithms and
illustrates clearly how client and server programs use sysiem functions. Second, study-
ing simple services provides the reader with an intuition about the relative size of ser-
viges and the number of services available, Having an imtuitive understanding of small

79

&0 Example Client Software Chap. 7

services will be especially important for the chapters that discuss the need for multpro-
tocol and multiservice designs.

7.3 Hiding Details

Maost programmers understand the advantage of dividing large. complex programs
mto a set of procedures: a modular program becomes easier to understand, debug, and
modify than an equivalent monolithic program. If pregrammers design procedures care-
fully, they can reuse them in other programs. Finally, choosing procedures carefully
can also make a program easier to port to new computer systems.

Conceptually, procedures raise the level of the language that programmers use by
hiding details. Programmers working with the low-level facilines available in most pro-
pramming languages find programming tedious and prone to error. They also find
themnselves repeating basic segments of code in each program they wrile. Using pro-
cedures helps avoid repetition by providing higher-level operations. Once a particular
algorithm has been encoded in 2 procedure, the programmer can use il in many pro-
grams without having to consider the implementation details again.

A carefu!l use of procedures is cspecially important when building client and setver
programs. First, because network software includes declarations for items like endpoint
addresses, building programs that use network services involves a myriad of tedious de-
tails not found in conventional programs. Using procedures to hide those details
reduces the chance for emmor. Second, much of the code needed to aliocate a socket,
bind addresses, and form a network connection is repeated in cach chient; placing it in
procedures allows programmers to reuse the code instead of replicating it. Third, be-
cause TCPAP was designed to interconnect heterogeneous machinegs, network applica-
fions often operate on many different machine architectures. Programmers can use pro-
cedures 1o isolate operating system dependencies, making it easier to porl code to a new
machine.

7.4 An Example Procedure Library For Client Programs

To understand how procedures can make the programnring task easier, consider the
problem of building client programs. To establish connectivity with a server, a client
must choose a protacol (c.g., TCP or UDP), lock up the server's machine name, look up
and map the desired service into a protocol port number, allocate a socket, and connect
it. Writing the code for each of these steps from scratch for each application wastes
time. Furthermore, if programmers ever need 0 change any of the details, they have to
modify each application. To minimize programming time, a programmer can write the
code once, place it in a procedure, and simply call the procedure from each client pro-
ETam.

Sec. 7.4 An Example Procedure Libravy For Clienr Progranms g1

The first step of designing a procedure library is abstraction: a programmer must
imagine high-level operations that would make wriling programs simpler, For example,
an application programmer might imagine two procedures that handle the work of alio-
cating and connecting a socket:

socket = connectTCP(mgchine, service
and
socket = connectUDP{ machine, service),

It is important to understand that this is not a prescription for the “‘right’” sel ol
abstractions, it merely gives one possible way to form such a set. The important idea
is:

The procedural abstraction allows programmers to define high-level
operations, share code among applicarions, and reduce the chances of
making wmistakes with small details. Dur example procedures used
throughout this text merely illusirate one possible approach; program-
mers should feel free to choose their own abstractions.

7.5 Implementation Of ConTCP
Because both of the proposed procedures, connectTCP and connectU/DP, need to
allocate a socket and hll in basic infarmation, we chose o place all the low-level code

in a third procedure, cennecisock, and to implement both higher-level operations as sim-
ple calls. File conTCP.cpp illustrates the concept;

/* conTCP.cpp - connectTCP */
$#include <winsock.h-

S0CKET connhectscocki{corst char *, const char *, const char *) .

cormectTCP (const char *host, const char *service }

{

return connectscck(host, service, "top"};

ch g e DML AR A LR 1 TR AT et

32 Example Client Software Chap. 7

7.6 Implementation Of ConUDP

File conl/DP.cpp shows how connectsock can be used to establish a connected
socket that uses UDP.

/* conlUDP.cpp - connectUDE */
#include <winsock.h>

SOCKET connectscocki{const char *, const char *, congt char *);

*/f
SOC¥ET
connectUh? {const char *host, const char *service)
{

return cormectsockihost, service, "adp");
1

7.7 A Procedure That Forms Connections

Procedure connectsock conlamns all the code needed to allocate a socket and con-
nect it. The caller specifies whether to creale a UDFP socket or a TCP socket.

/Y Consock.CpRp - connectsock Y

finclude «stdlib.bk»
finclude =stdiop.h»
#include <string.k>
#include <winsock.h=>

#ifrdef INADLDE _NOKE
#define INADDH NOKE OxELfEfLfE£fEE
#endif /* INADDR _NONE */

wold errexitloonst char *, ...);

Sec. 1.7 A Procedere That Forms Connections B3

wf

SOCKET

connectsock{const char *host, const char *service, coast char Ytransport }

{
struct hostent *phe; /* pointer to host information entry */
struct servent *pge; /* pointer to service information entry */
struct protoent *ppe; /* pointer teo protocol informetion entry*/
struct sockaddr in sin; /% an Internet endpoint address *5
int 5, type; /* socket descriptor and socket type */

memset (k8in, 0, sizeof{gin));
sin.sin_family = AF INET;

/* Map service name to port number */
if { pse = getservbyname(service, transport) |
gin.sin port = pse-»5 port;
else if { (sin.sin_port = htens((u_shortlatoi{service))} == 0 |
errexit {("can't get \"%3\" service entry\n", service);

/* Map host neme to IP address, allowing for dotted decimal */
if { phe = gethostbyname{host) }
memcpy (&=in.sin addr, phe->h_addr, phe->h length);
else if { {sin.sin addr.s_addr = inet_addr(host)) == INADDR_NONE}
errexit{"can't get \"%=2\" host entryn", host}):

f* Map protocol name to protocol number */
if { (ppe = getprotobyname{transport)) == 0}
errexit("can't get \"%s\" protocol entry\n", transport);
/* Use protocol to choose a socket type */
if (strapltransport, "udp™) == 0}
tyrpe = S0CE, _DGRAM:
else
type = SOCFE_STREAM;

/* Mllocate a sockeb */
g = socket (IF INET, type, ppe->p_protol;:
if s == INVALID SOCKET)
arrexit (‘can't create socket: %d\n", GetLastError{l};

/* Cormect the gocket */
if (comrecti{s, (struct sockaddr *)&sin, sizeofisin]) ==
SOCKET _ERROR)
errexit{"can't connect to %s.%g: %d\n", host, service,

g4 Example Client Soflware Chap. 7

GetLastErrori));
returr &

Although most steps are straightforward, a few details make the code seem compli-
cated. First, the C language permits complex expressions. As a result, the expressions
in many of the condition statements contain a function call, an assignment, and a com-
parison, all on one line. For example, the call to getprotwobyname appears in an expres-
sion that assigns the result to variable ppe, and then compares the result to 0. If the
value returned is zero (i.e., an error occwred), the i statement executes a czall to errexir.
Otherwise, the procedure continues execution. Second, the code uses two library pro-
cedores defined by ANSI C, memiset and memcpy. Procedure memser places bytes of a
given value in a block of memory; it is the fastest way to zero a large structure or array.
Procedure memcpy copies a block of bytes from one memeory location to another, re-
gardtess of the contentst. Cornectsock uses memser to fill the entire sockaddr in struc-
ture with zeroes, and then vses memepy 1o copy the bytes of the server’s 1P address into
field sfn_addr, Finally, conrectsock calls procedure connect to connect the socket. If
an error occurs, it calls errexit.

f* errexit.cpp - errexit */

#include <stdarg.h>
#include <stdioc k>
#include <stdlib.h>
#include <winsock.h>

*f
FEVRARARGS] * /
void
errexit (const cher *format, ...)0
{
va_list args;

va_gstart fargs, format):
viprincf (stderr, Format, args):
va_end(args) ;

WSAC]l eanup (] ;

exit(l);

+Function strcpy cannot be used to copy an [P address because [P addresses can contain zero bytes which
strepy interprets as end of string.

S, 7.7 A Procedore That Forms Conpzetnoans i

Errexit 1akes a vanable number of argoments, which it passes on to wipringf for
output. Errexit follows the pringf conventions for formatted output. The first argurnent
specifies how the outpul should be formatted; remaining arguments specify values to be
printed according to the given format. Finally, errexit calls function WSACleanup 10
release system socket resources before exiting.

7.8 Using The Example Library

Once programmers have selected abstractions and built a library of procedures,
they can construct client applications. If the abstractions have been selected well, they
make application programming simple and hide many of the details. To illustrate how
our example library works, we will use it to construct example client applications. Be-
cause the clients each access one of the standard TCP/AP services, they also serve to il-

lustrate several of the simpler appiication protocols.

7.9 The DAYTIME Service

The TCPAIP sitandards cdefine an application protocol that allows a user 10 obtain
the date and time of day in a format fit for human consumption. The service is official-
ly named the DAYTIME service.

To access the DAYTIME service, the user invokes a client application. The client
conlacts a server to obtain the information, and then prints it. Although the standard
does not specify the exact syntax, it suggests several possible formats. For example,
DAYTIME could supply a date in the form:

weekday, month day, year me-timezone
like
Thursday, February 22, 1997 17:37:43-EST

The standard specifies that DAYTIME is available for both TCP and UDP. In both
cases, it operates at protocol port 13.

The TCP version of DAYTIME uses the presence of a TCP connection to trigger
oufput: @s SOOn as & new connection arrives, the server forms a text string that conrains
the current date and time, sends the string, and then cieses the connection. Thus, the
client need not send any request at all. In fact, the standard specifies thal the server
must discard any data sent by the client.

The UDP version of DAYTIME requires the client to send a request. A request
consists of an arbitrary UDP datagrarmn. Whenever & server receives a datagram, it for-
mats the current date and time, places the resulting string in an oulgoing datagram, and
sends it back to the client. Once it has sent a reply, the server discards the datagram
that triggered the response.

86 Exampie Client Software Chap. 7

7.10 Implementation Of A TCP Client For DAYTIME

File TCPdrc.cpp contains code for a TCP client that accesses the DAYTIME ser-
vice.

/% TCPdtc.ocpp - main, TCPdaytime */

#tinclude <stdilih. >
#include <stdio.h>
#include =winsock.h>

void TCRdaytime (const char *, const char *);
void errexit(const char *, ...1:
SOCKET oonrectTCPiconst char *, const char *});

#define LINELEN 128
#define WSVERS MAFEWORD{2, O}
gy U NS

i
int
main{int argc, char *argvrll}
{ .
char *host = "localhost*; /* host to wee if none supplied */
char *gervice = "daytime"; /* default gervice port */

WSADATA wsadatas

switch (argco) {

case 1:
host = "localhost®;
break;
Case 3:
service = argv[2];
% FALL THROUGH */
case 2:
Aost = argv([l]:
break;
default:

fprintf (stderr, “usage: TCRdayvtime [host [portllin®);
exit{l);

Sec.7.10 Implementation OFf A TCP Client For DAY TIME &

if iWSAStartup ({WSVERS, &wsadata) 1= 0
errexir {("WSAStartup failedin"!:

TCPdaytime (host, service);

WSAClearup () ;

return 0; F* exit */

*y

veid

TCPAavtime {const char *host, const char *saervice)

{
char buf [LINELEX+1] ; /* buffer for ocne line of text */
SOCKET & /* sotket degcriptor *
int o F* recy character count *f

g = connectTCP(host, service);

oo = reqviz, uf, LINELEN, 0);

whilaei{ cc != SOCEET_ERROR &%k oC > 01 {
kuf[ec]l = '\O'; /* ensure null-termination */
(void) fputs(buf, stdout);
ce = recvis, tuf, LINELEN, ();

}

closesocket (5] ;

Notice how using connectTCP simplifies the code. Once a connection has been es-
wblished, DAYTIME merely reads input from the conpection and prints it, iterating un-
t1l it detects an end of file condition.

7.11 Reading From A TCP Connection

The DAYTIME cxample illustraies an important idea: TCP offers a stream service
that does not guarantee to preserve record boundaries. In practice. the stream parsdigm
means that TCP decouples the sending and receiving applications. For example, sup-
pose the sending application transfers 64 bytes of data in a single call o send, followed
by 64 bytes in a second call. The recciving application may receive all 728 bytes in a
stogle call to recv, or 1 may receive 7 byles in the first call, f00 bytes in lhe second
call, and 18 bywes in the third vall. The number of bytes returned in a call depends on

=R Example Client Softwarc Chap. 7

the size of datagrams in the underlying internet, the buffer space available, and the de-
lays encountered when crossing the intemet.

Becanse the TCP stream service does not guarantee to deliver data in
the surme blocks that it was written, an application receiving data
from a TCP connection cannor depend on all data being delivered in
a single rransfer; it must repeatediy call vecv until all data has been
aobtained,

7.12 The TIME Service

TCF/IP defines a service that allows ope machine to obtain the current date and
time of day from ancther. Officially pnamed FIME, the service is quite simple: a client
program executing on one machine sends a request 1o a server executing on another.
Whenever the server receives a request, it obtains the current date and ume of day from
ihe local operating system, encodes the nformation in a standard format, and sends it
back 1o the chent in a response.

To avoid the problems that occur if the client and server reside in different
timezones, the TIME protocol specilies that all tme and date information must be
represented in Universal Coordinated Timet, abbrevialed UCT ar /T, Thus, a server
converts from its local time to universal time before sending a reply, und a client con-
verts from universal time to its local time when the reply arrives.

Unlike the DAYTIME service, which is intended for human users. the TIME ser-
vice 15 iniended for use by programs that store or mampulate times. The TIME protocol
always specifies time in a 32-bit integer, represemting the number of seconds since an
epoch date. The TIME protocol uses midnight, Jannary 1, 1900, as its epoch,

Using an integer reprcsentation allows computers to traasfer time from one
machine to anither quickty, without waiting {o convert it inte a text string and back into
an integer. Thus, the TIME service makes it possible for one computer to set its time-
of-day clock from the clock on another system.

7.13 Accessing The TIME Service

Clients can use either TCP or UDP to access the TIME service at protocol port 37
{technically, the standards define two separate services, one for UDP and one for TCP).
A TIME server built for TCP uses the presence of a connection 10 trigger output, much
iike the DAYTIME service discussed above. The client forms a2 TCP connection ta a
TIME server and waits to read output. When the server detects a new connection, it
sends the current time encoded as an integer, and then closes the connection. The client
does not send any data because the server never reads from the connection.

tinbversal Coordinated Time was formerdy known ax Gresnwich Mean Time,

Sec, 713 Accessing The TIME Service a0

Clients can also access a TIME service with UJRP. To do so, a client sends a re-
quest, which consists of a single datagram. The server does not process the incoming
datagram, except 1o exiract the sender’s address and protecel port number for use 11 a
reply. The server encodes the current time as an integer, places it in a datagram, and
sends the datagram back to the client.

7.14 Accurate Times And Network Delays

Although the TIME service accommeodates differences 1n timezones, it does not
handle the problem of network latency. If it takes ¥ seconds for a message to travel
from the server to the client, the client will receive a ume that 153 3 seconds behind that
of the server. Cther, more complex protocols handle clock synchronization. However,
the TIME service remains popular for three reasons. First, TIME is exurcmely simple
compared to clock synchronization protocols. Sccond, most clients contact servers on a
local area network, where network latency accounts for only a few milliseconds. Third,
except when using programs that vse limestamps 1o contral processing, humans do not
care if the clocks on their computers differ by small amounts.

In cases where more accuracy 1s reguired, it is possible to improve TIME or use an
alternative protocol. The easiest way to improve the accuracy of TIME is to compute
an approximation of network delay between the server and client, and then add that ap-
proximation Lo the time value that the server reports. For example, one way t0 approxi-
mate laency requires the client to compute the lime that elapses during the round tnp
from client 10 server and back. The client assumes equal delay in both directions, and
obtzins an approximation for the trip back by dividing the round trip time in half. It
adds the delay approximation o the time of day that the server returns,

7.15 A UDP Client For The TIME Service

File {5 Ptime.cpp contains ¢ode that implements a UDP client for the TIME ser-

vice.

) Example Client Software Chap. 7

i* UDPtime.cpp - main */

#include <stdlib .l
#include <stdio.h>
#incinde <time b
#include <winsock.h>

#define BUFSIZE Bd
#define WSVERS MAKFEWORD(2, 0}
f¥define WINEPOCH 2208988800 S* Windows epoch, in UOT secs */
¥define MSG "what time is it?w\n"
SOCFET connectlDP{const char *, const char *):
void errexit {const char *, ...);
I,fir __
* main - UDF client for TIME service that prints the resulting time
T o o o o o o R e . T . T B B A A e ——————
*f
int
main{int argc, char *argvl|])
{
char *aost = *localhost"; /* host to use if none supplied </
char *gervice = "time”; /7 default service name *
time £ now; /* 32-Fit integer to hold time */
EOC¥ET = /* socket descriptor L)
int n; F* recv count *f

WSADATA wsadata;

gwitch {argc} {

case 1:
host = "lccalhost*:
break;

case 3:
service = argv[2];
/* FALL THROQUGH */

rase 2:
host = argv([1l];
break:
default:
fprintf{stderr, "usage: UDPtime [host [port]llin®i:
exit({l);
1

R R e e T - T L i LT T T SO A

Spc. 715 A UDP Client For The TIME Sepvice gl

if (WSAStartup (WSVERS, Swsadatali
errexit({"WsiStartup fajiledin"):

8 = comnectUDP{host, service);

fwold) send(s, MSG, strleni(MsG}, 0);

/* Read the time */ |

n = recvis, (char *)&now, sizeof(now), 0});
if (n == SOCKET ERROR)

errexit (*recv failed: reecv{) errcr %d\n", GetLastErrcr{)}:
WSACleanup{) ;

now = noohl { (v _long hnow) ; f* put in host byte order *
now ~= WINE2OCH; [* convert UDT to Windows epoch */
printf("%s", ctime (&now}};
return 0; F* oexit */f

The example code contacts the TIME service by sending a datagram. It then calls
recv o wait for a reply and extract the time value from 1t. Once UDPtime has obtained
the time, it must convert the time inta a form svitable for the local machine. First, it
uses nroki 1o convert the 32-bit value {a long in C) from network standard byte order
into the local host byte order. Second, UDPrime must convert to the machine's local
representation. The example code 15 designed for Windows. Like the Intermet proto-
cols, Windows represents time in 2 32-bit integer and interprets the integer 10 be a count
of seconds. Unlike the Intemnet, however, Windows assumes an epoch date of January
L, 1970. Thus, to convert from the TIME protocol epoch 1o the Windows epoch, the
client must subtract the number of seconds between Japvary 1, 1900 and Fanuary 1,
1970. The example code uses the conversion value 2208988800, Once the time has
been converied to a representation compatible with that of the local machine, UDFPtime
can invoke the library procedure ctimet. which convents the value into a human read-
ahle form for output.

7.16 The ECHO Service

TCPAP standards specify an ECHO service for both UDP and TCP protocols. At
first glance, ECHO services seem almost useless because an ECHO server mereiy re-
turns all the data 1t receives from a client. Despite their simplicity, ECHO services are
important tools that network managers use to test reachability, debug protocol software,
and identify routing problems.

tlnder Windows, ctime will nal compute the correct local time unless the M3-TX05 environment variable
TZ i set to the correct imezone.

oz Example Chentl Softwar: Chap. ?

The TCP ECHO service specifies that a server must accept incoming conneclion
requests, read data from the connection, and wnte the data back over the connection un-
ti] the client terminates the transfer. Meanwhile, the client sends input and then reads it
back.

7.17 A TCP Client For The ECHO Service

File TCPecho.cpp contains a simple client for the ECHO service.

i* TCPecho.cpp - main, TCPecho */

#inciude <stdlib. h-
#include <stdioc.h>
#include <string.h
#include <winsock.h>

vold TCPecha (const char *, const char *):
wodd errexit{const char =, ...);
SOCFET connectTCPi{cconst char *, const char *):

#define LINELEN 128
¥define WSVERS MAKEMORD (2, 0}
J e e e e e

*f
void
main{int arge, char *argwv([])
{
char *host = "localhost"; /* host to use if none supplied */
char *service = "echo"; /* default service name */
WSADATA waadata;

switch (argc) {
case 1:
hogt = "Iocalhost";
breaaik:
case 3;:
service = argv([2];
/* FALL THROUGE */
case 2;
hoat = argv([l];

Sec, 717 A TCP Client For The BCHO Service 3

break;

default:
fprintf {atderr, "usage: TCPecho [host [port}]wat);
exitil);

1

if (WaAStartup (WSVERS, &wsadata) !'=)

errexit ("WSAStartup failedwn®):
TCPecho (host, service):
WSACleanup (] ;
exit{0};

*/
void
TCPecho (const char *host, const char *service)
{
char f [LINELEN+1] ; J/* buffer for one line of text */
SOCKET &; /* socket descriptor xS
int o, ocutchars, inchars; /* characters counts *

g = comnectTCP(host, service};

while {fgets({buf, sizeof({buf}, stdin)) {
Buf [LINELEN] = '"“0'; /* ensure line null-termination */
cutchars = strlenibuf);
ivoid) sendis, buf, ocutchars, 0};

/* read it back */

for (inchars = 0; inchars < outchars; inchars += cc) {
oo = recwvis, &buflinchars], cutchars-inchars. 0}
if {ce == SOCKET_ERROR)

errexit ["socket recv failed: $dwn",
GetlasgtError());
}
fputs(buf, stdout);
|

closesocket (s} ;

54 Example Cliem Software Chap. 7

After opening a connection, TCPecho enters a loop that repeatedly reads one line
of input, sends the line across the TCP coanection to the ECHO server, reads it back
again, and prints it. After all input lines have been sent to the server, received back,
and printed successfully, the client exits.

7.18 A UDP Client For The ECHO Service

File LZDPecho.cpp shows how a client wses UDP 1o access an ECHO sarvice.

/* UDPecho.cpp - main, UDPecho */

#include <stdlib.h-
#include <stdioc.h>

#include <string. h>
#include ewingork . h»

wolid UDPecho({const char *, const char *);
wvolid errexiti{const char *, ...};
SOCKET cormmectlDP (const char *, const char *);

#define LINELEN 128
#define WSVERS MAKEWCORDZ, O}
T

*f
wolid
mainiint argec, char *argv(]}
{
char *hoat = "localhost™;
char *ocarvice = "echo";
WSADATA wsadata;

switch {arge) {
caze 1:
host = "leocalhest”;
break;
cage 3:
service = argvi2);
/* FALL THROMNH */
case Z:
host = argv[l];

Scc, 7.1E A UDP Client For The ECHO Service a5

realk:

default:
fprintf {stderr, “usage: UDBecho [host [portllin®};
exit{l};

}

if (WSAStartup (WSVERS, &wsadatal)
exrrexit { "WiAStartup failedin");

UDPecho (host, service);

WaACleanup () ;

exit (0} ;

void
UDPecho [const char *host, const char *service)
{

char uf [LINELEN+1] ; /* affer for one line oI text */
SOCKET s; /* zocket descriptor */
int nchars: A* read count*/

g8 = connectUDPF(hast, service);

while {fgets({buf, sizeof({buf), stdin)} {
buf [LINELEN] = '50': /* ensure null-terminated */
nchars = strlenfbuf);
{void) serdi=, buf, nchars, 0};:

if {recvis, buf, nchars, 0) < 0}
errexit("recvr failed: arror #3\n",
GetlLastBError(});
fputs (buf, stdout);

The example UDP ECHO client follows the same general algorithm as the TCP
version. It repeatedly reads a line of input, sends it (o the server, reads it back from the
server, and prints it. The biggest difference between the UDP and TCP versions lies in
how they treat data received from the server. Because UDP is datagram-orienled. the
client treats an input line as a unit and places each in a single datagram. Simularly. the
ECHO server receives and remurns complete datagrams. Thus, while the TCP client
reads incoming data as a stream of bytes, the UDP client either receives an entira ling

2) Example Client Sollware Chap. 7

back from the server or receives none of il each cull 1o recv returns the entire line un-
less an error has occurred.

7.19 Summary

Programmers ese the procedural abstraction o keep programs flexibie and easy 1o
maintain, to hide details, and t0 make it easy 10 port programs 10 new compulers. Once
a programumer writes and debugs a procedure, he or she places it in a library where it
can be reused in many programs easily. A library of procedures is especially importani
for programs that use TCP/TP because they ofien operate on multiple compuiers.

This chapter presents an example library of procedures used te create client
sottware. The primary procedures in our hibrary, cornectTCP and connectUDP, make it
easy to allocate and connect a socket to a specified service on a specified host.

The chapter presents examples of a few client applicanons. Each example contains
the code for a complete C program that implements a standard applicanon proiocol:
DAYTIME (used (o obtain and print the time of day in a hueman-readable format),
TIME {used to obtain the time in 32-bit integer form), and ECHO (used to test network
conneclivity). The example code shows how a library of procedures hides many of the
deiails associated with socket allocation and makes it easier 1o write client software.

FOR FURTHER STUDY

The application protocols described here are each part of the TCPAP standard.
Pastel [RFC 867] contains the standard for the DAYTIME protocol, Postel and Harren-
stien [RFC 868] contains the stzndard for the TIME protocol, and Posiel |RFC 862]
contains the standard for the ECHO protocel. Mills {RFC 1303] specifies version 3 of
the Network Time Protocol, NTP.

EXERCISES

7.1 Use program FCPdic 1o contacl servers on several machines. How does each format the
1ime and date?

7.2 The Internet standard fepresents time in a 32-bit integer that gives secends past the epoch.
midnight fanuary 1, 1900. Some systems represent time in a 32-bit integer thar measures
seconds, but use January !, 1970 as the epoch. What is the maximum date and time that
can be represented it each scheme?

7.1 Improve the TIME ctient 5o it checks the date received to verify that it 15 greater than Janu-
ary 1, 1997 {or some other date you know o be in the recent past).

R RS ET e R e DMLY T AR AT WMk] T L RN a1 s heevchbn e 3 1 p el e AT A arde Y BN T . Lr sy =

Excroises a7

7.4 Modify the TIME client so it computes £, the time that elapses bebtween when il sends the
request and when it receives a response. Add one-half £ to the time the server sends.

7.5 Build a TIME client that contacts two TIME servers, and reports the differences between
the fimes they rewrn.

7.6 Explain how deadlock can oceur if a programmer changes the line size in the TCP ECHO
client to be arbitrarily large (e.g., 20,0000

7.7 The ECHO clients presented in this chapter do not verify that the @xt they receive back
from the server matches the 1ext they seat. Modify themn to venify the data receivad,

7.8 The ECHQ clienis presented in this chapter do not count the characters sent or received,
What happens if 2 server incomrectly sends one additional character back that the cliem did
not send?

7.9 The example ECHO clients in this chapier do not use shurdown. Explain how the use of
shitdown can improve client performance.

T.10 Rewrite the code in U Pecho.cpp 50 it tests reachability by generating a message, sending
it, and timing the reply. If the reply does not arrive in 5 seconds, declare the destination
host 10 be unreachable. Be sure to retransmil the request at least once in case the Intermet
happens 1o lose a datagram.

T.11 ERewriic the code in OPecho.cpp so it creites and sends a new message once per second,
checks replies to be sure they match transmissions, and reports only the round teip time for
cach reply without printing the conlents of the message itszlf.

7.12 Explain what happens 10 LDPecho wher the underlying network: duplicates a reguest sent
from the clicnt to the server. duplicates a response senl from the server o the client, loses a
mequest sent from the client to the server, or loses a response sent from the server to the
clienl. Medify the code to handle ¢ach of these problems.

T &S e b TN, Attt - AR - E L R W TR % ke d B T i B ke A by ALl b T e

8

Algorithms And Issues In
Server Software Design

8.1 Introduction

This chapter considers the design of server software. It discusses fundamental 1s-
sues, including: connectionless vs. connection-oriented server access, staieless vs. state-
ful applications, and iteralive vs. concument server implementations. It describex the
advantages of each approach, and gives examples of situations in which the approach is
valid. Later chapters iilusirate the concepts by showing complete server programs that
cach implement one of the basic design ideas.

8.2 The Conceptual Server Algorithm

Conceptually, each server follows a simple algorithm: it creates a socket and binds
the socket 10 the well-known port at which it desires to receive requests. 1t then enters
an infinite loop in which it accepts the next request that arrives from a client, processes
the request, formulates a reply, and sends the reply back to the client.

Unfortunately, this unsophisticated, conceptoal algorithm suffices only for the most
trivial services. To understand why, consider a service like file transfer that requires
substantial ime 1o handle each request. Suppose the first client 1o contact the server re-
guests the transfer of a giam file (e.g., 200 megabytes), while the second client to con-
tact the server requests the transfer of a trivially small file {e.g., 20 bytes). If the server
waits until the first transfer completes before starting the second transfer, the second
client may wait an unreasonablc amount of time for a small transfer. The second user

99

1o Algorithms And Issues In Server Software Design Chap. &

would expect a small request to be handled immediately. Most practical servers do han-
dle small reguests quickly, because they handle more than one request at a tirme.

8.3 Concurrent Vs. iterative Servers

We use the term iterative server 1o describe a server implementation that processes
one request at a time, and the term concurrent server 10 describe a server that handles
muitiple requests at one time. Although most concurent servers achieve apparent con-
currency, we will see that a concurrent implementation may not be required — it depends
on the application protocol. In parnicular, if a server performs small amounts of pro-
cessing refative to the amount of 10 it performs, it may be possible to implement the
server as a single thread that uses asynchronous /O to allow simultaneous use of multi-
ple communication channels. From a client’s perspective, the server appears to com-
municate with multiple clients concurrently. The point 1s:

The term concurrent server refers to whether the server handles multi-
ple requests concurrently, not to whether the underlying implementa-
tion uses multiple concurrent processes or threads.

In general, concurrent servers are more difficult 10 design and baild, and the result-
ing code is more complex and difficult to modify. Maost programmers cheose con-
current server. implementations, however, because iterative servers cause unnecessary
delays in distributed applications and can become a performance bottleneck that affects
many client applications. We can summarjze:

Rrerative server implementations, which are easier to build and urder-
stand, may result in poor performance becanse they make clients wait
for service. Ir contrast, concurrent server implementations, which are
more difficult to design and build, vield better performance.

8.4 Connection-Oriented Vs. Connectionless Access

The issue of conpectivity centers around the transport protocol that a client uses to
access a server. In the TCP/IP protocol suite, TCP provides a cornecrtion-oriented tran-
sport service, while UDP provides a connectionless service. Thus, servers that use TCP
are, by definition, connection-oriented servers, while those that use UDP are connec-
tionless serverst.

Although we apply the terminology to servers, it would be more accurate if we res-
tricted it to application protocols, because the choice between commectionless and
connection-oriented implementations depends on the application protocol. An appilica-
tion protocol designed to use a connection-orieated transport service may perform in-
correctly or inefficiently when using a connectionless transport protocol. To summar-
ize:

+The socket interface docs permit an application to conmect a UDP sccket te a remote endpoirt, but prac-
ticel servers do pot do sa, and UDP is not 2 connection-onented protocol.

I N (TR T e R PR

Sec 84 Connection-Omented Vs, Connectionless Access 101

When considering rhe advantages and disadvantages of various server
implemeniation strategies, the designer must remember that the appii-
cation protocol used may restrict some or aii of the choices.

8.5 Connection-Oriented Servers

The chief advantage of a connection-orienied approach lies in ease of program-
ming. In particular, because the transpont protocol handles packet loss and out-of-order
delivery problems automatically, the server need not worty about them. Instead, a
connection-otiented server manages and uses connections. It accepts an incoming con-
nection from a cliem, and then sends all communication across the connection. It re-
ceives reqguests from the client and sends replies, Finally, the server closes the connec-
tion after it completes the interaction,

While a connection remains open, TCP provides all the needed rehiability. It re-
wransmits lost data, verifies that data arrives withow transmission ervers, and reorders in-
coming packets as necessary. When a client sends a request, TCP either detivers it reli-
ably or informs the client that the connection has been broken. Similarly, the server can
depend on TCP to deliver responses or inform it that the connection has broken.

Connection-otiented servers also have disadvantages. Connection-oriented designs
require a separate socket for each connection, while connectionless designs permit com-
munication with multiple hosts from a single socket. Sockei allocation and the resulting
connection management can be especially imporiani in a server that must run forever
without exhausting resources. For trivial applications, the overhead of the 3-way
handshake used to establish and terminate a connection makes TCP expensive compared
to UDP. The most important disadvantage arises because TCP does not send any pack-
ets across an idle connection. Suppose a client establishes a connection o a server, ex-
changes a request and a response, and then c¢rashes. Because the client has crashed, it
will never send further requesis. However, because the server has already responded to
all requests received so far, it will never send more data 10 the client. The prablem with
such a situation lies in resource use: the server has data structures (including buffer
space) allocated for the connection and these resources cannot be reclaimed. Remember
that a server must be designed 1o run forever. If clients crash repeatedly, the server will
run out of resources (e.g., sockets, buffer space, TCP connections) and cease to operate.

8.6 Connectionless Servers

Connectionless servers also have advantages and disadvantages. While connection-
less servers do not suffer from the problem of resource depletion, they cannot depend
on 1he undetlying transport for reliable delivery. Oue side or the other must take
responsibility for reliable delivery. Usually, clients take responsibility for retransmitting

¥z Algorithms And [ssues In Server Sofiware Design Chap. 8

requests if no responsc arrives. If the server needs 1o divide its response into multiple
data packets, it may need to implement a retransmission mechanism as well.

Achieving reliability through timeout and retransmission can be extremely difficuit.
In fact, it reguires considerable expertise w protocal design. Because TCF/IP operates
in an intemet environment where end-to-end delays change quickly, using fixed values
for timeout does not work. Many programmers learn this lesson the hard way when
they move their applications from local area networks (which have small delays with
little varation) to wider area internets (which have large delays with greater varialion).
To accommodate an internet environment, the retransmission strategy must be adaptive.
Thus, applications must implement a retransmission scheme as complex as the one used
in TCP. As a result, novice programimers are encouraged (o use connection-criented
Iransport.

Because UDP does not supply reliable delivery, connectionless tran-
sport requires the application protocol to provide reliabilin, if need-
ed, through a complex, sophisticated technigue known as adaptive re-
transmission. Adding adaptive retransnrission to an existing applica-
tiont is difficult and requires considerable expertise.

Another censideration in choosing connectionless vs. connection-oriented design
focuses on whether the service requires broadcast or multicast communicaton. Because
TCP offers point-to-pomt communication, it cannot supply broadcast or multicast corn-
munication; such services require UDP. Thus, any server that accepts or respends to
multicast communication must be connectionless. In practice, most sites Uty to avoid
broadcasting whenever possible; none of the standard TCP/IP application protocols
currently require muincast. However, future applications (especially those that deliver
audio or video to a large set of users) may depend more on multicast.

8.7 Failure, Reliability, And Statelessness

As Chapter 2 states, information that a server maintains about the status of ¢engoing
interactions with clients is called state information. Servers that do not keep any state
information are called stateless servers, while those thal maintain state information are
called stateful servers.

The issue of statelessness artses from a need to ensure reliability, especially when
using connectionless transport Remember that in an internet, messages can be duplical-
cd, delayed, last, or delivered out of order. If the transport protocol does net guarantee
reliable delivery, and UDFP does not, the application protocol must be designed 1o en-
sure it. Furthermore, the server implementation must be done carefolly so it dees not
introduce state dependencies (and inefficiencies) unintentionally.

Pl ol TATT I b ke A scwde vl e s e ' - e T Ty T T I

Sec B8 Cptimizing Stateless Sorvers Vo3
8.8 Optimizing Stateless Servers

To understand the subtleties involved in optimization, consider a connectionless
scrver that allows clients to read information from files stored on the server’s computer.
To keep the protocol statezless, the designer requires cach client request to specify a file
name, a position in the file, and the number of bytes 1o read. The most straightforwand
server implementation handles each request independently: it opens the specified file,
secks to the specified position, reads the specified number of bytes, sends the informa-
tion back to the client, and then closes the file.

A clever programmer assigned to write a server observes that: (1) the overhead of
opening and closing files is high, (2} the clients using this server may read only a dozen
hytes in each request, and (3) clients tend to read files sequentially. Furthermore, the
progranmuner knows from. experience that the server can extract data from a buffer in
memory several orders of magnitude faster than it can read data from:a disk. So, to op-
limize server performance, the programmer decides to maintain a small table of file in-
formation as- Figmee 8. | shows,

Table of information
about-flles clients are using.

hash{IF addr, port)

Filename: X
Offset: 512
- Buffer pointer: o

- . Buffer for file X
Filename: Y starting at byte 512
Offset: 1024
Buffer pointar:

Buffer for file ¥

starting at byte 1024

Figure 8.1 A table of information kept to improve server performance. The
server uses the client’s [P address and protocol port number to
find an entry. This optimization inireduces stare information.

104 Algorithms And [ssues In Server Soflware Design Chap. 8§

The programmer uses the client’s IP address and protocol port number as an index
into the able, and arranges for each table entry to contain a pointer to a large buffer of
data frem the file being read. When a client issues its first reguest, the server searches
the table and finds that it has no record of the client. [t allocates a large buffer to hold
data from the file, allocates a new table entry to point to the buffer, opens the specified
file, and reads data intc the buffer. It then copies information out of the buffer when
forming a reply. The next time a request arrives from the same client, the server finds
the matching entry in the table, foilows the pointer to the buffer, and extracts data from
it without opening the file. If a cliemt reads an entire file, the server dealiocates the
buffer and the table entry, making the resources available for use by another client.

Of course, our clever programmer builds the software carefully so that it checks
the offset specified in a reguest to ensure that the requested data resides in the buffer. If
the data is not available, the program must read data from the filke into the buffer. The
server also compares the file specified in a request with the file name in the table entry
to verify that the client is still using the same file as the previous request.

If the clients follow the assumptions listed above and the programmer is careful,
adding large file buffers and a simple table to the server can improve its performance
drarnatically. Furthermore, under the assumptions given, the oplimized version of the
server will perform at least as fast as the original version because the server spends little
time maintaining the data struciures compared to the time required to read from a disk.
Thus, the optimization seems {o improve performance without any penalty.

Adding the proposed table changes the server in a subtle way, however, because it
introduces staie information. Of course, state information chosen carelessly could intro-
duce errors in the way the server responds. For example, if the server used the client's
1P address and protocol port number to find the buffer without checking the file name
of file offset in the request, duplicate or out-of-order requests could cause the server Lo
return incorrect data. But remember we said that the programmer who designed the op-
timized version was clever and programmed the server to check the file name and offset
in each request, just in case the network duplicates or drops a request or the client de-
cides to read from a new file instead of reading sequentially from the old file. Thus, 1t
may seem that the addition of state information does not change the way the server re-
plies. In fact, if the programmer i3 careful, the protocol will remain correct. If so, what
harm can the state information do?

Unfortunately, even a small amount of state information can cause a server o per-
form badly when machines, client programs, or networks fail. To understand why, con-
sider what happens if one of the client programs faiis (i.e., crashes) and must be restan-
ed. Chances are high that the client will ask for an arbitrary protocot port number and
UDP will assign a new protocol port number different from the one assigned for earlier
requests. When the server receives a request from the client, it cannot know that the
client has crashed and restarted, so it allocates a new buffer for the file and a new slot
in the table. Consequently, it cannot know that the old table entry the client was using
should be removed. If the server does not remove old entries, it will eventally run out
of table slots.

B R L TR T N CE T R s Nt e s e Ve e am m reeinddin o s, B e g st vl 1 8 e rada s = e

Sce, 5.8 Optimizing Stateless Servers 105

It may seem that leaving an idle table entry around does not cause any problem as
long as the server chooses an entry to delete when it needs a new one. For example, the
server might choose 1o delete the feast recently used (LRU) entry, much like the LRU
page replacement strategy used in many virtual memory systems. However, in a net-
work where multiple clients access a single server, frequent crashes can cause one client
to dominate the table by filling it with entries that will never be reused. In the worst
case, each request that arrives causes the server to delete an entry and reuse it. If one
client crashes and reboots frequently enough, it can cause the server to remove entries
for ilegitimate clients. Thus, the server expends more effort managing the table and
buffers than it dees answering requestst.

The important point here 15 that:

A programmer must be extremelv careful when optimizing a stateless
server because managing small amowunts of state information can con-
sume resources if chenis crash and reboor frequently or If the under-
tving network duplicates or delays messages.

8.9 Four Basic Types Of Servers

Servers can be iterative or concurrent, and can use connection-oriented transport or
connectionless transport. Figure 8.2 shows that these properties group servers into four
general categories.

iterative iterative
connectionless connection-oriented
concurrent concurrent
connectionless connection-oriented

Figure 8.2 The four general server catepories defined by whether they oifer
concurrency and whether they use connection-oriemed transport.

*Virtual memory systems describe this phenomenon as fhiroshing.

10 Algorithms And lssues In Server Software Design Chap. 8

8.10 Request Processing Time

In general, iterative servers suffice only for the most trivial application protocols
because they make cach client wait in turn. The test of whether an iterative implemen-
tation will suffice focuses on the response ime needed, which can be measured locally
or gtobally.

We define the server’s request processing time 1o be the total tme the server (akes
to handle a single isolated request, and we define the chent's observed response time as
the total delay between the time it sends a request and (he lme the server responds.
Obviously, the response lime observed by a client can never be less than the server's re-
quest processing time. However, if the server has a queue of requests to handle, the ob-
served response time can be much greater than the request processing time.,

Iterative servers handle one request at a time. [f another request arrives while the
server is busy handling an existing request, the system enquenes the new request. Once
the server finishes processing a request, it locks at the gueue o see if it has a new re-
quest to handle, [f N denotes the average length of the request queve, the observed
response me for an arnving request will be approximately /2 + | nmes the server’s
request processing time. Because the observed response lime increases in proportion to
N, most implementations restrict N to a small value (e.g., 5) and expect programmers to
use concurrent servers in cases where a small queue does not suffice.

Another way of looking at the question of whether an iterative server suffices
focuses on the overail lpad the server must handle. A server designed to handle K
cliemts, each sending R requests per second must have a request processing time of less
than 1/KR seconds per request. [f the server cannot handle requests at the required rate.
its queue of waiting requests will evenwally overflow. To avoid overflow in servers
that may have large request processing lmes, a designer should consider concurrent im-
plementabons.

8.11 Iterative Server Algorithms

An iterative server is the easiest to design, program, dcbug, and modify. Thus,
most programmers choose an iterative design whenever iterative execution provides suf-
ficiently fast response for the expected load. Usually. iterative servers work best with
simple services accessed by a connectionless access protocol. As the next sections
show, however, it is possible to use iterative implemenations with both connectipnless
and connection-criented transport.

Hoe %UE2 An lterative, Coonection Oriented Server Algorithan 1r?
8.12 An lterative, Connection-Oriented Server Algorithm

Algorithm 8.1 presents the algorithm lor an terative scrver accessed via the TCP
connection-orignted transport. The sections following the algorithm describe each of
the steps in more detail,

Algorithm 8.1

1. Create a socket and hind to the well-known address for the
service being offered.

2. Place the socket in passive mode, making it ready for use by
a server.

3. Accept the next connection request frem the socket, and ¢ob-
tain a new socket for the connection.

4. Hepeatedly receive a request from the client, formulate a
response, and send a reply back to the client according to the
application protocol.

5. When finished with-a particular client, close the connection
and return to step 3 t¢ accept a new connection.

Algorithm 8.1 An iterative, connection-onented scrver. A single thread han-
dles connections from chients ane al 4 Gme.

8.13 Binding To A Well-Known Address Using INADDR_ANY

A server needs o create a socket and bind it to the weli-known port tor the service
it offers. Like clients, servers use procedure gervervbynome 10 Map a Service name inlo
lhe cortesponding well-known port number. For example, TCPAP defines an ECHO
service. A server Lhat implements ECHO uses getservbyname 10 map the string ““echo’™
lo the assigned port, 7.

Remecmber that when bind specifies a connection endpoint for a socket, it uses
structure sockaddr_in, which containg both an TP address and a protocol port number.
Thus, bind cannot specify a protocol port number for a socket without also specifying
an IP address. Unfortunatety, seiecting a specific IP address at which a server will ac-
cept conncctigns can cause difficulty. For hosis that have a single network connection,
the choice 1s obvious because the host has only one IP address. However, gateways
(ronters) and raulti-homed hosts have multiple TP addresses. IF the server specifies one
particular IP address when binding a socket to a protocol port number, the sockel will
nol accepl communications that clients send (o the machine’s other [P addresses.

104 Alporithms And lssues In Server Software Design Chap. &

To solve the problem, the socket interface defines a special constant,
INADIDIR _ANY, that can be used in place of an IP address. JNADDR_ANY specifies a
wildcard address that matches any of the host’s [P addresses. Using INADDR_ANY
makes it possible to have a single server on a nultihomed host accept incoming com-
munication addressed to any of the host’s [P addresses. To summarize:

When specifving a local endpoint for o socket. servers use
INADDR_ANY, instead of o specific IP address, to allow the socket
o recelve datagrams sent to anv of the machine’s IP addresser.

8.14 Placing The Socket In Passive Mode

A TCP server calls listen to place a socket in passive mode. Listen also takes an
argument that specifies the length of an internal reguest gqueue for the socket. The re-
quest quewe holds the sel of incoming TCP connection requests from chents that kave
each requested a connection with &E Server.

8.15 Accepting Connections And Using Them

A TCP server calls accept to oblain the next incoming connection request (L.e., ex-
tract it from the request gqueuz). The call returns the descriptor of a socket to be used
for the new connection. Once it has accepted a new connection, the server uses recy to
ohtain application protocol requests from the client, and send to send replies back. Fi-
nally, once the server finishes with the connection, it calls closesocket to release the
socket.

8.16 An [terative, Connectionless Server Algorithm

Recall that iterative servers work best for services that have a low request praocess-
ing time. Becaunse connection-oriented transport protocols like TCP have higher over-
head than connectionless transport protocels like UDP, most iterative servers use con-
nectionless transport. Alporithm 8.2 gives the general algonthm for an iterative server
that uses UDP.

Creation of a socket for an iterative, connectionless server proceeds in the same
way as for a connection-onented server. The server’'s socket remains unconnected and
can accept incoming datagrams from any client.

Sce B lA An [terative, Connectionless Server Algonithmn [

Algorithm 8.2

. 1. Create a socket and bhind to the well-known address for the
service being offered.
2. Repeatedly receive the next request from a client, formulate a
response, and send a reply back to the client according to the
application protocal.

Algorithm 8.2 An iteralive, conneclionless server. A single thread handles
requests (datagrams) from clients one at a tirne.

8.17 Forming A Reply Address In A Connectionless Server

The socket interface provides two ways of specifying a remote endpoint. Chapters
o and 7 discuss how clients use connect to specify a server's address. After a client
calls conrnect, it can use send o send data because the internal socket data structure con-
tains (he remote endpoint address as well as the local endpoint address. A connection-
less server cannot nse connect, however, because dimng so restnicts the socket to com-
munication with one specific remole host and port, the server cannot use the socket
again to receive datagrams from arbitrary clients. Thus, a connectionless server uses an
voconnecled sockel. It generales reply addresses explicitly, and uses the sendto sockel
call to specify both a dalagram to be senl and an address to which it should go. Sendto
has the form:

retoode = sendoo (s, message, len, flags, toaddr, toaddrlen);

where s 15 an unconnected socket, message is the address of a buifer that contains the
data to be sent, {en specifies the number of bytes 1a Lhe bulfer, flags specifies debugging
or comtrol options, toaddr 1s a pointer to & seckoddr_in structure that contains the cnd-
point address to which the message should be sent, and roaddrien i1s an integer that
specifies the length of the address structure,

The socker functions provide an easy way for conneclionless servers to obtain the
address of a client: the server obtains the address for a reply from the source address
found in the request. 1n fact, the socket interface provides a call that servers can use to
receive the sender's address aleng with the next datagram that arrives, The call,
recvfrom, takes two arguments that specify two buffers. The system places the arriving
datagram in one btuffer and the sender’'s address in the second buffer. A call to
recvfrom has the formn:

retcode = recvirom(s, Duf, len, flags, from, fromien):

where argument s specifies a socket to use, buf specifies the address of a buffer into

i Alzorithires Aoc 1ssues In Server Software Design {hup. 8

which the system will place the next datagram, flen specifies the space avallable in the
buffer, from specifies a second buffer into which the system will place the source ad-
dress, and fromien specifies the address of an integer. Inutially. fromien specilies the
length of the from buffer. When the call returns, fromien will contain the length of the
source address the system placed in the buffer. To generate a reply, the server uses the
address that recvirom stored in the from butfer when the request amved.

8.18 Concurrent Server Algorithms

The primary reason lor mtroducing concurrency inte a server ariscs from a need to
provide fasler response times to muleiple clients. Concurrency improves responss time
if:

» forming a response requires significant 1/,
» the processing time required varies dramatically among requests, or
» the server executes on a computer with multiple processors.

In the first case, allowing the server to compute responses concurrently means that
it can overlap use of the processor and peripheral devices, even if’ the machine has only
one CPU. While the processor works to compute one respoase, the [/0 devices can he
transferring data into memory that will be needed for other responses. [In the second
case, limeslicing permits a single processor to handle requests that only require smali
amounts of processing without waiting for requests that take longer. In the third casc.
concurrent execution on a computer with multiple processors allows one processor to
compute a response 10 one request while another processor compules a response 10
anpother. In fael, most concurrent servers adapt to the underlying hardware automatical-
ly — given more hardware resources (e.g.. more processors), they perform better.

Concurrent servers achieve high performance by overlupping process-
ing and /0. Thev are usually designed so performunce improves au-
romaticaily Iif the server is rum on hardware thal offers maore
FeSOUrCes.

8.19 Master And Slave Threads

Although it is possible for a server to achieve some concurmrency using a single
thread, most concurrent servers use multiple processes or multiple threads. Threads can
be divided into two types: a single master server thread begins execution mially. The
master thread opens a socket at the well-known port, waits for the nexi request. and
creates a sfave server thread to handle each request. The master server never communi-
cates directly with a client — it passes that responsibility to a slave. Each slave thread
handles communication with one client. After the slave forms a response and sends &
to the client, it exits. The next sections will explain the concept of master and slave in
more detail, and will show how it applies to both connectienless and connection-
oriented concurrent servers.

Sec, 8.20 A Concurrent, Conneclivnicss Server Algonithm 1EL
8.20 A Concurrent, Connectionless Server Algorithm

The most straightforward version of a concurrent, connectionless server [ollows
Algorithm 8.3,

Algorithm 8.3

Master 1. Create a socket and bind 10 the weli-known address
for the service being offered. Leave the socket uncon-
nected.

Master 2. Repeatedly call recvfrom 0 receive the next reguest
from a client, and create a new slave *hread to handie
the response.

Slave 1. Receive a specific request upon creatien as well as
access to the socket.

Stave 2. Form a reply according to the appiication protocol and
send it back to the client using sendio.

Slave 3. Exit {i.e., a slave thread terminates after handling one
request}.

Algorithm 8.3 A concurrent. connectionless server. The master server thiead
accepts incoming requests (datagrams) and creates a slave
thread o handie each.

Programmers should remember that although the cxact cost of creating a process or
thread depends on the operating system and underlying architecture, the operation can
be expensive. [In the case of a connectionless protocol, one must consider carefully
whether the cost of concurrency will be greater than the gain in speed. In fact:

Because thread or process creation is expensive, few connectioniess
servers have concurrent implementations,

8.21 A Concurrent, Connection-Oriented Server Algorithm

Connection-oriented apphication protocols use a connection as the basic paradigm
for communication. They allow a chient o establish a connection 0 a server, communi-
cate over that connection, and then discard it. In most cases, the connection between
client and server handles more than a single request: the protocol allows a client 1o re-
peatedly send requests and receive responses without terminating the connection or
creating a new one, Thus,

B lemTT L gmmmas L et tatme el

11z Algorithms And Issues Tn Server Software Design Chap. ¥

Connection-oriented servers Implement concurrency among conhec-
tions rather than among individual requests.

Algorithm 8.4 specifies the steps that a concurrent server uses for a connection-
oriented protocol.

Algorithm 8.4

Master 1. Create a socket and bind to the well-known address
for the service being ofiered. Leave the socket uncon-
nected.

Master 2. Place the socket in passive mode, making it ready for
use by a server.

Master 3. Repeatedly call accept to receive the next request from
a client, and create a new slave thread to handie the
response.

Slave 1. Receive a connection request (i.e., socket for the con-
nection) upon creakion.

Slave 2. Interact with the client using the connection: receive
request(s) and send back response(s).

Slave 3. Close the connection and exit. The slave thread exits
after handling all requests from one client.

Algorithim B4 A concurrent, connection-oriented server, The master server
thread accepts incoming connections and creates a slave
thread to handle each. ODnce the slave finishes, it closes the
CORNECrion:.

As in the connectionless case, the master server thread never communicates with
the clieni directly. As soon as a new connection arrives, the master creates a slave to
handle that connection. While the slave interacts with the client, the master waits for
other connections.

8.22 Using Separate Programs As Slaves

Algorithm 8.4 shows how a concurrent server creates a new thread for each con-
nection, In Windows, the master server does so by calling the _beginthread system
call. For simple application protocols, a single server program <an contain all the code
needed {or both the master and slave threads. After the call to _bepinthread, the origi-
nal thread loops back te accept the next incoming connection, while the new thread be-
comes the slave and handles the connection. In some cases, however, it may be more

L I e b R L T T e ot TINTD

Sec K22 Using Separete Programs As Slaves 13

convenient to creale a separale slave process and have it execute code from a program
that has been written and compiled independently. Windows can handle such cases
easily because it allows the slave process 1o call CreareProcess. The general idea is:

For many services, a single program can contain code for both the
master and server threads. In cases where an independent program
makes a slave process easier to program or understand, the master
program contains a call to CreateProcess.

8.23 Apparent Concurrency Using A Single Thread

Previous sections discuss concurrent servers implemenied with concument threads
or processes. In some cases, however, it makes sense to use a single thread to handle
client requests concurrently. In paricular, some operating systems make thread creation
so expensive that a server cannot afford to create a new thread for each request or each
connection. [n other systems that only have support for processes, a single process is
required for any server that shares information among all connections.

Ta undesstand the motivation for a server that provides gpparent concurrency with
a single thread, consider the X window system. X allows multiple clients to paint text
and graphics in windows that appear on a bit-mapped display. Each client controls one
window, sending requests that update the contents. Each client aperates independentty,
and may wait many hours before changing the display or may update the display fre-
quently. For example, an application that displays the time by drawing a picture of a
clock might update its display every minute. Meanwhile, an application that displays
the status of a vser’s electronic mail waits vntil new mail amves before it changes the
display.

A server for the X window system integrates information it obtains from clients
into a single, coatiguous section of memory called the display buffer. Because data ar-
riving from all clients contributes to a single, shared dala structure and because systems
that do not support threads do not allow independent processes to share memory, the
server cannol execule as separate processes. Thus, a conflict arises between a desire for
CONCUITeEncy among processes that share memory and a lack of support for such con-
CUITENCY.

Although it may be inefficient or impossibie to achieve the real concurrency
desired, it may be possible to achieve apparent concurrency if the total load of requests
presented to the server does not exceed its capacity to handle them. To do so. the
server operates as a single thread, but uses a function like selecr to provide asynchro-
nous 1/0. Algorithm 8.5 describes the steps a singly-threaded server takes to handle
multiple connections.

114 Algorithms And [ssues In Server Software Design Chap. 8

Algorithm 8.5

1. Create a socket and bind to the well-known port for the ser-
vice. Add socket to the list of those on which /O is possible.

. Use salect to wait for I/O an existing sockets.

. If original socket is ready, use accept to obtain the next con-
nection, and add the new socket to the list of those on which
IO is possible.

4. If some socket other than the original is ready, use recv to ob-
tain the next request, form a response, and use send to send
the response back o the client.

5. Continue processing with step 2 above.

[

Algorithm 85 A concurrent, connection-oniented server implemenled by a
single thread. The server thread waits for the next descriptor
that is ready, which could mean a n2w connection has armived
or that a clicnt has sent & request on an existing Connection,

8.24 When To Use Each Server Type

frerative vs. Concurrent Itcrative servers are easier (o design, implement, and
maintain, but concurrent servers can provide quicker response to requests. Use an 1tera-
tive implementation if request processing time is short and an iterative solution pro-
duces response times that are sufficiently fast for the application.

Reul v, Apparent Concurrency. A singly-threaded server muslt manage muitiple
connections and use asynchronous I/0; a muhithreaded server allows the operating sys-
tem (o provide concurrency automatically. Use a singly-threaded solution if thread
crealion is expensive or not available. Use a multithreaded solution if the server must
share or exchange data among connections. Use a mwltiprocess solution if each slave
should operate in isolation or 10 achicve maximal concurtency (e.g., an a multiproces-
SOr).

Connection-Oriented vs. Conneciionfess: Because connection-oriented access
means using TCP, it implies reliable delivery. Because connectionless transport means
using UDP, it implies unreliable delivery. Only use connectionless transport if the ap-
plication protocol handles reliability (almost none da) or each client accesses its server
on 4 local area network that exhibits extremely low loss and no packet reordering. Use
connection-oriented transport whenever a wide area network separates the client and
server. Never move a connectionless client and server to a wide grea environment
without checking to see if the application protocol handles the reliability problems,

Ser, 8.25 A Sammary of Server Types 13

8.25 A Summary of Server Types

tterative, Connectionless Server

The most common form of connectionless server, used especially for services tha
require a trivial amount of processing for each request. lerative servers arc often state-
less, making them easier to understand and less susceptible 1o failures.

lterative, Connection-Orlented Server

A less commen server type used for services thal require a trivial amount of pro-
cessing for each request, but for which reliable transpon is necessary. Becawse the
overhead associated with establishing and terminating connections can be high, the
average response ime can be non-irivial.

Concurrent, Connectionless Server

An uncommon type in which the server creates a new thread to handle each re-
quest. On many systems, the added cost of thread creation dominates the added effi-
ciency gained from concurrency. To justify concurrency, cither the time required fo
create a new thread must be sigmificanty less than the time required to compute a
response or concurtent requests must be able to use many I/O devices simulianeously.

Concurrent, Gonnection-Oriented Server

The most general tvpe of server because it offers reliable transport (i.e., it can be
used across a wide area internet) as well as the ability 1o handle muitiple requests con-
currently. Two basic implementations exist: the mosl common implementation uscs
concurrent threads or processes to handle connections; a far less commaon implementa-
tion relies on a single thread and asynchronous 1/0 to handie multiple connections.

In a concurrent process implementation, the master server process creates a slave
process to handle each connection. Each process has its own address space and cannot
share data among slave processes. Using multiple processes makes it easy 10 execute a
separately compiled program for each connection msead of writing ail the code in a
single, large server program.

In a concurrent thread implementation, the master thread creates slave threads
within the same process to handle each connection. All of the threads share the same
global address space and can share data.

In the singly-threaded implementation, the setrver thread manages multiple connec-
tions. It achieves apparent concurrency by using asynchranous /0. The thread repeat-
edly waits for I/Q on any of the connections it has open and handles that request. Be-
cause a single thread handles all connections, it can share data among them, as in a
design that uses multiple threads within a process. However, because the server has
only one thread, it cannot handle requesis fasier than an iterative server, even on a Com-
puter that has multiple processors. The application must have a short processing me
for each request (o justify this server implementation.

116) Algorithms And Tssues In Server Software Design Chap. 8

8.26 The Important Problem Of Server Deadlock

Many server implementations share an important flaw: namely, the server can be
subject 1o deadlockt. To understand how deadlock can happen, consider an iterative,
connection-oriented server. Suppose some client application, C, mishehaves. In the
simplest case, assume C makes a connection to a server, but never sends a request. The
server will accept the new connection, and call recv to extract the next request. The
server thread blocks in the call to recv waiting for a request that will never arrive.

Server deadlock can arise in a much more subtle way if clients misbehave by not
consumiing responses. For exampie, assume that a client C makes a connection to a
server, sends il a sequence of requests, but never reads the responses. The server keeps
accepting requests, generating respoenses, and sending them back to the client. At the
server, TCP protocol software transmits the first few bytes over the connection to the
client. Eventually, TCP will fill the client’s receive window and will slop ransmitting
data. If the server application program continues to generate responses, the local buffer
TCF uses to store outgoing data for the connection will become full and the server will
block.

Deadlock arises because a thread blocks when the operating system cannot satisfy
a request. In particular, a call to send will block the calling thread if TCP has no local
buffer space for the data being seat; a cail 1o recv will block the calling thread until
TCP receives data. For concurrent servers, aonly the single slave thread associated with
a particular client blocks if the client fails to send requests or read responses. For a
singly-threaded implementation, however, the server blocks and cannot handle other
connections. The important point is that any server using only one thread can be sub-
ject o deadlock.

A misbehaving client can cause deadlock in a singly-threaded server if
the server uses system functions that can block when communicating
with the clienr. Deadlock is a serious fiability in servers because it
mearns the behavior of one client can preven! the server from handiing
other clienis.

8.27 Alternative Implementations

Chapters ¢ through {2 provide examples of the server algerithms described in this
chapter. Chapters 73 and 74 extend the ideas by discussing two important practical im-
plementation techniques not described here: multiprotocol and multiservice servers.
While both technigues provide interesting advantages for some applications, they have
not been included here becaunse they are best understiood as simple generalizations of the
singly-threaded server algorithm ilustrated in Chapier /2.

+The term deadfcck refers 1o a condition in which a program or sel of programs cannot proceed because
they are blocked waiting for an event thal will never happen. In the case of servers, deadlock means that the
SECVET CEasas W) ANSWEr T sHs.

Sec. §.28 Summary 117

8.28 Summary

Conceptually, a server consists of a simple algorithm that iterates forever, waiting
for the next request from a client, handling the request, and sending a reply. In practice,
however, servers use a variety of implementations (o achieve reliability, flexibility, and
efficiency.

Iterative implementations work well for services that require litile computation,
When using a connection-oriented transport, an iterative server handles one connection
at a time; for connectionless transport, an iterative server handles one reguest at a time.

To achieve efficiency, servers often provide concurrent service by handling multi-
ple requests at the same time. A connection-oriented server provides for concurrency
among connections by creating a thread or process to handle each new connection. A
connectionless server provides concurrercy by creating a new thread or process to han-
dle each new request.

Any server implemented with a single thread that uses synchronous system func-
tions like recv or send can be subject to deadlock. Deadlock can arise in iterative
servers as well as in concurrent servers that use a singly-threaded implementation.
Server deadlock is especially serious because it means a single misbehaving client can
prevent the server from handling requesis for other clients.

FOR FURTHER STUDY

Stevens [1990] describes some of the server algorithms covered in this chapter and
shews implementation deiails.

EXERCISES

8.1 Calculate how long an iterative server takes to transfer a 2K megabyte file if the Internct
has & throuvghput of 2.3 Kbytes per second.

8.2 If 20 clients each send 2 requests per second 10 an iterative server, what is the maxirnum
time that the server can spend on each request?

8.3 How long does it take a concurrent, connection-onented scrver (0 aCCEpt & NEW CONNECTION
and create a new thread to handlz it on the computers to which you have access? Compare
this with the time it takes to create new processes instead of new threads.

B.d4 Write an alporithm for a concurrent, connectionless server that creates one new Lhread for
each request,

8.5 Modify the algorithm in the previous problem o the server creates ome new thread per
client instead of onc new thread per request. How does your algorithm handle thread ter-
mination'?

115

8.6

8.7
8.8
89

8.10

Algorithms And [ssues In Server Software Design Chap 8

Connection-oriented servers provide concumrency among connections. Does il make sense
for a concurrent, connection-criented server to increase concurrency even further by having
the slaves create additional threads for each request? Explain.

Can cliems cause desdlock or disrupt service in concurrent servers? Why or why not?

Look carefully at the select function. How can a singly-threaded server use sefect 10 avuid
deadlock?

The select call takes an argument thal specifies how many IO descriptors it should check.
Explain how the argument makes a singly-threaded server portable across many sysiems.

in Windows, the select call can only be used with sockel descriptors. Explain what prob-
lems this causes for singly-threaded implementations. Hint: consider a singly-threaded TCP
echo clieot that concurrentty handles input from the keyboard, input from a TCP connection
and output to 8 TCP connection.

I* Be B Ay AR R ArErp—— . A ke A et w1 s e 1

9

lterative, Connectionless
Servers (UDP)

9.1 Introduction

The previous chapier discusses many possible server designs, comparing the ad-
vantages and disadvantages of each. This chapter gives an example of an iterative
server impiementation that uses connectionless transport. The example server (ollows
Algonthm 8.2+, Later chapters continue the discussion by providing example imple-
mentations of other server algorithms.

9.2 Creating A Passive Socket

The steps required 0 create a passive socket are similar to those required 1w create
an active socket. They involve many details. and require the program to look up a ser-
vice name and to obtain a well-knewn protocol port number.

To help simplify server code, programmers should use procadures to hide the de-
Lails of socket allocation! As in the client examples, our example implementations use
two high-level procedures, passivellDP und passiveTCP, that allocate a passive sockel
and bind it to the server’s well-known port. Each server invokes one of these pro-
cedures, with the choice dependent on whether the server uses connectionless or
conncction-oriented (ransport. This chapter considers passivel/DP; (he next chapter
shows the code for passiveTCP. Because the two procedures have many details in com-
mon, they both call the low-level procedure, passivesock to perform the work.

t5ee page LU for & description of Algenthm 8.2,

19

[20 Iterative, Conneclionless Servers (LD Chap. 9

A connectionless server calls function passivel/DP to create a socket for the ser-
vice that it ofters. An arbitrary applicalion program can use passivel/DP to create a
sockei for services. PassiveUDFP calls passivesock te create a connectioniess socket,
and then returns the socket descriptor to its caller.

To make it easy to test citent and server software, passivesock relocates all port
values by adding the contents of global integer portbase. The importance of using porr-
base will become clearer 1n later chapters. However, the basic idea is fairly easy to
understand:

i a new version of a client-server application uses the same protocol
port numbers as an existing, preduction version, ihe new software
cannot be tested while the production version continies o execute.

Using porthase allows a programmer to compile a modified version of a server, and
then to have the server look up the standard prolocol port and compute a final port
number as a functioa of the standard pon and the value of poribase. If the programmer
setects a unique value of portbase for each particular version of a client-server pair, the
ports used by the new version will not conflict with the ports used by the production
version. [n Fact, using porthase makes it possible to test multipie versions of a client-
server pair at the same time without interference because each pair communicates in-
dependently of other pairs.

/* passUDP.cpp - paasivelDP */
#include <winsock.h>

SOCKET passivesock(const char *, const char *, int};

*
SOCEET
passivelUDP (const char *service)
{
return passivesock{service, “udp", 0);

Procedure passivesock contains the socket allocation details, including the use of
portbase. It 1akes three arguments. The first argument specifies the name of a service,
the second specifies the name of the protocol, and the third (used only for TCP sockets)
specifies the desired length of the connection request queue. Passivesock allocates ei-

Sec, 9.2 Crealing A Passive Sockel 121

ther a datagram or stream socket, binds the socket to the well-known port for the see-
vice, and returns the socket descriptor to its caller.

Recall that when a server binds a socket to a well-known por, it must specify the
address using structure seckaddr_in, which inclodes an IP address as well as a protocol
port number. Passivesock uses the constant INADDR _ANY instead of a specific local IP
address, enabling it to work either on hosts that have a single IP address or on gateways
(routers) and multi-homed hosts that have multiple I[P addresses. Using INADDR_ANY
means that the server will receive communication addressed to its well-knoewn port at
any of the machine’s IP addresses.

/* pagsssock.cpp - passivesock */

¥include <stdlib. h>
¥include <string.h=
¥include <winsock. h=>

vold errexit{const char *, ...);
u_sghort porthase = J; /* port base, for test servers *
‘}'i __

passivesock (const cher *service, const char *transport, int gqlen)

{
struct servent *pse; /* pointer to service information entry */
struct protoent *ppe; /* pointer to protocol information entry*/

struct sockaddr _in sin; /* an Internet endpoint address *y
SOCEKET 8} /* socket descriptor *f
int type; f* gocket type {SOCK _STREAM, S0CK _DERAM) *fF

memset (E8in, O, sizeofisin});
gin.sgin_family = AF_ INET:
gin.sin addr.s_addr = IMADDE_ANY;

/¥ Map service name to port number */
if { pse = getserviwname (service, transport))
sin.sin port = htons(ntohs({u_short)pse-=s_port}
+ portbase) ;
else if { {=min.sin port = htons{{u_short)atol (service}l} == 0 }
errexiti{"can't get “"%¥s\" service entry\n", service:

122 Tterative, Connectionless Servers (DDP) Chap. ¥

/* Map protocol name to protocol namber */
if { (ppe = getprotobyname {transport}) == 0]
errexit("can't get 4 "¥s\" protocol entry\n®, transport);
/* Use protocol to choose a socket type */
if (strowpitransport, "udp"} == 04}
type = SOCK_DGEAM:
alse
tvpe = S0OCE_STREAM:

/* Allocate a socket */
5 = socket (PF_INET. type, ppe-»p_proto};
if (g == INVALID SOCEET)
errexit {"can't create gocket; #divr", GetlLastError{)}:

/* Bind the socket */
if (bind{s, {(struct sockaddr *}&sin, 2izecf(sin)) == SOCKET_ERROR)
errexit("can’'t bind to %2 port: %a\n", service,
ZetLastError(}};
if (type == 50CK STREAM k& listen(s, glen) == SOCKET_ERROR)
errexit{"can't listen on %s port: %d\n". service,
GetlastError{}};
return s;

9.3 Thread Structure

Figure 9.1 illustrates the simple thread structure used for an ilerative, connection-
less server.

o bans Pa b e AR R HER bk .

Sec. 9.3 Thread Steuclure [23

server
server
- Application
thread
|
socket at wefl-known port operating
used for all communication - svsiem

Figure 9.1 The thread structure for an iterative, connectioniess server. A
singly-threadeded server communicates with many clients using
one socket.

The singly-lhreaded server exccutes forever. 1t uses a single passive sockel that
has been bound to the well-known protocol port for the service it offers. The server ob-
tains a request from the socket, computes a response, and sends a reply back to the
client using the same socket. The server uses the source address in the request as the
destination address in the reply.

9.4 An Exampie TIME Server

An exampie will illustrate how a connectionless server uses the socket allocation
procedures described above. Recall from Chapter 7 that clients use the TIME service 10
obtain the current tlimne of day from a server on another system. Because TIME requires
little computation, an iterative server implementation works well. File UDPrimed cpp
contaans the code for an iterative, connectionless TIME server,

124 . Iterative, Connectionless Servers (UDF) Chap. ¢
/™ UDPtimed.cpp - main */

#Hinelude <cime h>
#include <winsock. -

SOCKET pagsivelDP{ccnst char *);
weaid arrexit(const char =, ...);

#define WINEPOCH 2208988800 /* Windows epoch, 1in UCT secs */
¥lefine WSVERS MAKEWORD (2, 0)
T

mainf{int arge, char *argv([])
{

gtruct sockaddr_in fsin; /* rhe from address of a client */
char *gervice = "time"; /* service name or port nurber v/
char aE[2048]; /* *imput® buffer; any size > 1 packet */
SOCKET =ock; /* server socket >/
Time_t now; f/* currenmt time *y
int glen; /* from—address length *)

WSADATA wsadata;

switch {arge) {

case 1:
brealk;

case 2:
service = argv([l}:
break;

default:

errexit { "usage: UDPtimed [port]in®});

if (WSAStartup (WSVERS, &wsadata))
errexit { "WSAStartup failedin");
sock = passiveUDP(service);

while (1} {
alen = sizeof{fsin);
if (recvirom{sock, buf, =sizeof(buf), 0,
{atruct sockaddr *)&fsin, &alen} == SCCKET _ERROR)

= owEmmLes s B I Tt T L R T e T oy Py T A R T T

Sec. 1.4 Amn Example TIME Server 125

errexici{"recviframn: error 3w, GeilastErrori{l):;
{(void} time(&now);
now = htonl((v _long) (now + WINEFOCH)) ;
fvoid) sendtelscck, (char *)&now, sizeofi{inow), O,
fgtruct sockaddr *)&fsin, sizeof{fsin)]:

return 1; f* not reached */

Like any server, the U/DPtimed thread must execute forever. Thus, the main body
of code consists of an infinite loop that acceplts a request, computes the current time,
and sends a reply back to the client that sent the request.

The code conrains several details. After parsing its arguments, UDPrimed calls
passiveUVDP to create a passive sacket for the TIME service. It then enters the infiniie
lcop. The TIME protocol specifies that a client can send an arbitrary datagram to
trigger a reply. The datagram can be of any length and can contain any values because
the server does not interpret its contents. The example implementation uses recvfrom o
read the next datagram. Recvfrom places the incoming datagram in buffer buf. and
places the endpoint address of the client that sent the datagram in structure fsin.

I/DPtimed uses the Windows functicn time to obtain the current time. Recall from
Chapter 7 that Windows uses a 32-bit integer tc represent time, measuring from the
epoch of midnight, January 1, §970. After obtaining the time from Windows, UDF-
titned must convert it to a value measvred from the Internet epoch and place the resuit
in network byte order. To perform Lthe conversion, it adds constant WINEPOCH, which
is defined to have the value 2208988800, the difference in seconds between the Internct
epoch and the Windows epoch. It then calls function Aron! o convert the result 1o nel-
work byte order. Finally, UDPiimed calls sendto 10 transmit the resuit back to the
clicat. Sendto uses the endpoint address in structure fsin as the destination address {i.c.,
it uses the address of the client that sent the datagram).

9.5 Summary

Far simple services, where a server does little computation for each request, an
iterative implementation works well. This chapter presented an example of an iterative
server far the TIME service that uses UDP for connectionless access. The example il-
lustrates how procedures hide the details of socket aflocation and make the server code
simpler and easier (o understand.

i 26 Iterative, Conrnectionless Servers (LUIDEY Chap. 4

FOR FURTHER STUDY

Harrenstien: [RFC 738] specifies the TIME protocel. Mills [RFC 13031 describes
the Network Time Protocol (NTP); Mills [September 1991 summarizes issues related
to using NTP in practical netwoerks, and Mills [REC 1361] discusses the use of NTP for
clock synchronization. Marzullo and Owicki [July 1985] also discusses how to main-
Lain ctocks in a distributed environment.

EXERCISES

9.1 Instrument UDPtimed to determine how much time it expends processing each request. [f
yvou have access to & network analyzer, also measure the time that elapses between the re-
guest and response packets,

9.2 Suppose UDPrimed inadvertently clobbered the client's address berween the time it re-
ceived a request and sent a response (i.e., the server accidentally assigned frin a random
value before using it in the call 1o sendto). What would happen? Why?

9.3 Condugt an experiment to determine what happens if N clients all send requests to L/DP-
timed simultanecusly. Vary both N, the mumber of senders, and 5, the size of the da-
tagrams they send. Explain why the server fails to respond to all requests.

9.4 The example code in UDPrimed.cpp specifies a buffer size of 2048 when it calls recvfrom.
What happens if it specifies a buffer size of 17

9.5 Compute the difference between the Windows time epoch and the Internet time epoch.
Remember o account for leap years. Does the value you compute agree with the constant
WINEPOCH defined in UDFPtimed? If not, explain. {Hict: read about leap seconds.)

9.6 As a security check, the systern manager asks you o medify UDPiimed 50 it keeps a wril-
ten iog of all clients who access the service. Modify the code to print a line on the console
whenever a reguest arrives. Explain how logging can affect the service.

9.7 If you have access to a pair of machines connected by a wide-area intermel, use the UDP-
time client in Chapter 7 and the {/DPtimed server in this chapter 10 see if your internet
drops or duplicates packels.

an Lt I AR L T e MYRTHER W o sem LIRS = o | ere L g sar ce. TR K. he g MTR IR R s e

10

Iterative, Connection-
Oriented Servers (TCP)

10.1 Introduction

The previous chapier provides an example of an iterative server that uses UDP for
connectionless transport, This chapier shows how an iterative server can use TCP for
connection-oriented ransport. The example server follows Algorithm B.1+.

10.2 Allocating A Passive TCP Socket

Chapler ¥ mentions that a connection-oriented server uses function passiveTCP to
allocate a stream socket and bind it to the weli-known port for the service being offered.
PassiveTCP takes two arguments. The first argument, a character stoing, specifies the
name or number of a service, and the second specities the desired length of the incom-
ing connection request quene. If the first argoment conlains a name, it must match one
of the entnies in the service databasz accessed by library function gerservbyname. If the
first argument specifies a port number, it must represeni the number as a text string
{e.p., "79")

TSee page 107 for & description of Algorithm 5.1,

128 Tteraive, Cropection-Orneated Servers {TCP} Chap. 10
/% passTCP cpp — passiveTCP */
#include <winscck.h>

SOCKET passivesccki{cconst char *, const char *, int);

S0V ET .
passiveTCPiconst char *service, int glien)
{
retuwrn passivesock{service, "tcop*, len):
:

10.3 A Server For The DAYTIME Service

Recall from Chapter 7 that the DAYTIME service allows a user on one machine to
obtain the current date and time of day from another machine. Because the DAYTIME
service 1s intended for humans, it specifies that the server must format the date in an
easily readable string of ASCII text when it sends a reply. Thus, the client can display
the response for a user exactly as it is received.

Chapter 7 shows how a client uses TCP to contact a DAYTIME server and to
disptay the text that the server sends back. Because obtaining and formatting a date re-
quires little processing and one expects little demand for the service, a DAYTIME
server need not be optimized for speed. If additional clients attempt to make connection
requests while the server 1s busy handling a request, the protocol software enqueves the
additional requests. Thus, an iterative implementation saffices,

10.4 Thread Structure

As Figure 10.1 shows, an iterative, connection-oriented server uses a single thread.
The thread iterates forever, using one socket 1o handle incoming requests and a second,
ternporary socket to handle communtcation with a client.

R R L T R L R RN RN L R IR e e e T e

Sec, 1G4 Thread Strocture 120

Server
Server
- dpplication

thread

J | - .

socket used for socket used for operaling
cQannaction an individual — system
requests conneaction

Figure 10.1 The thread structure of an iterative. connection-oriented server.
The server waits at the well-known port for a connection, and
then communicates with the client over that connection.

A server that uses connection-priented transport iterates on connections: it waits at the
well-known port for the next connection t¢ amive from a client, accepts the connection,
handles it, closes the connection, and then waits again, The DAYTIME service makes
the implementation especially simple because the server does not need to receive an cx-
plicit request from the client — it uses the presence of an inceming connection to oigger
a response. Because the cilient dees not send an explicit request, the server does not re-
ceive data from the connection.

10.5 An Example DAYTIME Server

File TCPdid. cpp contains example code for an iterative, connection-ortented DAY -
TIME server.

130 Icrative, Chonnection-Onented Scrvers (TCP)

ST TCPRPAtG. .o - madn, TCPdaytimed */

¥include <stdlib.h
#include <wingock,h>
#include =time_hs

void errexit{const char *, ...);
weid TCPdayt imed { SOCEET) ;
SOCKET passiveTCP({const char *, int);

#define QLEN 5
#define WSVERS WMAKEWORIMZ, 0)

*f

void

main{int arge, char *argv([i}

{
struct sockaddr_in fsin:
char *service = "daytime";
SOCFET msock, saock;
int alen;

WSATATE wsadatar

switch {arge) §

cage 1:
‘ oreak;
case 23
service = argv([l];
break;
default:

Chap. [{}

f/* the from address of a client */
/* service name or port nunber
/* master & zlave sockets

/* from-address length

errexit ("usage: TCPdaytimed [port]sn*);

if (WSAStartup{WSVERS, &kwsadata) != 0}
arrevit {"WsasStartup failecwn"):

maock = passiveTCF{service, QLEN):

while (1! {

alen = sizecf{struct sockaddr};

ssock = accept (msock,

Tt NG G el W R HLG A ae ek ML R e [a L -

{struct sockaddr *)kfsin,

kalen} ;

*/
*/
*

Sec. 5 An Example DAY TIME Server 131

if {ssocck == INVALID SOCKET}
erraxXit{"accept failed: error mumber %dwn",
GetlastError());
TCPdaytimed (ssock) ;
(void} closesocket(ssock)

*/

volid

TCPdaytimed (SOCKET fd)

i
char *pts; /* polinter t£o time string *
time t now; /¥ murrent time *

{void) time{&now):
pts = ctime{&know)
{void) sendi{fd, pts, strieni{pts), 0);

Like the iterative, connectionless server described in the previous chapter, an itera-
tive, connection-oriented server must run forever. After creating a socket that listens at
the well-known porl, the server enters an infinite Joop in which it accepts and handles
connections.

The code for the server is fairly shart because the call to passiveTCP hides the de-
tails of socket allocation and binding. The call te passiveFCP creates a master socket
associated with the well-known port for the DAYTIME service. The second argnment
specifies that the master socket will have a request queue length of QLEN, allowing the
system to enqueue connection requests that ammve from QLEN additional clients while
the server is busy replying to a request from a given clieat.

After creating the master socket, the server’s main program enters an infinite loop.
During each iteration of the loop, the server calls accept to obtain the next connection
request from the master socket. To prevent the server from consuming resources while
waiting for 2 connection from a client, the call to accepr blocks the server until a con-
nection arrives. When a connection request arrives, the TCP protocol software engages
in a 3-way handshake to establish a connection. Once the handshake completes and the
systern allocatles a new socket for the incoming connection, the call to accept returns the
descriptor of the new socket, allowing the server 10 continue execuiion. If ne connec-
tion arrives, the server thread remains blocked forever in the accept call.

e ek R o ATAE 4 Pt e

132 Iterative, Connection-Oniented Servers (TCE)} Chap. 10U

Each time a new connection arrives, the server calls procedure TCFPdaviimed 1o
handle it. The code in TCPdayrimed centers around calls to the Windows functions
time and ctime. Procedure time returns a 32-bit integer that gives the cumrent fime in
seconds since the Windows epoch. The C library function ctime takes an integer argu-
ment that specifies a time in seconds since the Windows epoch, and returns the address
of an ASCII string that contains the time and date formaited so a human can understand
it. Once the server obtains the time and date in an ASCII string, it calis send to send
the string back to the client over the TCP connection.

Once the call to TCPdaytimed returns, the main program continues executing the
loap, and encounters the gecepr call again. The accepr call blocks the server unil
another request arrives.

10.6 Closing Connections

After it has written the response, the call to procedure TCPdaytimed remams. Once
the call returns, the main program explicitly closes the socket on which the connection
ammved.

Calling closesecket requests a graceful shutdown. In particular, TCP guarantees
that all daia will be reliably delivered to the client and acknowledged before it ter-
minates the connection. Thus, when calling closesockes, a programmer does not need (o
worry about data being Jost.

Of course, TCP's definition of graceful shutdown means that the call to closesocket
may not return instantly — the call wiil block until TCP on the server receives a reply
from TCP on the client. Once the client acknowledges both the receipt of all data and
the request to termunate the connection, the closesocket call returns.

10.7 Connection Termination And Server Vulnerabillity

The application protocol determines how a server manages TCP connections. [n
particular, the application protocol usually dictates the choice of the termination stra-
tegy. For example, arranging for the server to close connections works well for the
DAYTIME protocol because the server knows when it has finished sending data. Ap-
plications that have more complex client-server interactions cannot choose to have the
server close a connection immediately after processing one request because they must
wail to see if the client chooses to send additional request messages. For example, con-
sider an ECHO server. The client controls server processing because it determines the
amount of data wx be echoed. Because the server must process arbitrary amounts of
data, it cannot close the connection after receiving and sending data once. Thus, the
client must signal completion so the server knows when 10 terminate the connection.

Allowing a client to conirol connectiont duration can be dangerous because 1t al-
lows clients 1o control resource use. In particular, misbehaving clients can cavse the
server 1o consume resources like sockets and TCP connections. It may seem that cor

s A a1 caw B . et W Ll ek,] MLEETRMT SRR 1 vy

Sce. 107 Conneclion Terminaton And Server Yulnerabilicy 133

example server will never run out of resources because it explicitly closes connections.
Even our simple connection termination strategy can be vulnerable to misbehaving
clients. To understand why, recall that TCP defines a connection timeout period of 2
times the maximum segment hifetime (2*MSL) after a connection closes. During the
timeout, TCP keeps a record of the connection so it can correctly reject any old packets
that may have heen delayed. Thus, if clients make repeated requests rapadly, they can
use up resources at the server. Although a programmer may have little control over the
protocol, they should understand how protocols can make distributed software vulner-
able 1o network failures and try to avoid such vulnerabilites when designing servers.

10.8 Summary

An iterative, connection-oriented server iterates once per connection. Until a con-
nection request arrives from a client, the server remains blocked in a call w0 accepr.
Once the underlying protocol software establishes the new connection and creates a new
socket, the call to aceept returns the socket descriptor and allows the server to continuc
gxecuron.

Recall from Chapter 7 that the DAYTIME protocol uses the presence of a connec-
tion o trigger a response from the server. The client does not need to send a request
because the server responds as soon as it detects a new connection. To form a response,
the server obtains the current time from the operating systern, formats the information
into a string suitable for humans to read, and then sends the response back 1o the cliem.
The example server closes the socket that corresponds to an individual connection after
sending a response. The strategy of closing the connection immediately works because
the DAYTIME service only allows one respense per connection. Servers that aliow
multiple requests to arrive over a single connection must wait for the client to close the
connection.

FOR FURTHER STUDY

Postel |RFC 867} describes the DAYTIME protocol used in this chapter.

EXERCISES

10.1 [speciul privilege needed to run a DAYTIME server on your local system? [s special
privilege needed to run 2 DAYTIME clienl? Explain.

10.2 What is the chief advantage of using the presence of a connection 10 tNgger a response
from a sarver? The chief disadvantage?

103

10.4

10.5

10.6

1.7

tterative. Connection-Oriented Servers {TCE) Chap. 10

Some DAY TIME servers temminate the ling of text by a combination of two characters:
varriage returm (CR) and finefeed (LF). Modify the example server to send CR-FF a
the end of the line inuead of sending enly L+ How docs the standard specify lines
should be terminated?

TCP software usually allocatzs a fixed-size queue for additional connection requests that
arrive while a server is busy, and allows the server 10 change Lthe queue size using fisren.
How [arge is the queue that your local TCP sofiware provides? How large can the
server make the queue with fsten?

Modify the example server code in TCPdid.cpp so 1t does not explicitly close the con-
nection after writing a responsc. Does it sill work correctly? Why or why not?
Compare a connection-oriented server thal explicitly closes each connection after send-
ing a response to ong that allows the client o hold a connection arbitrarily tong before
closing the connecton. Whas are the advantages and disadvantages of cach approach?

Assume that TCF uses a connection timeout of 4 minutes (i.e., keeps information for 4
minutes after a connection closes). I a DAYTIME scrver runs on a systemn that has i(0)
slots for TCP comnection information, what is the maximum rate at which the server can
handie requests without running out of slots?

R B s P R ST M E LR SRR R STLAROOERRE Cr . . s e s

11

Concurrent, Connection-
Oriented Servers (TCP)

11.1 Introduction

The previcus chapter 1llustrates how an iterative server uses i conneclion-oriented
transport pretocol. This chapter gives an example of @ concurrent server that uses a
connection-oriented ransport. The cxample server follows Algorithm 3.47. the design
that programmers use most often when they build concurrent TCP servers. The server
relies on the operating system’s support for concurrent processing to achieve concurren-
cy when computing responses. The systemn marager arranges to have the master sgrver
thread stant automatically when the system boots. The master server runs forever wail-
ing for new connection requests 1o arrive from clients. The master creates a new slave
thread to handle each new connection, and allows each slave to handle all communica-
ton with its client.

Later chapters consider altermative implementations of concurrent servers, and
show how to extend the basic ideas presented here.

11.2 Concurrent ECHO

Consider the ECHO service described in Chapter 7. A client opens a connection to
a server, and then repeatedly sends data across the connection and receives the *‘echo’’
the server returns. The ECHO server responds to each client. It accepts a connection,
recelves dala from the connection, and then sends back the same data.

T5ee puge 112 for a descriplion of Alporithm 8.4

135

B e L o ST LT PR R RPe RSP

136 Concument, Connection-Criented Servers {TCP) Chap. L}

To allow a client to send arbitrary amounts of data, the server does not receive the
entire input before it sends a response. Instead, it altemnates between receiving and
sending. When a new connection arrives, the server enters a loop. On each tteration of
the toop, the server first receives data from the connection and then sends the data back.
The server continues iterating until it encounters an end-of-file condition, at which time
it closes the connection.

11.3 Rerative Vs. Concurrent Implementations

An iteranive implementation of an ECHO server can perform poorly because it re-
quires a given client to wait while it handles all prior connection requests. If a client
chooses to send large amounts of data (e.g., many megabytes), an iterative server will
delay all other clients until it can satisfy the request,

A concumrent implementation of an ECHO server avoids long delays because it
does not allow a single client to hold all resources. Instead, a concutrent server allows
communication with many clienis to proceed simultaneously. Thus, from a chent’s
paint of view, a concurrent server offers better observed response time than an iterative
server,

11.4 Thread Structure

Figure 11.1 illustrates the thread structure of a concurrent, connection-oriented
server. As the figure shows, the master server thread does not communicate with
clients directly. Instead, it merely waits at the well-known port for the next connection
request. Once a request has amrived, the system returns the socket descriptor of the new
socket to use for that connection. The master server thread creates a slave thread to
handle the connection, and atlows the slave to operate concurrently. At any time, the
server consists of one master thread and zero or more slave threads.

B R Ll B e T R P L T T T P R P Sy g r e s W= OC I N

Sec. 114 Thread Stnxcture 137

B Server
S - application
o threads
] L | J| [.
socket for sockets for -— Speraing
connaction individual Svstem
reguests connections

Figure 11.1 The ihread structure of a concurrent, conneclion-oriented server.
A master server thread accepts cach incoming connection, and
creates a slave thread to handle it

To aveid using CPU resources while it waits for connections, the master thread
uses a blocking call of wcecept to obtain the next connection from the well-known pori.
Thus, like the iterative server in Chapter 10, the master server thread in a concurrent
server spends most of its time blocked in a call to eccepr. When a connecilion raquest
arrives, the call to accepr retumns, allowing the master thread to execute. The master
creaes a slave thread to handle the request, and reissues the call to accept. The call
blocks the master thread again until another connaction request arrives.

11.5 An Example Concurrent ECHO Server

File TCPechod.cpp contains the code for an ECHO server that uses concurmrent
threads to provide concurrent service to multiple clients.

133

Concurrent, Connecrion-Oriznied Servers (TCE)y Chap. 11

f* TCPeched.cpp - main, TCPechod */

#include =stdio.h=
¥include swinsock. h>
#include <process.h>

*J

*S

#define QLEN ' 5 /* maximum cornection queue length
#define STESIZE 16536

#define BUFSIZE L0096

#detfine WSVERS MAREWNCRD (2, O)

SOCFET msock, =ssock; f* master & =lave server =ockets

int TCPechod (SOUFET)

woid errexit {const char *, ...);

BOCFET passiveTCP{const char *, int});

I,."* __

int

mainiint args, char *argvi]l}

{

char *gexrvice = "echo"; /* sarvice name or port number
struct sockaddr in fsin; /* the address of a client
int alen; {* langth of client's address

WSADATA waadata;

switch {arge) {

CASS g
break;

case p
service = argv([l];:
brealk;

deafault:

errexit ("usage: TCPeched [port]in"!:

if [(WSAStartup(WSVERS, &wsadatal != 0}
errexit {"WESAsStaxrtup falledin");
msock = passiveTCP{zervice, QLEN);

while {1} {

o Seoet s b mme s sa ot n v TR AR O ok cd e e .

*/
xr
*

Sec. 115 An Fxample Concerrent ECHO Server 139

alen = gizecf{fsin);
ssock = accept {mgock, (struct sockaddr *)&fsin, iLalen):
if {smock == INVALID_SOCKET)
erraxit {"accept; error mumber\n®", GetLastError{));
if {(_beginthread({void (*}{(void *))TCPechod, STKSIZE,
(void *)asock) < ¢) |
errexit{*_beginthread: %s\n", strexrror{errno));

return 1; /* not reached */

*/
int
TCPechod (SOCKET £d4)

{
char kuf [BUFSIZE] ;

int ooy

cc = recw{fd, uf, sizenf buf, 0);

while {occ !'= SOCKET ERROR && cc > 0) {
if {send(fd, ImE., cc,) == SOCKET ERRCR) {

fprintfistdery, Yeoh send error: ¥di\n”.
GetLastErrar());
kreak;
1
oo = recv{fd, buf, zizeof uf, 0);
1
if {cc == SOCKET ERROR)
fprintf (stderr, "echo recv errcr: %d\n", GetiastErrcrill:;
closesockat (£4) ;
return 0;

As the example shows, the calls that control concurrency occupy only a small por-
tuon of the code. A master thread begins execuring at main. Afler it checks its argu-
ments, the master thread calls passiveTCP to create a passive socket for the well-known
protocol port. It then enters an infinite loop.

140 Concurrent, Conrection-Onented Servers (TCP) Chap. 11

Diuring each iteration of the loop, the master thread calls accept to wait for a con-
nection request from a client. As in the iterative server, the call blocks until a request
arrives. After the underlying TCP protocol software receives a connection request, the
sysiem creates a socket for the new connection, and the call 10 accept returns the socket
descriptor.

After accepr 1eturns, the master thread creates a slave thread to handle the connec-
tion. To do so, the master cails _beginthread to run procedure 7CPechod as a separate
thread. The newly created slave thread begins execution in procedure TCPechod and
handles the connection. The master thread continues executing the infinite loop. The
next iteration of the loop will wail at the accepr call for another new connection o ar-
rive. Note that both the original and new threads have access to the same open sockets
after the call to _beginthread. and that either one closing a socket deatlocates that sock-
et for both of them. Thus, when the slave thread calls closesocker for the new connec-
tion, the socket for that connection disappears from the master thread.

The slave runs procedure TCPechod, which provides the ECHO service for one
connection. Procedure TCPechod consists of a loop that repeatedly calls recy to obtain
data from the connecticn and then calls send to send the same data back over the con-
nectton. Nommally, recv returns the count of bytes read. It retums the walne
SOCKET _ERROR if an error occurs {e.g., the network connection between the client
and server breaks) or zero if it encounters an end-of-file condition (ie., no more data
can be extracted from the socket). Similarly, send normally returns the count of charac-
ters writen, but returns the value SOCKET ERROR if an ermor occurs. The slave
checks the return code, and prints an error message if an error occurs.

After performing the ECHO service or if an error occurs, the slave closes the sock-
et it was using and retums. When a thread retarns from its initial procedure, the thread
ceases execution and the system releases the memory that the thread was using. Thus,
after the slave returns, the memory it was using becomes available for another thread.

11.6 Summary

Connection-oriented servers achieve concurrency by allowing multiple chents to
communicate with the server. The straightforward implementation in this chapter uses
the _beginthread function to create a new slave thread each time a connection arrives.
The master thread never interacts with any clients; it merely accepts connections and
creates a slave to handle each of them. '

Each slave thread begins execution in the TCPechod procedure immediaiely fol-
lowing the call to _beginthread. A connection o a client terminates when the slave
closes the connection’s socket.

B I T

Far Further Sludy 141

FOR FURTHER STUDY

Postel [RFC 862 defines the ECHO protocol used in the example TCP server.

EXERCISES

11.1 Instrument the server so it keeps a log of the time at which it creates each slave thread
and the time at which the slave terminates. How many clients must you start before you
can find any overlap between the slave threads?

11.2 How many clients can access the example concurrent server simultanecusly before any
client must be denied service? How many can access the iterative server in Chapter /4
before any 15 denied service?

11.3 Build an iterative implementation of an ECHO server. Conduct an experiment to deter-
mine if a human can sense the difference in response time berween the concurrent and
iterative versions.

12

Singly-Threaded,
Concurrent Servers (TCP)

12.1 Introduction

The previous chapter illustrates how most concurrent, connection-oriented servers
operate. They use operating system facilities to create a separate thread for cach con-
nection, and allow the operating systern to timeslice the processor among the threads.
This chapter illustrates a design idea that is interesting, but not obvious: it shows how a
server can offer apparent concurrency to clients while using only a single thread. First,
it examines the general idea. It discusses why such an appreach is feasible and when it
may be superior to an implementation using multiple threads or processes. Second, it
considers how a singly-threaded server uses the Windows system functions 1o handle
multiple connections concurrently. The example server follows Algonthm 8.57.

12.2 Data-driven Processing In A Server

For applications where 1/0Q dominates the cost of preparing a response (o a request,
a server can use asynchronous /O 1o provide apparent concurrency among cliemts. The
idea is simple: arrange for a single server thread to keep TCP connections open to mul-
tiple clients, and have the server handle a given connection when data amives. Thus,
the server uses the arrival of data o trigger processing.

To understand why the approach works, consider the concurrent ECHO server
described in the previous chapter. To achieve concurrent execution, the server creates a
separate slave thread to handle ecach new connection. In theory. the server depends on

T8ee page 114 for a deseription of Algorithm 8.3,

43

144 Singly-Threaded, Concurrent Servers (TCF) Chap. 12

the operating systemn’s timeslicing mechanism to share the CPU among the threads, and
hence, among the connections.

In practice, however, an ECHO server seldom depends on timeslicing. If one were
able to waich the execution of a concurrent ECHO server closely, one would find that
the arrival of data often controls processing. The reason relates to dasa flow across an
intemet. Data arrives at the server in bursts, not in a steady stream, because the under-
Iying internet delivers data in discrete packets. Clients add 1o the bursty behavior if
they choose to send blocks of data so that the resulting TCP segments each fit into a
single IF datagram. At the sérver, each slave thread spends most of its ime blocked in
a call to recv waiting for the next burst to arrive. Once the data arrives, the recy call re-
turns and the slave thread executes. The slave calls send to send the data back to the
client, and then calls recv again to wait for more data. A CPU that can handle the load
of many clients without slowing down must execute sufficiently fast 1o complete the cy-
cle of receiving and sending before data arrives for another slave.

Of course, 1f the load becomes so great that the CPU cannet process one reguest
before another armives, ttmeshanng takes over. The operating systemn switches the pro-
cessor among all slaves that have data to process. For simple services that require little
processing for each request, chances are high that execution will be driven by the arrival
of data. To summarize:

Concurrent servers that require little processing itime per request
often behave in a sequential manner where the urrival of data triggers
execution. Timesharing only takes over if the lvad becomes so high
that the CPU cannot handie it sequentiafly.

12.3 Data-Driven Processing With A Single Thread

Understanding the seguential nature of a concurrent server’s behavior allows us to
understand how a single thread can perform the same 1ask. Imagine a single server
thread that has TCP connections open t© many clients, The thread blocks waiting for
data o arrive. As soon as data arrives on any conmrection, the thread awakens, handles
the request., and sends a reply. It then blocks again, waiting for more data to arrive
from another conneclion. As long as the CPU is fast encugh 10 satisfy the load present-
ed to the server, the single thread version handles requests as well as a version with
multiple threads. In fact, because a singly-threaded implementation requires less
switching between thread contexts, it may be able to handle a slightly higher load than
an implementation that uses multiple threads.

The key to programming a singly-threaded, concurrent server lies in the uwse of
asynchronous KO through the Windows Sockets function sefect. A server creates a
socket for each of the connections it must manage, and then calls select to wait for data
to arrive on any of them. In fact, because select can wait for IO on all possible sock-
ets, it can also wait for new connections a1 the same time. Algorithm 8.5 lists the de-
tailed steps a singly-threaded server uses.

Sec. 124 Thread Smucture OF A Singly-Threaded Server 145
12.4 Thread Structure Of A Singly-Threaded Server

Figure 12.1 illustrates the thread and socket structure of a singly-threaded, con-
current server. One-thread manages all sockets. *

SErvVer
- application
thread
socktfor sockEisfor operating
connectlon individual - svstem
requests conrections

Figure 12.1 The thread structure of a cennection-oriented server ihat achieves
concurrency with a single thread. The thread manages multiple
socketrs.

[n essence, a single thread server must perform the duties of both the master and
slave threads. It maintains a set of sockets, wilh one socket in the sel bound to the
well-known port at which the master would accept connections. The other seckets in
the set each correspond to a connection over which a slave would handle requests. The
server passes the set of socket descriptors as an argument o select, and waits for activi-
ty on any of therm. When select returns, it passes back a bit mask that specifies which
of the descriptors in the set is ready. The server uses the order in which deseriptors be-
come ready to decide how to proceed.

To distinguish between master and slave operations, a singly-threaded server uses
the descriptor. If the descriptor that corresponds to the master socket becomes ready,
the server performs the same operation the master would perform: it ¢calls accept on the
socket to obtain a new connection. H a descriptor that corresponds to a slave socket be-
comes ready, the server performs the operation a slave would perform: it calls recy to
obtain a request, and then answers it.

146 Singly-Threaded, Concurrent Servers (TCP) Chap. 12
12.5 An Example Singly-Threaded ECHO Server
An example will help clarify the ideas and explain how a singly-threaded, con-

current server works. Consider file TCPmechd.cpp, which contains the code for a
singly-threaded server that implements the ECHO service.

/¥ TCPmechd.cpp - main, echo */

#include <wingock.h>
$include <string.h>

#define QLEN 5 /* maximmm cormection gueue lengrth
#define BOFSIZE 4096
tdefine WSVERS MAFEWORD (2, O)
void errexit. (const char *, ...};
SOCFRET pasaiveTCP{congt char *, int});
int echo (SOCKET) ;
lI,I"l' _______ - b v i P o e e e e el N N M N T
* main - Concurrent TCF server for ECHD service
T e o i T — T T T T T . T T LB L . B T . . . M T T T 1 o . L1 T . b — L S .
-/
wold
main(int argc, char *argvi]}
{
char *gervice = "echo"; /* service name or port mumber
gtruct sockaddr in fsin; /* the from address of a client
S0CHET msock; /* master server socket
fd ser rfds:; /* read file descriptor set
£4_se afds; /* actlve file descriptor set
int alen; /* from-addrese length

WSADATA wadatba;
unsigned int fondax;

switch f(argec) {

fase 1:
break;
case 2:

service = argv[i]:
break;

*/

*/
*/
*/
*/
v
*

Sec. 12.5 An Example Siagly-Threaded ECHO Server 147

default:
errexit{*usage: TCPmechod [port]l'\n*):
}

if (WSAStartup (WSVERS, &wsdata) != 0)
errexit ("WSAStartup failed\n");

maock = pagssiveTCP(service, QLEN):

FD_ZERO{&afds) ;
FD_SET (msock, &afds);

while (1) {
menmcpy (krfds, &afds, gizeof(rfds)):

if {(select (FO_SETSIZE, &rfds, {fd _set *)0, {fd met *)0,
{struct timeral *}0} == SOCKET_ERROR}
errexit {"select error: %d\n", GetLastError{));
if (FD_ISSET{msock, &rfds)) {
SOCFET s80ck;

alen = sizeof(fain};

ssock = accepti{msock, {atruct sockaddr *}&fsin,
Lalen} ;

if {(Bsock == INVALID_SOCEET)
errexit {"accept: error %d\n”,

GetLastError());
FD_SET(ssock, &afds);
}

for (fandx=0; fdndwerfda.fd_count: ++fdndx}{
SOCKET fd = rfde.fd_array|fdnde] ;

if {fd != mmock &&k FD _ISSET(fd, &xfda))
if (echol(fd) == 0) {
(void) closesocket (fd};
FOr_ CLR(fd, safds}:

T

148 Singly-Threaded, Concurrent Servers (TCP) Chap. 12

char buf [EUFSIZE] ;
int co;

cc = recvi(fd, buf, sizeof buf, 0}:
if {cc == SOCHET_ERRCR)

errexit {("echo recv error %d\n", GetlastErrar(}):;
if {cc & send{fd, buf, cc, 0} == SOCKET_ERRCR}

errexit {*echo send error #%dwn", GetLastError{));
return <o;

The singly-threaded server begins, Hike the master server in a multithreaded imple-
mentation, by opening a passive socket at the well-known port. [1 uses FD_ZERO and
FD SET to create a vector that corresponds to the socket descriptors that it wishes to
test, The server then enters an infinite loop in which it calls select to wait for one or
more of the descriptors to became ready.

If the master deseriptor becomes ready, the server calls accept to obtain 2 new con-
nection. It adds the descriptor for the new connection to the sel it manages, and contin-
ues to wait for more activity. If a stave descriptor becomes ready, the server calls pro-
cedure ecie which calls recv to obtain data from the connection and send 10 send it
back to the client. If one of the slave descriptors repotts an end-of-file condition, the
server closes the descriptor and uses macre FD_CLR to remove it from the set of
descriptors select uses,

12.6 Summary

Execution in concurrent servers is often driven by the arrival of data and not by the
timeslicing mechanism in the underying operating svstem. In cases where the service
requires little processing, a singly-threaded implementation can vse asynchronous /O to
manage connections to muitiple clients as effectively as an implementation thal uses
multiple threads or processes.

The singly-threaded implementation performs the duties of the master and slave
threads. When the master socket becomes ready, the server accepts a new connection.
When any other socket becomes ready, the server receives a request and sends a reply.
An example singly-threaded server for the ECHO service illustraes thie ideas and shows
the programming details.

R I o aen PR R L o T T

For Forther Study 149

FOR FURTHER STUDY

A good protocol specification does not constrain the implementation. For example,
the singly-theeaded server described in this chapter implements the ECHO protocol de-
fined by Postel [RFC 862]. Chapter {! shows arn example of a mulithreaded, con-
current server built from the same protocol specification.

EXERCISES

12.1 Conduct an experniment that proves lhe example ECHO server can handle connections
concurrently. '

12.2 Dioes it make sense to use the implementation discussed in this chapter for the DAY-
TIME service? Why or why not?

12.3 Read the Windows documentation 10 find out the exact represemtation of descriptors in
the list passed to selecr. Write the FDO_SET and FD_CLR macros.

12.4 Compare the performance of singly-threaded and multithreaded server implementations
on a computer with multiple processors. Under what circnmstances will a singly-
threaded version perform beiter than (of equal to) a multithreaded version?

12.5 Suppose a large number of clients (e.g.. 700} access the example server in this chapier al
the same time. Explain what each client might observe.

12.6 Can a singly-threaded server ever deprive one client of service while it repeatedly honors
requests from another? Can a multithreaded implementation ever exhibit the same
behavior? Explain.

s e da e

. =NT PRSI

At

S R e AR e

13

Multiprotocol Servers
(TCP, UDP)

13.1 Introduction

The previous chapter describes how to construct a singly-threaded server that uses
asynchronous /O to provide apparent concurrency among multiple connections. This
chapter ¢xpands the concept. It shows how z singly-threaded server can accommodate
multiple ransport protocols. [t itlustrates the idea by showing a singly-threaded server
that provides the DAYTIME service through both UDP and TCP. While the example
server handles requests iteratively, the basic idea generalizes directly to servers that han-
dle requests concurrently.

13.2 The Motivation For Reducing The Number Of Servers

In most cases, a given server handles requests for one particular service accessed
through one particular transport protocol. For example, a computer system that offers
the DAYTIME service often nuns two servers — one server handles requests thart arrive
via UDP, while the other handles requests that arrive via TCP.

The chief advantage of using a separate server for each protocol lies in control: a
system manager can easily conirol wlhich protocols a computer offers by contrelling
which of the servers the system runs. The chief disadvantape of using one server per
protocol ligs in replicaticn. Because many services can be accessed through either UDP
or TCP, each service can require 1wo servers. Furthermore, because both UDP and TCP
servers Use the sarne basic algorithm to compute 2 response, they both contain the code

151

152 Multiprotocol Servers {TCP, UDF) Chap. 13

needed to perform the computation. If two programs both contain code to perform a
given service, software management and debugging can become tedious. The program-
mer must ensure that both server programs remain the same when correcting bugs or
when changing servers to accommodate new relcases of system software. Furthermore,
the system manager must coordinate execution carefully to ensure that.the TCP and
UDP servers executing at any time both supply exactly the same version of the service.
Another disadvantage of running separate servers for each protocol arises from the use
of rescurces: multiple server threads unnecessarity consume thread table entries and oth-
er system resources. The magnitude of the problem becomes clear when one
remembers that the TCP/IP standards define dozens of services.

13.3 Multiprotocol Server Design

A multiprotocol server consists of a single thread that uses asynchronous YO o
handle communication over either UDP or TCP. The server initially opens two sockets:
one that uses a connectionless transport (UDP) and one that uses a connection-oriented
transport {TCP). The server then uses asynchronous /O to wait for one of the sockets
to become ready. If the TCP socket becomes ready, a client has requested a TCP con-
neclion. The server uses accept (0 obtain the new connection, and then communicates
with the client over that connection. [If the UDP socket becomes ready, a client has sent
a request in the form of a UDP datagram. The server uses recvfrom 1o receive the re-
quest and record the sender’s endpoint address. Once it has computed a response, the
server sends the response back to the client using sendto.

13.4 Thread Structure

Figure 13.1 illustrates the thread structure of an iterative, multiprotocol server.

Sce. 134 Thread Stnx:ture 153

server

server

-— applicaiion
thread
| I L | | ,
socket for socketfor socket for peraitng

uDpP TCP conn. a TCP " system

requests requests _ connection

Figure 13.1 The thread structure of an iterative, multiprotocol server. At any
time, the server has at most three sockets open: one for UDP re-
quests, one for TCP connection requests. and @ temporary onc
for an individual TCP commection.

An iterative, multiprotocal server has at most three sockets open at any given time.
Initially, it opens one socket to accept incoming UDP datagrams and a second socket to
accept incoming TCP connection requests. When a datagram arrives on the UDP sock-
el, the server computes a response and sends it back to the client using the same socket.
When a connection request arnves on the TCP socket, the server uses accept to obtain
the new connection. Accep! creates a third socket for the conrnection, and the server
uses the new socket to communicate with the clienl. Once it finishes interacting, the
server closes the third socket and waits for activity on the other two.

13.5 An Example Multiprotocol DAYTIME Server

Program daviimed illustrates how a multiprotocol server operates. [t consists of a
single thread that provides the DAYTIME service for bath UDP and TCP.

154 Multiproiacol Servers (TCP, UDP) Chap. 13

i daytimed. opp - main, daytime */

tinciude <atdio. h>
$include <tima.h>
$include <winsock.h>

volid daytime{char E(]});

woid errexit{const char *, ...):
SOCKET passiveTCP{const char *, int);
SO0CFET passiveUDPiconst char *};

tdefine WSVERS MAFKEWORD {2, 0]

#define OLEN 5

$define LINELEN 128

J"* __

main(int arge, char *argv[]}
{

char *garvice = "daytime"; /* sarvice name or port number ¥/
char f [LINELEN+1] ; f* buffer for one line of text */
struct sockaddr_in fsin; /* the request from address */
int alen; /* from-address length */
SOCEFET tsock; /* TCP master socket *J
SOCFET usock; {* UDP socket *7
fd set rids; /* readable file descriptors */
int rv;

WSADATA whadata;

switch {argc) {

cane 1:
hreak;

case 2
gervice = argv(l];
break;

default:

arrexit{"usage: daytimed [portliin™):

if (WSAStartup(WSVERS, gwsadata) !'= 0)

LR ERL T MG N A B SRl PeT 0r 1 L RRCI R L R s HT SRS P ap AN URLEL wbE SR TR 18

Sec. 13,5 An Example Muinupratocol DAYTIME Server 135

errexit!*WSaStartup failedyn");

tsock
usock

paseivelCP (service, QLEN) ;
passivellDF (service) ;

"

FD _ZEROQ{&xfds) ;

while {1} {
FI! SET (tsock, &krfds);
FId _SET (usock, Ekrfds)};

if (select(FD» SETSIZE., &rfds, {fd set *)}0, {fd_ser *)0,
istruct timeval *}0) == SOCKET_ERFOR}
errexit {"select error: %d\n*, GetlastErroril};
if (FD_ISSET(tsock, &rfds)}) {
BOCFET ssock; i* TCP slave socket */

alen = sizeof{fsin);

seock = accept{tsock, {struct sockaddr *)&fain,
kalen} ;

if (mmock == INVALID SOCKET)
errexit. {"accept failed: error sd\n*,

GetLagtError());

daytime {buf) ;

{void) send(sscck, buf, strleni{buf), 0);

{vold) closesocket (sso0ck);

}
if (Fbr_1SSET{usock, &rfds)) {
alen = sizeof(fein):
rv = recviram{usgock, buf, sizeofibuf), 0,
(struct sockaddr *)&fain, galen):

if {rv == SOCKET_ERFRCR!)

errexit {"recvfrom: error mumnber %EI\n*,
GetLastError()):

daytime (buf] ;

{void) sendte{usock, buf, strlen(ibaf), 0.
(struct gockaddr *)&fsin, sizeof (fsin)):

Tt L b i ke) N T N M W e e oy e e o S N L L S ——————— ———— —————

156 Muiliprotecol Servers (TCP, UDP) Chap._ 13

*/
woid
daytime {char buf[])
{
time £ now;

(void) time (&now);
gsprintf{buf, "&s", ctime(&now)|;

Daytimed takes an optional argument that ailows the user to specify a service name
or protocol port number. If the user does not supply an argument, daytimed uses the
port for service daytime.

After parsing its arpuments, daytimed calls passiveTCP and passivel/DP to create
two passive sockets for vse with TCP and UDP. Both sockets use the same service and,
for most services, both will vse the same protocol port number. Think of these as the
master sockets — the server keeps them open forever, and all initial contact from a client
arrives through one of them. The call to passiveTCP specifies that the system must en-
queue up to QLEN connection requests.

After the server creates the master sockets, it prepares 10 use sefect by inttializing
the read file descriptor list, rfds. The server then enters an infinite loop. In each itera-
tion of the toop, it uses macro FD_SET to build a sel of the descriptors that correspond
to the two masier sockets. It then uses selecr to wait for input activity on either of the
sockets.

When the sefecr call returns, one or both of the master sockets 15 ready. The server
uses macre FD_{SSET o check the TCP socket and again to check the UDP socket.
The server must check both because if a UDP datagram happened to arrive at exactly
the same time as a TCP connection request, both sockets would be ready.

If the TCP socket becores ready, 1t means that a client initiated a connection re-
quest. The server uses gaceepr to establish the connection. Accept returns the descriptor
of a sew, temporary socket used only for the new connection. The server calls pro-
cedure daytime to compute the response, send 1o send the response across the new con-
nection, and clasesocket to terminate the connection and release resources.

If the UDP socket becomes ready, it means that a client sent a datagram to prompt
for a DAYTIME response. The server calls recyfrom to receive the incoming datagram
and record the client’s endpoint address. It uses procedure daytime 10 compute the
response, and then calls sendto to send the response back to the client. Because it uses
the master UDP socket for all communication, the server does not issue a closesocket
after sending the UDF response.

LIEEY R L R R LR R - - S e e o e e M T A e R AR L Ber e e o

3ec. 13.6 The Concept Of Shared Code 157
13.6 The Concept Of Shared Code
Our example server illustrates an important idea:

A multiprotocol server design permiis the designer to create a single
procedure that responds o regitests for a given service and to call
that procedure regardless of whether regquests arrive via UDP or
TCP.

In the DAYTIME example, of course, the shared code occupies only a few lines.
It has been placed in a single procedure, davtime. In most practical servers, however,
the code needed to compute a response can span hundreds or thousands of lines and
usvaily involves many procedures. 1t should be cbvious that keeping the code in a sin-
gie place where it can be shared makes maintenance easier and guarantees that the ser-
vice offered by both transport protocols will be idestical.

13.7 Concurrent Multiprotocol Servers

Like the single-protocol DAYTIME server shown earlier, the example multiproto-
cot DAYTIME server uscs an iterative method to handle requests. The reason for using
an iterative solution is the same as for the earlier server that supplies the DAYTIME
service: an iterative server suffices because the DAYTIME service performs minimal
computation for each request. '

An iterative implementation may not suffice for other services that require maore
computation per reguest. In such cases, the multiprotocol design can be extended to
handle the requests concurrently. In the simplest case, a multiprotocol server can create
a new thread to handle each TCP connection concurrenty, while it bandles UDP re-
quests iteratively. The multiprotocol design can also be extended to use the singly-
threaded implementation described in Chapter /2. Such an implementation provides ap-
parent concurrency among requests that arrive over multiple TCP connections or via
UDP.

13.8 Summary

A multiprotocol server allows the designer to encapsulate all the code for a given
service in a single program, eliminating replication and making it easier to coordinate
changes. The multiprotocol server consists of a single thread. The thread opens master
sockets for both UDP and TCP, and uses select 10 wait for either or both of them to be-
come ready. If the TCP socket becomes ready, the server accepts the new connection
and handles requests using it. If the UUDP socket becomes ready, the server receives the
request and responds.

158 Multiproocol Servers (TCE, UDP) Chap. 13

The multiprotocol server design illustrated in this chapter can be extended 10 allow
concurrent TCP connections or to use a singly-threaded implementation that handles re-
quests concurrently regardless of whether they arrive via TCP or UDP. Multiprotocol
servers eliminate replication of code by using a single procedure to compute the
response for the service. They also eliminate unnecessary use of system resources,
especially threads.

FOR FURTHER STUDY

Reynolds and Postel [RFC 1700] specifies a list of application protocols along with
the UDP and TCP protocol ports assigned to each.

EXERCISES

13.1 Extend the example server in this chapter to handle requests concurrently.

13.2 Study some of the most common services defined for TCPAP. Can you find examples
where a multiprotocol server cannot use shared code to compute the responses? Explain.

13.3 The example code allows the user 1o specify e service name or protocol port number as
an argument, and uses the argument when creating passive sockets for the service. Is
thére an example of a service that uses a different protocol port number for UDP than
for TCP? Change the code to allow the user to specify a separate protocol port number
for each protocol.

13.4 The exampie server docs not allow the system manager to control which prolocols it
uses. Modify the server to include arguments that allow a manager to specify whether to
offer the service for TCP, UDP, or both. _

13.5 Consider a site that decides to implement security through an authorization scheme. The
site provides each server with a list of authorized client machines, and makes the rule
that the server must disallow requests that originate from machines other than those on
the list. Implement the authorization scheme for the example multiprotocol server.
(Hint: book carefully at the socket functions to see how to do it for TCP.)

R L LR P R T TR RO B B L L eI T S |

14

Multiservice Servers (TCP,
UDP)

14.1 imtroduction

Chapter /2 describes how to construct a singly-threaded server that uses asynchro-
nous I/0 to provide apparett concurrency among multiple connections, and Chapter 73
shows how a multiprotocol server supplies a service over both the TCF and UDP tran-
sport protocols. This chapter expands the concepts and combines them with some of
the iterative and concurrent server designs discussed in earlier chapters. It shows how a
single server can supply multiple services, and illuserates the idea using a singly-
threaded server that handles a sef of services.

14.2 Consolidating Servers

In most cases, programmers design an individual server to handle each service.
The example servers in previous chapters illustrate the single-service approach - each
waits at a well-known port and answers requests for the service associated with that
port. Thus, a computer usually runs one server for the DAYTIME service, another for
the ECHO service, and so on. The previous chapler discusses how a server that uses
multiple protocols helps conserve system resources and makes maintenance easier. The
same advantages that motivate multiprotocol servers motivate consolidating multiple
services into a single, multiservice server.

159

© o W ke RCATERAR . e Sy e

160) Multiservice Servers (TCP, UDP) Chap. 14

To appreciate the cost of creating one server per service, one needs io examine the
set of standardized services. TCP/IP defines a large set of simple services that are in-
tended to help test, debug, and maintain a network of computers. Earlier chapters dis-
cuss a few examples like DAYTIME, ECHO, and TIME, but many ather services exisi.
A system that runs one server for every standardized service can have dozens of servers,
even though most of them will never receive a request. Thus, consalidating many ser-
vices into a single server can reduce the nember of executing programs dramaticallyt.
Furthermote, because mary of the small services can be handled with a trivial computa-
tion, most of the code in a server handles the details of accepting requests and sending
replies. Consolidating many services into a'single server reduces the iotal code re-
quired.

14.3 A Connectionless, Multiservice Server Design

Multiservice servers can use either connectionless or connection-oriented transport
protocols. Figure 14.1 illustrates one possible thread structure for a connectionless,
multiservice server.

sarvar
Ferver
- application
thread
J T !
master sockets - operating
{ore 1or each service & system
being offe

Figure 14.1 An iterative, connectionless, multiservice server. The server
waits for a datagram on any of several sockets, where each sock-
et corresponds to an individual service.

As Figure 14,1 shows, an iterative, connectionless, mulliservice server usually con-
sists of a single thread that contains all the code needed for the services 1t supplies. The
server opens a set of UDP sockets and binds each to a well-known port for one of the

TBecause implementations of socket functions limil the maximum number of sockes a thread can open, i
may not be possible for one server o offer all services. However, if a theead can open ¥ sockets, using mul-
tiservice servers can reduce the nomber of thnzads required by a factor of &

o e R RARL e S e e A TR S AT e St e

Scc. 143 A Conncctionless, Multiservice Server Desipn 16l

services being offered. It uses a small table to map sockets to services. For each socket
descriptor, the table records the address of a procedure that handles the service offered
on that socket. The server uses the seleer system call to wailt for a datagram (o arrive
on any of the sockets.

When a datagram arnves, the server calls the appropriate procedure to compute a
response and send a reply. Because the mapping 1able records the service offered by
each sockel, the server can easily map the socket descriptor to the procedure that han-
dles the service.

14.4 A Connection-Oriented, Multiservice Server Design

A connection-oriented, multiservice server can also follow an iterative aigorithm.
In principle, such a server performs the same tasks as a set of iterative, connection-
oniented servers. To be more precise, the single thread in a muitiservice server replaces
the master server threads in a set of connection-orieated servers. At the top level, the
multiservice server uses asynchronous 1O to handle 1ts duties. Figure 14.2 shows the
thread structire.

master
server
- appication
thread
I L | - :
master sockets socket for - pen arng
{one tor each one individual system
gearvice offered} connection

Figure 14.2 The thread struciure of an iterative. connection-oriented, mul-
liservice server. At anv time, the server has one socket open for
each service and at most one additional socket open to handle a
particular conmection.

162 Multiservice Servers (TCP. UDP) Chap. 14

When i1 begins execution, the multiservice server creates one socket for each ser-
vice it offers, binds each socket 1o the well-known pont for the service, and uses select,
to wait for an incoming connection request on any of them. When one of the sockets
becomnes ready, the server calls accept to obtain the new connection that has armived.
Accept creates a new socket for the incoming connection. The server uses the new
socket to interact with a clienst, and then closes it. Thus, besides one master socket for
each service, the server has at most one additional socket open at any time.

As in the connectionless case, the server keeps a wable of mappings so it can decide
how to handle each incoming connection. When the server begins, it allocates master
sockets. For each master socket, the server adds an entry to the mapping table that
specifies the socket number and a procedure that implements the service offered by that
socket. After it has aflocated a master sacket for each service, the server calls sefect to
wait for a connmection. Once a connection arrives, the server uses the mapping table to
decide which of many internal procedures to call to handie the service that the client re-
quested. '

14.5 A Concurrent, Connection-Oriented, Multiservice Server

The procedure called by a multiservice server wher a connection request arrives
can accept and handie the new connection directly (making the server iterative), or it
can create a slave thread to bandle it (making the server concurrent). In fact, a multiser-
vice server can choose to handle some services iteratively and other services concurrent-
ly; the programmer does not necd to choose a single style for all services. Figure 14.3
shows the thread structure for a multiservice server that uses a concurrent, connection-
orierted implementation.

In an iterative implementation, once the procedure finishes communicating with the
client, it closes the new connection. Ien a ¢oncurrent impiementation, the siave thread
warks exactly like a slave in a conventional, concurrent, connection-oriented server. [t
communicates with the client over the connection, honcring requests and sending re-
plies. When it finishes the interaction, the slave closes the socket, breaks the communi-
cation with the client, and ceases execution.

14.6 A Singly-Threaded, Multiservice Server Implementation

It is possible, although uncommon, to manage all activity in a moltiservice server
with a single thread, using a design exactly like the singly-threaded server discussed in
Chapter /2, Tnstead of creating a slave thread for each incoming connection, a singly-
threaded server adds the socket for each new connection t¢ the set it uses with select. If
one of the master sockets becomes ready, the server calls accepr; if one of the slave
sockets becomes ready, the server calls recv to obtain an incoming request from the
cliem, forms a response, and calls sead o transmit the response back to the client.

C b e ke teeeny Lhllales wh pERES S—— i —— e, CEes me d 1] e par . me e g SRS . a3 e —— e =t st]

Bec. 14.6 A Singly-Threaded, Muitiservioe Server Implementation 163

SEMVET

«— application
threads

e B - operating

sockets sochats for
{one for each individual slave = system
service oflersd) connections

Figure 14.3 The thread structure for a coneurremt, connection-cdented, mul-
tiservice server. The master thread handles incoming connection
requests, while a slave thread handles each connection.

14.7 Invoking Separate Programs From A Muitiservice Server

One of the chief disadvantages of most of the designs discussed so far is their in-
flexibility: changing the code for any single service requires recompilation of the entire
multiservice server. The disadvantage does not become important until one considers a
server that handles many services. Any small change requires the programmer to
recompile the server, terminate the executing server program, and restart the server us-
ing the newly compiled code.

If a multiservice server offers many services, the chances are higher that at least
one client will be communicating with it at any given time. Thus, tertninating the
server may cause a problem for some clients. In addition, the more services a given
server offers, the higher the probability that it will need to be modified.

Designers often choose to break a large, monolithic, multiservice server into in-
dependent components by using independently compiled programs to handle each ser-
vice. The idea is easiest to understand when applied o a concurrent, connection-
oriented design.

Consider the concurrent, connection-oriented server illustrated in Figure 14.3. The
master server thread waits for a connection request from a set of master sockets. Once
a commection request armives, the master thread calls _beginthread to create a slave
thread that will handle the connection. The server must have the code for all services
compiled into the master program. Figure 14.4 illusirates how the design can be modi-
fied to break the large server into separate pieces.

164 Multiservice Servers (TCP, LUTP) Chap. 14

Create Process
master / ieseed
R
) server

- 4 processes
slave,) [slave

master cockets sockats for operating
{ona for sach individual slave - system
service offered) connectiong

Figure 14.4 The structure of a connection-oriented, multiservice server that
uses CreqreProcess W execule a separate program [0 handle
¢ach conmection.

As the figure shows, the master server uses CreateProcess (o creale a new process
(not just a new thread) to handle each connection. Orne of the arguments to CrearePro-
cess specifies the name of a new program to run. The master process arranges for the
connection 10 remain open when the new process is created, allowing the new program
to vuse the socket to handle ail client communication.

Because CreateProcess retrieves the new program from a file, the design described
above allows a system manager to replace the file without recompiling the multiservice
server, terminating the server process, or restarting it. Conceptually, using CreaieFro-
cess separates the programs that handle each service from the master server code that
Sets up connections.

In a muitiservice server, the Windows CreateProcess call makes it pos-

sible to separate the code that handles an individual service from the
code that manages nitial reqiiests from clienss.

14.8 Multiservice, Multiprotocol Designs

Although it may seem natural to think of a multiservice server as either connec-
tionless or connection-oriented, a multiprotocol design is also possible. As described in
Chapter 13, a2 muitiprotocol design allows a single server thread to manage both a UDP

I R kol & I

Sec_ 148 Multiservice, Muliiprotoce] Desipns 1563

socket and a TCP socket for the same service. In the case of a multiservice server, the
server can manage UDP and TCP sockets for some or all of the services it offers.

Many networking cxperts use the term super server 10 refer to a rultiservice, mul-
tiprotocol server. In principle, a super server operates much the same as a conventional
multiservice server. Initially, the server opens one or twe master sockets for each ser-
vice it offers. The master sockets for a given service comespond to connectionless tran-
sport {UDP) or connection-oriented transport (TCP). The server uses select to wait for
any socket to become ready. If a UDP socket becomes ready, the server calls a pro-
cedure that reads the next requesl {(datagram) from the socket, computes a response, and
sends a reply. If a TCP socket becomes ready, the server calls a procedure that accepts
the next connection from the socket and handles it. The server can handle the connec-
tion directly, making it iterative, or it can create a new thread {or a new process) to han-
dle the connection, making 11 concurrént.

14.9 An Example Multiservice Server

The muitiservice server in file superd.cpp extends the singly-threaded server imple-
mentation in Chapter /2, After initializing data structures and opening sockets for each
of the services it offers, the main program enters an infiniie loop. Each iteration of the
loop calls select to wait for a socket 10 become ready. The select call returns when one
Or More requests armve.

Each entry in array svern contams a structure of type service that specifies the map-
ping between a service and a sockel descriptor. 'When select returns, the server iterates
through svent and uses macro FD_ISSET 10 test whether the descriptor recorded in field
sv_sock is ready. 1f it finds a ready descriptor, the server invokes a function o handle
the request.

Field sv_func contains the address of a function to handle the service. After find-
ing an entty in svent that corresponds to a descriptor that is ready, the program calls the
selected fenction. For a UDP socket, the server calls the service handler directly; for a
TCP socket, the server calls the service handler indirectly through procedure doTCP.

TCP services require the additional procedure because a TCP socket corresponds 1o
the master socket in a connection-oriented server. When such a socket becomes ready,
it means that a connection request has arrived at the socket. The server needs to create
a mew thread to manage the connection. Thus, procedure doTCP calls accepr 1o accepl
the new connection. 11 then calls _heginthread to create a new slave thread that invokes
the service handler function (sv_func). When the service function returns, the slave
thread terminates.

166 Multiservice Servers {TCP, UDE) Chap. 14
/% guperd.cpp - main, SOTCP */

#includs <process.h-
#includa <winaock.h»

#define UDF_SERV 0
#define TCP_SERV 1

struct service |

char *Zyv_name;

char av_18eTCP;

SOCKET sv_sock;

vold {*sv_func) (S0CEKET) ;
};

vorid TCPechod (SOCKET), TCPchargend{(SOCKET). TCPdaytimed (SOCKET) ,
TCPLimed { SOCKET) ;

SOCKET passiveTCP(const char *, int);
SOCKET - passivelUDP{const char *);
void errexit (const char *, ...);
void doTCP(struct service *);

struct sexvice svent[] =
{ { "eche", TCP_SERV, INVALID SOCKET, TCPechod),
{ "chargen", TCPF SERV, INVALID SOCKET, TCPchargend },
{ *daytime", TCF_SERV. INVALID SOCKET, TCPdaytimed },
{ *time", TCP_SERV, INVALID SOCKET, TCPtimed },
{ 0. 0,0, 01,

}:
#define WSVERS MAFEWORD (2, O)
#define QLEN B
#define LIMELEN 128

extern u_short portbase; /* from passivesocki} *f

Sec. 1495 An Example Multiservice Scover 167

maini{int argc, char *argvi(]}
{

struct service *psv; /* service table pointer
4, set afds, rfds; /* readable file descriptors
WSADATA wadata;

awiteh (arge) {
case 1:
break;
case 2:
portbase = (u_short) atoi(argv([1]};
break;
default:
errexit {"usage: superd [portbase]’\n”);
!
if {(WhAStartup{WSVERS, kwsdata))
errexit("WSAsStartup failedwn");

FD_ZERC (&kafds):
for (psv = &svent[0]; psv->s5v _name; ++psv)] {

if {psv->sv_useTCP]
psv-=gv_sock

passiveTCP (pev->5v_name, JLEN) ;
alge

pav-»8v_sock = passivellDP{psv-=av_name) ;
FD_SET(psv->cv_sock, &afds);

while (1) {
mamepy (&rfds, fafds, sizeof{rfds));
if {select(FD _SETSIZE, &rfds, {fd set *}0, (fd s=t *10,
{struct timeval *)0) == SOCKET ERROR)
errexit{"select error: %d\n", GetLastErrori{}!:
for (psv=&ksvent[(]; psv-rsv_name; ++psv)
if (FD_ISSET(psv-»sv_sock, &rfd=)} |
if (psv-—>sv_useTCP)
doTCP {paw) ¢

e e R TR e | R =t

"
b

168 Multiservice Servers (TCP, UDEF} Chap. 4

el=se
pev—>2v_func(pgv->gv_sock)

AoTCPistruct service *pevi

{

struct sockaddr in fain; /* the reguest from address
int alen; /* from-—address length
SOCKET BBOCK;

alen = sjzeof(fsin);
ssotk = acgept{psv-s5v_gock, [gtruct sockaddr *)&fsin, &alen):
if (s8ock == INVALID SOCKET}

errexit ("accept: %d\n*, GetLastError(})};

*/
*

if ([_beginthread({void (*}(wvoid *})psv-=sv_func, 0, {(void *)ssock]

== (ungigned long) -1)
errexit{"_beginthread: %z\n", strerrcri{errnc)):

The example super server supplies four services: ECHO, CHARGEN, DAYTIME,
and TIME. The services other than CHARGEN appear in examples in earlier chapters.
Programmers use the CHARGEN service to test client software. Once a client forms a
comnection t0 a CHARGEN server, the server generates an infinite sequence of charac-

ters and sends it to the client.

File sv_funcs.cpp contains the code for the functions that handle each of the indivi-

duzl services.

/¥ sv_funes.crpp - TCPechod, TCPchargewd, TCPdaytimed, TCPrimed */
#include =stdic.h>

#include <cime h>
#include <winsock, h>

e T gl pemelvemdd N0 AR LT R O0L PR Brhaar mm e ta. o - I

Sec, |49 An Examiple Muopliscrvice Server 168
#define BUFFERSIZE 4096 /* max read buffer aize */

void TCPechod{SOCKET), TCPchargend(SOCKET), TCPdaytimed{SOCKET),
TCPtimed (SOCKET) ;

void errexit (congt char *, ...);
7y g S Py
* TCPacho - do TCE BCHO on the given socket

W I T A T T o o e T e
>/

void

TCPechod (SOCKET £d)

{
char buf [BUFFERSTZE] ;
int og;

while {c¢ = recv{fd, buf, sizeof buf, 0)) |
if {c¢ == SOCFKET. ERROR)
errexit {*echo recv: errnmum %d\n", GetLastErroril);
if ({send(fd, buf, cc, 0) == SOCKET_ERROR}
errexit {"echo send: errnum %¥4A\n", CeclastErroxr(i):
}
closesocket (£4) ;

*f
vold
TCPchargeryd (SOCEET £4)

{
char <, buf (LINELEN+2]: /* print LINELFH chara + \r'n */

c =" "1
buf [LINEIEM] = *\r';
buf [LINELEN+1] = "\n';
while (1} {

int i;

for (i=D; i<LINELEN; ++i)} {
LE[i] = C++;

170 Multiservice Servers tTCP, LTP) Chap, 14

o = 1 |‘I
}
if {zendi{fd, buf, LINELEN-2, () == SQOUCKET ERRCE}
break;
3
closasocket (£4) ;
}
S
* TCPdaytimed - do TCP DAYTIME protocol
W e ————————— Y ———— i ———
*/
void
TCPdaytimed{SOCKET £d)
{
char bf [LIWNELENT ;
time_t now,
fvoid) time {&now):
sprintfibuf, "%s", ctimei&now));
{void) send(fd, buf, strleni{buf}, O};
closesocket (fd);
1
#define WINEPOCH 2208388800 /* Windows epoch, in UCT secs '
e e e — —
* TCPrimed - do TCP TIME protcoaol
T o o o A o e o i AR i L i i T T T - T —— T o o o o e o e B L W e e i A =
*/
wold
TCREimed (SOCKET £43
{
time £ now;
{veid)] time&now) ;
now = htonl{ (u_long) {now + WINEPOCH) };
(vold) send(fd, (char *isnow. sizeof{now}, 0);
closesacket [£3) ;
1

PO L] [l L R e L T . L L . R T e T W T g gl g o —dr

Lee. 144 An Example Multiservice Server 1t

Code for most of the individial functions should seem tamiliar; it has been derived
from the example servers in earlier chapters, The code for the CHARGEN service can
be found in procedure TCOPchargend, il is straightforward, The procedure consists of a
loop thal repeatedly creates a buffer filled with ASCH characters and calls send 10 send
the contenls of the buffer to the clienl. The loop terminates when the client closes the
connection, causing send to relum SOCKNET _ERROR.

14.10 Static and Dynamic Server Configuration

In practice, many systems supply the skeleton of a super server (o which sysiem
administrators can add additional services, To increase ease of use, super servers are
often configurable — the sel ol services that the server handles can be changed withoul
recompiling source code. Two types of configuration are possible: staric and dynamic,
Static configuration occurs when the server program begins execution. Typically, conii-
guration informatior: is placed in a file that the server reads when it starts. The confi-
guralion lile specifies a sel of services lhe server should handle as well as an exccutable
program to be used for each service. To change the services being handled, a system
administrator merely needs 1o change the configuralion file and restart the server.

Dynamic configuration occurs while a super server is running. Like a statically
configured server, a dynamically configured server reads a configuration file when it be-
gins execution. The configuration file determines the initial set of services the server
handles. Unlike a statically configured server, a dynamically configured server can
redefine the services that it oflers without restarting. To change services, a system ad-
ministrator alters the configuration file, and then informs the server that reconfiguration
is required. The server examines Lhe configuration file, and changes its behavior ac-
cordingly.

How does an administrator inform a server that reconfiguration s needed? The
answer depends on the operaiing system. n Windows, dynamic reconfiguration relies
on ¢onventional communication — the programmer must establish an additional input to
permit the administrator to enter commands. For example, the server can be pro-
srammed 0 open an cxtra socket that is used for contral. When reconfiguration is re-
guired, the administrator uses the control connection o inform the program. In sysiems
that have an inlerprocess communication mechanism, the server can use that mechan-
ism. Fer example, a server rupning under the UNIX system can wse the sigref mechan-
ism. The administrator sends the sevves a signal; the server must catch the signal and
interpret its arrival as a request to reconligure,

When an administrator forces a server (o dynamically reconligure, the server reads
the configuration file and changes the services it offers. If the configuration file con-
tains one or more scrvices that did not appear in the previous configuration, the server
opens sockets to accept requests for the new services. If one or more services have
been deleted from the coniiguraton tile, the server closes the sockets that correspond 10
the scrvices it no longer handles. Of course, a well-designed super server handles
reconfiguration gracefully — although it stops accepting new requests for a discontinued

172 Multiservice Servers (TCFE, [JDP Chap. 14

service, the server does not abort connections already in progress. Thus, a request from
a client is either refused altogether or handled completely.

Making a super server dynamically configurable adds considerable flexibility. The
executable prograrn that handles a given service can be changed without changing the
super server itself. Furthermore, becausz the set of services available through the server
can be changed without recempiling code or restarting the server, a programmer can fest
new services withous disrupting production service. More impaortant, because reconfi-
guring does not require changes to source code, nonprogrammers can learn te configure
a server. TO summarize:

A super server that can be reconfigured dynamically is flexible be-
caiese the set of services offered can be changed withow recompiling
the server program or resiarting the server.

14.11 An Example Super Server, Inetd

Many computer systems run a super server that handles a large set of services.
Called inerd, the super server was originally designed for UNIX; many vendors who sell
server software include inetd or a similar program.

The original motivation for inetd arose from a desire for an efficient mechanism
that could offer many services without using excessive systemn resources, In particular,
although the TCP/IP services such as ECHO and CHARGEN are useful for testing or
debugging, they are seldom used in a production system. Creating a server for each of
the services takes system resources (e.g., entries in operating system tables). Further-
more, separate applications compete for memory if they run concurrently. Therefore,
combining the servers into a single super server reduces the overhead, without eliminat-
ing the functionality.

fnerd is dynamically configurable. That is, a system administrator can instruct the
inetd program to read a file that contains configuration information, and 1o handle the
services specifed in the file. Moreover, the administrawer can force iretd 10 reconfigure
at any time; the program does not need to stop and restart.

Each entry in the file has six or more fieids as Figure 14.5 illustrates.

Sec. 1411 An Example Super Server, [netd 173

Field Meaning
service name The name of a service to be offered (the name must
appear In the system’s service database).
socket type The type of socket to use (must be a valid socket type
such as stream or dgram).
protocol The name of a protocol to use with the service {must be
' a valld protocol such as fcp or udp).
wait status The value wail to specily that Inetd should wait for the

service program to finish one request hefore handiing
another, or nowait 10 allow concurrency.

userid The togin id under which the service program should
be run.

server program The name of the service program to execute or the
gtring internal to use the version of the code
compiled into netd.

arguments Zero or more arguments to be passed to the service
prograrn that inetd executes.

Figure 14.5 An example of fields found in each entry of an inetd configura-
tion file. The first six fields are required and coesist of configu-
ous nonblank characters; remaining words on the linge comprise
arguments.

When it first stants or after reconfiguration, inetd must crcate a master socket for
each new service in the configuration file. To do so, inetd parses the configuration file
and extracts individual fields. The socker type field is used to determine whether the
master socket uses the siream or dgram socket type. Inetd must also bind a local proto-
col port 10 the socket. To find a protocol port number, inetd exiracts the service name
and protoco! fields, and uses them in a query 10 the system’s service database. The da-
tabase returns a protocol port number to use for the service; if the service database does
not contatn an entry for the combination of the service name and protocal fields, inetd
cannot handle the service.

" Once a master socket has been created for each service, inetd records the remaining
tnformation from the configuration file, and waits for a request 1o arrive on one of the
master sockets. When a client contacts one of the specified services, inetd uses the
recorded information to determine how to proceed. For example, field wait sratus
determines whether inetd runs multiple copies of the service program concurrently. If
the configuration specifies nowait, inetd creates a new processt for each request that ar-
rives, and allows all requests to be handied concurrently. Because inetd creates a new
Process (o execute A Service program, ohe new process is ¢reated each time a request ar-
rives. The singly-threaded inetd process, which always remains running, contirues to
walt for requests on the master sockets.

tAlthough it is possible for inerd (o achieve concurrency with _beginthread instead of CreareProcess,
most implementations use processes because threads do not permit dypamic recon figuration.

L Multiservice Servers [TCR, UDF) Chap. 14

Conceptually, the value wait means that inetd should handle requests for the ser-
vice ileratively (i.c., the service program should finish handling a request before inetd
starts another process to run the program). Interestingly, most implementations of inetd
use a form of concurrency for all requests. When a request first arrives for a service
that specifies wait, inetd creates a separate slave 1o handle the service, To understand
why, observe that the main inctd process cannot block while waiting for a service be-
cause other services may need to continue concurrent execution. After starting a pro-
cess for a given service, inetd uses the wair status to determine how to proceed. If the
wiil status specifies weiz. inetd temporarily stops accepting further requests for a ser-
vice unti} the slave finishes. To do so, inetd removes the master socket for the service
from the set o which i1 listens. After the process running the service finishes, metd
adds the socket back into its active set, and becomes willing to accept a request for the
Service again.

Although the wait status field provides a conceprual distinction between iteralive
and concurrent exccution, there is also a pracucal reason for choosing wait. In particu-
lar. UDP services use wair for services that require a client and server to exchange mul-
tiple datagrams. The wair status prevenis inetd from using the sackel until the service
program finishes. Thus, the client can send datagrams to the slave without interfer-
cnce. Once the slave finishes, inetd resumes use of the socket.

For either form of waiting, inetd uses the server program field in the configuration
file to determine which service program 1o execute. If the field specifies infernal, inetd
calls an internal procedure to handle the servicet. Otherwise, ineld treats the string as
the name of a file to be executed. When it invokes a server, inetd passes the contents of
the argumenis ficld to the program.

14.12 Summary

When designing a server, a programmer can choose among a myriad of possible
implementations. While most servers offer only a single service, the programmer can
choose a multiservice implementation to reduce the number of servers necded. Most
multiservice servers use a single transport protocol. However, muit:ple transport proto-
cols can be used to combine connectionless and connection-oriented services inte a sin-
gle server. Finally, the programmer can choose to implement the controlling part of a
concurrent, multiservice server with concurrent threads or with a single thread that uses
asynchronous 'O o provide apparent concurrency.

The example server presented in this chapter iilustrates how a multiservice server
uses asynchronous [/Q to replace a set of master servers. The server calls the socket
function sefect to wait for activity on any of the master sockets.

Servers can be statically nr dynamically configurable. Static configuration occurs
when the server begins execution; dynamic configuration occurs while the server is run-
ning. Dynamic configuration allows a system adminisirator to change the set of ser-
vices without recompiling or restariing the server. The super server inetd 18 a multipro-
tocol, multiservice server available on many computers.

+ode for 2 few trivial services is built inro inetd o improve efficiency.

e e R e e plE b e b Db g T+ s e s T RMR] R

Far Further Swdy 175

FOR FURTHER STUDY

Versions of inetd are available for many compuler systems; the vendor’s documen-
tation describes the list of internal functions and calling conventions,

EXERCISES

14.1 If a connectien-otiented, concurrent, rultiservice server handles X services, what is the
maximum number of sockets it will use?

142 Expenment o find out what limits your operating sysiem places on the number of sock-
ets that can be opened simuliancously, How many sockets can a single thread open? A
single process wilth multiple threads? Multiple processes owned by a single vser?

14.3 In the previous exercise, experiment to determine if the limits depend on the size of phy
stcal memory or the size of available memory,

14.4 Consider a singly-threaded implementation of a multiservice scrver. Writc an algorithm
that shows how the server manages connechons.

14.5 Read RFC 1288 to find out about the FINGER service. Add FINGER 1o the cxample
multiservice server described in this chapter.

14.6 Design a super server that allows new serviees to be added without recompiling or res-
tarting the server.

14.7 For each of the iterative and concurrent multiservice server designs discussed in this
chapter, write an expression for the maximum number of sockels the server allocates.
Express your answer as a function of the number of services offered and the number of
requests handled concumently.

14.8 What is the chief disadvantage of a super server that calls CreateProcess to Ccreats a new
process for each request? What is the chief disadvantage of one that calls _begimthread?

14.% Look at the configuration file on a computer that runs énerd 1o find out which services it
offers.

14.10 Does it make sense to ron a World Wide Web service from a super server? Why or why
new ?

14.11 Consult a vendor’s manual that describes an inetd configuration fite. If the file permits

¢A in the argument field, what does it mean? When is it important?

T F
B LT TR 1T LB L R e e - - e e -

15

Uniform, Efficient
Management Of Server
Concurrency

15.1 Introduction

Earlier chapters present specific server designs, and show how each design uses
jterative or copcument processing. The previous chapier considers how some of the
designs can be combined o create a multiservice server.

This chapter considers concurrent servers in a broader sense. It examines the is-
sues underlying server design and several techniques for managing concurrency that can
apply to many of the previous designs. The techniques increase design flexibility and
allow a designer (o optimize server performance. Although the iterative and concusrent
designs presented in earlier chapiers may seem contradictory, they can <¢ach improve
server performance in some circumstances. Furthermore, we will see that both tech-
mques arise from a single concepl.

15.2 Choosing Between An lterative And A Concurrent Design

The server designs discussed so far have been pantitioned inte two categories: those
that handle requests iteratively and those that handle them concusrently. The discus-
sions in previous chapters imply that the designer must make a clear choice between the
two basic approaches before the server is constructed.

172

178 Uniform, Efficient Management Of Server Concurrency Chap. 15

The cheice between iterative and concument implementations is fundamental be-
cause it influences the entire program structure, the perceived response time, and the
ability of a server 1o handle multiple requests. If the designer makes an incorrect deci-
sion carly in the design process. the cost to change can be high: much of the program
may need to be rewritten.

How can a programmer know whether concurrency is warranted? How can a pro-
grammer know which server design is oplimnal? More important, how can a program-
mer estimate demand or service times? These guestions are not easy to answer because
conditions change. Once users hear about the available services, they wanl access. As
the set of connected users increases, the demand on individual servers increases. Furth-
ermore, demand can shift rapidly as a particular service becomes popular or unpopular.
At the same time, new technologies and products continually improve communication
and processing speeds. However, increases in communication and processing capabili-
ries do not usually occur at the same rate. First one, then the other, becomes faster.

One might wonder exactly how a designer can make a fundamental design choice
in a world that is constantly changing. The answer usually comes from experience and
intuition: a designer makes the best estimate possible by looking at recent trends. In
essence, the designer extrapolates from recent history to formulate an estimate for the
near future. Of course, designers can only provide an approximation: as technologies
and user demands change, the designer must reevaluate the decisions, and possibly
change the design. The point is:

Choosing between iterative and concurrent server designs can be dif-
ficult because user demands, processing speeds, and communication
capabilities change rapidly. Most designers extrapolate from recent
trends when making a choice.

15.3 Level Of Concurrency

Consider one of the details of concurrent server implementation: the level of con-
currency permitted. We define the level of concurrency for a server to be the total
number of processes or threads the server has running at a given timet. The level of
concorrency varies aver time as the server creates a slave to handle an incoming request
or as a slave completes a request and exits. Programrmers and system administrators are
not concemed with tracking the level of concurrency at any given instant, but they do
care about the maximum level of concurrency a server exhibits over its lifetime.

Only a few of the designs presented so far require the designer to specify the max-
imum level of concurrency for a server. Most of the designs permit the master server
thread to create as many concurrent slaves as needed to handle incoming requests.

Usually, a concurrent, connection-oriented server creates one slave for each con-
nection il receives from a client. Of course, a practical server cannot handle arbitrarily
many connections. Each implementation of TCP places a bound on the number of ac-
tive connections possible, and each operating system places a bound on the number of

tAlthough a few details vary, the cencurrency concepis presented im this chapter apply o concurrency
achieved with either processes or threads,

Cewe m ot hiWn R eau E. e L tmE R 4

Sec. 15.3 Level Of Concumency 179

processes or threads available (the system must restrict either the concurreéncy available
per user or the total number available). When the server reaches one of these limits, the
systemn will deny requests from functions like _beginthread or CreareProcess.

To increase server flexibility, many programmers avoid placing a fixed upper
bound on the maximum level of concuriency in the program. If the server code does
not have a predefined maximum level of concurrency, the single implementation can
operate gither in an environment that does not demand much concuirency or in an en-
vironment that has much demand. The programmer does not need to change the code
or recompile when moving a server from the former tvpe of environment to the latter.
However, servers that do not bound concurrency are at risk in an environment that
presents a heavy load. Concurrency can increase until the server’s operating system be-
comes swamped with processes or threads.

15.4 Demand-Driven f.':u:mc:ur'nam:'gr

To achieve flexibility, most of the concurrent server designs presented in earlier
chapters use incoming requests to trigger an increase in concurrency. We call such
schemes demand-driven, and say that the level of concurrency increases on demand?.

Servers that increase concurrency on demand may seem oplimal because they do
not use system resources {(e.g., tables if the system or buffers} unless needed. Thus,
demand-driven servers do not use resources unnecessarily. In addition, demand-driven
servers provide low observed response times because they can handle multiple requests
without waiting for processing to complete on an existing request.

15.5 The Cost Of Concurrency

While the general motivation for demand-driven cencurrency is laudable, the im-
plementations presented in earlier chapters may nct produce optimal results. To under-
stand why, we must consider the subtleties of thread creation and scheduling as well as
the details of server operation. The central issue is one of how to measure the costs and
benefits. In particular, one must consider the cost of concurrency as well as its benefits.

15.6 Overhead And Delay

The server designs presented in earlier chapters atl use incoming requests as a
measure of demand and as a trigger for increased concurrency. The master server wails
for a request, and creates a new slave to handle it immediately after the request armves.
Thus, the level of concumrency at any instant reflects the number of requests the server
has received, but has not finished processing.

FThe term regueest-driven concurrency can also be uied with servers, because demand i5 measured by the
numbzr of requests being serviced.

80 Unilorm, Efficient Management OF Server Coficumency Chap. 15

Despite the apparent simpiicity of the demand-driven scheme, creating a new
thread for each request can be expensive. Whether the server uses connectigniess or
connection-oriented ransport, the operating system must inform the master server that a
message of a connection has arrived. The master must then ask the system to create a
slave.

Receiving a request from a network and creating a new thread can take consider-
able ume. In addition to delaying request processing, creating a thread consumes sys-
tem resources, Thus, on a conventional uniprocessor, the server will not execute while
the operating sysiem creates a new thread and switches thread context,

15.7 Small Delays Can Matter

Does the short delay incurred while creating a new process or thread matter? Fig-
ure 15.1 shows how it can.

} Handie req. 1 A Handie req. 2

Croato siave 1 / Craate slave 2 /

concurrant - |
¢ 0 c 2c 2C+p
fa)
Handle req. 1 Handle req. 2
iterative :
0 4] 2p
{b)

Figure 15.1 {a} The time required to handle two requests in a comcurrent
server and (b) in an iterative version of the server. The iterative
version has lower delay because the time required to bandle a
request, p. is less than the time required to create a thread, c.

The figure shows an example in which the time required to handle a request is less
than the time required ta create a new thread. Let p denote the processing time, and let
¢ denote the time required to create a thread. Assume that two requests arrive in & burst
at time (. The concurrent version completes processing the first request after ¢ + p time
units, and it finishes processing the second after 2¢ + p time units. Thus, it requires an
average of 3¢/2 + p time units per request. An iterative server completes processing
the first request at time p and the second at time 2p, yielding an average of only 3p/2
time units per request. Thus, the iterative server design exhibits lower average delay
than the concutrent version.

r

Sec. 157 Small Delays Can Matter 181

The small additional delay may seem unimportant when considering only a few re-
guests. However, the delay can be significant if one considers the continuous operation
of a server under heavy load. If many requests arrive close to the same time, they must
wait while the server creates threads to handle them. If addittonal requests ammive faster
than the server can process them, the delays accumuiate.

In the short term, small delays in the server affect the observed response time but
net the overall throughput, If a burst of requests arrives at or near the same time, proto-
col software in the operating system will place thermn in a queue until the server can ex-
tract and process them. For example, if the server uses a connection-oriented transport,
TCP wil} enquene connection requests. [F the server uses a connectionless transport,
UDP will enqueve incoming datagrams.

In the tong term, extra delays can cause requests to be lost. To see how, imagine a
server that takes ¢ time units to create a thread, but only p time units {p <c) Lo process a
request. A concurrent implermentation of the server can handle an average of 1/¢ re-
guests per unit time, while an iterative version can handle 1/p requests per unit time.

A problem arises when the rate at which requests arrive exceeds L, bul remains
less than 1/p. An iterative implementation can handle the load, but a concurreat imple-
mentation spends too much time creating threads. In the concumrent version, queues in
the protocol software eventually become full, and the software begins rejecting further
requests.

In practice, few servers operate close Lo their maximum throughput. Furthermore,
few designers use concurrent servers when the cost of creating a thread exceeds the cost
of processing. Thus, request delay or loss does not occur in many applications. How-
ever, servers designed to provide optimum response under heavy load must consider al-
ternatives to demand-driven concurrency.

15.8 Thread Preallacation

A straightforward technique can be used to control delay, limit the maximum level
of concurrency, and maintain high throughput in concurrent servers when thread crea-
tion time is significant. The technique consists of preallecating concurmrent threads to
avoid the cost of crealing them.

To use the preallocation technique, a destgner programs the master server to create
N slave threads when it begins execution. Each thread uses facilities available in- the
operaling system (0 wait for a request to airive. When a request arrives, one of the
waiting slave threads begins execution and handles the request. When it finishes han-
dling a request, the slave does not terminate. Instead, it returns to the code that wails
for ancther request.

The chief advamage of preallocation arises from lower operating system overhead.
Because the server does not need to create a thread when a request arrives, it can handie
requests faster. The technique is especially important when request processing invelves
more 10 than computation. Preallecation allows the server system ta switch to another

182 Uniforn, Effizient Management OF Secver Concurrercy Chap. 15

thread and begin to handle the mext request while waiting for /O activity associated
with the previous request. To summarize:

When using preallocation, a server creates concurrent slave threads
at startup. Preallocation can lower server delay because it aveids the
cast of creating a thread each time a reques! arrives and allows pro-
cessing of one request to overlap IO activity associated with another.

15.8.1 Preallocation Technigues

The details of preallocation depend on the facilities available in the underlying
aperating systemn and the type of concurrency used. In Windows systems, preallocated
threads can use shared memory to coordinate with the master; preallocated processes
often rely on message passing facilities. In systems that do not offer shared memory,
preallocation may still be possible because the master and slaves can use socket func-
tions to coordinate.

Socker functions can be used to coordinate corcurrency in Svstems
that allow a child thread or process to inherit access o socket
descriptors that the parent has opened.

To take advantage of socket sharing, a master server opens the necessary socket
before it preallocates any slave. In particular, when it starts, the master server opens a
socket for the well-known port al which requests will arrive. The master then uses the
appropriate operating system function to create as many slaves as desired. Because
each slave inherits copies of socket descriptors from the parent, all slaves have access to
the socket for the well-known port. The next sections discuss how the socket functions
can be used to handle preallocation in connection-oriented and conmectioniess servers.

15.8.2 Preaillocation In A Connection-Orlented Server

If a concurrent server uses 'FCP for communication, the level of concurrency
depends on the number of active connections. Each incoming connection request must
be handled by sn independent process or thread. Fortunately, in most systems, the
socket functions provide mutual exciusion for multiple slaves that all attempt te accept
a connection from the same socket. Each slave calls accept, which blocks awaiting re-
ceipt of an incoming connection request to the well-known port. When a connection re-
quest arrives, the system unblocks exactly one of the slaves. In an individual slave,
when the call o cecept returns, it provides a new file descriptor used for the incoming
connection. The slave handles the connection, closes the new socket, and then calls ac-
cept to wait for the next request. Figare 15.2 shows the thread structure.

As the figure shows, all staves inherit access 10 the socket for the welt-known port,
An individual slave receives a new socket used for an individual connection when its
call to acceps returns. Although the master creates the socket that corresponds o the
well-known port, it does not use the socket for other operations. The dashed hine in the

T iemidt ER e Al b L EERE R HE ABACERM S 4 v

Sec. |58 Thiread Preallocation 183

diagram denotes the difference between the master’s use of the socket and the slaves'
use.

Although Figure 15.2 shows a master thread running at the same time as the
slaves, the distinction between master and slave i1s somewhat blurred. In practice, the
master has no role after it preallocates the slaves. Thus, the master can simply ter-
minate once the slaves have been started*. A clever programmer can even arrange for
the master to create all except the last slave thread The master then becomes the last
slave, thereby =aving the cost of one exira thread creation. In Windows, the code re-
quired to do so is trivial.

rmaster

prealiocaterd
= slaves

socket for sockets for Individual operating
connaection connections {created - system
requasis by accep!)

Figure 15.2 The thread structure in a concurrent, connection-oriented server
that preallocates slaves. The example shows three preallocated
slaves with one of them actively handiing a connection. The
master opens the socket for the well-known port, but does nol
use it.

15.8.3 Preallocation In A Connectionless Server

If a concurrent server uses connectionless transport, the level of concurrency
depends on the number of requests that arrive. Each incoming request arrives in a
separate UDP datagram, and each must be given to a separale thread. Concurrent, con-
nectionfess designs usually arrange for a master server to create a separate slave when a
request ammives.

Windows permits a connectionless server to preallocate slaves using the same
preallocation strategy as is used in connection-oriented servers. Figure [5.3 shows the
thread structure.

tin practice, some systems require the master to remain allocated because u *"owns™ the slaves.

184 Uniform, Efficient Management Of Server Concorrency Chap. |5

prealiocated
= slaves
sochet for operating
well-known T system

port

Figure 153 The thread structure for a concurrent, conmectionless server thal
preallocates slaves. The diagram shows three slaves that all read
from the socket for the well-known port. Only one slave re-
ceives each incoming reguest,

As the figure shows, each slave shares access (o the socket far the well-known
port. Because comsmunication is connectionless, the slaves can use a single socket to
send responses as well as 1o receive incoming requests. A slave calls recvfrom 10 ob-
tain the sender’s address as well as a datagram from that sender; 1l calls sendto 10
transmit a reply.

As in a connection-oriented server that uses prealtocation, the master for the con-
necrionless case has little to do afier it opens the socket for the well-known port and
preallocates the slaves, Thus, it can either termnate or choose 1o transform itself into
the last slave 10 aveid the overhead of ¢reating the last thread.

15.8.4 Prealiocation, Bursty Traffic, And NFS

Experience has shown that because maost implementations of UDP do not provide
large queues for ammiving datagrams, bursts of incoming requests can easily overrun a
queue. UDP merely discards datagrams that arrive after the receiver’s queue has filled,
s0 bursts of traffic can cavse loss.

The problem of overrun is especially difficult because UDP software often resides
in (he aperating system. Thus, application programmers cannot always modify it easily.
However, application programmers can preallocate siave threads. The preatlocation is
usuatly sufficient to eliminate koss.

B I L T T T B ey EEIEES - - . Caens O PR

Sec, 15.8 Thresd Preallocation 185

Many implemeniations of NFS use preallocation to avoid datagram loss. If one ex-
amines a system running NES, one often finds a set of preallocated servers all reading
from the same UDP socket. In fact, preallocation can mean the difference between a
usable and an unusable implementation of NFS.

15.8.5 Preallocation On A Multiprocessor

Preailocation on a multiprocessor has a special paurpose. It permits the destgner to
relate the level of concurrency in a server to the hardware's capability. If the machine
has X processors, the desipner can preallocate X slaves. Because multiprocessor operat-
ing systerns give each process or thread {o a separate processor, a preallocation can en-
sures that the level of concurrency matches the hardware. When a reguest arrives, the
operaling system passes it 1o one of the preallocated slaves, and assigns that slave to a
processor, Because the siave has been preallocated, tittle time is required to start it run-
ning. Thus, the system will distribute requests quickly. [f a burst of requests arrives,
each processor will handle one request, giving the maximum possible speed.

15.9 Delayed Thread Allocation

Although preallocation can improve efficiency, it does not solve all problems.
Surprisingly, in some circumstances efficiency can be improved by using the opposite
approach: namely, delaying slave allocation.

To understand how delay can help, recall that thread creation requires ume and
resources. Creating additional threads can only be justified if doing so will somehow
increase the system throughput or lower delay. Creating a thread not only takes time, it
also adds overhead to the aperating system component that must manage threads. [n
addition, preallocating threads that all attempt to receive incoming requests may add
overhead to the networking code.

We said that concurrency will lower deiay if the cost of creating a thread is smaller
than the cost of processing a request. An iterative solution works best if the cost of
processing d request is smaller, However, a programmer cannot always know how the
costs will compare because the titne required may depend on the request (e.g., the time
required to scarch a database may depend on the query).

In addition, the prograsnmer cannot know whether an error will be found quickly.
To understand why, consider how most server software works. When a requesl arrives,
the server software checks the message to wverify that the fields contain appropnate
valpes and that the client is authorized 10 make a request. Venfication can take a few
microseconds, or it may involve further network communication that can take several
orders of magnitude longer. On one hand, if the server detects an error in the message,
it will reject the request quickly, making the total 1ime required to process the message
negligible. On the other hand, if the server receives a valid request, it may take consid-
erable processing ime. [n cases where processing fime is short, concurrent processing
is unwarranted; an iterative server exhibits lower delay and higher throughput.

185 Uniform, Efficient Managerment Of Server Concurrency Chap. 15

How can designers optimize delay and throughput when they do not know whether
concurrent processing is justified? The answer lies in a technique for delayed con-
currency. The tdea is straightforward: instead of choosing an iterative or concurrent
design, allow a server (o measure processing cost and choose between iterative handling
or concurrent handling dynamically. The choice is dynamic because it can vary from
one request 10 the nexi.

To implement dynamic, delayed allocation, servers usuaiiy estimate processing cost
by measuring elapsed time. The master server receives a request, sets a timer, and be-
gins processing the request iteradvely. If the server finishes precessing the request be-
fore the timer expires, the server cancels the timer. If the timer expires before the
server finishes processing the request, the server creates a slave and allows the slave to
handle the request. To summarize:

When using dvnamic, delaved aliocation, a server begins processing
each regquest iteratively. The server creates a concurreni thread to
handle the request only if processing rakes substantial time. Doing so
aflows the master to check for errars and hanidle short requests before
it creates a thread or switches contexi.

In most systems, delayed allocation is casy. The operating systemn offers mechan-
isms that permit a running program to set an asynchropous timer. When it begins to
handle a request, the master sets a timer. When the timer expires, the master creates a
slave, and arranges for the slave to continue. processing exactly at the point where the
master was executing before the timer expired. If the master created a sacket for the re-
quest, the slave takes control of the socket.

15.10 The Uniform Basis For Both Techniques

It may seem that the iechniques of slave preallocation and delayed slave aliocation
have nothing in common. In fact, they secem to be exact opposites. However, they
share much in common because they both arise from the same conceptual principle: it is
possible to improve the performance of some concurrent servers by relaxing the interval
hetween request arrival and slave creation. Preallocation increases the level of server
concurrency before requests amive; delayed allocation increases server concurrency after
requests ammve, The idea can be summarized:

Preallocation and defaved aliocation arise from a single principle: by
detaching the level of server concurrency from the number of current-
Iy uctive requests, the designer can gain flexibility and improve server

efficiency.

Sec. 1511 Combining Techniques

15.11 Combining Techniques

The lechniques of delayed allocation and preallocation can be combined.
A server can begin with no preallocated threads and can use delayed aliocation,
1t waits for a request to arrive, and only creates a slave if processing takes a
long tme (ie., if its Hmer expires). Once a slave has been created, however,
the slave need not exit immediately; it can constder itself permanently allocat-
ed and persist. After processing one request, the slave can wait for the next in-
coming request to arrive.

The biggest problem with a combined system arises from the neged to con-
trol concurrency. 1t is easy to know when (0o ¢create an additional slave, but
more difficult 10 know when a slave should cease execotion instead of persist-
ing. One possible solution arranges for the master to specify a maximom pro-
pagation value, M, when creating a slave. The slave can create up to M addi-
tional siaves, each of which can create zero more, Thus, the systern begms
with only a single master thread, but eventually reaches a fixed maximum level
of concurrency. Another techpique for controlling concurrency involves ar-
ranging for a slave to terminate after a period of inactivity. The slave starts a
timer before it waits for the next request. [f the timer expires before a request
arrives, the slave terminates.

In systems like Windows, the slaves can use facilities like shared memory
lo coordinate their activities. They ¢reate a shared integer that records the level
of concurrency at any instant, and vse the value to determine whether 1o persist
or terminate after handling a request. In systems that permit an application to
find out the number of requests enqueued at a socket, a slave can also use the
gueue length to help it decide the level of concurrency.

15.12 Summary

Two main techniques. permil a designer to improve concurrent server per-
formance: preallocation and delayed allocation of slaves.

Preallocation oprimizes delay by arranging to create slaves before they are
needed. The master server opens a socket for the well-known port it will use
and then preallocates all slaves. Because the slaves share access 1o the socket,
they can all wait for a request 1o arrive. The system hands each incoming re-
quest tc exactly one slave. Preallocation is important for concurreni, connec-
tionless servers because the lime required to process a request is usually small,
making the overhead of thread or process creamion significant. Preallocation
aiso makes concurrent, connectionless designs efficient on multiprocessor sys-
lema.

Delayed allocation uses a lazy approach to concwrency management. A
muster server begins processing cach request iteratvely, but sets a amer. B
creales a concurrent slave to handle the request if the (imer expires before the

187

188 Uniform, Efficienl Management Of Server Concurrency

master finishes. Delayed allocation works well m cases where processing
HMes vary among requests or when a server must check a request for correct-
ness (e.g.. 1o venfy that the client is authonzed). Delayed allocation eliminates
thread creation overhead for short requests or requests that contain errors.

Although they appear to be opposite, both optimization techniques. arise
from the same basic pninciple: they relax the strict coordination between the
level of concurrency in the server and the number of pending requests. Doing
50 ¢an improve server performance.

FOR FURTHER STUDY

Chapters 23 and 24 descnibe the Network File System (NFS), Many im-
plementations of NFS use preallocation 1o help avoid loss of requests.

Bevenidge and Weiner £1997] describes multithreaded applications that
use Win32. Furiher details about the functions available for process and timer
management can be found in the documentation that vendors supply with stan-
dard compilers.,

EXERCISES

151 Modify one of the example servers in previous chapters to use preallocation.
How does the performance change?

15.2 Modify one of the example servers in previous chapters 10 use delayed alloca-
tion. How does the performance change?

15.3 Test a connechioniess server that uses preallocation on a mulliprocessor. Be
sure (o arrange for clients o transmit bursts of requests. How does the useful
level of concurmency relate to the number of processors? [F the two are not the
same, explain why.

154 Write a server alporithm that combines delayed allocation with preallocation.
What scheme did you choose to limit the maximum level of concurrency?
Why?

155 In the previous question, if your operating system offered a message passing
facility, how could you use it to contral the level of concurrency?

15.6 What advantages can one obtain by combining the techniques discussed in this
chapter with a concurrent, singly-threaded server?

157 How can a designer use the technigues discussed in this chapter with a mul-
uservice server?

T T R Ll A R Ip

Chap. 15

16

Concurrency In Clients

16.1 Introduction

The previous chapters show how servers can handle requests concurrently. This
chapier considers the issue of concurrency in client software. It discusses how a client
can benefit from concurrency and how a concurrent ctient operates. Finally, it shows an
example client that illustrates concurrent operation.

16.2 The Advantages Of Concurrency

Servers use CONCUITENCY for two main reasons:

* Concurrency can improve the observed response time (and therefore the
overall throughput to all clients).
+ Concurrency can eliminate potential deadlocks.

In addition, a concurent implementation permits the designer to create multiprotecol or
multiservice servers easily. Finally, concurrent implementations that vse multiple
processes or threads are extremely flexible because they operate well on a variety of
hardware platforrns. When ported to a computer that has a single CPU, they work
correctly. When ported t0 a computer that has multiple processors, they operate more
efficiently becavse they take advantage of the additional processing power withount any

changes 1o the code.
It may seem that clients could not benefit from concurrency, primartly because a

client usually performs only one aclivity at a time. Once it sends a request o a server,

189

190 Concurrcncy In Clients Chap. 16

the client cannot proceed until it receives a response. Furthermeore, the issue of client
efficiency and deadlock are not as serious as the 1ssue of server deadlock because if a
client slows or ceases to execute, it stops only itself — other clients continue 1o operate.
Despite appearances, concurrency does have advantages in clients. First, con-
current implementations can be easier to program beczuse they separate functionality
into conceptually separate components. Second, concurrent implementations can be
gasier to maintain and extend because they make the code modular. Third, concurrent
clients can contact several servers at the same hme, either to compare respanse times or
10 merge the resuits the servers return. Fourth. concurrency can allow the user (o
change parameters, inquire about the client status, or control processing dynamically.
This chapter will focus on the idea of interacting with multiple servers at the same time.

The key advantage of wsing concurrency in clients lies in asynchrony.
It allows g client to handle midtiple tasks simultaneously without im-
posing a sirict execution arder on them.

16.3 The Motivation For Exercising Control

One possible use of asynchrony arises from the need to separate concrol functions
from normal processing. For exampie, consider a client used to query a large demeo-
graphic database. Assume a user can generate quenes like:

Find all peaple wha live on Elm Street.

If the database contains information for a single town, the response could include fewer
than 760 names. If the database contains information about all people in the United
States, however, the response could contain hundreds of thousands of names. Further-
more, if the database system consists of many servers distributed acrass a wide geo-
graphic area, the look up could take many minutes.

The database example illustrates an important idea vnderlying many client-server
interactions: a user who invokes a client may have little or no idea how long it will take
to receive a response or how large that response will be.

Most ¢lient software merely waits until a response arrives. Of course, if the server
malfunctions, deadlock occurs and the chent will block attempting to read & responsec
that will never arrive. Unfortunately, the user cannot know if a true deadiock has o¢-
curred or if processing is merely slow because network delays are high or the server is
overloaded. Furthermore, the wser cannot know whether the chent has received any
messages from the server.

I a user becomes impatient or decides that a particular response requires toe much
time, the user has only one option: abort the chient program and try again later. In such
situations, concurrency can help because an appropriately designed concurrent client can

Comm e e e e . PR o e L TNT.IN T TUT T e e R I AR

Sec. 163 The Motivalion Far Exercising Control 19]

permit the user to continue 1o iateract with the client while the client waits for a
response. The user can find out whether any data has been received, choose to send a
different request, or terminate the communication gracefuily.

As an example, consider the hypothetical database client described above. A con-
current implementation can read and process commands from the user’s keyboard con-
currently with the database search. Thus, a user can type a command like status to
determine whether the client has successfully opened a connection to the server and
whether the client has sent a request. The user can type abor? to stop communicatior,
or the user can type rewserver to instruct the client to terminate the existing communi-
cation and antempt to communicate with another server.

Separating client control from normal processing allows a user to interact with a
client even if the normal input for the client comes from a file. Thus, even after the
user starts a client handling a large input file, he or she can interact with the running
client program to find out how processing has progressed. Similarly, a concurrent client
can proceed to place responses in an outpwt file while keeping its interaction with the
vser separate.

16.4 Concurrent Contact With Multiple Servers

Concurrency can allow a single client to contact several servers at the same time
and to report to the user as soon as it receives a response from any of them. For exam-
pte, a concurrent client for the TIME service can send to multiple servers and either ac-
cept the first response that armives or take the average of several responses.

Consider a client that uses the ECHO service 10 measure the throughput to a given
destination. Assume the cliem forms a TCP connection to an ECHO server, sends a
large volume of data, reads the echo back, compates the total time required for the task,
and reports the ime. A user can invoke such a client to determine the current network
throughput.

Now consider how concurrency can enhance a client that uses ECHO to measure
throughput. Instead of measuring one connection at a time, a concurrent client can ac-
cess multiple destinations at the same time. It can send to any of them and read from
any of them concurrently. Because it performs all measurements concurrently, it exe-
cutes faster than a non-concurent client. Furthermore, becavse it makes all measure-
ments at the same time, they are all affected equally by the loads on the CPU and the
local network.

16.5 Implementing Concurrent Clients

Like concurreni servers, most concurrent client implementations follow one of two
basic appreaches:

192 Concurrency [n Clients Chap. 16

= The client divides into two or more threads that each handie one function,

or

* The client consists of a single thread that uses sefect to handle muitiple in-
put and outout evenis asynchronously.

Systems like Windows have support for threads that share memory. On sach sys-
tems, multiple threads can be used {o create a concurent client when the application
uses a connection-oriented protocol. Figure 16.1 itlustrates the thread structure of such
4 program.

output
client
%= threads
| N | | L1 IIJ
operating
control input TCPR output
descriptor e socket T svstem

Figure 16.1 One possible thread structure for 2 connection-oriented client that
nses multiple threads to achieve concurfent processing. One
thread handles mput and sends requests to the server, while
another retrieves resporses and handles output.

As Figure 16.1 illustrates, multiple threads allow the client to separate input and
output processing. The figure shows how the threads interact with [1A) device sockets.
An input thread reads from the keyboard, formuiates requests, and sends them to the
server over the TCP connection, while a separate oufput thread receives responses from
the server and displays them on the user’s screen. Meanwhile, a third control thread
accepts commands from the user or system administrator that control processing.

e ey [, T R L ot ot TRT P T S VR

Sec. 166 Singly-Threaded Implementations) 193
16.6 Singly-Threaded Implementations

Some operating systems do not support threads that share memory, For example,
the multithreaded implementation described above does not work under some versions
of UNIX. Concurrent clients built for such systems usually implement concurrency
with a singly-threaded algorithm similar to Algorithm 8.5t and the examples in
Chapters /2through {4, Figure 16.2 illustrates the thread strocture of such clients,

client
= thread

- 1 1 L

operating
in TCP TCP TCP
put mocket, socket, socket, | = Jystem

Figure 16.2 The thread structure of a conmection-oriented client that provides
apparent concurrency with a single thread. The client uses
select o handie multiple connections concurrently.

A singly-threaded client uses asynchronous IO like a singly-threaded server. The
client creates socket descriptors for its TCP connections to muoltiple servers. It may also
have a connection to an input device such as a keyboard. The body of a chient program
consists of a loop that checks the input device and then uses select to wait for one of its
socket descriptors to become readyf. If the input device is ready, the client reads the
input and either stores it for later use or acts on i1 immediately. If a TCP connection
becomes ready [or output, the client prepares and sends a request across the TCP con-
nection. If a TCP connection becomes ready for input, the client reads the response that
the server has sgnt and handles it.

Of course, a singly-threaded concument client shares many advantages and disad-
vantages with a singly-threaded server implementation. The client reads input or
responses from the server at whatever rate they are generated. Local processing will
cantinue even if the server delays for a short time. Thus, the client will continue to
read and honor control commands even if the server fails to respond.

+3ee pape 114 for a description of Algorithm 5.5
$The client can use the timeout feature of selecy 0 ensure thal it checks the input device frequently.

194 Concurrency In Clients Chap. 1

A singly-threaded clieat can become deadlocked if it invokes a system function
that blocks. Thus, the programmer must be careful to ensure that the client thread does
noi block indefinitely waiting for an event that will not occur, Of course, the program-
mer may choose to ighore some cases and to allow the user to detect that deadlock
problems have occurred. It is important for the programmer to understand the subtleties
and to make conscious decisions about each case.

16.7 An Example Concurrent Client That Uses ECHO

An example client that achieves concurrency with a single thread will clarify the
ideas presented above. The example concurrent client shown below in fiie
TCPiecho.cpp uses the ECHO service described in Chapter 7 to measure network
throughput to a sel of machires.

/* TCPtecho.cpp - main, TCPtecho, reader, writer, mstime */

#include <stdio.hx
#include «<string.h>
#¥include <time. o>
#include <winsock.h>

#define BUFSIZE 4096 i* write vaffar =ize
#define COOUNT 64*1024 /* default character count
#define WSVERS MAFEWORD{Z, 0]

#define MIN(x, v} {(xy=(y) 2 (¥} : (x})

#lefine USRGE "uzage: TCFtecho [—¢ count] hostl host2...\n"

struct hdat {

char *hl name;. /* host name
SOCEET hd_sock; /* host socket descriptor
unsighed hd_re; /* recy character count
ungigned hd we; /* sensd character count
} hdat [FD) SFETSIZE]; /* fd to host name mapping
char uf [BUFSIZE] ; /* read/write data buffer

woid T Ptecho (fd_=set *, int}:

int reader (struct hdat *, £d_set *);
void writeristruct hdac *, fd_set *};
wold errexiticonst char *, ...}:

SOCKET comnectTCP(const char *, const char *);
long matime{u long *);

B T . T T g e m sl T TR

*f
*

7
>/
*/
*/
*/
*/

Sec. 16.7 An Exarapie Concurrent Chientl That Useas ECHO 155

*f

vorid

main{int argc, char *argv[l)

L
int cooumt = COOUNT;
int i, hoount, f£d;
unsigned long ocnz = 1;
fd =et afds;
WEADATH wadata;
heount = 0

if {WSAStartup(WSVERS, &wadakta))
errexit {"WSaAStartup failed\n*};

FI» ZERO{&afds);

for (i=1; i=argc:; ++i) {

if (stremplargr[i], "-c™) == Q) {
if {++i = arge && (coocunt = atoi{argwi(ilil!)
continue;

errexit (USAGR) ;

}
/* else, a host */

fd = conmectTCPlargw{i], *echo"};

if {icctlsocket{fd, FINBIO, &onel) (
fprintf (stderr, |
"ran't mark nornblocking (host %3): %dA\n",
argv[i], GetLastErrox(l);
continue;

hdat (hcount] .hd name = argv(i]:
hdat [heount] .hd_seck = £d4;
hdat [heournt] .hd re = hdat (heounc] hd_wie = ccount;
++hoount ;
FD _SET(fd, Rafds);
}
TCPtecho (&afds, hoount)
WSACleanup{) ;
exit (0]

194 Concurrency In Clients Chap. 16

LF
woid
TCPrecho(£d_set *pafds, int hoount)
{

£f4_set rfd=s, wfds; /* read/write £fd mets

fd set rcfds, wcfds; /* read/write f£3 sets (copy)
int fd, hnadx, i:

faor (i=0: i<BUFSIZE: ++i) /* echo data * 5

baf{i] = 'D';
memcpy (krcfds, pafds, mizecf{rcfds});
memcpy (swcfds, pafds, sizeof{wcfds)):

{void) mstime((u_long *)0); {* set the epoch */

while (hcocount) {
mererny (erfds, Ercfds, sizecfirfds)):
mesncpnyr (Ewfds, Swofds, sizeofiwfds)):

if [select(FD_SETSIZE, &rfds, &wfds, {fd _set *)0,
{struct timeval *}0} == SOCKET_ERROR}
errexit{"select failed: errcr %d\n".
GetLastErrori)):
for (ndx=0; hndx<hcount; ++hndx) {
£fd = hdat [Ymdx] .hd_sock;
-if {FD_IBSETIIA, &rids}}
if {reader {(&hdat{hndx), &rcfds} == 0}
/* thig host is done */
for {i=hndx+l; i<hcount; ++i)
hdat[i-1)=hdat[i]);
hoount-—;
continue;
}
if (FD_ISSETI(f4, &wids))
writer (&hdat [hndx], &wcfds);

— e e - . P R R L Tt e R T I P

*f
*/

Scc. 16.7 An Erxample Concurrent Client That Uses ECHG : 197

o ——— L ——————— ———————— T ——— T —— T ——— Ty ——— T - T T T —— T T —— T —— =iy —— — y — —

*
int
reader (struct hdat *phd, fd_set *pfdset)
{
1 leng now:
inc co;
oo = recviphd->hd =sock, uf, sizeofibaf),)
if {cec == BOCKET _ERROR)
errexit("recv: error ¥g\n", GetlLastBrror(}):
if [co == 0}
errexit("recv: premature end of file\n");
phi->hd ro -= oo
if {phd->hd_rc » 0}
returm 1;
fvoidi metime{&now) ;
printf{"%s: ¥d ma\n", phd->hd name, now};
{void) closesocket {phd->hd_sock) ;
FD_C.RI(phd->hd sock, pfdset);
return 0;
}
,I"* __
* writer - handle ECHO writes
S ————
*/
vold
writer {struct hdat *phd, fd set *pfdset]
{
int oo

ce = send (phd->hd_sock, buf, MIN(sizeof (buf), phi--hd we}, 0):
if (oo == SOCEKET _ERROR)

errexit("gend: error nunber %d\n", GetLastError(}}):
phd->hd we -= eg;
if (phd->hd wc == () {

(woid} shutdown (phd->hd sock, 1}

FI CLR (phd->hd_sock, pfdset);

19% Concurmency In Cliens Chap. %

long

mstime(u long *pms)

{
static unsigned long atoch;
unsigned long TICW

now = clockl);

if {pms == 0} {
epochl = now;
return Q;

1

*ome = now — epoch:

return ‘oms;

16.8 Execution Of The Concurrent Client

The TCPtecho program accepts multiple machine names as arguments. For each
machine, it opens a TCP conrection to the ECHO server on that machine, sends crount
characters (bytes} across the connection, reads the bytes it receives back from each
server, and prints the total time required to complete the task. Thus, the program can be
used to measure the current threughput to a set of machines.

The main program begins by initializing the character count vanable to the default
value, CCOUNT. It then parses its arguments to see if they include the -¢ option. [f so,
il canverts the specified count to an integer and stores it in vanable coount to replace
the default.

The program assumes all arguments other than -¢ specify (he name of a machine.
For each such argument, it calls conneciTCP 10 form a connection to the ECHOCr server
on the named machine, and allocates an entry in array hdat to store information about
the connection. It records the name of the remote machine in field hd _name and the
descriptor for the socket in field Ad_sock. Finally, 1t uses macro FID_SET to add the
socket to the descriptor set.

Onge it has established a TCP connection for each machine specified in the argu-
ments, the main program callz procedure 7CPtechsz to handle the transmission and re-
ception of data. TCPtecho handles all connections concurrenily. 1t fills buffer buf with
data to be sent (the letter £), and then calls select to wait for any TCP connection 1o be-
come rcady for input or lor outpul. When the sefecr call returns. TCPrecho iterates
through all descriptors to see which are ready.

Soc, 168 Execunon Of The Concument Client (R

When it finds that a connection 15 ready for output, TCPrecho calls procedure writ-
er, which sends as much data from the buffer as TCP will accept in a single call to
send. If wrirer finds that all data has been sent, it calls shurdown to close the descriptor
for output and removes the descriptor from the output se1 used by sefect.

When a connecsion 15 ready for input, 7CPreche calls procedure reader, which ac-
cepts as much data from ihe vonnection as TCP can deliver and place in the beffer.
Procedure reader receives data, places it in the buffer, and decrements the count ol
characters remaining. 1f the count reaches zero {i.c.. the scrver has received as many
characters as it sent). procedure reader computes how much time has elapsed since data
transmssion started, prnts a message. and closes the conhection. It also removes the
descriptor from Lthe wnput set used by select. Thus, a message that reports the tota: time
required to echo data appears on the output each time a conneclion completes.

After performing a single input or output operaticn on a connection, procedures
reader and writer each return and the loop in TCPrecho continues o iterate, cailing
seleet again. Feader vetorns a valoe of 0 1f it detected an end of file condition and
closed a connection, and a value of 7. otherwisc. TCPtecho uses reqder’s return code
to delermine whether it should remave the record of the connection. 'When the count of
connections reaches zero, the loop in TCPtecho terminates, TCPtecho retums o the
main program, and the main program returns, causing the client to cease execution,

16.9 Managing A Timer

To compute the time that elapses while sending and receiving data, TCPrecho calls
procedure mstime. In principle, computing elapsed time is straightforward. However.
because the clock [unction in Windows returmns the time in milliseconds, the elapsed
time for an event must be computed by subtracting the time at which the task starts
from the time it finishes. Thus, at lzast two procedure calls are required — one to record
the value from clock before starting, and another o subtract the initial value from the
current time.

Mstime is used both to record the starting time and to compute elapsed time. [t
takes a single argument, pms, and uses the value to determine how to proceed. If the
argument is zero, mstime records the current time in slatic variable epoch. 1f the argu-
ment is nonzero, mstime computes the difference between the current time and the
stored epoch value, stores the result in the location given by pms, and returns the result
as the value of the funclion.

206 Concurrency [n Clients Chiap. 16

16.10 Example Output

Figure 16.3 shows sample output {rom three separate executions of TCPtecho.

% TCPtecho localhost
localhost: 311 ms

% TCPtecho ector arthur merlin
arthur: G601 ms
merlin: 4921 ms
ector: 11791 m=

% TCPtecho -c 1000 sage
sage: 80 ms

Figure 16.3 An exampie of the output from three separate execulions of
TCPreche. A destination requires more time if it is further away
from the client or has a slower processor.

The first invocation shows that TCPrecha only reguires 371 milliseconds to send
data 1o the ECHO server on the local machine, The command line has a single argu-
ment, localhost. Because the second invocation has three arguments (ector, arthur, and
meriin), it causes TCPreche 1o interact with all three machines concurrently. The third
invocation measures the tkme required to reach machine sage, but the command linc
specifies that TCPtecho should only send 1000 characters instead of the default (64K).

16.11 Concurrency In The Example Code

A concurrent implementation of TCPtecho improves the program in two ways.
First, a concurrent implementation obtains a more accurate measure of the time required
for each connection because it measures the throughput on all connections during the
same time interval. Thos, congestion affects all connections equally. Second, a con-
current implementation makes 7CPteche more appealing to users. To understand why,
look again at the times reported in the sample output for the second tnial. The output
message for machine arthur appears in a little over one half of a second. the message
for machine merlin appears afier about five seconds, and the final message, for ector,
appears after about twelve seconds. If the user had to wait for all tests to run sequen-
tially, the total execution would require approximately eighteen seconds. When measur-
ing machines further away on the Internet, individval times can be substantially longer,
making the concurrent version much faster. In many circumstances, using a sequential
chient implementation to measure & machines can take approximately & times longer
than a concurrent version.

1,

Sec. 16,12 Summary 201
16,12 Summary

Concurrent execution provides a powerful tool that can be used in clients as well
as servers, Concurment client implementations can offer faster response time and can
avoid deadlock problems. Finally. concurrency can help designers separate control and
status processing from normal input and output.

We studied an example conncction-oriented client that measures the tme required
10 access the ECHO server on one or more machines. Because the client executes con-
currently, it can avoid the differences in throughput caused by network congestion by
making all measurements during the same time interval. The concurrent implementa-
tion also appeals to users because it overlaps the measurements instead of making the
user wail 10 perform them sequentially.

EXERCISES

16.1 Notice that the example client checks ready socket descriptors sequentially. If many
descriptors become ready simultareously, the client will handle the descriptors with
towest indexes first, and then ierate through the others. After handling all ready
gescriptors, i again calls sefecs 1o wait until ancther descriptor becomes teady. Consider
the time that elapses between handling a ready descriptor and calling sefect. Less time
elapses afier operations on descripiors with higher indexes than elapses after operations
on descriptors with low indexes. Can the difference lead to starvation? Explain.

16.2 Modify the example client to avoid the unfairness discussed in the previous exercise.

16.3 For each of the iterative and concurrent client designs discussed in His chapter, write an
expression that gives the maximum number of sockets used.

16.4 Consider a browser used to access Web pages. Can a concurrent version of a browser
appear o operate faster than a nonconcurrent version? Explain.

LAY - B st FAfel PG et - rorld werr T TR T

17

Tunneling At The Transport
And Application Levels

17.1 Introduction

Previous chapters describe the design of client and server software for cases where
a TCP/IP internet interconnects all communicating machines. Many of the designs
presented assumc that clicnts and servers will run on reasonably powerful computers
that have operating sysiem support for concurrent processes or threads as well as full
support for TCP/AP protocols.

This chapter begins to explore the techmiques system managers and programmers
use to expleit alternative topelogies. In particular, it examines techniques that allow
computers to use a high-level pratacol service o carry IP traffic and designs that use [P
to carry traffic for other protocol systems.

17.2 Multiprotocol Environments

in an ideal world, programmers using TCP/IP oniy need 1o build client and server
software tor computers that connect directy to a TCP/IP intemet and provide full sup-
port for TCF/IP pretocols. [n reality, however, nol all machines provide complete
TCPAP support, and not all organizations use TCPP exclusively to inerconncct com-
puters. For exsmple, an organization may have small personal computers with insuffi-
cient capacity to run server software, or it may have groups of machines connecicd to
networks that use protecals like DECNET, SNA, or ATM. In fact, networking in most
organizations has grown over time as the organization bas added ncw neyworks to inier-

203

2 Tunneling At The Transport And Application Levels Chag. 17

connect existing groups of computers. Usually, network managers choose a hardware
technology and a protocol suite for each group of computers independently. They use
factors such as cost, distance, desired speed, and vendor availability when making a
choice. Organizations that installed netweorks before TCP/IP protocels were available
may have selected a vendor-specific protocol suite. As a result of such network evolu-
tion, most large organizations have several groups of machines, with each group using
its own protocol suite. The poinl 15

Because networking has evolved siowly over many years, becaiise ven-
dors promoted proprietary network systems, and because TCP/AP was
not always available, lavge organizations aften have groups of com-
puters using alternative protocol systems o cormmunicate. Further-
minre, 1o mURimMiZe expense, arganizafions often coniinke to use older
network systems untit they can phase in new techrologies.

For example, Figure 17.1 illustrates an organization that uses three networks at its
two sites. Each site has its own Ethernel. A single wide area network uses Asnynchro-
nous Transfer Mode (ATM) 1o interconnect hosts at the two sites. As the figure shows,
a subset of machines connect to each network.

Haoser using TCFAF Hosts using TOPAP

-0 0 TD

Ethernet 4 Ethernet .

Wide area
network that

Hosr using ATM .
uses ATM

. Host using ATM

Figure 17.1 An example organization with three natworks. All computers
connected 1o the wide area network use ATM while all comput-
eis connected 0 the local area networks use TCP/IP.

The chief disadvantages of having multiple neiwork systems arise from duplication
of effort and limitations on interoperability. Applications on hosts that connect to an
ATM wide area network can choose to interact directly with ATM facilities. Thus, if a
client and server run on hosis coanected to the ATM network shown in Figure 17.1,

T T RN ok 11 T Sr T e v S . car - .. L . EREN

Scc. 17.2 Multiprotocol Envircoments 205

they must use an ATM virtnal circuit for communication. Meanwhile, clients and
servers running on an Ethemnet use TCP virtual circuics.

17.3 Mixing Network Technologies

Usually, a TCP/IP jnternet consists of a set of host computers attached to physical
networks thal are wmterconnected by IP gateways (routers). All hosts and gateways in
the internet must use TCP/IP protocols. Similarly, a network running the DECNET
prolocols consists of physical links and computers that use DECNET exclusively, while
a network running SNA protocols usually consists of physical links and computers that
use SNA exclusively. However, because a transport-level service can deliver packets
from one point 1o another as easily as packet-switching hardware can, it should be pos-
sible o substitute any transport-level switching service in place of a single physical link
11 another packet switching system.

Many internets have been built that use switched technology instead of physical
networks. For example, consider the networks shown in Figure 17,1 again. Assume the
organization decides to interconnect its two Ethernets 1o form a single TCP/IP internet
that will allow all the heosts attached to the Ethemnets to communicate. The most obvi-
ous strategy involves instailing two IP gateways between them. However, if a large
geographic distance separates the two Ethernets, the cost of adding a dedicated ieased
line to interconnect the 1wo networks may be prohibitive. The additional cost may be
especially difficult to justify because the organization aiready has an ATM network con-
necting the two sites.

Figure 17.2 illustrates how the organization shown in Figure 17.1 can vse existing
ATM network comnectivity to provide a TCP/IP intemet connection between ils two
sites.

Hosis using TCP/AP Hosti using TCPAP
Ethernet , Ethernet .,

IP garewny / \ iF gateway

Wide area
network that
uses ATM

fHerst using ATM -

. Hewt using ATM

Fipure 17.2 [P gateways using an ATM service.

2045 Tunneling At The Transport And Application Levels Chap, 17

The organization installs a new IP gateway at each site. Each of the new 1P gateways
connects (o the ATM neiwork and to the local Ethernet at its site. When the TP gate-
ways bool, they use ATM to form a virtual circuit to one another across the ATM wide
arca network. Each [P gateway arranges its routing table so i1 routes nonlocal iraffic
across the ATM circuit. The JP gateways use the ATM network to send IP datagrams
to one another. From the viewpoint of the 1P gateways, ATM merely provides a link
over which datagrams can be sent. From the viewpeoint of the ATM network, software
on the 1wo [P gateways acts exactly like application sofiware on other hosts. The ATM
service does not know that the data being sent across the virtual circuil consists of [P
datagrams.

With the two TP gateways in place, a user on any host can invoke standard TCP/TP
client software that contacts a server on any other host. Client-server interactions may
cross a single Ethernet or may traverse the- ATM network to reach the other site. Nei-
ther the user nor the client-server applications needs to know that datagrams pass across
an ATM network when they travel from the Ethernet ar one site 1o the Ethemet at the
other. The two Ethernets merely form part of 1 TCP/IP internet. Furthermore, hosts us-
ing ATM protocols on the wide area network do not need to change. They can continue
to communicate without interference from the TCP/IP traffic because the virfual circuits
they use will remain independent of the new connection between the [P gateways.

17.4 Dynamic Circuit Allocation

In the example topology that Figure 17.2 illustrates, the TCP/AP internet traffic
needs only one ATM virtual circuit through the ATM network because the organization
only has two sites. If the organization expands by adding additional sites, il can extend
the topology by placing an IP pateway ai each new site and creating addinional circuits
through the ATM network to interconnect each new [P gateway to the IP gateways at
ex1sting sites.

The static scheme for circuits described above can expand to an arbitrary number
of sites if the ATM netwaork doees not limit the number of cirouits that a single compuler
can allocate simultanecusly. An organization with NV sites will need (N®(N-7))2 circuits
to imterconnect all of them. Thus, an IP galeway needs /5 connections for 4 sites, and
45 connections when the organization reaches /0 sites. Unforiunately, each circuit re-
quires both hardware and software resources. For example, the routing software must
store the mapping between the address of a remote [P gateway and the ATM circuit that
comnects 1o that gateway, and the network interface must allocate buffer space for the
data being sent and received. More important, because communication is often inter-
mittent, a connection may not be used for long periods.

To conserve resources, some implementations limit the number of simultaneous
ATM circuits that can be apen. Instead of arbitrarily choosing which connections are
ailowed, the implementations take a different approach - they allocate circuits on
demand and close circuits thal are not being used. When a datagram arrives at an 1P
galeway, the [P gateway looks up the destination address (o determine the route the da-

Sec, ! 74 Dyvamic Cireuit Allocation 207

tagram will [ollow. The routing lookup produces a next-hop address, the address of the
next [P gateway o which the datagram should be sent. If the next hop address specifies
a site connected to the ATM network, the [P gateway consults its table of active ATM
virtual circuits. 1f a circuit exists to the next-hop, the IP gateway forwards the datagram
across the circuit. If ne circuit exists, the IP gateway opens a new circuit to the desired
destination dynamically. '

H the limit of ATM circuits has been reached when an IP galeway needs to open a
new circuoit, the galeway must close an existing circuit to make one available. The
problem becomes one of choosing which circoit to close. Usually, a gateway follows
the same policy that a demand paging system uses: it closes the least recently used
{LRU) circuit. After sending its datagram across the new circuit, the gateway leaves the
circvit open. Often the outgoing datagrams wiil cause the receiver to reply, so keeping
the circuit open helps minimize delay and cost.

By dynamically opening and closing virtual circuits, an [P gateway can limit the
number of simultaneons connections it needs without losing the ability to communicate
with all sites. The gateway only needs to have one circuit open for each site with
which communication 1s currently in progress.

17.5 Encapsulation And Tunneling

The term encapsulation describes the process of placing an IP datagram inside a
network packet or frame so that it can be sent across an underlying network. Encapsu-
lation refers to how the network interface uses packet switching hardware. For zxam-
ple, two hosts that communicate across an Ethemet, using IP, encapsulate each da-
tagram in a single Ethernet packet for transmission. The encapsulation standard for
TCPAP specifies that an TP datagram occupies the data poriion of the Ethernet packet
and that the Ethernet packet type must be set to a value that specifies IP.

By contrast, the term tunnefing refers to the use of a transport network service to
carry packets or messages from another service. For cxample, if the ATM network in
Figure 17.2 is replaced by a transport service (e.g.. an X.25 network system), the gate-
ways would use a wnnel o communicate. In both tunneling and encapsulation, 1wo
compuiers attached e a network system use the system to send packets. The key differ-
ence between tunneling and encapsulation lies in whether IP transmits datagrams in
hardware packets or uses a high-level transport service to deliver them.

{1 encapsulates rach datagram in a packet when It uses the hardware
directly. It creates u rtunnel when it uses a high-level transport
delivery service (o send datagrams from one point to arother,

208 Tunncling At The Transport And Application Levels Chap. 17
17.6 Tunneling Through An IP internet

After TCPAP was first defined, researchers experimented to see how they could
make IP softiware 1unnel through existing networks to deliver datagrams. The motiva-
tion should be clear: many organizations had existing networks in place. Surprisingly.
the trend has turned arcund. Most tunneling now occurs because vendors use IF proto-
cols to deliver packets from non-TCP/AP protocolst.

Understanding the change in tunneling requires us to understand a change in net-
working. As the Internet became popular, it became the universal packet delivery
mechanism for many groups. In fact, IP now provides the widest connectivity among
the computers at most organizations.

Ta see how the availability of IP affects other protocols, suppose two computers 1n
an organization need to communicate using a vendor-specific protocol. Instead of ad-
ding additional physical network connections beiween the two computers, a manager
can think of the organization’s intranet as a large network, and can allow the protocol
software on the two computers to exchange messages by sending them o IP datagrams.
Software is currenily available that uses 1P to carry IPX traffic (Novell), SNA traflic
{IBM), and traffic from other high-level protocols. [n addition, engineers have devised
ways to allow IP networks o carry traffic from new protocols, allowing designers o
build and debug new high-level protocols before they have working implementations of
lower layers.

17.7 Application-Level Tunneling Between Clients And Servers

Although the general notion of tunneling refers 10 the use of one transport-level
protocol suite by another, programmers can extend the idea to client-server interactions.
The programmer can use application-level tunneling to provide a communication path
between a client and a server.

To understand how application-level tunneling works, think of two computers that
attach to a network that uses a proiocol other than IP. Suppose a programmer wishes 1o
run a UDP client application on one and a UDP server application on the other. Often,
application programmers cannot make changes to the operating system software because
they do not have access to system sovrce code. Therefore, if the operating systems on
the two computers do not support the UDP protocol, a programmer may find it incon-
wvenient or impossible 1o use UDP or to make mdividwal IP datagrams tunnel through
the underlying network. '

In such cases, application-level tunneling makes it possible for clients and servers
ta use IP protocels 10 communicate across a-non-IP network. To use such a tunnel, the
programmer musl build a library of procedures that simulates the socket interface. The
simulation library must allow an application to create an active or passive UDP socket
and to send or receive UDP datagrams. Procedures in the socket simulation library
translate calis to the standard socket routines (¢.g., socke!, send, and recv) 1nto opera-
tions thal allocate and manipulate local data structures and transmit the message across

tAsx poc of the exercises suggests, tunneling can also be uscd o pass experimental [P irafhic across the
Intermnet.

R e L e Iy T R LU

Sec, 17.7 Application-Level Tunneling Between Clients And Servers M

the available network. When the client calls a function like socker or bind, the socket
library routine records the mformation. When the client or server calls send to transmit
a message, the send library rowtine consults the recorded information o determine the
destination, and uses the underlying network system o transfer the UDP datagram.

Cnce a socket simulation library has been created, programmers can compile any
UDP client or server program, link the compiled program using the simulation library,
and then run the resulting application. Figure 17.3 illustrates the resulting software
structure,

UDP client _ UDP server
application application.
socket simulation socket simulation
library library
Operating System Operating System
with support for with support for
network system network system
network
system

Figure 17.3 Conceptual organization of software in a client and server asing
application-ievel wnneling through a nelwork. The socket simo-
lation library allows the client and server to exchange UDP da-
tagrams across a non-TCPAP transport service.

17.8 Tunneling, Encapsulation, And Dialup Phone Lines

Modems are available that aliow two computers to communicate across the dialup
telephone system at speeds of 56 Kbps. A sel of protocols, including Serial Line {F
{(SLIP) and the Point-to-Point Protocol {(PPP) have been designed to send IP across 3
dialup channel.

210 Tunneling A1 The Transpoet And Application Levels Chap. 17

Should TP transmission across a dialup connection be viewed as a form of wunnel-
ing or encapsulation? Certainly, the vse of dialup is analogous to the nction of tunnel-
ing discussed in this chapter. The phone system can be viewed as a transport system
over which IP datagrams are tunneled. In fact, dialup connections can be managed
much like ATM circuits.

Although therce is some debate, most cxperts agree that the dialup phone system
should not he viewed as a rransport system. Instead, the phone system should be
viewed as.a connection-oriented physical network. Thus. protocols such as SLIP and
PPP define a form of encapsulation — they each define a link-level framing format that
specifies how 1o encapsulate datagrams for transmission. Similar to a dedicated serial
line, the phone system can be used (o connect an I[P pateway at one site to an I[P gate-
way al another stte. The next chapter explains how SLIP and PPP can be extended to
accormnmodate dialup cannections in 2 heterogeneous addressing environment.

17.9 Summary

Tunneling consists of sending packets between computers using a transport-level
packet delivery system instead of sending them directly across physical networks. Early
waork on tunneling IP through exisang network sysiems was motivated by organizations
that azlready had large wide area networks in place. These organizations wanted to
avoid the cost ol adding new physical connections 1w run [P. Researchers devised ways
o allow IP 1o use the existing networks to transfer packets withowt changing the net-
works. [P treats the transport service as a single hardware link:; the transport service
treats IP traffic the same as traffic sent by any application.

IP has become the delivery system that provides the mest interoperability. Conse-
quently, current work on tunneling concentrates on finding ways to use IP as a packet
delivery system that carmies packets for other network protocols. Many vendors have
announced software that enables their proprietary netweorking systems to communicate
across an underlying IP internet.

Programmers can apply the idea of tunneling to application software by building a
library that stmulates a socket interface but uses a non-TCP/AP transport service to
deliver messages. In particular, it is easy to build a socket simulation library that al-
lows chents and servers to ¢ommunicate using UDP, even if the only connection
between the client and server computers consists of a non-IP network.

The general concept of funneling described in this chapter seems to apply o com-
munication through the telephone system. Two P galeways can usé the phone system
if they have dialup modems and they agree on a link-ltevel protocol. When being pre-
cise, such commmunication 1s classified as encapsuiation rather than tunacling.

e W AN HACKIL W 1 o . e g Atk e . e gane mdbe PRI LR o LEET mrme L e e

For Further Stuedy 211

FOR FURTHER STUDY

Cole et. al. [RFC 1932] provides a gencral description of IP over an ATM net-
work. Laubach [RFC 1577] describes how the ARP protocol can be used o bind ad-
dresses when using IP over ATM.

Comer and Korb [1983] describes how (o tunnel TP through an X.25 petwork, in-
cluding how to manage X.25 virtual circuits when the hardware imposes a fixed limit
on simullaneous connections. Malis et, al. [RFC 1356]| describes tunneling aover X.25
and ISDN. Provan [RFC 1234] describes winneling IPX protocol traffic through an [P
Internct. Simpson [RFC 1853] discusses tunneling [P in IP.

EXERCISES

17.1 Read RFC 77, How does an [P gateway that lunnels through an X.25 nctwork map a
destination 1P address to zn equivalent X.25 address?

17.2 Many transport-level services use their own retransmission scheme to provide reliable
delivery. What can happen if hoth TCP and the underlying network protocols retransmit
messages”’ .

173 We said that many IP galeways use dynamic virtual circuit allocation, and that a gateway

usually applies an LRU heuristic when it needs to close an existing circuit to make one

available. Explain what happens in an [P gateway il the network interface allews K

similtaneous circuits and the gateway attempts 1o communicate with K+/ other sites

simultansously,

174 Build a sockel simulation library that allows client and server applicanons to exchange
UDP dalagrams over a non-TCP/IP wansport-level protecol. Test it by arranging for a
UDP ECHO client to communicate with & UDF ECHO server.

17.5 Suppose researchers at two sites decide Lo experiment with 1P audio multicast. Although
each ressarcher can assign roulticast addresses and routes locally, they cannol change
routes in [nternet gateways that separate the two sites, Explain how the researchers can
use tunmeling to send multicast packets from ome site to the other (hint: think of [P-in-
IB).

PHSUMETEES n e L ek ERAnr L Okt o

—rm - - -

BT T o .

18

Application Level Gateways

18.1 introduction

The previous chapter examines tunneling, a techrique that atlows cne protocol
suite 1o use the transport-levei delivery service from another protocol suite 1n place of a
physkal network. From an application programmer’s viewpoint, tunneling makes i
possible for a client and server to communicate using TCP/IP even if the only path
between them includes a non-TCP/IP network.

This chapter continues the expioration of techniques that clients and servers use (o
communicate across environtnents that do not provide full TCP/AP connectivity. It
shows how clients operating on systems with limited protocol support can use an appli-
cation program on an intermediate machine to forward requests, and how the use of
such intermedianies can expand the range of available services.

18.2 Clients And Servers In Constrained Environments
18.2.1 The Reality Of Multiple Technologies

Nat all computer systems have direct access to the Internet. Furthermore, access
limitations can complicate client and server software bhecause they arise for economic
and potitical reasons as well as technical ones. Chapter /7 points out that networking
has evolved slowly in many organizations. As a result, subgroups may each have their
own network and the networks may each use a different protocol suite. More impor-
tant, a group of users may become accustomed to the application software available
from a particular vendor or a particular computer. If the application soitware oniy
operates with one set of protocols, the users may want to keep the network in place.

213

214 Apphcation Level Gaeways Chap. IH

Nerwork technologies can also gain incriia as managers gain cxpertise. As a tech-
nology becomes entrenched, an orgamzation mvests in (ramning for persannel who in-
stall, manage, or operate the network. In addition to people who plan and manage the
physical network, programnmers invest time leamning how to write software that uses the
network., Once a manager learns the details and subtleties of a given technology, it be-
comes easicr 1o expand the cxisting nctwork than to replace it with a new technology.
Thus, organizations that have muldple groups, each managing an independent netwark,
often find that the nitial cost of mnsc}hdatmn can be high because many groups must
retrain their persnnnel

For programmers, wmultiple network technnlngses often resalt tn incompatible sys-
tems that do not provide interoperahility. Unless the organization provides funneling,
programmers cannot depend en end-to-end transport-level connectivity. Thus, they can-
nol use a single transport protocol, nor can they easily communicate between clients und
servers on arbitrary machines. Finally, programmers c¢ften build and maintain programs
that duplicate lunctionality for each network technology. For example, programumers
must maintain multiple elecironic mall systems.

18.2.2 Computers With Limited Functionality

In addition to contending with multiple networks, programmers must sometmes
create software for computers that ofler limited network funcuonality. For example,
many organizations have groups of small personal computers that lack operating system
facililies for concurrent proecessing or asynchronous O, Such computers cannot sup-
port the cencurrent scrver algorithms discussed in Chapier & or the concurrent client al-
gorithms discussed in Chapter 16,

18.2.3 Connectivity Constraints That Arise From Security

Organizations may institute security pelicies that also constrain how clients and
servers communicate. Some organizations partition computers into secnre and wisecure
subsets. To prevent chient and server programs Itom compromising security, lhe net-
work manager places pelicy constraints on connectivity, The manager restraing comput-
ers in the secore parlition so they can communicate among themselves, bur they can nel-
ther initzate contact to scrvers nor accept requests from clients on computers in the un-
secure partition. Although such policics ensurc security. they can make it difficult for
programmers to design applicaticns that vse client-server interactions. [n particular.
computers 10 one partition caonol dicectly aocess services available on computers in the
other partition.

T A T IR T T ERARNE L TR T DS cmen s

Sec. 183 Using Application Gareways 213
18.3 Using Application Gateways

Programmers who need to design client-server interactions in restricted environ-
ments usually rely on a single, powerful technique to overcome connectivity constraints.
The technique consists of adding application programs that run on intermediate
machines, and enabling the applications to relay information between a client and the
desired server. An intermediate program that provides the service is known as an appii-
caton gatewayt. If the intermediate machine has been dedicated to running one partic-
ular application gateway program, programmners or nelwork managers sometimes refer
to the machine as a gateway machine. For example, a computer dedicated to running a
program that passes electronic mail belween two groups may be called a mail gateway.
Technically, of course, the lerm application gateway refers to the running program —
programmers stretch the terminology when they refer to a machine as an application
gateway.

Figure 18.1 illustrates a common use of an application galeway as an intermediary
between two electronic mail systems.

application
gateway

fnterface for
SUCE predif svsters

interfare to

TCP/AP marl svstem | N

- operating system
. with both TCRAP
| and UUCP support

TCPAP
INTERNET

T T

Rast on e HOsE on The
TCPAP internet USENET network

Figure 18.1 An application pmgrarﬁ used to pass electronic rauil between two
network systems. The application galeway understands the syn-
tax and semantics of both mail systems, and translates messages
between them.

fUse of the term gufewar van be conlfusing because the lerm is also applicd 1o systems that Torward 1P
packets. Tu avoid confusion, one showld distinguish the two carefully,

16 Apnlication Level Gateways Chap. 18

The organization depicted in Figure £8.] has access te two main necwork systems:
the USENET network and the Inernet. Each network system has its own electronic
mail system. [n a broad conceptual sense, the two mail systems provide the same ser-
vices. Each system allows a user to compose and transmit an outgoing message or (o
receive and read an incoming message. However, the two systems cannot interoperate
direcily because each has tts own destination address syntax and its own mail transport
protocol.

To allow users on one network systemn io send mail to users on the other, the or-
ganization has installed an application program that serves as a mail gateway. In the
example, the mail gateway program runs on a computer that attaches (0 both networks.
The mail gateway must be designed carefully so i1 can communicate with any host in
the organization. It must{ understand how to send messages using either of the two mail
systems, and it must have logical connections to both netwaorks.

18.4 Interoperability Through A Mail Gateway

For the organization shown in Figure 18.1, a single mail gateway program can pro-
vide all the facilities the organmization needs to establish interoperability for electronic
mmail. As vsual, each host throughout the organization checks the destination address of
putgeing mail, and chooses a next-hop machine. I an cutgoing memo is destined for a
machine on the same network as the sending machinc, the sending machine uses the
electromic mail system available on its Jocal network (o deliver the message. However,
it a hosit encounters outgoing mail destined for a machine that atlaches to a nornlocal
network, the sending machine cannot deliver the message directly. Instead, the sender
transntits the message to the mail gateway program. All machines can reach the mail
gateway directly because il runs on a computer that attaches to both networks and com-
municates using either of the two mail delivery protocols.

Once 2 mail message arrives at the matl gateway, il must be routed again. The
tnail gateway examines the destination mail address to determine how to proceed. It
tmay also consult a database of destinations to help make the decision. Once it knows
the intended destination and the network over which it must deliver the message. the
mail gateway selects the appropriate network and mail transport protocols.

The gateway may need to reformat a mail message or change the message header
when forwarding 1t from one network to another. In particular, a mal gateway usually
madifies the reply field in the matl header so the receiver's mail interface can correctly
construct a reply address. The reply address modification may be rivial (e.g., adding a
suffix that identifies the sender’s network}), or it may be comphicated {e.g.. adding infor-
mation that identifies the mail gateway as an tntermediate machine thalt will lead back
to the source).

Sec. 8.5 Impiementation Of A Mail Gateway 217
18.5 Implementation Of A Mail Gateway

In theory, a single thread suffices to implement a mail gateway. In practice, how-
ever, most implementations divide the functionality into two threads. One thread han-
dles incoming mail messages, while the other manages outgoing mail. The thread that
handles incoming mail never sends a message. [t computes a reply address, routes the
mail to its destination, and then deposits the outgoing message in 3 quewe to await
transrnission. The thread that handles outgoing messages does not accept incoming
messages directly. Instead, it scans the output quene periodically. For each message 1t
finds in the output gueue, the output thread makes a neiwork connection to the destina-
tion, and sends the message. If it cannot make a connection to the destination (e.2., be-
cause the destination machine has crashed), the owput thread leaves the message in the
oulput quene and continues processing with the nexat message in the gueve. Later, when
it rescans the queuwe, the output thread will try again to contact the destination and
deliver the message. H a message remains in the output queue for an extended time
{e.g., three days), the output thread reporis a delivery ermor to the user who originally
sent the message.

Separating the mail gateway into input and output components aliows each com-
ponent to proceed independentiy. The ocutpul thread can try to deliver a message, wait
to see if the connection attempt succeeds, and then go on to the next message without
coordinating its activities with those of the input thread. If the connection attempt
succeeds, the output thread can send a message without regard to its length. It does not
need to interrupl transmission to accept incoming messages because the input thread
handles themn. Meanwhile, the input thread can continue to accept incoming messages,
route them, and store them for later transmission. Because the components operate in-
dependently, a long output message does not block input processing, nor does a long in-
put message interfere with output processing.

18.6 A Comparison Of Application Gateways And Tunneling

The previous chapter showed that designers could choose tunneling to provide in-
teroperability in a hetercgeneous cnvironment. It may be difficult to choose between
tunneling and application gateways because neither technique solves all problems well
and each technique provides advantages in some situations.

The chief advantage of using an application gateway instead of tunneling asises be-
cause programmers can create application gateways without modifying the computer’s
operating system. In many circumstances, programmers camol modify the system ei-
ther becavse they do not have access to the source code or because they do not have the
expertise required. An application gateway can be built using conventional program-
ming tools; the gateway does not require any change to the underlying protocol
software. Furthermore, once an applicalion gateway is in place, the sile can use stan-
dard client and server programs.

218 Application Level Gatewsys Chap. 18

Using application gateways has a secondary advamtage: il allows all existing net-
WOtk systems to continue operation undisturbed. Managers do not need to learn about
new network technologies, nor de they need to change any physical network connec-
tions. Similarly, users do not need ta tearn a new interface for services: each user con-
linues to use existing client software associated with the networks to which they are ac-
customed.

Applicauon gateways do have some disadvantages. The application gateway tech-
nique requires programmers {0 construct a separate application gateway program for
each service. A mail gateway interconnects the mail services ol two separate systems,
but does not supply remote file access or remote login capabilities. Each time the or-
ganization adds a new service to its network systems, programmers must construct a
new appiication gateway that interconnects the new service between pairs of networks.

Application gateways may also require additional hardware resources. The organi-
zation may need to purchase new computers, or it may need to add network connections
to existing computers. Adding new network connectiors may mean acquiting addition-
al software as well as additional hardware. Because the translation required when for-
warding a message or data can be compiex, application gateways can use large amounts
of CPU or memory. Thus, it may be necessary for an organization to purchase addi-
tional computers or upgrade existing machines to handle the load as it adds new ser-
vices. The demand for CPU resources also introduces computational delay, which adds
to the delay between the client and server. If the delay becomes oo long, clients may
timeocut and resend a message,

In contrast to the application gateway approach, tunneling does not require any
changes when new services appear. Once in place, a transport-level tunnel becomnes
part of the underlying network siructure. Because applications remain unaware of the
tunncl, it can be used for any application service. Tunneling also provides uniformity
because It means the organization can use a single transport protocol,

Tunneling does have some disadvantages when compared to the application gate-
way solution. To install a transport-level tunnel that provides full functionality. the site
must modify the operating system that runs on the gateway connecting the two network
systems. Surprisingly, the organization may also need to modify software on hosts that
use the tunnel. To understand how the need for modifications arises, imagine an X.25
network configured to serve as a tunnel for IP wraffic. Consider a host connected to the
network. Before an application can use the IP wunnel, it must have access 1o TCP/P
protocol software, and the IP software must know how to tunnel datagrams through the
X.25 network. Thus, the host operating systermn must supply an IP interface (ie., a
socket-level interface) for application programs and must route traffic across the tunnel.
If the operating system does not contain TCP/IP protocol software, it must be added. 1f
cxisting 1P protocel software does not krow how 1o route through a tunnel, it must be
changed.

Tunneling can also have a dramatic impact on users. Orgunizations adopt tunnel-
ing as a way to provide uniform transport services over heterogeneous networks. Once
the organization cstablishes a tunnel, all hosis can begin using a single transport proto-
col for client-server interactions. For example, if an organization chooses to use [P and

Sec. 186 A Comparison OF Application Gateways And Tunneling, 219

creates a tunne! through an X.25 network to provide connectivity, computers throughout
the organization can use TCP/IP for transport connections. As an immediale conse-
quence, all computers can support client-server interactions that use TCF/IP.

Unfortunately, a change 1n the underlying network protocols usuvally results in
changes to client software with which users interact. Most organizations. purchase com-
merctally available cliemt software for standard applications like electronic mail. Thus,
the organization must use whatever software is available for a given transport protocol.
If the orgamzation adopts a universal transport protocol, it must purchase new client
software that uses the new protocol suite, From the user’s point of view, changing to
the new soflware means learning a new interface, Unless the new interface offers all
the functionality of the existing interface, users may be dissatistied.

Te avoid changing the users’ environment, many orgumizaticns choose the applica-
tion gateway solution. Programmers consiruct the application gateway carefuily so it
does not require changes te the user interface on any network. For example, after an or-
ganization adds an appiication gateway for ¢iectronic mail, users can use the old client
software to send and receive mail. The mail system can use the destination address
synlax to distingnish between messages semt to local destinations and those sent 10
foreign networks. Doing s0 allows users to use farmliar addresses for local destinations,
and only requires them te learn new addresses for nonlocal destinations.

18.7 Application Gateways And Limited Functionality Systems

Application gateways can increase the range of services accessible from small
computers. For example, consider the network of personal computers shown in Figure
18.2.

farye computer that
rny Both a mail
server amd an
appitcation gareway

rey rext of intermne! I

1P
gateway

operating system

==

amall hosty incapable of runming a mail server

Figure 182 A netwink of personal computers incapable of nmnping a con-
current mail server and the application gateway that they use to
receive electromic mail,

220 Applicarion Level (futeways Chap. [¥

The operating systems on small personal computers often provide limited facilities
that do not include support for concuirent processing. The lack of concurrent process-
ing limits client-server interactions because the computer must be dedicated to a single
task at any time. In particular, it is often impossible for a user to run a server in the
background while using the computer for other processing,

To understand how the lack of background processing limits client-server interac-
tion, consider electronic mail. A personal computer can suppon mail client software be-
cause it can wait until the user decides to send a message before executing client
software. Furthermore, once the user composes a message, the client program can make
the user wait while it transmits the message to its destination. However, a computer
system that does not support concurrent processing cannot run server software in the
background, Thus, it cannet have a server ready to accept incoming mail until the user
decides to run the server. Unfortunately, users cannot run any other application while
the mail server operates because the machine must sfop receiving mail while performing
any other task. As a result, users seldom use such computers to run electronic mail
SETVETS.

An organization that has many persomal computers can use an application gateway
te solve the server problem. Consider the computers in Figure 18.2 again. The organi-
zation has purchased one large, powerful computer on which it runs a standard server
that accepts incoming electronic mail. The server, which runs in the background,
remains avaitable to accept mail at all times. When a message arrives, the server places
it in a file on disk. Files that store mail are often called mailbox files or mailboxes.
The system may have one maitbox file for each user, or may place each message in a
separate file. Usually, implementations that use a separate file for each message collect
the files together into directories, where each directory corresponds 1o a single user.

In addition to the standard mail server, the computer must also run a specialized
application gateway that allows users on personal computers to access their mailboxes.
To read mail, a user on cne of the personal computers invokes a client that comacts the
special applicatior gateway. The gateway retrieves each message from the user’s mail-
box, and sends it to the personatl computer for the user 10 read.

Using a powerful machine to run a conventional server that accepts incoming mail
solves the server problem becanse it means that small personal computers do not need
10 run a mail server continuously. Using a mail gateway program to provide users with
access 10 lheir mailboxes eliminates the need for users to log into the mail server
machine.

18.8 Application Gateways Used For Security

Many organizations choose application gateways to solve the problem of security.
For example, suppose an organization needs to restrict remote login. Imagine thal the
organization ciassifies its employees as either zuthorized or unauthorized for remote lo-
gin. Figure 18.3 iliustrates how the organization can use an application gateway to im-
plement its security policy.

r

Sec, 18.8 Application Gateways Used For Sacurity o

€ a compueter that runs the
sile s application gareway applk
for remote fogin. The gatewny,
1P gateway filters P applicanion pareway contrals
remote login pockers gateway FEMONE GOCESS.
except from orio O operating system

5 o0 o O O

conventional hosts prohibited from sending remote login pockels except through application gatevay

Figore 18.3 An application gateway used 1o implemant a remote login securi-
1y policy. A uwser must communicate with remote machines
through the application pateway which enforces authorization
controls.

The organization depicted in the figure uses a conventional IP gateway filter o
biock all daiagrams that contain remote login connection requests unless they originate
from the host that runs the application gateway. To form a remote login connechon, 4
user on any host in the organization invokes a client that first connects to the applicu-
tion gateway. After the user obtains authorization, the application gateway connects the
user to the desired destination.

18.9 Application Gateways And The Extra Hop Problem

The extra hop probiem refers to a situation in which datagrams pass acress the
same network twice on their way to a final destination. The problem is usually caused
by incorrect routing tables.

Introduction of an application gateway into an existing network can also creatc a
form of the extra hop problem. To understand why, consider the network topology that
Figure 18.4a illustrates. The figure shows the path a message would travel from a host
to a remaote server if the host supported the same transport protocel as the server. Now
assume that the existing host wishes to access a service that is enly available through
some protocol other than the one the host uses. Interoperability can be achieved by in-
troducing an application gateway as Figure 18.4b shows. The application gateway ac-
cepts requests using one protocol system and sends them to the remote server vsing
another. Unfortunately, each message traverses the network twice. The figure is realis-
tic: network managers often acquire a new physical computer for each application gate-
way program because they want Lo avoid overloading existing machines.

232

fa rest af iternet T

P
gateway

—

Application Level Gateways Chap. 18

1o rest of internet T

[
gateway

X

{ei)

application

fgateway
machine

)

t

D=.J

==

=

(&)

N

N

Figure 18.4 {a) A set of hosts and a gateway. The darkened arrow shows the
path a message lakes from a host to a remote server and (b} the
path of a message zfier an application gateway is introduced.
The new miteway causes each message to traverse the network

twice.

Once the application gateway has been introduced, clients executing on existing
hosts use the application gateway to access the servige it offers, A client sends its re-
quest to the application gateway using one protocol, which forwards the request on to
the remote server using ancther protocol. When the server returns its result to the appli-
cation gateway, the gateway sends a response back to the client. The system appears 10
work well. Existing protocol software on the hosis need not be changed. After the ap-
plication gateway has been installed, a client executing on an arbitrary host will be able
o access the desired service through the pateway.

Sec, 1.9 Agpplication Gateways Ang The Extra Hop Problem 223

Unfortunately, ciose examination of the undertying network reveals that the confi-
guratton in Figure 18.4b does not make good use of network resources. It creates the
extra hop problem. Each request must pass across the local area network twice: once
when it travels from the original host to the application gateway machine, and once
when it travels from the application gateway machine on toward the ultimate server. If
the server lies in the Internet beyond the IP gateway, the second transmission occurs
when the message passes from the application gateway machine to the IP gateway, If
the server lies on the local net, the second transmission occurs when the message passes
from the application gateway machine to the machine running the server.

For services that do not require much network traffic, the extra hop may be unim-
portant. Indeed, several vendors build products that use the topology Figure 18.4h illus-
trates. If the network is heavily loaded, however, or if the service requires significant
network traffic, the exira hop may make such a solution too expensive. Thus, designers
need to calculate expected load carefully before they adopt the application gateway ap-
proach. :

18.10 An Example Application Gateway

An application gateway can extend services bv providing access to client machines
that do not run all protocols. For example, consider a user on a host that has access to
the Web but has no access to file transfer protocols like FTP. Such restrictions may ar-
1se from economic consideraitons (e.g., the cost of FTP software is too high), commer-
cial realities’ ie.g., no one sells FTP client software for the computer in question), or
security reasons (e.g., the site decides to reduce its security risk by prohibiting file
transfers)+.

Suppose a user on a restricted machine needs access to the Reguest For Commenis
documents {RFCs). The application gateway technique can solve the access problem by
allowing the organization o interconnect electronic mail and FTP services, while con-
trolling access and ensuring authorization.

To provide RFC access from a Web browser, an application gateway must connect
to both services. To use the gateway, a user must visit a Web page on the gateway that
corresponds to the desired RFC. The application gateway verifies that the user is an-
thonzed to access RFCs, makes an FIP connection, obtains a copy of the REC, and
displays the RFC document as a Web page.

For example, imagine an application gateway identified by the Uniform Resource
Locatar (URL):

hitp://fwww gateway.somewhere.com
Further tmagine that a user who wisits the page is presented with a list of all the RFC

documents, each of which is a selectable item. RFCs are numbered consecutively, so
one possible presentation lists all the integers that correspond to RFC documents.

tin reality, seourily consideralions are the most likely teason; Web browsers contain FTP clicnt code,
meaning that a user who can obtain software 1o access the Web can also obtain an FTP client.

234 Application Level Gateways Chap. 12

Another possible presentation displays one line per RFC; the line includes the RFC
nwnber along with the tide.

To use such a gateway, a nser specifies the gateway’s URL to a Web browser that
uses the HyperText Transfer Protocol (HTTP) to contact the gateway. The Web. server
running on the gateway machine responds to the browser's request by sending the list of
RFCs to the browser for display. The user scans the list of RFCs and uses the mouse to
select one of them.

So far, we have described conventional Web access; no application gateway is used
to access the inidal Web page. In fact, if the Web server on the gateway had a copy of
each RFC in a local file, conventional Web access could be used to obtain an RFC.
However, we will assume that RFCs are noi prestored on the gateway's Web server.
Instead, we will assume that an application gateway is used to fewch an RFC in response
to the user's request. Thus, when the user selects an itern from the initial Web page,
the browser uses HTTP to send the application gatewsay a request that identifies the
desired RFC. The application gateway uses FTP to obiain the RFC, and then uses
HTTPF to retumn the RFC to the browser.

18.11 Details Of A Web-Based Application Gateway

To impleiment the example application gateway described above, four facilities are
required: 3 computer that has access to both HTTP and FTP, a conventional Web
server, the application gateway program, and a mechanism that passes incoming RFC
requests from the Weh server to the gateway program. Fortunately, most Web servers
include the necessary facilities. In particular, Web servers use the Common Gaieway
fnterface (CGT) technology to permit the server to invoke a program.

A Web server that includes CGI programs must handle two types of requests.
When tt receives a request for a conventional Web page, the server retrieves a copy of
the page from disk, and sends the copy to the browser that made the request. When it
receives a request for informatton managed by a CGI program, the server invokes the
program, passes it the request, and waits for the program. When it runs, the CGI pro-
2ram gengrates oulpui, which the Web server passes back to the browser that sent the
request. For example, Figure 18.5 illustrates the architecture of an application galeway
that uses a CGI programn te access RFCs.

To make the scheme work, the application gateway must return a valid document.
In the case of a CGI program, the output from the pregram must be a document that 2
browser can display. Fortunately, browsers are designed to accept multiple formats. If
the gateway returns ASCH text, the browser will display it in a fixed-width font. Thus,
if the CGl program sends the browser an exact copy of the hie obtained via FTP, the
browser will display the RFC as ASCII text. I the gateway modifies the decument to
insert HTML commands, the browser will interpret formatting cornmands when it
displays the document.

Sec. 18,11 Details OFf A Web-Based Application Gateway L

Gateway Computer

User's Computer AFC Computer

|

Browsar

k HTTP used J . FTP used)

Figure 18.5 Communication from a browser through an application gateway
to an FTP server, An intermediate gateway is used in situations
whete the user’s computer is restricted from direct FTP access.

Note that from a browser’s perspective, it cannot distinguish berween conventionagl
Web pages and documents produced by CGI programs. In cither case, the browser
sends a requesi, receives a document, and displays the document for the user.

18.12 Invoking A CGl Program

How can the Web server know whether a request corresponds 1o a conventionil
Web page or an application gateway? The server uses the URL that arrives in the re-
quest from the browser to determine whether to retrieve a conventional page or run a
CGlE program. In fact, most servers manage multiple CGlE prograrns just as they manage
multiple Web pages. Each URL that invokes a CGI program must identify a panicular
program to run, and supply arguments to the program.

On most computer systems, the CGI programs that 2 Web server can invoke are
placed in a single folder. For example, the system administrator in charge of the server
might cheose to place all CGl programs in folder Cvwww-cgi. The system administra-
tor then configures the server o associate URLs with programs in the folder. A prefix
iv used o identify the URL as a CGI request, and the next piece of the URL identifics a
particular CG1 program. For example, a site might choose 1o associate URLs that be-
gin:

http:/fwww.some where.com/cgi-bin/

with the CGI foldert. If a program in the folder is named pgm, the program is invoked
with the URL.:

hitp:/fwww. somewhere.com/fegi-bin/pgm.

*ln practice, many Web administrators select a kerm that is easier to remember than cgi-hin (e.g.. gute-
wary],

2256 Application Lavel Gateways Chap. I8

When the request arrives, the server extracts the name of the requested item and checks
the prefix. For any name that begins cgi-bin/, the server extracts the next component,
and uses that as the name of a program.

In addition to a prefix that identifies the item as a CGI request and the name of a
specific CGI program, a request can contain a string that will be passed to the program
as an argument. The syntax uses a question mark to separate the program name from
the argument stringt. Thus, the URL:

http./fwww somewhere.com/cgi-bin/pgm?arg-siring

causes the server to pass one argument to program pgm. The argument consists of the
characier string arg-string. .

18.13 URLs For The RFC Application Gateway

The implementation of an application gateway to fetch RFCs should now be clear.
The initial Web page contains a large set of selectable links. The URL for each link be-
gins with a prefix that specifies the application gatewsny program foillowed by an argu-
ment that specifies the namber of the RFC. For example, if the program is named
retrieve-rfc and resides in the CGI directory en the Web server at somewhere.com, the
URL associated with RFC 2000 would be:

http://www.sormmewhere.com/cgi-binfretrieve-rfc 72000

If a user selects the link, the browser sends the URL to the Web server in a request.
The Web server invokes program retrieve-rfc, passing 2000 as an argument.

18.14 A General-Purpose Application Gateway

An interesting application gateway has been developed for use with dialup tele-
phone lines. Called SLIRP, the galeway is unusual because it allows access to multiple
services. In particular, SLIRP was built to allow an application program running on a
horme compuier to access an arbitrary application on the Internet.

To appreciate the design of SLIRP, it is necessary to know that SLIRP solves a
different problem than SLIP or PPP. Instead of defining an encapsulation protocol for
use over a serial line, SLIRP solves an important [P address prablem. The problem ar-
ises when users with home computers desire dialup access to the Internet. In the tradi-
tionai IP addressing model, each computer must be assigned a unique IP address. Un-
fortunately, dialup access makes it difficult to verify the owner of a given IP address
and difficult to use the address 1o enforce restrictions on access. Thus, for security rea-
SOMNS, Many companies restrict dialup access to conventional terminal login, and do not
assign IP addresses o remote computers.

TThe advantage of nsing a different delimiter for the argument sing is that the program name can con-
lain 2 path.

Sec. 15,14 A General-Purprse Application Galew ay 2

The chief disadvantage of restricting dialup access is that it limits functionality:
although a dialup terminal session can be used with character-oriented protocols such as
FTP and TELNET, a user cannot access services such as the World Wide Web that re--
quire clients to have full IP access. SLIRP avercomes the limitation with a mechanism
that provides IP access over dialup phone lines without assigning an IP address to each
COMpUier.

18.15 Operation Of SLIRP

SLIRP operates as an applicaiion galeway on a computet thal has both Interpet ac-
cess and a dialup telephone modem. To use SLIRP, ore must first establish a conven-
rional terminal session. That is, when a user on a home computer first dials in to a
machine, ¢, that runs a SLIRP gateway, the user establishes a terminal session by send-
ing a login identifier and a password. Once the user has established a lerminal session
on (G, the user performs two steps in quick succession. First, the vser invokes SLIRP
on computer G. Second, the user deletes the lerminal session on the home computer,
and allows PPPT to wse the cennection. In fact, software exists that automates the steps
of dialing in, starting SLIRP, and then siarting PPP on the local computer.

When PPP runs across a dialup connection, it treats the connection like a serial
line. IP routing on the home computer uses the dialup connection as a defaull route for
all traffic. PPP at one end of the connection encapsulates datagrams in a PPP frame for
-transmission, and PPP at the other end removes the datagram.

Because it understands PPP encapsulation, SLIRP can send or receive datagrams
across the dialup connection. Furthermore, SLIRF contains the code needed (o process
incoming TCP segments as well as the code needed to handle 1P datagrams. For exam-
ple, SLIRP can generate or verify an IP checksum, and it can send an acknowledgement
in response to a TCP segment. In essence, SLIRP contains software for the entire
TCP/IP protocol stack in an application program.

18.16 How SLIRP Handles Connections

Because SLIRP is an application program, the TCPAP code in SLIRP does not in-
leract directly with TCP/IP protoco] software in the operating system of the gateway
computer. Instead, SLIRP only uses its TCP/IP code to interpret datagrams that arrive
across the dialup connection; SLIRFP uses the socket interface to communicate with the
Internet.

SLIRP maps between events that occur on the dialup connection and events that
occur on the Interner. For example, suppose the home computer establishes a TCP con-
pection to destination £, As segments arrive from ihe home computer, SLIRP imper-
sonates [}, That is, when the home computer sends a SYN, SLIRP responds as if D
answered, Meanwhile, SLIRP creates a socket and connects to). Similarly, SLIRP
ransfers data between the home machine and the internet. For example, if data arrives

TAlthough we refer o PPP in the exampiz, versions of SLIRP exist that use SLiP,

228 Applicalion Level Galeways Chap. &

across the TCP connectnion from the home machine, SLIRF receives the data, returns 3
TCP acknowledgement, and then uses the socket interface to send the data 1o its desti-
natign, £

18.17 IP Addressing And SLIRP

How does using SLIRP differ from the conventional use of PPP? The answer lies
in [P addressing as Figure 18.6 itlustrates.

SLIRP
gateway
interface to | | standard socket
dialup maodem interface to TCPAP
operating syatsm
with support for
TCFPAP

|| phone systam L

T !

home computer hesst onl the

using SLIP or PPF TCFPAP Internet

Figure 18.6 [llustration of a SLIRP gateway. Although the home computer
cun use an arbitrary [P address, SLIRP uvses a valid address
when communicating with a host on the Internet.

Whenever SLIRF interacts with a host on the Internet, SLIRFP uses the socket inter-
face. Thus, SLIRP operates hike any other application running on the gateway machine.
In pariicular, all communication from SLIRP across the Internet uses the IF address as-
signed to the gateway computer; remote destinations cannot distinguish between com-
munication with SLIRP and communication with any other application on the gateway
computer.

In contrast to the addressing it uses on the Internet, the addressing SLIRP uses on
the dialup connection i5 nenstandard. Because SLIRP intercepts afl datagrams from the
home machine, the [P address used by the home machine does not need to be valid ~
any address can be used provided that the address is not used elsewhere¥. Thus, SLIRP
users often choose an IP address like 10.0.0.7, that is not assigned to an Intemnet host
and is easy to rernember.

+1f a valid Iniernet address is used, the home machine cannot communicate with the compater thal owns
the address.

Sec, 15.18 Summary 2139

18.18 Summary

Although tunneling allows one protocol system to use another high-level protocal
as a transporl device, conventional tunneling is vestricted to cases where the designer
has access 1o the operating sysiem code. The application gateway technique, an alterna-
tive to tunneling, permits application programmers to interconnect helerogeneous sys-
tems without changing the operating system.

An application gateway is a program that accepts requests using one high-level
protoco] and fulfills requests using another high-level protocol. In essence, each appli-
cation gateway 1s a server for one service and a client of another.

We saw that an application gateway can be associated with a Web server. The
Web server uses a technology like CGI to invoke the application gateway program
when a request arrives, and forwards output from the program back to the browser that
setit the request. The Web server uses the prefix of a URL w0 detenmine whether the
URL refers 10 a CGI program or a conventional Web page; the server must be config-
ured to associate a specific prefix with a folder of CGI programs. In addition to speci-
fying a CGlI program, a URL can contain a suffix that is passed to the program as an ar-
gument.

Many sites use application gateways to implement authorization and security
checks. Because the gateway operates as a conventional application program, litile ef-
fort is required to program the gateway o filter unwanted access or 10 keep a record of
each request,

A gateway, called SLIRP, exists that supports multiple services. [ntended for use
over a dialup telephone line, SLIRP allows a home computer te access |P services
without requiring the home computer to be assigned a valid IP address. The home cotm-
puter runs PPP or SLIP software, which sends IP datagrams across a dialup connection.
SLIRP receives incoming datagrams, sends acknowledgements that impersonate the des-
tination, and uses conventional Intemnet software (o communicate with the destination.

FOR FURTHER STUDY

Simpson [RFC 1661] documents the PPP prowncol, and Romkey [RFC 1055]
descrnibes SLIP. Consult Web server documentation to learn more aboul CGL
The Weh site:

http:/fucnet.canberra.edu.au/siirp

has information about the SLIRP program as well as source code. Mote especially file
slivp.dec 1n the source code.

The Post Office Protocol (POP) provides a standard application gateway service
that allows a personal computer to access e-mail from a server. Myers and Rose [RFC
1939] describes version 3 of the POP protocol (POP3).

230

Application Level Gateways Chap. 18

EXERCISES

18.1 What authorization checks should an appiication gateway perform? Why?

18.2 Many application gateways imglement caching in which the gateway keeps a local copy
of the last ¥ items feiched to avoid fetching the items for subsequent requests. Under
what conditions is caching beneficial? Not beneficial?

18.3 In the previous guestion, consider a concurrent application gateway. For exampie, sup-
pose a Web server creates a new thread 10 execute a CGE program each tme a user
sendls a requesl. Explain how the threads might interfere with one another.

1B.4 Can a sender request a copy of the RFC index with a CGlI program? Why or why not?

18.58 Read about CGI. How does CGI use the environment vanable GUERY _STRING?

18.6 Can SLIRP be used to run client software on 8 home machine? Can it be used to run a

server? Explain.

19

External Data
Representation (XDR)

19.1 Introduction

Previous chapters describe algonthms, mechanisms, and implementation rechniques
for client and server programs. This chapter begins a discussion of the concepts and
techniques that help programmers use the client-server paradigm and the mechansms
that provide programming support for these concepts. [n particular, it examines a de
facto standard for external data represeatation and presentation as well as a seq of library
procedures used to perform data conversion.

The chapter describes the general motivations for using an exlernal data representa-
tion and the details of one particular implementation. The néxt chapter shows how an
external data representation standard helps simplify clicnt and server communication,
and illustrates how a standard makes it possible to use a single, uniform remote access
mechanism for client-server communication.

19.2 Representations For Data in Computers

Each computer architecture provides its own definition for (he representation of
data. Some computers store the least significant byte of an integer at the lowest
mernory address, others store the most significant byte at the lowest address, and others
do not store bytes contiguously in memory. For example, Figure 191 shows the two
meost popular representations tor 32-hit integers.

23]

232 Externa! Data Representation (XDR) Chap. 19

decreasing memeory uddresses incregring memory addresses
M5B LD '
0 D 1 4
fu)
LS8 M5B
4 1 a D

{#)

Figure 19.1 Two representations for the value 260 stored as a 32-bit bipary
integer: {a) *‘big endian’" order with the most significant byte at
the Jowest memory address and (b) “‘little endian’” order with
the least significant byte at the lowest memory address.
Numbers give the decimal valus of each B-bit bye.

Programmers who write programs for a singie computer do not need to think about
data representation because a given computer usually only permits one representation.
When a programmer declares a variable to be an integer {e.g., by using Pascal’s integer
declaration or C's int declaration), the compiler uses the computer’s native daia
represeniation when it allocates storage for the integer or when it generates code to
fetch, store, or compare values.

Programmers who create client and server software must contend with data
representation, however, because both endpoints must agree on the exact representation
for all data sent across the communication channel between them. If the native data
representations on two machines differ, data sent from a program on one machine to a
program on the other must be converted.

19.3 The N-Squared Conversion Problem

The central issue underlying data representation is software portability. At one ex-
treme, a programmer could choose to embed knowledge of the computers’ architectures
in each client-server pair so the client and server agree on which side will convert the
data. Designs that convert directly from the client’s representation to the server's
representation ise asyrumetric data conversion because one side or the other perfonns
conversion. Unfortunalely, using asymmetric data conversion means that the program-
mer must write a different version of the client-server pair for each pair of architectures
on which they will be used.

To understand why building separate client-server pairs for each architecture com-
bination can be costly, consider a set of N computers. If each computer uses a different
data representation 1o siore floating peint numbers, a programmer must construct

See. 193 The N-Syuared Cogversion Proble:n 232
N -NJ/2

versions ol any client-server program that exchanges floating point values. We call this
the n-squared conversion profiemt 10 emphasize that the programming effort is propor-
ticnal to the square of the nember of different data representations.

Another way te view the n-squared conversion problem is lo imagine the effort re-
quired to add a new architecture to an existing set of &N machines. Each time a new
computer arrives, the programmner must build N new versions of each client-server pair
before the new compulter can inleroperate with each of the existing computers.

Even 1f the programmer uses condiiional compilation (e.g., the C preprocessor’s if-
def construct), creating, testing, maintaning, and managing M versions of a program
can be difficuli. Furthermore, users may need to distinguish among versions when they
invoke a client. To summarize:

If client-server software iy designed to convert from the client’s native
data representation direcily o the server's native data represeniation
asymmictrically, the number of versions of the software grows as the
sguare of the number of architeciures.

To avoid the problems inherent in maintainring A-squared versions of a client-
server pregram, programuners try to avoid asymmetric data conversion. Instead, they
write client and server software n such a way that cach source program can be com-
piled and executed on a variety of machines without change. Doing so makes program-
ming easier because it results in a highly portable program. It also makes accessing a
service easier because vsers only nced 1o remember how 1o invoke onre version of the
cltent.

19.4 Network Standard Byte Order

How can 4 single source program compile and execule correctly on a variety of ar-
chitectures if the architectures use multiple representations for data? More important,
how can a client or server program send data 10 a program on another machine if the
two machines use a different data representation? Chapter 5 describes how TCPAP
solves the representation problem for simple integer data by using functions that convert
from the computer’s native byle order to a network standard byte order and vice versa.

Conceptually, the use of a standard representation for data senl across a nefwork in
protocot headers means the TCP/IP protocel software employs symmetric data conver-
sion. Both ends perform the reguired conversion. As a result, only one version of the
protocol software is needed because all protocol headers represent data in a standard,
machine-independent form.

Most programmers adopt the same symmeinc data conversion technique when they
build client-server application softwarc. Instead of converting directly from one
machine’s representation 1o the other’s, both client and server performm a data conver-

tRome literalure rfers w the problem as the a1 *m problem 1o emphasize that clients can operate on # ar-
chitectures while servers operate on m architcciures.

234 Eaternal Data Representation (XOR) Chap. 1%

sion. Before sending across the network, they convert data from the sending computer’s
native represcntation into a standard, machine-independent representation. Likewise.
they convert from the machine-independent represenlation (o the receiving compuler's
native representation after receiving data from the network. The standard representanon
used for data traversing the network is known as the external data representution.

Using a standard external data representation has both advantages and disadvan-
tages. The chief advantage lies in flexibility: neither the client nor the server needs o
understand the architecture of the other. A single client can contacl a server on an arbi-
trary machine without knowing lhe machine architecture. The total programming effort
required will be proportional to the numbec of machine architectures instead of the
square of that number.

The chief disadvantage of symmewric conversion is computational overhead, In
cases where the client and server both operate on computers that have the same archi-
lecture, the cost seems unwartanled. One end converts all data from the native
architecture’s representation to the external representalion before sending it, and the oth-
gr end converts from the cxternal representation back to the onginal representation after
receiving il.

Even if the client and server machines do not share a common architecture, using
an intcrmediate form introduces additional computation. Irstead of converting directly
from the sender’s representation o the receiver's, the client and server must each spend
CPU time converting beiween their local representations and the exrernal representation.
Furthermore, because the external representation may add information to the data or
align it on word boundaries, the conversion may result in & larger stream of bytes than
NECESSATY.

Despite the additional overhead and network bandwidih required, most program-
mers agree that using symmetric conversion is worthwhile. It simphlies programming,
reduces errors, and incrzases interoperability among programs. It also makes network
management and debugging easier because the network manager can interpret the con-
tents of packets without knowing the architectures of the sending and receiving
machines.

19.5 A De Facto Standard External Data Representation

Sun Microsystems, Incorporated devised an external data representanon that speci-
fies how to represent common forms of data when transferring data across a network.
Known by the initals XIDR, Sun’s eXrernal Dala Representation has become a de facto
standard for most client-server applications.,

XDR specifies data formals lor mast of (he data types that clients and servers ex-
change. For example, XDR specifies that 32-it bmary integers should be represented
in “‘big endian®’ order (i.e., with the mosi significant byte in the lowest memory ad-
dress).

TR me s o e f T dmrers o b R e - e B e T L T O T T L L I

Sec 19.6 XDR uta Types 235
19.6 XDR Data Types

The table in Figure 19.2 lists the data types for which XDR delines a standard
representation,

Data Type Size Description

int 32 bits 32-bit signed binary integer

unsigned int 32-bits 32-bit unsigned hinary integer

bool 32 bits Boolean value (false or iriie)
represented.by Cor 7

enum arb. Enumeration type with values defined by
integers (e.g., RED=1, WHITE=2, BLUE=3)

hyper 64 bits 654-bit signed binary integer

unsigned hyper 64-bits 64-bit unsigned binary integer

flaat 32 bits Single precision fioating point number

double 64 bits Double precision floating point number

opagque arb. Unconverted data {i.e., data in the
sender’s native representation)

string arb. String of ASCH characters

fixed array arb. A fixed-size array of any other data type

counted array arb. Array in which the type has a fixed upper
limit, but individuat arrays may vary up
to that size

structure arb. A data aggregate, like C's struct

discriminated union arb. A data structure that allows one of several

alternative forms, like C’s union or
Pascal's variant record

void D Used if no data is present where a data

item is optionaf (e.g., in a structure)
symbolic constant arb. A symbolic constant and associated value
optional data arb. Optional ftem (can be absent)

Figore 192 The types for which XDR defines an external representation.
The standard specifies how dala items for each type should be
encoded when sent across a nerwork,

The types in Figure {9.2 cover most of the dara structures found in application pro-
grams because they allow the programmer to compose aggregate types from ather types.
For example, in addition to allowing an array of integers, XDR allows an amray of struc-
tures, each of which can have muliiple fields that can each be an array, structure, or ua-
ion. Thus, XPR provides representations for most of the structures that a C program-
MEL can specity.

i om ot uw minge e e el W TR et TR

236 External Duata Represeatation {XTHR) Chap. 19
19.7 Implicit Types

The XDR standard specifies how a dara object shonld be encoded for cach of the
data types listed in Figure 19.2. However, the encodings contain only the data wems
and not information about their types. For example, XDR specifies using “‘hig-endian™
order for 32-bit binary integers {the samme encoding vsed in TCP/IP protocol headers).
If an application program uses XDR representation to encode a 32-bit integer, the result
occupies exactly 32 bits; the encoding does not contain additicnal bits (o identify it as
an intcger or to specify its length. Thus, cliens and servers using XDR must agree on
the exact format of messapes they will exchanpe. A program cannot interpret an XDR-
encoded message unless it knows the exact format and the tvpes of all data fields.

19.8 Software Support For Using XDR

Programmers who choose to vse the XDR represeatation for symmetric data
conversion must be careful to place each dala item in external form before sending 1t
across a network., Similarly, a receiving program must be carefu! to convert each in-
coming item to native representation. Chapter 5 shows one method programmers can
use to petform the conversion: insert a function call in the code to convent each data
item in a message to external form before sending the message. and insert a funcrion
call to convert each data item to imternal form when a message arrives.,

Most programmers could write the required XDR conversion functions with little
effort. However, some conversions require considerable expertise (e.g.. converting from
a computer's native floating point representation to the XDR standard without losing
precision may require an understanding of basic numencal analysis). To efiminaie po-
tential conversion errors, an implementation of XDR includes library routines that per-
form the necessary conversions.

19.9 XDR Library Routines

XDR library routings for a given machine can convert data items from the
computer’s native representation to the XDR standard representation and vice versa.
Most implementations of XDR use a buffer paradigm that allows a programmer 10
create a complete message in XDR form.

19.10 Building A Message One Piece At A Time

The buffer paradigm XDR uses requires a program o allocate a buffer large
enough to hold the external representation of a message and to add items (1.e., fields)
one # a time. For exampie, the version of XDR available under the SunOS operaling
system provides conversion routines thal each append an external representation to the

Sew. 19140 Building A Message One Picce AL A Timg 237

end of a buffer in memory. A program first invokes procedure xdrmem_create to alio-
cate a buffer in memory and inform XDR that it intcnds to compose an external
representation in it. Xdrmem_creale initializes the memory 5o iU represents an XDR
stream that can be used to encode {convert 10 standard representation’ or decode (con-
vert o native representation) data. The call inttializes the XDR stream to be empty by
assigning the address of the beginning of the buffer w an intemal pointer.
Xdrmem_create retums a pointer to the stream, which must then be used in successive
calls 1o XDR routines, The declarations and calls needed to create an X1DIR stream us-
ing C are:

#inchude <rpe/xir.h>
#¥define BUFSIZE 4000 /* size of memory for encoding */

X[F. udrs: /* pointer to an XDR "stream” *y
char buf [BIFSIZE] ; /* mamcry area to hold XDR data */

e _create(xdrs, luf, BIFSIZE, TR _ENOUDE) ;

Once a program has created an XDR stream, it can call individual XDR conversion
routines 0 convert native data objects mnto external form. Each call encodes one daia
object and gppends the encoded information on the end of the stream (i.e., places the
eocoded data in the next available locations in the buffer and then updates the internal
stream pointer). For example, procedure xdr_int converts a 32-bit binary integer from
the native representation to the standard XDR representation and appends it o an XDR
stream. A program invokes xdr_gni by passing it a pointer to an XDR stream and a
potnter to an integer:

int 1; /* integer in native representaticn */
e e /* assuame stream initialized for ENODE */
i = 260; /" assign integer value to be comeerted */

xr_int (xhrs, &1); /* comvert integer and append to stream */

Figure 19.3 illustrates how the call to xdr_ins shown in the sample code adds four
bytes of data 10 the XDR siream.

138 External Drata Representation (XDR;

[¥

Chap. 19

stream l
headaer

fer)

(, ¥
oo & :

(b}

Figure 19.3 (a) An XDR stream that has been initialized for encoding and al-
ready contains 7 hytes of data, and {b) the same XDR stream
after a call to xdr_inr appends a 32-bit imeger with value 264

19.11 Conversion Routines In The XDR Library

The table in Figure 19.4 lists the XDR conversion routines.

BT T T T R s ¥ WHNE IS SR L e meeel R @ emmmame WP T O BT RATRUERECIRS S8 AL WR - MLt

Sec, 19011 Conversion Routines In The XDR Librar 239

Procedure arguments Data Type Converted
xdr_hool xdrs, ptrbooi Baoolean {intin C)
xdr_bytes xdrs, ptrstr, Counted byte string
strsize, maxsize
xdr_char xdrs, ptrehar Character
xdr_doubie xdrs, ptrdouble Double precision floating point
xdr_enum xdrs, ptrint Variable of enumerated data type
(an intin C)
xdr_float xdrs, ptriloat Single precision floating point
xdr_int xdrs, ip J2-bit integer
xdr_long xdrs, ptriong 64-bit integer
xdr_opaque xdrs, ptrchar, count Bytes sent without conversion
xdr_pointer xdrs, ptrobij, A pointer {used in linked data
cbjsize, xdrobi structures like lists or trees)
xdr_short xdrs, ptrshort 16-bH integer
xdr_string xdrs, ptrstr, maxsize A C string
xdr_u_char xdrs, ptruchar Unsigned 8-bit integer
xdr_u_int xdrs, ptrint Unsigned 32-bit integer
xdr_u_long xdrs, ptrulong Unsigned 63-bit integer
xdr_u_short xdrs, ptrushort Unsigned 16-bit integer
Xdr_union xdrs, ptrdiscrim, Discriminated union
ptrunion, cholcefen,
default

xdr_wvector xdrs, ptrarray, size, Fixed length array
elemsize, elemproc
xdr_void -none- Not a conversion {used to denote
empty part of a data structure)

Figure 194 The XDR data conversion routings found in an XDR library.
The routines can convert in either direction because most arpu-
ments are pointers to dala objects and not data values.

To torm a message, the application calls XDR conversion roulines lor each data
itetn 1n the message. After encoding ezch data item and placing it in an XDR stream,
the application can send the message by sending the resulting stream. The receiving ap-
plication must reverse the entire process. It caills xdrmem_create to create a memory
buffer that wiil hold an XDR stream, and places the incoming message in a buffer area.
XDR recerds the direction of conversion in the stream itself where the conversion rou-
tines can access it. The recerver specihies XDR DECONE as the third argument of
xdrmem_create when creating an XDR stream thal will be vsed tor input. As a resutl,
whenever the receiver calls an individual conversion routine on an input stream, the
routine exiracis an item from the strcam and converts it to native mode. For example, if
the receiver has established an XDR stream used for input (ie.. the call specified

240 External Nata Representation (XDR) Chap. 19

XOR_DECODE), it can extract a 32-bit inleger and convert it to the native representa-
tion by calling xdr_int:

int i: /* integer using native representation =/
.o /* assuame stream initialized for DEOODE */
xir_int (abrs, &i); /% extract integer from stresm *f

Thus, unlike the conversion routines Afons and niohs found in Windows Sackets, indivi-
dual! XDR conversion routines do not specify the direction of conversion. Instead, they
requite the program to specify the direction when creatmg the XDR stream. To sum-
manze:

individual XDR conversion routines do not specify the direction of
conversion. Instead, a single routine that can convert in either divec-
tion determines the direction of the conversion by examining the XDR
stream being used.

19.12 XDR Streams, /O, and TCP

The code i(ragments above creatc an XDR stream associated wilth a buffer
memory. Using memory t0 buffer data can make a program efficient because buffering
allows the application to convert large amounts of data to external form before sending
1L across a network. Atter items have been converted to external form and placed in the
buffer, the application must call an 1O function like send to transmit i across a TCP
connection.

On UNIX systems, it is possible (o arrange to have XDR conversien routines send
data across a TCP connection automatically each time they conven a data item to exter-
nal formt. To do so, an application program first creates a TCP socket, and then calls
function fdopen to attach a standard IO stream to the socket. Instead of calling
xcdrmem_create, the application calls xdrstdio_create to create an XDR stream and con-
nect it to the cxisting IO descriptor. XDR sireams attached to a TCP socketl do not re-
quire explicit calls to send or recv. Each time the application caills an XDR conversion
routine, the conversion routine automatically performs a buffered send or recv operation
using the underlying descriptor. A send causes TCP 1o transmii outgoing data to the
sacket; a recy causes TCP (0 receive incoming data from the socket. The application
can also call conventional functions from the /O library to act on the [0 stream. For
example, if outpuc is desired, the application can use fflush to flush the output buffer
after onty a few byles of data have been converted.

tlUnder Windows, il is nol possible to associate an XDR stream with a TCP connection because Win-
dows does aot permic standard 140 fuaciions 1o be used with sockels.

e M ke deem e me e e s

Sec. 19,13 Records, Record Boundaries, And Datagram O 241
19.13 Records, Record Boundaries, And Datagram VO

As descnbed, the XDR mechanism works well when connected to a TCP socket
because both XDR and TCP implementations use the stream abstraction. To make
XDR work with UDP as easily as it works with TCP, the designers added a second in-
terface. The alternative design provides an application with a record-orienied interfuce.

To use the record-oriented interface, a program calls function xdrrec_create when
creating an XDR stream. The call includes two arguments, inproc and owtproc, that
specify an input procedure and an cutput procedurs. When converting to external form,
each conversion routine checks the buffer. If the buffer becomes full, the conversicn
routine calls outproc to send the existing buffer contents and make space for the new
data. Similarly, each time the application calls 4 conversion routine to convert from
external form to the native representation, the routine checks the buffer to see if it con-
tains data. If the buffer is empty, the conversion rouline calls inproc to obiain more
data.

To use XDR with UDP, an application creates a record-oriented XDR stream, It
arranges for the input and output procedures associated with the stream to call recv and
send. When the application fills a buffer, the conversion routines call send to transmit
the buifer in a single UDP datagram. Similarly, when an applicaton calls a conversion
routine to extract data, the conversion routine calls recy to obtain the next incoming da-
tagram and place it in the buffer.

XDR streams created by xdrrec_create differ from other XDR streams in several
wayi. Record-oriented streams allow an application to mark record boundaries. Furth-
ermore, the seader can specify whether to send the record immediately or to wait for the
buffer to fill before sending data. The receiver can detect record boundaries, skip a
fixed number of records in the input, or find out whether additional records have been
recerved.

19.14 Summary

Because computers do not use a commott dala sepresentution, client and server pro-
grams must contend with representation issues. To solve the problem, client-server in-
leraction can be asymmetric of symmetric. Asymmetric conversion requires either the
cliem or the server to convert between its own representation and the other machine’s
native representation. Symmetric conversion uses & standard network representation,
and requires both the client and server to convert between the network standard and the
local representation.

The chief problem with asymmetric interaction arises because multipie versions of
each program are required. If the network supports & architectures, asymmetric interac-
tion requires programming effort proporional to A°. While symmetric designs may re-
quire slightly more computational overhead, they provide interoperability with one pro-
gram per architecture. Thus, most designers choose symmetric solutions because they
require programming effort proportional 1o M.

242 Exiernal Data Representation {XDR} . Chap. |9

Sun Microsystems, Incorporated has defined an external data representation that
has become, de facto, a standard. Known as XDR, the Sun standard provides defini-
tions for data aggregates {(e.g., armays and structures) as well as for basic data types
{e.g., integers and character strings). XDR library routines provide conversion from a
computer's native data representation 1o the external standard and vice versa. Client
and server programs can use XDR routines to convert data te external form before send-
ing it and to internal form after receiving il. The conversion routines can be associated
with input and output using TCP or UDP.

FOR FURTHER STUDY

Sun Microsystems, Incorporated [RFC 1014] defines the XDR enceding and the
standard XDR conversion routines. Srinivasan [RFC 1832] contains a new version that
i5 a proposed standard. Addittonal information can be found in the documentation that
accompanies each vendor's software. For example, the Merwork Programming Guide
accompanies the SunOS operating system.

International Organization for Standardization [1987a and 1987b] defines an alter-
native external data representation known as Abstract Syntax Notation One (ASN.I).
Although some prowcels in the TCF/IP suite use the ASN.1 represemtation, most appli-
cation programmers prefer XDR, Partridge and Rose [1989] shows that XDR and
ASN.] have equivalent expressive power,

Padlipsky [1983] discusses the problem of asymmetric conversion and points out
that it requires n * m possible conversions.

EXERCISES

19.1 Construct & version of miefy and conduct an experiment that compares the execution
time of your version to the execution time of the version in your system’s library or in-
clude files. Explain the results.

19.2 How does XDR’s use of the buffer paradigm make programming easier?

19.3 Design an external data representation that includes a type field before each data item.
What is the chief advantage of such a solution? What is the chief disadvantage?

19.4 Read the vendor's documentation to find out more about the format of an XDR stream.
What information is kept in the header?

19.5 Argue that programs would be easicr to read if the designers of XDR had chosen o use
separate conversion routines for encoding and decoding instead of recording the conver-
sion direction in the stream header. What is the disadvantage of keeping separate
conversion routines?

19.6 Under what circumstances might & programmer need [0 pass opague data objects
between a client and a server?

LM R LT e TR THELS M AR 1D .0 1 L arsp - C e B memtet adt e W TR R B e v et L

20

Remote Procedure Call
Concept (RPC)

20.1 Introduction

The previcus chapter begins a discussion of lechnigues and mechanisms that help
programmers use the client-server paradigmt. It considers the advantages of using sym-
metric data conversion, and describes how the XDR external data representation stan-
dard and associated library routines provide symmetric conversion.

This chapter continues the discussion. It introduces the remote procedure call con-
cept in general, and describes a particular impiementation of a remote procedure call
that uses the XDR standard for data representation. It shows how the remote procedure
concept simplifies the design of client-server software and makes the resulting programs
easier to understand. The next two chapters complete the discussion of remote pro-
cedure call by describing a tool that generates much of the C code needed to implement
a program that uses remote calls. Chapter 22 contains a complete working example that
shows how the tool can generate a client and a server that use remote procedure calls.

20.2 Remote Procedure Call Model

So far, we have described client-server programs by examining the structure of the
cliem and server components separaiely. However, when programmers build a client-
server application, they cannot focus exclustvely on one component at a time. [nstead,
they must consider how the entire systern will function and how the two components
will interact,

tSuch mechanisms are often called middieware,

243

244 Remote Procedure Call Concept (RPC) Chap. 20

To help programmers design and understand client-server interaction, researchers
have devised a conceptual framework for building distributed programs. Known as the
remote procedure call model or RPC model, the framework uses familiar concepts from
conventional programs as the basis for the design of distributed applications.

20.3 Two Paradigms For Building Distributed Programs

A programmer can use ene of two approaches when designing a distributed appli-
cation:

* Communication-Oriented Design
Begin with the communication protocol. Design a message format and syntax.
Design the client and server components by specifying how each reacts to in-
coming messages and how cach generates outgeing messages.

+ Application-Oriented Design
Begin with the applicaticn. Design a conventional application program o solve
the problem. Build and test a working version of the conventional program that
cperates on a single machine. Divide the program ino two or more pieces, and
add communication protecols that allow each piece to execute on a separate
cornputer.

A communication-oriented design sometimes leads to problems. First, by focusing
on the communication protocol, the programmer may miss important subtleties in the
application and may find that the pretocot does not provide all the needed functionality.
Second, because few programmers have experience and expertise with protocol design,
they often produce awkward, incorrect, or inefficient protocols. Small oversights in
protocel design can lead to fundamental errors that remain hidden until the programs
run under stress (e.g., the possibility of deadlock). Third, because the programmer con-
cenirates on communication, it usually becomes the centerpiece of the resulting pro-
grams, making them difficult to understand or medify. In particular, becauvse the server
is specified by giving a list of messages and the actions required when each message ar-
rives, it may be difficolt te understand the intended interaction or the underlying
motivations. *

The remote procedure call model uses the application-oriented approach, which
emphasizes the problem to be solved instead of the communication needed. Using the
remote procedure call model, a programmer first designs a conventional program to
solive the problem, and then divides the program into pieces that run on two Or more
computers. The programmer can follow good design principles that make the code
modular and maintainable.

In an ideal sitwation, the remote procedure call model provides more than an
abstract concept. It allows a programmer to build, compile, and test a conventional ver-
sion of the program to ensure that it solves the problem correctly before dividing the
program into pieces that operate on separate machmes. Furthertnore, because RPC
divides programs at procedure boundaries, the split into local and remote parts can be

Sec. 203 Two Paradigms For Building Distcibuted Proprams 245

made without major modificaltons to the program structure. In fact, it may be possible
to move some of the procedures from a program to remote machines without changing
or even recompiling the main pregram itself. Thus, RPC separates the solution of a
problem from the task of making the solution operate in a distributed environment.

The remote procedure call paradigm for programming focuses o the
application. It allows a programmer to concentrate on devising a
conventional program that solves the problem before attempting io
divide the program into pieces that operate on multiple compusers.

20.4 A Conceptual Model For Conventional Procedure Calls

The remste procedure call model draws heavily from the procedure call mechanism
found in conventional programming languages. Procedures offer a powerful abstraction
that allows programmers to divide programs into small, manageable, easily-understood
pieces. Procedures are especially useful because they have a straightforward implemen-
tation that provides a concepiual model of program execution. Figure 20.1 illustrates
the concepl.

main
proc, proc, proc, proc,
' NN ‘
proc, proc, proc, proc,

Figure 20.1 The procedure concepl. A conventional program consisls of one
or more procedures, usually arranged in a hierarchy of calls. An
arrow from procedure # to procedure m denotes 2 call from n to
m,

20.5 An Extension Of the Procedural Model

The remote procedure call model uses the same procedural abstraction as a conven-
tional program, but allows a procedure call to spar the boundary between two cemput-
ers. Figure 20.2 illustrales how the remote procedure call paradigm can be used o
divide a program into two pieces that each execute on a separate computer. Of course,

246 Remnnte Procedure Catl Concep (RPC) Chap. 20

a converntional procedure call canoot pass {rom one computer to another. Before a pro-
gram can use remote procedure calls, it must be augmented with protocol software that
allows it 1o communicate with the remote procedure.

compiier, COMPUTEr,
maln
| proc, proc, proc, proc,
proc, proc, proc, proc,

Figure 20.2 A distnbuted program that shows how the program from Figure
20} 1 can be eatended to use the mmote procedure call paradigm.
The division occurs between the main program and procedure #.
A communication proiocol is required 1o implement the remote
call.

20.6 Execution Of Conventional Procedure Call And Return

The procedural model for programs provides a conceptual explanation of program
execution that extends directly to remote precedure calls. The concept can be under-
stoad best by considering the retationship of coatrol flow to compiled program cede in
memory. For example, Figure 20.3 illustrates how control flows from a main program
through two procedures and back.

According to the procedural execution model, a single thread of control or thread
af execution flows through all procedures. The computer begins execution in a main
program and continnes until it encounters a procedure call. The call canses execution
to branch to code in the specified procedure and comtinue. it encounters another call,
the computer branches to a second procedure.

Execuotton continues in the called procedure until the computer encounters a refurn
statement. The refumn siajement causes execulion 10 resume at a poing just after the last
cali. For example, in Figure 20.3, executing the retrn in procedure B causes conirol to
pass back to procedurc A at a point just after the call to B.

LA T - R R H R AT kel T m b mhLasedeen m 0 AadmhiRRe s o ol R OO R w b i e T e

Sec. 206 Execution Of Conventional Procedare Call And Rewurn 247

Code For Code For Code For
Main Program Procedure A Procedure B
i el VRN
Cail A ——
Call B —
-—— Exit —— Feturn _ Return

Figure 28.3 A conceptual madel of execution that explains flow of comrol
during procedure call and return. A single thread of control be-
gins in the main program, passes through procedures A and B,
and eventually returils to the main program.

In the conceptual model, only one thread of eaecution comtinues at any time,
Therefore, the execution of one procedure must ““stop’’ temporarily while the computer
executes the call to another procedure. The computer suspends the calling procedure,
leaving the values in all variables frozen during the call, Later, when execution returns
from the procedure call, the computer resumes execution in the caller with the values in
all variables available again. A called procedure may make further procedure catls be-
cavse the computer remembers the sequence of calls and always retumns to the mest re-
cently executing catler.

20.7 The Procedural Model In Distributed Systems

The execution model of procedure calls that programmers use when thinking about
conventional computer programs ¢an help us understand how execution proceeds in a
distnbuted program. Instead of thinking about a client program and a server program
exchanging messages, imagine that each server implements a (remote) procedure and
that the interactions between a client and a server correspond to a procedure call and re-
turn. A request sent from a client to a server corresponds 1o a call of a remote pro-
cedure, and a response sent from a server back o a client corresponds o the execution
of a return instruction. Figure 20,4 illustrates the analogy.

248 Remote Procedure Cali Concept (RPC) Chap. 2
Main Program Procedure A Pracedure B

On machine 1 On machine 2 On machine 3

{cHent) {servar) (aarver)

rs Fl ’
A r
, ’ ’ ¢ !
callremote | - ’ P
proc. A- T call remote L’
r—*""\‘ proc. 8- "1~
~t—{— Exit “~_ _|_ _Respond “~<_ | Respond
J "™ "to calier 1 1o caller

Figure 20.4 The model of execution used with remote procedure calls. A sin-
gle thread of control executes in a distribuzed environment.
Dashed lines show how control passes from a client o a server
during a remote procedure call. and how it passes back when the
server responds.

20.8 Analogy Between Client-Server And RPC

The remote procedure call concept provides a strong analogy that allows program-
mers to think about client-server interactions in a tamiliar context. Like a conventional
procedure call, a remote procedure call transfers control to the called procedure. Also
like a-conventional procedure call, the system suspends execution of the calling pro-
cedure during the call and only allows the called procedure o execute.

When a remote program issues a response, it correspands 1o the execution of a re-
turn in a conventional procedure call. Control flows back to the caller, and the caited
procedure ceases to execute. The notion of nested procedure calls alse applies to re-
mote procedure calls. One remote procedure may call another remote procedure. As
Figure 20.4 illustrates, nested remate procedure calls correspond 10 a server that be-
comes a client of another service.

Of course, the analogy between remote procedure call and client-server interaction
does not explain all the details. For example, we know that a conventional procedure
resnains completely inactive vntil the flow of control passes to it (i.e., undl it is catled).
In contrast, a server must exist in the remote system and be waiting to compute a
response before it receives the first request from a client. Further differences arise in
the way data flows to a remoie precedure. Conventional procedures vsually accept a
few arguments and return only a few results. However, a server can accept or returm ar-

Sec. 20.8 Analogy Between Cliem-5Server And RPC 249

bitrary amounts of data (i.e., it can accept or retum an arbitrary stream over a TCP con-
nection).

Although it would be ideal if local and remote procedure calls behaved ideatically,
several practical constraints prevent it. First, network delays can make a remote pro-
cedure call several orders of magnitude more expeasive than a conventional procedure
call. Second, because the called procedure operates in the same address space as the
calling procedure, conventional programs can pass pointers as arguments. A remote
procedure call cannot have pointers as arguments because the remote procedure operates
in a completely different address space than the caller. Third, because a remoie pro-
cedure does not share the caller’s environment, it does not have direct access to the
caller’s I#0 descriptors or operating system functions. For example, a remote procedure
cantk® write ermor messages directly t¢ the caller's standard error file.

20.9 Distributed Computation As A Program

The key (o appreciating remote procedure call is to understand that, despite its
practical limitations, the paradigm helps programmers design distributed programs easi-
ly. To see how, imagine that each distributed compuration consists of an individual
program that runs in a distributed environment. Instead of thinking about the client and
server software that implements communication, imagine how easy it would be to build
distributed programs it a program simply invoked a procedur: when it needed access to
a remote service. lmagine that the program’s thread of execution could pass across the
network to the remote machine, execute the remote procedure on that machine, and then
retumn hack to the caller. From the programmer’s pomnt of view, remole services would
be as easy to access as local procedures or local operating sysiem services. In shert,
distributed programs would become as easy to construct as conventional programs be-
cause they could draw on the programmer’s intuition and expenence with conventional
procedure calls. Furthermore, programmers familiar with the procedure- parameter
mechanism could define client-server communication precisely without any-peed for a
special notation or language. To summarize:

Thinking of « distributed computation as a single program in which
control passes across the network to a remote procedure and back
helps programmers specify client-server interactions; it relates the in-
teraction of distributed computations o the familiar netions of pro-
cedure call and return.

250 Remowe Procedure Call Concept {RFC) Chap. 20
20.10 Sun Microsystems’' Remote Procedure Call Definition

Sun Microsystems, Incorporated has defined a specific form of remote procedure
call. Known as Sun RPC, Open Network Computing (ONC} RPC, or simply RPCt, the
remote procedure call definition has reccived wide acceptance in the industry. It has
been used as an implementaton mechanism for many applications, including the Net-
work File System (NFS1).

RPC defines the format of messages that the caller (client) sends to invoke a re-
mote procedure on a server, the format of arguments, and the format of results that the
called procedure returns to the caller. It permits the calling program to use either UDP
or TCP 10 carry messages, and vses XDR to reptesent procedure arguments as well as
other items in an RPC message header. Finally, in addition to the protocol specifica-
tion, RPC includes a compiler system that helps programmers build distributed pro-
grams automatically.

20.11 Remote Programs And Procedures

RPC extends the remote procedure call model by defining a remote execubion en-
vironment. It defincs a remoie program as the basic unit of software that executes on a
remote machine. Each remote program coresponds to what we think of as a server,
and contains a set of one or more remate procedures plus global data. The procedures
inside a remote program all share access to s global data. Thus, a set of cooperanve
remote procedures can share state information. For example, one can implement a sim-
ple remote database by constructing a single remote programn that includes data struc-
tures 1o hold shared information and three remnote procedures 10 mampulate it irnser,
delete, and fookup. As Figure 20.5 illustrates, all remote procedures inside the remole
program can share access 1o the single database.

a single remote program

proc, proc, proc,
-) K4
. 1 re

shared global data

Figure 201.5 Conceptuzl organization of threc remcte procedures in a remote
pragram. All three procedures share access to global darz in the
program, just as conventional procedures share access o global
data in a convenhonal program.

tThroughuut the remainder of this text. the term RAC will reler i ONC RPC unless otherwise noted.
tChapter 23 discusses WNFS in detail.

Sec, 212 Reducing The Number OF Arguments 23
20.12 Reducing The Number Of Arguments

Because most programming languages use positonal notation to represent argu-
ments, a procedure call that contains more than a handfu) of arguments can be difficult
to read. Programmers can reduce the problem by collecting many arguments into a sin-
gle data aggregate (e.g.. a C striect) and passing the resulting aggregate as a single argu-
ment. The caller assigas cach field in the siructure a value before passing the simcture
to the called procedure; the caller extracts return values from the structure after the call
returns. To summarize:

Using a structure instead of multiple argumenis makes the program
more readable because the structure field names serve as keywords
that tell the reader how each argument will be used.

Because we will assume throughour the remainder of this discussion that all programs
using RPC collect iheir arguments inio a structare, each remote procedure will need
only a single argument.

20.13 Identifying Remote Programs And Procedures

The ONC RPC standard specifies that each remate program execuging on a com-
puter must be assigned a unigue 32-bit integer that the caller uses to wentfy it. Furth-
ermore, ONC RPC assigns an integer identifier to each remote procedure inside a given
remote program. The procedures are numbered sequenually: f, 2, ..., Nf. Conceptual-
1y, a specific remoie procedure on a given remote computer can be identified by a pair;

{prog, proc)

where prog identifies the remote program and proc identifies a remote procedure within
the program. To help ensure that program numbers defined by separate crganizations
do not conflict, RPC has divided the set of program numbers into eight groups as Fig-
ure 20.6 shows.

tBy convention, the number ¢ s alwavs reserved for an echo procedure that can be used o test whether
the remode program can be reached.

252 Eemote Proceduere Call Concept (RPC) Lhap. 20
From To Values Assigned By
Dx0O000000 - OxIffffif Sun Microsystems, Inc.
0x20000000 - Ox3Affftif The system manager at a user’s site
Ox40000000 - OxSfffffff Transient {(temporary)
Ox 60000000 Ox7HHf Reserved
0x80000000 Oxgftfttif Reserved
OxaDDOO000 Oxbftfifif Reserved
0xc0000000 Oxdiffiftf Reserved
Oxe000000D0 -

OxtifFEfe Reserved

Flgure 20.6 The division into eight groups of 32-bit numbers that RPC uses
to identity remote programs. Each remote program is assigned a
unigue numper.

Sun Microsysiems, Incorporated administers the first group of identifiers, allowing
anyone to apply for a standard RPC program number. Because Sun publishes the as-
signments. all computers that run RPC use the standard values. Of the 2% program
numbers available in the first group, Sun has only assigned a handful of numbers. Fig-
ure 20.7 summarizes some of the assignments.

20.14 Accommodating Multiple Versions Of A Remcte Program

In addition to a program number, RPC includes an integer version number {or each
remnale program. Usually, the first version of a program is assigned version f. Later
versions each receive a unique version number.

Version numbers provide the ability 1o change the defails of a remole procedure
call without obtaining a new program number. In practice, each RPC message identi-
{ies the intended recipient on a given computer by a triple:

(prog. vers, proc)

where prog identifies the remote program. vers specifies the version of the program (o
which the message has been sent, and proc identifies a remote procedure within that re-
mote program. The RPC specification permits a computer to run multiple versions ol a
remote program simultaneously, allowing for graceful migration during changes. The
idea can be summarized:

Because all RPC messages ideniify a remote program, the version of
thar progrom, and a remote procedure in the program, it is possible
to migrate from one version of a remote procedure to another grace-
fully and to test a new version of the server while an old version con-
tinies o operale.

Sec. 20.14 Accommodating Multiple Versions OF A Remote Program 253

Name aasigned Dascription
number

portmap 100000 port mapper
rstatd 100001 rstat, rup, and perfmeter
rusersd 100002 remote users
nfs 100003 noetwork file system
ypserv 100004 yp (now called NIS)
mountd 100005 mount, showmount
dbxd 100006 DBXprog (debugger)
ypbind 100007 NIS binder
walld 100008 rwall, shutdown
yppasswdd 100009 yppasswd
atherstatd 100019 ethernet statistics
rquotad 100011 rquotaprog, quota, rquota
sprayd 100012 spray
selection_svc 100015 selection service
dhsessionmgr 100016 unify, netdbms, dbms
rexd 100017 rex, remote_exec
office_auto 1000138 alica
tockd 100020 kimprog
lockd 100021 nimprog
statd 100024 status monlior
bootparamd 100026 bootstrap
penisd 150001 NFS for PC

Figure 20.7 Example RPC program numbers curmently assigned by Sun Mi-
crosystems, [ng.

20.15 Mutual Exclusion For Procedures in A Remote Program

The RPC mechanism specifies that at most one remote procedure in a remote pro-
gram can be invoked at a given time. Thus, RPC provides automatic mutual exclusion
among procedures within a given remote program. Such exclusion can be important for
remote programs that maintain shared data accessed by several procedures. For exam-
ple, if a remote database program includes remote procedures for insert and deleie
operations, the programmer does not need to worry about the two remote procedurs
calls interfering with one another because the mechanism only permits one call o exe-
cute at a time. The system blocks other calls untl the current call finishes. To sum:
marnze:

254 Remote Procedure Call Concepi (RPC) {"hap. 70

RPC provides mutual exclusion among remote procedures within a
single remote program,; ot most one remote procedire call can exe-
CHIZ in a remote program al one time.

20.16 Communication Semantics

When choosing the semantics for RPC, the designers had to chonse between two
possibilities. On one hand, to make a remote procedure call behave as much like a lo-
cal procedure call as possible, RPC should use a reliable transpert like TCP and should
guarantee reliabiiity to the programmer. The remote procedure call mechanism should
either transfer the call io the remote procedwre and receive a reply, or it should report
that communication is impossible. On the other hand, to allow programmers to use effi-
cienl, connectionless transpornt protocols, the remote procedure call mechanism should
support communication through a datagram protocol like UDP.

RPC dees not enforce reliable semantics. 1t allows each application to choose TCP
or UDP as a wransport protocol. Furthermore, the standard does not specify additional
protocols or mechanisms to achieve reliable delivery. Instead, it defines RPC semantics
as a function of the semantics of the underlying transporl protocol. For example, be-
cause UDP permits datagrams to be lost or duplicated, RPC specifies that remole pro-
cedure calls using UDP may expenence loss or duplication.

20.17 At Least Once Semantics

RPC defines the semantics of a remote procedure call in the simplest way by speci-
fying that a program should only draw the weakest possible conclusion from any in-
teraction. For example, when uwsing UDP, a request or reply message {call to a remote
procedure or return from cne} can be lost or duplicated. If a remote procedure call does
not return, the caller cannot conclude that the remote procedure has not been called be-
cause the reply could have been lost, even if the request was not. If 2 remote procedure
¢all does retumn, the caller can conclude that the remote procedure was called ar least
once. However, the calling procedure cannot conclude that the remote procedure was
called exactly once becauwse the request could have been duplicated or a reply message
could have been losi.

The ONC RPC standard uses the term at least once semantics to describe RPC ex-
ecution when the caller receives a reply, and zere or more semantics to describe the
behavior of a remote procedure call when the caller does not receive a repiy.

RPC's zero-or-more semantics irnposes an important responsibility on the program-
mer:

LRI (T TR T (o PR T TR R o e P T T P P R T i T R L

Sec, 20,17 Al Least Once Semantics 255

Programmers who choose to use UDP as the transport protocol for
an ONC RPC application must build the application to rolerale zero-
: Or-more execuiion semantics.

In practice, zero-or-more semantics usually means that a programmer makes each
remote procedure call idempotentt. For example, consider a remote file access applica-
tion. A remote procedure that appends data to a file is not idempotent because repeated
exécutions of the procedure will append data repeatedly. On the other hand, a remote
procedure that writes data to a specified position in a file is idempotent because repeat-
ed executions will always write data to the same position.

20.18 BRPC Retransmission

The library software supplied with the ONC RPC implementation includes a sim-
ple timeout and retransmission strategy, but does not guarantec reliability in the sirict
sense. The default timeout mechanism implements a fixed (nonadaptive) timeout with a
fixed number of retries. When the RPC hbrary software sends a message that
corresponds 10 a remote procedure call, it starts a timer. The software retransmits the
request if the timer expires before a response arrives. Programmers can adjust the
tmeout and retry limits for a given application, but the software does not adapt av-
tomasically to long network delays or to changes in delay over time.

Of course. a simple retransmission strategy does not guarantee rehliability, nor does
it guarantee that the calling application can draw a correct conclusion about execution
of the remote procedure. For exampie, if the network loses all responses, the caller may
retransmil the request several times and each request may result in an execution of the
remote procedure. Ultimately, however, library software on the caller’'s machine will
reach its retry limit and declare that the remote procedure cannot be executed. Most im-
portan{, an application cannot interpret failure as a guarantee that the remote procedure
was never execuied (in fact, it may have executed several times).

20.19 Mapping A Remote Program To A Protocol Port

UDP and TCP transport protocols use 16-bit protocol port numbers to identify
communication endpoints, Earlier chapters describe how a server creates a passive
socket, binds the socket 10 a well-known protocol port, and waits for client programs to
“contact it. To make it possible for clients and servers to rendezvous, we assume that
each service is assigned a unigue protocol port number and that the assignments are
well-known, Thus, both the server and chient agree on the protocol port at which the
server accepls requests because they both consult a published list of pont assignments.

tThe term is laken from mathematics, where an operation is said 10 be idempotent il repeaied appiicanons
of tht operation produce the same result.

256 Remote Procedure Call Concept {RPC) Chap. 20

RPC introduces an interesting problem: because it uses 32-bit numbers to identify
remote programs., RPC programs can outnumber protocol ports. Thus, it is impossible
to map RPC program numbers onto protocol ponts directly. More important, because
RPC programs cannot all be assigned a unique protocal porl, programmers cannot use a
scheme that depends on well-known protocol port assignments.

Although the potential number of RPC programs rules out well-known port assign-
ments, RPC does not differ dramatically from other services. At any given time, a sin-
gle computer executes only a small number of remote programs. Thus, as long as the
port assignments are temporary, each RPC program can obtain a protocol port number
and use it for communication.

If an RPC program does not use a reserved, well-known protocol port, clients can-
not contact it directly. To see why, think of the server and clieat components. When
the server (remote pregram) begins execution, it asks the operating system 10 allocate an
unused protocol pert ramber. The server uses the newly allocated protocol port for all
communication. The system may choose a different protocol pott number each lime the
server begins (i.e., the server may have a different port assigned each time the system

boots).
' The client (the program that issues the remote procedure call) knows the machine
address and RPC program number for the remote program it wishes 10 contact. Howev-
er, because the RPC program {server) only obtains a protocol port after it begins execu-
tion, the client cannot know which protocol port the server obtained. Thus, the client
cannot contact the remote program directly.

20.20 Dynamic Port Mapping

To solve the port identification problem, a client must be able 1o map from an RPC
program number and a machine address 1o the protocol port that the server obtained on
the destination machine when it started. The mapping must be dynamic because it can
change if the machine reboots or if the RPC program siarts execuotion again.

To allow clients to confact remote programs, the RPC mechanism includes a
dypamic mapping service. Each machine that offers an RPC program {i.e., that runs a
server) maintains a database of port mappings and provides a mechanism that allows a
caller to map RPC program numbers to protocol ports. Called the RPC port mapper or
sometimes simply the port mapper, the RPC port mapping mechamism uses a server 10
maintain a small database on each machine. Figure 20.8 illustrates that the port mapper
operates as a separale server process.

e mBer e llEE e i R o el ek bk 1 e

Sec. 220 Dynataic Port Mapping 57

RPC prograr vegLsters iis
[prOQRrEm, ort, VErsion }

| - | I
soacket for port sochket for wall-known
currently used by port at which the
this RPC program port mapper listens

Figure 20.8 The RPC port mapper. Each RPC program registers its program
number, prolocol port number, and version number with the port
mapper on the local machine. A caller contacts the port mapper
on & machine 1o find the protocol port 1o use for a given RPC
program on that machine.

20.21 RPC Port Mapper Algorithm

One port mapper operales on each machine using Algonthm 20.1. The port
mapper allows clients to reach remote programs even though the remole programs
dynamically allocate protocol ports. Whenever a remote program (i.e., a server) begins
execution, it allocates a local protocol port that it will vse for communication. The re-
mote program then contacts the port mapper on its local machine and adds a triple of
integers 1o the database:

(RPC prog number, version number, protoecol port number)

Once an RPC program has registered itself, callers on other machines can find its proto-
col port by sending a request 1o the port mapper.

Remote Procedure Call Concept (RPC}

Chap. 20

1.

2.

Algorithmn 20.1

Create a passive socket bound to the well-known pott as-
signed to the ONC RPC port mapper service (1711).

Repeatedly accept requests 1o register an RPC program
number or to look up a protoco! port given an RPC program
number,

Registration requests come from RPC programs on the same
machine as the port mapper. Each registration request speci-
fies a triple consisting of the RPC program number, version
number, and the protocol port currently used to reach that
pregram. When a registration request arives, the port
mapper adds the triple to its database of mappings.

Look-up requests come from arbitrary machines. They each
specify a remote program number and version number, and
reques! the number of a protocol port that can be used to
reach the remote program. The port mapper logks up the re-
mote program in its database, and responds by returning the
corresponding protocol port tor that program.

Algorithm 20.1 The RPC pont mapper algorithm. One port mapper server

runs on ¢uch machine that implesnents the server side of an
RPC program.

The port mapper on a given machine works like directory assistance in the U.S,

'EElE])thE systern: a caller can ask the pert mappet how to reach a particular RPC pro-
gram on that machine. To contact a remote program, a caller must know the address of
the machine on which the remote program execuies 25 well as the RPC program number
assigned to the program, and the version number. The caller first contacts the RPC port
mapper on the target tnachine, and then sends the port mapper an RPC program nuwmber
and a version pumber. The port mapper returns the protocol port mamber that the speci-
fied program is currently using. A caller can always reach the pont mapper because the
port mapper communicates using the well-known protocol port, 177, Once a caller
knows the protocol part number the largel program 1s using, it can contact the remote
program directly.

Sec. 20.22 RPC Message Format 254
20.22 RPC Message Format

Unlike many TCP/P protocals, RPC does not nse a fixed format for messages.
The protocol standard defines the general format of RPC messages as well as the data
items in each field using a language known as the XDR Langrage. Because XDR
language resembles data structure declarations in C, programmers familiar with C can
usually read and understand the language without much explanation. In generai, the
language specifies how to assemble a sequence of data items that comprise a message.
Each item is encoded using the XDR representation standard.

A message type field in the RPC message header distinguishes between messages
that a client uses 10 initiate a remote procedure call and messages that a remote pro-
cedure uses to reply. Constants used in the message type field can be defined using
XDR language. For example, the declarations:

anmm msg_type | J* R messadge type constants */f
CALL = 0;
REFLY = 1;

};

declare the symbolic constants CALL and REPLY 10 be the values of an enumerated
type, msg_type.

Data structures in XDR language can be considered a sequence of XDR types, and
can be interpreted as instructions for assembling a message by composing data using
XDR. For example, once values have been declared for symbolic constants, the XDR
langnage can define the format of an RPC message:

struct rpc meg { /* Format of an REC message */
msigned int mesgid; /* used to match reply to call */
mnicn switch (msg type mesgt) (
cage CALL:
call_pody chodyy
cage REFLY:
rply body rhody;
} body;
}:

The declaration specifies that an RPC message, rpc_msg consists of an integer message
ideniifier, mesgid, followed by the XDR representation of a discriminated union. Using
the XDR representation, each union begins with an integer, mesgr in this case. Mesgt
determines the format of the remainder of the RPC message; it contains a value that de-
fines the message to be either a CALL or a REPLY. A CALL message contams further
information in the form of a call_body; a REPLY contains informaticn in the form of a
rply_body. The declarations for cail_body and rpiy_body must be given elsewhere. For
example, RPC defines a call_body 10 have the form:

260 Retruote Procedure Call Concept (RPC) Chap 20

struct call_bhody { /* format of RPC CALL */
msicned int rpovers; /* which versicn of RPC? *J
unsigned int rpwog; /* mmber of ramote program */
wwsigned int rprogvers; /* version rumber of remote progt/
msigned int rproc; /* mmber of ramote procedure */
opaque_auth cred; /* credemtialeg for called auth. */
cparie auth verf; /* authentication verifier */
/* ARGS */ /* arguments for ramcte proc. *f

b,

The first few items in the body of a remote procedure call present no surprises. The
caller must supply the RPC protocol version number in field rpevers to ensure that both
cliemt and server are using the same message format. I[nteger fields rprog, rprogvers,
and rproc 1dentify the remote program being called, the desired version of that program,
and the remote procedure within that program. Fields cred and verf coniain information
that the called program can usc to authenticate the caller’s identity.

20.23 Marshaling Arguments For A Remote Procedure

Fields 1in an RPC message following the autheniication informmation contain argu-
ments for the remote procedure. The number of arguments and the type of each depend
an the remote procedusre being called.

RPC must represent all argumenis in an external form that allows them to be
lransferred between computers. In particular, if any of the argumenis passed to the rc-
mole procedure consists of a complex data siructure like a hinked list, it must be encod-
ed into a compact representation that can be sent across the network. We use the terms
marshal, linearize, or serialize to denote the task of encoding arguments. We say that
the client side of RPC marshals arguments into the message and the server side un-
marshals them. A programmer must remerber that although RPC allows an RPC call
to contain complex data objects, marshating and unmarshaling large data structures can
require significant CPU time and network bandwidth. Thus, most programmers avoid
passing hinked structures as arguments.

20.24 Authentication

RPC defines several possible forms of authentication, including a simple anthenti-
cation scheme dertved from UNIX and a more comnplex scheme that vses the Data En-
cryption Standard (DES) published by the National Instttute For Standards and Technol-
ogy (NMISTyt. Authentication information can have one of the four types shown in the
following declaration;

tWIST was known as The National Boreau OF Standards {NBS) when the DES standard was originally
published,

Sec. 20024 Authenticalion 26l

ernrn auth_btype /* pogsible forms of auth. *f
AUTH NILL, = 0; /* no anthentication */
ATH INIX = 1; /* INIX machine name authentic, */
BAIITH SHRT = 2; /* Used for short form auth. in */

/* messages after the first */
ALTH 'ES = 3; f* NIST's (MBS's) IES standand */
HH

In each case, RPC leaves the format and interpretation of the authentication information
up to the authentication suhsystem. Therefore, the declaration of the authentication
structure in an RPC message uses the keyword epague to indicate that it appears in the
message without any interpretation:

struct opaque auth { /* structare for authent. info. */
auth_type atype; /* which type of authentication */
opacue body<400>; /* data for the type specified */
}i

Of course, each authentication method vses a specific format for encoding data.
For example, whether a computer uwses Windows, UNIX, or another operating systerm,
the computer can be configured to use UNIX authentication, which defines the structure
of its authentication inforrnation to contain five helds:

struct uth unmix /* format of TNIX authen-icatiom*/
wnsigned int timestamp; /* integer timestanp *
string smachine<255>; /* name of sender's machine */
unsigned int userid; /* user 1d of user making req. */
wmsigned int grpdid; /* graup id of user making req. */

msigned int grpids<10>; /* other graup ids for the user */
i

UNIX authentication relies on the client machine to supply its name in field smochine
and the numeric identifier of the user making the request in field userid. The client aiso
spectfies its Jocal tine in field iimesiamp, which can be used 10 sequence requests. Fi-
nally, the ¢lient sends a main numerc group identifier and secondary group identifiers
of the sending user in fietds grpid and grpids.

20.25 An Example Of RPC Message Representation

XDR defincs the size and extermal format of each fieid in an RPC message. For
example, XDR specifies that an integer {either signed or unsigned) occupies 32 bats and
15 stored ik big-endian byte order.

262 Remote Procedure Call Concep {RC) Chap. 20

Figure 20.9 shows an example RPC CALL message. The size of ecach field is
defermined by 1y RPC definitton and the XDIR specification of sizes. For example, the
MESSAGE TYPF field js defined to be enumerated, which XDR stores 25 a 32-bit in-
teger.

o 1lc 31
MESSAGE ID
MESSAGE TYPE (0 for CALL)
RPC VERSION NUMBER (2)
REMOTE PROGRAM (0x 18623 for NFS)
REMOTE PROGRAM VERSION (2)
REMOTE PROCEDURE {f for GETATTH)

UNIX AUTHENTICATION

ARGUMENTS {IF ANY) FOR REMOTE PROCEDURE

Figure 20.9 An example of the external format used for an RPC CALL mes-
sage. The first fields of the message have a fixed size, but the
sizes of later fields vary with their content.

20,26 An Example Of An Authentication Field

The size of the authentication field in an RPC message depends on its contents.
For example the second field in a UNIX authentication structure 1s a machine name in a
variable-length format. XDR represents a variable-length string as a 4-byte integer
iength followed by the hytes of the siring 1zelf. Figure 20010 shows an example of the
representation for a UNIX authentication field. In the example, the computer’s namc,
merfin.cs.purdue edu, contains 20 characters.

Scc. 21026 An Example OF An Authentication Field 261

0 16 31
AUTHENTICATION TYPE { ! FOR UNIX)
LENGTH OF BODY THAT FOLLOWS (48]
TIMESTAMP (e.g., 0X2815025C)
LENGTH OF MACHINE NAME THAT FOLLOWS (20)

MACHINE NAME (merlin.cs.purdue.edu)

USERID OF SENDER (30)
GROUP ID OF SENDER (30)
LENGTH OF GROUP ID LIST THAT FOLLOWS (2)
GROUP 1D, {30)
GROUP ID, {59)

Figure 20.10 Example representation for UNIX authentication wilhin an RPC
message. The example values are tuken from a message sent
by a user with numeric login identificr 0 on machine
merlin. o mirene cdu,

20.27 Summary

The remote procedure model helps make distnbuied programs easy (o design and
understand because it relates client-server commaunication te conventicnal procedure
¢alls. The remote procedure call model views each server as implementing. one or mote
procedures, A message sent from a client to a server corresponds to a ““call™ of a re-
mote procedure, and a response from the server to the clignt corresponds to a “return’™
from a procedure call.

Like conventionsl procedures, remote procedures accept arguments and retum one

or more resuits. The arguments and reselts passed between the caller and the called
procedure provide a precise definition of the communication between the client and the
sErver. :
Using the remote procedure cal! odel helps programmers focus on the application
instead of the communication protocol. The programmer can build and test 2 conven-
tional program that solves a particular problem, and then can divide the program into
parts that execute on two or mare computers.,

264 Remore Procedure Call Concept (RPC) Chap. 20

Sun Microsystems, Incorporated defined a particular form of remote procedure call
that has become a de facto standard. ONC RPC specifies a scheme for idensifying re-
maote procedures as well as a standard for the format of RPC messages. The standard
uses the extzrnal dala representation, XIDR, to keep message representations machine in-
dependent.

RPC programs do not use well-known protocol ports like conventional clients and
servers. Instead, they use a dynamic binding mechanism that allows each RPC program
e choose an arbitrary, unwesed protocol port when it begins, Called the RPC port
mapper, the binding mechamsm requires each computer that offers RPC programs to
also mun & port mapper server al a well-known protocol port. Each RPC program regis-
ters with the port mapper on its local machine after it obtains a protocol port. When an
RPC client wants to contact an RPC program, it first contacts the port mapper on the
target machine, The port mapper responds by telling the cliemt which port the target
RPC program is using. Once a client oblains the comrect protocol port for a larget RPC
program, 1t contacts the larget RPC program directly vsing that port.

FOR FURTHER STUDY

sun Microsystems, Incorporated [RFC 1057)-defines the standard for ONC RPC
and describes most of the ideas presented in (his chapter. Sonivasan [RFC 1831] con-
tans a new version that is a proposed standard. Additional information can be found in
the documentation that accompanies cach vendor's RPC software.

EXERCISES

20.1 Read the RPC specification and create a diagram that shows the size of the fields in 2
Lypical rélum message.

20.2 Conduct an experiment to measure the overhead that using 4 port mapper introduces.

20.} A client can avoid needless overhead by caching protocel port bindings. That is, after a
client contacts the port mapper 10 obtain & protocol port for the target RPC program, it
can store the binding in & cache to avoid locking il up again. How long will a binding
temain valid?

204 Can the port mapper concept be extended to services other than RPC? Explain your
- Answer.

20.5 What are the major advantages and disadvantages of using a port mapper instead of
well-known pors?

2.4 When an RPC client contacts a port mapper, il must either specify or learn whether the
targel program has cpened a UDP pont or a TCP port. Read the specification carefully
to find out how an RPC client distinguishes between the two.

Exercises : 265

20.7

208

209

20.190
20.11

If your computer has the utility pragram rpcinfo, read the manual pages 10 determine its
capabilities. Use rpcinfo to obtain a list of the RPC programs and versions that are
available on your computer.

Read about other vendor’s designs for RPC. Are there concepis that are nol present in
ONC RPC?

Consider the authentication scheme used in ONC RPC. s the scheme completely secure
for use within an organization? For use between 1wo organizations?

Compare DCE RPC 1o ONC RPC. How do the two differ?

Read about the Common Object Request Broker Architecture, CORBA. What new facili-
nies does such zr architecture provide fur RPC?

21

Distributed Program
Generation (Rpcgen
Concept)

21.1 Introduction

The previous chapter presents the principies underlying the remote procedure call
model. It describes the remote procedure call concept, and explamns how programmers
can usc remote procedure calis to bulld programs that operate in the client-server para-
digm. Finally, it describes the ONC RPC mechanism.

This chapter continues the discussion. [t focuses on the structure of programs that
use RPC, and shows how programs can be divided along procedural boundanes. It in-
troduces the siub procedure concept and a program generator tool that automates much
of the code generation associated with ONC RPC. Tt alse discusses a library of pro-
cedures that makes it easy (0 build servers that offer remote procedures and chents that
call them,

The next chapter completes the discussion of the generator. bt shows the sequence
of steps a programmer takes 1o create a8 conventional program and then (o divide the
program into local and remote components. [t presents a simple example application,
and then uscs the example to {ollow through the process of constructing a distnbuted
program. The cxample in the next chaptler complements the conceptual descnplion in
this chapter by illustrating many of the details and showing the code thal the generator
produces.

2687

268 Dasiributed Propram Generation {Rpcgen Concepl) Chap. 21
21.2 Using Remote Procedure Calls

The remote procedure call model is general. A programmer can choose to use the
remote procedure paradigm in any of the following ways:

* As a program specification technique only. To do so, the programmer follows
the RPC model and specifies all inleraction between a client and server as either
a remote procedure call or a return. Procedure arguments specify the data
passed between the client and server. The programmer can ignore the procedur-
al structure when designing the client and server, but use the procedural specifi-
cation to verify the correctness of the resniting system.

* For both program specification and as an abstraction during program design. To
implement this approach, think about remote procedure calis when designing the
apphication programs and the communication protocel. Design a communication
protecol in which each message corresponds closely e one of the remoie pro-
cedure calls.

» For the conceptual design and explicitly in the implementation. To include RPC
in the implementation, the programmer designs a gencralized RPC message for-
mat and a protocol for passing control to a remote procedure. The programmer
follows the procedural specification precisely when passing data beiween the
client and server. The program uses a standard external data representation to
encode arguments, and [ollows the exact data type specifications given in the
design. It calls standard library routines to convert between the computer’s na-
tive represceniation and the external representation used when crossing a network.

* For design and implementation, constructing alt software from scratch. The pro-
grammer buiids a conventional application that solves the problem, and then
divides it into pieces along procedural boundaries, moving the pieces to separate
machines. The program uses the ONC' RPC message format (including the XDR
data representation} and program numbering scheme when calling a remote pro-
cedure. The programmer builds the imnplementation from the ONC RPC specifi-
cations alone, using the port mapper to bind a remote program number to the
corresponding protocol port.

= For design and implementation, using standard libranes. The programmer builds
an application and divides it into pieces using the QNC RPC specification, but
relies on exisiing RPC library routines whenever possible. For exampie, the
programmer uses library routines 10 register with the port mapper, to compose
and send a remote procedure call message, and to compose a reply.

* For an automated implementation. The programmer follows the ONC RPC
specification completely, and uses an automatic program generator tool to help
automate construction of the necessary pieces of c¢lient and server code and the
calls to RPC library routines that perform tasks like registering a program with
the port mapper, constructing a message, and dispatching a call w the appropri-
ate remote procedure in a remote program.

Sec. 21.3 Frograrmming Mechanisms To Suppart RPC 269
21.3 Programming Mechanisms To Support RPC

ONC RPC specifications are both extensive and complicated. Building an applica-
tion thal implements RPC witheut using any existing software can be tedious and time
consuming. Most programmers prefer to avoid duplicating the effort for each applica-
tion, Instead, they rely en library routines and programming tools 10 handle much of
the work.

Implementations of ONC RPC provide significant help for those who wish to
avoid urmecessary programming. Assistance comes in four forms:

. XDR library routines that convern individual data items from internal
form to the XDR standard exiemal representation

2. XDR library routines that format the complex data aggregates (e.g., ar-
rays and structures) vsed to define RPC messages

3. RPC run-time library routines that atlow a program to call a remote pro-
cedure, register a service with the port mapper, or dispatch an inconting
call to the correct remote procedure tnside a remole program

4. A program generatort ool that produces many of the C source files
needed to build a distributed program that uses RPC

The RPC run-time library has procedures that supply most of the functionality
needed for RPC. For example, procedure callrpe sends an RPC message 10 a server. It
has the form: '

callrpc (host, prog, progvyer, procmam, inproc, in, outproc, oub);

Argument hest poinis to a character string that contains the name of a machine on
which the retnote procedure executes. Arguments prog, progver, and procnum ientify
the remote program number, the version of the program to use, and the remotie pro-
cedure number. Argument inproc gives the address of a local procedure that can be
called to marshal arguments into an RPC message, and argument /n gives the address of
the arguments for the remote procedure. Argument ouiproc gives the address of a locat
procedure that can be called to decode the resulis, and oui gives the address in memory
where the results should go.

While calirpc handles many of the chores required to send an RPC message, the
ONC RPC library contains many other precedures. For example, a client calls function:

harlle = olnt_create (host, prog, vers, protol;

to create an integer identifier that can be used to send RPC messages. RPC calls the in-
teger identifier a handie; several RPC library procedures take a handle as one of their
arguments, Arguments 10 cfni_create specify the name of a remote host, a remote pro-
gram on that host, the version of that program, and a protocol (TCP or UDP).

tProgrammers often reler o the program generator as a siel gereraror. The reason that such terminole-
ey has become popular will become appareni when we review how the generaior works,

270 Disiributed Program Generaion (Rpcgen Concept) Chap. 2]

The library also contains routines that create, store, and manipulate authentication
information. For example, if the program is using UNIX authentication, procedure:

authimix create (host, uid, gid, len, aup gids);

creates an authentication handle for a given user on a given host computer. Arguments
specify a remote host, the vser’s login and primary group identifiers, and a set of groups
te which the user belongs, aup_gids. Argument ler specifies the number of items i the
set,

Although programmers can write applications that call the RPC library routines
directiy, few programmers do. Maost rely on the program generator tool discussed later
in this chapter. The code it generates contains many calls to the library procedures.

21.4 Dividing A Program into Local And Remote Procedures

To understand how the RPC programming tools work, it is necessary tc understand
how a program can be divided imto local and remote procedures. Think of the pro-
cedure calls in & conventional application. Figure 21.1 illustrates ene such call,

arguments in call maich
-——— formal parameters in

the called procedure
I- PROCE .I

Figure 21.1 An example procedure call that illustrates the procedural inter-
face used by a calling procedure and a called procedure. The
dashed lines denote a match between arguments in the procedure
call and parameters in the called procedure,

Each procedure has a set of fortnal parameters, and each procedure call specifies a set
of arguments. The total number of argumenis in the caller must equal the total number
of formal parameters in the called procedure, and the type of each argument must maich
the declared type of the comresponding formal parameter. In other words, the parame-
ters define the interface between a calling procedure and a called procedure.

Sec. 21.3 Adding Cexle For RPC 271
21.5 Adding Code For RPC

Moving one or more procedures to a remote machine requires a programiner to add
code between the procedure call and the remote procedure. On the client side, the new
code must marshal arguments and transiate them to a machine-independent representa-
tion, create an RPC CALL message, send the message to the remote program, wait for
the results, and translate the resulting values back to the client’s native representation.
On the server side, the new code must accept an incoming RPC request, translate argu-
ments 10 the server’s native data representation, dispatch the message to the appropriate
procedure, form a reply message by translating values to the machine-independent data
representation, and send the result back to the client.

To keep the program structure intact and to isolate the code that handles RPC from
the code that handles the application, the additional code required for RPC can be added
in the form of two extra procedures that completely hide the communication details.
The new procedures can add the required functionality without changing the interface
between the origmal calling and called procedures. Preserving the original imerface
helps reduce the chance for errors because it keeps the communication details separate
from the original application.

21.6 Stub Procedures

The additional procedures added to a program to implement RPC are called stub
procedures. The easiest way to undersiand stub procedures is to imagine a conventional
program being divided into two programs with an existing procedure being moved to a
remote machine. On the caller’s (clieni) side, a stub procedure replaces the called pro-
cedure. Omn the remote procedure’s {server) side, a stub procedure replaces the caller.
The twa stubs implement all the communication required for the remote procedure call,
leaving the onginal calling and called procedures unchanged. Figure 21.2 Hlustrates the
stub concept, showing how stub procedures allow the procedure call shown in Figure
21.1 1o be separaied into loczl and remote parts.

. - . cer g . L L T TR I e A T L
A3 RS R e oo LSRBA D AR PRHUIR S W e 13 PR .) fare R R e wRE AT "

272 Distribated Program Genezalion (Rpegen Concept) Chap. 21

Compiter | Computer 2
L PROC A -‘ remote 4 -D{SEHUEH STUBJ
"R LLEEE prDBdI.II'E,-’ R
calt .-
|-CL1EN'I' STI.IB.IW-r’ [PROCB -l

Figure 21.2 Stk procedures added to a progmm implement a remole pro-
cedure call. Because stubs use the same interface as the original
¢all, adding them does not require a change to either the original
calling procedure or the catled procedure.

21.7 Multiple Remote Procedures And Dispatching

Figure 21.2 presents a simplified view of RPC because it only shows a single re-
mote procedure call. In practice, a given server usually includes several remote pro-
cedures in a single remote program. Each RPC call consists of a message that identifies
a specific remote procedure. When an RPC message arrives, the server uses the remote
procedure number in the message o disparch the call to the correct procedure. Figure
21.3 illustrates the concepi.

~ The figure shows how RPC relates to a conventional client-server implementation.
The remote program consists of a singly-threaded server that must be running before
any messages arrive. A remofe procedure call, which can originate from any cliert,
must specify the address of the machine on which the server operates, the number of the
remote program on that machine, and the remote procedure to call. The server program
consists of a dispatcher routine plus the remote procedures and server-side stub pro-
cedures. The dispaicher understands how the remote procedure numbers cormespond ta
the server-side stubs, and uses the correspondence to forward each incoming remote
procedure call to an appropriate stub.

Sec. 21.7 Multiple Remote Precedures And Dispatching 73

l PROC A1 J PROC A2 LTI DISPATCHER
L L B BN B] Sl B Ll R LR LI LE LY] I, f‘
” ” d
avduid .l - Y f’f / \
CLIENTSTUB | |-~ SERVER STUB | [sERVER STUB
FORB2 [, FOR B1 FOR B2
f’ ---‘--L- - . . .-".-'llIIIl'II'F
#
-ﬂ-!--- -r'l“I - E e owmm pansrsraalsaraadsap
: r
il EEEEEEE. | Procst || pRoce:

Figure 21.3 Message dispatch in an RPC server. Clients send RPC requests
to a single server program. The server uses the remole pro-
cedure number in a message w decide which procedure should
receive the call. In the example, procedure Al calls procedure
B, and A2 calls B2, Dashed and doited lines shew which inler-
face each procedure uses.

21.8 Name Of The Client-Side Stub Procedure

The traasition from a conventional application to a distributed propram can be
trivial if the programmer chooses to name the client stub the same as the called pro-
cedure. To see why, consider again the stub procedures shown in Figure 21.3. The ori-
ginal caller, procedure AJ, contains a call to procedure Bi. After the program has been
divided, A! becomes part of the client and must call 4 stub to communicate with the re-
mote procedure. If the programmer names the client-side stub BJ and builds it to have
exactly the same interface as the original procedure B/, the calling procedure (A1) does
not need to change. In fact, it may even be possible to make the change without recom-
piling procedure Af. The original compiled binary for AI can be linked with the new
client-side stub for Bf to produce a valid client. Addmg a client-side stub without
changing the oniginal caller isolates the RPC code from the original application program
code, making programming easier and reducing the chance of introducing errors.

Of course, naming the client stub £/ makes source code management more diffi-
cult because it means that the distributed version of the program will have two pro-
cedures named BJ: the client-side stub and the original procedure that becomes pan of
the server. The two versions of B7 are never part of the same linked program. In most
cases, they will not execute on the same computer. Thus, as long as the programmer
exercises caution when building object programs, the stub approach works well. To
Summarize:

274 Dristributed Program Genzeration (Epcgen Concept) Chap. 21

To build a distribured version of an application program, a program-
mer must move one or more procedures to a remote machine. When
doing so, the addition of stub procedures allows the original calling
and called procedures to remain unchanged as fong as the client-side
stub has the same name as the original called procedure.

21.9 Using Rpcgen To Generate Distributed Programs

It should be obvious that much of the code needed 1o implement an RPC server
does not change. For example, if the mapping between remote procedure numbers and
server-side stubs is kept in a data structure, all servers can use the same dispatcher rou-
tine. Similarly, all servers can use the same code to register their services with the port
mapper.

To avoid unnecessary programming, implementations of ONC RPC include a tool
that generates much of the code needed to implement a distributed program automatcal-
ly. Called rpcgen, the tool reads a specification file as input and generates files of C
source code as output. The specification file contains the declarations for constants,
global data types, global data, and remote procedures {including the procedure argument
and result types). The files that rpcgen produces contain most of the source code need-
ed to implement the client and server programs that provide the specified remote pro-
cedure calls. In particular, rpcgen generates code for the client-side and server-side stub
procedures, including the code to marshal argurents, to send an RPC message, 1o
dispatch an incoming call to the comect precedure, to send a reply, and 1o translate ar-
gunients and results between the external representations and native data representa-
tions. When combined with an application program and a few files that the programmer
writes. the rpcgen output produces complete client and server programs.

Because rpcgen produces source code as outpul, the programmer can choose to edit
the code (e.g., to hand-optimize the code to improve performance) or to combine it with
other files. In most cases, programmers use rpegen to handle as many of the details as
possibie. They try 10 avoid changing the output by hand te keep the entire process of
generating a client and server automated. If the program specifications change or new
remote procedure calls are needed, the programmer can modify the specifications and
use rpcgen again te produce a new client and server withowt manual intervention.

21.10 Rpcgen Output And Interface Procedures

To maintain flexibility and to allow automatic generation of significant portions of
the stub code, rpegen separates each stub procedure into 1wo parts. One past, common
to almost all applications that use RPC, provides basic client-server communication; the
other part provides an interface to the application program. Rpcgen produces the com-
munication porlion of the stub automatically from a descrption of the remote procedure

Sec. 2110 Rpegen Output And Interface Procedures 275

and its arguments. Because rpcgen produces code for the communication stub, it speci-
fies the arguments required on the client side and the calling sequence on the server
side. The programmer must accept rpcgen calling conventions when using the com-
munpication stubs that rpcgen generates. _

The idea behind separating the siub into communication and interface routines is
simple: it allows rpegen to choose the calling conventions the communication stubs use,
while it allows the programmer to choose the calling conventions the remote procedures
use., The programumer creates interface stubs to map between the remote procedure cal-
ling conventions and the conventions provided by the communication stub procedures
that rpcgen generates. Figure 21.4 illustrates how all the routines interact.

Computer | Compiter 2
4 -—ISEFWEH COMM,
I. PROC A J remote -
i procedurs . *
cak . [SERVER IFACE.
[CuenT iFACE.]
CLIENT COMM. | - ¢ I- PROC B -I

Figure 21.4 The form of a distributed program created using rpcgen. Rpcgen
generates the basic communication stubs automatically; the pro-
grammer supplies the two interface procedures.

As Figure 21.4 illustrates, the two parts of a stub cach consist of two separate pro-
cedures. On the client side, the interface procedure calls the communication procedure.
On the server side, the communication procedure calls the interface procedure. If the
stubr interface procedures are defined carefully, the original caller and the original called
procedure can remain unchanged.

21.11 Rpcgen Input And Qutput

Rpcgen reads an input file that contains a specification of a remote program. It
produces four output files, each of which contains source code. Rpcgen derives names
for the output files from the name of the input file. I the specification file has name
(.x, all output files wall begin with (). The table in Figure 21.5 lists the output files
and describes their contents.

276 Distributed Program Generation (Rpcgen Concept) Chap 21

File Name Contents

.h Declarations of constants and types used in the
code generated for both the cllent and server
¢_xdr.cpp XDR procedure calls used in the client and server
to marshal arguments

¢ _chitepp | Cllemt-side communication stub procedure
Q_sve.cpp Servar-side communication stub procedure

Figure 21.5 The ouipwt files produced by rpegen for an input file named {).x.
As their names imply, the owput files contain the C source
code for both programs and data declarations.

21.12 Using Rpcgen To Build A Client And Server

Figure 21.6 illustrates the files that a programmer must write to build a client and
server using pegen. In éssence, rpogen requures the programimer to write an applica-
tion, the procedures it calls, and the interface portions of the client-side and server-side
stubs. The programmer divides the application into a driver program (the client} and a
sct of procedures that comprise the remote program (the server). The programmer then
wriles a specification for the remote program and uses rpegen to generate the remaining
pieces.

When rpegen runs, it reads the specification and generates C source code that must
be compiled and linked to produce running programs. Afler rpogen runs, 1wo separate
compile-and-ilink steps occur. One produces the executable client program and the other
produces an executable server.

Figure 21.6 only provides an overview of mpcgen input and ocutput. The next
chapter provides additional details on its use. The chapter presents 2 simple example
application, and shows the steps a programmer takes to transform it into a distributed
program. The chapter describes the specificalion file rpcgen takes as input as well as
the code rpcgen produces.

21.13 Summary

RPC is a broad concept that can help programmers design client-server software,
A programmer can use RPC to help specify or implement a distributed program. When
using ONC RPC, the programmer can choose to follow the specification while building
code from scratch, o use procedures found in the RPC library, or 1o use an automatic
program generation tool called rpegen,

Scco 21.13 Summary 277

client cliont
application interface

c
compiler client
Q.x
apecification
for remote ¢_xdr.cpp
program
sorver

server
pruceduras interiace

Figure 21.6 The files required to build a client and server from the output of
rpcgen, amd the compilation steps required to process them.
Darkened boxas show the input that the pregrammer supplies.

RPC allows a programmer to consiruct a conventional program and then to
transform it into a distributed program by moving some procedures to a remote
machine. When doing so, the programmer ¢an minimize changes and reduce the chance
of introducing errors by adding stub procedures to the program. The stub procedures
implement the necessary commmunication. Using stubs allows the original calling and
called procedures 0 remain unchanged.

Because most distributed programs using ONC RPC follow the same general archi-
teciure, rpcgen can generate much of the required code avtomatically. In addition to
creating a specification file, the programmer only needs to supply a pair of interface
procedures and the procedures associated with the application. Rpcgen generates the
rest of the client and server programs, including procedures that register the server with
the port mapper, provide communication between client and server, and dispatch incom-
ing calls to the correct remote procedure.

278 Distributed Program Generation [Kpepen Concepl) Chap. 21

FOR FURTHER STUDY

Additional information on rpcgen can be found in the documeniation that accom-
panies the software. Stevens [1990) descnibes the details of RPC exception handling.

EXERCISES

21.1 Write down the sequence of steps a server takes when an RPC CALL message arrives.
Be sure to specify when data values are converted from the external representations to
native representations.

21.2 Read abow the RPC hbrary routines in the documentation. What are the arguments for
funcion sve_sendrepdy? Why is each needed?

21.3 The RPC library inclodes routines that allow a server to register with the port mapper.
Read the documentation to find out what procedure prrap_unset does. Why is it neces-
sary’

21.4 If you have access to the source code for RPC library routines, find out bow many lines
of code they occupy. Compare the library size to the size of the source code for the
rpogen program. Why is rpocgen as large as it is?

21.5 Rpcgen produces C source code instead of object code. The documentation that accom-
panies rpcgen suggests that having source code allows a programmer to modify the gen-
erated code. Why might a programmer make such modifications?

216 Refer to the previous question. What are the disadvantages of modifying the rpegen out-
put’?

217 It is possible 1o design a remote procedure call mechanism that combines all procedures
from a remote program into a single procedure by using an additional argument to de-
cide which procedure to call {.g.. the remote procedure consists of a € swirch statement
that uses the new argumet to make a choice ameng allermative actions). Whal are the
chief advantages of such an approach compared o the ONC RPC approach? Whalt are
the chief disadvantages?

218 If the server side of a ONC RPC program uses sockets, what are the possible methods it
can use to irnplement mutual exclusion (i.e., how can it guaraniee that only one remote
procedure will be called at any time)? What are the sdvantages and disadvantages of
each method? Hint; consider the socket opticns.

22

Distributed Program
Generation (Rpcgen
Example)

22.1 Introduction

The previous chapters present the principles underlying the remote procedure call
model and the ONC RPC mechanism. They discuss the remote procedure call concept
and explain how programs can be divided along procedure call boundaries. They also
describe how the rpcgen tool and associated library routines amomate much of the code
generation for programs that use ONC RPC.

This chapter compleles the discussion of rpegen. It presents the sequence of steps
a programmer Lakes to first create a conventional program and then divide the program
into local and remote components. 1t uses an example application to follow through
each step of the process. It shows the output from rpegen and the additional code re-
quired to create the client and server components of a distributed program that uses
RPC.

2

280 Distributed Program Generation {Rpcgen Example) Chap. 22
22.2 An Example To lllustrate Rpcgen

An example will clarify how rpcgen works and will illostrate most of the details.
Because the point of the example is to explain how rpcgen works, we have selected an
extremely simple application: In practice, of course, few RPC programs are as trivial or
easy 10 follow as our example. Thus, one should think of the example as a ttorial and
nol question whether the application warrants a distributed solution.

22.3 Dictionary Look Up

As an example of using rpcgen, consider an application that implements a simple
database. The database offers four basic operations: initialize to initialize the database
(1.e., erasec all previously stored values), insert to insert a new item, defete 10 remove an
item, and lookup to search for an item. We will assume that items in the database are
individual words. Thus, lhe database will function as a dictionary. The application in-
serts a sel of valid words, and then uses the database to check new words to see if cach
18 11 the dictionary.

To keep the example simple, we will assume that input to the application is a text
file, where cach line contains a one-letter commaund followed by a word. The wable in
Figurc 221 hsts the communds, and gives the meaning of each:

one-letter
command | Argument Meaning
I -none- Initialize the database by removing all words
i word insert word into the database
d word delete word from the databhase
1 word look up word in the database
o -none- quit

Figure 22.1 Input commands for the exzmple database application and their
meanings. Some commands nwst be followed by a word that
can be thought of as an argument to the command.

For example, the following input contains a sequence of data commands. The
commands initialize the dictionary, insert names of computer vendors, delete some of
the names, and look up three names:

I

i Nawvy
i M
i FA
i Encore

Sec. 22.3

Dictionary Look Up 28I

Digital

Ko SRS RV . A

When this file of commands is presented as input, the dictionary application should find

IBM in

the dictionary, but it should not find Encaore or CDC.

22 4 Eight Steps To A Distributed Application

Figure 21.6%1 shows the input required for rpcgen and the output files it generates.
To create the required files and combine them inlo a client and server, a programmer
takes the following eight steps:

1. Build and test a conventional application that solves the problem.

Divide the program by choosing a set of procedures to move 0 a remote
machine. Place the selected procedures in a separate file.

. Write an rpcgen specification for the remote program, incloding names and

numbers for the remote procedures and the declarations of thenr arguments.
Choose a remote program numnber and a version number {usvally 7).

. Run rpegen to check the specification and, if vahd, generate the {our source code

files that will be used in the client and server.
Wrile stub interface routines for the client side and server side.

Compile and link together the client program. It consists of four mam files: the
ariginal application program (with the remote procedures removed), the client-
side stub (generated by rpcgen), the client-side interface stub, and the XDR pro-
cedures (generated hy rpcgen). When all these files have been cotnpiled and
linked togeiher, the resulting cxecutable program becomes the client.

Compile and link together the server program. [t consists of four main files: the
procedures taken from the original application thal now comprise the remote
program, the server-side stub (generated by rpcgen), the server-side interface
stub, and the XDR procedures {generated by rpcgen). When all these files have
been compiled and linked together, the resulting execuiable program becomes
the server.

. Start the server on the remote machine, and then invoke the client on the local

machine.

tFigure 21.6 can be found on page 277.

282 Drisiribwied Program Gereration (Rpogen Example) Chap, 22

The next sections examine each step in more detail and use the dictionary applica-
tion to illustrate the subtleties.

22.5 Step 1: Build A Conventional Application Program

The first step in building a distributed version of the example dictionary applica-
tfion requires the programmer to construct a conventional program that solves the prob-
lem.” File dict.cpp contains an application program for the dictionary probiem written in
the C language.

f* dict.opp ~ main, initw, nextin, insertw, deletew, lockupw */

kinclude <stdlib.h>
#include <stdio, =
#include <ctype.h>
ginclude «<string o

#define MAKWORDLEN 53 /* maximum length of a command or word */
#define DICTSIY 100 /* maximum nunber _of entries in diction.*/
char dict [DICTSIR] [MAXWORTLEN+1] ; f* storage for a dicticmary of words*/
int owords = 0 A7 mmber of words in the dictionary *f
int nextinichar *, char *), initw(}, insertw{comnst char *};

int delecew(const char *), lockupw({const char *);

..-"* __

w/
int
main{int arge, char argvil)
{
char word [MAWORDLEN+1] ; /*space to hold word from impuat line*/f
char cmd: -
int wrcdlen; /* langth of imput word *;

while (1) {
wrdlen = nextin{icnd, word};
if fwrdlen = 0)
exit{d);
word(wrdlen] = \0';
switch (cmd) [

Sec, 22.5 Step |: Build A Conventional Application Program 281

case 'I': F* “initialize® */
indtwi(}:
printf ("Dictionary initialized to empty.'\n");
brealk;

case '"i': f* "insert" */

insertwiword} ;
printf(*¥s inserted.\n*,word);
break;
case 'd’": i* rdalata* */
if [(deletew{word}}
printf({*%s deleted.\n",word);

elhnea
printf("%s not found. \n",word) ;
break:
cage "1': A "lookupt Y/

if {lockupw{word))
printf{"%s was found.\n",word);

else
printf{"%s was not found.\n",word);
break;
came gt £% quit */
printf{"program quits.\n"});
exit{0);
defaulk: /* illegal input */
printf{"camand %$c invalid.\n". cmd}:
hreak ;
H
:
}
|I'r* __

nextin{char *cmd, char *word)
{

int i, ch;

ch = getc{atdin);
while (isspaceich!)

ch = getc(atdin};
if f{ch == EOF}

retwrn -1;

284 Distributed Pragram Generation (Rpegen Example) Chap. 22

*cmd = {char} <h;
ch = getc{stdin];
while (isspaceich))
ch = getcistdin};
if (ch == EOF}
return -1;
if (ch == "\m')
retwrn 0O;
i = 0;
while (!isaspace(ch)) {
if [(++i > MAXWORDLEN) {.
printf{"error: word too long.\n*);
excit{1];
}
*word++ = ch;
ch = getc{stdin);

return 1i;

int

insertwiconst char *woxrd)

{
stropy (dict [worxds), word) ;
nwords++;
return mwords;

Sec. 22.5 Step |: Build A Convenfional Application Propram 285

*/
int
deletewi{const char *word)
{
int i:
for {(i=0 ; i<amords ; i++)
if (stxomp(word, dictiil) == 0) {
mwords——;
strepy {dict[i], dict[mwords]);
retirm 1; :
}
return D;
1
JI.F* __

*f
int
lookupwi{const char *word)
{

int i;

for (i=0 ; i<mwords ; i++)

if {(stroampiword, dict[i]) == 0}
return 1;

retwrn 0;

}

Ta keep the application simple and easy to understand, the conventional program
in file dict.cpp uses a two-dimensional array to store words. A globai vartable, nwords,
counts the number of words in the dictionary at any time. The main program contains a
loop that reads and processes one line of input orn each iteration. It calls procedure rex-
tin to read a command (and possibly a word) from the next input line, and then uses a C
switch statement to setect one of six possible cases. The cases comrespond to the five
vatid commands plas a default case that handles illegal input.

Each case in the main program calls a procedure to handle the details. For exam-
pie, the case that corresponds to an insertion command, §, calls procedure insertw. Pro-
cedure insertw inserts a new word at the end of the armay and increments nwords.

w e e iem am b KR TN SRR LT - T R

286 Disiributed Program Generation {Rpogen Example) Chap. 22

The other procedures operate as expected. Procedure defetew searches for the
word 1o be deleted. If it finds the word, deletew replaces it with the last word in the
dictionary and decrements nwords. Finally, fookupw searches the array sequentially to
determine if the specified word is present. It returns 7 if the word is preseat in the dic-
lionary and 0 otherwise. '

To produce an execulable binary for the application, the programmer compiles the
C code. For example, to produce an executable binary file for the dict program, the
programmer must compile the source program found in file dict.cpp

22.6 Step 2: Divide The Program Into Two Parts

Once a conventiogal application has been huilt and tested, it can be partitioned into
local and remote components. Programmers musi have a conceptual model of a
program’'s procedure call graph before they can partition the program. For example,
Figure 22.2 shows the procedural organization of the original dictionary application.

l

nextin initw iookupw

insertw delotew

Figure 22.2 The procedure call graph for the original, conventicnal program
that solves the dictionary problem. A call graph represents a
program’s procedural organization.

When considering which procedures can be moved 1o a remote maching, the pro-
grammer must consider the facilities that each procedure needs. For example, pro-
cedure nextin reads and parses the next input linc each time it is called. Because it
needs access to the program’s standard input file, nexiin must be kept with the main
program. To summarize:

Praocedures that perform I/0 or otherwise access file descriptors can-
noi be moved 1o a remote machine easily,

Sec. 22.6 Step X Divide The Program Inlo Two Parts 287

* The programmer must also consider the location of data that each procedure
accesses. For example, procedure leokupw needs to access the entire database of words.
If lookupw executes on a machine other than the machine where the dictionary resides,
the RPC call to lookupw must pass the entire dictionary #s an argument.

Passing large data structures as arguments to remote procedures is extremely ineffi-
cient because the RPC mechanism must read and encode the entire data structure for
each remote procedure call. In general:

Procedures shonild execuite on the same machine as the data they ac-
cess. Passing large data structiures as arguments lo remole pro-
cedures is inefficient.

After considering the original dictionary program and the data each procedure
accesses, it should be obvious that procedures imsertw, deletew, initw, and lookupw be-
long on the same machine as the dictionary itself.

Assume that the programmer decides to move the dictionary storage and associated
procedures to a remote machine. To help undersiand the consequences of moving some
procedures to a remote machine, programmers usually create a mental image, or even a
sketch, of the distributed program and data structures. Figure 22.3 illustrates the new
structure of the dictionary application with the data and access procedures moved to a
remote machine.

client on computer | remole ram on computer 2
calls to o8 s
remota pracedures
I F: -------- - initw -
main e data
“..:"-_h ~~~~~~ = Insertw | structures
" Tal used
T~ - i s L. for
.. ™ delatew | - dictionary
nextin ~ . .| {shared)
™ lookupw |

Figure 21.3 The conceptuzl division of the dictionary program into local and
remote components. The remote component contains the data
for the dictionary and the procedures that access and search it.

A simple drawing like the one in Fipure 22.3 can help a programmer think about
the division of a program into local and remote components. The programmer must
consider whether each procedure has access to the data and services 1t needs, and must
consider the arguments that each remote procedure will require atong with the cost of

288 Distributed Program Generation (Rpegen Example) Chap. 22

passing that information across a neiwork. Finally, the diagram helps the programmer
assess how network delays will affect program performance.

Assuming the programmer chooses a conceptual division and decides to proceed,
the next step is to divide the source program into two components. The programiner
identifies the constants and data structures used by each component, and places each
component in a separale file. In the dictionary example, the division is straightforward
because ihe original source file can be divided between procedure nextin and procedure
ininm'. File dicr!.cpp contains the main program and procedure nextin:

f* dictl.cpp - main, nextin */

#ireclude =gtdlib. he
#include *‘-‘.stdiq.h:r
#include <ctype.h>

#define MAXWORDLEN 50 /* maximmm length of a command or word ~/

int nextcin{char *, char *), initwlvoid}, lnsertwichar *),
deletew(char *), lockupw({char *);

*/
int
main{int arge, char *argv(l)
{
char word (MAYIRORDLEN+.]; /*space Lo hold word from inpub line=/
char cmal ;
int wrdlen; /* length of input word */

whiie (1) {

wrdlen = nextin{&cmd, word);

if (wrdlen < Q)
edit{d);

switch (ocmd) {

case 'I': % "initializet */
initw(};
printf{"Dictionary initlalized to empty.\n"):
preak;

case 'i': /* Tinsert" *=/f
ingsertwiword);
printf{"%s inzerted. n" ,word);
hreak;

Sec. 226 Step 2: Dhvide The Program Into Two Parts 2589

case 'd': v "delete* */
if (deletew{wnzd))
printf{*%s deleted. \n" ,word};

elge _
printf{"%s not found.\n",word};
brealk;
cage 'l': /T "locloup® */

if {lookupw{word) }
printf(*%s was found.\n",word) ;

else
printf ("%s wa= not found.\n",word) ;
break;
case 'g': /* quit */
printf("program ¢uits.\n");
exit (0);
default: /* illegal input */
printfi{"command %o invalid.\n~, omd);
break;
}
1
}
J.I"!' __

int i1, ¢h;

ch = gete({stdin);
while {isspace{ch})
ch = gete(stdin);
if (ch == BOF)
return -1;
*omnd = (char) ch;
ch = getcistdin);
while {isspace(ch)}
ch = getc(atdin);
if {ch == BOF}
return -1;
if (ch == '‘n')
return 0;

290 Distributed Program Generation {Epexen Example) Chap. 22

i=0;
while (!isspaceich}} {
if (++i > MAXWORDLEN) {
printf ("error: word tec long.hn");
axit{1);
1
*ord++ = ch;
ch = getc(stdin);
1
return i;

File dict2.cpp contains the procedures from the original application that will become
part of the remote program. [n addition, it contains declarations for the global data that
the procedures will share. At this point, the file does not coniain a complete program —
the remaining code will be added later.

Y Qict2 _cpp -~ initw, insertw, deletew, lookupw */

#include <string.h>

¥dafine MAXWORDLEN 50 F* mascimum length of a command or word */
#define DICTSIZ 100 J* maximim number of entries in dAiction.*/
char dict {DICTSIZ) [MAXWORDLEN+1] ; /* storage for a dicticnary of words*/
int rmwords = 0; /* umber of words in the dictionary *J
‘,fi __

* jnitw - initialize the dicticnary to contain no words at all

=/
int
initwil
{
nwords = O;
returr: 1;
1
S

Sec. 226 Step 2. DHvide The Program Into Two Panis 291

{
strepy {dict {[mwords], word};
mwords++;
retum mwords;
H
f‘* ___

* deletew - delete a word from the dicticmary

*/
int
deletew{char *word)
{
inkt i
for {i=0 ; ic<mwords ; i++)
if (stromp{word, dict(i]) == 0} {
morde-—;
stroepp{dict [1], dict[mwords]):;
returmnm 1;
}
return
¥
Ilft ___

lookupw (char *word)

{
int i;

for (i=0 ; i<words ; i++)
if (strap {word, dict{i]) == 0}
retuin 1;
raturn 0;

Note that the definition of symbolic constant MAXWORD appears in both com-
ponents because they both declare variables used 1o store words. Only file dict2.cpp
contains the declarations for data structurcs vsed to store the dictionary, however, be-
causc only the remote program will include the dictionary data structures.

292 Disinbuted Program Generation (Rpegen Example) Chap. 22

From a practical point of view, separating the application into two files makes it
possible to compile the client and server pieces separately. The compiler checks for
prablems like symbolic constants referenced by boeth parts, and the linker checks to see
that all data structures have been collected together with the procedures that reference
them.

Although a compiler appears 10 read a source program and produce an executable
binary program in a single step, most compilers have at least rwo distinct internal steps.
In the first step, the computer checks the syntax and produces intermediate object hles
(i.e., files with the suffix .e&f). In the second step, the compiler invokes a linkage edi-
tort to combine object files into an executable binary. At this step, » programimer usu-
ally requests the compiler to produce object files (act complete programs) for the two
components. The components must be linked together to produce an executabie pro-
gram, but that is not the immediate reason to compiie them: the comptler checks that
both files are syntactically correct.

When thinking about the utility of having a compiler check the code, remember
that most distributed programs are much more complex than our tvial example. A
compilation may find problems in a large program that escape the programmer's atten-
tion. Catching such problems before additional code has been inserted makes them
¢asier to repair.

22,7 Step 3: Create An Rpcgen Specification

Once the programmer selects a structure for the distnbuoied program, he or she can
prepar¢ an rpcgen specification. In essence, an rpegen specification file contains a de-
claration of a remote program, including the data structures it uses.

The specification file contains constants, type definitions, and declarations for the
client and server programs. More precisely, the spectfication file contains:

» declarations for constants nsed in the client or, more often, 1n the server (remote
program),

» declaranions of data types used (especially in arpuments to remote procedures),
and

e declarations of remote programs, the procedures contained in each program, and
the types of their parameters.

Recall that RPC uses numbers 1o identify remote programs and the remote pro-
cedures within them. The program declaration in a specification file defines such de-
tails as a program’s RPC number, its version number, and the numbers assigned 1o each
procedure within the program.

All specifications must be given in the RPC programming language, not €. While
the differences are minor, they can be frustrating. For example, RPC language uses the
keyword string to denote null-terminated character strings, while C uses char *. Even

fThe term is aften abbreviated Hrker.

Sec, 22.7 S1ep 2 Create An Rpcgen Specification

experienced programmers mayérequire multiple iterations to produce a correct specifica-

f10m

the RPC version of the dictionary program

i* dict.x */

/* RPC declarationz for dictionary

243

File rdict.x illustrates an rpegen specification. [t contains example declarations for

program */

maximm length of a command or word
number of entries in dictiomary

umiged structure declared here to
illustrate how rpogen builds DR
routines toc convert structures.

*/
*

*/
*f
*/

conet MAXWORD = 50; £*
const DICTSIZ = 100; i*
struct exsmple { i*
int exfieldl; ’*
char exfields; i
}:
f* ___

.7
program RDICTEROG {
version RDICTVERS (
int INITW{void) =
int INSERTW(string
int DELETEW(string)
int LOGEURW(string)
} = 1;
} = O0x3009094%;

f*
A
1;/*
RN A
= 3;/%
. /*
II,F*
‘li'*
‘Ifi-

An rpegen specification file
the original program. Instead, it

name of remote program (not used)
declaration of version (see below]
firgt procedure in this program
second procedure in this program
third procedure in thia program
fourth procedure in this program
definiticon of the program versicn
remaoke program numnber {rmast be
unigue}

does not contain entries for all declarations found in
only defines those constants and types shared across

the client and server or needed to specify arguments.

The example specification file begins by defining constants MAXWORD and
DICTSIZE, In the original application, both were defined to be symbolic constants us-

*f
*f
*/
*/
*/
*/
*/
b
>/

ing a C preprocessor define statement. RPC languape does not use C symbolic constant

declarations. Instead it requires symbolic constants w be declared with the const Key-

word and assigned a value using the equal

L il T LR FTEr v e

symbol (=}.

e ST R e O D e L o T

2wl Disributed Program Generation (Rpegen Example) Chap. 22

Following suggested conventions, the specification file uses vppet case names (o
define procedures and programs. As we will see later, the names become symbolic con-
stants that can be used in C programs. Using upper case is not absolutely required, but
it helps avoid name conflicts.

22.8 Step 4: Run Rpcgen

After the specification has been corpleted, the programmer runs rpegen to check
for syntax errors and generate fourt files of code as Figure 21.6 showsi. On most Win-
dows systems, the command syntax is:

rpogen rdict.x

Rpcgen uses the rame of the input file when generating the names of the four outpui
files. For example, because the input file began with rdict, the output files will be
named: rdict.h, rdict_cilnt.cpp, rdict_sve.cpp, and rdict_xdr.cpp.

22.9 The .h File Produced By Rpcgen

Figure 22.4 shows the conlents of file rdict.h, which contains valid C declarations
for any constants and data types declared in the specification file. In addition, rpcgen
adds definitions for the remote procedures. In the example code, rpegen defines upper
case INSERTW to be 2 because the specification declared procedure INSERTW 1o be the
second procedure in the remote program.

The external procedure declarations in rdict.h Tequire an explanation. The declared
procedures comprise the interface portion of the server-side stub. Procedure names
have been generated by taking the declared procedure names, mapping them to lower
case, and appending an underscore followed by the program version number. For ex-
ample, the sample specification file declares that the remote program contains procedure
DELETEW, so diceh contains an extern declaration for procedure deletew_I. To under-
stand why rpegen declarcs these interface routines, recall the purpose of the interface
portion of the steb: it allpws rpegen 1o choose its own calling conventions, while aliow-
ing the original called procedure to remain unchanged.

As an example of interface stub naming, consider procedure insertw. The original
pracedure will become part of the server and will remain unchanged. Thus, the server
will have a procedure named insersw (hat has the same arguments as in the original ap-
plication. To avoeid a naming cenflict, the server must use a different name for the in-
terface stub procedure. Rpcgen arranges for the server-side communication stub to call
an interface stub procedurs named insertw_f. The call uses rpegen’s choice of argu-
ments, and allows the programuner to design inserrw_§ so that it calls inserrw using the
COITECT AFZUNEents.

$1f 4 particolar oorput file would be empry, rmpegen will not crese i, Therefore, some specifications pro-
duce tfewer than Toar hifes.
tFipure 21.6 can be found on page 277,

Sec. 229 The .h File Produced By Rpcgen

#define MAXWORD 50
#defire DICTSIZ 100

struct axample {
int exfieldl;
char exfieldl;
}:
rypedef struct example exarple;
bool_t xdr_examplel(] ;

#define ROICTPROG ((u_long)0x20050949)
#dafine ROCICTVERS (i{u_lorg)}l)

#ifdef RPC_CINT

#define INITW ({u_longll)

extern int *initw l{wveid *, CLIENT *);
#define INSERTW ({u_lcng)2)

extern int *insertw_1{char **, CLTENT *);
#define DELETEW {{u_long)3)

extarn int *deletew lichar **, CLIENT *};
#define LOOKUIEW ({u_long}4)

extern int *lookupw_ 1 (char **, CLIENT *):
#endif

#¥ifdef RPC_SVC

¥define ITNITW {{u_long)l)

extern int *initw 1{woid *, struct svc_req *).
#define INSERIW ((u_long)2)

extern int *insertw_1{void *, struct svC_req *):
#define DELETEW {{u_long)3)

extrern int *deletew 1 {void *, struct svc_req *):
#define LOOKURW {{u_long}d) '

extern int *lookupw_l{void *, struct svc_req *};
#endif

Figore 22.4 File rdict.h — an example 4 file that rpcgen produces.

295

296 Distribuged Program Genetalion (Rpogen Exampie) Chap. 22
22.10 The XDR Conversion File Produced By Rpcgen

Rpcgen produces a file that contains calls to routines that perform XDR conver-
sions for all data types declared in the remote program. For example, file rdict_xdr.cpp
contains calls te conversion routines for the data types declared in the dictionary pro-
gram,

¥include <rpo/tpc.h>
#inciede "rdict . h"

bool_t
xdr_example (XDR *xdrs, example *objp)
{
if ('xdr int{xdrs, &obip-»exfieldli}) [
return {FALISE) ;
1
if (1xAr_char{xdrs, &kobhjp-»exfield2)) {
return {FALSE];
1
returit {TRUE) ;

Figure 22.5 File rdici_xdrcpp — an example file of XDR conversion routines
that rpcgen produces.,

In our exarmnple, the only type declaration that appears in the specification file has
the name example. It defines a structure that has one imteger field and one character
field. File rdici_xdr.cpp contains the code needed to convert a structure of type exam-
ple between the native data representation and the extermal data representation. The
code, which has been generated autematically by rpcgen, calls routines from the XDR
library for each field of the structure. Once a declaration has been given, the declared
type can be used for arguments io remote procedures. If one of the remote procedures
did use an exgmple structure as an argumend, rpcgen would penerate code in both ihe
client and server to call procedure xdr_exampie to convert the represcniation,

241
Sec. 2211 The Cliemt Code Prodoced By Rpogen

22.11 The Client Code Pruduced By Rpcgen

For the example dictionary application, rpcgen produees file rdict_oint.cpp, a
source program that will become the client-side communication stub in the distributed
version of the program.

#include <string.h-
#include <rpc/rpoc.h>

#daefine REC CILNT
#include *rdict_h"

/* Dafault timecut can be chanoed using clnt_controlf) */
static struct timeval TIMBEOIT = { 25, 0O };

int *
initw 1li{wvoid *argp. CTLIENT *clnt}
{
static int res;
memaet((char *J&kres, 0. sizeofires)}:
if (ecint_gcall(clnt, INITW, (xdrproc_t}xdr wvoid, (caddr_ t)argp.
{xdrproc_t)xdr_int, (caddr t)é&res, TIMECUT) != RPC_SUOCESS) |
return (HULL}
H
return (&res);
}
int *
insertw_l {char **argp, CLIENT *clnt!
{

static int res;

mamset { (char *)&res, O, sizecfi{res));

if (clnt_calli{clnt, INSERTW, {xdrproc_tixdr wrapsatring, {caddr_t)argp,

(xdrproc_tixdr_int, (caddr t)&res, TIMEDUT) = RPC_SUCCESS)
returrn: (NULL);
}
returm (&res);

298 _ Distributed Program Gencration {Epegen Example) Chap. 22

int *
deletew _l{char **argp, CLIENT *clnt)

{
static int reas;

memset { (char *)&res, 0, sizeoflres));
if (clnt_call{clnt, DELETEW, (xdrproc_k}xdr wrapstring, (caddr t)ardgp,
(arproc_tixdr_int, {caddr_t)&res, TIMEQUT) != RPC_SUCCESS) |
return (NULL);
i
recuwrn (kres):

int *
lookupw 1 (char **argp, CLIENT *clnt)
{

gtatic int resg;

memset { {char *1&res, 0, sizeofires}};
if (clnt_call{clnt, LOOEUPW, f(xdrproc_tixdr_wrapstring, (caddr t)argp,
{xhrproc tixdr int, (caddr tlires, TIMEOUT) != RPC_SICCESE) {
return (NULL) ;
}
return {ares];

Figure 2.6 File rdict_cint.cpp — an example of the client stwb that rpogen
produces.

The file contains a communication stub procedure for cach of the procedures in the re-
mote program. As with the server, names have been chosen 1o avoid conflicts.

22.12 The Server Code Produced By Rpcgen

For the dictionary exampie, rpegen produces a fourth file, rdici_sve cpp, that con-
tains the code needed for a server. The file contains a main program that execules
when the server begins. Tt obtains UDP and TCP protocol ports, registers the RPC pro-
gram with the port mapper, and then -waits 10 receive RPC calls, It dispatches each call
to the appropriate server-side swb interface routine. When the called procedure
responds, the server creates an RPC reply and sends it back 1o the client.

Sec. 22,12 The Server Code Produced By Rpogen 299

#include <stdlib.h>
#include <gtring. h>
#include <stdic.h=
#include <rpc/rpc.h-
¥include «<rpo/pmap clnt b

#define RPC_SVC
#include "rdict. h"

#define WSVERS MAKEWOHRD(Z, O

static vold rdictprog_l (sktrict sve reg *, SVUXPRT *);

maini)

SVURAPRT *transp;
WSADATA wadata;

if (WSAStartup({WSVERS, &wsdata) < D) {
fprintf {stdexrr, "WSAStartup failed.\n"):
exiti(l):

[woid) pmap_unset (RDICTPROG, BDICTVERS);

tranesp = syoudp create (RPC_ ANYSOCK) ;

if (transp == NUJLL} {
fvoid) fprintf (etderr, "cannot c¢reate udp service.\n");
exit{l};

)
if (!sve register (transp, RDICTPROG, RDICTVERS, rdictprog 1, IPFROTO UDEI) {
{void) fprintf{scderr,
*unable to register {(RDICTFROG, RDICTVERS., udp) .\n"};
exit{1});

transp = svctep create(RPC_ANYSOCK, O, D)

if (transp == NULL} {
(void) fprintf (stderr, "cannot create tcp service.\n“);
exit(l);

RILF

Distribated Program Generation {Rpoyen Exampls) Chap. 22

if ('sve register{transp, RODICTPROG, RDICTVERS, rdictprog 1, IPFROTO_TCE)

{(void) fprintf {ztderr,
*unable to register (RDICTPROG, EDICTVERS, top).wn"):

exit{1):

1

sve_run{);

(void) fprintf {stderr, "svc_run returnedin"};

exit {1} ;

static wvoid
rdictprog. listruct swvo_redq *rgstp, SVCAPRT *transp)
{
union {
char *insertw_l_avrg;
char *deletew l1_arg;
char *loolips 1_arg:
} argument;
char *result;
xdrproc bt xdr_argumment, x4r result;
chaxr *{*local) (void *, struct svc_xeqg *);

switch (rgstp-»rg proc) |

case MITLLPROC:)
(wvoid]lsve sendreply(transp, (xdrproc tixdr void, (char *INJLL);
returmn;

case INITW:
xdr_argument = (Xdrproc t)xdr void;
wir result = {xdrproc_tlxdr int:
local = {(¢har *(*){void *, struct svo _Yeq *}} initw 1;
break:

case THNSERTW:
¥dr_ argument = (xdrproc_tixdr wrapstring;
®r_result = (edrproc_tlxdr_int;
local = {(char *(*){void *, struct swvc_reqg *)} insertw l;
break;

case DELETEN:
xdr_argument = (xdrproc_t)xdr_wrapstring;
®r_result = (adrproc_t)xdr int;
local = (char *(*){wvoid *, struckt svo_reg Y)) deletew 1;
reak:

Sec. 22.12 The Server Code Produced By Rpegen am

case LOOFITFW:
wdr_argument = (xdrproc_t}lxdr wrapstring;
x¥Ar_regsult = (xdrproc_t)xdr_int;
local = (char *(*){veid *, struct svc req *)} lookupwm - 1;
break;

default;
svoerr noproc (transp);
return;

}

memget. { (char *)&armment, 0, sizeof (argument)):

if (!svc getargs(transp, xdr argument, {caddr_t}aargument))
scerr__decode (transp) ;
returmn;

}

regult = (*local) (&argumnent, rgstp);

if {result != WNULL && !svc_sendreplyitransp, xdr_result, result)) {
svcerr_systemerr (transp) ;

}

if (!svc_freeargs{transp, xdr_argument, (caddr_tl&argqument}) {
{void} fprintf(stderr, "unable to free argquments\n"):
exitc(l);

Figure 22.7 File rdict_sve.cpp - an example server stub that rpegen produces.

Once the files have been generated, they can be compiled and kept in object form.
Three separate compilation steps are needed; each takes a C source file and produces a
corresponding object file. Object file names have "“.obi"" in place of the *‘.cpp’’ suffix.
For example, the compiled version of rdict_cint.cpp will be placed in file rdici_clnt.obj.

22.13 Step 5: Write Stub Intetface Procedures
22.13.1 Client-Slde Interface Routines |
The files that rpcgen produces do not form complete programs. They require

client-side and server-side interface routines that the programmmer must write. One inter-
face procedure must exist for each remote procedure in the remote program.

302 Distributed Program Ceneration (Rpegen Faample) Chagp, 22

On the client side, the original application program controts processing. It cails in-
terface procedures using the same procedure names and argument types as it originally
used to call those procedures which have become remote in the distributed version.
Each interface procedure must convert its arguments to the form used by rpcgen, and
must then call the correspending client-side communication procedure. For example,
because the original program confained a procedure named irsertw that takes a pointer
t0 a character string as an argument, the client-side interface must contain such a pro-
cedure. The interface procedure calls insersw_J, the client-side communication stub
zenerated by rpegen.

The chief difference between conventional procedure parameters and the parame-
ters used by the communication stubs is that the arguments for all procedures produced
by 1pcgen use indirection. For example, if the original procedure had an integer argu-
ment, the corresponding argument in the communication stub for that procedure must be
a pointer to an integer. In the dictionary program, most procedures require a character
string argument, declared in C to be a character pointer {char *). The corresponding
communication stubs all require that their arguments be a pointer to a character pointer
(char *%),

File rdict_cif cpp illustrates how interface routines convert arguments to the form
expected by the code produced by rpcgen. The file contains one client-side interface
procedure for each of the remote procedures in the program.

/* rdict_cif.cpp - initw, insertw, deletew, lookupw */
#include <rpo/rpe.h>
#inciude <stdio. h>

#define RPC_CLNT
#include "rdict.hn

/* Client-side stub interface routines written by programmer */

extern CLIENT *handle; /* handle for remcte procedure =/
staktic int *rat; f* tmp storage for returmr code */
J"* __

ret = initw 1(0, handle);
return ret==0 ? 0 : *ret;

Sec. 22.13 Step §: Write Stub Interface Procedures 303

P e e e o TR R P
* ingertw - client interface routine that calls insertw_ 1l
T e o e o B e o B o B o B o o o o o o o il PR P . e S S o o o B o o o o o
*f
int
insertwi(char *word)
{
char *rarg; /¥ pointer to argument */
arg = &word;
ret = insertw_li{arg, handle);
retwrn ret=—0 7 0 : *ret;
1
J,f'l' __

*/
int
deletewchar *word]
{
char **arg;: /* pointer to argument */
arg = kword;
ret = deletew l{arg, handle];
return ret==0 2 0 : *ret;
}
P ———— e ——

*/

int

loockupw{char *word}

{
char b= e] /* pointer to argument */
arg = &word;
ret = lookupw 1 (arg, handle);

return ret==0 ? {0 : *ret:

304 Dhsiributed Program Generation (Rpegen Example) Chap. 22
22.13.2 Server-Side Interface Routines

On the server side, the interface routines accept calls from the communication
stubs that rpcgen produces, and pass control to the procedure that implements the speci-
fied call. As with the client side, server-side interface routines must translate from ar-
gument types chosen by rpegen to the argument types that the called procedures vse. In
most cases, the difference lies in an extra indirection - rpcgen passes a pointer o an ob-
Jecl instead of the object itself. To convert an argument, an mterface procedure only
needs to apply the C indirection operator (*). File rdict_sif.cpp illustrates the concept.
[t contains the server-side interface routines for the dictionary program.

/* rdict_gif.cpp -~ init_1, insert 1, delete 1, looxup 1 */
#include <rpe/rpoe.h>

#define RPC SVC
#include "rdict.h"

/* Berver-gside stub inteface routines written by hand */

static int retcoda;

int initwivoid), insertwichar *), deletew{char *}, lookupwichar *};

J.F* __
* insertw_l1 - server side interface to remota procedure insertw

B e e e o e T L L o e T T T 2 o o o
*/

int *

ingertw_l{wvoid *w, atruct svec Treq *rgstp)
{
retcode = insertw(* (char **)w):;
retuwrn &retcode;

J"*_ ___
* initw_1 - server side interface to remote procedure initw

B e ——————————————— e e e e i — — — — ———
*/

int *

initw 1{void *w, struct svc_req *rgstp)

{
: retecode = inikew();
return &retcode;

Sec. 22.13 Srep 5: Wite Stub Interface Procedures k1]

* deletew 1 - gerver gside interface to remote procedure deletew

*/
int *
deletew. 1 (void *w, struct svc_reg *rgstp)
{
reteode = deletew(* (char **)w);
returh ireteoda:
),
Ilf'l' __

*f
int *
lockupme_1 {void *w, struct svo req *rqstpl
{
retcode = lockupwi* {char**)w);
return &retcode;
}

22.14 Step 6: Compile And Link The Client Program

Once the client interface routines have been written and placed in a source file,
they can be compiled. For example, file rdicr_cif.cpp contains all the client interface
routines for the dictionary exampie. The compiler will produce object file rdics_rif ofy.
To complete the client, the programmer needs to add a few details to the original main
program, Because the new version uses RPC, it needs the C include file for RPC de-
clarations. It also needs to include file rdics.h because that file contains definitions for
constants used by both the ciient and server.

The client program also needs to declare and initialize a handle that the RPC com-
munication routines can use t¢ communicate with the server, Most clients declare the
handle using the defined type CLIENT, and initiahze the handle by calling the RPC li-
brary routine, cini_create. File rdict.cpp shows an example of the necessary code:

DG Distributed Program Generation (Rpcgen Example] Chap. 22
/* rdict.cpp - main, nextin *#

#include <rpe/rpe.h>

¥include <zstdiib.h>

#include <stdioc.bs-

#include <ctype.bh>

#include "rdict.h"

#define WSVERS MAKRWORD {2, 0}

¥define MAXWORDLEN 50 /* maximm length of a command or woerd */
#daefine RMACHINE "localhost" /* name of remcte machine ail]
CLIENT *handle; /* handle for remote procedure */
int nextini{char *, char *), initw{void), insertwichar *);

int deletew (char *)., lockupwichar *}; '

‘ll'"k __

*/
int
mainf{int arge, char *argv[])
{
char word (MAXWORDLEN+1}; /*space to hold word fram input line*/
char cmd;
int wrdlen; J* length of input word L
WIADATA wsdata;

if [(WEaStartup (WSVERS, Lkwsdatal)) {
fprintfistderr, "WSAStartup failedi\n®);
exit(l};
}
/* set up connection for remote procedure call */

handle = clnt_create (RMACHINE, RDICTPROG, RDICTVERS, "tcpt):
Lf thandie == 0} {
printf (*Could not contact remote program,.in”);
exit(l}:

Sec. 22,14 Step &: Compile And Link The Client Program am

while (1) {
wrdlen = pextin(&omd, word);
if {(wrdlen < 0}
exit {0} ;
word[wrdlen] = '\
switch (omd)

case 'I': ¥ "initialize* %/
initwi};
printf{*Dictionary initialized toc empty.:\n');
reak;

case ‘'i': /* "insert® *4

insertw{word) ;
printf("%s inserted.'\n",word):
break:;
case 'd’: /* "deleta* */
if [deletew{word))
printf("$s deleted.\n" ,word};

else
printf("%s not found.\n",wcrd);
break;
cage *'1': A "lockup” %/

if {leockupw(word))
printf("%s was found.\rn",word);

else
printf("%a was not found.\n*,word};
brealk;
case ‘q': At guit */
printf ("program quits.\n"};
exit (0);
default: /* illegal input */
princf("command $¢ invalid.\n", cmd);
break;
1
1
H
II.I’* __

nextin{char *omd, char *word)

[
int i, ch:

308 Distributed Program Generation {Rpcgen Example) Chap. 22

ch = getc (stdin);
while (lsspaceich))}
ch = getc{stdin);
if {ch == EGF)
return -1;
*ocmd = {char} ch:
rh = getc(stdin);
while (isspace(ch))
ch = getc{stdin];
if f[ch == EQF)
return -1;
if (ch == '\n')
return O;
i=0;
while {!isspacef{ch)} {
if f[++1 > MAMIWORDLEN) {
printf{"error: word tco long.in®);
exiti(l});
;
word++ = ch;
ch = getcistdin);
}

return 1i:

Compare rdicrcpp with dictf.cppt from which it was derived to see how litde
code has been added. The sample code uses symbolic constant RMACHINE o specity
the domain name of the remote machine. To make testing ¢asy RMACHINE has been
defined to be localhost, which means the client and server will operale on the same
machine. Of course, once testing has been completed on a distributed program, the pro-
gramimer will change the definition 1o specify the permanent location of the server.

Cint_create attempts to make a connection 10 a specified remote computer. If the
connection attempt fails, clnr_create returns the value NULL, allowing the application to
report an error to the user. Qur sample code exits if cinf_create reports an error. In
practice, a client may choose to try repeatedly, or may maintain a list of machines and
try each of them.

Like other C source files, rdict.cpp can be compiied to produce an object program.
Omce the object program for rdici.cpp has been compiled, all files that comprise the
client can be linked together into an executable program. When invoking the dinker,
one can specify the name of a file into which the resulting executable image should be
placed. The choice is arbitrary (i.e., there is no relationship between the name of the
object files that are linked and the name of the resulling executable). We chose the
name rdict.exe, but could have just as easily used another name.

tFiie dicrf.opp can be found on page 28B.

Sec. 2215 Step T: Compile And Link The Server Program 0%
22.15 Step 7: Compite And Link The Server Program

The owmput generated by rpegen includes most of the code needed for a server.
The programmer supplies two additional files: the server interface routines (which we
have chosen to place n file rdics_sif.cpp) and the remote procedures themselves. For
the dictionary example, the final version of the remote procedures appears in file
rdict_srp.cpp. The code for the procedures has been derived from the code in the origi-
ral applicarion.

f* rdict_srp.cpp - initw, insertw, deletew, lookups */

#include <rpofrpe.h>

#$include <string.h>

#include "rdict.h*

/* Server-side remote procedures and the global data they use */

char dict [DICTSIZ] [MAXWORDLEN+1]; /* storage for a dictionary of words*/
ing mwords = 0; /* nmumber of words in the dictionary */

*/

int

initw{]

{
nwords = 0;
ratum 1;

int

ingertwichar *word)

{
strcpy {dict [words], word);
nwords++;
return nwords;

Chstributed Program Generation {Rpcgen Example) Chap. 22

i

*
*JF
int
deletewi{char *word)
{
int 1
for (i=0 ; i<rwords ; i++)
if (strompiword, dick{i]] == 0} {
mords—-;
stropyy (dict 1], dictimwords]);
return 1:
1
return 0;

n
*f
int
lookupw{char *word)
{

int i;

for (i=0 ; i<nwords ; 1++}

if (stromp{word, dict[i]! == 0}
retiyn 1;
return 0;

Once the file containing remote procedures has been compiled, the ubjecl programs
that comprise the server can be hinked together into an executable file. Once again, the
name assigned to the executable fle is arbitrary. We chose rdicid exe.

Sec. 2216 Step 8: Start The Server And Execure The Client 31
22.16 Step 8: Start The Server And Execute The Client

The first serious test of the entire system occurs when both the client and server
components operate together on the same machine. The server must begin execution
before the client attempts to contact it. Otherwise, the client will print the message:

Could not contact remaote program.

and halt. Once the server has been started, the client ¢can be run.

2217 Summary

Constructing a distnibuted program vsing rpcgen consists of eight steps. The pro-
grammer begins with a conventional application program o solve the problem, decides
how to partition the program intg components that execute locally and remotely, divides
the application into two physical parts, creates a specification file that descnbes the re-
mote program, and runs rpegen (o produce needed files. The programmer then writes
client-side and server-side interface routines and combines them with the code produced
by rpcgen. Finally, the programmer compiles and Links the client-side files and the
server-side files to produce eXecutable client and server programs.

Although rpcgen eliminates much of the coding required for RPC, building a distni-
buted program requires careful thought. When considering how to partition a program
into local and remote components, the programmer must examine the data accessed by
each picce to minimize data movement, The programmer must also consider the delay
that each remote procedure call will introduce as well as how each piece will access 1/0
facilities.

The example dictionary application in this chapter shows how much effort is re-
quired (o transform a Lrivial application into a distributed program. More complicated
applications require substantially more complex specifications and interface procedures.
In particular. spplications that pass structured data to remote procedures or that check
client authorizations can require substantially more code.

FOR FURTHER STUDY

Additional information on rpegen can be found in the documentation that accom-
panies the software,

iz

Distributed Program Geoeration {Rpcgen Example) Chap. 12

EXERCISES

22.1

22.2

22.3

224

2.3

226

22.7

228

229

Modify the example program from this chapter so the client interface routine keeps a
cache of recemly referenced words and searches the cache before making & remme pro-
cedure call. How much additional compuwtational overhead does the cache require? How
much time does the cache save when an entry can be found tocally?

Build a distributed application that provides access o files on the remotc machine. In-
clude remote procedures that permit the client to read or write data to a specified leca-
tion in a specified file.

Build 2 distribuled program that passes a linked list as an arpument to a remote pro-
cedure. Hint use relative pointers instead of absolute memory addresses.

Try w0 modify the example dictionary program so the remote procedures can write error
messages on the client’s terminal. What problems did you encounter? How did you
solve them?

Rpcgen could have been designed so it automatically assigns ¢ach remote procedure a
unique number, !, 2, and so on. What are the advaniages of having the programmer as-
sign remote procedure numbers manually in the specification file instead of assigning
them automatically” What are the disadvantages?

Whai limitations does rpegen have? Hint: consider trying o build & server that is also a
client for another service.

Try building and iesting two versions of the distribted dictionary program simuitane-
ously, Would it be possible to test new versions if the server side used a well-known
post number? Explain,

The example dictionary program recognizes blanks as separator characters in the input.
Revise procedare rexrin to allow tabs as well as blanks.

Is it possible (o make the server side of ke dicticnary program concurrent? Why or why
not?

23

Network File System
Concepts (NFS)

23.1 Introduction

The previous chapters describe remote procedure call, explain the relationship
between RPC and client-server interaction, and show how RPC can be used to create a
distributed version of an application program. This chapter and the next focus on an
application and a protecol that is specified. designed, and implemenmed using ONC
RPC. This chapter describes the general concept of remote file access, and reviews the
concepts underlying the NFS remote file access mechanism. Although the mechanism
can be used with a variety of operating systems, including Windows, many of the ideas
and details are derived directly from the UNIX system. Consequently, this chapter re-
views the UNIX file system and the semantics of file operations. It discusses hierarchi-
cal directory structures and path aames. and shows how a remote file access mechanism
implements operations on hierarchies. The next chapter provides additional details
about the protocol, and shows how the NFS and mount protocol specifications use RPC
to define remote file operations.

23.2 Remote File Access Vs. Transfar

Many early network systems provided file rransfer services that permitted users Lo
move a copy of a file from one machine te another. More recent network systems pro-
vide file access services that permit an application program o access a file from a re-

313

34 Network File System Concepis {iNF5) Chap, 23

mote machine. A remote file access mechanism keeps one copy of each file, and allows
one or more application programs to access the copy on demand.

Applications that use a remote file mechanism to access a file can execute on the
machine where the file resides or on a remote machine. When an application accesses a
file that resides on a remote machine, the program’s operating system invokes client
software that contacts a server on the remote machine and performs the requested opera-
tions on the file. Unlike a file transfer service, the application’s system does not re-
trieve or store an entire file at once. Insiead, it reguests transfers of one small block of
data at a time.

To provide remote access to some or all of the files that reside on a computer, the
system manager must arrange for the computer to run a server that responds to access
requests. The server checks each request to verify that the ¢lient is avthorized to access
the specified file, performs the specified operation, and returns a resuli to the clienl

sun Microsystems, Incorporated defined a remote file access mechanism that has
become widely accepted throughout the computer industry. Known as Sun's Nemwork
File System, or simply NFS, the mechanism allows a computer to run a server that
makes some or all of its files available for remote access, and allows applications on
other computers to access thase files,

23.3 Operations On Remote Files

NFS provides the same operations on remote files that one eXpects to use on local
files. Conceptually, an application can oper a remote file 1o obtain access, read data
from the file, write data 10 the file, seek to a specified position in the file e.g., to the
beginning of the file, the end of the file, or a specific location in the file), and cloie the
file when finished using it.

23.4 File Access Among Heterogeneous Computers

Providing remote filc access can be ronirnvial. In addition to the basic mechan-
1sms for reading and writing files, a file access service must provide ways to create and
destroy files, peruse directories, authenticate reguests, honor file protections, and
translate information among the representations used on various computers. Because a
remoie file access service connects two machines, it must handle differences in the way
the citent and server systems name files, denote paths through directories, and store in-
formation abowt files. More important, the file access software must accommadate
differences in the semantic interpretation of file operations.

NFS was designed to accommodate heterogeneous computer systems. From the
beginning, the NFS protocol, operations, and semantics were chosen to allow a variety
of systems to interact. Of course, NFS cannot provide all the file system subtleties
available in all possible operating systems. Instead, it iries to define file operations that
accommodate as many systems as possible without becoming incfficient or hopelessly
complex. In practice, most of the choices work well.

Sec, 235 Stateless Servers M5

23.5 Stateless Servers

The NFS design stores state informatien at the client site, allowing servers to
remain stateless. Because the server is stateless, disruptions in service will not affect
client operation. In theory, for example, a client will be able to continue file access
after a stateless server crashes and reboots; the application program, which runs on the
ciient system, can remain unaware of the server reboot. Furthermore, because a state-
less server dees not need to allocate resources for gach client, a stateless design can
scale 10 handle many more clients than a stateful design.

The NFS stateless server design affects both the protocol and its implementation.
Most important, a server cannot keep any notion of pesition, whether in a file or direc-
tory. We will see how NFS achieves a stateless design after examining the operations
that MFS provides.

23.6 NFS And UNIX File Semantics

Although NFS was designed to accommodate heterogeneous file systems, the
UNIX file system strongly influenced its overali design, the terminology used, and
many of the protocol details. The NFS designers adopted UNEX file system semantics
when defining the meaning of individual operations. Thus, to understand NFS, one
must begin with the UNIX file systemn.

The next section discusses UNIX file storage and access, concentrating on the con-
cepts andd details that are most pertinent to NFS. Later sections show how NFS bor-
rowed many ideas from the UNIX file systern directly and adopted other details with
only slight modifications. To summarnize:

Understanding the UNIX file system is essentiol to understanding NFS
because NFS uses the UNIX file system terminology and semantics.

23.7 Review Of The UNIX File System

23.7.1 Basic Definitions

From the user’s point of view, UNIX defines a file to consist of a sequence of
bytes. In theory, a UNIX file can grow arbitrarily large; in practice, a file is limited by
the space available on the physical storage device. UNIX files can grow dynamically.
The file system does not require predeclaration of the expected size or preallocation of
space. Instead, a file grows automatically 1o accommaodate whatever data an application
writes into it.

Cenceptually, UNEX numbers the bytes in a file starting at zero. At any time, the
size of a file is defined o be the number of bytes in it. The UNIX file system penmits

) MNetwaork File System Concepls (NF5) Chap. 23

random access to any file, using the byte numbers as a reference. It allows an applica-
tipn 1o move to any byte position in a file and to access data at that position.

23.7.2 A Byte Sequence Without Record Boundaries

Each UNIX file is a sequence of bytes; the system does nol provide any additional
structure for a file beyond the data itself. In particular, UNIX does not have notions of
record boundaries, record Blocking, indexed files, or typed files found in other sysiems.
Of course, it is possible for an application to create a file of records and 1o access them
later. The point is that the file system itselt does not understand the file contents: appli-
cations that use a file must agree on the format.

23.7.3 A File’'s Owner And Group ldentifiers

UNIX systems provide accounts for multiple users, and assign each user a numeric
user idenufier used for accounting and authentication throughout the system. Each
UNIX file has a single owner, represented by the numeric identifier of the user who
created the fite. Ownership information 15 stored with the file {i.e.. as opposed o the
direclory system).

In addition 10 user identifiers, UNIX provides for file sharing among groups of
users by allowing the system manager (0 assign a subset of users a numeric growp iden-
tifier. Al any lime, & given user can belong to one or more LUNIX groups. When a user
runs an application program {e.g., & spreadshest program or a text editor), the running
program inherits the user’s owner and group identifiers. Each UUNIX file belongs o one
group and has its numeric group identifier stored with i1. The system compares the
owner and group 1dentifiers stored with 4 file to the user and group identifiers of a par-
tzcular application process to determine what operations that program can perform on
the file.

23.7.4 Protection And Access

The UNIX access protection smechanism allows a file’s owner (o control file access
separately tor the owner, members of the file's group, and all other users. For cach of
the three sets, the protection mechanism allows the owner 1o specify whether the users
in that set have permission to read, write, or execute the file, Figure 23.1 shows that
the UNIX file access permissions can be viewed as a matrix of proiection bits.

Sec. 13.7 Review Cf The UNIX File System 3y

———— read permission

write permission

I—— execute permission

awner 1 1 O
members of

file’s group L 0 0
other

users 1 0 0

Figure 23.1 UNIX file access permissions viewed as a matrix of protection
bits.

UNIX encodes the file access protection matrix in the low-order bits of a single
binary integer, and uses the terms file mode or file access mode when referring to the
integer that encodes the protection bits, Figure 23.2 dllustrates how UNIX encodes file
profection bits into the 2 low-erder bits of a file mode integer. In addition to the pro-
tection bits illustrated in Figure 23.2, UNIX defines additional bits of the mode integer
10 specify other properties of the file {e¢ g., mode bits specify whether the file i5 a regu-
lar file or a directory).

318 Network File System Concepls (NF5) Chap, 23

other owner users in other
mode bits of file file’s group users

? 1 0 1 G 0 1 0 0

L execute

L write
read

execute
write

Figure 23.2 UNIX file access permissions stored in the low-order nine bits of
the mode integer. A value of [grants permission; & value of &
denies it. When writien in octal, the pt"mr:cticns illustrated have
the value (544,

When the value of the mode integer is written in octal, the riphtmost three digits
give the protections for the owner, members of the file’s grouwp, and other users. Thus,
a protection value of 0700 specifies that the owner can read, write, or execute the file,
but no other users can have access. A protection mode value of 0644 specifies that all
users can read the file, but only the owner can write to it.

23.7.5 The UNIX Open-Read-Write-Close Paradigm

Under UNIX, applications use the open-read-write-close paradigm to access files,
To establish access to a file, an application must call funciion epen, passing it the name
of the file and an argument that describes the desired access. Open rejurns an integer

file descriptor that the application uses for all further operations on the file. For exam-
ple, the code:

fdesc = cpen("filename®, O CREAT | O KIWR, 0644);

opens a file with name filename. The value O_CREAT in the second argument specifies
that the fite should be created if it does not already exist, and the value O_RDWR speci-
fies that the file should be created for both reading and wrting. The octal value 0644
specifies protection mode bits 1o assign to the file if it is created. Other values for the

Sec. 237 Review Of The UNEX File System 319

second argument can be used to specify whether the file should be truncated and wheth-
er it should be opened for reading, writing, or both.

23.7.6 UNIX Data Transier

Under UNIX, an application calls read to transfer data from a file into memory,
and calls write to transfer data from memory to a file. The read function takes three ar-
guments: the descriptor for an open file, a buffer address, and the number of bytes 1o
read. For example, the following code requests thai the system read 24 bytes of data
from the file with descriptor fdesc:

n = read{fidesc, aff, 24} ;

Both read and write begin transfer at the current file position, and both operations
update the file position when they finish. For example, if an application opens a file,
moves 1o position (, and reads /0 bytes from the file, the file position will be I after
the read operation completes. Thus, a program can extract all data from a file sequen-
tially by starting at position zero and calling read repeatedly.

If an application attempis 1o read more bytes than the file contains, the read func-
ticn extracts as many bytes as the file contains and returns the number read as its result.
If the file is positioned at the end of a file when an application calls read, the read call
returns zero to indicate an end-of-file condition.

23.7.7 Permission To Search A Directory

UNIX organizes files into a hierarchy using directoriest to hold files and other
directories. The systemn uses the same 9-bit protection mode scheme for directories as it
uses for regular data files. The read permission bits on a directory determine whether
an application can obtain a list of the files in a directory, and the write permission bits
determine whether an application can insent or delete files in the directory. Each indivi-
dual file has & separate set of permission bits that deterrnine which operations are al-
lowed on the contents of the file. The directory pertnissions only specify which opera-
tions are allowed on the directory itself.

Directories can contain application programs, bul a directory is not a program.
Thuos, the normal meaning of execute permission does not apply te a directery. UNIX
interprets the exectse permission bit for a directory to mean search permission. If an
application has search permission, it can reference a file that lies in a directory; other-
wise, the system will not permit any references to the file, Search permission can be
used to hide or uncover an entire subiree of the file hierarchy without modifying the
permissions on individual files in the subtree. Separation of execute permission and
read permission means that it is possible to allow others to access files in the directory,
while denying them the right to list the names of files in the directory.

tSome operaliing systems and application programs vse the term folder mstead of direcrory.

K. 1] Network File Systemn Concepts (NFS) Chap. 23
23.7.8 UNIX Random Access

When a file is opened, the position can be set to the beginning of the file (e.g., to
access the file sequentially) or to the end of the file {e.g., to append data to an existing
file). After a file has been opened, the position can be changed by calling function
Iseek. Lseek tzkes three arguoments that specify a file descriptor, an offset, and a meas-
ure for the offset. The third argument allows an application to specify whether the
offset gives an absolute location in the file (e.g., byte 572), a new location relalive to
the cusrent position {e.g., a byte that is 64 beyond the current position), or a position re-
lative 10 the end of the file (e.g., 2 bytes before the end of the file). For example, the
constant L_SET specifies that the system should interpret the offset as an absolute value.
Thus, the call:

lseek (fdesc, 100L, I, SET};

specifies that the current position of the file with descriptor fdesc should be moved to
byte number 7100.

23.7.9 Seeking Beyond The End Of A UNIX File

The UNIX file system permils an application t0 move {0 any position in a file,
even if the specified position lies beyond the current end of the file. If the application
secks to an existing byte position and writes new data, the new data replaces the old
data at thar position. If the application seeks beyond the end of the file and writes new
data, the file system extends the file size. From the user's point of view, the system ap-
pears to fll any gap between existing data and new data with null bytes (bytes with
value zero). Later, if an application atiempts to read from the byle positions that
compnse the gap, the file system will return bytes with zeros in them. Figure 233 il-
lustrates the concept:

Sec. 2337 Review Of The UNLX File System A

a b [d e f

}

end of file
fa) '
a b c d - f 0 0 X
end of file
(b}

Figure 23.3 (a) a UNIX file that contains 6 bytes consisting of the characters
a through f and (b} the file after an application seeks to position
& and writes 2 byte contaming the character x. Upwritten byles
aAppear to contain ZEroes.

Although the file system appears to fill gaps with null bytes, the storage structure makes
it possible to simulate null bytes without representing them on the physical medium.
Thus, the file size records the highest byte position into which data has been writien,
not the tetal number of bytes written.

23.7.10 UNIX Flle Positlon And Concurrent Accass

The UNIX file system permits multiple application programs to access a file con-
currently. The. descriptor for each open file references a data structure that records a
current position in the file. When a process calls fork?t, the new child process inherits
copies of all file descriptors the parent had open at the time of the fork. The descrniptors
in both the original process and the new process point to a commeon underlying data
structure used w0 access the file. Thus, if one of the two processes changes the file posi-
tion, the position changes for the other process as weil.

Each call to open generates a new descriptor with a file position that is indepen-
dent of that obtained by previous calls to open. Thus, if two applications both call open
on the same file, they can each maintain an independent position in the file. One appli-
cation can move Lo the end of the file, while the other remains af the heginning. Pro-
grammers must decide when designing an application whether it needs to share the file
position with another process or have a separate position.

tRecall that fork is the UNIX systemn fonction that creates a nevw [TOCess.

322 Metwork File Sysiem Concepts {NFS) Chap. 23

Understanding that muitiple applications can each maintain an independent position
in the same file will be important when we examine operations on remote files. The
concept can be summarized:

Each tall to open produces a new file descriptor thal stores a file
offser. Separating the current file position from the file itself permits
mulitiple applications to access a file concurrently without interfer-
ence. It also allows an lseek aperation to modify an application’s po-
sition in a file without changing the file itself.

23.7.11 Semantics Of Write During Concurrent Access

When two programs write a file concurrently, they may introduce conflicts. For
example, suppose two concurrent programs each read the first two bytes of a file, ex-
change the bytes, and write them back into the file. If the scheduler chooses to run one
program and then the other, the fisst program will swap the two bytes and write them
back to the file. The second program will read the bytes in reversed order, swap them
back 10 their original positions, and write themn back to the Ble. However, if the
scheduler starts both programs running, and allows them each to read from the file be-
fore either writes to it, they will both read the bytes in onginal order and then both
write the bytes in reverse order. As a consequence, the ultimate order of hytes in the
file depends on how the system scheduler chooses to delegate the CPU 10 the two pro-
STAUMS.

LUNIX does not provide mutual exclusion or define the semantics of concurrent ac-
cess excepl to specify that a file always contains the data wrilten most recently.
Responsibility for correctness falls to the programmert. A programmer must be careful
to construct concuerent programs in such a way that they always produce the same
results.

23.7.12 UNIX File Names And Paths

UNIX provides a hierarchical file name space. Each file and directory in a UNIX
file system has an individual name that can be represented by an ASCII string. In addi-
tion, each directory or file has a full parh name that denotes the position of the file
within the hierarchy. Figure 23.4 illustrates the names of files and directories for a
small example of a UNIX hterarchy.

tSome versions of UNIX olfer an advisory lock mechanism such as ffock or lockf; others offer exclusive
access with argument O_EXCL in the gpen call,

Sec. 23.7 Reviegw OFf The UUNIX File Sysiem 313

h i j k

Figure 23.4 An example hierarchical file syslem. Circles denote directories
and squares denote files. In this example, the top level directory
contains two files (2 and ¢) and two directories (b and). In
practice, UNIX files seldom have single-character names.

As the figure shows, the top directory of the file system. called the root, has full
path pame / (usvally pronounced “*slash’). The full path name of a file can be thought
of as the concatenation of labels on the path in the hierarchy from the root to the file,
using / as a separator character. For example, the file with name a that appears in the
root directory has full path name /2. The file with name e that appears in directory b
has full path name /b/e, and the file with name % has full path name /d/g/k.

23.7.13 The UNIX Inode: Information Stored With A File

In addition to the data itself, UNIX stores information about each file on stable
storage. The information is kept in a structure known as the file’s inodef. The inode
contains many fields, including: the owner and group identifiers, the mode integer
(described in Section 23.7.4), the time of last access, the time of last modification. the
file size, the disk device and file system on which the file resides, the number of direc-
tory entries for the file, the number of disk blocks currently used by the file, and the
basic type (e.g., regular file or directory).

The inode concept helps explain several features of the UNIX file system that are
also used in NFS. First, UNIX separates information such as ownership and file protec-
tion bits from the directory entry for a file. Doing so makes it possible to have two
directory entries that point to the same file. UNIX uses the term [ink or hard link to
refer 1o a directory entry for a file. As Figure 23.5 illustrates, when a file has more than
one hard link, it appears in more than one directory.

+Inede, usually pronounced “‘eve-node,’” is an abbreviation for indec node.

ix4 HNetwork File System Concepis (NFS) Chap. 23

h

Figure 215 An tHustration of kard links. File k# has two links., one from
directory a and one from directory . File 4 can be accessed by
path name Ja/h or path name /Bl

Files with multiple hard iinks can be accessed by morz than one full path name.
For example, in Fipure 23.5, file & can be accessed by full path name /a/h because il ap-
peass in directory a. It can also be accessed by [ull path name /b/d/h becanse it appears
in directory d. As the example shows, the path names for a file with maltiple links can
ditfer in length.

Becanse UNIX stores information about a hile in its inode and not in the directory,
ownership and protection informatioa for file 4 remaitn conststent ro matter which name
an application uses to access the file. If the owner changes the protection mode of file
Ja/hk, the protection maode will also change on file /B/d/h.

23.7.14 The UNIX Stat Operation
The UNIX system function srar extracts information about a file from its inode and
returns the information to the caller. The call takes two arguments: the path name of a

file and the address of a struciure into which it places the results:

stat{ patimams, &result struct);

Sec. 3.7 Review Of The UNIX File System 325

The second argument must be the address of an area in memory large enongh to hold
the following structure:

struct stat | /* gtructure returned by stac %/
dev t at_dev; /* device an which inode resides*/
inc t st_ino; /* file's inode mmber */
u short st mode; /* protecticn bits *f
short st_nlink; /* total hard links to the file */
shart st_uig; /* user id of file's owner *f
short st _gid: /* group id assigned to file *f
e t st_rdev; /* used for devices, ot files */
lexyy st_size; /* total size of file in bytes */
time £t st_atime; /* time of last file access */
int st urmisedi ; I not used */
time £ st_mtime: /* time of last medificatian */
int st wrmsed? /* not used *y
time t st_ctime; /* time of last inode change */

};

Any user can cali sraf to obtain information about a file, even if the file itselfl is not
readable. However, the caller must have permission to search all the directories along
the path to the specified file or star will return an error.

23.7.15 The UNIX File Naming Mechanlem

Although users imagine ail files and directories to be part of a single hierarchy, the
hierarchy is achieved through a file naming mechanism. The naming mechanism allows
a system manager to piece together a single, conceptual hierarchy out of several smaller
hierarchies. Users seldom understand the underlying file system structure or how the
various components form the UNIX hierarchy because the naming mechanism hides the

_structure completely. We will see that when NFS runs under UNIX, it takes advantage
of the UNIX naming mechanism to integrate remote files with local ones.

The original motivation for the UNIX naming mechanism arose because computer
systems have multiple physical storage devices (i.c., multiple hard disks). Instead of
forcing users (o identify a disk as well as a file, the UNIX designers invented the idea
of allowing the system manager to attach the hierarchy on one disk to the hierarchy on
another. The resull is a single, unified file namespace that permits the uvser 1o work
without knowing the location of files. The naming mechanism operates as follows:

* The manager designates the hierarchy on one of the disks 10 be the root.

* The manager creates an empty directory in the root hierarchy. Let the full
path name of the empty directory be given by a string /.

e The manager instructs the naming mechanism to overlay a new hierarchy
(usually one from some other disk) over directory / o

326 Metwork File Sysiem Cencepts (NFS) Chap. 23

Once the manager has attached the new hierarchy, the naming mechanism autornat-
ically maps names of the form /&/P to the file or subdirectory with path P in the at-
tached hicrarchy. The important concept is:

The UNIX naming mechanism provides wsers and application pro-
grams with a single, uniform file hierarchy even though the underly-
ing filer span multiple physical disks.

In fact, the UNIX system is more gencral than a system that attaches entire disks
as part of the hierarchy. It allows a system manager to parlition a single physical disk
into one or more file systerms. Each file system is an independent hierarchy; it includes
both files and directories. A file system can be attached to the unified hierarchy at any
point. The example in the next section will clarify the naming mechanism.

23.7.16 LINIX File System Mounts

The UNIX naming mechanism relies on the mount system call to construct the uni-
fed hierarchy. The system manager uses mouast to specify how a file sysiem on one
disk should be attached in the hierarchy. Usually, the manager armmanges te perform
necessary mounts automatically at system startup. Figure 23.6 illustrates three file sys-
tems that have been mounted 1o form a single hierarchy.

Sec. 23.7 Review Of The UNIX File System a2y

FTTTT s EsEEEEEE |

. disk 1 !

: 7y e

| |

1 -

1 1

" |

1 |

] 1

' (a b ey

i “te..,

1 I foy

) T o e 3
1 | "o, o disk2
[[/ fays O
) d e il

: :

1) -

Lmm e e e e e = J p s

- am EE E Em mm Em Em o Em o Em Em am am o o e

Figure 23.6 Three UNIX file systems mounted to form a single, uniform
hierarchy. After the mounts, the boundares between disks be-
come invisible. For example, file system O on disk 2 appears to
be directory /c. '

In the figure, file system O on disk 7 bhas been mounted on the root of the hierar-
ehy. File systerm / on the same disk has been mounted on directory /a, and file system
0 on disk 2 has been mounted on directory /c. A mount completely overlays an original
directory with a new file system. Usually, the system administrator creates a directory
to be wsed for mownting. However, if the directory on which a file system is mounted
contains any files before the mount occurs, they will be completely hidden (i.e., inacces-
sible, even to system administrators) until the file system is unmounted again.

From the user’s point of view, the mounts are completely invisible}, If the user
lists the contents of directory / the system reports three subdirectories: a, b, and ¢, If
the user lists the contents of directory /z, the system repornts two directories: g and h. If
the vser lists the contents of directory /c¢/s, the system reports a file, u, and a directory,
¥

tU)sers cannot create hard links thal cross file system boundaries,

318 Metwork File System Concepts {NF5S) Chap. 23

Path names do not denoie the boundaries between file sysiems; users do not know
where files reside. For exampie, the file named » (located in file system [on disk [}
can be accessed using the full path name /a/g/i/n.

Once o UNIX file svstem hierarchy has been constructed using the
mount systert finction, attachments between individual jile syxtems
become (ransparent. Some files and directories can reside on one
disk, while other files and directories rexide om another disk. The
user cannet distinguish among them because mounting hides all the
boundaries under a uniform naming scheme.

In practice, users ¢an {ind owt how the life sysiems have been mounted if they are
intzrested. The system includes an exdcutable applicauon named mounr that gueries the
systemn, and then displays the hist of mounted file systems. A manager can also use the
mount command {o create new imounts. For example, running the mount copnmand on
one computer produced the feilowing output:

/dev/raba o / type ufs {rw,noguota)
/deviralh an fusx type ufs (rw, noguota)
/denv/ralb on JSusr/sro type ufs {rw,noguota)

The firsl {ine of autput shows that file system raCa {the first file system on disk 6) has
been mounted on / and forms the oot of the hierarchy. The wornds nype wfc indicate that
the mounl refers 1o a UNIX File Syxtem, and the iems in parentheses mean that the file
system has been mounied for both reading and writing and that it does not have ac-
counting guotas. File system ra/h (the main (ile syvsiem on disk f) has been mounted
on J/usr. Thus, files that appear in direciory /usr reside on a different disk than thase in
/. Finally, file sysiem rab (the second filg system on disk) has been mounted on
fusr/sre. The third mount provides an interesting twist because it means that aithough
most files in Ausr reside on disk 7, files in the subtree Jusr/sre reside on disk (. The
point is that the mownt mechanism permits a manager to combine many file systems on
many disks into a single, uniform directory hierarchy; a user or an application program
uses the uriform hierarchy withoet knowing the location of files.

The concept of mounting file systems to form a single hierarchy provides incredi-
ble flexibility. It allows managers to choose an afloeation of files 10 disks for economy,
to reduce access contention, or to keep direclories isolated in case of accidental loss.
As we will sec, it also provides a convenicnt way to introduce remote files inlo a UNIX
hierarchy,

23.7.17 UMIX File Name Resolution

When presented with a full path name, the UNIX file system mechanism traces
through the conceptual hierarchy to resolve the name. In TUNIX, pame resolulion means
finding the inode that identifies a file. To resolve 2 fuil path name, the file system be-
gins at the root of the hierarchy and traces through directories ene at a time. For exam-

Sec. 23.7 Review OF The UNLX File Systen G

ple, given a name like /a/b/c/d, the file sysiem opens the root directory and searches in
it for a subdirectory named a. Once it finds /g, it opens that directory and searches it
for a subdirectory named &. Similarly, it searches in & for a directory named <, and
searches in ¢ for a file or subdirectory named 4. The name resolution software can ex-
tract one component of the full path name al each step because the slash character al-
ways separales individual components,

While the details of UNIX file name resolution are unimportant, the cancepl is
essential:

UNIX resolves a path name one component at « time. It beginy at the
root of the hierarchy and ot the beginning of the path. It repeatedfy
extracts the next component from the path and finds a file or subdirect
fory with that name.

We will see that NFS takes the same approach as UNIX when resolving a name.
23.7.18 UNIX Symbolic Links

Most UNIX file systems permit a special file type known as a symbolic fink. A
symbolic link is a special text file thal conzins the name of another file. For example,
one can create a file named /a/b/c that contains a symbolic link with value Jasg. If a
program opens file /a/t/c, the system finds that it contains a symbolic link and sutomat-
ically switches 1o file /a/g.

The chief advantage of symbolic tinks lies in their generality: because a symbaolic
link can contain an arbitrary string, it can name any file or directory. For example.
although the file system {orbids making a hard link to a directory, it permits a user to
create a symbolic link ¢ a directory. Furthermore, because a symbolic link can refer to
an arbitrary path, it can be used to abbreviate a long path name or to make a directory
in a distant parl of the hierarchy appear to be much closer.

The chief disadvantage of symbolic links arises from their lack of consistency and
reliability. One can create a symbolic link o a file and then remove the file, leaving the
symbolic link naming a nonexistent object. In fact, one can create a symbohc hink 10 &
nonexistent file because the system does not check the contents of a symbolic link when
creating it. One can also create a set of symbolic links that forms a cycle or two sym-
bolic links that point to one another. Calling open on such a link results in a run-time
error.

23.8 Files Under NFS

NFES uses many of the UNIX file system definitions. It views a file as a sequence
of bytes, permits files to grow arbitrarly large, and allows random access using byle
positions in the file as a reference. It honors the same open-read-write-close paradigm
as UNIX, and offers most of the same services.

330 Metwork File Svstem Concepts (MNFS) {hap. 23

Like UNIX, NFS assumes a hierarchical naming system. The NFS hierarchy uses
UNLX terminology: it considers the file hierarchy to be composed of directories and
files. A directory can conlzin hiles and other directories,

INFS has also adopted many of the UNIX file systemn details, leaving some un-
changed, and making minor modifications to others. The next sections describe several
features of NFS and show how they relate 1o the UNIX file system described carlier.

23.9 NFS File Types

NFS pses he same basic file types as UNIX. 1t defines enumerated values that a
server can use when specilying a file type:

amm foype |
NEMN = 0, /* Specified nane is not a file */
NFREG = 1, /* Recular data file */
NFDIR = 2, /* Directory */
NFELE = 3, /* Block-oriented desice */
NFCHR. = 4, /¥ Character-criented device *
NFLIK = 5§ /* symbolic link *7

-

‘The set of types, inclading NFRLK and NFCHR, come directly from UNIX. In particu-
lar, UNIX permits system managers to configure YO devices in the file system
namespace, making it possible for application programs to open an /G device and
transfer data to or from it using the conventional open-read-write-ciose paradigm. NES
has adopled UNEXs terminology that divides 1/O devices into block-orignted {c.g., a
disk that always transfers data in 312-byte blocks) and character-oniented {c.g.. an
ASCH terminal device that transfers data one character at a time) devices. NES litera-
ture sometimes uses the UNIX temm speciad file to denote device names. A file name
lhal corresponds to a Mock-ortented device has type block-special, while a name that
corresponds to a character-oriented device has type characrer-special.

23.10 NFS File Modes

Like UNIX, NFS assumes that 2ach file or directory has a mode thal specifics its
type and access protection, Figure 23.7 lists individoal bits of the NFS mode mmeger
and gives thelr meanings. The table uses octal values to represent bits; the definitions
correspond direcily to those returned by the UNIX sear function.

Sez. 2310 NFS File Modes 3]
Mode Bit _ Meaning
0040000 This is asdirectory; the “type” should be NFDIR.
0020000 This is a character-special fite; the *“‘type” should be NFCHR.
0060000 This is a block-special file; the type should be NFELK
0100000 This is a regular file; the type should be NFREG
0120000 This is a symbolic link; the type should be NFLINVK
0140000 This Is a named socket; the type should be NFNON
0004000 Set user id on execution
0002000 Set group id on execution
0001000 Save swapped text after use
0000400 Read permission for owner
0000200 Write permission for owner
0000100 Execute or directory search permission for owner
0000040 Read permission for group
0000020 Write permission for group
0000010 Execule or directory search permission for group
0000004 Read permission for others
0000002 Wrlte permission for others
0400001 Execute or directory search permission for others

Figure 23.7 The meamng of bils in the NFS mods integer. The definitions

tave heen taken directly fromm UINTX,

Although NFS dcfines file types for devices, it does not permit remok device uc-

cess (e.g., a client may nol read or write a remote deviced. Thus, while it is possible for
a client to obtain information aboul a file name, 1t is not passible for a client 1o manipu-
latc devices, even if the protectton modes permit it

Althouph NFS defines file protection bits that determme whether a
clieni can read or write a particular file, NFS denies a remote
machine access to all devices, even if the protection bits specify Mhat
access is altowed.

23.11 NFS File Attributes

Similar to UNIX, NFS has a mechanism to obtain information about a file. NFS
uscs the term fife ariribures when refemng (o file information. Structure faitr describes
the file attributes that NFS provides:

struct fattr { /* NFS file attribates */
ftype type: /* type: file, directory, etc ¥/
unsiogned int mode; /* file's protecticon bits */

unsigned int nlink: /* total hard links to the file */

352 Metwork File System Concepls {NFS) Chap 23

unsigned int userid; /* user id of file's owner *y
unsigned int groupid; /* group 14 assigned to file */
unsigned int size; /* total size of file in Iytes */

unsigned int blocksize; /* block size used to store File*/
msigned int devrmm; F* der. am. if file is device */
msigned int blocks; /* maber of blocks file usas */

wwicned int fsid; /* file systenm id for file *
unsigned int fileid: /* wnigue “id far file */
timeval atime; /* time of last file access */
timeval meime; A* time of last modification */
timeval ctire; /* time of last inode change */

}i

A the structure shows, the concepr and most of the details have been derived from the
itluormation that the UNIX sror function returns

23.12 NFS Ciient And Server

An NFS server tuns on a machine that has a local Iile system. The server makes
some of the local files available 10 remote machines. An NFS client runs on an arbj-
trary machine, and accesses the files on machines that mn NFS servers. Often, an or-
ganization will choose to dedicate a compuier that has Jarge disks to the server function,
Such a machine i1s often called a file server. Forbidding users from runming application
programs on an NES hile server machine helps keep the load low and goarantees faster
response to access requests. Dedicating a compulter to the file server function also
guarantees that remote file access traffic will not reduce the CPU time available for ap-
plication programs.

Most NFS client inmplementations integrate NFS files with the computer’s native
file system, hiding fite locations from application programs and users. For example,
consider a Windows 93 environment, File mames have the form: X:a, where X is a
single-character disk idenufier and o denotes a path name on that disk. Windows 95
uses the backslash characier () to separaie components in the path. Thus, the file name
CAMNEN denotes file £ in subdireciory E in directory £ on the system’s hard disk. if
an NES client is added o the system and configured (o access {iles on @ remote server,
it can use the Windows 95 numing scheme. For example. the mamager might choose
names of the form R: [for all remote files, where 3 denotes a path on the remote file
sysiem.

When an application program calls open to obtain access to a [ile, the operating
system uses the syntax ol the path name o choose hetween local and remote file access
procedures. If the path refers to a remoie file, the system uses NES cliem software to
access the remote file. If the path refers o a local file, the system uses the computer’s
standard file system software to access the file. Figure 23.8 illustrates how the modules
in an operating syslem interact when making the choce.

Sec. 23,2 NES Client And Scrver 333

code for system
function open

code to parse the
path name and choose
an access module

NFS client file system
code for remote code for local
file access file access

Figure 238 Procedures in an operating system that are called when an appli-
cation opens a file. The systern uses the pasth name syntax o
choose betwesn NFS, which will open 2 remote file. or the
standard file system, which will open a local one.

23.13 NFS Client Operation

Rerall that NFS was designed 10 accommodate heterogeneous computer systems.
When system managers install NFS client code in an operating sysiem, they try to in-
tegrate it into the system’s file naming scheme. However, the path name syntax used
by the remole file system may differ from that of the clieny machine. For example,
when NFS client code running on a machine that uses Windows 95 connects 10 an NFS
server mnming on a machine that uses UNIX, the client’s system uses backslash (\) as a
separator character, while the server’s file system uses slash (/).

To accommodate potential differances between the client and server path name
syntax, NFS follows a simple nile: only the clieat side interprets full path names. To
trace a full path name through the server's hierarchical directory system, the client
sends each individual path name component one at a time. For example, if a client that
uses slash as a separator needs to look up path name /u/B/c on & server, it begins by ob-
taining information about the server’s root directory. It then asks the server to look up

3hq Metwark File System Conceprs (NES) Chap. 23

name ¢ in that directory. The server sends back information about . Presumably, the
information will show that ¢ is a directory. The client then asks the server to look up
name b in (hat dircctory. When the server replies, the client verifies that & is a directo-
ry, and if it is, asks the server to look up name ¢ in it. Finally. the server will respond
by sending information about .

The chief disadvantage of requiring the client to parse path names should be obvi-
ous; it requires &n exchange across the network for cach component in the path. The
chivl advantage should alse be obvious: applicalions on a piven computer can access ré-
mote {iles using the same path name syntax they use for local files. More important,
hoth the applications and the client code can bz wrillen © access remote Nles without
knowing where files wili be located or the naming conventions used by the file systems
on the servers. Thus. none of the client applications needs to change when the system
iwanager uperades one of the server machines. even if the new computer uses a different
operaling system or a dilferent file naming scheme than the eriginal. To SUMIMAarize:

To keep applicarions on cliemt machines independent of file focations
and server computer systems, NFS requires that only clienis interpre!
Full path names. A client traces a path through the server’s iierarchy
by sending the server one componenlt ai d thne and receiving informa-
tion about the file or direclory it names.

23.14 NFS Client And UNIX

Recall that UNIX uses the mowrns mechanism (o construct a single, unified namimg-
hicrarchy from individual file systems on muliiple disks. UNEX implementations of
NFS chient code use an exterded version of the mount mechamsm to intcgrate remole
file systems into the naming hierarchy along with local [ie systems. From the applica-
lion program’s perspective, the chief advantage of using the mount mechanism is con-
sistency: all file names have the same form. An application program cannut tell wheth-
er a file 1s local or remote from the name syntax atone. When an application opens a
remote [ile, it recetves an integer descriptor for the file exactly as it would lor a local
file. Intermal information associated with the descniptor specifies that the file 1s 4 re-
mote file accessible through NES.

Whencver an application performs an operation on a file descriptor {c.g., read). the
system checks to see whether the descriptor refers to a local file or a remote file. [f the
lile 15 tocal. the operating syvstern handies the operation as usual. I the fite is remote,
the operating system calls NFS ¢lient code that translates the operation info an
equivalent NFS operation and places a remote procedure call to the server.

Sec, 2315 M-S Mounts 3kR
23.15 NFS Mounts

When managers add NFS mount entries o a UNIX mount rable, they must specify
a remote machine that operates an NFS server, a hierarchy on that server, a local direc-
tory onto which the mount witl be added, and information that specifies details about
the mount. For example, the following output from the UNIX mounr command shows
some of the NFS mounts used on a UNIX sysiem a1 Purdue University {(non-NFS
meunts have been deleted):

arthur: /pl an /pl type nfs (xw,grpid, intr, ba,noquota)
arthur: /pd an /pd type nfs (ow, grpid, intr, by, noguota)
ector:/ud on fud type nfs (w,grpid, soft, bg, nogquota)
awer: / on fgwen type nfs (rw,grpid, soft, by, noguota)
gwen:/uS oo fuS type nfs {(rw, grpid, soft,bg, noguota)

In this output, each line corresponds to a single NFS file system mount. The first field
of each line specifies a machine that runs an NFS server and a hierarchy on that server,
while the third field specifies a local ditectory on which the remote file systern has been
mounted. For example, arthur:/pf specifies the /pl hierarchy on machine arthur. i
has been mounted on the local directory named /pi. The system manager chosc
mount arthur’s /pf file system on a local directory with (he same name so users on hath
machines could access the files using idencical names.

Al mounts shown in the example above have type #afs, which means they refer o
remote file systems available via NFS. In addition. the parenthesized parameters on
each line specify further details aboui the mount. Like mounts for local file systems,
the remote file system mounts can specify whether to allow reading and writing (rw) or
reading only {r).

NFS defines two basic paradigms for remote mounts in UNIX. Using a soft mowrnt
specifies that an NFS client should implement i timeout mechanism and consider the
server off-ling if the timecut expires. Using a Aard mount specifies that an NFS client
should not use a timeout mechanism.

UNIX administrators usually arrange © have all moonts created automalically il
system startup. Once an NFS mount has been created, application programs and users
cannot distinguish between local and remote files. The user can use a conveniional ap-
plication program to manipulate a remote file as easily as the program can manipulate a
local file. For cxample, & user can run a standard text editor to edit & remete fiic; the
editor operates on the file the same way il operates on a local file. Furthermore, the
user can change to a remote directory or back to a local directory simply by piving a
path name that crosses one of the mount points.

R\ Network File System Concepts (NF5S) Chap, 23
23.16 File Handle

Once a chent has identified and opened a file, it needs a way to identify thar file
for subhsequent operations (2.2., read and write). Furthermere, a client needs a way 1o
identify an individual directory or file as it traces through the server’s hierarchy. To
solve these problems, NFS arranpes for a server to assign each file a unique file handle
that it uscs as an identifier. The server makes up a handle and sends it o the client
when the client first opens the file. The client sends the handle back to the server when
1t requests operations on the file,

trom the client’s point of view, the file handle consists of 2 32-byte string that the
server uses to 1dentify a file. From the server’s point of view, a file handie can be
chosen to be any convenient set of byles that vniquely identify an ndividval file. For
example, a {ile bandie can encode information that allows the server e decode a handle
and locate a file quickly.

In NFS terminology, a file handle is opague to the client, meaning that a client
cannol decade the handle or fabricate a handle itself. Only servers create file handles,
and servers only recognize handles that they create. Furthermore, secure implementa-
uons of NFS servers use a sophusticaied encoding to prevent a client from guessing the
handle for a (ile. In particular, servers choose some of the bits in a handle at random to
help ensure that clients cannot fabricate a valid handle.

To improve security, servers can also limit the time a handle can be used. Dwoing
=0 makes it impossible for a client to keep a handle forever. To limit a handle’s life-
titme, the setver encodes a imesiamp in the handle. If the handle expires, the server re-
fuses 10 perform further operations on a file uvsing it. The client must obtain a fresh
handle before it can continue access. In practice, NFS timestamps are usually long
gnough o permil any reasonable access. Applications that have legitimate use of a file
can always oblain a fresh handle {the transactions required can be hidden from the ap-
plication completely).

23.17 NFS Handles Replace Path Names

To understand why handles are needed, consider naming files in a remote directory
hierarchy. Recall that to isolate clients from the server’s path name syntax and (o allow
heterogencous machines to access hierarchical files, NFS requires that the client per-
form all path name interpretation. As a consequence, a client cannot use a full path
name 10 specify a file when requesting an operation on that file. Instead, the client
must obtain a handle that it can vse to reference the file.

Having the server provide handles for directories as well as files permits a client to
trace a path through the server’s hierarchy. To see how, consider Figure 23.9, which il-
lustrates the exchange between a client and server as the chient locks up a file with path
A/b/c in the server’s hierarchy.

Sec. 23.17 NFS Handles Replace Path Names 337

client side messages sent server side

Reguest root handle

Handle Hr

W

Handle Ha

Loockup b in Ha

Handle Hb

Lookup ¢ in Hb

Handle He

time

Figure 23.9 The messages a cliemt and a server exchange as the client looks
up a file thar has full path name Awb/’c, where /" denotes the
client’s component separator. The handle for a file or directory
named x is denoted Hx. In practice, a separate protocol provides
the root handle.

The figure shows that the server returns a handle for each directory along the path.
The ctient uses each handle in the next remote procedure call. For example, once the
client obtains a handle for directory a. it sends that handle back to the server and re-
quesis that the server search {or b in directory a. The client cannot reference the file as
/a/b, notr can it reference the directory as /q, because the client does not know the
server’s path name syntax.

338 MNerwork File System Concepts {NFS) Chap. 23
23.18 An NFS Client Under Windows

When NFS client code 1s mstalled in a system such as Windows 95, it hust be as-
sociated with an unused device identifier. For example, if the letter F has not been used
for an existing device, one might choose to associate the client code with that device
identifier. The NF5 client code operates like a device driver for the device.

Whenever an application program opens a file, the operating svstem begins by exa-
mining the device identifier in the file name, and calling the appropriate device driver.
If the device is a disk, control passes to the disk device drver code, which uses the path
namge to locate the correct file on the disk. [If the device 15 a rernote file systermn, control
passes to the NES client code, which uses the path name o locate a remote {ile. Be-
cause the directones in the path reside on a remote machine, the WFS client code cannot
search them directly. instead, it must look up pne component of the path at a time. To
loak wp & component, the client sends the component name to the appropriate NFS
server, if the component is valid, the scrver returns a handle. The client then uses the
handle to ask the server to search the directary for the next component. The search
continues ong component at a time until the client asks for information abom the lase
component in the path. Il the path 15 valid {1.e., corresponds to a file on the remote sys-
tern), the server returns a handle for the remete file. The NFS client code stores the
handle, creales a deseniptor thae corresponds 1o the remore file, and retumns the descrip-
tor (o the application. The application uses the descriptor for subsaquent read or write
operalions on the remote file.

Whenever an application performs an operation on a file descniptor, the operating
system uses the descriptor to forward the operation to a device driver. If the descriptor
corresponds to a local file, control will pass to the driver for 2 local disk, which per-
forms the operation as usual. It the descriptor corresponds 1o a remote [ile, control will
pass (0 the NFS client code, which uses the file handle it received from the server when
the -lile was opened. The client sends the handle 1o the server aleng with the read or
write request.

23.19 File Positioning With A Stateless Server

Because NFS uses a stateless server design, the server cannot store a file pOsItion
for cach application that 15 using a hle. Instead, the client stores all file position infor-
maticn, and each request sent to the server must specify the file position to use. Storing
position infermation at the client also helps oprimize operations (hal change the file po-
siion. In most implementations, NES uses the same mechamsm to store the position of
i remole lile as is used to storc the position of a local file. If an application changes the
position of a file {i.c.. by using a seek operation), the client records the new file position
without sending a message to the server. Whenever an application requests a reagd or
write, the client sends the current position to the server along with she read or write Te-
quest. Thus. because fyeek does nol send any messages across the network, seeking in a
remnote file 1s as efficient as secking in a local one.

Sec, 23,20 Operations On Direclories 33q
23.20 Operations On Directories

Conceptually, NFS defines a directory 1o consist of a set of pairs, where each pair
contains a file name and a pointer to the named file. A direciory can be atbitranly
large; there is no preset limit on its size. NFS provides operations that permit a client
to: insert a file in a ditectory, delere a file from a directory, search a directory for a
namne, and read the contents of a directory.

23.21 Reading A Directory Sﬁtelessly

Because directories can be arbitrarily large and communication networks impose a
fixed limit on the size of a single message, reading the contents of a directory may re-
quire multiple requests. Because NES servers are stateless, the server cannot keep a
record of each client’s position in the directory.

The NEFS designers chose to overceme the limitations of stateless servers by ar-
ranging for an NF5S server to return a position identifier when it answers a request for
an entry from a directory. The client uses the position identifier in the next request to
specify which eniries 1t has already received and which it still needs. Thus, when a
client wishes o read entries from a remote direclory, it steps through the directory by
making repeated requests that each specify the posttion identifier returned in the previ-
ous request.

Using informal terminology popular among systems programmers, NFS calls its
directory position identifier a magic cookie. The term is meant to imply that the client
does not interpret the identifier, nor can it fabricate an identifier itself. Only a server
can create a magic cookie (hence the term magic); a ctient can only use a magic cookie
that has been supplied by a server.

A magic cookie does not guarantee atomicity, nor does it lock the directory. Thus,
two applications that perform operations on a direciory may interfere with one another.
For example, imagine a server that is handling requests from two or more clients con-
currently. Suppose that after reading three directory entries from some directory, £, the
first client receives a magic cookie that refers 10 a posilion before the fourth entry.
Then suppose another client performs a series of operations that insert and delete files
in directory D. [f the first client atempts 10 read remaining entries from D using the
old magic cookie, 1t may not receive all the changes.

In practice, the potential problems of concurrent directory access seldom affect
users because they do not depend on instantanecus insertion or deletien of files. In fact,
many conventional operating syslems exhibit the same behavior as NFS; vsers seldom
understand the details of how the system interprets concurrent direciory operations be-
cause they rarety need to know.

33 Metwaork File Sysiem Concepts (NF5S) Chap. 23
23.22 Multiple Hierarchies In An NFS Server

Recall that to make NFS interoperate across heterogeneous machines, the designers
chose to have the client parse all path names. Doing so aliows both the client and
server to each use the file naming scheme native to its operating system without requir-
ing either of them to understand the other's environment.

Restricting the use of full path names has litthe effect on most file operations.
However, it does introduce a serious problem because it means thal a client cannct use
a full path name o identify a remote file system or directory.

Early versions of the NFS protocol assumed that each server only provided access
10 a single remote hierarchy. The orginal protocol included a function named
NFSPROC_ROOT that a client could call to obtain the handle for the root directory in
the server’s hierarchy. Once the client had a handle for the root, it could read directory
catries and follow an arbitrary path through the hierarchy,

Later versions of NFS allow a single server to provide remote access to files locat-
ed in several hierarchies. In such cases, a procedure that returns the handle of a single
root directory does not suffice. To enable a single server to handle muitiple hierarchies,
NFS requires an additional mechanism. The additional mechanism, described in the
nexl section, ailews a client to specify one of the possible hierarchies and obtain a han-
dle for its root,

23.23 The Mount Protocol

The current version of NFS uses a separate prowocol 10 handie the problem of find-
ing a root directory. Called the mount protocel, it is defined using RPC. However, the
mount protocol 15 not part of the NEFS resnote program. Although it is required for an
NFES server, the mount protocol operates as a separate remote program,

The mount protocol provides four basic services that clients need before they can
use NFS. First, it allows the client o obtain a list of the directory hierarchies {iLe., file
systems} that the chent can access through NFS. Second, it accepts full path names that
allow the client to identify a particular directory hierarchv. Third, it authenticates sach
client’s request and vatidates the client’s permission to access the requested hierarchy.
Fourth, it returns a file handle for the root directory of the hierarchy a client specifies.
The ciient uses the root handle obtaned from the mount protocol when making NFS
calls.

The name and idea for the mount protocol come {rom UNIX: a UNIX system uses
the mount protocol when it creates a remote file system mount in its namespace. A
client system uses the mount protocol to contact a server and verify access to the remote
file systern before adding the remote mouni 1o its local hierarchical namespace. If the
mount protocol denies access, the client code reporis an error 10 the system manager. If
the mount pratacol appraves access, the client code stores the handle for the root of the
remote file system so it can vse the handle when an application tries to open & file on
that file system.

Sec. 23.24 Summary 14
23.24 Summary

Sun Microsystems, Incorporated defined a remote file access mechanism called
NFS that has become an industry standard. To allow many clients to access a server
and to keep the servers isolated from client crashes, NFS uses stateless servers.

Because NFS is designed for a heterogeneous environment, a client cannot know
the path name syntax on all servers. To accommodate heterogeneity, NFS requires the
client to parse path names and lock up each component individuaily. When a client
looks up a particular component name, the server returns 2 32-byte file handle that the
client uses as a reference to the file or directory in sebsequent operations:

Most of the NFS definitions and file system semantics have been derived from
UNIX. NFS supports a hierarchical directory system, views a file as a sequence of
bytes, allows files to grow dynamically, provides sequential or random access, and pro-
vides information about files almost identical to the information provided by the UNIX
stat function.

Many of the conceptual file operations used in NFS have been derived from apera-
tions provided by the UNIX file system. NFS adopted the open-read-write-clase para-
digm used in UNIX, along with basic file types and file protection modes.

A companion to NFS, the mount protocol makes it possibie for a single NFS server
to provide access to multiple directory hierarchies. The mount protocol implements ac-
cess authenticatien, and allows a client te obtain the handle for the root of a particular
directory hierarchy. Once the client obtains a handle for the root, it can use NFS pro-
cedures to access directories and files in that hierarchy. UNIX systems use the mount
protocol when the system manager installs remote mounts in the UNIX hierarchical
namespace.

FOR FURTHER STUDY

Ritchie and Thompson [1974] expitains the original UNEX file system. and
discusses the implementation of files using inodes and descriptors. Bach [1986] covers
UNIX file systemn semantics. McKusick ef al. {August 1984] describes the fast file sys-
tem used in later releases of BSD UNIX. Sun Microsystems, Incorporated [RFC 1094]
specifies the details of both NFS and the mount protocol. 1t mentions most of the con-
cepts presented here. Callahan er ai. [RFC 1813] describes version 3 of the NFS proto-
col.

EXERCISES

23.1 Build a program that obtains a magic cookie from an NFS server. Use the program w
obtain magic cookies for several directories on several servers and print their contents in

342

23.2

233

23.4

235

236

Network File System Concepts (NF5) Chap. 23

hexadecimal. Try to guess what information the cookie contains and how the server en-
codes il.

Use a network analyzer to watch messages exchanged between an NFS client and a
server. How many packets are exchanged for each of the following operations: open 2
file not in the top level directory, read [0 bytes from the file, and close the file?

Suppose the network that connects an NFS client and an NES server delivers packets out
of order. What errors can result trom reordering NFS operations?

Suppose the network that connects an NFS client and an NFS server can duplicate pack-
els as well as deliver packeis out of order. What errors can result from duplicating and
reordering NFS operations? Compare your answer to your response for the previous ox-
ercisc. Docs packet duplication intioduce any additional ermor conditions”? Why or why
nat” '

Exarmnine Lhe specifications for NFS versions 2 and 3. What are the chief differences?
Does version 3 make any changes that are visible or impenant to a programmer?

Although NFS was designed to be stateless, the file handle mechanism adds stare to the
pretocol. What preblems, if any, do file handles introduce? How can such problems he
overcome? {Hint: Many implementations of NFS require all active clients to reboot after
a server crashes and rehoots.)

24

Network File System
Protocol (NFS, Mount)

24.1 Introduction

The previous chapter describes the concepts vnderiying Sun's Netwark File System
(NFS), and shows that much of the terminology and muny of the details were derived
from the UNIX file system. This chapter continues the discussion of NFS by describing
the protocol It shows how NES is defined to be a remote program using ONC RPC
and how ¢ach operation on a filg corrgsponds 10 4 remote procedure call.

24.2 Using RPC To Define A Protocol

Chapters 2t} through 22 show how RPC can be used 1o divide a program into com-
ponents thal execule on separate machines. Most programmers use RPC in the exact
way described in those chapters: they first write a conventional program, and then use
RPC to form a distributed version. This chapter takes another approach. [t shows how
RPC can be used 1o define a protocol without 1yving it 1o any particular program.

The chief difference between using RPC to construgt a distributed version of a pro-
gram and & gencral-purpose prolocol arises in the way the designer thinks about the 1s-
sues. When building a distoibated version of a program, the programmer starts from an
existing program that includes both procedures and data structures. When devising a
protocol, the programmer starts from a set of desired services and devises abstract pro-
cedures that suppart them.

343

a4 Metwork Fiie Sysiem Protecal (NFS, Mounl) Chap. 24

Designing a protocol requires thought about how services will be used as well as
thought about how programmers will implement programs that supply those services.
The designer must choose a protoco] definition that swrikes a balance between precision
and freedom. The protocol must be precise enough to guaraniee interoperability among
programs that adhere to it, but it must be general enough to permit a wide variely of im-
plementations.

Thinking about protocol design in a vacuum is seldom sufficient. Successful pro-
tocol specification requires the designer to be proficient with-the technical details of
commaunication and to have good intuition about the design. The intuition required usu-
ally arises from extensive experience with computer systems, application programs, and
other communication protocols, Thus, protocel design can be more difficult than it ap-
pears. In particular, one should not confuse the apparent simplicity of a protocol like
NFES with the notion that the design did noi take much thought. The point is:

Although RPC provides a convenient way fo specify a protocal, it
does not make protocol design easier nor does it guarantee efficiency.

24.3 Defining A Protocal With Data Structures And Procedures

To specify a protocol using RPC, one must:

* provide declarations for the constants, types, and data structures used as pro-
cedure arguments or function results.

» provide a declaration for each remote procedure that specifies the argu-
ments, resolts, and semantics of the action it performs, and

* define the semantics for each remote procedure by specifying how it
processes its argments and compules a retorn value.

Conceptually, a protocol specified using RPC defines a server 10 be a single remote
program. An operation sent from the client to the server corresponds o a remote pro-
cedure call, and a message returned from the server to the client corresponds o a pro-
cedure return. Thus. in any RPC-defined protocol, the client must initiate all opera-
tions; a server can only respond to individual client requests.

For NFS, requiring the client to initiate each operation makes sense because a file
access protocol can be designed 1o be doven from the client. A server offers procedures
that perriit a client to: create or delete files, direclories, and symbolic links; read or
wrife data; search a directory for a named file; and obtain staras information about an
entire remote file system or about an individual file or directory. Although other appli-
cation protocols may not lend themselves to RPC specification as directly as NFS, ex-
perience shows that most client-server interactions can be cast into the remote procedure
call paradigm with modest effort.

NFS provides an interesting example of RPC specification because the protocol is
sufficiently complex to require several remote procedures and data types, yet it is intui-
tive and conceptually simple cnough to understand. The next section describes exam-
ples of the basic constant and type declarations used in the NFS protacol. Later sec-
tions show how the procedure declarations use the constants and types to specify argu-
ments and results,

Sec. 244 NF5S Constant. Type, And Data Declarations

24.4 NFS Constant, Type, And Data Declarations

M5

The NFS protocol standard defines constants, type names, and data structures that
are vsed throughout the procedural declarations. All declarations are given using RPC

declaration syntax.

24.4.1 NFS Constants

NFS defines six basic constants that specify the sizes of arrays used by the proto-
vol. The declarations are given using the RPC language:

const MAXDATR,
ocanat MANPATHLEN
cangt MAXEMLF
const QOCKIESTZE
const FHSIZE

= 8192; /* Mmdmam bytes in a data transfar
1024; /* Maximm characters in a path name
255; /* Maximamn characters in a name
d; /* Octets in an NFS magic oookie
32; /* Octets in an NFS file hendle

*/
*/
*/
*/
*/

In addition to the basic constants, the protocol also defmes an enumerated set of
constants used to report error status. Each remote procedure call retums one of these
status values. The set is named srat, and s declared as:

eraamn gtat {
NFS (¥
NFSERE,_PERM
MFEERE, NOEMNT
NFSERB, IO

oin PO

oo i

nm H H

1

i

0

/* Soccessful call

/* CGamership mismatch or error

/* File does not exist

. /" I/0 dewica error coourved

. /* Device or address does not esdist
13, /* Permiseion to acoess was dended
17, /* Specified file alroady exdists
19, /* Specified device does not exist
20, /* Specified item not a directory
21, /* Specified item is a directoxy
27, /* File is too larce for sexrver
28, /* No space left m device {disk)
30, /* Write to read-aly file system
63, /* File name was tos long

&6, /* Directory not empty

69, /* Disk quota esceeded

70, /* File handdle is stale

99 /* Write cache was flushed to disk

-

*/
*/
*/
*/
*/
*/
*/
*f
*/
*/
*/
*/
*]
*/
*f
*f
*f
*/

Each of these error values makes sense in the context of some call. For example, if a
client atternpts to perform a directory eperation on a regular file, the server returns error

36 Network File System Protocal (NFS, Mount) Chap. 24

code NFSERR_NOTDIR. If the clicnt attempts 1o perform a regular file operation on a
directory, the server retumns ervor code NFSERR_ISDIR.

24.4.2 NF5 Typedel Declarations

To make 1ts structure declarations clearer. the NES protocol stundard delines names
for types used in multiple structures. For example, the type filename is defined to be an
array of characters large eoough to contain @ component nanie. In RPC svntax, the key-
word strirg maust be used to declare an arvay of characters. Thus, the declaration is:

typedef string £ilename<MROGIEMLENS ;

Similarly, the standard defines fhandle 1o be the type of a 32-byte array that contains a
file handle. The type is declared 1o be opague because the client does not know the
internal structure:

typedef ocpagque fhandle[FHSIZE]
24.4.3 NFS Data Structures

With constant and type definiiions in place, a protocol designer can specity the
rypes of all data stroctures used, NFS follows the convention of cornbining all the argu-
ments for a remole procedure call inio a single stracture. Thus, the standard defines an
argument structurc for cach semote procedure and a separate structure for each pro-
cedure result. [n addition, the standard defines a few structures shared by several pro-
cedorcs. For example, Chapter 22 describes the faztr swruchire that NFS uses to specily
file attributes. Fattr was denived {fom the data remerned by the UNIX st structure.

Some fickds in the faftr structure record the time at which a file was last modified
or accessed. Such fields are declared (o be of 1ype imeval, a structure:

struct timeval { /* date and time used by NES *
unsigned int secaxdls; /* seconds past epoch (1/1/7¢) L
unsianed int useconds; /* adlitional microsecoryls *

+:

The declaration specifies that NFS stores a time value n two 32-bir intepers. The first
mteger records the number of seconds pasi an epoch date. and the secoud integer
records additional microseconds (allownng for more preciston). NES uges the epoch
date of January 1, 19701 to measure ime values.

Most of the remaining declarations define the type of arguments passed to & remote
procedure or the reselt the procedure returns. For example, when calling a procedure
that performs an aperation on a directory (e.g., delere a file), the client must pass the
nume of a file. NFS declares the argument type 1o be a structure, diropargs (directory
operalion arguments):

The desipners chose the NES time ¢poch ra be the same as thai used by LINTX,

Segc, 24,4 NF5 Constant, Type, And Data Dleciarations 347

struct diropergs { /* directory operation arouaments *
fhandle dir; /* hardle for directory file is in */
filename name; /* name of file in that directory */

}:

The structure shows that the argument consists of a file handle for the directory and the
name of a file in that directory. To understand why direpargs 1s needed, recall that the
NFS client parses all path names. Thus, a client cannot use a full path name to identify
a file. Instead, NFS requires ail operations on files to be specified by giving the handle
for the directory in which the file resides and the name of the file in that directory.

In addition to declarations for argument types, the standard defines the types re-
turned by remote procedures. For example, a directory operation retorns a union type
named direpres:

union diropres switch (stat status} { /7* result of dir. o >/

case NFS OK: /* If operation was successful =/
struct { r* structure for surcess results </
flandle file: /* file handle for new file =/
fattr attrilutes;/* status of the file x/
} diropok; /* end of structure for success */
defau't: /% If operation failed =7
void; * get rnothing back */

T:

The upion allows two possible forms of a return value, with the choice depending on
the statns, If the operation succeeds, the status will have value NFS_OK, and the return
value will consist of a file handle for the newly created file {or the file that changed)
and a structure that contains the file's attributes. 1f the operation fails, the call will not
return anything.

The arguments for other remote procedures sometimes include one or more file
specifications. For example, the remote procedure used (o rename a file requires two
file names: the name of an existing file and the new name for that file. The arguments
for the rename procedure are declared to be of type renameargs, a structure:

struct renameargs { /* arguments to RERBME x/
diropargs fram; /* an existing file =/
dircoargs Co; /* new location/name for file =/

}:

Individual fields that give the old and new file names are declared to be of type diro-
Pargs.

Moast other NFS argument types correspond to remote procedores. For example,
NFS defines structure writeargs to specify arguments used in a call 10 write data to a
file:

348 Network File System Prowocol (NFS, Mount) Chap, 24

struct writeargs { /* arguments to WRITE */
fhandle file; /* file to be written *J
unsigned beginoffset; /* dosoiete {ignore) */
wmsigned offser; /* where to write darta *J
unsigned totalocomt:; /* dheolete (igmore) *
nfsdata data; /* data to put into file */
¥

Similarly, structure readargs specifies the arguments for the read cperation:

struct readargs { /* argunents to HEAD */
fhandle file; /* file to e rexd *y
unsigned offset; f* wihere to resxd data *J
mesigned coumnt; /* . of bytes requested */
unsigned totalcount; /* desolete {ignore) */
};

Procedure readtink allows the client to read the contents of a symbolic link. ks
results are defined by the union readlinkres:

micn readlinkres switch (stat status) { /* FEADLINK result */

case NFS_(H: /* If operation was suoessful L
path data; /* path name found in link "/
default: /* If operation failed */
void; i* notluing >
};

24.5 NFS Procedures

Once constants and data types have been declared. one only needs io specify the
remate procedures that imptement the protocol. An NFS server provides a remote pro-
gram that impilements /& procedures. Using RPC language, the program can be de-
clared: '

Sec. 24.5

MWFE Procedures

program NFS_PROGRAM {
version NFS VERSION {

15;
17:

349

*/

void NFSPROC.NULL (void} =
attrstat NFSPROC_GETRTTR{ fhandi o) =
attrstat NFSPROC _SETATTE (satbrargs) =
void NFSPROC_ROOT (void) =
diropres NFSPROC_LOOKIP (dircpargs) =
readlinkres NFSPROC_READLINK (fhandle) =
readres NFSPROYC_READ{readargs) =
void NFSFROC, WRITECACHE (void) =
attrstat NPSPROC_WRITE (writeargs) =
diropres NFSFROC_CREATE {createarys) =
stat NFSPROC_FEMOWE {di ropargs) =
stat NFSPROC_REMNEME (renamearys) =
stat NFSPROC_LINK (Linkargs) =
stat NFSPROC_SYMLINK (syml inkarygs) =
diropres NFSPROC. MKDIR {createargs) =
stat NFSPROC_RMDIR {(dircpargs) =
readlirres NFSPROC REAIDIR(readdirargs)=
statfsres NFSPROC_STATFS(fhandle) =
Yy = 2; /* anarent. version of NFS protocol
} = 100003; /* REC program muavber assigred to NFS */

24.6 Semantics Of NFS Operations

The semantics for mest NFS operations follow the sernantics of fiie operations in
UNIX. The following sections each describe how one of the NFS remote procedures

operates.

150 Nerwork File System Protocol (INES, Mount) Chap. 24

24.6.1 NFSPROC_NULL (Procedure 0}

By convention, procedure ¢ in any RPC program is termed rufl because it does not
perform any action. An application can call it to iest whether a given server is respond-

ing.
24.6.2 NFSPROC_GETATTR (Procedure 1)

A client calls procedure / to obtain the attributes of a file, which include such
items as the protection mode, owner, size, and time of last access.

24.6.3 NFSPROC_SETATTR {Procedure 2}

Procedure 2 permits a client to set some of the attributes of a file. The client can-
not set all attributes (e.g., it cannot change the recorded file size except by adding bytes
10 the file or trancating it). If the call succeeds, the result refurned contains the file's at-
tributes after the changes have been applied.

24.6.4 NFSPROC_ROOT (Procedure 3) [Obsolete In NFS53]

Procedure 3 was defined for earlier versions of NES, but is now obsolete. [t has
been replaced by the mount protocol.

24.6.5 NFSPROC_LOOKUP {Procedure 4)

Clients call procedure 4 to search for a file in a directory. If successful, the re-
turned value consists of a file handle and the attributes for the specified file.

24.656.6 NFSPRCC_READLINK {Procedure 5}

Procedure 5 permits the client to read the value {rom a symbolic link.
24.5.7 NFSPROQC_READ {Procedure 6)

Procedurs 6 provides one of the most important functions because il permits a
client to read data from a file. The result returned by the server is a union, readres. If
the operation succeeds, the result contains attributes for the file as well as the data re-
quested. I the operation fails, the status value contains an error code.

24.6.8 NFSPROC_WRITECACHE (Procedure 7) [Obsolete in NFS3]

Procedure 7 is not used in the current protocol.

Sec. 24.5 Semantics OF NF5 Operanons sl
24.6.9 NFSPROC_WRITE {Procedure 8)

Procedure 8 provides another of the basic functions; it permits a client to write data
mto a remate file. The call returns a union, attrstat, that either contains an emror code,
if the operation Fails, or the attributes of the file, if the operatien succeeds.

24.6.10 NFSPROC_CREATE (Procedure 9)

A client calls procedure to create a file in a specified directory. The file must
not exist or the call will return an error. The call returns a union of type diropres that
either contains an error status or a handle for the new file along with its attributes.

24.6.11 NFSPROC_REMOVE (Proacedure 10)

A client invokes procedure /¢ o delete an existing file. The call retbms a status
valug. The status either indicates thal the operation succeeded or provides an error code
that telts why it failed.

24.6.12 NFSPROC_RENAME {Procedure 11)

Procedure {{ permits a client to rename a file. Because the arguments allow the
client 10 specify a new directory for the file as well as a new name, the rename opera-
non corresponds 10 the UNIX myv (move) command. NES guarantees that rename will
be atomic on the server (L.e.. 1 cannol be interrupted). The guarantee of atormcity is
impartant because it means the ¢ld name for the file will not be removed untl the new
name has been installed. Thus, the file will not appear to be missing dunng a rename
operation.

24.6.13 NFSPROC_LINK (Procedure 12)

Clients call procedurs f2 to forrn a hard link to an existing file. NFS guarantees
that o a file has multiple hard links, the attributes visible for the file will be 1dentical no
matter which link is used 10 access it

24.6.14 NFSPROC_SYMLINK (Procedure 13)

Procedure 13 creates a symbolic link. The arguments specify a directory handie
and the name of a fiie to be created as well as a string that will become the contents of
the symbolic link. The server creates the symbolic link, and then returns a status value
that either indicates success or gives a reason for the failure.

352 MNerwork File Sysiem Protocal (NFS, Mount) Chap. 24
24.6.15 NFSPROC_MKDIR {Procedure 14}

A cliem calls procedure 14 1o create a directory. If the call succeeds, the server re-
turns a handle for the new directory along with a list of its attributes. If the call fails,
the returned status value indicates the reason For the failure.

24.6.16 NFSPROC_RAMDIR {Procedure 15)

A client can use procedure /5 to remove a directory. As in UNIX, a directory
must be empty before it can be removed. Thus, to remove an entire subtree, a client
must traverse the subtree removing all files, and then remove the empty directories that
remain. Usaally, the removal of files and empty directories is accomplished in a single
pass by using a post-order traversal of the directory tree.

24.6.17 NFSPROC_READDIR {Procedure 16)

A client calls procedure 16 to read entries from a directory. The argument struc-
ture, readdirargs, specifies a handle for the direciory io be read, a magic cookie, and a
maximum count of characters te read. On the initial call, the client specifies & magic
cookie containing zero, which causes the server to read entries from the beginping of
the directory. The value returned, of {ype readdirres, contains a linked list of zero or
more directory entries and a Boolean vatue to indicate whether the last entry retorned
lies at the end of the directory.

After a successful return, each directory eniry on the linked list contains the name
of a file, a unique ideniifier for the file, a magic cookie that gives the file’s position in
the derectory, and a pointer o the next entry on the list.

To read the sequence of entries in a directory, the client begins by calling
NFSPROC_READIDIR with a magic cookie value of zere and a character count equal to
its internal buffer size. The server returns as many directory eniries as fit into the
buffer. The client iterates througk the list of entries and processes cach file name. If
the returned value shows that the client has reached the end of the directory, it stops
processing. Otherwise, the client vses the magic cookie in the last entry {0 make anoth-
er call to the server and obtain more entries. The client continues reading groups of en-
tries until it reaches the end of the directory.

24.6.18 NFSPROC_STATFS (Procedure 17)

Procedure 77 permits a client to obtain informaticn about the remote file sysiem on
which a file resides. The returned result, a structure of type staffsres, contains fields
that specify the optimum transfer size (i.e., the size of data in read or write requests that
produces optimal transfer rates), the size of data blocks on the storage device, the
numbet of blocks on the device, the number of blocks currently unused, and the number
of unused blocks availabie to nonpriviteged users.

Sec. 24 .4 Remantics Cf NFS Operations 53

A sophisticated client program can use NFSPROC_STATFS to optimize transfers
or to estimate whether sufficient space remains on a disk to accommodate a wrire re-
quest.

24.7 The Mount Protocol

The mount protocel described in Chaptler 22 is also defined using RPC. Although
an NFS server must have a companion mount server, the two have been defined as
scparate remote programs. Thus, the protocol standard for mount specifies constants.
types, and a set of remote procedures that comprise the server.

24.7.1 Mount Constant Definitlons

Although the twe protocols are defined separately. the values for many of the con-
stants and types defined for the mount protocol have been derived from corresponding
constants used in the NFS protocol. Indeed, the two protocels counld not work together
well unless they both used a common representation for objects like file handles. For
example, mount defines the sizes of a file name, a path name, and a file handle as {ot-
fows.:

const MVDNAMLEN = 253;
cast MVTPATHLEN = 1024;
canst FHSIZE = 32;
The declarations use RPC syntax; each expresses a length as a number of bytes.
24.7.2 Mount Type Definitions
The mount protocol also specifies type definitions that agree with their counter-
parts found in the NFS protocol. For example, mount specifies the type of a file han-
dle:

typedef cpague fhandle[FHSIZE] ;

Similarly. the mount protocol specifies that a path name consists of an array of charac-
ters:

typedef string dirpeth-MITPATHLEIL;

154 Metwork File System Protecol {NES, Mounrt) Chap. 24
24.7.3 Mount Data Structures

Because the mount protocol has been defined using RPC, it follows the convention
of declaring a structure for the argument and result of each remote procedure. For ex-
ample. one of the basic procedures in the protocol returns a file handle for the root
directory in a named hierarchy. The value returned consists of a union, fhstatus, de-
clared to be:

wiomn fhstatus switch (unsigrned status) {

case {1: /* If successful */
fhardle directory; /* handle for specified root */
default: /* (Otherwise *f
void; i* nothing */
|

As in the NFS protocol, cach remote procedure in the mount protocol returns a status
value along with other information. if the operation Fails, the status value indicates the
reason.

In addition to & procedure that returns a file handle, the mount protocol provides a
procedure that allows a client to determine which file systems are available for access.
The procedure returns the results 1n a linked list called an export lsrt. The type of a
node on the cxport list is declared with struciure exporilise:

struct *exportlist { /* 1list of available hierarchies */
dirpath filesys; f* path rame for chis hierarchy *f
qrops groaps; /* groups allowed to access it *

exportlist next; /* pointer to pext item in list */
}i

Field groups in an exportiist node contains a peinter to a linked list that specifies which
protection groups are allowed 1o access the named hierarchy. Nodes en the list are de-
fined to be a structure of type groups:

struct *groups /* list of group names *x/
TEAME grTIAme; * name of cne group */
groups grnest; /* pointer to next item on list */

HE

The mauont protocol also allows a client to determine which remote file systems a
given machine 1s accessing. Thus, It 1s possible to construct an NES cross-reference list
for a set of machines. To do s0, one asks each of the machines in the sel for a list of
the remate file systems that the machine is accessing. Note that the set of remote file
systems a given machine is accessing will be disjoint from the set of lacal file systems
that the machine has exported for others to access.

1The tecon export welers wo the idea that a server expords some of is files 10 wther machines.

Sce. 247 The Mouat Protocol 355

A replv from the mount protocol that lists remote accesses is a linked Jist where
each node has type mountlist:

struct *moumtlist { /* list of ramote moants */
name hostname; /* machine on which files reside */
dirpath directory;/* path name of hierarchy *J

momtlist nextentry:/* pointer to next item on the list*/
}i
24.8 Procedures In The Mount Protocol

Like NFS, the mount protocol defines all operations as procedures in a remote pro-
gram. The RPC declaration of the mount program is:

program MKINTERDG {
version MINTVERS |

woid MOUINTPROC_NULL {void} = 0;

fhstatus MOUNTPROC_MNT (dirpath)} = 1;

moamtlist MIUNTPROC_IXMP {(void) = 2;:

void MOUNTPROC_UMNT (dirpath)} = 3;

void MXNTPROC UMNTALL (void) = 4;

exportlist MINITROC EXPORT (vold) = 3;

} =1; /* mount version 1 metches NFS vers. 2 */
} = 100005; /* REC program rimber assigned to mount*/

24.9 Semantics of Mount Operations

The mount protocet defines the semantics of each of the operations lisied above.
The following sections give a brief summary of each.

24.9.1 MNTPROC_NULL (Procedure 0)
Following the RPC convention, procedure 0 does not perform any action.
24.9.2 MNTPROC_MNT (Procedure 1)

A client calls procedure § to obtain the handle for a particular hierarchy. The argu-
ment contains a path name that the server uses to distinguish among the hierarchies 1t

354 Network File System Protocol (MES, Mount) Chap. 24

exports for access; the resull has type fhstanis. Names for the hierarchies available on a
given server can be obtained by calling MNTPROC EXPORT {see below).

24.9.3 MNTPROC_DUMP {Procedure 2)

Procedure 2 permits a client to obtain a iist of the remoie file systems that a paruc-
ular machine is using. The information provided by MNTFROC_DUMP has lhitile value
1o conventional applications; it is intended for system administrators.

24.9.4 MNTPROC _UMNT (Procedure 3)

A client can use procedure 7 to inform another machine that it will be ot of ser-
vice. For example, if machine A has mounted one or more file systems from the server
on machine #, machine B can vse MNTPROC_UMNT o inform A that a particular file
system will be out of service (e.g., for disk maintenance). Doing 5o keeps A from send-
ing additional requests to B while the files are off-line.

24.9.5 MNTPROQC_UMNTALL (Procedure 4)

Precedure 4 allows one machine (o tell another that all of its NFS file systems will
be unavailable. For example, a server can tell clients to unmount all its file systems be-
fors 1t reboots.

24.9.6 MNTPROC_EXPORT (Procedurs 5)

Procedure 5 provides an important service: it allows a client to obtain the names of
all the hierarchies accessible on a given server. The call returns a linked list that con-
tains a single node of type exportiist for each available file system. The client must use
one of the directory path names found in the export list when calling MNTPROC_MNT
i procedure f).

24.10 NFS And Mount Authentication

NFS relies on the mount protocol to provide authentication. The mount protocol
authenticates a client’s request for the handle of a root directory, but NFS does not au-
thenticate each individual client request.

Surprisingly, the mount protocot does not offer much protection. It uses RPC's
AUTH_UNIX or AUTH_NONE 1o authenticate the client. Once a client has obtained a
handle for a root directory, protections on individual files mean little. For example, if
programmers obtain privilege on their private worksiations, they may be able to access
arbitrary fiies on NFS servers as well as on their local machines. Furthermore, if a pro-
grammers can guess the contents of an opaque file handle, the programmer can manufac-
ture handles for arbitrary directories.

Sec. 2410 NFS And Mouonl Autheniicanon 57

Early versions of NFS created handles by combining information about a file or
directory in fixed ways. For example, Figure 24.1 shows how one UNIX implementa-
tion divides the 32-byte handle into ten fields:

Field Size Contents

Fileid 4 UNIX's major and minar device numbers for the file

one 1 Always 7

length, 2 Total length of next three fields

zero, 2 Always O

inode 4 UNIX's internal number for the file

igener 4 Goneration number for file {randomized for
security)

length, 2 Total length of next three fields

Zero, 2 Always O

rinode 4 Unix’s internal number for root of fiie sysiem

rigener 4 Generation number for root (randomized for
security)

Figure 24.1 The contents of the fields in an NF5 file handie. This particular
fortnat comes from an NFS server that runs under the UNIX
operating system:; not all servers construct file handles the same
way.

The chief danger in using a fixed format for file handles arises because NFS offers
little protection against unauthorized access. A client wishing to access files can cir-
cumvent the mount protocel by manufacturing a handle for an arbitrary file. It can then
.obtain attribute information for the file, including the file ownership and protection bits.
Thus, it will be able 1o access world-readable files even if the mount protocol does not
autharize access. Furthermore, if the client has privilege on the lecal machine, it will
be able to send requesis to a server thatl contain arbitrary user identifiers. Thus, a client
that has privilege can first find out who owns a particular file, and then send a request
claiming to be that user.

To make it more difficult to guess file handles, many administrators often use a
utility that randomizes file generation numbers. The utility goes through an entire disk
and associates a random number with each file. The mount protocol uses the file's ran-
dom number when passing out a file handle, and NFS checks that the value in the han-
dle matches the file’s number.

Randomizing generation numbers increases security, but it does not increase the
computational overhead reguired to form a handle because randomization is performed
before the mount protocol runs. Randomization makes file handles difficult 1o guess.
A client attempting to obtain unauthorized access must choose among 2% possible
values for the generation number. Because the probability of guessing a valid handle is
low, the probability of oblaining unauthorized access to a file is also low.

5w Metwork File Sysiem Protocol iNFS, Mouon Chup, i<
24.11 Changes In NFS Version 3

Allhough there are many small differences between NFS versions 2 and 37, most
of the changes can be grouped into three broad catcgories:

¢ Changes to improve NES perlormance.

* (Changes 10 permit NFS 10 match the functionality found in conventional file
S¥slems.

* (Changes to improve sccurity,

The performance changes focus on tuning. For example, the version J protocol does
not specify either a maximum data transter size or a preferred size. Instead, version 3
allows the parameler sizes o be specified separately for ecach file system. Teo imple-
ment the change, version 3 includes a new procedurc, FSINFO) that a client calls to ob-
tain information about a file system. '

[ndividual procedures have been tuned 10 eliminate unnecessary averhead. For ex-
ample, some version 3 procedure calls return informanon that was previcusly avaifable
onty from a separale procedure call. Doing so reduces the (otal number of remote pro-
cedure call operations,

Version 3 ol the protecol also permils caching and asynchronous operations.
Although version J does not require clients to cache information or data, the protoco!
now includes additional information that clicnts can use to manags a cache more effec-
tively. More important, version 3 allows write operations 10 be asykichronous at the
server. That is, a client can specify whether the WRITE procedure call is allowed to re-
turn before the server has stored the dsta on disk. If a client chooses to use asynchro-
nous WRITE, version 3 provides an additional COMMIT procedure that the client calls
to force the server lo wrte all data to disk.

The changes o accommodate additional file system functionality focus primarily
on UNIX. For cxample, version 1 includes a procedure MENQL that allows a client to
create a special file similar to the way the UNIX system procedure minod allows a pro-
gram to creale a special fule. Similarly, version 3 allows a client 10 request exclusive
file creanon similar o the way a program can request cxclusive file creation under
UNIX. Finally, procedure FSSTAT allows a client to obtain information about a file
system, including the total size, number of files, and amount of space that remains free.
Thus, a remote ¢lient can obtain the same information that 1s provided by UNIX's df
command.

The changes 10 improve security involve making handles and magic cookies larger
and hence, more difficult to guess. For example, file handle size has increased from a
fixed-size array of 32 bytes (0 a vartable-size array of up to 64 bytes, OF course, using
a jarger handle means that remote procedure calls that require or returm a handle (ake
more network bandwidth. By making the handle size variable, version # atlows a server
1o choose between a large handle size (for improved security) or small handle size (for
improved performance),

*hany cornputers s0H run verson 2,

Sec. 2402 Surnmary 359

24.12 Summary

When using ‘RPC to define a protocol, one must provide definitions for the con-
stants and data types used in the specification, the definittons of the procedures that a
server offers, the types of all procedure arguments and results, and the semantics of
each procedure. Protocol definition differs from the use of RPC to form a distributed
version of a program because it requires the designer to deal with abstract concepis in-
stead of an existing program.

NFS has been defined using RPC. The protocol standard specifies /8 procedures
that comprise a scrver. In addition to operations that allow a client o read or write a
file, the protocol defines data siructures and operations that permit a client to read en-
tries from a directory, create a file, remove a file, rename a file, or obtain information
about a file.

A companion to NFS, the mount protocel provides client authentication and allows
a client to find the handle for the root of a hierarchy. The mount protocel permits &
given server to export multiple hierarchies, and allows the client to specify a particular
hierarchy using a full path name.

NFS 1clies on the mount protocol for security. Tt assumes thal any client can send
access requests once the client obtains the bandle for a root directory. Most NFS imple-
mentations construct a handle for a file by encoding information about the file. Among
other items, NFS scrvers include a file’s generation number in the handic. To prevent
clients from guessing a file handle and then using it to oblain unauthorized access,
many implementations of NFS allow administrators to use a tool that randomizes fiic
generation numbers. The randomization makes it difficult for clients to guess a valid
file handie.

Version 3 of NF$ contains many small changes to improve functionality, perfor-
mance, and security. Many computer systems continue 1o use version 2.

FOR FURTHER STUDY

Sun Microsystems, Incorporated |RFC 1094] defines both the NES version 2 and
mount protocols using RPC. Tt provides declarations for the consiants, types, and pro-
cedures that comprise each protocot as well as a description of the intended semantics
and implementation hints. Cailahan ef ol [RFC 1813] describes version 3 of the NFS
protocol. Additional information can be found in the decumentation that accompames
euch vendor’s software.

360 Neolwork File Syslem Protocol [INEFS, Mount) Chap. 24

EXERCISES

24,1 Write a program that uses the mount protocol to ebtain file handles. What authentication
did vou choose? Why?

24.2 Using the program described in the previous exercise, check scveral files on a given
server to see if the administrator has randomized generation numbers on that servar’'s file
SYSLEmS.

24.3 Consult the protocol standard to find out about the NES NFSPROC _WRITECACHE
operaton. What is its purpose?

24.4 NFS uses UDP for transport. Several companies now market sofiware that uses TCF in-
stead. How can the protocol be optimized 40 take advantage of a reliable stream tran-
sport?

24.5 The NFS protocol specification mentions 1hat severai operations are potentially not
idempotent. Find the operations and explain how each could be non-idempotent.

24.% In version [, NFS semantics guaramn:é that a wrife request will not complete umil the
data has been stored on a stable storage device (e.g, a disk). Estimate how much faster
a write operation would execute ¢n vour iocal server if the protecol permitted the secver
to copy the daia into an output buffer and allowed the procedure call 1o return without
waiting for the buffer to be written to the disk.

24.7 NF5 is designed to permit clients and servers to operate in a heterogencous environment.
Explain how symbolic links cause probiems. (Hint: consider the protocel carzfully 1o
determine whether the client or server interprets a symbalic link).

248 Read the protocol specification and find out which fle attributes can be set by a client.

24.% Because RPC uses UDP, a remoile procedure call can be duplicated, delayed, or
delivered out of order. Explain how a valid set of NF5 calls can appear from the client’s
perspective to create a file and write data into it, and yet result in & zero-length Fie.

24.10 Suppose a client calls NFSPROC_STATFS to find the preferred data transfer size. What
constraints may make transfers of that size suboptimal?

2411 Read the protocol specification to find out about stale file handles. Why might a server
declare that a handle has become stale? How can making a handle stale improve securi-
ty?

24.12 Whrile & program thai calls MOUNTPROC_UMNTALL on some server, 5. Does the call
have any effect on subsequent calls 1o 57 Why or why not?

2413 Wnite a program that calls MOUNTPROC_EXPORT. Run the program and print the list

of exported file system namwes.

25

A TELNET Client (Program
Structure)

25.1 intraduction

Previous chapters use simple examples to illusiraie the concepts and techniques
used in client-server software. This chapter and the next explore how the client-server
paradigm applies to a complex application protocol. The example protocol is TELNET,
one of the most widely used applicaiion protocols in the TCF/IP suite.

This chapter focuses on the overall program structure. It assumes the reader is
famaliar with the basics of the TELNET protocol, and concentrates on explaining an im-
plementation. It discusses the design of the client software, the thread structure, and the
use of finite state machines to control processing. It explains how TCF can be used for
communication between two threads running on the same computer, and shows how to
establish locai connections. In addition, it shows how a client maps TELNET commun-
ication to a local keyboard and display.

The next chapter completes the description. It focuses on the details of routines in-
voked to perform semantic actions associated with tramsitions of the finite state
machines. The example code througheout both chapters illustrates ¢learly how the pro-
gramming details dominate the code and how they complicate the implementation.

341

362 A TELNET Clent (Program Structhyre) Chap, 25
25.2 Overview
25.21 The User’s Terminai

The "TEILLNET protocol defines an interactive commumication facilicy that permits
Users [0 communicate with a service on a remole machine. In mosi cases, users use
TELNET w0 communicale with a remote login service. As the example i Chapter 7
shows, a well-designed TELNET chent also permits a user to contact other services.

The TELNET protocol defines interactive, character-oriented communication. Tt
specifies a nefwork virtual termintal (NVT) 1bat consists of a keyboard and display
screen. The protocol delines the characler set for the virtual terminal. Several of the
keys correspond to conceptual operations instead of data vaives. For example, ane key
causes an wnierrupt or abort. The chiet advantage of using a aerwork virtual terminal s
that it permits clients from a varicty of computers 10 connect to a service. Like the
XDR standard described o Chapter /9, TELNET uses a symmetric data represeniation.
Each client maps fram its local terminal’s character representation to the NVT character
represeniation when it sends data, snd from the NVT representation to the local charac-
ter set when it receives data. To summanze:

TELNET s a character-orviented protocof that uses a srandard encod-
ing when it transfers data.

25.2.2 Command And Cantrol Information

In addition to character data, TELNET permits the client and server to exchange
commarnd or confrol information. Because all communication between the client and
servar passes across a single TCP connection, the protocol arranges to encode command
or control mformation so the receiver can distinguish it from normal data. Thus, much
of the protocol focuses on the definition of how the sender encodes a command and
how the receiver recognizes 1L

25.2.3 Terminals, Windows, and Files

TELNET defines communication between a user's terrminal and a remote service,
The protocol spectfication assumes that the terrninal consists of a keybovard on which
the user can enter characters and a display screen that can display multiple lines of texl.

In practice, a user can decide to invoke a client with an input file in place of a key-
board or an outpul file in place of a display. On modern computers, a user invokes the
client from within a window on the display. Although such alternalives introduce small

Sev, 25.2 Uhverview

el

additicns to the code, it will be easiest to understand both the protocol and the imple-
mentation if we imagine that users who invoke the client cach have a conventional Ler-
minal. To summarize:

TELNET client software 5 designed to handle interactive communiva-

tor with a uxer's termingl.

25.2.4 The Need For Concurrency

Conceptually, a TELNET client transfers characters hetween the user's terminal
and a remote service. ‘On one side, 1t uses the local operating system functipns when it
interacts with the user’s terminal. On the other side. 1t uses a TCP connection when it
communicales with the remote service. Figure 25.1 illustrates the concept:

User's

Terminal

TELNET
Client

Remuote
Service

Figure 25.1 Conceptuai role of a TELNET client. The client must transfcr
characiers from the vser’s keyboard tc a remote service, and it
must tranmsfer characters from the remote service to the wser's

display.

To provide a full-duplex connection between the user’s terminal and a remole ser-

vice, a TELNET client must perform two tasks simualtaneousiy:

s The chient must read characters that the user types on the keyboard and send

them across a TCP connection to the remote service,

a The client mosl read characters that armive from the TCP connection and

display them on the user’s lerminal screen.

Because the remote service can emijt output at any time or the uscr can type at any
time, the client cannot know which source of data will become available first. Thus, it
cannot block indefinitely waiting for input from one of the (wo sowrces without also
checking for input from the other. In short, the client must transfer data in both direc-

Lians concurrently.

3od A TELNET Client (Program Strucrure) Chap, 23
25.2.5 A Thread Model For A TELNET Client

To accommodate concurrent data transfer, a client muost either implement con-
current 1O in a single thread or it must use mulliple threads thal execute concurrently.
Because the Windows selecs function restricls concurremt 170 to sockets, our exampie
code uses a hybnd stralegy. The client consists of two threads. The maén thread ban-
dies concurrent 1O hy blocking until input arrives from either the keyboard or the re-
mote service. The ather thread accommaodates the restricted form of select by forward-
ing keystrokes from the vser across a Incal TCP connection to the main thread (i.e.,
through a local sockel). Figure 25.2 illustrates the thread structure we have chosen:

" Threads in
Keybd. .
t:real:! t:lnr:rd ~— TEINET clien:t
applicaticn
=5 . A
i operaling
input —[LBJ output socket far .
from local TCF tg TCP connection [% sysfem
keyboard connection dispiay to remote sarver Junctions

Figure 25.2 The thread structure of the example TELNET clienl. One thread
forwards characters from the keyvboard 1o a2 socket, and the other
thread handles concurrent O on two sockets. The keyboard
thread is needed because sefect only operates on sockets.

25.3 A TELNET Client Algorithm

Algorithm 25.1 specifics how the main thread of the TELNET client operates. The
main thread is implemented iike the singly-threaded, concurrent server design described
in Chapter /2. 1t uses the sefect function to implement Step 3 of Alporithm 257
When the client calls sefect, il specifies that the thread should block until inpun asrives
on either the local socket descnptor that comresponds 1o the user's keyboard or on the
socket! descriptor that cormesponds ta the TCP connection. When a descriptor hecomes
ready. the call to sefect returns and the client reads from whichever descriptor became
ready.

Sec, 25.3 A TELNET Client Algorithm : 365

Algorithm 25.1

t. Parse arguments and initialize data structures and threads.

2. Open a TCP connection te the specitied port on the remote
host.

3. Block until the user types on the keyboard or data arrives over
the TCP connection.

4. If data arrives from the keyboard, read it, process f, translate
it to NVT representation, and send it over the TCP connec-
tion. Otherwise, receive data from the TCP connection, pro-
‘cess it, franslate it to the local character representation, and
send it to the user's display.

5. Retum to step 3 above.

Algorithm 25.1 A TELNET client. The main thread relays characters in both
directions; it blocks until data is available from the keyhoard
or the TCP connection,

25.4 Keyboard O In Windows

Algorithm 25.1 may seem extremely simple. Indeed, some aspects of the program
are straightforward. For example, Windows provides functions that read characters
from a keyboard. However, the details of the TELNET protocel and sending output to
a display make parts of the code complex. This chapter focuses on the protocol and
busic pieces of the program, leaving many details 1o the next chapter. We begin by
considering the keyboard thread.

Windows offers two basic functions that handle a keyboard. Function _getch reads
one character from the keyboard. Thus, the statement:

ch = _getch();

reads one character from the keyboard and assigns the value to variable ck. A call to
_getch is blocking. That is, the call waits until a user presses a key before it returns.

Interestingly, in most computer systems, the system function wsed to read input
from & keyboard does not automatically display the character on the user’s screen. The
reason is simple: an application may not want characters displayed as a user enters
them. For example, consider an application that asks the user to enter a password. To
keep the password secure, the application can choose to hide the characters. Alterna-
tively, a password application can choose 10 display a substitute characier (e.g., an aster-
isk} that informs the pser when a key has been pressed without showing which key.

6L A TELMNET Client {Program Siructure) Chap. 25

As we wilt sec, TELNET lakes advantage of the ability to control whether keys-
trokes appear on the screen. When a TELNET program displays each kevsiroke as the
user types, we say TELNET is using character echo. When it chooses not to display
characters, we say that TELNET is suppressing character echoe. Echo suppression is im-
portant because it allows the service on the remole computer to decide whether to
display characters (e.g.. 2 remote login service ¢an choose not to display a password
that the user types).

In addition 1o controlling character echo, an application can choose whether to as-
sign special meamngs 10 some keys or treal them as data. TELNET uses the functional-
ity to allow a remoie systermn to process keysttokes, For example, most applications
choose o make the backspace or delete key erase the previous keystroke. However
TELNET canr choose to pass all characters, including backspace and delete, directly to
the remote service.

Finally, software can choose to recognize a special character {or characters) that
causes the system to interrupt or abort the current applicatien. For example, some
compuler systems define controd-C to mean abort the running program. When the user
types the special character, it causes the application program 1o terminate.

25.5 Global Variables Used For Keyboard Control

File localh contains the deciaration of global variables mvflugs, t flushe, ¢ intrc,
¢ queiic, sp_erase, and sg kille. Yanable yflags 1s used to control character echo,
while the other variables are used to hold a character thal has been assigned a special
meaning. For example, sg_erase containg the character assigned to perform the back-
space function.

% local.h */

#lefine RCHO Ox0001

extern FILE *acr fp;

extorn char scrname[];

extern unsigned int ttyflags:;

extarn char t_flushe, t_intreo, t_quitc, asg_erase, sg_kil-;
extern ing BYYTIO;

void arrexit{const char *, ...);

void ttwrite {(SOCKET, FILE *, unzigned char *, int};
wvold sowrite (SOCKET, FILE *, unsigned char *, int):
void Fambnaiid {vaid)

int sputc{const char, SOCEKET);

$define SAMMS5(s, sfd} (sendisfd, s, strlenis}, Q)}

Sce. 236 [mitialicing The Keyboard Thread 3nT
25.6 Initializing The Keyboard Thread

In the exampie code, procedure tryeen performs two tasks: it initializes a socket
which will be uwsed to create the local TCP connection bejween the two program
threads. It then creates the keyboard thread and establishes communicabion. File
thycon.cpr contains the code:

/* ttycon.cpp - ttycon, conreader */
#include <conio. hs

#include <process.h>

#include <stdio. v

#include <string.h>

#¢include =winsock.h>

#include "local h"

static void coreader{unsigned int);

unsigned int ttyfiags = BECHO:

*/
SO0CFET
ttycon{void)
{
gtruct sockaddr in girn;
SOCEET lsock, rsock:
int len;

/* initialize sgpecial characters */

lsock = socket {PF_INET, S0OCK _STREAM, IFFROTO TCP):
1f {lzock == INVALID SOCKET)
errexit{"ttycon: socket failed (%d)wn", GetLaztError(}}:
menset (ksin, O, sizeof sin);
sin.gin_family = AF_INET;
gin.sir_addr,.s_addr = htonl (INADDR_LOOPRACEK) ;

sin.sin_port = 0; /* let Windows pick a port */
if {(bind(lsock, (struct sockaddr *)&sin, sizeof sin) =-
SOCKET._ERROR }

errexit("ttycon: bind failed (%d)\n", GetlastError(}i;

368 A TELNET Client {Program Situclure) Chap. 25

len = sizepf sin;
if (getsoclkame(lsock, (struct sockaddr *)asin, &len) ==
EOCEET ERROR}
errexit{"trycon: getsockname error %diwn®, GetLastError({));
if {_beginthread({vecld {*} {void *}}conreader, 0,
(void *igin.sin port! < 0}
errexit("ttycon: beginthread fgiled {(%s)\n",
strerror{srmmo]j;
if {listen{lsock, 1i == SOCKET_ERROR|
errexit{"ttycon: listen failed (%d)'\n", GetLastError{]};
len = zizect =in;
raock = accept(lsock, [(2tract sockaddr *1&sin, &len);
if {rsock == INVALID SOCKHET)
errexit{"ttycon: accept failed (%kd)lin", GetlastError{]):
closesocket (1sock] ;
raturn raock;

‘jt
* conreader - do blocking conscle I/D and relay it to a socket
4

staric void

conreader (unsigned int port)

{
gtruct sockaddr_in sin;
SOCKET telsock:
char ok

memzet (&=in, 0, sizeof sin);
sin.sin family = AF INET:
gin.sin_addr.s_addr = ntohl { INADDR _LOOFPBACK] @
sin.sin_port = port;
telsock = gocket (BFINET, S0CK _STREAM, ITPPROTO TCPR)
if (telsock == INVALID SOCKET)
exvexit{"conreader: socket error %A\n", GetlLastError{));
if {conmect{telsock, {struct sockaddr *)&sin, sizecf sin) ==
SOCKET _ERPOR)
arrex_t {"conreader: connect arror ¥AwnY, GetlastError()):;

while (1} {
ch = _getch();
if itoyflags & ECBO)
putchich) ;
if [(senditelsock, &ch, 1,) == SOCEET_ERROR)

Sec. 25.6 [nitializing The Keyboard Thread 309

raturn;

returmn;

Trveon begins by creating a TCP connection between the keyboard thread and the
main thread. To do so0, ii uses socket functions in rauch the same way that a client and
server use them. For example, we will see that once the connection 1s in place, the two
threads use send and recv to transfer data across the TCP connection: the keybeard
thread calls send to transmit a character, and the main thread calls recv to receive the
character.

The threads also use conventional socket functions to establish the connection.
Trtveon calls socker to create a local socket, and assigns the resulting descriptor to vari-
able fsock. The threads do not wse the local socket o communicate. Tnstead, the two
threads use it o establish a connection. To do so, f#fycon calls bind to assign the socket
the address INADDR_LOOPBACK, a special Intemet address reserved for use within a
single computer system. Tiyeon then calls getsockname 10 determine the TCP port
number that has been assigned to the socket,

Once it has created the local socket, trycon calls _beginthread to create the key-
board thread. As the code shows, the keyboard thread executes procedure conreader.
The procedure is invoked with the protocol port of the loca! socket as an argument.

When it starts executing conreader, the keyboard thread creates a second socket,
and assigns the descriptor to variable telrock. Telsock is the socket that the keyboard
thread uses to send keystrokes to the main thread. Before it can do so, the socket must
be connected. To establish the connection, the keyboard thread calls socket function,
connect. How can the keyboard thread form a connection to the main thread? To do
50, it specifies Internet address INADDR_LOOPBACK, which identifies the destination
as the local machine, and the protocol pert number that was passed as an argument,
which identifies the port assigned to socket fsock in the main thread.

Once the connection is in place, the keyboard thread execates the infinite loop in
conreader. On each iteration it bandles one character. First, it calls _gerch 10 read the
character. If global variable fryflags specifies that the character should be echoed, the
keyboard thread calls function putch to display the character. Finally, it calls send to
transmii the character across the local TCP connection to the main thread.

Before it can receive characters, the main thread must accept the TCP connection
from the keyboard thread. To do so, the main thread calls listen and accept on socket
Isock. The call to accept blocks vntil the connection has been made. When the connec-
tion arrives, accept creates a new socket for the connection and retums the descriptor,
which is assigned to variable rsock.

In essence, the main thread acts like a server, and the keyboard thread acts like a
client. The main difference, of course, lies in the distance between the connection end-
points. In a typical client-server interaction, two separatc programs cofmmunicate, usu-
ally on two separate computers. In this case, the connection between the two threads is
local — the sockets used to access the connection are both on the same computer, and

i A TELNET Clicrmt {Program Structure} Chap. 25

the threads are part of the same concurrent program. The use of sockets 15 also unusual
because a conventional server usually accepts connections from multipie ciients. In this
case, the two Lhreads only need to form a single connection. Once the connection is in
place, the original socket, Isuck, is not needed; the main thread calls closesocket 10 close
It

25.7 Finite State Machine Specification

The TELNET protocol specifies how a client passes characters to a remote service
and how the client displays data that the remote service returns. Mast of the traffic that
passes across the connection consists of individual data characters. Data characters ori-
ginate at the clieml when the user types on the keyboard; they originate from the server
when the remote session generates output. In additien to data characters, TELNET also
permits the client and server to exchange control information. In particular, the client
can send a sequence of characters that comprise a command to the server that controls
execution of the remote service. For example, a client can send a command sequence
that inrerrupts the remote application program.

Most implementations of TELNET use a finite state muchine (FSM) to specify the
exact syntax and interpretation of command sequences. As a specification tool, a finite
state machine provides a precise description of the protocel. It shows exactly how the
sender embeds command sequences in the data stream, and specifies how the receiver
interprets such sequences. More important, the finite state machine can be converted
directly into a program that follows the protocol. Thas, it is possible to verify that the
resulting program obeys the protocol specification. To summanze:

Because TELNET is a character-oriented protocol that embeds com-
mand sequences in the data siream between the client and server.

mast implementations wse « finite state machine to define the correct
Behavior.

25.8 Embedding Commands in A TELNET Data Stream

The idea underlying TELNET is simple: whenever a client or server wants 1o send
a command sequence instead of normal data, it inserts a special, reserved character in
the data strearn. The reserved character is called an Interpret Ay Command character
(fAC). When the receiver finds an TAC character in its incoming data stream, it
processes succeeding octets as a command sequence. To send an IAC as data, the
sender characrer stuffs an extra IAC in front of it

An individual command sequence can contain an apfion reguest or an opfion reply.
A tequest asks the receiving side to honor (or not henot) a particular TELNET option; a
reply acknowledges the request and specifies whether the receiver will honor it.

Sec. 238 Embedding Commands [n A TELNET Data Stream 7]

The protocol defines two verbs that a sender can use to form a request: PO and
DONT. Like most items that TELNET defines, the protocol standard specifies that cach
verb and each option must be encoded in a singite character. Thus, a request usually
" consists of three characters when it appears in the-data stream:

IAC verb option

where verb denotes an encoded character for either a DG or DONT, and option denotes
an encoded character for one of the TELNET options.

The TEINET echo option provides a good example. Nemalily, the server echoes
each character it receives (i.e., sends a copy back to the user’s display}. To um off re-
mote character echo, the chient sends three encoded characters that correspond to:

TAC DONT ECHO

25.9 Option Negotiation

In general, the receiving side responds to a request using the verbs WILL or
WONT. The receiver sends WiLL to specify that it will honor the requesied option and
WONT to specify that it will not

A response to a request provides an acknowledgement (o the sender and tells the
sender whether the receiver agrees to honor the request. For exampte, al startup, the
client and scrver negotiate to decide which side will echo characters that the user types.
Usually, the client sends characters to the server and the server echoes them 1o the
user’s terminal. However, if nerwork delays become troublesome, a user may prefer o
have the local system echo characters, Before a client enables character echo in the lo-
cal systern, it sends the server the sequence:

fAC DONT ECHO
When the server receives the request, it sends the 3-character response:
fAC WONT ECHO
Note that the verb WONT refers to the option; it does not necessanly mean that the

server rejected the request. In this case, for example, the server has agreed to turn ol
echo as requested.

Jre A TELNET Client {Program Structure) Chap. 25

25.10 Request/Offer Symmetry

[nterestingly, TELNET permits one side of a connection to offer a particular option
before the other side requests it. To do so, the side offering to petform (or not perform)
an option sends a message containing the verb WILL (or WONT). Thus, a WILL or
WONT either acknowledges a previous request or offers to perform an option. For ex-
ample, applications like text editors often send special control sequences to position the
cursor. They cannot use the network virinal terminal encoding because it does not sup-
port all possible 8-bit characters. Thus, the TELNET server on most computers au-
tomatically sends WILL for the fransmit binary option whenever a client connects to it,
offering to vse B-bit binary (unenceded) character transmission instead of NVT encod-
ing. A client must respond by sending a command sequence that specifies DO transmit
binary or DONT transmit binary.

25.1t TELNET Character Definitions
File teinet. h contains the definitions of constants used in the protocoi:

/* telnet. h */

/* TELNET Command Codes: *7

¥define TCSB {u_char)250 /¥ Start Sulmegotiatiocn *
$define TCSE {u_char] 240 /* End Of Subnegctiation *
gdefine TCHOP {u_char)241 /* No Operation *y
#define TCTM fu char;z242 /* Data Mark [(for Sync) */
#define TCERK (v _char)243 /* N Character BRK *)
#cefine TCIP {(vu_charj244 /* Interrupt Process */
#define "TCHO fu_char) 245 /¥ Abort Cutput)
¥define TCAYT (1u_char)24% /* "Are You There?™ Function *f
#define TCEC fu_char) 247 /* Brase Character *f
define TCEL {u char)248 /¥ Erase Line)y
#defire TOGA fu_char}z49 ;* "Go Ahead" Punction * 7
#define TCWILL fu char)251 /* Desire/Coafirm Will Do Option*/
#define TCWONT {(u_char) 252 /* Refusal To Do Cption *f
#tdefine TCDO {u_char} 253 /* Request Ts Do Option */
#define TCDONT {u_char)254 /* Request NOT To Do Option Ll
#define TCIAC fu char 255 /* Interpret As Command Escape */
/* Telnet COption Codes:; */

#define TOTHXBINARY {(u_char) 0 S* TRANSMIT-BINARY copticn -/
#define TOBECHO {u_char) 1 /* BECHO Option L
¥define TONOGH {u char) 3 /* Suppress Go-Ansad Option *y
tdefine TOTERMTYFE {u_char) 24 /* Terminal-Type Cption */

Sec. 25.11 TELNET Character Definitions 373

/* Network Virtual Printer Special Charactersg: */

#3efine VPLF '*n' /* Line Feed

#define VICR "\r' /* Carriage Return
#define VPBEL "ha /* Bell (attention signal}
#detfine VPBS TAh! /* Back Space

#dafine VEHT At /* Horizcontal Tak

#define VEVT ! /* Vertical Tab

#define VFFF "ZWE /' Form Feed

/* Reyboard Command Characters: */

#efine KCESTADE 035 /* Local escape character {('*~]'}
#define XCDOON v /* Disconnect escape command

#define XCSCRIPT 's! /* Begin scripting escape command
#define KCUNSCRIPT ! /* End scripting escape command
#define KCSTATUS 024 /* Print status escape comand ('"T')
#define KOCR "\r' /* Newline character

#define KCANY (NCHES+1}

/* Option Sumegotiation Constants: */
#Hilefine T I8 Q /* TERMINAL, TYPE cption "IS" cammand
#define TT SENMD 1 /f TEPMINAL, TYPFE coption "SEND" cormmand

/* Boolean Option and State variables */
axtern uwnsigned char gynching, doecho, sndbinary, revbinary;

Note that the file defines symbolic names for each of the characters TELNET uses, in-
cluding verbs like WILL and WONT as well as option codes.

25.12 A Finite State Machine For Data From The Server

Figure 25.3 shows the principle finite state machine that specifies the TELNET
protocol, including states thalt correspond to the option negotiation described above
Think of the maching as specifying how a client handles the sequence of characters it
receives from the server.

The FSM diagram uses conventicnal notation. Each transition from onc state to
another has a label of the form of 3, where o denotes a specific input character that
causes the transition and P denotes an action 10 be taken when fellowing the transition.
A label o/p on a transition from state X to state ¥ mcans: if character o arrives while
in state X, execuie action B and then change to state Y. The numes of states and char-
acters in the figure have been taken from the software. For example, file jefneth de-

* 4
*r
it
*/
*/
it
*/

*f
*r
*/
*/
*f
*r

*f
*

a74 & TELNET Client (Program Structues) Chap, 23

fines constant 7CIAC o correspond to TELNET's LAC character. As shorthand, the
name TCANY denotes any character other than the ransiions listed exphcitly.

To understand how the FSM works, imagine ihat the cilent vses 1t whenever dala
arrives over the TCP connection (rom the server. When a character arrives from the
server, the client follows a transition in the finite state machine. Some transitions keep
the machine in the same s1ate; others cause a transfer 1o a new state.

25.13 Transitions Among States

The client starts tis state machine in the state labeled 75474 when it begins exe-
cutiont. State FYDATA comesponds to a situabon where the clienl expects {0 receive
normal characters and send them 1o the vser’s display {i.e., the client has not begun
reading a command seguence). For example, if character ¢ armves, the client remains in
state TSDATA and executes the acton labeled X (ie., the client calls procedure fpute 1o
display the character on the user's terminal screen. and then follows the loop back to
ihe same stam).

If character TCIAC arrives when the FSM 15 1p state TS0ATA, the chent foilows
the transition to state TSfAC and execules action labeled £ in the diagram. The lfegend
specifies that aclion & corresponds to V'no operation.”” Once 1t moves to state FSIAC
the client has begun interpreting & command sequence. [If the character following the
TCAC s a verb {c.g., TODO)Y, the client will follow a transition to one of the oplion
processing states.

The finite stale machine for TELNET only needs six states because interpretanon
of the protocol only depends an a short hastory of the characters (hat have armived. For
example, following a TCIAC character, the server could send one of the oplion requests
or responses: TCDG, TCDONT, TCWILL, or TCWONT, or it could send an option sub.
negotiaglion regquest. Option subnegotialion permits the sender to inciude a variable-
length siring in the oplion (e.g., the option a client uses 0 pass a terminal type o a
server uses submegotiation so it can send a steing that encodes the name of the terminalj,
Altiough sabnegatiation permits vartable-length command sequences, the FSM needs
only two states to handle it becausc a 2-characier sequence lerminaies subnegoliation.
The chent enters state TSSUBNEG when it first encounters a subnegotiation request. It
moves 10 state TSSE/BIAC when it receives character FTCTAC, and moves nut ©f subne-
gotation altogether if character TCSE Tollows immediately. If any other 2-character se-
quance pecurs, the FSM remaing in state TSSUBNEG.

Sec, 25.13

TCANY K

Transitions Among Stales

TCANY/C
TOECHO/ A
TONOGA/B

TOTXBINARY /D

TSWOPT

/"_

TCDM /)
TOIACIK
TCNOPE
TCANY/E

TCWILL(F
TCWONT/F

375

TCANY/H

TCANY /L
TOTEBINARY /N
TOTERMTYPE /M

.

TCDOSF
TCDONT/F

TCIAC/E TCANY/H

TSSUBIAC

TCSE /G

ACTION PROCEDURES:

A - do_echo
8 - do_noga

H - subapt
J - tedm

C ~do_notsup K - tipulc
G - do_txbinary L - will_notsup

E -no_oap
F - recopt
G - subend

M - will_termtype
N - wil_txbinary

Figure 25.3 The finite state machine that describes how TELNET encodes
command sequences along with data. State and characier namcs
have been taken directly from the software. TCANY stands for
“*any character other than those shown explicitly."’

e A TELNET Client {Frogram Struciene) Chap. 25
25.14 A Finite State Machine Implementation

Because it is possible to construct an efficient implementation of a finite state
machine and because such machines can describe character-oriented protocols easily,
our example code uses three separate finite state machines. One conwrols how the client
responds 10 characters from the keyboard, another contrals how the client handles char-
acters that arrive over the TCP connection from the server, and a third handles the de-
tails of opticn subnegotiation. All three FSMs use the same type of data structures,
making it possible to share some of ihe procedures that manipulate the data structures.

To make processing efficient, our implementation encodes the transitions of a finite
state machine into a transition marrix as Figure 25.4 shows.

inpwt character
0 1 2 255

current
siate

N-1

Figure 25.4 A finite slale machine represented by a transition matrix. Each
row cormesponds to a state and gach column corresponds to oRe
possible inpur character.

Al run-time, the client maintains an integer variable that records the cumment stale.
When a character arrives, the client uses the current state variable and the numeric value
of the character to index the iransition matnx.

25.15 A Compact FSM Representation

Writing C code to inilialize a large matrix can be tedious. Furthermore, it each
element of the transition matrix contains complete information about the actien to take
and the next state, the matrix can consume 2 large amount of memeory. To keep the
transition matrix small and to make initialization easy, our code uses a compacl
representation of a finite state machine.

Scc, 2505 A Compact FSM Representation 377
In essence, the data structures chosen permit a programmer 10 creafe a compact
data structure that represents a finite state machine and then arrange for the program o

construct an associated transition matrix at jun-time. File afsm. i contains the declara-
tion of structure fsm_trans used in the compact representation;

/* tnfsm.h */

/* Telnet Socket-Input FSM States: */

#define TSDATA 0 /* normal data procesaing */
#define TSIAC 1 /* have saeen TAC */
#efine TSWHOPT 2 /* have seen IAC-{WILL/WONT) */
#definae TSDOPT 3 /* haye geen IAC-{DO/DONT} *f
#define TSSUBNEG 4 /* have seen TAC-EB *y
#define TSSUBIAC 5 /* have geen IAC-SB-...-IAC */
#define NTSTATES & /* # pof TS* atates */

{* Telnet Kevboard-Inprat FSM States: */f

#define KSREMOTE 4] J* input goes to the socke: *f
#define ESLOCAL i /* input goes to a loéal func. *7
kdefine KSCOLLECT 2 /* input is scripting-file name k/
#define NESTATES 3 /* # of K3* states */

/* Telnet Option Sulmegotlation FSM States: */

#define 585 _START a /* Injtial state T
#define SS_TERMIYEPE 1 /* TERMINAL TYFE option sulmegotiation */
#define S5 END 2 /* state after all legal input L
#define NSSTATES 3 /* # of 55_* atatesz */
#define PSIHVALID Oxff /* an irvalid state number */
¥define NCHES 256 * nunber of valid characters *
#define TCANY {HCHRS+1) J* match any character x5

struct fam krans |

u_char ft state; f* current state *f
short ft_char: /* input character L
u_char fr_next; /* next state */
int {(*ft_action) (SOCKET sfd, FILE *tfp, it c};

/* actiocn to take >/

s & TELNET Client {Program Strocture} Chap. 25

A compact FSM representation consists of a l-dimensional array of fsm_trans
structures. Each element specifies one transition. Field fr_siate specifies the FSM state
from which the transition begins. Field ft_char specifies the character that causes the
transition {or TC_ANY to denote all characters other than those with explicit transitions).
Field fi_next specifies the state in which the transition terminates, and field fi_acrion
gives the address of the procedure to call that performs the action associated with the
trarsition.

25.16 Keeping The Compact Representation At Run-Time

The example client does not copy all the information from the compact representa-
tion into the transition matrix. Instead, it leaves the compact representation nnchanged
and usas it to hold transition information. To do so, the software stores an integer in
¢ach element of the transition matrix. The integer gives the index of an entry in the
compact representation thal corresponds to the transition. Figure 255 illustrates the
data structures;

o —~—
—ue (0)
1 -— e (1)
L
3 >—<,/.
] —e (2)
4

compact representation transition matrix
Figure 25.5 The FSM data structures at mn-time. Entrtes in the transition

matrix contain an index that refers to an element of the compact
representalon.

25.17 Implementation Of A Compact Representation

File rifsm.cpp contains an example compact FSM representation for the principle
FSM shown in Figure 25.3:

Sec. 2517

Implementation OF A Compact Representation

f* tofem.cpp *f

#ipclude «<stdio.h>

#include <wingock. h>

#include
#include
#include

axtern int do echo (SOCKET,FILE *, int},

*telnet.h”
*tnfsm.h"
"local.h"

do_noga {SOCKET, FILE *,int},

do notgup (SOCKET, FILE *,int), do status(S0CEET,FILE *,int).
no_op (SOCKED, FILE *,int}, recopt(SOCFET,FILE *, int},

subend (SOCKET, FILE *, int),
todm { SOCEET, FILE *,int), ttputc{SOCEET, FILE *,int),
will_notsup{SOCKET.FILE *, inr), will_termbtype{SOCKET,.FILE *,int}.

will_txbinary{SOCKET,.FILE *,int}, tnabort{SOCKET,FILE *,int},
deo txbinary (SOCFET, FILE *, int};

struct fsm trans tistab] = |
/% State

J,f*

{
{
{
{
/* Telnet
{
i
/* Option

L T e T e e T]

f* Option
{

{
{
{

o e ke, e

TEDATS ,
TSDATA,
TETAC,
TSIAC,
Commands
TSIAL,
TEIRC,

Negotiation */

TSIAC,
TSTAC.
TSTAC,
TSIAC,
TEIAC,

Submegotion */

TESTTENEG,
TESUTENEG,
TEEUBIAL,
TESSUBRZAC,

TEWOPT,
TSWOPT,
TSWOFT,
TSWOPT ,

Input

TCSE,

TCHCE,

TOTHABINARY,

Nextt State

TEWOFT,
TSWOPT,
TSDOPT,
TSDOET,
TEDATA,

TSSUBTAL,
TSSUBNELS .,
TSODATA,

TESSUBNEL:,

TSDATA,
TSDATA,
TSDATA,
TSDATA,

subopt {SOCKET . FILE *,int),

recopt
recopt
recopt
recopt
no_op

no_op

sulopt
subend
subopt

do_echo
do_noga
do_txhinarys

do_notsup

31

380 A TELNET Ciient {Program Structane) Chap. 25

{ TSDOPT, TOTERMTYPE, TSDATA, will termtype 1,
{ TSDOPT, TUTXBINARY, TSDATA, will_txbinary 1},
{ TSTDOPT, TCANY, TSDATA, will notsup }.
{ FSINVALID, TCANY, FSINVALID, tnabort }.

#define NTRANS (slizeof{ttstab) /sizeof (ttstak[0]))

int ttetate;
i _char trEam{NTSTATES] [NCHRS] ;

Array fistab contains 22 valid entries that each correspond to one of the transitions
shown in Figure 253 (plus an extra entry 10 mark the end of the array). Each entry in
the array consists of an fsm_trans structure that specifies a single transition. Note that
itstab 1s both compact and easy to define. It is compact because it does not contain any
emply entries; it is easy to define because each entry corresponds directly 10 one of the
transitions in the FSM.

25.18 Building An FSM Transition Matrix

The utility ¢of the compact representation will becorne clear once we see how il can
be used to generate a transition matrix. File fsminit.cpp contains the code:

A* fsminit.cpp - faminit */

#include «<stdic.h>
#include <winsoolk.h>

#include "tnfsm.h"

#define TINVALID Oxff /* an invalid transition index xF

*/

void

fominit (u_char fam{] (NCHRS), struct f=m trans ttak(], int netates)
{

struct fsm_trans *pt;

Sec, 25.18 Ruilding An FSM Transition Matrix 381
int oan, ‘ti, on;

for (cn=0; cn<NCHRS: ++om)
for (ti=0; tinztates; ++ti)
fem{tilicn] = TINVALID;

for (ti=0; ttab[ti].ft_state != FSTHVALID; ++ti} [
pt = &ttab[til;
sn = pt->ft_sgtate;
if {pt->ft_char == TCRNY)} !
for (cn=0; cn<NCHRS; ++cn)
if {famlsn] [en] == TINVALID}
famf{anl[en] = &i;

} elas=
famisn] [pt->ft_char] = ti;
1
/* set all uninitialized indices te an invalid transition *J
for (cn=0; cn<NCHRS; ++cn)
for {(ti=0; ti<nstates; ++ti)
if (fam[til (cn] == TINVALIL)
famiti]{en] = ti;

Procedure fsminit requires three arguments. Argument fsm specifies a transttion
matrix that must be initialized. Argument ttab gives the address of a compact FSM
representation, and argument nstafes specifies the number of states in the resuiting
ESM.

Fsminit first initializes the entire transition matnx to TINVALID. [t then iterates
through each element of the compact representation and adds the state ransition speci-
fied by that element to the transition matrix. Finally, it iterates through the transition
maltrix again and changes any transitions that have aot been filled in so they point 1o the
invalid transition at the end of the compact representation.

Most of the code in frminir is straightforward. When adding transitions, however,
Fsminit must distinguish between an explicit transition and an abbreviation. To under-
stand the code, recall that the compact representation uses character TCANY to denote
all characters that have not been specified explicitly. Thus, when fsminit examines an
individual transition, 1t checks the character that causes the tramsition. If the entry
specifies character TCANY, fsminir iterates through all possible characters and adds the
transition t¢ any character that has not been initialized. If the entry specifies any char-
acter other than TCANY, fsminit fills in the transition array for that single character.

38z A TELNET Client {Frogram Struciure) Chap. 25
25.19 The Socket Output Finite State Machine

The finite state machine shown in Figure 25.3 defines the actions the client takes
for each character that arrives from the server. A separate, and simpler. finite state
machine describes how the client handles characters that arrive from the keyboard. We
call the FSM associated with keyboard input the socket outpnt FSM. The name may
seem unusual. Figure 25.6 shows how the client software crganization supports such a
name.

display principlea
P FSM _
main rop
thread remote
tocal socket socket
kevboard] outpuat
sacker FSM

Figure 25.6 The client software orgamization. The main thread waits for either
the TCP connection that leads 1o the remote server or the local
connection that leads 1o the kevboard to become ready. 1t then
reads a character from the ready sccket, and calis an F5M pro-
cedure to process il. The socket output FSM that processes key-
board data is associated with the socket used to pass output to
the remote server.

Unlike the principle finite state machine, the finite state machine used for socket
output is straightforward. As Figure 25.7 shows, the machine contains three states. In
csscnce, state KSREMOTE handles the normal casc. While the machine remains in
KSREMOTE, the client sends each character that a vser types on the keyboard across
the TCP connection 1o the server.

Sec. 25.19 The Socket Ourput Finile State Machine g3

KCANY /B
KCDCOMIA
KCSTATUS/H
KCESCAPE/G
KCUNSCRIPT /XK

KCSCRPTIE

KCANY/D

ACTION PROCEDURES:

A -dcon F - scrwrap
B - sonoisup G - soputc
C -no_op H - status
D - scrgete J - suspend
E - scrinft K - unscript

Figure 25,7 The socket output FSM used to define actions taken for each
character the user types. The client sends most data characters
te the remote server. However, the design permits the user [o
escape from the data connection and communcate with the local

client program.

The sockei output FSM begins in state KSREMOTE. Thus, when it first stars, the
client merely sends sach keysiroke to the remote server When the user types the key-
board escape key, the client enters state KSLOCAL where it waits for a keystroke.
Most keystrokes that can follow the escape have no meaning, but a few cause the client
to take action and retmn to state KSREMOTE. Only one, KCSCRIPT, causes the client
to enter state KSCOLLECT, where it collects a file name to use for scxipting.

384

File sofsim.cpp defines the compact representation of the socket output FSM:

/* sofsm.opp Y/

¥include <stdioc. e
#include <winsock.h»

#include "telnet.h”
#include "tnfsm.h"

/* Special chars: */

char t Ffiushe = *A\0L177; i
char t_intrc = 4003'; i
char tguite = "A\D34r; i
char sg_erase = '4010'; i
char sg_kill = '\030'; i

extern int
scrgeto { SOCKET,

status {SOCKET, FILE *,

ne_cop{SOCKET, FILE

gtruct fam_trans sostabl] = {

/* Btate Inpuk
f'* ____________
/* Data Impat */
{ KSRFEMOTE. FCESCAFE,
{ KSEEMOTE, ECANY,
/* Local Escape Conmands */
{ KSLOCAL, ECSCRIPT,
{ KSLOCAT., BCUNSCRTIPT,
{ ESLOCAL, ECESCAPE,
{ KSLOCAL, KCDOON,
{ ESLOCAL, KCETATUS,
{ KSLOCRAL, KCANY,
f* Soript Pilename Cathering */

{ KSCOLLECT, FCCR,
{ EKSCOLLECT, KCANY,

{ FSINVALID, KCANY,

~0

~C
~\
“H
~ZL

soputc (SOCKET, FILE *,
FILE *,

*
]

*/
*/
*/
*/
*/

int),

int).

scrinit {SOCKET,
int) , serwrap (SOCKET, FILE +,
mseript {SOCKET, FILE *, int), deon{SOCKET, FILE *,
int) , sonotsup (SOCKET, FILE *,
tnabcrt (SOCFET. FILE *,

A TELNET Ciienl {Program Structure)

25.20 Definitions For The Socket Output FSM

Action

no_op
sopatc

scrinit
un=script
sopute
deon
status
sonotaup

SCIrwrap
SCrgetc

tnabort

FILE *,

Chap. 25

intl,

int},
inty,

int.},

ing);

Sec, 25.20 Definitions For The Socket Ourput £5M i85

#daefine NTRANS (sizecf(sostabl/sizeocfisostab][0])})

int aostate;
u_char ‘Bofsm/NRKSTATES] [NCHRS]:

Array sostab contains the compact representation, and variable sostate contains an in-
teger that gives the current state of the socket ovtput FSM.

25.21 The Option Subnegotiation Finite State Machine

Figure 25.8 illustrates the third FSM used in the client. It handles the sequence of
characters that arrive during oprion subnegoriation. Because it only recoghiizes one pos-
sible option subnegotiation {terminal type), the FSM oniy needs three stales.

TOTERMTYPE/A

S5_START

TCANY F A
TT _SEND/B

TCANY /A

TCANY /A

ACTION PROCEDURES:

A -no_op
B - subtermtype

Figure 25.8 The simple FSM wpsed for option subnegotiation. The chent rein-
ttializes this machine each time it finishes an option subnegotia-

tion.

386 ACTELNET Client {Program Structuns} Chap. 25

The easiest way to think about subnegatiation 1s to imagine that il descrnibes the in-
terjor structure of state TSSUBNEG in the principle FSM. While the main FSM
operates in state TSSUBNEG, 11 calls procedure subop! to handle each incoming charac-
ter. Subopt operates the subnegotiation FSM. As Figurc 25.8 shows, the subnegotiation
FSM makes an immediate decision that depends on the option. If it finds a terrminal
type subnegatiation, the maching moves 1o state S8_TERMTYPE. Otherwise, it moves
directly to state S5_END and ignores the rematnder of the subnegotiation string.

Once 1n state §5_TERMTYFE, the FSM checks the subnepotiaton verb. It calls
subterminype if the verb 15 TT_SEND, and ignores the subnegotiation otherwise. The
purpose and operation of the subnegotiation FSM will become clearcr when we see how
a client responds to the terminal type option.

25.22 Definitions For The Option Subnegotiation FSM

File subfsm.cpp contains the C declarations for the subnegotation FSM:

/* subfam.cpp */

#include <stdic. h>
#include =winsock.l>

#inciude "telnet.n"
#include *tnfam.h*

extern intc no_op{SOCKET, FILE *, int),
subtermtype {SODCEET, FILE *, int),
tnabort (SOCKET, FILE *, inr):

struct fsm_trans substab[] = {

/% State Input Next State Aotion *f
f* ————e e et */
{ 85 START. TOTERMTYPE, S5 TERMTYEE, na_op
{ SS_START, TCANY, SS_END, no._op
{ S5_TERMTYPE, TT _SEND, 85 END, Fubtermtype
{ S5_TERMTYFE, TCANY, S5_ENL, ne op
{ SS_END, TCANY, g5 _FND, no_op
{ FSINVALID, TCANY, FSINVALID, tniabort

};

int substate;

u_char subfsm|[NSSTATES] [MCHES]

Sec. 25.13% ESM Initializalion 3E87
25.23 FSM Initialization

At startup, the client calls procedure fsmbuild to initialize all finite state machines.
As the code in file fsmbuild. cpp shows, fsmbuild calls fsminit to build the required data
structure for each machine, and assigns each machine’s state variable an initial state.

/* fsmbuild.cpp - faniaild */

$include «<stdio.h>
#include <winsock.h>

#inclode "tnfam. k"

extern struct fsm_trans ttstab(], sostab{], substabl[]:
extern u_char ttfsm([] [NCHRE], sofmn(] [NCHRS], subfam|] [MCHRS]:
extern int ttestate, sostate., substate;

~woid faminitiu char fam[] [HCHRS], struct fsm trans ttab[], int nstates}:

>

woid

Esmbuaildi)

{
faminit {ttfsm, ttstalk, NTSTATES);
ttstate = TEDATA;

feminit {scfsm, scostabh, NESTATES) ;
sogstate = KSREMOTE;

feminit (subfem, substab, NSSTATES) ;
sub=tate = S5 START:

25.24 Arguments For The TELNET Client

File tclient.cpp contains the code for the main program that execuies when a user
invokes the client:

ELY A TELNET {Clicar {Program Structure)

/* tclient.cpp - main */
#include <stdlib.h>
#include {winsﬂck.h}

#define WSVERS MABEEWORD(Z,)
char *host = “localhost™; /* host to use if nohe supplied

wvol1d errexiticonst char *, ...}):
1oid telnet (consc char *, const char *)

*/
voi1d
main{int arge, char *argv(li
{
char *nervice = "telnet"; /* default service name
WSADATE wadata;

switch {argc) {
case 1: break;

cage 3
gservice = argvli]:
/* FALL THRIUOGH */
case 2
host = argv(l];
breal;
default:
errexiti{"usage; telnet [host [port]lin”}:
1

if {WSAStartup{WSVERS, Swsdatal)
errexit ("WeaStartup failed.n"});

telnet {host, servicel:

axit (0] ;

Chap. 25

*f

The user can supply zero, one, or two command-line arguments that the program

parses. With no arguments, (arge = 1), the client contacts a server on the local host and
uses the relner service. If one argument appears (argc = 2}, the client takes the argument
as the naumne of the remote host on which the server executes. Finally, if two areuments

Sec, 2524 Arguments For The TELNET Client 384

.appear, the client takes the second to be the name of a service on the remote machine
and takes the first to be the name of a remote host. After it has parsed its arguments.
the main program calls function telner.

25.25 The Heart Of The TELNET Client

File jefnet cpp contains the code that implements Algorithm 8.7%:

/* telnet.cpp - telnet */

#include <io_ h>
#include «<ztdlib. ho
#include «stdio. h>
#include <atring. hs
#include <winsock.h»

¥include “local . h*

externn nsigned char synching:

¥define BUFSIZE 2048 /* read buffer size */

BCCFET connectTCP{caonst char *host, const char *zservice);
SOCEKET ttyconlvoid):

wvoid
telnet [const char *hogt, const char *service)
{
SOCKET sock, con; /* remote and ¢onsele socket descriptors */
u_char buf[BUFSIZE];
int o)
int on = 1;
fd_ser arfds. rfds;

con = ttycon();

scck = conmnectTOP (host, service};

tSee page JOT lor a descoption of Algorithm 8.1.

300 A TELNET Client {Program Struciure) Chap. 15
fambuild(}; /* set up FSM's */
(voild) setsockopt (sock, SOL_SOCEET, SC_OQOBINLINE, {char *)&omn,

gizeof{on});
FD_ZERO (karfds) ;

FD SET{szock, &arfds); /* the socketf *xf
FD_SET(con, Larfds): /* standard input */
while (1) {

memcyy (&rfds, &arfds, sizeof{rids));

if {select{FC _SETSIZFE, &rfd=, (fd set *]0,
|£4_set *}0, (struct timewal *)Q) < Q} |
if [GetLastError{} =— WSAEINTR;
continue; /* Just a signal*/
errexit ("select: %d\n", GetLastError{l});
1
if {FD _ISSET{svck, &rfds)) {
unsioned long o urgs;
if {icctlsocket {sock, SIOCATMARE, anc urg) ==
SOCFET ERROR)
errexit {("socket ioctl error %dia”,
GetLaszError{));
synching = !'no_urg;

cc = recvizpck, (char *Ibuf, sizecf{mfi, 0):
if {cg == BOCKET_ERROR!
errexit ["socket recv: %din",
GetLastError(}):
else if {cc == 0}
arrexit{"\ncormection close.\n™}!;
else
ttwrite(sork, stdout, buf, cc);
);
if (FD_ISSET{con. &rfds}} !
ce = recwicon, {(char *ibaf, sizeof{buf), 0);
if {(cc == BOCEET ERROR)
errexiz("tty read: %d\n",
GetLastError{));
else if (oo == 0)
FO CLR{con, &arfds);
(vioid) shutdown{scck, 1i;
} else
sowrite{sock, stdout, wE, oo},

Sec. 1525 The Heart Of The TELNET Client ag1

}
fvoid) £flush{stdout];

Procedure refret requires two argumenis that specify the name of a remote machine
and a service on that machine. The code begins by calling connectTCP to allocate a
socket and form a TCP connection to the server. [t then {alls fimbuild to initialize the
three finiwe state machines.

Once it finishes initialization, the main thread of the client enters an infinite loop.
At each fteration of the loop, it uses sefect W0 wait for /O from the remote connection
or from the keyboard. The sefect call will return vatlue WSAEINTR if the program re-
ceives an interruption while the call to select is blocked. If that happens, the client con-
tinues with the next iteration of the loop.

If selecr returns normally, data can be available at the keyboard, at the remaote con-
nectien, or at both. Tefner first checks the remote connection to see if data has arrived
from the server. If so, it calls recv to extract the data arxd ftwrite to write the data to the
uscr's display. We will see below that rrwrite implements the principle finite state
machine that interprets the incoming data stream and handles escapes and embedded
command sequences.

After teinet checks for incoming data at the socket leading 10 the remote server, it
examines the keyboard socket. If daia has armrived from the keyboard, feinet calls recy
to extract the data and sewrite to write it to the socket. Sowrite contains the code that
executes the finite state machine for local escape processing. As a special case, the
client interprets an end-af-file entered on the keyboard 10 be a request 1o terminate the
connection. If it receives an end-of-file {1.e., recv returns), telnet calls shutdown to
send an end-of-file condition to the server. In any case. refnet calls fflush at each itera-
tion to ensure that the output rowines do not buffer the data that has been written.
Fhlush forces the operating system 10 send all data immediately, even if the buffer is not
full.

25.26 TELNET Synchronization

TELNET includes a mechanism that enables a client and server to bypass the ef-
fects of TCP buffering. Known as synchronizarion, the mechanism arranges for a server
1o use TCP urgent data to inform a client that synchromzation is needed. The protacol
specifies that when urgent data amves, a client must synchronize with a server before
processing more input. To synchronize, the client skips forward in the stream of data
arriving from the server ontil it encounters the DATA MARK character,

To implement synchronization, the example code uses global variable synching.
Procedure telnet tests for the presence of urgent data from the server when it finds the
socket ready. If TCP reports that urgent data has arrived on the socket, telner sets
synching 10 nonzero. While synching is set, the FSM action procedure upure discards

392 A TELNET Client (Program Suuctore) Chap. 25

incoming data without displaying it on the user’s screen. When a DATA MARK charac-
ter arrives, the FSM action procedure icdm is called to tumn off synchronization. The
code in file sync.cpp shows that fedm resets synching to zero, which causes the client 1o
resume normal processing.

/* sync.cpp - todm */

$#include <stdic.h>
#include =winsock.h>

unsigned char gynching; /* non-zero, if we are doing relnet SYNCH

* todm - handle the telnet "LDATA MAFK™ command (marks end of S¥YNCH)

*f
/ *ARGSUSED™* [
int
tedn{SOCKET sfd, FILE *tfp, int c)
{
if [gynehing > ()
syntiching--:

return (;

25.27 Handling A Severe Error

In some cases, when a socket function returns an error code, the error indicates a
minor unexpected event. In such cases a program can choose to ignore the error, print a
warming, or automatically correct the problem. In other cases, the emor condition re-
ported by a socket function is catastrophic — a problem is so severe that the application
cannot correct or ignore it. In such cases, an application cannot continue executing.

The reiner procedure contains code to handle both minor and severe errors. For ex-
ample, if the call to select retwrns an error code {ie., a value less than zero), telnet calis
GetlLastError to determing the exact problem. If the error code specifies a minor error
— the operating system had to interrupt the select call before the operation could com-
plete — relner continues execution with the next iteration of the loop. If GeilasiError
returns any other error code, the main thread calls ptocedure errexir to print a message
for the vser and terminate execution. Similarly, if other socket functions indicate that
an ermor has occumred, telnet calls errexit. Thus, if the system runs cut of reseurces
(e.g.. sockets or memory), the application will print an error message and terminale.

Sec, 25,27 Handling A Severe Error 91
Errexit takes an argument that is a string containing a message for the user. It
displays the message and causes the entire process io exit. Note that if any thread in a

multithreaded process calls errexit, all other threads in the process will be terminated.
Thus. errexir should only be used for severe errors.

25.28 Implementation Of The Main FSM

Procedure ttwrite implemenis the FSM from Figure 25.3 that interprets data as it
arrives from the server. The code appears in {file smwrite.cpp:

/* trtwrite.cpp - ttwrite */

#include <stdio.h>
#include <winsock.h>

#inciude "cnfsm. h"

extern struct fsm_trans ttstab(];

exterr. u_char ttfsm{} [RCHRS] ;
externl int ttgtate;
‘(* __

=/
vold
ttwrite{SOCKET sfd, FILE *tfp, u char *buf, int cg)
{
struct fsm_trans b =1l
int i, ti;

for (i=0; i<ce; ++1) {
int c = E[i];

t£i
Bt

ttfsm[ttatate] (2] ;
Ettstab[ti];

{pt—=ft_action) (sfd, tfp, c};
ttstate = pt->ft nesct;

354 & TELNET Chiert (Program Structurg) Chap. 25

Ttwrite extracts cc characters [rom the buffer, buf, onc at a time. Each Gme it ex-
tracts a character, ttwrite uses the character and the current state (varable ristate) to in-
dex the transition matrix. The transition matrx retums 4, the index of a transitien in
the compact representation {(tstab). Trwrite calls the procedure associated with the tran-
sition (field fi_actior), and sets the current state variable 1o the appropriate nexi state
{field fi_next).

25.29 A Procedure For Immediate Disconnection
The socker output finite state machinet contains an entry thal allows a user to

disconnect. When the user specilies disconnection, the main thread calls procedure
deon, which can be found in file deen.cpp:

/* deon.opp - decn */
#include <stdlib. h>
¥include «<stdic._h>
#include =winsock.h>

#include "local h*

.-"r* __ S L
* deon - dizconnect from remote

v/
/ *ARGSUSED Y /
int
doon{SOCKET s£4, FILE *tfp, int <}
{
fprintf{tfp, rdisconnecting.\n"};
WSACleanap ()
exit (0);
return 0; /* pro forma %/
}

As the code shows, our chent interprets discoonection as munmediare and per-
manent; deon calls the Windows funcuon exit, which causes the entire process, includ-
ing both the main and keyboard threads, to terminate. When a process exits, the sysiem
releases all resources 1hat the process had allocated. Thus, both the local and remote
TCP connections will be closed, and the sockets will he released.

TThe sockel cutput machine specification can be fowod on page 384,

sec. 25,20 Abort Procedurs 395
25.30 Abort Procedure

In the socket output finite state machine, not all sequences of input move the
machine to valid states. To prevent am iflegal sequence of values from producing an er-
ror, invalid state transition arc assigned procedure mabort. If an invalid sequence
shonld occur, mabort calls errexit to print an errer message and terminate the program.
File tnabort.cpp contains the code:

/™ tnabort.cpp - tnabort */

#include <stdia h>
#include <winsock.h>

void errexit(const char *, _..);

*f

£ *ARGSUSED* /

int

tnabort (SOCKET sfd, FILE *tfip, int ¢

{
errexit({"invalid gtate reached {aborting)in"});
return 0; /* to keep picky compilers happy */

25.31 Summary

TELNET ranks among the most popular application protocols in the TCP/IP suite.
The protocol provides for interactive character transport between a client and server.
Usually, the client connects a user’s terrninal 10 a server across a TCP connection, Cur
example client software consists of two threads with a local TCP connection between
them. The keyboard thread reads each character that the user types on the keyboard,
and sends the character across the local TCP connection to the main thread. The main
thread uses the socket function seleet to allow concurrent input. The thread waits until
data artives over the TCP connection from the remote server or over the local TCP con-
nection from the keyboard. After receiving and processing the data, the main thread re-
turns o sefecr, which waits until additional input amives.

TELNET uses escape sequences te embed commands and control information in
the data siream. To simphfy the code, our example client impltementation uses three
finite state machines to interpret character sequences. One handles data that arnves

396 A TELKET Chient (Propram Struciure) Chap. 25

from the server, another handles data that arrives from the wser’s keyboard, and a third
handles option subnegotiation.

The example code in this chapter illustraies the implementation of the two client
threads as well as the data structures vsed to implement the finite siate machines, The
next chapter considers the details of the procedures that performin actions associated with
transitions in the finite state machines.

FOR FURTHER STUDY

Postel [RFEC 854] contains the standard for the basic TELNET protocol, mmchuding
the network virtual terminal encoding. Postel and Reynolds [RFC 835] specifies the de-
tails of option pegotiation and aption subnegetiation. Details on individual options can
be found in other RFCs. VanBokkelen [RFC 1041] specifies the terminal-type option.
Poste]l and Reynolds [RFC 837] describes the echo option, while Postel and Reynolds
[RFC 856] describes the binary transmission option. Information on the riegin proto-
col, an altemative to TELNET. can be found in the documentation on most UNIX sys-
fems.

EXERCISES

25.1 Compare the design presented in this chapter (0 one in which one thread reads from the
keyhoard and sends to the remote server, and another thread reads from the remoie con-
nection and sends to the display. What are the advaniages and disadvaniages of each
design?

5.2 Investigate the suppon for asynchrenous 140D in Windows. How can asynchronous A0
be uwsed in a TELNET client?

5.3 Compare a design that uses asynchronous YO facilities descnbed in the previows ques-
ticn to designs that use blocking A0, What are the advamages and disadvamages of
each?

254 To find out about I/} in other operating systems, read sections of the UNIX
Progranimer's Manual that describe tecminal devices and device drnvers. What are
cooked mode, cbreak mode, and raw mode? How do they cormespond 10 TELNET op-
tions?

15.5 Rewrite the grinciple F5M to include states for option subnegoliation.

15.6 The example FSM impiementation uses a compact representation to save space. Esfi-
mate 1he space required for 1he principle FSM using a conventional representation, and
compare the extimate to the space required for the compact represencation.

25.7 Under what conditions will recv from the keyboard connection return the value 07

258 Read the TELNET protocol specification to find the exact rules for synchronization.
When does the sender transmit wrgem data? Why is svaching necessary?

Exercises g7

259

25.10

2511

2512

25.13

2514

A server can choose to send more data after the client sends an end-of-file. How does
the client know when to terminate the connection to the server? '
Rewrite riwrite so it docs not use an F3M. What are the advantages and disadvantages
of each implememation?

When an etror occurs, the code prints a cryptic message and exits. Improve the code to
print messages that make sense 1o a user.

[n the previous exercise, examine the error codes that your local system can retum. Will
all errors make sense to a nser? Why or why not?

The finite state machines do not have explicit states for synchromization. Revise the
state diagrams to include synchronization. How many additional states are required?
Does it make sense to add states to the FSM for scripting? If so, which finite state
machine{s} need 10 be modified? If not, explain why.

26

A TELNET Client
(Implementation Details)

26.1 Introduction

The previous chapter discusses the structure of a TELNET client and shows how it
uses finite state machines te control processing. This chapter concludes the discussion
by showing how semantic action procedures implement the details of character process-

ing.

26.2 The FSM Action Procedures

Finite state machines implement most of the TELNET protocol details. They con-
trel processing. coordinate responses with requests, and map incoming cornmand -
quences to actions. Each time the client follows a transition in a finite state machine, it
calls a procedure 1o perform the actions associated with the transition. Figure 253+
shows the procedure names associaled with transitions n the F5M that handles charac-
ters arriving from the server.

An action may be simple (c.g., discard the incoming character), or it may be com-
plex {e.g.. respend by sending a string that identifies the local terminal). Encapsulating
each action in a procedure helps keep the machine specifications uniform and simptifies
the code at the top level. However, dividing the software into a set of procedures for
each action means that the relationship between procedures can only be understookd by
referring to the finite state machine that interconnects them.

tThe figure appears on page 3735,
399

ET) g A TELNET Client (Implementation Details) Chap. 26

The following sections each describe onc of the action procedures associated with
an FSM transition.

26.3 Recording The Type Of An Option Request

In stice TSIAC (Le., following the amival of a TCIAC character). the ammival of
TCWILL or TCWONT causes a Lransition to state TSWOFPT. The FSM specifies that
pracedure recopr should be called. Reropt records the character that cansed the transi-
tion so it can be used later. Similarly, the FSM uses recopf 1o record character TCDO
or TCIXINT during a transition to state TSDOPT. File recopt.cpp contains the code:

f* recopt.Copp - recopht, no_op */

¥include <stdioc. h=
binclude <winsock.h>

1 char opticon cmd; /* has wvalue WILL, WONT, DO, or DOMT *7

=/

/ *ARGEUISED> /

int

recopt (SOCKET =sfd, FILE *tfp, int c)
{

pption_cmd = ¢;

return 0;

no _op [SCCFET sfd. FILE *tfp, int o)
{
return O

Sec. 26.4 Performing No Operation 401
26.4 Performing No Operation-

File recopt.cpp also coatains code for procedure no_op. Because the FSM must
have an action for all possible combinations of a state and an input character, procedure
no_op can be used for those transitions thar do not require any action. For example, a
trapsition from state TSDATA to TS/IAC does not require any action. Therefore, the
FSM specifies a call to no_ap.

26.5 Responding To WILL/WONT For The Echo Option

The server sends WILL or WONT followed by the ECHG option to inform the
client that it is willing to echo characters or is willing to stop echoing characters. The
FSM specifies that procedure do_echo should be called when such a message arrives.

f* do_echo.cpp - do_echo */

#irrtlude <stdic.h>
#include <winsock.h>

#include "local.h*
#include "telnet.h"

unsigned char doecha ; i* nonzerc, if ramote ECHC >/
extern u_char option cmd:

I e e ———————— i ———— i ——— i ——————
* do_echo - handie TELNET WILL/WON'T ECHD option

do_scho[SOCKET =fd, FILE *cfp, int o)
{
if {doecho) {
if {option cmd == TCWILL)
return ¢ f* already doing BCHO */
} else if (option_cmd == TCWONT)
return O; i* already NOT doing ECED * f
if {option_cmd == TCWILL)
teyflags &= ~ECHO;
else
ttyflags j= BCHO;
doecho = !doechn;

402 A TELNET Client ([mipleteentation Details) Chap. 26

{void) spute (TCIAZ, =f£d);;
if {deecho)

{woid} sputc{TCD, s£d4):
alse

[void} sputc(TCDONT, afd);
{void) sputc{(char)c, sfd):
return 0;

The TELNET protocol specifies that the server can send a WILL or WONT to ad-
vertise its willingness to perform a given option or it can send such a message in
response 10 a client request. Therefore, if the client has sent a request containing & D¢
or DONT, the message from the server constitutes a reply, otherwise, it constitutes an
adverlisement.

The ciient uses its current condition 10 decide how to respond. Global variable
doecho contains a nonzero value if the client currently expects the server to perform
character echo. If the server sends WILL and the client already has remote echo en-
abled, the client does not reply. Similarly if the server sends WOANT and the client has
remote echo disabled, the client does not reply. However, if the server sends WILL and
the client currently has remote echoing turned off, the client clears the ECHO bit in glo-
bal variable rtyflags to disable local character echoing (recall that the keyboard thread
examines the bit to determine whether to echo keystrokes). If the cliemt has local echo
disabled when a WONT arnves, the client assumes that the server has disabled the re-
mote echo. Therefore, the client sets the ECHY bit in global variable syflags to enable
local echoing., The client only sends a DO or DONT response if it changes the echo
mode.

26.6 Sending A Response

When procedure de_echo needs to send a response back to the server, it calls func-
lon sputc. Sputc lakes two arguments: a single character to be sent, and the descriptor
of a socket over which to send the character. Thus, a procedure such as do_gche that
needs te send a two-character response must call spure twice (once for JAC and once for
D or DONT). Because the response should be sent over the TCP connection that
leads to the server, the second argument in each call is sfd, the socket descriptor for the
CONNection.

The ¢ode for spurc is trivial; it can be found in file sputc.cpp:

‘Sec. 26.6 Sending A Response 403
/* gputc.cpp - sputc */

#include <winsock.h>

*/
int
gpute (const char o, SOCKET sfd)
{
retuwrn sendisfd, &c, 1, 06};
1

26.7 Responding To WILL/AWONT For Unsupportted Options

When the client receives a WILL or WONT reqguest for an option that it does not
understand, it calls procedure do_notsup to reply DONT.

i do noteup.opp - do_notsup */

#include <ptdio.h>
#include <winsock.h>

#lpnclude "local.h"
#include *"telnet.h"

extern U char aption cmd;

*f

" ARCSUSED* /

int

do notsu (SOCFET sfd, FILE *tfp, int)

{
{void) sputc|TCIAC, sfd);
{void} sputc{TCDONT, afd):
{void] spute{{char)c, sfd);
return 0;

0 A TELNET Client {Implementation Details) Chap. 26

26.8 Responding To WILL/WONT For The No Go-Ahead Option

The client uses procedure do_noga to respond when the server sends WJ/LL or
WONT requests for the ne go-ahead oprion.

/* do nega.cpp - do_noga */

#include <gstdio. bh>
#include <wingock.h>

#include "local.h"
tinciude "telnet.h"

extern u_char optlion_omd;

JE e e e e e e e e e o o e e o

* do_noga - don't do telnet Go—ahsad's

*
/ * ARGSVISED™ /
int
Ao noga (SOCKET sfd, FILE *tfp, int o)
{
static noga;
if (noga) {
if (opticn_cmd == TCWILL)
return 0;
} elge if (opEior _omd == TCWONT)
return 0;
noga = !noga;
{void) sputci{TCIAC, sfd);
if {nogal
(void} spute(TCDO, s£d);
elsa
{void) sputc{TCDMNT, sfd};
{vold} sputc((char}c, sfd};
return 0;
}

As with other options, the client does not respond if the client’s current setting for
the option agrees with the server’s request. If the server requests a change, the client
reverses the current setting by negating global variable noga, and sends either a DO or
DONT response.

Sec. 269 Crenerating DOVTHONT For Binary Transmission 405
26.9 Generating DO/DONT For Binary Transmission

The server can send characters to the ciient either encoded, using the network vir-
tual terminal enceding, or unencoded, using 8-bit binary wvalues. Global variable
revbinary controls whether the client expects to receive data as binary characters or
NVT encodings. The client calls procedure do_txbinary to respond when the server
sends a WILL or WONT for the binary option. Like the other procedures that handle
options, do_txbinary has been designed so it can be called 1o request that the server
send binary or to respond to an advertisement from the server. It uses the global vari-
able option_cmd to decide how to proceed, and assumnes that # contains an incoming re-
quest. Procedure do_txbinary tests to see whether the client expects the server to send
binary, sets revbinary according to the incoming request, and responds to the server if
rcvbinary changes.

i* do_txbinary.cpp - do_txbinary =/

#inrlude «<stdio.h>
#include <winsock.h>

#include "lacal .hv
#include "telnet.h"

unsigned char rovbinary; /* non-zero if remote TRANSMIT-BINARY */
extern u_char cption_cmd;

* do_txbinary ~ handle telnet "will/won't® TRANSMIT-EINARY option
T e e e e e o o o P o o o B B B o o o B o o . o o o . T o . T L. P T B . . L . L. B
ol

£ ARCSOSED™ /

int

do txbinary{SOCKET sfd, FILE *tfp, int c)

{

if (rcvbinary) {
if (option_cmd == TCWILL})
retum J;
} =lse if (option_cmd == TCWONT)
retuwrn 0;
rovhinary = irovbinary:
{void) sputc{TCIAC, sfd);
if (rcvbinary)
{void) sputci(TCDA, sfd);
elze .
{void) sputcTCDONT, sfd);

406 & TELNET Client (Implementation Details) Chap. 26

{voidl sputc{{char)ec, =£d4);
return 0;

26.10 Responding To DO/DONT For Unsupported Options

The server sends D0 or DONT messages to tell the client that it should enable or
disable a specified option. The client responds by sending WILL if it agrees to honor
the option, or WONT if it does not honor the option. As the FSM in Figure 25.3 shows,
the client calls procedure will_rotsup when it does not support a particular option. Pro-
cedure will_notsup sends WONT to teit 1the server it does not support the option.

/v will motsup.cpp - will_notsup */

$include <stdic.h»
#include <winsock.h>

#include "local . h®
#include "telnet . h”

*f
J *ARGECUSED* /
int
will notsup{SO0CEKET sfd, FILE *tfp, int c)
{
(voigd) sputci{TCIAC, sfd):
(void) sputc({TCWONT, sfd);
ivoid) sputc{(charic, sfd);
retum 0O;

26.11 Responding To DO/DONT For Transmit Binary Option

When the client starts, it uses the network virtual terminal encoding for all daia it
sends (o the server. Although NVT encoding includes most printable characters, it does
not provide an encoding for all control characters. Servers operating on systems that
support screen-otiented applications usually need the ability to transfer arbatrary charac-
ter data. Therefore, such servers usually advertise their willingness 10 transmit binary
data and request that the client alse transmit binary data.

Sec. 26.11 Responding To DOFDONT For Transmil Binary Option 407

A server sends DO for the transmir binary option 10 request that the cliemt begin
using §-bit, wnencoded transmission. The client calls procedure will_fxbinary when
such a request arrives.

F* will txbinary.cpp - will_txbinary */

#include <sbtdic.h>
#inciude <winsock.h>

¥inciude "local.h®
#include "telnet.h"

ungigned char gndbinary; /* non—zera if TRANSMIT-BINARY * 7
extern u_char option omd;

*/
A * ARGSUSED™ /
int
will txbinary {(SOCHET sfd, FILE *tfp, int <)
{
if (sndbinary) {
if (option_cmd == TCDO}
return 0;
} else if [(ogptlon_cmd == TCDXINTI
return 0;
sndbinary = tsndbinary;
{void) sputc(TCIAC, gfd);
if {sndbinary)
{void) sputc{TCWILL, sfd);
else
fvoid}l sputc {TCWONT, sf£d);
{veid) sputcii{charic, sfd);
return O;

The client uses global variable sudbinary to control its wransmission mode. [If the
request forces a change in the status, the clieat acknowledges the request by sending a
WILL or WONT.

40% A TELNET Cliem (Implementation Detrils) Chap. 26
26.12 Responding To DO/DONT For The Terminal Type Option

Communicating the terminal type from client to server requires two steps. First,
the server asks the client whether it honors the termtype option. Second, if the chient
agrees that it will honor the terminal type option, the server uses aption subnegotiation
to request a string that identifies the user’s terminal type.

Unlike some systems, Windows does not have a standard mechanism that can be
used to identify the type of a terminal. QOur code examines the variable TERM in the
program’s environment, If the variable exists, the program assumes that it has been as-
signed a string that gives a valid terminal type.

When a request arrives for the terminal type option, the client calls procedure
will_iermrvpe. File will_termtyvpe.cpp contains the code:

i* will termtype.cpp - will_termtype */

#inciude <stdio. h-
#include <stdlib h>
#inciude «winscck. h>

#include "local . h”
#include "telnet . h”

char termbype; /* non-zero 1f received "DO TERMIYPEY -/
char *Carm; /* terminal name "}
extarn U char option omd;

int do_txbinary {SOCKET, FILE *,int), will_ txbinary{SOCKET,FILE *.int);

int
will termtype(SOCKET sfd, FILE *tfp, int o)
{
if (termtype) {
if {cption_camd == TCDO)
return 0;
} else if {(cpticn_cmd == TCDONT)
return 0;
termoype = {termtype:
if (termtype)
if (lterm £& ! (term = getenv{"TERM')))
termtype = !tCermibype; /* can't do it... */

Sec. 26,12 Responding To DOYDONT For The Terminat Type Option £

{veid) sputa(TCIN, sfd):
if (termtype)
{void) sputc(TCWILL, sfd);
else
(void) sputc (TCWONT, =2£4);
(void} sputci{char)c, sfd);
if (termtype) { /* set up binary data path: send WILL, DO */
option_omd = TCWILL;
{void) do_txbinary(sfd, tip, TOTIBINARY):
opticn_omd = TCDO;
{void) will_txbinary(sfd, tfp, TOTXBEINARY};
}

return 0;

Procedure wifl termtype behaves much like other option handlers. It uses global
variable termitype to record whether the server has requested the terminal type option
previously, and checks to see if the current request changes the status. En addition,
will_termtype checks 1o see whether the terrunal type has been assigned to string term
previously. If ihe terminal type 1s needed and has not been fetched before,
will_termtype calls the library function getenv to obtain the value associated from en-
vironment variable TERM. If no such variable exists, getenv returns a MULL pointer,
and the client responds that it will not honor the request.

A server requests terminal type information so applications can prepare output
specifically for the user’s terminal. For example, a text editor uses the terminal type
when it generates the sequence of characters that clears the screen, moves the cursor, or
highlights text. Thus, the clieat expecis that once the remote application receives termi-
nal type information it will send control seguences for the terminal. Because such se-
quences cannot be sent using the NVT encoding, will_termtype sends a WILL message
that advertises the clicnt’s willingness to use binary transmussion and a) message
that requests the server use binary transmission. Because functions do_txbinary and
will_txbinary can be called from the FSM option processing code, they use global van-
able option_cmd to contre! processing. When calling the functions directly, other pro-
cedures must initialize oprion_cmd explicitly as if the client had received the appropri-
ate WILL or DM message from the server before the call.

26.13 Option Subnegotiation

Oace a client agrees to handle the terminal type option, a server uses oplion subne-
gotiation ta request the terminal name. Unlike normal options which all have a fixed
length, subnegetiation permits the sender to insert an arbitrary-length string in the data
stream. To do so0, the sender brackets the string by seading a subnegotiation header, the
data for that particular option subnegotiation, and a trailer that identifies the end of the
subnegotiation.

410 A TELNET Client (Implementation Details) Chap. 26

When the main FSM (Figure 25.3) encountzrs a submnegotiation command se-
guence, it enters state TSSI/BNEG. Once in state TSSUBNEG, the client calls procedure
subopt each time it receives a character. As the code in file subopt.cpp shows, subops
runs the option subnegotiation FSM to handle subnegotiation.

i* sabopt.cpp - subopt */

$include <stdio.h»>
¥include <winsock.h>

$#include "telnet . h”
dinclude “tnfzm.h”

axtern struct fsm trans substabk{];

extern int substate;
extern u_char subfam[] [NCHES] ;
f‘l‘ __

e AL e . 7y b o 1 S i e Ly 7 i~ e ke N e e ek N B By g e N e L R A . Sk o —

*

int ,

subopt {SOUKET sfd, FILE *tfp, int c)

{
struct fsm trans *pt;
int ti;
ti = subfmm{substate] [c];
pt = &substabltil:
(pt->ft_acticn) (sf4, tfp, cl);
substate = pt->ft_next;
retum 0O;

}

26.14 Sending Terminal Type Information
The option subnegotiation FSM1 calls procedure subtermsype to reply t0 a request
for a terminal type. The server sends the sequence:
IAC SUBNEG TERMTYPE SEND [AC SUBEND
to request a terminal type. The client replies by sending:

IAC SUBNEG TERMTYPE IS term_type_string IAC SUBEND

t5ee page 385 for 8 description of the option subnegetiation finite state machine,

Sec. 26,14 Sending Terminal Type Informaticn 411

File subiermtvpe. cpp contains the code:

/% subtermtype.cpp - subtermbype */

#include <stdio b
#include <winsock.h>

#include “local.h”
#inciude “*telnet.hr"

externn. char *term; /* terminal name, from initializatriocn */

*}
J = ARGSUSED* /
int
subtermtype (SOCEET 3fd, FILE *tfp, int c)
{
/* have received IAC.SB.TERMTYPE.SEND */
(void) sputec(TCIAC, sfEd);
{veid) spatc(TCSB, sfd);
{void) sputc{TOTERMTYFE, =fd);
{(void) epute(TT_IS8, sfd);
SPUTS (term, sfd);
{void) sputc(TCIAC, sfd):
{void} sputc{TCsE, sfd};
return 0;
}

The option subnegotiation FSM calls subrermrtype after receiving the SEND re-
quest. Previously, the client must have replied positively to a request to honor the ter-
minal type option, so glebal variable terrn must already point to a string that contains
the terminal type. Subtermitvpe sends the reply by calling sputc 1o send the individual
control characters and macro SPUTS to send the string that contains the terminal type
information,

412 A TELNET Ciient (Implementation Details} Chap. 26
26.15 Terminating Subnegotiation

When the principle FSM shown in Figure 25.3 encounters the end of option subne-
goliation, it moves back to state TSDATA. Whenever it does so, it calls procedure si-

bend. Subend simply resets the option subnegotiation FSM to its start state so it is
ready to handle the next subnegotiation. File subend.cpp contains the code:

f* subend. cpp - subend */

¥include <stdic.h=
#include <winsock.h>-

#include ‘tnfam.h"

exterr: int substate;

o ———————_—————————————_—————_———————— - - —_—

* subend - end of an option subnegotiation; reset FSM

—— i ——— i ——————————— T ——— N - . e e e = Sy e e S g M. My gy N S M AL S W . S S S S —— T —— - —

ing
mabend {SOTEET gfd, FILE *tfp, int c)
{

aubstate = 55_START;

returmn O;

26.16 Sending A Character To The Server

The client calls procedure seputc to convert an output character irio the neiwork
virtual terminal encoding and send it through the TCP socket to the server. File
soputc.cpp contains the code:

f* Bopuatc.cpp — soputc */

#include «<stdic. i
finclude «winsock. h>-

¥include "telnet.h"
#include "local.h”

Sec. 2616 Sending A Character To The Server

L —_— e ——— e PR P

*/
/ *ARGSUSED® /
int
soput.c (SOCKET sfd, FILE *tfp, int <)
{
if (seIbinary) {
if (= == TCINY

{void} sputc(TCIAC, sfd): /* byte-stuff IAC

{(void) sputcic, afd);

return 0
i
c &= Ox7Ef; f* T-hit ASCII only */
if {c == t_intre || ¢ == t_quite) {

{voidy spute{TCIAC, sfd);
{void) sputc{TCIP, sfd);
} elga if {c == =3g erasa) {
{void) sputc|TCIAC, =£4);
{void) sputc(TCEC, afd);
} else if (¢ == pg kill} {
{void) sputc(TCIAC, sfd):
{void} sputciTCEL, sfd);
] elag if {c == t_flughel {
(void) sputc(TCIAC, =sfd};
{vold] sputci{TChD, sfd);

] else .

{void) sputci{c, sfd);
return 0;

‘If'l

f*

J,rt

;“l‘

Intarrnimpt

Erase Char

Erase Line

Abhort Output

*/

*/

*f/

*f

*/

When transmitting in binary mode, only the JAC character needs to be character
stuffed. That is, sopute must replace each JAC characier with two JAC characters, For

any other character, sopufc merely calls spufc to send it.

When transmitting in normal mode, sopwtc must convert from the local character
set 10 the network virtual terminal character set. For example, if the character that ar-
rives corresponds to the interrupt character, soputc sends the two characters:

1AC 1P

It checks explicitly for each of the special characters that the NVT defines. Soputc must

also handle characters for which no NVT encoding exists. However, the NVT protocol
specifies that if the server does not reqguest that the client use binary transmission, the

server will discard most control characters that the user types.

414 A TELNET Chent {Implementation Details) Chap. 26
26.17 Displaying incoming Data On The User’'s Terminal

Data that amives over the TCP connection from the server can gither be unencoded
(if the server has agreed to transmit binary) or it can cousist of characters encoded ac-
cording to the rules for an NVT. The client calls procedure f#fpute to display an incom-
ing character on the user’s terminal.

/Y ttputc.cpp - ttputec */

#include «<stdio.h>
#include <winsock.h>

$(include "telnet.h"

int wputo(char, FILE *);

fo—— - - — e o e . . S, . . T T B T B B B B B

* ttputc - print a single character cn a Network Virtual Terminal
T . .t R . . e e A S S .. e S S g, e} . . . e L S, .. e S . R . g . AP AL . e S Sy e S T e o4 T T . .
*f

{ *ARGSUSED™ f

int;

ttpute (SOCKET sfd, FILE *tfp, int c)

{

scatic lagt char;
int te = Q;

if (revbinary) {

{void) xputci{c, tfp); /* print uninterpretted */
return §;

]

if (aynching) /* no data, if in SYNCH */
retumn ;

if ({last_char == VECR k& ¢ == VPLF} ||
{last_char == VPLF &k c == VBCR)) {

(void) xputc (VPLF, tfp);
last_char = 0;
return i;

}

if {last_char == VFCR]}
(wvoid) xputci(VECR, tfp};

elae if (laat_char == VFLF)
fvolid) xputc{VPLF, tfp);

Sec, 26,17 Displaying Incoming Data On The User’s Terminal 415

if (¢ »= * * && © < TCIAC) /* printable ASCIT */
(wvold) spute{c, tfp);
aelse { /* NVT special */
switch icy {
case VPLF: /* geg if CR follows)
case VPCR: tc = 1; /* see 1€ LF follows *)
braad;
default:
break: /* no action */f
),
if (!tc) * if no termecap, assume ASCIT */
{void) xputc(c, tfp);
1
lagt_char = c;
return 0;

If the server has agreed 10 send hinary data, npure merely calls xputc to display
each character. File xput.cpp contains the code:

415 A TELNET Client {Implementation Details) Chep. 26
/T xpuat.cpp - xputc, xfputs */
#include «<atdio, he

extern FILE *scrip;

o
int
xputc{char ch, FILE *fp)
{

if {scrfp)

{(void) putci{ch, scrip);

return putc{ch, fp):;
}
‘a’i __

xfputs {char *str, FILE *fp)
{
if {sorfp)
return fputs{str, scrip);
return fputsistr, fp);

Xputc differs from the conventional puic function because the client provides a
scripting facility. If scripting has been cnabled, xputc writes a copy of the output char-
acter 10 the script file as well as sending a copy to the user’s display. Otherwise, xpre
only sends a copy to the display.

If the server is not sending binary data, ##putc must translate from the NVT encod-
ing into an appropriate character sequence for the user’s terminal. Two cases arise: the
client can be in normal mode or in synchronize mode. The client enters synchronize
mode when it receives a TELNET SYNCH command. While in synchronize mode, the
client reads and discards all data. The client returns to normal mode when it encounters
a TELNET DATA MARK.

When it recejves a SYNCH command, procedure relner cpp sets global variable
synching, witich causes the client to enter synchronize mode and seek 10 the next DATA
MARK characier in the data stream. The client must discard all inputl in synchronize
mode (i.e. not display it). To implement synchronization, #putc checks variable syach-

Sec. 26.17 Chsplaying Incoming Bata On The User's Ternuinal 417

ing on each call. 1f synching 1s nonzero, tputc drops the character without displaying it
on the uset’s screen.

Once it has checked for synchronize mode, fputc must interpret the remaining
characters using the NVT encoding. Because some NVT encodings consist of a 2-
character sequence, #puic keeps a copy of the previous character in global variable
fast_char.

First, tpute handles carrigge return (CR) and linefeed {LF). It recognizes either of
the 2-character sequences CR-LF or LF-CR as an end-of-line, and translates them to the
single character LF that Windows uses. Of course, if either a carriage retumn or line
feed character occurs alone, #putc sends the character to the screen.

Ttputc calls xpwic 10 print any of the printable ASCII characters directly. Other-
wise, it handles the special characters.

26.18 Writing A Block Of Data To The Server

Telner calls procedure sowrite 10 write & block of data to the server.

/¥ sowrite.opp - sowrite */

#include <gtdio.h>
#include ewinspck.h>

#include “tnfsm.h"

extern struct fsm trans sostab[];

exterr: int sostate;
extern v_char sofam() [NCHRS] ;
II.I"f __

scwrite {SOCKET sfd, FILE *tfp, u_char *buf, int cc)
{

sStruct fem trans ot

int 1, ki;

For {i=0; i<co; ++4)
int c = buf[i]l;
ki
pt

sofami{soatatel [c] ;
LEgostablki);

H

418 A TELNET Client {Implemeniation Derails} Chap. 26

if ((pt-»ft_action) {sfd, tfp, <) < 0)

sostate = KSREMOTE: J* an error ooccurred */
elze

sostate = pt-»ft_next:

Sowrite iterates through each character in the specified block and runs finite state
machine sofsm 1o process each character.

26.19 Interacting With The Local Client

Like most TELNET client programs, our implementation permuts the user 1o in-
teract with the local client program. Te do so, a user types the kevboard escape charac-
ter followed by a command. The table in Figure 26.1 lists the possible commands that
can follow an escape character along with their meanings:

Symbolic Character

Name Typed Meaning

KCDCON Terminate the session immediately.

KCSTATUS ™ Print status information about the
current connaction.

KCESCAPE 1] Send the escape character to the server
as data.

KCSCRIPT s Begin scripting to a specified file.

KCUNSCRIPT u Terminate scripting. -

Figure 26.1 Keyboard input characters that the TELNET client intgrprets as
commands when they follow KCESCAPE. The notation TX
refers 1o the character generated by holding CONTROL and typ-
ing X.

File relnerht contains symholic defininions for each of the keyboard command
characters. For example, it defines the keybouard escape character, KCESCAPE, to be 1]
{i.e., the character with octal value 035).

When the client encounters the keyboard cscape character, it changes the state of
the sockel outpmt FSM from KSREMOTE o KSLOCAIL and interprets the succeeding
character as a commandf. Because most commands consist of a single character, the
socket output FSM usually moves back Lo state KSREMOTE and executes an action
procedure associated with the cornmand. For exampie, if the FSM cncounters character
KCOCON follawing KCESCAPE, it calls procedure deon.

tFile telnet b appears on page 372,
tThe socket oulputl FSM is described i Figure 25.7 on page 383,

Sec. 26.20 Responding To Negat Commands 419
26.20 Responding To llilegal Commands

If the user types an wnrecognized character following a keyboard escape, the socket
output FSM calls action procedure somotsup which priats an error message. File
sonoftsup.cpp contains the code:

/* aorwotsup.cpp - sonotsup S

#include <stdio. h>
#include <winsock.lh>

L — o e o e e e e e L ———————————————— - - - —
*/

/ *ARGSUSED™ /

int

sonotsup (SOCKET sfd, FILE *tfp, int o)

{

fprintf (tfp, "‘nunsupported escape: %c.\n", cj;
fprintf(tfp, "s - turn on scripfing\t\t']:
fprintf(tfp, "u - twmn off scripting\n”};
fprintf(tfp, =. - discommectititit"]);

fprintf (tfp, *~T - print status\n*);

return {;

26.21 Scripting To A File

Our exampile TELNET client has one novel feature not found in most other clients:
it permits the user to dynamically create a script file that contains a copy of all data be-
ing sent to the user's display. The idea underlying scripting is that a user may need 1o
keep a record of all or part of a TELNET session.

Scripting is dyramic because the user can start or slop it at any time. Furthermore,
the vser can change the file inte which the client writes the script. Thus, to capture the
output of a single remote command, the user can log into the remote system with script-
ing disabled, then enable scripting and issue the command or commands for which the
output must be kept, and finally, disable scripting. The script file will contain a copy of
everything that the client displayed on the user's terminal while scripting was enabled.

420 A TELNET Clienl {Implemen:aticn Details) Chap. 26
26.22 implementation Of Scripting

The socket output finite state machine illusirated in Figure 25.7 defines how the
client handles scripting. If the user types T]s {ie. character KCESCAPE followed by
character KCSCRIFPT), the socket output FSM calls action procedure scrinid and enters
state XSCOLLECT. Until the user types an end-of-hne character {i.e., KCCR), the FSM
stays in state KSCOLLECT and calls procedure scrgetc 10 collect a stong of characters
that form the pame of the script file. Once the user terminates the line of input, the
FSM calls scrwrap 0 open the senipt file and move back to state KSREMOTE. The {ol-
lowing sections each discuss one of the action procedurgs associated with scripting.

26.23 Initialization Of Scripting

When the socket cutput FSM first encounters a request to begin scripting, it calls
action procedure scrinit.

F* scrinit.opp - sorinit */

#include <stdio. h>
#include <string.h-
#include <winsock,hs

¥inciude “telnet . h”
#include *local . h”

extern int scrindex;
exterT. unsigned intc tnflags;
‘IF* __

T T T e S - T e e o oy ey L L e g 7 e e ey b e e

*/
/ *ARGSUSED* /
int

scrinit {SOCKET sid, FILE *tfp, int c)
(
if {‘doecho) {
fprint€{tfp, "\nacripting requires remote BECHD.\n");
return -1;
}
if (sorfp) {
fprintf{tfp, "\nalready scripting to ““¥5\".\n", scrmame);

Sec. 26.23 Initialization Of Scripting 421

retarn -1;
)
sorindex = Q;
tnflags = tiyflags;
teyflagse = ECHO;
fprintf {tfp, "‘\nocript file: ")
void) fflushitfp);
return. 0;

Scrinit first verifies that the client is using remote echo (i.e., that all characters be-
ing displaved are coming from the server and not from keyboard input). It also verifies
that the vser does not already have scripting enabled. Scrinit sets global variable scrin-
dex W zero. Another procedure will use scrindex to count characters as it reads the
name of the script file. Finally, before it prints a prompt, scrinit saves the current con-
trol flags for the console in global variable tnflags. and changes the mode of the user’s
terminal so the local terminal driver will print the characters of the file name as the user

types them.

26.24 Collecting Characters Of The Script File Name

The socket output FSM uses action procedure scrgefc to read a sequence of charac-
ters that will be used as the name of a script file. File scrgete.cpp contains the code:

422 A TELNET Client { [mplemeniation Details) Chap. 26
/* sorgetd.cpp - scrgebc Y/

#include <stdio.h>

#include <string.h>

#include <winscck.h>

#include "local.h”

#define SFBUFSE 204E /* soript filename buffer size */

unsigned int tnflags;

FILE tgorfp;

char scrname [SFEBUFSZ] ;

int sorindes;
gy Sy Sy

*/
/ "ARGEUSED* /
int
scrgetc{SOCEET sfd, FILE *tfp, int <)
{
scrname [sorindexs+] = o
if [ascrindew »= SFBRUFSZE) | f* top far */
fprintfitfp, "‘\nname too longhin®});
ttyflags = tnflags;
retwrn -1;
1
return 0;

Each time a character arrives, the client calls scrgese, which appends the character to
string scmame.

26.25 Opening A Script File

When the client encounters an end-of-line, it calls procedure scrwrap to open the
script file,

Sec. 2625 Opening A Script File 423
A% BCTWrap.cpp - Scrwrap *f

finclude <io.he
*include <fentl, h>
dinclude <stdie.h-
tinclude <string.h>
#include <errno. b
#inciude <winsaock.h>

¥include "local. h®

extern char scrnamef]:

extern int sorindex;

extermn ursigned int tnflags;

L SR — e R T T o o o e . . . e

* scrwrep — wrap-up soript filename collecticn

falfd
/ * ARGSUSED™ /
int
scrwrap {SOCKET sfd, FILE *tfp, int <)
{
int £a;
Lf (scrindex) {
) sername [scrindex] = 'A\D';
scrindex = {;
fd = open{scrname, O_WRONLY|O CREAT|O_TRIUNC, 0644);
if (fa < 0}
fprintE(tfp, "yncaa't write Y“%s*: &s\n".
scrname, sScrerrorlerrncll;
else
scrfp = fdopeni{fd, "w"i;
3
putchar{'\n'};
ttyflags = tnflags:
return 0;
K

Scrwrap adds 4 null terminator to the string that has been collected, rescts global
variable scrindex so it can be used again, and calls open to open the script file. If 1t
successtully obtains a new descoiptor tor the script file, serwrap calls fdopen 1o create a
standard 1#0 file pointer for the scrpt file and places the pointer in global varable

434 A TEILNET Clicnt (Implementation Details) Chap. 26

scrfp. Before it retums, serwrap uses global vanable mflags to reset the terminal modes
1 the values they had before scrinit changed them.

26.26 Terminating Scripting

When the user decides 1o disable scripting, the socket autput FSM calls action pro-
cedure unscript.

/Y unscript.cpp - unscript */

#include <=ys/types >
#include <sys/stat.h>

#include <stdio.h>
¥include <winsock.n>

#include "local .h"

*
/ TARGSUSED™ /
int
uescript (SOCKET sfd, FILE *tfp, int <)
{

struct stat . Statb;

if i(scrfp == 0) {
fprintf{tfp, *\nNot scripting.\n"}:
return J;

}

{(void) Efiushi{scripi;

if (fstat (filenoi{scrfp), &kstath) ==)
fprintfi{cfp, "\n\"%a\": %4 bytes.\n*, =crname,

gtath.st_gize);

(void) fclosel{scrip);

scrfp = 0;

returm 0;

Sec. 26.26 Terminating Scripting 425

Unscript prints ag informational message to tell the user that the client has stopped
scripting, uses the Windows function fstet to obtain information about the resuliing
script Nile, and prints a message that gives the size of the script file. Finally, unscript
closes the script file and clears the giobal file pointer, sctfp.

26.27 Printing Status Information

The user can oblain status information about the cutfent connection by using Lbe
KCSTATUS command follawing a kevboard escape. The socket output FSM calls ac-
fion procedure status 10 print the connection stalus.

/* status.cpp - status v/

#include <stdic.h=
finclude <winsock. h>

¥include “telnet.h”

extern char *host, scriiame(];
exterm FILE *sorfp:

*/
/*ARGSUSED* /
int
statuz {SOCKET sfd, FILE +*tfp, int c}
{
stract sockaddr in =1in;
int sinlen;

fprintf (tfp, "‘\nconnected to *%s\" ", host);

ginlen = sizeof{sin);
if (getsocknameisfd, {struct sockaddr *)&simn,
Esinlen) == 0)
fprintfitfp, "local port %d ', ntohsisin.sin_port]];
ginlen = sizeof{sin);
if (getpeernamei(sfd, (struct sockaddr *)&sin,
&sinlen) == 0}
fprintficfp, "remote port %A *, ntohs{sin.sin portl}l;
{void) putcl('yn', tfp);

424 A TELKET {lient {Implementstion Details) Chap. 26

if (doecho || sendbinary || rovbinary) {

printf{*options in effect: *);
if [doecho]

Eprintf(tfp, "remote_echo ");
if {sndbinary)

fprintfitfp, *send binary “i;
if {(rovbinary).

fprintf(tfp, "receive pinary "):
{void) putci{'sn', tfp);

}
if (=scrfp)

fprintf{cfp, "scripting to file YW "%s\"\n", gornmame)
return 0;

Procedure starus prints information such as the name of the remote host, the local
and remote TCP protocol ports used for the connection, and a list of the options in ef-
fect. To do so, it calls socket functions gefsockname 10 obiain information about the lo-
cal protocot port number, and gelpeername to obtain information ahout the remote pro-
1wcel port number. It uses library function mtohs to convert the port numbers from net-
work byte order 10 the local host’s byte order. Finally, status examines the options
currently in effect. [If either remote echo or binary transmission is enabled, stafus prints
the status of the options.

26.28 Summary

Our example TELNET client uses three finite state machines to interpret sequences
of characters that arrive from the server or from the user’s keybeard. Each incoming
character causes a transition in a finite stale machine. When the client performs a tran-
sition, 1t calls a procedore thal implements the action associated with the transition.

This chapter describes the action procedures for the three finite state machines that
comprise the example client. Some actions are trivial while others are complex. The
chief disadvantage of crgamizing the client software as action procedures for the finite
state machine hies in readability. The resulting code can be difficult to understand be-
cause one cannot ascertain the relationships among the procedures without referring to
the finite state machines.

For Further Siudy 427

FOR FURTHER STUDY

A series of RFCs documents the details of TELNET options, and contains protocol
standards for each of the options handled by the example code. Postel and Reynolds
[RFC 838] discusses the go-ahead option, while Postel and Reynolds [RFC 857])
discusses characier echo. Postel and Reynolds [RFC 836] describes the option that con-
trols 8-bit binary transmission. Finally, VanBokkelen [RFC 1091] discusses the
terminal-type option and the associated option subnegotiation.

EXERCISES

26.1 Some terminal types support multiple emulation modes, making it possible to have a set
of terminal type names for a single terminal. Read RFC {091, How can a client use a
list of terminal names when it negotiates the terminal type with a server?

26.2 Read Ihe protocol slandard to find out exactly when a server must swiich from sending
data encoded wsing the network virtual 1terminal encoding 1o sending 8-bit binary data.
In panicular, how does the server handie transmission after it volunteers to transmit
binary data, but has not received an acknowledgement?

26.3 Does a chent send WL or DO when it requests the server to perform a given option?
What does the server send when it requests the chient to perform an option?

26.4 What does the mode argument O_WRONLYIO_CREATIO_TRUNC mean in the call to
open found n procedure scrwrap?

26.5 Instrument the client to print a message when it receives an option request. Use the
modified client ta contact a variety of servers. What option requests do they tend au-
tmatically?

26.6 What happens if the chent sends D3 ECHO and the server sends WILL ECHO simul-
taneously?

26.7 What happens it a clignt sends 20O ECHO to a server thal already has ECHO enabled?

27

Porting Servers From UNIX
To Windows

27.1 Introduction

The example code throaghout this text has been written to provide a tutorial illus-
tration of the concepts for programmers wheo are building client-server software for a
Windows environment from scratch. Many programmers face a more difficult chal-
lenge: porting software lhat was developed for another operating system to Windows.
[n particular, because many client-server applications are initially written for the UNIX
operating system, programmers are often asked to port server code from UNIX.

This chapter facilitales porting efforts by descnbing conventions and practices that
professional UNIX programmers follow when building production programs. Although
some of the facilities and technigues described here have no direct Windows equivalent,
vnderstanding why they are used will help programmers understand how they affect the

PTOErams.

27.2 Operating In Background

UNIX allows a process to execute in foreground or in background. The easiest
way o understand the difference is to imaging a user {yping commands to a2 command
interpreter. Normally, each command executes in foreground, meaning that the inter-
preter waitls while the command executes. Once the command finishes, the command
interpreter issves another prompt and allows the user to enter a new command. Ir con-
trast, a program that runs in background does not finish before the command interpreter

429

430} Porting Servers From UNIX To Windows Chap. 27

issues another prompt. Instead all background programs continue to run at the same
lime as a single foreground program.

Most servers execute in background hecause they run forever. A server begins ex-
ecution when the operating system starnts, and executes 1 background waiting for re-
quests 1o arrive. Usually, the operating system is configured to start each server when it
runs the system startup script. (The startup script in UNIX, Jetc/re, operates like
untoexec. bar in a Windows syster.)

Adthough it is possible 1 program the startup script to place each server process in
background, most production servers put themselves in background quickly and au-
tomatically. Tn UNIX, the initial server program does not “‘move itselfl o background.™
Insiead, the initial server process exits after creating a new process that runs the server
code in background. The technique used consists of calling fork to create the new pro-
cess, and then calling exr to terminate the initial program. Thus, most servers execute
code similar to the following almost immediately after they start execuiion:

i = fork():;
if (1 < Q) { /* less than zero means error occurread*/
frrintf (stderr, “error when forking: %s\n®,
strerror (errnol ;

ent{l);
}
if (1) /* nonzerco is parent */
edt(0); /* normal process exit *f
}

/* child eontimpes esmcution: here and becaones the server >/

Unlike the CreateProcess function in Windows, fork makes a copy of the running
pregram, and the fork call returns in both copies. There are three possible return values:
a ncgative value means that an error occnmed (e.g., the system had insufficient memory
to create the new process), a positive result means that the call succeeded and the pro-
cess 1s the parent, and a zero means that the call succeeded and the process is the newly
created child.

If the cali to fork fails, the example code prints an error message and calls exit with
an argument of [(o indicate abnormal lermination. If the call to fork succeeds, the i
statement uses Lhe return value e distinguish between the parent and child processes.
The parent process calls exir with an argument of J w indicate normal termination. The
child continues execution and becomes the server. Note that in UNIX, a child is com-
pletely detached from the parent. Unlike a thread in Windows, the child process in
UNIX can continue to operale afler the parent exits.

Sec. 27.3 Shared Dvescriptoes And Inherilance 431
27.3 Shared Descriptors And Inheritance

Like a newly created thread i Windows, a newly created process in UNIX inherits
a copy of each socket descriptor that the parent had cpened when the child was created.
Unlike a Windows thread, however, UNIX makes a copy of descriptors for the child
process. Furthermore, UNIX uses a reference count mechanism for each descriptor that
counts the number of processes that have a copy. To understand reference counts, sup-
pose a parent has a file open when it calls fork. Even if the parent closes its copy of
the file descriptor, the child will still have a copy open, and the file will not be closed.
As a result, the system will keep resources allocated for the file,

To avoid using resources, a production server closes the inberited file descriptors
that it does not use. Usually, the server closes all descriptors before it creates any com-
mumcation sockets. In UNIX, a single function, close can be used an either socket
descriptors ot file descriptors; calling clese on an unopened descripior has no effect.
Thus, the code, usually executed tmmediately after the server moves to background,
resembles this:

for {i—getdtablesize()-1; i»= 0; —-1i}
ivoid) close(i);

Because the number of descriptors available o a process varies among UNIX sys-
tems, the example code does not contain a fixed constant. Instead, 1t calls function
getdiablesize to find the size of the process descriptor table. The descniptor table is in-
dexed starting at zero; the code iterates from the descriptor table size minus one down
through zero, calling cfose on each descriptor.

There are two importanl differences in a Windows implementation. First, Win-
dows does not use a reference coum for each thread. Thus, a child thread should not
close a descriptor that the parent needs. Second, Windows does not use a unified set of
descriptors for both files and sockets, and consequently, does not have a single functien
that will close either one,

27.4 The Controlling TTY

Each process in UNIX inherits a conneclion t0 a terminal thal has been designated
as its control terminal or controfling ny. The association with a controlling tty permits
a user who stafted a process to control it

Unlike most processes, a server should not receive signals generated by the process
that created it. To ensure that signals from a terminal do not affect a server running in
background, a server usuaily detaches itself from the controlling tiy. The code needed
to detach from a controlling terminal consists of three lines:

el BEL st Wi M s wmm e (e el dpptei Llen des s 10 wRR ne romee

432 Forning Servers From UNIX To Windows Chap. 27

fd = opemi{"/dev/tty", O_BINR);
(void) ioctl{fd, TIOCNOTTY, O);
(void) close(fd) : '

The call to open obains a descriptor for the controlling terminal, the call to joct de-
taches the process from the terminal, and the call to close releases the descriptor.
Windows does not have a concept of controlling terminal. Thus, there is no need
for a Windows server to detach itself to avoid signals from the terminal. Consequently,
code such as the above can be eliminated when porting a UNIX server to Windows.

27.5 Working Directories

Like DXOS, UNIX uses the term directory for the file system abstraction that some
systems and applications call a folder. In UNIX, each executing process is assigned a
current working divectory. A process can change its current directory at any time by
calling the chdir function. For example, 1o change 1o directory Zerc/server!, a program
execules the following:

(void} chdix(™/etc/serveri”);

The curreni directory notion is most important for file names. A [ile name that
does not begin with the slash character (/) 15 interpreted as a file in the program’s
current working direciory. Thus, if a server that has curvemt working directory
fetc/ververt creates a file named x, the file will be located in disk file sete/serverisx. To
translate 10 a3 Windows environmert, the file names used with chAdir must be valid, and
cach occurrence of backsiash must be doubled in a string constant:

(void} chdir{"C:\\sexrvarl"};

27.6 File Creation And Umask

Similar 10 Windows, each file in UNIX has a protection mode that specifies the ac-
cess that the owner and nonowners are permitted. The UNIX protection mode on a file
15 stored as nine bits, and cach UNIX process has a umask that specifies the protection
mode the system will assign 10 files thal the process creates. The umask is an integer in
which the low-order & its are significant. Whenever a file is created, the system com-
putcs a mode for the file by performing a bil-wise gud operation of the mode specified
in the epen call and the bit-wise complement of the process™ umask. For example, sup-
pose a process has umask 027 {(octal}, If the process iries 1o create a file with mode
0777 (readable, writable, and execulable by everyone), the system arrives at the correct
file mode by computing the hit-wise and of 0730 (the complement of umask (727) and
(3777 {the requested mode). As a result, the file mode will be 0750 {readable and exe-
cutable by the owner and the file's group, writable only by the owner, and not accessi-
ble by olhers).

Sec. 27.6 File Creaion And 1Tmask 433

Servers often execute code that restricis file creation modes. The server psvally
calls function wmask as in:

fwodd) uvmask (027} ;

The Windows _umask function works like the UNIX umask function. However,
because Windows does not have provisions for groups or other users, onky two modes
are used: read-only or read-write. The comesponding constants are: _S_JREAD and
_S IWRITE.

27.7 Process Groups

UNIX has a process group abstraction that permits a set of processes to be treated
as a single unit. Usually, each server operates independently from other processes, and
calls function sefpgrp to specify that it ts not part of any process group:

{void) setpgrp(0, getpid{));

The call can be eliminated when porting a server to Windows.

27.8 Descriptors For Standard /O

In UNLX, many library routines expect three file descriptors to be open and avail-
able for 1/0. Known as standard inpur, standard owipis, and standard error, the
descriptors have values O, !, and 2. For example, the library routine perror, which
prints error messages, wiiles to the standard error descriptar without checking to ensure
it is open. To avaid problems, servers usually open the three descriptors, even if the
server does not explicitly use them for 0. The code resembles the following:

f4 = open("/dev/milil", C_RIMR}; /* stdin */
{void) dup({fd); f* stdout */ .
{void) dup(fd): i* stdexrr */

The code assumes all descriptors have been closed; 1t does not need to specify descrip-
tor numbers because UNIX assigns descripiors sequentially, starting at zero.

434 Porting Servers From UNIX To Windows Chap. 27

27.9 Mutual Exclusion For A Server

A server s mutually exclusive in the sense that only one copy of the master secver
should exist at any tume. To avoid unintended errors, some servers mvoke a mechamsm
that guarantees mutual exclusion when they begin exccution. Most UNIX servers use a
lock file mechanism to achieve mutually exclusive execution; a separate lock file is as-
signed to each server. When a copy of the server begins execution, it attempts 10 estab-
lish its designated lock file. If no other process i1s holding the lock, the attempt
succeeds: if another copy of the server has already locked the file, the atternpt fails.

The code 10 obtain a lock usually consists of:

J* Aoquire an exclusive lock, or esit. Assunes */
/* symbolic constant LOCKF has been defined to be *f
/* the name of the server's lock file. For ecmple, */

i #define LOCKF /fusr/spool/lpd.lock >/
/* >/
1f = open{LOCKF, O_RDWR{Q_CREAT, 0640);
if (if < Q) /* error ooccurred gpening file */
esdt{1);
if {flock{lf, LOCK_FX|LOCK_NB))
exit{{); /* could not obtain a lock */

In Windows, the LockFile function performs file locking that can be used for mu-
tual exclusion.

27.10 Recording A Process ID

Because the UNIX signal mechanism requires the sender to know the I of the
process to which a signal is sent, many servers record their process 1D in a file, ena-
bling a system administrator to signal the server easily. Often, a server records its ID in
its lock file, which contains no other infarmationi. Thus, once a lock file has been
created, one might find code such as:

char df[f10); /* an array to hold ASCIT pid */

/* Write the ID of the current process in a */
/* lock file, assuamirkr the file has bean opened */
/% and ite descriptor stored in variable 1f£ */

(void) sprintf(pkuf, "%6d\:n*, getpid());
(void) write(lf, piuf, strlen{paf));

1The locking system depends only on the presence of a file and not on its contents.

See. 2710 Recording A Process |ID 435

The Windows function _getpid operates like the UNIX gefpid. Thus, a server run-
ning under Windows can call _gerpid to find s process ID, and then record the 1D in a
file. The system administrator can use the information 1o terminalte the server.

27.11 Waiting For A Child Process To Exit

When a UNIX process exits, two cases arise. Either the process is orphaned be-
cause the parcnt has already exited, or the paremt still exists. If the parent has exited,
the child will terminate. If not, the system cannot complete child termination until it in-
forms the parent. The parent must call system function weit before the child’s termina-
tion can complete. Mecanwhile, the terminating child process exists in a zombie stare,
and is sometimes called a defunct process.

A concurrent UNIX server that creates a slave o handle each request must call
waif when each slave completes. The system sends the server a signal, which the server
must caich. The following code invokes procedure cleanup each time a child procass
terminates (cleonup calls wait or a variant such as wait?).

signal (SICCHLD, <learip);

A UNIX server may contain additional calls to the signal function to establish a handler
for other signals. For example, a server thal accepts connections over a dialup tele-
phone line will contain a call to handle SIGHE/P, the signal that is seat if the phone line
is disconnected vnexpectadly.

27.12 Using A System Loy Facility
27.12.1 Generating Log Messages

We mentioned earlier that many servers, generate output for debugpging and
maintenance. In production servers, the cutput is usuvally restricted 10 error messages
generated when the server finds unnsual circumstances or unexpected events. However,
some production servers are programmed to keep a log of each connection or transac-
tion. UNIX servers often use a client-server mechanism known as sysiog. When a run-
ning program needs (o wrile a message la a tog, it becomes a client of the sysfog server,
which can be located on another computer. The running program sends ils message to
the log server, and then continucs execution, The log server handles the message by
recording it (c.g., on disk).

As Figure 27.1 illusirates, Lhe syslog system defines a sel of facility types along
with their meanings.

43

Facility Name

Porting Scrvers From UNLX To Windows Chap. 27

Subsystem that uses it

LOG_KERN
LOG_USER
LOG_MAIL
LOG_DAEMON
LOG_AUTH
LOG_LPR
LOG_RPC
LOG_LOCALG

The operating system kernel

Any application program

The electronlc mall system

System programs that operate in background

The authorization and authentication system

The printer spooling system

The RPC and NFS subsystems

Reserved for local use; names LOG_LOCAL1 through
LOG_LOCALY are also reserved

Figure 27.1 The facility types defined by sysfor. Each log message must on-

pritite foonm one of these facilities.

As the figure shows, yvsfog has a facility for each major subsystem. For example,
programs associated with e-men] belong to the LOG_MAKH. facility, while most servers
that run in background belong o \he LOG_DAEMON facility.

As Fgure 27.2 shows, Susiog also defines eight prionity levels that range from
LOG_EMERCG, which 15 intended for the most severs emergencies, (o LOG_DERUG,
which programmers use to lag debugging information.

Priority Description

LOG_EMERG An extreme emergency; the message should be
broadcast to all users

LOG_ALERT A condition that should be corrected immediately
(e.q., a corrupted system database)

LOG_CRIT A critical condition like a hardware error
[e.q. disk fallure)

LOG_ERR An error that requires attention, but is not critical

LOG_WARNING A warning that an error condition may exist

LOG_NOTICE A condition that is not an error, but may need attention

LOG_INFO An informatlonal message (e.g., a message issued
when a sarver starts execution)

LOG_DEBUG A message used by a programmer for debugging

Figure 27.2 The eight priority levels defined by sysfog. Each log message

must have one of the priority 1ovels specified,

Whenever a program uses sysfog 1o handle a log message, the program must speci-
fy a lacility and a priority level. To make syslog casier to use, the library routines per-
mat a programmer o specify a facility when the program begins and to have syslog vse
the facility for successive messages. To specify an imtial facility, a program calls pro-

Rec, 17.12 Using A Sysiem Log Facility 437

cedure openlog. Openiog takes three arguments that specify an idenufication string, a
set of handling options, and a facility specification. Sysiog prepends the identification
10 all successive messages that the program writes to the log. Usually, a programmer
chooses the name of the program as its identification string. Openlog imtalizes the fa-
cility, and stores the identification string and options for later use. For example, a pro-
grammer who is testing a private program can call:

openlog{ "myprog”", LOG PID, LOG_USER);

1o specify identification string myprog, logging option LOG_PID, and facility
LOG_USER. Option LOG_PID requests that sysipg record the program’s process 1D
with each log message.

When a program needs to send a log messape, it calls procedure svslog. which
sends the message to the server on the local machine. Procedure syylog takes a vanabie
number of arguments. The first specifies a priority for the message, and the second
specifies a pringf-like format. As in pringf. arguments following the format are variables
1o be printed according to the formal. [n the simplest case. a program calls sysiog with
a constant string as a format and no additional variables. For example. 10 record a de-
bugging message on the system log, a program can call:

syslog(LOG DEHIG, "server apened its imput file"};

Once a program limshes using syslog, it calls procedure closelog to close the log
file (i.e., terminate conlact with the server). Closefeg lerminates the connection, and
releases the /O descoplor allocated to it

Although the svsfog lacihity is not as widely used in Windows systems as in UNLX,
versions of the client code are available. The local system administrator usually
chooses a logging mechanism.

27.13 Miscellaneous Incompatibilities

Despite superficial similarities, substantial incompatibilities exist between UNIX
and Windows. The diffcrences make it difficult to port code because they olten require
changing the entire program structure. For example, although UNIX allows the /O rou-
tnes read and write to be vsed with sockets, Windows does nol. Surprisingly. many
programs call reqd and write indirectly — the programs contain calls 10 standard 1/O
functions which invoke read or wrire to transfer data. As a consequence, a program
that uses any standard /O function with a socket will not work under Windows.

Differences between the way UNIX and Windows handle descriptors also make
porting difficult. In particular, UNEX programs can use functions like selecr with a set
of descriptors that include both socket and file descriptors. For example, a UNIX ver-
sion of the TELNET client described in Chapters 25 and 26 has a much different struc-
ture. Instead of a keyboard thread and a main thread, the UNIX version consists of a
singly-threaded process. The process calls sefect to wait for input from the keyboard or
the TCP socket connected to the server.

438 Porting Servers Froo LINIX To Windows Chup. 27

Another small incompatibility between UNIX and Windows anses from the way
funclions return error codes. Because UNIX socket functions return the value -7 to in-
dicate that an error occurred, most UNIX programs mterpret & return value of less than
zerg as an error. 1o Windows, socker functnions return an explicit valpe of
INVALID _SOCKET or SOCKLET _ERROR o indicate that an ervor occurredi. Thus,
when porting a program, all error checking code must be changed.

A final difference between UNIX and Windows anses becavse UNIX systems res-
trict access (o specilic protocol ports. On a UNIX system, a server must have the
highest privilege 0 use a TCP or UDP protocol port with a number less than {024,
Chent-server software that 15 crealed for a UNIX system ofien uses low parl numbers as
a form of security - each side knows that 1t must be communicating with a pnivileged
program and not an average user. Under Windows. no such restrictions exist, so clients
and servers cannot depend on fow port numbers for securily.

27.14 Summary

Windows programmers are ofren asked w port server code from the UNIX operat-
g system or to design code that can be used on both Windows and UUNIX. Because
the facilities in UNLX differ from those in Windows, the code may differ significantly.
‘This chapter discusses several techniques UNIX servers use, and shows examples of the
code required for cach. The pasticalar techimques discussed include the following con-
cepts;

* Operating in background
Inheritance of descriptors
Detaching the controlling terminal
Changing directories

File protection modes

Process groups

Standard /O descriptors

Mutual exclusion

Recording process idenuifiers
Child process termination signals
Using svsfog to record messages

FOR FURTHER STUDY

Bevendge and Weiner | 1997] and Rector and Newcomer [1997] discuss program-
ming under the WiniZ interfuce, including multithreaded applications. Many of 1he
rules UNIX programmers follow when implementing servers come from unwritien con-
ventions and heuristics: often programmers learn techniques by reading existing pro-

TThe value reworned depends on the socke function and the error; consult Appendix 7 lor exampies.

For Further Study 438

grams. Stevens [1990] discusses how to write daemon programs and describes some of
the techniques outlined n this chapter.

EXERCISES

271 Examine a UNIX server to see how many techniques from this chapter you can identify,

27.2 Consult the Windows lierature and make a list of techniques described in this chapter
for which znalogous facilities exist in Windows.

27.3 What happens in Windows if a child thread closes all socket descriptors when it begins?

27.4 Can file creation be used to provide mutuzl exclusion in Windows? Explain.

27.5 Read about the functions available in Windows to open files. If your version allows
O_EXCL, find out how it works. Can a server usg it to provide mutual exclusion? Why
cr why not?

27.6 Examing the source code for a production server that runs under Windows., What tech-
nigues from this chapter does it use? What techniques does it use thal are not covered in
this chapler?

20T Read the vendor's literature for the sysfog mechanism. How does a system administrator
change the configuration after the server has begun? Suggest an alternative mechanism,

28

Deadlock And Starvation In
Client-Server Systems

28.1 introduction

Previous chapters focus on the design of clieni-seiver systems and the structure of
individual client and server programs. They discuss ways that clients and servers sup-
port concurreat execution, consider tocls like RPC thil programmers use td construct
chent-server software, and show examples.

This chapter considers the dynamic behavior of distributed computation, focusing
on some of the surprising ways that client-server systems can fail. It expands the dis-
cussions about potential problems found in previous chiapters, and considers 1wo condi-
tions that can lead to delays or ioterruptions in servic:: deadlock and starvation. The
conditions are especially important 1o programmers wh work in a production environ-
mert, where disruptions in service cannot be tolerated.

In addition to examining how deadlock can result from ambiguous protocol specifi-
cations, the chapter discusses how programming errors and oversights can allow a mis-
behaving client to disrupt service for others. The chapter explains techniques that can
be used to prevent deadlock in client-server systems, anl explains consequences.

441

442 Dcadlock And Starvation [n Client-3erver Systems Chap. 238
28.2 Definition Of Deadlock

In computer systems, the term deadlockt is wsed to characterize a situation in
which computation cannot proceed because a set of two or more components in the sys-
tem is blocked and esach component is waiting on another component in the set. Typi-
cally, each component is a thread that is blocked waiting for a resource that is held by
another thread in the set.

Deadlock is a permanent failure that should nol be confused with temporary block-
ing. The test for whether a deadlock has occurred is sunpie: will an exdernal input al-
low computation to proceed? For example, consider a set of three threads. Suppose
two threads block while the third interacts with a user. Once the user responds, the
third thread informs the other two, and processing continues. Althongh the three
threads can remain blocked arbitrarily long while they waitl for a user to respond, the set
15 not in a deadlock becanse input from the wser wiil allow processing to continue.

In contrast, a set of threads is trapped in a deadlock when each thread in the sct is
waiting for input from another member of the set. Because each thread is blocked, no
thread will ever emit output. Thus, none of the threads will ever receive input, and
there is no wav out of the deadlock. In terms of the test described above, the situation
is a deadlock because none of the threads in the set is waiting for external input.

28.3 Difficuity Of Deadlock Detection

Detecting deadlock at run-time is difficult; doing so in a distributed system is usu-
ally impossible. There are two reasons. Firsi, to distinguish deadlock from temporary
blocking, a detection mechanismn needs to know which resources each program holds
and why the program is blocked. Obtaining such informatiorn in a client-server environ-
ment means consulting multiple operating systems, which may each use a vnique set of
aperations. Second, hecause a programmer can invent abstract resources, it can be im-
possible for an operating system 1o determine which programs hold the resources — the
state is known only to the programns that create and use the resources.

Surprisingly, even when source code is available for each component of a system,
determining whether the system can deadlock is as difficult as proving a mathematical
theorermn. The potential for deadlock may not be apparent uniil the dynamic behavior of
the system is considered. That is, deadlock can depend on the order of execution, and
many different orders are possible when clienis and servers operate on separate comput-
ers. More important, deadlocks can surface in a distributed systemn despite a reasonable
design and implementation of each component, The consequence should be clear:

Because deadlock and starvation are extremely difficult or impossible
tr detect, the task of determining whether a set of clients and servers
is trapped in a deadlock cannot be awtomaied.

tSynonyms for deadfock include circufar wail, deadiy embrece, and synchronized lock: this chapter
makes no distinction among them.

Sec. 28.4 Deadlock Avoidance : q4.3
28.4 Deadiock Avoidance

What can be done to guarantee that service will not be disrupted? In general, the
answer lies in careful planning. Everyone who designs protocols, implements software,
or instails and configures client-server systems must be aware of the potential for
deadlock or starvation, and musl take care to aveid creating a system that is susceptible.

To avoid deadlock and starvation, one must understand the ways they can occur.
The next sections descnbe three ways the problems can appear in a clicnt-server system:
between a single client-server pair, among a set of clients and a server, and among a sel
of clients and servers.

28.5 Deadiock Between A Client And Server

The simplest form of client-server deadlock arises between a single client and a
server. If the chent blocks waiting for a message from the server, while the server
blocks waiting for a message from the client, the pair will be trapped in a permanent
deadlock.

To prevent such deadlocks, most application protocols are designed to use a
request-response paradigm. That is, one side (usvally the client} sends a request to
which the other side responds. The protocol must specify which side creates requests
and which side sends responses.

Deadlock errors can be introduced into a single client-server interaction in two
ways. First, a protocol design that does not fully specify synchronization can tead to a
chent and server that fail to interoperate. Second, a protocol design that assumes reli-
able delivery can misbehave if vsed with an unreliable transport mechanism.

To vnderstand how lack of a full synchrontzation specification can lead 1o prob-
lems, consider the {oilowing application protocol:

1. A client must first establish a connection {0 a server.

2. Immediately after the connection has been established, either the chient or the
server must send an initial message; the other end waits for the message and
sends an initial message response.

3. After the initial message exchange, the client can send requesls; the server
sends a response to each request.

4. Afier receiving a response for its final request, the client closes the connection.

Such imprecise protocol specifications can arise when a designer attempts (o give
implementors freedom to choosc details. In the example, the designer may have been
unable 1o decide whether it would be best to have the client or the server send the first
message. Thus, (0 permit maximum flexibility, the protocol has been worded to be pur-
posefully ambiguous. Unlortunately, two implementations that each follow such a pro-
tocol can deadlock: 2 programmer who implements the client side might assume the ini-
tial message will come from the server, while the programmer who implements the
server side might assume the initial message will come from the client. When the

444 Deadluwck And Starvation Tn Cheni-Server Sysiams Chap. 28

resulting client and server interact, they cach block waiting tor an initial message to ar-
nve from the other.

To understand how unreliable transport introduces crrors, consider a reguest-
response protocd! designed for a reliable transport {e.g.. TCPY. The protocol might
specify that the client should sead a request and ther waii for a response. If such a pro-
tocol is used over an unrehable transpon (e.g.. UDP), a message can be lost. Unfor-
narely, a lost request or response produces a deadlock inm which the client remains
hlocked waiting tor a response, white the server remains blocked waiting for the next
Tequesl.

28.6 Avoiding Deadlock In A Single Interaction

There are two ways 10 avold deadlock between a single client and a server. First,
te application protocot should be designed w specify synchronization. One side skould
be asstgned responsibility for initating the interaction (ie., sending a request). and the
order of interaction should be unambiguous. Second, the implementation must either
wse a relmable transpont protoca. or mclude a timer mechamism that places 4 maximum
Found on the tme that a sender will wait for a response belore relransoitting a request.

Although deadlock amony a chent and a server is undesirable, the problem only af-
fects the par ol programs involved. A shared server has an addidonal lability because
any problem that causes the server o be tnavailuble prevents other clients from access-
ing the service. More importani, a server (hat s susceptible to such problems is vulner-
able to malicious clicnts thar prevent service to others.

28.7 Starvation Among A Set Of Clients And A Server

The term siarvenion is used (o describe a situation in which some clients cannot
0bLiin access 0 a service, while other clients can. Starvation violales the principle of
laimess, which states that a server must offer service to all clients equally.

An werative server that permits arbitrarily Iong interaction is inherently anfair be-
cause 1t allows o single client to use the service while others sre excluded. Thus, most
interactive servers do not permit a single client 1o have exclusive, long-term use ol the
service. To guarantee fairness. an imteractive server can limit the number of requests a
given chent is allowed to send. For example, an iterative. connection-onented server
might close the connection after handling a single client reguest. Alternatively, a server
might close the connection aller 4 fixed time clapses,

As an cxample of how a malicious client can prevent others from using a service,
consider how a cliemt can exploit an interactive. connection-oriented scrver. Suppose
the protocol specifies that the client should send requests to which the server responds.
To slarve others, a malicious client cun open a connection to the server, and then never
send a request. The server will block waiting for a clienl request, which will never ar-
nve. Meanwhilc, no other client can use the scrver,

Sec. 2R.7 Starvation Among A Ser OF Clients And A Server 445

Of course, a server can prevent such problems by including a timer mechanism that
automatically closes an idle connection after a fixed timeout. When a client first forms
a connection, the scrver starts the timer at zero. When a request arrives, the server
stops the timer, compnies a response, and restarts the timer at zero. If the timer reaches
value T, the server closes the connection.

28.8 Busy Connections And Starvation

Although the idle connection timer described in the previous section handles the
case where a client does not send requesls, starvation is still possible. To understand
why, we necd to cbserve two facts, First, the idle timer measures the time berween the
transmission of a response and the receipt of the next request. Second, a transport pro-
tocol uses buffers and implements flow control.

The detuils of buffering arc important because a transport protocol places a buffer
at each end of a connection. On the sending side, the sending application deposits out-
going data in the sead buffer for TCP (0 transmit; on the receiving side, TCP deposils
tncoming data in the receive bulfer, where the receiving application extracts it. As long
as space remains 1n the receiver’s buffer, TCP continues (o {ransmit data from the buffer
an the send side.

How can a client take an unfair portion of a server’s time? The client can delay or
prevent fransmission. In pariicular, a client can:

* Specify a TCP recetve buffer size that is small compared to the amount of data
expeciedt.

» Send a request that requires the server to transmit data.
Either allow the recetve buffer 1w {fill withowl reading the incoming data 10
prevent transmission or read incoming data slowly 10 delay transmission.

[n such sitanons, the sending TCP will wransmit data until the receiving TCP's
buffer fills, at which time the receiver will advertise a zero window. The sender cannot
iransmit additional data until space becomes available in the receiver's buffer. Thus,
transrmission halts until the client reads data.

On the sending side. the server continues to write data into the outgoing buffer,
Because transmission is delayed or stopped, the output buffer eventually fills. When
the server atternpis to write into a filled buffer, the server will be blocked. The situa-
tion 1s not solved by an idie connection timer because the server is not blocked waiting
for a request. Instead, the server is blocked while sending a response.

tA socket oplion exists thal allows an application to specity the size of the buffer TCP uses.

446 Peadlock And Starvation In Client-Scrver Syslems Chap. 28
28.9 Avoiding Blocking Operations

How can a server avoid blocking during transmission? In general, there are two
solutions: the server can be concurrent or the server can avoid making calls that block.
In the former case, because a separate thread or process handles each client, a chent that
introduces delay will not affect other clients. In the laticr case, a server can implement
a timeout mechanism for a busy connection. Before each call to a blocking operation
ltke send, the server must verily that the call will not block. Il the systemn reports that a
socket 1s not ready to accept data, the server sets a timer, and then tnes again. If the
socket does not become ready within the aliotted bmeont, the server can close the con-
nection.

28.10 Threads, Connections, And Other Limits

Although concurrency helps solve many deadlock prohlems, concurrency has limits
as well. Chapter 15 points out that concurrency must be managed because unbounded
concarrency can cause problems. In particular, a server that creates a new thread for
each client connection is vulnerable 10 clients that misbehave because Operating systems
do not permit arbitrary concurrency. Eventually, a concurrent server can exhausi sys-
tem resources. For example, the operating system limits the nuimber of threads. the
number of active sockets, the total descriptors available, and the number of Transmis-
sion Contral Blocks (TCBs} that TCP can allocate. [n addition, each open TCP connec-
tion uses buffer space, so each additional connection requires memory,

To avoid making a server susceptible to problems of starvation, a programmer
must plan all resource utilization, including memory utilization, open connections, and
the degree of concurrency. Unfortunately, anticipating or controlling resource utiliza-
tion can be difficult. Because a. server is seldom built for a paricular computer, the
programuner usually does not know about system limits when wnting code. Further-
more, servers often execute on sophisticated timesharing computer systems that share
resources among all executing programs. Thus, the resources available to a server al
any time depend on the resources currently being used by other applications.

In cases where concurrency and resource usc cannot be anticipated or managed,
programmers can al least arrange to have a server report problems. For example, a
server can check the returm value from each system call and use a log O report errors,
A manager can examine the log periodically to determine whether the server has en-
countered difficulty. [f errors occur, the manager can take further action to determine
the cause. Although such reperts do not preveat problems from occurring. they provide
a mechanism that allows a manager to monitor server behavior.

Sec. 28.11 Cyeles OF Clients And Servers 447
28.11 Cycles Of Clients And Servers

Perhaps the most pernicious form of deadlock and starvation arises from inter-
dependencies among multiple services. To understand the problem, recall that a server
for one service can become the client of another. For example, imagine that a program-
mer is building a file server. If the file system records the time when a file is last
changed, the server may need to obtain the time of day whenever it handles a write re-
quest.

In most operating systems, an application program calls a system function to obiain
the current time. The system function extracts the current time from a hardware clock,
and then retumns the value to the application. In a client-server environment, however,
the tithe can be obtained from a remote machine. In essence, the function that obtains
the current time contains client code. The application that calls the function becomes a
client of a time server. The client sends a request, wails for a response that contains the
time, and then returns the value to the calling application.

In such environments, a deadlock can occur when clients and servers inadventently
form a cycle. In the above example, suppose a programmer is assigned to modify the
time server. To help debug changes, the programmer might decide to emit a log of all
calls to the time server. Unfortunately, if the log is written to a file, a circular depen-
dency results: the file server calls the time server, which calls the file server to write a
log message. If any of the servers is not concurrent, an immediate deadlock will result.
If both servers are concurrent, the file server will again call the time server, which will
call the file server, and the cycle will continue untl resources are exhausted.

The above example illustrates a problem known as livelock. Like deadlock, a
livelock results from circular dependencies. Unlike deadlock, however, participants in a
livelock are busy using the CPU and sending messages. In the example, livelock occurs
if the clients and servers are using a connectionless protocol to communicate. The file
server sends a message # a ime server, and waits for a reply. As the ttme server han-
dles the message, it sends a request to the file server. When the request ammives, the file
server generates a second message for the time server, causing the time server 10 gen-
erate a third request, and so on. Although both servers are busy sending and receiving
messages, the cycle will never be broken. If either server is slow, its queue of incoming
messages will become full, causing one or more messages to be lost. However, as soon
as a server reads one message from the queue, another will arrive to take its place. The
servers cannot perform useful work because they are tocked in an endless cycle of mes-
SAges.

28.12 Documenting Dependencies

To prevent cycles that lead to deadliock or livelock, programmers and managers
must avoid introducing cyclic dependencies among servers. As computer systems move
toward a client-server environment, understanding such dependencies becomes more
difficult, For example. although a Windows system can be configured to use NFS 10

BT T T L e T

448 Deadlock And Starvation In Client-Server Systems Chap. 28

access remote files, file names do not inform wsers or programumers that a file is remote.
Similarly, client software that 1s embedded in system commands (e.g., to retrieve the
current time of day), may not be apparent.

To help avoid inadvertent dependencies, programmers who work with client-server
software need to understand whether each library routine or operating system function
accesses a remote server. To provide the necessary information, an organization should
keep a detailed record of each server and the servers upon which it depends. Anyone
who creates or installs software should update the list of dependencies.

There are two approaches to keeping dependency information: coarse-grained and
fine-grained. Coarse-grained dependency aveoidance treats each service as a separate en-
tity, and ensures that no cycles exist among services. For example, if a remote file ser-
vice depends on the time-of-day service, the time-of-day service cannot be programmed
1o use the remote hNle service. Fine-grained dependency avoidance treats each server as
i separale entity, and ensurcs that no cycles exist among servers. For example, file
server X can call time server ¥, and titme server Y can call file server Z (but not file
server A

The chief advantage of a coarse-grained approach is that it is easy to document — a
tvpical environment contains only a dozen services, and there are few depende.cies
among them. The chief disadvantage of the cearse-grained approach is unpecessary
conslranl on interaction. In contrast, a fine-grained approach allows maximal depen-
dencies - a cycle can exist among services as long as no cycle exists among individual
servers. The chief disadvantage of the fine-grained approach arises from the additional
level of detail thar must be kept. The record of dependencics must be updated whenev-
et a server 15 added to the set, or whenever a server configuration is changed.

28.13 Summary

Deadlock and starvation are fundamental problems in a client-server environment.
Deadlock refers to 4 condition in which a sct of two or more syvitem components are
blocked waiting for each other. Starvation is a more general concepl that refers o any
situation in which access 10 service is unfair, one group of clients obtains better access
than another.

Deadlock can occur between a single client and a scrver. Such deadlocks vsually
result from an ambiguous protocol specification or from using an unreliable teansport
with u protocol thal is designed for reliable transpoirt.

When multiple clients access a single server, deadlock or livelock between one
clienl and the server can cause starvalion, meaning that other clients are prevented from
accessing the service. Starvalion can be caused by a client that opens a connection to
an tnteractive server, but does not send requests, or by a client that generates reguests,
bul does not cansume responses. [dle conneclion timeout can prevent the former case,
but not the latter.

Sec, 2813 Summary 449

Beczuse a server can temporanly become a client, a set of two or more servers can
deadlock if each server in the set atempts to become a client of another server in the
set. To prevent such deadlocks, cyclic dependencies among servers must be prohibited.

FOR FURTHER STUDY

Most operating syslem texts, including Peterson and Silberschatz |1985], discuss
the preblems of deadlock and livelock among programs running on a single compuler.

EXERCISES

28.1 Make a chan of dependencias among services al your ﬂrganizatiop,

28.2 Make a chart of dependencies among individual servers at vour organization.

28.3 Can a file system on computer A use NFS to access files on computer B while the file
jystem on computer B uses NFS to access files on computer A7 Explain.

28.4 Can a dead!lock occur amoeng three servers on a single computer? Explain,

28.5 Experiment with servers at your organization to see how many simultanecus connections
they permit,

28.5 Examing the configuration of vour local operating system. Will the system nun out of
TCBs, buffers, or sockets firs?

28.7 If you had a choice of debugging a deadlock problem or a livelock protlem, which
would you choose? Why? How would you proceed?

288 Can a clhient that uses TCP distingumish between a failure that occurs because the connec-
tion request queve for a server 15 full and a failure that occurs because the nerwork is
down?

289 In one implementation of NFS, the software that performed remote file system mounts
was blocking — the NFES client software would block untl the remote system responded.
Ta avoid deadlock. a programmer used ping (ICMP echo) to determine whether another
machine was avalable before attempling 10 mount its file system. Under what cir-
cumstances can a deadlock suli occur?

28.10 Students in a nerworking course built network monitor devices that analyzed trafiic on

the network. Two of the students decided to use the X Window Systemr to display their
results on a color screen. Either group conid run their project separately, but as soon as
bath started, the network becarne saturated. Explain.

R E R R i WO T e 1 VU s VLR B a s era®eb R R e TR bl - [

Appendix 1

Functions And Library
Routines Used With
Sockets

Introduction

In the Windows Sockets APIL, network communication centers around the socket
absiraction. Applications use a set of socket calls t0 communicate with TCP/IP
software in the operating system. A client application creates a socket, connects it to a
server on a remote machine, and uses it to transfer data and 1o receive data from the re-
mote machine. Finally, when the chient application finishes using the socket, it closes
it. A server creates a socket, binds it to a well-known protocol port on the lecal
machine, and waits for clients to contaci it.

Each page of this appendix describes one of the system calls or library functions
that programmers use when writing client or server applications. The functions are ar-
ranged in alphabetic order, with one page devoted to a given function. The functions
listed include: accept, bind, ciosesocket, comnect, gethostbyaddr, gethostbyname,
gethostname, getpeername, gelprotobyname, gelprotobynumber, getservbyname, get-
servhyport, getsockname, getsockopt, htonl, htons, inet_addr, inet_ntoa, ioctlsocket,
listen, ntohl, ntohs, recv. recvfrom, select, send, sendto, setsockopt, shutdown, socker,
WSA Cleanup, WSAGetLastError, and WSASwuartup

431

452 Functions And hibrary Routiaes Used With Sockets Appendix]

The Accept Function
Include File
#include <winsock.hs

Use
retvalue = accept { socket, addr, addrien };

Description

Servers use the accept funcilion to accept the nexl incoming conneclion on a pas-
sive socket after they have called socket to create a socket, bind to specify a local 1P ad-
dress and protocol port number, and fisten to make the socket passive and to set the
length of the connection request queue. Accepr removes the next connection request
from the queue (or waits until a connection request arrives}, creates a new socket for the
request, and returns the descriptor for the new socket. Accepr only applies to stream
sockets (e.g., those used with TCP).

Arguments
Arg Type Meaning i
socket SOCKET A socket descriptor created by the socker

function.
addr struct sockaddr FAR* A pointer to an address structure.

Accept fills in the structure with the 1P
address and protocol port nember of the
remote machine.

addilen int FAR* A pointer to an integer that initially specifies
the size of the sockaddr argument and, when
the call returns, specifies the nurnber of bytes
stored in argument addr.

Return value
If successful, accept returns a socket descriptor of (ype:
SOCKET

and the value INVALID SOOCKET to indicate that an error has occurred. When ap error
does occur, WSAGeiLastErrorf) can be called to retricve a code that gives ithe specific
cause of the error.

The Bind Fusclion 453

The Bind Function
include File
#include «<winsock s

Use
retvalue = bind (socket, localaddr, addren);

Description

Bind specifies a local IP address and protocol port number for a socket. Bind is
primarily used by servers. which need to specify a well-known protocol port.

Arguments
Arg Type Meaning
socket SOCKET A socket descriptor created by the socket

function.
localaddr const struct sockaddr FAR* The address of a structure that specifies
an [P address and protocol port number.
addrlen int - The size of the address structure in the
second argument in bytes.

Chapter 5 contains a description of the sockaddr structure.

Return value

Bind returns 0 if successful and SOCKET_ERROR to indicate that an error has oc-
curred. When an error does occur, WiAGetLastErron() can be called to retrieve a code
that gives the specific cause of the error.

354 Functions And likrary BEowines Lised With Sockers Appendix |

The Closesocket Function
include File
#include =winsook b

Use
retvalue = closesocket { socket |;

Description

An application calls eflosesocket after it finishes using a socket. Cloxesocker ter-
minatcs communicatior gracefully and removes the sockel. Any unread data wating at
the socket will be discarded.

In practice, Windows systems implement a reference count mechanism to allow
muitiple applications to share a socket. Ui n programs share a2 socket, the reference
count will be n. Closesocker decrements the reference count on each call. Once the
refercnce count reaches zero {i.e. all applications that were ustng the socket have cailed
closesocker), The socket will be deallocated.

Argumenis
Arg Type Meaning _
socket SOCKET The descriptor of the socket 0 be closed.

Heturn value

Clesesioned returns O if successlul and SOCKET_ERROR to indicate that an emor
has occurred. When an aoor does occour, WSAGelasrErron) can be called to retrieve a
code that pives the specific cause of the error.,

The Conmect Fariction 455

The Connect Function

Include File
#include <winsocik. k-

Use
retvalue = connect { socket, addr, addren);

Description

Connect allows the cailer to specify the remote endpoint address for a previously
created socket. If the socket uses TCP, connecr uses the 3-way handshake 1o establish a
connection; if the socket uses UDP, connecr specifies the remote endpoint but dees not
transfer any datagrams to it.

Arguments
Arg Type Maaning
socket SOCKET A socket descriptor created by the socker
function.
addr const struct sockaddr FAR* The remote machine endpaoint.
addrlen nt The length of the second argument,

Chapter 5 contains a description of the sockaddr structure.

Return value

Connect returns O if successful and SQCKET_ERROR to indicate that an error has
nccurred. When an ervor does occur, WSAGetLastErrorf) can be called 1o retneve a

code thal gives the specific cause of the error.

FATWET et s Cume i B WL AT s AT L o TAEEGe L kR © ek el e vy S

456 Funceons And library Hootines Used With Sockets Appendix |

The Gethostbyaddr Library Call

Include File
#include <avinsockc. h>

Use
refvalue = gethostbyaddr (addr, alen, atype };

Description

Gethostbvaddr searches for information about a host given its 1P address.

Arguments

Arg Type Meaning

addr const char FAR® A pointer (o an array that contains the address
ol a host {e.g., an IP address).
alen it An integer that gives the address length (4 for (P).
atype int An imeger that gives the address type (PF_INET
for an 1P address).

Return value

Gethostbvaddr retums a pointer to a hostent structure 1l svccesstul and a NUEL
potnter (0 indicate that an error has occurred. When an error does occur. WiAGer-
LasiErrort) can be called 1o retrieve a code that gives the specific cause of the ermor.

The hostrent structure is declared to he:

struct hostent { /* entry for a host
char FAR* h_name; /* official host rame
char FAR* FAR* h a’iases[];/* list of other aliases
short & addrtype; /* host address type
short h length; /* length of host address

*/
*/
*/
*/
*/

char FAER* FAR* h adlr list; /* list of adktresses for host */

The Gethoslbyrnane Library Call 437

The Gethostbyname Library Call
Include File '
#include <winsock,

Use
retvalue = gethostbyname { hame);

Description

Gethostbyname maps a host name 0 an IP address. On most systems, getfiost-
byname consults the Infemet’s Domain Name System (DINS) 10 perform the mapping.

Arguments
Arg Type Meaning -
namg const char FAR* The address of a character string Lhat

contains a host name. The name 15
null-temminated.

Return value

Gethostbyname relums a poinler o a hosfen! strocture if successful and a NULL
pointer to indicate that an emor has occurred. When an error does occur, WSAGei-
LastErron’) can he called to retrieve a code that gives the specific cause of the error.
The hostent structure is declared 1o be:

struct hosteant | /* entry for a host */
chaxr FAR* I name; /* official host name */
char FAR* FAR* h_aliases{];/* list of other aliases */
short b adhrtvee: /* host address type */
short h length; /* length of host address */

char FAR* FAR* h_ad’r list; /* list of adbresses for host */

458 Functions And library Boulines Used With Sockets Appendix |

The Gethostname Library Call

Include File
#include <winsock . h>

Use
retvalue = gethosiname (name, namelen J;

Description

Grethosiname teturns the primary pame of the computer on which it is invoked :n
the form of a 1ex¢{ sinng.

Arguments
Arg Type Meaning
name char FAR* The address of the characler array into which
the name should be placed.
namelen int The length of the name amray (it should be at
least 63).

Return value

Gethostname places a null-terminated siring in the array given by the first argu-
ment and retums O if successful. Otherwise, the call returns SOCKET_ERROR. When
an error does ocour, WSAGetLastErron() can be called to retrieve a code that gives the
specific cause of the errar.

The Getpecrname Function 454

The Getpeername Function
Include File
#¥include awinsock h>

Use
retvalue = getpeemame (socket, remaddr, addden),

Description

An application uses gefpeername (o obtain the address of the remote computer to
which a socket is connected, Usually, a client knows the remote endpoint address be-
causc it calls connect 10 set it. However, a server that uses accepr to obtain a connec-
tion may need (o interrogate the socket to find out the remote address.

Note that although getpeername can be vsed on either a datagram or stream socket,
the socket must be connecled.

Arguments
Arg Type Meaning
socket SOCKET A socket descriptor created by the socker

function.

remaddr struct sockaddr FAR* A painter to a sockaddr structure that will
contzin the address of the remote endpoint
to which the socket is connected.

addrlen int FAR* A pointer io an integer that contains the
length of the second argument initially, and
the actual length of the endpoint address upon
return.

Chapter 5 contains a description of the sockaddr structure.

Return value

Getpeername teturns O if successful and SOCKET_ERROR to indicate that an error
has occurred. When an error does occur, WSAGetLastErrar() can be called to retrieve a
code that gives the specific cause of the error.

460 Funciions And library Bourines Thaed With Sockels

Appendix |

The Getprotobyname Library Call

Include File

Hreade <winsock. b

Use

retvalue = getprotobyname (name };

Description

Applications call getprevtobyvname 10 obtain information about a protocol {tom ils
mume. The mformation retumced includes the official integer velue.

Arguments
Arg ~_ Type Meaning
name const char FAR® The address of o siring that contains

the protocol name.

Return value

Cetprotobyname relums a pointer ko a4 siructure ol type profoent 1 successful and a
NULE pointer o mdicate tha an ermor has occurmed. When an error dees occur,
WiAGerLastError) can be called 1o retrieve a code that gives the specific cause of the

cImor. Structure profoewt 15 declared wo he:

struct protoent {
char FAR* [rame;
char FAR* FAR* p aliases;
ghort o proto;

}:

r"J*
II,."'A‘
lI,."'\ir
.l'lr*

entry that describes a protocol
afficiz]l name of protocol
list of aliases for the protocol
official protocol mmber

*/
*/
*/
*/

The Getprotobynumber Library Call dis]

The Getprotobynumber Library Call

Include File L
#in-lude <winsock.h>

Use
retvalue = getprotobynumber { number),

Description

Applications call getprotobyrumber to obtain information about a protocol from its
rumnber. The mformation returnad includes the official name,

Arguments
Arg Type Meaning
number int The number of a proieco! (an the native byte

order of the lacal host)

Return value

Gelprotobynwmber returmns a pointer to a siruecture of type proteent if successful
and a NULL pointer to indicate that an error has occurred. When an error does oceur,
WSAGetlastError(} can be called to retrieve a code that gives the specific cause of the
error. Stracture pretoent s declared 10 be:

struct protoent [/* entry that describes a protocol *f
char FAR* p name: /* official name of protocol */
char FAR* FAR* p alilases: /* list of aliases for the protocol */
short p proto; /* official protocol rumber */

b

462 Functivms And library Routioes Used With Sockets Appendix |

The Getservbyname Library Call

include File
#include <winsock.lr
Use
retvalue = getservbyname (name, proto);
Description

Getservbyname obtains an eniry from the network services database given a service
name. Chents and servers both call getservbyname to map a service name to a protocol
port number.

If the second argument is non-null, gerservbyname maiches both the service name
and protocol. 1f the second argument 15 null, getservbyname 1gnoces the argument and
matches only the name.

Arguments

Arg Type Meaning

nae const char FAR* A pointer 0 a string of characiers that contains
U SETVICE hame,

proto const char FAR* A pointer 10 a stoing ol characters that contains
the name of the protecal o be used (e.g., "tep”)
or the value NULL.

Return value

Uretservibyagme reiurns a pointer to & servent structure if successful and a ¥ULE
pointer to indicate that an error has occurred. The servenr structure is declared to be:

struct servent { /¥ e service entry */
char FAR* s name ; f* official service name */
char FAR* FAR* s aliases; /* list of other aliases *f
short s_port: /* port used for this service */
char FAR* s _proto; £* protoco] wsed for service */

¥

The Getservbyport Library Call 463

The Getservbyport Library Call
Include File :
#include avinsock.h>

Use
retvafue = getservbyport { porl, proto);

Description

Getservbyport obtains an entry from the nelwork services database given a port
number. Although used infrequently, gefservbyport can map a protocol port number 1o
A Service nare.

If the second argument is non-null, gerservbyport matches both the protecoet port
number and the protocol. If the second argument is null, getsenbyport ignores the ar-
gument and matches only the port.

Arguments
Arg Type Meaning
port int A protocol port number in network hyte order.

proto const char FAR* A pointer to a string of characters that contains
the name of the protocol o be used (e.g., rcp)
or the value NULL,

Return value

Getservbyport retutns a pointer 1o a servent structore if successful and a NULL
pointer to indicate that an error has occuorred. The servent structure is declared to be:

struct serwvent { /* e service entry ¥
char FAR* 5 pame ; /* official service nome */
char FAR* FAR* g _aliases; /* list of other aliases */
short s port; /* port used for this service */
char FAR* s _proto; /* protocol used for servdice */

P T I T R et T L L C e mam e B . LIEET

d64 Dancticos Aod hibowoy Routines Used Wih Sockets Appendix 1

The Getsockname Function

include File
Fincluds awinosock. b

Use
retvalue = getsockname (socket, name, namelen),

Description
Lretsorkname obtains the iocal address and protocal port mnwber of the specified
socket.

Argumentis
Arg Type Meaning
sOCked SOQCKET Aosocket descriptor created by the socker

funciion.
nAme strict sockaddr FAR* The address of 2 structuee that will contain
the 1P address and prowco] port number of
the sockel.
nameten int FAR™ tnittally, the number of positions in the name
strucrure, On retum, it contains the size of
the structure in bytes.

Chapter 5 conlains a description of the sackaddr siruciure.

Return value

Cretvockiname tetarns O 1F succossful and SOCKET ERROR w indicate that an error
has occurred. When an error daoes occur, WSAGerLastFrron) can be called o retrieve o
code that gives the specific cause of the error,

The Getsockopt Funetion 465

The Getsockopt Function
Include File
#include <winsock.h>

Use
retvalue = getsockopt (socket, level, opt, optval, aptlen);

Description

_ Getsockopt permits an application to obtain the valne of a parameter (option) for a
socket or a protocol the socket uses.

Arguments
Arg Type Meaning
socket SOCKET A socket descriptor created by the socket
function.
tevel int An niteger that identifies a protocel level.
apt int An integer that idemifies an option.

optval char FAR* The address of a buffer for the value returned.
optlen int FAR* Initally, the size of buffer oprval; on return, 11
contains the Jength of the value found.

Examples of socket options inclode:

SO _BROADCAST Permission to transmit broadcast messages?
SC_DONTROUTE Bypass routing for outgoing messages?

S0 ERROR Get and clear the last error for the socket
SO_LINGER Linger on close if data present?

S0 _OCQBINLINE Receive out-of-band data in band?
S50_RCvBUF Buffer size for input?

SO_SNDBUF Buffer size for output?

Return value

Getsockopr returns O if successtul and SOCKET _ERROR 1o indicate that an error
has occurred. When an ermor does occur, WSAGetLastError() can be cailed o retrieve a
code that gives the specific cause of the error,

406 Funections And library Routines Used With Sockets Appendix |

The Htonl Function

Include File
#include <winsock. h>
Use
retvalue = htond (hostlong };
Description

Hron! converts an unsigned tong integer from the iocal host's native byte order fo
the network byte order.

Argument
Arg Type Meaning
hostiong u_long The 32-bit integer to convert.

Return value

Hron! teturns the value in network byte arder.

The Htors Funelion 467

The Htons Function
Include File
#inciude arinanck. b

Use
retvalue = hions (hostshort);

Description
Htons converts an unsigned short integer from the local host’s native byte order tu
the netwotk byte order. '

Argument
Arg - Type Meaning
hostshort w_short The 16-bit integer to convert,

Return value

Htons returns the value in network byte order.

A Fonctions And hbrary Routnes Used Wil Sockes Appendix]

-
The Inet_addr Function

Include File
#include <wingock. b

Use
refvalue = inet_addr (dotted j;

Description

Both clicnts and servers use the inet_addr function o convert an [P address in dot-
ted decimal form to the intemal binary form that socket functions expect.

Argument

Ag Type ___~ Meanin ———

dotted const char FAR* A string that contatns an I[P address in dotted
decimal notation.

Return value

[0 successivl, iner_addr veturns an ansigned long that comnains the TP address in
binary torm. Otherwise, inef_addr teturns INADDRE _NONE o indicate that the argu-
ment dees Aot contain a valid detted decimal address (e.g. one of the values 1y larger
than 2355 or there are more than four numbers scparated by dats).

The Inel_ntoa Funclion 4649

The Inet_ntoa Function

Include File
#include <winsock.lh>

Use
retvalue = inet_ntoa (ipaddr);

Description

Application software that must display TP addresses for humans calls inet_atoa 10
‘convert an address from the internal binary form to a text string that contains the ad-
dress in dotted decimal form.

Argument
Arg Type Meaning
ipaddr struct in_addr The IP address to be converted.

Return vailue
If successful, frer_nroa returns a value of type
char FAR* PASCAL FAR

that is a pointer to a buffer containing a null-terminated string that gives the address 1o
dotted decimal form. When an error occurs, inet_ntfoa retomns NULL,

470 Functions And library Rourines Used With Sockets Appendia 1

The loctisocket Function

Include File
#include <winsoclk, h»

Use
retvalue = ioctlsocket (socket, cmd, argp }:

Description

toctisocket 35 used o relnieve or set information about a socket. For exampile,
ioctlsecket can be used 1o determine whether the socket is blocking or whether all out-
of-band data has been read.

The name of this function- is derived {rom the Berkeley UNIX iocd command,
which can be used to control any /O device. Joctisocker provides a subset of the iocH
functionality for sockets only.

Arguments
Arg Type Meaning _
socket SOCKET A-socket descriptor created by the socket
function,
cmd lonp The specific command to perform on the socket.
Argp u_long FAR* The address of parameters for emd.

Return value

foctlsocket veturns O i successful, and the value SOCKET _ERROR 1o indicate that
an error has occurred. When an error does occur, WSAGetLastErrorf) can be called to
retrigve a code that gives the specific cavse of the error.

The Listen Funclion 471

The Listen Function

Include File
#include <winsock. h>

Use
retvalue = listen { socket, queuelen);

Description

Servers use listen to make a socket passive (ie., ready o accept an incoming re-
quest}. Listen also sets the number of incoming connection reguests that the protocol
software should enqueve for a given socket while the server handles another request.
Listen only applies to sockets used with TCP.

Arguments
Arg Type Meaning
socket SOCKET A socket descriptor created by the socket
function,
queuelen int The size of the incoming connection request gueue

{up 10 a maximum of 5).

Return value

Listen returns O if successful and SOCKET _ERROR to indicate that an error has
occurted. When an etror does occur, WSAGerLastError) can be calied to retrieve a
code that gives the specific cause of the error.

472 Pusstions And library Rootines Used With Sockets Appendix 1

The Ntohl Function
Include File

#include <winsock. h>

Use
retvalue = ntohl (netiong);

Description

Nroh! converts an unsigned long integer from the network byte order o the local
hast's native byte order.

Argument
Arg _ _Type ~ ~ _Meaning
netiong u_long The 32-bit integer o convert,

Return value

Niohi returns the value in host byte order.

The Ntohs Funcion 473

The Ntohs Function
Include File
¥include <winsock.hee

Use
retvalue = ntohs (netshort);

Description

Ntohs convens an unsigned short integer from netweotk byte order te the local
host’s native byke order.

Argument
Arg Type Meaning
netshort u_short The L&-bit integer to convert.

Return value

Ntohs returns the value in host byte order.

L T LRI

474 Functions And lbrary Routines Liscd With Sockets Appendix

The Recv Function

include File
#Hrelude <winsock. b

Use
retvalue = recv [socket, bufter, length, flags);

Description

Recy obtains the next incoming message from a socket. For stream sockets, recy
retricves data up to the size of the buffer. For datagram sockets, recv oblains data up to
the size of the buffer from one datagram {if the buffer is smaller than the datagram, the
remaining data from that datagram 1s lost,

Arguments
Arg Type Meaning
socket SOCKET A socket descriptor created by the socker
function.
buifer char FAR* The address of a buffer to hold the message.
lengih nt The length of the buffer.
flags init Control bits that specify whether 1o receive out-of-band

data and whether to look ahead for messages.

Return vailue

Recv reluns the number of bytes in the message received if soccessful, & if the
conneciion has becn closed, and SOCKET ERROR to indicaie that an ermor has oc-
curred. When an error does occur, WSAGetLastErrorf} can be called to retrieve a code
that gives the specific cause of the etror.

The Recvirom Function 475

The Recvfrom Function

Include File
#include <winsock.h>

Use
retvalue = recvirom { socket, buffer, buflen, flags, from, fromlen });

Description

Recvfrom extracts the next message that arrives at a socket and records the sender’s
address (enabling the caller to send a reply). Recvfrom is especially useful for umcon-
necied datagram sockets.

Arguments
Arg Type Meaning
socket SOCKET A socket descriptor created by the socket
function.
buffer ¢har FAR* The address of a buffer to hold the mcssage.
buflen int The length of the buffer.
flags int Control bits that specify out-of-band data or

message look-ahead.
from struct sockaddr FAR* The address of a structure to hold the
sender’s address.
fromlen int FAR* Initially, the size of the from buffer;
returned as the size of the address in from.

Chapter 5 contains a description of the sockaddr structure.

Return value

Recvfrom returns the number of bytes in the message if successful, O if the connec-
tion has been closed, and SOCKET_ERROR w0 indicate that an error has occurred.
When an error does occur, WSAGetLastError(} can be called to retrieve a code thay
gives the specific cause of the error.

410 Functions And library Rouwtines Used Wilh Sockefs Appendix 1

The Select Function

Include File
#inclule <winsock. It

Use
retvalue = select { ignore, refos, wrids, exfds, time);

Description

Sefect provides asynchronous /O by permitting a single process to wait for the
lirst of any socket descriptors in a specified st to become ready. The caller can also
specify & maximum timeout for the wait,

Arguments
Arg Type Meaning
1gnore 11 Mot used (included to make sefect under
Windows compatible with the UNIX version).
refds td_set FAR* Address of file descriptors for input.
wrfds fd_set FAR* Address of file descriptors for output.
exfds td_set FAR* Address of {ile descriptors for exceptions.

Lime const struct tmeval FARY Maximum time to wait or NULL io
wait forever.

Arpumenis that refer 1o sets of descriptors can be manipulated with macros. Mac-
ros FI3_CLE or FI_SET clear or set individual descriptors. Macro FD_ISSET tesls
whether a descriptor 1s set, and macro FD_ZERO mitalizes an entire set to empty. All
macros ase variable #D_SETSIZE 10 determine the maximum number of descriptors per
set.

Return value

Select returns the number of ready file descenptors if successful, 0 if the time timit
was reached, and AQCKET_ERROR to indicate that an efror has occurred. When an er-
ror does occur, WSAGerLastError() can be called tw retrieve a code that gives the
specific cause of the error,

The Send Function 477

The Send Function
Include File
#include <winsock.h>

Use
retvalite = send { socket, msg, msglen, flags);

Description

Applications call send to transfer a message to ancther machine using a previously
created societ,

Arguments
Arg Type Maaning
socket SOCKET Socket descriptor created by the socket
function.
msg const char FAR* A pointer to the message.
msglen int The length of the message in bytes.
flags int Control bits that specify out-of-band data or
message look-ahead.
Return vaiue

Send returns the number of characlers sent if successful and SOCKET ERROR to
indicate lhat an error has occurred. When an error does occur, WSAGetrLastError() can
be called to retrieve a code that gives the specific canse of the error.

4TH Functions And library Routines Used With Sockels Appendix |

The Sendto Function
Inelude File
#incluxde wwinsock.h>

Use
retvatue = sendto (sccket. msg, msglen, flags, to, telen);

Description

Sendyr sends & message by taking the destination address from a structure. Servers
using datagram sockets use sendto 10 return a message 1o a client.

Arguments
Arg Type Meaning
socket SOCKET Socket descriptor created by the socket
function.
i1sg const char FAR™® A poimater 10 the messages,
msglen nt The length of the message in bytes.
flags mt Control bits that specify out-of-band data
or message look-ahead.
0 const struct sockaddr FAR* A pointer o the address structure.
1nlen inl The length of the address in bytes.

Chapter 5 contains a description of the sockaddr structure.

Return value

Sendto returns the munther of bytes sent of successful and SOCKET_ERROR o in-
dicate that an error has occurred. When an error does ocour, WSAGetLastErrar(} can be
called (o refrieve a code that gives the specific cause of the error.

The Sewsockapt Function 479

The Setsockopt Function
Include File
#inciude <winsock.h>

Use
ratvalue = setsockopt { socket, level, opt, optval, optien };

Description

Sersockopt permits an application 1o change an option associated with a sockel or
the protocols it uses.

Arguments
Arg Type Meaning
socket SOCKET A socket descriptor created by the socket
functon.
level int An integer that identifies a protocol (e.g., TCP).
opt int An integer that identifies an option.

aptval const char FAR* The address of a buffer that contains a
value (nonzero o enable an option or zere to
disable it).

opilen int The length of aptval.

The options suppoered by sersockopr include:

S0O_BROADCAST Permission to transmit broadcast messagoes
SO_DONTROUTE Bypass routing for outgoing massages

SO_LINGER Linger on close if data present
SO_OOBINLINE Receive out-of-band data in band
SO RCVBUF Set buffer size for input
SO_SNDBUF Sat buffer size for output

Return vaiue

Setsockopt returns 2 if successful and SOCKET _ERROR to indicate that an error
has occumred. When an error does occur, WSAGerLastError() can be called wo retrieve a
code that gives the specific cavse of the error.

480 Functicns And library Routines Lsed Whith Sockers Appendix |

The Shutdown Function
Include File
#include <winsock.h>

Use
retvalue = shuidown (socket, how);

Description

The shutdown function 1s used to ferminale Iransmission, reception, or both. The
function s often used with a connected TCP socket to close the connection in one direc-
tion (e.g., 1o close a data connection from a client to a server, bor allow the server 1o
scnd to the clicnt).

Arguments
Arg Type Meaning
socket SOCKET A sockel descriplor created by the socket
Tuniction.
biow nt The direction in which shutdewn 15 desired: O means to

termindte further reception, / means to tenninate further
transmission, and 2 means 10 erminate both.

Return value

The shutdown call returns O if the operalion succeeds or SGCKET ERROR (o indi-
cate that an error has occurred. When an errar does occur, WSAGetLastError() can be
called to retrieve a code that gives the specific cause of the error,

The Socket Function ai1

The Socket Function

Include File
#inclhide <winsock.h-

Use
retvalue = socket (alam, type, protocol);

Description

The socker function creates a socket used for network cornmunication, and returns
an mteger descriptor for that socket.

Arguments
Arg Type Meaning
afam int Protocol or address family (PF_INET for TCP/IP),
ype int Type of service (SOCK_STREAM for TCFP or
SOCK_DGRAM for ULIP).
protocol int Protocol number to use with the socket or @ to use the

standard protocol that matches the specified afam
and fype values.

Return value

The sacket call rewrns a descriptor for the newly created socket if successful, or
INVALID SOCKET 1o indicate that an error has occurred. When an error does occur,
WSAGGetLastError() can be catled 1o reirieve a code that gives the specific cause of the
€ITOT. :

482 Funcrion: And lihrary Routines Used With Sockets Appendix |

The WSACIleanup Function
Include File
#include <winsock.l>

Use
retvalue = WSACleanup { void J;

Description

An application vses the WSACleanup function to terminate all further use of sock-
cts when it finishes executing. Open sockets should be closed with Closesocket before
an application invokes WSACleanup. In normal operation, clients lermminate but servers
run forever.

Arguments

WSACleannwp does not take any arguments.

Return value

WSACleanup returns @ if successful, and the value SOCKET_ERROR to indicale
that an error has occurred. When an error does occur, WSAGetLastErrosf) can be called
to retnieve a code that gives the specific cavse of the error.

The WS5AGetLastError Function 483

The WSAGetLastError Function

Include File
#include <winsock.h>

tlse
retvalue = WSAGstLastEror { void);

Description

An application calls the WSAGetLastError function to retrieve the specific error
code following an unsuccessful socket fonction call. WSAGerLastError is the Windows
Sockets replacement for the plobal variable errneo that is used in earlier sockets imple-
mentations, but which cannot be used in a multithreaded environment.

Note: an application should call WSAGerLastError immediately after a socket
function returns an ermror indication.

Arguments
WSAGe:LasiErvor does not take any arguments,

Return value

WSAGetLastError calls the underlying function GetLastError, which is used to re-
trieve error status for all Win32 API funchons.

434 Functions And library Rowlines Used With Sockeis Appendix t

The WSAStartup Function

Include File
#in-lude wwinsock . b

Use
retvalue = WSAStartup (rvers, wsimpl),

Description

An application Must call the WSAStartup function to initialize the socket software
before using any of the socket functions. Both clients and servers use WSAStariup.

Arguments
Arg Type Meaning
TVErs WORD A lwo-byte request tor a version of the Windows

Sockets AFPI. The high-order byie specifies a
minor version and the low-order byte specifies
4 Major Yersion.

wsimpl WSADATA A pointer to a structure into which the function
will slore information about the implementation
of Windows Sockets being used.

Return value

WSAStartup returns O if successful. Otherwise, it returns one of the following er-
ror codes:

Value Cause of the Error
WSASYSNOTREADY The network subsystem 1s vot ready for
network commumcanon. .
WSAVERNOTSUFPPORTED The local Windows Sockels implementation
does not support the version requested.
WEAEINVAL The DLL being used does not support
the version requested. '

Appendix 2

Manipulation Of Windows
Socket Descriptors

Introduction

In Windows, all network inpit and oulpul operations use an abstraction known as
the socket descriptor. A program calls the socket function t0 obtain a descriptor used
for network communication. Chapters 4 and 5 describe the socket interface. Chapter
23 describes Windows descriptors and /O in more detail; it points out that a newly
created thread inherits access to all socket descriptors that the parent has open at the
time of creation.

This appendix describes how programs can use [fO descriptors as arguments, and
illusirates how a parent can inform a child which descriptor or descoptors the child
must use. The technique is primarily used in concurrent servers that invoke a separale
thread tc handle each client.

Descriptors As Arguments

When the Windows _beginthread function creates a new thread, the newly created
child inherits access to atl the sockel descriptors that the parent has open. Furthermore,
the child shares the socket descriptor table, meaning that the descriptor for a given sock-
el is exacily the same for both pareni and child. Thus, if descriptor 3 i the parent
corresponds to a TCP socket. the newly created child can also use 5 {0 access the same
socket.

485

480 Manipobuoon O Windows Descripuors Appendix 2

Cancepually. socket descriptors can form implicil or explicit argements o newly
crealed threads. In the explicit case, a parent passes an argument to the child for each
descniplor that the child must use. For example, suppose a parent opens a TCP connee-
tton for the child to use. Further suppose that Windows Sockets allocates descriptor 4
to the conmection. To inform the child about the connection, the parent pesses the in-
teger 4 as an argument when cresting the child. When it begins execution, the child
uses the argument to access the TCP connection.

Because Windows wllows threads (o share memory, concurment programs can make
descriptors unplicit arguments. To pass an implicit argument, the parent ptaces (he
value In shared memory. For example, a parent can open a socket, and then place the
resulting descniptor in a shared variable. When the child begins execution, it extracis
the value ITom the shared memory.,

To summarize:

Network comtmunication uses sockeis, each of which is assiened an in-
teger descriptor. A parent can axe implicit or explicit urguments 1o
pass descenptars to a newlv creared chitd thread.

Implicit Arguments And Concurrency

Imphicit argements huve several disadvantages. Most important. they muake pro-
grams more difficult to vnderstand and modity, Unlike explicic arguments, which speci-
ty the values being passed from parent to child, implicit arguments are hidden. In tfact,
the parent ¢an assipn a value to a shared memory variable at any time - the code that
makes the assignment may not be Tocated ncar the code that creates a thread that will
use the varable. Thus, a programmer must read and understand the coce thoronghly,

Programmers who are not accustonied to concurrent programming can make mis-
lakes wrth implicit arguments. The resulting emrors can be difficult 10 find and debug
becuuse they depend on the order in which the operating system chooses 1o run threads.
To see how such errors occur, consider a4 concurrent program thar uses the algorithm
shown in Figure A2 1.

A program that follows the algorithm in the figure uses shared variable x to heold
an imphcit arpument. The parent stores a value in x before creating a child. and the
child extracts the value (rom o when it beging execution. The code for both the parcnt
and child threads has been programmed to use variable 1 as an implicit argament: x
does not appear in the call w _heginthread.

Implicit Arguments And Concurrency 487

Parent:
do forever.{
accept next TCP connection from client;
pltace descriptor for connection in shared variable x;
create child thread to handie connection;
}
Child:

extract descriptor for the client TCP connection from shared
variable x and place in local variable d;

handle connection using descriptor d;

close descriptor o;

exit;

Figore A2.l1 An example of an algorithm using implicit arguments that con-
tains a flaw. The program may work corectly or incomectly,
depending on bow the operating system schedules threads.

Unfortunately, such a program is incorrect. To understand why, temember that an
opcrating system dpes not guarantee the order of execution among threads. Consider
what happens if the operating system chooses to run the parent for a long time before
running a child. The parent might run long enough to accept two connections and
create two children. However, the program only uses a single, shared variable for im-
plicit arguments. Suppose the first client connection arrives on descriptor 5. The parent
will place 5 in variable x and create a thread. Because the parent continues to run, it ac-
cepts the second client connection. If the second connection arrives on descriptor 8, the
parent will overwrite x with the value ¢ and create a second thread. When the operating
system finally runs one of the two new threads, the thread will find the value 6 in x.
When the cperating sysiem runs the other new thread, that thread will also find the
value 6 in x. Thus, both children will attempt to communicate with the same chient.

The point 15:

Implicit argument passing requires coordingtion; a parent cannot use
the some shared variable to pasy implicih argumenis to multiple chil-
dren.

How can one avoid the problem illustrated above? The program must be wrilten to
avoid any possible reuse of a shared variable before the first vse is complete, There are
three possible approaches. The simplest and uspally the most efficient way to avoid
reuse is to eliminate sharing (i.e., use only explicit arguments). Another approach allo-
cates a separate area in shared memory for the implicit arguments that are passed to a
given thread. The pareni passes an explicit argument to the child that contains the loca-
tien in shared memory of the child's implicit arguments. Of course, 1if the only implicit

488 Manipulation OF Windows Descriptors Appendix 2

argument consists of an integer, passing the value of the argument to the child is as easy
as placing the value in shared memory and passing the location. Thus, the second ap-
proach is used only when a parent 1s passing many mplicit arguments. The third ap-
proach vses coordination primitives supplicd by the operating system to allow the
parent and child 1o coordinate use of shared memory. After a parent creates a child, the
parent waits for the child to read implicit arguments. Once it finishes extracting values,
the child informs the operating systern that the parenl can continue execution. Such
coordination is seldom used for implicit arguments because it is difficult to program and
introduces run-lime overhead.

Summary

Concurrent programs that communicate over networks often pass socket descoptors
a5 arguments when creaimg a new thread. The arguments to a child thread can be ex-
plicit or implictt. Explicit arguments are included in the call to _beginthread; implicit
arguments are placed in shared memory.

When using 1miplicit arguments, threads must coordinate to cnsure that only one
child thread uses a given shared variable at a time, Absence of coordination can result
In a program that fails under some circumstances. Coordination errors are especially
hard to debug because they depend on the operating system and the timing of networsk
connections, making them difficult 1o reproduce.

Bibliography

ABRAMSON, N. and F. KUQ (EDS.) [1973], Computer Communication Networks, Prentice Hall,
Upper Saddle River, New Jersey.

ADLER, R., [April |1995], Distributed Coordination Models for Client/Server Computing, [EEE
Compater, 14-22,

ANDREWS, G. [March 1991]. Paradigms for Interprocess Interactions in Distributed Programs,
ACM Computing Surveys, 49-90.

ATET {1989], UNIX System V Release 3.2 — Programmer’s Reference Manuai, Prentice Hall,
Upper Saddle River. New Jersey.

ATM FORUM [1993], ATM User-Network Inierface Specification Version 3.0 Prentice Hall,
Upper Saddle River, New Jersey.

BACH, M. [1986}, The Design Of The UNIX Operating System, Prentice Hall, Upper Saddle
River, New Jersey.

BallL,). E., E). BURKE. I. GERTNER, K. A. LANTZ, and R. F. RASHID [1979]), Perspectives
on Message-Based Distributed Computing, 7/EEE Computing Networking Symposium, 46-51.
BARRET, J. and E. WUNDERLICH [September i991], LAN interconnection Using X.25 Network

Services, [EEE Netwerk, 12-17T.

BBN [1981], A History of the ARPANET: The First Decade, Technical Report, Bolt, Beranek,
and Newman, Inc.

BBN [December 1981], Specification for the Interconnection of a Host and an IMP {revised),
Technical Report 1822, Bolt, Beranck, and Newman, Inc.

BERSON, A. [1993], Clien¥Server Architectures, MeGraw-Hill, New York, New York.

BERNSTEIN, P. [February 1996), Middleware: A Model for Distributed Systems Services, ACM,
£6-98,

BERTSEKAS D. and R. GALLAGER [1987], Date Networks, Prentice Hall, Upper Saddle River,
New Jlersey.

BEVERIDGE, }. and R. WIENER [1997], Multithreading Applications In Win32: The Complete
Guide To Threads, Addison Wesley, Reading, Massachuserts.

490 Bibhiggraphy

BIRRELL, A, and B. NELSON |February 1984], lmplementing Remote Procedure Calls, ACM
Transacrions o Computer Sveiems, 2(1), 39-59,

BIOERN, M, | 1995]. A WWW Cateway for Interactive Relorional Darabase Management, Doctoral
Program of Secio-Economic Planaing, 1-1-1 Tennodai, Tsukuba, tharaki, 305, Japan.

BLACK, U | 1994}, Emerging Communication Technolugies, Preatice Hall, Upper Saddle River,
New Jersey,

BOGGS, I, J. SHOCH, E. TAFT, and R. METCALFE |Aprl 1980], Pup: An internetwork
Architeclure, FEEE Tranvactions on Communicalions.

BOLSKY, M. 1. and D. G. KORN [1989], The Komshell Command And Programming Language,
Prentice Hall, Upper Saddle River, New Jersey.

BONNER, P. [1996], Nefwork Programming with Windows Sockets, Prentice Hall, Upper Saddie
River, New Jersey,

BORMAN., Dn [Aprl 1929], [mplemening TCPAP oo a Cray Computer, Computer
Cammunication Review, 1923, 11-15.

RRADNER. 5. and A, MANKIN [[9906], IPrg. Inrerrer Protocol Next Generation, Addison-
Wesley, Reading, Massachusetts.

BROWN, M., K. KOLLING, and E. TAFT [November [985), The Alpine File System,
Trarsactions on Comprerer Svstemns, 304}, 261-293,

BROWNBRIDGE, D., L. MARSHALL, and B. RANDELL {December 1982]. The Newcastle

Conpections ar UNIXes of the World Unnte!, Software - Practice and Experience, 12(11),
i147-1162.

CERE, V. and E. CalN [Octeber 1983], The DD Inremet Architecture Model, Computer
Nerworks,

CERF, V. and R. KAHN [May 1974], A Protocol for Packet Network Interconnection, JEEE
Transactions of Communications, Com-22(5}.

CERF, ¥, [October 1989), A History of the ARPANET, ConneXions, The Interoperability Report,
Fosler City, Calilomia.

CHERITON. T2 R, {1983], Local Networking and Internetworking in the V-System, Proceedings
of the Eighth Data Communications Svmposium.

CHERITON, D). B. [April 1984], The ¥ Kernel: A Software Base for Distributed Systems, fEEE
Software, 1{2), 19-42,

CHERITON, Lr.{August 1986], VMTP: A Transport Protocol for the Next Generation of
Communication Sysiems, Proceedings of ACM SIGCOMM ‘84, 406-415.

CHERITON, D). and T. MANN [May 1984], Uniform Access to Distributed Nempe Interpretation in
the V-System, Proceedings IEEE Fourth fnternational Conference on Distribuied Computing
Nvstens, 290-297.

CHESSON, G [June 1987, Protocol Engine Design, Proceedings of the IS87 Summer USENIX
Cemtference, Phoenix, Arizora.

CHESWICK, W. and 5. BELLOVIN [1996], Firewalls and Internet Security, Addison Wesley
Longman, Reading, Massachusetts.

Biblography A0}

CLARK. D. [December 1985], The Sructure of Systems Using Upealls, Proceedings of the Tenth
ACM Svmposium on Gperating Systems Principles, 171-180.

CLARK, D., M. LAMBERT, and L. ZHANG [August 1987], NETBLT: A High Throughput
Transport Protocol. Proceedings of ACM 5fGCOMM 87,

COHEN, D. [1981]. On Haly Wars and a Plea for Peace. {EEE Compiiter, 4B-54.

COMER, . E. and J. T. KORB [1983]., CSMET Protocol Sottware: The [P-to-X25 Interface,
Computer Communications Review, 13(2).

COMER, D. E. [1984], Operating System Design — The XINU Approach, Prentice Hall. Upper
XSaddie River, New lersey.

COMER, Dv. E. [1987], Operating System Design Vol I — Internerworking With XiNU, Prentice
Hall, Upper Saddle River, New Jersey.

COMER, D. E. 71995], Jatermerworking With TCF/AFP Vol 1. Principles, Frotocols, and
Architecture, 3rd edition, Prentice Hall, Upper Saddle River, New Jersey.

COMER, ID. E. and D. L. STEVENS {1994], Inrernetworking With TCP/AP Vol 2@ Design,
Implementation, and Internals, 2nd edition, Prentice Hall, Upper Saddle River, New Jersey.

COMLER, D. E. and D. L. STEVENS [19%6], frrernerworking With TCPAP Vol 3; Client Server
Programming and Applications { BSD) socket version), Ind edition, Prentice Hall, Upper Saddle
River, New Jersey.

COMER, D. E. and D. L. STEVENS [1994], Infernerwarking With TCP/AP Vol 3. Client Server
Progrumming and Applications {AT&T TLI version), Prentice Hall, Upper Saddle River, New
Jersey.

COTTON, L. [1979), Technoiogics for Local Area Computer Netwarks, Procesdings of the Local
Area Communicationy Network Symposim.

CROWLEY. T.., H. FORSDICK, M. LANDAU, and V. TRAVERS [June 1987], The Diamond
Multimedia Editor, Praoceedings of the 1987 Summer LUSENIX Coniference, Phoenix, Ariiona.

DALAL, Y. K. and R. 5. PRINTIS [I981], 48-Bit Absolute Internet and Ethemet Host Numbers,
Praceedings of the Seventh Daia Communicarions Symposium,

DAVIS. R, {1994), Windows NT Network Programming, Addison-Wesley, Reading, Mas-
sachusetts.

DEERING, S. E. and . R, CHERITON {May 199]], Mulricast Routing in Datagram Intcimetworks
and Exitended LANs, ACM Transactions on Compurer Svstems, 8(2), E5-1 10

DENNING, P. 1. [September-October 1989}, The 5cience of Computing: Worldnet. American
Scientisi, 432-434,

DENNING, P. 1. [Movember-December 1989], The Science of Computing: The ARPANEL After
Twenty Years, American Scientist, 530-534.

DIGITAL EQUIPMENT CORPOEATION., INTEL CORPORATION, and XEROX CORPORATION
[September 1980}, The Ethernet: A Local Area Netwark Data Link Layer and Physical Layer
Specification,

DION, I. |Oct. 1980], The Cambridge File Server, Qperating Svstems Review, [4(4}, 26-35.

DRIVER, H., H. HOPEWELL, and J. IAQUINTC |Sepiember 1979], How the Gateway Regulales
[nformation Control, Data Comemunications.

442 Biblicgraphy

DUTTON, H. and P. LENHARD [1993], High-Speed Nerworking Techrology: An Introductory
Survew, 3rd edition, Prentice Hall. Upper Saddle River, New Jetrsey.

EDGE. 5. W. [1979]. Comparison of the Hop-by-Hop and Endpoint Approaches o Network
Interconngction, in Flow Control in Computer Networks, 1 L. GRANGE and M. GIEN (EDS.),
North-Holland, Amsterdam, 359-373,

EDGE, 5. [1983], An Adaptive Timeout Algorithm for Eetransmission Across 2 Packet Switching
Netwark, Proceedings of ACM SHGCOMM 83,

ENSLOW, P. [Tanvary 1978], Whal is a "Distributed’ Duta Processing System? Compurer, 13-21,

FALK, G [i983). The Stnucture and Function of Nelwork Prolocols, in Computer
Communications, Yolume [Principles, W. CHOU (ED.), Prentize Hall, Upper Saddle River,
MNew Jersey,

FARMER, W. D and E. E. NEWHALL [1969], An Expertmental Dristributed Switching System to

Handle Bursty Computer Traffic, Proceedings of the ACM Symposium on Probabilistic
Ctimnizarion of Data Communication Systems, 1-33.

FCCSLT [November 1987|, A Resezrch and Developmen: Strategy for High Performance
Computing, Repon from the Executive (Mfice of the President and Office of Science and
Technoloey Poliey.

FEDOR. M. [June 1988], GATEL: A Multi-Routing Protocol Daemon for UNIX, Proceedings of
the [988 Summer USENIX Conference, San Francisco, Califomia.

FEINLER, J., . I. JACOBSEN, and M. STAHL |December 1983], DDN Protocol Handbook
Volume Twa, DARPA Interner Protoceds, DDN Network Information Center, SRI [ntermational,
Menlo Park. Calilomia.

FRANK, H and W. CHOU [1971]. Routing in Computer Networks, Metworks, 161), 99-112,

FRANK. H. and 1. FRISCH [1971], Communication, Transmission, and Transportation Networks,
Addison-Wesley, Reading, Massachusetts,

FRANTA, W. R and [. CHLAMTAC [1981], Lecal Netwerks, Lexington Books, Lexington.
Massachusertts,

FRICC [May 1989), Frogram FPlan for the National Research and Education Network, Federal
Research Internet Coordinating Committge, US Department of Energy, Office of Scientific
Computing Repont ER-7.

FRIDRICH, M. and W. OLDER [December 1981], The Felix File Server, Proceedings of rhe
Eighrht Symposium on Operating Systems Principles, 37-46.

FULTZ, G. L. and L. KIEINROCK. [lune 14-16, 1971], Adaptive Routing Techniques for Store-
and-Forward Computer Communication Networks, presented at FERE fnternational Conference
et Cormmunticarions, Montreal, Canada,

GLERLA, M. and L. KLEINROCK [Aprl 1980), Flow Control: A Comparative Survey, JEEE
Transuctions on Communications.

GOSir |April 1989), U1S. Government Open Systems faterconnection Profite (GOSIP) Version
2.0, GOSIP Advanced Reguirements Group, National Institute of Standards and Technology
(NIST).

Bibliography 433

GRANGE, J. L. and M. GIEN {EDS.) (1979], Flow Control in Computer Nerworks, Notih-Halland,
Amsterdam.

GREEN, P. E. (ED.) {1981), Computer Network Architectures and Protocols, Plenum Press, New
York, New York.

HALL, M., M. TOWFIG, G. ARNOLD, D. TREADWELL, and H. SANDERS [[1993]), Windows
Sockets: An Open Interface For Programming Under Microsoft Windows, Microdyne
Corporation (reachabtle via e-mail winsock @ microdyne.¢om).

HALL, M.. M. TOWFIG, and). TREADWELL (MODERATORS) [1996], Windows Sockets 2: A
Service Frovider Interface, Microdyne Corporation.

HSNDEN, R., J. HAVERTY, and A. SHELTZER [September 1983), The DARPA Internet:
Interconnecting Heterogenecus Computer Natworks with Gateways, Caompider.

INTERNATIONAL ORGANIZATION FOR STANDARDIZATION [June 1986a), Information
processing systems — Open Sysitems lIaterconnection — TFramsport Service Definition,
International Standard 8072, 150, Switzerland.

INTERNATIOMNAL ORGANIZATION FOR STANDARIMZATION {July 1%86b}, Information
processing systems — Open Systems Interconnection — Cennection Oviented Transport
Protocof Specification, Intemational Standard 3073, 180, Switzerland.

INTERNATIONAL ORGANLZATION FOR STANDARIMZATION [May 1987a], Information
processing sysltems — Open 3ystems Interconnection — Specification of Basic Specification of
Abstract Svatax Notarion One (ASN.J), International Standard BE24, ISG, Switzerland.

INTERNATIONAL ORGANIZATION FOR STANDARDIZATION (May |987b], Information
processing systems — Open Systems Interconnection — Specification of Basic Encoding Rules
for Abstract Syntax Notation One (ASN. 1), International Standard 8825, ESO, Switzetland.

INTERNATIONAL ORGANIZATION FOR STANDARDIZATION [May 198%8al, Information
processing systems — Open Systems Interconnection — Management Information Service
Definition, Part 2: Common Management Information Jervice, Draft Intemational Standard
0505-2, ISO, Switzerland.

INTERNATIONAL ORGANIZATION FOR STANDARDIZATION Ihay 1988a]l, Informanton
processing systems ~— Open Systems Interconnection — Manggement Fnformanion Protocol
Definition, Part 2: Common Management Information Protocol, Draft International Siandard
9506-2, 180, Switzerland.

JAIN, R. [January 1985], On Caching Ou-of-Order Packets in Window Flow Controlied
Networtks, Technical Report, DEC-TR-342, Digital Equipment Corporation,

JAIN, R. [March 1986]. Divergence of Timeout Algorithms for Packet Retransmussions,
Proceedings Fifth Annual International Phoenix Conference on- Computers amd
Commuriications, Scottsdate, Arizona.

JAIN, R. [Octeber 1986), A Timeout-Based Congestion Control Scheme for ‘Window Flow-
Controlled Networks, IEEE Journal on Selected Areas in Communications, Vol. SAC-4, no. 7.

JAIN, R, K. RAMAKRISHNAN, and [». M. CHIU [Augusi [987], Congestion Avoidince in
Compuler Networks With a Connectionless Network Layer. Technical Report, DEC-TR-506.
Digital Equipment Corporation.

JENNINGS, D. M., L. H. LANDWERER, and 1. H. FUCHS (Febroary 28, 19861, Computer
Networking for Scientists and Engineers, Science val 231, 941-850.

LRl mmr . e eed e mee Mmoo i

454 Eibliography

JOHUNSON and REICHARD {1990], Advanced XWindow Applications Programming, MIT Press,
Cambridge, Massachusetts.

JUBIN, I. and). TORNOW [January 1987], The DARPA Packet Radio Network Protocols, JEEE

Proceedings

KAHN, R. |November 1972], Resource-Sharing Computer Communications Networks,
Proceedingy of the (EEE, 60(11), 1397-1407.

KARN, P, H. PRICE, and R. DIERSING [May 1985], Packet Radio in the Amateur Service, JEEE
Jouwrmal on Selecred Areas in Comminicaiions,

KARN, P. and C. PARTRIDGE (August 1987], Improvieg Round-Trip Time Estimates in Reliable
Transport Protocols, Proceedings of ACM SIGCOMM "87.

KAUFMAN. €., R. PERLMAN, amd M. SPECINER [|9951, Nemwork Security, Private
Communication in @ Public World, Prentice Hail, Upper Saddle River, New Jersey.

KENT, C. and J. MOGUL |August 1987], Fragmentaiion Considered Harmiful, Proceedings of
ACM SICCOMM 87,

KERNIGHAN, B. and 1. RITCHIE [1988], The C Programming Language, 2nd edition, Prentice
Hall, Upper Saddlz River, New Jersey.

KLINE, C. [August 1987], Supercomputers on the Imtemmet: A Case Study, Proceedings of ACM
SIGCOMAM 87

KocHaN, 5. G. and P. H. WOODS [1989), UNIX Metwnorking, Hayden Books, Indianapolis,
Indiana,

LAMFPSON, B, W., M. PauL, and H. 1. SIEGERT (EDS.) [1981], Disrributed Systems
Architecture and Implementation {An Adlrgnced Course), Springer-Verlag, Berlin.

LANZILLO, A L. and C. PARTRIDGE [January 1989], Implementation of Dial-up IP for UINIX
Systems, Proceedings 1989 Winter USENIX Fechnical Conference, San Diego, Caiifornia.

LAQUEY, T. L. [July 1989], User's Directory of Computer Nerworks, Digital Press, Bedford,
Massachusetrs.

LaZa®, A, [November [983]. Optimal Flow Control of a Class of Quening Networks in
Eguilibrium, {EEE Transactions on Automatic Control, Vol AC-28:1 1.

[.LEFFLER, ., M. MCEKUSICK, M. KARELS, and J. QUARTERMAN [1989], The Design and
Implementation of the 4.IBSD UNIX Operating Svstem, Addison-Wesley, Reading,
Massachuseus,

LEWIS, T. [April 1993, Where is Client/Server Software Headed?, IEEE Computer, 49-55,

L¥NCH, D. C. (CHAIRMAN AND FOUNDER) [1987-1995], The NETWORLD+INTEROFP
Conference, Sotthank Forums, Foster City, California.

MARTIN, J. and J. LEBEN [1995], Client/Server Databases, Prentice Hall, Upper Saddle River,
Mew Jersey.

MARZULLO. K. and S, OWICKI [July 1985]. Maintaining The Time In A Distributed System,
Operating Svstems Review, 193), 44-54,

MOKUSICK, M., W. J0OY, 5. LEFFLER, and R. FABRY |August 1984], A Fast Filz System For
UNIX, ACM Transactions On Computer Systems, 2, 181-197.

Bibliogrephy 433

MOCNAMARA, | |1982), Technical Aspects of Data Communications, Digital Press, Digital
Equipment Corporahion, Bedford, Massachusetis.

MCQUILLAN, 2. M., L. RICHER, and E. ROSEN [May 1980], The Mew Routing Algorithm for the
ARPANET, EEE Transactions on Communicarions, (COM-28), 711-719,

MERIT [MNovember 1987), Management and OGperation of the NSFNEY Backbone Nerwork: A
Froposal Funded by the Natonal Science Foundation and the Srate of Mickigan, MERIT
Incorporated, Ann Arbor, Michigan.

MEICALFE, R. M. and D. R. BOGGS (July 197¢], Ethernet: Diswributed Packet Switching for
Local Computer Networks, Communications of the ACM. 19(7), 395-404.

MICROSOFT [1996), Windows NT Resource Kit, Microsoft Press, Redmond, Washington.

M LER, C. K. and D. M. THOMPSON [March 19821, Making a Case for Token Passing in Local
Networks, Duata Commnunicarions.

MILLS, D. [September 1991], On the Chronomety and Metrology of Computer Network
Timescales and Their Application 1o the Network Time Protocol, Proceedings of ACM
SIGCOMM "9, 8177,

MILLS, D. and H. W. BRAUN [August 1987]. The NSFNET Backbone Network, Proceedings of
ACM SIGCOMM 87,

MITCHELL,). and J. DION [Apnl 19321, A Companson of Two Network-Based File Servers,
Communications of the ACM, 25(4), 233-245.

MOERIS, R. [1979], Fixing Timeoat Imervals for Lost Packel Detection in Computer
Communication Networks, Proceedings AFIPS National Compiier Conference, AFIPS Press,
Montvale, New Jersey.

NAGLE,). [April 1987], On Packet Swiiches With Infinite Storage, [EEE Transactions or
Communicarions, {COM-35:4),

NARTEN, T. [Sept, 1939], Internet Routing, Proceedings ACM SIGCOMM 89,

NEEDHAM, R. M. [1979], System Aspects of the Cambridge Ring. Proceedings of the ACM
Seventh Symposium on Operating System Principles, 82-85.

NEHMER, J. and F. MATTERN |May 1992], Framework for the Orgamzation of Cooperative
Services in Distributed Client/Server Systems, Compuier Comtmurnications, E5(4), 201-260.

NELSON, 1. |September 1983]), 802: A Progress Report, Datamation.

MNESSET, D. and G. LEE [1990], Terminal Services in Heteropeneous Disiributed Systerns,
Jowrnal of Compirer Networks and ISDN Svstems, 19, 105-128.

NEUMAN, B. and T. T30 | 1994], Kerberos: An Authentication Service for Computer Nepworsks,
1EEE Communications, 33-37.

NUTT, G. [1992], Centralitzed and Distributed Operating Svstems, Prentice Hall, New York.
Upper Saddle River, New Jersey.

ONEY, W. [1996], Systems Programming for Windows 25, Microsoft Press, Redmond,
Washington.

OPPEN, . and ¥. DALAL [October 19811 The Clearinghouse: A Decentralized Ageot for
Locating Named Objects, Office Products Division, XEROX Corporation.

B T TN S ENRPRTR S TREY S 1. B R T e PR P L L

406 Bibliography

ORFALIL R, D. HARKEY, and J. EDDWARDS [1994), Client/Server Survival Guide, ¥an Nostrand
Reinholr, New York, New York,

OTTE. K., P. PATRICK and M. ROY [1996], Understanding CORBA, Prentice Hall, Upper Saddle
River, New Jersey.

PADLIPSKY. M. [1983], A Perspective On The ARPANET Reference Model, Proceedings of the
IEEE INFOQCOM Conference, San Diego, California.

PARTRIDGE, . [lune 1286], Mail Rowing Using Domain Names: An Informal Tour,
Proceedings of the {986 Summer USENIX Conference, Atlanta, Georgia.

PARTRIDGE. C. [June 1987], Implementing the Reliable Data Protocol (RDP), Proceedings of the
987 Summer USENTX Conference, Phioenix, Arizona.

PARTRIDGE. C. [1994), Givabit Netwerking, Addison-Wesley, Reading, Massachusetts.

PARTRIDGE, C. and M. ROSE [June 1989]), A Comparison of Extenal Data Formats, in Message
Handling Systems and Distributed Applhications, E. STEFFERUD and (). JACOBSEN {EDS.}
Elsevier-North Holland.

PERLMAN, R. [1992), intercennections, Addison-Wesley, Reading, Massachusatis,

PETERSON. J. and A. SILBERSCHATZ [1985], Operating System Conceprs, 2nd edition,
Addison-Wesley, Reading, Massachusetts.

PETERSON, L. [(985), Defining and Naming the Fundamenta! Objects in a Distributed Message
Swstem, Ph.D. Dissertation, Purdue University, West Lafayette, Indiana.

PETERSON, L. and B. DAVIE [199&], Computer Networks: A Swstems Approach, Morgan
Kaufmann.

PETERSON, M. [1993], DCE: A Guide to Developing Portable Applications, McGraw-Hill, New
York, New York.

PETZOLD, C. [1996]. Programming Windows 95, Micrusoft Press, Redmond, Washington,
PIERCE, [R. {1972], Neiworks for Block Switching of Data, Bell System Techrioal Jowrnal, 51,

PLATT, D. [1996]. Windows 95 and NT: Win32 APl from Scratch: A Programmer’s Workbook,
Prentice Hail, Upper Saddle River, New lersey.

POSTEL, 1. B, [Aput 1980], Intemetwork Protocol Approaches, FEEE Transactions on
Commiunicaitons, (COM-28), 604-611.

POSTEL. J. B.. C. A. SUNSHINE, znd . CHEN [1981], The ARFA Intemet Protocol, Computer
Nerwaorks,

PRESOTTO, I L. and D. M. RITCHIE [June 1990], Interprocess Communication in the Ninth
Edition Unix System, Soffware — Practice And Experience, 20(51), 81/3-S1/17.

QUARTERMAN, 1. 5. [1990), The Matrix: Computer Networks and Conferencing Systems
Worldwide, Digital Press, Digital Equipment Corporation, Maynard, Massachusetts.

QUARTERMAN, J. 5. and J. €. HOSKINS [October 1986], Notable Compuler Networks,
Communications of the ACM, 20111

QUIN, B. and D. SHUTE [199%6]. Windows Sockets Network Programming, Addison Wesley
Longman, Reading, Massachusetts.

Bibliography 447

RECTOR, B.E. and J. M. NEWCOMER [1997), Win32 Programming, Addison-Wesley Developers
Press, Reading, Massachusetts.

REYNOLDS, I, I. POSTEL, A. R. KATZ, G. G. FINN, and A, L. DESCHON [October 1985], The
DARPA Experimental Multimedia Mail System, fEEE Computer.

RITCHIE, D. M. axl K. THOMPFSON [July 1974], The UNIX Time-Sharing System,
Communications of the ACM, 17(7), 365-375; revised and reprinted in Bell System Technical
Journcd, 57(6), [July-August 1978], 1905-1929,

ROSENBERRY, W., D. KENNEY, and G. FISHER [1993], Understanding DCE, O"Reilly and
Associates, Sebastopol, California.

ROSENTHAL, R. (ED.) [November 1982), The Selection of Local Area Computer Networks,
Nationial Burean ot Standards Special Publication 500-96.

RYAN. T. [1996], Disiributed Object Technology, Prentice Hall, Upper Saddle River, New Jersey.

SALTZER, I. | 1978], Naming and Binding of Objects, Operanng Systems, An Advanced Course,
Springer-Verlag, 99-208.

SALTZER, J. [April 1982, Naming and Binding of Network Destinations, Mternarional
Symposium on Local Computer Nerwarks, IFIPfT.C.6, 311-317.

SALTZER, I.. D REED, and D. CLARK [November 1984], End-to-End Arguments in System
Design, ACM Transactions on Computer Systems, 2(4), 277-285%,

SCHILLER.). [November 1994], Secuwre Disrributed Computing, Scientific American, 72-76.

SCHEIFE, R. [199%)), Protocal Reference Muonual, O'Reilly and Associates, Sebastopol,
California.

SCHWARTZ. M. and T. STERN [April 19801, JEEE Transactions on Communications, COM-
28(4y, 539-552.

SHOCH,). F. [1978], !nternetwork Naming, Addressing, and Routing, Proceedings of
COMPCON.

SHOCH, 1. F., Y. DALAL, and D. REDELL [August 1982], Evolution of the Ethernet Local
Computer Nelwork, Conmiprter.

SINHA, A. [July 1992], Client/Server Computing: Current Technology Review. Communicanons
af ACM. 7, TT-96.

SINHA, A. [1996], Nemork Programming in Windows NT, Addison Wesley Longman, Reading,
Massachusetts.

SNA [1975], IBM System Network Architecture ~ General Information, IBM System Development
Division, Publications Center. Department EO, Research Triangle Park, North Carolina.

SOLOMON, M., L. LANDWEBER. and . NEUHEGEN [1982], The TSNET Name Server,
Computer Netwaorks (6), 161-172.

STALLINGS, W. [1984], Local Netwarks: An Introduction, Macmillan Publishing Company, New
York.

STALLINGS, W. [1985], Data and Computer Communications, Macmillan Publishing Company,
New York.

408 Biblingraphy

STEVENS, W. R. [1990}, UNIX Neework Programming, Prenlice Hall, Upper Saddle River, New
Jersey.

STEVENS, W. R. [1994]), TCOPAP fllustrated, Volume . The Prowcols, Addison-Wesley,
Reading, Massachusetts.

STEVENS, W. R. and G. R. WRIGHT [1994], TCPAF Hlustrared, Velume 2, Addison-Wesley,
Reading, Massachusetts.

SWINFHART. D.. G. MUDANIEL, and D R. BOGGS [December 1979], WFS: A Simnple Shared
Filc System for & Dastribuled Envionment, Froceedings of the Sevenih Symposium on
Onerating Sysrem Principles. 9-17.

TANENBAUM, A {(1921], Compurer Networks: Toward Distributed Provessing Svatemns, Prennice
Hall, Upper Saddle River, New lersey.

TIWCHY, W, and Z. RUAN [June [984), Towards a Distributed File System, Proceedings of
Surmer 84 USENIX Conference, Salt Lake City, Utal, £7-97,

TOMITNSON, R, 5. [1975], Selecting Sequence Numbers, Proceedings ACM SIGOPS/SIGCOMM
frerpravess Communicaiion Workshop, 11-23.

LMAR, A, | 1997a). Application Engineering/Reengineering Building Web-based Object-Oriented
Applicasions and Dealing with Legacies, Prentice Hall, Upper Saddle River, New Jersey,

UmaR, A [1993]. Distribured Computing and Client/Server Systems, Prentice Hall, Upper Saddle
River, New Jorsey,

UMAR, A. [1997h], Object-Oriented Client/Server Internet Envirorments, Prentice Hail, Upper
Saddle River, New Jersey.

WARLD, A. A [1980], TRIX: A Metwork-Oriented Operating System, Proceedings of COMPCON,
344-349

WATSON, R, [198]], Timer-Bated Mechanisms in Reliable Transport Protscol Connection
Management, Computer Netwarks, North-Holland Publishing Company.

WEINBERGER, P. J. [|1985}), The UNIX Eighth Edition Netwark File System, Proceedings 1985
ACM Computer Science Conference, 299-301.

WELCH, B. and I. OSTERHAUT |May 1986]. Prefix Tahkies: A Simple Mechanism for Locating
Files in a Distributed Systemn, Proceedings IEEE Sixth International Conference on Disiributed
Computintg Svstems, 184-189.

WILKES. M. V_and I . WHEFLER [May 1979, The Cambndge Digital Communication Ring,
Froceedings Local Area Compuier Nerwork Symiposium,

WOOD, A "TApni 1995}, Predicting Client/Server Availability, JEEE Computer, 41-4%.

XEROX [1981], Internat Transport Protocols, Report XSIS 028[12, Xercx Corporation, Office
Products Division, Palo Altg, California.

ZHANG. L. {August 1986}, Why TCP Timers Don't Work Well, Proceedings of ACM SIGUOMM
A

Index

!

fdevitcp 45
fetc/rc 430

A

aboart 362, 366

Absiract Syntax Netation One 242
accept 108, 165, 452

accept function 56, 58

accept system call 131

active socket 51

address family 48, 5]

address parsing 64

AF_INET 51
AF_LUNIX 352
algorithm

RPC port mapper 258

TELNET chent 365

conpection-oriented client 68

conneclion-oriented server 107, 112,
114

connectionless ciient 73

connectionless server 109, 111
APL 37, 47
apparent concurrency 113, 143

application gateway 215
Application Program Interface 37
apphication services

custormzed 11

locally-defined 11

standard !1

application-level gateway 224
application-level tunneling 208
application-oriented desipn 244
argument marshaling 260
argument serializing 260
arguments k74

ASN1 242

asymmetsic data conversion 232
asymmetric data representation 241
asynchronous 358
asynchronous J/AO 113
Asynchronous Transfer Mode 204
asynchronous write 358

at least once semantics 254
ATM 203, 204, 206

ATM virtual circuit 206

attrstat 351

authentication 11, 262
authorization 11
authunix_create 270
AUTH_NONE 356

auth_type 261

AUTH_UNIX 356

auth_unix structure 261
autoexec.bar 430

B

background execution 429
backsiash 332

backspace 366

Berkeley socket interface 47

300

Berkeley Software Dastribution 60
Berkeley UNIX 47
Berson 18
best effort delivery (3
Beveridge 35
big-endian 261
hind 453
bind function 55
block-oriented 71
block-special 330
blocking 32, 365
browser [2
B5D &0
BSD UNIX 47
buffer paradigm 236
bursty traffic 184
byte order 66, 91
byte stuff

see character stuff

C

C include statement 59
CALL 259
callrpc 269
call_bhody 239, 260
carnage return 417
chreak mode 396
CGI 224
character echo 366
character stuff 370, 413
character-special 330
CHARGEN szervice 168
chitd 2%
circutar wart 442
Clark, David D. 5
client 9, 10
client
deadlock 190
observed response 106
single-thread 193
standard 1
client-server and RPC 248
clieat-server paradizm 9
clnt_crearc 269

Index

clock 199
close 43, 314, 431, 432
closelog 437
closesocket 454
closesecket functipn 55, 58
CNRI 4
cnri.reston.va.us 3, 4
command 362, 370, 418
Common Gateway Interface 224
comrmunication endpaint 51
communication procedure 275
communication-orientad design 244
compact FSM 376
concepiual interface 39
concurfency 22

cost 179

demand-driven 179

level 173

managememnt 177
concurrency cxampie 28
cancurrency in clients 23, 189, 19}
concurrency in servers 23
concurrent execution 25
concurrent file acecss 321, 322
CONCUITeNt processing 6
concurrent server 100, 110
conditienal compilation 233
configuration

dynamic 171

statie 171
conpecl 435
conpect function 54, 58, 70, 74
connected mode 73
conneciion-oricnted 13, 100
conmectionless 13, 100D
conncctionless server 103
conncctions {1
connectsock in consack.cpp 82
connectTCP in conTCP.cpp 81
connectUDP i conUVDP.opp §2
conreader 369
consock.cpp 82
conTCP.cpp %1
conlexl switch 32

Index

control 362

contro] tenninal 431

contro] thread 192

control-C 366

controflling tty 431

conUDP.cpp B2

cooked mode 396

CORBA. 265

Corporation For National Research
initiatives 4

CR-LF 417

CreateProcess 34, 113, 164

ctime 91

current position 321

current working directory 432

D

Data Encryption Standard 260
DATA MARK 391, 416
data representation 231
data security 11
data-driven processing 143
date 128

epach 88, 91
DAYTIME service 83, 128§, 153, 168
DAYTIME service in TCPdrc.cpp 86
daytimed.cpp 154
dcon in deon.cpp 394
deadlock 116, 441, 442

client 190
deadly embrace 442
DECNET 203, 205
defunct process 435
delay 180
delayed concurrency” 186
delete 366
DELETEW in rdict.x 293
dcletew in dict.copp 282
deletew in dict2.cpp 290
deletew in rdict_cif.cpp 302
deletew in rdict_srp.epp 309
deletew_1 in rdici_cintcpp 297
deletew_1 in rdicr_sif.cpp 304
demand-driven concurrency 179

501

DES 260
descripior 431
dict.cpp 282
dictl.cpp 288
dict2.cpp 2%
dictionary exampla 280
directory 319, 432
NFS 330
position 315
diropargs 346
diropres 347, 351
disconnect 394
dispatch 272
display buffer 113
distribuled program creation 281
DLL 54
DO 371, 402, 404, 406, 407, 409
doecho 402
domain name 635
DONT 371, 402, 403, 404, 406
do_echo.cpp 40]
do_nogacpp HHM
do_notsup.cpp 403
do_txhinary.cpp 405
dynamic configuration 171
Dynamic Linked Library 40

E

ECHO 402

echo 366

ECHO aption 401

ECHO service 91, 307, 135, 146, 168,
191, 194

echo suppression 366

electronic mail 2

electronic mail client 12

electromic mail service 2

encapsutation 207

end-of-file 72, 87, 136, 140, 148, 319,
a1

end-to-end delay 102

endpoint address 51

environment 34, 408

epoch date 88, 125, 346

502

emexit 393

crrexit in errexit.cpp 84

emno 483

escape character 418

example client 361

exec 34

execute 316

exit 304, 430

export list 354

gxportlist structure 354
aXternal IData Representation 234
exlernal data representation 234
extra hop problem 221

F

farmuly of protocols 48
fattr 331
FD_CLR 148, 476
FD_ISSET 156, 165, 476
FD_SET 148, 476
FD_SETSIZE 476
FD_ZERQ 148, 476
fhandle 346
thstatus 354
file 315. 330, 331
NFS 330
block-special 330
byte numberng 315
character-special 330
concurrent access 321
inode 323
link 323
name resolution 328
position 315
stat 330
file access 313
fiie access mode 317
liie attnbutes 331
flie desenptor 42, 49
file group 316
file handle 336
file mode 317
file naming 325
file oftset 322

Index

file ownership 316
file protection 316, 324
file server 11
file size 315
file system 315, 326
UNTX 315
file transfer 313
file transfer client 12
file transfer service 2
filename 346
FINGER service 175
finmte state machine 370
flock 322
flow of control 247
folder 319, 432
foreground execution 429
fork 33, 321, 430
FsM 370
FSM implementation 393
F5M initialization 387
fembuild in fsmbuild.cpp 387
fsmintt in fsminit.cpp 380
fsm_trans in tmfsmh 377
Istat 425
FTP 12
ftype 330
ft_action 378
ft_ char 378
fi_next 37K, 394
fr_state 378
full path name 322
fully parameterized client 12
function
WH5ACleanup 34
WHAStantup 53
accept 56
bind 55
closesocket 55
connect 54
listen 55
recy 55
send 54
socket 54
functions 451

Index

G

gateway machine 215
getdiablesize 431
geleny 409
gethostbyaddr 456
gethostbyname 63, 457
gethostname 458
GetLastError 392, 483
getpeerzame 459
geprotobyname 67, 460
getprotobynumber 461
getservbyname 107, 442
gelservbyport 463
getsackname 464
getsockopt 465
Greenwich Mean Time 88
group identifier 316
groups 354

groups structure 354

H

haadle 15, 269

hard link 323

hard mount 335
Harrenstien 96, 126
hierarchy 319

hostent in winsock.h 65
htonl 57, 466

htons 56, 467

HTTP 12, 224

HyperText Transfer Protocol 224

1

IO 315

IAC 370

idempotent 17, 255

ifdef 233

INADDR_ANY 108
INADDR_LOOPBACK 360
include statement 59

index node 323

indexcd files 316

inetd 172

inet_addr 65, 468
inei_ntoa 469

inhentance 431

INITW in rdici.x 293

initw in dict.cpp 282

initw in dict2.cpp 290

initw in rdict_cif.epp 302
initw in rdict_srp.cpp 309
initw_1 in rdict_clar.cpp 297
initw_1 in rdict_sifcpp 304
inade 323

input thread 192

INSERTW in rdictx 293
insertw in dict.cpp 282
insertw in dict2.epp 290
insertw in rdict_cifcpp 302
insertw in rdict_srp.cpp 309

insertw_1 in rdict_cint.cpp 297
insertw_1 in rdict_sif.cpp 304

instruction pointer 25
mt 232
integer representation 232
mterface 37
interface procedure 275
internetwork

see inemet
Interpret As Command 370
mterrupt 362, 366, 370, 413
INVALID SOCKET 438
woctl 42, 432
octlsocket 470
iterative 177
iterative server 100

J

January 1, 1900 91
January 1, 1970 91
job 25

K

KCDCON 418
KCESCAPE 418
keyboard escape 383, 418

503

504
Korb 211

L

last char 417

ieast recently used 105, 207
least significant byte 231
Leffler &0

level of concurrency 178
LF-CR 417

lightweight process 25, 32
linearize arguments 260
linefeed 417

link 323

linkage editor 292

linker 292

listen 108, 471

Jisten function 33

livelock 441, 447

[ocal.h 366

locally-defined application services 11
iocally defined services 11
locating a server 62

lock file 434

lockf 322

LockFile 434
LOG_DAEMON 436
LOG_DEBUG 436
LOG_EMERG 436
LOG_MAIL 436
LOOKUPW in rdict.x 293
lookupw 1n dict.epp 282
lookupw in dict2.cpp 290
lockupw in rdict_cif.cpp 302
lookupw in rdict_srp.cpp 309
lookupw_1 in rdict_cint.cpp 297
lookupw_| in rdict_sifcpp 304
loosely specified 37

LRU 207

Iseek 320

Isock 369

L_SET 320

Index

M

machine name 65

magic cookie 33%

mail gateway 215
mailbox files 220
mailbhoxes 220

main in 7CPrecho.cpp 194
main in rdict.epp 306
main in rdict_sie.cpp 299
main in superd.cpp 166
main in tclient.cpp 388
marshal arguments 260
Marzuile 126

master server thread 110
memcpy 84

memset 34

Meyers 229

middleware 243

Miiis 96, 126
MNTPROC_DUMP 356
MNTPROC_EXPORT 356
MNTPROC_MNT 355

-MNTPROC_NULL 355

MNTPROC_UMNT 356
MNTPROC_UMNTALL 356
maode 330, 331

NFS 330
most significant byte 231, 234
mount 326, 32§, 334, 3135
mount authentication 356
mount constants 353
mount data structures 354
mount procedures 353
mount protocol 340, 343, 353
mount types 353
mounted file system 327
mountlist 355
mountlist structure 355
msg_type 239
mstirne 199
mstime in TCPrecho.cpp 194
multiprocessing 22
multiprotocol environments 203
multiprotocol server 151

Indes

muitiservice server 159
mutual exclusion 434
mv 351

N

n-squared conversion problem 233

name
machine 65
server 65
name resolotion 65
native data representation 232
NBS 260

network byte order 56, 66, 91, 233

Neiwork File Systern 314

network virtbal terminal 362, 406

next-hop 69
next-hop address 207
nextin in dict.cpp 282
nextin in dictf.cpp 288
nextin in rdict.cpp 306
NFS 314, 343, 346
client 332, 333
constant declarations 345
directory 330
directory access 339
diropargs 347
diropres 347
fattr 331
file 330
file attributes 331
file handle 336
file mode 330, 331
file semantics 329
fiie types 330
handle 357
magic cookie 339
mode 330
mount 335
mount protocel 340
multiple hierarchies 340
procedures 349
readargs 348
readlinkres 348
renameargs 347

server 332

stat declaration 345

type declarations 346

version 3 358

writeargs 348
NF5 semantics

315
NEFSPROC_CREATE 351
NFSPROC_GETATTR 350
NFSPROC_LINK 351
NESPROC_LOOKUP 350
NFSPROC_MKDIR 352
NESPROC _NULL 350
NFSPROC_REATD 350
NFEFSPROC_READDIR 352
NESPROC_READLINK 350
NFSPROC_REMOYE 315)
NFSPROC_RENAME 351
NFSPROC_RMDIR 352
NESPROC_ROOT 340, 350
NFSPROC_SETATTR 350
NESPROC_STATFS 352
NFSPROC_SYMLINK 351
NFSPROC_WRITE 351

NFSFROC_WRITECACHE 350

NFS_0OK 347
nic.ddn.mil 3

NIST 260

no go-ahead option 404
noga 404
non-selfreferential 505

nonstandard application services 11

nonstandard protocols 2
no_op in recopt.cpp 400
ntohl |, 57,91

nichs 56, 473

NTP 96, 126

null 350

aumenc group 1k 316
numernic user id 316
NYT 362

e Rl T Rr B T R vutar o wbRm o ¢ . s+ gk e+ e o ela. e

e

O

observed response time 106

on demand 179

ONC RPC 250

opague 261, 336, 346
opague_auth 261

open 42, 314, 318, 321, 332, 432
Open Metwork Computing 230
open-read-write-close 318, 329
openlog 437

option reply 370

vption request 370

option subnegotiation 385
option subnegotiation requeslt 374
output thread 192

Owicki 126

owner 316

O_CREAT 318

O_EXCL 322, 439

C_RDWR 318

F

Padlipsky 242

parent 28

parsing addresses 64

partial close 72

Partridge 242

passive mode 355

passive socket 5

passivesock in passseck.cpp 121
passive TCP in passTCP.cpp 128
passiveUDP in pass UDP.cpp 120
passsock.cpp 121

passTCP.cpp 128

passUDP.cpp 120

path name 322

peer-to-peer 4

Perl 45

permission bits 317

perror 433

Petersom 35

PE_INET 30, 51, 54, 456, 48]
pd 33

[ndex

pipc 52
Point-to-Point Protoco! 209
POP 229
port
weall-known 11, 46
port mapper 256
port number choice 69
porthase 120
portbase in passseck.cpp 121
position
file 315
position identifier 339
Postel 96, 133, 141, 149, 158, 306, 427
PFF 2%, 226
preallocation 181
preallocation of threads 181, 182
preallocation on multiprocessor 183
presentation level 231
Presotto 6}
printf 85, 437
privacy 11
procedure activatton record 27
procedure call 246
procedure execution 246
process 23, 33
see also thread
process group 4313
process id 33
process identifier 33
program versions 252
protection 11
protection bits 316
prowocol 173
block-oriented 71
connecticn-oriented 1040
connectionless 1(0}
standard 2
stream-oriented 71
protocol family 48
protoent 1n winsack.h 506
protoent structure 67
Provan 211

Tmvcde x

Q

QUERY_STRING 230
queue overflow 106

R

random file access 316

raw mode 396

revbinary 405

rdict.cpp 306

rdict.th 295

rdict.x 293

rdictprog [in rdict_sve.cpp 299
rdict_cif.cpp 302
rdict_clnt.cpp 297
rdict_sif.cpp 304
rdict_srpepp 309
rdict_sve.cpp 299
rdict_xdr.cpp 296

read 43, 314, 316, 319
readargs 348

readdirargs 352

readdirres 352

reader in TCPrecho.cpp 194
readlink 348

readlinkres 348

readres 350

real concurrency 113
recopt in recopt.cpp 400
record blocking 316

record boundanes 316
record-orienied interface 241
recv 144, 474

recv function 55, 58
recvirom 109, 125, 475
remote file access 313
remote file operations 314
remote login service 2, 12
remote pracedure call mode! 244
remote program 250

remote program number 251, 252
remote program versions 252
remote termrinal client 12
renarmeargs 347

rendezvous 10
REPLY 259
reply body 259
representation of data 231
Request For Commments 223
request processing time 106
request queue overflow 106
request-driven concurrency 179
request-response 443
request-response interaction 70, 72
reselution 328
resolve a name 328
response 70
reransmission 255
refurn 246
Reynolds 158, 396, 427
tfds 156
Ritchie 60
rlogin 396
Romkey 226
root 323
Rose 229, 242
RPC 250, 269, 343
RPC at-least-once-execution 254
RPC authentication 263
RPC dynamic port assignment 256
RPC example 280
RPC message disparch

272
RPC model 244
RPC opaque data 261
RPC port mapper 256
RPC program mapping 255
RPC retransmission 255
RPC semantics 234
RPC specification file 292
RPC stub names 273
RPC stb procedures 271
RPC zero or more semantics 254
rpcgen 274, 294
rpcgen .x file 292
rpcgen client interface 301
rpcgen example 280
rpcgen input files 277

o7

08

rpcgen oukput 297

rpegen procedures 274
rpegen server interface 304
rpcgen specification file 275
rpegen strings 292

pe_msg 259

rsock 369

8

sa_data 52
sa_family 32
sa_lken 52
scrfp 424
scrgete n scrgefe.cpp 422
scrinil in scriniz.cpp 420
scripting 416, 419
scowrap in scrwrap.cpp 423
search permission 319
seCure partition 214
security 214
seck 114
select 32, 113, 162, 364, 391, 395, 476
SEND 411
send 477
send funchon 54, 38
sendte 109, 478
Senal Line [P 209
serialize argurments 260
servent in winsock.h 508
server 9, 11
ECHO 137, 146
algorithms 59
comparison of types 114
concurrency 23
concurrent 110, 112, 135, 162
connection-oriented 100, 107, 112,
114, 128, 135, 161, 162, 182
connectionless 100, 101, 103, 108,
LTI, 119, 122, 160, 183
data-driven 143
deadlock 116
delay 181
desipn 99
four basic types 1D5

Index

wentifying location 62
iterative 122, 128, 16]
iterative algorithm 108
level of concurrency 178
master 163, 183
master thread 110
multiprotocol 151
mujtiservice 159, 161
miltiservice multiprotocol 164
preallocation 182, 183
request processing 106
singly-threaded 146, 152
slave 133
slave thread 110}
state 14, 102
stateful 14, 99, 102, 315
stateless 14, 99, 102, 315, 338
summary of types 115
throughput 181

server program 174

service 11
CHARCEN 163
DAYTIME 85, 128, 153, 168
ECHO %1, 168
TIME 88, 8%, 123, 168

service name 173

service stmclure 165

setpgrp 433

setsockopt 479

sg_crase 366

sg_Kitlc 366

shared library 40

shutdown 480

shutdewn function 72

signal 171, 435

Silberschatz 35

simple services 160

Simpson 211, 229

singly-threaded server 146

Sinha 18

sin_addr 53

sin_family 53

sin_len 53

sin_port 53

Index

sin_zerop 53
s5ize 315
slash 323
slave server thread 110
SLIP 209, 226
SLIRP 226
slirp.doc 229
SMTP 12
SNA 203
sndbinary 407
sockaddr structure 52
sockaddr_in 52, 56, 65
socket 47, 50, 54, 481
active 55
connected 73
passive 355
unconnected 73
socket APT 47
socket descriptor 5G, 485
socket function 54
socket functions 47, 451
socket interface 38
socket output FSM 382
socket system call 50
socket type 173
sockets 38
SOCKET_ERROR. 438
SOCK_DGRAM 59, 74, 48]
SOCK_STREAM 50, 59, 481
sofsn 418
sofsm in sefsm.cpp 384
soft mount 333
sonotsup.cpp 419
soputc.cpp 412
sostab 385
sostab in sofsm.cpp 384
sowrite.cpp 417
special file 330
sputc 402
sputc 1n sputc.cpp 403
SPUTS 411!
SS_END 386
standard
clhient 11

N AR R . LR a CER RO T 1 omly el el s w0 .

et - . A

standard error 433
standard /O stream 240
standard input 433
standard cutput 433
standard protocols 2
standard services 11
starvation 441, 444

stat 324, 345

stat function 324

stal operation 330

stat structure 325

state informationr 14, 102
stateful server 14, 15, 162
stateless server 14, 102
statfsyes 352

static configuration 171
status in status.cpp 425
Stevens 18, 117

strepy B4

stream transfer 48
streamn-oriented 71

string 346

stub generator 269

stub procedure names 294
stub procedures 271
subend 412

subend.cpp 412

sublsm in subfsm.cpp 386
subnegotiation 409, 412
subopt 386

subopt.cpp 410

substab in subfim.cpp 386
subtermtype.cpp 411

Sun RPC 250

super server 163
superd.cpp 166

. suppress echo 366

svent 165

sv_func 65

sv_funcs.cpp 168

sv_sock 165

symbolic link 329

symmetric data conversion 233

symmetsic data representation 241

509

510

sync.cpp 392
SYNCH 416
synching 391, 396, 416
synchronization 391
synchromize 391
sytichromize mode 416
svnchronized lock 442
synchronous 32
syslog 435, 437, 439
systent call
CreateProcess 113
WSAC|canup 482
WSAGetLastError 483
WSASHartup 484
accept 452
bind 453
closesocket 454
connect 455
gelthosthyaddr 456
gethostbyrrame 457
gethostnarme 458
getpeername 459
getprotubyname 460
getprotocbynumber 46
gelservbyname 462
getservbyport 463
getsockname 464
getsockopt 465
htonl 466
htons 467
inct_addr 468
inct nloa 469
iclsocker 470
listen 471
ntohl
ntohs 473
recy 474
recvlrom 475
select 476
send 477
sendro 478
sesockopt 479
shutdown 480
socket 50, 481

system function
beginthread 28
Brec 34

T
task 25
TCANY 375
TCB 446
tcdm in sync.cpp 392
TCDO 400
TCDONT 400
(client.cpp 388
TCP |13
TCPdaytime in TCPdtc.cpp 86
TCPdaytimed in TCPdid.cpp 130
TCPdtc.cpp 86
TCPdid.cpp 130
TCPecha in TCPechocpp 92
TCPechod in TCPechod.cpp 138
TCPmechd in 7 Pmechd.cpp 146
TCPwecho in TCPtecho.cpp 194
TCSE 374
TCWILL 400
TCWONT 400
TELNET 3, 12, 361

DO 371, 4060

DONT 371, 400

ECHO 401

(ia-Ahead 44

[AC 370, 4.3

IP 413

NVT 362

WILL. 371, 400

WONT 371 400

arcuments 387

birary aption 405

client 361

kKeyboard escape 3R3

opuon 400

gptions 371

stbnegotiation 409

tenminal type 408, 410
telnet 3
teinet in felnet.cpp 380G

Index

[ndex

TELNET eche option 371
TELNET option 370
TELNET service 12
telnet.cpp 389
telnet.h 372
telsock 369
TERM 408
term 409, 411
tertminal 362
terminal type 385, 408
termtype 409
termtype option 408
thrashing 105
thread of control 246
thread of execution 246
threads 25
threads of execution 23
three-way handshake 76
time
epoch 88, 91
representation 88
time epech 125, 132, 346
time of day 128
TIME service 88, 89, 123, 168
time-of-day clock 88
time-sharing 22
timer 444
timeslicing 30
timestamp 336
timeval 346
TLI 38, 45
tnabort 395
tnabort in tnabort.cpp 395
tnflags 421
tnfsm.h 377
transition matrix 376
transmit binary 372
transmit binary option 407
Transport Layer Interface 38, 45
TSSUBIAC 374
TSSUBNEG 374
(tfsm o ttfsm.cpp 379
tpuic 374
ttputc in tipuie.cpp 414

e T RN L TR T SRR PR T TR S SR

tistab 380, 354

ttstab in

ttstare 394

tewrite in thwrite.cpp 393
ttycon 367

ttycon in ttycon.cpp 367

tyflags 366, 402

TT_SEND 386
tunneling 207, 217
type of service 48
typed files 316
TZ 91

t flushc 366
Lintrc 366
t_quitc 366

U

UCT 8%
UDP 13, 119
UDPeche in UDPecho.cpp M
UDPtime in UDPtime.cpp 90
UDPtimed in UDPtimed.cpp 124
umask 432
vncennected mode 73
Uniform Resource Locator 223
Universal Coordinated Time 88
UNIX 60
KO 315
access mode 317
background execution 429
cbreak mode 396
concurrent access 321
concurrent file access 322
cooked mode 396
directory 319
directory search 319
end of file 319
file group 316
file mode 317
file naming 325
file offset 322
file ownership 316
file permissions 317
file protection 316

501

file semantics 315

file system 326

foreground execulion 425

inode 323

link 323

lseek 320

mount 335

mount call 326

mount command 328

move 351

mv 351

name resolution 328

aopen 318

path name 322

protection bits 316

random file access 320

raw mode 396

read 319

root directory (slash) 323

special file 330

stat 330

stat operation 324

writc 319
UNIX file system 315, 328
unscript in wascripl.cpp 424
unsecure partition 214
urgent data 391, 396

URL 223
UT &3
v

YanBokkelen 396, 427
version number 252
virtual circuit 206

W

wailt 435

wait siatus [73

Web hrowser 12

well-known port 11, 66, 9%

wildcard address 108

WILL 371, 401, 402, 403, 404, 405, 406,
407, 4%

Index

will_notsup n will_notsup.cpp 406
will_termtype.cpp 408
will_txbinary.cpp 407
Windows
ctime 132
telnet command 3
time 132
Windows 95 332
Windows Sockels API 47, 57,451
Windows Sockets functions 60
Windows Sockets Interface 38
Windows Sockets interface 451
WINEPOCH 125
WINSOCK 38
WONT 371, 401, 402, 403, 404, 405,
406
write 43, 314, 316, 319
writeargs 347
writer in TCPrecho.cpp 194
WSACleanup 54, 482
WSACleanup function 54
WSADATA 53
WSAEINTR 391
WSAGetLastErmor
WSAStartup 484
WSAStartup function 53

483

X

XDR 234

XDR Language 259
XDR stream 237
xdrmem_create 237
xdmreg_create 241
xputcpp 416

xputc in xput.cpp 416
xpues in xput.cpp 416

¥ A

ZCro of more semantics 254

zomhbie state 435

index

Jbeginthread 28, 35, 112, 369, 449
_geich 363

_geipid 435

_S IREAD 433

_S_IWRITE 433

_urmask 433

	contents
	1.Introcution And Overview
	2.The Client Server Model And Software Design
	3.Concurrent Processing In Client-Server Software
	4.Programs Interface To Protocols
	5.The Socket API
	6.Algorithms And Issues In Client Software Design
	7.Example Client Software
	8.Algorithms And Issues In Server Software Design
	9.Iterativem,Connectionless Servers(UDP)
	10.Iterative,Connection-Oriented Servers(TCP)
	11.Concurrent,Connection-Oriented Servers(TCP)
	12.Single-Threaded,Concurrent Servers(TCP)
	13.Multiprotocol Servers(TCP,UDP)
	14.Multiservices Servers(TCP,UDP)
	15.Uniform,Efficent Management Of Server Concurrency
	16.Concurrency In Clients
	17.Tunneling At The Transport And Application Levels
	18.Application Level Gateways
	19.External Data Representation(XDR)
	20.Remote Procedure Call Concept(RPC)
	21.Distributed Program Generation(Rpcgen Concept)
	22.Distributed Program Generation(Rpcgen Example)
	23.Network File System Concepts(NFS)
	24.Network File Protocol(NFS,Mount)
	25.A TELNET Client(Program Structure)
	26.A TELNET Client(Implementation Details)
	27.Porting Servers From UNIX To Windows
	28.Deadlock And Starvation In Client-Server Systems
	Appendix 1:Functions And Library Routines Used With Sockets
	Biliography
	Index

