
A Sample GNU/Linux
Application

11

THIS CHAPTER IS WHERE IT ALL COMES TOGETHER.WE’LL DESCRIBE and implement a
complete GNU/Linux program that incorporates many of the techniques described in
this book.The program provides information about the system it’s running on via a
Web interface.

The program is a complete demonstration of some of the methods we’ve described
for GNU/Linux programming and illustrated in shorter programs.This program is
written more like “real-world” code, unlike most of the code listings that we presented
in previous chapters. It can serve as a jumping-off point for your own GNU/Linux
programs.

11.1 Overview
The example program is part of a system for monitoring a running GNU/Linux
system. It includes these features:

n The program incorporates a minimal Web server. Local or remote clients access
system information by requesting Web pages from the server via HTTP.

n The program does not serve static HTML pages. Instead, the pages are generated
on the fly by modules, each of which provides a page summarizing one aspect of
the system’s state.

13 0430 CH11 5/22/01 10:46 AM Page 219

220 Chapter 11 A Sample GNU/Linux Application

n Modules are not linked statically into the server executable. Instead, they are
loaded dynamically from shared libraries. Modules can be added, removed, or
replaced while the server is running.

n The server services each connection in a child process.This enables the server to
remain responsive even when individual requests take a while to complete, and
it shields the server from failures in modules.

n The server does not require superuser privilege to run (as long as it is not run
on a privileged port). However, this limits the system information that it can
collect.

We provide four sample modules that demonstrate how modules might be written.
They further illustrate some of the techniques for gathering system information pre-
sented previously in this book.The time module demonstrates using the gettimeofday
system call.The issue module demonstrates low-level I/O and the sendfile system
call.The diskfree module demonstrates the use of fork, exec, and dup2 by running a
command in a child process.The processes module demonstrates the use of the /proc
file system and various system calls.

11.1.1 Caveats
This program has many of the features you’d expect in an application program, such as
command-line parsing and error checking.At the same time, we’ve made some simpli-
fications to improve readability and to focus on the GNU/Linux-specific topics dis-
cussed in this book. Bear in mind these caveats as you examine the code.

n We don’t attempt to provide a full implementation of HTTP. Instead, we
implement just enough for the server to interact with Web clients.A real-world
program either would provide a more complete HTTP implementation or
would interface with one of the various excellent Web server implementations1

available instead of providing HTTP services directly.
n Similarly, we don’t aim for full compliance with HTML specifications (see

http://www.w3.org/MarkUp/).We generate simple HTML output that can be
handled by popular Web browsers.

n The server is not tuned for high performance or minimum resource usage. In
particular, we intentionally omit some of the network configuration code that
you would expect in a Web server.This topic is outside the scope of this book.
See one of the many excellent references on network application development,
such as UNIX Network Programming,Volume 1: Networking APIs—Sockets and XTI,
by W. Richard Stevens (Prentice Hall, 1997), for more information.

1.The most popular open source Web server for GNU/Linux is the Apache server, available
from http://www.apache.org.

13 0430 CH11 5/22/01 10:46 AM Page 220

22111.2 Implementation

n We make no attempt to regulate the resources (number of processes, memory
use, and so on) consumed by the server or its modules. Many multiprocess Web
server implementations service connections using a fixed pool of processes rather
than creating a new child process for each connection.

n The server loads the shared library for a server module each time it is requested
and then immediately unloads it when the request has been completed.A more
efficient implementation would probably cache loaded modules.

HTTP
The Hypertext Transport Protocol (HTTP) is used for communication between Web clients and servers. The

client connects to the server by establishing a connection to a well-known port (usually port 80 for

Internet Web servers, but any port may be used). HTTP requests and headers are composed of plain text.

Once connected, the client sends a request to the server. A typical request is GET /page HTTP/1.0.

The GET method indicates that the client is requesting that the server send it a Web page. The second

element is the path to that page on the server. The third element is the protocol and version. Subsequent

lines contain header fields, formatted similarly to email headers, which contain extra information about

the client. The header ends with a blank line.

The server sends back a response indicating the result of processing the request. A typical response is

HTTP/1.0 200 OK. The first element is the protocol version. The next two elements indicate the

result; in this case, result 200 indicates that the request was processed successfully. Subsequent lines

contain header fields, formatted similarly to email headers. The header ends with a blank line. The server

may then send arbitrary data to satisfy the request.

Typically, the server responds to a page request by sending back HTML source for the Web page. In this

case, the response headers will include Content-type: text/html, indicating that the result is

HTML source. The HTML source follows immediately after the header.

See the HTTP specification at http://www.w3.org/Protocols/ for more information.

11.2 Implementation
All but the very smallest programs written in C require careful organization to pre-
serve the modularity and maintainability of the source code.This program is divided
into four main source files.

Each source file exports functions or variables that may be accessed by the other
parts of the program. For simplicity, all exported functions and variables are declared in
a single header file, server.h (see Listing 11.1), which is included by the other files.
Functions that are intended for use within a single compilation unit only are declared
static and are not declared in server.h.

13 0430 CH11 5/22/01 10:46 AM Page 221

222 Chapter 11 A Sample GNU/Linux Application

Listing 11.1 (server.h) Function and Variable Declarations

#ifndef SERVER_H
#define SERVER_H

#include <netinet/in.h>
#include <sys/types.h>

/*** Symbols defined in common.c. ************************************/

/* The name of this program. */
extern const char* program_name;

/* If nonzero, print verbose messages. */
extern int verbose;

/* Like malloc, except aborts the program if allocation fails. */
extern void* xmalloc (size_t size);

/* Like realloc, except aborts the program if allocation fails. */
extern void* xrealloc (void* ptr, size_t size);

/* Like strdup, except aborts the program if allocation fails. */
extern char* xstrdup (const char* s);

/* Print an error message for a failed call OPERATION, using the value
of errno, and end the program. */

extern void system_error (const char* operation);

/* Print an error message for failure involving CAUSE, including a
descriptive MESSAGE, and end the program. */

extern void error (const char* cause, const char* message);

/* Return the directory containing the running program’s executable.
The return value is a memory buffer that the caller must deallocate
using free. This function calls abort on failure. */

extern char* get_self_executable_directory ();

/*** Symbols defined in module.c **************************************/

/* An instance of a loaded server module. */
struct server_module {
/* The shared library handle corresponding to the loaded module. */
void* handle;
/* A name describing the module. */
const char* name;
/* The function that generates the HTML results for this module. */

void (* generate_function) (int);
};

13 0430 CH11 5/22/01 10:46 AM Page 222

22311.2 Implementation

/* The directory from which modules are loaded. */
extern char* module_dir;

/* Attempt to load a server module with the name MODULE_PATH. If a
server module exists with this path, loads the module and returns a
server_module structure representing it. Otherwise, returns NULL. */

extern struct server_module* module_open (const char* module_path);

/* Close a server module and deallocate the MODULE object. */
extern void module_close (struct server_module* module);

/*** Symbols defined in server.c. ************************************/

/* Run the server on LOCAL_ADDRESS and PORT. */
extern void server_run (struct in_addr local_address, uint16_t port);

#endif /* SERVER_H */

11.2.1 Common Functions
common.c (see Listing 11.2) contains functions of general utility that are used through-
out the program.

Listing 11.2 (common.c) General Utility Functions

#include <errno.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <unistd.h>

#include “server.h”

const char* program_name;

int verbose;

void* xmalloc (size_t size)
{
void* ptr = malloc (size);
/* Abort if the allocation failed. */
if (ptr == NULL)
abort ();

else
return ptr;

}

continues

13 0430 CH11 5/22/01 10:46 AM Page 223

224 Chapter 11 A Sample GNU/Linux Application

void* xrealloc (void* ptr, size_t size)
{
ptr = realloc (ptr, size);
/* Abort if the allocation failed. */
if (ptr == NULL)
abort ();

else
return ptr;

}

char* xstrdup (const char* s)
{
char* copy = strdup (s);
/* Abort if the allocation failed. */
if (copy == NULL)
abort ();

else
return copy;

}

void system_error (const char* operation)
{
/* Generate an error message for errno. */
error (operation, strerror (errno));

}

void error (const char* cause, const char* message)
{
/* Print an error message to stderr. */
fprintf (stderr, “%s: error: (%s) %s\n”, program_name, cause, message);
/* End the program. */
exit (1);

}

char* get_self_executable_directory ()
{
int rval;
char link_target[1024];
char* last_slash;
size_t result_length;
char* result;

/* Read the target of the symbolic link /proc/self/exe. */
rval = readlink (“/proc/self/exe”, link_target, sizeof (link_target));
if (rval == -1)
/* The call to readlink failed, so bail. */
abort ();

else

Listing 11.2 Continued

13 0430 CH11 5/22/01 10:46 AM Page 224

22511.2 Implementation

/* NUL-terminate the target. */
link_target[rval] = ‘\0’;

/* We want to trim the name of the executable file, to obtain the
directory that contains it. Find the rightmost slash. */

last_slash = strrchr (link_target, ‘/’);
if (last_slash == NULL || last_slash == link_target)
/* Something strange is going on. */
abort ();

/* Allocate a buffer to hold the resulting path. */
result_length = last_slash - link_target;
result = (char*) xmalloc (result_length + 1);
/* Copy the result. */
strncpy (result, link_target, result_length);
result[result_length] = ‘\0’;
return result;

}

You could use these functions in other programs as well; the contents of this file might
be included in a common code library that is shared among many projects:

n xmalloc, xrealloc, and xstrdup are error-checking versions of the C library
functions malloc, realloc, and strdup, respectively. Unlike the standard versions,
which return a null pointer if the allocation fails, these functions immediately
abort the program when insufficient memory is available.

Early detection of memory allocation failure is a good idea. Otherwise, failed
allocations introduce null pointers at unexpected places into the program.
Because allocation failures are not easy to reproduce, debugging such problems
can be difficult.Allocation failures are usually catastrophic, so aborting the pro-
gram is often an acceptable course of action.

n The error function is for reporting a fatal program error. It prints a message to
stderr and ends the program. For errors caused by failed system calls or library
calls, system_error generates part of the error message from the value of errno
(see Section 2.2.3,“Error Codes from System Calls,” in Chapter 2,“Writing
Good GNU/Linux Software”).

n get_self_executable_directory determines the directory containing the exe-
cutable file being run in the current process.The directory path can be used to
locate other components of the program, which are installed in the same place
at runtime.This function works by examining the symbolic link /proc/self/exe
in the /proc file system (see Section 7.2.1,“/proc/self,” in Chapter 7,“The
/proc File System”).

In addition, common.c defines two useful global variables:
n The value of program_name is the name of the program being run, as specified in

its argument list (see Section 2.1.1,“The Argument List,” in Chapter 2).When
the program is invoked from the shell, this is the path and name of the program
as the user entered it.

13 0430 CH11 5/22/01 10:46 AM Page 225

226 Chapter 11 A Sample GNU/Linux Application

n The variable verbose is nonzero if the program is running in verbose mode. In
this case, various parts of the program print progress messages to stdout.

11.2.2 Loading Server Modules
module.c (see Listing 11.3) provides the implementation of dynamically loadable
server modules.A loaded server module is represented by an instance of
struct server_module, which is defined in server.h.

Listing 11.3 (module.c) Server Module Loading and Unloading

#include <dlfcn.h>
#include <stdlib.h>
#include <stdio.h>
#include <string.h>

#include “server.h”

char* module_dir;

struct server_module* module_open (const char* module_name)
{
char* module_path;
void* handle;
void (* module_generate) (int);
struct server_module* module;

/* Construct the full path of the module shared library we’ll try to
load. */

module_path =
(char*) xmalloc (strlen (module_dir) + strlen (module_name) + 2);

sprintf (module_path, “%s/%s”, module_dir, module_name);

/* Attempt to open MODULE_PATH as a shared library. */
handle = dlopen (module_path, RTLD_NOW);
free (module_path);
if (handle == NULL) {
/* Failed; either this path doesn’t exist or it isn’t a shared

library. */
return NULL;

}

/* Resolve the module_generate symbol from the shared library. */
module_generate = (void (*) (int)) dlsym (handle, “module_generate”);
/* Make sure the symbol was found. */
if (module_generate == NULL) {

13 0430 CH11 5/22/01 10:46 AM Page 226

22711.2 Implementation

/* The symbol is missing. While this is a shared library, it
probably isn’t a server module. Close up and indicate failure. */

dlclose (handle);
return NULL;

}

/* Allocate and initialize a server_module object. */
module = (struct server_module*) xmalloc (sizeof (struct server_module));
module->handle = handle;
module->name = xstrdup (module_name);
module->generate_function = module_generate;
/* Return it, indicating success. */
return module;

}

void module_close (struct server_module* module)
{
/* Close the shared library. */
dlclose (module->handle);
/* Deallocate the module name. */
free ((char*) module->name);
/* Deallocate the module object. */
free (module);

}

Each module is a shared library file (see Section 2.3.2,“Shared Libraries,” in Chapter
2) and must define and export a function named module_generate.This function gen-
erates an HTML Web page and writes it to the client socket file descriptor passed as
its argument.

module.c contains two functions:
n module_open attempts to load a server module with a given name.The name

normally ends with the .so extension because server modules are implemented
as shared libraries.This function opens the shared library with dlopen and
resolves a symbol named module_generate from the library with dlsym (see
Section 2.3.6,“Dynamic Loading and Unloading,” in Chapter 2). If the library
can’t be opened, or if module_generate isn’t a name exported by the library, the
call fails and module_open returns a null pointer. Otherwise, it allocates and
returns a module object.

n module_close closes the shared library corresponding to the server module and
deallocates the struct server_module object.

module.c also defines a global variable module_dir.This is the path of the directory in
which module_open attempts to find shared libraries corresponding to server modules.

13 0430 CH11 5/22/01 10:46 AM Page 227

228 Chapter 11 A Sample GNU/Linux Application

11.2.3 The Server
server.c (see Listing 11.4) is the implementation of the minimal HTTP server.

Listing 11.4 (server.c) Server Implementation

#include <arpa/inet.h>
#include <assert.h>
#include <errno.h>
#include <netinet/in.h>
#include <signal.h>
#include <stdio.h>
#include <string.h>
#include <sys/types.h>
#include <sys/socket.h>
#include <sys/wait.h>
#include <unistd.h>

#include “server.h”

/* HTTP response and header for a successful request. */

static char* ok_response =
“HTTP/1.0 200 OK\n”
“Content-type: text/html\n”
“\n”;

/* HTTP response, header, and body, indicating that we didn’t
understand the request. */

static char* bad_request_response =
“HTTP/1.0 400 Bad Request\n”
“Content-type: text/html\n”
“\n”
“<html>\n”
“ <body>\n”
“ <h1>Bad Request</h1>\n”
“ <p>This server did not understand your request.</p>\n”
“ </body>\n”
“</html>\n”;

/* HTTP response, header, and body template, indicating that the
requested document was not found. */

static char* not_found_response_template =
“HTTP/1.0 404 Not Found\n”
“Content-type: text/html\n”
“\n”
“<html>\n”
“ <body>\n”
“ <h1>Not Found</h1>\n”

13 0430 CH11 5/22/01 10:46 AM Page 228

22911.2 Implementation

“ <p>The requested URL %s was not found on this server.</p>\n”
“ </body>\n”
“</html>\n”;

/* HTTP response, header, and body template, indicating that the
method was not understood. */

static char* bad_method_response_template =
“HTTP/1.0 501 Method Not Implemented\n”
“Content-type: text/html\n”
“\n”
“<html>\n”
“ <body>\n”
“ <h1>Method Not Implemented</h1>\n”
“ <p>The method %s is not implemented by this server.</p>\n”
“ </body>\n”
“</html>\n”;

/* Handler for SIGCHLD, to clean up child processes that have
terminated. */

static void clean_up_child_process (int signal_number)
{
int status;
wait (&status);

}

/* Process an HTTP “GET” request for PAGE, and send the results to the
file descriptor CONNECTION_FD. */

static void handle_get (int connection_fd, const char* page)
{
struct server_module* module = NULL;

/* Make sure the requested page begins with a slash and does not
contain any additional slashes -- we don’t support any
subdirectories. */

if (*page == ‘/’ && strchr (page + 1, ‘/’) == NULL) {
char module_file_name[64];

/* The page name looks OK. Construct the module name by appending
“.so” to the page name. */

snprintf (module_file_name, sizeof (module_file_name),
“%s.so”, page + 1);

/* Try to open the module. */
module = module_open (module_file_name);

}

if (module == NULL) {
/* Either the requested page was malformed, or we couldn’t open a

module with the indicated name. Either way, return the HTTP
response 404, Not Found. */

continues

13 0430 CH11 5/22/01 10:46 AM Page 229

230 Chapter 11 A Sample GNU/Linux Application

char response[1024];

/* Generate the response message. */
snprintf (response, sizeof (response), not_found_response_template, page);
/* Send it to the client. */
write (connection_fd, response, strlen (response));

}
else {
/* The requested module was loaded successfully. */

/* Send the HTTP response indicating success, and the HTTP header
for an HTML page. */

write (connection_fd, ok_response, strlen (ok_response));
/* Invoke the module, which will generate HTML output and send it

to the client file descriptor. */
(*module->generate_function) (connection_fd);
/* We’re done with the module. */
module_close (module);

}
}

/* Handle a client connection on the file descriptor CONNECTION_FD. */

static void handle_connection (int connection_fd)
{
char buffer[256];
ssize_t bytes_read;

/* Read some data from the client. */
bytes_read = read (connection_fd, buffer, sizeof (buffer) - 1);
if (bytes_read > 0) {
char method[sizeof (buffer)];
char url[sizeof (buffer)];
char protocol[sizeof (buffer)];

/* Some data was read successfully. NUL-terminate the buffer so
we can use string operations on it. */

buffer[bytes_read] = ‘\0’;
/* The first line the client sends is the HTTP request, which is

composed of a method, the requested page, and the protocol
version. */

sscanf (buffer, “%s %s %s”, method, url, protocol);
/* The client may send various header information following the

request. For this HTTP implementation, we don’t care about it.
However, we need to read any data the client tries to send. Keep
on reading data until we get to the end of the header, which is
delimited by a blank line. HTTP specifies CR/LF as the line
delimiter. */

while (strstr (buffer, “\r\n\r\n”) == NULL)

Listing 11.4 Continued

13 0430 CH11 5/22/01 10:46 AM Page 230

23111.2 Implementation

bytes_read = read (connection_fd, buffer, sizeof (buffer));
/* Make sure the last read didn’t fail. If it did, there’s a

problem with the connection, so give up. */
if (bytes_read == -1) {
close (connection_fd);
return;

}
/* Check the protocol field. We understand HTTP versions 1.0 and

1.1. */
if (strcmp (protocol, “HTTP/1.0”) && strcmp (protocol, “HTTP/1.1”)) {
/* We don’t understand this protocol. Report a bad response. */
write (connection_fd, bad_request_response,

sizeof (bad_request_response));
}
else if (strcmp (method, “GET”)) {
/* This server only implements the GET method. The client

specified some other method, so report the failure. */
char response[1024];

snprintf (response, sizeof (response),
bad_method_response_template, method);

write (connection_fd, response, strlen (response));
}
else
/* A valid request. Process it. */
handle_get (connection_fd, url);

}
else if (bytes_read == 0)
/* The client closed the connection before sending any data.

Nothing to do. */
;

else
/* The call to read failed. */
system_error (“read”);

}

void server_run (struct in_addr local_address, uint16_t port)
{
struct sockaddr_in socket_address;
int rval;
struct sigaction sigchld_action;
int server_socket;

/* Install a handler for SIGCHLD that cleans up child processes that
have terminated. */

memset (&sigchld_action, 0, sizeof (sigchld_action));
sigchld_action.sa_handler = &clean_up_child_process;
sigaction (SIGCHLD, &sigchld_action, NULL);

continues

13 0430 CH11 5/22/01 10:46 AM Page 231

232 Chapter 11 A Sample GNU/Linux Application

/* Create a TCP socket. */
server_socket = socket (PF_INET, SOCK_STREAM, 0);
if (server_socket == -1)
system_error (“socket”);

/* Construct a socket address structure for the local address on
which we want to listen for connections. */

memset (&socket_address, 0, sizeof (socket_address));
socket_address.sin_family = AF_INET;
socket_address.sin_port = port;
socket_address.sin_addr = local_address;
/* Bind the socket to that address. */
rval = bind (server_socket, &socket_address, sizeof (socket_address));
if (rval != 0)
system_error (“bind”);

/* Instruct the socket to accept connections. */
rval = listen (server_socket, 10);
if (rval != 0)
system_error (“listen”);

if (verbose) {
/* In verbose mode, display the local address and port number

we’re listening on. */
socklen_t address_length;

/* Find the socket’s local address. */
address_length = sizeof (socket_address);
rval = getsockname (server_socket, &socket_address, &address_length);
assert (rval == 0);
/* Print a message. The port number needs to be converted from

network byte order (big endian) to host byte order. */
printf (“server listening on %s:%d\n”,

inet_ntoa (socket_address.sin_addr),
(int) ntohs (socket_address.sin_port));

}

/* Loop forever, handling connections. */
while (1) {
struct sockaddr_in remote_address;
socklen_t address_length;
int connection;
pid_t child_pid;

/* Accept a connection. This call blocks until a connection is
ready. */

address_length = sizeof (remote_address);
connection = accept (server_socket, &remote_address, &address_length);
if (connection == -1) {
/* The call to accept failed. */
if (errno == EINTR)

Listing 11.4 Continued

13 0430 CH11 5/22/01 10:46 AM Page 232

23311.2 Implementation

/* The call was interrupted by a signal. Try again. */
continue;

else
/* Something else went wrong. */
system_error (“accept”);

}

/* We have a connection. Print a message if we’re running in
verbose mode. */

if (verbose) {
socklen_t address_length;

/* Get the remote address of the connection. */
address_length = sizeof (socket_address);
rval = getpeername (connection, &socket_address, &address_length);
assert (rval == 0);
/* Print a message. */
printf (“connection accepted from %s\n”,

inet_ntoa (socket_address.sin_addr));
}

/* Fork a child process to handle the connection. */
child_pid = fork ();
if (child_pid == 0) {
/* This is the child process. It shouldn’t use stdin or stdout,

so close them. */
close (STDIN_FILENO);
close (STDOUT_FILENO);
/* Also this child process shouldn’t do anything with the

listening socket. */
close (server_socket);
/* Handle a request from the connection. We have our own copy

of the connected socket descriptor. */
handle_connection (connection);
/* All done; close the connection socket, and end the child

process. */
close (connection);
exit (0);

}
else if (child_pid > 0) {
/* This is the parent process. The child process handles the

connection, so we don’t need our copy of the connected socket
descriptor. Close it. Then continue with the loop and
accept another connection. */

close (connection);
}
else
/* Call to fork failed. */
system_error (“fork”);

}
}

13 0430 CH11 5/22/01 10:46 AM Page 233

234 Chapter 11 A Sample GNU/Linux Application

These are the functions in server.c:
n server_run is the main entry point for running the server.This function starts

the server and begins accepting connections, and does not return unless a seri-
ous error occurs.The server uses a TCP stream server socket (see Section 5.5.3,
“Servers,” in Chapter 5,“Interprocess Communication”).

The first argument to server_run specifies the local address at which connec-
tions are accepted.A GNU/Linux computer may have multiple network
addresses, and each address may be bound to a different network interface.2 To
restrict the server to accept connections from a particular interface, specify the
corresponding network address. Specify the local address INADDR_ANY to accept
connections for any local address.

The second argument to server_run is the port number on which to accept
connections. If the port number is already in use, or if it corresponds to a privi-
leged port and the server is not being run with superuser privilege, the server
fails.The special value 0 instructs Linux to select an unused port automatically.
See the inet man page for more information about Internet-domain addresses
and port numbers.

The server handles each client connection in a child process created with fork
(see Section 3.2.2,“Using fork and exec,” in Chapter 3,“Processes”).The main
(parent) process continues accepting new connections while existing ones are
being serviced.The child process invokes handle_connection and then closes the
connection socket and exits.

n handle_connection processes a single client connection, using the socket file
descriptor passed as its argument.This function reads data from the socket and
attempts to interpret this as an HTTP page request.

The server processes only HTTP version 1.0 and version 1.1 requests.When
faced with a different protocol or version, it responds by sending the HTTP
result code 400 and the message bad_request_response.The server understands
only the HTTP GET method. If the client requests any other method, the
server responds by sending the HTTP result code 501 and the message
bad_method_response_template.

n If the client sends a well-formed GET request, handle_connection calls
handle_get to service it.This function attempts to load a server module
with a name generated from the requested page. For example, if the client
requests the page named information, it attempts to load a server module named
information.so. If the module can’t be loaded, handle_get sends the client the
HTTP result code 404 and the message not_found_response_template.

2.Your computer might be configured to include such interfaces as eth0, an Ethernet card;
lo, the local (loopback) network; or ppp0, a dial-up network connection.

13 0430 CH11 5/22/01 10:46 AM Page 234

23511.2 Implementation

If the client sends a page request that corresponds to a server module,
handle_get sends a result code 200 header to the client, which indicates that the
request was processed successfully and invokes the module’s module_generate
function.This function generates the HTML source for a Web page and sends it
to the Web client.

n server_run installs clean_up_child_process as the signal handler for SIGCHLD.
This function simply cleans up terminated child processes (see Section 3.4.4,
“Cleaning Up Children Asynchronously,” in Chapter 3).

11.2.4 The Main Program
main.c (see Listing 11.5) provides the main function for the server program. Its respon-
sibility is to parse command-line options, detect and report command-line errors, and
configure and run the server.

Listing 11.5 (main.c) Main Server Program and Command-Line Parsing

#include <assert.h>
#include <getopt.h>
#include <netdb.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <sys/stat.h>
#include <unistd.h>

#include “server.h”

/* Description of long options for getopt_long. */

static const struct option long_options[] = {
{ “address”, 1, NULL, ‘a’ },
{ “help”, 0, NULL, ‘h’ },
{ “module-dir”, 1, NULL, ‘m’ },
{ “port”, 1, NULL, ‘p’ },
{ “verbose”, 0, NULL, ‘v’ },

};

/* Description of short options for getopt_long. */

static const char* const short_options = “a:hm:p:v”;

/* Usage summary text. */

static const char* const usage_template =
“Usage: %s [options]\n”
“ -a, --address ADDR Bind to local address (by default, bind\n”
“ to all local addresses).\n”

continues

13 0430 CH11 5/22/01 10:46 AM Page 235

236 Chapter 11 A Sample GNU/Linux Application

“ -h, --help Print this information.\n”
“ -m, --module-dir DIR Load modules from specified directory\n”
“ (by default, use executable directory).\n”
“ -p, --port PORT Bind to specified port.\n”
“ -v, --verbose Print verbose messages.\n”;

/* Print usage information and exit. If IS_ERROR is nonzero, write to
stderr and use an error exit code. Otherwise, write to stdout and
use a non-error termination code. Does not return. */

static void print_usage (int is_error)
{
fprintf (is_error ? stderr : stdout, usage_template, program_name);
exit (is_error ? 1 : 0);

}

int main (int argc, char* const argv[])
{
struct in_addr local_address;
uint16_t port;
int next_option;

/* Store the program name, which we’ll use in error messages. */
program_name = argv[0];

/* Set defaults for options. Bind the server to all local addresses,
and assign an unused port automatically. */

local_address.s_addr = INADDR_ANY;
port = 0;
/* Don’t print verbose messages. */
verbose = 0;
/* Load modules from the directory containing this executable. */
module_dir = get_self_executable_directory ();
assert (module_dir != NULL);

/* Parse options. */
do {
next_option =
getopt_long (argc, argv, short_options, long_options, NULL);

switch (next_option) {
case ‘a’:
/* User specified -a or --address. */
{
struct hostent* local_host_name;

/* Look up the hostname the user specified. */
local_host_name = gethostbyname (optarg);
if (local_host_name == NULL || local_host_name->h_length == 0)

Listing 11.5 Continued

13 0430 CH11 5/22/01 10:46 AM Page 236

23711.2 Implementation

/* Could not resolve the name. */
error (optarg, “invalid host name”);

else
/* Hostname is OK, so use it. */
local_address.s_addr =
((int) (local_host_name->h_addr_list[0]));

}
break;

case ‘h’:
/* User specified -h or --help. */
print_usage (0);

case ‘m’:
/* User specified -m or --module-dir. */
{
struct stat dir_info;

/* Check that it exists. */
if (access (optarg, F_OK) != 0)
error (optarg, “module directory does not exist”);

/* Check that it is accessible. */
if (access (optarg, R_OK | X_OK) != 0)
error (optarg, “module directory is not accessible”);

/* Make sure that it is a directory. */
if (stat (optarg, &dir_info) != 0 || !S_ISDIR (dir_info.st_mode))
error (optarg, “not a directory”);

/* It looks OK, so use it. */
module_dir = strdup (optarg);

}
break;

case ‘p’:
/* User specified -p or --port. */
{
long value;
char* end;

value = strtol (optarg, &end, 10);
if (*end != ‘\0’)
/* The user specified nondigits in the port number. */
print_usage (1);

/* The port number needs to be converted to network (big endian)
byte order. */

port = (uint16_t) htons (value);
}
break;

case ‘v’:
/* User specified -v or --verbose. */
verbose = 1;
break;

continues

13 0430 CH11 5/22/01 10:46 AM Page 237

238 Chapter 11 A Sample GNU/Linux Application

case ‘?’:
/* User specified an unrecognized option. */
print_usage (1);

case -1:
/* Done with options. */
break;

default:
abort ();

}
} while (next_option != -1);

/* This program takes no additional arguments. Issue an error if the
user specified any. */

if (optind != argc)
print_usage (1);

/* Print the module directory, if we’re running verbose. */
if (verbose)
printf (“modules will be loaded from %s\n”, module_dir);

/* Run the server. */
server_run (local_address, port);

return 0;
}

main.c contains these functions:
n main invokes getopt_long (see Section 2.1.3,“Using getopt_long,” in Chapter

2) to parse command-line options. It provides both long and short option forms,
the former in the long_options array and the latter in the short_options string.

The default value for the server port is 0 and for a local address is INADDR_ANY.
These can be overridden by the --port (-p) and --address (-a) options,
respectively. If the user specifies an address, main calls the library function
gethostbyname to convert it to a numerical Internet address.

3

The default value for the directory from which to load server modules
is the directory containing the server executable, as determined by
get_self_executable_directory.The user may override this with the
--module-dir (-m) option; main makes sure that the specified directory is
accessible.

By default, verbose messages are not printed.The user may enable them by
specifying the --verbose (-v) option.

3. gethostbyname performs name resolution using DNS, if necessary.

Listing 11.5 Continued

13 0430 CH11 5/22/01 10:46 AM Page 238

23911.3 Modules

n If the user specifies the --help (-h) option or specifies invalid options, main
invokes print_usage, which prints a usage summary and exits.

11.3 Modules
We provide four modules to demonstrate the kind of functionality you could imple-
ment using this server implementation. Implementing your own server module is as
simple as defining a module_generate function to return the appropriate HTML text.

11.3.1 Show Wall-Clock Time
The time.so module (see Listing 11.6) generates a simple page containing the server’s
local wall-clock time.This module’s module_generate calls gettimeofday to obtain the
current time (see Section 8.7,“gettimeofday:Wall-Clock Time,” in Chapter 8,“Linux
System Calls”) and uses localtime and strftime to generate a text representation of
it.This representation is embedded in the HTML template page_template.

Listing 11.6 (time.c) Server Module to Show Wall-Clock Time

#include <assert.h>
#include <stdio.h>
#include <sys/time.h>
#include <time.h>

#include “server.h”

/* A template for the HTML page this module generates. */

static char* page_template =
“<html>\n”
“ <head>\n”
“ <meta http-equiv=\”refresh\” content=\”5\”>\n”
“ </head>\n”
“ <body>\n”
“ <p>The current time is %s.</p>\n”
“ </body>\n”
“</html>\n”;

void module_generate (int fd)
{
struct timeval tv;
struct tm* ptm;
char time_string[40];
FILE* fp;

/* Obtain the time of day, and convert it to a tm struct. */
gettimeofday (&tv, NULL);
ptm = localtime (&tv.tv_sec);

continues

13 0430 CH11 5/22/01 10:46 AM Page 239

240 Chapter 11 A Sample GNU/Linux Application

/* Format the date and time, down to a single second. */
strftime (time_string, sizeof (time_string), “%H:%M:%S”, ptm);

/* Create a stream corresponding to the client socket file
descriptor. */

fp = fdopen (fd, “w”);
assert (fp != NULL);
/* Generate the HTML output. */
fprintf (fp, page_template, time_string);
/* All done; flush the stream. */
fflush (fp);

}

This module uses standard C library I/O routines for convenience.The fdopen call
generates a stream pointer (FILE*) corresponding to the client socket file descriptor
(see Section B.4,“Relation to Standard C Library I/O Functions,” in Appendix B,
“Low-Level I/O”).The module writes to it using fprintf and flushes it using fflush
to prevent the loss of buffered data when the socket is closed.

The HTML page returned by the time.so module includes a <meta> element in
the page header that instructs clients to reload the page every 5 seconds.This way the
client displays the current time.

11.3.2 Show the GNU/Linux Distribution
The issue.so module (see Listing 11.7) displays information about the GNU/Linux
distribution running on the server.This information is traditionally stored in the file
/etc/issue.This module sends the contents of this file, wrapped in a <pre> element of
an HTML page.

Listing 11.7 (issue.c) Server Module to Display GNU/Linux Distribution
Information

#include <fcntl.h>
#include <string.h>
#include <sys/sendfile.h>
#include <sys/stat.h>
#include <sys/types.h>
#include <unistd.h>

#include “server.h”

/* HTML source for the start of the page we generate. */

static char* page_start =
“<html>\n”
“ <body>\n”

Listing 11.6 Continued

13 0430 CH11 5/22/01 10:46 AM Page 240

24111.3 Modules

“ <pre>\n”;

/* HTML source for the end of the page we generate. */

static char* page_end =
“ </pre>\n”
“ </body>\n”
“</html>\n”;

/* HTML source for the page indicating there was a problem opening
/proc/issue. */

static char* error_page =
“<html>\n”
“ <body>\n”
“ <p>Error: Could not open /proc/issue.</p>\n”
“ </body>\n”
“</html>\n”;

/* HTML source indicating an error. */

static char* error_message = “Error reading /proc/issue.”;

void module_generate (int fd)
{
int input_fd;
struct stat file_info;
int rval;

/* Open /etc/issue. */
input_fd = open (“/etc/issue”, O_RDONLY);
if (input_fd == -1)
system_error (“open”);

/* Obtain file information about it. */
rval = fstat (input_fd, &file_info);

if (rval == -1)
/* Either we couldn’t open the file or we couldn’t read from it. */
write (fd, error_page, strlen (error_page));

else {
int rval;
off_t offset = 0;

/* Write the start of the page. */
write (fd, page_start, strlen (page_start));
/* Copy from /proc/issue to the client socket. */
rval = sendfile (fd, input_fd, &offset, file_info.st_size);
if (rval == -1)
/* Something went wrong sending the contents of /proc/issue.

Write an error message. */
write (fd, error_message, strlen (error_message));

continues

13 0430 CH11 5/22/01 10:46 AM Page 241

242 Chapter 11 A Sample GNU/Linux Application

/* End the page. */
write (fd, page_end, strlen (page_end));

}

close (input_fd);
}

The module first tries to open /etc/issue. If that file can’t be opened, the module
sends an error page to the client. Otherwise, the module sends the start of the
HTML page, contained in page_start.Then it sends the contents of /etc/issue using
sendfile (see Section 8.12,“sendfile: Fast Data Transfers,” in Chapter 8). Finally, it
sends the end of the HTML page, contained in page_end.

You can easily adapt this module to send the contents of another file. If the file
contains a complete HTML page, simply omit the code that sends the contents of
page_start and page_end.You could also adapt the main server implementation to
serve static files, in the manner of a traditional Web server. Using sendfile provides an
extra degree of efficiency.

11.3.3 Show Free Disk Space
The diskfree.so module (see Listing 11.8) generates a page displaying information
about free disk space on the file systems mounted on the server computer.This gener-
ated information is simply the output of invoking the df -h command. Like issue.so,
this module wraps the output in a <pre> element of an HTML page.

Listing 11.8 (diskfree.c) Server Module to Display Information About Free Disk
Space

#include <stdlib.h>
#include <string.h>
#include <sys/types.h>
#include <sys/wait.h>
#include <unistd.h>

#include “server.h”

/* HTML source for the start of the page we generate. */

static char* page_start =
“<html>\n”
“ <body>\n”
“ <pre>\n”;

Listing 11.7 Continued

13 0430 CH11 5/22/01 10:46 AM Page 242

24311.3 Modules

/* HTML source for the end of the page we generate. */

static char* page_end =
“ </pre>\n”
“ </body>\n”
“</html>\n”;

void module_generate (int fd)
{
pid_t child_pid;
int rval;

/* Write the start of the page. */
write (fd, page_start, strlen (page_start));
/* Fork a child process. */
child_pid = fork ();
if (child_pid == 0) {
/* This is the child process. */
/* Set up an argument list for the invocation of df. */
char* argv[] = { “/bin/df”, “-h”, NULL };

/* Duplicate stdout and stderr to send data to the client socket. */
rval = dup2 (fd, STDOUT_FILENO);
if (rval == -1)
system_error (“dup2”);

rval = dup2 (fd, STDERR_FILENO);
if (rval == -1)
system_error (“dup2”);

/* Run df to show the free space on mounted file systems. */
execv (argv[0], argv);
/* A call to execv does not return unless an error occurred. */
system_error (“execv”);

}
else if (child_pid > 0) {
/* This is the parent process. Wait for the child process to

finish. */
rval = waitpid (child_pid, NULL, 0);
if (rval == -1)
system_error (“waitpid”);

}
else
/* The call to fork failed. */
system_error (“fork”);

/* Write the end of the page. */
write (fd, page_end, strlen (page_end));

}

13 0430 CH11 5/22/01 10:46 AM Page 243

244 Chapter 11 A Sample GNU/Linux Application

While issue.so sends the contents of a file using sendfile, this module must invoke a
command and redirect its output to the client.To do this, the module follows these
steps:

1. First, the module creates a child process using fork (see Section 3.2.2,“Using
fork and exec,” in Chapter 3).

2. The child process copies the client socket file descriptor to file descriptors
STDOUT_FILENO and STDERR_FILENO, which correspond to standard output and
standard error (see Section 2.1.4,“Standard I/O,” in Chapter 2).The file descrip-
tors are copied using the dup2 call (see Section 5.4.3,“Redirecting the Standard
Input, Output, and Error Streams,” in Chapter 5).All further output from the
process to either of these streams is sent to the client socket.

3. The child process invokes the df command with the -h option by calling execv
(see Section 3.2.2,“Using fork and exec,” in Chapter 3).

4. The parent process waits for the child process to exit by calling waitpid (see
Section 3.4.2,“The wait System Calls,” in Chapter 3).

You could easily adapt this module to invoke a different command and redirect its
output to the client.

11.3.4 Summarize Running Processes
The processes.so module (see Listing 11.9) is a more extensive server module imple-
mentation. It generates a page containing a table that summarizes the processes cur-
rently running on the server system. Each process is represented by a row in the table
that lists the PID, the executable program name, the owning user and group names,
and the resident set size.

Listing 11.9 (processes.c) Server Module to Summarize Processes

#include <assert.h>
#include <dirent.h>
#include <fcntl.h>
#include <grp.h>
#include <pwd.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <sys/stat.h>
#include <sys/types.h>
#include <sys/uio.h>
#include <unistd.h>

#include “server.h”

/* Set *UID and *GID to the owning user ID and group ID, respectively,
of process PID. Return 0 on success, nonzero on failure. */

13 0430 CH11 5/22/01 10:46 AM Page 244

24511.3 Modules

static int get_uid_gid (pid_t pid, uid_t* uid, gid_t* gid)
{
char dir_name[64];
struct stat dir_info;
int rval;

/* Generate the name of the process’s directory in /proc. */
snprintf (dir_name, sizeof (dir_name), “/proc/%d”, (int) pid);
/* Obtain information about the directory. */
rval = stat (dir_name, &dir_info);
if (rval != 0)
/* Couldn’t find it; perhaps this process no longer exists. */
return 1;

/* Make sure it’s a directory; anything else is unexpected. */
assert (S_ISDIR (dir_info.st_mode));

/* Extract the IDs we want. */
*uid = dir_info.st_uid;
*gid = dir_info.st_gid;
return 0;

}

/* Return the name of user UID. The return value is a buffer that the
caller must allocate with free. UID must be a valid user ID. */

static char* get_user_name (uid_t uid)
{
struct passwd* entry;

entry = getpwuid (uid);
if (entry == NULL)
system_error (“getpwuid”);

return xstrdup (entry->pw_name);
}

/* Return the name of group GID. The return value is a buffer that the
caller must allocate with free. GID must be a valid group ID. */

static char* get_group_name (gid_t gid)
{
struct group* entry;

entry = getgrgid (gid);
if (entry == NULL)
system_error (“getgrgid”);

return xstrdup (entry->gr_name);
}

continues

13 0430 CH11 5/22/01 10:46 AM Page 245

246 Chapter 11 A Sample GNU/Linux Application

/* Return the name of the program running in process PID, or NULL on
error. The return value is a newly allocated buffer which the caller
must deallocate with free. */

static char* get_program_name (pid_t pid)
{
char file_name[64];
char status_info[256];
int fd;
int rval;
char* open_paren;
char* close_paren;
char* result;

/* Generate the name of the “stat” file in the process’s /proc
directory, and open it. */

snprintf (file_name, sizeof (file_name), “/proc/%d/stat”, (int) pid);
fd = open (file_name, O_RDONLY);
if (fd == -1)
/* Couldn’t open the stat file for this process. Perhaps the

process no longer exists. */
return NULL;

/* Read the contents. */
rval = read (fd, status_info, sizeof (status_info) - 1);
close (fd);
if (rval <= 0)
/* Couldn’t read, for some reason; bail. */
return NULL;

/* NUL-terminate the file contents. */
status_info[rval] = ‘\0’;

/* The program name is the second element of the file contents and is
surrounded by parentheses. Find the positions of the parentheses
in the file contents. */

open_paren = strchr (status_info, ‘(‘);
close_paren = strchr (status_info, ‘)’);
if (open_paren == NULL

|| close_paren == NULL
|| close_paren < open_paren)

/* Couldn’t find them; bail. */
return NULL;

/* Allocate memory for the result. */
result = (char*) xmalloc (close_paren - open_paren);
/* Copy the program name into the result. */
strncpy (result, open_paren + 1, close_paren - open_paren - 1);
/* strncpy doesn’t NUL-terminate the result, so do it here. */
result[close_paren - open_paren - 1] = ‘\0’;
/* All done. */
return result;

}

Listing 11.9 Continued

13 0430 CH11 5/22/01 10:46 AM Page 246

24711.3 Modules

/* Return the resident set size (RSS), in kilobytes, of process PID.
Return -1 on failure. */

static int get_rss (pid_t pid)
{
char file_name[64];
int fd;
char mem_info[128];
int rval;
int rss;

/* Generate the name of the process’s “statm” entry in its /proc
directory. */

snprintf (file_name, sizeof (file_name), “/proc/%d/statm”, (int) pid);
/* Open it. */
fd = open (file_name, O_RDONLY);
if (fd == -1)
/* Couldn’t open it; perhaps this process no longer exists. */
return -1;

/* Read the file’s contents. */
rval = read (fd, mem_info, sizeof (mem_info) - 1);
close (fd);
if (rval <= 0)
/* Couldn’t read the contents; bail. */
return -1;

/* NUL-terminate the contents. */
mem_info[rval] = ‘\0’;
/* Extract the RSS. It’s the second item. */
rval = sscanf (mem_info, “%*d %d”, &rss);
if (rval != 1)
/* The contents of statm are formatted in a way we don’t understand. */
return -1;

/* The values in statm are in units of the system’s page size.
Convert the RSS to kilobytes. */

return rss * getpagesize () / 1024;
}

/* Generate an HTML table row for process PID. The return value is a
pointer to a buffer that the caller must deallocate with free, or
NULL if an error occurs. */

static char* format_process_info (pid_t pid)
{
int rval;
uid_t uid;
gid_t gid;
char* user_name;
char* group_name;
int rss;
char* program_name;

continues

13 0430 CH11 5/22/01 10:46 AM Page 247

248 Chapter 11 A Sample GNU/Linux Application

size_t result_length;
char* result;

/* Obtain the process’s user and group IDs. */
rval = get_uid_gid (pid, &uid, &gid);
if (rval != 0)
return NULL;

/* Obtain the process’s RSS. */
rss = get_rss (pid);
if (rss == -1)
return NULL;

/* Obtain the process’s program name. */
program_name = get_program_name (pid);
if (program_name == NULL)
return NULL;

/* Convert user and group IDs to corresponding names. */
user_name = get_user_name (uid);
group_name = get_group_name (gid);

/* Compute the length of the string we’ll need to hold the result, and
allocate memory to hold it. */

result_length = strlen (program_name)
+ strlen (user_name) + strlen (group_name) + 128;

result = (char*) xmalloc (result_length);
/* Format the result. */
snprintf (result, result_length,

“<tr><td align=\”right\”>%d</td><td><tt>%s</tt></td><td>%s</td>”
“<td>%s</td><td align=\”right\”>%d</td></tr>\n”,
(int) pid, program_name, user_name, group_name, rss);

/* Clean up. */
free (program_name);
free (user_name);
free (group_name);
/* All done. */
return result;

}

/* HTML source for the start of the process listing page. */

static char* page_start =
“<html>\n”
“ <body>\n”
“ <table cellpadding=\”4\” cellspacing=\”0\” border=\”1\”>\n”
“ <thead>\n”
“ <tr>\n”
“ <th>PID</th>\n”
“ <th>Program</th>\n”
“ <th>User</th>\n”
“ <th>Group</th>\n”

Listing 11.9 Continued

13 0430 CH11 5/22/01 10:46 AM Page 248

24911.3 Modules

“ <th>RSS (KB)</th>\n”
“ </tr>\n”
“ </thead>\n”
“ <tbody>\n”;

/* HTML source for the end of the process listing page. */

static char* page_end =
“ </tbody>\n”
“ </table>\n”
“ </body>\n”
“</html>\n”;

void module_generate (int fd)
{
size_t i;
DIR* proc_listing;

/* Set up an iovec array. We’ll fill this with buffers that’ll be
part of our output, growing it dynamically as necessary. */

/* The number of elements in the array that we’ve used. */
size_t vec_length = 0;
/* The allocated size of the array. */
size_t vec_size = 16;
/* The array of iovcec elements. */
struct iovec* vec =
(struct iovec*) xmalloc (vec_size * sizeof (struct iovec));

/* The first buffer is the HTML source for the start of the page. */
vec[vec_length].iov_base = page_start;
vec[vec_length].iov_len = strlen (page_start);
++vec_length;

/* Start a directory listing for /proc. */
proc_listing = opendir (“/proc”);
if (proc_listing == NULL)
system_error (“opendir”);

/* Loop over directory entries in /proc. */
while (1) {
struct dirent* proc_entry;
const char* name;
pid_t pid;
char* process_info;

/* Get the next entry in /proc. */
proc_entry = readdir (proc_listing);
if (proc_entry == NULL)
/* We’ve hit the end of the listing. */
break;

continues

13 0430 CH11 5/22/01 10:46 AM Page 249

250 Chapter 11 A Sample GNU/Linux Application

/* If this entry is not composed purely of digits, it’s not a
process directory, so skip it. */

name = proc_entry->d_name;
if (strspn (name, “0123456789”) != strlen (name))
continue;

/* The name of the entry is the process ID. */
pid = (pid_t) atoi (name);
/* Generate HTML for a table row describing this process. */
process_info = format_process_info (pid);
if (process_info == NULL)
/* Something went wrong. The process may have vanished while we

were looking at it. Use a placeholder row instead. */
process_info = “<tr><td colspan=\”5\”>ERROR</td></tr>”;

/* Make sure the iovec array is long enough to hold this buffer
(plus one more because we’ll add an extra element when we’re done
listing processes). If not, grow it to twice its current size. */

if (vec_length == vec_size - 1) {
vec_size *= 2;
vec = xrealloc (vec, vec_size * sizeof (struct iovec));

}
/* Store this buffer as the next element of the array. */
vec[vec_length].iov_base = process_info;
vec[vec_length].iov_len = strlen (process_info);
++vec_length;

}

/* End the directory listing operation. */
closedir (proc_listing);

/* Add one last buffer with HTML that ends the page. */
vec[vec_length].iov_base = page_end;
vec[vec_length].iov_len = strlen (page_end);
++vec_length;

/* Output the entire page to the client file descriptor all at once. */
writev (fd, vec, vec_length);

/* Deallocate the buffers we created. The first and last are static
and should not be deallocated. */

for (i = 1; i < vec_length - 1; ++i)
free (vec[i].iov_base);

/* Deallocate the iovec array. */
free (vec);

}

Listing 11.9 Continued

13 0430 CH11 5/22/01 10:46 AM Page 250

25111.3 Modules

Gathering process data and formatting it as an HTML table is broken down into
several simpler operations:

n get_uid_gid extracts the IDs of the owning user and group of a process.To do
this, the function invokes stat (see Section B.2,“stat,” in Appendix B) on the
process’s subdirectory in /proc (see Section 7.2,“Process Entries,” in Chapter 7).
The user and group that own this directory are identical to the process’s owning
user and group.

n get_user_name returns the username corresponding to a UID.This function
simply calls the C library function getpwuid, which consults the system’s
/etc/passwd file and returns a copy of the result. get_group_name returns the
group name corresponding to a GID. It uses the getgrgid call.

n get_program_name returns the name of the program running in a specified
process.This information is extracted from the stat entry in the process’s direc-
tory under /proc (see Section 7.2,“Process Entries,” in Chapter 7).We use this
entry rather than examining the exe symbolic link (see Section 7.2.4,“Process
Executable,” in Chapter 7) or cmdline entry (see Section 7.2.2,“Process
Argument List,” in Chapter 7) because the latter two are inaccessible if the
process running the server isn’t owned by the same user as the process being
examined.Also, reading from stat doesn’t force Linux to page the process under
examination back into memory, if it happens to be swapped out.

n get_rss returns the resident set size of a process.This information is available as
the second element in the contents of the process’s statm entry (see Section
7.2.6,“Process Memory Statistics,” in Chapter 7) in its /proc subdirectory.

n format_process_info generates a string containing HTML elements for a
single table row, representing a single process.After calling the functions listed
previously to obtain this information, it allocates a buffer and generates HTML
using snprintf.

n module_generate generates the entire HTML page, including the table.The
output consists of one string containing the start of the page and the table (in
page_start), one string for each table row (generated by format_process_info),
and one string containing the end of the table and the page (in page_end).

module_generate determines the PIDs of the processes running on the system
by examining the contents of /proc. It obtains a listing of this directory using
opendir and readdir (see Section B.6,“Reading Directory Contents,” in
Appendix B). It scans the contents, looking for entries whose names are com-
posed entirely of digits; these are taken to be process entries.

Potentially a large number of strings must be written to the client socket—one
each for the page start and end, plus one for each process. If we were to write
each string to the client socket file descriptor with a separate call to write, this
would generate unnecessary network traffic because each string may be sent in a
separate network packet.

13 0430 CH11 5/22/01 10:46 AM Page 251

252 Chapter 11 A Sample GNU/Linux Application

To optimize packing of data into packets, we use a single call to writev instead
(see Section B.3,“Vector Reads and Writes,” in Appendix B).To do this, we
must construct an array of struct iovec objects, vec. However, because we do
not know the number of processes beforehand, we must start with a small array
and expand it as new processes are added.The variable vec_length contains the
number of elements of vec that are used, while vec_size contains the allocated
size of vec.When vec_length is about to exceed vec_size, we expand vec to
twice its size by calling xrealloc.When we’re done with the vector write, we
must deallocate all of the dynamically allocated strings pointed to by vec, and
then vec itself.

11.4 Using the Server
If we were planning to distribute this program in source form, maintain it on an
ongoing basis, or port it to other platforms, we probably would want to package it
using GNU Automake and GNU Autoconf, or a similar configuration automation sys-
tem. Such tools are outside the scope of this book; for more information about them,
consult GNU Autoconf,Automake, and Libtool (by Vaughan, Elliston,Tromey, and Taylor,
published by New Riders, 2000).

11.4.1 The Makefile
Instead of using Autoconf or a similar tool, we provide a simple Makefile compatible
with GNU Make4 so that it’s easy to compile and link the server and its modules.The
Makefile is shown in Listing 11.10. See the info page for GNU Make for details of
the file’s syntax.

Listing 11.10 (Makefile) GNU Make Configuration File for Server Example

Configuration.

Default C compiler options.
CFLAGS = -Wall -g
C source files for the server.
SOURCES = server.c module.c common.c main.c
Corresponding object files.
OBJECTS = $(SOURCES:.c=.o)
Server module shared library files.
MODULES = diskfree.so issue.so processes.so time.so

Rules.

Phony targets don’t correspond to files that are built; they’re names
for conceptual build targets.
.PHONY: all clean

4. GNU Make comes installed on GNU/Linux systems.

13 0430 CH11 5/22/01 10:46 AM Page 252

25311.4 Using the Server

Default target: build everything.
all: server $(MODULES)

Clean up build products.
clean:

rm -f $(OBJECTS) $(MODULES) server

The main server program. Link with -Wl,-export-dyanamic so
dynamically loaded modules can bind symbols in the program. Link in
libdl, which contains calls for dynamic loading.
server: $(OBJECTS)

$(CC) $(CFLAGS) -Wl,-export-dynamic -o $@ $^ -ldl

All object files in the server depend on server.h. But use the
default rule for building object files from source files.
$(OBJECTS): server.h

Rule for building module shared libraries from the corresponding
source files. Compile -fPIC and generate a shared object file.
$(MODULES): \
%.so: %.c server.h

$(CC) $(CFLAGS) -fPIC -shared -o $@ $<

The Makefile provides these targets:
n all (the default if you invoke make without arguments because it’s the first target

in the Makefile) includes the server executable and all the modules.The mod-
ules are listed in the variable MODULES.

n clean deletes any build products that are produced by the Makefile.
n server links the server executable.The source files listed in the variable SOURCES

are compiled and linked in.
n The last rule is a generic pattern for compiling shared object files for server

modules from the corresponding source files.

Note that source files for server modules are compiled with the -fPIC option because
they are linked into shared libraries (see Section 2.3.2,“Shared Libraries,” in Chapter 2).

Also observe that the server executable is linked with the -Wl,-export-dynamic
compiler option.With this option, GCC passes the -export-dynamic option to the
linker, which creates an executable file that also exports its external symbols as a shared
library.This allows modules, which are dynamically loaded as shared libraries, to refer-
ence functions from common.c that are linked statically into the server executable.

13 0430 CH11 5/22/01 10:46 AM Page 253

254 Chapter 11 A Sample GNU/Linux Application

11.4.2 Building the Server
Building the program is easy. From the directory containing the sources, simply invoke
make:

% make
cc -Wall -g -c -o server.o server.c
cc -Wall -g -c -o module.o module.c
cc -Wall -g -c -o common.o common.c
cc -Wall -g -c -o main.o main.c
cc -Wall -g -Wl,-export-dynamic -o server server.o module.o common.o main.o -ldl
cc -Wall -g -fPIC -shared -o diskfree.so diskfree.c
cc -Wall -g -fPIC -shared -o issue.so issue.c
cc -Wall -g -fPIC -shared -o processes.so processes.c
cc -Wall -g -fPIC -shared -o time.so time.c

This builds the server program and the server module shared libraries.
% ls -l server *.so
-rwxr-xr-x 1 samuel samuel 25769 Mar 11 01:15 diskfree.so
-rwxr-xr-x 1 samuel samuel 31184 Mar 11 01:15 issue.so
-rwxr-xr-x 1 samuel samuel 41579 Mar 11 01:15 processes.so
-rwxr-xr-x 1 samuel samuel 71758 Mar 11 01:15 server
-rwxr-xr-x 1 samuel samuel 13980 Mar 11 01:15 time.so

11.4.3 Running the Server
To run the server, simply invoke the server executable.

If you do not specify the server port number with the --port (-p) option, Linux
will choose one for you; in this case, specify --verbose (-v) to make the server print
out the port number in use.

If you do not specify an address with --address (-a), the server runs on all your
computer’s network addresses. If your computer is attached to a network, that means
that others will be capable of accessing the server, provided that they know the correct
port number to use and page to request. For security reasons, it’s a good idea to spec-
ify the localhost address until you’re confident that the server works correctly and is
not releasing any information that you prefer to not make public. Binding to the
localhost causes the server to bind to the local network device (designated “lo”)—
only programs running on the same computer can connect to it. If you specify a dif-
ferent address, it must be an address that corresponds to your computer:

% ./server --address localhost --port 4000

The server is now running. Open a browser window, and attempt to contact the server
at this port number. Request a page whose name matches one of the modules. For
instance, to invoke the diskfree.so module, use this URL:

http://localhost:4000/diskfree

13 0430 CH11 5/22/01 10:46 AM Page 254

25511.5 Finishing Up

Instead of 4000, enter the port number you specified (or the port number that Linux
chose for you). Press Ctrl+C to kill the server when you’re done.

If you didn’t specify localhost as the server address, you can also connect to the
server with a Web browser running on another computer by using your computer’s
hostname in the URL—for example:

http://host.domain.com:4000/diskfree

If you specify the --verbose (-v) option, the server prints some information at startup
and displays the numerical Internet address of each client that connects to it. If you
connect via the localhost address, the client address will always be 127.0.0.1.

If you experiment with writing your own server modules, you may place them in a
different directory than the one containing the server module. In this case, specify
that directory with the --module-dir (-m) option.The server will look in this direc-
tory for server modules instead.

If you forget the syntax of the command-line options, invoke server with the
--help (-h) option.

% ./server --help
Usage: ./server [options]
-a, --address ADDR Bind to local address (by default, bind

to all local addresses).
-h, --help Print this information.
-m, --module-dir DIR Load modules from specified directory

(by default, use executable directory).
-p, --port PORT Bind to specified port.
-v, --verbose Print verbose messages.

11.5 Finishing Up
If you were really planning on releasing this program for general use, you’d need to
write documentation for it as well. Many people don’t realize that writing good docu-
mentation is just as difficult and time-consuming—and just as important—as writing
good software. However, software documentation is a subject for another book, so
we’ll leave you with a few references of where to learn more about documenting
GNU/Linux software.

You’d probably want to write a man page for the server program, for instance.This
is the first place many users will look for information about a program. Man pages are
formatted using a classic UNIX formatting system troff.To view the man page for
troff, which describes the format of troff files, invoke the following:

% man troff

To learn about how GNU/Linux locates man pages, consult the man page for the man
command itself by invoking this:

% man man

13 0430 CH11 5/22/01 10:46 AM Page 255

256 Chapter 11 A Sample GNU/Linux Application

You might also want to write info pages, using the GNU Info system, for the server
and its modules. Naturally, documentation about the info system comes in info format;
to view it, invoke this line:

% info info

Many GNU/Linux programs come with documentation in plain text or HTML
formats as well.

Happy GNU/Linux programming!

13 0430 CH11 5/22/01 10:46 AM Page 256

Appendixes

III

A Other Development Tools

B Low-Level I/O

C Table of Signals

D Online Resources

E Open Publication License Version 1.0

F GNU General Public License

14 0430 PT03 5/22/01 10:48 AM Page 257

14 0430 PT03 5/22/01 10:48 AM Page 258

