Security

M UCH OF THE POWER OF A GNU/LINUX SYSTEM COMES FROM its support for
multiple users and for networking. Many people can use the system at once, and they
can connect to the system from remote locations. Unfortunately, with this power
comes risk, especially for systems connected to the Internet. Under some circum-
stances, a remote “hacker” can connect to the system and read, modify, or remove files
that are stored on the machine. Or, two users on the same machine can read, modify,
or remove each other’ files when they should not be allowed to do so. When this
happens, the system’s security is said to have been compromised.

The Linux kernel provides a variety of facilities to ensure that these events do not
take place. But to avoid security breaches, ordinary applications must be careful as well.
For example, imagine that you are developing accounting software. Although you
might want all users to be able to file expense reports with the system, you wouldn’t
want all users to be able to approve those reports. You might want users to be able to
view their own payroll information, but you certainly wouldn’t want them to be able
to view everyone else’s payroll information.You might want managers to be able to
view the salaries of employees in their departments, but you wouldn’t want them to
view the salaries of employees in other departments.

198 Chapter 10 Security

To enforce these kinds of controls, you have to be very careful. It’s amazingly easy
to make a mistake that allows users to do something you didn’t intend them to be able
to do.The best approach is to enlist the help of security experts. Still, every application
developer ought to understand the basics.

10.1 Users and Groups

Each Linux user is assigned a unique number, called a user ID, or UID. Of course,
when you log in, you use a username rather than a user ID. The system converts your
username to a particular user ID, and from then on it’s only the user ID that counts.

You can actually have more than one username for the same user ID. As far as the
system is concerned, the user IDs, not the usernames, matter. There’s no way to give
one username more power than another if they both correspond to the same user ID.

You can control access to a file or other resource by associating it with a particular
user ID. Then only the user corresponding to that user ID can access the resource. For
example, you can create a file that only you can read, or a directory in which only you
can create new files. That’s good enough for many simple cases.

Sometimes, however, you want to share a resource among multiple users. For exam-
ple, if you’re a manager, you might want to create a file that any manager can read but
that ordinary employees cannot. Linux doesn’t allow you to associate multiple user IDs
with a file, so you can’t just create a list of all the people to whom you want to give
access and attach them all to the file.

You can, however, create a group. Each group is assigned a unique number, called a
group ID, or GID. Every group contains one or more user IDs. A single user ID can be
a member of lots of groups, but groups can’t contain other groups; they can contain
only users. Like users, groups have names. Also like usernames, however, the group
names don’t really matter; the system always uses the group ID internally.

Continuing our example, you could create a managers group and put the user IDs
for all the managers in this group.You could then create a file that can be read by any-
one in the managers group but not by people who aren’t in the group. In general, you
can associate only one group with a resource. There’s no way to specify that users can
access a file only if they’re in either group 7 or group 42, for example.

If you're curious to see what your user ID is and what groups you are in, you can
use the id command. For example, the output might look like this:

% id

uid=501(mitchell) gid=501(mitchell) groups=501(mitchell),503(csl)

The first part shows you that the user ID for the user who ran the command was 501.
The command also figures out what the corresponding username is and displays that
in parentheses. The command shows that user ID 501 is actually in two groups: group
501 (called mitchell) and group 503 (called csl1).Youre probably wondering why
group 501 appears twice: once in the gid field and once in the groups field. We’ll
explain this later.

10.2 Process User IDs and Process Group IDs

10.1.1 The Superuser

One user account is very special.' This user has user ID 0 and usually has the user-
name root. It is also sometimes referred to as the superuser account. The root user can
do just about anything: read any file, remove any file, add new users, turn oft network
access, and so forth. Lots of special operations can be performed only by processes
running with root privilege—that is, running as user root.

The trouble with this design is that a lot of programs need to be run by root
because a lot of programs need to perform one of these special operations. If any of
these programs misbehaves, chaos can result. There’s no effective way to contain a pro-
gram when it’s run by root; it can do anything. Programs run by root must be written
very carefully.

10.2 Process User IDs and Process Group IDs

Until now, we’ve talked about commands being executed by a particular user. That’s
not quite accurate because the computer never really knows which user is using it. If
Eve learns Alice’s username and password, then Eve can log in as Alice, and the com-
puter will let Eve do everything that Alice can do.The system knows only which user
ID is in use, not which user is typing the commands. If Alice can’t be trusted to keep
her password to herself, for example, then nothing you do as an application developer
will prevent Eve from accessing Alice’s files. The responsibility for system security is
shared among the application developer, the users of the system, and the administrators
of the system.

Every process has an associated user ID and group ID. When you invoke a com-
mand, it typically runs in a process whose user and group IDs are the same as your
user and group IDs. When we say that a user performs an operation, we really mean
that a process with the corresponding user ID performs that operation. When the
process makes a system call, the kernel decides whether to allow the operation to pro-
ceed. It makes that determination by examining the permissions associated with the
resources that the process is trying to access and by checking the user ID and group
ID associated with the process trying to perform the action.

Now you know what that middle field printed by the id command is all about. It’s
showing the group ID of the current process. Even though user 501 is in multiple
groups, the current process can have only one group ID. In the example shown previ-
ously, the current group ID is 501.

If you have to manipulate user IDs and group IDs in your program (and you will, if
you’re writing programs that deal with security), then you should use the uid_t and
gid_t types defined in <sys/types.h>. Even though user IDs and group IDs are essen-
tially just integers, avoid making any assumptions about how many bits are used in
these types or perform arithmetic operations on them. Just treat them as opaque
handles for user and group identity.

1. The fact that there is only one special user gave AT&T the name for its UNIX operating
system. In contrast, an earlier operating system that had multiple special users was called
MULTICS. GNU/Linux, of course, is mostly compatible with UNIX.

199

200 Chapter 10 Security

To get the user ID and group ID for the current process, you can use the geteuid
and getegid functions, declared in <unistd.h>.These functions don’t take any parame-
ters, and they always work; you don’t have to check for errors. Listing 10.1 shows a
simple program that provides a subset of the functionality provide by the id command:

Listing 10.1 (simpleid.c) Print User and Group IDs

#include <sys/types.h>
#include <unistd.h>
#include <stdio.h>

int main()
{
uid_t uid = geteuid ();
gid_t gid = getegid ();
printf ("uid=%d gid=%d\n", (int) uid, (int) gid);
return 0;

When this program is run (by the same user who ran the real id program) the output
is as follows:

% ./simpleid

uid=501 gid=501

10.3 File System Permissions

A good way to see users and groups in action is to look at file system permissions. By
examining how the system associates permissions with each file and then seeing how
the kernel checks to see who is allowed to access which files, the concepts of user ID
and group ID should become clearer.

Each file has exactly one owning user and exactly one owning group. When you create
a new file, the file is owned by the user and group of the creating process.

The basic things that you can do with files, as far as Linux is concerned, are read
from them, write to them, and execute them. (Note that creating a file and removing a
file are not considered things you can do with the file; they’re considered things you
can do with the directory containing the file. We’ll get to this a little later.) If you can’t
read a file, Linux won't let you examine the file’s contents. If you can’t write a file, you
can’t change its contents. If there’s a program file for which you do not have execute
permission, you cannot run the program.

2. Actually, there are some rare exceptions, involving sticky bits, discussed later in Section
10.3.2,“Sticky Bits.”

10.3 File System Permissions

Linux enables you to designate which of these three actions—reading, writing, and
executing—can be performed by the owning user, owning group, and everybody else.
For example, you could say that the owning user can do anything she wants with the
file, that anyone in the owning group can read and execute the file (but not write to
it), and that nobody else can access the file at all.

You can view these permission bits interactively with the 1s command by using the
-1 or -o options and programmatically with the stat system call. You can set the per-
mission bits interactively with the chmod program® or programmatically with the
system call of the same name. To look at the permissions on a file named hello, use
1s -1 hello. Here’s how the output might look:

% 1ls -1 hello
SPWXP-X- - - 1 samuel csl 11734 Jan 22 16:29 hello

The samuel and csl fields indicate that the owning user is samuel and that the owning
group is csl.

The string of characters at the beginning of the line indicates the permissions asso-
ciated with the file. The first dash indicates that this is a normal file. It would be d for
a directory, or it can be other letters for special kinds of files such as devices (see
Chapter 6, “Devices”) or named pipes (see Chapter 5, “Interprocess Communication,”
Section 5.4, “Pipes”). The next three characters show permissions for the owning user;
they indicate that samuel can read, write, and execute the file. The next three charac-
ters show permissions for members of the csl group; these members are allowed only
to read and execute the file. The last three characters show permissions for everyone
else; these users are not allowed to do anything with hello.

Let’s see how this works. First, let’s try to access the file as the user nobody, who is
not in the c¢sl group:

id

uid=99(nobody) gid=99(nobody) groups=99(nobody)
% cat hello

cat: hello: Permission denied

% echo hi > hello

sh: ./hello: Permission denied

% ./hello

sh: ./hello: Permission denied

o°

We can’t read the file, which is why cat fails; we can’t write to the file, which is why
echo fails; and we can’t run the file, which is why . /hello fails.

3.You’'ll sometimes see the permission bits for a file referred to as the file’s mode. The name
of the chmod command is short for “change mode.”

201

202 Chapter 10 Security

Things are better if we are accessing the file as mitchell, who is a member of the
csl group:

% id

uid=501(mitchell) gid=501(mitchell) groups=501(mitchell),503(csl)

% cat hello

#!/bin/bash

echo "Hello, world."

% ./hello

Hello, world.

% echo hi > hello

bash: ./hello: Permission denied

We can list the contents of the file, and we can run it (it’s a simple shell script), but we
still can’t write to it.

If we run as the owner (samuel), we can even overwrite the file:

% 1id

uid=502(samuel) gid=502(samuel) groups=502(samuel),503(csl)

% echo hi > hello

% cat hello

hi

You can change the permissions associated with a file only if you are the file’s owner
(or the superuser). For example, if you now want to allow everyone to execute the
file, you can do this:

hmod o+x hello

c
% 1s -1 hello
-PWXP-X - -X 1 samuel csl 3 Jan 22 16:38 hello

)
i)

Note that there’s now an x at the end of the first string of characters. The o+x bit
means that you want to add the execute permission for other people (not the file’s
owner or members of its owning group).You could use g-w instead, to remove the
write permission from the group. See the man page in section 1 for chmod for details
about this syntax:

% man 1 chmod

Programmatically, you can use the stat system call to find the permissions associated
with a file. This function takes two parameters: the name of the file you want to find
out about, and the address of a data structure that is filled in with information about
the file. See Appendix B, “Low-Level I/O,” Section B.2,“stat,” for a discussion of other
information that you can obtain with stat. Listing 10.2 shows an example of using
stat to obtain file permissions.

Listing 10.2 (stat-perm.c) Determine File Owner’s Write Permission

#include <stdio.h>
#include <sys/stat.h>

int main (int argc, char* argv[])

{
const char* const filename = argv[1];
struct stat buf;

10.3 File System Permissions

/* Get file information. */

stat (filename, &buf);

/* If the permissions are set such that the file's owner can write
to it, print a message. */

if (buf.st_mode & S_IWUSR)
printf ("Owning user can write "%s'.\n", filename);

return 0;

If you run this program on our hello program, it says:

% ./stat-perm hello
Owning user can write 'hello’.

The S_IWUSR constant corresponds to write permission for the owning user. There are
other constants for all the other bits. For example, S_IRGRP is read permission for the
owning group, and S_IXOTH is execute permission for users who are neither the own-
ing user nor a member of the owning group. If you store permissions in a variable, use
the typedef mode_t for that variable. Like most system calls, stat will return -1 and set
errno if it can’t obtain information about the file.

You can use the chmod function to change the permission bits on an existing file.
You call chmod with the name of the file you want to change and the permission bits
you want set, presented as the bitwise or of the various permission constants men-
tioned previously. For example, this next line would make hello readable and exe-
cutable by its owning user but would disable all other permissions associated with
hello:

chmod ("hello", S_IRUSR | S_IXUSR);

The same permission bits apply to directories, but they have different meanings. If a
user is allowed to read from a directory, the user is allowed to see the list of files that
are present in that directory. If a user is allowed to write to a directory, the user is
allowed to add or remove files from the directory. Note that a user may remove files
from a directory if she is allowed to write to the directory, even if she does not have per-
mission to modify the file she is removing. If a user is allowed to execute a directory, the
user is allowed to enter that directory and access the files therein. Without execute
access to a directory, a user is not allowed to access the files in that directory indepen-
dent of the permissions on the files themselves.

To summarize, let’s review how the kernel decides whether to allow a process to
access a particular file. It checks to see whether the accessing user is the owning user, a
member of the owning group, or someone else. The category into which the accessing
user falls is used to determine which set of read/write/execute bits are checked. Then
the kernel checks the operation that is being performed against the permission bits
that apply to this user.*

4.The kernel may also deny access to a file if a component directory in its file path is inac-
cessible. For instance, if a process may not access the directory /tmp/private/, it may not read
/tmp/private/data, even if the permissions on the latter are set to allow the access.

203

204 Chapter 10 Security

There is one important exception: Processes running as root (those with user ID 0)
are always allowed to access any file, regardless of the permissions associated with it.

10.3.1 Security Hole: Programs Without Execute Permissions

Here’s a first example of where security gets very tricky. You might think that if you
disallow execution of a program, then nobody can run it. After all, that’s what it means
to disallow execution. But a malicious user can make a copy of the program, change
the permissions to make it executable, and then run the copy! If you rely on users not
being able to run programs that aren’t executable but then don’t prevent them from
copying the programs, you have a security hole—a means by which users can perform
some action that you didn’t intend.

10.3.2 Sticky Bits

In addition to read, write, and execute permissions, there is a magic bit called the sticky
bit> This bit applies only to directories.

A directory that has the sticky bit set allows you to delete a file only if you are the
owner of the file. As mentioned previously, you can ordinarily delete a file if you have
write access to the directory that contains it, even if you are not the file’s owner. When
the sticky bit is set, you still must have write access to the directory, but you must also
be the owner of the file that you want to delete.

A few directories on the typical GNU/Linux system have the sticky bit set. For
example, the /tmp directory, in which any user can place temporary files, has the sticky
bit set. This directory is specifically designed to be used by all users, so the directory
must be writable by everyone. But it would be bad if one user could delete another
user’s files, so the sticky bit is set on the directory. Then only the owning user (or
root, of course) can remove a file.

You can see the sticky bit is set because of the t at the end of the permission bits
when you run 1s on /tmp:

% 1s -1d /tmp

drwxrwxrwt 12 root root 2048 Jan 24 17:51 /tmp

The corresponding constant to use with stat and chmod is S_ISVTX.

If your program creates directories that behave like /tmp, in that lots of people put
things there but shouldn’t be able to remove each other’s files, then you should set the
sticky bit on the directory.You can set the sticky bit on a directory with the chmod
command by invoking the following:

% chmod o+t directory

5.This name is anachronistic; it goes back to a time when setting the sticky bit caused a pro-
gram to be retained in main memory even when it was done executing. The pages allocated to

the program were “stuck” in memory.

10.4 Real and Effective IDs

To set the sticky bit programmatically, call chmod with the S_ISVTX mode flag. For
example, to set the sticky bit of the directory specified by dir_path to those of the
/tmp and give full read, write, and execute permissions to all users, use this call:

chmod (dir_path, S_IRWXU | S_IRWXG | S_IRWXO | S_ISVTX);

10.4 Real and Effective IDs

Until now, we've talked about the user ID and group ID associated with a process as if
there were only one such user ID and one such group ID. But, actually, it’s not quite
that simple.

Every process really has two user IDs: the effective user ID and the real user ID. (Of
course, there’s also an effective group ID and real group ID. Just about everything that’s
true about user IDs is also true about group IDs.) Most of the time, the kernel checks
only the effective user ID. For example, if a process tries to open a file, the kernel
checks the effective user ID when deciding whether to let the process access the file.

The geteuid and getegid functions described previously return the effective user
ID and the effective group ID. Corresponding getuid and getgid functions return the
real user ID and real group ID.

If the kernel cares about only the effective user ID, it doesn’t seem like there’s
much point in having a distinction between a real user ID and an effective user ID.
However, there is one very important case in which the real user ID matters. If you
want to change the effective user ID of an already running process, the kernel looks at
the real user ID as well as the effective user ID.

Before looking at how you can change the effective user ID of a process, let’s exam-
ine why you would want to do such a thing by looking back at our accounting pack-
age. Suppose that there’s a server process that might need to look at any file on the
system, regardless of the user who created it. Such a process must run as root because
only root can be guaranteed to be capable of looking at any file. But now suppose
that a request comes in from a particular user (say, mitchell) to access some file. The
server process could carefully examine the permissions associated with the files in
question and try to decide whether mitchell should be allowed to access those files.
But that would mean duplicating all the processing that the kernel would normally do
to check file access permissions. Reimplementing that logic would be complex, error-
prone, and tedious.

A better approach is simply to temporarily change the effective user ID of the
process from root to mitchell and then try to perform the operations required. If
mitchell is not allowed to access the data, the kernel will prevent the process from
doing so and will return appropriate indications of error. After all the operations taken
on behalf of mitchell are complete, the process can restore its original effective user
ID to root.

205

206 Chapter 10 Security

Programs that authenticate users when they log in take advantage of the capability
to change user IDs as well. These login programs run as root. When the user enters a
username and password, the login program verifies the username and password in the
system password database. Then the login program changes both the effective user ID
and the real ID to be that of the user. Finally, the login program calls exec to start the
user’s shell, leaving the user running a shell whose eftective user ID and real user ID
are that of the user.

The function used to change the user IDs for a process is setreuid. (There is, of
course, a corresponding setregid function as well.) This function takes two argu-
ments. The first argument is the desired real user ID; the second is the desired effective
user ID. For example, here’s how you would exchange the effective and real user IDs:

setreuid (geteuid(), getuid ());

Obviously, the kernel won'’t let just any process change its user IDs. If a process were
allowed to change its effective user ID at will, then any user could easily impersonate
any other user, simply by changing the effective user ID of one of his processes. The
kernel will let a process running with an effective user ID of 0 change its user IDs as
it sees fit. (Again, notice how much power a process running as root has! A process
whose effective user ID is 0 can do absolutely anything it pleases.) Any other process,
however, can do only one of the following things:

= Set its effective user ID to be the same as its real user ID
= Set its real user ID to be the same as its effective user ID

= Swap the two user IDs

The first alternative would be used by our accounting process when it has finished
accessing files as mitchell and wants to return to being root.The second alternative
could be used by a login program after it has set the eftective user ID to that of the
user who just logged in. Setting the real user ID ensures that the user will never be
able go back to being root. Swapping the two user IDs is almost a historical artifact;
modern programs rarely use this functionality.

You can pass -1 to either argument to setreuid if you want to leave that user ID
alone. There’s also a convenience function called seteuid. This function sets the effec-
tive user ID, but it doesn’t modify the real user ID.The following two statements both
do exactly the same thing:

seteuid (id);

setreuid (-1, id);

10.4.1 Setuid Programs

Using the previous techniques, you know how to make a root process impersonate
another process temporarily and then return to being root.You also know how to
make a root process drop all its special privileges by setting both its real user ID and
its effective user ID.

10.4 Real and Effective IDs

Here’s a puzzle: Can you, running as a non-root user, ever become root? That
doesn’t seem possible, using the previous techniques, but here’s proof that it can be
done:

% whoami

mitchell

% su

Password:

% whoami

root

The whoami command is just like id, except that it shows only the effective user ID,
not all the other information. The su command enables you to become the superuser
if you know the root password.

How does su work? Because we know that the shell was originally running with
both its real user ID and its effective user ID set to mitchell, setreuid won'’t allow us
to change either user ID.

The trick is that the su program is a setuid program. That means that when it is
run, the eftective user ID of the process will be that of the file’s owner rather than the
effective user ID of the process that performed the exec call. (The real user ID will
still be that of the executing user.) To create a setuid program, you use chmod +s at the
command line, or use the S_ISUID flag if calling chmod programmatically.®

For example, consider the program in Listing 10.3.

Listing 10.3 (setuid-test.c) Setuid Demonstration Program

#include <stdio.h>
#include <unistd.h>

int main ()

{
printf ("uid=%d euid=%d\n", (int) getuid (), (int) geteuid ());
return 0;

}

Now suppose that this program is setuid and owned by root. In that case, the 1s out-
put will look like this:

-IPWSIrws - -X 1 root root 11931 Jan 24 18:25 setuid-test

The s bits indicate that the file is not only executable (as an x bit would indicate) but
also setuid and setgid. When we use this program, we get output like this:

% whoami

mitchell

% ./setuid-test

uid=501 euid=0

6. Of course, there is a similar notion of a setgid program. When run, its effective group
ID is the same as that of the group owner of the file. Most setuid programs are also setgid
programs.

207

208 Chapter 10 Security

Note that the effective user ID is set to 0 when the program is run.
You can use the chmod command with the u+s or g+s arguments to set the setuid
and setgid bits on an executable file, respectively—for example:
% 1s -1 program
-PWXI-XP - X 1 samuel csl 0 Jan 30 23:38 program
% chmod g+s program
1Is -1 program
-PWXI-Sr-X 1 samuel csl 0 Jan 30 23:38 program
chmod u+s program
% 1s -1 program
-PWSr-Sr-x 1 samuel csl 0 Jan 30 23:38 program

o°

o°

You can also use the chmod call with the S_ISUID or S_ISGID mode flags.

su is capable of changing the effective user ID through this mechanism. It runs
initially with an effective user ID of 0. Then it prompts you for a password. If the
password matches the root password, it sets its real user ID to be root as well and
then starts a new shell. Otherwise, it exits, unceremoniously leaving you as a non-
privileged user.

Take a look at the permissions on the su program:

% 1s -1 /bin/su
-PWST-XI-X 1 root root 14188 Mar 7 2000 /bin/su

Notice that it’s owned by root and that the setuid bit is set.

Note that su doesn’t actually change the user ID of the shell from which it was
run. Instead, it starts a new shell process with the new user ID. The original shell is
blocked until the new shell completes and su exits.

10.5 Authenticating Users

Often, if you have a setuid program, you don’t want to offer its services to everyone.
For example, the su program lets you become root only if you know the root pass-
word. The program makes you prove that you are entitled to become root before
going ahead with its actions. This process is called authentication—the su program is
checking to see that you are authentic.

If you’re administering a very secure system, you probably don’t want to let people
log in just by typing an ordinary password. Users tend to write down passwords, and
black hats tend to find them. Users tend to pick passwords that involve their birthdays,
the names of their pets, and so forth.” Passwords just aren’t all that secure.

7.1t has been found that system administrators tend to pick the word god as their password
more often than any other password. (Make of that what you will.) So, if you ever need root
access on a machine and the sysadmin isn’t around, a little divine inspiration might be just what

you need.

10.5 Authenticating Users

For example, many organizations now require the use of special “one-time” pass-
words that are generated by special electronic ID cards that users keep with them. The
same password can’t be used twice, and you can’t get a valid password out of the ID
card without entering a PIN. So, an attacker must obtain both the physical card and
the PIN to break in. In a really secure facility, retinal scans or other kinds of biometric
testing are used.

If youre writing a program that must perform authentication, you should allow the
system administrator to use whatever means of authentication is appropriate for that
installation. GNU/Linux comes with a very useful library that makes this very easy.
This facility, called Pluggable Authentication Modules, or PAM, makes it easy to write
applications that authenticate their users as the system administrator sees fit.

It’s easiest to see how PAM works by looking at a simple PAM application. Listing
10.4 illustrates the use of PAM.

Listing 10.4 (pam.c) PAM Example

#include <security/pam_appl.h>
#include <security/pam_misc.h>
#include <stdio.h>

int main ()

{
pam_handle_t* pamh;
struct pam_conv pamc;

/* Set up the PAM conversation. */
pamc.conv = &misc_conv;
pamc.appdata_ptr = NULL;
/* Start a new authentication session. */
pam_start ("su", getenv ("USER"), &pamc, &pamh);
/* Authenticate the user. */
if (pam_authenticate (pamh, 0) != PAM_SUCCESS)
fprintf (stderr, "Authentication failed!\n");
else
fprintf (stderr, "Authentication 0K.\n");
/* All done. */
pam_end (pamh, 0);
return 0;

To compile this program, you have to link it with two libraries: the 1ibpam library and
a helper library called libpam_misc:

% gcc -0 pam pam.c -lpam -lpam_misc

209

210 Chapter 10 Security

This program starts oft by building up a PAM conversation object. This object is used

by the PAM library whenever it needs to prompt the user for information. The
misc_conv function used in this example is a standard conversation function that uses
the terminal for input and output.You could write your own function that pops up a
dialog box, or that uses speech for input and output, or that provides even more exotic
input and output methods.

The program then calls pam_start. This function initializes the PAM library. The first
argument is a service name. You should use a name that uniquely identifies your appli-
cation. For example, if your application is named whizbang, you should probably use
that for the service name, too. However, the program probably won’t work until the
system administrator explicitly configures the system to work with your service. So, in
this example, we use the su service, which says that our program should authenticate
users in the same way that the su command does.You should not use this technique in a
real program. Pick a real service name, and have your installation scripts help the system
administrator to set up a correct PAM configuration for your application.

The second argument is the name of the user whom you want to authenticate. In
this example, we use the value of the USER environment variable. (Normally, this is the
username that corresponds to the effective user ID of the current process, but that’s
not always the case.) In most real programs, you would prompt for a username at this
point. The third argument indicates the PAM conversation, discussed previously. The
call to pam_start fills in the handle provided as the fourth argument. Pass this handle
to subsequent calls to PAM library routines.

Next, the program calls pam_authenticate. The second argument enables you to
pass various flags; the value 0 means to use the default options. The return value from
this function indicates whether authentication succeeded.

Finally, the programs calls pam_end to clean up any allocated data structures.

Let’s assume that the valid password for the current user is “password” (an excep-
tionally poor password). Then, running this program with the correct password pro-
duces the expected:

% ./pam

Password: password

Authentication OK.

If you run this program in a terminal, the password probably won’t actually appear
when you type it in; it’s hidden to prevent others from peeking at your password over
your shoulder as you type.

However, if a hacker tries to use the wrong password, the PAM library will cor-
rectly indicate failure:

% ./pam

Password: badguess

Authentication failed!

10.6 More Security Holes

The basics covered here are enough for most simple programs. Full documentation
about how PAM works is available in /usr/doc/pam on most GNU/Linux systems.

10.6 More Security Holes

Although this chapter will point out a few common security holes, you should by no
means rely on this book to cover all possible security holes. A great many have already
been discovered, and many more are out there waiting to be found. If you are trying
to write secure code, there is really no substitute for having a security expert audit
your code.

10.6.1 Buffer Overruns

Almost every major Internet application daemon, including the sendmail daemon, the
finger daemon, the talk daemon, and others, has at one point been compromised
through a buffer overrun.

If you are writing any code that will ever be run as root, you absolutely must be
aware of this particular kind of security hole. If you are writing a program that per-
forms any kind of interprocess communication, you should definitely be aware of this
kind of security hole. If you are writing a program that reads files (or might read files)
that are not owned by the user executing the program, you should be aware of
this kind of security hole. That last criterion applies to almost every program.
Fundamentally, if you're going to write GNU/Linux software, you ought to know
about buffer overruns.

The idea behind a buffer overrun attack is to trick a program into executing code
that it did not intend to execute. The usual mechanism for achieving this feat is to
overwrite some portion of the program’s process stack. The program’s stack contains,
among other things, the memory location to which the program will transfer control
when the current function returns. Therefore, if you can put the code that you want
to have executed into memory somewhere and then change the return address to
point to that piece of memory, you can cause the program to execute anything. When
the program returns from the function it is executing, it will jump to the new code
and execute whatever is there, running with the privileges of the current process.
Clearly, if the current process is running as root, this would be a disaster. If the process
is running as another user, it’s a disaster “only” for that user—and anybody else who
depends on the contents of files owned by that user, and so forth.

If the program is running as a daemon and listening for incoming network connec-
tions, the situation is even worse. A daemon typically runs as root. If it contains buffer
overrun bugs, anyone who can connect via the network to a computer running the
daemon can seize control of the computer by sending a malignant sequence of data to
the daemon over the network. A program that does not engage in network communi-
cations is much safer because only users who are already able to log in to the com-
puter running the program are able to attack it.

211

212 Chapter 10 Security

The buggy versions of finger, talk, and sendmail all shared a common flaw. Each
used a fixed-length string buffer, which implied a constant upper limit on the size of
the string but then allowed network clients to provide strings that overflowed the
bufter. For example, they contained code similar to this:

#include <stdio.h>

int main ()
{

/* Nobody in their right mind would have more than 32 characters in
their username. Plus, I think UNIX allows only 8-character
usernames. So, this should be plenty of space. */

char username[32];

/* Prompt the user for the username. */

printf ("Enter your username: ");

/* Read a line of input. */

gets (username);

/* Do other things here... */

return 0;

}

The combination of the 32-character buffer with the gets function permits a buffer
overrun. The gets function reads user input up until the next newline character and
stores the entire result in the username bufter. The comments in the code are correct
in that people generally have short usernames, so no well-meaning user is likely to
type in more than 32 characters. But when you'’re writing secure software, you must
consider what a malicious attacker might do. In this case, the attacker might deliber-
ately type in a very long username. Local variables such as username are stored on the
stack, so by exceeding the array bounds, it’s possible to put arbitrary bytes onto the
stack beyond the area reserved for the username variable. The username will overrun
the buffer and overwrite parts of the surrounding stack, allowing the kind of attack
described previously.

Fortunately, it’s relatively easy to prevent buffer overruns. When reading strings, you
should always use a function, such as getline, that either dynamically allocates a suffi-
ciently large bufter or stops reading input if the bufter is full. For example, you could
use this:

char* username = getline (NULL, 0@, stdin);

This call automatically uses malloc to allocate a buffer big enough to hold the line and
returns it to you.You have to remember to call free to deallocate the buffer, of course,
to avoid leaking memory.

Your life will be even easier if you use C++ or another language that provides
simple primitives for reading input. In C++, for example, you can simply use this:

string username;
getline (cin, username);

10.6 More Security Holes

The username string will automatically be deallocated as well; you don’t have to
remember to free it.*

Of course, buffer overruns can occur with any statically sized array, not just with
strings. If you want to write secure code, you should never write into a data structure,
on the stack or elsewhere, without verifying that you're not going to write beyond its
region of memory.

10.6.2 Race Conditions in /tmp

Another very common problem involves the creation of files with predictable names,
typically in the /tmp directory. Suppose that your program prog, running as root,
always creates a temporary file called /tmp/prog and writes some vital information
there. A malicious user can create a symbolic link from /tmp/prog to any other file on
the system. When your program goes to create the file, the open system call will suc-
ceed. However, the data that you write will not go to /tmp/prog; instead, it will be
written to some arbitrary file of the attacker’s choosing.

This kind of attack is said to exploit a race condition. There is implicitly a race
between you and the attacker. Whoever manages to create the file first wins.

This attack is often used to destroy important parts of the file system. By creating
the appropriate links, the attacker can trick a program running as root that is supposed
to write a temporary file into overwriting an important system file instead. For exam-
ple, by making a symbolic link to /etc/passwd, the attacker can wipe out the system’s
password database. There are also ways in which a malicious user can obtain root
access using this technique.

One attempt at avoiding this attack is to use a randomized name for the file. For
example, you could read from /dev/random to get some bits to use in the name of the
file. This certainly makes it harder for a malicious user to guess the filename, but it
doesn’t make it impossible. The attacker might just create a large number of symbolic
links, using many potential names. Even if she has to try 10,000 times before wining
the race condition, that one time could be disastrous.

Another approach is to use the 0_EXCL flag when calling open. This flag causes open
to fail if the file already exists. Unfortunately, if you’re using the Network File System
(NES), or if anyone who’s using your program might ever be using NFS, that’s not a
sufficiently robust approach because 0_EXCL is not reliable when NFS is in use.You
can'’t ever really know for sure whether your code will be used on a system that uses
NES, so if youre highly paranoid, don’t rely on using 0_EXCL.

In Chapter 2,“Writing Good GNU/Linux Software,” Section 2.1.7, “Using
Temporary Files,” we showed how to use mkstemp to create temporary files.
Unfortunately, what mkstemp does on Linux is open the file with 0_EXCL after trying to
pick a name that is hard to guess. In other words, using mkstemp is still insecure if /tmp
is mounted over NFS.” So, using mkstemp is better than nothing, but it’s not fully secure.

8. Some programmers believe that C++ is a horrible and overly complex language. Their
arguments about multiple inheritance and other such complications have some merit, but it is
easier to write code that avoids buffer overruns and other similar problems in C++ than in C.

9. Obviously, if you're also a system administrator, you shouldn’t mount /tmp over NES.

213

214 Chapter 10 Security

One approach that works is to call 1stat on the newly created file (Istat is discussed in
Section B.2,“stat”). The 1stat function is like stat, except that if the file referred to
is a symbolic link, 1stat tells you about the link, not the file to which it refers. If
1stat tells you that your new file is an ordinary file, not a symbolic link, and that it is
owned by you, then you should be okay.

Listing 10.5 presents a function that tries to securely open a file in /tmp.The authors
of this book have not had it audited professionally, nor are we professional security
experts, so there’s a good chance that it has a weakness, too. We do not recommend that
you use this code without getting an audit, but it should at least convince you that
writing secure code is tricky. To help dissuade you, we’ve deliberately made the inter-
face difficult to use in real programs. Error checking is an important part of writing
secure software, so we’ve included error-checking logic in this example.

Listing 10.5 (temp-file.c) Create a Temporary File

#include <fcntl.h>
#include <stdlib.h>
#include <sys/stat.h>
#include <unistd.h>

/* Returns the file descriptor for a newly created temporary file.
The temporary file will be readable and writable by the effective
user ID of the current process but will not be readable or
writable by anybody else.

Returns -1 if the temporary file could not be created. */

int secure_temp_file ()
{

/* This file descriptor points to /dev/random and allows us to get
a good source of random bits. */

static int random_fd = -1;

/* A random integer. */

unsigned int random;

/* A buffer, used to convert from a numeric to a string
representation of random. This buffer has fixed size, meaning
that we potentially have a buffer overrun bug if the integers on
this machine have a *lot* of bits. */

char filename[128];

/* The file descriptor for the new temporary file. */

int fd;

/* Information about the newly created file. */

struct stat stat_buf;

/* If we haven't already opened /dev/random, do so now. (This is
not threadsafe.) */
if (random_fd == -1) {

10.6 More Security Holes 215

/* Open /dev/random. Note that we're assuming that /dev/random
really is a source of random bits, not a file full of zeros
placed there by an attacker. */

random_fd = open ("/dev/random", O RDONLY);

/* If we couldn't open /dev/random, give up. */

if (random_fd == -1)

return -1;

}

/* Read an integer from /dev/random. */
if (read (random_fd, &random, sizeof (random)) !=
sizeof (random))
return -1;
/* Create a filename out of the random number. */
sprintf (filename, "/tmp/%u", random);
/* Try to open the file. */
fd = open (filename,
/* Use O_EXECL, even though it doesn't work under NFS. */
O_RDWR | O_CREAT | O_EXCL,
/* Make sure nobody else can read or write the file. */
S_IRUSR | S_IWUSR);
if (fd == -1)
return -1;

/* Call lstat on the file, to make sure that it is not a symbolic
link. */

if (lstat (filename, &stat_buf) == -1)
return -1;

/* If the file is not a regular file, someone has tried to trick
us. */

if (!S_ISREG (stat_buf.st_mode))
return -1;

/* If we don't own the file, someone else might remove it, read it,
or change it while we're looking at it. */

if (stat_buf.st_uid != geteuid () || stat_buf.st_gid != getegid ())
return -1;

/* If there are any more permission bits set on the file,
something's fishy. */

if ((stat_buf.st_mode & ~(S_IRUSR | S_IWUSR)) != 0)
return -1;

return fd;

This function calls open to create the file and then calls 1stat a few lines later to make
sure that the file is not a symbolic link. If you're thinking carefully, you’ll realize that
there seems to be a race condition at this point. In particular, an attacker could remove
the file and replace it with a symbolic link between the time we call open and the

216 Chapter 10 Security

time we call 1stat. That won’t harm us directly because we already have an open file
descriptor to the newly created file, but it will cause us to indicate an error to our
caller. This attack doesn’t create any direct harm, but it does make it impossible for our
program to get its work done. Such an attack is called a denial-of-service (DoS) attack.

Fortunately, the sticky bit comes to the rescue. Because the sticky bit is set on /tmp,
nobody else can remove files from that directory. Of course, root can still remove files
from /tmp, but if the attacker has root privilege, there’s nothing you can do to protect
your program.

If you choose to assume competent system administration, then /tmp will not be
mounted via NFS. And if the system administrator was foolish enough to mount /tmp
over NFS, then there’s a good chance that the sticky bit isn’t set, either. So, for most
practical purposes, we think it’s safe to use mkstemp. But you should be aware of these
issues, and you should definitely not rely on 0_EXCL to work correctly if the directory
in use is not /tmp—nor you should rely on the sticky bit being set anywhere else.

10.6.3 Using system or popen

The third common security hole that every programmer should bear in mind involves
using the shell to execute other programs. As a toy example, let’s consider a dictionary
server. This program is designed to accept connections via the Internet. Each client
sends a word, and the server tells it whether that is a valid English word. Because
every GNU/Linux system comes with a list of about 45,000 English words in
/usr/dict/words, an easy way to build this server is to invoke the grep program,

like this:

% grep -x word /usr/dict/words

Here, word is the word that the user is curious about. The exit code from grep will tell
you whether that word appears in /usr/dict/words."
Listing 10.6 shows how you might try to code the part of the server that

invokes grep:

Listing 10.6 (grep-dictionary.c) Search for a Word in the Dictionary

#include <stdio.h>
#include <stdlib.h>

/* Returns a nonzero value if and only if the WORD appears in
/usr/dict/words. */

int grep_for_word (const char* word)

{
size_t length;
char* buffer;
int exit_code;

10. If you don’t know about grep, you should look at the manual pages. It’s an incredibly
useful program.

10.6 More Security Holes

/* Build up the string 'grep -x WORD /usr/dict/words'. Allocate the
string dynamically to avoid buffer overruns. */
length =
strlen ("grep -x ") + strlen (word) + strlen (" /usr/dict/words") + 1;
buffer = (char*) malloc (length);
sprintf (buffer, "grep -x %s /usr/dict/words", word);

/* Run the command. */

exit_code = system (buffer);

/* Free the buffer. */

free (buffer);

/* If grep returned 0, then the word was present in the
dictionary. */

return exit_code == 0;

Note that by calculating the number of characters we need and then allocating the
buffer dynamically, we'’re sure to be safe from bufter overruns.

Unfortunately, the use of the system function (described in Chapter 3, “Processes,”
Section 3.2.1,“Using system”) is unsafe. This function invokes the standard system
shell to run the command and then returns the exit value. But what happens if a mali-
cious hacker sends a “word” that is actually the following line or a similar string?

foo /dev/null; rm -rf /

In that case, the server will execute this command:

grep -x foo /dev/null; rm -rf / /usr/dict/words

Now the problem is obvious. The user has turned one command, ostensibly the invo-
cation of grep, into two commands because the shell treats a semicolon as a command
separator. The first command is still a harmless invocation of grep, but the second
removes all files on the entire system! Even if the server is not running as root, all the
files that can be removed by the user running the server will be removed. The same
problem can arise with popen (described in Section 5.4.4,“popen and pclose”), which
creates a pipe between the parent and child process but still uses the shell to run the
command.

There are two ways to avoid these problems. One is to use the exec family of func-
tions instead of system or popen.That solution avoids the problem because characters
that the shell treats specially (such as the semicolon in the previous command) are not
treated specially when they appear in the argument list to an exec call. Of course, you
give up the convenience of system and popen.

217

218 Chapter 10 Security

The other alternative is to validate the string to make sure that it is benign. In the
dictionary server example, you would make sure that the word provided contains only
alphabetic characters, using the isalpha function. If it doesn’t contain any other char-
acters, there’s no way to trick the shell into executing a second command. Don’t
implement the check by looking for dangerous and unexpected characters; it’s always
safer to explicitly check for the characters that you know are safe rather than try to
anticipate all the characters that might cause trouble.

