Inline Assembly Code

TO])AY, FEW PROGRAMMERS USE ASSEMBLY LANGUAGE. Higher-level languages such
as C and C++ run on nearly all architectures and yield higher productivity when
writing and maintaining code. For occasions when programmers need to use assembly
instructions in their programs, the GNU Compiler Collection permits programmers
to add architecture-dependent assembly language instructions to their programs.

GCCs inline assembly statements should not be used indiscriminately. Assembly
language instructions are architecture-dependent, so, for example, programs using x86
instructions cannot be compiled on PowerPC computers. To use them, you’ll require a
facility in the assembly language for your architecture. However, inline assembly
statements permit you to access hardware directly and can also yield faster code.

An asnm instruction allows you to insert assembly instructions into C and C++
programs. For example, this instruction

asm ("fsin" : "=t" (answer) : "0" (angle));

is an x86-specific way of coding this C statement:'

answer = sin (angle);

1.The expression sin (angle) is usually implemented as a function call into the math
library, but if you specify the -01 or higher optimization flag, GCC is smart enough to replace
the function call with a single fsin assembly instruction.

190 Chapter 9 Inline Assembly Code

Observe that unlike ordinary assembly code instructions, asm statements permit you to
specify input and output operands using C syntax.

To read more about the x86 instruction set, which we will use in this
chapter, see http://developer.intel.com/design/pentiumii/manuals/ and
http://www.x86-64.0org/documentation.

9.1 When to Use Assembly Code

Although asm statements can be abused, they allow your programs to access the
computer hardware directly, and they can produce programs that execute quickly.
You can use them when writing operating system code that directly needs to
interact with hardware. For example, /usr/include/asm/io.h contains assembly
instructions to access input/output ports directly. The Linux source code file
/usr/src/linux/arch/i386/kernel/process.s provides another example, using hlt in
idle loop code. See other Linux source code files in /usr/src/linux/arch/ and
/usr/src/linux/drivers/.

Assembly instructions can also speed the innermost loop of computer programs.
For example, if the majority of a program’s running time is computing the sine and
cosine of the same angles, this innermost loop could be recoded using the fsincos
x86 instruction.” See, for example, /usr/include/bits/mathinline.h, which wraps
up into macros some inline assembly sequences that speed transcendental function
computation.

You should use inline assembly to speed up code only as a last resort. Current com-
pilers are quite sophisticated and know a lot about the details of the processors for
which they generate code. Therefore, compilers can often choose code sequences that
may seem unintuitive or roundabout but that actually execute faster than other
instruction sequences. Unless you understand the instruction set and scheduling attrib-
utes of your target processor very well, you're probably better off letting the compiler’s
optimizers generate assembly code for you for most operations.

Occasionally, one or two assembly instructions can replace several lines of higher-
level language code. For example, determining the position of the most significant
nonzero bit of a nonzero integer using the C programming languages requires a loop
or floating-point computations. Many architectures, including the x86, have a single
assembly instruction (bsr) to compute this bit position. We’ll demonstrate the use of
one of these in Section 9.4, “Example.”

2. Algorithmic or data structure changes may be more eftective in reducing a program’s

running time than using assembly instructions.

9.2 Simple Inline Assembly 191

9.2 Simple Inline Assembly

Here we introduce the syntax of asm assembler instructions with an x86 example to
shift a value 8 bits to the right:

asm ("shrl $8, %0" : "=r" (answer) r" (operand) : "cc");

The keyword asm is followed by a parenthetic expression consisting of sections sepa-
rated by colons. The first section contains an assembler instruction and its operands. In
this example, shrl right-shifts the bits in its first operand. Its first operand is repre-
sented by %0. Its second operand is the immediate constant $8.

The second section specifies the outputs. The instruction’s one output will be
placed in the C variable answer, which must be an Ivalue. The string "=r" contains an
equals sign indicating an output operand and an r indicating that answer is stored in a
register.

The third section specifies the inputs. The C variable operand specifies the value to
shift. The string "r* indicates that it is stored in a register but omits an equals sign
because it is an input operand, not an output operand.

The fourth section indicates that the instruction changes the value in the condition
code cc register.

9.2.1 Converting an asm to Assembly Instructions

GCCss treatment of asm statements is very simple. It produces assembly instructions to
deal with the asm’s operands, and it replaces the asm statement with the instruction
that you specify. It does not analyze the instruction in any way.

For example, GCC converts this program fragment

double foo, bar;

asm ("mycool_asm %1, %0@" : "=r" (bar) : "r" (foo0));

to these x86 assembly instructions:
movl -8(%ebp),%edx
movl -4(%ebp),%ecx
#APP
mycool_asm %edx, %edx
#NO_APP
movl S%edx, -16(%ebp)
movl %ecx, -12(%ebp)
Remember that foo and bar each require two words of stack storage on a 32-bit x86
architecture. The register ebp points to data on the stack.

The first two instructions copy foo into registers EDX and ECX on which mycool_asm
operates. The compiler decides to use the same registers to store the answer, which is
copied into bar by the final two instructions. It chooses appropriate registers, even
reusing the same registers, and copies operands to and from the proper locations
automatically.

192 Chapter 9 Inline Assembly Code

9.3 Extended Assembly Syntax

In the subsections that follow, we describe the syntax rules for asm statements. Their
sections are separated by colons.

We will refer to this illustrative asm statement, which computes the Boolean
expression x > y:

asm ("fucomip %%st(1), %%st; seta %%al"

"=a" (result) : "u" (y), "t" (x) : "cc", "st");

First, fucomip compares its two operands x and y, and stores values indicating the result
into the condition code register. Then seta converts these values into a 0 or 1 result.

9.3.1 Assembler Instructions

The first section contains the assembler instructions, enclosed in quotation marks. The
example asm contains two assembly instructions, fucomip and seta, separated by semi-
colons. If the assembler does not permit semicolons, use newline characters (\n) to
separate instructions.

The compiler ignores the contents of this first section, except that one level of
percentage signs is removed, so %% changes to %. The meaning of %%st (1) and other
such terms is architecture-dependent.

GCC will complain if you specify the -traditional option or the -ansi option
when compiling a program containing asm statements. To avoid producing these
errors, such as in header files, use the alternative keyword __asm__

9.3.2 Outputs

The second section specifies the instructions’ output operands using C syntax. Each
operand is specified by an operand constraint string followed by a C expression in
parentheses. For output operands, which must be lvalues, the constraint string should
begin with an equals sign. The compiler checks that the C expression for each output
operand is in fact an lvalue.

Letters specifying registers for a particular architecture can be found in the
GCC source code, in the REG_CLASS_FROM_LETTER macro. For example, the
gce/config/i386/1386.h configuration file in GCC lists the register letters for the x86
architecture.” Table 9.1 summarizes these.

3. You'll need to have some familiarity with GCC’ internals to make sense of this file.

9.3 Extended Assembly Syntax

Table 9.1 Register Letters for the Intel x86 Architecture

Register Letter Registers That GCC May Use

R General register (EAX, EBX, ECX, EDX, ESI, EDI, EBP, ESP)
q General register for data (EAX, EBX, ECX, EDX)
f Floating-point register
t Top floating-point register
u Second-from-top floating-point register
a EAX register
b EBX register
ECX register
EDX register
X SSE register (Streaming SIMD Extension register)
y MMX multimedia registers
A An 8-byte value formed from EAX and EDX
D Destination pointer for string operations (EDI)
S Source pointer for string operations (ESI)

Multiple operands in an asm statement, each specified by a constraint string and a C
expression, are separated by commas, as illustrated in the example asm’s input section.
You may specify up to 10 operands, denoted %0, %1, ..., %9, in the output and

input sections. If there are no output operands but there are input operands or
clobbered registers, leave the output section empty or mark it with a comment like
/* no outputs */.

9.3.3 Inputs

The third section specifies the input operands for the assembler instructions. The con-
straint string for an input operand should not have an equals sign, which indicates an
Ivalue. Otherwise, an input operand’s syntax is the same as for output operands.

To indicate that a register is both read from and written to in the same asm, use an
input constraint string of the output operand’s number. For example, to indicate that
an input register is the same as the first output register number, use 0. Output
operands are numbered left to right, starting with 0. Merely specifying the same C
expression for an output operand and an input operand does not guarantee that the
two values will be placed in the same register.

This input section can be omitted if there are no input operands and the subse-
quent clobber section is empty.

193

194 Chapter 9 Inline Assembly Code

9.3.4 Clobbers

If an instruction modifies the values of one or more registers as a side eftect, specify
the clobbered registers in the asm’s fourth section. For example, the fucomip instruc-
tion modifies the condition code register, which is denoted cc. Separate strings repre-
senting clobbered registers with commas. If the instruction can modify an arbitrary
memory location, specify memory. Using the clobber information, the compiler deter-
mines which values must be reloaded after the asm executes. If you don’t specity this
information correctly, GCC may assume incorrectly that registers still contain values
that have, in fact, been overwritten, which will affect your program’s correctness.

9.4 Example

The x86 architecture includes instructions that determine the positions of the least
significant set bit and the most significant set bit in a word. The processor can execute
these instructions quite efficiently. In contrast, implementing the same operation in C
requires a loop and a bit shift.

For example, the bsrl assembly instruction computes the position of the most sig-
nificant bit set in its first operand, and places the bit position (counting from 0, the
least significant bit) into its second operand. To place the bit position for number into
position, we could use this asm statement:

asm ("bsrl %1, %0" : "=r" (position) r" (number));

One way you could implement the same operation in C is using this loop:

long 1i;

for (i = (number >> 1), position = 0; i != @; ++position)

i>>=1;

To test the relative speeds of these two versions, we’ll place them in a loop that com-
putes the bit positions for a large number of values. Listing 9.1 does this using the C
loop implementation. The program loops over integers, from 1 up to the value speci-
fied on the command line. For each value of number, it computes the most significant
bit that is set. Listing 9.2 does the same thing using the inline assembly instruction.
Note that in both versions, we assign the computed bit position to a volatile variable
result.This is to coerce the compiler’s optimizer so that it does not eliminate the
entire bit position computation; if the result is not used or stored in memory, the opti-
mizer eliminates the computation as “dead code.”

Listing 9.1 (bit-pos-loop.c) Find Bit Position Using a Loop

#include <stdio.h>
#include <stdlib.h>

int main (int argc, char* argv[])
{

long max = atoi (argv[1]);

long number;

9.4 Example 195

long i;
unsigned position;
volatile unsigned result;

/* Repeat the operation for a large number of values. */
for (number = 1; number <= max; ++number) {
/* Repeatedly shift the number to the right, until the result is
zero. Keep count of the number of shifts this requires. */
for (i = (number >> 1), position = 0; i != @; ++position)
i>>=1;
/* The position of the most significant set bit is the number of
shifts we needed after the first one. */
result = position;

}

return 0;

Listing 9.2 (bit-pos-asm.c) Find Bit Position Using bsrl

#include <stdio.h>
#include <stdlib.h>

int main (int argc, char* argv[])
{

long max = atoi (argv[1]);

long number;

unsigned position;

volatile unsigned result;

/* Repeat the operation for a large number of values. */
for (number = 1; number <= max; ++number) {
/* Compute the position of the most significant set bit using the
bsrl assembly instruction. */

asm ("bsrl %1, %0" : "=r" (position) : "r" (number));
result = position;

}

return 0;

We’ll compile both versions with full optimization:

o°

cc -02 -0 bit-pos-loop bit-pos-loop.c

% cC -02 -0 bit-pos-asm bit-pos-asm.c
Now let’s run each using the time command to measure execution time. We’ll specify
a large value as the command-line argument, to make sure that each version takes at
least a few seconds to run.

196 Chapter 9 Inline Assembly Code

% time ./bit-pos-loop 250000000

19.51user 0.00system 0:20.40elapsed 95%CPU (@avgtext+@avgdata
Omaxresident)k@inputs+@outputs (73major+iiminor)pagefaults Oswaps
% time ./bit-pos-asm 250000000

3.19user 0.00system 0:03.32elapsed 95%CPU (@avgtext+@avgdata
Omaxresident)k@inputs+@outputs (73major+iiminor)pagefaults Oswaps

Notice that the version that uses inline assembly executes a great deal faster (your
results for this example may vary).

9.5 Optimization Issues

GCC’s optimizer attempts to rearrange and rewrite programs’ code to minimize exe-
cution time even in the presence of asm expressions. If the optimizer determines that
an asm’s output values are not used, the instruction will be omitted unless the keyword
volatile occurs between asm and its arguments. (As a special case, GCC will not
move an asm without any output operands outside a loop.) Any asm can be moved in
ways that are difficult to predict, even across jumps. The only way to guarantee a par-
ticular assembly instruction ordering is to include all the instructions in the same asm.

Using asms can restrict the optimizer’s effectiveness because the compiler does not
know the asms’ semantics. GCC i1s forced to make conservative guesses that may pre-
vent some optimizations. Caveat emptor!

9.6 Maintenance and Portability Issues

If you decide to use nonportable, architecture-dependent asm statements, encapsulating
these statements within macros or functions can aid in maintenance and porting.
Placing all these macros in one file and documenting them will ease porting to a dif-
ferent architecture, something that occurs with surprising frequency even for “throw-
away’’ programs. Thus, the programmer will need to rewrite only one file for the
different architecture.

For example, most asm statements in the Linux source code are grouped into
Jusr/src/linux/include/asm and /usr/src/linux/include/asm-1i386 header files, and
/usr/src/linux/arch/i386/ and /usr/src/linux/drivers/ source files.

